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In many commonly used frequency -shift modulators, a phase error occurs
at the time of switching. If a demodulator is used which utilizes only the
zero -crossing information, then this phase error will cause time jitter in
the received data transitions.

The magnitude of the peak time jitter for various modulators is derived,
assuming an ideal zero -crossing detector. The modulators considered in-
clude the reactance tube and variable reactance modulators, the basic switched
reactance modulators, and the multivibrator modulator. It is found that the
switched reactance modulators cause the most jitter, and that the multivibra-
tor modulator may be designed to cause as small a jitter as desired. The
theory agrees well with some experimental measurements made on existing
data sets, which show that this jitter accounts for most of the back-to-back
data distortion in many wideband data systems.

Finally, a set of sufficient conditions is derived for jitter -free frequency -

shift modulation, and an implementation of a modulator satisfying these
conditions is described.

I. SUMMARY

For the reader who may be more interested in the results of this
paper than in their derivation, the following summary is presented.

Data communication systems using frequency -shift channels com-
monly suffer from a form of fortuitous distortion called jitter. This is
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particularly significant in systems in which the bit rate is not small
compared to the carrier frequency. Jitter is the variation about the
correct position of the transition between marking and spacing signals
at the receiver output. It is desirable to keep the magnitude of the

jitter small compared to the bit length.
This paper studies the jitter which is inherent in various types of fre-

quency -shift modulators. For purposes of this analysis, it is assumed
that the data source is jitter free, that the transmission channel is dis-
tortionless, and that the receiver is an ideal zero -crossing detector. The
modulators to be studied shift frequency instantaneously at the time
the data source goes through a mark -space transition. In an ideal fre-
quency -shift modulator, this shift in frequency takes place with phase
continuity. However, many commonly used modulators do not main-
tain phase continuity at the switching instant.

In an ideal frequency demodulator (i.e., one whose output is propor-
tional to the instantaneous rate of change of phase at its input), such a
phase discontinuity would not cause a time error in the output data
transition; it would simply cause an impulse to be added at the time of
transition to the otherwise correct transition. However, most present-
day demodulators utilize only the information contained in the zero
crossings of the received wave, since the first operation in the receiver
is to limit, or clip, the wave. In such a receiver, phase discontinuities at
the switching instant in the received wave may indeed cause a time error
in the mark -space transition at the receiver output.

Such a receiver is modeled by an ideal zero -crossing detector. (An
ideal zero -crossing detector approaches an ideal FM detector as the
bandwidth becomes small with respect to the carrier frequency.) The
analysis proceeds by first relating the phase error in the received wave
to the transition time error at the output of an ideal zero -crossing de-
tector. Then the peak phase error that may occur for each type of modu-
lator is determined, and this is related to the peak time error, or jitter,
by the above model.

The frequency -shift modulators to be studied include the switched re-
actance modulator (in which a reactance is switched into and out of the
tank of an oscillator to modify its frequency), the reactance tube modu-
lator (in which the effective output reactance of an active circuit is
changed by changing the gain of the active element and this reactance
is used to control the frequency of a separate oscillator), the variable
reactance oscillator (in which the functions of variable reactance and
oscillation are combined into a single active circuit), and the multivi-
brator.
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It is shown that of the LC oscillators, the reactance tube and variable
reactance type of oscillators have the minimum jitter. For all cases of
practical interest, this time error has a peak value roughly one -twelfth
of the period of the frequency midway between the marking and spacing
frequencies, and may take on both positive and negative values with
respect to the true transition time.

The switched reactance type of oscillators which are analyzed include
all four ways of switching a single reactive element into a simple LC
tank, i.e., an inductor or a capacitor switched in parallel with, or in
series with, the tank. In all cases, the peak jitter is described by the
same equation, although there are two distinctly different phenomena
giving rise to the jitter. For a transition in one direction, the peak jitter
is exactly that obtained with the reactance tube and variable reactance
type of modulators. For the opposite transition, however, undesired de
quantities increase the jitter. This increase in jitter is sensitive to bit
rate if there is a decay mechanism for the undesired dc quantity. In the
worst case, the increase in jitter is almost an order of magnitude over
that of the low jitter transition. As the bit rate becomes lower and lower,
the peak jitter associated with the worse transition approaches that of
the opposite transition.

The peak time error ,r,, for the various LC modulators is plotted in
Fig. 7(a) as a function of the frequency -shift ratio A = coi/co2 < 1,
where Wi and W2 are the two modulator frequencies. T. is the period of
the frequency midway between the marking and spacing frequencies.
The parameter r applies to the switched reactance modulators. It is the
ratio of the bit length to the time constant of the undesired dc quantity.

It is shown that the multivibrator may in principle be designed to be
jitter -free. However, practical multivibrators do have some inherent
jitter. The amount of jitter is dependent upon a linearity factor which
is determined by the multivibrator circuit. The jitter associated with a
multivibrator is usually less than the jitter associated with any of the
above LC modulators.

In Fig. 13 is shown the peak jitter, T,, , for the multivibra t or modula-
tor as a function of the frequency -shift ratio A. T. is as defined in Fig.
7. The linearity factor, 13; is the ratio of the supply voltage to the maxi-
mum control (voltage V8 and V, respectively in Fig. 10a). The maximum
control voltage corresponds to the highest frequency.

These theoretical results are supported by experimental jitter measure-
ments made on various types of voice band data sets, as summarized
in Table I. The agreement with the theory is good.

Finally, it is shown that a sufficient condition for jitter -free frequency-
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shift modulation (when using a zero -crossing detector) is to switch the
parameters of an oscillating tank circuit in such a way that

1. the tank current and voltage are maintained at the instant of
switching, and

2. the characteristic impedance of the tank is held constant.
A means for implementing such an oscillator is described using a pair

of variable reactance oscillators in a balanced arrangement. Some experi-
mental waveforms for this circuit are shown in Fig. 16.

II. INTRODUCTION

A large part of present-day data communications systems utilize bi-
nary frequency -shift channels for transmission. In such systems, partic-
ularly in the wideband systems (i.e., systems in which the bit rate is
not small compared to the carrier frequency), the problem of "jitter" is
important. Jitter is the error in the reproduction of the exact time of
transition between marking and spacing signals at the receiver output.

This problem is indicated in Fig. 1, in which it is assumed that the
indicated data -source waveform is jitter -free and is transmitted repeti-
tively. The received waveforms are shown overlapping one another.
Note that, in addition to a usually harmless transmission delay, the re-
ceiver transitions do not all occur at the same relative time, but are
instead distributed about the correct transition. The measure of jitter
which will he used in this paper will be the maximum time error which
may occur in the system, denoted by r,, in Fig. 1. (In all systems con -
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Fig. 1 - The problem of jitter.
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sidered but one, the jitter is symmetric about the correct transition.
However, the maximum jitter associated with a transition in one direc-
tion is not necessarily the same as that associated with the opposite
transition. In these cases, a different Tem will be associated with each of
the two transitions. The one exception to the above statement is the
multivibrator modulator, in which the jitter occurs on only one side of
the correct transition.)

As Tem increases, the time interval during which the received wave
may be reliably sampled during each bit interval decreases. Thus it is
important to keep this jitter to a minimum. Jitter may be induced from
several sources. The data source itself may have inherent jitter. Jitter
may be further induced in the modulation process. Distortion and noise
present in the transmission channel will modify the modulated waveform,
thus perhaps changing the apparent transition times. Finally, the re-
ceiver may contribute to the jitter.

This paper will analyze that jitter inherent in various asynchronous*
frequency -shift modulation techniques. It will be assumed that the
data source is jitter free, that the channel is ideal (i.e., noiseless and
distortionless), and that the system utilizes an ideal zero -crossing type
of detector. This detection process will be described more fully in the
next section.

All the modulators to be studied shift frequency instantaneously at
the time the data source goes through a mark -space transition. That is,
the waveshape before the transition is given by

VI cos (wit + 0,)

and after the transition by

V2 cos (w2t + 02).

The angular frequency before the transition is given by coi and after
the transition by w2 . The expressions wit + 01 and co21 + 02 are defined
as the phase of the wave, before and after the transition, respectively.
Ideally, the shift in frequency should take place with phase continuity;
i.e. colt + CI should equal (.02t + 02 at the time of transition. However, it
will be shown that many commonly used modulators have an inherent
phase error that results in an inherent time jitter.

The modulators to be studied include the switched reactance modula-
tor (in which a reactance is switched into and out of the tank of an oscil-
lator to modify its frequency), the variable reactance oscillator,' the

* That is, the frequency may be suddenly shifted during any portion of the
cycle.
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reactance tube modulator,2 and the multivibrator.3 It will be shown that
the switched -reactance type of modulator has the most jitter. For ex-
ample, at a data rate corresponding to one cycle of carrier per bit, the
switched reactance modulator has a minimum peak jitter equivalent to
7.96 per cent data distortion. The variable reactance oscillator and reac-
tance tube type of modulators are equivalent and have less jitter. The
multivibrator may in principle be designed to have negligible jitter, but
produces a square rather than a sinusoidal wave. These theoretical
results are then supported by experimental data.

III. THE IDEAL ZERO -CROSSING DETECTOR

Before pursuing the jitter analysis further, it is necessary to define in
some detail the assumed detection process. An ideal FM detector is one
which measures the instantaneous rate of change of phase of the re-
ceived wave. For the types of modulators considered in this paper, there
would be no jitter in the received wave using such a detector. Rather,
the phase discontinuity at switching would simply cause an impulse to
be added at the time of transition to the otherwise correct transition.
However, most present-day detectors utilize only the zero -crossing in-
formation in the received wave. For example, consider the receiving
portion of the 43A1 carrier telegraph system.' The incoming signals are
first passed through a filter to reject out -of -band noise, and then ampli-
fied. The next step is to limit the wave. The purpose of this is to remove
any amplitude modulation, but in addition it removes any information
other than that carried by the zero -crossings. The wave is next passed
through a discriminator to convert the frequency modulation to base -

band information, followed by a dc amplifier. The output is then a
square wave which duplicates closely the wave originally presented to
the modulator. Although other data sets use different methods of de-
modulation, a limiter to remove amplitude modulation is part of many
of these. Thus is it of practical interest to study the performance of
frequency -shift modulators when working with a zero -crossing type of
detector. A zero -crossing detector approaches an ideal FM detector as
the bandwidth of the transmitted signal becomes small with respect to
the carrier frequency. This relation is described more fully by Stumpers.5

The characteristics of the zero -crossing detector are shown graphically
in Fig. 2. Let it be receiving a constant frequency sine wave with zero
phase at the time origin. Each zero crossing is identified by the zero -
crossing detector as an advancement of 7 radians in the received wave.
It thus knows the rate of change of phase, and hence the frequency,
of the incoming sinusoidal wave. This is represented by the solid line in



477

377'

27T

77

ASYNCHRONOUS FREQUENCY -SHIFT MODULATORS 1701

/./// I / FREQUENCY SHIFT/ WITH PHASE

/ CONTINUITY

/
/1

// -76-
./

to

Fig. 2 - Graphical representation of the zero -crossing detector.

Fig. 2. However, the detector knows the phase of the wave only within
an uncertainty factor of nw; the wave may equally well be represented
by lines parallel to the solid line in Fig. 2, but of ordinate distance nir
away, where n is any integer. Two such lines are shown dashed.

If, at t = to , the frequency of the incoming wave is suddenly changed,
the rate of zero crossings will be suitably changed. If the transition is
made with phase continuity in the received wave, then the slope of the
path in Fig. 2 simply changes suddenly, and the detector knows that
the transition between frequencies occurred at the time of the break
point. This case is illustrated by the dotted line in Fig. 2.

The problem of jitter is introduced when phase continuity is not pre-
served. In Fig. 2 is also shown a plot of the phase when the frequency
is suddenly changed with an associated phase discontinuity of magnitude
Of . The detector has no knowledge of instantaneous phase except the
zero -crossing information. It therefore assumes phase continuity, and
determines the time to' at which a transition with phase continuity would
have occurred to maintain the observed zero crossings. This time is
determined graphically in Fig. 2 by the intersection of the two constant
frequency lines determined by the detector. Since there is an indeter-
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minacy of nir in the absolute phase, there will be a multiplicity of such
intersections, two of which are shown. It is assumed that the intersec-
tion yielding the minimum time error is chosen by the detector. Thus it
is seen that a phase error of lir radians causes no error in the detected
transition time, as one would intuitively suspect. Furthermore, the phase
error causing maximum time error is 7r/2 radians, or odd multiples
thereof.

One problem has not been resolved. The zero -crossing detector is de-
signed only for the two modulator frequencies at its input; it therefore
is presumably incapable of recognizing zero crossings occurring at
intervals closer than one-half a period of the upper frequency, since
such zero crossings could not occur in a phase -continuous input wave.
But with phase discontinuities, it is possible to get zero crossings closer
than this interval. It is assumed that the zero -crossing detector ignores
such zero crossings.

The relation between phase error and time error may be easily deter-
mined from Fig. 3 by noting that the slope of a line segment is the angular
frequency, w, of the input wave. Let the two modulator frequencies be
denoted oh and 0)2 , where oh is the frequency before switching, and W2 is
the frequency after switching. Then from Fig. 3,

Thus

BI
col = -

ce2

CO2 - COI

eI + BE

T,
.

<7- 2 . (1)

For arbitrary O this may be written

0, - nrT, = min n an integer, (2)- wt

where min fin) means that f(n) is calculated for that value of n which
minimizes f (n). The form (1) will usually be used with the understand-
ing that (2) holds if

7r>-2

Let 0,, be the maximum possible phase error for a given system, and
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Fig. 3 - Relating phase error to time error.

let rem be the resulting value of time error. Then (1) may be rewritten
in a useful form as follows:

or

BEm
Tem = 1 )

(4,2 + w1)(.02( - w
W.

6)2

TEM OEM 1 -F A
To 47r 1 -- A

where A = col/w2 , and To = 47/ (col + W2) is the period of the midfre-
quency (that frequency midway between wi and (02). The value of (3)
is thus a figure of merit for a system, giving the ratio of maximum jitter,
Tem , to the period of the midfrequency as a function of the frequency
ratio A.

From reasoning such as that shown in Fig. 3, note that a positive
phase error corresponds to a time advance for A < 1, but a time retarda-

(3)
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L(t)

L C v (t)

Fig. 4 - Initial tank conditions.

tion for A > 1. From (3), then, positive T,, always corresponds to a
time advance (an early transition) and negative r corresponds to a
time retardation (a late transition).

IV. PRELIMINARY REMARKS

The analysis of the inherent time jitter associated with a particular
modulator will proceed by first determining the maximum phase error
that would occur under the worst conditions, and then relating that
phase error to the time error by the use of (3). Before going further, it
will be useful to point out certain miscellaneous facts. Several of these
remarks pertain to ideal (lossless) tank circuits, since most of the os-
cillators studied are LC oscillators which are representable by lossless
tank circuits.

First note that only one frequency may exist in an undriven lossless
tank, namely the resonant frequency. Therefore, when the frequency of
oscillation of a tank circuit is changed by suddenly changing the value
of one or more of the tank reactances, the frequency also changes sud-
denly to the new resonant frequency. There are no transients except for
the instantaneous transition; i.e., the tank instantaneously reaches its
steady-state condition of amplitude and frequency. In particular, if the
tank voltage and current are of magnitude vo and io at t = 0, and are in

the directions indicated in Fig. 4, then it is well known that the tank
oscillation voltage and current will be given by

v(t) = V cos (wt ± 0) (4)

i(t) = / sin (wt + 0) (5)

where*

V= vo2c jo2

* These are easily derivable, particularly from energy relations.

(6)
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= it:6C v.2 i02 = V //° (7)

0 = tan-' VI i0 (8)

The energy stored in this tank is

E = 2 Cv2(t) Li2(t) = Z CV2 = 2 LI2, (9)

and is always constant as long as the tank is undisturbed.
It is of interest to physically relate the phase error to the frequency -

shift waveform. Fig. 5 shows two independent ways in which the phase
error may manifest itself in the time varying waveform when the fre-
quency of a wave is suddenly changed. Fig. 5(a) shows the obvious
type of phase discontinuity which is associated with a discontinuity in
a waveform of constant amplitude. Fig. 5(b) shows the less obvious
case in which the instantaneous voltage and current in the tank are
continuous, but in which the amplitude of oscillation for one frequency
is not the same as that for the other frequency. The phase error is de-
termined from the condition of waveform continuity. Referring to Fig.
5(b) and considering switching at t = 0, one obtains

V1 cos 01 = V2 cos 02

or

OW. 

cos Ot V2

COS 02 V1

(a)

(b)

Fig. 5 - Relation of waveform to phase discontinuity: (a) phase discontinuity
due to waveform discontinuity; (b) phase discontinuity due to amplitude change.
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Thus the phase error will depend not only on the ratio of amplitudes,
but also upon the phase angle at which the initial frequency is switched.

In the modulators to be described, either or both of these types of
phase error may occur, depending upon the particular situation. In the
case of amplitude variations, one might worry about the fact that a
practical oscillator will try to maintain a constant amplitude. Thus, if
the amplitude attempts to change as in Pig. 5(b), it will quickly recover
to the initial value, either due to the drive of the active element in the
case of an amplitude drop, or due to the limiting element in the case of
an amplitude increase. However, it can be shown that this recovery is
an exponential type of recovery; that is, it may be represented by

Ve"" cos (cot + 0).

Since e")t > 0 (f3 is finite in value), the zero crossings of the wave are
unchanged. Thus the phase error is unaffected by oscillator recovery,
and we will therefore not consider this problem further.

One final point should be made. Some of the discontinuities are rather
complicated, in that the voltage discontinuity and current discontinuity
may be seemingly unrelated, and the voltage and current amplitude
changes may be different. However, the phase discontinuity associated
with either the voltage or current waveform will be identical, since the
voltage and current must always maintain a 90° phase relationship.
Thus, in the following analysis, the calculation of the phase discontinuity
for only one of these quantities is derived.

V. THE REACTANCE TUBE MODULATOR AND VARIABLE REACTANCE OSCIL-

LATOR

The jitter associated with the reactance tube modulator and variable
reactance oscillator will be derived first. The reactance tube type of
modulator is well known in the art.2 It comprises an oscillator which has
one of its reactances determined in part by a virtual reactance, which
in turn is determined by the gain of another active stage with appro-
priate reactance feedback. By varying the gain of the active element (or
by varying its feedback parameters), the magnitude of the virtual re-
actance may be changed, thus changing the resonant frequency of the
oscillator. The variable reactance oscillator' is essentially the combina-
tion of the functions of oscillation and variable reactance into a single
active element.

If the frequency of oscillation is shifted by suddenly changing the
gain of the reactance -determining active element, then it can be shown
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that there is no discontinuity in the voltage and current waveforms at
the time of switching. These modulators may therefore be modeled by a
simple LC tank, as in Fig. 4, in which one or both of the reactances are
suddenly changed to produce a frequency shift, but in such a way that
the current and voltage are maintained at the switching instant. In this
case, phase error is caused solely by an amplitude change.

Let the subscript 1 refer to the waveform before switching, and the
subscript 2 refer to the waveform after switching. Then, using (4), (5),
and (7), and assuming switching at t = 0, the conditions of voltage and
current continuity require that

V1 cos 01 = 1'2 cos 02 (10)

V1
Li
Cl

sin 01 = V2 1:24/7,-- sin 02. (11)
C2

Dividing (11) by (10) and rearranging yields

tan 02 = Ll C2- - tan 01 . (12)
CI L2

In most cases, only one of the reactances is changed. Let us assume
that the value of the inductance is the shifted parameter, and further
that L2 < Li (that is, W2 > col). All other cases (i.e., when L2 > Li , or
when the capacitance is varied) are completely analogous and result in
the same magnitude of jitter. Equation (12) may then be written as

02
_ 1

A

1= tan - tan 01,

where A = co1/co2 < 1 as previously defined in the discussion on zero -
crossing detection.

The phase error as a function of the phase at shifting, 01j is then

0, = 02 - 01 = (tan-' -1tan 0) - 01.
A

(13)

In order to determine 0,, , the maximum value of 0., (13) is differ-
entiated with respect to 01 and equated to zero (the value of 01 satisfying
this condition will be denoted Bi,) :

1

2

A1-
A

ta n2 01,

Solving this for 01m yields

1 1 sect Obn - 1 = 0.
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, +1
01,,, = cos-- v, - tan v A

+ A

Thus
1

Otm = (tan - - tan1 VA.) . (14)

This is a monotonically decreasing function of A, and reaches a maxi-
mum for A = 0 (infinite frequency shift) of 7r/2 radians. For no fre-
quency shift (A = 1), the phase error is zero as one would expect. This
relation is shown plotted as the " " line in Fig. 6.
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Fig. 6 - Peak phase error for the LC modulators; r = (bit length)/ (dc time
constant).
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Noting that the phase error never exceeds r/2 radians, the associated
time error, or jitter, is determined from (3) :

Tem 1 1 +
A

A ( 1

T. 4T 1 -
tan - tan -1 V71) . (15)

For infinite frequency shift, this gives a jitter of one -eighth of a cycle of
the midfrequency (1/T0). For zero frequency shift, the time jitter is,
interestingly enough, not zero. Rather, (15) converges to a value of
j itter equal to 1/47 of a cycle of the midfrequency. An insight into the
reason for this may be obtained by referring to Fig. 2. Note that, as the
two frequencies approach each other, the slopes of the phase loci also
approach each other. Thus, for a fixed O r increases as A approaches
one. In the case just studied, 0e approaches zero as A approaches one,
but evidently at about the same rate as T, increases under the same
condition.

Equation (15) is plotted as the lowest curve in Fig. 7(a). Note that
the jitter measured in terms of the period of the midfrequency does not
change appreciably with the magnitude of the frequency shift for these
types of oscillators.

One final point is to From (15), time
error has equal positive and negative excursions. Furthermore, (15) is
symmetric in A; that is, replacing A by 1/A does not change the expres-
sion. Thus the opposite transition in which W2 < col has a time jitter
function identical to (15).

VI. THE SWITCHED REACTANCE MODULATORS

A switched reactance modulator is one in which the resonant frequency
of the tank is changed by physically switching an additional reactance
in and out. Only those modulators consisting of a simple LC tank with
a single additional switched reactance will be considered. There are four
possible ways of doing this, leading to the four modulator models shown
in Fig. 8. The modulators of Figs. 8 (a) and 8 (b) are clearly duals, and
will be referred to as Type I modulators. The modulators of Figs. 8 (c)
and 8 (d) are also duals, and will be referred to as Type II modulators.
Because of the duality property, only one modulator of each type need
be analyzed. It will be seen that all four types give rise to identical jitter
expressions.

Let us first analyze the Type I modulator by considering the modula-
tor of Fig. 8 (a). The case of switch closure is treated simply by noting
that, since no current flows in the switched inductance prior to closure,
the inductance value is changed (reduced) by the switch closure without
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(a)

(c)

TYPE I

TYPE IL

(b)

(d)

Fig. 8 - Switched reactance modulators.

disturbing the instantaneous voltage or current in the tank (the inductor
looks like an open circuit at the time of switch closure). This is exactly
the case considered in the previous section. Thus, (14) and (15) and the
resulting curves of Figs. 6 and 7 describe the maximum phase and time
errors, respectively, for this case.

In Fig. 8(b), the opening of the switch is the dual to the above case,
since the switched capacitor initially looks like a short circuit. Thus the
capacitance is changed without affecting the instantaneous values of the
voltage and current.

In the case of switch opening in Fig. 8(a), current continuity in the
capacitor is not preserved, since the current is suddenly reduced from
the sum of the currents flowing in both inductors, 4 -I- 4 , to just that
current flowing in the permanent tank inductor, 4 . The case of switch
opening is furthermore complicated by the fact that a de current may
be flowing around the inductor loop just prior to switch opening. This
may be seen more clearly from Fig. 9, in which is plotted the current,
4, through the switched inductor, Lb . Consider the case shown of
switch closure at the instant that the tank voltage is going through
zero. The inductor current 4 is the integral of the applied voltage, and
is as shown. Note that this current contains a de component. The case
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Lb

Ldc 7

SWITCH
CLOSURE

Fig. 9 - The de component in a switched reactance modulator.

of Fig. 9 is the worst case; if the switch had been thrown at a voltage
maximum, then the dc current component would have been zero.

This de component will die exponentially with a time constant de-
termined by the inductive loop. It does not affect the operation of the
tank circuit as long as the switch is closed. However, whatever dc cur-
rent remains is added to the current i [see Fig. 8(a)] at the time of

switch opening. Thus the tank current i just before switch opening is
given by i. , and just after switch opening by i. id.. The de
current may be such as to actually reverse the tank current at the in-
stant of switching. Thus large phase errors and hence large time errors
may be expected.

Since the phase error will depend upon the magnitude of the de com-
ponent, which in turn involves the phase at which the switch was closed,
then the phase error at switch opening depends on the phase at the
time the switch is opened as well as the phase at the time the switch
was previously closed. For purposes of the following analysis, let the
following subscripts apply:

1 - just before switch closure.
2 - just after switch closure.
3 - just before switch opening.
4 - just after switch opening.
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Then

Ll = L4 = La. (16)

La Lb
L2 = L3 - La + Lb (17)

A2 = (6)1)2 L,2 - Lb < 1 . (18)
co2 IA La + Lb

At the time of switch closure, voltage and current are maintained.
Thus

P1 = COS O1 = V2.

= Vi

(19)

471-1. Sill 01 = i2 (20)

The dc current which is initiated upon switch closure may be deter-
mined by a transient analysis or more simply from the energy conditions:

= Liii2 CV12

E2 = 4 L2i42 + Z CV! 

The difference in energy must be due to the circulating de current,
since the initial current in the switched inductor is zero. Denote this
energy difference by Ede . Then

Ed, = z (La + Lb)id.2
E1

E2 2

Making use of (16), (17), and (18), the resulting de current may be
written

i2dc = (1 - A2) i1 = V1 C -L-(1 - A2) sin 01. (21)
1

The tank voltage is continuous during both switch closure and switch
opening. Since the current is also continuous during switch closure
(assuming zero initial current in Lb), the amplitude of oscillation after
switch closure is, from (6), (19), and (20),

V2 = V3 = C,2 i12 + v12)4 = Vi (A2 sin' 01 + cos2 01) . (22)

The tank voltage at switch opening may then be expressed as

V3 = V4 = V3 COS 03'
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Then, from (22),

V9 = VI(A2 sin2 Bl + cost 81)1 cos 03 (23)

From (5), (7), and (22), the tank current immediately before switch
opening is

i3 = V3 C
sin 93.

1.12

At this instant the share of the tank current through the permanent
tank inductor is

Lb I
i3a = La ±

Lb23 = U A2 (A2 sin2 01 + cos2 004 sin 03, (24)

where (22) was used.
If the sum of the resistances of the two inductors is R, and the mini-

mum time between switch closing and switch opening is Tb (normally
the bit length), then the de current just before switch opening is at
most

i3dc = exp (-
La + Lb) i2de = Di2de

where D = exp [ - (Rra)/(L. + Lb)] will be called the dissipation
parameter.

The actual current through the permanent inductor is the sum of its
share of the tank current and the de current. Immediately after switch
opening, this current must be maintained, so that

From (21) and (24),

i4 =

RTb

74 = 23a D22de 

Zi 2
[A (A2 sin 01 ± cos2 001 sin 03 + - A2) sin OIL

The current and voltage immediately after switch opening have now
been determined in terms of the phase angles at which the switch was
initially closed (01) and the phase angle at which it was then reopened
(03). These expressions are given by (23) and (25). Using (8), the
phase angle immediately after switch opening may now be determined
by the relation

(25)
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11:104 = tan -1
C V4

= tan -1 A (A2 sin2 01 + cos2 01)4 sin 03 -I- D(1 - A2) sin 01
(A2 sin2 B, -I- cos 01)i cos 03

The phase error at switch opening is then

0, = 03 - 04

[= 03 - tan -1 A tan 03 -I-
D(1 - A2) sin 01

(A2 sin2 01 + cos2 004 cos 03 '

We desire to find those values of 01 and 03 which maximize this func-
tion. These values will yield the peak phase error and thus the peak
time jitter. Denote these values by 0i, and 03. , respectively. It is shown
in Appendix A that for A S A < 1,

m =

and

(26)

03, = sin -12A [D(2A - 1)
(27)

4(1 - D2) A2 + D2( A + 5)
A + 1

where A is the value of A for which 03. = ± 7/2. It is further shown
in Appendix A that, for D = 0, Ai, = 1/0; for D = 1, A, = 0. For

A < A,, , the phase error may take on continuous values in excess
of ,r/2 radians. Thus it can always take on the worst possible value,
7/2. Hence

[0,. = 03, ± tan-- A sin 03, -D (1 21)1, Ai, A 5 1
cos U3m

1
Oem = ±7r/2, 0 :5 A A,,

where 03, is given by (27). Again, the peak phase error, and thus the
peak jitter, is symmetric about the true value; that is, these functions
may assume equal positive or negative value.

These phase error functions are plotted in Fig. 6, and the, associated
peak jitter functions as determined from (3) in Fig. 7(a), for various



1716 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962

values of the dissipation factor D. These curves were calculated with
the aid of the IBM 7090 digital computer. The curve parameters in
Figs. 6 and 7(a) are actually

r = - ln D - Rrb
L. -I- lib'

which is the ratio of the bit length, Tb , to the time constant of the in-
ductor loop. Note that the peak jitter is considerably greater for the
case of small r (large de currents), than for the case when the time con-
stant is sufficiently short so that the dc current may die in one bit
interval. For the case of zero dc current at switch opening (D = 0, or
r = 00) the quantity 03m becomes

1
03, = sin VA

1± 1 = ± tan

Then the peak phase error is
, 1

= (tan- -tan-' VT4.)

But this is exactly the form of the peak phase error for the case of the
variable reactance oscillator and reactance tube modulator. It may seem
strange that the two classes of modulators should have the same peak
jitter, since in one case a tank reactance is changed without affecting
the instantaneous values of the currents and voltages, whereas in the
other case a tank reactance is also changed, but a current discontinuity
occurs (from i3 to i3a in the previous notation). However, a detailed
examination of the equations will show that the phase error due to the
current discontinuity is in such a direction as to partially compensate
for the amplitude change, the result being a peak phase error equal to
that resulting from the amplitude discontinuity alone.

As stated before, the modulator of Fig. 8(b) is the dual of the modu-
lator just analyzed, and the same peak phase error and jitter equations
therefore result. A switch opening in Fig. 8(b) is equivalent to a switch
closure in Fig. 8(a). Analogous to the dc current in Fig. 8(a), a dc
voltage may appear across the switched capacitor, and is balanced out
by an equal and opposite voltage on the permanent tank capacitor.
Then, upon reclosing the switch in Fig. 8(b), the tank voltage suddenly
changes to the difference between the ac and do voltages across the
permanent tank capacitor, in complete analogy to the first modulator.
Again, this troublesome dc voltage may be bled off by a resistor in
parallel with each capacitor, leading again to the dissipation parameter.
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It now remains to show that the modulators of Figs. 8(c) and 8(d)
lead to the same phase error relationships as derived for the first two
modulators. Consider the modulator of Fig. 8(c). The case of the switch
closure is identical to the conditions for the variable reactance oscillator
and reactance tube modulator; i.e., the value of the inductance is
changed, but the instantaneous values of the tank current and voltage
are unchanged. Hence the lowest curves for peak phase error and peak
jitter in Figs. 6 and 7(a) hold for this case. However, the switched in-
ductor, Lb , will have a current flowing through it just prior to switch
closure, and will retain this current after the switch has closed. Lb may
begin to discharge due to series resistance, but in general will have a
nonzero current flowing through it at the time of switch opening. At
switch opening, the flux in L. and Lb will redistribute so that the cur-
rents through the two inductors are equalized, thus causing a current
transient.

Using the same subscripts as before, define

L1 = L4 = La + Lb

L2 = L3 = La.
2 T

< 1.2 021)

Cwt L1 La + Lb

Immediately after switch closure, the de current flowing through Lb is

n
i2b = i2dc =

,= v Elsin u1

Just before switch opening, the de current flowing through Lb is

i3eic = Di2dc = V11-/ -Li sin 81,

where the dissipation factor, D, is now given by

Rrt,D = exp (- -Lb)

where R is the loop resistance containing Lb and the closed switch. The
value of the current through L. just before switch opening is

sin
V1 (A2 SILL2

01 + COS2 Uni) sini

-T2 E;
03

where V3 is determined exactly as in the previous case.
At the instant of switch opening, one is faced with the problem of two
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inductors with different initial currents being connected in series. The
series current must instantly adjust to some common value. To de-
termine this common value, note that the tank voltage v must be con-
tinuous. This is true because there is no process by which an impulse
in the tank current may be caused; thus the voltage across the capacitor
and hence the tank voltage cannot change instantaneously.

Since the voltage across the two inductors is the same immediately
before as after the switch opening, then the total flux stored in the two
inductors must be preserved. The instantaneous redistribution of flux
between the two inductors will cause a voltage impulse to appear across
each inductor, but these impulses will be of equal magnitude and oppo-
site sign, thus canceling. The total stored flux immediately before the

switch opening is

493 = Lai3a Lbi3d c 

Immediately after the switch opening, the stored flux is

404 = (L. Lb) 24

Equating so3 and io4 , one obtains

24 = A 2i3a ( 1 - A 2 )i3dc

= V1
L1

C [A (A2 sin2 B1cost 1)4 sin 03 D (1 - A2) sin 601].
(28)

The voltage immediately after switch opening is again

V4 = V3 cos 03 = V1(A2 sin2 e1 + cost 01) cos 03. (29)

Equations (28) and (29) are identical to (25) and (23) respectively
for the case of the Type I modulator. Thus the peak phase and jitter
functions for the Type II modulator are identical to those for the Type
I modulator [Figs. 6 and 7(a)], even though the waveform disconti-
nuities are caused by an entirely different phenomenon.

The circuit of Fig. 8(d) is of course the dual to that of Fig. 8(c).
Switch closure in one corresponds to switch opening in the other, and
vice versa. In the circuit of Fig. 8(d), when the switch is opened, a
voltage is left on the switched capacitor. It may decay through a leakage
resistance, but upon switch closure the two different voltages on the
two capacitors must instantly adjust to some common voltage accord-
ing to the condition of charge conservation, in complete analogy to the
circuits of Fig. 8(c).

Note that the jitter characteristic for all of the switched reactance mod-
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ulators approaches that of the variable reactance -type modulators for low
bit rates. This latter curve is almost a constant (7 -,/To = 1/47r) over
the range of A which might be commonly used. This then is a useful
rule of thumb: In a modulator whose frequency is shifted by changing
one reactance in the tank of an oscillator, the minimum inherent peak
jitter is roughly 1/47 of the period of the midfrequency. This rule is
shown plotted in Fig. 7(b) in a somewhat different form. The abscissa is
the number of cycles of the midfrequency per bit:

cycles/bit = -Tb .

7'0

The ordinate is the per cent data distortion, defined by

distortion = =
1 T,

To -17r Tb

Thus

(distortion) (cycles/bit) =1
47

VII. THE MULTIVIBRATOR MODULATOR

A multivibrator type of modulator, using transistors as an example,
is shown in Fig. 10(a). It consists of a standard symmetric multivibra-
tor whose frequency may be controlled by varying the control voltage

. Often a low-pass filter follows the multivibrator. The function of
this filter is to eliminate the harmonics of the multivibrator output, thus
converting the square -wave output to a sine wave. This filter may add
additional zero -crossing distortion, but this distortion will not be con-
sidered here. Only the zero -crossing distortion inherent in the multi -
vibrator itself will be analyzed.

The analysis will proceed in the following manner. It will be assumed
that the multivibrator is oscillating with some half -period ni . At some
time to , measured with respect to the last multivibrator transition [see
Fig. 11(a)], the control voltage Vc is suddenly changed from its initial
value Vc1 to a new value Vc2. The multivibrator then oscillates with
some new half -period n2 . The time between the two transitions on either
side of to will be denoted no where no has a value between ni and n2 .

The resulting zero crossings will be compared to those of an ideal FM
wave shown in Fig. 11(b) whose zero crossings correspond to those of
the multivibrator before the switching instant, but are separated from
those of the multivibrator by a time error of T. for times after the switch-
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V2

VCI

0

o0 ---

t
(b)

Fig. 10 The multivibrator modulator: (a) multivihrator circuit; (h) base
voltage waveform.

ing instant. This corresponds to a phase error of

= 2ir ,T` . (30)
zt72

The worst value for the transition time will be determined, leading to a
maximum value for 0 denoted 0,.. From (3), the peak time error
r,, in the data transition with respect to the period of the midfrequency
To is

rem 11 + A T,,,,
T. 21 -A 2172.

(31)
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(a)

772 h

SWITCHING
INSTANT

Ito tio

t

(b)

Fig. 11 - Comparing zero crossings of multivibrator modulator to those of
ideal FM: (a) multivibrator outputs; (b) ideal FM.

Let us first derive the time between zero crossings on either side of
the switching instant for an ideal FM wave. This time will be called n, .

From Fig. 11 ( b ),

ni = to + to

Because the amplitudes of the two sinusoids are the same, and the vol-
tage is continuous at the transition, one may write

Thus

and

sin wit. = sin co2(n2 - to')

to' = n2 (1 -to,
Ali

ni = fl2 T ti, (1 - 712) (32)

We now derive the analogous time, no , for the multivibrator. In Fig.
10(b) is shown the operation of the multivibrator in terms of the voltage
at a base. Immediately after a transition, the transistor is reverse biased
by a voltage equal to the supply voltage, V, . The voltage at this point
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will start rising exponentially to the control voltage V, , with a time
constant r, and is given by

v = V, - ( V, + Ve)e-"r,

where r is defined in Fig. 10 as 7 = RC. For a constant control voltage,
the half -period of oscillation, n, is determined by that time required
for the voltage waveform to reach zero voltage (ignoring the transistor
threshold voltage). Thus

n = r ln (1 +V)
.

Let us define the following parameters:

A= T2 n2

W2 T1 711

a

Then

V8

V8

V c2

n1 = T ln(1 + a),

772 = T ln(1 + 0).

At a time to after the last transition, there will be a base voltage vo of

vo = Vci - (V8 + V,1) exp( -to/T).

If at this time the multivibrator control voltage is suddenly switched

from V,1 to Vc2 , the time from to to the next transition will be

to" = r In (1 - = In [3. - VS1 VC' Vs
.1 1- ir77-) exp ( -to/T)] .

V c2 V ,2 V a V cl

Then

no = to + toll = to ±T In [1 - -I- q- (1 -I- a exp(-to/r)1
a a

The difference between this and the like time, ni for ideal FM is

Tf = no -m = T In [1 - ± (1 + a) exp (-VT)
(33)a a

Ato - 772.
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From (30), 0, is maximized if T, is maximized. The value of to ,

denoted t for which T, is a maximum is found by letting

0T, T

oT 0
1

0
a

which results in

or

a
1+ a) exp ( -tom/r)

exp ( -to,/r) -

a
(1 + a) (-1 exp ( -LIT)

(1 -

ail (1 ± a) (A -

(I -I- a)(1-A)tom = r

Tem = T ln1 - a ± Ar ln

which can be rewritten as

A - 1)

Substituting (34) into (33), one obtains

1-12 (1+a)(1-.1)

1

(73 - 1)

+ A = 0,

(34)

T,,,, = r (1-A)in[
1 - 13

T-i. +il i n at3- + A ln (1 + a) -7-1-F ' (35)
T

But, since

and

then

712 = ( 1 ± )

ln (1 + (3)A - In (1 + a)

a= (1 + t3)"A - 1,

n2

- A ln (1 ± a)

(36)

(37)
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and

1 - -
[(1 1'

r
= - A) In1 + A In /3

-17"n A In ;21 + a) -A Aa

or

01 - -(1 - A\ 0

T fin \ A j 1 -A Aa
0,. = 27r = 27r .

47/2 2 In (1 +a)
The peak time jitter is then determined from (3):

(38)

1 - -
(1 - AA\ a In 11- (39)

'rem (1 + I 1 -A Aa
T. 4 (1 - A) ln (1 a)

Equations (37) and (38) give the peak phase error for a transition
in either direction (i.e., from the lower to the higher frequency, or vice
versa) as a function of the two variables A and #. It is shown in Ap-
pendix B that the peak phase error for the transition in one direction is
equal in magnitude but opposite in sign to the peak phase error for
the opposite transition.

From the relation (3), it is then seen that the peak time error for
the multivibrator is equal in magnitude and is always negative for
either transition. Thus the multivibrator differs in its jitter charac-
teristics from the LC modulators in that the jitter is one-sided, rather
than symmetric, about the true transition time. The jitter is such that
the actual transitions are delayed in time from the true transition
( - TE m corresponds to a time retardation).

The parameter 3 is essentially a "linearity" parameter; i.e., as -÷ 0,
less and less of the exponential of Fig. 10 is used. For a and /3 sufficiently
small, the base voltage is essentially linear. In this case, from (37),

/3 out

Under this condition, (39) goes to zero. Thus the multivibrator type
of modulator may be designed to have as little jitter as desired by mak-
ing the control voltage, V, , very much greater than the supply voltage,
Va

It is also of interest to study the other limiting condition, i.e., Q -÷ 00.
From (37), for >> 1,

a (3'
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Substituting this into (38) for the peak phase error, and taking the
limit as j3 -+ co , one finds

rim ,, = - (1 - A)7 r,

for -} A 1, 0,, < 7/2; therefore, from (39),

Jhfl
rIII 1 + A 1= - A < 1. (40)

4 ' 2 -
However, for 0 A L 0, may take on values in excess of 7r/2. Thus

lim 0, = 7
2

0 A
1

rim T
1 1 + A

.L10 8 1 -A
Plots of 0e, and rem/To for the multivibrator are given in Figs. 12 and

13 respectively. Fig. 13( b) shows peak jitter on an expanded scale for
small values. For comparison, the corresponding
jitter inherent in the reactance tube type of modulator is shown dotted
in Figs. 13(a) and 13(b).

Note that a given time error for the multivibrator corresponds to
only half the distortion caused by the same time error associated with
one of the LC modulators because of the one-sided property of the
multivibrator jitter.

VIII. EXPERIMENTAL VERIFICATION

The results of the theory just presented were checked by measuring
the peak jitter in some existing systems. In Table I are shown some
experimental and theoretical results for the modulators of the Bell
System DATA -PHONE Data Sets 101A, 103A, and 202A.3 In all cases,
a dotting (alternate marking and spacing) signal was used to avoid the
effects of intersymbol interference. The receiver used for the 100 series
data sets was the 101A receiver. It contains a limiter followed by a
standard discriminator and slicing amplifier. Because of the limiter,
the zero -crossing information is all that is retained. The 202A receiver
was used with its modulator. This receiver is indeed a zero -crossing
detector. It generates a pulse for each zero crossing, integrates the
resulting pulse train, and delivers this resulting signal to a slicing circuit.

The 100 series data sets are capable of operating in either of two bands.
These bands are denoted the ji band and the 12 band. In the case of the
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Fig. 12 - Peak phase error for the multivibrator modulator.

--77/2

SUPPLY VOLTAGEA= MAX. CONTROL
VOLTAGE

I i
111a

10.1 0.5 5 100 /3=00

TABLE I - EXPERIMENTAL VERIFICATION

Modulator Type wi ,02 Bit Rate Transition

Experi-
mental
Peak
Jitter
(usec)

Theoreti-
cal

Peak
Jitter
(Asec)

101 Switched 1070 1270 100 col -) w2 165 136
Reactance

co2 -) col 280 280
2025 2225 100 col -) w2 100 72

(.42 -) col 130 112
103 Reactance 1070 1270 100 Either 165 13(i

Transistor 200 Either 165 136
202 Multivibrator 1200 2200 1200 Either 50 44.5

100.8
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Fig. 13 - (a) Peak jitter for the maltivibrator modulator; (h) peak jitter for
the multivibrator modulator - expanded scale.
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101A modulator, both the 11 band and the f2 band were used for the
test. The marking and spacing frequencies in the fi band are 1070 and
1270 cycles, resulting in an A of 0.843. In the f2 band, the corresponding
frequencies are 2025 and 2225 cps, giving an A of 0.910. The modulator
is a switched reactance modulator of the type shown in Fig. 8(a). For
the fi band, the sum of the two inductances is 0.324 henry and the total
series resistance is 44.5 ohms. For the f2 band these parameters are 0.151
henry and 28.7 ohms. This modulator was tested at 100 bits per second,
the corresponding values of r being 1.37 and 1.90 for the fi band and f2

band respectively.
The 103A modulator was tested at 100 and 200 bits per second using

the fi band and again the 101A demodulator. The 103A modulator is
of the reactance transistor type (analogous to the reactance tube modu-
lator). The results agree well with theory.

The 202A modulator was tested at 1200 bits per second, using 1200
cps and 2200 cps as the two frequencies. This corresponds to an A of
0.54. In this modulator, the value of # is 1.405 ( = 12.8 v, V, = 18 v).
Again, the agreement with theory is quite good.

Because all of the above experiments yielded jitter comparable to
that expected from the modulator alone, one is led to the conclusion
that most of the back-to-back jitter in these data sets originates in the
modulator, and that the demodulators approach fairly closely the ideal
zero -crossing detector.

IX. DISTORTIONLESS, ASYNCHRONOUS, SINUSOIDAL FREQUENCY MODULA-

TION

From (8), it is possible to obtain the conditions for distortionless
modulation when the modulation is accomplished by changing the
parameters of an LC tank. Let the subscript 1 refer to the instant before
the transition, and the subscript 2 to the instant after. There will be
no jitter if there is no phase error, that is, if

= 02 

From (8), this requires that

One way of insuring that, this condition holds is to maintain voltage
and current; continuity at the transition (i1 = it , v1 = v2), and then to
change both the inductance and capacitance by such an amount that



ASYNCHRONOUS FREQUENCY -SHIFT MODULATORS 1729

their ratio remains constant. That is, if the resonant frequency of a
tank circuit is changed in such a way that the instantaneous tank voltage
and current are continuous, and so that the characteristic tank imped-
ance, -VEge, is maintained, then there will be no phase error.

Such a modulator may be implemented by using a balanced VRO1
(Variable Reactance Oscillator) configuration as shown in Fig. 14, in
which one active element displays a variable capacitance and negative
resistance, and the other a variable inductance and negative resistance.
The gm's of each active element are switched in such a way that the
quantity L/C remains constant. The modulator of Fig. 15 was con-
structed and tested. To give an idea of its performance, typical frequency
transitions between 1950 cps and 2250 cps are shown in the oscillogram
of Fig. 16.

X. CONCLUSION

It has been shown that phase error at a transition in a frequency shift
signal will cause a time error in the output of a zero -crossing detector.
The maximum value of this time error may be calculated, leading to the
determination of the peak jitter.
It has been further shown that the switched reactance modulators have

the largest inherent peak jitter, and that this jitter is bit -rate dependent.

o L Re, -R2

1

Fig. 14 - The balanced VRO configuration for distortionless frequency modu-
lation: (a) basic balanced VRO; (b) equivalent circuit of basic balanced VRO.
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CI - 0.002AF D1 THROUGH D7- SILICON DIODES

C2- 0.02AF D8 -I2 VOLT ZENER DIODE
C3 - C4 -1.0ALF

Fig. 15 - Balanced VRO modulator schematic diagram.

A A

Fig. 16 - Examples of switching performance of balanced VRO: upper trace is
data input; lower trace is modulator output; frequencies are 1950 and 2250 cps.
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The reactance tube type of modulator and variable reactance oscillator
have less peak jitter. The multivibrator can be designed to have as low
a value of peak jitter as desired. By using an LC type of modulator in
which the tank impedance is held constant at switching, it is possible in
principle to design a frequency shift modulator having zero peak jitter.

All of the main points of the theory have been experimentally verified.
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APPENDIX A

Maximum Phase Error for the Switched Reactance Modulator

The phase error associated with the more severe transition in the

inductor case) is given by (26) :

D(1 - A2) sin 01
. (41)Be = 03 - tan- ' [A tan 03 +

(A sine 01 + cos2 01)i cos o3J

It is desired to find those values of 01 and 03 which maximize this expres-
sion. These values will be denoted 01. and 03. respectively.

Consider 01 first. Differentiating (41) with respect to 01 yields

00, -y cos 01 (1 - A2) sin2 e,
(42)as, (1 + 02) cos 03 [1 + A' sin' 01 + cos" 01j

where

and

'Y (A2 sin2 01 + cos2 01)i 

13 = A tan 03 ± y sin 01
cos

D(1 - A2)

We are interested in those values of 0 for which wool = 0. Since
A 5 1, all quantities enclosed within the brackets in (42) are always
nonnegative; therefore, this term will never become zero. Furthermore,
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01 can never cause to become infinite, nor ey to become zero. Therefore

01. =
7
2

is the only value of 01 which causes (42) to go to zero. It can be shown
that this value of 01 corresponds to a maximum point for 0. . 01m repre-
sents switching at the instant corresponding to the creation of the
maximum value for the undesired dc quantity.

Investigation of (42) will reveal that 03 = ±7/2 will also cause
de,/dOi to be zero; however, it can be shown that this corresponds to a
minimum point for 0, . No other combinations of 01 and 03 will cause
(42) to go to zero.

Equation (42) may now be simplified by allowing 01 to be ±7/2:

(1 - A2) 1
0, = 03 - tan -1 [A tan 03 D

A cos 03
(43)

Then

±
ao3 + 02) cost 03

(A y sin 03),

where 13 and 7 are now given by the simplified expressions

°(9. -- - 1

= A tan 03 ± 7
cos 03

y=D(1 - A2)

A

(44)

(45)

(46)

We are interested now in determining those values of 03 which cause
aodao3 to be zero. Setting (44) to zero, one obtains

A ± y sin 03m = (1 + 02) cos203..

Using the expression (45) for /3, and making the substitution cos203. =
1 - sin203. , a quadratic in sin203m is obtained:

(A2 - 1) sin203. ± -y (2A - 1) sin 03. + (72 + 1 - A) = 0.

Replacing -y with (46) and rearranging, this quadratic becomes

sine 03m
D (2A - 1) (D2(1 - A2) (1 + A) + A) = 0.

A A2(1 A)

Thus
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(1
D2D2)

+ (A + 5)
sin 03. = - (2A - 1) ±

2A A + 1
(47)

The range of interest for both A and D is from zero to one. Consider
the contents of the square brackets in (47). This is minimum for D = 1,
for which

sin 03.
I = ±2A[(2A - 1) A ++ IY]

If the plus sign in front of the term [(A 5)/A + 1]t were to be used,
then

sin N. I > 1,

for all A. Since sin 03m must be less than one, this is not possible. For
D < 1, the magnitude of sin 03m is even greater, since the term in the
square brackets of (47) is now larger. Thus the minus sign must he
used, and

[4A2 (1 -D21)2) + (A + 5)1
48sin 03m - A - 1) - ( )

2A A+ 1
Now, for any D, and A = 1, the magnitude of (sin 03.) is less than

one. However, as A decreases, I sin N. I increases, and finally reaches
unity for some A = Ai, . For instance, for D = 1 (infinite dc time con-
stant), sin N. = ±1 for A = A = 1/V2; for D = 0 (zero de time
constant), A,, = 0. For other values of 0 < D < 1, 0 < A < 1/-0.

Thus for a given D and for A < A 5 1, the magnitude of N. is less
than 7/2 and thus may be used to calculate the peak phase error by
substitution into (43). For A = A , 03m = ±7/2, and it can be shown
that at this point 0.m = ±7/2. Furthermore, for A < A , a more
detailed study of the expression for phase error (43) will reveal that
the phase error may take on any value. Since it is assumed that ± 7/2
is the worst possible phase error, then we set 0,. = ±7/2 for A < Ap

Summarizing these results, the peak phase error is given by

Oe, = 03. + tan -1
A [sin Oa. D (1 - 11 AP 5. A 5 1,

COS 03m A2

where
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[4A2 (1 --D2D2) + (A + 5)]
sin 03 = -D (2A - 1) -

2A A + 1

and

= ±-2 for 0 < A A,.

A2, is the value of A for which I sin 03m I = 1.

APPENDIX B

Jitter Symmetry in the Multivibrator Modulator

The expression for peak phase error in the multivibrator is given by
(38):

1 - -(1 - A\ a 13 (49)
= A j 1 - ± 111

A Aa
0,. 2 In (1 + a)

Unlike the LC modulators, this phase error is of only one sign for any
one transition. In fact, from Fig. 12, it is seen that this phase error is
always negative for A < 1 (i.e., col < w2 , or switching from the lower
to the higher frequency).

It is to be shown here that the phase error for the opposite transition
is of the same magnitude but of opposite sign (thus O.. > 0 for A > 1).
This is accomplished by replacing in (49) A by 1/A, a by $, and 0 by
a. This replacement yields an expression which describes the peak phase
error, 0..', for the opposite transition:

1 -
(A - 1) In '

1- m
Ace

/3
1 - -A

= 27 2 ln (1 ±0)

0 is related to a by (37):

ln (1 + 13) = A ln (1 + a).

Equation (49) may then be rewritten as

(50)
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-(A -
In -
2 In (1 +

I - 1
n (I1 I -.1

Cl a

ln Aa
(1 - i3 1

2 1i1 (1 +

( - -)
1 - .1

A
In (1 - aA/

ln
Aa A

In
0 A 0
-() 111 Aa

(1 -A Au
1 - 1

(1 -it

2 In (1 + a)

1 -
) 111 _11 In Aa

2 lii (1 + a)

Ottn' - -Oem (51)

Now consider the relation (3) between peak phase error and peak
time error:

Tun 0,m 1 ± A
To - 4r 1 -A 

Let us again study the reverse transition by replacing 8,, with 0,/ ,

A by 1/A, and I'm by Tem':

TEI11'

Using (51),

(
AI 0,o,' A + 1

47rti 1 \ 4r A - 1'
Ai

0,,,, 1 ± A
- TEM ,Lir 1 -A

(52)
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and the peak time jitter is of the same sign and magnitude for each
transition. Reference to Fig. 13 shows that the sign of the peak jitter
is always negative. Physically, this means that the apparent transition
occurs at a time later than the true transition would occur.
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Scheduling of Pole Line Inspections
By S. W. ROBERTS

(Manuscript received June 21, 1962)

This paper is concerned with the scheduling of pole line inspections.
The schedules are based on the physical lifetime distribution of pressure -
treated southern pine poles, which constitute some eighty per cent of the
current telephone pole plant. Results of studies described herein indicate
that for scheduling purposes the physical lifetime distribution of such poles
is adequately described by the lognormal density function. Supporting
evidence includes the observation that sound older poles seem no more prone
to failure than younger poles. As a consequence, there appears to be no
need to decrease the intervals between inspections as poles age. Quality of
treatment - particularly the amount of preservative retained - appears
to be of primary importance in determining the physical lifetime of poles.
The relative influences of environmental factors such as temperature, hu-
midity, rainfall, soil conditions, length of growing season, etc., have not
been adequately evaluated; however, for a given quality of treatment, poles
tend to last longer in the North than in the South. Consequently, for pole
lines in the South, inspections are scheduled earlier in the life of a pole
and at shorter intervals thereafter than for similar pole lines in the North.

I. INTRODUCTION

In 1920 only ten per cent of the 14 million poles in line owned wholly
or in part by the Bell System were treated full-length with preservatives.
Of this ten per cent, most were creosoted southern pine poles. In 1960
about eighty per cent of the 23 million Bell System poles were pressure -
treated southern pine poles; the majority of the others were Douglas fir
and other western or Rocky Mountain species. Early pressure treat-
ments used creosote; later, pentachlorophenol-petroleum solutions were
also in common use. Today a creosote-penta mixture is specified for
southern pine.

Early untreated poles, notably cedar and chestnut, had a much greater
natural resistance to decay than untreated southern pine poles. They
had relatively thin layers of sapwood surrounding the highly decay -

1737
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resistant heartwood, whereas today's southern pine poles consist largely
of sapwood. Untreated southern pine poles might be expected to give
less than five years service in the deep South, and but little more in the
North. Treatment with preservatives toxic to decay fungi and insects
prolongs the lifetime of poles with thick sapwood for many decades.
The effectiveness of such treatment is reflected in the average physical
lifetime, which is taken to mean the average time from placement until
failure due to decay (or insect attack). Physical life is to be contrasted
with service life. Service life, which averages about 25 years, is defined

as the time from placement until replacement, regardless of whether
replacement is for reasons of decay or for obsolescence, line relocation,
fire, lightning, collisions, tornados, wind accompanying sleet, etc.

Periodic inspections serve to classify poles with respect to decay as:
(1) sound, (2) decayed but serviceable to the next inspection, or (3)

failed. With this classification there is for each pole a time interval td from
placement to the first appearance of decay, and a time interval tf from
placement to failure. The difference, ti - td , represents the time from

the first appearance of decay until the decay has progressed to such an
extent that the pole should be classed as failed. The time tf represents
the physical lifetime of the pole.

For purposes of scheduling pole line inspections the distribution
functions of td , tf , and tf - td would provide useful information. For
the type of schedule discussed in the present paper, information con-
cerning the general nature of distribution function of tf is sufficient.

Based on experience and on experimental data presented in this
paper, the lognormal density function provides a useful model for the
distribution of td and of tf . Experience indicates that adequately treated
poles remain relatively immune to decay even at advanced ages. Log-

normal density functions are shown to provide reasonably accurate
descriptions of the experimental data concerning the time to decay id
Since some of the inspected poles were decayed but not failed, there is
relatively less information concerning tf than td . One reason for not
presenting available data concerning tf is that the definition of a failed
pole varies in accordance with the application - in particular, in the
test plot experiments a pole is classed as failed only when the decay
has advanced to such an extent that the pole is of no further value
in the experiment. However, based on available information it appears
that lognormal density functions are useful in describing the distribu-
tion of 11 as well as id .

Relatively little data are available concerning If - td , but consider-
able variability is evident. In some cases decay spreads rapidly, while
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in others it makes very little progress between consecutive inspections.
Such variations are not inconsistent with the concept that both td and
ti have lognormal distributions. As will become apparent, lack of spe-
cific information concerning the distribution of If - Id is of little con-
sequence for the type of inspection plan considered here, nor is the
fact that only very rough approximations to the distributions of Id
and 11 can be provided.

From 1945 through 1961 the American Telephone and Telegraph
Company recommended that full-length treated southern pine poles be
inspected at eighteen years from placement and at six -year intervals
thereafter. These recommendations were revised in November, 1961,
based partly on results reported in the present paper, which (1) sup-
ports the concept of constant intervals between inspections following
an initial period of no inspections (due to indications of relatively con-
stant failure rates), and (2) provides some information concerning the
differences between the average physical lifetimes of poles in the North
and the South.

The main shortcoming of the previous schedule was that it did not
take into consideration the fact of earlier decay in the South than in
the North. The revision has separate schedules for the North and the
South.

As in the past, adherence to recommended schedules is expected to
vary from Company to Company in response to their particular ap-
praisals of the need for inspections, based on previous inspection results
in their areas. The recommended inspection intervals are meant to
serve as guides. If in particular applications consistently too many or
too few failures, relative to a chosen economic level, are found, it might
be well to adjust the frequency of inspection.

The primary purpose of this paper is to present background informa-
tion concerning the physical lifetime of treated southern pine poles.
This information may prove useful in adjusting the recommended
schedules, should that be desirable. A model schedule, employing three-
way classifications for geographical locations and for economic classes of
poles, is presented in Table I of Section II. The use of three classes,
rather than two, provides a buffer between extremes.

Section III discusses briefly the nature and causes of decay and of
treatment to prevent decay. Section IV presents results of some of the
pertinent field tests conducted as a part of a continuing program of the
Outside Plant Laboratory of the Bell Telephone Laboratories for evaluat-
ing the effectiveness of various preservative treatments. An analysis
of these results is contained in Section V. One conclusion is that the
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lognormal density function describes the physical lifetime distribution
of pressure -treated southern pine poles more realistically than the normal
density function. The normal density function, which is used to ad-
vantage in many applications as a first approximation to lifetime dis-
tributions, fails to account for the many long-lived individual poles.
For example, if, as has been assumed in some applications, the physical
lifetime of a pole has a normal distribution with an average of 35 years
and a standard deviation of 6-10 years, then a 60 -year old pole would
have a high probability of failing within the next six years, say. How-
ever, experience indicates that failure of such a pole in this 6 -year
interval is very unlikely - i.e., the 6 -year failure rate at age 60 years
is small. It is in this connection that the lognormal density function
proves useful, for it is characterized by a failure rate function that
increases to a maximum and then gradually decreases with age. This
is to be contrasted with the ever-increasing failure rate function char-
acterizing the normal density function.

One consequence of the assumption that the physical lifetime of

pressure -treated southern pine poles has a lognormal, rather than
normal, distribution function is that there is no need to increase the
frequency of inspection of such poles as they age. Another consequence
concerns estimates of the average physical lifetime. If early failures
would indicate an average lifetime of 35 years, assuming a normal
distribution function, these same failures might indicate an average
lifetime of 100 years, assuming a lognormal distribution function.
This sharp increase in estimated average lifetime reflects the fact that
some of the individuals may be expected to have extremely long physi-
cal lifetimes. As noted in Section VI, estimates of average physical
lifetime based on the assumption that a particular distribution func-
tion applies should be viewed with restraint appropriate to the applica-
tion. It would be well to temper such estimates with supplementary
information. For example, under certain conditions (i.e., when failed
poles are soon replaced, and when there are an insignificant number
of replacements for reasons other than decay) the inverse of the pro-
portion of poles that fail annually provides a rough estimate of the
average physical lifetime - e.g., an average physical lifetime of fifty
years is indicated if over the period of several years an average of two
per cent per year of poles in line fail due to decay.

Comparisons of average physical lifetimes can be misleading, for
in most applications the distribution of early failures is of primary
importance. Potential long-lived poles may be replaced early for reasons
other than decay, since the average service life is about 25 years. The
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proportion of poles expected to fail within 25 years, or some other
selected value, might serve better than average physical lifetime as a
measure of the effectiveness of treatment. Alternatively, the expected
time until a selected proportion of poles can be expected to have failed
might prove useful for comparisons. For example, the median might be
used.

II. INSPECTION SCHEDULES FOR SOUTHERN PINE POLES

A model for inspection schedules for southern pine poles is shown in
Table I. The zones referred to are delineated on the map that forms
Fig. 1. The zones serve to separate the inspection results into three
classes: Zone 3 represents areas where environmental conditions are
relatively favorable to decay; Zone 1 represents areas of relatively
little decay; and Zone 2 serves as a buffer between the two extremes.
The zone boundaries are rather arbitrary. The area west of the eastern
boundary of the Mountain States Telephone and Telegraph Company
has not been included because southern pine poles, with which this
paper is primarily concerned, are not generally used in the West, and
therefore no inspection results were obtained. For a given quality of
treatment, poles definitely have longer life expectancies in Zone 1 than
in Zone 3. However, there is no sharp demarcation between adjacent
zones. Quality of treatment, particularly the amount of preservative
retained after treatment, appears to be of first importance in deter-
mining the lifetime of a pole. Poorly treated poles placed in the North
may be expected to fail sooner than well treated poles placed in the
South.

The classification of pole lines according to economic value is in
recognition of the fact that the inspection of poles is largely an economic
matter, though safety is also an important factor. The classification in
Table I is primarily for illustrative purposes. It may prove helpful to

TABLE I

Economic Class
of Line

Zone I Zone 2 Zone 3

x y x y x y

1. (Toll) 8 18 15 6 12
2. (Exchange) 10 21 8 18 7 15
3. (Rural) 12 24 10 21 8 18

Inspect pole line every x years. On new line, first inspection should be made
at age y years. For replacement poles, omit first regular inspection only.
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Fig. 1 - Zones used for study of decay in poles.

imagine that the inspection intervals of Table I were selected so that
the per cent of failures expected in the three economic classes would be
in the ratio of 6:7:8, as might be the case in Zone 3. It has been noted
that as the interval between inspections is increased, so is the tendency
of inspectors to classify serviceable decayed poles as failures.

Another feature of Table I is that it presumes that complete lines of
poles are inspected, omitting young replacements. To illustrate the
procedure that might be used, consider the typical pole record, an
E-297 form, shown as Fig. 2. Poles on this particular line, which is a
toll line in Zone 3, would first be inspected at age 12, in 1953. The re-
placement poles set in 1950 and 1951 would first be inspected in the
inspection of 1959.

Presumably, 100 per cent of the eligible poles in a line will be in-

spected. Questions may arise as to the feasibility of employing a sampling
plan so that inspections may be halted on a line when few failures are
encountered in a random sample of poles. Under certain conditions,
such as when a line is to be inspected for the first time, a sampling plan
might prove useful. However, the appropriate conditions are not often
encountered when routine inspections are made. Furthermore, the re-
sults of previous inspections in the same area may prove as useful in
evaluating the conditions to be expected on a typical line as inspection
results from a sample of poles from that line. If the proportion of failures
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found on routine inspections in a general area over a long period of time
is not consistent with a predetermined economic level, it may be well
to adjust the interval between inspections in that general area.

Thoroughness of inspections may vary with the application. The
procedures followed on routine inspections are somewhat different from
those followed in this study on the experimental poles. In the latter
case the instructions were:

(a) Record information found at the brand ten feet from the butt
(species, preservative, supplier, class and length, and year treated)

and pertinent comments.
(13) Visually examine above the ground line for mechanical damage,

woodpecker holes, split tops, etc. Record findings.
(c) Remove earth from around the pole to a depth of about one foot

(deeper in the drier areas of the country) to allow a visual examination
and prodding in the critical sector just below the ground line.

(d) Sound the pole with a hand axe from below the ground line to
eight feet above the ground line or as high as can be reached conven-

iently.
(e) In cases of suspicion of internal decay, as determined by sounding,

take an increment boring and examine the wood thus removed. Make
the boring at right angles to the vertical axis of the pole. Be sure to

plug the hole with a locust heartwood or treated plug. Record findings.
(f) Rate the pole as (1) sound, (2) decayed but serviceable, or (3)

failed.
At the test plot inspections, the sections are jacked from the ground

for a thorough examination. In this way, too, disturbance of the soil
is kept at a practicable minimum.

III. DECAY AND ITS PREVENTION

Decay of telephone poles is caused primarily by wood-destroying
fungi. The survival and effectiveness of these plants are influenced by
certain environmental conditions such as moisture content of the wood,
an adequate oxygen supply, and a moderate (60-90°F) temperature.
The wood of different species as well as the sapwood and heartwood of a

given species varies in susceptibility to decay.
Southern pine is particularly susceptible. To deter or prevent decay,

poles of this species are treated with preservatives, of which creosote
and pentachlorophenol or mixtures of the two are most common.
Generally the preservatives are toxic not only to fungi but also to
insects, whose activity constitutes a secondary cause of pole failure.

Economic considerations play a prominent role in the specification
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of the preservative treatment. The poles with which this paper is con-
cerned were treated with creosote using the empty cell method of treat-
ment. The specifications called for an average of eight pounds of creo-
sote per cubic foot of wood (as measured by gauge). This is sufficient to
penetrate most of the sapwood under the empty cell method, which
replaced the full cell method in the early 1930's in Bell System specifica-
tions. The full cell method used more creosote - twelve pounds per
cubic foot, on the average - but the penetration was not as deep or
as uniform, in general. Poles treated under the 12 -pound full cell method
had more of a tendency to decay internally, and, in addition, were more
subject to "bleeding" than poles treated under the 8 -pound empty
cell method. In fact, the problem of bleeding played an important role
in specifying the amount of creosote to be used. More creosote would
have resulted in longer -lasting poles, but bleeding would have been
more prevalent.

Fig. 3 indicates how the actual amount of creosote absorbed varies
from pole to pole within one treating lot.' Theoretically, decay is least
likely and bleeding is most likely in those poles with the most creosote,
though relative volume of sapwood, presence of defects, quality of
treatment, and other factors enter the picture. Quality of treatment
depends on such things as quality of creosote, conditioning of poles

250
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CREOSOTE RETENTION IN POUNDS PER CUBIC FOOT
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Fig. 3 - Creosote retention in individual poles as determined by gain in weight
during treatment.
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prior to creosoting, the treating cycle, the moisture content of the
poles, and the uniformity and thoroughness of absorption.

IV. RESULTS OF FIELD TESTS

The description of lifetime distributions of items such as poles is often
based on observations of lifetimes of a sample of similar items. The best
description obtainable from the sample must await the failure of the
longest -lived items in the sample. For example, the average cannot be

estimated very well from only the early failures unless the nature of the
distribution function is known. By the time the last failures occur, the
then -current items may have properties that differ from the original
items due to changes in design, production methods, or materials.
Therefore a compromise between timeliness and accuracy is often neces-
sary for practical reasons.

Commercial treatment for the Bell System of southern pine poles
with preservatives using the empty cell method began in the early
1930's and continues today under essentially the same conditions,
except that the preservative is now a fortified one containing both
creosote and pentachlorophenol. In describing the lifetime distribution
of these poles, we have the advantage of almost thirty years of ex-
perience. Foremost in usefulness are results of Laboratories field tests
on sets of poles and ten -foot pole sections treated under controlled
conditions in the 1930's and periodically inspected since that time.

4.1 Test Plot Results

Fig. 4 shows the results of inspections of groups of 10 -foot pole sec-
tions that were treated in 1935 and 1936 and placed in 1936 and 1937
in test sites at Gulfport, Mississippi, and Chester, New Jersey. The
sections were placed shortly after treatment. The sections represent
either top, center, or bottom thirds of 30 -foot poles.

There were 60 sections at each site in the 1935 series, and 55 in the
1936 series. Fig. 4 shows on lognormal probability paper the per cent
of these poles classed as decayed (including those classed as failed) on
the inspections, which were usually made biannually. Since there is no
place on this lognormal paper to show zero per cent decayed, the early
inspections at Chester are not represented. Because of the nature of the
supporting data, the line through the Chester data was drawn parallel
to the Gulfport line.

The advantage of using lognormal probability paper for Fig. 4 is
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that if the lognormal distribution describes the time to decay, td,
then the points will, with allowances for sampling variability, fall
roughly along a straight line. Also, the fact that the points representing
the Gulfport data do fall roughly along a straight line provides some
evidence of the applicability of the lognormal distribution in this case,
and, by inference, in similar cases. The line drawn through the Gulfport
data may be used for estimates such as the time when 80 per cent of
the sections can be expected to have decayed. This estimate would be
90 years. A different estimate would be obtained if a different line were
selected to represent the Gulfport data. Such estimates are of limited
accuracy.

As illustrated by Fig. 3, the creosote content varies widely among
poles of a given charge. An important result of the test plot study was
the high correlation between time to decay and creosote content - that
is, in general decay appeared earliest in those pole sections with the
least initial creosote content. This fact was emphasized in earlier
papers.2,3
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4.2 Some Field Test Results

Fig. 5 shows on lognormal probability paper the percentage of poles
found decayed in several lines which were inspected three times. Most
of these lines consist of poles treated under observation of Laboratories
personnel in the early 1930's. In cases where the initial creosote content
of the individual poles was measured, most of the early failures were
poles that retained a relatively low amount of creosote.

4.3 Other Results

Because of (1) the limited sample sizes and environmental conditions,
and (2) the possibility of bias due to close surveillance of the treatment
in the tests whose results have been described thus far, it was decided
to inspect representative lines throughout the country. Representative
results of these inspections are shown in Figs. 6 through 8 for Zones 1
through 3 respectively. Most of the data for Figs. 6 and 8 were obtained
in 1960; Fig. 7 is based on data collected in the early 1950's. The line
drawn on Figs. 6-8 is for purposes of illustration. It is line 4 of
Fig. 10, and it represents a lognormal distribution with a median of 80
years and a failure rate of roughly one per cent per year (more specifi-
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after fifteen years of age about one per cent of the poles that are
sound at the beginning of a year will exhibit decay by the end of that
year). Based on the data of Figs. 6-8, it appears that most of the pole
lines in Zone 1 have failure rates of less than one per cent per year,
and most of the pole lines in Zones 2 and 3 have failure rates greater
than one per cent per year. Some of the discussion in Section V should
prove helpful in interpreting the data.

4.4 Sources of Variability of Results

There are a number of sources of variability in the results presented.

First of all, there are sampling errors. To illustrate the meaning of this
term, consider a large number of poles treated under fixed conditions
and subjected to the same environmental conditions. Let pt be the
probability that a pole selected at random will be decayed at time t.
If N poles are inspected at time t, and x of these are classified as de-
cayed, then x/N is an estimate of pt , and (x/N - pi) is the sampling

error. The absolute value of the sampling error may be expected to be
reduced by increasing N. The abscissas of the points plotted on Figs.

4 through 8 are subject to sampling errors; the ordinates are also subject
to error, because the age of the poles is given only to the nearest year.
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Incidentally, the age shown is measured from time of placement until
inspection; the time from treatment until placement is also of im-
portance, but is seldom known.

There are also inspection errors. No two inspectors will consistently
agree in their classification of the poles they inspect. As noted in Section
II, our inspectors classified poles as (1) sound, (2) decayed but servicea-
ble, or (3) failed. Cases of internal decay and incipient external decay
may be noted by one inspector but not by another. It is also difficult
to differentiate sharply between a badly decayed pole and a failed pole.
How advanced should decay be before the pole is classed as failed?
One can specify a proportion of the cross section that must be decayed
before a pole is classed as failed, but measurements, particularly of
internal decay, are crude. Errors due to differences between inspectors
were minimized because most of inspections were by two Laboratories
employees following the same general procedure.

In obtaining an estimate of the per cent pg of poles decayed at age 1,
it is not adequate to select for inspection a set of N poles of age t at
random from the field. The difficulty is that those poles of age t that
had been previously removed because of decay would be missing from
the sample. For example, suppose 50 per cent of poles of age 40 years
have been removed for failure due to decay, and suppose we select at
random 100 of the remaining poles for inspection and find ten of them
decayed - the proper estimate of per cent decayed at age 40 years
is not -1 = 10 per cent, but rather fkiik = 55 per cent. Of course,
in practice the per cent of poles of the selected age that have already
been removed for decay is generally unknown. To minimize this diffi-
culty, the poles inspected in 1960 in representative parts of the country
were in lines of 100 or more poles that were treated and placed in a
selected year. Every remaining original pole was inspected, and the
estimated per cent of nonsound poles is taken as (Nd Rd)/(Ni + Rd)
where Rd is the number of replacements due to decay in the section of
line inspected, Ni is the total number of poles inspected, and Nd is the
number of inspected poles classed as either decayed or failed. Because
the number Rd had to be obtained (estimated in some cases) from pole
records, the choice of lines was restricted to those where reasonably
complete histories were available.

In some of the nonexperimental lines inspected prior to 1960 it was
impossible to ascertain the number of poles in the inspection lot that
had previously been removed for decay. For this reason, some of the
estimates of per cent decayed shown in Fig. 7 may be too low.
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V. DISTRIBUTION OF PHYSICAL LIFETIME OF CREOSOTED SOUTHERN PINE

POLES

5.1 Selection of Lognormal Distribution Function

Section IV described results of inspections of selected groups of
creosoted southern pine poles. From these results and other experience
we would like to establish the nature of an appropriate lifetime distri-
bution function. Then we can estimate parameters - generally average
and standard deviation - that determine the particular equation to be

used for a specific application. The parameters must reflect the influences
of the factors, such as climate, that affect the physical lifetime distri-
bution of the poles under consideration.

Three common types of distribution functions that may prove of
practical value in describing the physical lifetime distribution of creo-
soted southern pine poles within the broad ranges of accuracy needed

for setting up inspection schedules are: (1) normal, (2) lognormal,
and (3) gamma (the exponential distribution is a special case of the
gamma distribution). Fig. 9 illustrates the nature of these types of
distribution functions, assuming an average lifetime of 40 years in each
case. The top row of figures shows the density functions, which are

f (x) = {exp (x 27)21 / V27 a,

= {exp - (kg x - )2}
2cr

/ V27r xa, and

AA -I-1 xkfic
= exp - Xx}

respectively, for normal, lognormal, and gamma; µ, a, X and k are
parameters that are to be chosen to suit the application. The normal
curve is symmetrical about its average value, A. The probability that a
pole will fail within x years is represented by the fraction of the total
area under the curve that falls to the left of abscissa x. The second row
of curves shows the fraction surviving,

00

5(x) = f f(x) dx.

That is, it shows at abscissa x the probability that a pole will survive
beyond x years. The third row of curves shows the instantaneous failure
rate, f(x)/S(x). This is the limit, as Ax approaches zero, of the prob-
ability that a pole that has survived to x years will fail within the
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interval between x and x Ax. Later we shall be concerned with the
six -year failure rate, which involves Ax of six years. The three types
of distribution functions have different types of failure rate functions.
The failure rate for the normal distribution increases monotonically and
that for the gamma distribution approaches a constant, while the failure
rate for the lognormal distribution increases to a maximum and then
gradually decreases. Experience indicates that the failure rate functions
of the gamma and lognormal distributions are considerably more realistic
than that of the normal distribution. The normal distribution fails to
account for the many long-lived poles observed in the field. If the
failure rate of poles increased with age as indicated by the normal
distribution, special attention should be given to poles as their ages
passed beyond their expected values.

While for purposes of choosing inspection intervals, either the log-
normal or gamma distribution would prove suitable, there are reasons
to believe the lognormal distribution provides a more realistic descrip-
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tion of failure rates of older poles. To explain why failure rates may
decrease with age, we shall describe briefly some of the present thinking
on the effectiveness of preservatives.

When poles are treated, there is variation in effectiveness of treat-
ment even among poles in a single treatment charge. As illustrated by
Fig. 3, some poles absorb and retain more than others; also, the uni-
formity of absorption may vary significantly around the circumference
and along the length of a given pole. Let us assume for purposes of

illustration that the amount of preservative retained in a selected
cubic section near the surface of a pole is a good measure of the effective-
ness of the treatment in deterring decay. Previous studies of the effec-
tiveness of preservatives indicate that the expected life of a pole under
fixed environmental conditions increases with increasing preservative
content. Of course, there is an upper limit to the amount of preservative
that wood can absorb. Further, depending on type of (1) wood, (2)

preservative, (3) fungus, and (4) environment, there is a critical value
of preservative content above which the wood is protected from that
fungus. If, after the evaporation and migration that occurs with aging,
the preservative content remains above the highest critical value (often
referred to as the "threshold retention") for any fungus likely
encountered, presumably the wood will never decay. Thus there is the
possibility of a pole lasting indefinitely unless some new decay organism
appears. It is primarily due to the existence of such poles that the log-
normal distribution function appears to present a better description of
pole lifetimes than either the normal or the gamma functions. Future
results may indicate improvements over the lognormal distribution
function in accounting for such poles. A recent book4 discusses the
lognormal distribution and the nature of many of its applications.

5.2 Family of Lognormal Distribution Functions

Once the lognormal distribution has been chosen to represent physical
lifetime distributions, there remains the problem of selecting the ap-
propriate parameters to use for a particular pole line. Two parameters
are to be selected, and these may be thought of as determining the
slope and an intercept of a straight line on lognormal probability paper.
When two or more points are plotted on such paper to represent the
per cent of failed poles found on two separate inspections of a given
lot of poles, a straight line can be drawn through or near such points
to represent the physical lifetime distribution. A single point will not
suffice, and little confidence can be placed on a line drawn through a
pair of points. Considerably more confidence could be placed in the
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straight line if we knew its approximate slope, for example, or if ex-
perience indicated that it was likely to belong to a particular family
of straight lines. In these cases a single point would be of use.

Fig. 10 shows on lognormal probability paper a family of parallel
straight lines having slopes roughly the same as that of the line of Fig. 4
through the Gulfport test plot data. These lines, which will be called
Curves 1 through 6, are for purposes of illustration. If they represented
physical lifetime distributions of poles in six different poles lines, they
would indicate that these poles had median lifetimes of 10, 20, 40, 80,
160, and 320 years, respectively. The averages are 1.87 times the median
in each case.

Fig. 11 shows the 6 -year failure rate functions for the Curves 1 through
6 of Fig. 10. Notice that the failures rates are slow to change.

To illustrate the application of Figs. 10 and 11, consider the pole
line from Asheville, N.C., represented on Fig. 5. Assume that the dis-
tribution of 11 rather than to is represented in Fig. 5. This pole line would
have characteristics somewhere between those represented by Curves
4 and 5. Looking at Fig. 11, we would be led to expect about 4 or 5
per cent of the poles surviving at 30 years to fail within the next six
years. The median lifetime of these poles might be expected to be
roughly 100 years, and, correspondingly, an average lifetime of 187
years is indicated, based on the assumptions used.

Considering the existence of sampling errors, the results shown on
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Fig. 5 are remarkably consistent among themselves, and they provide
some support for the use of a family of distributions such as represented
in Figs. 10 and 11. Of course, allowances must be made for the differences

between time Id to the first appearance of decay and the time 11 of
failure. As a first approximation we might estimate that ti - td averages
6 years in the South and 10 years in the North. A comparison of the
results shown in Figs. 5 through 8 with Figs. 10 and 11 leads to the
conclusion that median pole lines (half of the pole lines will be better,
half worse) in Zones 1, 2, and 3, respectively, will have failure rates in
the order of 0.5, 1.3, and 1.5, per cent per year, respectively. This
conclusion played a prominent role in the design of the inspection

schedule of Table I.

VI. SUMMARY

An analysis of results of inspections of creosoted southern pine poles
in test plots and in selected lines in the field indicates that their physical
lifetime distribution appears to be adequately described by the lognormal
distribution function. There is no evidence that the failure rate of

these poles increases as they survive beyond their life expectancy;
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indeed, there is reason to suspect that the failure rate may decrease,
thereby supporting the contention that the lognormal distribution is
suitable.

If the lognormal distribution is appropriate, the average physical
lifetime of these poles is considerably greater than commonly believed.
One explanation of this is that some of the poles may "never fail."
Because of lack of evidence concerning these poles as they reach an
advanced age, extrapolation of results from the first thirty years of
pole life must necessarily be made with restraint. For this reason, esti-
mates of average physical life should allow considerable latitude for
accuracy. Under this circumstance, a rule -of -thumb for such estimates
that may prove useful is as follows: (1) Estimate the average annual
failure rate of poles in the 30-50 year age bracket. (2) The reciprocal
is an estimate of the life expectancy of these poles. For example, suppose
in a given area 10,000 poles in this age bracket were inspected and
declared serviceable in 1950, and of these, 600 were declared to have
failed by 1956. Then the failure rate is roughly one per cent per year,
and an estimate of the life expectancy of these poles is (0.01)-4 = 100
years. This rule -of -thumb will indicate in general that the life expec-
tancy is well over 35 years.

The results also support the observation that poles last longer in the
North than in the South. Evidently this is due to a better environment
for growth (length of growing season, annual rainfall, and average
temperature and humidity are considered to be of primary importance)
of wood -destroying fungi in the South. This fact leads to the require-
ment of more frequent inspections in the South to maintain a given
level of pole line quality.
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Minimum- State Sequential Circuits for
a Restricted Class of Incompletely

Specified Flow Tables*
By E. J. Mc CLUSKEY, JR.t

(Manuscript received June 22, 1962)

This paper is concerned with the problem of obtaining minimum -state
sequential circuits for incompletely specified flow tables. Attention is di-
rected to relay -type flow tables in which the only unspecified entries are
those which occur because of restrictions on the allowed input -variable
changes. For this type of flow table it is shown that a simplified version of
the Unger -Paull procedure is sufficient. In particular, only maximum
compatibles need be considered in forming the minimum -state sequential
circuit.

I. INTRODUCTION

One of the classical problems of sequential circuit theory is that of
obtaining a minimum -state sequential circuit satisfying the require-
ments of a given flow table. When the flow table is incompletely speci-
fied, the procedures for obtaining the minimum -state sequential circuit
are lengthy and require such extensive enumeration that they are im-
practical for computer implementation. This paper discusses a restricted
type of incompletely specified flow table for which more efficient pro-
cedures can be devised. In particular, relay -type flow tables in which
the unspecified entries all are present because of a restriction of the
manner in which the inputs can change are considered. It is shown that
for this type of flow table only the maximal compatibles or compatibility
classes need be considered in forming a minimum -state circuit.

II. BACKGROUND

The problem of finding a minimum -state sequential circuit for an
incompletely specified flow table has been discussed extensively in

* This paper was presented at the International Symposium on Theory of
Switching Systems and Finite Automata, Moscow, U.S.S.R., Sept. 24-Oct. 2, 1962.

t Department of Electrical Engineering, Digital Systems Laboratory, Prince-
ton University. Work supported in part by Bell Telephone Laboratories.
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previous papers. The results presented in these papers, particularly
that of Paull and Unger,' are necessary for the results to be presented
here. A brief summary of previous results assumed in this paper will be
presented first.

The usual approach to the study of minimum -state sequential cir-
cuits involves consideration of which flow tables specify the same
external behavior as a given flow table Q. Any flow table which does
specify the same external behavior as Q is said to cover Q. The usual
objective is to formulate a procedure for finding, for any flow table Q,

a minimum -state flow table which covers Q. A formal definition of the
covering relation among flow tables is:

Definition. A flow table P is said to cover a flow table Q (written
P Q) if and only if, for each internal state qi of Q there is an internal
state pi of P such that for any input sequence applied to both tables
initially in states qi and pi respectively, the output sequences are iden-
tical whenever the output of Q is specified.

The definition is suitable for flow tables in which each next -state
entry is specified but some of the output entries may be unspecified.
There is no loss of generality in considering this class of circuits since it
has been shown by Narasimhan2 that all flow tables can be placed in
this form. This definition of a flow table covering another flow table
induces a corresponding relation between the internal states of the two
tables.

Definition. An internal state pi of a flow table P is said to cover an
internal state qi of a flow table Q (written pi qi) if and only if, for
any input sequence applied to P and Q initially in states pi and qi ,
respectively, the outputs are identical whenever the output of Q is

specified.
If flow table P covers flow table Q and P has fewer states than Q,

then one state of P must cover more than one state of Q. Whenever
two states of a flow table can be covered by a single state of another
flow table, the two states must have the following relation:

Definition. Two internal states, qi and qi of Q, are compatible if and
only if, for all input sequences, the output sequence which results when

Q is initially in qi is the same as the output sequence which results
when Q is initially in qi whenever both outputs are specified.

Theorem 1. If internal state pi of P covers both internal states qi and
qk of Q, then states qi and qk must be compatible.

Lemma. If internal state pi of P covers internal states ;a a;-1 , ; qlk

of Q then states , qik must form a compatibility class; that is,

each pair of the must be compatible.
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It follows from this that if P Q, then each state p, of P must cover
a compatibility class of the states of Q. In addition, the compatibility
classes covered by states of P must have the closure property, to be
described next.

Definition. The input states of a sequential circuit will be represented
by the symbols x', x". The internal states of a sequential circuit
will be represented by the symbols s, , 82 , 8r 

Definition. The next -state entry specified by a flow table for input
state xa and internal state si will be represented by the symbol S(x",s1).

Definition. A collection of compatibility classes is said to be closed
if and only if for each compatibility class is, , s2 , 8.1, all of the
states S(xa,si), S(xa,s2) S(x",sm) are included in a single compati-
bility class in the collection. This must be true for all choices of a.

Theorem 2. A flow table P covers a flow table Q if and only if:
(A) each internal state of Q is included in at least one compatibility

class of Q that is covered by an internal state of P, and
(B) the compatibility classes of Q which are covered by internal states of

P Jorm a closed collection.
There is a procedure whereby for each closed collection of compati-

bility classes of a flow table Q (with every internal state of Q included
in at least one compatibility class) it is possible to obtain a flow table
P which covers Q and which contains the same number of internal
states as there are compatibility classes in the collection. Thus, a mini-
mum -state flow table which covers a given flow table Q can be formed
from a closed collection of compatibility classes of Q containing a mini-
mum number of such classes.

Satisfactory techniques for determining the compatibility classes for
a given flow table are known.' Actually the maximal compatibility
classes can be determined, and all other compatibility classes must be
subclasses of these. Presently known techniques for obtaining minimum -
state flow tables are inadequate because of the necessity for considering
the inclusion of nonmaximal compatibility classes in the closed collec-
tion used in forming the covering flow table P.1 Each subclass of the
maximal compatibility classes must be considered, and this number of
subclasses can be prohibitively large. The necessity for considering non -
maximal compatibility classes results directly from the closure require-
ment. The object of this paper is to show that for a certain type of
incompletely specified flow table it is always possible to use the maximal
compatibility classes in forming a minimum -state flow table. For this
type of flow table, the procedure for obtaining a minimum -state flow
is very much simpler than in the general case. Moreover, the type of
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flow table for which this result holds is the type most often encountered

in actual design problems.

III. TYPE A FLOW TABLES

The following discussion applies specifically to flow tables for funda-
mental mode operation.' For the purposes of this paper, a circuit will
be said to be operating in fundamental mode if no input is changed until
after the circuit has "settled down," that is, until after all internal signal
changes have stopped. This type of circuit operation is often referred
to as "relay type" or "asynchronous."4

It is customary to begin the design of a fundamental mode sequential
circuit by writing down a primitive flow table - a flow table in which
there is exactly one stable state in each row. For such a table it is pos-
sible to associate one of the input states (columns of the flow table)
with each internal state, since each internal state is stable for exactly
one input state.

Definition. Let P he a primitive, fundamental -mode flow table. Let
sic% 53", s. a he the internal states of P which are stable for the input
state x"; s1t', s21, sr° be the internal states of P which are stable for
input state x13, etc.

It will be assumed that in a flow table each unstable next -state entry
is followed directly by a stable next -state entry - no multiple changes
of internal state are allowed. Whether a flow table is of the type con-
sidered here, to be called Type A, depends on the mechanism whereby
unspecified entries occur in the table. Specifically, a flow table is of Type
A if the only unspecified entries are those which arise because of a re-
striction on which input states can directly follow each given input
state.

Definition. A flow table is of Type A if and only if: (a) it is a flow table
for fundamental mode operation; (b) it is a primitive flow table; (c)
each unstable next -state entry refers to an internal state which is
stable for the corresponding input state; and (d) the only unspecified
entries are those which occur because of a restriction on the input states
which can directly follow each possible input state.

For fundamental -mode flow tables it is common practice to assume
that only single changes of input variables are possible. Thus, the input
state for which x1 = 0, x2 = 0, cannot he followed by the input state
with x1 = 1, x2 = 1. If this restriction is the only source of unspecified
entries in the table, then the table is of Type A.

Part (d) of the above definition of Type A flow tables can be re-
stated directly in terms of the pattern of unspecified entries in the table
(rather than the mechanism by which they arise). In order to describe
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this, it is convenient to assume that the rows in the table are partitioned
so that all of the rows which are in the same partition are stable for the
same input state and there is one partition for each input state. Ac-
tually, if the outputs associated with the stable states are all specified,
each partition need only include rows which are all stable for the same
input state and have the same outputs associated with the stable next -
state entry. Part (d) of the definition of Type A flow tables can be con-
sidered satisfied if, whenever any row has an unspecified entry for an
input state xa, all other rows in the same partition also have unspecified
entries for input state x". This condition is actually somewhat more
general than the condition (d) given originally, but the theorems are
all valid for this more general condition.

For Type A flow tables, the compatibility relation has certain prop-
erties which are not generally satisfied for arbitrary flow tables. It is
these special properties which form the basis for the simplified procedure
to be derived here.

Theorem 3. Let si", s ;a , ska, be three internal states of a Type A flow
table P which are all stable for input state g". If sic' and sia are compatible,
and sia and ska are compatible, then sic' and ska are compatible.

Proof. By the definition
applied to P the output sequence with P initially in sic' will be the same
as the output sequence with P initially in s; whenever both outputs are
specified. However, because P is a Type A flow table, whenever the
output is specified for P initially in sia, the output for P initially in
sic` will be specified and vice versa. Similar remarks apply to states sia
and ska. Thus the output for P initially in s;" must always agree with
the output for P initially in sia, and the output for P initially in ska
must always agree with the output for P initially in sia. Whenever any
one of these outputs is specified, all three must be specified; therefore
the outputs for P initially in si" and P initially in sk" must always agree.
This shows that states s;" and ska must be compatible. See also Ref. 4,
pp. 183-185.

Let the fact that two states p and q are compatible be written sym-
bolically as p 0 q. Then for states satisfying the conditions of Theorem 3,
the following properties must hold:

(P1) s; 0 sia (reflexive)
(P2) If 8; 0 sic then st 0 si" (symmetric)
(P3) If sic' 0 s.; and si" 0 sk", then st 0 ska (transitive).
A binary relation which satisfies these three properties is an equiva-

lence relation.5 The important characteristic of an equivalence relation
is that it divides the set of objects on which it is defined into disjoint
(nonoverlapping) equivalence classes.
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Theorem 4. Let P be a Type A flow table. Let sic' and sia be two internal
states of P which are both stable for input state x", and let sks be an in-
ternal state of P which is stable for input state 3r8. If sic' and sic are com-
patible, and sia and ski' are compatible then st and sk13 are compatible.

Proof. For any input sequence, the outputs for P initially in Si° and
for P initially in sks must be identical whenever both are specified.
However, the output for P initially in 8; is specified whenever the
output for P initially in sia is specified, and these outputs must always
be the same. Thus, all specified outputs for P initially in si" are the
same as the corresponding outputs for P initially in sia, and the si"
outputs are the same as the outputs for P initially in skfi whenever both
outputs are specified. It follows from this that the outputs for P initially
in sia and for P initially in sk° must be the same when both are specified
and hence that si" and sks are compatible.

Definition. A set of internal states of a flow table P is a maximum com-
patibility class if and only if (i) every pair of states which are both in
the set are compatible, and (ii) there is no other state of P not in the
set which is compatible with all of the states in the set.

Theorem 5. Let P be a Type A flow table. Let Sic' and sia be two internal
state xa and which are compatible.

Then any maximum compatibility set which includes sic' must also include
s.," and vice versa.

Proof. Suppose that C is a maximum compatibility class which in-
cludes sic'. If there is any other state in C which is stable for input state
Xa, say sk", then sia and ska are compatible and sia and sia are compati-
ble. By Theorem 3, states sk' and si" must then be compatible. Thus
s,' is compatible with all states in C which are stable for input xa.

Suppose that there is some state sh13 in C which is stable for some input
state /3 different from a. Then states sia and shs are compatible and
states sic' and 8," are compatible. By Theorem 4, states shs and s$ must
then be compatible. Thus state sia is compatible with all states in C
and therefore must be included in C.

Theorem 6. Let P be a Type A flow table. Then any collection of maximum
compatibility classes of P for which each internal state of P is included in
at least one of the maximum compatibility classes is closed.

Proof. Let { s1 , ,s2 , s.} be one of the maximum compatibility
classes. Then if the collection of maximum compatibility classes is
closed, all of the states S(x",81), S(xa ,s2) S(xa,s,) must be included
in one of the maximum compatibility classes of the collection. Since
P is a Type A flow table, all of the states S(x",si), S(xa,s2),  S(x",8.)
must be stable for input state xa. It has been shown that all pairs of
these states must be compatible since { Si , 82 , s,, is a compatibility
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class.' By Theorem 5 any maximum compatibility class which includes
the internal state S(xa,si) must also include S(xa,s2) S(e,s,).
The conditions of Theorem 6 assume that there is at least one maximum
compatibility class in the collection which includes state S(xa,si). There-
fore there must be at least one class in the collection which includes
all of the states S(x",s1), S(e,s2), S(x",s.). From this it follows
that the collection is closed.

Theorem 7. Let P be a type A flow table. Then there is at least one
minimum -state flow table Q which (a) covers P, (b) contains the minimum
number of internal states for any flow table covering P, and (c) for which
each internal state of Q covers a maximum compatibility class of P.

Proof. There is at least one flow table -P itself - which covers P,
and there must be at least one such table containing a minimum number
of states. Suppose that R is a flow table containing a minimum number
of states and covering P. If each state of R covers a maximum com-
patibility class of P, the theorem is satisfied. Therefore suppose that
each state ri of R covers a compatibility class Ci of P and that at least
one of these compatibility classes is not maximal. Now form a new
collection of compatibility classes by replacing each Ci by one of the
maximal compatibility classes in which it is included. The maximal
compatibility class which replaces Ci will be denoted as Mi . The col-
lection of the Mi will (a) contain the same number of classes as the
collection of the Ci , (b) include each state of P in at least one Mi
and (c) be closed because of Theorem 6. It is thus possible to form
from the Mi a new flow table Q which satisfies all of the conditions of the
theorem.

IV. EXAMPLE

In order to illustrate the significance of the theorems, an example of
a Type A flow table will be discussed. Table I shows a Type A flow table
and the corresponding maximal compatibility classes. States 5 and 10
are the only pair of compatible states which are both stable for the
same input state. By Theorem 5, any maximal compatibility class
which includes either of these two states (5 or 10) must include both of
them. Inspection of Table I(c) shows this to be true. It follows from
Theorem 6 that any closure requirements must involve only these two
states, and Table I(b) shows this to be true. The formation of a mini
mum -row flow table which covers Table I(b) requires only that a
sufficient number of maximum compatibility classes be chosen so that
each internal state of Table I(a) is included in at least one maximal
compatibility class. This problem is formally identical to the problem of
choosing which prime implicants should be included in a minimal sum
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TABLE I -A TYPE A FLOW TABLE
(a) Flow Table

a2a' x3 a'

0,0

3

2 , 0 - 5 , 0 -
4 , 1 02,0 3 , 0 - -
- 2 , 0 30,0 5 , 0 6 , 0

0,1 8 , 1 - 10 , 0 -
- - 3 , 0 CD, 0 7 , 1

1 , 0 - 3 , 0 5 , 0 ©,0
4 , 1 - 9 , 0 10,0 07,1
4 , 1 ®,1 9 , 0 - -
- 8 , 1 09 ,0 10 , 0 6 , 0

- - 3 , 0 @ , 0 7 , 1

5

7

8

9

10

2

3

4

5
6

7

8
9

10

S, Z

(b) Implication Table for Determining Compatibity

x

x x

x

x

x

x
x

V
x
x

V
x

V
V
V

x
x

x
x

x
x V

x V
V x x x x

2 3 4 5 6 7 8 9

(c) Maximal Compatibility Classes

A: 4, 8, 9
B: 4, 7, 8
C: 4, 5, 10
D: 1, 3, 6

E: 2, 3
F: 2, 5, 10
G: 1, 5, 10

for a Boolean function.6 Therefore, the same techniques can be used.
Table II shows a "prime implicant table" for the maximal compatibility
classes of Table I. Each row of Table II corresponds to one of the
maximal compatibility classes. Each column of Table II represents
one of the internal states of Table I. An X is placed in a cell of Table II
if the maximal compatibility class corresponding to the row includes
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TABLE II -PRIME IMPLICA NT TABLE FOR THE MAXIMAL
COMPATIBILITY CLASSES OF TABLE I

Internal States
2 3 4 5 6 7

Maximal Compati-
bility Classes

*A

*B

C

*D

F

G

E

9

1767

10

x
x 0

x
x

X X x
x x 0

X

x
X

x x
x x x

the internal state corresponding to the column. A sufficient number of
rows must be chosen so that each column has an X in at least one of the
chosen rows. It follows from this that rows A, B, and D must be chosen,
since columns 9, 7, and 6 each contain only a single X. After A, B, and
D have been chosen, only columns 2 and 5 do not contain an X in
any of the chosen rows. This may be remedied by also choosing row F.
Thus the collection of maximal compatibility classes A, B, D and F
corresponds to a minimum -row flow table which covers Table I (a).
Such a table is shown in Table III.

Inspection of Table II shows that columns 5 and 10 are identical.
Any states which are compatible and are stable for the same input
state will always have identical columns in the ' prime implicant table"
for maximal compatibility classes. It is therefore unnecessary to carry
these states along explicitly. Each set of such states can immediately
be replaced by a single state (this corresponds to Huffman's merging) .4
The sets of states which are "merged" in this step are exactly the sets of
states which must be covered by single states of the new table in order

TABLE III -A MINIMUM ROW FLOW TABLE WHICH
COVERS TABLE I (a)

S x° xl x2

(4, 8, 9) A

(4, 7, 8) B

(1, 3, 6) D

(2, 5, 10) F

x3 x4

0, 1 ® , 1 ® , 0 F ,0 D ,0
0 , 1 ® , 1 A, 0 F ,0 ® , 1

0,0
B , 1

F , 0 ® , 0 F ,0 0
B

, 0

,1® , 0 D , 0 ®F,0
S, Z
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to insure that closure is satisfied. Thus, closure will always be satisfied
as long as these sets of states are identified; i.e., either all members of
the set are included in a compatibility class or all members are excluded.

After the collection of maximal compatibility classes which correspond
to a minimum -row flow table has been determined, states can some-
times be removed from some of the classes. The advantage of removing
states and thereby obtaining nonmaximal compatibility classes is the
corresponding introduction of unspecified entries in the minimum -row
flow table. Closure will still be satisfied as long as (i) only sets of states
which were identified previously, or single states which cannot be
identified with any other state, are removed; and (ii) each state is
still contained in one of the remaining compatibility classes. This pro-
cedure can be carried out until each state is included in only one of the
compatibility classes. In Table III, this could mean the removal of
states 4 and 8 from class B.

CONCLUSIONS

It has been shown that for incompletely specified flow tables which
satisfy certain very common conditions, greatly simplified procedures
for obtaining minimum -state flow tables exist. For this class of tables
it should now be possible to develop computer programs which are
guaranteed to work for tables with sufficiently large numbers of internal
states so that hand techniques are not feasible.
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Timing Errors in a Chain of Regenerative
Repeaters, I

By B. K. KINARIWALA

(Manuscript received July 16, 1962)

The pulse displacements produced by timing errors in a chain of regen-
erative repeaters (using tuned -circuit timing filters) are represented by a
linear transformation of the pulse displacements at the output of the first
repeater. To facilitate the discussion of the general problem, the simpler
case of periodic pulse trains is considered first. For this case it is shown
that while the mean value tends to infinity, the central moments of the pulse
displacements remain bounded as the number of repeaters approaches
infinity. Further results are obtained which show that all the moments of
the spacing jitter remain bounded for an indefinitely long string of re-
peaters. Finally, the misalignment in the jitter at any given repeater is
represented by a simple expression which shows that the essential com-
ponent in the misalignment is fiat delay.

The general problem of random pulse trains, infinite in length, is dis-
cussed in Part II in this issue. The results obtained for the general case
are quite different from those obtained for the periodic case. The variance
is unbounded in this case except for pulse trains with certain special re-
strictions. The computational aspects for the evaluation of jitter accumula-
tion will be discussed in a subsequent paper.

I. INTRODUCTION

In regenerative digital transmission systems, one of the important
problems is that of maintaining the proper distance between the signal
pulses. The problem becomes much more serious when the system con-
tains a rather long chain of regenerative repeaters. Several aspects of a
theoretical nature in connection with this problem have been discussed
by Sunde,' Bennett,' Rowe3 and Rice.'

We study here the pulse displacements produced by tuning errors in a
chain of repeaters using tuned -circuit timing filters. For simplicity, we
shall consider the system free of noise, distortion, etc.

1769
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An idealized version of the physical system is a chain of repeaters
with the input supposed to be a train of unit impulses. Each repeater
is a device containing a resonant circuit which is excited by the incoming
train of pulses. The response of the resonant circuit to the incoming
signal will ideally consist of a sum of sinusoids and will pass upwards
through zero at an instant determined by the resonant frequency of the
circuit.. This instant will coincide with the instant, of occurrence of the
pulse, if it occurs at all, when the resonant frequency is identical with
the pulse repetition frequency. The repeater does its "repeating" by
sending out a unit impulse, at the instant the response of the tuned -
circuit passes upwards through zero, provided the input signal has a
pulse at or near the same instant.. If there is no pulse in the input, no
pulse is sent out.

Due to tuning error, the tuned circuit in a practical repeater would
resonate at a frequency somewhat different from the pulse repetition
frequency. Further, the impulse response of the circuit is more truly a
damped sinusoid. These considerations show that the positions of the
pulses sent out by a practical repeater are somewhat displaced from the
true positions of the pulses in the original pulse train.

Actually the system consists of a chain of repeaters. We are thus led

to a consideration of the statistical properties of the pulse displacements
produced in a random pulse train by the combined effect of mistuning
in each successive repeater. Of particular concern is the behavior of
the pulse displacements as the number of repeaters gets larger and larger.

It is to this question that we attend.
We begin our discussion by a mathematical statement of the problem.

We show that the pulse displacements at the output of a chain of
repeaters may be represented by a linear transformation, in a Banach
space, of the pulse displacements at the output of the first repeater.

The linear operator (or, the linear transformation) becomes un-
bounded, in the limit, as the number of repeaters gets indefinitely large.
From this follows the result that the average value* of the pulse dis-
placements increases indefinitely as the number of repeaters approaches
infinity.

The behavior of the variance, as well as the other central moments,
of the pulse displacements is investigated by considering a suitable
projection, when it exists, in the Banach space. When the domain of
the above linear transformation is a linear manifold obtained by the
desired projection, we find that the linear operator is bounded. Conse-

* All averages are taken over the values of the pulse displacements. No averages
over the mistunings should be compared with the results obtained here.
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quently, all the central moments of the pulse displacements are shown
to remain bounded as the number of repeaters approaches infinity.
When the above -mentioned projection does not exist, the central mo-
ments are shown to be unbounded.

Practical situations call for a determination of the bounds on the
central moments when the number of repeaters is finite. In such cases,
the input pulse trains may be assumed to be periodic pulse trains with
the period much larger than the time constants of the timing filters.
The problem reduces to a linear transformation in a finite dimensional
vector space. The central moments are bounded and they can be pre-
cisely evaluated. A simple procedure to determine these bounds is
developed.

The same analysis can be directly applied to an investigation of the
so-called "spacing jitter," or variations in the spacings between virtual
pulse positions. Similar results are obtained for both a finite and an
infinite number of repeaters in the chain.

We shall also have occasion to remark upon the "misalignment noise"
which is the jitter introduced, by the nth repeater, in an already jittered
pulse train coming into the same repeater.

Finally, in a subsequent paper we shall discuss the computational as-
pects for the evaluation of jitter accumulation in a long string of re-
peaters.

Organization of the paper is as follows. We start with the statement
of the problem in completely general terms and express it as a linear
transformation. Next, to facilitate the discussion of the general prob-
lem, we consider the simpler case of a periodic pulse train. In Part II of
the paper, * we consider the general case of a completely random pulse
train.

II. STATEMENT OF PROBLEM

The input to the chain of repeaters is supposed to be a train of unit
impulses which occur, if they occur at all, at the instants

{ . . , -2r, -7, 0, T, 2T, }

The occurrence or nonoccurrence of a pulse at time t = -nr is deter-
mined by the value of the random variable a, . If a, = 1, which happens
with a given probability, a pulse is present. If an = 0, no pulse is pres-
ent.

The resonant circuit in the repeater is excited by the incoming train
* Part II of the paper appears in this issue, p. 1781.
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of pulses. The response of the circuit to a unit impulse at time t = 0 is
assumed to be

e--`" sin cot, t > 0 (1)

where coo- is almost 27r but, due to tuning error, misses its desired value
by

e = 27r - WOT = 27r(fr - fo)/f, (2)

Here fr = 1/7 is the pulse repetition frequency. The decrement c is
related to the Q of the circuit by (IT = 7/Q.

The response of the resonant circuit to the incoming pulse train will
consist of a sum of terms of the form (1) and will pass upwards through
zero at an instant near t = ( -n7), say at t = (-nr t). The re-
peater sends out a unit impulse at the instant ( - nr t) if the input
signal has a pulse near ( -nr). If there is no pulse in the input, no pulse
is sent out. The response of the resonant circuit still goes through zero,
and we can say that there is a "virtual" pulse displacement of amount
t seconds (or of 2irt/7 radians).

For a chain of repeaters, we assume that all of the resonant circuits
have the same Q but that their mistunings el , 2 , are distributed
independently and at random. Let be the displacement of the kth
pulse (originally entering the first repeater at t = -kr) as it comes out
of the lth repeater where 1 = 1, 2, . The displacement 61 is measured
in radians, where 27 radians corresponds to the pulse interval T. The
superscript / signifies the output of the lth repeater. The mistuning in
the resonant circuit in the lth repeater is represented by ez . When we
assume that Q is very large and the mistunings el are much smaller than
ur = 7IQ radians, we are led to a set of equations which relate the pulse
displacements out of the lth repeater to those out of the (1 - 1)th re-
peater. These equations are

CO

a,03"(E,k'' + )
1 rtr=0

E an+kon (3)

(1 = 1,2,3,  ; k = 0,1,2,  ),

where i3 = exp (- 1 - (ir/Q) is a number slightly less than unity.
The initial conditions are that the pulses entering the first repeater
have zero displacement, i.e.,

Eko = 0, I, 2, . (4)
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These equations are given by Rowe' and also by Rice.' Here we have
followed their terminology very closely.

The physical problem dealing with a chain of repeaters is now re-
placed by the mathematical problem of studying the behavior of the
variables 41 defined by the above equations. The an's and ei's are either
given explicitly or are random variables whose distributions are known.

III. LINEAR TRANSFORMATIONS

We note that the set of equations in (3) is a linear set, and we can
express it as a linear transformation of the set of variables {61-1} into
the set {61}. We are, however, primarily interested in the behavior of
{61} when / is large and when no knowledge of 16'1 is available. A
more useful expression is obtained by rewriting (3) as

where

00

Eani-kttt ;
1 nSk = oo "T"

nan+ko
n =0

an+kienEi
1 n=0

4k - co

E an+on
n

(5)

(6)

In our formulation, zero mistuning does not introduce any jitter in a
jitter -free pulse train. We will therefore understand the chain to start
with a repeater having non -zero mistuning.

Equation (5) can be used to express 1611 as a linear transformation
of 16'). To do this, define a matrix (infinite)

T=

where

ao alb a2132

So So so

0

0

a1 a2,3

Si s,

0
a2 a38
s.

(7)
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si = E an -443"; (8)
n=0

and define a vector

X1 = [E.oi , 61, 61, 1 (9)

Then (5) becomes

Xi = !!X1 ; (X0 = 0), (1 = 1, 2, 3, ). (10)

From (10) it follows that
/-1

X/ = [- E El_yr] X1 (T° = I) . (ii)
El P=0

One can, if need be, discuss the behavior of (11) in the above form.
However, the e's are usually of the same order of magnitude, and the
equation is considerably simplified by assuming that the e's are iden-
tical.* Then

X1+1 = [E r] X, (12)
v-0

We are interested in the problem when 1 becomes indefinitely large. or,
dropping superfluous subscripts,

Y = rim [E T] X. (13)

Here X and 1' represent the pulse deviations out of the first repeater
and out of the (1 ± 1)th repeater, respectively.

The original problem is now represented as a linear transformation of
X into Y. The linear transformation, when it exists, is a function of
another linear transformation T. The domain, as well as the range,
of the transformation T is a Banach space, as will be shown in Part II.
Here, we pursue the simpler case of a periodic pattern.

Whether the variance is bounded or not is not a particularly impor-
tant question for the periodic case. Such a question can be answered
by a very simple argument. However, we give here instead a complete
analysis of the periodic case. Our purpose in doing so is twofold. First,
the analysis shows how certain basic properties of the operator T in-
fluence the questions of boundedness of the jitter; it also gives a simple

* We shall discuss elsewhere the difference, if any, in the results when we do
not make this assumption.
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computational procedure for evaluating the accumulated jitter. Second,
the analysis serves as a simple introduction to the more complex argu-
ment pursued in Part II.

IV. PERIODIC PULSE TRAINS

We assume here that the an's form a pattern which repeats itself
with a period m. The pattern is otherwise arbitrary. In such cases, the
pulse displacements are also periodic with the same period m. Then,

an+m = an

Sk+m1
(14)

for all values of indices n and k.
The domain of the operator 7' is thus an m -dimensional space. Since

an+, = an , the range of T is also of dimension m. The problem reduces
to the study of a linear transformation in a finite dimensional space.
The operator T is now represented by a finite matrix A.

A =

(a. + ame + a,t" +  -) alt + am+01+1 +
So so

+ + 
S1

al + am±,om +  .)
Si

So

a.om-1

ctio
SO'

oni-1
1

SO'

am_03"1-2

Si'

ao0

S1' Si'

am -1

(15)

where

Sm-1,

sk' = (1 - flm)sk (16)

For the periodic case, (13) becomes

= lim [E A] X, (17)
p=0
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where we continue to use the same symbols X and Y to represent the
finite dimensional vectors.

In order to investigate the limit of (17), one must determine the
behavior of the infinite series and its convergence properties. Moreover,
if the limit does not exist, the question to be answered is whether or not
the variance of Y has any limit. Other central moments may also be of

interest.
In what follows, we show that the limit of (17) does not exist. This

implies that the mean of Y is infinite. However, we shall show that the
central moments always exist for any arbitrary in. We assume through-
out this paper that averages over the sample values* are statistically
identical to the averages over the ensembles.

A discussion of the properties of the linear transformation defined by
(17) involves the study of a function of the matrix A. In order to discuss
such a function, one must have a knowledge of the spectrum of the
matrix. We study the spectrum of A in the next section.

V. SPECTRUM OF A

In this section, we prove the following theorem.
Theorem: The spectrum of A consists of two parts:
1. The maximum eigenvalue is located at X = 1, and it is simple;
2. All other eigenvalues are such that their modulus is less than unity,

i.e., iXi < I.
Proof: Observe that A is a stochastic matrix since the sum of each

row is equal to one and all the elements of the matrix are nonnegative.
Thus, X = 1 is indeed an eigenvalue with eigenvector 11, 1, , 11. It
also follows that the entire spectrum of A is contained in the unit disk

I
X 15 1. This can be observed in a simple manner by considering powers

of matrix A and noting that the trace of A" does not exceed m, the
order of the matrix A. If there were any eigenvalue for I X I > 1, one
could find a large enough n such that the trace of A" would exceed in.
(We do not worry about cancellation because we can always choose
the proper n to prevent this.) Hence, there are no eigenvalues outside
the unit disk.

Next, we wish to show that there are no other eigenvalues (X # 1)
with modulus equal to one. We obtain a matrix equivalent to A by
means of elementary transformations of interchanging rows as well as
the corresponding columns. The eigenvalues of the matrix are invariant

* The values of the pulse displacements are referred to as the sample values,
and the ensemble is the set of admissible sequences of pulse displacements. For
justification of the above assumption in the general case, see Bennett, op. cit.
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under such operations. We obtain a matrix of the form

0 1,
B =

C Di
(18)

where A' is a square matrix all of whose elements are positive and D
is a square null matrix. Only the eigenvalues of A' need be considered.
To A' we apply Perron's theorem which, for a stochastic matrix with
all elements positive, states that: the extremum eigenvalue is located
at X = 1; it is simple; and its modulus exceeds the moduli of all other
eigenvalues. Q.E.D.

VI. MEAN, VARIANCE, ETC.

The solution to (17) can now be expressed in terms of the basis vectors
of A in the form

1 ni

Y = lim E Xpva,X("), (19)
v=0 Ar=1

where, X(m) is the eigenvector of A corresponding to the eigenvalue
X, of A. The coefficients a, are the expansion coefficients in

X = E c,x(P). (20)

We have assumed, for the present, that A is of simple structure. There
are no significant changes in the development when such an assumption
is not made. We shall discuss this matter a little later.

In the previous section it has been proved that the extremum eigen-
value, say Al , is simple and is located at Al = 1. The rest of the eigen-
values are strictly inside the unit circle. The mean value of Y is seen to
approach infinity by considering only those terms that involve Al = 1,

00

f = crix`" E xiP + E X(P), (21)
r=0 2 1 Ap

where, X") = {1, 1, , 1}.

The first term in (21) is a divergent series and Y approaches infinity
as the number of repeaters increases indefinitely.* The behavior of the
central moments is investigated by considering

m

[Y - = E (, aP [X(P) - X(01.
µ=2 L Am

(22)

* The statement is valid, in general, provided al # 0. We need only show that
there exists at least one X such that al 0 0. Consider a pulse train with all pulses
present; then X = a1X(1) withal 0 0.
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The value of [Y - is finite since I X, I < 1. All powers of [Y - f]
are finite and [Y - f]'° will also be finite. We thus see that all the cen-
tral moments, including the variance, are finite.

Now we consider the case when the structure of A is not simple. The
only difference in this case concerns the vectors corresponding to eigen-
values other than XI . Let us, for simplicity, consider the basis vectors
that correspond to an eigenvalue X, of multiplicity two. Similar develop-
ments can be carried out when the multiplicity is greater than two.
The normal form of A would have a Jordan block

[-), 1

L 0 xpi

It is well known that there exist two linearly independent vectors
X1(") and X2(P) such that

A Xi(") = XpXi(')

A X2(') = XAX2(P) X1(A).

The vector Xi(") is an eigenvector of A and is transformed in the same
manner as the vectors X(') are, and it yields

(IXµ x (A).
1 - X,

On the other hand, when A' operates on X2(") it yields

A vX2(") = XvX2(") vX,P-1X1(").

Thus X244) contributes to Y a term of the form

E Kx2(") = «' [E x,:x2(P) + E vx.P-Ixi(A)1 ,
r=0 r=0 r=0

= a X.2(A)
'A 1 -x"f1) 1 -( 1 )2

(23)

(24)

(25)

(26)

(27)

since I Xp < 1.
The terms due to the basis vectors of A corresponding to X, are shown

to be bounded, and our results on the boundedness of the central mo-
ments remain valid regardless of the structure of A.

VII. SPACING AND MISALIGNMENT

Sometimes a more useful measure of jitter is the spacing jitter, which
is defined as the deviations in the spacing between adjacent pulses or
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pulse positions. This is obtained by taking the difference of the ad-
jacent pulse position deviations. To do this operationally, let us define
an operator S which shifts the elements in the vector Y such that the
kth element appears as the (k - 1)th element and the first element
appears as the ?nth element.

=

0 1 0 0

0 0 1 0 0

(28)

0 0 0 0

1 0 0 0 0 0

The spacing jitter Y, can then be represented in terms of the timing
jitter Y by

Y, = 1/ - S]Y. (29)

By using (19) and (29), we have
Ill

Y8 = lim E E am[r - s]Xo .
p=0 µ=1

The operator [I - 8] annihilates X") and we obtain

(30)

YR = E [I - S]X('). (31)
µ=2

The spacing jitter is finite for all sample values, and so the mean and
all other moments of this jitter are finite.*

Next, we briefly consider the misalignment which is defined as the
difference between the timing errors at the output and at the input of
a given repeater. The representation of the misalignment in the (1 1)th
repeater is given, in the periodic case, by modifying (12) to a finite
dimensional one and obtaining

- X,] = A 1X1, (32)

where, Xk represents the jitter at the output of the kth repeater.
Equation (32) implies that the misalignment essentially amounts to a

flat delay as 1 gets larger. Indeed, there is virtually no difference in the
misalignment for different repeaters when the values of 1 are reasonably
large.

* For periodic pulse patterns, this is intuitively obvious.
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VIII. CONCLUSION

The general problem of timing errors in a string of repeaters has been
expressed in terms of certain linear operators and functions of these
operators. The simpler case of periodic pulse patterns is then studied in

detail. We have shown, for the periodic case, that the mean value of
jitter accumulation in a string of repeaters increases indefinitely but
that the central moments of the jitter remain bounded. In fact, the
divergence of the mean value for the infinitely long string stems from
the accumulation of the flat delay occurring in each repeater. Once this
flat delay is eliminated, the remaining part of the jitter is bounded.
Consequently, all the central moments are bounded. All the moments
of the spacing jitter are bounded for identical reasons. The misalign-
ment behavior is also explained by the dominance and the invariance
of the flat delay.

The question of evaluating the jitter accumulation will be discussed
in a subsequent paper. We will show there that the spectrum of the
operator A can be determined fairly simply even for very large periodic-
ity. No polynomials of high degrees need be solved to determine the
eigenvalues. We shall also discuss the computation errors involved in
periodic approximation versus those involved in truncation of the
infinite pulse train.

The general case of random pulse trains with no periodic structure
will be examined in Part II. We shall have occasion to thoroughly
examine the operator T. Since we shall be concerned with infinite
dimensional space, the spectral properties of T are not so easy to de-
termine. We shall compare the spectral properties of T with those of A

in order to delineate the difference between the two cases.
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Timing Errors in a Chain of Regenerative
Repeaters, II

By B. K. KINARIWALA

(Manuscript received July 23, 1962)

The behavior of the timing jitter in a long chain of repeaters is shown to
depend on the spectral properties of a linear operator which maps the space
of bounded sequences into itself. As the number of repeaters increases indefi-
nitely, so does the mean value of the jitter. The variation about this mean
value remains bounded only for certain highly constrained pulse trains
(e.g., periodic, finite, etc.), but it is otherwise unbounded.

I. INTRODUCTION

We showed in a previous discussion that the pulse displacements
at the output of a chain of repeaters may be represented by a linear
transformation of the pulse displacements at the output of the first
repeater.* The linear transformation turns out to be a simple function
of a basic operator T which, in essence, represents the action of the
repeater on the incoming jitter. Though the operator T depends di-
rectly on the manner in which the repeater extracts its timing informa-
tion from the incoming pulse train, it is believed that there would be no
basic difference in the major results obtained or in the method of analy-
sis for different timing extractors. We have assumed that the timing
information extractor is a tuned circuit with a finite but fairly high Q
and the source of jitter is the mistuning in the tuned circuit. Other
sources of jitter often lend themselves to a similar mode of investigation.

The rest of the discussion in Part I concerned the class of periodic
pulse trains. The problem reduces, in such cases, to a consideration of
linear transformations in a finite dimensional space. For a periodic
pulse train with period m, it was shown that the variance of the jitter
remains bounded for an indefinitely long string of repeaters.

* We shall assume that the reader is familiar with the contents of Part I of
this paper: B. K. Kinariwala, Timing Errors in a Chain of Regenerative Repeaters,
I, this issue, pp. 1769-1780.

1781
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Unfortunately, the above results do not let us draw any conclusions
for the behavior of the variance when the pulse train is not periodic,
but infinite, in length. For example, if there existed a bound M, on the
variance, which was not a function of m, then we can let the period
become infinite and conclude that the variance was bounded for the
indefinitely long random pulse train. However, it is not apparent whether
M is dependent on m or not. The value of the variance is determined
by the number of eigenvalues of the pertinent operator, their location,
and the algebraic signs of the corresponding eigenvectors. It seems
reasonable, therefore, that the bound on the variance is a function of the
period m. The behavior of this function as m approaches infinity will
determine whether the variance is bounded in the nonperiodic case.
We do not pursue the matter in this direction because it is not easy to
express the above function in a simple manner.

Instead, we investigate the general problem directly in the infinite
dimensional space. We establish that the basic operator T maps the
normed linear space 1,, into 1, for 1 < p :5_ ac . Next, we show that the
domain of T for our problem is the space 1..* We determine the condi-
tions under which the variance is bounded, and we conclude that there
is no bound on the variance of the jitter for the random (infinite) pulse
train. The conclusion remains valid for any specification of dependence
or independence of the random variables a which take on the value
one if a pulse is present at time t = ( -nr), but they are zero otherwise.
Even a bound on the maximum number of successive zeros in the pulse
trains does not seem to alter our result. Only when the operator T is
restricted to a finite dimensional space does the variance remain finite.
Such a restriction occurs for finite pulse trains, periodic pulse trains,
nonperiodic pulse trains which eventually take on a periodic behavior,
and so on.

The organization of the paper is in the nature of a proof with digres-
sions. Though these digressions are extraneous to the discussion of the
boundedness of the variance, they do serve to bring out some interest-
ing points. We begin with the mathematical statement of the problem,
which includes certain modifications of the previous statement. Next,
we examine the elementary operator T and its properties such as bound-
edness, domain, and spectrum. We then proceed to the discussion of
whether the variance of the jitter is bounded or unbounded. We close
with a brief discussion of the results.

* The space 1,, is a normed linear space which is complete. Hence, it is a Banach
space.
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II. STATEMENT OF PROBLEM

The purpose of a restatement of the problem here is to make certain
desirable modifications. We also refer to a possible alternate formulation
which, except for an occasional observation, we shall not pursue.

We are interested in studying the behavior of the equation

Y = rim [E T] X, (1)
v -o

where X and Y represent the input and output jitter vectors, respec-
tively, for a long chain of repeaters. By input jitter we mean input to
the second repeater in the chain, and it is understood that the input to
the first repeater is a jitter -free pulse train. The linear operator T
represents the action of the repeater on the incoming jitter, and we shall
describe it presently. The simple form of (1) is obtained by assuming
that the mistunings, which appear as coefficients in the power series in
T, are identical. This assumption does not alter the convergence prop-
erties of the relevant limit since the mistunings are of the same order
of magnitude. *

The operator T in our previous discussion was obtained under the
assumption that the jitter is observed in the neighborhood of time t = 0
with the pulse train extending back in time towards t = We
included in our description of T, X and Y the pulse position deviations
regardless of whether a pulse was present or not. The operator T was
defined by the matrix

T=

a, airs ale
so 80 so

0
ai aws

sl st

0

(2)

where an = 1 if a pulse is present at t = -nr and equal to zero other-
wise; # is a positive number slightly less than unity (# ti 1 - (r/Q));
and

ce

Ri = E an÷An
n -o

(3)

* The question of convergence should not be confused with the question of
boundedness of the resulting operator or of the operator T.
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When an = 0, all the elements in the nth column of T are zero. As
we observed in the periodic case, we can eliminate these columns and
the corresponding rows without in any way affecting the results. Phys-
ically, this amounts to a consideration of jitter only at those positions
where pulses were present in the original pulse train. With these minor
changes, we represent T i 1 the following manner.

1T=So

where

(4)

So --= 1 ± E /P, (5)
n=1 Y=1

and

s_, = 1 + ginsn . (6)

Vectors X and Y are also assumed to be suitably modified.
Though we are not concerned with it, we take note of the fact that an

alternate formulation of the problem is possible by assuming that the
pulse train starts at time t = 0 and extends towards t = +00. There
are many disadvantages in such a formulation and we mention it here
only for completeness. The operator of interest in this case takes the
following form.

where

and

T2 =

1
0 0

go-i--

i3i1 1
0

Si+ PK41

131'1+72 #72 1

[ S2+ S2+ ATS21-

So+ = 1,

So+ = 1 + (3in S(n-1)+

(7)
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Referring back to (1), we are interested in determining whether the
mean and the variation about the mean of Y are bounded or not. The
averages are to be taken over the components of Y. For our purposes,
we shall not be concerned with evaluating any averages. As shown in
Part I, the dominant part of Y, the mean of Y, is the element repre-
senting flat delay in the jitter Y. All we need to know is whether the
dispersion (or, the spread) about this flat delay remains bounded or
not. Though this dispersion has some relation to the variance, it is not
the variance. However, we shall continue to use the term variance for
the dispersion about the flat delay. The relation between these quantities
is shown in Part I. Moreover, the behavior of the dispersion also gives
information about the spacing jitter. It also answers the question about
the worst pattern.

III. BOUNDEDNESS OF T

We proceed now to examine the operator T to determine some of its
important properties. It will be shown here that T is a bounded linear
operator which maps the normed linear space 1(1 < p < 00 ) into
itself.*

Theorem: The norm of T (i.e., I T I ) on 1,, is bounded for each p..1.
Proof: Define a diagonal matrix

D = diag . { SI-% S21,

and a matrix To such that

T = DT0 .

Then,

ITI= IDT01-51Dii To!

.17'01, (ID! 6.1),
= I I diag. {(3i1, 012, 13i3 , I 8 + cliag10"1-',

+ 1

* The space 1 is the linear space of all sequences x = {an} of scalars for which
the norm) x J = { E1 I an I p) 1/p is finite. The norm for is

I :ri = sup I a d.
F'or precise terminology and definitions as well as a basis for many of the state-

ments made and concepts used in this paper, the reader should consult: N. Dun -
ford and J. T. Schwartz, Linear Operators - Part I: General Theory, Interscience
Publishers, Inc., New York, N. Y.; 1958.

t The bound or norm of T defined on a linear space x is the sup I Tx I, deIzI

s1
-

noted by I T I. The operator T is bounded if T I < .



S=

1786 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962

here

0 1 0 0

0 0 1 0

0 0 0 1

is defined on 1,2 with I S I = 1 for each value of p. Note that 0 < Q < 1
and iv 1 for v = 1, 2, 3, . So

ITI Pio!

artYI(OS
Y=0

I

00

1 - I OS I

since I (38 I < 1. The norm of T is shown to be bounded for each p.
As we shall see in the next section, the space 1. is of particular interest

to us. The norm of T on 1. is given by the supremum of the sum of the
absolute values of elements in a row. Since T is a stochastic matrix,

T I = 1 when it is defined on 1, .

IV. DOMAIN OF T

It has been stated before that for our problem the domain of the
operator T is the space L . This is not a separable space and, hence, it
is not the most convenient one to work with. It must clearly be under-
stood, therefore, that the problem is defined on this space not due to
preference but out of necessity. In our discussion of this matter, we
begin with some observations in physical terms about the domain in
question.

The operator T operates on the sequence representing the jitter at
the output of the first repeater (or, the jitter input at the second re-
peater). The domain of T must include the set of all jitter sequences
at the output of the first repeater.* The nature of these sequences is

* Here, we are concerned not with a specific operator but with the totality of
the operators.
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determined by two essential properties of the original pulse trains, viz.,
infinite length and random character. Since the pulse trains can be in-
definitely long and completely random, the jitter sequences need not
all converge to zero or to any other value. This conclusion is valid re-
gardless of whether we consider jitter at all the possible pulse positions
or only where the pulses are present. As a consequence of the above
conclusion, and since the set of all the jitter sequences is certainly not
a finite set, the domain cannot be any of the spaces 1 with p finite. It
also follows that the domain cannot be either co (the space of sequences
converging to zero), or c (the space of convergent sequences). These
are separable spaces and they are to be preferred over 1. if we are able
to represent the problem in terms of any one of them. However, the
above discussion shows that this is not possible.

On the other hand, if the jitter sequences are all bounded sequences,
then the domain of T can be L . Obviously, the jitter sequences must be
bounded in any realistic situation. In fact, the formulation of the prob-
lem assumes that the jitter introduced by a single repeater is quite small
compared to 2r radians. Thus, the jitter sequences are all bounded and
the domain of T is1..

A more precise bound on the jitter sequences can be obtained quanti-
tatively. The jitter sequences are defined by

(10)

where LS. are defined in (6) and 8. = (d/c113)S. . The bound on any
sequence of the above type exists, and it can be obtained by determin-
ing the worst case as discussed by Aaron and Gray.* It is also clearly
seen from (10) that the sequences need not all necessarily converge to
zero (or, to any other value). We see now, in a precise manner, that the
domain of T must indeed be 1. .

V. SPECTRUM OF T

So far we have established that all the jitter sequences at the input
of the second repeater are elements of the space 1. , and the operator T
is a bounded operator defined on 1. with I T J = 1. We recall that the
jitter accumulation in a string of repeaters is given in terms of a func-
tion of the operator T. In order to determine the properties of a function

* M. R. Aaron and J. R. Gray, Probability Distribution for the Phase Jitter
in Self -Timed Reconstructive Repeaters for PCM, B.S.T.J., 41, March, 1962;
pp. 503-558.
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of an operator it is necessary to start with some knowledge of the spec-
trum of the operator.*

The operator T is represented by a triangular matrix. We wish to
emphasize that, for an infinite triangular matrix, the diagonal elements
are not necessarily the eigenvalues of the matrix. Equally important is
the observation that the set of eigenvalues may indeed include elements
which are not to be found on the main diagonal.t Moreover, the spec-
trum of T may also contain points other than those in the point spec-
trum (i.e., the set of eigenvalues). Therefore, even though T is repre-
sented by a triangular matrix it is not a trivial matter to determine its
spectrum.

Of course, T is a stochastic matrix and so X = 1 is an eigenvalue of T
with the corresponding eigenvector xo = (1, 1, 1, . Some other re-
sults also follow from the stochastic nature of T. We shall denote the
spectrum of T by 0-(T).

Theorem: The spectrum of T is a subset of the unit disk (i.e., I a(T) I S
1), and any pole X of T with IX I = 1 has order one.t

Proof: The first statement follows immediately from the fact that
T I = 1. It is well known that for any X such that IXI > 1171 the re-

solvent operator (XI - T)-' exists. Thus, the spectral radius of T, viz.,
sup I o -(T) I cannot exceed one. The spectrum is a subset of the unit disk,
etc.

In order to prove the second statement, it suffices to treat the case
that X = 1 is a pole of T. Or else we treat a modified operator ( T/X)
with norm one for I X I = 1. Suppose that the order of the pole is at least
two. Then there must exist an xo E E(1; T)x, such that (I - T)xo 0,

but (I - T)2xo = O.§ Consider a function of T corresponding to f (X) =
X "/n in the neighborhood of X = 1. We obtain a relation of the form

1 n 1-T xo = - xo - T)xo .

Letting n co, we conclude that (I - 7')xo = 0, which is a contradic-
tion. Hence the poles of T which lie on the unit circle are simple poles.

* The spectrum cr(T) of T is the complement of p(T). The resolvent set p(T)
of T is the set of scalars X, for which (XI - T)-' exists as a bounded operator with
domain x, where x is the domain of T. The function R(X; T) = (XI - T)---1, de-
fined on p(T), is the resolvent of T.

t We hope to discuss elsewhere these statements and their implications in
greater detail and with reference to linear operators in general.

t An isolated point Xo of a(71) is called a pole of T if R(X; 7') has a pole at Xo .
By the order v(Xo) of a pole X0 is meant the order of Xo as a pole of R(X; T).

§ E(X0 ; T) is a function of T which is identically one on a pole Xo of T but
which vanishes on the rest of Q(T). Observe that E is a projection operator, i.e.,
E2 = E. The definition of E given here is a highly restricted one but it suits our
purposes.
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The next two theorems give us some more information about the
spectrum. The first one shows that there cannot be a pole on the unit
circle for X 0 1. The second one concerns the dimension of the eigen-
manifold corresponding to the eigenvalue X = 1.*

Theorem: All points on the unit circle except X = 1 are in p(T).
Proof: We already know that X = 1 is in 0-(T). We also know that

any X such that I X I > 1 is in p(T). To show that any X 0 1 on the unit
circle is in p(T), consider

R(Xo ; T) = (Xo1 - {Ao 0 1, X0 I = 1j.

If we can show that R(X0 ; T) exists for all x in x with a bounded norm,
we have proved the theorem. It is easy to verify that R(Xo ; T) may be
expressed as shown in (11).

R(xo; T)

1 Oi1S0-1 13114 '2150-1X0

(x0 - S0-0 (x0 - S0-0 (x0 - Si-') (x0 - So 0 (x0 - S1-1) (x0 - S2-1)

0
(x0 - Si -1)

0 0

`2S1-1

(x0 - As1-1)(x0 - S2-0

1

(x0 - 82-9

Since X0 is a complex number, it follows that (Ao - 8,71) 0 0 for any
i. Next, we show that R(Xo ; T) is a bounded operator. Observe that
the norm is given by

I R(Xo ; T) I = sup E aii (12)

where, ai; represents the element in the ith row and jth column of the
matrix in (11), i.e., R(X0 ; T) = II ai; II

Consider the resolvent R(X1 ; T) for Al = (1 + e) with e > 0. Ob-
viously Al is in p(T) and I R(X1 ; T) I < 00 . We assert that, given any
Ao , there exists an e > 0 such that

R(Ao;T) I <IR(X1 ; T) 1 < c° (13)

The validity of our assertion is proven by first noting that R(X1 ; T) is
represented by the matrix in (11) with Ao replaced by Xi . Let R(Xi ; T) =
II bik Next we show that I ay,. I < I bik I, for all i and k, from which
follows relation (13). Let Ao = cos 0 j sin 0, (j = -1). Then

* If X = 1 is a pole of T, this is the dimension of the range of projection E(1; T).
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amn

bmn

X (n-m-1) jT
Al Y=M

X1 -ASM1
X0 - SM-1

xi -s 
Xo - Si.-'

n = m,

for m = 0, 1, 2, . In any case, for n > m,

amn

bmn
ll
Y=171

Ai -
A0 - Sp -1

Consider a term of the form

AI - a
Ao - a

n (m 1) ,

since I Xo I < I Al I

where a = (1 - () is the lower bound on Si.'.: Then

Ai - a
Xo - a

provided that

1 -I- e - a
cos 0 - a -I- j sin 0

E - a)2
Ll a2 - 2a cos 0

< 1

e + 2e(1 - a) - 2a(1 - cos 0) < 0.

Since 0 < a < 1, the polynomial on the left side has one zero for e > 0
and one zero for E < 0. There exists, therefore, an e > 0 such that the
above inequality is satisfied as long as 0 0. Since

Ai - SY 1 Ai - a

it follows that

X0 - Si.-'

amn

bmn

Xo -

< 1

ll
Y =M

AI - Si.-'
Xo - Si.-'

AI - a
Xo -a

n-m-F1

< 1,

n

1.

amn j = I bmn I = 0, for n < m.
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The theorem is thus proved, and all the points on the unit circle except
X = 1 are in the resolvent set p(T).

It follows from the above theorem that there are no poles on the
unit circle except possibly at X = 1. We know that such a pole, if it
exists, must be of order one. The next theorem concerns the dimension
of the eigenmanifold corresponding to X = 1.

Theorem: There exists one and only one nontrivial element x E x such
that Tx = x.

Proof: It is apparent that so = {1, 1, 1,  1 is one such element.
If there exists another element x xo (but, I x I = I so I ), then some
of its components must be unequal. Let x = Ito , Sl , 52 ,  1. Then
there is some E E.4.1 . We will show that this is impossible.

If Tx = x, it follows that [cf. (4)]

En = Sn l n Sn-1/3in+Itn4-1 Snlen+1 ±in+2)E +2 + 

and

G-1-1 = Sii+1%z +1 4- Sn+110in+ n +2 +  
Substituting

En = Snitn S-1#1."'Sn+itn+i

13in+1S-Fi

En = En+1 

Or, since from (6)

we have a contradiction

This proves the theorem, and the eigenmanifold corresponding to X =
1 is of dimension one.

The results obtained in this section about the spectrum of T are quite
general and remain valid under any restriction of the domain 1. assum-
ing, of course, that xo is in such a restriction. The all-important question
not answered in this section is whether or not T has a pole at X = 1.
This is a crucial question indeed and, on the basis of the results already
obtained, the answer determines the behavior of the variance of the
jitter. We delay the discussion of the existence of a pole at X = 1 in
order to first show its pivotal character. Next, we show that the existence
of the pole depends upon a certain suitable restriction of the domain of
T. These two points lead us to our final conclusions.
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VI. BOUNDEDNESS OF VARIANCE

Let us consider now what happens to the output jitter as the number
of repeaters approaches infinity. We obtain the results, at first, under
the assumption that T has a pole at X = 1. We discuss later the case
where X = 1 is not a pole of T.

Theorem: If X = 1 is a pole of T, then there exists a bound on the vari-
ance of

CO

y = [E Trnix. (14)
m=0

Proof: Let X = 1 be a pole of T. Then 0-(T) may be decomposed into
the union of a closed set o-, which lies inside a circle I Z I < ao < 1, and
the simple pole at X = 1. Let us put E1 = E(1, T), ED = (I - E1)
and D = TED .* The range of E1 is one-dimensional, and the iterates
of T are given by

I'm = El +

since for a simple pole at X = 1

f(T)E1

and

(15)

It also follows that a(D) = o + {O} , and so a(D) is contained in the
disk I Z I < ao for some ao < 1. From the definition of spectral radius,
this implies that lira sup.-. I Dm < ao , from which it follows that
for m 1,

I Dm I :6. Mao' (16)

for some positive number M.
Next, observe that the space x is a direct sum of subspaces Xi = Eix

and XD = EDX, which are invariant under T since 7' commutes with
E1 and ED . It follows from (15) and (16) that

(a) Tx = x, for x in xi ;

(b) Tnx -÷ 0 exponentially fast, for x in xp
Every x in (14), then, is given by

= XD ;

where x1 = E1x and xp = lips. The element x1 except for a constant
* Observe that ED is also a projection operator since ED2 = ED .
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multiplier is the eigenvector {1, 1, 1, } . Then

y = urn LE 71(x1 xi)).
n m=0

Obviously, the mean of y increases indefinitely* since

g = iim E ,
in =11

where

71

(17)

yD = Urn [E Tni]xD (18)
n in=c)

The first term on the right-hand side of (17) increases indefinitely, and
soy ->oo . The limit in (18) exists [cf. (16) and statement (b) above]
and so

[Y g] YD gp ( 19)

is bounded. Hence, the variance is bounded, if X = 1 is a pole of T, as
was to be proved. The physical interpretations of this case are discussed
in the concluding section.

It must be observed that the bound on the variance is shown to exist
for all elements x in x. Hence, the result is valid for the admissible ele-
ments, viz., the jitter sequences.

The boundedness of the variance is a consequence of the inequality
(16). Asa function of ao , the bound varies as (1 - «o)-' and increases in-
definitely as ao approaches one. Therefore, we ask whether infinity is, in-
deed, the least upper bound on the variance when X = 1 is not a pole
of T. We anticipate the results of the next section to state that there is
no bound (finite) on the variance when 1 is not a pole of T. We first show
that given any number M, there exists an element x in x, such that the
variance of y exceeds M. Next, we show that there exist admissible ele-
ments for which the same conclusion holds.

VII. UNBOUNDED VARIANCE

We show, at first, that X = 1 is not a pole of T in the general case.
By the general case, we mean that the domain is not restricted in any
way.

Theorem: The point X = 1 is the limit point of the point spectrum of T.

* As discussed in Part I, there exists at least one X such that xi 0 0.
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Proof: We first determine the conditions that x must satisfy for Tx =
Xx. Let x = { 6 , 6 , } . Then, if Tx = Xx,

sn-iEn
Sn

sn-10(in+ +in + 2) +

and

XEn +1 - Sn -I-1-1En +1 -I- Sn+10in+2Sn-F2 '

Substituting the second equation into the first, we obtain

Or, since

we have

(X - S-I% = XS- 3L S +1, 3 in+1,n+1

S - 1 = Oin+ISn+1

(1/X)
En+1 Sn - 1 trz' (n = 0, 1, 2,  ) . (20)

From (20) we note that when X = S-' we obtain an eigenvector x with
(n 1) nonzero elements Ek( k = 0, 1,  , n). Hence, if the diagonal
elements S-' approach one as n then X = 1 is a limit point of the
set of eigenvalues. However, of greater physical importance is the case
when the number of successive zeros in the admissible pulse trains has
a finite upper bound. In such cases, the diagonal elements have an upper
bound less than unity, i.e.,

S-1 a < 1. (21)

Even in these cases, there exists an eigenvector x for every X such that
a < X < 1. We obtain the vector x from (20), starting with 6 = 1.
Since Sri < X <= 1, we find that the sequence { s,} is a strictly decreas-
ing sequence, i.e.,

0 En < En 0.

The sequence x = E} converges to zero, and hence it is a member of
the space co and has norm one. A simple substitution of x, obtained
from (20), into the equation Tx = Xx shows that x is indeed an eigen-
vector. Since an eigenvector x exists for every X such that a < X 1,

the point X = 1 is the limit point of the point spectrum of T. The proof
is complete and X = 1 is not a pole of T.

It immediately follows that when all x in x are admissible elements,
there exists no hound on the variation of y about the flat delay. If it
does, let 111 be such a bound. Then we can always find an eigenvector x,
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corresponding to a X > a, such that (1 - X1)-' > M. Since x1 is a mem-
ber of co , the flat delay in the jitter is zero. The dispersion is given by

( 1 )xl
1 - ;

and

Yi > M x11,

which is a contradiction. Hence, there is no bound, etc.
To show that the same conclusion holds when the admissible elements

x are the jitter sequences, we need merely show that there exists an
admissible jitter element x in co such that (x - x1) is nonnegative, i.e.,
nonnegative elements in the sequence (x - x1). Then, since all elements
of T are nonnegative, I Tx I Tx' I > M I xi I. Such an element x can
be constructed easily by letting all pulses be present for a long enough
time and then letting one of the pulses be absent, after which there is
a string of alternating pulse and space, and then two pulses are absent,
and so on. The sequence x for this case is a member of co since the jitter
will ultimately approach zero. The elements of x are assuredly greater
than those of x1 provided we make the string of pulses long enough
between spaces.*

Similar conclusions are valid when the number of successive zeros in
the original pulse train does not exceed a specified finite number. In
this case, we use a member of the space c, x = so , where xi is de-
fined above and xo is the eigenvector corresponding to X = 1. The dis-
persion is, as before,

yl
)xl

1 - .

The admissible jitter sequence is one that converges to xo but otherwise
has properties similar to the previous case. Physically, the pulse train
converges to a periodic pulse train with one pulse and at most the maxi-
mum number of successive zeros in each period.

We have thus shown that the bound on the variation of the jitter
about the mean exists if T has a pole at X = 1 and that there exists
no such bound otherwise. At this point, we recall that a somewhat
different formulation of the problem is obtained in (7). Let us note
here that in the alternate formulation somewhat different but similar

* In fact, numerous admissible sequences with the same properties can be
easily constructed. Their linear combination would also be such a sequence, and
so on.
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development takes place. In the alternate formulation, the point X = 1
is not a limit point of the point spectrtun. But, in general, neither is

it a pole of T. It can he shown that every neighborhood of X = 1 con-
tains points in the spectrum of T. From this fact, the rest of the con-
clusions follow.

VIII. DISCUSSION OF RESULTS

The results may be stated simply in terms of the existence of a pole
of T at X = 1. If X = 1 is in the point spectrum of T and it is an iso-
lated point of the spectrum of T (i.e., it is a pole), then the variance of
the jitter is bounded. Otherwise, the jitter dispersion has no bound. We
show that, in the random case, X = 1 is not a pole of T. The same result
is obtained when a constraint is put on the number of successive zeros
in the pulse train. Thus, there exists no bound on the variation of the
jitter about its mean value for the truly infinite and random pulse
trains.

On the other hand, of some physical importance are the cases which
may be approximated by periodic pulse trains or nonperiodic pulse
trains which either are finite or become periodic after a finite interval.*
For such cases, the operator T is restricted to a finite dimensional
space and X = 1 is necessarily a pole of T. The variance is, therefore,
bounded. Of course, the bound is a function of the dimension of the
space as well as of the other eigenvalues in the spectrum. Each case
must be investigated separately to determine the corresponding bound.
Such a bound may be all that is important in the usual situation where
a finite chain of repeaters is present in the system. Some practical
means of determining the bounds will be discussed in a subsequent
paper. We shall also discuss there many other practical matters, such as
errors involved in our model, transients, etc.

To sum up, as the number of repeaters gets larger, the dimension of
the space gets larger (since the effective pulse train gets longer), and
the maximum dispersion of the jitter increases. Thus, there is such a
thing as a worst pattern when there are a finite number of repeaters.
However, the worst value of the jitter keeps on increasing.

The rate at which the variance increases as a function of the number
of repeaters is not investigated in this paper. It is, of course, not pos-
sible for the dispersion to grow faster than n, the number of repeaters.
This conclusion follows from the fact that the norm of T is equal to one.

* Many other physical constraints may be used to restrict T to a finite dimen-
sional space. The variance is bounded in all such cases.
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More precise determination of the rate of growth would depend upon a
particular distribution of the random variables involved. We do not
pursue this aspect of the problem.*

The conclusions about the spacing jitter (cf. Part I) follow along the
same lines as above for the finite and infinite dimensional spaces. The
misalignment, Tax, in the nth repeater is also influenced by the di-
mensionality of the domain of T. When the dimension is finite, the
misalignment is merely a flat delay (since X = 1 is an isolated eigen-
value) for reasonably large n. However, when there is no pole at X = 1,
the misalignment is not so simply stated, but it is different from re-
peater to repeater.

We conclude with the observation that the approach proposed here
should be potentially useful for many problems of signal processing
encountered in data systems.

* For some partial results, for a somewhat different model, refer to C. J. Byrne,
B. J. Karafin and D. B. Robinson, Jr., Pattern Induced Timing Jitter in T-1
PCM Repeaters, to be published. This paper uses a model proposed, in an un-
published report, by R. C. Chapman, Jr.





The Use of Solar Radio Emission for the
Measurement of Radar Angle Errors

By J. T. KENNEDY and J. W. ROSSON

Manuscript received July 20, 1962)

Space guidance and instrumentation have placed stringent demands on
the pointing accuracy of tracking systems. One of the basic problems en-
countered is the calibration of the angle indicators of the tracking antenna
to the true direction of the radio line of sight. A method of calibration is
discussed which uses the sun as a primary directional reference.

I. INTRODUCTION

Historically, celestial bodies have been used as primary directional
references for optical instruments such as navigational sextants, sur-
veying theodolites, etc. Since celestial bodies are also sources of radio
emission, they may be used directly as primary radio directional ref-
erences. "Radio sextants" use the sun and moon as microwave direc-
tional references for all-weather marine navigation.' Conventional
microwave tracking systems can also track these sources. For example,
an X -band monopulse radar having an 8 -foot antenna and crystal
mixer receiver tracks the sun with an accuracy limited only by at-
mospheric effects. Moon tracking is of poorer quality because of the
lower signal-to-noise ratio, but improvements in noise figure and a
larger time -bandwidth product could make moon tracking competitive
with present sun tracking.

The major limitation in using the sun as a precise reference has been
the uncertainty of the position of its "radio center." This uncertainty
is caused by regions of enhanced radio emission associated with sunspots.
A method and experimental results will be described which overcome
this limitation by taking advantage of the apparent rotation of the solar
disk. This makes possible highly accurate alignment and zero setting
without the usual optical aids.

1799
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II. SUN TRACKING PROCEDURE

Fig. 1 shows the comparison of the spectrum of solar radio emission
with those of the moon and the brightest "radio stars." The plot is

flux density vs wavelength. At 3 cm, for example, the power from the
quiet sun is -164 dbm per square meter of effective antenna area in
each cycle per second of bandwidth. This is the level of thermal noise
which would be received at the earth if the sun were a black body at
18,000°K. We may say therefore that the sun has an equivalent radio
temperature of 18,000°K at 3 cm. The average radio temperature of the
moon at this wavelength is 180°K, so that the received power is 20 db
less than the power from the sun. Even the brightest "radio stars"
at 3 -cm wavelength are extremely weak, the received power being about
20 db less than that from the moon.

In order to use celestial sources as directional references, the tracking
system must be capable of determining the angle of arrival of the noise
signal. Manasse2 has shown that the optimum procedure is to perform

-155

-160

-165

cn
o_ -170
N

rt -175
w

m -180

>-
-185

w  -190
0

_I -195

-200

-205

-210

-MOON

SUN

RADIO
STARS

3 10 100 1000
WAVELENGTH IN CENTIMETERS

Fig. 1 - Radio emission from celestial bodies.
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a simple correlation of the odd and even components of the antenna
output. Since this is the technique of angle determination used in mono -
pulse radar,* a monopulse system is well suited to the tracking of
celestial noise sources. This was demonstrated in tracking experiments
using an X -band monopulse radar. The theoretical sun and moon
tracking performance are given in Appendix A. The calculated per-
formance indicates that this system is theoretically capable of tracking
the sun with a precision of better than 5 microradians.

To understand how an extended source such as the sun can be used
as a precise reference, consider the simple case of more than one point
source present in the antenna beam. These sources are not resolved
and therefore appear as a single source located at the intensity centroid.
Two point sources of equal intensity will appear as a single source
midway between the two. Consider the typical difference pattern re-
sponse of a monopulse antenna as in Fig. 2. A signal source to the left
of the antenna null axis produces a positive error signal, a source to the
right a negative signal. Zero error signal is obtained in autotracking
multiple sources when the positive and negative signal contributions
cancel each other. An extended source such as the sun can be considered
as a collection of point sources. In this case, regions to the left will
contribute a positive signal, regions to the right a negative signal.
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Fig. 2 - Typical monopulse difference patterns.

* In a monopulse system, the sum (even) and difference (odd) signals are cor-
related in the angle error detector.
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Thus, when the radar is used passively to track the sun, the radio line
of sight follows the point which corresponds to the centroid of radio
emission, or "radio center." Although extended sources tend to broaden
the difference pattern, the effect is surprisingly small for sources less
than a beamwidth in extent. The effect is shown exaggerated in the
dashed curve in Fig. 2. Actually, the effect of the 1 -degree sun within
a one -degree beamwidth is barely discernible.

Over the surface of the sun, the radio emission is not uniform, and
for this reason the "radio center" is displaced from the geometric center.
Fig. 3 is a "radio picture"3 of the sun which shows regions of enhanced
radio emission superimposed on a background level. The background
level is constant with time, whereas the enhancements evidence growth,
decay and movement much like the sunspots with which they are asso-
ciated. In the presence of regions of enhanced emission, the radio
center is displaced from the visible center. Each region has the effect
of pulling the radio center in its direction by an amount proportional
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to the amplitude and area of the enhancement, and its distance from
the center. Because of the rotation of the sun about its axis in a period
of 28 days, these regions move from left to right in about 14 days. The
intensity of the enhancements is wavelength dependent, being most
prominent at about 10 cm. For this reason, the resulting displacement
of the radio center depends on wavelength. Measurements have been
reported4 which give in one case a maximum displacement of 1.2 mils
at 3.2 cm and 0.9 mil at 2.0 cm during the peak of sunspot activity
in 1957-58, and in another case 1.05 mils at 3.2 cm and 0.57 mil at 1.6
cm.

Some radio center observations made during the early part of this
study are shown in Fig. 4. This is a plot of radio center displacement
caused by sunspot activity during a two-week period in November 1960.
In order to make these measurements, the antenna was first accurately
aligned. Movement of the radio center was associated with a large
sunspot which appeared on the eastern limb of the sun on November 5.
Then, because of the rotation of the sun on its axis, the sunspot moved
across the central meridian of the sun on November 12 and subsequently
passed from view off the western limb on November 18. It can be seen
that the radio center position changes slowly because of the long life -

LARGE
----SUNSPOT

6

w

0

0
cn

cc
-12
w
co

2
w

18

400 200 0 200 400
LEFT RIGHT

SOLAR RADIO AZIMUTH
IN MICRORADIANS

Fig. 4 - Radio center movement.
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time of the enhanced regions and their slow movement with the solar
rotation. Actually, the variation over a period of several hours is small
enough to be neglected.

Unless corrected, this pulling effect imposes a major limitation on
the accuracy of radio direction finding using the sun. However, a method
has been found which makes it possible to determine the radio center
displacement and also antenna alignment errors from data obtained in
tracking the sun over a period of a few hours. That is, without previous
antenna alignment, it is possible to determine not only the radio center
displacement, but also the antenna alignment errors. The method makes
use of the apparent motion of celestial bodies caused by the rotation
of the earth. The effect is perhaps most easily visualized in the case of
the stars. For an observer in northern mid -latitudes, stars which rise
in the east reach a maximum elevation angle when they cross the ob-
server's meridian to the south and then set in the west (Fig. 5). Con-
sider two stars which rise one after the other at the same point on the
horizon. As they rise, the later one will be below and left of the earlier
one. At meridian crossing, the two stars are side by side. When they
are setting, the later star is above and to the left of the earlier one.
To the observer, the later star has moved clockwise relative to the ear-
lier one. A quantitative description of this rotation is given in Appendix
B.

This same rotational effect is also observed in the case of the sun.
That is, any point displaced from the center of the sun will appear to
rotate around the center. This suggests that if angle measurements
on the radio sun are compared to the azimuth and elevation of the geo-
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Fig. 5 - Apparent rotation of celestial bodies.
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metric center of the sun,* the differences between the measured and
calculated values will show the motion of the displaced radio center.
An elevation versus azimuth plot of these differences is made to look
for this rotational effect. Typical data obtained in sun tracking on
August 8, 1961, are shown in Fig. 6. The abscissa is actually the azimuth
differences times the cosine of the elevation to refer the azimuth up to
the viewing plane. Each point is the mean difference in a 24 -second sam-
ple. Since the antenna had not been previously aligned, an initial align-
ment is made on the first observation, which results in zero differences
for the first data point. The rotation with time apparent in the curved
pattern of the data points is attributable to the apparent rotation of the
radio center. Data points for 11 AM, noon, and 1 PM are indicated.

A simple graphical method was used to examine these data. An over-
lay template was constructed for this particular day and latitude and
fitted to the data as shown in the shaded area. Four independent de -
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Fig. 6 - Typical sun tracking data, August 8,1961, with initial zero set.

* The position of the sun can be calculated accurately from the ephemeris, as
described in Appendix C.
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terminations were averaged to obtain the "best" estimate of the radio
center displacement and error in the initial zero setting. If the initial
zero set had been correct, the center of curvature would have been at
the origin. Therefore the final zero settings can he determined from the
offset in Fig. 6. Fig. 7 shows the same data after making the final zero
set adjustment.

The radio center displacement may be described in a coordinate sys-
tem which is independent of time by resolving the displacement vector
at noon into horizontal and vertical components. The horizontal com-
ponent becomes the displacement in hour angle and the vertical com-
ponent the displacement in declination. A summary of the values of
radio center displacements obtained is given in Table I. The last column
in Table I shows the probable error in the radio center determination
and therefore indicates the accuracy attainable in using the sun as an
X -band directional reference.

Radio center displacement is most easily determined around local
noon when the solar disk rotation rate is maximum, making the effect

-300 -200 -100 0
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100

Fig. 7 - Data of Fig. 6 after final zero set adjustment.



SOLAR MEASUREMENT 1807

TABLE I - RADIO CENTER DISPLACEMENT AT LOCAL NOON

Date
Displacement

Standard Deviation
Hour Angle Declination

(Microradians) (Microradians) (Microradians)

April 24, 1961 -125 +50 14
May 25, 1961 +85 +40 8
June 1, 1961 +95 +20 12
June 15, 1961 -95 +15 9
June 21, 1961 +135 +40 16
July 25, 1961 +95 +50 30
August 8, 1961 -235 +20 26

more easily recognized than at any other time of day. Also, since the
sun is at its maximum elevation angle at this time, atmospheric effects
are minimized. Another important advantage of noontime observations
is that the elevation angle is changing very slowly, which means that
elevation -dependent systematic errors can be considered essentially
constant.

Azimuth zero set errors are compressed at high elevation angles by
the cosine of the elevation angle. For this reason, azimuth zero set
accuracy is better at lower elevation angles.

The most important advantage in using celestial microwave direc-
tional references is the direct measurement of the radio axis to angle
indicator relationship without going through the involved intermediate
steps of determining systematic errors between the radio axis and the
optical line -of -sight and the systematic errors between the optical
line -of -sight and the angle indicators. These experiments have demon-
strated that the limitations of using the sun can be overcome to make
direct measurements possible.

III. APPLICATIONS AND LIMITATIONS

The sun serves as a useful tracking source in investigating atmospheric
refraction and other low -angle effects on angle tracking.

Directional measurements of celestial bodies is the classical method
of position determination in celestial navigation. The accuracy obtained
in high -angle sun tracking enables the geodetic position of the tracking
antenna to be determined to an accuracy of about 600 feet.

Some of the limitations in using the sun as a precise reference are
given below.

(a) Solar flares: Although the level of solar radio emission can generally
be considered substantially constant over a period of several hours,
intense outbursts are sometimes observed at the time of large solar
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flares. These outbursts can exert a strong pulling effect on the radio
center, but fortunately they are generally of short duration (several
minutes) and are easily recognizable in tracking data. Of the approxi-
mately 200 data points in seven days tracking, only one was affected
by a suspected outburst. This occurred on June 15, 1961, at 1641 Uni-
versal Time at the same time as an "Outstanding occurrence" reported
by Ottawa' on 10 -cm wavelength. The effect was a brief displacement
of the radio center amounting to about 150 microradians.

(b) Solar disk rotation: Because of the geometry of the solar disk
rotation, the determination of radio center displacement is more easily
accomplished at the higher elevation angles of the sun. For this reason,
radio center displacement is more easily determined in the summer
at low latitudes. Longer observing times are required at higher lati-
tudes in the winter.

(c) Antenna beamwidth: Sun or moon tracking with antenna beam
widths of less than z degree will suffer from decreased angle sensitivity
caused by the large source distribution. In the extreme case of beam -
widths of the order of degree, less extended sources such as the
"radio stars" would be more attractive.

IV. SUMMARY

Celestial radio sources are attractive as microwave directional refer-
ences; however, two major aspects must be investigated in considering
them. The first aspect is the ability to track the source. The second
aspect deals with the precise knowledge of the position of the celestial
radio source. For a conventional X -band radar receiver utilizing a
crystal mixer, the sun is most suitable from the standpoint of "noise
signal" -to -noise ratio. The moon presents a marginal condition. By
tracking the sun in a time -continuous mode (i.e., range gate disabled),
the tracking quality becomes limited only by the atmospheric noise.

In examining the second aspect, the radio center of the sun is not
coincident with the actual center, but is displaced by local regions of
enhanced radio emission associated with sunspot activity. Although
the sunspot activity is random on a day-to-day basis, the effect upon
the radio center displacement is small enough to be considered constant
over a period of several hours. A technique was developed to utilize the
diurnal motion of the earth to enable the radio displacement to be
determined independently of other sources of error.
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APPENDIX A

System Description and Tracking Performance

A conventional monopulse tracking system was used for the experi-
ments which have been described. Normally, the radar receiver samples
the input only during the very short interval of time when the returning
pulse is expected. This is, of course, not the optimum procedure to
use in the case of a continuous, low-level signal. However, by means of a
simple modification, the receiver can be kept open to optimize system
performance with signals which are present continuously.

Since the microwave signals from celestial radio sources are quite
constant in level and cover a broad spectrum, neither automatic gain
nor frequency control are required.

With these modifications, the performance of the tracking system
can be expressed as a function of the system parameters as follows:

SO = 0, V1 + SIN
28/N-V2BT

where Se = rms angle fluctuations
Ob = antenna beamwidth

8/N = input signal-to-noise power ratio
B = receiver bandwidth
T = post detection integration time.

This result is based on the assumption of a point source of noise in
the presence of external background and internal receiver noise, but
does not include the effects of transmission through the atmosphere.

The noise power, N, received from the sun is the product of the solar
flux density, S, and the effective antenna area, A, thus:

N= S X A X 2= 4.37 X 10-2° watts/cps

where the factor 2 accounts for the fact that the antenna accepts only
the vertically polarized component of the randomly polarized solar
radio emission. It is useful to consider the temperature, T e , of an
equivalent network, replacing the antenna, which would have an
available noise power equal to that from the sun. In this case,

kT, = N
where k is Boltzmann's constant, 1.38 X 10-23 watts/°K cps. The re-
sulting effective antenna temperature from the sun is thus 3150°K.

The receiver noise temperature, assuming a nominal 11-db noise
figure, is:
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T R = (F 1)T0 = 11.6 X 290°K = 3360°K

where F is the system noise figure expressed as a power ratio and To
is the reference temperature, 290°K. Thus, the signal-to-noise ratio is
about unity. Assuming a typical 1° beamwidth, 10-mc bandwidth,
and 1 -second time constant, the resulting tracking performance is about
5 microradians. In actual tracking however, this performance cannot
be realized because of atmospheric limitations which are believed to be
in the order of 20 to 50 microradians.

When this system is used with a three -second time constant to track
the moon, the short-term angle uncertainties are about 400 microra-
dians. This agrees essentially with the theoretical value, indicating
that the system performance when tracking the moon is limited by
receiver noise rather than by atmospheric effects.

APPENDIX B

Apparent Solar Disk Rotation

The apparent rotation of the solar disk can be derived from the
spherical
fixed with respect to the great circle passing through the sun and the
celestial pole, whereas the orientation to an observer in azimuth -eleva-
tion coordinates is always referred to the great circle passing through
the sun and the zenith. The apparent rotation of the solar disk is de-
scribed by the variable angle, p. From the Law of Sines:

cos'
ssin p - in A .

cos 5

For a given set of observations, the observer's latitude, 4, and the
declination angle of the sun, 5, remain constant; therefore the apparent
rotation of the sun is a simple function of the azimuth angle, A. Fig. 8
and the above equation show that the displaced radio center of the
sun will trace through the arc of a circle whose radius is the magnitude
of the radio center displacement.

The apparent solar disk rotation can also be expressed in terms of
the local hour angle, H, which changes with earth's rotation uniformly
at about 15° per hour. The expression is:

tang - sin S cos H - cos S tan 4

A plot of this equation is given for 28.5 degrees North latitude in
Fig. 9 for several values of declination. From these curves, the maximum

sin H
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Fig. 8 - Spherical geometry used to derive apparent rotation of solar disk.

rate of rotation occurs at local noon; hence the optimum time to observe
the radio center displacement is around local noon.

The latter equation is used to make the overlay template which is
fitted to the plotted data to locate the center of rotation of the observed
data points.
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APPENDIX C

Determination of the True Angular Position of the Sun

In the experiment, the tracking system measures the azimuth and
elevation angles and records these data along with the time of measure-
ment on magnetic tape. This tape becomes the input to a digital com-
puter which performs the computations described below and compares
the measured values with the calculated true position of the sun.

Primary position data for the sun are taken from the American
Ephemeris and Nautical Almanac. These data are referred to the true
equinox and equator of date and contain a correction for aberration.
Corrections must be computed for solar parallax, the difference between
Ephemeris Time and Universal Time, and the local deflection of the
vertical. These corrections are applied in the spherical coordinates of
hour angle and declination. The estimated accuracies in these coordi-
nates are 0.02 second of time in hour angle and 0.2 second of arc in
declination. During the experiments, time is recorded for each of the
angle observations to an accuracy of about 0.05 second. This brings
the total accuracy of the computed position of the sun to about 4 micro -
radians.

The hour angle and declination, together with the latitude, are used
to calculate the azimuth and elevation angles.

In order to compare the observed values with the computed angular
positions of the sun, it is necessary to correct the observed values of
elevation for atmospheric refraction. The correction used is

AEI = -No cot E

where No is the index of refraction determined from observations at
the tracking site and E is the observed elevation angle. This equation
is adequate for elevation angles above 10 degrees.
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Integral Representation of Zero -Memory
Nonlinear Functions

By J. C. HSU

(Manuscript received July 30, 1962)

Integral representation of zero -memory nonlinear functions offers prom-
ise as an analytical method for nonlinear control systems study. A review of
work performed at Bell Laboratories and elsewhere on the use of these
representations is presented, with particular emphasis on nonlinearities
often encountered in feedback control systems. In general, the integral
representations are useful only insofar as the resulting expression can be
readily evaluated. The use of Bennett functions systematized the formulation
of these integrals. The numerical results of a large class of the integrals
can then be given by the tabulated Bennett functions. A comprehensive
bibliography is appended.

I. INTRODUCTION

Integral representation of zero -memory nonlinear functions has been
extensively used by Bennett, Rice and others (see References) in the
solving of problems such as the finding of modulation products when
one or more sinusoids appear at the input, and the finding of the output
autocovariance function when sine wave and random noise are applied.
In relation to the necessary calculations which occur in the use of these
integral representations, a class of functions known as Bennett functions,
after W. R. Bennett, has been defined. A selected representation of these
functions has been tabulated and plotted.

While the original studies were carried out in relation to problems
encountered in communications, the methods and the results can cer-
tainly be applied to advantage in control problems. Some work in this
regard has been done by J. C. Lozier in unpublished notes on the analysis
of the oscillating control servomechanism. On the whole, however, it
appears that these approaches are not known to investigators in the
controls field. The present paper represents an attempt to summarize
in a unified manner the work that has been done and to indicate the

1813
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scope of applications and limitations of the integral representations,
particularly with respect to controls usage.

II. INTEGRAL REPRESENTATION ARISING FROM FOURIER TRANSFORMS

It is known that the function

.fi(u) = + f sin uX ,
2 7 fo x (1)

is discontinuous in its first derivative with respect to u, its value as a
function of u being:

fi(u) = u u > 0

= 0 u < 0.
(2)

The plot of fi(u) vs u is in the form of an ideal half -wave rectifier.
Using f1(u) as a basic unit, other discontinuous functions can be

generated. For example

1 sin uX u > 0
2 rio X

=0 u <0
and is in the form of an off -on relay as a function of u.

From (3) the bang -bang type of relay is readily created as:

2A °' sin uX -A u > 0f3(U) =
o X

= -A u < 0.

(3)

(4)

A relay with dead zone is

A
./.4(//) = f sill - c)X + sin (u c)X

dX-
o X

. A >
2A j. sm uX cos cX
7 0 = -A u< -c.

A limiter (linear characteristic with saturation) is

=-2 A u < -A
f5(u) = 2ice x2

sin
/IX

sin AX
(1X = -A < u < A (6a)

0 =A u > A

2u le° cos uX sin AX dX +
2A f a' sin uX cos AX

dX. (6b)= -
7 0 7 JO X
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Equation (6b) is readily obtained by manipulating two functions of
the form of (1). That (6a) is equivalent to (6b) is seen by integrating
(6a) once by parts. Other discontinuous functions can be generated
from the above five functions by appropriate shifting (bias) of each
individual characteristic, or by combining several characteristics. In
fact, simply multiplying by an appropriate g(u) can create quite general
discontinuous characteristics.

It is noted that u may be viewed as the input to the nonlinear element,
and f(u) then gives the response to this input. If u(t) is a function of
time, for each u(t,) the function f[u(4)] yields the instantaneous value
of the output (i.e., f(u) is a functional of u). While f(u) is no more
convenient for use in the evaluation of the output as a function of time
than equations of the form (2), giving the discontinuous function as a
set of equations, it is very useful for the purpose of spectral analysis
since f[u(t)] is in a compact form suitable for Fourier series expansion.

As an example, we seek to find the output spectral component for the
relay with dead zone, when input is in the form u = P cos x.

Using (5), the output Fourier coefficients are found by:

--1 fx {2.1 f' sin (XP cos x) cos cXa. = - dX} cos nx dx7 -r 7r o X

f0
-dX cos cX I sin (XP cos x) cos nx dx72 X

=

lA0 n even

4r ( -1) ("--1)/2
ice tin( XP) cos cX

dX n odd
o X

where Jn(z) is Bessel function of the first kind of order n.
Since it is known that'

r 7,(at) cos bt
Jo

n

cos {n sin - -

n

a cos nor

2

a
.1

. _1 (b)}

n fb 1/b2 - a2r
then, for n odd:

.j1
an = ( - 1 ) (u-1)12 -1 cos [n

1,<<c

b > a,

c < P

=0 P < c.

(7)
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Certain of the nonlinear characteristics expressed in the integral form
are also amenable to a double frequency type of analysis in which the
input is of the form

u(t) = P cos (wit + 01) + Q cos (wet + 02).

Bennett2 in particular has contributed extensively to double frequency
studies.

In control systems analysis, a double frequency study becomes neces-
sary in (a) the oscillating servomechanisms' and (b) the dual input
describing function approach to closed loop servos!'" In what follows,
the fundamental components (i.e., components in col and w2 of the out-
put) from a bang -bang type of relay are found. The approach follows
closely that of Lozier.

The input u is a function of two frequencies col and co2 ; this is brought
to light by setting x = w1t + 01, y = w2t + 02 , and letting Q/P = k.

Thus

u(s, y) = P(cos x k cosy). (8)

In passing through a bang -bang type relay, it is recognized that the
amplitude P in (8) does not influence the output; thus without loss of
generality it may be set to unity.

The output f(u), written as f (x,y) is:

f(x,y) = +A cos x + k cos y > 0

f(x,y) = -A cos x k cos y < 0

which may be expressed as a double Fourier series2'7 as:
cc.

f(x,y) = E E [A±.. cos (mx f ny) + kn., sin (mx ± ny)]
n.(1) m=0

where
A W

(9)

A±, =
2r2

f f(x,y) cos (mx

ir

ny) dy dx (9a)

B±, = -1 f f(x,y) sin (mx ny) dy dx (9b)
22 -7- -7

A = fr frf ( (h.)XyY B00 = 0. (00
7r2

From symmetry of the bang -bang relay, B±. = 0 for all m and n;
moreover the integral representation of (4) can here be used, thus:
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. aroA f dx sin (cos a: k cos y)
A ±mn =

71 Lr 0 X
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cos (mx ± ny) dy dx.

The interchange of integration can be carried out here in view of the
finite limits of the outer integral and the bounded nature of the inner
integral, whence:

A±, = A f dX
-r -dx f dy {sin [(cos x k cos y)X] cos (mx ny)) .

7 0 A w

Upon expanding, collecting nonzero terms, and integrating, the result
is (as A+. = A for all m, n, the ± signs are henceforth dropped.):

4AAm = l)(m+n-1)/2 fee zin(kX)Jm(X) m n odd
ir (10)

=0 otherwise

where use has been made of the following definite integrals 8'1

2 IT/2
cos (z sin co) cos 2ncothpr

= -1 ) " t cos (Z cos ca) cos (2n,,p) thp = J2n(z)
7r

2 fT/2
sin (z sin (p) sin (2n + Ocatp

7r o

o

= (-1)" - sin (z cos yo) cos (2n + 1)coriv = 1.2n -1-1(Z) 
7r

(11a)

(lib)

The integral in (10) may be evaluated by means of formulas attributed
to Sonine and Schafheitlin9 (also known as the Weber-Schafheitlin in-
tegrals8), the result being expressed in the form of hypergeometric func-
tions F(a,0,c,x):

anI1 (n, + - i)r
dA

J(aX)J,n(bX)9

2rbn-r+' ± in 1)11(11 + 1) (19a)

2 2

n-m-r-F1 ,n 1 -

if n m - r -I- 1 > 0, 7' > -1, and 0 <a <b,
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f" eln(aX)J,(aX)
Xr

(2
a) (n + m

2

- r + 1) (12b)
P I'

r-1

211(-n+m+r+l)r(n+m+r+1Nn-m+r+1)
2 2 2

if n + m + 1 > 0, r > 0, and a real; and

bmr n + m - r + 1)(
r Jn(aX)J,(bX) 2

Jo Xr (n -m + r + 1) r(m + 1) (12c)2ram-r-Fir
2

(it + m - r + 1 -n + m - r + 1F ± 1,b-2)
2 2

, m
a2

if (n + m - r + 1) > 0, r > -1, and 0 < b < a.
Accordingly,

(n, + m)
2A 2Amu = - (-1)("+"'-"12r i2 - n + in) 11(n + 1)

k 2 (13a)

-+1 lc2F +in
2 2  n

2A (_1)(n+,,,--1)/2
7r

P
+
2

for k < 1

2 - n + m\ n + -m + 2\
k 2 f 2 2

2A ni)= ) (n -Fn -1)/2

for k = 1

lenr -m2 ± 2) r(m + 1)7r

m
'

n
92

- m + 1, for k > 1.

(13b)

(13c)
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The three cases of (13) are essentially equivalent if one recognizes that

F(a,b,c,1) - r(c)r(c - a - b)
r(c - a)r(c - b)

and that, for k > 1, the situation is identical to that of inverting the
role of n and m, and defining a new quantity k' = 1/k.

The output fundamental components are A10 and A01 ; from (13) one
has:

r
(1))

A10 -2A
42)

 r 2) PM 2 ' 2 "

4A (1 1 2

-
3

64 2-
6

556

2
kr (1)

Ain
2A-

2

(1 1
k2

7 r (12) r(2) \ 2

=2Ak
(1 +1 4.2 3 k4 ...)

7 \ a
Considered together with the input (8), this yields Lozier's oft -quoted
result,3'1° that the equivalent "gain" of the relay, for small values of
k, is 6 db higher for the "carrier" than for the "signal."

It is not difficult to see that the Weber-Schafheitlin integrals also
occur for two frequency inputs applied to the characteristics (1) and
(3), but that integrals of the form

r jn(ax),,(bx) I

Xr cos AX
dX (15)

(14a)

(14b)

occur for characteristics of (5) and (6). Moreover, inputs with more
than two frequency components will result in generalized Weber-Schaf-
heitlin integrals of the form

dX (16)

Equations (14a) and (14b) can also be expressed in terms of the complete
elliptic integrals for which tables are available. See Refs. 3, 21, and 22.
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for characteristics (1), (3), and (4), and generalized integrals of the
form

fl Ji(aiX)X-r
{sin

0 cos AX dX
(17)

result for characteristics (5) and (6).
Unfortunately no general solutions have been found to represent

(15), (16) or (17) in known functions. In such cases, numerical solutions
can be used. Numerical solutions in terms of Bennett functions and their
tabulation are described in Section IV of this paper.

III. INTEGRAL REPRESENTATION ARISING FROM LAPLACE TRANSFORM11,12

The integral representation of Section II is closely related to the
Fourier transform. An alternate approach using the Laplace transform
is more convenient in some cases and has been extensively used by
Bennett and Rice, among others. We mention some results of this ap-
proach for the sake of completeness.

Expressing the output of a nonlinear device in response to an input
u as f(u), it is possible to find the (possibly two-sided) Laplace trans-
form of f(u), denoted F(s), or,

F(s) = J
eeuf(u) du. (18)

The inverse transform is then

f(u) =
1 fc F(s) ds (19)

2r3

where C is some suitably chosen contour of integration. If F(s) exists,
then (19) is an explicit expression for f(u) which may be used to ad-
vantage. In the case of solving for modulation products, f(u), written
explicitly in x and y, may thus be used directly to compute the double
series coefficients.

To compute A mn , for example, using double Fourier Series expansion
in response to an input u = P cos x Q cos y, one has

[ 1 escp cos r+Q cosy) F(s)Ern EnAmn= 1, _cos mx cos ny dx dy-
27rj c

-

GIs

emfn f F(s) ds e8 P "" cos mx dx fr e"? cos cos ny dy.
8e; c

t fin is the Neumann factor, defined as:
Em=1
Em = 2

= 0
m = 1 , 2, - .
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(20)

and letting s = jw, one obtains,

Am. = fy-c " fc nicoVni(130)),In(Qco) dw (21)

and the required coefficients are evaluated by contour integration.
The above result can readily be generalized. For example, where

there is a dc bias of b units superimposed on the P cos x Q cos y in
the input, (i.e., u = b P cos x Q cos y), the net result is to insert
a factor e1bw under the integral of (21).

Inputs of the form u = l Pi cos xi will result in coefficients
of the form

EnljexpEti
Ani nr i-1 -7b- Ii'( jw) fJ J ,(P ico) dw (22)

7r C i=1

whenever f(u) is Laplace transformable. The contour C is a function
only of the nonlinear device, as may be expected. The Laplace transform
of several ordinarily encountered ideal nonlinear devices, as well as their
associated contour of integration C has been given in Rice" in his ap-
pendix 4A.

The nonlinear devices expressed as in (19) may be used fruitfully in
certain investigation in noise problems. These are briefly described here.
Reference may be made to Rice's classic papers of 1944 and 1945."

For inputs that include narrowband noise, the input waveform will be
of form

u R cos (comt ± 0) R>0
where R and 0 are functions of time whose variation is slow as compared
to cos comt. (co./27r is approximately the midband frequency.)

The output f(u) then is

f(u) = -f F(jw) exp [jcoR cos (w,/ + 0) (14
Z7r c

By means of the relation

eiz co. E e, j" cos mpJ(z)
n=0

(23)
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the equation above may be written:
00

f(u) = > A(R) cos (ncomt nO)
n=o

where

(24)

n

An(R) = En;;- f F(jw)J(coR) dw. (25)
c

In this representation, important conclusions may be reached concern-
ing the properties of the output without undertaking laborious compu-
tations. For A,1 (R) whose variation is of the order of that of R, the
output spectrum has bands which are centered at fm , 2f. . A narrow -
band filter centered about kin, will then yield a slowly varying cosine

wave with envelope A (R). A narrow-band low-pass filter will yield the
level Ao(R).

In some cases the probability density function P(R) of R is known.
(For narrow -band Gaussian noise, for example, P(R) is the Rayleigh
distribution.) The probability density of the output envelope A(R)
is simply:

P[An(R)]
P(R)

dAn(R)
dR

(26)

Another application in which the representation of (19) is useful is
the calculation of the autocovariance function of the output of a zero -
memory nonlinear device. From this the output power spectrum is found
by taking the Fourier cosine transform.

The autocovariance function of the output is:

4/(T) = lim i f f[u(t)]f[u(t T)] dt . (27)
0

By (20):

AF(T) = lTim. 4r2T  c1 1 f F(jwi) exp [iwiu(t)] thol f F(jc42)

 exp [ju.)2u(t + 7)] dw2

If an exchange of limits is justifiable, the above becomes

\41(T) = -
c
f F(jwi)dw1 f F (i W2) dw240

1 fr
[lTim Jo exp [j(t) jw2tc(t dt] .
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The quantity in the bracket is the (time) average value of

exp j[wiu(t) (4214(t +

which, in the event that u(t) satisfies the ergodic hypothesis, is equal to
the characteristic function of the two variables u(t) and n(t r). De-
noting this quantity by g(wi , W2 , r), one has:

1,(7) = 10
/7(j0.0 dcoi f F (.ice2)9( ce,wi,2,T) (1w2. (28)

47 c

This gives an interesting approach to the computation of the output
autocovariance function.

It is interesting to note, incidentally, that the characteristic function
of u(t) = P cos pt is

jo(p A.4,12 w22 2co1o2 cos pr) ,

and for

u(t) = P cos pt Q cos qt

where p and q are incommensurable, the characteristic function is

Jo(PV0.42 W22 2w1c42 cos pr) X Jo(QVco12 + (022 + 20.4012 cos qr).

Here, as elsewhere, one is limited by his ability to integrate. The auto-

covariance function, however, has been solved for particular nonlinear
characteristics, for example, the square -law device.

IV. NUMERICAL SOLUTIONS AND BENNETT FUNCTIONS

Since it has not yet been found possible to express the modulation
coefficients in a more general case in terms of known functions, it is
often necessary to resort to numerical computations. The numerical
approaches have been tackled by Sternberg, Kaufman, Feuerstein,
Shipman, among others." -'9 Some of their results have been tabulated
and a class of generalized functions encountered in these investigations
are christened Bennett functions."

The original approach of Sternberg and Kaufman is along the lines of
direct integration, summarized below.

If the output f(u) can be expressed in the form of a continuous N 1 -

sided polygonal function over a closed interval -a < u < a, i.e.,

f(u) = f(-a) giU_2(u - ui) i = 1,  N (29)

where ui and gi are constants, ui being the "break-points" of the polygo-
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nal function

-a < u2 < u3  uN < a (30)

and U_2(u - u1) are unit ramp functions:

U_2(u - u1) = 0 u < ui

U_2(u - u1) = u - ui u ui = 1, 2 N).

If the input is of form u = P cos x Q cos y, one can confine his at-
tention piecewise to N functions of the type

fi(x,y) = f(P cos x Q cos y; ui) i = 1, 2  N. (32)

The over-all function is then

(31)

f(x,y) = f( -a) + E gifi(x,y). (33)
i=1

Factoring out P in each term, and introducing parameters hi = ui/P,
k = Q/P, we express fi(x,y) as the double Fourier series:

CO

fi(x,Y) = 1PA00(hi,k) P E cos (mx ± ny)t (34)

where

ni "Aln (hi,k) = 272P L
fi(x,y) cos (mx ny) dx dy, ,

.- --7,

m,n = 0, 1, 2 ; = 1, 2  N
and for f(x,y) we carry out another expansion:

f(x,y) = 1C00 E c±, cos (mx ± ny). (35)
m,n=0

The C's and the A's are then related by

2000N= f(-a) 1P E giA00(hi,k) (36)
i=1

C±mn = P E giYc.(hi ,k).

As A+mn(hi,k) = A,,,(hi,k) for all m and n, the ± sign can be
dropped.

00
t E denotes a summation without the A® term; in addition, terms whose in-

dex is such that mn = 0 are to be weighed by a factor of 4.
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By considering the function

f P(cos x + k cos y - hi); cos x + k cos y hi
cos x + k cos y < hi
i = 1, 2  N

the zones over which integration for the evaluation of Am. must be
carried out is seen to be bounded by the curve

cos x k cos y = h; h = hi

over the closed square

{-r X r
-7 = y _< 7.

Five cases need to be considered; two are degenerate:

(d1) 1+k <h
(d2) - (k + 1) > h

In the first instance the integrand vanishes everywhere except possibly
over a set of zero measure, and hence the coefficients are identically
zero. In the second instance the integration is to be carried out through-
out the zone (excepting possibly a set of zero measure), which means
the output is the same as the input except for a constant multiplying
factor.

The three nondegenerate cases are:

(i) h < 1 + k, or

h> 1 - k.
The integral here is to be carried out over a zone R of the x,y plane
bounded by a closed curve lying wholly within Ro .

h> k - 1, or

h 1 - k
The integral here is to be carried out over a zone R bounded by two
open curves (i.e., two opposite segments of the boundary of I? also
constitute the boundary of Ro).

(iii) h < k - 1, or

h> - (k + 1)
The area of integration is bounded by four open curves. The integra-
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tion can thus be carried out for these nondegenerate cases by formulas
of the type:

Amn(h,k) =
2 [f (cos x dxk cos y - h) cos mx i cos fly dy

72 fR,

4
U

(cos x k cos y - h) cos mx dx cos ny dy
72

m,n = 0, 1, 2 

A,(h,k) = 12- [f (cos x k cos y- h) cos ny dy cos mx dx,2

2 [f (cos x k cos y - h) cos ny dy] cos mx dx
r R4

m, n = 0, 1, 2

where R1 , R2 , R3 , R4 are zones appropriate for each of the cases.
It is seen that the inner integrals can be performed, after which suit-

able manipulation will yield a set of recurrence relationship first derived
by Rice.2° Except for misprints, they are:

(m -n 3) Ant+1,n-1 = -(m n - 3)A.-i,n-1 2mhAm,n_i

- 2mkA,nn m,n > 1

(m n 1)A,n = - (m -n - 3)A._2, - 2(m - 1)kA,_i,n-1

± 2(M - 1)hA,,,Ln 972, 2, n 1

(n + in 1)A,n - (it -m - 3)A,n,n-2

1- 2(n - 1) kA'', + 2(n - 1)
k

Am,'"

(n -m 3)14.-1,n+1 = - m -
1± 2n - 2n k A,n

m 1, n 2

m,n > 1.

(37)

With the aid of these relationships, the higher -order coefficients can
be expressed in terms of the first four coefficients Aoo(h,k), A10(h,k),
Aoi(h,k) and A ii(h,k)

For cases such as the ideal limiter, the antisymmetric condition
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.1( - a) = -Au) is observed; ui are now symmetric and the "gains"
yi are antisymmetric. Here:

Ao0(-h,k) A oo(h,k) 2/i

Alo(-h,k) -_--- 1 - Alo(h,k)

A01( -h,k) = k - Aol(h,k)

A.(-h,k) = (-1)m±"A,(h,k) (m n > 1).

(38)

The function A ,,m(h,k) are called by Sternberg the Bennett functions
of multiplicity two and order m,n. In part II of Sternberg's paper,"
the functions A oo(h,k), A io(h,k), A oi(h,k) and A11(h,k), have been tabu-
lated for h between -2 and +2 in 0.2 steps and k with values of 0.001,
0.01, 0.1 and 1.0. The values A20(h,k), A02(h,k), A30(h,k), A21(h,k).
Ai2(h,k), A03(h,k) are tabulated for k of 0.1 and 1.0. All values are tabu-
lated to six decimal places. The accuracy of the first set of tables is held
to be to one unit in the last place, while for the second set the accuracy
is about three units in the last place.

The above approach is extendable to devices with continuous and
smooth characteristics if it can be approximated in a piece -wise linear
form. As long as the characteristic may be approximated to within a
pre -chosen e > 0 uniformly on the interval -a < a < a by

N( e)

IS(U,E) = f( -a) + g1U_2(u - ui), (39)

Sternberg and Kaufman show that the approximate modulation product
amplitudes computed as per (33), (34) and (35) will not differ from
the true values by more than 4e/r in all cases, and the output will be
within e of the true value for all time if it is obtained by summing over
the approximate expansions.

For a symmetrical ideal limiter

I -guo
f(u) = gu

guo

U < - Uo
- Uo U no

U > Uo
0 < uo < 2P, g > 0.

The approaches described above can be applied to the range

-a x a

a>_ 2P.

Sternberg, in part II of his paper," gives the results relating the co-
efficients C.. and .1. as:
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C ±tnn = M n = 0, 2, 4 (40a)

= Pg[1 - 2/110(h,k)] (40b)

Col = Pg[k - 2A01(h,k)] (40c)

C*, = -2PgA ,(h,k) m n = 3, 5, 7, . (40d)

Here H = uo/P, k = Q/P and input are in the form

u(t) = P cos (pt Op) Q cos (qt Oq)

0 < P < P Q 2P.

In Ref. 17, Bennett functions of the vth kind, denoted A,(P)(k),
are defined. These are the coefficients for the output of a vth law recti-
fying function in response to a two -frequency input. v is usually taken
to be an integer. A.(P)(k) for v = 1, 2 have been tabulated!' Bennett
functions of a given kind can be obtained from those of the lower kinds

by means of recursion formulas.
By extending the above, Bennett functions with multiplicities of

three or higher (i.e., modulation coefficients when the input has three
or more distinct frequency components) can readily be defined. For
input of the form

u(t) = P(cos x kl cos y k2 cos z) (41)

for example, the output from a piece -wise linear nonlinear element can
be expressed in terms of the Bennett functions of the first kind,

Am,a(h, kl , k2), h = 1T,1°

where, as before, u0 is the breakpoint for an individual segment. Simi-

larly, for a vth law rectifier subjected to inputs of the form (41), Ben-
nett functions of the vth kind

A thi(v) (h, , k2)

can be defined.
A number of interesting relations have been derived for the three

frequency Bennett functions of the vth kind.° These include recurrence
relations and integrals linking three -frequency Bennett functions with
two -frequency ones. No tabulation of the three or more frequency
Bennett functions is known to have been attempted.

Relationships between the "Fourier" representation and the "La-
place" representations for nonlinear characteristics have also been
revealed by Feuerstein.18 He has shown that, in many cases, the contour
integration in the "Laplace" formulation can be reduced to integrals
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over the infinite real line. The results are generalized Weber-Schafheit-
lin integrals of the form (16) and (17 ). This is perhaps not a surprising
result from intuitive grounds.

It is interesting to note, however, that for a v -law rectifier, the Ben-
nett functinn of the vth kind of arbitrary multiplicity is given by

and

, kN) =

, kN)

2

7r

(v+1) cos Xh

11 J,i(kiX) (IA
i=0

for v integer, (42a)

M> v-1- 1, and
M v odd,

2 f'
X-(p+i)

71" 0

 Sin X11 11.1 Li (kX) (iX
i=o

for v integer,

M > v, and
M v even,

where M = z7 mi and ko = 1 > ki.
i=0

(42b)

By these formulas, the generalized integrals of (17) are related
directly to Bennett functions.

Feuerstein in fact did not stop with the considerations of integer P.
The formulas of the Bennett functions of the vth kind, with noninteger
v and with M taking in values other than those shown above, are re-
lated to the generalized integrals of (17), though in a more compli-
cated form.
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The Solid -State Receiver in the TL Radio
System

By W. E. BALLENTINE, V. R. SAARI, and F. J. WITT

(Manuscript received August 7, 1962)

The availability of reliable high frequency solid-state devices and the
application of new circuit concepts have made possible the development of
completely solid-state IF and baseband circuits for the TL microwave
radio system. These include (1) a 70-m,c IF amplifier with 20-mc 3-db
bandwidth, 105 db of gain, and 60 db of automatic gain control, (2) a
remodulation-type limiter, (3) discriminator, automatic frequency control,
and squelch circuits, and (4) two 6-mc baseband feedback amplifiers. All
circuits have been designed to operate over a temperature range of at least
-20°C to +60°C. It has been demonstrated that electrical performance
comparable to or better than that obtained with electron tube circuits may be
achieved while gaining considerably in power drain and reliability. The
new circuit techniques and the design considerations which led to their
development are presented.

I. INTRODUCTION

When the junction transistor was first announced, it was apparent
to many that it would eventually replace the electron tube as an active
element in many communications systems. Its small size, low power
drain, ruggedness, reliability, and potentially low cost all contribute to
its widespread usefulness in the development of new electronic circuits
and in the redesign of existing apparatus. The growth in diversity of

, 4
applications is directly related to the properties of the devices which
become available or can be made available in production quantities.
This article reports on another step in this expansion - solid-state
circuits for a wideband microwave communications system. The de-
velopment of this new system became both technically feasible and
economically practical when diffused -base transistors with excellent
high -frequency performance and reliability became available in large
quantities at low cost.

1831
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Although improvements in device capabilities were very important,
the success of the development described herein is due also to the ap-
plication of new circuit design concepts which differ considerably from
conventional electron tube circuit design practice. These innovations
and their supporting philosophy will be discussed.

The TL radio relay system as a whole will be described in another
article.' That article should be consulted for an over-all system de-
scription and for the results of early field applications. The present article
is restricted to a description of the IF and baseband circuits.

II. TL IF AND BASEBAND CIRCUITS

2.1 General Description

A simplified block diagram of the TL receiver is shown in Fig. 1.
Let it be mentioned that, in the entire radio system, the only nonsolid-
state components are the beating oscillator and transmitting klystrons.
Attention in this article is directed to the solid-state circuits which are
enclosed by a dashed line in Fig. 1. The IF signal is amplified by the IF

KLYSTRON
BEATING

OSCILLATOR

SOLID- STATE CIRCUITS

MAGNETIC
AMPLIFIER

(-3730MTCO

-83 DBM )
I

[CONVERTER r

t
INPUT
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VARIOLOSSERS

AFC
AMPLIFIER

IF
FILTER

AGC
AMPLIFIER

+ 11.5 ± 1 DBM
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AMPLIFIER

DETECTOR

LIMITER DISCRIMINATOR

RECEIVER
BASEBAND

SQUELCH

+ 10 DBM FOR
6MC SINE -WAVE
PEAK DEVIATION

(6MC BASEBAND)
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Fig. 1 - Simplified block diagram of wideband FM receiver.
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preamplifier and IF main amplifier. A passive filter located between
these amplifiers limits the bandwidth. AM noise and an AM component
arising from FM -to -AM conversion in the IF amplifiers are suppressed
by the limiter. Baseband intelligence is detected in the discriminator.
The resulting signal is amplified in the receiver baseband amplifier and
is then applied to the transmitter at a repeater or delivered to appro-
priate terminal equipment. In the transmitter, baseband signals are
amplified by the transmitter baseband amplifier (a transistor circuit
not shown in Fig. 1). This amplifier drives the repeller electrode of the
transmitting klystron.

Three other circuits are included in the receiver: (1) an automatic
gain control (AGC) circuit which adjusts the gain of the IF preamplifier
to compensate for variations in received signal level; (2) an automatic
frequency control (AFC) circuit which controls the voltage on the
repeller electrode of the beating oscillator klystron, adjusting its oscil-
lating frequency in such a way as to keep the IF carrier frequency
centered in the IF passband; and (3) a squelch circuit which prevents
noise from feeding through the receiver during abnormal fades or
periods of absence of the incoming carrier.

Fig. 2 is a photograph of the IF and baseband circuits, except for the
transmitter baseband amplifier. The four compartments, from bottom
to top, contain (1) the IF preamplifier; (2) the passive filter; (3) the
IF main and AGC amplifiers; and (4) the squelch circuit, transistor
AFC amplifier, limiter, discriminator, and receiver baseband amplifier.

Fig. 2 - IF and baseband circuits.
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The transmitter baseband amplifier is packaged separately and is shown
in Fig. 3.

2.2 Some Departures from Conventional Design Philosophy

2.2.1 IF Amplifiers and Automatic Gain Control

In order to utilize the microwave medium efficiently, it is necessary
to have a wide IF band which is precisely positioned and defined. In
the usual wideband electron tube IF amplifier, the passive interstage
coupling networks define the IF band. Variable dc bias can be applied
to the tubes to change the gain electronically for ACC without changing
the normalized frequency response. This convenient property is due to
the fact that the principal band -limiting mechanisms in electron tube IF
amplifier circuits - namely, the input and output capacitances - are
not strongly bias -dependent. Lossless interstage networks are designed
to include these capacitances as elements, and gain -bandwidth product
is preserved.

Fig. 3 - Transmitter baseband amplifier.
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2.2.1.1 Inherent Transistor Characteristics. Certain inherent charac-
teristics of transistors dictate a departure from the conventional electron
tube approach.* These characteristics are listed below:

A. The principal mechanism which causes the gain of a transistor
amplifier to fall off at high frequencies is transit time - i.e., the finite
time it takes minority carriers in the base region to complete their
journey from emitter to collector. (This effect occurs in electron tubes,
but it has only secondary importance up to 100 me for electron tubes
used in IF service.)

B. Not only are the input and output impedances quite frequency-

dependent, but they also depend on the dc bias and on the gain of the
transistor. Hence, it is generally not possible to design interstage band -

limiting coupling networks which would be satisfactory for a wide range
of transistors and dc operating points.

C. A transistor stage exhibits both forward and reverse transmission;
hence, the input impedance depends on the load impedance, and the
output impedance depends on the generator impedance.

D. A transistor IF amplifier using presently available diffused -base
transistors has a wider inherent bandwidth capability than a conven-
tional electron tube

2.2.1.2 Design Considerations. Some design considerations for transistor
wideband IF amplifiers are stated below. These follow rather naturally
from the characteristics listed above.

A. For wideband applications, the transistor amplifier configuration
should be a low-pass rather than a bandpass structure. Useful low-
pass configurations are discussed in the Appendix. The cutoff frequency
of the low-pass amplifier is above the upper edge of the IF band, and
the over-all IF characteristic is determined by imbedding a passive
bandpass filter in the cascade of IF stages. The transistor amplifier
stage has a sufficiently large inherent bandwidth to make this technique
practical. Because transit -time effect is the primary cause of gain
rolloff at high frequencies, extending the bandwidth on the low side
does not reduce the gain obtained in the ultimate band.

By using a low-pass configuration, envelope delay distortion, a pri-
mary limitation in FM systems, is minimized; and the small amount
present is of such a nature that it is easily equalized. A low-pass tran-

* It is assumed in the following discussion that the IF band falls between the
beta and alpha cutoff frequencies of the transistor. This condition is satisfied for
the TL radio IF amplifiers.

t This does not mean low-pass in the strictest sense; i.e., the amplifier chain
need not pass dc. By low-pass is meant that the frequency rolloff above the IF
band is determined by a low-pass structure.
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sistor wideband IF amplifier has proven to be far superior to an elec-

tron tube IF amplifier from the standpoint of envelope delay distortion.
A further advantage of the use of the low-pass configuration is that

adjustment is greatly simplified, because the IF band is a small part
of the passband of the active circuits. Also, a wide range of transistor
parameters can be tolerated.

The passive bandpass filter, which may include a simple envelope
delay equalizer, can be adjusted prior to installation in the IF system
if the IF amplifier is designed to present controlled terminating impe-
dances for the filter. The position of the passive bandpass filter should
be near enough to the output of the amplifier to prevent out -of -band
noise, originating in the IF stages following the filter, from contributing
appreciable noise power at the IF output. On the other hand, it must
be near enough to the IF amplifier input to prevent intermodulation
of out -of -band noise from occurring during weak signal conditions.

B. To obtain a low receiver noise figure, the IF amplifier input tran-
sistor stages should be designed to utilize as much available power gain
as possible while, of course, taking into account such factors as stability
and input impedance. This technique will minimize the effect of the
noise figures of the second and third stages on the over-all noise figure.
The undesirable departure from the ideal "flat" transmission charac-
teristic, which is inherent in obtaining high gain, can be compensated
with an equalizer network following the second or third stage. See the
Appendix for a discussion of the "doublet circuit," which uses this
principle.

C. The gain variation of the IF amplifier for AGC purposes should
be achieved by using separate wideband variolossers. As in the TL
system, these may employ semiconductor diodes. This is a departure
from the standard technique of varying the gain by changing the dc
bias on the amplifier stages. Generally, an intolerable amount of change
in the normalized IF transmission characteristic will result if the latter
method of gain control is used. The wideband variolossers are passive
attenuator networks whose IF transconductances are controlled by the
direct current flowing through them. Variolossers can be designed so
that the normalized IF transmission characteristic changes only slightly
over a wide range of loss settings. The required loss range (60 db for
the TL system) must generally be split up between two or more vario-
lossers. The number of variolossers used and their position in the IF
chain must be chosen carefully in accordance with the system require-
ments and the limitations of the variolossers. The maximum IF input
level to the variolossers must be restricted so that the diodes remain
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reasonably linear; otherwise, undesirable IF transmission characteristic
changes and excessive AM -to -PM conversion will result. However, the
loss must not be allowed to accumulate too close to the input end of the
amplifier; otherwise, the system noise figure under strong signal condi-
tions will be unnecessarily high.

As illustration, consider what happens as the input carrier level
increases: The automatic gain control system will increase the loss in the
variolossers in order to hold the IF amplifier output level constant. Be-
cause of this increased variolosser loss, and because of the noise gen-
erated in the IF amplifier stages which follow the variolossers, the
receiver noise figure will increase. Of course, the IF output signal-to-
noise ratio is also increased and a better output signal is obtained.
However, the receivers spend most of the time operating under strong
signal conditions, so the strong signal S/N ratio (which varies inversely
with noise figure) must be kept considerably better than that allowed
during localized deep signal fades.* It is important, therefore, to use
enough variolossers and to locate them properly in the IF amplifier
chain.

It is good design practice to have the passive bandpass filter located
between the last variolosser and the output of the IF amplifier to pre-
vent any spurious out -of -band distortion products that might be gen-
erated in the variolossers during strong signal conditions from being
remodulated into the desired band in a later part of the amplifier.

2.2.2 Limiter

The conventional technique for suppressing the AM component of
modulation on the IF amplifier output signal is to pass the signal through
one or more amplitude limiters. In recent years, these limiters have
taken the form of clippers containing semiconductor diodes. When
more than one limiter is used, it is necessary to provide buffering ampli-
fiers between them in order to achieve adequate limiting action. Ruth-
roff2 has pointed out that this process is inefficient, and he has proposed
an improved circuit which has been called the remodulation limiter.
This circuit derives its efficiency from the fact that it senses the AM
present on the incoming IF waveform and then amplitude modulates
this IF signal in such a way that the original AM is canceled. A version
of a particular form of the remodulation limiter is described in more

* The requirement on strong signal noise figure is based on the cumulative
effects of noise in a multihop system, and it is therefore related to the number of
hops. On the other hand, the weak signal noise figure requirement is relatively
independent of the number of hops because of the localized nature of deep fades.
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detail later in this paper. Whereas the clipper -type of circuit typically
requires four diodes and two transistor -amplifying stages for 25 db of
AM index suppression, a remodulation limiter with equivalent per-
formance contains just two diodes.

2.2.3 Automatic Frequency Control

The receiver AFC circuit* in the TL radio system is conventional
insofar as it provides a negative feedback loop which centers the IF
signal in the IF passband. The klystron-beating oscillator frequency is
controlled by an error signal which is sensed at the discriminator, ampli-
fied, and impressed on the klystron repeller. The part of the feedback
loop between the discriminator and the klystron repeller must neces-
sarily be direct -coupled; other considerations dictate that the repeller
voltage be a high negative voltage, about -500 volts. The problem of

direct -coupling the transistor circuits, which operate near zero volts,
to the klystron repeller has been overcome by the use of a magnetic
amplifier (magamp). The magamp serves to completely isolate the low -
and high -voltage circuits while effectively maintaining direct coupling
and adding to the AFC feedback loop gain.

2.3 Circuit Description

2.3.1 IF Amplifiers

2.3.1.1 IF Preamplifier. The input circuit of the IF preamplifier (Fig. 4)
consists of a pair of direct -coupled common -emitter stages followed by
a high-pass filter. The principal advantage of this combination, which
is called a "doublet," is that it yields the best noise figure of the various
circuits investigated t as well as an acceptable input return loss. The
remaining stages of IF amplification consist of wideband common -base,
transformer -coupled circuits. To obtain good transistor interchangeabil-
ity and insensitivity to temperature change, the stages are padded and
mismatched, resulting in a power gain for each common -base stage of
about 6 db. Two diode attenuator networks, the variolossers, are in-
cluded in the preamplifier, dividing it into three approximately equal
gain segments. Their placement is such that they have a negligible (<0.l

* Transmitter AFC is not required in the TL radio system because of the
specially designed klystron and klystron cooling system.3

t Circuits investigated included the common -base stage with a wideband trans-
former interstage network, the doublet circuit, and the common -emitter stage
with frequency -dependent shunt feedback. These configurations are compared in
the Appendix.
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db) effect on the noise figure under weak -signal conditions and remain
sufficiently linear under strong -signal conditions. The preamplifier
maximum gain is adjusted at room temperature to 57 db, flat between 64
and 76 me within about ±0.2 db.

Input return loss adjustments are applied in the form of potentiome-
ter R1 (which varies the bias current in transistor Q0, taps on trans-
former T1, and variable capacitor C1 (Fig. 4).

The two common -emitter stages of the doublet exhibit a downward
transmission slope approaching 12 db per octave in the IF band; the
high-pass filter, which has a cutoff at approximately 100 mc, equalizes
this rolloff. This combination yields a very good noise figure because
the available power gain provided between the preamplifier input jack
and the input of transistor Q2 is relatively large, thus minimizing the
influence of the second transistor on the over-all noise figure. The constant
resistive load for transistor Q2 consists of a high-pass network and a
low-pass network, which have complementary input impedances. Re-
sistor R2 is the termination for the low-pass network, and the third
transistor stage terminates the high-pass network.
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A diagram of a typical common -base stage is shown in Fig. 5. In
this configuration, the transistor has a current gain slightly less than
unity in the IF band. The interstage transformer, which is a ferrite -core
distributed autotransformer,4,5,6 provides a current step-up ratio of
approximately 1:2, making the over-all power gain slightly less than 6
db per stage. Since a transistor of the type used is capable of providing
a maximum unilateral gain of about 15 db at 80 me, there is evidently
a considerable sacrifice of gain in order to obtain a high degree of sta-
bility and transistor interchangeability. The slope of the gain -frequency
characteristic in the IF band can be adjusted by changing the damping
resistor R2 which is introduced to control gain peaking at higher
frequencies. (Also, a variable inductor is added in the base lead of some
of the stages to provide a small, continuous, additional slope adjustment.)

Fig. 6 indicates the make-up of the complete preamplifier. Potentiome-
ter R4 is a gain control having 16 db range. Used to adjust the over-all
IF amplifier gain to 105 db, it does not unduly affect the good output
return loss of the preamplifier. (A good termination is needed for proper
filter operation.)

2.3.1.2 Variolossers. Two variable -loss pi networks of germanium
point -contact diodes are included in the preamplifier (Fig. 6) to maintain
a constant level out of the main amplifier. The input levels from the
converter may vary from about -33 dbm to less than -83 dbm. Each
variolosser is able to insert from 1 to 30 db of flat loss over the IF band.
This loss range, greater than that required to correct for IF input level
variations, allows for temperature and aging effects on the gain of the
amplifier.

The impedance of each variolosser diode to signal frequencies is

TYPICAL VALUES:

= 825, R2=464, R3 = 2150

R4= 1780, R5=10, L1=7

C1= 0.0005 , C2 = 0.005, C3 = 0.001, C4= I

RESISTANCE IN OHMS

INDUCTANCE IN itH

CAPACITANCE IN ALF

Fig. 5 - Typical common -base stage.
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controlled by the direct current passing through it. Direct current is
caused to flow in such a manner that as the current increases in the
shunt diodes, it decreases in the series diodes (and vice versa). Since the
diodes appear in pi networks at IF, variable loss is obtained without
producing much variation of the input and output impedances of the
variolossers. The currents are controlled by the output of the AGC
amplifier (see Fig. 8 below), which responds to amplitude -modulation
frequencies ranging from de up to about 50 cps. Diodes D7 D8 and D9
are used as a -2.0 -volt de supply and are forward -biased through
resistor It3 . (These diodes become starved of current under fade condi-
tions, and the reduced voltage ensures a low minimum IF loss in the
variolossers.) The series and shunt diode sets are connected in parallel
for incremental currents supplied from the K lead; but the -2.0 -volt
source is placed within a loop passing through all six attenuator diodes,
thus providing a condition wherein their dynamic resistances can si-
multaneously equal about 130 ohms. This condition occurs when the
input dc lead from the AGC amplifier carries no current, and it cor-
responds to a medium loss condition in the variolossers. The two vario-
lossers are so interconnected that they conduct the same de currents,
thereby forcing their loss values to track together. Inductors L1 and L2
carry control current and also counteract the effect of the series -diode
capacitance, which is important when the diode resistances reach their
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highest level. Resistors R1 and R2 provide an upper limit for the series
path impedance, thereby forcing the shunt diodes to carry more of the
loss burden at higher IF input signal levels.

A network containing a thermistor applies a temperature -dependent
bias voltage in series with the shunt diodes of the variolossers. The effect
is to equalize the drift which tends to occur in the AGC amplifier out-
put current, and thus to prevent drift in the squelch firing level. The
thermistor network, not shown in Fig. 6, is inserted between diode D4
and ground.

2.3.1.3 IF Filter (Fig. 1). The main functions of the IF filter are to
delimit the IF bandwidth precisely with a minimum of ripple or slope
within the band and to equalize the delay of the over-all IF amplifier.
Besides limiting thermal noise, it also prevents out -of -band interfering
signals and harmonics generated in the variolossers from entering the
main amplifier. Systems considerations' dictate that the 3-db frequencies
be 60 and 80 mc, and that the loss be flat to within ±0.1 db from 64
to 76 mc. It is designed to work between precise 75 -ohm terminations.

2.3.1.4 IF Main Amplifier (Fig. 7). The IF main amplifier is a cascade
of nine common -base stages, each developing slightly less than 6 db
of gain, and a parallel common -base output stage capable of delivering
a maximum power of +13 dbm into the limiter. The nominal power
gain of this amplifier is 48 db, flat to within ±0.2 db over the 64- to
76-mc IF band.

The driver stage Qg is similar to the earlier stages, except that it is
followed by an additional transformer to give an over-all 4:1 current
step-up at the last interstage (for driver linearity). Resistors R2 and
R3 ensure equal driving currents for the parallel transistors. Resistor
R4 helps to provide a good output return loss for a 200 -ohm load (the
limiter).

2.3.2 Automatic Gain Control Circuit (Fig. 8)

For proper operation of the limiter, it is necessary that the output
level of the IF main amplifier be held nearly constant regardless of
changes in RF signal level and temperature. Furthermore, the IF
amplifier stages preceding the output stage must not be overdriven;
otherwise, too much spurious phase modulation will result. These de-
sired conditions are achieved through the use of an automatic gain
control circuit consisting of an IF detector, a direct -coupled amplifier
called the AGC amplifier, and the variolossers described in Section
2.3.1.2. The AGC amplifier, excited by the detector, feeds back a cur-
rent (K lead) to control the loss due to the variolossers and thereby
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compensates any tendency for the IF output level to change. The dc
amplifier has sufficient gain to multiply the small current increment
drawn from the detector to the relatively large current needed to drive
the variolossers. This circuit holds the limiter input level to +11.5
dbm ±1 db for IF input levels ranging from -83 dbm to -33 dbm
over the temperature range from -20°C to +60°C.

A masking resistor R1 is inserted to partially isolate the output of the
IF main amplifier from the nonlinear input impedance of the AGC
detector. This reduces the AM -to -PM conversion of the receiver. The
detector -diode voltage varies almost linearly with the IF output voltage
and is therefore used as a limiter input level monitor.

The dc amplifier consists of a differential stage followed by a common -
emitter stage. The differential stage is used to minimize the drift in
IF output level due to changes in temperature. The amplifier has one
net phase reversal, providing negative feedback around the AGC loop.
The closed -loop bandwidth of the AGC system is limited to about 50
cps by capacitors CI and 02 which produce the only significant cutoffs
occurring in the feedback -vs -frequency characteristic of the AGC system.

A switch is incorporated in the differential stage to permit the AGC
R2

purpose. With the AGC loop closed (switch on), it sets the dc reference
to which the detector output level is compared; and since the vario-
lossers are automatically adjusted to make the difference between
these levels zero, this potentiometer sets the IF output level. When
the loop is open, the potentiometer is used to manually adjust the loss
of the variolossers.

The collector voltage of transistor Q3 is a monotonic function of the
received carrier level. This voltage is used to trigger a squelch circuit
(lead S), to excite a diversity switching circuit (lead L) and to drive a
signal strength meter (also lead L). Potentiometer R3 serves as a cali-
bration control for this voltage, and potentiometer R4 provides an
additional adjustment for the voltage on lead L.

2.3.3 Limiter (Fig. 9)

The output signal of the IF main amplifier will contain both AM and
FM components of noise and baseband signals.* Since the discriminator
will respond to AM signals as well as to FM signals, a limiter is used
to greatly reduce the AM component of the signal entering the discrimi-
nator.

* The AM baseband signal component is due to the action of a non-fiat system
transmission characteristic on the FM signal.
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Fig. 9 - Remodulation-type limiter circuit.

The operation of the limiter can be understood from a consideration
of Fig. 9.2 The limiter resembles a simple series diode clipper in which
the diodes are used to open up the transmission path after a certain
level threshold is reached. One can think of the first and second diodes
as an amplitude detector and an amplitude modulator, respectively.
This process of detection and modulation is so performed that the net
AM on the limiter output signal is minimized. Some of the incoming
AM sideband energy is coupled from the IF mesh 1 to IF mesh 2 through
the shunt path consisting of resistor R3 and bandpass network N4
The envelope of the IF signal is detected by diode D1 in baseband mesh
1 and this baseband signal is coupled through the shunt path consisting
of resistor R3 and low-pass network N3 to baseband mesh 2. There the
baseband signal is impressed on the IF carrier by diode D2 and appears
across the load at sideband frequencies in phase opposition to the energy
coupled from IF mesh 1. Note that networks N1 and N5 are required
to cause the baseband and sideband signals to flow in the proper meshes
and to attenuate undesirable modulation products. (Also, N1 is a 70 -me
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antiresonant tank circuit which serves as a corrective circuit for linear-
izing the discriminator characteristic.) Potentiometer R4 is adjusted to
achieve cancellation of the AM. The dc source in the baseband shunt
path is used to bias the diodes D1 and D2 and hence set the limiter
output level. The thermistor compensates for temperature drift in the
gain (or loss) of the limiter, discriminator and baseband amplifiers.
The FM signal behaves in the same manner as the carrier, suffering
only loss in passing through the limiter. Insertion loss of the limiter is
about 10 db, and the circuit has been designed for acceptable limiting
for input levels ranging from +10 to +13 dbm.

Resistors R1 and R2 shunt the diodes, thereby permitting the use of
diodes with a wide range of reverse impedances. These resistors, being
in parallel with the low forward impedances, do not affect diode per-
formance in the forward bias state. The load driven by the limiter is
the input network of the discriminator. Capacitor C1 tunes out the
reactive part of the input impedance of the limiter -discriminator iso-
lating transistor at the IF center frequency.

2.3.4 Triple -Tuned Balanced Discriminator (Fig. 10)

The discriminator extracts the baseband information from the input
FM signal. After passing through the first common -base isolating ampli-
fier, the FM signal traverses a wide -band transformer and then drives
two separate branches. Each of these paths contains a common -base
isolating amplifier, a parallel resonant circuit, an amplitude detector,
a low-pass filter, and two terminating resistors. The discriminator
output baseband signal is the sum of the output currents of the two
paths. Two outputs are provided: an ac -coupled output to the receiver
baseband amplifier and a direct -coupled output to the AFC amplifier.

Circuit N1 (Fig. 9) is tuned approximately to the 70-mc carrier
frequency, circuit N2 (Fig. 10) to 85 mc, and circuit N3 to 55 mc. The
use of circuits N2 and N3 alone yields the familiar "S" curve; however,
the low -Q. tuned circuit N1 significantly improves the linearity of the
discriminator? Since the attainment of adequate linearity requires
precise adjustment of both the Q and resonant frequency of the tuned
circuits, both the inductor and capacitor of each tank are adjustable.
Proper phasing of the outputs of the two paths is accomplished by
connecting the discriminator diodes as indicated. (This connection
avoids the use of a costly and large -size broadband transformer.)

Negative -coefficient capacitors are used to maintain the proper reso-
nant frequencies of the two tuned circuits of Fig. 10 as the temperature
changes. Equal forward -bias voltages of approximately 0.3 volt are
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maintained across each of the diodes to improve the linearity of the
detectors.

2.3.5 Automatic Frequency Control Amplifier (Fig. 11)

The AFC loop contains two cascaded amplifier circuits, a two -tran-
sistor amplifier followed by a magnetic amplifier. The primary purpose
of the transistor AFC amplifier is to isolate the discriminator and base-

band amplifier from the magnetic amplifier, since the latter amplifier
produces a substantial 1800 -cycle signal rich in harmonics which must be
attenuated to avoid spurious baseband amplifier output tones.

The transistor AFC amplifier consists of a common -emitter stage
direct -coupled to a common -collector stage. Shunt negative feedback
provides bias and gain stabilization and low input and output imped-
ances. (The low input impedance helps isolate the two paths of the
balanced discriminator, and it simultaneously stabilizes the bias applied
to the discriminator diodes.) Attenuation of undesirable tones from the
magnetic amplifier is provided by the low output impedance of the
transistor AFC amplifier and by an RC filter between the discriminator
and the transistor AFC amplifier. The input current from the discrimi-
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Fig. 11 - AFC amplifier.

nator is very nearly zero when the IF carrier frequency is 70 me be-

cause the discriminator diodes are oppositely poled.
Since the transistor AFC amplifier output voltage must be bipolar

and since the dc power supply has only one polarity (-20 volts) with
respect to do ground, a -6.7 volt do voltage source is used as the transis-
tor AFC amplifier "do ground." The do output of the AFC amplifier
is relatively insensitive to variations in both the -20 -volt power sup-
ply and the -6.7 -volt source. The transistor AFC amplifier output
is approximately 40 mv/mc of carrier deviation.

Temperature stability of the transistor AFC amplifier is achieved by

canceling Q1 base -emitter voltage -drop changes with diode D1 and by
achieving beta drift compensation by making the collector current of

Q1 and the base current of Q2 approximately equal in magnitude. Ca-
pacitor C1 is used to shape the feedback versus frequency characteristic
of the transistor AFC amplifier and assures stability. Capacitor C2
reduces 1800 -cycle energy originating in the magnetic amplifier.

The main gain -producing element of the AFC loop is the magamp,
which provides a voltage gain of about 950. Its cutoff frequency, which
controls the response time of the AFC loop, is about one cycle per
second. The 1800 -cycle square wave required for operation of the



TL SOLID-STATE RECEIVER 1849

magamp is obtained from a winding on the dc -to -dc converter which
supplies high voltage for the klystrons.

2.3.6 Receiver Baseband Amplifier (Fig. 12)

The receiver baseband amplifier follows the discriminator. It is a
direct -coupled cascade of three common -emitter transistor stages with
shunt feedback through a "T" network. Two virtually identical input
currents are applied to the amplifier from the two branches of the dis-
criminator. The external current gain of the amplifier is given, to a good
approximation, by the ratio of the feedback network short-circuit trans-
fer impedance (13 to 25 kilohms) to the output -lead resistance (145
ohms). The gain may be varied over a 5-db range by adjusting potenti-
ometer R5 .

The output stage is a parallel combination of a pnp germanium unit
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Fig. 12 - Receiver baseband amplifier.
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having a common -emitter current -gain cutoff at about 15 mc and an
npn silicon unit with a cutoff at about 3 mc. Both transistors contribute
substantially to the ac load current out to 6 mc (the highest baseband
frequency), with the result that more current can be driven into the load
under given distortion limits than can be provided by one transistor
alone. The de current passed by transistor Q3 into the collector node is
drawn out of that node by transistor Q4 , allowing a reduction of the
output admittance shunting the load. The available output power is
thus increased. Resistor R1 sets the amount by which the bias current
in the silicon transistor Q4 exceeds that in the germanium transistor
Q3. The small emitter resistors R5 and R7 ensure that the two tran-
sistors share the load equally by making their input impedances pro-
portional to their respective incremental current gains.

The local shunt feedback in the second stage allows the circuit to
accommodate high -gain units in the output stage without becoming
unstable; and it also compensates, to some degree, for the drop in
incremental gain of the output stage during part of the signal cycle,
maintaining the over-all feedback and thereby reducing distortion.

Because of the large amount of over-all shunt feedback, the output
impedance of the amplifier is roughly 5 ohms augmented by the 70 -ohm

padding resistance, which yields a good output return loss. Potentiome-
ter R2 adjusts the dc collector voltage of transistors Q3 and Q4 . The
network formed by resistor R3 inductor L1 and capacitor C1 improves
the stability margins when potentiometer R5 is set for maximum re-

sistance.
The amplifier is switched off during deep carrier fades by an input

from a squelch circuit sufficient to drive it into saturation. This input
current is passed through resistor R4 , which is large enough to mask
out the output capacitance of the squelch circuit.

2.3.7 Transmitter Baseband Amplifier (Fig. 13)

A baseband amplifier immediately precedes the transmitter klystron
in the TL system. This amplifier provides an adjustable voltage gain
of 27 ± 4 db between a 75 -ohm source and the klystron repeller load
(which, including wiring capacitance, behaves like a 35-timf capacitor).

The amplifier uses three transistors. The first stage uses the common -
base configuration; the second stage is common -collector; and the third
stage is common -emitter, providing the net phase reversal needed for
negative shunt feedback. Because of the very low input impedance
provided by the common -base stage and the over-all negative feedback,
a 75 -ohm resistor is added to give excellent input return loss.
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Capacitor C1 provides the initial feedback cutoff (at about 5 mc).
This cutoff slides to compensate for changes in the current gains of
Q2 and Q3 since it depends on the input impedance of the common-

collector stage. Resistor R1 improves the phase margin of the feedback
(AO) by halting the falling asymptote due to the 35-i.q.Lf load capacitance
at about 47 mc.

2.3.8 Squelch Circuit (Fig. 14)

The receiver contains a bistable trigger circuit which renders the
baseband amplifier inoperative during deep radio path fades. This
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circuit is a Schmitt trigger operating from the variolosser-control voltage
produced by the AGC amplifier. This voltage, which appears at the
collector of transistor Q3 in Fig. 8, becomes less negative as the IF input
carrier fades, and the circuit is designed to trigger in the vicinity of
-2.8 volts. This voltage level is caused to correspond to a carrier level

of from -80 to -95 dbm by means of potentiometer R3 in Fig. 8.
When the Schmitt trigger circuit fires, it injects about 1.5 ma of current
into the summing node of the receiver baseband amplifier, driving this
amplifier into saturation since as little as 0.8 ma will saturate it.

2.4 Circuit Performance

2.4.1 IF Amplifier

The most important electrical performance features of the IF ampli-
fier in the TL radio receiver may be described by graphs showing the

over-all gain -frequency characteristic at different incoming signal
levels and at extremes of temperature.

All of the curves in Fig. 15 are normalized with respect to the gain
at 70 mc and 25°C with the passive filter in. The data show that both
the in -band and wideband spectral distortion is small as the ambient
temperature is changed from -20°C to +60°C. Furthermore, the gain
level at 70 mc without AGC varies a maximum of 2 db over the same
temperature range. Between 50 and 90 mc the "bowed" shape of the
curves is primarily due to the output circuit of the IF amplifier (Fig. 7)
the in -band effect is negligible.
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Fig. 15 - Gain -frequency characteristic of IF amplifier.
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The IF amplifier output level vs frequency at different input levels
and temperature extremes is shown in Fig. 16. These curves demonstrate
the tightness of the AGC.* The output power is set to +11.5 dbm at
70 mc, 25°C with an input level of -58 dbm. The maximum level shift
encountered at 70 mc as temperature and input level vary is +0.6 db,
and the maximum tilt is 0.13 db/mc across the band. The IF main
amplifier provides +11.5 dbm of power with less than 0.5 db compres-
sion working into the 200 -ohm limiter input impedance.

In addition to transmission -shape and output -level stability, another
important requirement is that the envelope delay distortion be small.
Fig. 17 shows the envelope delay in nanoseconds at two input levels and
at temperature extremes. The maximum change in envelope delay
over the 64- to 76-mc band is observed to be 12 nanoseconds. Most of
the change with frequency occurs during deep fades where noise, rather
than delay distortion, is controlling. The envelope delay characteristic
of the IF filter is presented in Fig. 18 along with the insertion and
return loss characteristics. The 70-mc loss is about one db, and the
envelope delay shift across the 64- to 76-mc band is 6 nanoseconds.

The noise figure of the IF amplifier during fades, measured from a
73 -ohm source impedance, is typically 6 db. Fig. 19
noise figure as a function of input carrier level in dbm at 25°C. The
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* The frequency response of the AGC system, for the purpose of this measure-
ment, is made much lower than the sweep frequency of the signal source.
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input circuit is adjusted so that a compromise is reached between low
noise figure and return loss, typically 26 db from 64 to 76 mc.

2.4.2 AGC Circuit

The stability of the closed AGC feedback loop may be measured by
applying a step function from a current source at the K lead of the
AGC amplifier (Fig. 8) and observing the output voltage on the col-
lector of Q3 as a function of time. Fig. 20 shows a sketch of this wave-
form for three input level conditions representing different amounts of
AGC loop gain. An input level of -58 dbm yields the worst transient
response. The amount of overshoot is a measure of the stability margins,
and the rise time and ripple frequency relate to the response time.
The AGC system cuts off at approximately 50 cps, and the maximum
overshoot of 6 db suggests a minimum phase margin of about 20 degrees.

2.4.3 Limiter

Measurements of AM suppression of the limiter for three temperatures
and three drive levels into the IF preamplifier are given as functions of
baseband frequency in Fig. 21. The limiter has been optimized for
maximum AM suppression at 100 kc, room temperature, and a +11.5-
dbm drive level and still provides at least 18-db suppression over the



20

16

8

4

0
50

66

0

Z
58

30
NNNJ
0 w
_I co

Z 20
MU./:0

Z
Cr -

10

0. 0

54 58 82 66 70 74 78 82
FREQUENCY IN MEGACYCLES PER SECOND

Fig. 18 - Loss, delay and return loss of IF filter.

20

w
m
G 15
w
0

10

CC

LL
5

w

O

0
-103 -93 -83 -73 -63 -53 -43

INPUT CARRIER LEVEL IN DBM
-33 -23

88 90

Fig. 19 -- Noise figure versus input carrier level, 25°C.

1855



1856 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962

50

40

30

20

10
50

40

30

20
50

40

30

20

1
-33 DBM*
-87 DBM*

PULSE WIDTH = 500 MSEC

* INPUT CARRIER LEVEL

-58 DBM*

Fig. 20 - Step response of AGC system.

~..N. ... LIMITER INPUT LEVEL
+13 DBM...-..._

+25°C

--..
....

...... ... ..... ..-

ir .....,...- De
M Ovn_A4

/NAL)....... ....- ...
......,1.1,

...."---...................- "..'

I I I t

+10 DBM

_+13 DBM

-20°C
eft.

+1 .5 DBM (NOMINAL)

1
I I I

+60°C

01

+11.5 DBM (NOMINAL)

i0 DV-- -1-
02 03 04 06 08 10 2 3

FREQUENCY IN MEGACYCLES -PER SECOND

Fig. 21 - Limiter AM suppression

4 5 6 8 10



TL SOLID-STATE RECEIVER 1857

6-mc baseband under the worst conditions of temperature and of drive
level permitted by the AGC.

2.4.4 Discriminator and Transistor AFC Amplifier

A discriminator is judged primarily by its linearity, stability of its
zero crossover frequency and sensitivity? The over-all receiver nonlinear-
ity is typically measured to be better than 4, 7 and 4 per cent at tem-
peratures of +25, -20 and +60°C, respectively, for a peak deviation of 6
megacycles; and this is approximately the nonlinearity of the discrimi-
nator.

Measurements on the composite discriminator -transistor AFC am-
plifier indicate that the shift in zero crossover frequency is ±200 kc,
and the nominal sensitivity of 40 my per megacycle changes ±2 my
per megacycle over this temperature range. The rejection of the 1800 -
cycle signal and harmonics of this frequency generated by the magnetic
amplifier is sufficient to keep the level of this signal at the receiver-
baseband output down to the order of -50 dbm.

2.4.5 APT Loop

The AFC loop performance, aside from drift which was discussed in
the previous section, is relatively independent of temperature. A typical
circuit has a loop gain of 30 db, 10-db gain margin and 60 degrees
phase margin.

2.4.6 Receiver Baseband Amplifier

The open -loop gain and phase vs frequency characteristics of a typical
receiver baseband amplifier are shown in Fig. 22 for a medium gain
setting and room temperature. The closed -loop gain curves for -20°C,
+25°C and +60°C are also shown. It is clear that the external gain
from 200 cps to 2 mc stays constant within ±0.08 db over the tempera-
ture range, and between 2 mc and 6 mc it is constant within ±0.23 db.
The open -loop characteristic exhibits a 6-db per octave rolloff, which
is desirable when flatness of external gain near the unity feedback
crossover frequency is important. The feedback amounts to 31 db at
midband and 13 db at 6 mc. The phase and gain margins are 47° and
6 db, respectively. (A small gain margin such as this can be tolerated
when a large part of the phase shift tracks well with the fT's of 'the tran-
sistors* and, hence, with the crossover frequency.) Since feedback is
maintained down to dc, there is no question of low -frequency oscillation.

*.f2, is defined as the frequency at which the common -emitter short -Circuit
current gain is unity. It is a convenient figure of merit for the bandwidth of the
transistor.



1858 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962

cn

0 W0.4
1- co
w

tu 0.21- 0
_1 Z
LLI -
CC CI

Z <
Zt CO

e -0.2
2 2001,

MIDBAND EXTERNAL CURRENT GAIN = 42 DB (MEDIUM SETTING)

OG

0

40

30

20

10

0

-10

500 1KC 2 5 IOKC 20 50 100KC 200
FREQUENCY

500 IMC 2 5 6

TYPIC
GAI

AL OPEN
N AND P

LO
RASE

OP

GAIN

0I 02 04 06 08 1 2 4 6 8 10 20
FREQUENCY IN MEGACYCLES PER SECOND

360°

300°

240°

180°
40 60

Fig. 22 - Gain -frequency curves - typical receiver baseband amplifier.

The second- and third -harmonic distortion products are down at
least 37 db and 46 db, respectively, for maximum external gain (mini-
mum feedback condition) and full output level of +10 dbm at 6 mc.
These figures become better rapidly as frequency decreases, reaching
-60 dbm and -70 dbm, respectively, at 500 kc. The output noise

power of the amplifier in a 500 -cycle band for frequencies above 100 kc
is approximately -92 dbm.

2.4.7 Transmitter Baseband A mplifier

Measurements similar to those made on the receiver baseband ampli-
fier were made on the transmitter amplifier. Fig. 23 displays the gain -

frequency characteristics of a typical transmitter baseband amplifier
at a medium gain setting and room temperature. This particular model
contains transistors with average fT's; thus, it represents a typical
case. The phase and gain margins are 53° and 8 db, respectively.

Distortion measurements taken on the transmitter baseband ampli-
fier indicate that the second and third harmonics are, respectively, at
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Fig. 23 - Gain -frequency curves - typical transmitter baseband amplifier.

least 54 db and 70 db below the fundamental at 6 me and full output
voltage (4 volts peak).

2.4.8 Squelch Circuit

The squelch threshold level for a typical receiver was measured as a
function of temperature. The firing -level setting of -87 dbm drifted
to -84 dbm and -85 dbm at -20°C and +60°C, respectively. The
hysteresis between turn -on and turn-off was less than 1 db.

2.4.9 AM -to -PM Conversion

The over-all AM -to -PM conversion of a receiver was measured for
temperatures ranging from -20°C to +60°C and for IF input levels
ranging from -33 to -83 dbm. The worst AM -to -PM conversion was
0.017 radian for a 10 per cent AM index.

III. CONCLUSION AND REMARKS

Certain apparent limitations in the use of solid-state components in
a wideband microwave radio relay system have been overcome. The
fresh approaches which have been applied have, in some cases, re-
sulted in performance which is superior to that achieved with compara-
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ble electron tube designs. This improved performance is over and above
that achieved through inherent advantages of solid-state devices over
conventional electron tubes, which include reduced power drain, small
size, reliability, and potentially low cost.

It has recently come to our attention that others working in the
field of microwave radio systems have arrived through parallel efforts

at some of the same design techniques described herein.' It is hoped that
the publication of this paper will help expand the field of application of
solid-state devices and will encourage others to design around apparent
shortcomings of solid-state devices by refusing to have their thinking
completely channeled by what already exists.
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APPENDIX

A.1 Transistor "Low -Pass" IF Amplifiers

At least three basic configurations are useful in transistor wideband
IF amplifiers. These are the common -base stage with a wideband trans-
former interstage network, the doublet circuit, and the common-emitter
stage with frequency -dependent shunt feedback.

A.1.1 The Common -Base Stage with a Wide -Band Transformer Inter -

stage Network

Because the current gain of a common -base stage is less than unity,
this configuration requires the use of a current step-up interstage net-
work to achieve power gain when a cascade of similar stages is used as a
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wideband amplifier. Transformers are available which provide a con-
stant current step-up over a wide band of frequencies4.5,6 between
terminating impedances typical of solid-state circuits. The basic com-
mon -base configuration is shown in Fig. 5. It can be shown that to
achieve "flat" amplitude response extending to within an order of
magnitude of b. , damping resistor R2 is required. Use of a transformer
having a 1:2 current step-up results in a power gain slightly less than
6 db per stage.

In the TL IF amplifier stages, the transformer turns ratio is much
lower than that which would result in maximum gain. This makes the
amplifiers quite insensitive to changes in transistor parameters. This im-
plies a very stable transmission characteristic over a wide temperature
range and large variations in power supply voltage. Another result is that
the circuits accept an extremely wide range of transistor parameters,
either due to statistical distribution or to aging; and adjustment of the
transmission characteristic is relatively simple.

The input and output impedances are relatively stable with tempera-
ture and dc bias and can be represented by simple passive networks.
Hence, the common -base stage can be compensated to yield stable
resistive input or output termination over a wide frequency range. This
feature makes it particularly useful for connection to passive bandpass
filters or other equalizer networks. Since the common -base static charac-
teristics are much more linear than those of other configurations, this
configuration also gives superior performance in high-level stages.. How-
ever, one must look to other configurations, such as the doublet, for the
best noise figures in input stages.

A.1.2 The Doublet Circuit

This circuit, shown in Fig. 4, takes advantage of the fact that certain
transistor pairs, or doublets, without interstage transforming networks,
can provide an over-all gain stage which is more immune to temperature
and power supply variations than each transistor considered separately.
The reason for this improvement is the fortunate circumstance that
undesirable variations on the individual stages tend to cancel for certain
configurations. Two combinations which have been shown to exhibit
this desirable property are the common -emitter - common -emitter
doublet and the common -emitter - common -collector doublet. The
gain characteristic, though stable, rolls off smoothly at high frequencies;
hence, it is necessary to follow the transistors with an equalizer network,
which usually takes the form of a constant -resistance, high-pass filter.
The high-pass filter is designed to have a cutoff frequency above the
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IF band, and the rolloff of the filter compensates for the rolloff of the

transistors.
The gain level of a doublet is a fairly strong function of the f T of the

transistors used; however, the over-all normalized gain -frequency char-
acteristic is stable with temperature and bias variations. Exclusive use
of the doublet in a high -gain amplifier would probably dictate either a
tight control of the average f T of the transistors used or a larger dynamic
range of automatic gain control. The power gain of the doublet used in
the TL radio receiver ranges from 15 to 20 db.

The common -emitter - common -emitter doublet configuration has
been found to be the one best suited for use as the input circuit for wide -

band IF amplifiers. It provides the lowest noise figure of all of the con-
figurations evaluated and, through the use of a simple impedance -
matching network, can yield a good input return loss over a wide IF
band. The low noise figure is due to the facts that the input of the
amplifier is separated by a block of relatively high gain from the re-
mainder of the amplifier and that the natural input impedance of the
doublet amplifier needs only minor correction to achieve good input
return loss at the desired impedance levels (usually 50 to 125 ohms).

A.1.3 The Common -Emitter Configuration with Frequency -Dependent
Shunt Feedback

Of all forms of wideband amplifiers studied, the configuration which
most easily yields the broadest bandwidths is the common-emitter
stage with frequency -dependent shunt local feedback.9.'° This circuit,
shown in Fig. 24, has a two -terminal RL network connected between
base and collector. The effect of the RL network is to reduce the gain of
the stage by application of negative feedback. Resistor R1 determines
the low -frequency gain, and inductor L effectively removes the feedback

Fig. 24 - Common -emitter stage with shunt local feedback.
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at high frequencies and hence is a broadbanding element. Resistor R2
damps the resonance which occurs between the inductor L and the
capacitive reactance presented by the transistor. It has been demonstrated
that this configuration is very flexible in that gain and bandwidth can
easily be exchanged, and the gain -bandwidth product is approximately
given by fT

A cascade of common -emitter stages with shunt feedback exhibits
only very slight changes in the normalized amplitude response for wide
variations in temperature and power supply voltage. However, because
the gain level of each stage is highly dependent on fT and 7.5' and on the
input impedance of the following stage, the over-all gain level varies
considerably. By specifying tight limits on the average values of the
parameters for a given set of transistors (usually only the average fT
need be specified), the over-all absolute gain can be kept within close
limits. Of course, a moderate amount of gain adjustment may be had by
changing the value of R1 in the feedback network. This configuration
cannot compete with the doublet circuit as a low -noise input stage or
with the common -base configuration as a low -distortion, high-level
stage; however, it appears to be the best configuration to use when
extremely large gain -bandwidth products are required.
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Evaluation of the Net Radiant Heat
Transfer between Specularly

Reflecting Plates

By V. E. HOLT, R. J. GROSH,t and R. GEYNET
(Manuscript received July 16, 1962)

The radiant heat transfer between two parallel infinite plates was deter-
mined. The plates were assumed to be specular, anisotropic reflectors and
emitters as characterized by the electromagnetic theory for highly polished
electrical conductors.

Numerical results are given for specific metals from 4f to 1500° K. Also,
the results are expressed in generalized form for obtaining the net radiant
heat transfer between any two parallel, infinite metal plates given only the
temperatures and electrical resistivities.

Total hemispherical and normal emissivities were determined using the
same methods. The results were in very good agreement with empirical
equations given in the literature. For a contrasting comparison, Christian-
sen's equation for the net radiant heat transfer between two parallel, diffuse,
gray surfaces of infinite extent was evaluated using these emissivities. The
values obtained were less than those computed for the net radiant heat
transfer between specular plates.

I. INTRODUCTION

Radiative exchange often becomes the controlling mode of heat trans-
fer when systems are found to exist at either low or high temperature
levels. In the former case, for instance, it often becomes one of the major
heat leaks to cryogenic fluids stored in dewars.

In the following, the net radiant heat transfer between two parallel
infinite surfaces is calculated for behavior in all respects as predicted
by the electromagnetic theory of radiation for polished electrical con-
ductors.

t Head, School of Mechanical Engineering, Purdue University, Lafayette,
Indiana.
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II. FORMULATION AND SOLUTION

The monochromatic emissivity, absorptivity, and reflectivity are
known to be azimuthally symmetric about the normal to a conducting
surface. Electromagnetic theory' ,2 indicates that the monochromatic
directional emissivity of low -emissivity metals is given by:

(0,X) = a(0,X) = 1 -

60X - 2 V3OX
re re

cos 0 + cos2 0

60X + 2 A/-WX cos 0 + cos2 0
_ re I re

60X cos2 0
2

4/30X ±
re

cos 0 1

60X cos2 0
2

/30X
re

cos 0 1

Simplified expressions based on electromagnetic theory have been
shown to be in agreement with experiment for temperatures as high as
1800°K.2 However, deviation from experiment is presumed for higher
temperatures.

(1)

2.1 Radiant Heat Transfer

For the arrangement shown in Figs. 1 and 2, the monochromatic
radiation emitted from a unit area of surface 1 into a solid angle dw
inclined at an angle 0 from the normal is

1(0,X)/(bb,X,Ti) cos 0 do). (2)

A fraction a2(0,X) of this is absorbed at surface 2 for the first reflection.
For specular reflection, a fraction «2(0,X)[1 - 1(0,X)][1 a2(0,X)] is
absorbed at surface 2 for the second reflection. Ultimately, the mono-
chromatic radiation emitted from surface 1 in a direction 0 that is
absorbed by surface 2 is

ei(0,X)ce2(0,X)(1 [1 e1(0,X)][1 - a2(0,X)]

+ [1 - 1(61,X)]2[1 - a2(0,X)]2

+ I /(bb,X,Ti) cos 0 dw (3)

E1(0,X)«2(0,X)1(bb,X,T1) cos 0 dw

1 - [1 - El(0,X)][1 - a2(0,X)]

Thus, the total radiation emitted from a unit area of surface 1 and
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absorbed by surface 2 is

-
f00 r / 2

ei(e,X)a2(0,X)
o Jo 1 - [1 - 6109,x)111 - a2(0)X)]

 E(bb,X,Ti) sin 20 d0 dA.

The net radiation from surface 1 to surface 2 is

gnet = q1-2 - q2.1

(4)

where q2_.1 is evaluated from (4) with the subscripts reversed.
Using the IBM 7090 computer, this equation was evaluated for specific

metals and also for various resistances and temperatures. Only a fraction
of a minute computation time was required per case. The required re-
sistivity values were obtained from Refs. 3-10.

Specific examples of solutions are given in Table I. In Fig. 3, the radia-
tion qi_.2 is graphically expressed in general form in terms of only T1 ,

TABLE I - NET RADIATION BETWEEN PARALLEL PLATES -
SPECIFIC EXAMPLES

Ti° K K

Computed Values - Figure 3 Christiansen's
Equation (2)

ql..2 q2 grief
a1T14 - T241

qnot lleh2 - 1

BOTH SURFACES GOLD

77 4.2 1.65X10-7 3.42X10-13 1.65)(10-7 0.442)(10-7
watts/sq cm watts/sq cm

290 77 2.58)00-4 6.65X10-7 2.58)(10-4 1.52)(10-4

1000 290 0.129 4.97X10-4 0.129 0.0812

BOTH SURFACES IRON

500 290 1.4X10-2 1X10-3 13X10-3 8.82X10-3

1000 290 0.4 0.0013 0.4 0.195

1000 500 0.44 0.016 0.424 0.322

SURFACE 1 IRON - SURFACE 2 GOLD

290 77 3.147X10-4 1.2X10-' 3.14X10-' 1.68X10-4

1000 290 0.1733 6.74)00-4 0.172 0.1

SURFACE 1 GOLD - SURFACE 2 STAINLESS 18-8

290 77 6.35X10-4 10-, 6.34X10-4 5.5X10-4

1000 290 0.258 10-3 0.257 0.22
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10-2

to -5 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10-6 10-7 10-6 10-5 10-4
ELECTRICAL RESISTIVITY OF PLATE 1, Re, IN OHM -CM

Fig. 3 - Radiation emitted by plate 1 that is absorbed by plate 2.

re' , and re2 . As is indicated by the examples in Table I, Fig. 3 can be
used to determine the net radiation, 21-.2 - q2-1 , between any two similar
or dissimilar parallel infinite metal plates. The choice of the ordinate in
Fig. 3 was arbitrary. The choice of o -T4.5 in the denominator removed
part of the dependence of emissivity on temperature and resulted in an
ordered family of curves.

2.2 Emissivities

An expression similar to (4) can be developed for the total hemispherical
emissivity of a perfectly smooth, clean metal surface:

1
ro Ir/2

eh -
E(bb,T) JO JO

e(O'X)E(bb,X,T) sin 26 dO dX. (5)

This equation was also evaluated for seven metals at various tempera-
tures; the results, depicted in Fig. 4, agree very well with empirical equa-
tions (based on electromagnetic theory predictions) that have been
applied over specific ranges of reT .1'2

Available experimental emittance values for polished metal surfaces
are generally from one to three times the computed values. Slight imper-
fections and oxides on the actual surfaces could account for the variances.
Most of the available copious data were taken at pressures above 10-6
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Fig. 4 - Computed total hemispherical emissivities.

Torr, and the samples were not prepared in high vacuum. The results of
a recent intensive experimental investigation are in good agreement
with the computed values for platinum as shown in Fig. 4. Apparently
these investigators chose platinum for their tests because of good surface
stability compared with other metals.

The "emittance" of a surface is taken to be equal to the "emissivity"
when the surface is opaque, optically flat, and identical to the interior of
the material."

Below about 20 degrees K, the resistivity of the materials considered
approaches a residual value. This is more noticeable with pure metals
than in alloys, and is reflected in the emissivity values in Fig. 4.

The values in Fig. 4 should be applied with qualification to surfaces
at very low temperatures, because of the increased importance of the
anomalous skin effect which was not considered here. The anomalous
skin effect theory indicates that the skin resistance, instead of the bulk
resistivity, becomes important in absorption and reflection for the
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longer wavelengths (approaching those of diffusely behaving microwaves)
that are effective in thermal radiation at extremely low temperatures.
At the present time, there is considerable uncertainty concerning the
nature of thermal radiation between surfaces below 100°K. This is
primarily due to difficulties in taking measurements and to conflicting
results. Also, recent evidence suggests that the diffuse or specular nature
of a metallic surface at low temperatures may be strongly dependent
upon both the temperature of the surface and the wavelength of the
incident radiation.12, 13

The resistivity of nichrome is nearly constant over the range of tem-
perature considered; thus the slope of the curve for nichrome in Fig. 4
is due only to the temperature dependence of the emissivity in the
evaluation that was made. A converse example would be the large change
in resistance at a certain temperature during the quantum transition of
a superconductor to the superconducting state. The classical expressions
solved here predict perfect reflection for the superconducting state, but
they would not necessarily be expected to be applicable. In the visible
region, no change in reflection has been reported during the supercon-
ducting transition; however, an increase in reflection has been reported
for frequencies less than the superconducting energy gap frequency (on
the order of 3 X 1011 cycles per second).

Equations 4 and 5 can also be readily solved for a particular wave-
length or for a particular radiant energy distribution other than the
Planckian spectral distribution used here.

Directional and normal emissivity values were also obtained by
evaluating (5) for specific values of O. An exemplary case is given in Fig.

DIRECTIONAL
EMISSIVITY, 6(0)

0.005

.SILVER SURFACE AT

10°
°

"30

.4. 40 c,

COMPUTED DATA
NOT PLOTTED

! 6(0)

80° 0.0081
85° 0.0157
87° 0.0256
88° 0.0380

88.5° 0.0500
89° 0.0725

89.5° 0. 1 340

89.9° 0.3640
oo 89.9999° 0.0005

90° 0
0

Fig. 5 - An example of the directional emissivities computed.
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5. The ratio Eh/E was found to approach the theoretical limiting value
of 4 (Ref. 2) using the values computed for the low resistivity metals at

as shown in Fig. 6.
All of the computed values for all of the metals considered are nor-

malized to one curve in Fig. 7. An approximation to the theoretical ex-
pression evaluated here and some recent experimental results are in-
cluded in Fig. 7 for comparison. The departure of a real surface from the
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ideal optical flat surface and the change in actual surface resistivity from
the bulk value would be expected to make the experimentally measured
emissivity ratio eh/ en lower than would be theoretically predicted."

The computed values of hemispherical emissivity were used in evalu-
ating Christiansen's equation for the net radiant heat transfer between
parallel, diffuse, gray surfaces of infinite extent. Christiansen's equation
may be written as

v[7714 -
qnet =

1/eh, 1/fh2 -

The results for several cases are tabulated in Table I for comparison
with the computed examples for net specular radiation. The correspond-
ing values computed for the net specular radiant heat transfer are larger.
This may be attributed to the angular and spectral effects. Goodman"
compared Christiansen's equation with values computed from experi-
mental spectral emissivities for aluminum and Inconel at temperatures
of 400°C to 1000°C. The spectral results were 2 per cent to 29 per cent
greater than the values predicted by Christiansen's equation.

III. CONCLUSIONS

The radiant heat transfer between any two parallel, specular, infinite,
uniform, metal plates was determined and is expressed in terms of only
the temperatures and electrical resistivities in Fig. 3. The results exceed
the predictions of Christiansen's equation for diffuse radiation between
parallel gray plates of infinite extent. Christiansen's equation was
evaluated using the computed emissivity values.

Both the radiant heat transfer and the emissivity values presented
represent limiting values that can be expected for perfectly clean, smooth
metallic surfaces. The results should be very useful in interpreting data
and in estimating values where adequate data are lacking.

The solutions presented can be readily evaluated with the aid of a
computer to obtain any additional radiant heat transfer and emissivity
values that might be of particular interest.

APPENDIX

Nomenclature

a(O,X) monochromatic directional absorptivity
t(0,A) monochromatic directional emissivity
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Eh total hemispherical emissivity
E. total normal emissivity
0 direction angle with respect to a normal to the surface
X wavelength in centimeters
dco element of solid angle: sin 0 dO dv where cp is the azimuth

angle
E(bb,X,T) monochromatic emissive power of a black body at tempera-

ture T:

3.7404 X 10-12
watts/cm 2

X5 [exp (1.4387/XT) - 1]

E(bb,T) emissive power of a black body: a T 4 where a = 5.6699 X 10-12
watts/cm 2 o K4

I(bb,X,T) monochromatic areal radiant intensity of a black body at
temperature T:

E(bb,X,T)
ir

re electrical resistivity ohm -cm.
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