Foreword

This issue marks the 40th anniversary of the Bell System Technieal
Journal, which has been published continuously since July, 1922
Through these 40 years the B.S.T.J. has had one basie purpose: to be a
journal of definitive technical papers that help to record the progress of
Bell System communieations. The B.S.T.J. is thus an important factor
in carrving out the Bell System policy of prompt publication of new
research, development and systems engineering knowledge.

Although the pace of change has inereased in recent decades, B.S.T.J.
papers from the beginning have dealt with many themes that are still of
fundamental importance o communications rescarch and technology.
Among the important early contributions, for example, were articles by
Harvey Fleteher on the nature of speech, by R. V. L. Hartley and T. C.
I'ry on binaural hearing, by George A. Campbell on wave filters, and by
1. C. Molina on traffic theory. Larly articles of significance to telephone
transmission included those on earrier transmission by Hartley, long
able cireuits by A. B. Clark, and radio communications by Llovd Espen-
«hied. K. K. Darrow published the first of a notable series of articles
reporting advances in physics, and among the first artieles in the area
of materials research, G. W. Elmen and H. D. Arnold reported on
Permalloy.

These early contributions helped to establish standards of technical
excellence that have been a challenge and inspiration to subscquent
authors and to those who have served as editors and advisors. As new
knowledge about communications advances even farther in scope and
depth, the B.S. T will continue to serve both the Bell System and the
entire scientific and engineering community.
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This paper deals with the problem of maintaining the most complex
portion of an experimental electronic telephone switching system, the cen-
tral control. New and more effective automatic trouble detection and diag-
nostic techniques were used. In order to utilize these techniques effectively,
a maintenance dictionary, i.e., a lable relating trouble indications with
corresponding faulty plug-in package, had to be produced. The system
itself was utilized to creale this dictionary. Over 50,000 known faults were
purposely introduced inlto the cenlral control to be diagnosed by its diag-
nostic program. The corresponding lest results were then recorded via a
high speed output. Finally, these test data were sorted and printed in dic-
tionary form by a compulter.

I. INTRODUCTION

In November, 1960 Bell Laboratories started its field trial of an
experimental electronic telephone switching system in the town of
Morris, Illinois. This system (extensively described elsewhere)! was
one of the first attempts to introduce electronics on a large scale into
telephone switching and as such, brought us face-to-face with a new
class of problems, especially in the field of maintenance of centralized
telephone equipment.

The problems of maintaining an electronic telephone switching sys-
tem are formidable, but as will be seen presently, the tools naturally
available for this maintenance are powerful. This paper will deal with
the problem of maintaining the most complex portion of the experi-
mental electronic telephone switching system, the central control.

1177
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II. RELIABILITY AND MAINTENANCE OBJECTIVES

The character of a commercial telephone system as a whole imposes
unusual maintenance objectives for its component parts. The vital role
of a central office demands that it have an extremely low downtime.
At the same time, since the telephone system is so widespread and
cannot be concentrated in a few key locations, another objective is that
it be maintainable by telephone system craftsmen.

These are extremely difficult requirements. In order to maintain
a sufficiently low downtime with devices currently available, it is neces-
sary to provide some redundaney in the equipment so that single trou-
bles do not cause the entire system to fail. The simplest form of re-
dundancy, and in the present state of the technology probably the least
expensive, is the simple duplication of all common equipment in the
system. Thus, where only one memory store is required for running the
system, two are provided; where only one control unit is required for
running the system, two are provided, ete.

III. DESCRIPTION OF THE MORRIS ELECTRONIC SWITCHING SYSTEM

Trig. 1 is a block diagram of the system. The customer’s line comes
into the office and has an appearance on the network and on the scan-
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F1a. 1—General system block diagram.
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ner. The appearance on the network permits him to be connected to
another customer, to dial tone, or to a ringing signal. The appearance
on the seanner permits the system to detect the status of his line.
When a customer lifts his telephone handset off the cradle, a loop is
closed to the central office, changing the voltage at a point that is de-
tectable by the line scanner. Similarly, when dialing, this loop is opened
for brief intervals; for example, if a 9 is dialed the circuit is opened nine
times.

The flying spot store is used to store the program of the system and
the individual translation information associated with each customer.
The barrier grid store is used to store information as to the status of
the lines in the office (busy, idle, or dialing) and to assemble dialing
information during the time that a customer is actually dialing. The
signal distributor is used to operate the test relays in the office and to
signal to distant offices. It is also used to switch between working and
standby units. The central control must coordinate the actions of all
these units, i.c., take the output of the line scanner and the barrier
grid store, act upon these outputs according to the instruction given by
the flying spot store, and use these results either to set up a connection
in the network or write further data in the barrier grid store; it must
also request the next instruetion from the flying spot store.

These facilities can be used for testing the system in a relatively
sophisticated manner. Available for the purposes of setting up a call is
a rather complex system for processing data. Testing is also actually
a data-processing action. Thus, when a faulty unit is being tested, we
get the instructions for testing from the flying spot store and we get
the test results either from match eircuits between units performing
supposedly identical functions or from the line scanner which has test
probes into various cireuits. Test results are then assembled in the
barrier grid store and are eventually typed out using the teletypewriter
(which is also under the control of the signal distributor).

As mentioned earlier, all important and common equipment is dupli-
cated. This leads to a two-fold advantage for testing. First, a rather
sophisticated data-processing machine is always available which can
automatically apply tests, and interpret and report test results. Second,
an identical unit, presumably in good working order, is always availa-
ble; the output of this unit may be compared with that of the circuit
heing tested. A match of outputs indicates a successful performance of
a test, while a mismatch indicates a test failure.

The program for controlling tests is stored in the flying spot store.
Storage space in this store is both expensive and limited. Therefore, it
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is not possible to store a program sufficiently flexible so that it can
print out the identity of a defective package. Instead, the program
prints out test results and these test results are then compared with
test results that are anticipated by the designer and are placed in a form
referred to as the “maintenance dictionary.”

1IV. CENTRAL CONTROL MAINTENANCE

The central control is the basic control unit of a real-time, special-
purpose, program-controlled data-processing machine. It controls the
flow of information to the stores, markers, scanner and signal distribu-
tor. It is duplicated. There are over 8000 circuit packages (6500 tran
sistors, 45,500 diodes) in both central controls. The two central controls
normally operate in parallel, executing the same instruction and per-
forming the same operations, even though only one of the controls,
the “active” central control, is used to control such system output cir-
cuits as the markers and signal distributor. Certain key outputs of the
two central controls are matched; trouble in either central control leads
to a mismatch. Any mismatch initiates a special fault-check program,
which is used to decide which, if any, of the central controls has the
trouble. The program causes central control to make a number of de-
cisions; if the active central control makes any incorrect decisions, it
switches itself out of service. If a decision made by the active central
control is correct but a mismatch oceurs, it indicates a trouble in the
standby central control. In case the active central control is defective
‘to such a degree that it cannot execute the fault-check program, a time-
out, eircuit will automatically switch this eontrol out of service.

After the fault-checking program has been completed, a diagnostic
program is started. Whenever the system finds a spare time period of
one millisecond when no telephone operations are required, tests are
performed on the suspected central control. The results of these tests
are then typed out using the system teletypewriter. These results must
then be interpreted with the aid of a maintenance dictionary.

V. THE CENTRAL CONTROL MAINTENANCE DICTIONARY PROBLEM

For most of the units of the system, a maintenance dictionary can be
specified with a reasonable amount of effort by the designer of the test
programs because the units are functionally comparatively simple. For
example, the characteristies of different types of faults which may occur
in the scanner lead to a relatively small number of simple types of pat-
terns which can be readily examined. However, central control is much
more complex both in its functions and in its circuitry. The type of



AUTOMATIC TROUBLE DIAGNOSIS 1181

symmetry which is characteristic of scanner, signal distributor, network,
and even the stores is totally absent in the case of central control. Even
the number of the tests which has been selected (about 900) attests to
this difference of complexity. The work of preparing a dictionary by
hand would have been formidable and the resulting dictionary would
have been very incomplete. As a result, the automatic means described
in this paper were used to produce a dictionary that was both as com-
plete as the diagnostic tests would permit and which required only a
reasonable amount of development effort.

The scheme was to introduce about 50,000 faults into central control
and get the test results associated with each fault. These test results
could then be sorted and finally printed as the desired dictionary.

This scheme had a number of advantages over other techniques.
First of all, while considerable effort would be required to design the
basic mechanism and circuits for carrying out this scheme, once this
effort had been expended, the number of troubles which could be ana-
lyzed could be made very large without enormous additional expendi-
ture of effort. Secondly, no errors of analysis could creep into the sys-
tem. Thirdly, because computer analysis would be required for the final
production of the dictionary anyway, it would be possible with little
additional effort to create a dictionary printout format that would
closely resemble the format of the test results which are normally ob-
tained by the system. Finally, the actual process of creating the dic-
tionary could be deferred to a relatively late date so that the dictionary
would be based on the most up-to-date version of central control and
the most up-to-date version of the diagnostic program.

The basic scheme for deriving the dictionary data is discussed below.
First, the system must be switched to a special dictionary mode of opera-
tion, dropping all telephone work. (Since this is done in the laboratory,
not in a working office, this is not at all serious.) Then, information is
fed to the system concerning the identity of the package whose possible
faults are to be simulated. Next, the faults are simulated. After each
fault, the system diagnostic program is started; a punched paper tape
output is used to record the identity of the package, the number of the
fault, and a complete report of the tests that failed when that fault was
simulated. Such an output record is generated for each fault that is
simulated. These records are then sorted and printed in suitable form
by a computer.

VI. GENERAL DESCRIPTION OF DICTIONARY PREPARATION

A number of special pieces of equipment were designed for the prepa-
ration of the dictionary. Two fault-simulation units were used to simu-
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late essentially all the packages and their faults. A test control unit
was used to sequence the faults automatically in a given package and
coordinate all special recording equipment with the system.

Information identifying the package whose faults were to be simu-
lated was stored on a regular 5-channel teletype tape and was automati-
cally fed into the system at the proper time by a conventional 100
words per minute reader when the corresponding circuit card was to be
tested.

A high-speed 1000 words per minute (100 characters per second)
TELETYPE tape punch was used to record the test results. The output
data for each fault consists of the package identity and its location, the
fault number, and the test results.

Fig. 2 shows the functional block diagram and peripheral equipment
involved in collecting the test data.

The test control unit controls the over-all operation of the fault
simulation and data gathering. The ‘“normal-test” switch on the test
control unit is first operated to the test position. This requests the sys-
tem to go into the dictionary mode. When the system has reached a
convenient point in its program, it stops the central control clock and
turns over the control to the test control unit. The system cannot start
again until a signal is received from the test control unit.

When the “system-off”’ lamp on the test control panel is turned on,
the package on which faults are to be simulated can be pulled out and
replaced by the fault-simulation unit. Then the “automatic test” push-
button on the test control unit is operated. This tells the system to
start an automatic test.

As soon as the automatic test signal is received, the system requests
the package information tape reader to read in one package identity.
Since the sequence of packages to be tested is the same as that listed on
the package information tape, the identity will be the package currently
under test. This information is stored by the system and later affixed to
the corresponding diagnostic test results.

When the package identity has been stored, the system commands
the test control unit to switch in the first fault and immediately initiates
a complete diagnosis. Upon completion of the diagnostic tests, the sys-
tem delivers the final test results to the high-speed tape punch. The
system then requests the next fault to be switched in and another round
of diagnostic tests and data punching begins.

The same cycle of operation is repeated until the fault-simulation
unit informs the test control unit that the last fault on this package has
been tested, in which case the test control unit puts the fault-simulation
unit in a no-fault condition and asks the system to carry out the same
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Fi6. 2—Dictionary data acquisition: funetional block diagram.,

diagnostic routine. The test result output channel is now switched from
the high-speed tape punch to the existing system teletypewriter, so
that the test results will be easily readable. Normally, it is expected
that there will be no test failures at the no-fault condition. Therefore,
the teletypewriter will print out only the ALL TESTS PASSED message.
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The main reason for making such a test is to check the correct func-
tioning of the fault-simulation unit, i.e., that the substitution of the
fault-simulation unit does not itself introduce a fault. The test also
provides an auxiliary means to monitor the proper operation of the
system.

When diagnosis for the no-fault condition is completed, the system
performs the routine tests on all major system units; this enables the
system to detect any trouble. After the system has succeeded in going
through all the routine tests, it again turns itself off and lights the “end
of automatic test” lamp on the test control unit panel. This completes
the fault simulation for one package. The entire operation from the
first fault to the last fault, then to the no-fault state, is done automati-
cally following a single operation of the “automatic test’’ pushbutton.

During the time that the dietionary data was being gathered, a modi-
fied system program was used. The system did not spend a large amount
of time performing unnecessary telephone work while it was actually
creating the central control dictionary.

A high-speed 1000 words per minute TELETYPE reader was em-
ployed to read the tape as soon as it was punched. On the paper tape
seven channels were used, six for the test data and one for the lateral
parity bit generated by the system. The output of the reader was fed
to a tape error detection unit which checks the parity of each charac-
ter and the block length of the test records. The number of characters
in the test record for each fault should be the same.

Before the data could be sorted, they were first converted from the
punched paper tape to magnetic tape. A computer was then used to
sort the test data. The actual dictionary was printed directly by a tape
controlled printer,

In the dietionary project, work was divided into several major parts.
A brief description of each part is given in the following sections.

VII. FAULT SIMULATION

The two central controls in the system are identical. Normally, one
serves as the active unit and the other one as the standby or vice versa.
The active unit always diagnoses the one in trouble. Therefore it is
necessary to insert faults in only one of the central controls. The total
number of cireuit packages in which faults have to be simulated is about
4000.

About 49 different types of packages are used in central control.

All the faults simulated are of the catastrophic type. Faulty diodes
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are simulated as being either shorted or open, resistors as open and
transistors are simulated as either permanently on or off.

Only single troubles are simulated. It would be totally impractical to
simulate multiple faults. Furthermore, routine tests (at 100 millisecond
and 1 second intervals) and matching between two central controls are
performed often enough so that it is reasonable to assume that a single
trouble will be detected and diagnosed before another fault develops.

Obviously it would be equally impractical to simulate all marginal
conditions. It is hoped that a majority of the marginal conditions, if
they result in trouble at all, will give the same characteristic result as a
corresponding catastrophic fault. For example, if the reverse imped-
ance of a diode is too low, a gate may behave in the same manner as if
the diode were shorted.

The number of faults per package varies from 2 to 30. Over 50,000
faults were simulated in order to create the dictionary.

In the packages containing only diodes, troubles are simulated for
each gate; in the other type of packages, mainly those containing tran-
sistors, only faulty output conditions are simulated. The results of the
diagnostic tests are based on the output of a package rather than the
individual component contained therein.

An example of fault simulation for a 2-input OR gate is given in Fig.
3. Each diode is shorted and opened by the operation of a different
relay. Only an open resistor is simulated. If a shorted resistor were
simulated it might cause damage to other components in the system.
FFurthermore, shorted resistors are relatively rare trouble conditions.
The fault-simulation unit for the AND gate is similar, except that no
resistor is involved.

The transistor packages are simulated differently. For example, four
possible faulty output conditions are simulated in a transistor flip-flop
circuit.

1. Set permanently high, reset permanently low.

2. Reset permanently high, set permanently low.

3. Both high.

4. Both low.

All faults are controlled by the operation of different relays. Fig. 4
shows how this is done. The same simulation technique is used for all
other types of transistor and miscellaneous circuit packages.

VIII, MODE OF OPERATION

When test data was being collected in the preparation of the dietion-
ary, the system operated in two basic modes: normal and testing.
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F16. 3—Fault simulation on OR gate.

In the normal mode the dictionary test equipment is effectively dis-
connected from the system and the system is allowed to operate in its
normal condition. If a trouble other than the one intentionally intro-
duced is detected in the system during the course of a test, the system
is placed in its normal mode so that any faults may be diagnosed and
correeted.

In the test mode, the following different tests can be initiated by
operation of appropriate push buttons:

1. Automatic test. This has already been described under the general

deseription.

2. Manual test. The system can be asked to conduct diagnosis on any
desired fault including the no-fault case. The results of a manual
test are recorded on the system teletypewriter. Fault simulation
is accomplished by means of the “fault advance” pushbutton on
the test control unit. The manual test, made from time to time,
is used to check the special dictionary programs and equipment.
The manual test data are also used to spot-check the output data
on the paper tape.
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Fig. 4—Fault simulation on transistor fip-flop.

3. Skip package identity. This is a special feature provided so that
a package identification block stored on the package information
tape can be bypassed. When the “skip-package” button is operated,
the system controls the tape reader and advances the package
tape to the next block. This provision is made so that errors made
during the preparation of the information tape can be corrected.

IX. SYSTEM CIRCUIT REQUIREMENTS

All communications between external equipment and the system are
accomplished using the scanner and signal distributor. The scanner
provides central control with an information access to lines, trunks,
and test points. Signal-distributor outputs provide access from the
central control to one of a large number of outputs. Very minor modifi-
cations in the system were needed to prepare the system to create the
dietionary; the modifications consisted of adding a few temporary cables
and connectors. The only wiring required was the jumper wiring from
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the external equipment to those scanner and signal-distributor points
used for the dictionary project. Altogether, 12 scanner points and 23
signal distributor points were used.

X. PACKAGE INFORMATION TAPE

The package information tape records the type and location of each
package to be tested. This information is read into the system via a
conventional 100-speed (10 characters per second) tape reader; the iden-
tity is read once for each package to be tested. The system controls the
tape reader under the command of the test control unit.

Only the pertinent codes associated with the package identity are
stored. The system rejects all functional codes such as space, carriage
return, ete. This package information is later attached with its associ-
ated diagnostic test results in the final output for each fault.

Eleven characters are assigned for the identification of each package.
The first five specify the location, the next six indicate the type of pack-
age.

The package information was first tabulated at random manually
from an apparatus designation chart. IBM cards, one for each package,
were prepared from the tabulated list, and were manually checked.
After the cards were sorted according to the predetermined order in
which the packages were to be tested, a printed list was prepared. This
list was used as the master package test schedule during data gathering.
The punched cards were then converted into a fully perforated, 5-chan-
nel paper tape in TELETYPE code. IFrom this tape, a final printed,
chadless tape was prepared. A printed tape was used so that the opera-
tor would be able to read it. Thus, a check could be made before a
package identity was read into the system. A printed tape so obtained
would go through a final check.

XI, SYSTEM PROGRAM MODIFICATIONS

Modification of existing programs, mainly the central control diag-
nostic programs, and the flow charting and coding of a number of new
program segments were required. About 1000 new program words were
added as a result of the changes and additions made. Modifications
were necessary in order to have the system operate in different modes
and perform different tasks.

During the period of dictionary preparation, the system had two
additional teletypewriter communication channels: one input channel
from the conventional 100-speed tape reader, for reading the package
information into the system, and one output channel to the high-speed
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tape punch for test data recording. In addition, the existing teletype-
writer output was retained for conveying auxiliary information to the
test team.

Most of the new program segments were for data handling, coordina-
tion of different test modes, control and reading of the package in-
formation tape, recording of test data on the high-speed punch, ete.

XII. PUNCHED PAPER TAPE TO MAGNETIC TAPE CONVERSION

The sorting of the test data was done on an IBM-704 computer. The
test data recorded on paper tape in binary code had to be converted
into magnetic tape, compatible with the 704. Conversion was made on
an IBM-9200 machine. Information was processed at the rate of 500
characters per second.

The magnetic tape recording was an identical image of the paper
tape. The code conversion was somewhat different from conventional
conversions. In the 7-channel paper tape, the test data utilizes all 64
combinations of the first 6 channels, and the 7th channel is used for an
odd parity bit for each character.

XIII, DATA RECORDING AND PROCESSING

13.1 Dala Recording

Over 900 central control diagnostic tests are grouped into eight
phases. Each phase diagnoses faults of certain parts of the central con-
trol.

During the normal diagnostic operations, the test results are recorded
at the end of each phase. The printout consists of two parts. The first
part is the system component identification, i.e., whether it is central
control 0 or central control 1, together with the phase number (A, B,

. or H). The second part is the test results. Only the numbers of
those tests that fail are printed out. Each has a 3-digit octal number.
The test results, therefore, are variable in length, depending on how
many tests have failed.

Tor dictionary preparation, a binary coding system was adopted for
recording test data. ISvery test in the diagnostic program was repre-
sented by one bit on the paper tape. This was also true for the magnetic
tape, whose recording was identical to the paper tape except with
higher longitudinal density: 200 versus 10 characters per inch. A “1”
or “hole’” means that the corresponding diagnostic test has failed and a
“0” or “no hole” indicates that the test passed. Ilach character consists
of 7 bits, 6 for registering six different test results, and 1 for parity. The
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basic advantage of using this binary coding system is that it makes
the sorting process easier. The number of characters in the test record
for each fault is the same regardless of the number of test failures.

13.2 Dala Processing

The data processing for the dictionary was done by an IBM-704
computer and the actual printing of the dictionary by a high-speed
tape-controlled printer.

The 704 program is quite complex and involved. It can be divided
into three major parts: phase sorting, test sorting, and data printing.
The entire program is about 2500 words.

In the central control dictionary, all diagnostic test results were ar-
ranged in an orderly manner so that, given a certain sequence of test
failures, the maintenance man could easily look for the same sequence
in the dictionary. Associated with each sequence, one or several package
identities and locations are listed. When several appear, failure of any
one of them could result in such a test failure sequence.

13.2.1 Phase Sorting

All test records were sorted first according to their phase information.
The test record for each fault eontains three parts:

1. The package identification and fault number.

2. The individual test results.

3. Phase information, which is represented by 8 bits, one for each

phase. If all tests have passed in a phase, the corresponding bit
will be 0; if one or more tests have failed, the bit will be 1.

The purpose of this phase sorting is to arrange all records according
to the alphabetical order given by the phase information. For example,
consider a record a with phase information 00101100 and a record B
11000100. The 8 bits represent phases A, B, C, D, E, F, G, H. Omitting
all zeros (that is, those phases which do not have any test failures),
phase information for record a becomes CEF and record 8 ABF. After
the phase sorting, record 8 will be placed in front of record a, that is,
ABF in front of CEI, as are the words in a regular dictionary. Sorting
by phase involves only part 3 of the test record.

13.2.2 Test Sorting

After the test records were sorted by phase information, they were
subsorted in accordance with test failures. This was necessary because,
with 255 possible phase combinations and over 50,000 different records,
many records have the same phase combinations. The test sort takes
all the records with identical phase information and further arranges
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them in a numerical order according to the binary test results which
are given in part 2 of each test record. The actual test results consist
of 916 bits without counting the added dummy bits. Dummy bits were
added to make up a complete 704 machine word (36 bits) required by
the computer. ach bit corresponds to a particular test. A “1"" or “hole”
means that the test which the bit represents has failed.

As an example, assume three records, @, 8, and 7, having identical
phase information and, for simplicity, only 6 diagnostic tests. The test
failure information on these records is the following:a =00 10 1 1,
B=110010andy =01000 0. The leftmost bit corresponds
to test No. 1. Therefore, tests No. 3, 5, and 6 have failed in record
a; 1,2, and 5 in B; and 2 in y. After test sorting, the three records will
be arranged in this order:

Record Binary Test Data Tesodlated Toat  Antlopuas Slphs-
8 110010 1,2,5 ABE
¥ 010000 2 B
@ 001011 3,5,6 CEF

Tt ean be seen that the binary test data is so arranged that the analo-
gous alphabetic sequence is in true alphabetic order.

13.2.3 Dictionary Printing

The printing of the actual dictionary was done by an IBM high-speed
tape-controlled printer. When all the records were properly sorted by
phase and test information, they were converted and printed in a die-
tionary form.

The test data collected for the dictionary was in binary form. This
was converted to the form used by the system in typing out test results.
Whenever a bit is “1”, the location of that bit in the test recording indi-
cates the phase and test number of this test failure. This is converted
into a 3-digit octal number. The test data format in a dictionary, there-
fore, looks exactly like the system teletypewriter printout in a normal
diagnosis. Identical test data produced by different faults is entered
only once in the dictionary, but all the faults are listed. Fig. 5 shows a
sample sheet of the dictionary.

XIV. EQUIPMENT EMPLOYED
141 TELETY PE Equipment

14.1.1 Highspeed Tape Punch and Receiving Signal Converter

A 1000 words per minute (100 characters per second), tape punch
was used to record test data from the system. It was equipped for punch-
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ing eight channels, although only seven channels were used. The high-
speed tape punch is a rotating device which can be operated only at a
particular point in the eycle. The receiver signal converter acts as a
buffer between the system and the punch. This equipment has coded
input circuits, consisting of two wires each, so arranged that informa-
tion appearing on these leads will be punched on the tape at the proper
point in the punch operating cyele. Since the punch can accept informa-
tion only at a certain point in a cyele, a buffer store is included in the
receiving signal converter, where the coded signal is stored until the
punch is ready to accept it.

14.1.2 High-Speed Tape Reader

The reader operates at a speed of 1071.4 words per minute (107.14
characters per second). It is a parallel output device, equipped for eight-
channel operation. The reader was used in conjunction with the tape
error-detection unit to check the output paper tape.

14.1.3 Transmitter Distributor

A transmitter distributor was used to read the package information
tape. This unit operates at 100 words per minute (10 characters per
second) and is equipped with a set of five parallel code-reading contacts.
These contacts were used to feed the code signals to the system.

14.2 Equipment Built

14.2.1 Test Control Unit (Fig. 6)

The test control unit was the master control for the dictionary tests.
This unit coordinated the operation of the system and all peripheral
dietionary equipment. Since the operating time of any type of logic
employed in this unit was insignificant compared to the total time con-
sumed in changing the packages, recording the test data, loading, and
unloading paper tapes for the punch, ete., relay logic was used. The
circuits were so designed that any improper operation of pushbuttons
and control levers did not cause erroneous data to be recorded.

The test control unit performs the following major functions:

1. Controls the system clock: when the system clock stops, it will

not start again until a command is received from this unit.

2. Governs the reading of the package information tape.

3. Communicates with the system and provides instructions for per-
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Fia. 6—Left: fault-simulation unit for gate packages. Center: test control unit.
Right: fault-simulation unit for transistor packages, with flip-lop package
plugged in.

forming an automatic or manual test or a package identification
skipping operation.

4, Instruets the fault-simulation unit as to when a particular fault
by itself or as a part of a series of faults should be simulated. The
simulation and sequencing of faults during an automatic test are
accomplished automatically.

5. Allows manual insertion of any desired faults with the aid of the
fault reset button, fault advance button, and fault number indica-
tor.

6. Provides visual indications for the following: (a) mode of opera-
tion: (test or normal), (b) which fault is being tested, (¢) oceur-
rence of an unsimulated trouble in the system, (d) completion of
either an automatic or manual test or the skipping operation, (e)
the off state of the system.

14.2.2 Fault-Simulation Unit

A total of 49 different types of packages are employed in the central
control units. A study of the type and number of faults to be introduced
in all the ecircuit packages used revealed a logical division between gate
packages and other types of packages, such as flip-flops, amplifiers,
ete. Two fault-simulation units were designed which simulated essen-
tially all the circuit cards in the central control.

The fault-simulation units were wired to create the required circuit
packages with the necessary fault-simulation features by means of a
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plugboard arrangement. The plugboard consisted of a 150-pin connee-
tor. The socket portion of this connector was wired to various compo-
nents provided in the fault-simulation unit. For each cireuit package, a
separate plug was used which contained the necessary jumper wires to
simulate the corresponding package.

To minimize the stray capacitance, the fault-simulation units were
laid out to be as compact as possible. Each unit was about 7”7 x 7”7 x
4”. as shown in Fig. 6. Microminiature relays were used inside the units
to switch the various faults. During testing, they were placed in close
proximity to the package socket. The AND and OR gate fault-simula-
tion unit consisted of 30 relays plus the components necessary to simu-
late any one of the 16 types of gate package.

The second fault-simulation unit was used for transistor and miscel-
laneous packages. Most of the faulty conditions for these packages were
simulated on the output terminals; therefore, only a few types of circuit
wards needed to be wired up from components provided in the unit
itself. In the majority of cases, a good package was plugged into a
socket supplied on the fault-simulation unit, and the conditions on the
output terminals were controlled by relays inside the unit. As in the
first unit, plughoard connectors were provided for each simulated type
of circuit packages.

The sequencing of faults was controlled by the test control unit. A
signal from the fault-simulation unit was sent to the test control unit
when all the faults were completed for a package.

14.2.3 Tape Error Detection Unit

The tape error detection unit was designed for checking the punched
paper tape. The code signals were fed into this unit in parallel by the
high-speed tape reader. Two types of tape errors were detected by this
unit: parity of each character, and predetermined block length of test
data. The output tape was checked as soon as it was punched.

XV. DETAILED PLANNING OF TEST PROCEDURES

In order to take up a minimum amount of system time to create the
dietionary, careful plans were made. The plans included the detailed
test procedures, manpower requirements, job descriptions for the
operators, and the equipment operation instructions involved in the
acquisition of test data. Suggested procedures were also given in case
of trouble during the dictionary test. All conceivable major and minor
troubles were analyzed. The effort spent in planning was worthwhile.
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EXPERIENCE WITH MORRIS CENTRAL CONTROL MAINTENANCE

The following points summarize our experiences:

1.

Certain troubles were not detected by the diagnostic program.
These can be attributed to one of the following:

(a) The particular component in which the trouble was simulated was

not actually used by the system.

(b) There was some redundancy in the circuits, creating the possi-

(c)

bility of troubles that could not be detected.

The diagnostic program was not exhaustive. Circuits in certain
areas have not been covered. Additional tests could have been
added to the present diagnosis, but it was felt that such an effort
was not justified for the Morris System.

(d) Due to the design of the Morris central control, there were limi-

2.

tations which made it impossible to detect certain troubles. For
example, a shorted clock diode on an AND gate usually resulted
in no test failures. The low impedance of the clock supply pre-
vented the clock pulse from being clamped. However, the margins
were decreased and occasionally a test failed when this type of
trouble was introduced. An open clock diode on an AND gate at
the input to a flip-flop which had no feedback around it usually
resulted also in no test failures. The flip-flop merely changed
state, without waiting for the clock pulse which normally initiated
the change. However, some flip-flops could be operated falsely
by the noise on the gate leads which could oceur before the clock
pulse arrived.
Some troubles resulted in inconsistent test results. Most of these
were due to circuit design. For example, certain troubles intro-
duced caused complementary functions to be performed simul-
taneously, such as writing a “0” and a “1” in a memory spot.
These troubles produced race conditions in the central control
logie, resulting in inconsistent test results.

3. Some troubles introduced in the standby central control affected

the operation of the active system. This indicated that better iso-
lation was required between the two central controls.

Many test results were extremely difficult to analyze. Since there
are some 900 tests made on each fault, even sketchy analysis is
time consuming. It is very diffieult to explain why certain tests
fail with respect to trouble introduced and to predict all the tests
that should fail. For these reasons, the dictionary is extremely use-
ful. Even now, if a set of test failure results is not found in the
dietionary, analysis presents grave problems.
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5. The fault-simulation units introduced sufficient capacitance in the
circuit to cause marginal operation in some of the circuits. By test-
ing most transistor packages in a fixed state (that is, a flip-flop
permanently set, ete.), and by reducing the value of diode gate
resistors, it was possible to obtain meaningful data on all but seven
packages in central control. These seven persisted, in spite of all
efforts, in failing tests when the simulated package was plugged
in and no actual faults introduced.

6. It appeared evident that a central control dictionary cannot be
written from an analysis of the circuit with respect to the diag-
nostic tests. The complexity of the central control made it difficult
to predict how the central control will perform with any given
fault.

7. Even if a dictionary were not produced, extensive trouble inser-

tion or trouble simulation was necessary to debug and measure

the effectiveness of the diagnostic program.

XVII. SOME INTERESTING STATISTICS

The central control maintenance program has about 7200 program
words, 6000 of which are for diagnosis. Over 50,000 faults were simu-
lated. About 250 hours of actual system machine time were used ex-
plicitly for data gathering. The total data (about 60 million bits) occu-
pied 93 reels of 1,000 foot, 7-channel paper tape. These in turn were
converted by an TBM-9200 machine into four reels of magnetic tape.
The conversion time was about 12 hours. Out of 51,671 records, about
35 were destroyed and 25 rendered doubtful because of machine errors.

The sorting program for the IBM-704 computer is about 2,500 words
long, and was written by one man in about eight months. The total
sorting time on the IBM-704 computer was 34 hours.

The time spent in designing the diagnostic program and producing
the dictionary was about 12 man-years, of which two man-years was
for designing the diagnostic program and two man-years was for de-
bugging and modifying it.

The dictionary consists of 1,200 pages (11”7 x 143”), bound into four
volumes.

XVIIL, DICTIONARY RESULTS

There are 10,315 different test patterns, 73 per cent of which list only
one possible package failure, 13 per cent two possible package failures.
Therefore, for a large number of catastrophic troubles (86 per cent),
the dictionary will be able to pinpoint the fault to within two packages.
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Our experience indicates that a man with a few minutes of training
will be able to consult the dictionary and determine the faulty package,
usually within two to three minutes, sometimes as long as five to ten
minutes, and this appears adequate. Our preliminary evaluation of the
dictionary indicates that it will be able to locate about 75 per cent of
the troubles.

XIX. CONCLUSIONS

The feasibility of producing a central control dictionary by the system
itself has been proven, and a dictionary has been produced. Considera-
ble experience has been gained with the maintenance of a large elec-
tronic logic cireuit. Asa result, a number of improvements can be made.
A great deal has also been learned regarding the limitations of diagno-
sis due to the central control circuit design. These limitations cause
inconsistent test results or no test failures. With the improvements
which can be made in the diagnosis and the circuit design, it appears
feasible to have a central control dictionary which will be able to locate
90 per cent or more of all the probable troubles.

Using the dictionary techniques, the average repair time may be
kept very low, and the maintenance was made much easier. Success in
this area of work has contributed greatly to meeting the initial main-
tenance and reliability objectives.?

Considering that this was an initial attempt to solve a very complex
and difficult problem, the results have been gratifying. Considerable
headway has been made in automatic diagnostic techniques. However,
we must develop these techniques further if we are to cope successfully
with the problems of maintaining the even more complex electronic
telephone switching system now being developed.
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APPENDIX

Description of the Central Control Diagnostic Program

A complete understanding of the central control diagnostic program
demands an intimate knowledge of the central control. This appendix
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will therefore only illustrate the types of tests used and the methods
for observing test results.

For clarity, it is desirable to define a simplified repertoire of instruc-
tions. A, B, C, D, AA, AB refer to symbolic designations for flip-flops,
flip-flop groups, or storage locations.

SM Sample match cireuits for a mismateh condition dur-
ing the process of executing the next instruetion.

G AB (Gate the contents of flip-flop group A to flip-flop
group B, via bus.

ST1 AA Set up transfer register 1 (T1) to quantity AA.

RO, AB Transfer to the address stored in transfer register |

R1, AB if the reading at AB is 0 or 1 respectively.

RIFFO, C Transfer to the address stored in transfer register 1

RI'F1, C if FFC is 0 or 1 respectively.

WFF C, D Write the contents of flip-flop C into memory at ad-
dress D,

Wwo, AB} Write 0 or 1 respectively into memory of address

W1, AB AB.

Match eircuits are provided to compare the outputs of the instrue-
tions to the stores (transfer or advance to next instruction for the fly-
ing spot store, read or write 0 or write 1 to the barrier grid store) and to
mateh the busses of the two central controls.

In the following examples, each program step is listed, followed by a
symbolic modifier and by comments. In studying these programs it is
important to remember that the two central controls are working in
synchronism, and that the working central control is addressing and
writing into the stores.

Tlirst, to check the ability to make decisions, the following program
was applied:

W0 AB (AB is any convenient address.)
SM
Rl AB

If o mismateh is detected on the Rl instruction, the standby central
control has falsely transferred on a reading. The program

W1 AB (AB is any convenient address.)
SM
R1 AB



1200 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

will check the ability of the standby central control to transfer on a
reading.

In order to check the ability to write correctly, register R was first
set up, to all 1’s. Register R has the property that its individual flip-
flops may be written into memory using the WFF instruction, or may
be read using the RFT'0 and RFI1 instructions.

The program:

ST All ones

G T1, R

SM

WFEFT C,D Any flip-flop C, of register R, to any convenient
address D.

In order to check the flip-flop groups of central control, the following
program was used:

ST1 All zeroes

G T1, A (A is the flip-flop group being tested.)
SM
G A, R.

As previously mentioned, individual flip-flops of register R may be
examined, If a mismatch has oceurred, the proper flip-flop may be iso-
lated by repeated use of the two instructions SM, RFFO, followed by
a check to see if the flying spot store order-match circuit indicated a
mismatch on the RIFFO instruction (the instruction which followed SM
was sampled for a mismatch); by checking all the flip-flops in R, the
flip-flops of A which were not capable of being set were detected. R and
T1 were previously checked to make certain that all their flip-flops
could be set and reset.

The above programs are typical. Common subroutines were used to
record the results of tests in the barrier grid store and to control the
typing out of these results with the teletypewriter.
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Heuristic Remarks and Mathematical
Problems Regarding the Theory

of Connecting Systems

By V. E. BENES

(Manuscript received February 1, 1962)

A connecting system consists of a set of terminals, a control unit for
processing call information, and a connecting network. Together, these
three elements provide communication, e.g., supply telephone service, among
the various terminals. In this paper we present a comprehensive view of the
theory of connecting systems, an appraisal of its current status, and some
suggestions for further progress.

The existing probabilistic theory is reviewed and criticized. The basic
features of connecling systems, such as structure, random behavior, com-
plexity, and performance, are discussed in a nontechnical way, and the
chief difficulties that beset the construction of a theory of traffic in large
systems are described. It is then pointed out that despite their greal com-
plexity, connecting systems have a definite structure which can be very useful
in analyzing their performance. A natural division of the subject inlo
combinatory, probabilistic, and variational problems is drawn, and is
illustrated by discussing a simple problem of each type in detail.

[. INTRODUCTION

»

Mass communication long ago spread beyond the manual central
office and assumed a nationwide character; it is presently becoming
world-wide in extent. Many of the world’s telephones already form the
terminals of one enormous switching system. The scale, cost, and im-
portance of the system make imperative a comprehensive theoretical
understanding of such global systems.

Nevertheless, a lack of knowledge about the combinatory and prob-
abilistic properties of large switching systems is still a major lacuna in
the art of mass communication. Tt is a fact of experience that each time
a new switching system is planned, its designers ask once again some of

1201
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the perennial unanswered questions about connecting network design
and system operation: How does one compute the probabilities of loss
and of delay? What method of routing is best? What features make
some networks more efficient than others? Ete.

The present paper is an informal discussion of problems in the theory
of traffic flow and congestion in connecting systems (called traffic theory,
or congestion theory, for short). The comments to be made are pref-
atory, tutorial, and illustrative. They are intended as background for
several papers of a more technical nature; one of these papers! appears
in this issue, and the remaining three?* are to appear later. In these
papers, topies touched on in the present work are considered in greater
depth and detail. Together, the papers are an attempt to desecribe a
comprehensive point of view towards the subject of connecting systems.
I believe that this point of view will be useful in constructing a general
theory of connecting networks and switching systems. What follows is
then in part a prospectus for research to be reported on in the future.

My concern in this paper is with some of the physical bases and princi-
pal problems, with the fundamentals and difficulties, of the subject. 1
wish to emphasize some important properties and distinetions on which
a systematic approach may be based. T am making a plea for a much
more general, abstract, and systematic approach to large-seale congestion
problems than has been envisaged heretofore.

Naturally, it is impossible to explore all the consequences of such a
comprehensive approach in one paper; I do not pretend to have solved
even some of the basic problems of the theory. I am only saying “Look,
perhaps these observations will help provide a general approach.”

Examples and simple problems appear in the text as illustrations of
the principal points made. For tutorial purposes, I have chosen particu-
larly simple and clear illustrations, which may seem trivial to cognos-
centi of traffic theory. Nevertheless, it has been my experience in talking
with engineers that the comprehensive view here presented is sufficiently
new to warrant clear, simple examples. More complex problems do not
belong in an introduetory work; they are to appear in later papers.

II. SUMMARY

In Section IIT we give a historical sketch of traffic theory, which is
followed by a critique of existing theories in Section IV. The general
properties of switching systems are discussed in Section V. The per-
formance of switching systems and desiderata for a theory of congestion
are considered in Section VI and Seetion VII, respectively. Sections V
to VII are heuristic and nonmathematical in character. Mathematical
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models are considered in a general way in Section VIII, while Section IX
concerns itself with some of the basic difficulties and questions that
arise in constructing a theory of traffic in a large-scale system.

In Sections X and XI we show that, despite their great complexity,
connecting systems actually have a definite structure which can be very
useful in analyzing their performance. This usefulness is exemplified by
four specific instances in Section XII. In Seetion XIIT we make a general
division of the subject into combinatory, probabilistic, and variational
problems. The remaining sections, Sections XIV to XVI, are devoted to
illustrating this division by working out a simple problem of each type in
full detail.

111. HISTORICAL SKETCH

We shall not attempt to canvass systematically the literature of con-
gestion theory. For the interested reader, the best single theoretical ref-
erence on the theory of probability in connecting systems is undoubtedly
the treatise of R. Syski;® the historical development of the subject has
been deseribed in papers by L. Kosten® and R. I. Wilkinson.” Neverthe-
less, we include a brief account of previous work in order to substantiate
our eritique (Section TV) of present theories of traffic in connecting sys-
tems.

The first contributions to traffic theory appeared almost simultane-
ously in Europe and in the United States, during the early years of the
20th century. In America, G. T. Blood of the American Telephone and
Telegraph Company had observed as early as 1898 a close agreement
between the terms of a binomial expansion and the results of observa-
tions on the distribution of busy calls.* In 1903, M. C. Rorty used the
normal approximation to the binomial distribution in a theoretical at-
tack on trunking problems, and in 1908 E. C. Molina improved Rorty’s
work by his® (or Poisson’s) approximation to the binomial distribution.

In Europe, the Danish mathematician A. K. Erlang, from 1909 to
1918, laid the foundations of the first dynamic theory of telephone traffic,
which is in general use today. Perhaps influenced by statistical mechanies,
Frlang introduced the notion of statistical equilibrium, and used it as a
theoretical basis for deriving his now well-known loss and delay formulae.
An account of Erlang’s work is given by Jensen.?

I'rom 1918 to 1939 traffic theory developed in many directions that are
(on retrospect) closely allied to specific problems that arose in the design
of the antomatic telephone systems that were coming into use, and in

* Blood’s unrecorded work was reported by E. C. Molina and described by
R. I. Wilkinson.”
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related queueing systems. We mention only a few topics: T. Engset!? in-
troduced the notion of a finite number of sources of traffic, G. . O’Dellt
published a classical paper on gradings, C. D. Crommelin'* studied con-
stant holding-time delay systems with many servers, E. C. Molina™ made
contributions to trunking theory. V. Pollaczek'* and A. I. Khinchin's
studied the queue with one server, and derived the delay distribution
that bears their linked names. Pollaczek has also solved single-handedly
many other difficult loss and delay problems. All these important con-
tributions are concerned with congestion in specific parts of connecting
systems. During this period, T. C. Fry wrote the first systematic and
comprehensive book! on applied probability; this book devoted a chap-
ter to telephone traffic, and appeared in 1928.

Between 1939 and 1948 there developed an increasing awareness
(among workers in traffic theory) that the mathematical bases of traffic
theory were closely related to the modern theory of stochastic processes
initiated by A. N. Kolmogorov!'” in 1933. In particular, Erlang’s idea of
statistical equilibrium was identified with the stationary measure of a
Markov process (or more generally with a semigroup of transition prob-
ability operators). Also, C. Palm!® stressed the importance of recurrent
processes, and W. Feller" that of birth-and-death processes, to traffic
theory. However, particular problems continued to form the bulk of
the new literature. Palm!® made a penetrating theoretical analysis of
traffic fluctuations, and L. Kosten studied such topics as retrials for lost
ealls,?® and error in measurements of loss probability.2

The introduction of crossbar switching and common control of con-
necting networks in 1938 (see Ref. 22) was accompanied by a new kind
of problem: calculating the loss due to mismatching of available links
(rather than to unavailability of trunks). The first comprehensive treat-
ment of loss in such systems was given by C. Jacobaeus®; his theory is
adequate for practical purposes, but is based on assumed a priori dis-
tributions for the state of the system. R. Fortet? has also made contribu-
tions to this topic in the spirit of Jacobaeus’ approach. A less satisfactory
method for the same problems based only on the possible paths for a call
has heen developed (independently) by C. Y. Lee?® and P. Le Gall.*®

The statistical equilibrium approach to congestion in crossbar systems
is rendered extremely arduous by the large number of possible states.
The difficulties in this method have been faced with some success by K.
Lundkvist? and A. Elldin®. However, no practically feasible approach
exists at present that simultaneously includes both the concept of sta-
tistical equilibrium and the structure of the connecting network. A
Sortior?, no approach exists that also includes the effect of the common
control equipment that places calls in the network.
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IV. CRITIQUE

In comparison with the highly sophisticated communications systems
that are being built, the models and assumptions on which theoretical
studies are based are often crude and fragmentary, almost more indica-
tive of our ignorance than of the properties of systems. It may be argued
that such a harsh appraisal of the condition of traffic theory is unjustified,
and is disproved by the practical successes of current engineering meth-
ods. However, it is not the efficacy of these methods, but their theoretical
basis and scope, that we are questioning. Who knows to what extent
present systems are “overdesigned’’?

To be sure, measures of performance, loss and delay formulas, and
routing methods are in daily use. Still, only in very special cases have
they been investigated, let alone analyzed and understood in the full
context of the system to which they are applied. Although the published
literature on telephone traffic alone is vast, and many models and prob-
lems have been considered, the existing theories tend to be incomplete
and oversimplified, applicable to at most a small portion of a system.
Useful comprehensive models are needed; to date, only individual pieces
of systems have been treated with theoretical justice. As R. Syski re-
marks on p. 611 of Ref. 5: “At the present stage of development . . . the
theoretical analysis of the [telephone] exchange as a whole has not been
attempted.” The general theory of switching systems now consists of
some apparently unrelated theorems, hundreds of models and formulas
for relatively simple parts of systems, and much practical lore associated
with specific systems. It will stay in this condition until sufficient the-
oretieal underpinning is provided to unify the subject. We believe that
this sad “state of the theory” is due largely to these three factors:

() The large scale, and consequent inherent difficulty of the problems.
(#7) The absence of a widely accepted framework of concepts in which
problems could be couched and solved.

(#37) The lack of emphasis on and success with the combinatorial as-
peets of the problems.

More generally, many of the basic mathematical properties of con-
necting networks and switching systems have either never been studied,
or, if studied, have not been digested, advertised, and disseminated for
engineering use. As a result, the design and complexity of systems has
consistently run ahead of the analysis of their performance.

V. GENERAL PROPERTIES OF CONNECTING SYSTEMS

We start by discussing some universal properties of connecting systems
from the point of view of congestion, without reference to definite mathe-



1206 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

matical models for their operation. Specifically, we describe, in a
nontechnical way, (¢) the general nature and outstanding features of con-
necting systems, (7z) the principal kinds of congestion that interest en-
gineers, and (777) some of the difficulties and desiderata in both the theory
and practice of large-scale switching. No mathematical abstractions are
used at first., Some observations made may seem obvious or trivial;
nevertheless, they are necessary for the general understanding that we
desire. On these observations, we shall base a systematic division of the
theory into three kinds of problems, combinatory, probabilistic, and
variational.

By a connecting system we shall mean a physical communication sys-
tem consisting of (z) a set of terminals, (?¢) control units which process
requests for connection (usually between pairs of terminals), and (7i7)
a connecting network through which the connections are effected. The
system is to be conceived as operating in the following manner: (1) calls
(or requests for conneetion) between pairs of idle terminals arise; (2) re-
quests are processed by a control unit, and desired connections are com-
pleted, if possible, in the connecting network; (3) ecalls exist in the net-
work until communication ends; (4) terminals return to an idle condition
when a call terminates. (Naturally, the arising requests may “defect”’ at
any point during the process of connection.)

The gross strueture of a connecting system is depicted in IMig. 1. Most
modern connecting systems follow this basic pattern. Particularly im-
portant examples are telephone central offices, toll centers, telegraph
networks, teletypewriter systems, and the many military communica-
tions systems.

All the examples cited share three important properties. These are (2)
great combinatorial complerity, (¢%) definite geometrical or other struc-
ture, and (7#7) randomness of many of the events in the operating system.

It is obvious that many connecting systems are highly complicated.

l_ﬁ
0
| > |
TERMINALS | C?‘gﬁ%{a‘:‘; | TERMINALS
| & |
f = |
|
CONTROL
UNIT

Tig. 1 — Connecting system.
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Both the control unit and the connecting network contain thousands of
parts which may (together) assume millions of combinations. That is,
the system can be in any one of millions of possible “‘states.” These num-
bers are inereased when several switching centers are considered together
as 1 unit, as in toll switching. Our purpose in calling attention to this
complexity is to suggest that it calls for theoretical methods that, like
those of statistical mechanics, are especially designed to distill important
facts from masses of detail.

It is less often realized, however, that this complexity is accompanied
by definite mathematical structure, and is frequently alleviated by many
symmetries. The control unit and the connecting network always have a
specific combinatory, geometric, and topological character, on which the
performance of the system closely depends.

By imputing randomness to the systems of interest we do not imply
that their operation is unpredictable; we mean only that the hest way of
describing this operation is by use of probability theory. It is not prac-
tical, even though it might be possible in principle, to predict the opera-
tion of a switching system by means of differential equations in the way
that the flight of a rocket is predicted. However, differential equations
have been used for many years to deseribe, not the motion of an actual
system, but the changes in the likelihoods or probabilities of its possible
states. Such equations govern the flow or change of probabilities and
averages associated with the system, not the detailed time behavior of
the system itself. It is in this weaker sense of assigning likelihood to
various events that we can predict the behavior of switching systems, a
fact first emphasized by A. K. Erlang’s pioneering work on telephone
traffic.? For instance, certain features (such as average loads offered and
carried) of telephone traffic that arve predietable in this weaker sense form
the basis on which toll trunking routes are engineered.

We now turn to examples of the strueture of connecting networks and
of control units. The basic features of the connecting network for the
No. 5 erosshar system are shown in a simplified form in Fig. 2. The net-
work has two sides, one for subseribers’ lines and the other for trunks.
Small squares represent rectangular crossbar switches, capable of con-
necting any inlet terminal to any outlet terminal. These switches are
arranged in groups called frames, cither line link frames for subscribers’
lines, or (on the other side) trunk line frames for trunks. Frames are indi-
cated in Fig. 2 by large dashed squares enclosing four small squares; dots
indicate repetition. The pattern of links which interconnect the switches
is shown by solid lines between small squares. At most one link eonnects
any pair of switches.
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Fig. 2 — Basic No. 5 crossbar network.

As a second example of a connecting network, consider the three-stage
Clos network (see Ref. 29) depieted in Fig. 3. The interpretation of this
figure is the same as that of I'ig. 2: small squares stand for crossbar
switches, and lines between them represent links. Each call can be put
into the network in m ways, one for each of the m switches in the middle
column. This network has the property that if m = 20 — 1, it is non-
blocking.

A control unit consists of parts that are arranged in a manner reflect-
ing their function, and are determined by the operations necessary to
establish a connection, and by the philosophy of design and the tech-
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Fig. 3 — Clos three-stage network.
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Fig. 4 — Simple control unit.

nology that are basic to the system. To establish a connection, the control
unit must do some or all of the following: (7) identify the calling party or
terminal, (77) find out who the called party is, and (%) complete the con-
nection. Three examples will be considered, in order of inereasing com-
plexity and modernity.

A simple example of the structure of a control unit is given in Fig. 4.
The unit consists of a dial-tone marker which assigns and connects avail-
able idle registers to subseribers for dialing. The dialed digits remain in
the register until a completing marker (one of possibly several) removes
them and uses them to complete the call. The calls, or requests for con-
nection, may be thought of as arriving from the left, and proceeding
through the diagram from left to right. There may be a delay in obtain-
ing dial tone, a delay in securing the services of a completing marker, or
a eireuit-busy delay (or rejection) in the network. It should be observed
that the switching equipment necessary for connecting subseribers to
registers, or registers to completing markers, is left out of account in this
model.

A second example is obtained from the first by inserting a buffer
memory between the registers and the markers as shown in Fig. 5. (One

COMPLETING
REGISTERS SHPLETI

L] .

REQUESTS T0
EOR O ARKER gl S — CONNECTING
SERVICE NETWORK
2
A

! |

/
CALL INFORMATION MOVED TO BUFFER |
MEMORY AS SOON AS POSSIBLE,
TO FREE REGISTER

Tig. 5 — Control unit with buffer memory.
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can argue that registers are expensive speecial-purpose units and should
not be used for storing call information when cheap memory is available.)
When dialing is finished, the call information is forthwith transferred to
the buffer memory, there to wait for a eompleting marker without pre-
empting a register. The markers and registers are now effectively iso-
lated, so that delays in completing calls do not cause delays in obtaining
dial tone. Again, traffic is viewed as moving from left to right.

The high speeds possible with electronic circuits have led to new con-
figurations and problems (for control units and networks) which have
not yet received much attention in congestion theory. Although it per-
forms the same functions, the control unit of & modern electronie central
office usually has an organization differing from that of the examples of
Figs. 4 and 5, which are characteristic of electromechanical systems, Four
principal reasons for this contrast are:

() The electronic office relies heavily on a large digital memory to aid
in processing calls and (in time division systems) to keep track of calls
in progress; electromechanical systems, on the other hand, are based
largely on “wired-in”’ memory.

(77) In the electronic office, processing a given call usually requires
several consultations of the digital memory; thus, the flow of traffic in
the control unit is re-entrant and not unidirectional as in I'igs, 4 and 5.

(¢72) The speed of electronic components often makes it possible to
perform only one operation at a time; thus, a single unit may be (alter-
nately) part of a dial-tone marker, part of a register, part of a completing
marker, ete., depending on the details of organization of the control unit.

(7v) The replacement of “wired-in’’ memory, whose stored information
is immediately available, by an electronic memory which has to be con-
sulted, creates problems analogous to the problem of connecting complet-
ing markers to registers in the No. 5 crosshar system: special access units
are needed. Subunits of the control unit, such as dial-tone markers, com-
pleting markers, senders, ete., must take turns in using the access eircuit
to the digital memory.

Iig. 6 depicts a (hypothetical) control unit for an electronic switching
system built entirely around a memory which stores all information on
the current status of calls. The control unit consists of various special-
purpose units such as a sender, a receiver, a completing marker, a dial-
tone marker, and registers. Each of the listed units can operate inde-
pendently of and simultaneously with the others; however, they compete
for (take turns at, possibly with priorities) the access circuit to the
memory. Each unit depends on the memory to give it a new assignment,
to file the results of the last one, or both. Every operation of a special-



CONNECTING SYSTEMS: REMARKS AND PROBLEMS 1211

RECEIVER

COMPLETING
MARKER OR
NETWORK
CONTROL

HANGUPS

TO
|e——= CONNECTING
NETWORK

ACCESS
CIRCUIT

DIAL TONE
MARKER

MEMORY

SENDER

REQUESTS
FOR REGISTERS

SERVICE

i Cw——

|
|
1
1

R

Fig. 6 — Bloek diagram of electronic control unit.

purpose unit requires access to the memory, either to obtain data from it,
or to file data in it, or both. The memory contains several classes of calls:
those waiting for dial tone, those waiting for a completing marker, those
actually in progress in the connecting network, ete.

VI. PERFORMANCE OF SWITCHING SYSTEMS

In general, the gross or average features of switching systems are both
more accurately predictable and more economically important than the
specific details. The average load carried by a trunk group is usually more
easily predicted than the condition of a particular trunk; and the “all
trunks busy”’ condition of the group is of greater concern to the telephone
administration than the busy condition of a single trunk.

I'rom the point of view of economices and traffic engineering, only cer-
tain average features of the behavior of a system (used as measures of
performance) are important. These few quantities of interest depend on
the multitude of details of “fine structure” in the control unit and the
connecting network. Although the intricate details give rise to the im-
portant averages, the details themselves are of relatively little interest.
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In the rest of this paper, we shall repeatedly contrast the few average
quantities that are of engineering interest with the many millions of de-
tailed features and properties (of connecting systems) on which the av-
erages are based, The central problem in the theory of connecting systems
is to understand how the interesting quantities arise from the details,
and to caleulate them,

We shall start our discussion of the contrasting roles of averaged fea-
tures and details by considering some of the different kinds of congestion
that interest engineers, and in addition some associated measures for the
performance of systems.

Congestion is said to occur in a connecting system when a requested
connection cannot be completed immediately. By “immediately’ we
mean, of course, not “instantancously”, but “as fast as control equip-
ment, assumed available, can do its work”, The time it takes to complete
a call contributes to congestion only if it keeps other calls from being
completed at the normal rate. That a call cannot be completed imme-
diately (in this sense) may be due to facts of three kinds: (¢) certain nec-
essary units of switching equipment (like trunks, or markers) are all
busy; (77) there are available units, but they occur in an unusable com-
bination, or “fail to mateh”; (#7) congestion has occurred previously,
and other requests are awaiting completion.

In telephone traffic theory, requests for connections which encounter
congestion are traditionally termed lost calls. This terminology is used
whether the request is refused (and never completed), or merely delayed
(and completed later). Switching systems differ in the disposition of lost
calls, i.e., in what is done with requests which encounter congestion.
There are in theory two prineipal ways of disposing of lost calls. In the
first way, termed “lost calls eleared”, the request is denied and leaves the
system; this way of dealing with lost ealls naturally gives rise to the
proportion. of requests dended, or the probability of blocking or loss, as a
measure of performance. The second way of disposing of lost calls is
termed ““lost calls delayed”, and consists in delaying the request until
equipment becomes available for completing the connection; associated
with this is the probability of delay in excess of a specified time ¢, as a
measure of performance.

On the simplified account of the last paragraph we must impose at
least two qualifications. Iirst, whether a request suffers blocking or de-
lay (or both!) may depend on the condition of the system at times shortly
after the request is made; second, the completion of a request usually in-
volves a sequence of steps, any one of which may expose the request to
delay or loss. For example, a request may encounter delay in obtaining



CONNECTING SYSTEMS: REMARKS AND PROBLEMS 1213

dial tone, delay in securing the services of a completing marker, and
delay or blocking in the attempted completion of the desired connection
through the connecting network.

We conclude this section by briefly considering what general features
of connecting systems are particularly relevant to their performance as
measured (for example) by probabilities of blocking or delay, or by av-
erage loads carried, offered, or both. Now, a connecting system has two
principal parts, the control unit and the connecting network; the features
of the system that are relevant to performance are conveniently distin-
guished according to whether they are features of the control or of the
network. This distinetion is fundamental because the performance of the
control is largely determined by the speed and number of the various
sub-units comprising it, while the performance of the network is largely
dependent on what combinations of calls ean be in progress simultane-
ously.

The control unit is basically a data processing system: it collects in-
formation about desired connections, digests it, makes routing decisions,
and issues orders for completing requested calls in the connecting net-
work. Its eapacity is measured, e.g., by the number of customers who
can be dialing simultaneously, or by the number of calls which are being
completed in the network at the same time. Its performance is described
by the probability distributions of delay before receiving dial tone, and
of delay after completion of dialing until the desired connection is com-
pleted.

For a simple model of a control unit (such as depicted in Vig. 4), the
features pertinent to performance are: (2) the calling rate, (4¢) the num-
ber of registers for dialing, and (¢77) the speed and number of completing
markers. In the case of the prototype electronie control unit (depicted in
Fig. 6) some additional features appear: (i) the speed of the access cir-
cuit to the memory, (#) the order of priority of the functions being per-
formed, the discipline of access to various services, and the competition
for access among marker, dial tone marker, sender, ete., (vi) the presence
of re-entrant traffic (every call must “use” the access circuit at least
twice), and (vé7) the number and arrangement of the various functions
which are going on simultaneously.

The connecting network, in contrast to the control unit, determines
what calls ean be in progress, rather than how fast they can be put up.
Its configuration determines what combinations of terminals can be con-
neeted simultancously together, For example, if m = n, the Clos network
of Fig. 3 has the property of rearrangeability: any preassigned set of calls
can be simultaneously connected. The No. 5 network of Fig. 2 does not
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have this property: the number of calls between a line link frame and a
trunk link frame is limited by the number of links between those two
frames. Such combinatory properties of the structure of the connecting
network play a determining role in estimating the cost and the per-
formance (probability of blocking) of the network. If the structure is too
simple, very few calls can be in progress at a given time and blocking is
high; if it is extensive and complex, it may indeed provide for many large
groups of simultaneous calls in progress, and so a low probability of
blocking, but the network itself may be prohibitively expensive to build
and to control.

VII. DESIDERATA

Our discussion of the three prominent features of switching systems —
(1) great complexity, (#7) definite structure, and (77z) randomness — has
exposed or suggested some of the problems and desiderata which a theory
of congestion in large-scale systems must (respectively) encounter and
supply. Specific statements of requirements and tasks are now given,

General desiderata can be obtained by examining the purpose served
by a theory of congestion. The function of such a theory is twofold: it is
(i) to deseribe the operation of switching systems, and (é) fo predict the
performance of systems. More specifically, the descriptive funetion (7) is
to provide a theoretical framework into which any system can be fitted,
and which permits one to evaluate the performance of the system, e.g.,
to compute the chance of loss, to estimate a sampling error, or to prove
a network nonblocking. The predictive function (¢7) has logically the
same strueture as (z), but emphasizes the use of theory to make future
capital out of past experience, to extrapolate behavior and thus to guide
engineering practice.

More specific tasks than these appear when we list some of the activi-
ties comprised by the theory and practice of traffic engineering. A possi-
ble list is as follows:

¢. Describing and analyzing mathematical models.

1#. Computing measures of performance for specific models.

112. Studying the accuracy of traffic measurements, the effects of
transients, and problems explicitly involving random behavior in
time,

tr. Comparing networks, control systems, methods of routing, ete.

». Using traffic data to verify empirically the assumptions of theories.

vi. Making predictions and estimates for engineering use.

On the basis of this list, and of our previous discussions of complexity,
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randomness, gross features, and details, we can say that a satisfactory
theory of congestion must meet the following requirements:

7. Tt must be sufficiently general to apply to any system.

#1. 1t must yield computational procedures for system evaluation and
prediction of performance, based on masses of detail. These pro-
cedures must be at once feasible and sufficiently aceurate, and if
approximations are made, their effect must be analyzable.

#i1. It must encompass all the three basic elements simultaneously,
viz., the random traffie, the control unit, and the connecting net-
work.

VIII. MATHEMATICAL MODELS

We shall now consider what mathematical structures are appropriate
theoretical deseriptions of operating connecting systems. The discussion
will provide an intuitive picture of an operating system, and will help to
motivate & natural division of our subject into combinatory, probabilistic,
and varialional problems.

By a state we shall mean a partial or complete description of the condi-
tion (of the system under study) in point of (7) busy or idle network links,
erosspoints, and terminals, and (i2) idle or busy control units or parts
thereof. Complete, highly detailed descriptions correspond to fine-grained
states specified by the condition of every crosspoint, link, or other unit
in the system, in absolute detail. Incomplete descriptions correspond to
coarse-grained states, or to equivalence classes of fine-grained states.

During operation, the connecting system can pass through any per-
mitted sequence of its states. Each time a new call arises, or some phase
of the processing of a call by the control unit is finished, or a call ends,
the system changes its fine-grained state. These changes do not usually
oceur at predetermined epochs of time, nor in any prescribed sequence;
they take place more or less at random. At any particular time, it is
likely that some terminals, links, and parts of the control unit are idle,
that various requested calls are being processed, and that certain calls
are in progress in the connecting network.

The last paragraph suggests the following intuitive account of an op-
erating switching system: it is a kind of dynamical system that describes
a random trajectory in a set of states. Such an intuitive notion can be
made mathematically precise in many ways. Any one precise version is
a mathematical model for the operation of the switching system. In con-
structing such a model, it is neither necessary nor desirable always to use
the most detailed (the fine-grained, or microscopic) states; often a partial
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deseription in terms of coarse-grained states suffices, and is less difficult
to study. Indeed, in building a model it is to some extent possible to
choose the set of states to suit special purposes. One can, for instance,
control the amount of information included in the state so as to strike
a balance between excessive detail and insufficient attention to relevant
factors. Tt is possible to make the notion of state more or less complete
s0 as to achieve certain (desired) mathematical properties (such as the
Markov property, or a suitable combinatory structure) which simplify
the analysis of the random trajectory. Finally, one can add supplemen-
tary variablesanalogous to counter readings or cumulative measurements,
and obtain their statistical properties.

The abstract entity appropriate for deseribing the random hehavior of
a switching system is a stochastic process. Tor our present heuristic pur-
poses, we can define a stochastic process as follows: by a possible history
of the system we mean a function of time taking values in the chosen set
of states; a stochastic process is then a collection @ of possible histories
of the system in time, with the property that many (presumably in-
teresting) subsets A of £ have numerical probabilities Pr{A} associated
with them. The probability Pr{A} of the set A of possible histories is
interpreted as the chance or likelihood that the actual history of the
system be one of the histories from the set A. Models of this kind furnish
information beeause desired quantities can be caleulated from the basie
probabilities Pr{A}.

IX., FUNDAMENTAL DIFFICULTIES AND QUESTIONS

The systematic use of mathematical models (such as stochastie proe-
esses) in congestion theory and engineering has been largely limited to
small pieces of systems like single-server queues, groups of trunks with
full access, ete. More complex models of systems involving connecting
networks have hardly been touched by theory. This limitation has been
due almost entirely to the large number of states such models require,
and to the complex structure of the transitions (changes of state) that
can occur. In short, the essential characteristics (of large-scale connect-
ing systems) themselves generate the basic difficulties of the theory.

In most congestion problems, it is easy enough to construct (say) a
Markov process that is a probabilistic model of the system of interest.
But it is difficult, because of the large number of states and the complex-
ity of the sfructure, to obtain either analytic results or fast, reliable
simulation procedures. This circumstance has been a major obstacle to
progress in the congestion theory of large systems. One of its conse-
quences has been that in some cases, models known to be poor repre-
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sentations of systems have been used merely because they were mathe-
matically amenable, and no other tractable models were available. Even
overlooking such extremes, it is fair to state that, to date, problems of
analysis and computation have limited the amount of detail embodied
in the notion of state for models of switching systems. Every effort has
heen made to keep the number of states in models small, and their com-
plexity low.

Having exposed some basic properties of and theoretical problems
arising from congestion in connecting systems, let us acknowledge that
an operating, large-scale connecting system cannot be done full theoreti-
wal justice except by a stochastic model with an astronomical number of
states and a very complicated structure of possible transitions. At this
point, let us try to take a synoptic view of the subject, and ask some
general questions whose discussion might indicate new approaches and
emphases. Let us, in the current idiom, lean back in our chairs, make a
(n) (agonizing?) reappraisal, and draw ourselves the “big picture.”*

The following three questions seem (to this writer) to be pertinent,
and are taken up in the next sections:

i. What is the value of mathematical models that have a very detailed
notion of state?

ii. Is it possible to make explicit theoretical use of the very properties
of connecting systems that appear to be most troublesome? How can the
two principal difficulties (large number of states, complex structure of
changes) be turned into positive advantages?

iii. What features of connecting systems are especially relevant to the
mathematical analysis of system operation?

We do not pretend to provide iron-clad answers to these questions.
We try to give a helpful discussion of relevant matters, illustrated by
examples.

X. THE MERITS OF MICROSCOPIC STATES

We have raised the question: To what extent can detailed probabilistic
models of the minutiae of operating switching systems (i.e., models with
“mieroscopic’ states) improve our understanding of these systems, and
so our ability to engineer them? Against the value of such detailed models
it can be argued that for engineering purposes only certain performance
data are of interest, and that the detailed model produces a vast amount
of information with no apparent practical method for reducing this in-
formation to probabilities of delay or blocking.

* Supplying those elichés whose substitution leaves the content of this last
gentence invariant is left as an exercise for the reader.
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Since the usefulness of mathematical models depends entirely on the
desired information they can be forced to yield, it is not reasonable to
dismiss detailed models a priori. For in truth, few if any such models
have been considered, and it has not been shown that they are useless
in the sense that no practical method for extracting useful quantities from
these models exists.

To be sure, the congestion engineer is not as concerned with the min-
utiae themselves as with their effect en masse. But he has to base his
conclusions and recommendations in some way on the total effects of a
large number of individually trivial events. Hence, at some point in his
procedure, he must take account of the large number of states and the
complex structure of possible transitions of his system,

Traffic engineering practice is based on (relatively few) probabilities
and averages, such as average loads, deviations about them, and blocking
or delay probabilities. Any reliable theoretical estimate of these averages
must be based on the combinatory and probabilistic properties of a
theoretical model (stochastic process) for system operation. At worst,
an approach or model that provides detailed information might yield a
much-needed check point for the methods that are in current engineering
use, and so increase the engineer’s understanding of and confidence in
these methods.

However, there is a much more general, positive sense in which atten-
tion to the details of connecting systems can contribute to theoretical
progress. This is taken up in the next section.

XI. FROM DETAILS TO STRUCTURE

The prospect of solving (say) statistical equilibrium equations for
models with a very detailed notion of state is discouraging indeed, al-
though it has been faced, notably by Elldin® in Sweden. Nevertheless, a
sanguine and useful approach (along this line) to connecting systems ean
be obtained by a shift of emphasis from “details” to “structure.” We
have emphasized that deseribing an operating connecting system means
keeping track of numerous details, none of which is interesting in itself.
We have said that the operation of such a system could be pictured as a
trajectory in a very complicated set of states. We now claim that the
inclusion of enough details (in the notion of state for a model) gives the
set of possible states a definife structure that is useful because it makes
possible or simplifies the analysis of the probabilistic model.

Whutever may be the value of detailed probabilistic knowledge for the
immediate problems of engineering, such knowledge is useful if not essen-
tial in theoretical studies, By using a highly detailed, “miecroscopic”
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deseription for the state of the system, it is possible to exploit the exten-
sive mathematical structure (properties) that such a set of states nat-
urally has. Indeed, the combinatory properties and geometrical structure
of the set of states are two of the very few weapons available for attacking
large-seale problems of traffic theory. I believe that in the past these
properties and this structure have not been sufficiently exploited. They
can only be put to use by a systematic application of “microscopic”
states.

The three basic properties of switching systems discussed in Section
V were (i) extreme combinatory complexity, (77) definite geometrical
structure, and (777) randomness. The preceding paragraphs of this section
can be related systematically to these properties, and elaborated into a
sort of program: Instead of throwing up our hands at (¢) in trying to do
justice to (722), we should realize that a detailed notion of state allows us
to turn (i) to our advantage in studying (i77). Let us then disregard the
fact that there are many states, and analyze the structure of possible
changes of state, to see how to capitalize on it.

For, indeed, the possible microscopic states of a particular connecting
system are not arbitrary. They are rigidly determined by the combina-
tory and topological properties of the connecting network, and by the
organization of the control unit. Such a set of possible states has a mathe-
matical structure of its own, and this structure is relevant to the per-
formance of the system, and to any stochastic process that represents its
operation.

It can be seen quite generally that when a switching system changes
its microscopie state, it can only go to a new state chosen from among a
few “neighbors’ of the state it is leaving. These neighbors comprise the
states which ean be reached from the given state by starting a new call,
ending an existing call, or completing some operation in the control unit.
In a large system, a state may have many such neighbors, but they will
be few in comparison with the total number of microscopic states.

A striking and useful example of how details give rise to structure can
be obtained by considering the possible states of a connecting network.
These states can be arranged in a pattern as follows: At the bottom of the
pattern we put the zero or ground state in which no calls are in progress;
above this state, in a horizontal row, we place all the states which consist
of exactly one call; continuing in this way, we stack up level after level
of states, the kth level L consisting of all the states with & calls in
Progress.

We now construet a graph by drawing lines between states that differ
from each other by exactly one call. (Such states, needless to say, are
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always in successive levels of our diagram.) This graph we call the state-
diagram. It is a natural (and standard) representation of the partial or-
dering = of the states: where @ and y are states,

=y

means that y can be obtained from x by adding zero or more ealls to «,
or alternately, that x can be got from y by removing zero or more ealls.
The importance of this state-diagram lies in two facts:

7. The state diagram gives a geometrical representation of the possible
states of the system. The myriad choking “details” of the connecting
network have heen converted into a vast geometrical structure with
special properties. The operating system describes a trajectory through
the state diagram, moving between levels as calls begin and end.

7¢. Any stochastic process describing the operation of the connecting
network is a point moving randomly on the state diagram. The motion
is only between adjacent levels. New calls put into the network cor-
respond to jumps to the next higher level; hangups correspond to jumps
to the next lower level.

As a simple example, we consider the possible states of a single 2 by 2
switch, These consist of (i) the zero state, (i) the four ways of having
one call up, and (#77) the two ways of having two calls up. These states
are depicted in Iig. 7. Fig. 8 shows the states of a 2 by 3 switch.

XII. THE RELEVANCE OF COMBINATORY AND STRUCTURAL PROPERTIES:
EXAMPLES

In this section we elaborate, by discussing examples, our theme that
the combinatory and struetural properties of connecting systems are of

o o

Fig. 7 — States of a 2 by 2 switch.
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Tig. 8§ — States of a 2 by 3 switeh.

the greatest import (i) to their performance, and (#7) to the analysis of
mathematical models of their operation. The organization of the control
unit and the configuration of the connecting network largely determine
the possible microscopic states of the system. Let us see what effects
these features can have on problems of system analysis.

Example 1: Any connecting system has a “zero” or ground state in
which all terminals and links are idle, no calls are being processed by
the control unit, and the connecting network is empty. The existence of
this zero state is a structural property common to all switching systems.
This zero state seems most uninteresting. Nevertheless, many probabilis-
tic models (for switehing system operation) have the property that if
the equilibrium probability of the zero state is known, then that of any
other state ean be determined in a simple way. Several specific examples
of this phenomenon are worked out later in this paper, so none will be
given here. (See Sections XV and XVI.)

Example 2: The relevance of combinatory properties of the connecting
network to the caleulation of probabilities can be vividly illustrated by
reference to Clos’ work on nonblocking networks (see Ref. 29). The
blocking probability of a conneeting network is the fraction of attempted
calls that cannot be completed because no path for the eall exists in
the current state of the network. Until Clos’ article appeared it was
not. generally known that, no matter what probabilistic model was used,
an exact ealeulation of blocking probability for a Clos network with
m = 2n — 1 (see Fig. 3) would yield the value zero!*

* Zero, not zero factorial, which equals unity!
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Ezample 3: Consider the class of connecting networks which have the
property that in any state of the network, two idle terminals (forming
an inlet-outlet pair) can be connected in at most one way. For each
member of this elass of networks we construct a Markov stochastic
process to represent its operation under random traffic, as follows: in
any state, if an inlet-outlet pair is idle, the conditional probability
is M + o(h) that it request connection in the next interval h, as h — 0;
also, an existing call terminates in the next interval & with a probability
h + o(h), as h — 0; requests that encounter blocking are denied, and
do not change the state of the system (lost calls cleared).

If X is a finite set, let | X | be its cardinality, i.e., the number of
elements of X, and let S be the set of all states of the network under
diseussion. For 2 in S, define

A, = set of states accessible from a by adding a call
B, = set of states accessible from a by removing o call
| ¥ | = number of calls in progress in state x
Li = set of states with & calls in progress.
Note that | B, | = | 2.

Let p. be the stationary or equilibrium probability that the system
is in state x. By reference to Fig. 9, it can be seen that the statistical
equilibrium equations for our probabilistic model are
(7\|Az’+JR'JJYJz=E:ﬂu+?\zpy, x el

yedy weBz
Since in any state an idle pair ean be connected in at most one way,
no routing decisions need to be made, and the solution of this equation

Lz

Lixi-1

Fig. 9 — A state z, and the sets A, , B, in the state diagram.
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(regardless of the network configuration!) is given by

pe = pak ! x#0
pit =1+ 2"
40
= 3 A | L]

where 0 is the zero state. We have therefore shown that the simple
combinatory property, that a call can be put up in at most one way,
implies that the stationary probabilities of the Markov process we de-
fined are of a simple geometric type. Note the important role played
by the zero state, as discussed in Example 1.

Example 4: The Markov stochastic processes of the previous example
can be used to illustrate another important point. There are many
switching system models for which quantities of interest (such as the
probability of blocking) can be given rigorously, without approximations,
by a formula in which the distinction between system combinatories
and random customer behavior appears explicitly. In Example 3, the
state prohabilities {p,, v € S} are completely determined by the quan-
fities

| Lk i y k = 0

i.e., by the number of states with & calls in progress, for & = 0. For
these models we can express the blocking probability as a function of
the traffic parameter X and of | Ly |, & = 0. The numbers | L | repre-
sent purely combinatory properties of the network.

The blocking probability b can be caleulated as follows: b is the frac-
tion of attempted calls that are unsuceessful, so that

1 — b = total rate of successful attempts
total rate of attempts

In equilibrium, the total rate of successful attempts must equal the
total rate of hang ups. The total rate of hang ups is

> p. | *| = mean number of calls in progress

TeS
(because the mean holding time is used as the unit of time). Let N
be the number of terminals offering traffic. Since an idle inlet-outlet
pair calls at a rate A, the attempt rate in a state  is

— 2|2
A+ (number of idle pairs in a state ) = X (N 9 | |) ;
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The total rate of attempts is then

?\sz(N—22[a:|).

xeS

Hence,

2 ||
TeS

b=1- N —2[7]
N—-2|z
TeS
[N¥/2]
Z Akiﬂ | IJ& |
=1 k>0

IEE ESTAN
A2 A‘lLkl(No )
E=0 2

where [N /2] is the greatest integer less than or equal to N /2. This for-
mula exhibits the blocking probability as a rational funetion of the
calling rate A per idle pair and as a bilinear function of the combinatory
constants {| L |, & = 0}. The degree of the denominator in A is one
more than that of the numerator, so b — 1 as A — = ; also, note that

Iimb=1—-lL1|

G

This limit is greater than zero if there are calls which eannot be put up
in any way. Finally, we observe that if the network is non-blocking, then

BlL| = 2 (N —22I-'r|)

zelp
N —2k 4+ 2
el (V7F)

and so b = 0, as it should, if we interpret

(N - ;[N/Z])

Il

as Zero.

XIII. COMBINATORY, PROBABILISTIC, AND VARIATIONAL PROBLEMS

The preceding discussions have established that the ingredients going
into a mathematical model of a connecting system are of two kinds.
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On one hand are the combinatory and structural properties, and on the
other, the probabilistic features of traffic. We emphasize the distinetion
between these aspects, and claim that by carefully drawing it, we can
extend the general understanding of connecting systems, unify or
modify existing theoretical methods, and obtain new engineering results.

Our discussion also suggests that to study stochastic processes that
represent operating conneeting systems, it is essential to have an ex-
tensive theory of the combinatory and topological nature of the micro-
scopie states of such systems.

In any specific model of a connecting system, one can distinguish the
combinatory from the stochastic features. However, it is also of interest
to compare models of systems in an effort to determine optimal systems.
These facts suggest a useful though imprecise division of the entire
subject (of connecting system models) into three broad classes of prob-
lems, In order of priority, these are

7. Combinatory problems.

2. Probabilistic problems.

721, Variational problems.

This order of priority arises in a natural way: one needs to study com-
binatory problems in order to caleulate probabilities; one needs both
combinatory and stochastic information in order to design optimal
sysftems.

The tripartite division just made provides a rational basis for organiz-
ing research effort. Since so many of our pronouncements have been
generalities, we devote the remainder of the paper to illustrating care-
fully each of the three divisions (combinatory, probabilistie, variational)
by working out and discussing in detail a very simple (yes, a trivial)
problem from each division. These problems have been chosen for their
tutorial value rather than their realism or usefulness. In discussing them,
we place emphasis on furthering insight rather than solving practical
problems, on exposing principles rather than providing engineering data.

XIV. A PACKING PROBLEM

It has long been suspected (and in some cases, verified experimen-
tally) that routing calls through a connecting network “in the right
way”’ can yield considerable improvements in performance. This pro-
cedure of routing the calls through the network is called “packing”
(the calls), and the method used to choose routes is called a “packing
rule.” The use of the word “packing in this context was surely sug-
gested by an analogy with packing objects in a container. However,
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the existence and description of packing rules that demonstrably im-
prove performance (e.g., by minimizing the chance of blocking) are
topics about which very little is known.

What, then, is the “right way” to route calls? 1t has been argued
heuristically that it is better to route a call through the most heavily
loaded part of the network that will still take the call. Appealing and
simple as this rule is, nothing is known about it. We know of no pub-
lished proof of either its optimality or its preferability over some other
rule. The rule will be proven optimal for an example in Section XVI.

The question naturally arises, though, whether for a given network
in which blocking can oceur there exists a packing rule so cunning that
by following it all blocking is avoided. Then, use of the rule makes the
network nonblocking. Such a network may be termed nonblocking in
the wide sense, while a network none of whose states has any blocked
calls may be termed nonblocking in the striet sense.

The existence of such a rule is a purely combinatory property of the
network, and so serves as an example of the first type of problem de-
seribed in Section XIII. Unfortunately, practically wseful connecting
networks that are nonblocking in the wide sense are yet to be found.
Since we are primarily interested in exemplifying principles, we shall be
content with discussing an impractical network that is nonblocking
in the wide sense. The example to be given was suggested by . .
Moore.*

Let us first consider the three-stage connecting network depicted in
I'ig. 10. All switches in the middle column are 2 by 2, and there are 2n — 1
of them, so, by a result of C. Clos,” the network is nonblocking. Suppose
that we use the rule that an empty middle switch is not to be used unless
there is no partially filled middle switch that will take the call. In other
words, do not use a fresh middle switch unless you have to! In general,
this rule is not quite the same as the one exhorting use of the heavily
loaded switches wherever possible, because it only tells us what to
avoid, but it is in the same spirit. In the case to be considered, however,
a middle switch is either empty, half-full, or full; hence the two rules
coincide.

We shall show that if this rule is used, then no more than [3n/2] middle
switches are ever used, where [z] is the greatest integer less than or equal
to x. Thus the rest, about one quarter of the middle switches, could be
removed and no blocking would result if the rule were used. It can be
verified by examples that if there are only [3n/2] middle switches and
the rule is violated, then ealls can be blocked. Thus, the network of

* Private communication.
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Fig. 10 — Three-stage nonblocking connecting network (Clos type).

Trig. 11 is not nonblocking in the strict sense, but is nonblocking in the
wide sense,

A state x of a connecting network is ealled reachable (under a rule p)
if using the rule p to make routing decisions does not prevent the system
from reaching x from the zero state. We set

S(xz) = number of middle switches in use in state .

Tet us use the diagram of Tig. 12 as a canonical representation for a
2 by 2 middle switch. The numbers at the left [top] indicate to which
outer switch on the left [right] the numbered link connects. The seven
possible states of a middle switch are depicted in Fig. 13, and are in-
dexed therein by letters a,b, - -+, g. A state x may then be represented
(to within renaming switches and terminals) by giving seven integers
a(x), b(x), -+ -, g(a) where

a(x) = number of middle switches of type @ when network is
in state x

2x2
e i}
ni | ! | N
|
I
|
|
|
1
]
I
ni 2 2 'n
| - =] —
[3n/2]

Fig. 11 — Three-stage network which is nonblocking if proper routing is used.
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2
o

_ CLOSED
CROSSPOINT

Fig. 12 — Representation of a 2 by 2 middle switch,

g(x) = number of middle switches of type g when network is
in state .

It is clear that for any state a
a(r) + b(e) + -+« +glax) = 2n — 1
ble) + e(e) + -+ + gle) = S(x).

MIDDLE SWITCH STATE TYPE CALLS
12
1
oo a NONE
o
o
~ b (1,n
0 o
(e
c (2,2)
(o
d (2,1
;|
e (1,2)
? 9
(o]
. f (1,1)(2,2)
o
g (2,1(1,2)

+ = CLOSED CROSSPOINT

Fig. 13 — Seven possible states of a middle switch.
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Theorem 1: Let p denote the rule: Do not use an emply middle switch
wnless necessary. Let x be a state of the network of Fig. 10. Let x be reach-
able under p. Then forn 2 2

S(r) = [3n/2] (1)
b(x) + clx) + f(x) < n) @
d(x) + e(x) + g(@) < nf K

Proof: Each reachable state is reachable in a certain minimum number
of steps. The theorem is true if & consists of one call and is reachable
from the zero state in one step. As an hypothesis of induction, assume
that the theorem is true for all states reachable in k steps or fewer.
All changes in the state are either hangups, or new calls of the following
kinds:

Type 1:
a(y) = a(y) — 1
(1, D by — by + 1 with ¢y
2,2) e(y) —ely + 1 with by
(2,1 d(y) —dy + 1 with e(y) =0
(1,2) e() —e@) + 1 with d(y)

o
o o

Il
-
S

Type 2: (preferred by p)
a(y) remains fixed and

(1,1) S —=f + 1, el —ely) —1 with e(y) >0
2.2 [ — S(y) + 1, bly) —b(y) — 1 with b(y) >0
2, 1) g —aly) + 1 e(i) —ely) — 1 with e(y) >0
(1,2) g —gly) + 1, d(y) —d(y) — 1 with  d(y) > 0.
All states, reachable or not, satisfy the inequalities

b)) + e + ) +9w) = n

c(y) +dy) + fy) +gy) =n

b(y) + d(y) + f(w) + g(y) = n

c(y) + ely) + () + g(y) = n

The alternative preferred hy p changes neither the value of S(-)
nor the truth of (2) of the theorem. Consider a state x first reachable in
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k 4+ 1 steps. If «x is first reachable by a hangup or by putting up a call
of Type 2, then (1) and (2) are true of x. Suppose then that x is first
reachable in & -+ 1 steps only by putting up a eall of Type 1. Without
loss of generality we can consider only the case where the new call is a
(1, 1) call; the other three cases are symmetric. Let y be a state from
which x is thus first reachable. Since the avoided alternative is used,
we have

cy) = 0.

Since a (1, 1) call is possible in state y, we must have

by) +d@) + W) +gly) s n -1

b(y) + e(w) +fy) + gy) En—1
and from the induction hypothesis

d(y) + e() + g(y) = n.
Hence,
2{b(y) + d(y) + e(y) + 1) + g()} = 3n — 2

or, since ¢(y) = 0

S(y) = :? - L

&

However, S(z) = S(y) + 1, so S(x) = [3n/2]. To show that (2) also
holds of x consider that

b)) + e(w) + f@) + 9(w)
c(y)

A

n—1

0.

I

It follows that
b(y) + e(y) + fy) =n — 1,

However, since « is obtained from y by putting up a (1, 1) call of Type
1, we have

b(x) =b(y) +1, e(x) = e(y)
c@) =ce(y) =0, fla) = [y
d(x) = d(y), gx) = gy).

Hence, (2) of Theorem 1 is true of x. This proves the result.
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XV. A PROBLEM OF TRAFFIC CIRCULATION IN A TELEPHONE EXCHANGE

We shall deseribe and analyze a simple stochastic model for the
operation of the control unit of a switching system. The connecting
network is assumed to be nonblocking and is left out of account.

To set up a telephone call in a modern electromechanical automatic
exchange usnally involves a sequence of steps which are (traditionally
and funetionally) divided into two groups. The first group consists in
collecting in a register the dialed digits of the called terminal. The
second group, performed by a machine called a marker, consists in
actually finding a path through the connecting network for the desired
call, or otherwise disposing of the request for service. For even if a path
to the called terminal be found, this terminal may already be busy.

In the exchange, enough registers and markers must be provided to
give customers a prescribed grade of service. For engineering purposes,
then, it is desirable to know the probability that 7 registers and m markers
are busy. Let us assume that the exchange serves N customers, and that
there are R registers and M markers. All ealls are assumed to go to
terminals outside the exchange.

We may think of each customer’s line as being in one of a number of
conditions, and moving from one condition to another. It makes no
difference whether we aseribe these “conditions’ to the line itself, or
to a fictitious single customer if several people use the line. A given
line may be #dle (i.e., not in use); at some point in time it may request
a connection, i.e., the customer picks up the receiver and starts waiting
for dial tone; after obtaining a register he spends a certain amount of
time dialing; he then wails for a marker to complete his call (freeing the
register meanwhile) ; upon obtaining a marker, he must wait until the
marker completes the connection; at this point he begins his conversation;;
at the end of his conversation his line becomes 7dle again.

One may now ask, what is the distribution of the N customers among
these various conditions? Clearly, if not enough markers are provided
there will be a tendeney for the customers to collect in the “waiting
for a marker” condition; a lack of registers will make the customers
collect in the “waiting for dial tone” condition.

To obtain a simple probabilistic model for the “circulation” of custo-
mers, we assume that the probability that an idle customer starts a
call in the next interval of time of length A is Ah + o(h), the chance that
a dialing eustomer completes his dialing in the next interval A is 8h +
o(h), the chance that a busy marker finishes the call it is working on is
wh + o(h), and the probability that a conversation ends is b + o(h),
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all as h — 0. The probability of more than one such event in h is o(h)
as h — 0.

These assumptions are in turn consequences of assuming that the
time a customer stays idle, the time a customer takes to dial, the time
a marker takes to complete a call, and the holding time (conversation
length) are all mutually independent random variables, each with a
negative exponential distribution, and the respective means A, 671,
g~! and unity. The number A is the calling rate per idle customer, &
and g are the average rates of dialing and call completion by a marker
(respectively), and time is measured in units of mean holding time,
so that the hangup rate per call in progress is unity. The assumption
that the marker operation times are exponentially distributed is not
realistie, but we make it here in the interest of obtaining a global model
whose statistical equilibrium equations ean be solved in a simple way.
This restrietive assumption could be avoided at the cost of complicating
the mathematies. The important features of our model are depicted in
Iig. 14; the labeled arrows indicate the rates of motion for various
transitions.

The state of the system is adequately deseribed by stating the number
7 of idle customers, the number r of customers that are dialing or waiting
for dial tone, the number m that are being serviced by a marker or are
waiting for a marker, and the number ¢ of calls in progress. Actually,
any three of these numbers suffice, since for physically meaningful states

i+r+m-+c=N.
Let pirme be the equilibrium (or stationary) probability of the state

R REGISTERS

1

& AL MaAX (0, r-R) I
- ———=  WAITING FOR —— | —
DLE DIAL TONE |
R
(T: dMIN (,R)
1
c JMIN (M, M) ! MAX (0, M=M)
CALLS IN | =+——— i WAITING FOR =—
PROGRESS | A MARKER
M

Fig. 14 — Diagram of a telephone system.
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(i,r;m,e). The “statistical equilibrium’’ equations are, with suitable
couventlons at the boundaries.

(A 4+ 8 min(r,R) + p min(m,M) + ¢)Pirme
= (¢ + Dpi—yyrmeesy + A0+ D)Piitny ir—1yme
+ s min(r + LB pitryyyom-ne + p min(m + LM)Piruiny -1

These equations state that the average rate at which a state is left
equals the average rate at which it is reached from other states. We
observe that the flow of calls in the exchange is in a sense eyelic; in
making a call, each customer passes through four stages: idle, dialing,
marker, conversation, then back to idle, in that order. This fact yields
a way of solving the equations. Each side of the equilibrium equations
has four terms, one for each of the four stages of a call. We shall find
a way of assigning to each term on the left a corresponding equal term
on the right which will cancel it.

The solution of the equations for (7,r,m,c) # (N,0,0,0) is proportional
to

m

NI H max (1,j/R) H max (1, 1/]![)

Jirme = omaTal’ )uar m

The constant of proportionality is the probability of the “zero™ state

-1

Proon = (1 -+ Z fl'.r.m.r)

i+r4+mte=N
tyromez0
i< N

ohtained from the normalization condition for probabilities. The alge-
braic character of the solution is closely analogous to the actual pattern
of cireulating traffic in Tig. 14, for the easiest way of showing that
firme is actually a solution of the statistical equilibrium equations is to
make the following correspondence between terms on opposite sides of
the equations:

A'I:pl'rmr e (C + l)p{i—])rm(r‘+1)

8 min(r, R pirme ~ M1 + 1Py cr—tyme
g min(m, M) pime ~ 6 min(r + 1LR)Piirsn m-ye
CPirme ~ pmin(m 4+ LM)Pirmine—n-

It can be seen that each term on the left cancels the corresponding
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one on the right when f;.. is substituted. Each term represents the
(total) rate of occurrence of one of the four kinds of possible event:
request for service, completion of dialing, completion of a call, and
hangup. In the life history of a given call, these events occur in the
natural cyclic order given. Events associated with corresponding (i.e.,
canceling) terms are next to each other in this cyclic order.

XVI. AN OPTIMAL ROUTING PROBLEM

Our final example is a variational problem involving both combina-
toric and probability. We shall exhibit some particular answers to the
following question: If requested connections can be put up in a con-
necting network by several different routes, leading to different states,
which routes should be chosen so as to minimize the probability of
bloeking? This question poses a variational problem in which many
possible methods of operating a connecting network of given structure
are compared, rather than one in which different network structures
are compared.

We shall consider this question for a connecting network that is of
little practical significance because it is obviously wasteful of crosspoints.
Tts virtues, however, are that it is perhaps the simplest network for
which our question can be asked, and that it clearly exhibits the prin-
ciples and arguments involved, so that these can be understood. The
network is shown in Fig. 15, the squares standing for square 2 by 2
switches,

The possible states of this network are determined by all the ways

2x2 T —
SWITCH e —_—

X = CROSSPOINT

Fig. 156 — A simple network in which optimal routing is studied.
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in which four or fewer inlets on the left can be connected pairwise to
as many outlets on the right, no inlet being connected to more than
one outlet, and vice-versa. These possible states are depicted in a
natural arrangement in Fig, 16; states which differ only by permutations
of customers or switches have been identified in order to simplify the
diagram. That is, there is essentially only one way to put up a single
call, there are four ways of having two calls up, two ways each of having
three and four calls up. These “‘ways” have been arranged in rows
according to the number of calls in progress, and lines have been drawn
between states that differ from each other by only the removal or
addition of exactly one call.

IFor ease of reference, let us number the states in the (partly arbitrary)
way indieated in Fig. 16; insofar as possible, we have used small num-

mhnhn A RAm

8 9

:

Ly

]
—{]
U

]

[]
o0J U
O U

Iig. 16 — (Reduced) state dingram for the network shown in Fig. 15.
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bers for states with small numbers of calls. The set of possible states of
our example then consists of (essentially) ten different configurations
of calls in the basic network of I"ig. 15. The state diagram, with each
state identified now only by its number within a small circle, is schema-
tized in Fig. 17. Also indicated in this schema are two important sets of
quantities associated with the states. To the left of each state is the
number of idle inlet-outlet pairs, and to the right of each state is the
number of idle inlet-outlet pairs that can actually be connected, i.c.,
that are not blocked.

Only in the state numbered 4 are there any blocked ealls. It is to be
noticed that state 4 realizes essentially the same assignment of inlets
to outlets as state 2, which has no blocked calls. The difference between
the two is that in state 2 all the traffic passes through one middle switch,
leaving the other entirely free for any call that may arise. Clearly, then,
this difference illustrates the “packing rule” that one should always
put through a call using the most heavily loaded part of the network
that will still accept the eall.

The question naturally arises, therefore, whether this packing rule is

Fig. 17 — Schema of state diagram.
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in any sense optimal for our particular example. We shall prove that it is,
in two senses. It is elear from an inspection of the state diagram that
only in state 1 is there ever a choice of route, and that this choice
is always between states 2 and 4. From the fact that state 4 is the only
state with any blocked ealls, it is intuitively reasonable to expeet that
the probability of blocking is the least if the “bad” state 4 is avoided
as much as possible, i.e., if from state 1 we always pass to either 2, 3,
or 5, and visit 4 only when we have to, via a hangup from state 6.

The next task is to choose a probabilistic model for the operating
network: this will be done in the simplest possible way. We postulate
that in any state of the system, the probability that a given idle inlet-
outlet pair request connection in the next interval of time h is M + o(h),
the chanee that an existing connection cease is A + o(h), and the chance
that more than one event (new call or hangup) occur in & is o(h), as
h — 0. The number A is the calling rate per idle pair, and time is meas-
ured in units of mean holding time, so the “hangup’’ rate is unity. New
walls that are not blocked are instantly connected, with some specific
choice of route, while blocked calls are lost and do not affect the state of
the system, their terminals remaining in the idle condition.

To complete the probabilistic description of the behavior of the sys-
tem, it remains to specify how routes are chosen. In our example, this
amounts to specifying whether, for eertain calls arising in state 1, the
route leading to state 2 or that leading to 4 is chosen. At first we shall
only consider methods of choice that are independent of time, ie.,
the choice is made in the same way each time.

The methods of choice over which we shall take an optimum may
be parametrized as follows: each time a choice is to be made between
going to state 4 and state 2, a coin is tossed with a probability « of
coming up heads. If a head comes up we choose state 4; if a tail, we
choose state 2; the toss of the coin is independent of previous tosses and
of the history of the system. The paramefer a may take on any value
in the interval 0 < « < 1; the value @ = 0 corresponds to choosing
state 2 every time; the value @ = 1 corresponds to choosing state 4
every time; a value of a intermediate between 0 and 1 means that 4
is chosen over 2 a fraction « of the time.

Introducing a natural terminology (from the theory of games), we
may say that a choice of « represents a policy or strategy for making
routing decisions; a value 0 or 1 of a represents a pure strategy, in which
the route is speeified by a rigid rule, and there is no randomization; an
intermediate value of « represents a marved strategy.
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Fig. 18 — Schema of state diagram showing transition rates.

A choice of a determines a matrix @ = @Q(a,\) of transition rates
(Iig. 18) among states of the system, and so a Markov stochastic
process taking values on those states. As a measure of performance we
shall use the fraction b of requests for connection that encounter blocking,
defined as follows: let b(¢) be the number of blocked calls occurring
in the interval (0,{]: and let »({) be the number of requests for service
oceurring in (0,{]; then

. b(t)

b lalamw r(t)’
It can be shown that this limit exists and is constant with probability
one, so b is well defined.

The number & = b(a)) can be calculated from the matrix @ as
follows: if (z, = 0, --- , 9) is a state, let 8(z) be the number of blocked
idle pairs in state 7, and let ¥(z) be the number of calls in existence in
state 7. The stationary state probabilities {p;, 7 = 0, - -+, 9} exist and
are the unique solution of the matrix-vector equation @p = 0. Then b is
given by
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pl4 — y())
0

L3

[

- 2P i ) = )1
= 5———, with 8(7) =4 — v(d)]
Z p.ﬂ(i)
i=0
_ (pB)
(p,8)

9
where the inner product (p,v) is z Pt .
=0

We may therefore formally state our variational problem for this
example as follows: to find that o in the interval 0 £ o £ 1 for which
the ratio

b= (p,8) = minimum

~ (p,6)

9
subject to the conditions Qp = 0, Z Pi

=

I
—

It is natural to expect that in choosing an optimum routing method
in the example above there is no point in randomizing, i.e., using a
mixed strategy with a unequal to either 0 or 1, That this is so is not
obvious from our mathematical statement of the problem, and requires
proof. We shall demonstrate a more general result:

Theorem 2: Let & and y be veclors of 10 dimensions, will negalive

heorem 2: Let @ and y be veelors o dimensions, with y nonnegative
and not identically zero.

min
/ ; §

or (p, ) Qp=0, Xpi=1 0=acs1l
[ply) i=0

max

is always achieved fora = 0 or a = 1.
Proof: The equation @p = 0 may be written out in the detailed form

() 16Apy = m

)
16Ape + 22 .

=2

(77) (0N 4+ 1ipy

(#27) (4N 4+ 2)p2 = 4N — a)py + ps + P
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(v) (4N + 2)ps = 4\p1 + pr

() (2N + 2)ps = 4hapy + Ps

(v1) (AN + 2)ps = Ap1 + Do

(viz) (A + 3)ps = 2Ap2 + 2Aps + AAps + 4y
(vidt) A+ 3)pr = 2p2 + ps + 4ps

(¢2) dps = Aps

() 4ps = Apr.

These are the standard “statistical equilibrium’ equations for the
probabilistic model we have assumed. They can be solved by succes-
sively eliminating every p; except po and obtaining a solution of the
form

pi = fipo, i#0.
The value of py is then determined by the normalization condition
Z?:u pi = las
1

o= ———:
1+ 2 f
The f; are of course functions of X and a. We shall prove that they are
linear functions of the parameter «.

We first eliminate p, and note that f; = 16A. Since the relations
(#i7)—~(iv) contain the variables {p;, i = 2,3,4,5] only on the left, these
variables may be eliminated entirely from (z), and from (vi7)—(x). But
substitution for these variables in (%) and (vi77) in terms of (472)—(v7)
introduces a and p, only in inhomogeneous terms. Hence, fs and f; are
linear in &, and so all {f;, 7 = 1, ---, 9] are linear in a.

Clearly, we have

(p,2) _ (f,2)
(py) (fy)

because the normalization terms 1 + i fi cancel out, and so it
follows that (p,x)/(p,y) is a bilinear function of «, i.e., it has the form

where A,, A., B,, and B are constants. Now
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i (a) _ B;(A‘iz + Bzﬁ) - Bz(Az + Blﬂ)
da? (4: + Bm)?
_ Bid; — B,
(A2 + Boa)?

which is of the same sign as its numerator. Thus g () is either always
nonpositive or nonnegative, and so any extremum of g(e) in0 = a = 1
is assumed at the boundary, either for « = 0 or « = 1. Since the solution
p of @p = 0 is known to have all strictly positive components for all o
in the unit interval, we have As + By = (p,y) > 0.

It follows in particular that the minimum of blocking probability b
is achieved for @ = 0 or & = 1. It is unthinkable that visiting a blocking
state (state 4) more frequently should decrease b, so we conjecture (and
shall shortly prove that) « should be zero rather than one.

Before doing this though, let us observe that there is only one block-
ing state (viz., 4), and that the blocking probability b can be written as

21)4
5

h = .
16pn+9p1+4§p.~+p5+p7

These facts and our intuition suggest that b should be a monotone
increasing function of

= D
T "

This conjecture is correct, and provides an easy way of showing that
a = 0 gives the least blocking probability. Let us prove it.
From (7) and (¢2) we find that

5
2 i = SNON + Lpo — 2hpo = T2\%pq

1=2
whence

b= s
16 + 144) 1+ 288\ + fs + [+~

From (v7)—(x) we find that

1

5
e+ P = N+ 3 (R(Pe + pr) + 4 ; Pi — 2)\p4)

-

(=]

5
A Z:Epi — I\ps

967" p, — 2 Aps.
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Therefore

b= 2Ja
16 + 1441 + 550N + 192 — 2nJ:~

This is of the form

2

s

a — cx
where a and ¢ are strictly positive constants. Now

Ll 2 _ 2 . 2¢x
dva—cx a—cx (a— cs)?
- 28
{a — cx)?

v

0.

Hence, b is a monotone increasing function of fy. It follows that b is a
minimum if fy is a minimum.,

To prove that the blocking probability b is a minimum for « = 0,
it remains to ealeulate py from the equilibrium equations. By eliminating
all the equilibrium probabilities except ps and p7 , we find

_ 1 (8)\2(] — a) 16Ap, + S\ al6Apy + 2Aps
CAR o+ 2 2\ + 2
AN*16Npe + 4Npg )
Y —mrm M
_ 1 (8)\“(1 — a)16Ape . (16X)"Ape + 4Ap:
=R ¥3 m+ 2 i+ 2
2\
+}‘Pﬁ+m(pﬁ+ P?))-

We have purposely not simplified the terms so that their origin can be
verified. I'rom these two equations we find that

= s
fﬂ o

7 k(l—a-l— 1 )
a1l —a a 1 mt2 ' am+1
X128\ 4A+2—|—2A+2+8)\+4+ s 5

2+ 1

Il

where
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A 4w
N1 2+ 1 2N +4+3

N+ A+ TN +3 42

X=x+3-

2N 4 3N 4+ 1 44N+ 3
> 0.
The coefficient of « in f5 is
128)\° 2A+2( A
2+ 2 m 2 Nt 3_
' 2N+ 1
This is positive, because
Lo+ 2f A =1_A+1CW+ﬁh+ﬂ
AN+ 2 \ 43— 3\ O+ 1 \2N +4h + 3
TN
R N
AN 4 10X + 10N + 37
— P 32\ Po/ Do
However, oA F I + DN
Hence, % > 0.
da

We shall now consider the problem of optimal routing in our (trivial)
network from a different point of view. Instead of minimizing the ratio
of nnsuccessful attempts to attempts, let us simply minimize the average
number of unsuccessful attempts in any finite number of events, count-
ing changes of state and unsuccessful attempts as events.

In our example, the only choice is between states 2 and 4, when a
particular eall requests connection in state 1. By a policy, let us mean a
function p(-) on the nonnegative integers taking the values 0 and 1.
Let 2, be the state of the network after n events, n = 0. We say that
the system is operated according to policy p(-) if, for each n = 0,
given that x, = 1 and a choice oceurs, the system moves to

1

state 2 if and only if p(n)

state 4 if and only if  p(n)

0.
Now our infuitive feeling is that going to state 2 is preferable over



1244 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

going to state 4 under all circumstances. At the cost of anticipating
results to be proven, let us partially order all the possible policies by the
definition: If p(-) and ¢(-) are policies, then

p=q ifandonlyif p(n) = q(n) forall n = 0.*
The shift, transformation 7' of policies p(-) is defined by the condition
Tpn) =pn+1) >n=0.

It is evident that p = ¢ implies Tp = Tq. Let Ey ,(x) = 0, and define
number of unsuccessful attempts after n events
E, o(x) = FE{starting from state z if the system is operated ac-
cording to policy p(-)
Let S be the set of states (0,1, -+, 9}.
We shall prove
Theorem 3: If p = q, then for all n = 1 and v € S
B, () £ B, (2).

As a preliminary result (not without its own interest) we shall need
the

Lemma: For n = 1 and any policy p(-)
Eu p(“l) = max E,,_p(-l').
TeS
This says that starting in the (sole blocking) state 4 is always the worst
way to start, no matter how long we run the system.

Proof: Forn = 1 and z # 4, E, ,(x) = 0 since no unsuccessful at-
tempts can oceur in any state except 4. However,

P

Bl = 5

50 the lemma is true for n £ 1. Assume as an hypothesis of induction

that it is true for n < k. Now for x # 4, Ek)?.n(-r) 18 a4 convex combina-
tion of values of £y r,(+), so clearly for z = 4

B p(x) = max By ,(y) = i p(4).
However, elementary probability arguments establish that
Epp1.,(4) = B p(4) + Pria. = 4 |20 = 4)E *,(4)
so the lemma is proven.

* Read “p = ¢’ as “p is better than ¢!
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Proof of Theorem 3: For any policy s(-)
El.l(a:) =0 f z#4

2N

El,t(‘{) =35 e e

Hence,
E, (x) = Ey (x) forall aeS.
Assume as an hypothesis of induction that p = ¢ implies
E, ,(¥) £ E, 4(x)

for all 2 and all n £ k. Now for & # 4 or 1 and any policy s(-), iy .(2)

is a convex combination of values of
Ek.ﬂ( ’ )—
For @ = 4, we have for any policy s(-)

2

51 i + convex combination of Ey 7.(-)

Ek+1.e{4) =
where the coefficients of the convex combination are transition prob-
abilities independent of the policy s(-), and

2\ " {ﬁrst event is a

— = : in s 4.
2 4 4A blocked attempt start in state }

Hence, p = g and a # 1 implies
Ei1,p(t) S Eipaq(2)

Tor # = 1 and any policy s(-) we have

Fra(1) = ]jr_"m [s(1) Bera(2) 4 (1 — s(1))Eia(4)]
1+ 5A i
4 Ty convex combination of Fi r.(-)

where the coefficients of the convex combination are independent of
s(+), and
4N ) {ﬁrst event requires

1+ O = routing decision start in state 1} ’

\

Suppose now that p = ¢. It is sufficient to show that
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P E,75(2) + [1 — p(1)]Er rp(4)
< q(DEx 2o(2) + [T — q(1)]Ek 2y(4).

If p(1) = q(1), this follows from the hypothesis of induction. The only
other possibility is that p(1) = 1 and (1) = 0. By the lemma and the
hypothesis of induction we find

Ek,?‘p(z) é Ek,'.l"p('l')
g Ek,'rq('l‘).

This proves Theorem 3. The result at once shows that the policy p = 1
is optimal in the sense that it minimizes

lim sup n=%, ,(2).
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Algebraic and Topological Properties
of Connecting Networks

By V. E. BENES
(Manuseript received May 29, 1961)

A connecting network is an arrangement of swilches and transmission
links allowing a certain set of terminals to be connected together in various
combinations, usually by disjoint chains (paths): e.g., a ceniral office, toll
center, or mililary communications system. Some of the basic combinatory
properties of connecting networks are studied in the present paper.

Three of these properties are defined informally as follows: A nelwork 1s
rearrangeable if, given any sel of calls in progress and any pair of idle
terminals, the calls can be reassigned new routes (if necessary) so as to make
il possible to connect the idle pair. A state of a network is a blocking stale
if some pair of idle terminals cannot be conneeted. A network: ts nonblocking
in the wide sense if by suitably choosing routes for new calls it s possible
to avoid all the blocking states and still satisfy all demands for connection
as they arise, withoul rearranging existing calls. Finally, a network s
nonblocking in the strict sense #f it has no blocking stales.

A distance between states can be defined as the number of calls one would
have to add or remove to change one state into the other. This distance
defines a topology on the set of states. Also, the states can be partzally or-
dered by inclusion in a natural way. This partial ordering and ils dual
define two more topologies for the set of states. The three lopologies so ob-
tained are used to characlerize (i.c., give necessary and sufficient conditions
for the truth of) the three properties of rearrangeability, nonblocking in the
wide sense, and nonblocking in the strict sense. Each of these three properties
represents a degree of abundance of nonblocking states; the mathematical
concept used to express these degrees is the topological notion of denseness.
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I. INTRODUCTION

Any large communication system contains a connecting nelwork, an
arrangement of switches and transmission links through which certain
terminals can be connected together in many combinations, usually
by many different possible routes through the network. IExamples of
connecting networks can be found in telephone central offices, toll
centers, and military communications systems.

The connections in progress in a connecting network usually do not
arise in a predetermined temporal sequence; instead, requests for con-
nection (new calls) and terminations of connection (hangups) occur
more or less “at random.” For this reason it is customary to use the
performance of a connecting network when subjected to random traffic
as a figure of merit. One precise measure of this performance is the
fraction of requested connections that cannot be completed in a given
time interval, or the probability of blocking. In a telephone connecting
network this probability measures to some extent the grade of service
given to the customers.

The performance of a connecting network for a given traffic level is
determined largely by its configuration or structure. This configuration
may be described by stating what terminals or transmission links have
a switch placed between them and ean be connected together by closing
the switch. The configuration of a connecting network determines what
groups of terminals can be connected together simultaneously. Any one
set of permissible connections may be called a state of the network.
Quantities such as the number of combinations of terminals that can
be connected, and the number of states in which a given combination
is connected, clearly are indicative of both the performance and the
cost of the system. If these numbers are small the performance may be
poor and the cost low; if large, the performance may be unnecessarily
good and the cost prohibitive. These numbers are among the purely
combinatory and topological properties of the connecting network.

For example, in a telephone exchange, the network configuration
“determines what pairs of terminals can be simultaneously connected by
disjoint paths, that is, what calls can be in progress. If this configura-
tion is too simple, only a few pairs of terminals can have calls in progress
between them at the same time. If the configuration is extensive and
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complicated it may provide for many large groups of simultaneous calls
in progress, but the network itself may be expensive to build and difficult
to control.

To design connecting networks with confidence, then, it is desirable
to have an adequate general understanding of their combinatory and
topological properties. A discussion, in part heuristic and tutorial, of
conneeting systems and of some associated mathematical problems has
heen given in a paper' by the author; the reader is referred thereto
for material suitable as background for the present paper. In that work
a division of the topic into combinatory, probabilistic, and variational
problems was drawn, and it was argued that the elements of this division
had a natural order of priority: one must know the combinatory proper-
ties of a system in order to calculate its probabilistic properties, ie.,
its performance in the face of random traffic; and one must know both
the combinatory and the probabilistic properties of systems in order to
compare them and to select optimal ones.

In this paper we shall be concerned exclusively with those combinatory
and topological properties of a general connecting network that seem
to be most relevant to its performance.

II. SUMMARY

Some of the basic combinatory properties of connecting networks are
studied in the present work. Three of these properties, rearrangeability,
nonblocking in the wide sense, and nonblocking in the strict sense, can
be defined informally as follows: for brevity, define an idle pair to be a
pair of idle terminals consisting of an inlet and an outlet. A network is
rearrangeable if, given any set of calls in progress, and any idle pair,
the existing calls can be assigned new routes (if necessary) so as to make
it possible to connect the idle pair. A state of a network is a blocking
state if some idle pair cannot be connected. A network is ronblocking in
the wide sense if by suitably choosing routes for new calls it is possible to
avoid all the blocking states and still satisfy all demands for connec-
tion as they arise, without having to rearrange existing calls. Finally,
a network is nonblocking in the strict sense if it has no blocking states.

A distance hetween states of a connecting network can be defined as
the number of pairs of terminals that are connected in one state and
not in the other. This distance defines a topology on the set of states.
Also, the states can be partially ordered by inclusion in a natural way.
This partial ordering and its dual define two more topologies for the
ot of states. The three topologies so obtained are used to characterize
(i.c., give necessary and sufficient conditions for the truth of) the three
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properties of rearrangeability, nonblocking in the wide sense, and
nonblocking in the strict sense. Each of these three properties represents
a degree of abundance of states in which ecalls are not blocked ; the mathe-
matical concept used to express these degrees is the topological notion
of denseness. A study of some particular connecting networks that are
rearrangeable is given in another paper.?

III. THE STRUCTURE AND CONDITION OF A CONNECTING NETWORK

In discussing connecting networks, we shall abstract from the many
possible technological realizations and actual designs of connecting
networks, and shall consider only certain relevant features on which we
can base a useful and sufficiently general mathematical theory.

Most real telephone switching networks consist of pairs of wires for
talking paths and electromechanical switches for crosspoints; in certain
experimental systems the talking paths are pulse code modulation
channels, and the crosspoints are time-division gates made of transistors.
However, any attempt to formulate some general properties of connect-
ing networks must be independent of the network configuration chosen,
and of the technology used to build the network, for a particular real
system. A theory must apply equally well to Strowger switches, crosshar
switches, gas-diode switches, and time-division switches. Unless it is
independent of technology, a theory of connecting networks is limited
in scope and may have missed the heart of the problem. We therefore
use some of the terminology of switching engineers but understand it to
refer to defined mathematical idealizations of switches, gates, crosspoints,
transmission links, ete., rather than to the physical entities themselves.

We distinguish between switching networks used for communication
and those used for control functions and logical transformations, like
relay nets. Our concern is with networks of the former kind, and we call
these connecting networks.

A communications switching network, or connecting network, consists
of three kinds of entities: (7) wires or other transmission media along
which communication may take place; (#7) terminals to which the wires
are attached; and (#7) crosspoinis or switches which can be used to
connect the terminals, and hence the wires, together in various combina-
tions. Each crosspoint can connect together exactly one pair of terminals,
and it has two conditions: in the “on” or closed condition the two
terminals are connected and communication can pass from one to the
other; in the “off”” or open condition the terminals are disconnected, and
no information can pass through.

From the point of view of switching, two terminals connected together
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by a wire are essentially one terminal, albeit a spatially extended one.
We therefore regard terminals as identical if they are wired together;
in mathematical terms, we identify terminals under the equivalence
relation of “‘being wired together.” Henceforth, then, our considerations
will leave wires out of account, and will be based only on the notions
of terminal and crosspoint.

By the configuration or structure of a connecting network, we mean a
specification of the terminals between which individual crosspoints
have been placed. By the condition of a connecting network, we mean a
specification of the closed and open crosspoints. In most cases of interest
the structure is invariant in time, while the condition changes in a
random way. We shall assume that at most one crosspoint is placed
between distinet terminals, and that no erosspoint is placed from a
terminal to itself.

1V. GRAPHICAL DEPICTION OF NETWORK STRUCTURE AND CONDITION

A simple device can illustrate the four notions we have introduced so
far. In Fig. 1(a) the nodes (points) represent lerminals, and the branches
(lines) labeled a;, 7 = 1, -+, 6, represent crosspoints placed between
the terminals. The resulting graph represents the structure of a network.
If we interpret the labels ; as binary variables specifying the condition
of the (respective) crosspoints, with 0 meaning “open” and 1 meaning
“closed,” then an assignment of values 0 or 1to {1, - - -, xs} represents
a possible condition of the network, illustrated in Fig. 1(b). We are
purposely avoiding the term “network state’ here in order to assign it
a useful precise meaning in the next section.

We have illustrated the use of a labeled graph as a general representa-
tion for (simultaneously) the structure and condition of a connecting

117\ 17\
X,
s 4 X ;=1 0 o o
I =0
.:3 Ty=1 1
Tg

(a) (b)

Fig. 1 — (a) Representation of structure; (b) simultaneous representation of
structure and condition.
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network. This representation is useful because it identifies the structure
and condition of the network with a definite mathematical entity. It will
become apparent that simple properties of this mathematical representa-
tion have great theoretical and practical relevance to congestion prob-
lems.

In general, the labeled graph g representing®* the structure and con-
dition of an arbitrary connecting network is constructed as follows:

1. nodes (points) of g correspond to terminals of the network;
2. branches (lines, or edges) of g correspond to crosspoints of the
network;

717, open crosspoints are labeled 0;

. closed crosspoints are labeled 1.
Two terminals are connected in g if g contains a chain of closed cross-
points from one terminal to the other.

V. NETWORK STATES

Let G be a graph representing the structure of a switching network,
and let V' be the set of all labeled graphs g (labeled “versions” of @)
obtained by assigning 0 or 1 to each line of G. There are several reasons
why not every element g of 77 represents a physically meaningful state
of the network.

In most switching systems there is an explieit functional distinetion
between terminals which are used only to connect other terminals
together, and those between which desired connections arise, and which
are never used to connect other terminals together. Terminals of the
former kind we shall call links, because of their intermediary nature,
and those of the latter kind, #nlets and/or outlets. Desired connections
always arise between two or more inlets or outlets. If more than two
are involved, the connection is termed a ‘“‘conference” call. Usually,
though, the connections are disjoint chains of closed crosspoints, assur-
ing private conversations between inlets and outlets by pairs only;
we restrict attention to these. In terms of our graphical representation
of the structure and condition of a switching network, the distinctions
made above impose restrictions on the elements of V' which represent
realistic conditions of a network having the structure of G.

The restrictions on the assignment of the labels 0 or 1 listed above
are (perhaps the most important) among many which are imposed by
the functional and operational features of a real switching system. In
general, a real connecting network specifies (or uses) only a subset of

* A glossary of mathematical notations appears at the end of this paper, See-
tion
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the set V7 of all possible labeled versions of the graph G that represents
the structure of the network being studied. We have therefore avoided
calling elements of 17 “‘states of the network” because not all members
of V can reasonably represent the condition of an actual network.
We now attempt to characterize those subsets 8 of 7 which can repre-
sent real networks. Each such subset S will be called a class of network
stales.

The Boolean operations of join U and meet N (union and intersection,
respectively) are definable for elements &, y of ¥ in an obvious way:

2 Uy = the V-element having a 1 wherever either x or y has a 1,
and 0 elsewhere,

Ny = the V-element having a 1 wherever both x and y have a 1,
and 0 elsewhere.

The complement 2’ and the difference 2 — y can be defined analogously.
In view of this it is natural to inquire whether these Boolean operations
can be used to characterize subsets S of 17 which are classes of network
states.

If the elements x, y of 1 belong to such a subset (class of network
states) S, it is not necessarily true that U y, nor that = N y, belongs
to 8. In the case of « U y, there may be links and crosspoints used in
both x and y, and so + U y may violate the requirement of privacy.
Toven if # Ny = 0 there may still be inlets used in both x and y, so
that « U y would lead to undesirable paths of extreme length. In the
case of 2 N 4, there may be so little in common to x and y that = N y
reduces to a single closed erosspoint between two links (i.e., not between
an inlet and an outlet). Thus the Boolean operations do not yield a
useful way of deseribing S.

The preceding remarks suggest that since any connection is a chain,
none of whose terminals and erosspoints oeeurs in another connection,
the labels 0 and 1 are really superfluous, although they served a tutorial
purpose heretofore. That is, in describing the possible subsets S of net-
work states, we can (and should) take advantage of inherent physical
restrictions, and conveniently replace our representation* x e V of the
structure and condition of a network by a corresponding set of disjoint
chains, since each physically meaningful element x from 17 is equivalent,
to such a set. A formal development of this suggestion follows.

Let T be the set of terminals of a connecting network. The graph G
representing the structure of the network is a subset of the product

TxXT=1{(uv)|uel,veT}

# it o 0 means that z is an element of the set V.
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with the properties
(u,v) e @ if and only if (v, u) € G
(u, u) is never in G
and the interpretation
(u,v) e if and only if (u, v) is an edge of graph G
if and only if nodes « and » are adjacent in the graph
if and only if there is & crosspoint between terminals »
and v.

A chain p of length n between terminals » and » is a sequence of
elements {z, ¢ T, 0 < 7 = n} such that

zZy = u, Z, =0,
25 #= 25 fOl' ‘Z: #= j,
(2¢,2i1) eG for 2=0,.--,n — 1.

Two chains p; and ps are called disjoint if they have no nodes (terminals
e T) in common; in this case we write symbolically p, N p. = ¢, with
¢ = null set.

We shall henceforth assume that the set T of terminals has been
(functionally) decomposed into three sets:

Tr=1UQUL,

where I is a set of inlels, @ a set of outlets, and L is the set of links.
It is possible that 7 = Q or that 7 1 @ = empty set, or that some inter-
mediate condition obtain. However, we shall insist that (7 U @) N L
be null, i.e., that no link be an inlet or an outlet.

The set ' of connections consists of all chains p = {2z, ¢ T,2 =0, ---
n(p)} such that

zoel, Zn(py € 2, Zo ¥ Zup
zieL, for 10 or n(p).

Each element p of (' represents a possible connection from an inlet to
an outlet through the network whose structure is represented by the
graph G.

Elements of the set S of network states will be defined as subsets
x of €, x C C, consisting entirely of disjoint chains, that is, such that

p1,p:ex implies pi N p: = ¢.
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Two subsets x and y of €' are called compatible if
pex,poey implies pNp = ¢

The connections that comprise compatible states can all be put up
simultaneously without interfering with each other or violating the
requirement of privacy.

The functional and physical restrictions imposed by real networks
determine (in any particular system) a subset E of C consisting of
(what we shall call) the elementary states, or single connections that
can actually be used. For example, chains in €' that double back and
are wastefully circuitous may be excluded from E.

Given such a subset E of elementary states, we can define a class of
network states S, associated with E, in a natural way as follows: S
is the smallest class of subsets of E containing all unit subsets of FE,
and closed under formation of arbitrary intersections (meets) and unions
(joins) of compatible subsets of E. That is, S is the smallest class of F-
subsets such that

p el implies (p] €S,
x,yeS implies @M yels,
if w,yeS and prex,pey implies pp = ¢,
then aUyes.

We henceforth use “S” as a generic notation for a class of network
states defined as above. The word “network” will refer to a graph ¢
representing structure, choices 7 and @ of inlets and outlets respectively,
and a choice E of elementary states. The choice of G, I, , and E uniquely
determines a class S of network states according to the definition given
previously. The quadruple (G, I, 2, E) will be called a network, N.

It is easily verified that the class S of network states is partially
ordered by inclusion, <. Moreover, any two elements z, y of S have a
unique intersection (meet) consisting of just those connections common
to both 2 and y, and S itself has a unique least element included in every
other element, viz., the ground state in which no calls are in progress.
However, since only infima exist, and since there may be many maximal
elements in the partial ordering, S is not a lattice, in general.

VI. THE STATE DIAGRAM

The partial ordering < of S has a special nature that allows us to

arrange the network states z ¢ S in a particularly intuitive and useful
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pattern. The following conventions and definitions will be helpful in
discussing this pattern.

If K is any set, we use the notation | K | to mean the number of
elements of K. E.g., if x is a network state,

| 2| = the number of calls in progress in state .
The sets Ly are defined by the conditions
L= [z eS|[a]|=F], k=0,1,---,

that is, L is the set of all network states consisting of exactly & con-
nections. Ly is a unit set containing just the zero state. The sets L,
are a partition of S corresponding to the equivalence relation of “having
the same number of calls in progress.”

To obtain our pattern for arranging network states we start with the
zero or ground state in which no calls are in progress: this is the empty
set (of chains). Above this zero element, in a horizontal row, we place
all the states consisting of a single connection, i.e., all the elements of
E. Continuing in this way, we put the =et L. of states consisting of
(k + 1) disjoint chains (i.e., &k + 1 ealls) in a horizontal row above the
set Iy of states with & disjoint chains (i.e., & calls in progress). We call
Ly the kth level.

The diagram is completed by constructing the corresponding Hasse
figure (Birkhoff," p. 12); that is, we think of the states x e § (in their
arrangement into levels L,) as nodes, and we construct a graph by
drawing lines between states x, y of respective adjacent levels Ly, Ly
just in case

y—xelkl,

i.e., if and only if y results from 2 by putting up one more call. The
resulting graph can be termed the state diagram D of the network N
deseribed by the quadruple (G, I, @, E). The state diagram D is a
natural and standard representation of the partial ordering of S. The
history of the conneeting network when operating can be thought of as
a trajectory on D.

We shall use the network depicted in Fig. 2 to illustrate the state
diagram D. For most practical purposes this network is wasteful of
crosspoints, but it makes a suitably simple example of the partial
ordering of the states. The network has four inlets and four outlets,
and no inlet is an outlet. The squares in Fig. 2 represent 2 by 2 switches,
as indicated.

The possible states of this network are determined by all the ways
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Fig. 2 — Hlustrative three-stage connecting network.

in which four or fewer inlets can be connected pairwise to as many
outlets on the right, no inlet being connected to more than one outlet,
and vice versa. These possible states have heen depicted in a natural
arrangement in Fig. 3, which shows a reduced state diagram in which
states which differ only by permutations of inlets, outlets, or switches
have been identified. There is essentially only one way to put in a single
call; there are four ways of putting in two calls; and there are two ways
each of putting in three and four calls. The states have been arranged
in levels according to the number of calls in progress. In each state
only links actually in use are shown, and the different notations on the
links indicate the routing.

VII. SOME NUMERICAL FUNCTIONS

The finite set S of network states is partially ordered by inclusion,
which we shall denote by =. A chain in S is a subset X of S which is
simply ordered by (the restriction to X of) =; that is, for any two ele-
ments &, y € X, we have either # =2 y or y = x. Such a chain is not to
he confused with the “chains” on the graph @ that are elements of
states @ € N. The dimension or height | @ | of a state is the maximum
“length”  of chains 0 < &, < .-+ < ag = a that have x for greatest
element. (This usage is consistent with the previous definition of | - [.)

Remark 1: The dimension | v | of a state x is the number of busy pazirs,
or the number of calls in progress, in the state .

A state o is said to cover another state y if and only if * > y, and
there are no z e S such that x > z > y. The state @ is then “immediately
above” y. It is apparent that x covers y if andonly if x > yand [z | =

=
£
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Fig. 3 — (Reduced) state diagram for the network shown in Fig. 2.

| y| 4+ 1. In fact, the construction of the partial ordering of S arranges
the states according to levels, each level being the (equivalence) class
of all states having the same dimension. In determining dimension one
need only consider chains that are “maximal” or “connected” in the
sense that a; covers x,; for all 4. Also, it can be seen that the partial
ordering < of S satisfies the Jordan-Dedekind chain condition: all
connected chains between fixed end points have the same length.

The present section will be devoted to various relationships between
numerical functions defined on S, counting or “enumeration” problems,
ete., based largely on the dimension function and the chain condition.

The Mdbius function p(-) of the partially ordered system (S, =)
is defined recursively by

w0) =1, wp) =— gu(y) if x>0,
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where 0 denotes the zero or ground state in which no calls are up.
The Mabius function has the following two important properties:
i. Let f(-) be any funetion defined on S, and let

F(z) = Ezf(y)-
Then f(-) and F(-) are related by the Mébius inversion formula
J(z) = v;zu(y)f"(x — ).

Here # — 7 denotes the state obtained from a by removing all the
calls of state y; this makes sense, since y < . (See Weisner.")

ii. Let Aa, n) be the number of chains of length n which can be
interpolated between 0 and x. Then P. Hall® has shown that

—upl2) = Az, 1) — XMz, 2) + -+ .

By the Jordan-Dedekind chain condition, all the chains from 0 to z
have the same length, viz., | 2 |. Hence for x > 0

p@) = (=1)'"'Az, |z ]).
Tor simplicity of notation set
Mz, |2 |) = nlx)
= number of ways of “climbing” from 0 to .
Also, we introduce the following sets:
A; = |y |y covers x|
B, = |y |« covers y}
L. = {z]|z] = n}.
These have the following respective intuitive meanings: A, is the set
of states immediately above x, i.c., obtainable from x by adding one
more call; B, is the set of states immediately below w, i.e., obtainable
from & by removing one call; L, is the nth level, the set of all states
having n calls up. The cardinality of a finite set X is designated by
[ X].
Remark 2: | B, | = | x| for each x e 8. Clearly, x covers exactly

| | states, each obtainahble from x by removing one call.
Remark 3: For each x € S

n(x) = 2 a(y).

veBz
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Indeed, every state y covered by x gives rise to exactly n(y) elimbing
paths from 0 that reach x via .

Remark 4: Yor a e L, , 9(x) has the constant value n! This is ob-
vious intuitively, since there are n! orders in which the » calls of x € L,
could be put up. More formally, the result is true for x = 0; assume it
true for 3 e L,_; ; then by the previous results,

ple) = X ay) = | B - (n — 1)!
veB:

= nl
Remark 5: The Mobius function u(-) is given by

plx) = (=D (|2 !
(=1D)"! for wxelL,.

Theorem 1:

1
|La]l == T |4,], n>0.

Proof: The segments in the partial ordering passing from elements
y € L,_1 to L, are just those that pass from some 2 € L, to L,_; and hy
Remark 2, each x € £, hasexactly | 2 | (= n) such segments. Therefore,

ne | Lu| = X |A4y]
YeLp_y

and the sum on the right is exactly divisible by n.

Definition: ', is the total number of chains (of length ») from 0 into
L, , ie., to some state in L,.

Remark 6:

Cn) = X nlx) = z: 2(y) | Ay i
xely wely, |
It can be seen that @ e L, has g(x) chains climbing to it from 0; for
x, 4 € Ly, v # y, these chains are distinet since their highest elements
are unequal. This proves the first identity. Also each chain elimbing
to L, from 0 must pass through some unique y € L, . Each y e L,
has (y) chains of length n — 1 reaching it from 0, and each such chain
can then be completed to reach L, in | A, | ways. It follows also that
Ca 1
Lol = 2 == 3 [4,].

?b!‘ 'nyebu_l

VIII. ASSIGNMENTS

By an assignment we shall mean any one-to-one map a(-) of a subset
of I into Q. An assignment is to be interpreted as a specification of what
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inlets are to be connected to what outlets, without regard to the possible
routes that these connections might take through the network. If
I N Q is nonnull, we restrict assignments so as to satisfy a(u) #= u.

Let o be a network state consisting of chains py, pa, -+, p. with
n = n(zx) and each p; a chain between u; e I and v; € Q. We say that
¥ realizes the assignment a(-) if and only if

7. the domain of a(-) is {u;, 0 = 7 = n(x)}

. alu) = v;,0 =27 = nlx).

7. the range of a(-) is (v;, 0 £ 7 = n(x)}

An assignment is realizable if some network state realizes it; a state
realizes exactly one assignment; the zero state realizes the null assign-
ment. A maximal assignment is one that has either domain 1 or range .
The set of all assignments is denoted by A, and that of all maximal
assignments by A.

Two terminals, u e I and v € Q, are connecled in state x if and only if
some chain p e is a chain between « and v, i.e., if and only if x realizes
the (unit) assignment

(e, )},

We define the funetion 4(+) from § into (the set of) suhsets of 7 X Q
by the condition

y(x) = 1(u, ) e I X Q| wand v are connected in .
Formally, then y(x) is the assignment realized by state x; heuristically,

we may think of y(x) as the set of calls which are in progress in state ..
The set of unit assignments, that is, of

¢ = {(u,v)] suchthat (u,0) el X Q,

will be denoted by U, and a unit assignment ¢ e U will be referred to
informally as a eall.
If a = a(-) e A is an assignment, we use the notation

v 'a)

for the inverse image of a(-) under y(-), i.e., the set of (equivalent)
states y such that y(y) = a. In a similar vein, if X is a set of states, we
define

X)) = laeAd|a=y(r) forsome e X,

that is, v(X) is the set of assignments realized by members of X.
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IX. THREE TOPOLOGIES

Two network states  and y are equivalent, written 2 ~ g, if and
only if they realize the =ame assignment, i.e.,

v(@) = ().

Intuitively, equivalent but nonidentical states correspond to different
ways of putting up the same set of calls.
A peeudo-metrie (Kelley,® p. 118) on S can be defined by the formula

dx, y) = |v@)Ay@y) |, a,ye€d,

where A denotes the symmetric difference of sets, and | - | eardinality,
as before. In plain words, the distance d(z, ¥) between x and y is the
number of pairs (u, v) € I X @ that are either connected in 2 and not
connected in y, or connected in y and not connected in x. Clearly

d(z, 0) = |z |, 0 = zero stafe,
and also |
dlz,y) =0 ifandonlyif a~ y.
Thus d(-, -) only identifies states up to equivalence. The function

d(- , -) is obviously symmetric, and the triangle inequality is a conse-
quence of the set inclusion

(XAY) C (XAZ) U (YAZ).

The pseudo-metric d(- , -) can be used to define a topology for S ina
standard way (see Kelley,® p. 118 et seq.) The closure of a set X in the
d-topology consists of all states equivalent to members of X, and is

denoted by X¢.
For each subset X of S, we define its =-closure X by the condition

X=|[yeS|y=a forsome =zeX]}.

The operation on sets so defined satisfies the Kuratowski closure axioms
(cf. Kelley,® p. 43):

I B 1S
i
I I ©-

XU

and so defines a closure topology

H,
Il

i

=

h<

or S. The set X consists of all states
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that are “below” some member of X in the state-diagram D, i.e., can
he reached from a member of X by removing calls.
In a similar way, we define the = -closure X of aset X © S as

X={yeS|y=za forsome zelX}.
The converse of a partial ordering relation is also a partial ordering,

called its dual. Hence the mapping X — X is also a closure operation,
defining a third topology on S.

X. SOME DEFINITIONS AND PROBLEMS

An inlet or outlet is idle in a network state x if it belongs to neither
the range nor the domain of the assignment v(z) realized by z. An
idle pair of the state x is an element (u, v) of I X 9 such that both
w and v are idle in 2. A call ¢ = |(u, v)} is new in z if (u, v) is an idle
pair.

We shall now define what is meant by a blocked call. Let x ¢ S realize
the assignment y(z) and let ¢ be a new callin z, i.e., let

e= {(u,v)} elU
be a unit assignment such that (u, v) is an idle pair of 2. The new call ¢
is blocked in x if there is no state y > x such that

y(y) = y@@) Ve
A state z is a blocking state if some call is blocked in x. The state x is
called nonblocking if and only if for every idle pair (u, v) of z, the call

¢ = {(u,v)}
is not blocked in , i.e., there is a y € S above & which realizes the larger
assignment y(x) U ¢, =0 that
v(y) = v@) U [(u, v)},

y > .

The set of nonblocking states is designated by the symbol B'. A
state that realizes a maximal assignment has no idle pairs, and is (triv-
ially) nonblocking. In plain terms, a nonblocking state x is one in which
any idle inlet u can be connected to any idle outlet v without disturbing
the calls thal are already present; in this case there is a path r, disjoint
from all paths p € 2, between u and v, and

xU {r] eS8,

i.e., use of this path results in a network state.
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A network N = (G, I, @, E) will be called nonblocking in the strict
sense if and only if every state is nonblocking, i.e., B’ = §. Such net-
works have been discovered and studied extensively by C. Clos. (See
Clos’ and Kharkevich.®) A network that is nonblocking in this strong
sense has the property that no matter in what state it is, any idle pair
can be connected (in a way that results in a legitimate network state).

In most switching networks there may be several or many ways of
connecting an idle pair, i.e., putting up a new call, in a given state,
all of which lead to legitimate network states. Thus, even if the set S
of network states contains blocking states, it is conceivable that by
making the right choices of paths for connections one might avoid all
the blocking states, and still satisfy all demands for connection as
they arise, without disturbing calls already present. That is, there may
exist a rule for choosing paths which, if followed, confines the trajec-
tory of the system to nonblocking states (without refusing any demands
for connection by idle pairs).

We next discuss what is meant by a rule. If a call ¢ = {(u, v)} is
blocked in a state a it cannot be put up without disturbing existing
calls of &, and there is no question of using a rule. Also, if x is a maximal
state, no new calls can be put up, and a rule is unnecessary. But if a
call ¢ can be put up in one or more ways in the state x, then there is at
least one y > a such that y(y) = v(x) U e. In such a case some method
of specifying permitted or prohibited new states could be used in order
to improve performance.

A rule p(- , -) for a network N is a mapping of the Cartesian product

S — v A X U

into subsets of S, with the properties: if @ e S and ¢ = {(u, v)| ¢ U
with (w, ) an idle pair of & (so that ¢ is a new call in 2), then

0 S px, ¢) S v (y(x) Ue):

if @ is maximal, or if (u, v) is not idle, p(v, ¢) is defined (arbitrarily)
as the null set. If for some call ¢ not up in x we have

y €plz, c),

we say that the transition (between states) ¥ — y is permitted by p(- , -).

We say informally that a state x is reachable under a rule p(- , ) if
there is some sequence of changes of state, consisting of either hangups
or transitions permitted by p(- , -), and leading from the zero state to
2. More precisely, we define the notion
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2 is reachable under p(- , -) in n steps

I'Pnursi\'el_v, as follows:
. The zero state is reachable undm p(-, ) in zero steps.

i1. If x is reachable under p(- , -) inn steps and for some call ¢ e U,
v(x) = v(y) U ¢, then y is reac Imhle under p(- , ) in (n 4 1) steps.

iii. If z is reachable under p(- , -) in n steps, and for some call ¢ € U,
¢ is new in 2 and y e p(x, ¢), then y is reachable under p(- , -) in (n + 1)
steps.

A state is reachable under p(- , -) if it is reachable under p(-, -)
in n steps, for some n = 0. The set of states that are reachable under
p(+, +) will be denoted by R, .

A network N = (G, I, Q, E) will be called nonblocking in the wide
sense if and only if there is a rule p(- , -) for N under which no block-
ing state is reachable, i.e.,

R, C B

In words, we may say that a network is nonblocking in the wide sense
if there is a rule, depending on the states, and on the connections that
are requested, such that if the rule if used (starting from the zero state)
no blocking state is ever reached, and hence no request for connection
by an idle pair (of a state that ean be reached) need ever be refused.
In making this definition, we think of the system as starting (empty)
at the zero state; in any state x that it reaches, any idle pair of = may
demand connection; it must always be possible to make this connection
without disturbing existing calls, and reach a (nonblocking) state y
one level higher, y € L;z4 1 ; at any instant an existing call may termi-
nate, and the system move to a state of Lz _ 1. An example of such a
network was given in Ref. 1.

Finally, we consider a still weaker property of networks than the
first two defined, namely, the possibility of satisfying a demand for
connection by rearranging (if necessary) the existing e alls in such a
way that the desired call can then be ac commodated. Let @ be a net-
work state realizing the assignment y(x). We call & rearrangeable if and
only if for every idle pair (i, v) of  there is a y € S, possibly depending
on (u, ») and 2, which realizes the larger assignment y(x) U {(u, v)},
ie.,

v(y) = y(@) U {(u, 0)}.

Alternately x is rearrangeable if for every call ¢ new in x there is a y
such that
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v(y) = y(x) Ue.

This definition is the same as that of a nonblocking state except that
the condition x < y is omitted. That is, to realize the larger assignment
v(z) U ¢ it may be necessary to reroute existing calls to give a new
state z ~ 2 which is not comparable to 2, and which has a path r,
disjoint from p € z, between u and v. The state y may then be taken
to be z U {r}]. A network N is called rearrangeable if its states z € S are
rearrangeable.

With these definitions laid down, we can formulate several problems
of the combinatory theory of connecting networks:

. Can general characterizations of the properties of being rearrange-
able, and of being nonblocking (strict or wide sense) be given?

#2. What relationships exist among the concepts we have defined?

171. What spectfic networks are rearrangeable, or non-blocking (strict
or wide sense)?

To attack problem (z) we make the following observations: the three
properties of interest represent different degrees of abundance of states
in which ecalls are not hlocked. The relative abundance or density of
such states throughout S determines which (if any) of the three prop-
erties N has. The heuristic concept of abundance suggests the topological
one of denseness, and the possibility of characterizing the three proper-
ties in terms of denseness. This idea is developed in the remaining sec-
tions; it leads to answers to problems (7) and (47) above.

XI. REARRANGEABLE NETWORES

Let X be a subclass of the class S of network states. We say that X
is suffictent if v(X) = A, i.e., if every assignment is realized by some
state of X. We make two comments:

Remark 7: f A & y(2), then X is sufficient. This can be seen as
follows: every assignment is a subset of some maximal assignment, and
so belongs to the =-closure X of X. For the same reason we have

Remark 8: The following properties of a network N are equivalent:

1. N is rearrangeable.

12. Some sufficient class exists.

##1. The range of v(+) includes A.

It is convenient to approach the study of rearrangeable networks by
taking the point of view of a particular pair of customers, i.e., of a
particular inlet-outlet pair (u, v) ¢ I X Q. Such a pair corresponds to a
unit assignment or call

¢ = {(u,v)} U,
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any realization of which is among the states of K, the set of elementary
states. For each call ¢ e U we define

I.
B. = |z €S| ¢ is blocked in z}.

1t can be verified that

[z €S | cis new in z, ie., (u, v) is idle in z},

B. ClI., for ceU,
B’ = N (B,
cel
S —~yy4d) =UI.
cell

We call & network N rearrangeable for the unit assignment or call ¢
if and only if for every v e I. there isay e S — I. which realizes the
larger assignment y(z) U ¢ = y(y). In words, this condition states that
for any state in which the pair (u, v) is idle there isa (possibly rearranged)
state in which all the same calls are up, and in addition » is connected
to v. It is easy to see that N is rearrangeable if and only if it is rearrange-
able for all calls ¢ e U.

Let X, ¥ be arbitrary subsets of S. In accord with a standard definition
(Kelley,® p. 49), X is said to be dense in ¥ in the d-metric if Y is in-
cluded in the d-closure of X, ie.,

Y € X4
Now in & metric space the closure of a set X is the set of all points that

are at distance zero from X, when the distance of a point y from a set X
is defined as

inf d(x, y) .

TeX

Henee the closure of X is the set of all ¥ such that for some x e X,
d(x, y) = 0, or equivalently, v ~ y. That is, the d-closure of X is the
<ot of all states that are equivalent to a member of X:

Xt = [yeS|y~az forsome xeX}.

These observations lead to the following result:
Theorem 2: N is rearrangeable if and only if

(B.) is d-dense in I, , for each ¢ ¢ U.

Proof: Let N be rearrangeable; let ¢ e U; and pick z in I, . Then there
exists y €S such that
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y(y) = y(x) Ue,

and so there exists a z € £ 1 y7!(c) such that = < yand & ~ y — 2.
Obviously then

y —ze(B)
and since @ is equivalent to y — z we have
re ((B)")".

Since r was an arbitrary member of 7., we have proved I, € ((B.)')".
Conversely, assume that the condition in the theorem holds, and pick
any ¢ e U, and x € I.. Then 2 ~ y for some y in (B,), so that ¢ is not
blocked in y. Thus NV is rearrangeable for all ¢ ¢ U, and so is rearrange-
able.

A similar argument yields the weaker and simpler result:

Remark 9: 1f B is d-dense in S, then N is rearrangeable. In this case,
since S C (B')Y, given a state o there is always an equivalent nonblock-
ing state y, with

y~x,yeB.

Hence rearrangements can be made uniformly in the calls new to z.

XII. NETWORKS NONBLOCKING IN THE WIDE SENSH

We now turn to the characterization of networks for which there is a
rule for routing calls which allows the operating system to avoid blocking
states entirely. The case in which the network is actually nonblocking
in the striet sense, so that any rule will do, is exeluded here as trivial.
The point is to use a network with blocking states, but to manage to
avoid them by clever routing. The following general eriterion of a useful
rule p(-, -) suggests itself: p(-, -) should make as many blocking
states as possible unreachable, consistent with satisfying requests for
connection by unblocked new calls.

To exhibit, in an intuitive way, all the relationships that obtain, it is
convenient to introduce an additional concept: a class X of network
states is preservable (by new calls) if and only if for any x ¢ X and any
call ¢ that is new to @ and unblocked in x, there is a state y € X such that

y>ax and v(y) = v(2)Ue.

That is, if an idle pair (u, ») of & corresponds to a call ¢ = {(u, v)}
that is unblocked in x, then some state y e X realizes y(z) U [(u, v)},
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and y is above x in the state-diagram, y > 2. In words, X is preservable
if any call that can be put up at all in a state of X can be put up salva
staying in X, that is, in such a way that the system stays in X. A =-
closed class is always preservable (by new calls). We make

Remark 10: If X is preservable, 0 ¢ X, and X € B/, then X is sufficient.

It is then possible to start at the zero state, and call by call realize
any maximal assignment salva staying in X. We now state

Theorem 3: N is nonblocking in the wide sense if and only if there
exists a nonempty subset X of states such that

1. X is preservable.

u. X CB.

i, X is Z-closed, ie., X = X.

Proof: Let (1)—(#%7) hold for some subset X, and define a rule p(- , -)
by the condition that if ¢ e U7 is new to x, then

ple,¢) = vt (v(x) Ue) N X.

Use of p(- , -) is tantamount to requiring that any call must be put up
s0 as to lead to a state of X. By (¢) and (77), this can always be done.
Since X is =-closed, hangups preserve membership in X since X is
nonempty it contains the zero state. Hence all states reachable under
p(-, -) belong to X N B’ and

R, C B,

so that N is nonblocking in the wide sense.

Conversely, if N is nonblocking in the wide sense, then some rule
p(-, -) is such that no blocking state belongs to R, . Set X = R,.
Then X is <-closed, because any state below a reachable state is reach-
able by hangups. Also X € B’, because p(-, -) avoids all blocking
states. Finally, X must be preservable since one can “‘preserve” X simply
by using only state-transitions permitted by p(- , -), i.e., by putting up
unblocked new calls so as to lead only to states vouchsafed by p(- , -).

We recall that for x €S,

A. = {y |y coversrl,
= {y|y =2V zfor some z e £},
= [set of states immediately above z}.

The property of preservability (of a set X of states) will now be given
a topological characterization in terms of denseness, in the following
result:
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Theorem 4: A nonempty subset X of S is preservable if and only if for
every x ¢ X, A, N X is dense in A, in the sense of the d-metric; i.e., x ¢ X
tmplies

A, C (4. N X)e,

Proof: Take x ¢ X and y € A., so that y is “immediately above” z,
or y covers x. Then there is a call ¢ new in 2 such that

y(y) = v() Ue,

and so if A, N X is dense in A4, , there is a z e A, N X which is equiva-
lent to y. Since z covers z, it follows that the call ¢ new to x ean be
connected in state x so as to give rise to a state of X. That is, we have

zeX
v(z) = y(x) Ue.

Since ¢ was an arbitrary new call of & € X, the set X is preservable, if
the condition of Theorem 4 is true. Conversely, let X be preservable,
and take x ¢ X and y € A, . Then there exists a call ¢ not blocked in
@ with y(y) = y(z) U ¢. But since X is preservable, and ¢ is not blocked
in z, there is a z in A, N X such that y(2) = v(z) U ¢, that is 2 ~ 3.
Hence y is equivalent to an element of A, N X. Since y was arbitrary,
it follows that for 2 € X,

4, C (4. N X).

Remark 11: The sets {A., v € X} in the condition of Theorem 4

i,

may be replaced by the “z-cones”

yly > ).

XIII. NETWORKS NONBLOCKING IN THE STRICT SENSE

A network that is nonblocking in the striet sense has no blocking
states whatever. A simple characterization of this property is given by

Theorem 5: N is nonblocking in the strict sense if and only if there is a
subset X of B' such that

t. X 18 sufficient

it. X is d-closed, i.e., X = X°.

Proof: If N has the property, then S = B’, and we may take X = 8.
Conversely, if (7) and (#7) obtain, take any x € S; since X is sufficient,
there exists ¥ ¢ X for which y(z) = v(y), ie, x ~ y. But X = X9,
so x € X, and hence z € B,
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By Remark 10, the condition (i) that X be sufficient can be replaced
by the condition that X be preservable and nonempty.

IX. GLOSBARY

WN=EAQND NS

—a
e

-~
L

Az, n)
7(x)
A,

B,

C'n

a(-)
A

U

c

(@)
d(x, y)
X

X

g "d

B

P( *3° )
R,

an arbitrary graph

a copy of G with each edge labeled 0 or 1
the set of all labeled versions g of G

the set of network states (typical members z, y, 2)
the set of terminals (nodes of &)

a typical path (chain) on G

null set

the set of inlets

the set of outlets

the set of links

the set of all connections (paths from 7 to @)
the set of elementary states

an arbitrary network, specified by choosing G, I, , and E
partial ordering of ¥ or S by inclusion

zero state

number of elements of the set X

set of states with exactly % calls up

state diagram (Hasse figure of = on S)
Mabius function of =

number of chains of length » from 0 to =
Mz, [z )

set of states directly above x

set of states directly below z

2 n(x)

TeLp

an assignment (any 1-1 map of subget of I into Q)
set, of maximal assignments

set of unit assignments or calls

a call, or typical member of U

the assignment realized by state x
equivalence of states

| y(2)Ay(y) |

<-closure of X

= -closure of X

d-closure of X

set of states in which some call is blocked
a rule for operating a network

the set of states reachable under p(- , -).
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Solution of Systems of Linear Ordinary
Differential Equations with Periodic
Coefhicients

By H. E. MEADOWS

(Manuseript received February 7, 1962)

An analysis technique is presenlted lo provide an essentially explicit
solution for a system of n stmultaneous first-order linear differential equa-
tions with periodic coefficients. This representation of a periodic variable-
parameter linear system of arbitrary finite order is chosen for its theoreti-
cal and practical advantages over the classical nth order lincar differential
equation. Emphasis is placed on natural mode solutions of a homogeneous
set of equations. The characteristic exponents for these solutions are deter-
mined from a polynomial equation the ecoefficients of which are linear
combinations of n — 1 convergent infinite-order determinants. A pproxvimate
ealculation of these determinants is feasible for problems of moderate order.

1. INTRODUCTION

Systems of linear ordinary differential equations with periodic coeffi-
cients are assuming an increasing importance in engineering problems.
Two applications of present interest are periodically time-variable net-
works and multimode waveguide with periodic physical distortions.
Such applications have usually been analyzed by methods appropriate
to special cases such as the second-order case or by approximate tech-
niques valid for almost constant-parameter systems. However, pertur-
bation techniques for almost stationary systems are inadequate for
careful analysis of large-signal behavior of time-variable networks.
Similarly, a periodically distorted helix waveguide, for which more than
two modes must be considered,' should be described by a differential
system of order greater than two. These examples illustrate the impor-
tance of a technique for obtaining essentially explicit solutions of
periodic variable-parameter linear systems. Solutions in terms of char-
acteristic exponents are known to exist for systems of linear differential
equations with periodic coefficients.” However, the methods usually

1275
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employed for solving such systems, such as power-series techniques,
iterative processes, and incremental numerical solution methods, fail
to provide a system response description valid for all values of the
independent variable (time, distance, ete.).

The analysis method to be presented below provides an essentially
explicit solution for periodic variable-parameter linear systems of arbi-
trary finite order. The solution describes the system behavior for all
values of the independent variable. Emphasis will be placed on obtain-
ing a set of basis functions for a homogeneous system, since the solution
in the inhomogeneous case can be obtained from the basis functions.
As shown by Darlington,’ these functions may be regarded as analogues
of partial fractions in fixed network theory.

1I. FORMULATION OF DIFFERENTIAL SYSTEM

In this discussion the system of equations to be solved will be repre-
sented by the vector differential equation

F'(8) = B()F(1) (1)

where F(¢) and B(t) are nth-order column and square matrices, re-
spectively, and the prime denotes differentiation with respect to the
independent variable ¢. It is supposed that the elements of B(¢) are
known funetions of { with a common period of unity, ie.,

B(t) = B(t + 1). (2)

The formulation of this problem in (1) is chosen not only for its
elegance, but also because of its practical advantages. As indicated by
Kinariwala' these include the ability to write such an equation directly
from a time-variable network, the fact that the eigenvalues of B(f) are
natural frequencies for stationary networks, and the econvenience of (1)
in obtaining the quadratic forms representing stored energy and dissi-
pated power in stationary or nonstationary cases. These advantages have
their translated versions in other physical problems, including multi-
mode waveguide problems. Moreover, an equation such as (1) is
easily obtained from an nth-order linear differential equation, but the
transformation from (1) to such an equation can be quite difficult (or
analytically inconvenient).” Thus, (1) represents a well-founded be-
ginning for the analysis of variable-parameter problems of practical or
theoretical interest.

III. FORM OF SOLUTIONS

The form of solutions of (1) is well known; pertinent properties of
such solutions will be reviewed here briefly. If B(t) is piecewise con-
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tinuous (1) has the unique solution

F(t) = X(1)F(0) (3)
where X (¢) is the unique nonsingular square matrix satisfying
X' = BX
(4)

X(0) = I = diag {1}.

When B(¢) satisfies (2), X({) may be written as

X(t) = J() e (5)
where
J(t) = J({t+1) (6)
and
e = X(1). (7)

I'or convenience it will be assumed here that the eigenvalues of K
are distinet, or at least that K can be diagonalized; thus, a constant
nonsingular matrix P exists so that

K = pMP™ (8)

where

M = diag () (9)

and the constants u; are the eigenvalues of K. The matrix exponential
funetion in (5) may be similarly diagonalized, so that the solution (3)
may be constructed in the form

F(t) = J(t)P[diag {¢"'}]PT'F(0). (10)

By establishing the special initial conditions

0
0
ri(0) = P 1 | it row 1)
0
the corresponding unique solution
Fi(t) = ' J(F(0), (12)

is obtained from (10). Thus, by proper choice of initial conditions a
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set of n solutions of the form
F(t) = Q1) (13)

where p is a scalar constant and Q(¢) is a column matrix with period
unity, have been shown to exist.

The n solutions in the form (12) or (13) represent natural modes of
the periodic system described by (1) and (2). If the n values of u; are
distinct the corresponding n solutions are certainly independent and
form a set of basis solutions of (1). Any other solution of (1) comprises
a linear combination of solutions like (12) or (13). Moreover, as Dar-
lington® has pointed out, these natural-mode solutions are essentially
unique because of their simple form. Hence the natural modes given by
(12) represent a complete and essentially unique description of the
natural behavior of the periodic system. The eigenvalues g, , frequently
referred to as characteristic exponents, play a role analogous to response
poles or natural frequencies of stationary systems. The strength of each
natural mode in the homogeneous case is determined by the initial
conditions and the constant matrix P. Moreover, the natural-mode
solutions allow a complete solution to be calculated in the inhomogene-
ous case. Thus, the determination of n corresponding solutions for u
and Q(¢) in (13) is central to the problems associated with (1) and (2).

The object of the present treatment is to indicate a technique for
determining the characteristic exponents g, as well as the corresponding
matrices Q(t) if desired. Primary attention is given in finding the char-
acteristic exponents u because of their practical importance and because
the solution for Q(t) is not greatly difficult in principle if the appropriate
characteristic exponent is known. Solutions for @(¢) are mentioned in
Appendices A and B.

The method to be discussed resembles the technique used by Hill™® in
solving the second-order equation

2"(1) + A(Da(t) =0 (14)

where A(t) is periodic. It will be shown that the characteristic exponents
may be determined from roots of either a transcendental or polynomial
equation in which certain infinite-order determinants enter as parame-
ters. A technique similar to Hill’s was employed by H. von Koch in the
last century to provide an explicit solution in terms of infinite-order
determinants for a general nth-order linear differential equation with
periodic coefficients. This technique is carefully discussed by Forsyth”
and Riesz,® who also give references to von Koch’s original papers. Thus,
the method presented here, although developed independently, does
not solve an unsolved mathematical problem when applied to a periodic
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variable-parameter system deseribed by an nth-order linear differential
equation. It does, however, solve the stated problem in a way that
appears to have several advantages, mostly associated with its formula-
tion as a system of n simultaneous first-order linear equations. These
advantages, already mentioned in Section II, seem likely to make the
present solution technique more useful in the analysis and synthesis
of periodic variable-parameter systems than one based entirely on the
classical nth-order linear differential equation.

IV, INTEGRAL FORM FOR THE PERIODIC SYSTEM

The analysis of the periodic system begins by multiplying both mem-
bers of (1) by ¢, where a is an arbitrary constant, and adding and
subtracting alffe”"' to yield, whenever F’ exists,

(Fe™™)' + aFe ™ = BFe ™. (15)

Integration of (15) results in the integral equation
Fe"' 4 a f Fedt = fBFef'” dt + ¢ (16)
where (' is a constant. Any solution of (15) is also a solution of (16);
thus, let ¥ be a solution given by (13) and let
a = u+ j2nk (17)

where & is an arbitrary integer. Equation (16) becomes
Qe ™ 4+ (p 4 j20k) f Qc "™ dt = f BQe ™ dt + €. (18)

If (18) is evaluated at ¢ = 0 and ¢t = 1, and the results subtracted, the
first term in (18) makes no contribution, being periodic. Hence, (18)
implies

1 ) 1
(u + j2rk) [, Qe d = f BQe ™ dt (19)
A 0

for all integers k. It will be seen helow that this integral equation suffices
to determine u and Q({), which are essentially eigenvalues and eigen-
funetions.

V. MATRIX DIFFERENCE EQUATION

To make use of (19) in finding solutions of (1) it will be assumed that
the given matrix B({) and the solution matrix Q(¢) may be expanded in
the Fourier series
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B(t) = 2. B,e*™ (20)
p=—m

and

Il
s
<
o

:‘LA

w3
]
-t

Q) (21)
where matrices B, are square matrices and @, are column matrices.
Requirements on the asymptotic behavior of the elements of matrices
B, and @, for large values of | p | will be discussed in Appendix A in
relation to convergence of certain infinite-order determinants. The
Fourier series for the matrix product BQ may be written as

BQ = . (BQ),e"™ (22)

_p=—

in which the column matrices (B@), are given by the convolution

(BQ), = r;«; B,.Q,. (23)

Except for a factor of 2r the integrals in (19) express the Fourier
coefficients of @ and BQ. Thus, if ¢ and B@ possess I'ourier series (19)
is equivalent to the infinite set of linear equations

(p + 27k)Qr = (BQ)k (24)
or
(o + j27k) Qi = =Z_j” By, (25)

where & assumes all integral values. Equation (25) might be regarded
as a matrix difference equation for @, ; however it is more convenient
here to consider (25) as defining an eigenvalue problem for an infinite
matrix. In terms of Kronecker’s 8, (25) is

0= 2 [Biy— bulp + j2rk)11Q: (26)
where I is the nth-order unit matrix. The expanded form of (26) is
shown in the following infinite-order matrix equation, in which the
first matrix is partitioned into n X n size blocks and the second into
n X 1 size blocks. The “origins” of the matrices fall at (B, — u/) and

Qo
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- Bo— (u— jAmI B, By Q.
B Bo— (u— 201 B B Q

B, B, By — ul By B_, @

Bs B By— (u+ j2mI B ")

B, B By — (u+4g4m)I -+ || Q2

]
c o o o ©

For convenience it will be assumed that By is a triangular matrix so
that its eigenvalues appear explicitly as main diagonal elements. To
show that a constant linear transformation of the dependent variable
I can always produce this property, let

B(t) = By + A(t) (28)

where A(t) has a zero mean, and let
X =PF (29)
where P is a nonsingular matrix of constants. Then (1) is transformed to
X' = (PBP' + PAP )X, (30)

This equation has the same form as (1), but the constant term in its
coefficient matrix is the matrix PBoP " derived from By by a similarity
transformation. It is well known that a square matrix is reducible by a
similarity transformation to the classical canonical form having eigen-
values on the main diagonal and possibly nonzero constants in some
positions of the next higher diagonal.” (These constants cannot appear
if B, has distinct eigenvalues; hence, By can often be assumed to be
diagonal.) The matrix By can also be reduced to a triangular form by a
similarity transformation in which P is a unitary matrix."’. This re-
duetion, which is always possible, may sometimes have advantages in
studying energy functions or related quadratic forms. Thus, by either
technique By can he reduced to triangular form. It will be assumed that
such a transformation has been effected in obtaining (1).

VI. CONVERGENT LINEAR EQUATIONS AND INFINITE-ORDER DETERMINANT

To produce convergence of the determinant of coefficients of the
infinite set of homogeneous equations defining @, Equations (26) or

(27)
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(27), divide each elementary row of the coeflicient matrix in Equation
(27) by its main-diagonal elements. When B, is diagonal this process is
identical with multiplication of each equation in Equation (26) or
each matrix row in the square matrix of Equation (27) by the diagonal
matrix [By — (u + j2rk)I]". In general, let the matrix A be defined by

A = diag {7} (31)

where A, represent the n eigenvalues of By . Then the set of equations
with convergent determinant may be written as

[M)[Q:] = O (32)
where submatrices M, are given by
M = [A — (p + j20k)I] (B — (n + j2mk)]] (33)
and
My = [A — (g + j2¢k)I] "By, k#r. (34)

When B, is diagonal, M, reduces to the unit matrix. Thus, a typical
determinant d[M .| of (32) may be illustrated for n = 2 by the following
scheme:

a_y b_l @_a b_z
Mti2r—p Mtg2r—p Mt+j2r—p Mtf2r—p

0 €y lj,; C_a fl,-g
) ot72r—p M+52r—p Mat72r—p Motj2m—p
ay b] ] 0 a_y b_l
MNo— o N —pu M o—op M—op
dlu) = _
€1 dy 0 1 € d_y
A — A — Ag — Ao —
as by a by i 0
M—J2r—p M—j2r—p M—72r—p M—j2m—p
f'-.' _ .d:' f-‘] fll 0 1 L
N—2r—p M—J2r—p M—P2r—p h—J2r—p ..
(35)
The notation used in (35) is
a, by .
B, = , p#EO (36)
b, d,
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The determinant of the infinite-order matrix [M,] of (32), illustrated
by (35) for n = 2, will be denoted by d(u) to show its functional de-
pendence on the argument u. The function d(x) is actually a determi-
nant of infinite order. If this determinant converges it represents a
funetion of g which must vanish in order to obtain nontrivial solutions
for @, in (32). Requirements necessary for the convergence of d(p) are
discussed in Appendix A, where it will be shown that d(x) converges
for a large class of problems. Hence the basic equation

d(g) =0 (38)

defines the characteristic exponents of the differential system (1).

VII. FUNCTIONAL EXPRESSIONS FOR THE CHARACTERISTIC DETERMINANT

Equation (38) taken alone is rather unwieldy, involving as it does
the equation to zero of an infinite-order determinant whose elements
are functions of g. However, it will now be shown that expressions for
d(p) in terms of elementary funcetions may be written to allow a simple
solution of (38).

The determinant d(u) is shown in Appendix A to converge for all
values of u except those for which the denominators of rows of d(u)
vanish. Multiplication of one row of an infinite-order determinant by any
sealar is equivalent to multiplication of the determinant by the same
sealar. Similarly multiplication of any row of d(u) by its corresponding
denominator A, — (g 4+ j2wk) produces a determinant convergent at
A = u + j27k, so that each row of d(u) introduces exactly one pole
in d{u). Moreover, d(u) is periodic in g with period j2=, since replacing
u by u + j2r only shifts the origin of the infinite-order determinant.
Iividently d(u) has simple poles at

g = X, + j2mq, p=12 - n q integral. (39)

It will be assumed for the moment that these poles are distinet; this

restriction may be relaxed slightly, as shown in Appendix B. Finally,

as p approaches infinity along any radial line in the complex p plane

except a vertical line, the off-diagonal elements in d(p) tend toward
zero, or briefly

d{=) = 1. (40)

The periodicity of d(u) implies that the residue of d(u) at any of the
poles in (39) is independent of the particular integer g. Thus, a formal
expansion of d(g) in partial fracfions is

dw) = Ke+ > — K (41)

=t g— it — Ny — j2mwq’
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According to the Mittag-Leffler theorem' this expansion defines the
funetion

A() = Ko + 3 3 K, coth (“%"") (42)

p=l &

A relation fixing K, may be derived from (40) by noting that as p
approaches infinity along any nonvertical radial line

lim coth (“'—"*') =7 (43)

p-so0 2

so that
Ko = 1o L3 K, (44)
2=
To compute the residues K, the well-known rule
K, = lim (1 = Np)d(p) = [(p = Np)d(p)]u=, (45)
B—*Ap

is employed. The procedure is simply to multiply every element in the
row of d(g) containing A, — g (in the denominators) by the factor
(@ — A,) and to evaluate the resulting determinant. For example, in
the ease of n = 2 used above for illustration, the row of d(x) containing
M — w in the denominators is replaced by

s — (1l —b-_g — _bl 0 0 —a_ —'b_l —a_s "—b72 v (46)

and the resulting determinant evaluated at ¢ = A, . Reasonably accurate
and efficient methods for computing K, from such a determinant can
be programmed just as for Hill's determinant in the second-order case.
Such a technique is discussed briefly in Appendix C.

1t is well known that the solution of Hill’s equation generally requires
the evaluation of only one infinite-order determinant, while the solution
of a second-order problem using (38) and (42) appears to require the
evaluation of two determinants. Actually it will be shown that only
n — 1 determinants need be caleulated for an nth-order system of equa-
tions. In addition (42) may be simplified because of the relation among
the residues K, to be demonstrated below.

To examine the poles and zeros of d{u) it is convenient to consider
the complex u plane divided into horizontal strips of width 2x. The
poles of d(g) fall at A\, + j2mq. Although the eigenvalues \, may lie
in any of these strips, values of ¢ always exist to give one pole in the
fundamental strip 0 £ Im g < 2r representative of each X\, . Hence
d(u) has exactly n poles in each strip. It will be seen shortly that d(u)
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also has n zeros in each strip so that a pole-zero constellation for d(p)
might be illustrated by Fig. 1.
The desired relation among the residues K, is obtained by noting that

abed

d(p)dp = 21 K, (47)

where the integral is taken around the rectangular contour abed shown
in Fig. 1 (or a congruent, rectangle vertically displaced if a pole happens
to fall at Im g = 0). The periodicity of d(u) insures that the contri-
butions to the integral from the horizontal sides ab and cd will eancel.
The vertical sides be and da are supposed to be displaced from the
origin far enough to include all n poles in the rectangle so that (47) is
valid. As their displacement approaches infinity the value of d(u) ap-
proaches unity and the contributions from the vertical sides tend to
cancel. Thus (47) implies

Z K, =0. (48)

This relation shows that (44) and (42) may be simplified to
K,=1 (49)

and

(50)

&

AW =1+ K,coth (“—_ﬁ)

2 p=1 2

It also allows one residue to be computed from the other n — 1, al-

Im
W # /L PLANE
[e] "
X =
% L=]aT
x (o]
X
o 8 .
d « X pL=jam ¢
x o
xX
o o 0
X £=0
a x o b Reu
X
X POLES
0 ZEROS

I'ig. 1 — Pole-zero constellation.
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though all n residues might be computed in practice and (48) used as a
check for numerical accuracy.

Equation (50) expresses the characteristic determinant d(p) in
terms of the eigenvalues A, of the stationary part of the system and the
residue determinants K, . The characteristic exponents g are thus by
(38) and (50) the roots of the trigonometric equation

= e = E K, coth (J) (51)
.-t p=1 —/
This trigonometrie equation represents an explicit solution of the prob-
lem of finding characteristic exponents for an nth-order periodie system.
It is evident from (50) as well as from Fig. 1 and the periodicity of the
funetion ¢* that the substitution

z=rc" (h2)

reduces (50) to a rational function in z. Zeros and infinities of z do not
introduce superfluous poles or other singularities in this function be-
cause of (43). Thus, the poles and zeros of this rational function are
mapped by (52) into the poles and zeros of d(x) shown in Fig. 1. Any
strip of vertical width 27 in the x plane is mapped by (52) into the entire
z plane so that the rational function of z has » poles in the z plane. The
number of zeros of the rational function is also necessarily n. Hence,
d(x) has precisely n zeros in any horizontal strip of width 27 in the u
plane.

Because of the existence of well-developed techniques for polynomial
manipulation, such as approximate solution methods, interpolation
formulae, and stability criteria, it is practically convenient to utilize
(50) and (51) in rational form. Accordingly let z be defined by (52) and
x, by

Xy = €7, p=12 -, n (53)

so that d(u) is transformed to

D) =1+-= 5 Z K, (z e ) = d(log 2). (54)
Further, let
= IzI1 (2 — ;) (55)

be a characteristic polynomial defining the eigenvalues of the stationary
part of B(¢). (This “characteristic polynomial” differs from the con-
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ventional one in that its roots are ¢'* rather than X\, .) Equation (51),
the characteristic equation, then becomes

0= f(z) + glz) (56)
where
] n .; ) n
1) = 52 Kylz + 1) [T (2 — ). (57)
Z p= =
47 p

These equations demonstrate that the characteristic polynomial for
the periodic system is obtained by adding a certain interpolating
polynomial to the characteristic polynomial of the stationary part of
the system. The behavior of the interpolating polynomial is prescribed at
the roots of the stationary part.

The interpolating polynomial f(z) has the n assigned values

flx,) = K, H (x, — y); (58)
=l -
lj#p

hecause of the relation (48) among the residues K, the polynomial
(57) is identical with the Lagrangian interpolating polynomial

N = 2 K, IT Gz = ). (59)
n= =
uF=p

Evidently the interpolating polynomial f(z) is the unique polynomiul
of degree n — 1 having the assigned values (58). Thus f(z) + g(z), the
characteristic polynomial of the periodic system, is the unique monic
polynomial of degree n having the n assigned values given in (58).
This point of view may give some insight into stability questions.
For example, the classical criteria of Routh and Hurwitz, and other
results on bounds of zeros of sums of polynomials may be useful here.

If all the residues K, vanish, as in the stationary case, the limiting
values of the characteristic exponents obtained from (51) and (56)
are u = Ay, p = 1,2, ---, n. In cases of small variations where all
K, | are small the characteristic exponents differ very little from the
eigenvalues of the stationary part. Asymptotically they may be caleu-
lated from any of the approximate equations

0~ 1+ é]{,, coth (“')?"’) (60)

&

™
/

~x,(l — K,) (61)



1288 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

or
pREN— K, (62)

Although perturbation type solutions such as (62) probably are more
easily calculated by less complicated techniques, characteristic expo-
nents obtained from (61) or (62) may be useful as starting values for
solving (51) or (56) by numerical methods.

VIIl. EXAMPLE

The following example illustrates the technique for finding charac-
teristic exponents. A second-order case is chosen for convenience
because some digital computer programs needed for the efficient evalua-
tion of the residue determinants are not yet available. However, higher-
order examples are not different in principle nor will they require in-
ordinately longer computations.

The Mathieu equation

QU4 (3 4o 2)y =0 (63)
has the solution™
y = eiﬁi‘ _Z Bavi e_1'(2r+l)z (64:)
with
B = +0.57943224. - - | (65)
In vector form this equation is equivalent to
0 1
Y == Y (66)
—3 +4cos2xt 0
with the identifications
i
Y=[l], h=y z=mt (67)
Y

Diagonalization by the transformation PY = F where

1 V3 1
P=J’2\/3[—N§ 1] o

yields (1), with
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P Ll P
{ “Ael —1|f e 30 =

x [1 1]
+ —= e,
V3 1 -1
The determinant d(u) has the form shown by (35), and the residue at
p = jm\/3 is approximately K = j0.562096, a result obtained from a
42nd-order approximant. I'rom (56) and (57) the characteristic ex-
ponents are solutions of

(69)

cosh p = cos 74/3 — jK sin m/3, (70)
which yields, for K =~ j0.562096
A 40.42050. (71)

Corresponding correct values of p from (64) and (65) are =+70.42057.
A somewhat longer computation would be required to produce a re-
sult aceurate enough for certain purposes. Such a computation was not
employed here because a more fundamentally sound computing tech-
nique for band-limited periodic variations as in (69) would exploit
the form of the residue determinant and its large number of zero ele-
ments. Specifically, it is possible to program a determinant evaluation
technique for such cases so that the computation time is asymptotically
proportional to the order of the truncated determinant rather than to
its cube, This possibility is discussed further in Appendix C.

IX. CONCLUSIONS

A method has been developed for analysis and caleulation of solutions
of nth-order linear periodic difierential systems. The system description
employed is a set of n simultancous first-order linear differential equa-
tions. The method allows the determination of characteristic exponents
from polynomial equations the coefficients of which are linear combina-
tions of n—1 convergent infinite-order determinants. Approximate
computation of the determinants is feasible for problems of finite order.
In addition to characteristic exponents the complete solutions may also
be computed if desired.

APPENDIX A

Convergence

The validity of the analysis presented here depends upon the con-
vergence of the infinite processes employed. It must be shown that the
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determinant d(g) and the I'ourier series for @(¢) are convergent if the
coefficient matrix B(t) is suitably restricted. For this purpose (32) may
be written as the infinite set of scalar equations

T+ 2 ;=0 (72)
j=—o0
where a;; and x; are scalars, and the equations hold for all integral 7.
The coefficients a;; actually are elements of the submatrices My, , and a;
elements of submatrices Q, in (32). The determinant of coefficients of the
scalar equations is
d(p) = |8 + ai;|. (73)

According to a theorem of St. Bobr™ this determinant is absolutely
convergent if

2 | (74)

and

@ o p—l
$3] [Jf_v-m i " } (75)
=i
converge for some value of p in the interval 1 < p = 2. (For p = 2,
the case used here, the theorem was given by von Koch.) The expression
in (74) obviously converges to zero since all a;; in (72) are zero. Let the
elements of the given matrix B(t) be square integrable functions. Then
Parseval’s relation applies and the Fourier series coefficients for the
matrix elements are surely square summable. Hence, the inside sum

in (75) converges for p = 2. The outside sum also converges for
p = 2, since its general term is asymptotically proportional to it

for large | 7| (as (33) and (34) indicate by their dependence on k).
Of course, an exception occurs for values of u given by Equation (39).
The determinant d(g) is singular at these points, but the convergence
of the residue determinants K, for simple poles is assured by St. Bobr’s
theorem. Thus, d(ux) converges absolutely and uniformly except for u
arbitrarily near A, + j2mq and has poles at these values of u.

Since the determinant d(ux) has zeros at any of the n characteristic
values of p within the strip 0 £ Imp < 2, the deletion of the zeroth
equation (¢ = 0) from (72) and the transposition of airy in each equa-
tion produces a nonzero determinant of coefficients in the equations

@+ E @it = —apts = Vi, 7 # 0. (76)

i#=0
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These equations with a;; evaluated at a characteristic value of p have
as solutions the sealar quantities x; needed to produce the matrices
@, and thus the matrix Q(¢). That meaningful solutions to (76) exist
for an arbitrary constant o is shown by a theorem of L. W. Cohen."
This theorem (paraphrased) states that if (75) converges for the
coefficients in (76), if the (convergent) determinant of (76) does not
vanish, and if

£l

2wl
converges, then the solutions exist, may be obtained by Cramer’s
rule (with infinite-order minor determinants), and have the property
that

w0

e

1=—%0
converges. Thus, if the elements of the given matrix B({) are square
integrable functions, the coefficients a; are surely square summable,
and the resulting trigonometric series for elements of Q(t) have square
summable coefficients. The Riesz-Fischer theorem' then states that the
elements of Q () are square integrable functions with Fourier coefficients
given by the elements of @, and that the Fourier series for Q(t) con-
verges to ((¢) in the mean. (Consequently there exists a sequence of
partial sums of the Fourier series converging to Q(¢) “almost every-
where.”)

In & more restricted case which might have more practical importance,

it may be shown that if B(t) is continuous so that the elements of B,
are 0(1/p%), the solution matrix Q(¢) has the same property. Of course,
the I'ourier series for Q(t) converges absolutely and uniformly in this
ease. This convergence condition and the more general one above demon-
strate that the analysis technigue is valid for a wide class of problems.

APPENDIX B

Multiple Poles of the Characteristic Determinant

If the matrix By, the stationary part of the coefficient matrix B({),
has repeated eigenvalues, or if any of its eigenvalues differ by integral
multiples of 727, some denominators of rows of d(u) are identical. In
this case d(gx) has multiple poles, and the necessary analytical and
computational procedures become more complicated. It is possible to
treat the case of a single second-order pole of d(g) by evaluationof n — 1
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determinants as before, but greater multiplicities require considerably
more extensive caleulations.

When d(x) has an m-fold pole at g = A; the partial fractions expan-
sion of d(x) must contain the corresponding principal part of d(u).
The coefficients in the principal part involve derivatives of (g — A)"
d(p) evaluated at u = A, . These derivatives are more difficult to
compute than the residue determinants of the simple case because they
are linear combinations of most of the first minors of d(g). The com-
putation of such minors (not necessarily by direct methods) is also
required if Q(¢) is to be determined (even when d(u) has only simple
poles). Appendix A shows this computation to be theoretically possible;
it is equivalent to the inversion of a set of equations like (76). Never-
theless, the computation effort would be considerably greater than that
required for computation of characteristic exponents when d(u) has
only simple poles.

When d(p) has a single second-order pole, (48) may be utilized to
make possible the caleulation of characteristic exponents. It is conven-
ient, here to use the rational form of (54) for the infinite-order determi-
nant d(u). Let the repeated roots of By be identified with X;, X2 and
a1, 2 respectively. Define ey and an by

o = Ki(xy — a2)

(77)
ay = K(zs — 1)
and allow z; to approach x, . Substitution of (77) in (54) yields
D(z) =1+ é (c;l : :2) (z _zgt—) (J:Ii 2)
L1 L2 1 2 (78)

o + as 15 z+ zp
Y= — o) +:i,1_aK”( )

Equation (48) may be written as

o ZK (79)

11—1?2 p=

so that

L+ limK,=0 (80)
p=3 x>z2
where
L = lim (a1 — C!g) = lim (K; 4+ K») (81)
z»zy \T1 — T2 >z
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is a finite limit. Evidently, as x; approaches xs ,

1ij(z)=1+‘g("‘+"’ﬁ)+(zf2 A K (z+;”). (82)

z|*Tg 2 — Xg 2 p=3 P

The zeros of this limiting form of D(z) correspond to the characteristic
exponents in this case. The parameter a; may be determined by factor-
ing 1/(A\s — A;) from the appropriate row of K, and computing the
resulting determinant A, since

= A-lim (u) = A (83)

Z|*Tp hl - )2

The parameter L required in (82) may be computed from (80). Cases
where two poles of d(u) are almost coincident may be treated in a
similar fashion, except that no limits are involved.

APPENDIX C

Approximale Computation of Residue Delerminants

In practical cases where the number of terms in the Fourier series for
B(t) is limited, truncated approximants to the residue determinants may
be evaluated by techniques that exploit the special form of these de-
terminants, The form of a truncated residue determinant is illustrated
by the scheme in Fig. 2, in which all elements outside of the shaded
region are zero, Except for one submatrix near the center of the array
the principal diagonal blocks represent nonsingular triangular sub-

Fig. 2 — Form of truncated residue determinant.
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matrices. To demonstrate the feasibility of computing truncated residue
determinants of large order it will be shown that the computation time
required for a reduction to triangular form is much smaller than for a
general determinant of the same order. (The computation time required
for a general determinant is asymptotically proportional to the cube of
its order.)

To evaluate the determinant in Fig. 2 let zeros be produced below
submatrix 1 by elementary operations with the rows passing through 1.
Similar operations to produce zeros below 2 do not disturb the zeros
already produced. Such operations may be continued in the usual manner
to produce zeros below 3, 4, ete., until a triangular array of submatrices
is realized. The number of arithmetic operations necessary in each step
of zero production is essentially dependent only upon the order of the
original system of equations and the number of terms in B(¢). Observa-
tion of Fig. 2 shows that the number of zero-producing steps for a
truncated determinant of large order is asymptotically proportional to
the order of the determinant. Thus, the computation time required for a
reduction to triangular form is also asymptotically proportional to the
order of the truncated determinant to be evaluated.
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Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty —III:
The Dimension of the Space of
Essentially Time- and Band-Limited
Signals

By H. J. LANDAU and H. O. POLLAK

(Manuseript received February 23, 1962)

The purpose of this paper is to examine the mathematical truth in the
engineering intwilion that there are approximately 2WT independent
signals ¢; of bandwidth W econcentrated in an interval of length T. Roughly
speaking, the result is true for the best choice of the ¢; (prolate spheroidal
wave functions), but not for sampling functions (of the form sin t/t).
Some typical conclusions arve: Let f(t), of total energy 1, be band-limiled
to bandwidth W, and let

T2 =
[irwa=1—é.

7/
Then
@ [2W TI4-N 2 )
inf () — D e dl < Cer
lag] =00 0
18

(a) frue for all such fwith N = 0, O = 12, if the ¢, are the prolate
spheroidal wave funclions;

(b) false for some such [ for any finite constants N and C' if the ¢, are
sampling functions.

I. INTRODUCTION AND SUMMARY OF RESULTS

Intuitive considerations based primarily on the sampling theorem
have for a long time suggested that the space of signals “essentially”
limited in time to the interval | | = 7/2 and in frequency to (=W, W)
eyeles is “essentially” 277 T-dimensional. It is the object of the present

1295
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paper to investigate this problem thoroughly. The first step in the proc-
ess is to see how the above statement may be made precise. The two
main difficulties to be overcome in even formulaling some mathematical
problems in this area are contained in the two uses of ‘“‘essentially”
above: What shall we mean by “essentially” limited in time and fre-
quency, and what can we mean by “essentially’” 2W T-dimensional?

Suppose that a function f(¢) is actually band-limited. It is then an
analytic function of the complex variable ¢, and cannot vanish in | ¢ | >
T/2 without vanishing identically. We will therefore think of f(¢) as
approximately time-limited to | t | £ T/2 if a large fraction of its energy
is contained in that interval, that is, if

[ 1w a
(0.1) Ll ed =1-—é,
[rrora

where e will, in much of our thinking, hbe small; er shall be used as a
measure of the degree to which f(¢) fails to be concentrated on the
interval | ¢| < T/2. We will denote by F£(er) the set of band-limited
functions f(¢) satisfying (0.1) with the further normalization for con-
venience that

l]f@ﬁ&zL

We should point out here that, by previous results,' 7' and er are re-
lated: as er becomes small, T must grow indefinitely.

We have now defined our set of functions; how can we speak pre-
cisely about its dimension? E(er) is certainly not finite-dimensional
for any er > 0, for there is no finste set of functions whose linear com-
binations exactly express each f({) in H(er). We will, however, say
that E(er) is approvimately N-dimensional if there exist N linearly
independent functions ¢q, - - - gy—1 whose linear combinations approxi-
mate each f(¢) in E(ey) to within a small fraction of its energy, that is,
if
N—1

vl
F() — 22 aws(t) | dt < 8%,

o

(0.2) min

[ai} @

where we shall usually think of éx as small. Again, dy may be used as
a measure of the degree to which E(er) is N-dimensional.

In the above definition of the approximate dimension of E(er), we
have complete freedom in choosing the ‘basis” functions ¢q - - - ex
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with which we will attempt to approximate f(¢). There are two different
objectives we may have in choosing the ¢;. For real understanding of
the dimension of E(er) we must use the ¢; which best approximate
E(er), in the sense of making the error, represented by the left side of
(0.2), as small as it can possibly be over the whole set £(es). Alterna-
tively, for practical purposes, we may wish to use the simplest available
functions, and see how close we can come with them. Thus there is
considerable interest in pursuing two lines of investigation:

(7) Let us first try to identify the best functions ¢; to use, that is
the functions which achieve

N—=1

1) = X awit) .

-]
(0.3) min max min f
o N1 rem(er) (o))t %

Once we have found these best functions, what is the relation between
the number N of such functions, the measure of concentration er, and
the achievable degree of approximation &y ?

(i) If we pick for the ¢’s sampling functions, i.e., functions of the
form [sin w(2W¢t — »)]/[w(2Wt — r)], what is now the relation between
N, er,and 6y ?

It turns out that the answers to (7) and (4%) are rather different,
that is, the degree of approximation achievable by sampling functions
is in a very real sense poorer than the degree achievable by the best
basis functions. And yet the solutions of the two problems are, as we
shall see, remarkably intertwined.

In order to give a detailed picture of our results, it is necessary to
summarize some of the previous work on time- and band-limiting which
has appeared in Refs. 1 and 2.

The space £ of square-integrable functions on (—«,%) forms a
Hilbert space in which the inner product (f,g) is defined by

(fg) = [:.f(t)m dt;

the norm squared of f, || f 1%, is defined by

171F = (D),
and is just the total energy. Two functions f and g are orthogonal if
(fg) = 0.

To any closed subspace there corresponds a projection operation P,
which assigns to every function its orthogonal projection onto the
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subspace. Projections are characterized completely” by the properties
P is self-adjoint, and

(0.4
0 PP=P.

We single out for consideration two projection operators on the
space of square-integrable functions: time-limiting and band-limiting.
Time-limiting a function f produces a function Df which is f restricted
to |¢] = T/2:

it |¢] = T/2
Dfsf]!l_/.
0 if |[t]| > T/2

We shall write Dqf if the specific interval is important to the discussion.
Band-limiting a function f produces a function Bf whose Fourier trans-
form agrees with the Fourier transform of f for |w | £ 2xW, and van-
ishes for |w| > 20W. If

Flw) = [w f(s) e ™ ds,

1 2rW

Bf = Fw) ™ du,

27]' =2 W

or, in terms of f directly,
L] i D —
Bf = lf 1(s) sin 2eW (¢ — ) e
T oo I — s

The subspace of functions f in £° which are already time-limited,
i.e. for which Df = f, will be called D, and similarly band-limited func-
tions, for which Bf = f, the subspace &. The observation made pre-
viously that a band-limited function which vanishes for |[¢| > 7/2
must vanish identically may now be phrased as

® N D= {0}

A major result in Ref. 1 was that there is actually a non-zero minimum
angle between the spaces ® and D.

A doubly orthogonal system of band-limited functions ¢, was in-
vestigated in Refs. 1 and 2, and a number of properties were derived.
The following are important to our development:

Given any T > 0 and any W > 0, we can find a countably infinite
set of real funetions yo(t), ¢i(t), ¥=(8), - -+, and a set of real positive
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numbers
N>A >N > e,

with the following properties:

() The ¥;(t) are band-limited, orthonormal on the real line, and
complete in the space of square-integrable band-limited functions of
bandwidth W eycles,

Jo,z‘;&j
(¥, \01) = 'i: j = 0,1,2, LAY

Li=4
(#7) In theinterval —7/2 = t = T/2, the funetions Dy.(t) are or-

thogonal and complete in the space of square-integrable functions van-
ishing for | t| > T/2.

0,27
(DY, Dyj) = 5,j=012 ...,
Aiyi =7
(#75) For all values of ¢, real or complex,
ri2 in 20 W(t —
A = BDy; (=f yils) gin Sa Wt — &) ds) .
= w(t — s)

We shall write A7) if the specific interval is important to the dis-
cussion.

We are now in a position to give an account of our results. We repeat
our basie definition:
E(er) is the set af functions f(t) © £° such that

(1) fe®
(2) I £ =1
(3 |DfIP=1— &

Let us turn to the approximate dimension of K(er). As we pointed
out above, the basis {¢,}7 which we wish to use is the one which mini-
mizes (0.3), that is, which minimizes

N 2
max min || f — Z aip;
regCer) fagl ]

It seems reasonable that the best hasis, for any given N, should be the
(N + 1) linearly independent most concentrated band-limited functions,
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and these are known, from previous work, to be ¢y, + -+ , ¥ . Although
this seems to be harder to prove than one might expect, it is in fact
true, and is the subject of

Theorem 1. For any fived N, the functions yo, -+, Yy achieve the
minImum in

min max min Hf — D aws
(sl reEter) (ai)d L

Thus results on the approximation of E(er) by linear combinations of a
finite number of ¥, are in fact best possible results on the approximate
dimension of F(ey).
Theorem 8. Let f(t) € E{er). Then*
[2W 7]

” f = n‘!’ﬂ

= IET )

where the a, are the Fourier coefficients of [ in ils expansion in the Vs,
and C, is independent of f, er , and 2WT, and may be taken as 12.

Theorem 3 shows that [2IWT] 4+ 1 of the hest basis functions for
I (er) suffice to approximate a concentrated function to a degree pro-
portional to the “unconcentrated part” er of the energy. We shall see
that this is no longer the case when we use the simpler sampling func-
tions.

In Theorem 3, as we have said, C; may be taken as 12. What does
it take to make (' very close to 1, that is, to make the approximation
almost as good as the concentration? First of all, it is important to see
that roughly 2W 7T funetions are not enough to do this, and this is the
subject of

Theorem 5. For any e < 0.915, there exists a function f € E(er)
such that

I2WTI 2 2

mi ‘f - ai || = Caler — R(WT)),

where Cy > 1 and R(WT) — 0 as WT — =. Here C, may be taken as
1/0.915 and R(WT) as 24/2¢ ™" (If e > 0.915, the right side
should be replaced by 1.)

By further analysis, this result may be strengthened so that it in-
cludes approximations by [2WT] + N of the ; functions, where N
is any finite integer.

Theorem 8. For any given N and ¢ < 0.916, and for WT sufficiently

* [z] means the largest integer < =.
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large, there will exist a function [ € E(er) such that

[2W T]4-N

f—= Zo: fli‘fﬂ"

2

‘ > (Wllﬁ (E; _ 2\/§e—rWTI2).

(If ex > 0.9186, the right side should be replaced by 1.)

Since, by Theorem 1, the ¢; are the best approximating functions in
|t| < T/2, Theorems 7 and 8 hold, a fortiori, for any approximate
basis {e.].

What, then, does it take to bring the constant C' of Theorem 3 arbi-
trarily close to 1? We do not know the best possible result, but there
is considerable information in the following theorem, due to C. .
Shannon:

Theorem 4 ( Shannon ) : Given any n > 0, there exist constants C's = Ca(n)
and C'y = Cy(n) so that for f € E(er),

inf

a

[2WT]+Cy logT 2WT+0C 4 2

i 2 an;

]

inf < (14 p)er *

ay

Thus a number of functions boundedly more than 2W7T eannot suffice
for approximating f € FK(er) to within (1 4 ) er , but a logarith-
mically growing extra number of terms does.

Let us now turn to approximating F(er) by sampling functions,
The first result is that [217T] + 1 sample functions will approximate f
in energy roughly to within a constant times er, that is, within a con-
stant times the square root of the unconcentrated energy. The placement
of the sample points depends on 27T, hut of course not on the specifie
function.

Theorem 2. Let f(t) € E(er). Then, if WT' — [WT| = 4,

kO sin (20t — &) ||° s 5
() ! \k]él"r'f (le’) r(2Wt — k) = mer + er,
and if WT — [IVT] > %,
2

2
= mer + er.

(b)

o 7 (k o %) sin w(2Wt — k — 1)
|[k+il=wr 2w r(2Wt — k — %)

An esttmate valid for all WT may be oblained by replacing W1 in (a)
by WT + 1.

We note that the coefficients f(k/2W) and f(k + 3/2W) are well-
known to be the I'ourier coeflicients in the sampling series expansion,
and hence the best constants to use.

*logt z = max (log x, 0).
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This theorem is, in one sense, quite satisfactory because mer + er
does go to 0 as the unconcentrated part of the energy er goes to 0.
On the other hand, wer + - approaches 0 more slowly than ey itself,
That this estimate of the degree to which sampling functions approxi-
mate E{er) cannot be too much improved is established in

Theorem 10. Let f(t) € E(er). Then an estimate of the form

. E\ sin m(2Wt — k)
Hf |k|g¥r+1\r'f (zw) r(2Wt — k)

cannot be valid independently of er no matler how large the constants C
and N are chosen.

Thus a sampling series approximation using (2W7T plus a constant)
terms will not approximate every concentrated function to a degree
proportional to the unconcentrated energy. As we have seen, this is
in direct contrast to the theorem previously quoted for approximation
with the best functions ;. We also have the following negative result
for approximation by sampling series to within (1 + n)en

Theorem 11. For every 8 < 1, there exists § > 0, and er such that

( k )sin 7(2Wt — k)
|k| S WTH(WT)B oW,/ x(2Wt — k)
Jor some f € E(er).
Once again, this is in direct contrast to the situation with the best
funections y; as given in Theorem 4.

We supposed near the beginning that f(¢) is actually band-limited.
Suppose that it is only almoest band-limited, that is, that

[ 17 P
05) e i

[REOIR?

2
2
= CET

2

> (1 + 8)er

It is interesting that our approximation theorems are stable in the
sense that they continue to hold approximately for approximately band-
limited functions. A sample is the following

Theorem 12. If () € € with || f || = 1, and satisfies (0.1) and (0.5),
then for some constants a, we have

2

(2w ] 2 . )
< 12(er + w)” + 7w .

JI_ ZD: ﬂn'pﬁ

An analogous result (Theorem 13) holds for a sampling approximation

to f.
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Before we proceed to the detailed exposition, let us mention one theo-
rem, required for the proof of Theorem 10, which is of interest in its
own right,

Theorem 9: When restricted to t > 0, the sample functions centered at
the negative sample points are dense in £2(0, =), but those centered at the
positive sample points are not dense in £2(0, =), nor even in ® restricted
to t > 0. Specifically, given any square-integrable f(1) we may find con-
stants N and a'™ which make

f::
0

as small as desired, but there exists a band-limited g(t) for which

Ed N 2 D) Tt — m
f o (1) _Z b, sin w(2Wt — n)
0

n=1 'JT(?II'L == 'n.)
cannot be made arbitrarily small regardless of the choice of N or b, .

2

2 oWt ) |

2

dt
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111. DETAILED EXPOSITION

1. Given N functions ¢y, @1, *-, ¢x—1 ID €% let us denote by SY
the subspace spanned by them. The quantity min ||/ — >0 aw: |
fai)

2

of (0.2) now represents the square of the distance p(f, SY), measured
in £°, of ffrom SY. The number éx in (0.2) may therefore be taken to
equal
oy = sup p(f, SY),
FeE(er)
which, following the terminology of Ref. 4, we will call the deflection
of E(er) from S¥.

We will first identify, for given 7' and N, that subspace of dimension
N which best approximates E(er), in the sense of minimizing this
deflection.

Theorem 1: Let T be given. Then, for every N, the subspace spanned
by the (orthonormal) funetions ¥y, -+ , Y1 best approvimales I(er),
in the sense that the deflection of £(er) from that subspace is smaller than
from any other subspace of dimension N.
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Proof: We first compute the deflection of E(er) from Sy. By definition,
7(t) isinE(er) if and onlyif £ € @, with || f|* = Land [| Df |* =1 — er;
thus, expanding f in the complete orthonormal system {¢.}7, if and only
if

f= > ag:i, with D |a:[°=1 and Shi|laP=1— .
0 0 0

2 £

2 e

Now by the orthonormality of the ¢,
p'(f, 8y) = min z

N—1 2 -]
i ‘f—;a;\h =4§|¢!=‘|2-

To find the deflection of E(er) from Sy we therefore compute

sup p(f, Sy),
FEBCem)

equivalently [sup > | a: I’ subject to the conditions Y ¢ |ei|* = 1
and X5 \i|ai]' = 1 — & < Ao. We find

_ 1 , 0<1l—er A

(1.1) deflection of _ o .

: E(er) from S} [_7"“ il ‘T):I e el=d 2N
hll - R.N

Next suppose that ¢y, -+, ey are any N given functions in £

By the Pythagorean theorem, the distance of f/ € ® to any linear com-
bination of the ¢; is no smaller than its distance to the same linear
combination of the functions Bg;:, hence we may assume ¢; € ®. As
before, let S} be the subspace spanned by ¢y, ---, ¢x—1, and denote
by P, the operation of projecting orthogonally onto S¥;: explicitly,
P.f is the element of S} closest to f. In terms of P, , the quantity of
interest in (0.2) can therefore be written simply as

(1.2) p(1,8%) = I =PI =I5 I = 1 P I
the last equality in (1.2) follows from the orthogonality of P,f and
(f = Pd).

Now assign to every f € ® the point in the  — y plane whose x and
y coordinates are | Df |*/] f " and [|[ 7 [* — || Pof I)/I1 1 |I* respectively;
denote by Rr the set of points so obtained. The significance of this map
is that it sends every fin E(er) into the line z = 1 — & , with y-coordi-
nate equaling p°(f,Sy); hence we see that

(1.3) deflection of E(er) from Sy = [ sup y]}.

:|:=1—('1',,
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By previous results,' the a-coordinates of points in R satisfy 0 < & =
o ;& = Ao is achieved only by the functions kfo(t), with & any constant.
The y-coordinates of points in R4 qatlsiy 0=y=1l;y= 1 is achieved

only by functions orthogonal to S}, eqmvalently to g6 . Therefore,
applying the Weyl-Courant lemma (Ref. 3, p. 238), we find

sup & = sup |.D” = Ay.

y=1 f.Lle{?Ll e

Since there exist infinitely-dimensional subspaces of ® over which
| DF |I*/ H f|I° is arbitrarily small (for e‘mmple those spanned by ¢, ,
Yms1, - - - for m sufficiently large), while S% is finite- cllmenc_uonal there
are functions in those larger subspaces orthogonal to S}, and conse-

quently inf @ = 0.
y=1

We show next that R, is convex, equivalently that if P, and P,
are two points in R4, the line segment joining them is also contained
in i2+. Let [ be a line whose equation is ax + by = ¢. By definition
of Ry, afunction f € @& will be sent on a point of /if and only if

"l — || Pof
712

eruuml(‘ntlv. it and only if a(Df,Df) — (P S,Pef) = (e = O)([.[),
-, using (0.4) and the fact that / = Bf, if and only if

(1.4) ([aBDB — bP,[.J) = (¢ — b) (f.]).

9

all

An operator is completely continuous’ if it transforms every bounded
sequence (i.c. a sequence of functions |f.} for which Ifall = &k \\lth
some k) into a sequence which possesses a subsequence converging in Fia
norm. Since B is a projection, || Bf, || £ |/, || £ k. Writing Bf,({) in
terms of its Fourier transform F,(w) we obtain

1 2w
Bl.(t) = 5= Fo(w)e™ do,
=T -2z W
whenee Bf,(t) is an entire function of the complex variable ¢ Since
a funetion and its Fourier transform have the same £° norm, Schwarz’s
inequality applied to this representation yields

(1.5) |Bf,,(f) | < (Il(.‘_’-rrﬂ'|hu\l|| ‘| F, H < (Il]‘_yﬂrﬂ'}llu“”!
so that the functions Bf,(¢) are uniformly bounded on any compact

set of the t-plane. Consequently (Ref. 5, p. 171), they form a normal
family, and the sequence Bf, (1) possesses a subsequence Bf,, (1) con-
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verging uniformly on any compact set of the {-plane, in particular on
the interval [¢| = 7/2 of the real t-axis. Therefore, the functions
DBYf,, (1) converge in £° norm as well, whence, since B is bounded, so
do the funetions BDBYf,, . We have established the complete continuity
of BDB. Since Sy is finite-dimensional, the projection P, is completely
continuous. By (0.4), both operators are self-adjoint. Clonsequently,
the operator 4 = aBDB — bP,, which takes ® into itself, is also
self-adjoint and completely continuous. Therefore® it has a set of ortho-
normal eigenfunctions 6,(f) € @& with corresponding eigenvalues w; ,
and every function f ¢ ® has an expansion of the form

(1.6) f=h+ A; by

where Ah; = 0 or, equivalently, A, is orthogonal to all the 6, . Using
this representation, condition (1.4) becomes

2lafue = (e =Wk |I°+ 2 | |'] or

(1.7) Slarle —b— ) 4+ (e —b) || hs]* = 0.
1

We now argue that this set of functions is connected. I'or suppose that
J=h + 2 ahand g = h, + 2 Bibi are cach of the form (1.6)
and satisfy (1.7). For every 0 £ w < 1 define, for k = 0,1, - - -

_wsu) — +‘\/‘J.t ‘ i '2 + (1 — 'M) I}SL Jge“"“"ﬂ“k"’“‘"“lfkﬂk]’

_ uhy + (1 — u)h, j 2 — 2
h, = CES ST Vullh [+ (1 =) h [P

and set
Fu = ha + 2 70 .
(i)

We see that Ah, = 0, sinee h, is a linear combination of A, and h, ,
so that r, is of the form (1.6); it is easily seen to satisfy (1.7). But as u
varies between 1 and 0, the funetions », trace a connected path in ®
between f and g. Consequently, those functions in @ which map into
the line { form a connected set in ®. Since the map from ® onto Ry
is econtinuous, it takes this connected set into a connected set, that is
into a single segment of {. Thus, the intersection of Ry with any line !
is a single segment, whence Ry is convex.

Combined with the information already derived about the points in
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Ry, the convexity of Ry implies that

sup y =1, 0<1—¢er Ay
r=1—¢q?
(18) )
sup ¥ = M‘ Ax é 1 — EET = N\
r=1—eq? Ao — Aw

Combined with (1.3) and (1.1), (1.8) implies that deflection of E(er)
from S¢ = defleetion of E(er) from Sj. Theorem 1 is established.

We conclude from Theorem 1 that the quantity 8x of (0.2), measur-
ing the degree to which E(es) is N-dimensional, may be taken to be
equal to (1.1). Since, for Ay < 1 — &,

M o— (1 — ) er

Ao — Ay <1—-)\~’

and, for Ay = 1 — &,

we find

(19) dis & %
(| B — N

Thus to establish an inequality of the form §; = (e with (" independent
of T, it is sufficient to show that X, (7") is bounded uniformly away from
I independently of 7. This will be done for & = [2IWT] + 1 in Lemma 2,
and for k= [2FT] — N, provided T is sufficiently large, in Theorem 8.1.

2. Lemma 1. Let [(s) be differentiable on ( — =, = ). Then for any inte-
gersmand n,m £ n,and any 0 = 5§ = 1,

n+d
F) + -+ f) = [ f0s) ds + (b — B) fn + B)

tm—a

ntf

¥ 3 = @dim — & +f G = sl —3) F'(e) il

m—a

Proof: The standard form of the Euler Summation Formula (Ref. 6, p.
539) gives

flm) + fm+1) + -+ fln)

= I Jls)ds + Lftn) + Lf(m) -|-f (s = [s] = 3)f'(s) ds.

"m
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Our result then follows if

0= [ fs) ds+ (3 — a)fim — a) — bf(m)

m—a

+ f"i (s — [s] — 3)f(s) ds,

and if

nif

0= f(s)ds + (3 — 8) f(n + 8) — 3f(n)

n+g i
+ [~ = D) ds

Both follow immediately by partial integration on the last integrals,
where [s] = m — 1 and n respectively. Lemma 1 is established.

We are now in a position to prove

Theorem 2. Let g(t) € E(er). Then if WT' — [WT] = 3,

_ k\ sin w(2Wt — k) r < "
(a) l 4 |k|=ZH‘T g(ﬁ) w(2Wt — k) = mer +er,
and if WT' — [WT] > 3,

_ k+ %) sinw(@Wt—k =3 |} 2 2
(b) H g i TEwr g( 2W x(2Wt — k — 3) S mer t+er
An estimate valid for all WT may be obtained by replacing WT in (a)
by W + 1.

Proof: Without loss of generality, we assume ¥ = } for convenience.
We apply Lemma 1 with 8 = 0 and f replaced by | g . Then if « < 1,

lg'(m) | + - + |g'(n)| = [ |g°(s) | ds + % | g'(n) |

tm—a

b G-a)|dm—a)|+ [ (s—1Is— 3 2Relgs) ds.

tm—a

It follows that if 3 £ a < 1,

[Fm) [+ 1 =D < [ ¢ | ds
(2.1) n )
+[" (s —ls) = 1) 2ReCg) s,
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HO0=sa<iwesetf(s) =|gs+ 3] and o = a + 5. We have

[g'tm +3) |+ - + | gdn + 1) |
- [,._ |6°(s + 1) [ds + 3| g'(n + 1) |
+ G —a)lgtm+ 3 —d)|
+ f,,_ (s — [s] — 3) 2Re(g(s + 1)5'(s + 1)) ds,
or
lgm + D1+ - +Fn+ ),

n+}
= f_ Lg*(w) |du + 3 | g*(n + 1) | —a|g'(m — @) |

n44
+ [ =1 = = 1) 2ReCou)g () au,

and
) 2 mith ]
g’ m +8) [+ - + |g'(n = 1) | éf [g°(u) | du
(2.2) i
+ f (u—1—[u—=1]) 2Re(g(u)g (u)) du.
If 3 = « < 1, we may apply (2.1) to | ¢*(¢) | and | g*(—¢) |, and add
the results. We obtain

> i) = f | ¢*(s) | ds

m=|k|<n
m—as|s|<n

4 f (s—[s]— 1) 2Re(g7) ds.

m—az|s|<n

Now | 2(s — [s] — %) | = 1; hence

= [lol1q 1as

= 1/ffglzd81/flg'f2d3~

f (s — [s] — 1) 2Relgg’) ds
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by the Schwarz inequality. But

f Ig’igds<f lg |* ds

m—aZl|s|Sn

%

1r2f lg[ ds = ="

1A

The last inequality holds because
o) = [ 6@) ¢ s
g (t) = fl G (x) ™' da
f_: lg' (1) " dt = 2 f_: 2 Gla) |* de

s

27 f | G(z) |* dx

A

= vr”f | g(0) [* dt.

Hence

i
2. gk | = f | g°(s) |ds + 1r|: f | ¢*(s) Ids:l .

ms|k|En
m—a<|s|<n m—as|s|En

Now let n — = ; the preceding equation becomes

Z \92“’(") | = Eg(m—a) + mersm—a) -

mz k|

IFurthermore,

. 2 sin w(t — k)
g(t) = _Zn:g(it) e

and the functions sin w({ — k)/=(t — k) are orthonormal. Hence,

2 sin w(t — &) |]°
k) = 1) — 40 Raulloh il
If wenowsetm = [T/2] 4+ 1and m — a = 7/2, then @ = § if

T/2 — [T/2] £ %,

and we obtain (a).
Exactly the same argument, hased on (2.2) rather than (2.1), gives

the result (b) for the case 7/2 — [T/2] > 3.
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If in (a), we use for [7/2] the integer m + 1, then

‘g‘-“ — ¥ guwimrTl= k)

X é 65"’"+1) + TEm41) »
|k =m+1 TI'(! = lll)

2
i_
|

and, since e, is monotone decreasing in a, the last statement of Theorem
2 follows,

Corollary 2.1. Let g(t) © E(er), and let W = L for simplicity. If, in
addition, g(k) = 0, |k| = T/2, when T/2 — [T/2] < 3, o0rif gk + %) =
O, k43| < T/2 when T/2 — [T/2] > %, then

I Dg " £ mer.

Proof: This follows immediately from substitution into Theorem 2(a)
and (b) of the additional conditions on g(t).
Notice that the number of points at which g is required to vanish is
[T] + 1, except if T/2 — [T'/2] = }, when it is one less.
Lemma 2. With the normalization of W = L, for any T > 0
Ama(T) £ 0.915.

Proof: Let us consider a funetion of the form
(7141

(2.3) b a ().

Il

n=10
The series contains [T'] 4 2 cocfficients to be determined; it is therefore
possible to make f vanish at the (at most) [T] + 1 integer or hali-
integer points a, of Corollary 2.1 without having f vanish identically.
More precisely, we wish
[T]14+1

ay.lar) = 0, L=01,---,[T].

m=1
The rank of the matrix [, ()}, n = 0,1, -+ [T)+ 1,k =0, -+, [T],
is at most [T, and hence there exists a solution veetor ta,} not all of
whose elements vanish. We may then pick the a, so that Z la, | = 1.
We have thus found a function of the form (2.3) and of total energy
one, which vanishes at the [7'] + 1 points of the Corollary 2.1.
We know for this function that

R [7]+1 .
[ | [ dt = > a. [,

ltlT)2 !
- ., [7]41 s
/ B S Tl T W o
i-'\.‘/"f“f‘.‘ !

I
M5
>

|
>
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Since the A, are decreasing in n, we have, remembering > | a, [* = 1,

[T141

)\{'ﬂ+1 = E la‘u |2An
0

IA

1A

(rix1 _ .
™ E (1 — A.) | a, |” by Corollary 2.1,
0

< V1 — Nt

Therefore A{z141 is bounded from 1, and is, in fact, no larger than the
root of the equation

T = 7r'\/1 — 7,
which is

—r VAR g5
% 915.

Lemma 2 is established.
3. Theorem 3. Let f(t) € E(er). Then

a9

[2wTl41
0
l < 12 ep,

.f - ; au'pn

where the a, are the Fourier coefficients of [ in its expansion in the functions
'pn .

Proof: The quantity defined in the theorem represents the square of
the distance from J € F(er) to the subspace SEWTIH spanned by the
funetions ¢, , with 0 = n = 2WT]. T hus, by definition, it does not
exceed 8awr41, the square of the deflection of E(er) from SP"TH

Combining (1.9) and Lemma 2 now yields
(2w T]
f = 2 ﬂnl)bn
0
Theorem 3 is established.

4. Theorem 4 (Shannon). Given any n > 0, there exist constants
3 = Cy(n) and Cy = Cy(n) so that for f € Eler),

2 2 2
d €
< €7 T

< < < 12¢6r.
=1 — Newr+1 1 — 0916 — &

(2w Trl4+C3logt2wr40y 12

‘f— Zn: ai| £ (1 + ner.

inf
Proof: Using properties (#7) and (771) of the eigenfunctions ¢:, and

known results (Ref. 3, p. 242), we obtain

p1(t = S) = M’:—g—) = Z l]/L(S)ﬂh(t)
Tr{t = 8) 0
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Therefore

nm(0) = }: v (1), and

ri2 w
(4.[) f ,01(0) (’t = '..)”'T Z ‘Pn (i) dl’ Z )\,’.

T/2 0 J—pri2
We now proceed to estimate 2y A", The functions ¢, satisfy the
integral equation

T2
(1) = Yils)p(t — §) ds.
-T2
Then
Ti2 2 T2
s wrode= [ = oo ds di,
-T2 -7/2 -wr'
and if we sum on 7, we obtain
e i T2 T/2 a
Z A;- = f f pl-([ — S) ds di.
1= —T[2 J—T]2

We now set
§ = 2¢/7, ' = 2/T, ¢ = «WT, and p(u) = sin cu/(wu).
Then

-] a1 1
oAl j f ot —§')ds' at
i -1 J-1

frhf p(?l ) du.

Integration by parts, and the substitution en = x, give
2 4e [P sin’ T “sin® @
2N = & 0% =3

Asymptotically for large e, this is easily seen to equal

It

9
% Lyege+00)
m m

but we desire an actual lower bound. For ¢ = /8,

o 2 de [Fsin®a 2 [ gin®
Z o = = = dr — - -
4 i 5

i Yo

* gin® x
dax.

vir/a A

ﬂ!lu

Therefore
b}
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] £ R dx/4 ¢ b
s 2¢ 4c d 2 2 dx
Dokem E — - = rde — = (3 — % cos 2x) =
i=0 T - e T ™™ 0 T w4 X
2 2 9 1 2
g_—J'—f'TEg. 3
r w I m? 3r/4
since
2¢ 9 .,
cos 2xda . X
[ TS0 b ez S
varla e b
Thus
%
9 2c 1
(4.2) ATz = Slgte—1
4] ™ T

for all ¢, since the inequality is trivially true for ¢ < «/8.
Let us now introduce the following combinatorial problem. We con-
sider infinite sequences of non-negative numbers u; such that

(Y1l ZzZw=zm= -,
o

(b) 2. u; = A, agiven positive constant,
1]

(c) for a given integer m = A, u,, has a prescribed value,
y g = M

and we seek to maximize P u; over all such sequences. Clearly the
optimum {;} will have g; = 0if j > m.

We claim that, with the possible exception of one u;, all the others
in the optimum solution equal either 1 or u, . For suppose they do not,
i.e. suppose {u,} takes on two values a and 8 such that g, < a < g < 1.
If we now vary a and g between the limits g, and 1, keeping « + 8
a constant, and maximize o® + #°, we find an end-point maximum.
In detail, if « + 8 = s, then & + 8 =2 [(a — 5/2)* + s°/4], which
is maximized at an end-point value of a. Thus, the maximizing sequence
[,) can contain only one value which is neither 1 nor u, . This odd
value is due to “breakage” in obtaining the exact total A. Let the
maximizing sequence have k “1's”, (m — k) “u,’s” and one value
a, uw < a < 1. Then

4 (m— k) pm + =4,
so that

A —a— mu,
b=t o e,
1 — Ko
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Then
SN e oA —a— mu, m — A » -
Z#f- = l“— x + 1 — +a#lu +H-
(_1.3 ) 0 Hm Hm

= (4 —alll + M) — M,y + a,
This is the maximum achievable value of >°F u;* under the conditions
(a), (b) and (¢) above. But with 4 = 2¢/7, and X, given, m = 2¢/m,
the sequence of eigenvalues X ; satisfies the above conditions. It therefore
competes for the maximum, and hence

2 1 = 2
__(. _—— l[_)g+ c — 1 g Z hi‘- é ‘—C (l + Am) = ?nAm-
™ ™ (0 ™

Thus, for any m = 2¢/m,

log™ ¢ +1
m
A"I —S— QC
m — =
™
For any given n > 0, if
‘ 2 2
(4.4) m = —' + 12 (l”g £ 1)
n

it follows that A, < »/12. 'l'he*n. by the reasoning of Theorem 3,

m

| N 7
f=2aw | s —
]

inf = m .

ag

If » = 11, this implies

m
112 ‘ 2
ml it~ Zﬂﬂd‘rﬂ S = (1 4+ nler;
larger values of n are covered by Theorem 3. Theorem 4 is proved.
Note: If only small values of n are of interest, the “12" in (4.4) is of
course unnecessarily large.
Lewma 3: With the normalization of W = %, we have for any T > 1,

Nro (T) = 0.085.

Proof: We begin, again, with Lemma 1. If we consider first the case
T/2 — [T/2] = &, we let f(s) = | ¢(s) |, and

{(a) m =1, a:%. n=|:§:|, ﬂ—;—[g];
lh}m=—|:§]—l, a = —;é_[_?]’ n=0 g=

1| —
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We obtain
T2

1) [+ - | (/2 | < [ 166 | ds

T/2

- f (s — [s] — %) 2Re(gg’) ds
i

and

4
| (=1T/2) |+ - + PO = [ 16 ]ds

—r/2
H
+ [ (s =1 = ) 2Re(gg) ds.
-T2
Adding and applying the Schwarz inequality, we find, as in Theorem 2,
@s) = ldm|SDglf+ el Dallllel

The Weyl-Courant lemma (Ref. 3, p. 238) asserts that
2
A, = inf sup MLL ,
Ap pldy “ @ ”-
where A, ranges over all n-dimensional subspaces of @. If B,4 is an
(n + 1)-dimensional subspace of &, the orthogonal complement of

every A,~must have at least one vector in common with B, . Thus

|| De |I* || De ||*
sup —r— = —_—
P TelF = eebun NelP

pLiy
and since the right-hand side of the inequality is independent of 4,,

the Weyl-Courant lemma implies

2

(4.6) A\, = inf UD—“’U- .
vebuga || @ I[*

Now let Bjr be the subspace of ® spanned by the [T] (orthonormal)

functions [sin #(t — k))/=(t — k), | k| < [T/2]. For g € Bin we have

= 2 lam)

| gl =
InlZlTI?)

since g(n) = 0 when |n | > [T/2], so that (4.5) yields
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| Dy I Dal

1<
g2 gl

Letting g vary in B# , and using (4.6), we now find

2 \
| < inf lfiDg“fﬂ L Pal Og + v inf | ll)g I
vemiry |l g P gl venipy | gl veniry |l gl
= AIT]ﬁl + ’\/7\11']—1 ’
whence

Atriwt = 0.085.

Similarly, if T/2 — [T/2] < 1,
~ g+ D2 DglP+ =l Dgl gl

[n44T=17/2)
and letting By be the subspace of ® spu.nued by the [7] functions
[sin w(t — k — 3)]/[x(t — k — §)] with |k + % | < [T/2] we may
apply the identical argument to find Aj#j_; = 0.085, as before. Lemma 3
is established.
Lemma 4: For any WT > 0,

A > 1 — 24/2 7V

Proof: For convenience, let @ = 2717, and normalize so that 7 = 2
Consider the funetion f(¢) whose Fourier Transform F(x) is given by

| Yy

) e if I X l =9
F(x) = {(Qm)*
0 if |[2] > Q.
Then
2 " % 5 ve o,
f [ 7" dt = Qrf Fie) de = 4 /7 [ ™ du.
—m — 0 ‘4

On the other hand,

Q

F(x) cos ol dr
—

- 2 e f‘
(4.7) = ot I:/‘/ 5 ; ¢ cos 2t dx
2 / 'II'Q kr"ﬂ 2 [ac 7: 129
(r!l)*[ 2 Q a

S

1A%
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It is easy to check that the expression in brackets is non-negative for
t = 1, and hence for | £ | = 1. In fact,

o0 o
—x2/2 —u2/n
f e”ndr=ﬁf_e”’ du,
Q

A @

6@ = g/Te = [ eta

is non-negative since it equals 0 at both @ = 0 and @ = =, and

, _ 1 VT
G Q = B Qj2 (__—. _
) = 24/Q  24/2

is positive for @ < 2/ and negative for @ > 2/, Thus

1 T . - - ﬁ
.[ S dt > 4/x f\J ¢ du—8 \/Zf g duf e du,
1 0 ;

V2

and

Hence, from (4.7),

A0
f 1A(t) dt 5 . [ f e du-l
—1 ¥ —1u /2 0
o MR Ty ) —f Ppa ) . SRS
o Ve LV
f IROX! 4/" Ve l_f “e-"*duJ
— [}

f Y gy < 4/"' —# hecause G(R) =
Vi 2

and the expression in parentheses is bounded by +/2. Thus
1

[ () at
1

[ rwa

But f € ® by definition, and hence competes in the maximum problem®
which defines Ay . Hence

But

5 1 — 24/8¢ P,

1
| f(0) |* at
Ao = max = S~ = 2\/§ g

@ f | £(0) |} dt

Lemma 4 is established,
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5. Theorem 5. For any ex < 0.915, there exists a function f < E(er)
such. that

lllf “ f = ]i 1¢|
0

(If € = 0.915, the right-hand side of the tnequality should be replaced
by 1.)

Proof: Theorem 5 asserts the existence of a lower bound for the deflec-
tion of E(er) from the subspace SY" ™7 spanned by the functions
i, with0 £ £ < [2IWT] — 2. This deflection has already been caleulated
in (1.1) and is easily seen to be assumed by a function in £(e;). Thus
there exists f € K(er) such that

["u T|— 2 2
. N — (1 — eq-):l
= mn|l;, =——e— 7 ]

’: "N — Newri—

1nf H J - aw;
By Lemma 3, Aawz—y = 0.085; this ensures that when & = 0915

2

I ('3' ‘) \/ W /"’

0‘)1"

l
the smaller of the terms is 1. For other values of €7, since
N > 1 — 2'\/§ P_TWTD

by Lemma 4, and Xy < 1, we find

: Yo— 1 4 &5 . —rwrizy
min (I, m) = min l: ) 0915 (&6 —24/9¢ ],
and now the second of the bracketed terms is the smaller. Theorem 3
is established.
6. In £(—=,%) let D' denote the operation of projecting onto
[0,], that is
f(y  t=zo0
D) =
0 t < 0.
Arguing as with DBD in the proof of Theorem 1 we see that D’BD’,
which takes £°(0,% ) into itself, is self-adjoint, positive, and bounded
by 1 (though no longer completely continuous). Tt therefore has a
spectrum’ contained in the unit interval; we will show that its spectrum
consists of all 0 = X = 1.
Theorem 6. The €° speetrum of the operator

( _ .
i (g I‘) TGy dy, x =0,

D'BD'f = - [

consists of all 0 = X £ 1.
Proof: Theorem 6 follows immediately as a special ease of much more
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general results of H. Widom’ and M. Rosenblum (unpublished), which
determine the spectra in £° of Wiener-Hopf equations with kernels
whose Fourier transforms are bounded. We include a separate proof
only because it is constructive.

By definition, A is in the spectrum of an operator 4 if and only if
for every ¢ > 0 there exists ¢, such that

| Aee — Mo ||
“ oe ||

We will prove the theorem by constructing functions which satisfy
(6.1) for any given 0 < A < 1. The spectrum being a closed set, it
must then include all 0 < A £ 1, but by the introductory remarks it is
also contained in the closed unit interval, hence it consists of precisely
the points 0 = X = 1.

Lemma 5: Let u > 0 be given. Then corresponding to any & > 0 there
exists a function H;(z) satisfying

(6.1) < e

a. Hj(2)is analytic in | z| < 1, continuous in | z| £ 1,
b. H;(0) =0,

f | wHy(e") + Hi(e™™) [* sin 8 db
- < 8.

c. =
f | Hi(e™) |* sin @ d6
0

Proof: Suppose 0 < a < m/2. Denote in the z-plane by Pi,P: P P,
P; ,Ps the points 1,6, —e **,—1,0, and 7 respectively, and let vi 7.
represent respectively the ares PP, P3P, of the unit circle. Let w =
Po(z) be a conformal map of the upper half of the unit disec onto the
region in the w-plane defined by 1 < |w | < q < »,Im{w} > 0, which
takes the points Py Py P3Py, ontow = 1, w = ¢ w = —¢w = —1
respectively. The required map exists as soon as g is chosen appropriately
(for example, so as to make the extremal length of the family of curves
joining 1 to v: in the upper semicircle equal to the extremal length of
the family of curves joining the two segments of the real axis in the
image domain), and it defines ¢ uniquely. Now by reflection, Pqo(z) is
extendable across the diameter of the unit circle to a map of [z] <1
onto the domain 1/¢ < |w| < g, Im[w} > 0, and satisfies

Poe™) /¢ = Po(e™™) a<f<rT—a
IPn(f’fe)] q a< < —w
1/q < [PO((’M) l, ]Po((‘_m} ‘ < q " Ev1,Yn.
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Choose r so that g = ¢, and let P(z) = [qPo(2)]". Since Py(z) is
bounded away from zero and infinity in |z| = 1, the function P(z)
is also analytic in [z | < 1, continuous in | z| < 1 (though no longer
necessarily univalent) and satisfies

pP(e”) = P(e7Y), a<b<rT—a
| P(e™) f = 1/u, a<l<rmT—a
my = min (1/p,1) < [ P(e”) |, | P(e ™) | < max (1/g,1) = M,,
e” € v,y

Next let w = Q(z) map the region defined by | z| < 1, Im[z} > 0,
Refz} > 0 onto itself, taking the points Ps P, ,Psonto w = 0, w = 1,
and w = 7 respectively. Q(z) may be constructed from elementary maps
and is given explicitly hy

/‘/cos‘-'a + (i —i_ zz)a sinfea — 1
Q(z) = 4

/ 2\ 2 '
1/(:0:-15‘0: + (} i_z_,) sinfa 4+ 1

It may be extended by reflection to yield a map of |z| < 1 onto the
domain in the w-plane formed by cutting the unit circle along the
imaginary axis from ¢[sin «/(1 + cos )] to 7 and from —i[sin a/(1 4+
cos a)] to —1. It satisfies

Q(0) =0,
Q(t’w} = —Q(r‘_m), a<fl<m—a
1Q(e™) [ = 1Q(e™™) | =1, " Cmm.

Now form H(z) = P(2)Q(z). We seec that H(z) satisfies conditions

(a) and (b) of Lemma 5. Furthermore, by definition of H,

pH (") + H(e™") = 0, a<l<r—a
|H(c”)|=£[()(e“)i, 5 o Bl = &

m, < |H(™) |, |H(e™™) | < M,, e €ypp.

Thus
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f | uH (") + H(e ™) |*sin 6 df
0

(6.2) = f +f | uH(e™) + H(e™) " sin 6 d6
0 T—a
< 2(p + 1)’M; f sin 6do = 2(u + 1)°M.(1 — cos a).
(i}
f | H(c") |* sin 6 do > f ) | H(¢™) |* sin 6 d§
0 @
(6.3)

T . ” 2 w2 . .
= :"? j; | Q(c”) |*sin 8 do = 7 j; | Q(e”) |2 sin @ de.

Using the expression for Q(z) we find, fora <0 <m—a

/_——e—_ ! T
- cos? @ sin® « 1 1 sin? & 1
. S- a _— e e B - LY -
| Q™) [F = sin® # _ sin* ¢
/ 9 =9 / a2
cos® 6 sIn® « / sin® o
costa — ————— 1 1 —-—— 41
"/ sin® @ + /‘/ sin?
.2 e .2
__sin” 6 | — 1 sine | 1sin”a
sin? o sin? | ~ 4sin*

Introducing this into (6.3) yields

1 + cos a)

sin a

1 .. (
5 8in” e log

[T 1) sinedo >
0 2p

whence, by (6.2),

[T 1ubCe®) + B Fsinods
0 \-jl

T j 1 x ]
[ 1 HCe®) [ sin 0 do 0g G0 e
0

where K, depends only on p. Thus, if « is chosen sufficiently small,
H (z) satisfies the remaining condition (¢). Lemma 5 is established.

We now pass to the construction of the functions ¢, of (6.1). Given
0<x<lande>0,set0 < u = (1 — \)/A, choose & so small that
that +/&/(1 — +8) < e, and let Hy(z) = H(z) be the function of
Lemma 5 corresponding to 8.

Introduce the map u + 1 = w = ¥(z + 1/2z), taking 2| < 1 onto
the w-plane slit along the real axis fromw = —1 tow = 1, and in
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that region define F(w) = H(z). The function F(w) is then analytic
except on the slit. If (w) denotes F(w) in the upper half-plane,
Fy(w) is continuous in the closed half plane » = 0. If » > 0,

(64) f“ | Fylu -+ i0) [* du =1fr | H(z) [

2

1
1—2—2}[(12|,

where I', is the curve in the upper half of the unit circle defined in
polar coordinates by (r — 1/r) sin 8 = 2v. Since H(0) = 0, the func-
tion [H(z)/z]v/1 — z* is analytic in | 2| < 1, continuous in | z| < 1,
and by the maximum prineiple

2

H(z) >

- 1 — 2z
2z

= sup
lz|=1

< sup | H(z) .
|z|=1

By property (a) of Lemma 5, H(z) is bounded in |z| = 1, hence so
is the integrand on the right-hand side of (6.4). Since the curves T,
have lengths bounded independently of v, it follows that

[ | Fy(u 4+ dv) Pdu < ¢, v > 0.

Consequently, by a theorem of Paley-Wiener," Fy(w) coincides in
» = 0 with the Fourier transform of a function ¢, (¢) € £ which van-
ishes for { = 0. Letting Fa(w) denote F(w) in the lower half plane,
the identical argument establishes that Fy(w) coincides in » < 0 with
the Fourier transform of a function ¢.(¢) € £ which vanishes for
t = 0. Lete(t) = (1/N) du(8), e2(t) = — (1/AWa(d), and p(t) = @i(t) +
@a(t). Then with x(wu) the characteristic function of the interval —1 =
1w = 1, using the norm-preserving property of the Fourier transform. we
have

| BD'e — M| = || (B = Mgz — Ay |

= [m [x(u) — Al Fg)(\u) + Fi(u) -du,
(6.5) = f | Fi(u) — Folu) | du
|u|>1

1
+ _[ | uFa(w) + Fi(w) |* du
1

- f | kH(e®) + H(e ™) | sin 6 db,
0



1324 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

while
lelF 2 el = 5l v I
(6.6) =§§ 7:1192(“) Fdu > )IT f_i | Fo(w) [ du
1 w

Il

3 H(e™) |* sin 6 db.
)\2
1]

Thus, combining (6.5) and (6.6),
T i —iBy 12 s
" [ 1utie®) + HE) Psinods

(6.7) o <X 2 - - < N%.
f | H(e”) |* sin 6 do
1]

From (6.7),

(6.8) | D'ell = | BD'e || = M1 — +/3) [lell,

and

(6.9) | D'BD'e — A D'e|l = | D'(BD'e — M) | = M5 [l e .

Setting ¢. = D' and combining (6.8) and (6.9) we obtain
| D'BD g — e/l 0l < V3/( = V) <6

which is the required inequality (6.1). Theorem 6 is established.

7. Theorem 7. Given any subinlerval 0 < @ = x = 8 < 1 of the unat
interval, there exists Ty such that for all T > Ty, the operator BD:B
has aiceigenvalue conlained in |a,B).

Proof: Let A = 4(a + B) and choose e so small that 3¢/(A — 3¢) <
(8 — a)/2. Since 0 < A < 1, by Theorem 6 there exists a function
¢ € £ such that

| D'BD'e — e ||
el

Since ¢ and D'BD’¢ are fixed functions in £°, there exists 7' such that
foreach T > T

< e

| @ = Dol = [ le@a <ol
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and
- -]
r ’ *
| (D' = Dr)BDw |F = [ |BDw [t < &lol?
T

Using the inequality || DeB(D" — Dzr)e || £ || (D' — Dy)e || we then
find

| DeBDro — Mg |
el
_ || D'BD'p — \¢ — (D' — Dr)BD'¢ — D:B(D' — D1 ||
el

(71)  _ I D'BD'e —de| || (D' = Dr)BD |

- el el

+ ” DTB(D' = Dr)'P H
el

< 3e
Now from (7.1) we see
(7.2) [DrellZ2 | DeBDre| 2 (N—3e) el

and

(7.3) [[DeBDz ¢ — MDDz || = || Da(DsBD7z ¢ — Ap) || < 3¢l ¢ ||
so that, combining (7.2) and (7.3),

(74) | DeBDr ¢ — ADr ¢ ||/|| Dz o || < 3¢/(N — 3e).

Now by property iz of the functions ¢, , we may expand D, ¢ in a series
Dre = 2 .., where ¢, = Dy ,/A/\,(T). Inserting this into (7.4),

and using the fact (#74) that the ¢,(¢) (which depend also on 7') are
eigenfunetions of BD,B, we find
( Be )’ s [ DeBDre = MDre ' _ | 3 an(M(T) = New |°
A — e H Dy ® ”-‘ H Z Aupn H2
T lan () = AP
2 leal’

2 inf [ M(T) — A %

We conclude that for every T > T there exists an eigenvalue A\, (7)
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of the operator BD B with | A.(T) — M| = 3¢/(A — Be) < (B — a)/2,
or equivalently, since the A,(7) are all real, that a < M(T) < B
Theorem 7 is established.

Corollary 7.1 The number of eigenvalues of the operator BD B contained
in any subinterval J of the unit interval cannot remain bounded as T— =,
Proof: Given any integer N, subdivide J into N disjoint intervals .J, .
By Theorem 7, for all 7' sufficiently large each J, will contain an eigen-
value of BD B, hence J will contain at least N such eigenvalues. Since
N was arbitrary, Corollary 7.1 is established.

8. Theorem 8. Lel any integer N and er < 0.916 be given. Then as
soon as WT is sufficiently large, there will exist a function [ € E(er)
such that

[2W T]+N 2 1 .
inf || f— 3, ag|| = s (& — 24/2¢ ™).
a; [{ 0.916
(If € = 0.916, the right-hand side of the inequality should be replaced
by 1.)
Proof: By Lemma 3, we have

A[2WT]—1 (ZWT) ; 0085.

By Corollary 7.1, there exists a constant ko, depending only on N,
such that for all WT > k, the interval 0.084 = x = 0.085 will contain
at least N + 2 eigenvalues of BD.B. Hence

A2 wr)+N+1 (2”77‘) = 0.084 for WT > k.

Now the proof of Theorem 5, applied without change to Apwrin+1,
establishes Theorem 8.

Theorem 8.1 Let e and any integer N be given. Then as soon as T 1is
sufficiently large
2

< 12¢,

[2wT]—N

f= X ai

0

inf

a

for all f € E(er).
Proof: According to Lemma 2,

Newna (2WT) < 0.915.

By Corollary 7.1, there exists a constant ki, depending only on N,
such that for all WT > k; the interval 0.915 = x = 0.916 will contain
at least N + 1 eigenvalues of BD»B. Hence,

?\[2"'1-]_” (2WT) é 0‘-’”6 for ]VT > kl ]
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Applying now the proof of Theorem 3 to Agwr—~ (2WT) establishes
Theorem 8.1.
9. Theorem 9. A. The restrictions to t > 0 of the functions

[sin w(2W¢ — n)]/(2Wt — n),

Jorn £ —1, are dense in £40,%).

B. Their restrictions to t < 0 are not dense in £°(— = 0), nor even
i ® restricted to t < 0.
Proof: Without loss of generality we may take W = %, to simplify
notation. We begin with part 4. Let

1, t=0
e(t) =
0, t < 0.
The functions

(D) sinw (t — n)
o t—mn

en(t)

all lie in £(0,=), so that their being dense in £°(0,%) is equivalent
to the statement that h(t) = 0 is the only function in £°(0,% ) which
is orthogonal to ¢.(¢), n = —1 (Ref. 3, p. 72). We will prove 4 in
this form.

Accordingly, suppose that (h({)e.(t)) = 0,n = —1. Using the Parse-
val theorem, and letting x(w) be the characteristic function of the in-
terval | u | = 7, we find

sin w(t — n)
t—mn

= (I[(”_),x(u)cinu:)
= (x(WH(u)e™), ng -1,

0 = (h(D),e.(t)) = [r(l)h(i),
(9.1)

where H({wu) is the inverse Fourier transform of ¢({)A(¢). The function
x(u)H(u) is in £°(—m,r) and may therefore be expanded there in a
TFourier series x(u)H(u) = EZL_, ae™. By (9.1) the coefficients a;
vanish for & < —1, so that

(9.2) x(WH(u) = 2 ae™;
k=0
also
(9.3) > | |2=,,if | H(uw) P du < o,
k=0 T =7
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The function H(u) may be continued analytically into the upper half
of the w = u + v plane by its defining formula

Hw) = [ hia) ™ dr,
0
from which, by Parseval’s theorem,

(94) [ |H(u+ i) fdu<A <o, 220,

v

Set G(w) = Y reo aze™; the function G(w) is then also analytic in the
upper half-plane » > 0, and is periodic there, with period 2x. We will
now show that (9.2) implies H(w) = G(w) for » > 0, consequently
that H(w) is also periodic in v > 0 with period 2. It then follows from
(9.4) that H(w) = 0, hence that h(z) = 0, which was to be proved.
We model our argument on one given by A. Beurling (unpublished).

Applying the Schwarz inequality to the defining expressions for H(w)
and G(w) we find

(9.5) |H(u + @) |, |Gu+ )| £ k/vV0b, 0<v <2

Next set F(w) = H(w) — G(w) inv > 0.

Let 0 < € < %, and in the w-plane denote by Py ,P.,P:,Q:,Q. ,@h
the points m,m + ier + {,—x + i, —m + fe,—m respectively. Let I',T'.
be the arcs made up of the line segments PiPy + PuQ: + QG and
PP, + P.P. + QQ, respectively. Let R, R; be the rectangles | u | <
7/2,1 < v < $and |u| < 7/2, =3 < v < —} respectively, and R a
region which contains R; and R and whose closure does not intersect I'.

Form the function

_ [ F() de
rf—w '

J(w)

By (9.5), F(¢) is integrable on T, so that J(w) is an analytie function of
w for w off T, in particular for w € K. Now we rewrite

(9.6) ruy= | EOIE, [ FEE

r-r, { —w re { —w

and estimate the second integral of (9.6). If w € Ry U Ry and ¢ € T\
we see that 1/ | — w| < B < «. Consequently

F(¢) df =f Fe) ds | 7 Flu+ de) du‘

re { —w Petqa & — W _ru + te — w

(9.7)

IIA

B[ |PG) d |+ B[ | F(utie) | du.
P1Pe+QeQy k)
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By virtue of (9.5),
(9.8) limf |F(¢) de| = 0.
0 VPP 4Q.Q

Applying the Schwarz inequality to the remaining integral of (9.7), and
using the definition of F and the triangle inequality in £2 we find

AR Idug{f_:iF(u%—ie) f.;m}*

IIA

{f | H(u 4 1e) — H(u) |* du};

(9.9) ‘ :
+ {f_ffﬂ(u) — G(u) lgdu}

T ¥
+ {f | G(u) — Glu + de) |* du} :
By definition of H(w),
Hu+ i) — Hw) = [ w(Ole™ = 1o at,
0

whence by Parseval’s theorem

o0

fﬂ | H(u+de) — H(u) [* du f | H(u + 1e) — H(u) |*du

1A

(9.10) -
=2 [ WPl =11 a.
0

For cach ¢, im [ A(t) |*|1 — e |* = 0, and |R(t) |*|1 — e |* =
=0

4| h(t) | *, which by assumption is an integrable function. Consequently
by the theorem on dominated convergence (Ref. 3, p. 37) applied to
the last integral of (9.10),

v

(9.11) lim f | H(u + ie) — H(u) |*du = 0.

-0t V—x

Similarly from the definition of G/(w)
(G(u) — Glu + ie) = Zﬂk(] _ e‘*ﬁl‘)eiuk,
k=0
whence

[ 160 = Glu+i0) Pau = 20 3 e P 1 — P,
T k=0
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so that using (9.3) and arguing as above
(9.12) h'[qr f | G(u) — G(u+ te) [*du = 0.

e —x

Combining (9.12), (9.11), (9.2), (9.9), (9.8) and (9.7) we find that
uniformly for w € R, UR.,

(9.13) lim = 0.

0T

—w

f F(¢) dr

€

Since I' — T, forms the boundary of the rectangle |u| = m, e S v = 1,
in whose interior F is an analytic function, the first integral on the right-
hand side of (9.6) is equal to F(w) for w € E; and to 0 for w € R..
From (9.13) it follows that J (w), which is independent of ¢, must itself
coincide with F(w) for w € R, and with 0 for w € R, . But if J(w) = 0
in R, , it must be identically 0 in its whole domain of analyticity, in par-
ticular in R, hence also in R, . We conclude that F(w) = 0 in Ry, hence
in its whole domain of analyticity v > 0. Thus H(w) = G(w) inv > 0,
whence, as we have already argued, part A of Theorem 9 follows.

We now pass to a proof of part B. We remark first that the restric-
tions of @ to ¢ < 0 include the functions [sin #(2Wt — n)])/(2Wt — n),
n = 1, restricted to ¢ < 0. Replacing t by —¢, we see that, by part 4,
these are already dense in £°( — =,0). Consequently to prove part B it is
enough to establish its first assertion.

We argue by contradietion. Accordingly, suppose that the restrictions
to ¢ < 0 of the functions [sin #(2W¢ — n)]/(2Wi — n),forn = —1, are
dense in £°(— =,0). Then defining the function g(t) el (—=,0) by

1, -—-1=t=0
g(t) =
0, it < —1,

we could find a sequence of functions f,(t), each some linear combination
of the lsin x(2Wt — n)]/(2Wt — n), n £ —1, such that [f.(¢)} ap-
proaches g({) in £*(— =« ,0), ie. such that

(9.14) [l - @ Fat = e —o0.
The triangle inequality in £°(— =,0) applied to (9.14) yields

0 0 3 2 B
(9.15) [ | fa(0) [*dt = {[ng(t} I”dt] d \/e_} = (1 4+ Ve

Now the functions f,(t) are all band-limited and f, (k) = 0 for k = 0.
Thus by Ref. 9 there exists a constant 'y such that
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(9.16) [norasc| inora

From (9.15) and (9.16) it follows that, as elements of £°(— w,% ), the
funections f,(¢) have uniformly bounded norms as soon as ¢, < 1. Ap-
plying (1.5), we conclude that the f,(t) are a uniformly bounded family
of analytic functions in the strip | Im{#} | < 1 of the complex t-plane,
thus a normal family there (Ref. 5, p. 171). We may therefore extract
from the sequence {f,({)] a subsequence f,,(¢) converging (pointwise)
in the whole strip, uniformly on any compact subset of the strip, to an
analytic funetion f(t); from (9.14),

f&) =g, t<0.
But g(¢) vanishes on an interval without vanishing identically, and so
cannot coincide with an analytic function. We have reached a contradic-
tion, and part B follows. Theorem 9 is established.
10. Theorem 10: Let f(t) € E(er). Then an estimale of the form
i e sin #(2Wt — k)
{ax) (Kl SWT+N T(2Wt — k)
cannot be valid independently of er, no maller how large the constants C
and N are chosen.
Proof: Without loss of generality we may take W = %, to simplify no-
tation.
Any function f € ® has the (sampling series) expansion f(t) =
Ef,,j'(l.:)[sin w(t — k)])/[=(¢t — k)]. Since the functions

2
= < CET

ei(t) = 5111(7;(;—1;.) are orthonormal,
T — It
(10.1) \
min || f — 2 me| = x [ f(k) [
lag) Kl Z(TI2)4+N [kl > (T{2)4+N

Now consider the funetion [sin #(t — N — 1)]/[x(t — N — 1)] which
is in @. By Theorem 9, we may approximate its restriction to { > 0 ar-
bitrarily closely in £°(0,2) by finite linear combinations of the funec-
tions [sin w(¢ — n)]/[x(t — n)), n £ —1. That is, given y > 0, there
exists constants a_;.....a_, (depending on 7) such that

(102) [

Let

sima(t — N —1) E"‘ sin w(t — k) [*

w(t — N —1) *k=1ﬂk x(t — k) dh <y

Sin‘rr(t—N—I)_i sin w(t — k)

103) W) ==m—F-1 &% B
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the function ¢, € &, and || ¢, |* = 1 4+ 2™ |a | = 1. Since in par-
ticular ¢, is in £*( — «,») we may choose an integer 7'/2 so large that

(104) [ e ra<n

Now set
= ?’n(t — T/g) .
leall 7
We see that f € ® and || f || = 1. Furthermore, by (10.2) and (10.4),

o [eoras [Cle@ra
G = - <l
ltl>r/2 ” P ” H @y Hz

s0 that f € E(er), with ez = (4/2n/| ¢4 || ); we observe that e can be
made arbitrarily small by choosing n small, since || ¢, | = 1. By defini-
tion

f(t)

| 7k [*

|kl >(T{2)+N
1
| enll®’

e pALCI N ICT

Il @a II*
whenee by (10.1)

2

1
f = ) D Qupr || Z er 5.
Ikl < (TI204N 29

min
(ak)

Since 5 may be arbitrarily small, Theorem 10 follows.
11. Theorem 11. For any 8 < 1, there exisis & > 0 and er such that

k\ sin w(2Wt — k) ’
H)" kl= n'rzq—(u'mﬂ' (W) r(2Wt — k)
for some [ € E(er).
Proof: We again take W = § without loss of generality. We follow a
line of reasoning used in Ref. 9.

S 1+ 0,

1

5 =1
Let g(t) = L
et g(t) = sin =t T T

Then

1 [ d S 1 a7 oa, A
Q’EH-[lt_lT“<zl:-n‘+ﬂ'—wj:wg(£)dt<551-!-_7*:2’5'

Now if P, N > 0, with P > N + 1, then
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Proof: The decomposition
(12.1) f=Bf+(f— B

expresses [ as the sum of its components in ® and orthogonal to ® re-
spectively. The Pythagorean theorem then yields 1 = || f IF=1BfI*+
If = Bf |}, whence | f — Bf|| = nw. Similarly, [|f — Df | = er.

Let ¢ = Bf/+/1 — 7% ,so0 that ¢ € ®and || g| = 1. We will apply
Theorem 3 to g; to do so, we must estimate its degree of concentration.
We first expand ¢

| bf — DB | = (Df — DBf,Df — DBf)
= || Df | + | DBf |* — 2Re(Df,DBY).

Moreover, since | Df — Bf | £ || = Dfl + [|f — Bf | = ez + 2w,
we find

(123) (er+nw)* 2 | Df — Bf [ = [| Df |* + || Bf |* — 2Re(Df,BY).

Since D is a projection, (Df,DBf) = (Df,Bf); hence subtracting (12.3)
from (12.2),

| DBf|* = | Bf II* = | Df — DBf | = (ex + nw)’,

i

or

IDBf* o I Bf* _ (er + nw)’

Dy |* = - 2 ; .
I Do | L—aw L—my L—mw

(124)
-1 - (er + ’ﬂw)z
1 - ﬂgw
Consequently, by Theorem 3, there exist constants by such that

[2w 7] 32
(12.5) lg— % boge]? iz ppier ond
o 1 — 7w
Now from (12.1)
f [2wrT) ( [2wT] ) ( f —_ Bf )

——— — b = - ayr ) + |\ —YF7/——=),

_\/1 _ qf;- ; k\t’k q ; R'I’k m
and the bracketed terms remain orthogonal. Thus, with

a = V11— ﬂ‘f:rbks
[2wT] : :
”f - zu: ak‘ll’k ”‘ = 12(57' + mr) =+ ﬂ?{'-
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Theorem 12 is established.

We should point out that by letting ¢ = Df/4/1 — & and working
with the functions Dy, , the roles of ¢ and  may be interchanged, to
yield the inequality

[2w 7]

”f - zﬂ: CkD‘l’k 1[2 = 12(61- + "hr)z + G:;'-

13. Theorem 18: If f(t) € L2 with ||f|| = 1, |Df P =1 — &,
then for some constants ¢. = e(f),

sin w(2Wt — k) 0
s i e ® AW = %) I

= (Er + ﬂu’)ﬁ

+ 7;";‘.,- - W(E'r T 7)1&‘) \/1 —_ 11::1'-

Proof: We proceed as in Theorem 12, up to (12.4) but now apply The-
orem 2 instead of Theorem 3. Thus, for some constants by ,

sin w(2Wt — k) I

(13.1) lo = k| = WrHl & w(2Wt — k)
i er + nw + (er + ’-‘Iw)ﬂ'

™
Vl_’?fv‘ 1_77?"

Replacing (12.5) by (13.1) and applying without change the rest of
the proof of Theorem 12 establishes Theorem 13.

1A
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A Method for Simplifying

Boolean Funetions

By A. H. SCHEINMAN

IManuseript meeived March 6, 1902)

This article presende an derative lechnigque for simplifying Boolean func-
frone, The method enalbles the wzer lo oblein prime dmplicantz by simple
operations o a sel of decimol numbers which desevibe the funefion. This
techngue may be waed fire functions of any rewmber of variables.

At the present time, wlthough several design aids bave heen intro-
chieed, 12 the synthesis of switching cireuits remains 4 highly developed
wrt, the theory heing of only limited value to the eircait designer. In
pirticular, that part of the design pmeess involving the simplifieation of
Boolean functions having large nombers of vavinhles still presents a
major problem.

Prahably the best method eurently available for the solution of sueh
problems is the QuinesMeCloskey Tabmlor Method, which consists of
the exhaustive comparison of terms of the standard sum for adjaeencies
— terms which differ in only ome variable, This technicgue, besides being
a long, tedious one, determines all possible prime mmplicants of the given
function. Thus o vecond problem is generated — selecting the sssentinl
prime implicants from among those found, This in itsell is often o dil-
fienlt provedure, for which speeific methods have been developed,!

The method to be deseribed in this paper is a simple, iterative tech-
wiggue for determining the prime implicants of o Boolean fonetion. All
af the esentin]l prime implicants ane found with this method, and in
genernl, some or oll of the ponessential prime implicants are auto-
mutically eliminated, materinlly simplifying the final search for the os-
sentind prime implicants.

Any Boolenn funetion, say flzy, ««-, r,) for example, may be ox-
panded into the form

f{,lﬂ..l'g. wae J!'n] = 1'|-.ﬂl, - R J’... ‘i‘ Itr'_r“], Ty A .-I'-'g].
1Ay
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The nhove theorem is generally referred to as the expansion theorem!
and enables one to expand any w-varinhle switching function about
any one of the variables: As shown above the given function is said to
be expanded about the variable z, . Two new functions are thus formed,
one multiplying ; and one multiplying =,". The two new switching
funetions are functions of xs, « -+ , z, only, and am wierred to as the

residues of =y .
Let s assume that the given function is specified in its canonical form

as i sum of produet terms,

.ﬂIFlr'il s .J'"J = E'”.-ll

where /7, represents the general product term and the subseript 7 is
the decimal equivalent of the associated product term, when the produet
terms are expressed in binary form with primed literals replaced by aeros
and unprimed literals replaced by ones. This i often written as

Jlay,de, o0, 2a) = 254, £ being implied.

Assume further that the varinbles are assigned binary weights in the
order shown, with ; being assigned the highest weight and xr, the lowest.
When the varinble weights are assigoed in this manner the expansion
becomes . very simple process. In particular, if & spevifie series of decimal
numbers characterizes the function, the residues muy be formed as
follows:

.r{-rllmll"'r-rﬂj =EJ‘=:¢IEI+I|‘H1.

Ry is o sum consisting of the decvimal numbers which are smaller than

the weight of z; (the variable being expanded about), and K, is o sum
consisting of the numbers which are groater than the weight of 2, , from

each of which the weight of z, is subtracted.

Noting that the residues iy and R. are now each specified by summa-
tions, und the new sets of decimal numbers are interpreted as bring
funetions of all succesding varinbles, generically we may write:

I} -f{-'l.'rlp-tlp "'lxn}'

Ench of the residues can now be expanded about rs, which is the
highest weighted varinble of the residues. Thus the expansion can be
earried out in this manner using nothing more compliented than the

subtraction process,
As an example, assumé the following function:

1(4,B,0,D) = 3.(0,188,10) = AR, + A'R,
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where the order of the varinbles (A 8,00 indicates the relative binary
weights, io., A i= the highest weighted and D is the lowest weighted
variahle.

R = fiBC.D) = 3. 0,1 and
R, = f(B,C,D) = 3_(8-8), (8:8), (10-8) = 3 0,1,2

sinee the hinury weight of 4 = 8,
This process may be repented by expanding each of the residues ahout

B. At this point let us examine £y and B
There are five possibilities:

(u) &y = K = R, thervelore
fiABCD) = AR+ A'R = R

indicating thut A and A are redundani
(b) By > Ry, indicating that the decimal numbers representing iy
form o subset of those wpresenting &, then By = K: 4+ K., and

flABOD) = AR+ By) + 4Ky = ARy + ARy + ARy = He + AR, .
(e} Ry > Ry, where Be = By + R,
HABRCD) = AR, + AR, + R) =
ARy 4+ A'Ry 4+ A'Ke = Iy + A'R,
(d) The residues have no numbers in common, in which ease
JABCD) = AR, + A'R:.
() Some of the numbers in each residue are the sume,
fy = B, 4+ Ra, fty =R, + R, and
fABCD) = AR + R + AR + R,
= AR, + ARy + A'R. + A'R,
=R, 4+ AR+ A'R,.
Note that in this case the function may be written ns
RABCD) = R, + AR, + Ro) + A'(R. + R.)

The summation &, may be included with 4 and A" as 0 redundanoy.
Thiz is significant in the method 1o be shown, because K, may con-
tribute to the simplification of residues resulting from subsequent
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expansion. This is anslogous to using & term of the standard sum in
more than one subeube when using a Karnaugh map.?

The following method emplays all of the above idens and will be shown
by means of an example,

Assume o function

flABCD) = 3.1,2346,788,11,12,13,14.

Expansion ahout the varinhle A — the highest weighted variable —
yields

flABCD) = A 124407 + A2 0,13456)
=3 1340 + A" (2 1,2346,7) + ALY 0,1,3,4,56).

Where the summation 3 1,340 is that part of the A residues which
are the same, note that the numbers 13,406 are now redundant in the
summations multiplying A and A4° . The summation 1346 actually
represents those terms of the standurd sum which differ only in the A
vuriable,

There are now three summations, each of which is a funetion of 8,00
only. Fach of these funetions must now be expunded about the variable
B. These operations are repeated exnctly until the expansion ahout all
variables is complete.

At this point the above illustration will be repeated, showing o
mechanienl technigue to orgunige und simplify the procedure. Refer to
Fig. 1.

Step 1. Arrange the decimol numbers ropresenting the given funetion
in o eolomn.

Step 2, Divide the decimal numbers into (wo eolumnar groups, one
heded with A’ and one headed with A. The A’ column containg the
numbers of the ariginal funetion which are smaller than 8 — the hinary
weight of 4 — and the A colomn contning the numbers which are equal
to or greater than 8, first subtracting 8 from each.

Step 3. Include a thind column, headed by a dash to indicate the
redundaney of A and A, ronsisting of the numbwrs which nre common to
eolumns A4 and A°. Cheek the corresponding numbers in eolumns 4 and
A’ to record the fnet that they are redundant. IT any of the numbers in
the dashed column have been premiously chocked m bath the A and A’
columns, they should also be checked in the dashed column,

Step 4. Examine each column, If any column eonsists of only checked
numbers, eliminate the column entirely.

Each of the columns must now be expanded nhoat B by repeating the
above steps. The expansion of the funetion in the A" eolumn is shown in
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Fig. Ib. Sinee the weight of 8 is 4, all numbers loss then 4 ane placed
in the B colummn. These numbers are 1,23, Note that 1 and 3 must be
ehecked sinee they were previously checked in the A4’ eolumn. The num-
biers 0,7 wre placed in the B column, first subtracting 4 from each, giving
0,23, The pumbers 0,2 which correspond to 4,0 must be checked, A
dushed column consisting of the numbers 2.3 is now ineluded. Cheek the
numbers 2.3 in bath the B and B columns. All of the numbers in the B
and B’ volumns are now checked, henee both eolumns may be eliminated
= shown,

Figure 2 illusteates the complote development. When the function is
cxpunded about the fnal variable, note that the residues must be 0.
At this point the prime implicants may be determined by simply tracing
u path back to the sturt and reading the appropriste columnar hoadings.

Not all of the prime implicants obtained may be required to deseribe
the funetion. In the exnmple just shown, all of the prime implieants were
caontinl, but moother example will be shown in which this is not the
[RFEC

f=300,12346,7880,11,15

This funetion s simplified o Fig. 3, aod four peime implicants o
obtamed, not all of which wre essential. A simple method for determining
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Fig. 1 — Example 1: /{4, B,C.D) = £ 1,234,077 89,11,12,13,14; (n) expansion
phout A, () expansion about B
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Fig, 2 — Exnmplo | completad.

the essentinl prime implicantz i available in a prime implicant chart
first. proposed by Quine and later simplified by MeCluskey. SBueh o charl
is shown in Fig. 4 for the example of Fig. 3 (se Ref. 1).

The chart requires the establishment of columuns, each of which repre-
wonts one of the decimal numbers of the original funotion nnd is so0
headed. Eneh mow represents one of the piime implicants and 15 thus

identified.

Each prime implicant is a combination of 2* of the decimal numbers
of the original funetion; & may be any integer, including sero. It = an
pusy matter (o find these numbers. One could, for example, troce baok-
ward from the finnl residue of the prime implicant (alwiys gero) and if
a eolumn is passed through which is headed by an unprimed varinble
ned the weight of the varinble, if through a primed column the number

rermaing unchanged, When tracing through a eolumn headed by a dash
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g, & — Exnmple 2: (A B,00) = F 01,234 0,7 80.11,15; esninple vielling
nongrsentind prime implicanis.

el number beeomes two numbers, one of which is the same ag the
number in the dushed eolumn. The other number is obtained by adding
the weight of the varinble from whose expansion the dashed eolumn re-
st bl

On each row of the chart, mark a eros under the decimal numbers

e 1 2 3 4 & T A 8 1 15

n

AD'(o,2.4,8"
B'C'{o,1,8,0*

L ! [ o

CD (3, T00,18)%

¥PRIMARY BASIS ROW = ESSENTIAL TERM
fia.8,c,00 = £ 0,1,2,3,4,67,8,0,11,15= AD'+ B'C'+ CD

Fig. 4 — Chart methodd of obtaining essentinl prime implicants for FExaanple 2.
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associated with the terme contained m the prime implicint represen bed
by that row, Then sean the columns and circle the erosses which stand
alone in a column, and rule a line through each assovipted row, Buch rows
represent essential prime implicants. Now rule a vertieal line through
each eross in the ruled rows. IT all other crosses in the chart are not thus
riuled out by the vertical lines, additional prime implicants must be
chosen. (See Ref. 1 for further diseussion of prime implicant charts.)
The chart of Fig. 4 shows that A", B'(", and €D are essential and the
function may therefore be expressed by the following minimum sum

fABCD0) = A'D + BC + €D,

If the function of Fig. 3 is simplified by other tabular methaods, it will
he noted that there are six possible prime implicants. This illustrates
an important advantage of the method deseribed here, and this is that
while all essential prime implicunts are obtained, some or all of the non-
essential prime implicants may be eliminated nutomatically, materinlly
simplifying the search for the essential terms by charting. The missing
prime implicants are aetually included in columns which were erossed
ot in the development beenuse all elements wers checked, indicating
that the prime implieants if obtained would be redundant.

There are functions for which, if all possible prime implicants are
fouind, charts would be produeed which are cyelic in form. There are
no immediately apparent choices of prime implicants which would yield
i minimum sum. In such cases some initial choice must be made, and
gome cut and try i necessary. In fact, there will generally be more than
ane equally satisfactory solution, depending upon the initinl choice,

When the method deseribed in this paper 18 applied to functions which
would normally produce a eyelical prime implieant, chart, the chart
obtained will not be eyelical. Some of the prime implicants will be elim-
ingted as the work progresses, in effect making the initial choices auto-
matically. Thiz has two results. Lhe chart s moterially simplified and
the solution is casily and automatically obtained. However if a partioular
initind choiee would resull i g more eeonomical solution than another,
then this method may or may not obigin the minimum sum, depending
upon the weighting of the variables, The final solution in such cases
must be regarded as an approximation to the minimum sum. The ap-
proximation will always be u close one.

If some of the decimal pumbers specifying the given funetion are
“don't cure™ terms, they must be checked initially and subsequently
treated like any other checked number. The only real differenee is noted
when drawing a prime implicant chart, where columns corresponding
to “don't vare” terms would not he included (Refls. 1, 4).
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A final example i= meluded i Figure 5 to indicate which of the decimal
numbers of the given function are ombined to obtain any particular
number in the expansion, The decimal numbers of the given funetion
are shown parenthetically.

In conclusion the method deseribed above offers the following and-
Vialtages:

(a) The decimal numbers specifving the function may be opernted
on directly without any preliminary grouping.

i
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C = X #,3,8,7,00,11,14,15%

———H—— AR = T 1Z,13,14,15%

Fla,,e,0) = T 23]16,11,12,13,54,18 + L g 1,6,7
= C+AB

Fig. & — Exunple 3: f(A B,0.0) = F 1,23,0.7,10,11,12.33,14.15; numbers in
prrentheses are decimo] numbers which were combined Lo give numbers in expan-
i,
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(b) Adjacencies (terms which differ in onfy one varinble) are found
in groups, moking this method very rapid in use.

(¢) The operstions are simple and iterative, enabling functions hav-
ing uny number of variables to be simplified.

{d) Bome nonessentinl prime implicants will in general be eliminated,
simplifying the prime implicant chart,
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Generalized Confocal Resonator Theory

By G. D, BOYD and H. KOGELNIK

(Munuseript reevived Mareh 5, 1062)

The theory af the vonfoeal resonalor tx extended Lo thelwde the effect of
unegqual aperture size and unegual radid of euroature of the two reflectors,
The latter 18 equivedent o o periodic sequence of lenses wdth unegual foeal
fengtha, This treatment (8 o0 Carteatan coordinales as previously used, In
an appendic the modes and vesonant formulas are wrilten in eylindrical
eoordinales.

The offect of wnequal apertiere size of the oo reflcelors ia shown o pro-
dduiee mode patlernis of unegual size on the hwo reflectors of o eonfoeal reso-
nirtir. The previows compudations for diffeaction losses are Townd fo be
applicallo. Generalization of the theary to the ease of reflectors af wnequal
eurvabure shows the existence of lmo-loss regions and high-loss regrons ag
the reflector spacing ts varted. Cre of the fegh i Traction loss regions occurs
when the reflector spacing 1a befween the two unequal radit of curvature,
Sueh a region @x interpretable (n terms of enstabilities tn a periodic sequence
of lenises of wnegual foeal length. An estimade of diffraction logses 18 obteined
for the toe-loss regions. The presence of o high diffraction loss region or wn-
stabile vegion showdd be of {mportance in the design of resonators or of a per-
suelie sequenee of lenses.

I, INTRODICTION

The existence of modes in an open structure such a8 the eonfoeal
Fubry-Perot type resonator has heen demonstrated by Boyd and Gor-
dont and hy Fox and Li? This resonator eonsists of two spherieal refles-
tors separated by their common endius of curvature, ss shown i Fig, 1.
The reflectors were assumed to be of sguad aperture and sguare! or ciren-
Iar® if viewed in the z-direction. Uniform reflectivity over the reflecting
surface was postulated, Goubau pnd Schwering® * have also reported on
this problem snd have obrained similar results.

A mode may be defined s a field distribution that reproduces itself
in spatinl digtribution and phase, though not i amphtude, as the wave
bounees back and forth between the two reflectors, Beenuse of losses

7
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Y

———4P(z, )

. - T . _______,_I

Fig. 1| — Canfoenl resonntor with sphecien] reflectors,

due to diffraction and reflection, the reproduced pattern s redueed in in-
tensity on ench suceeeding traversal of the resonator. The above-men-
tioned authors have shown that there s o set of modes which will re-
produce themselves over the equal apertures 4, and Ay of the resonator.

Muthematieally the modes of the confoeal resonntor form a complete
orthogonal set of functions. Far the confoenl resonator these modes are
highly degenerate in frequeney; that s, many modes have the same
resonnnee frecquency. The degenerney is split when the resonator 18 made
noncorfoenl by varyving the plate spacing, though new degeneracies do
appenr at certain other spacings. Because of this frequency degeneracy,
the modes of the conforal resonntor are not unique unless the effects
of loss are considered. Any linear eombination of the degenerate fre-
quency modes (the Hermito-Ganssian functions deseribed in Ref, 1) is
still o mode of the resonator.

When one ineludes the effeer of diffraction losses due to finite aper-
ture#, the modes beecome unique, for then the sigenvalue degeneracy is
gplit and each mode has its own characteristie rate of deeay or Q. For
the case of low diffraction losses, the eigenfunctions of the modes are
still given with good approximation by the Hermite-Guussinn funetions,
whirh pre exact only for the lossless ease of infinite apertures, The fre-
quency degenerney 15 unaffeeted by the inclusion of diffraction losses.

Boyd and Gordon, in meluding diffraction losses, eonsidered only the
ease where both reflectors, Ay and Ag, are of egual size. This iImposes a
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certain symmeiry on the system. If, however, the two reflectors are of
different, sises, one might expect for the confoeal resonator, with its high
frequency degeneracy, stationary field configurations that are asym-
metrie in the 2-direction. This may be understood by eonsidering the set
of degenerate Hermite-Goussiann modes which are resonant af o frequency
given by 2¢ 4 m 4+ n equal a constant. Combinations of these modes
may be superimposed at one reflector to form varinus new field pattorns.
The field putterns on the two reflectors can now be different sinee the
original modes with even and odd ¢ ehange their relative phuse by 180°
in going from one reflector to the other, It is reasonable that the lowest-
loss mode for an unequal aperture resonator will be such o combination
that the field patterns will be ssymmetrical. This also turns out to be
true for all higher-order modes,

For the case of the noneonfoeal resonator with spacing such that there
are no frequency degeneracies, this asymmetry in the stationary field
configurations is not possible, The feld distribution is foreed (o be sym-
metricnl between the two reflectors. The diffraction losses are then de-
termined mainly by the smaller of the reflectors,

Resonutors with reflectors of different mdii of eurvature are invesii-
goted nlsa, A region of high diffenction loss 18 found for a range of sepu-
ration of reflectors with unequol eurvature near the confoeal separntion,
This hos some prootical signifiennes for resonntors and transmis=ion sys-
Lemns in that one muost be sure to operate in only the low-loss region, Dhe
to the possibility of slightly unequal rmdii of eurvature in the fabriea-
tion of resonntors, it is desiiable to spaee the reflectors to obtain o
nonconfocsl copdition. The existence of “stable regions' of low loss and
“unstable regions’ of high losx ns the reflector spacing is varied s inter-
pretable in terms of the stable and unstable regions of o periodie sequenee
of lenses of anegual Toenl Tongth.

1T, MODES Ih A LOSALESS CONFOCAL RESONATIR

[t was pointed out o the introduction that the modes of the lossless
confocal resonntor are highly degenerate in frequencey and thus not
unicpue. Bovd and Gordon, in deseribing the modes of the lossless con-
foeal resonator in terms of Hermite-Gaussian functions, considerod only
the symmetrieal situation of identieal field patterns and spot sizes over
each aperture. Beeanse of the hgh degencraey of the lossless resonntor,
asymmetrio field patterns between the two reflectors are just ns pos-
sible. In this section the relation between asymmetrie spot siges 18 ob-
tnined. Only the introduotion m the following seetion of unequal aper-
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tures and the resulting diffraction losses will allow one to state which
combination of asymmelrie spot sizes is 0 unique maode of the system,

Boyd snd Gordon have computed surfuees of constant phase within
and without the eonfoenl resonator, These surfuces have approximately
i spherical shape. Any of these surfaces muy be repluced by spherieal
reflectors to form o new resonating structure of arbiteary spacing and
eurvature. Exeept for the obvious special case, such a resonstor was
termed nonconfoenl. Boyd and Gordon have shown that each eonfoeal
gystem of rmdius of eurvature and separation equal to b generates o set
of surfuees of eoustant phase of rudius b and separation o linked by the
rilntion®

dt — 3l B =0, (1)

For a given b and & there are two possible reflector separations, d, and
iy

and (2)
ll'.f: - f.l" - ﬁf'rtl-u — I,

The field distribution of the modes of these nonconfoedl systems is
symmetrie with respect to the system center (us are the fields of the
generating conforsl system), The fundumental modes of all these
noneonfocnl systems have s spot sizge of rudins w, at the center of the
resonator, given by

w, = — (3)

where & s the wavelengthe The spot sige of the Tundamental mode of
the confoenl system at the reflectors i w, = w,4/2. In genernl, the
spot size at o distanee /2 from the center is given by

w, = i, V 1 4 f—; (4)

The surface of constant phase at the center (2 = 0) is o plane, and
the whole family of surfares is symmetrie with respect to it. So far we

* The notation wsod here s consistent with that of Boyd and Gordon but unfor-
tunately not with that of Fox and L4, whe use b fur the spacing of the ?‘ﬁ.‘hﬂ- parnl.-
lel resonator, Wo uso o for the spacing of the reflectors, b for the confocsl radius
of curvatire and Lhis its EE:ELH , and &' for the radine of curvature of & surface
of eonstant phese nod for the radius of eurvature of the reflectors of & noneonfoceal
resonator with identieally curved reflectors. For the nopeonfocal resonater with
unequul radii of curvature we use by and by .
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have armanged the reflector poir symmetrieally to this plane, and sym-
metriec mode configurtions have resulted. Tt 18 possible, however, to
constrict a field configumtion which is asymmetric with respeel o the
reflector aystem by placing one of the refleetors (with radivs of eurvature
') oat 2z = /2 and the other at 2 —ify 2, At these Jocations both
sirfares of constant phase hove the same radios of corvature b, This
is indieated in Fig. 2(a). The msulting reflector separation ean be
computed from (2) as

d = 4y + ds) = V. (5)

Sinee the spacing o equals the reflector tadiog of eurvature B, i =
apparent that a new confoeal system has been formed. Apart from the
surfnees of constant phese, considerntion of spot siges wesures us that the
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modes obtained for this confoeal system are, indeed, asymmetric, As
indieated in Fig. 2(h) the spot size reaches its minimwm value of w,
at # = 0 and i not by any means in the center of the reflector system.
The spot sizges at the new reflectors ean be computed from (4) as

d_!
W = 1w, 1+ﬁ,

e (06)
'"-’z = WE V‘ + El_l.
This combined with (2) yields the relation
Wwitlly = =—, {TJ'
™

where A/ /x is the spot gige at the reflectors, which we would expect
for the symmetrical set of modes of a confoenl system of spacing &',

The resonanee condition for this system is obtained vin Boyd and
Gordon's equation {20) after some computation as

'%:.2.;+[|—1—m—|—n',1, (8)

where m, 1, und g are the mode numbers as defined i Boyd and Gordon's
wark, By compuring their equntion (14) with our result, we find that
the resonance conditions for the symmetrie and the asymmetric modes of
the confoenl gystem are ideotical, as expected.

By =uitably choosing b for & given reflector curvature &, almost any
ratio of refleclor spot sizes wy /w0 can be obtained. Thus, for a given
loasless canfoen] system, the confocal geometry allows an infinite number
of sets of modes (chareteriged by the spot sizes at ench aperture ). It s
the finite size and shape of the reflector that selects one particulir set,
us we shall see in the following seetion,

1. MUODES OF A COXFOUAL HESONATOR WITH EEFLECTOIL SIZES DNEQUAL

Consider o eonfora] resonntor, Assume that the refleclors A and As
are, in generpl, of different sizes nnd/or shapes, With this asvimmetry
in mind, it is no longer reasonable to postulate that the field pattern
on A; be reproduced on Ay when looking lor self-consistent field eon-
figurations, Instead, ns o more generalized definition of o mode lot us
reguire that an energy distribution Inunmehed with a certain pattern on
Ay roproduce this pattern on A, ofter boumeing baeck from Ay . No con-
dition on the pattern on Ay is imposed.
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To express this mathemntienlly we use the approximations of Boyd
and Gordon's paper and the senlor formulation of Huygens' principle.
A wave leaving reflector A; with o field patiern Bz, y) arrives at Ay
with a pattern E'(", 4"} given by

o) = o | awadg B e, o

bda,

whore b is the mirror separation, & = 25/A, and
b= b= (8" + @), (10)

Maost of the energy is reflocted from A. and trovels buek to A, 0 The
rdii of ¢urvature of the reflectors are assumed very Iarge compared to
the wavelength A, and we can therefore assume that laws for the reflection
of plune wopves apply loenlly. Then we find that the reflected wave
leaves As with the pattern =" Ce’, 47 ). It will nrmiveat A, witha certain
chistribution pattern which we shall enll —a.% &," E(r, #). At this peint
we hove introduesd the postulate that the field patterns be reproduced,
exeept for the smplitude faotor e, o, ufter one complete returm trip.
Again, the enerey = bouneed baek and leaves reflector Ay with o field
distribution which ean be exprossed in terms of £ (2, 4') as

N T _l'llrl' I T R L
tw as LT, H) = 24l L! da dy Elx,0)e ™", (11)
wilh
- :; (xz’ + /). (12)

Sulmtituting (91 into (11] tu climingte £, then inserting the expressions
(100 and C12) for poand p', and, Honlly, interchaoging I.uteg;rulﬁ OIS
nhtains an integrol equation

L! = Bakf

35 Bl = — f a5 dif Bz, PR3 0,3, (13)
with the kernel

Kir, 9,5 = f e’ dy’ 1-:&:p(£ %l.r'[.: +3) + ¥yl + ﬂ‘}'l). (14}

This = the fundomental mtegral equation that yields as its solution
the modes of our system and ther diffraction losses, The kernel Kz, #;
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w, @1 depends on the shape and size of reflector A, and will be evalusted
for some specinl cases in the following sections,

Integral equations for the modes of asymmetrie nonconfoeal systems
can be derived on the basis of arguments similar to the ones used in
this chapter, bt solutions for then are in genecal not available,

IV, CONFOOAL HESONATOHS WITH UNEQUAL BQUAHE AND RECTANGULAR
APERTURES

In this seetion a confoen] resonntor with two reflectors of finite but
unegual sizge i considered. Lot refleetor A4 axtend from —ay to +a; in
the ¢ direetion and from —A4, to 44, in the y direction as shown in
Fig. 3(n). Reflector Ay js chosen to be of g rectangular shape 20 by
24, correspondingly.

FFor the abeve reflector dimensions, the kernel of integral equation
(13 takes the form

Kz, #:4,6) = L’ di’ L dy’ exp (:' EL:‘[.E + ¥} +;,-‘{y-|—gr:||)_ (15)

H a

A l'J
I ]
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- A
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Fig. 3 — {a) Refleciors with rectangular sperture; (b) reflector A4 blocked in
eenter.
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These integrals can be evalunted analytically and the kernel rewritten 48

sin 5 aglx -+ £) sin E Asly + i)

° b (16)
Remnd) =5 G+ r. + 9
Assime that the field pattern of o mode can be written in the form
Elx, y)y = B Fal2)g.y), (17

with B, » constant amplitude factor, fe) o funetion of r only, and
g(i) o funection of g only, Under these conditions integrol equation (13)
van be rearrunged ns

s t aslx 4+ 1)

etel ) = = [ g

l (4 3) (18)
a ﬂm [. Azl + #)
ijTr!ﬂﬂa{Eﬁ TED

An integeal relation satisfied by the angular prolate spheroidial wave
funetions So, (e, &) s

+1

'*’;"'u.-n,"'{f, OF Satey = [ aatnol=18)
]

wll — &)

where R (e, 1) 8 the radinl prolate spheroidal wave [unetion of
nth order. Beeause

Seule, 8),  (19)

Sde, 8) = (=11"Nele, —u), (20)

i holds that
+1

%‘HLHH_H?LE, 1“‘ Su,,l::.‘l f}l = {—"l.llq 1 s wl}

xii + 8

We ean eompare this welition with imtegenl equation (18) (with ¢ =
(kb hags aud € = (k614,440 and eonelude that the field putterns of
the TEM .., mode of the system are

on Ay Ele, ) = Sia (t:,r ) . (E' :)

on As: E'(a, () = Som (r. I)'i'-n.( )

As pointed out in Boyd and Gordon's work, the prolate spheroidul

Siele, )0 (21)

(22)
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wave [unctions Se, can be approximated by orthogonal Hermite fune-
tiong if the apertures are lorge enough. This enables one to derive an
approximate formula for the dimensions of the “spot™ of the funds-
mental, which indieates the location where the feld of this mode has
docrensed by a faetor e with respect fo its maximum, For rectangilar
reflectors these quuntities will, in general, be different for the » and the
i directions. COne obtains

on reflentor A : . i 1/% 1/?; V:’A:

) i
on reflector ds: ®, = 1/ ':_1_% E:l; ’ ;4‘1! 1/ b {.“ﬂ
Note that

2 =gy = w, = 21:', (24)

which agrees with (7). From the above we see that, compared (o o
ronfocnl resonator with equal apertures, the patterns of all modes on
reflector Ay are now magnified by n factor v/a,/a, in @ direetion and
a factor v/ Ay /Aq in g dhroction, if oy > ae ond Ay > Ay, The patterns
on reflector Ay pre compressed correspondingly.

Tho conter of the reflector system s no Jonger the position of maxi-
mum energy density, The position of maximum energy density will,
in general, be different for the concentration in the @ direction as com-
pared to the concentrntion i the g direction. One computes displace-
ments 2, and [, of the positions of maximum copeentration from the
eenter in the direction of the smaller reflector:

l'll‘]:‘—ﬂjl H_h..!‘i:'—iil
Tof +ar’ 248+ A

Comporison of (181 and (21) also vields the eigenvalues of the integeal
equuntion (20):

b = (25)

2 R (e, 1) RV (€, DF. (26)

ﬂ'n‘ d_“l - _{_l}n-hn

This shows that
(£} the resonance condition

%-2q+€l+m+ﬁl (27)
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i= not changed by making the apertures of the reflectors of o confoeal
system unequal, and

(#7) the diffraction losses of o confoeal system with unegual reflector
apertures of dimensione oy , Ay, a2, and As are equal to the diffrnction
losses of o confoenl system with egual aperture dimensions o, , Ao if
a, = mas and A, = A dy,

V. CONFOOAL REBONATONR WITH ONE HEFLECTOR PARTIALLY BLOOKED

In this seetion we would like to quickly sketeh the analytical treatment
of a confocal reflector system in which one refleetor — in our case
Ay — is blucked out mm the center as shown n Fig. 3(b). The other
reflector dimensions are assumed to be the same as in the previeus
section. The effective shape of reflector A; is now that of two rectangles
of width Aa, extending from 2" = —as — (An/2) to —as + (Aa/2),
and from & = o — (da/2) 1o a: + (Aa/2), If we insert the corre-
sponding Hmits into ( 14}, we obtain the kernel

i = 8b' . [han
K560 = g rnn +m“‘”[7ﬁ? u+zn]

-nm[i:‘;? {x 4 :ﬂ] ﬁu[:l; Ay + :Tr}:l

for the integral equation deseribing the system.
For very small reflector width an < ha/Ja, the kernel s given withi
good approximation by

(28)

AbAa
kiy 4+ 4)
With this kernel, integral equation (13) can be separnted into one
erpuation containing functions of » and one eontsining funetions of g
only, as i the previous seetion. While the latter is the same os the

integral equation treated i SBection IV, the equation for flx) = of the
furm

Kz, 2; 08 = mﬁ'ﬁ%ft+:ﬂ ain’%‘fwm. (29)

A 4
witz) = 28a [ dif(2) cos T (¢ + 2), ()

oy

Applying standard proeedures, this integenl equation can be solved
clementarily, The solutions are

Jiz) ==ma%"-r, (31)
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with the eigenvalue

v = 2An (ﬂ| + %ﬂl sin 2 ':i; ﬂ:iru)- (32)
and
flz) = sin %:‘-. (33)

with the corresponding vigenvalue
. b, 2%
v = —24a (u; han sin - u.n;) . (34)
The eigenvalues, of course, determine the diffraction losses and the

rescnaner conditiong for the reproducing patterng, ns in the previons
seotion, The resonanee formula is

Moyt i4n (35)
for the even cosine-funetion, and
¥=Eq+ 24 n (36)

for the odd sine-function,
One should note that the field distribution on refleptor A, is simply

the two-glit diffmetion pattern one would expect from coherent exeita-
tion of the two narrow reflectors comprising Ay |

¥I1. RESONATOHS WITH HEFLECTORS OF UNEQUAL CURVATURE

To investigate resonator systems with coneave reflectors of unecunl
radii of eurvature, let us return to the considerntion of o lossless syslem.
From this model one can obtain information on spot siges and resonanes
conditions. Diffraction losses will be estimnted using the same approxi-
mution previously used by Boyd and Gordon for the noneonfoeal resonn-
tor of equal curvature,

6.1 Surfaces of Constand Phase

Let. reflector A, have a radius of eurvature b, and reflector A; o
radius of by . We shall base our argument on Boyd and Gordon's picture
of surfices of constant phase (Fig. 2), which we have alrendy used in
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section 11 In o set of surfnees, characterized by the eonfoeal parameter
b, reflector Ay enn be plaeed ot the distances +d,/2 from the conter,
anil As at ==y /2 correspondingly. These distances can be computed from
(2) a8

iy = by £ 2/ — 14,
sy = by £ /b — I~

With given conenve reflectors, therefore, four different resonator systems
can be found which fit this particalar st of surfaces of constant phase,
Thoe four different reflector separations d = 3dy -+ o) are given by

2f = Iy 4 I bt = P £ Vb — B (45 )

Tao obiain various other resonitor systems the parameter b ocan be
vuricd, But the runge of this variation is restricted, since only real
valued distanecs have physiesl meaning in this context. If we pssume
that by = by, it follows from (38) that b ean be varied in the range from
0 to by, One enn thus obtain reflector seporations o in the range from
0 to by and from b to by 4 b ns shown in Fig. 4. No information on
resonators with reflector separations in the range from by to b can be
abtained, It is of interest that the confoenl system for reflectors of
unedguul curvature, withd = Fiby 4 b)), i= just in this “unstable region,™

Lot ug restriet our disevssion (o systems of given by, b, and o in the
rnge covered by the picture of surfaces of constant phase. We ean

(37)

LOwW HIGH LOW MiGH
oSS LOSS: LOSS LOSS
1 R
[
|
o
|
=
i
B
o
g
=y
-’@-
i
o
z
i

Fig: 4 — Spot stwes nnd high- nml low-loss regions for & reronntor with reflec-
fors of unequal eurvatire and varianble spacing.
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inquire into the spot gizes wy, on A and wy on 4;. Combinmg (1), (47,
(37), and (38) we obtom the relations

' _ by by —d

(u_»a) Bby = d' a9
- == ?1. X -EHEJ:I'-I' y

(ntte)” = (,) T n—d (s

It also follows that the mpxtmum concentration of energy opeurs
il the distance

F..h . -EF! = d

s~ -2 )
from reflector Ay, and at

4 4 _h—4a (12)

P by 4 by — 24

from A;.

In g, 4 we hoave shown for o special ense how the spot siges wy and
wy vary us o funetion of the reflector spacing 4. In this figure the spot
sige on ench refleetor 8 normalized in terms of w,, = /) /o and v, =
v A, Thise are the spot siges nt the reflectors of equul-radii con-
focal resonators with radi of by and by respectively,

Note thatl as o nppronches by | the spot sige we on A, approsches sero,
while the spot size wy on A inereases beyond limit. The corresponding
offect oceurs if o approaches by from gbove, It should be remembered
that the information obtained here can be applicd vsefully only so long
o8 the spot siges gre-somewhat smaller than the corresponding reflector
dimensions.

The diffrnetion losses of the noncinfoenl rosonntor of equal mdii of
curvature and aperture were previously estimated by Bovd and Gordon
on the assumption that the diffraction loss is equal to that of its equiva-
lent eonfoenl resonator with reflector dimensions sealed up by the mtio
of their spot sizes.

IFor the nonconfoenl resonator of unequal radii of curvature and
siquure npertures of sides 2a, and 2ay respectively, the equivalent Fresnel
numbers at refloctors 4 and Ay, which determine the diffraction losses
at sneh reflector, are obtained from Boyd and Gordon's equation (20) ns

(ﬂ’) _ 1'l-|1 1-2 El?1 i (I'Ij.)i]i
o dx | The \b/ ]
-5l @7
e dh by \B/ ]

(43)
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where o) and oy are determined by (41) and (42). The diffrnction loss
il each reflector is then obtainable from Fig. 3 of Boyd and Gordon as
ety nnd g .

The resonntor @ s given by

i}
Q= ﬂjl (44)
i
where
o= Yaw + ap) + ag [43)

anil ay represents the reflection loss per bounee at a reflector plus the
single-pass seal tering and absorption loss between the reflectors,

On the basis of this estimate, one concludes that the diffraction losses
morense sharply if the separntion o approaches an “unstable’ region.
No similar estimnte of diffraction losses s availuble for the “anstable’
regions. However, o roy optienl annlysis which we present in the next
section shows the divergent nature of “unstable” resonator systems,
This indientes relutively high diffraction losses.

With results abtained hore and the help of Boyd and Gordon's equa-
tion (200, the resonanee condition for the resonator with reflectors of
different curvature can be compted ns

5

Jd'-‘ | —1 ' i I'i

= r,r+—.-_{|+m+n]mﬂ V(I—i—")(l—m). 144
T compare this with Boyd and Gordon’s resonnnee formula for reso-
nators with vqual curvature &, we rewrite their equation (311 in terms

of of and &'

2 1 ] _"f
T—H+T-r|-1+'“-‘|‘=‘”i’m (1 ET’)' (47)

We have found this to be o very eonvenient form in which (o rewrite
thedr resonanee formula (311 But doe to well known relations between
the trigonometrie functions, vorious other formulations are possibile,
Une of these Tormulstions wos given by 1 1L Pierce®
A balf noncanfoeal resonstor may be formed by o plane reflector and
o spherical reflector of rdis of curvature b and spacing o belween the
reflectors with o < < =, The regonant condition may be obtained
from (46) by letting by — =, The result is given by
o
gt

X By

(1 4+ m+n) cog™ (l - ';—IT) : (48)
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6.2 Equivalent Sequence af Lensos

Let us eall the regions &y 4+ be > d > baand 0 < d < b “stable”
or “low loss," and the regions d > b + by and by < o < by “unstable”
or “high loss," We enn understand these stable and unstable regions
of g resonutor system with reflectors of uneqgual enrvatore from another
point of view if we replace the resongitor by an equivalent sequence of
lenses, These lenses nre spueed ot distances d and have focal lengths of
fi = by/2 and fi = /2 respectively. Lens systems of this type have
heen used in periodie foeusing of long electron beams and natabilities
have been observed.

Stubility investigations of sequences of lenses of equal focal length are
readily available” Thess systems are stable if

0 < -I: < 4, (41}
J
where L is the lens spacing and | the foeal length.
A pair of lenses of foeal lengths f and f spaced at the distance o ean
be replueed by an equivalent optieal system?® of a foeal length f givon hy

1 1, | d
o e e
I Lk hh
The system's prineipal plines are found 1o be spaced atl distanees f, =
d(f/fad and be = d{f/fy) Trom the corvesponding lenses (see Fig. 5).
I we substitute such o thick lens for each pair of upeqgual lenses of

our svstem, we obtain o sequence of equal optical systems of foeal
lemgth f. If, furthermore, we define as their “effeetive’ spacing

L=I‘.‘+hl+}|5. [-ﬁ!]

(50}

the arguments of Pieree’s treatment” pre applicable to our case.

...r—-d-———~[»————d———— ----- P e R X
H

l

|

| L fi | ﬂ:L il
—hh|}-— ol By —w by e - by

el -

e e
'I.,'.I

'~.I_ —y w g
L T

Fig: b — Sequence of lenses of alternnting foeal length
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Combining equations we obtain

L {;e 2 rfl}
— = { = - — hi
%A * fa Sk (82)
Froan (49 and (52) one ean show that the boundaries of the stuble ro-
gions wre given ly
d d e
f-0(E-1) sy (34)

and

E-)E-dee  w

These relations define the stable and unstable regions in agreement with
the preceding diseussion, but they are also valid for negative values of
by and by . I one allows for convex reflectors, one can wlso obtain this
somewhat genernlized result from the picture of surfaces of constant
phase.

a4 Stabifity Dingram

A G, Fox and T, Li have suggested a two-dimensional diagram of
thes stable and unstable regions which is very instruetive, Several choives
of coordinates are possible, In Fig. 6 we have plotted /by and /b, as
eoordinates, In this dingrom the boundary lines deseribed by (54) ap-
per o straight lines, and the curve represented by (53) as 4 hyper-
holy, ue shown. For confoeal systems, ie., systenis with conteiding
reflector foci, we have 2d = by + by, which may bo writton:

d A\ fd 1\ _1 1
(r. !)(r ) i 652

In our dingram, therefore, these systems nre vopresented by points on
unother hyperbols and full within the high-loss region. A trunsition from
w “stable” 1o an “unstable” region means an extremely sharp increase
of diffraction losses for repsonably lurge Fresnel numbers.

The confoenl system with reflectors of equal curvature is represented
by & rather singular point in our diagram. We see that certuin deviations
from the ideal dimensions d = b, = by will greatly inorease the system
Inssex, This should be tuken into pecount when designing muaser reso-
nntors or opticnl tronsmission svstems, and 6 may be ndvisable to
choose pointe of operntion at o safe distance from the unstable region.
The degenerate frequency charaeteristies of the confoeal system can be
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COHIGH LOSS

Fig., § — Two-dimensional disgram of stablo sml unstahle regions.

obtained, i desared, by wsing g conenve reflector (B = 24) wd o Aut
o (hy = s ) spaced al the distanee o = by/2. This system is in o sta-
ble regin.

.4 Bpuvalent Systeims

One may ask whether operation in one of the two low-loss regions is
to be preferred to the other. We have found that the two regions are
ubrolutely equivalent as far as diffraetion losses, spot sizes, and resonunee
conditions are concerned, For o given reflector spacing o, we ean find
o enrrespotding pair of resonator systems, one aperating in the lower
stable region with reflector radii bye and by < o, and one in the upper
region with reflector radii e and vy > o) Spot sizes, diffraction losses,
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and fregquency response of hoth systems are the sume if the conditions

| I | _ a2
by b ol
nnd (56)
P, 2
b e d

hold, Tn this ease (he mode putterns of one resonator eorrespond to the
complex conjugntes of the mode patterns of the other.

Some of these ponelusions ean be drawn on the basis of (36), (40), and
(461 plone. To prove the correspondence of diffraetion losses and mode
putterns, however, the integral equations of the resonator aystems have
to be investigated using o procedure suggested by T, Li for the nna-
lvsis of nonconfoenl resonntors with equal reflectors. Examination of
the integral cquations shows that unstable systéms also wre equivi-
lent under the conditions given above.

Yil. SUMMARY

The effects of unequal refleetor apertures on the maodes of o confoeal
resonator have been disenssed, Tt was found that unégual apertures ot
ihe two reflectors have o lurge offect in determining 1he mode patterns.
The resonunt condition, however, iz not changed by un asymmetry of
this kind. Boyd and Gordon's picture of surfuces of constunt phase does
not oontain wenconfocal systems (of equal eurvature) with dimilar nsym-
metries in spot size, This is because lossless nonconfoeal resonntors nre
nit, exeepl for specinl cases, degenerate in froquency, This shows that
ihe mode patterns of nponennfornl systems are not significantly changed
if the refloctors are of unequal sige but are larger than the spot size at
the reflectors,

For resonators formed of two reflectors of inequal eurvature, unstable
regions of high loss are shown to exist in that an eguivalent sequonee il
lenses beenmoes defoeusing. The true confoenl resonitor is on the border
of sueh unstable regions, though in fuet it has minimum diffraetion
losses. Unfortunnte devintions from the dimensions of the ideal confoeal
pesontor ean produce o system of high loss; The implications for the
design of resonators for gaseous or solid opticn] masers or of long distance
pptieal trinsmission systems wre thot the “egqual” radii of curvature
should be made slightly laeger (or smaller) than the reflector spacing.
One enn wlso choose to simulate & confoeal resonator with one curved
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and one flat refleetor spaced at half the radins of curvature. This system
is stable.
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APPENDIX

("yltndrical Coordinales

[n this paper and in the paper of Bovd and Gordon! the mathematieal
analyses were based on a system of Cartesinn coordinates. Resonuntors
with reflectors of square or reetangular pperture have been investigated.,
For large apertures the authors were able to obtain approximations for
the properties of the resonator modes on which many nrguments of this
paper are boased. They showed that the mode patterns are deseribable
in terms of Hermite-Gaussian functions,

I'or eertain clusses of problems, for instanee if 16 i desired 1o obtain
diffruction losses for cireular apertures, it is prefernhle to use a eylindrical
system of coordinates, Approximate solutions for the modes of resona-
tors with reflectors of lurge cirealar aperfures ean be obtained from the
work of Gouboy and Sehwering.? The results of these authors are pre-
gented in terms of hybrid waves, but by suitably combining two hybrid
waves one obtains modes which for our purposes ean be regarded ns
linearly polariged TEM waves, Goubau and Sehwering show that the
mode putterns are deseribable in terms of associnted Laguerre-Gaussian
funetions. Fox and Li* have given asymptotie solutions [or the mode pat-
terns in terms of Sonine’s polynomials, which can be shown to be equivi-
ient to the above results,

Une ean obtain asymptotie solutions for the modes of the eonfoeal
resonntor in eylindrcal coordinates by making o sealar wave approxima-
tion and osing Huygens' prineiple. This leads to an integral equation
for the modes of the confoeal resonntor with reflector spacing and eurva-
ture b in cylindrieal eoordinntes, which has been given in Appendix
of Fox and Li* For an infinitely lurge aperture their result may be
written in the form

] VIR =exp [—l'i.'b—I- :';EH + H]
(57)

-Lﬁﬂmfn'}-mn'lwfrrdﬂ
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where ¢ = r+/(k/b) and r is the mdial distance in the plane of the
aperture, As the solution of the above equation the function Kg(f)
deseribes the radinl dependence of the modes and the angular depend-
enee ig o0, The resonanee condition for the individual modes is ob-
tained from the eigenvalue x of (57).

From Magnus and Oberhettinger” one ohserves that the assoeinted
Laguerre-Caussian function is seli-reciprocal under the Hankel trans-
formation. Thus the salution of (57) is given hy

Rait) = 'L (Fy-e™" (58)

where L, (80 is the associated Laguerre polynomial. The assoviated
cigenvalue 15 found to be

x =i!?|'.]][_ﬂ'|l'+£g{2'p+ll+-l}] (5]

which lewds to the resonanee eondition for the confoenl resonator with
i as the longitudinal mode number:

R R R (60)

The field digtribution of the modes inside and outside the confocal
resonator ean be derived Trom the mode patterns on the reflectors by
wsing Huyvgens' prineiple, a2 in Boyd and Gordon's puper. The field
distribution ean of course be obtuined from Goubau and Schwering's
work. Compuring Goubau and Schwering's equation (5a) with Boyd
and Gordon's equation (201, one finds that the surfaces of constunt
phuge of a Cartesian TEM,,., mode are identical with the =urfaces of
constant phase of a evlindrieal TEM 5, mode if

m—+n=2p+ I ()

The fields and therefure the spot size of the fundamental TEMuw,
Curtegian mode and the fields of the lundamental eylindrieal mode
are identienl throughout the resopotor,

The resopance copditions und spot sizes of the modes of resonators
with large ciredlar apertures ein thersfore be deduced for nonconfoeal
remondtors and resonutors with reflectors of unequal mdii of curvature,
in exactly the same fashion as has been done for siuare apertures.

We do not propose to present this derivation again, but list s o
reference some Charneteristio propertios of the modes of resonators with
birge eireular apertures, together with properties of the modes of reso-
nitors with large square apertures. [t may be worth repeating that an
pperture is considered “large” for a particulnr mode if the mode's



1388 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1063

energy, as calenlated from the approximations below, i well coneen-
trated within the aperture. Only under this condition are the mode's
characteristies reasonably well deseribed by the formulae hsted below,

Al Appravimations for Resonatars with Large Circular A perttires.

A system of eylindrieal coordinates (r, ¢, 2) 5 used, where the z-axis
coineides with the resonator's optieal axis, The corresponding modes are
designated TIEM ., .

ALl Nemeonfocal Resonnfors with Reflectors of Egoal  Radiws of
Cwrvature U and a Refleetor Spacing .

At the reflectors the spot sige w,” of the fundsmental TEM e, mode

18 given by
¥ |
w, = 1/%‘ (_E‘JJ'd— ) : (152)

The relative field distribution (mode pattern) at the reflectors (2 =
£ /2) of n TEM 4 mode s given by

F 4 I 3 ¥
ﬁ'frr-‘”ﬁ?ﬁ‘ﬂ. - ;ﬂi; v"i) S (2;53,)'-‘-"'”" Coos b (63)

where L, are the associnted Laguerre polynomials, The mode resonates
at o wavelength given by
i Ly % il :
T—&'+;E¢]’+I+l}m5 (1 E’)‘ (64
A 1.2 Resonators with Reflectovs of Uneguad  Rodid of Cuwrvalure iy
anel by anied a Reflector Spacing .

The spots of the fundamental mode are in general of different size on
the two reflectors. We hove n spot size wy, on the reflector with radius of
curvature by nod vies versn. In (30) and (40) these guantities have
been expressed in terms of A, o, b, and b . The TEM iy mode patierns
on the reflectors are obtained from equation (63) by substituting for
w,” the corresponding wy or wy .

The resonance condifion s

24 _ 1 -1 d o -
5 q+;_{£!p-]-£+ﬂt:lrs 1/(1_&'_1)(1_171)‘ (65)
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A2 Approcimations fur Resonelors with Large Sguare A periures.

A system of Cartesian coordinates (r, g, z) is used with the z-nxis
eoinciding with the resonator axis. The corresponding modes are desig:
nated TEM .., .

A2.1 Nonconfocal Resonators of Eqguel Roding of Curvature OV and o
fteflector Sparing .

Thi spot sige w,” of the fundamental mode ot the reflectors s agnin
given by (621 The mode pattern of o TIEM g mole st the refleetors

is given by
) H, (ﬂ‘\’ﬁ) o L (545

Elx gy, 2=d/2)

SN 8 _ i
K,

where the H,, are the Hermitinn polynominls. The resonanee condition

for this mode is given by (47 1.

A22 Resonators with Refloctors of negual Radds of Cuwrvabure by and
by aned @1 Refloctor Spacing .

The spot sizes wy and e of the fundomental mode at the two reflec-
Lors re the spme ps those dizeussed in Seetion A1.2, The mode patterns
of the TEM .., mode ot the corresponding reflectors are obinined by
sibstituting wy, or wy for w, in (06), The resonnnee eondition 18 given
by (443).
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A Unidirectional Traveling-Wave
Optical Maser*

By J. E. GEUSIC and H. E. D. SCOVIL
(Manuseript received Mareh 20, 1962)

The basic ideas leading to a unidirectional {raveling-wave optical maser
are presented. Experimental data on the performance of pulsed ruby am-
plifying sections and high density PbO glass Faraday rotation isolators
are given. Feasibility tests on a two-section device have been made and are
in agreemend with predictions. Some remarks are made concerning image
definition, channel capacity, noise and pump power requirements.

I. INTRODUCTION

Net gain at optical frequencies was demonstrated by the successful
operation of maser oscillators.!? The first direct measurements of gain
at optical frequencies were made by Javan, Bennett and Balik?® for the
helium-neon gas maser and by Kisliuk and Boyle! in a ruby solid state
maser, The optical amplifiers deseribed by these investigators were low-
gain devices, Since at optical frequencies the maser is the only available
amplifier which at present preserves amplitude and phase information,
it may well have to provide extremely high stable gains of between 30-60
db in many applications, as for example in an optical communications
system.,

It is well known that to realize a stable high-gain amplifier it is essen-
tial to make the amplifier nonreciprocal. This has been accomplished
in the case of the microwave traveling-wave maser® but has not pre-
viously been reported at optical frequencies. The objective of this paper
is to discuss the basic prineiples which are necessary for realizing a non-
reciprocal optical amplifier and to report the successful operation of a
pulsed unidirectional traveling-wave optical maser (TWOM) using
ruby.

Also the image amplifying ability of the TWOM is discussed and
demonstrated.

* This work was supported in part by the U. S. Army Signal Corps under Con-
traet DA-36-039-s¢-87340.

1371
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II. BASIC PRINCIPLES

Consider a multimode transmission line containing active maser
material as shown in Fig. 1. Over the length shown, assume that the
single-pass power gain is (fy, that it is reciprocal, and that at each end
the power reflection coefficient is ». If Ggr < 1, the amplifier is stable.
For a ruby optical maser with an air interface, » = 0.07; hence such a
device will exhibit a stable gain if @ < 14. If an r & 0.07 is accepted as
typical (it may be made much smaller by the use of antireflection coat-
ings), then it is evident that a simple optical maser with a gain of ~6
db is a very stable amplifier with very little regeneration. On the other
hand if a gain of 30 db is required, then » must be <0.001. This is ex-
tremely difficult to achieve, and it is evident that a stable gain of 60
db is essentially impossible from such a device.

The optical traveling-wave maser (TWOM) shown in Fig. 2 is a de-
vice capable of achieving extremely high stable gains. The device con-
sists of a succession of amplifying sections, each of which has a gain of
6 db for the typical figures given above. These sections are separated
by nonreciprocal elements or isolators so that power is easily transmitted
in the direction of the arrows but strongly attenuated in the reverse
direction. In fact the reverse loss in db of the isolator is chosen to exceed
twice the single-pass gain in db of an amplifying section.

A simple way to realize isolation is to use the optical equivalent of a
microwave Faraday rotation isolator. The main differences are the fre-
quency, the material used, and the fact that our transmission line can
support many modes. One may use numerous materials for the non-
reciprocal rotator. Although transparent ferromagnetics, ferrimagnetics
or anti-ferromagnetics may be considered, many other classes of mate-
rials could also he used; for instance it is not even necessary to use a
material with a permanent magnetic dipole moment. Diamagnetics may
be employed since they also exhibit Faraday rotation. In fact, non-
reciprocal rotation was first observed by Faraday in a diamagnetic glass.

In the microwave Faraday rotation isolator the plane of polarization
is determined by the rectangular waveguide. In the optical counterpart
a polarizing medium can be used to fulfill the same function. In addition
to having nonreciprocal rotation and defining the plane of polarization,

Fig. 1 — Transmission line eontaining an active maser material.
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Fig. 2 — Rchematie diagram of a unidirectional traveling-wave optical maser.

we need to be able to absorb waves with the unwanted polarization.
In the microwave equivalent this is done by using a sheet of loss film
placed so that its plane is parallel to the electric field of the wave which
we wish to absorb. In the optical version this absorption may be com-
bined in the polarizing medium itself if we use a material which has
dichroie characteristics. The construction of an isolator is now straight-
forward and is shown in Fig. 3. In Fig. 3 a wave enters from the left-hand
side with its plane of polarization defined by the dichroic polarizer as
shown in the end view. The plane of polarization is rotated by 45° in the
clockwise direction by the Faraday medium and passes through the
right-hand polarizer. However, a wave entering the right-hand polarizer
has its plane rotated 45° in the clockwise direction and hits the left-hand
polarizer with its plane of polarization in the low transmittance or ab-
sorbing direction of the polarizer. The direction of the axially applied
magnetic field with respect to the forward direction must be chosen in
accordance with the sign of the Verdet constant of the Faraday medium
used.

A TWOM may be built as shown in Fig. 4. In the figure the active
medium is illuminated with pump power in one of several known ways.
A two-section maser is shown ; however, additional sections can be added.

[ FORWARD DIRECTION >

MAGNET COIL 450
ANARPRANRANBAAR Ly
'
v/
7
F 088U B00E88dy 4
END VIEW g e E:gx:ﬁx;
SHOWING - -
ULAWED DICHROIC POLARIZERS AULAWED
POLARIZATION POLARIZATION

Fig. 3 — An optical Faraday rotation isolator.
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Fig. 4 — Elements in a two-stage TWOM.

For best operation, of course, all interfaces would have antireflection
coatings. In the TWOM, alternate polarizers can be eliminated for
simplicity.

An obvious application of the TWOM is as a power amplifier for an
optical maser oscillator. Another application may be to obtain very
high peak optical powers. It is well known that because of its energy
storage the peak power of a maser may greatly exceed its average power.
In fact some of the pulsed characteristics of a TWM have been ana-
lyzed.® The interaction of high optical power levels with matter will
certainly allow many new and interesting phenomena to be studied. A
focused beam with these peak intensities should have application to
microwelding or micro-cutting of materials. Finally the TWOM may
find application to amplify received signals in an optical relay system.

This concludes the discussion of the general ideas relating to a uni-
directional traveling-wave optical maser. The concepts apply to either
a CW amplifier or a pulsed amplifier. It now remains to discuss in more
detail the theory and design of the individual amplifying sections and
the optical isolators which have been used and tested in a pulsed ruby
TWOM.

ITII. THE AMPLIFYING SECTION

Consider two levels 1 and 2 as shown in Fig. 5 with populations N,
and N: and degeneracies ¢; and ¢. respectively. Also assume that the
sample interacts at the transition 1 & 2 with a beam incident in a di-
rection # and ¢ having an energy density per unit frequency range per
unit solid angle given by p(»,6,0,P). Here » is the frequency of the
radiation, P is a vector which defines an independent state of polarization
of the radiation and # and ¢ are the polar and azimuthal angles of a
spherical coordinate system fixed in our sample. For this situation
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Condon and Shortly’ give the net rate of emission for transitions 172 2 as
8.P)’ ,

Z—? (”,G#’,P) = 1"(9,¢;P) {p(v,':.ll (glNE == gZNI) + hyglNﬁ} g( ]}) (1)

where W (8,p,P) is the probability per unit time per unit solid angle of a
spontaneous transition from 2 — 1 with emission in a direction
8¢ and polarization P.
g(v) is the normalized line shape for the transition.
Ni and N, are the number of atoms per unit volume in levels 1
and 2, and
v is the velocity of wave propagation in the medium.
Equation (1) gives both the stimulated emission and the spontaneous
emission per unit solid angle in a direction 8 and ¢. Equation (1) takes
into account the anisotropy of the transition probability.
In order to find the gain or loss through the medium in a direction
0,0 at the 1 = 2 transition, the portion of (1) due to stimulated emission
is integrated in the following manner,

°d 0.0 HﬂmJ,’vW b0 P 3
[ aelebel) _ [TV OORN (4 n, _ oN)g) dt
Po p(ﬂ,ﬂ,(p,P) 0 v

where pg(»,0,0,P) is the incident energy density and [(6,¢) is the length
of the medium in the direction considered. Hence the gain in db is given
by

AI)EI ( 9,99)
€

Ga(v8eP) = (10 log e) l:ﬂ"(&,ga,P) (N, — ggNl)g(v:)]

where Aq is the free-space wavelength and e the dielectric constant at

N2 ) 92
I
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Fig. 5 — Two typical energy levels.
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Xo . For a Gaussian line shape, (approximately true for the ruby R, line
at room temperature), the gain is given by

AD l(aﬁo) (Q1Nz _ gle):I sz

Gar(vf,0,P) = (10 loge) I:W(G,qo,P)
(2)

In 2 —'Vu)
—ﬂ_—-exp (A g 41n2

where Av is the linewidth and », is the frequency at the center of the line.
Using (2), the bandwidth B over which the gain is within 3 db of the
peak gain is given by

10 Gdh max
B = By 8 Gabmax — 3 (3)
log 2

where By = Av (cf. equation (25) of Ref. 5). If the transition considered
is isotropic (i.e. W(0,0,P) = W = constant) then the gain given by (2)
becomes

. —
Gu(r0eP) = (10 log e) [MJ (N2 _ Nl) 2 4/ In 2
8mer I Ay

(v — m)” 0)
T(a):

where + is the spontaneous emission lifetime for the transition and is
equal to (8mg,W)~". From (2) or this last expression it is observed that
the medium exhibits gain if (N2 — g=N,) > 0and loss if (g:Ny — gaN1)
< 0.

In the case of ruby at room temperature, inversion at the F; line
(14,400 cm ') is obtained by maser operation as shown in Fig 6. Here
we have lumped the blue and green bands as one level; this is of course
an obvious oversimplification. Also the ground state is treated as a
single level with degeneracy gi = 4. At room temperature this is a valid
assumption since the linewidth of the R; and R, transition is large com-
pared to the separation of the two zero field levels in the ground state.
At lower temperatures the linewidths of the R, and R, transitions are
small, so that the two zero-field levels of the ground state are resolved;
then it is necessary to consider the ground state as two levels each with
degeneracy 2. Tor ruby the time spent in the pumping states is negligible
compared with the normal lifetime of the two metastable states shown,
and the efficiency for atoms getting to the metastable states upon
pumping into the green or blue bands is near 100 per cent. Based on this,

“exp — 41n2
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and assuming that pumping power is supplied for times short compared
to the normal or stimulated emission lifetimes of the two metastable
states, we can write

dN,

— = —IPN (4)
where P is the incident pumping power and f is a pumping efficiency
factor, which depends on the pump transition probability and the
properties of the electromagnetic strueture used in the pumping process.
Since we assume that the pump power P is supplied for a short time, (4)
can be integrated to obtain

t
Ni = N exp —j‘fn Pdt (5)
= Ne7/*

where N is the total number of Cr’" ions/ce in the ruby sample and E is
the total energy absorbed by the material at the pumping transition.
Now since it was assumed that the time spent in the pumping levels is
negligible compared to the spontaneous lifetimes of the metastable

3 14,430 CM™!

ga=2
A
2 14,400 cMm™!

Rz R,

1 g|=4

Fig. 6 — Optical energy levels of Cr3* in ALO; .
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states, the following relation holds,
Ni+ N+ Ny =N (6)

and N5 = vN: where v is determined by 742, 743 and 73 . Using (2), the
power gain G of the ruby material at the center of the ruby R, line when
inverted is

Gdb = A I:Nz—@Nl:l (7)

(73}

2
A = (10 log ¢) [91W(9,¢,P) M]E 1/1L2_
€ Ay T

Upon substitution of (5) and (6) into (7) we obtain

Gdb _ 1 gs } *IE]
(L[li_‘l)mnx 'g_z (1 -y) [ { gl ( l 'Y) e (S)
v

where

where (Lgb)max is equal numerically to the loss in db at the center of the
line if all ions are in the ground state. To a good approximation this is
equal to the loss through the unpumped material for a temperature T
such that kT < hwg, , which is the case for the ruby R, line for tempera-
tures 300°K and lower. Since (8) is derived for the case where the gain
is measured in a time Tmes after the pump power has been supplied,
which is short compared to r; and 73 but long compared to 74 and 74,
the value of v can be simply given for two limiting cases:

(ﬂ) Ty < T and Ty < TTmﬁ'n:a
v = exp h(ve, — ve,)/KT.
At room temperature for ruby v = 0.865

(b) T42 'r].l}d Ty < Tmcnn < o

At present no accurate data are available for ruby on the times s,
4 and 74 ; however, the measurements of Wieder® give upper limits
for these times which indicate that case (a) is satisfied at room tem-
perature. Also the gain measurements to be presented are consistent
with the assumption y = 0.865.

To determine what values of fE could be achieved and what gains
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could be obtained for a pulsed ruby amplifying stage, gain measure-
ments were carried out on an amplifying test section at room tempera-
ture. This test section consisted of a 3-inch long, 0.250-inch diameter,
c-axis oriented (0.065 per cent by weight of Cr:0; in ALOj;) ruby rod
and a G.E. FT-91 Xenon flash tube located at the foci of a 3-inch long
elliptical eylinder, as shown in Iig. 7. The gains were measured as is
shown schematically in Fig. 8. The beam from a ruby oscillator was
used as the signal source, and the gain or loss through the amplifying
section was determined by measuring the ratio of the signal at the photo-
multiplier with and without the amplifier in the oscillator path. The
measured loss through the unpumped amplifier at the peak of the R,
line was 12 db. Because the ends of the ruby were not coated with anti-
reflection layers, the measured gains had to be corrected to obtain the
single-pass gain.

The expression for the numerical gain (7 of a reciprocal amplifier with
feedback is given by
(1 = 1) G (9)

Gy + Gyt — 2rG, cos ¢

where 7 is the power reflection coefficient at each end and ¢ is the rela-
tive phase shift of a wave making one complete, round-trip traversal of
the amplifier. Since the length of the ruby amplifier is not known to an

ELLIPTICAL | MAJOR SEMIAXIS =1.750 IN.
S CYLINDER

MINOR SEMIAXIS = 1.661IN.

FLASH TUBE
TRIGGER —_

ELECTRODE FT=91 XENON

-7 FLASH LAMP

INCIDENT
LIGHT BEAM //

/
/
RUBY END FLAT

AND PARALLEL,
BUT UNSILVERED

AMPLIFIED
LIGHT BEAM

Fig. 7 — Ruby optieal amplifier section.
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Fig. 8 — Schematic description of optieal gain measurements.

aceuracy better than a wavelength, the value of ¢ to be used in (9) to
obtain the single-pass gain G} is not known. In the gain measurements an
interference filter was used which had a passband larger than the ruby
amplifying linewidth. Further, the measured bandwidth of a ruby
oscillator is 1-2 kme, whereas the separation of I'abry-Perot modes in
our amplifying rod is

¢
Ay &~ m = 0.83 kme.

Hence it is reasonable to correct the data by assuming the proper gain
formula to use in determining (; is one where @ has been averaged over
all possible values of ¢. Tor the case where @ is averaged we obtain

= (1 —=1)G,

The experimental data corrected in this manner for the 3-inch long
amplifying section are plotted in Fig. 9 along with the theoretical curve
given by (8) for « = 0.865, ¢» = 4 and g» = 2. Also plotted are data
obtained on a 1-inch long ruby where the measured gains were smaller
and the regeneration corrections needed to obtain the single-pass gain
were less important. It is seen from Fig. 9 that our measured gain varia-
tion versus the input pumping parameter f£ is in good agreement with
the theory developed.

It remains to explain how the correlation between the values of fE
on the abscissa of Fig. 9 and the measured light intensity at the green
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and blue bands was obtained. For this purpose, the relative intensity at
the green and blue bands versus electrical energy input to the flash lamp
was measured photoelectrically. The absolute relation of this relative
intensity to fE was then determined by observing at what value of light
intensity unity gain (0 db) was achieved with the amplifier in place.
The maximum measured net gains for the amplifiers tested depended
rather ecritically on the FT-91 tubes used; however, by selecting I'T-01
flash tubes and operating them at input energies of 250 joules (which is
approximately twice their rating) net gains of 10 db and 6 db were ob-
tained respectively for two different amplifiers. All the measurements
were made at room temperature. Higher gains per unit length could
have easily been achieved by cooling, for it is known from the measure-
ments of Schawlow and Devlin® that the linewidth of the ruby R line

12

1.0 [—
THEORETICAL /
CURVE /

0.8

0.6

0.4 /

Goa,/(Loe)uax
\

-0.2 /
b A EXPERIMENTAL POINTS
54 FOR 3IN.RUBY
' 0 EXPERIMENTAL POINTS
FOR 1IN.RUBY
-0.6 —
f |
-0.8 —
/ .
-1.0 |
0 0.5 1.0 15 20 25 30 35 40

fE

Fig. 9 — Gain versus input pump energy curve for a pulsed ruby maser at
room temperature. (Lyn)max 18 12 db and 4 db for the 3-inch and l-inch ruby, re-
spectively.
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decreases quite rapidly with decreasing temperature between 300 and
80°K.

IV. THE OPTICAL ISOLATOR

To complete the discussion of the individual elements in the TWOM,
it remains to discuss the basic principles involved in the design of an
optical isolator and to report some performance data.

It is well known that the plane of polarization of a light beam, when
passing through a Faraday medium, will be rotated by a magnetic field
H applied to the material in a direction parallel to the direction of light
propagation. The angular rotation 6 of the plane of polarization is re-
lated to the strength of the magnetic field and the path length [ in the
medium by the expression

8=V -H1 (11)

where the angle 6 is chosen in the positive screw sense along the applied
magnetie field. The constant of proportionality V' is known as the Verdet
constant and is a function of the material and the wavelength of light
used. The Verdet constant is related to the material properties in the
following manner

V = WV()(;‘V.}. — N_),/HC

where N, and N_ are the refractive indices for right- and left-handed
circularly polarized light of frequency », . In the case of ferromagnetics
and antiferromagnetics, large Verdet constants have been measured.
The large Verdet constant measured in each of these materials is due to
the fact that the ions which produce the rotation see, in addition to the
applied field, an internal field which is of the order of magnitude of the
exchange field. Ferromagnetics would then be especially attractive. For
the visible region of the optical spectrum, however, for ferromagnetics
known to the authors, this large rotation is accompanied by large at-
tenuation per umit length of material. This is because the absorption
bands which give rise to the rotation in the ferromagnetic material usu-
ally extend from the ultraviolet well into the visible. However, ferro-
magnetic materials should be useful rotators in the infrared —i.e., be-
yond about 1pu.

The problem of building a good isolator in the visible (particularly at
the R, line) depends upon finding a material which has a Verdet constant
large enough to produce 45° rotation with reasonable fields and lengths,
and which has low attenuation in the length of material which must
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be used. For the ruby R; line at 14,400 em ™', known ferromagnetics are
at present unsatisfactory. However, two diamagnetic materials appear
to be good choices. One of these, ZnS(g), has a Verdet constant of 0.22
minute/em/gaussat the R line in ruby and is essentially transparent at
this wavelength. For ZnS(g8) a rotation of 45° requires a magnetic field
of 3100 gauss for a 4-cm length. The second material, high-density PbO
glass, also is attractive since it has a Verdet constant of 0.09 minute/
em/gauss at the R, line and an attenuation of 0.08 db/em. Because of
the commerecial availability of the PhO glass from Corning Glass Works,
this material was chosen for use in the optical isolator. In both the ZnS(3)
and the PhO glass it is the Znt™ and Pb*" ions which are probably re-
sponsible for the rotation. In the PbO glass the absorption band which
produces the rotation rises sharply at 4000 A, and extends to shorter
wavelengths; this band is probably composed of the 'S; to P, 'P, , 'P;
transitions in the free-ion notation. Since the configuration which gives
rise to *Py 3 P, and *P, states in the free ion contains bonding electrons
in the solid state, the transition observed beyond 4000 A should more
properly be referred to as a charge transfer band. This tentative assign-
ment seems supported by measurements made on Pb™ in CaO by
Ewles as discussed by McClure," The Verdet constant and the at-
tenuation per unit length have been measured for Corning # 8363 high
PhO content glass as a function of wavelength and are shown in Fig. 10.
The data in Fig. 10 indicate that PhO glass is a useful Faraday rotator
for optieal isolators in the wavelength range 5000-7000 A.

To define the plane of polarization in the isolator and to provide
reverse loss, as was discussed earlier, dichroic polarizers such as Tour-
maline and Polaroid sheet or crystal polarizers such as Nieol prisms and
(ilan-Thomson prisms can be used. At the R, line, type HN-38 Polaroid
sheet is a good choice, having a transmittance of 0.86 for the parallel
orientation and a transmittance of approximately 0.01 for the perpen-
dicular orientation.

An optical isolator was constructed in the manner as depicted in Fig.
3. A 4-inch long, 3-inch diameter PbO glass rod was used as the rotator,
and Type TIN-38 Polaroid polarizers were used to define the plane of
polarization and to provide reverse loss. A water-cooled solenoid provided
the necessary field to produce 453° rotation. The reverse loss of the iso-
lator was measured at the By (14,400 em ') line and was found to be
approximately 16 db. The measured insertion loss of the isolator was 3
db. In this isolator, optimized operation has not been realized; however,
measurements on the individual components were made to determine
the best performance that can be achieved with a more carefully con-
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Fig. 10 — Variation of the Verdet constant and the internal loss of PhO glass
versus wavelength.

structed isolator. These measurements on the individual components
indicate that an isolator with an insertion loss of 1 db and a reverse loss
of 15 to 17 db could be realized if antireflection coatings are used on all
isolator surfaces.

V. OPTICAL TRAVELING-WAVE MASER PERFORMANCE

To test the feasibility of a high-gain (30-60 db) optical amplifier a
test TWOM was assembled, consisting of two amplifiers separated by an
isolator section. The two individual amplifiers had net gains of 10 db
and 6 db respectively, and the isolator had an insertion loss of 3 db.
A net gain of 13 db was expected. The measured net gain was 12.2 db;
the discrepancy of 0.8 was probably due to the lack of perfect align-
ment. The oscillogram presentation of the gain of the amplifier is shown
in Fig. 11. The top trace is the signal due to the oscillator alone as ob-
served with the photomultiplier, with the TWOM out of the beam path.
The middle trace shows the signal after amplification by the first am-
plifying stage with the isolator and second amplifier out of the beam
path. Taking into account the changes made in the gain of the oscillo-
scope, the second trace indicates a net gain of 10 db through the first
amplifier. The bottom trace shows the signal after passing through the
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Fig. 11 — Oseilloscope photographs showing gain in the TWOM: (a) upper
trace shows the signal at the photomultiplier due to the oscillator alone with the
TWOM removed from the beam. Scope gain is 2 volts/em. (b) Middle trace is the
received photomultiplier signal with the first amplifier in the beam. Scope gain is
10 volts/em. (¢) The lower trace shows the oscillator signal as amplified by the
entire TWOM. Scope gain is 10 volts/em with 3 db of optical attenuation added.
The sweep time is 100 microseconds/cm in all three traces.
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entire TWOM. For this measurement 3 db of optical attenuation was
introduced, and if this is taken into account the net gain of the TWOM
was found to be 12.2 db.

In making all the gain measurements reported, a time constant was
used so that individual oscillator spikes were not observed. A measure-
ment of the gain with a shorter time constant did not contradiet the
measured peak gains observed (over the oscillator duration) with the
longer time constant and also did not reveal any new spikes that were
not present in the oscillator. In all the measurements the firing of the
oscillator flash tube was delayed with respect to the firing of the amplifier
pumping tubes; this was done so that the amplifier could build up to
full gain before the probing signal was sent through the amplifier. In
Fig. 11 this delay was approximately 400 microseconds. There was about
a ==50-microsecond jitter in firing the oscillator, and this accounts for
the difference in position of the signal in the three traces shown in Fig.
11. The total physical length of the test TWOM was approximately 20
inches, with the isolator solenoid presently being the most space-con-
suming element. A shorter physical length is possible with a more careful
and sophisticated design.

Inasmuch as the diameter of the ruby rods used in the amplifiers is
0.250 inch, the TWOM that has been deseribed is a multimode amplifier
capable of handling approximately 10° spatial modes. The fact that it
can support 108 spatial modes suggests that image information can be
sent through the amplifier. That is to say, the TWOM can be considered
to be a limited aperture, infinite focal length lens with gain. To show
that an image could be sent through a TWOM and amplified, a projec-
tion slide having on it a number of dark lines was placed before the input
of the TWOM (in this case the second amplifier was removed for sim-
plicity) and illuminated with the oscillator beam. The slide was then
viewed with a lens and a camera as shown in Fig. 12. In Fig. 13 are shown

15T AMPLIFIER
OSCILLATOR STAGE
%%%; : ISOLATOR IMAGE ~ CAMERA
I
i _EJ- SOLENOID LENS |
? APRRARAR ¥
e e N | I
/ BHH\:}H‘AHH 5\
I \
f : POLAROID v
TOTALLY PARTIALLY POLAROID/ PbO GLASS PHOTOGRAPHIC
SILVERED SILVERED FILM
END END

Fig. 12 — Schematic description of the image amplification experiment.
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Fig. 13 — Photographs showing image amplification in the TWOM: (a) This
photograph shows the observed image of two lines on the object slide as observed
with unity gain. (b) This photograph shows the image when observed with the
TWOM at n gain of approximately 5 db.

two pictures of this slide as taken through the TWOM. Only two bars
on the slide were illuminated by the oscillator. The left photograph was
made with the amplifier operated at unity gain, and the right photo-
graph was made with an amplifier gain of approximately 5 db. It is seen
that there is greater contrast in the amplified image than in the unam-
plified image. A quantitative measurement of the photographic negative
with a densitometer showed a gain of approximately 4 db in the amplified
image over the unamplified image. Although admittedly the observed
image amplification is quite erude, it is nevertheless felt that the image
amplification properties of a TWOM have been shown and that this
property of the TWOM may be of importance in a communication sys-
tem.,

VI. IMAGE DEFINITION, CHANNEL CAPACITY AND NOISE

The capacity of a communication system depends upon the total
number of unit phase-space cells which the system can handle. The usual
communication system has a spatial width of only one cell (it is single
mode), and information is conveyed only in the longitudinal direction —
i.e., the frequency and time domain. At optical frequencies however,
it may be convenient to use many cells in transverse space. A discussion
is therefore given of the channel capacity of a multimode image-am-
plifying maser.

We define channel eapacity as the product of the number of cells in
transverse space and the bandwidth. The latter has been discussed
arlier; it remains to consider the former.

Evidently if we are dealing with an infinitely long eylindrical amplifier
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with perfectly reflecting walls — i.e., a multimode waveguide with gain
— then the number of modes for a unidirectional, single-polarization
amplifier is 74 /X*, where A is the cross-sectional area and the channel
capacity C is

where the bandwidth B is given by (3) for a Gaussian line shape.

In practice, the amplifier is not infinitely long, and in fact the device
described here has a length < (A/\). Under these conditions one is
concerned with the near field region of the amplifier aperture, and image
transmission is possible (i.e., some modes can be transmitted from input
to output independently of the boundary conditions).

Consider an idealized, unidirectional, single-polarization, cylindrieal
amplifier as depicted in Fig. 14 of length [ and cross sectional area A.

We consider first the image space. A transmitted image can occupy in
transverse (i.e., ,yf,, , P,) space an area equal to AQ where @ is the
angular apeltule A/F and P = (hv/c) is the photon momentum. The
aperture 4 and its associated dlffmetlon solid angle @ = A*/A define
the transverse dimensions of a unit cell." Consequently the total num-
ber of image cells available is

AZ
=~ BAt = BAt (12)
where At is the time over which the observation is made. Equation (12)
may be interpreted to mean: (7) that Q/w identifiable image points can
be amplified (this also follows from classical diffraction considerations)
and (41) that the image channel capacity AC = (Q/w)B. The device
whose operation has been described here has a AC &~ 3 X 10" cps.

One can classify cells into groups according to the behavior of their
corresponding rays of geometric optics. Those used for transmitting an
image consist of A*/I'A” rays which pass directly from the input to the

GAIN —> ]
v —_-.:_:’:1—;
P T— o
INPUT [==Z="7"7"77 A ==Z_ _ n oUTPUT
L o )

' y o ——
—e

b e L o e e s N

Fig. 14 — An idealized image amplifier.
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output. The next group consists of 3(A/I°A") rays which undergo a single
internal reflection at the wall before reaching the output and fall within
the solid angle 4Q minus the image core Q. Successive groups undergo an
increasing number of internal reflections. The reason for the A* depend-
ence in (12) is now clear — the area and consequently the total number
of cells which the transmission line can support is proportional to A4,
and out of this total number, that fraction which can pass directly from
input to output is also proportional to A. If the length of the amplifier
is greater than A /X, then all rays are reflected from the walls and, in
this limit, one is concerned with waveguide propagation.

In principle, and to a certain extent in practice, the “‘off axis" rays are
available for transmitting information. The internal reflections will
result in image distortion, but eylindrical symmetry is preserved and
spatial coding can be used. At the present time, however, the channel
capacity using only the image core is embarrassingly large and there
seems little advantage in using the “off axis” rays.

The limiting noise of a maser (or for that matter any coherent ampli-
fier) corresponds to one noise photon per unit cell of phase space, (noise
number” N = 1). Optical masers can come very close to this limit and
in fact the ruby amplifier described in this paper has a calculated N =~ 2.
The number of noise photons associated with the signal is consequently
N AC.

In the frequency domain it is well known that there is an optimum
bandwidth for a given signal and that excess bandwidth gives excess
noise. Similarly in the transverse domain there is an optimum spatial
bandwidth; in particular the angular aperture Q used should not exceed
that required for the necessary definition, as this would add excess noise.
If the amplifier has excess angular aperture, the optics should be ar-
ranged so that the transmitted image and the following receiver occupy
only the necessary solid angle.

In practice, additional noise is produced at the output, and proper pre-
cautions should be taken to eliminate this excess noise. Consider first
only the noise associated with image rays. A cross section along the
amplifier, shown dotted in Fig. 14, may be considered as the input of the
remaining part of the amplifier with a new angular aperture ' = A*/l/
which is larger than 2. We have therefore an amplifier whose bandwidth
(spatial) increases (to a limit @' = 27) as we travel along the device.
TFxcess noise will appear at the output in this larger solid angle but will
of course see less gain than that in the useful angle Q. A detector, insensi-
tive to angle, placed at the output will see this noise, which can be se-
vere in some designs. This excess noise, which is not intrinsic to the
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signal band, can perhaps most easily be eliminated by focussing the
input plane on the detector and using an aperture stop which passes only
the focused image.

TEven though one may not intend to use the “off axis” rays they may,
unless special precautions are taken, be available at the output. Com-
monly used solid-state maser materials have large indices of refraction
and, consequently, internal reflections may occur for large angles of in-
cidence (for ruby the eritical angle is =~60°). It is evident, therefore,
that an appreciable fraction of the spontaneously emitted photons can
be amplified and reach the output. These can be separated from those
in the signal image core by the method mentioned above.

One should differentiate between presently available image intensifiers
and maser image amplifiers. Unlike the maser, the former are not co-
herent amplifiers and are perhaps better described as image quantum
detectors. The quantum detector preserves the intensity of the signal
but not its phase (and in practice it is difficult to preserve the momen-
tum). The maser preserves both amplitude and phase and easily pre-
serves the frequency and direction of the signal. It is a direct consequence
of uncertainty that a coherent amplifier has a noise number N = 1.
The detector which preserves only one variable can in principle be noise
free, although this does not mean that it is more “sensitive” than a
maser in some systems applications.™

At wavelengths of < 1g the black body temperature of an object
must be >10"K before the phase-space density can exceed unity. As a
consequence, the phase of the radiation is indeterminate for objects
illuminated by usual incoherent light sources. There appears little object
in using a coherent amplifier with such an image, and in fact its noise
can be a serious disadvantage.

If an object isilluminated by a maser oscillator, however, then densities
>>1 can be obtained, and in fact densities >1 are necessary in a com-
munication system in order to make full use of channel capacity. In such
systems a coherent image amplifier which can also easily preserve the
frequency, phase and direction of a signal may be of value.

VII. PUMP POWER REQUIREMENTS

One of the principal practical difficulties associated with optical
masers is that of providing the pump. Minimum pump power and mini-
mum pump color temperature are mutually exclusive, and in practice
a compromise must be reached. In this section we are concerned with
the effects of signal circuit design on the pump requirement of a CW
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amplifier, Tt is clear that with the use of materials whose quantum effi-
clency is near unity (ruby has a Q.E. &~ 0.9) pump photons are required
only to replace those photons dissipated at the qlgnal transition. In
practice, signal circuit design can affeet the pump requir ements by sev-
eral orders of magnitude.

The total number of photons emitted at the signal transition from an
uncertainty-limited (¥ = 1) maser amplifier is

NT—Z(LG"_I'E+GDD). (13)

8m? In Gy 1

Here (7, is the numerical gain for a given cell and D the dynamic range
(equal to the maximum number of photons per cell in the input signal).
n is the density of particles per unit volume per spectral interval, and
from the previous equations n/+ is related to (7. The first term is due to
spontaneous emission and amplified spontaneous emission, and the
second is due to the amplified signal. Equation (13) may conveniently
be regrouped as

¢ Gy — ) ¢ Go—1n
= GoD =2 (14
N All'Signal (Sm" In f'o T + ‘ + é 8m? n G, (1)

Cells AC Remainder

The first term is determined entirely by the specifications placed on the
amplifier; i.c., it has a channel capacity AC, a gain Gy, and a dynamie
range D over this band. The first part accounts for the noise from an
uncertainty-limited amplifier. The second part is due to the signal. When
(L&D >> 1, the first term becomes GGACD. The second term is the sum,
over all other cells into which the particles can radiate, of the spon-
tancously emitted and amplified spontaneously emitted photons. This
term, which is concerned with cells outside the signal band, represents
wasted energy. If AC contains only a small fraction of the total number
of cells, this term may be approximated as K(N/7) where N is the total
number of particles at the signal transition and K is the average of
(Gh — 1)/(In (). Evidently if the gain for these excess cells is unity,
then the second term is just N/, the total spontaneous emission.

In a practical amplifier it seems likely that the specifications and the
design will be such that (14) will be represented to a good approximation

hy
Ny = GACD 4+ KN/, (15)

Certainly it is likely that a (o&D >> 1 will be required and hence the
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first part is a good approximation. If Go&D >> 1, then an insignificant
amount of pump power will be saved by designing so that AC occupies
an appreciable fraction of the total phase space and further, since such
a design would appreciably increase the pump color temperature
requirements, it seems likely that the fraction will be kept small. Under
these circumstances, the second part is also a good approximation. A
signal circuit efficiency 5, may then be defined as

n = GoACD/(GoACD + K N/7). (16)

The preceding discussion is now applied to a single-mode transmission
system — i.e., one where the information is to be sent only in the
longitudinal domain. An obvious design for anamplifier in this application
might be a single-mode, single-polarization waveguide TWM using fibre
optics. A material with a quantum efficiency near unity, an inversion
near 100 per cent, and a signal linewidth just sufficient to give the re-
quired bandwidth might be used. As far as the material and signal struc-
ture is concerned, such a design has 100 per cent photon efficiency; i.e.,
every photon absorbed from the pump is available for amplification at
the signal frequency and in the signal mode. (To be strictly correct, the
efficiency is 25 per cent if it isa single-polarization, unidirectional ampli-
fier.) The ratio of stimulated to spontaneous emission is &~ [(Go — 1)/
In (o] for high gain in the absence of a signal. If the requirement was for
a gain of 30 db then this ratio is ~20 db. Further since one-half of the
stimulated emission photons will be produced in the last 3 db (10 per
cent of the length) of the amplifier, the rate at which photons are pro-
duced at the output section is /10" times that from spontaneous emis-
sion alone. This means that the idler relaxation time must be <10~ of
the spontaneous emission lifetime and that the pump density must be
10* greater than that required to produce the same inversion in the
absence of gain. So far we have considered only the contribution from
amplified noise. If in addition we require that the device be able to
amplify a signal D X noise, the above figures of 10~ and 10° become
10~° and 10°, respectively, for D = 20 db. These perhaps impossible
requirements on the idler relaxation time and pump color temperature
have arisen because the device is too efficient.

A less efficient alternative design is now considered for the above ap-
plication. Consider an image amplifier of the type depicted in I'ig. 14.
Since we are concerned with only one transverse mode, we need the
definition for only one image point —i.e., I = A/\.

Equation (15) is a good approximation in this ease. The first term,
which represents essential energy, is
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10 Gdb max
GACD = GyDAv B Wit e — B
log 2

The second term, which represents wasted energy, is given by

EY - K" % volume = KA ™.
e T T
Also, if W is isofropic and we have complete inversion, (2) gives
_ Guvedvgs 7
016N g1
and hence
N Ganear’ (gz *r
K—=Kx 2 _—— (=] —.
T X 0.0256% \gs/) n

As in the last example we assume the amplifier is required to have a
gain of 30 db and a dynamie range of 20 db. If 0.05 per eent ruby is used
at room temperature, if complete inversion is obtained and if further we
assume that, contrary to the device described in this paper, the isolators
use a negligible fraction of the total length, then

AC ~ 10" eps

giving
Gy ACD =~ 10" photons per sec
also
I~ 16 em
giving

K y ~ 0.85 X 10" K photons per sec.
T
From (16) the structure efficiency is

" =12 X 107
K

Since the signal is capable of interacting with almost all of the spins,.

the signal photon density has negligible effect upon the required pump

color temperature with this value for 5, . It is essential to keep K small

since it has a direct effect on the required color temperature as well as
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on the required pump power. The index of refraction of most solid-
state maser materials is so large that unless special precautions are
taken to prevent internal reflections, a large fraction of the off-axis rays
will see the full amplifier gain. This could casily lead to a value for
K =~ 100 for a 30-db amplifier with a corresponding two order-of-magni-
tude increase in the required pump power and energy density. An esti-
mate indicates that it should be possible to keep K < 2 with correspond-
ingly little effeet on the power and density of the pump.

The two amplifiers just described represent design extremes. The
single-mode waveguide amplifier has a minimum pump power but an
excessively high pump density requirement (in this example 5 orders of
magnitude above that for spontancous emission alone). Conversely the
single-cell image amplifier has a minimum pump density but an excessive
pump power requirement (in this example 4 orders of magnitude above
that intrinsie to the specifications). A reasonable compromise objective
might be for n, & 50 per cent, in which case both the power and density
requirements would hoth be increased only by a factor of 2 from the
minimum.

The single-cell image amplifier just deseribed is very inefficient because
only a small fraction of the total phase space is available to the useful
image core. A somewhat different geometry can improve this. As an
example, one could break up the amplifier into say 10 sections, each with
a gain of 3 db. Each section is now capable of amplifying one image
point if {/10 &~ A/x; i.e., A and hence K(N/7) can be reduced a factor
of 10 with a corresponding increase in n, . Of course with this decrease
in A, the diffraction angle is larger and unity magnification lenses must
be placed between sections to reform the image at the input plane of
the next section. The extent to which this subdivision can be continued
is in practice limited by the fact that electronic gain per section decreases
with the number of sections while the eircuit loss per section will be
substantially constant, leading to an eventual decrease in the net gain
of the entire device.

This section has been concerned primarily with amplifiers for use in
a single-mode transmission system, and the information has been con-
veyed in the longitudinal domain. It has been shown that pump density
and power can vary over wide ranges by signal circuit design. In prin-
ciple, analogous arguments apply to an image amplifier where informa-
tion is to be conveyed primarily in the transverse domain: in practice,
the problem is primarily one of increasing the efficiency and would ap-
pear to depend largely on obtaining narrow linewidth materials. Narrow-
frequency band filters are probably also necessary to obtain high effi-
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ciency. It is perhaps worthwhile noting that filters of the IFabry-Perot
type are narrow in entire momentum space and as such inhibit image
transmission,

VI, RECIRCULATION

Since the amplifiers described here are traveling-wave devices, they
may be folded to achieve a more desirable geometry. An extreme case
of folding is to send successive signal passes through what is otherwise
a single section; i.e., an amplifier is designed so that its transverse ca-
pacity exceeds that required for the signal, which may then be recircu-
lated in this otherwise excess image space.

If, for example, one is concerned, as in the last section, with an ampli-
fier for a single-mode transmission system, then each pass must occupy
a region Ax Ay AP, AP, =~ h*. Further it is essential to make efficient use
of this transverse space if 7, is not to deteriorate. It may be necessary to
provide image guard bands to inhibit feedback: the resulting decrease
in 7, may in practice be more than compensated by an increase in the
pump eircuit efficiency with this geometry.

The recirculating optics can take many forms, Rectilinear reflections
can produce the simple single-cell image amplifier described in the last
section in compact form. The addition of lenses can produce the folded
equivalent of the third type of amplifier deseribed in the last section.
If a IParaday rotation isolator is used, an optically active material such
as quartz in the recirculating path can restore the polarization, The
number of passes is limited by the losses in the opties and by the amount
of feedback which can be tolerated.

IX. TRANSIENT BEHAVIOR

The fact that a TWM can store energy and release it on demand is
well known. This property has heen of only academic interest at micro-
wave frequencies but may be one of the most important characteristies
of an optical device. The transient behavior of a TWM has been in-
vestigated by Schulz-DuBois® and may be summarized as follows. If a
strong signal in the form of a step function is applied, then the leading
edge will see the full amplifier gain and, in the process, will drain off
active particles so that successive portions of the signal experience less
gain, As the signal travels along the amplifier, it assumes somewhat the
shape of a shock wave where the sharp leading edge sees the full gain,
and the integrated energy in the pulse is essentially equal to the original
stored energy in the preceding portion of the amplifier. The output pulse
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width is limited by the rise time of the amplifier. This theory is valid
as long as the material characteristics at the signal frequency can be
described in terms of the rate equations.

The rise time of a ruby TWOM at room temperature is =2 X 10~
sec. By using the pulse-sharpening property of the device, it may be
possible to produce light pulses shorter than any available by conven-
tional electronics.

It is easy to design a TWOM of cross section less than 1 em? whose
stored energy is greater than one joule. With such a device, rise time is
unlikely to limit the peak power; instead, the limitation will probably
be material breakdown. In the present design the Polaroid is believed
to be the most susceptible component but could be replaced by, say,
Glan-Thomson or Brewster angle polarizers. We expect that peak powers
of 107 watts/em? can be achieved quite easily without focusing and that
considerably higher power densities are realizable.

Once the limiting power density and cross-scctional area are reached,
the beam can be divided into parallel channels forming a phased array.
If phase stabilities approaching that of the microwave TWM can be
achieved, several divisions will be possible,

X. CONCLUSION

The feasibility of an image-amplifying optical {raveling wave maser
has been demonstrated. Since each section is short circuit stable, they
may be eascaded to produce any desired gain.

The experimental data on the gain as a function of pump power are
in good agreement with theory.

The loss and Verdet constant of high density PhO glass has been
measured and is such that in combination with dichroic polarizers it leads
to a satisfactory isolator. Materials with higher Verdet constants would
be preferable.

The theory shows that, in order to build an amplifier which is low
noise and which has a minimum pump requirement, one must use high
quality optics which are diffraction limited.

It is believed that very high peak powers and very short pulses can
be produced with the device.

An effective channel capacity =~10'5 eps has been obtained and one
is faced with the rather unusual problem of reducing the bandwidth
of an amplifier.

XI. ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of Mr. H. Marcos
in making the measurements on the optical isolator. We also are in-



UNIDIRECTIONAL TWOM 1397

debted to our colleagues Dr. E. O. Schulz-DuBois and Dr. J. G. Skinner
for critically reading the manuscript and making valuable suggestions.

REFERENCES

1. Maiman, T. H., Nature, 187, 1960, éJ 493.

2. Javan, A., Bennett, W. R., Jr., and Herriott, D. R., Phys. Rev. Letters, 6,
1961, p. 106.

3. Javan, A., Bennett, W. R., Jr., and Ballik, E. A., private communication.

4. Kisliuk, P. P, and Boyle, W. 8., Proc. I.R.E., 49, 1961, pp. 1635-1639.

5. DeGrasse, R. W., Schulz-DuBois, E. O., and Scovil, H. ]5 D., BS.T.]., 38,

10.
11,

12.
13.

1959, pp. 305-334.

. Schulz-DuBois, E. 0., Microwave Solid-State Devices, 11th Interim Report,

Army Signal Corps Contract DA-36-039-sc-73224.

. Condon, E. U., and Shortley, G. H., The Theory of Atomic Specira, Cambridge

University Press, London and New York, 1951.

. Wieder, 1., and Sarles, L., Advances in Quantum Electronics, edited by J. R.

Singer, Columbia University Press, New York, 1961.

. Behawlow, A. L., Advances in Quantum Electronics, edited by J. R. Singer,

Columbia University Press, New York, 1961.

MecClure, D. 8., Advances in Solid State Physics, 9, edited by F. Seitz and D.
Turnbull, Academie Press, Inc., New York, 1959.

Dirac, P. A. M., Quantum Mechanics, 3rd edition, Oxford University Press,
1947, p. 238,

Weber, J., Masers, Rev. Mod. Phys., 31, 1959, p. 681.

Gordon, J. P., to be published in Proe. LR.E.






Further Analysis of Errors Reported in
“Capabilities of the Telephone Network
for Data Transmission”

By ROBERT MORRIS
(Manuscript received October 23, 1961)

The recorded error data from a ficld testing program reported on by Alex-
ander, Gryb, and Nast have been further analyzed. New methods of analysis
have given more information on the causes and nature of errors experienced
by data in the switched telephone plant. The results obtained will enable
workers in the field of ervor control to use the field test data more effectivelyy.
The ideas presented will be useful to designers of future field fests.
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I. INTRODUCTION

The purpose of this paper is to describe certain characteristics of
errors affecting digital data in the switched telephone network. The
present results are based on an analysis of error data recorded in a field
testing program conducted by the Data Transmission Evaluation Task
I'orce of the Bell System. These data are summarized in a previous
paper by Alexander, Gryb, and Nast! which sets forth numerous con-
clusions about the telephone plant, based on the test program. The
present paper reports the results of a sequence of statistical investiga-
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tions which have made it possible to classify most of the errors into
several populations. The effect of the test equipment on the time-dis-
tribution of errors is also discussed.

II. THE TASK FORCE TESTING PROGRAM

This section contains a deseription of those aspects of the test pro-
gram which bear on the present discussion. Test calls were made by the
Task Force over a wide variety of circuits. Both local and long distance
calls were made over the switched telephone network and the perform-
ance of the circuits was recorded. Data concerning 1010 test calls were
gathered and used for analysis. The test calls were of three categories:
10-minute calls at 600 bits/second, 10-minute calls at 1200 bits/second,
and 30-minute calls at 1200 bits/second. Each of these categories was
further subdivided into “Exchange Calls” which used no long distance
switching facilities, “Short Haul Long Distance Calls” which were made
over distances of less than 400 miles, and “Long Haul Long Distance
Calls” which were made over distances of between 400 and 3000 miles.

The source of the transmitted data was a word generator which pro-
duced a sequence of marks and spaces repeating with a period of thirty
bits. This word generator was used to drive an FM modulator. (The
terms “mark” and “space” designate the two states of the M channel.
The convention here is that the lower of the two frequencies used is
called mark and the higher is called space.) At the receiving end of the
cireuit, the TM signal was demodulated and compared with the output
of another word generator identical to that at the transmitting end.
When the output of the word generator at the receiving end agreed with
the received signal, the bit was accepted as correct; when they differed,
an error was noted. The two generators were kept in step by electronic
clocks. The sequence of marks and spaces produced by the word gen-
erators was as follows:

SSSSMSSSSMMSMSSMMMMSMMMMSSMSSM.

The sequence of bits received correctly and bits received in error was
recorded serially on a magnetic tape with two channels, as follows: The
first channel contained only elock pulses, one pulse per bit. The second
channel contained a pulse opposite the corresponding pulse in the first
channel every time an error was noted, and was blank whenever no error
occurred. The relative bit phase of the word generator, i.e., the position
in the 30-bit word where the call began, was not recorded for any of
the calls. The methods deseribed below made it possible in most cases
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to determine whether a particular error changed a mark into a space or
a space into a mark, and to determine which, if any, of the thirty posi-
fions in the test-generator word were most susceptible to errors.

The demodulator contained what is known as a zero-crossing detector,
which counted the number of times the received signal crossed a neigh-
borhood of zero. This detector delivered an output which was propor-
tional to the number of zero crossings per unit time. A threshold was
established and when fewer zero crossings were detected, a mark was
scored; when more zero crossings were detected, a space was scored.
Thus when no signal at all was received, the absence of signal was in-
terpreted as a mark.

With a detector of this type, impulse noise would be more likely to
add zero erossings to the received signal than to subtract them if the
impulse noise were of higher frequency than the signal frequencies used
in the tests. On the other hand, disturbances of lower frequency would
tend to change spaces into marks by subtracting zero crossings. As it
turned out, most errors caused by noise were mark-to-space errors, but
the fact most important to our methods of analysis was that a single
type of disturbance during a eall caused one of the two types of error
predominately. By a “single type of disturbance” we mean any statis-
tically recognizable pattern of errors.

Much of the remainder of the discussion of this test program will de-
pend on three of the properties of the system mentioned above, namely:

(1) a cyclic 30-bit word generator was used,

(2) any particular kind of disturbance on the line caused errors asym-
metrically, i.e., either a majority of mark-to-space errars or a
majority of space-to-mark errors,

(3) loss of signal caused all bits to be received as marks.

During some of the calls in the test program, the eireuit was lost and

a new attempt was made. On other occasions, the clock which kept
the receiving word generator in phase got out of step, sometimes because
of loss of signal. In either case, the error tape was erased and a new
error recording was started from the beginning. Some of the ecalls en-
countered one or both of the above difficulties. Only the calls which were
suceessfully completed were reported.

III. THE EFFECT OF DROPOUTS

Rather early in the study it became obvious that, in some of the test
calls, errors were caused not by noise but by loss or serious attenuation
(“dropout™) of the received signal, often for very short periods of time.
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When this occurred, all bits were received as marks and errors were re-
corded only when the receiving word generator produced a space. When
the receiving word generator produced a mark, the bit was recorded as
being received correctly even though the mark that was received was
completely independent of what was transmitted. The pattern of errors
recorded during such a period was:

111101111001011000010000110110,

where a 0 stands for a bit accepted as correct, and a 1 stands for a re-
corded error. Thus, when the line was open or for some other reason no
signal was being received during the tests, 16 errors were recorded for
every 30 bits transmitted. The error rate observed during a dropout is
evidently dependent on the proportion of spaces transmitted, which in
many systems of error control differs widely from 16 out of 30; for in-
stance, in the so-called 2/8 code, 2 marks and 6 spaces are sent in every
block of 8 bits.

Computer programs were written by the author which could detect
the pattern shown above in those cases where the dropout extended
over more than about twelve bits. A dropout occurring in the first nine
bit-positions of the test word would have caused eight errors, and, since
the computer program was adjusted so as to find dropouts causing more
than five errors, this dropout would be found. A dropout which covered
the sixteenth through the twenty-fourth bit-positions would not be
found, since it would have caused only one error and could not be dis-
tinguished from other error-producing effects. Because of the distinctive
pattern of errors, the bit phase of the word generator could easily be
determined in ealls with long dropouts.

1V. THE EFFECTS OF NOISE

During some test calls, the nature of the disturbances on the trans-
mission facilities was such that there were many more mark-to-space
errors than space-to-mark errors. On other test calls, the reverse was
true. A computer program was written by the author which made it
possible to determine which calls were of these two types and to decide
the bit phase of the word generator in those cases. The exact methods
by which this was done are described in Section V.

In some calls, there were ten to twenty times as many mark-to-space
errors as there were space-to-mark errors. In these calls, errors did not
fall on all of the mark positions with even approximately equal frequency.
Some mark positions were more vulnerable to errors than others, al-
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though the vulnerable positions were not always the same in different
«alls. In certain calls, the average number of errors on the four exposed
mark positions (a single mark between spaces) exceeded by a factor of
ten the average number of errors on the remaining mark positions.

V. METHODS OF DETERMINING BIT PHASE

Three different methods were used by the author to determine the bit
phase of the word generator in the test calls. None of these was effective
on calls with less than about fifty errors; in fact they occasionally failed
on calls with as many as several hundred errors. However, the bit phase
was determined for enough calls to account for somewhat more than 65
per cent of all the errors reported in the test program.

The first method was by far the simplest. The error data were visually
seanned for the characteristic pattern of a dropout. In only a few calls
were there long enough dropouts for this method to produce results.

The second method used the IBM 7090 computer to divide the se-
quence of good bits and bits in error into consecutive blocks of thirty
bits each. The positions in these blocks were numbered from 1 to 30 and
the number of errors corresponding to each numbered position was
totaled over all of the blocks in the eall. This produced a sequence of
thirty numbers such as the one in Iig. 1, which is the result actually
obtained for one of the test calls, Call No. 2330; this was a 30-minute
Exchange Call at 1200 bits/second. This call had a total of 678 errors,
and if the errors fell randomly at each bit position, then more than half
of the thirty numbers in Fig. 1 would be expected to lie in the range
19-26 inclusive. This is far from being the case, since only three of them
do so. About half of the numbers are surprisingly small and most of the
rest are surprisingly large. There is a wide gap between the two collee-
tions of numbers. When the relative bit phase of the word generator in
this call is assumed to be that of Fig. 2, which is correct, the numbers
of errors corresponding to the fourteen bit-positions of the test generator
word which are marks are:

25, 31, 20, 85, 27, 40, 28, 79, 46, 55, 43, 22, 66, 44
and the numbers of errors corresponding to the sixteen bit-positions
which are spaces are:

9,1,11,2,3,8,2,2,6,4,7,1,1, 6,4, 0.

It is difficult to ignore the fact that this choice of the relative bit phase
of the word generator divides the thirty numbers in Fig. 1 into two dis-
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tinet populations; the smallest number in the first list is 20 and the largest
number in the second list is 11. Another (but erroneous) choice of the
bit phase of the word generator is represented in Fig. 3. With this choice,
the numbers of errors corresponding to marks are:

9,1,11,2, 3,22 6,4,7,1,1,6, 4
and the numbers of errors corresponding to spaces are:
25, 31, 20, 85, 27, 40, 28, 79, 46, 8, 55, 43, 22, 66, 44, 0.

Two of the numbers in the second list (the 8 and the 0) seem to stand
out as belonging more naturally to the first list.

Beeause of the pattern in Fig. 1 of four large numbers, then one small,
then four large, followed after an interval of six bits by four small, then
one large, then four small, the only choices of word-generator phase
which make sense are those shown in Figs. 2 and 3. The choice between
them is not difficult in this case. This pattern is repeated in dozens of
«alls; often it shows up even more clearly than in the example given
here.

Calls in which there were numerous dropouts too short to be recog-
nized by eye had an excess of space-to-mark errors. These calls were
found and analyzed by the same method, but in this case high numbers
corresponded to spaces.

These two methods failed to determine the bit phase in many calls
which had very large numbers of errors. It was suspected that some of
these calls had both short dropouts and, in addition, enough mark-to-
space errors so that neither of the two kinds of error was in large excess.
To handle this situation, a computer program was written which pro-
duced sequences of thirty numbers as above, but this time the first line
included only the single errors, the second line included only the double
errors, ete. Two examples of this presentation are given in I"igs. 4 and 5.
Now, errors caused by noise most commonly occurred one by one, and
errors during a dropout occurred primarily in two’s and four’s as can be
seen by reference to the test-generator word. Therefore the first line of
this presentation could be scanned for any great preponderance of mark-
to-space errors caused by noise, and the other lines could be scanned
for evidence of short dropouts, which were also made more visible by
this presentation. Many of the remaining calls suceumbed to this double-
barrelled attack. I'ig. 4 gives an example of a call in which the errors
were mostly due to dropouts, and Ifig. 5 gives an example of a call in
which the errors were mostly isolated mark-to-space errors.
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VI. METHODS OF FINDING SHORT DROPOUTS

Even though the last method mentioned was able to reveal short
dropouts in a call, it gave no indication of their exact lengths or where
they were located in the eall. Another computer program was written
which went bit-by-hit through each call of known bit phase, and counted
up how many marks had been received out of the previous thirty bits.
If no errors were recorded in the previous thirty bits this number was
at all times 14. If mark-to-space errors were oceurring, the number was
less than 14. But, if a dropout occurred, even over a few bits, the number
rose dramatically and made it clear where the dropout probably began
and ended. By this method, combined with visual inspection of the
original data, every dropout which caused more than five errors in any
call of the test program was found, except for the remote possibility
that during a dropout noise simulated the transmitted word.

Another interesting phenomenon was discovered by means of these
computations; namely, that often there was a dropout during which a
few spaces would be received, but there was no correlation between
these spaces and the spaces actually sent by the transmitter. This in-
dicates that on occasion, even when the line was open, there was enough
noise received to simulate a space, so that some bits which were recorded
as correct in the field trials were actually the result of two potential
errors in the same bit-position whose effects cancelled. Short periods of
time during which the transmitted signal was absent, but during which
impulse noise caused several spaces to be received, are not classified as
dropouts, since the resulting error patterns are not distinetive.

VII. ANALYSIS OF THE DROPOUTS

In the test calls, a total of 58 dropouts extended over more than 12
bits, and these were analyzed. Of these, none were in Exchange Calls,
3 were in Short Haul Calls, contributing 110 errors, and the remaining
55 were in Long Haul Calls, contributing 3400 errors. The longest drop-
out was 1129 hits long (approximately 1 second). It is estimated that
dropouts lasting 12 bits or less contributed at least 1500 additional
erTors.

In addition to those discussed above, many dropouts oceurred during
the tests and were not reported because these dropouts caused a loss of
synchronization between the transmitting and receiving word genera-
tors or were long enough to cause the test personnel to terminate the
call. The recording of errors in these cases was abandoned and a new re-
cording started.
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It is difficult, therefore, on the basis of the reported data, to specify
quantitatively the contribution of dropouts to the total error rate. This
contribution was negligible in the case of Exchange Calls and Short
Haul Calls. In Long Haul Calls, dropouts were a major source of error.
Even after the omission of records of many dropouts, as explained above,
about 10 per cent of all Long Haul Calls had one or more dropouts, and
these dropouts contributed over 20 per cent of the errors in Long Haul
Calls.

Since there were no dropouts in the final data on Exchange Calls,
and only negligible ones for Short Haul Calls, and since a very large
number of calls were made in these categories, it seems safe to assume
that the causes for dropouts lay in long-distance transmission or switch-
ing facilities, or at least that these facilities formed an essential link in
the chain of causes leading to a dropout.

VIII. ANALYSIS OF ERRORS DUE TO NOISE

There were 36 calls in which the bit phase of the word generator was
established and in which there were no errors that could be attributed
to dropouts. In these calls, the number of mark-to-space errors was
slightly more than four times as great as the number of space-to-mark
errors. This statement, though true, is somewhat misleading, because
this was just the kind of call in which the bit phase was easy to deter-
mine. It is certain that none of the remaining calls with more than about
50 errors has any such discrepancy between the two kinds of error, or
else its bit phase would have been determined. What can be deduced is
that some transmission paths favored this kind of error very much.

In some calls, an abnormally high number of errors fell on those bit
positions which corresponded to single marks between spaces; in others,
an abnormally high number fell on the positions corresponding to marks
immediately preceding spaces. These effects may have been caused by
conditions on the line, such as high delay distortion; or they may have
been caused by characteristics of the test equipment, as illustrated in
Section IX.

IX. THE CASE OF CALL NO. 2390

Call No. 2390 was a 30-minute Long Haul Call at 1200 bits/second
with 4565 errors. This call had more errors than any other call in the
test program. In spite of the large number of errors, the three methods
described did not reveal the bit phase of the word generator in this call.
Therefore, the pattern of errors in the call was subjected to close seru-
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tiny. It was discovered that the sequence of good bits and bits in error
at the end of the call was precisely that which would be recorded if the
receiving word generator were one bit out of step with the transmitting
word generator. Somewhat further back in the call the pattern corre-
sponded to the two generators being two bits out of step. This was traced
back through the call step by step until finally a place was reached where
the two word generators were out of step by fifteen bits. By this time,
several thousand errors had been accounted for. The search was not
carried beyond this point.

FEvidently the bulk of the errors in Call No. 2390 were caused by a
failure of the terminal equipment to keep in step. These 4565 errors make
up 12 per cent of the errors observed during the entire testing program
and 17 per cent of those observed in Long Haul Calls.

Tt does not seem justified to let these pseudo-errors contribute to the
reported error rate on the telephone network. And it is certain that this
call should not be used in a study of ervor control or of the burst strue-
ture of errors, since not only the pattern of errors but the errors them-
selves were caused by the nature of the test equipment and not by the
characteristics of the telephone plant.

X. SOME SPECIAL RESULTS

During Call No. 1568, a Long Haul Call at 1200 bits/second, the field
test personnel noted that four bursts of errors which caused a total of
about 400 errors coincided with audible multifrequency keypulses. A
direct inspection of these errors failed to reveal much regularity in the
pattern of errors within the bursts. After the bit phase of the word gen-
erator in this call was determined, the sequence of received marks and
spaces was inspected. During the four keypulses, the received signal
conformed to the following four patterns, respectively:

MMMS SSMMMS SSMMM?B S5
MMMMMSMMMMMSMMMMMS
MMSMMSMMS MMSMM S MMS
MMMMSSMMMMS SMMMM S8

with occasional errors superimposed, presumably arising from noise. These
patterns have periods of G, 6, 3, and 6 bits, respectively, which corre-
spond to frequencies of 200, 200, 400, and 200 cps. These frequencies
may be related to the fact that the two tones transmitted simultaneously
during an MTF pulse are always separated by a multiple of 200 eps.

In parts of some calls, remarkably many errors were separated by
exactly 57 good bits. On investigation, these all turned out to be calls
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at 1200 bits/second which terminated in a few particular step-hy-step
central offices. Most probably, these errors were caused by some switch-
ing mechanism in the telephone plant which, when it operates, produces
a 21-eps disturbance.

In Call No. 1420, a Long Haul Call at 1200 bits/second, there were
four long dropouts and their lengths were 301, 302, 329, and 337 bits.
The closeness of lengths of these four dropouts suggests that all of them
had the same cause.

In Call No. 2429, a Long Haul Call at 1200 bits/second, there were
eight long dropouts and their lengths were 33, 33, 67, 67, 94, 95, 97, and
126 bits. All of these lengths are close to being multiples of 32 bits, again
suggesting a common source of the dropouts.

X1. THE ROLE OF THE TEST WORD

The choice of a cyclie word generator as the source of the transmitted
data did not affect the measurement of error rate significantly. However,
its characteristics were strongly reflected in the final error recordings be-
ause of the considerable contribution of dropouts to the total error
rate. The fact that the length of the test word was 30, a number with
many small factors, again did not affect the measurement of error rate;
but if the data were used in simulation experiments — for example, to
test an error-detecting code whose length was a divisor of the number
30 — the results could be biased by this choice of length of test word.

After the bit phase of many of the calls was revealed by analysis of
the error recordings, it was possible to resolve the following questions:

(1) whether any particular error changed a mark into a space or the

reverse,

(2) which, if any, of the 30 bit-positions were most susceptible to

errors,

(3) to what extent errors were caused by dropouts, and

(4) the contribution of terminal-equipment malfunction to the oh-

served error rate.

Using the bit phase to study the distribution of errors among the 30
bit-positions of the test word, it was discovered that the most vulner-
able positions were different in different ealls. It would be instructive
to be able to compare these differences in vulnerability with the meas-
ured characteristics of the transmission medium. There were a number of
«alls in the series for which almost all of the errors fell on a single bit-
position in the test word. It is not known either why this oceurred or
which bit position was affected, since it is impossible to determine the
bit phase for such calls.
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XII. RELATION TO ERROR-CONTROL SCHEMES

One of the results of this study is the knowledge that with the modu-
lation scheme used in the testing program, the mark-to-space and space-
to-mark errors were not evenly mixed with each other. For a long period
of time the mark-to-space variety was more abundant by a large factor,
owing to noise; at other times the reverse was true, because of dropouts,
interfering tones, and the like. An error-detecting code which counts
the number of marks per block is much more efficient in this situation
than when mark-to-space errors and space-to-mark errors are well mixed.

For example, in the 2/8 code, which has been suggested for error de-
tection, bits are transmitted in blocks of eight, and in every block there
are exactly two marks and six spaces. A received block with more or less
than two marks is detected as an error. This scheme will always detect
an error condition if a single error oceurs in a block. If a block contains
two errors (which is likely because of the burst character of the errors)
then an error condition will be detected if both errors are in the same
direction but not if they are in opposite directions. Assuming that the
two kinds of error are well mixed and that sent marks are four times as
likely to be in error as sent spaces, we find that a double error in a block
will be detected only 39 per cent of the time. The truth is that, because
of the lack of mixing, a double error in a block would be detected over 90
per cent of the time by this code. During a dropout the situation is even
more striking. A message using this code would experience a bit-error
rate of 75 per cent during a dropout but every one of these errors would
be detected. The relative advantage of this code and of other codes of
this type would go unnoticed if the codes were evaluated by a direct
simulation using the field test data.

A useful technique in studying error-control methods is the construc-
tion of mathematical models of the occurrence of errors. Several such
models have been constructed using the field test data,?* and have been
used to study the effectiveness of error-control procedures.* To test the
validity of such models and to evaluate the parameters used in the
models, it is necessary to study the manner in which errors are distributed
in time, e.g., to what extent they oceur in bursts. One way of doing this
is to determine the distribution of lengths of runs of consecutive errors
and the distribution of lengths of runs of good bits between errors.? Be-
cause of the structure of the test generator word, every run of consecu-
tive errors in the field test data during a dropout had length 1, 2, or 4
and every run of consecutive good bits during a dropout had length 1,
2, or 4. These distributions of run lengths depended only on the choice
of test-generator word. Also, repetitive patterns of errors in Long Haul
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Calls were often produced by causes other than dropouts. For instance,
the single event deseribed in Section IX contributed 17 per cent of all
the errors in these calls, and oceasions (deseribed in Section X) when the
signal was overridden by tones contributed about another 10 per cent.
Thus, including dropouts, about half the errors in Long Haul Calls oc-
curred in repetitive patterns, and these patterns reflected the nature of
the test equipment and the modulation scheme rather than that of the
telephone plant.

Also, when short spikes of impulse noise eaused bits to be received as
spaces regardless of what was transmitted, errors were recorded in the
field test data only when the oceurrence of a spike of noise coincided
with a transmitted mark. Those which coincided with transmitted spaces
were not recorded as errors. Therefore, the mean length of runs of good
bits in the data is about twice the mean distance between spikes of im-
pulse noise. If the mark-counting code described above were tested
against these data, it would appear to experience twice as many errors
as it would have experienced if it had been used on a real-life channel.

XIII. CONCLUSIONS

With no knowledge of the bit phase of the word generator, the only
error statistics which could be reliably deduced from the field test data
were the error rates themselves. With the recovery of the bit phase, the
proportion of mark-to-space errors could be determined, dropouts were
revealed, and certain malfunctions of the test equipment were discovered.
Now a considerable amount of additional information is available about
the causes and nature of errors experienced by data in the switched
telephone network. This information makes the existing data more use-
ful for simulation and analysis.
The analysis reported in this paper confirms some results of Ref. 1
and modifies some others. It is unrelated to most of the material dis-
cussed in Ref. 1. Specifically:
(1) The subject matter of this paper has no bearing on Figures 1-25
of Ref. 1.

(2) The reported error rates and the distributions of error rates by
classes of calls are essentially as indicated in Figures 26-29 of
Ref. 1.

(3) The time distribution of errors over large blocks (e.g., more than
50-100 bits), as shown in the right-hand portions of Figures 30,
31, 32, 34, 36, and 38 of Ref. 1, is not changed.

(4) The validity of the time distribution of errors over very short
blocks, (e.g., 2-10 bits), as represented in Figures 33, 35, 37, 39
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and the left-hand portions of Figures 30, 31, 32, 34, 36, and 38 of
Ref. 1, has not been confirmed.
(5) The problem mentioned in (4) throws doubt on the data used
to construet Figures 40-43 of Ref. 1.
The results whose validity is questioned in (4) and (5) follow from ar-
bitrary choices made in designing the field tests. The effects of such
choices are considerable and hard to evaluate. It is therefore difficult
to assess the nature and extent of the changes that should be made in
the figures named in (4) and (5).

Because line dropouts (and the loss of word-generator synchronization
in one call) contributed significantly to the error rate, the choice of the
test word influenced the time distribution of errors, as noted in (4)
above. This must be considered in evaluating schemes for error correc-
tion and detection.

In most of the calls with high error rates not caused by dropouts, the
errors had a distinet tendeney to change marks into spaces. This also
must be considered in evaluating error-control schemes.

It must also be borne in mind that the property of receiving all bits
as marks in the absence of signal and the property that impulse noise
usually changes marks into spaces are not themselves characteristics of
the telephone plant, but are dependent on the particular devices used
for modulation and demodulation (Ref. 1, pp. 435-6). The important
point is that the methods and point of view of this paper can be applied
to data obtained with any system of modulation. One cannot hope to
devise a good method of controlling errors without a deep knowledge
of the nature of the errors and of how the terminal equipment is affected
by them.
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Grade of Service of Direct Traffic Mixed
with Store-and-Forward Traffic*®

By JOSEPH OTTERMANTY
(Manuseript received November 28, 1961)

The dual use of trunks for both direct and store-and-forward (S/F) traffic
makes high trunk efficiency possible. The resultant trunk savings are im-
portant in communication systems in which long-haul trunks contribute
heavily to the cost of the system. This paper reports work on the compula-
tion of trunking tables that could be used to engineer trunk requirements
for preseribed loads and distributions of direct and S/F traflic.

A method of computation and some specific resulls in terms of grade of
service of direct traffic and traffic capaeity for S/F traffic are presented.
The numerical results are for two to forty-eight trunks. The results apply
to the case of exponentially-distribuled holding times of both the direct and
the S/F traffic.

I. INTRODUCTION

Direet. traffic is a user-to-user service (generally voice) requiring a
comnection to be established promptly on demand. Store-and-forward
(8/F) traffic, on the other hand, is stored at or near the originator’s
location and is later sent to its destination, either directly or through
further intermediate storage. If 8/F traffic is sent only when the direet
traffic load is light, large amounts of S/F traffic can be accommodated
with very slight degradation of direct traffic service. This can be es-
pecially important in a long-haul communication system where the
trunk group cross sections (number of trunks in a group) are small.
Suech trunk groups are notoriously inefficient if used only for direct
traffic, but they have a substantial ability to handle additional S/F
traffic.

* This work has been carried out under U. 8. Army Signal Corps Contract
DA-36-039-3C-78806.

1 I.T.T Federal Laboratories, Nutley, N. J., (work performed for Bell Tele-
phone Laboratories). Present affiliation, General Electric Company.
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The basic operating method analyzed in this paper is as follows. The
occupancy of the trunks in a trunk group is monitored, and whenever
the occupancy drops below a certain level, the S/T traffic is allowed
access to the idle trunks. The sending of an S/F message is not inter-
rupted in order to service arrivals of direct traffic, but when transmis-
sion of an S/F message is begun, a specified number of trunks is always
held in reserve for direct traffic. Under the foregoing rules, the present
analysis establishes (7) the grade of service of direct traffic and (:7) the
amount of S/F traffic that can be accommodated. Direct traffic conges-
tion discipline is assumed to be governed by the lost-calls-cleared assump-
tion,* which means that direct calls which encounter an all-trunks busy
condition do not reappear in the busy hour.

The statistical nature of traffic is first summarized. The problem of
dual use of trunks is formulated as a probabilistic net representing a
Markov chain. It is assumed that a queue of S/F traffic exists at all
times. Using cut-sets in the state graph, this probabilistic net is ana-
lyzed to derive expressions for the steady-state probabilities of trunk
occupancy. From the expressions of trunk occupancy for a given load
of direct traffic, the grade of service of the direct traflic and the amounf
of the S/F traffic that can be accommodated are determined. A glossary
of symbols is given in the appendix.

1I. MATHEMATICAL ANALYSIS

2.1 Statistical Properties of Traffic

The direct calls are assumed to be generated individually and col-
lectively at random. The expected number of arrivals per hour is denoted
as n. The expected number of arrivals during a fraction of an hour dr
is simply given by n dr. When dr is short enough so that multiple events
are improbable, the probability of an arrival during dr is equal to the
expected number of arrivals: i.e., equal to n dr.

In the following discussion it will be more convenient to measure
time in fractions, df of the average holding time of the direct traffic,
which is denoted T'. Then the probability of an arrival during a short
time, dt, is therefore:

Probability of an arrival during dt = nT dt = a di. (1)

* The assumption of lost-calls-cleared is especially appropriate when an alter-
nate route is provided for calls that encounter the all-trunks-busy eondition.
When an alternate route is provided, the probability of loss should be interpreted
as the portion of ealls that overflow, seeking the alternate route.
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The product 7, which is denoted a, denotes the offered direct traffic
measured in erlangs. It represents the expected number of calls in prog-
ress on a fully served basis. Equation (1) indicates still another signif-
icance of a: it is the expected number of arrivals during one holding
time.

The holding times of both the direct and the S/I" traffic are assumed
to be exponentially distributed (with average T for the direct and
for 8/F traffic). Under the assumption of exponential holding times,
the probability of termination of a call with average holding time T'
during a differential interval dr is given by dr/T plus terms negligible
in the limit dr — 0. In fractions dt of the holding time 7', this probability
is simply df. When a calls are in progress, the probability of the termina-
tion on one of these calls during a differential interval d¢ is given by:

Probability of a termination out of 2 calls = 2 df. (2)

Similarly, the probability of a termination out of z S/I" messages in
transmission is 7z di, where r is the ratio T/t .

The probability of a termination during dt depends on the present
status of the trunk group: i.e., the number of calls in progress. Neither
the probability of an arrival (1), nor the probability of a termination
(2), depends upon the past history of the calls. This demonstrates the
fact that under the above conditions the trunk occupancy is a Markov
process.

The assumption of lost-calls-cleared is used; that is, a direct call that
encounters a condition of all-trunks-busy is cleared from that trunk
group and does not reappear in the busy hour. In the absence of S/I
traffic, the trunk occupancy is a relatively simple Markov process, which
is shown in the flow diagram in I"ig. 1. Statistical equilibrium considera-
tions lead to the following formula for the probability G, of exactly x
trunks being busy:

a®

il

= c
2
=0

The probability of loss ( probability of al
Erlang B formula:?

(e

‘ =2

- (3)
y!

= =

-trunks-busy) is the well known

GC

Blca) = -::T—ay (4)

y=0 'yf
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i e
X+

Gx+1

Fig. 1 — Markov chain for trunk occupancy under lost-calls-cleared assumption, no S/F traffic.
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2.0 Trunk Occupancy by Direct and S/F Trafic on a Lost-Calls-Cleared
Basis

9.9.1 One Trunk in Reserve, s = 1

The queue of S/I" traffic is given access to the trunk group only when
the oceupancy is such that one trunk will remain idle after transmission
of an 8/F message is initiated. An S/I" queue is assumed to exist at all
times, which means that whenever two trunks in the trunk group be-
come idle, one of them is taken for 8/F transmission. When the reserve
trunk becomes busy with direct traffic, S/F transmission is stopped on
the trunk on which the next (in time sequence) termination of an S/F
message oceurs. This last-ment joned trunk then becomes a reserve
trunk.

The oceupaney of trunks can be regarded as a Markov process, which
i« shown in the flow diagram of Fig. 2. The circles in the bottom row
represent states in which one trunk is available to accommodate possible
arrivals of direct traffic. Conversely, the circles in the top row represent
all-trunks-busy conditions. Trunk oceupaney by S/ traffic is repre-
sented by the index z, which, in IMig. 2, increases from left to right. S,
represents the steady-state probability of z trunks busy with S/ traffic
(in the bottom row): i.e., (¢ — 2z — 1) trunks busy with direct traffic
and one trunk in reserve. K. represents the steady-state probability of
2 trunks busy with 8/T traffic (in the top row):i.e., (¢ — z) trunks busy
with direct traffic and no trunks idle.

In the steady state, the transition probabilities out of S. during dt
are: a dt S. through a new arrival (transition into R)and (e —z—1)
dt S. through a termination of one of (¢ —z — 1) direct calls in progress
(into S.;; since, as soon as two trunks are recognized as idle, one of
them is seized for S/F transmission).

Transition probabilities into S. are: (¢ — z)dtR. through a termina-
tion of one of (¢ — z) direct calls in progress in state R. (in the time
interval after an arrival of a direct call and before the next termination,
in time, of an 8/F message); (z + 1)r diR. through a termination of
one of the (z + 1) S/F messages in progress in state R.i1 ; and (¢ — 2)
dt S._, through a termination of one of the (¢ — 2) direct calls in prog-
vess in state S.. Equating the transition probabilities out of S. to
transition probabilities into S. results in the following equation:

(a+c—z—1)8:=(c—2)8+ (z+ r Ry + (e —2)R.. (5)

The transition probabilities out of R. during dt arve: (¢ — z) dit R.
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“reserve.

Fig. 2 — Markov chain for trunk-ocecupancy under lost-calls-cleared assumption, dual use of trunks, one trunk¥n"
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through a termination of one of (¢ — z) direct calls in progress (into
8.) and zr dt R. through a termination of one of z S/F messages in prog-
ress (into S..;). The transition probability into R, is adt S, through an
arrival of a direct call.

It should be pointed out here that if a new, direct arrival occurs when
the chain is in state K., one call is lost (or takes another route), but
transition to another state does not oceur under the assumption of lost-
calls-cleared.

Equating the transition probabilities into R. to transition probahil-
ities out of R, results in the following equation:

aS, = (¢ — 2z + zr)R. = [e + 2(r — 1)]R.. (6)
Subtracting (6) from (5) results in
(z4+ 1)rR.py = (e — 2 —1)8. — (e — 2)8.., + 2r R.. (7)
This relation is satisfied if the following holds:
(z4+ 1Ry = (c—2z—1)8; (8)
and therefore,
aR. = (¢ — 2)8S:. (")

Actually, the recurrence relation of (8) and (9) ‘can be observed directly
by equating the transition probabilities through the appropriate cut-set
in I'ig. 2.

We will express first R. and S.,0 £ z < (¢ — 1), in terms of Ry,
the probability that all trunks are busy with direct traffic. Combining
(6) and (8) shows that

ar(z + DR.yy = (e — 2z — e 4+ 2(r — 1)]R. (10)
and thercfore,
arzR. = (¢ — z)[e + (z — 1)(r — )R-, . (11)
Iteration of (11) results in the following expression for R, :
[e +0(r — Dlle + 1(r = Dlle + 2(r — 1)]

oo fe 4+ (g — 1) (r — 1))
zlre (12)

fe=Dle—=2)--- (e =2) p

az

From (12) and (6),
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fe +0(r — Dlle + 1(r — Dlle + 2(r — 1)]
g 5 s le 4 2(r = 1))
Pe zl s (13)

_(c— 1)(0—2+) (c—z)Ro
azl

Now, R, can be determined for a given load a by noting that the sum
of probabilities R. and S; adds up to unity:

c—1 e—1
2R +2.8 =1 (14)

z=0 z=0
Introducing R, and S, from (12) and (13), respectively,

e + 00 — Dlle + 1(r — 1)][:: + 2(r — 1)]

) = e+ (z — D(r — 1))
ITO ,;u zlr:
fe—1)(e—2) -~ (c—2)

ai

[e +0(r = Dlle + 1(r — 1)][6 + 2 — 1)]

= e + 2(r — 1)]
+§1 2l
{e=1)(c—=2) :-- (e —2) (15)

al‘l“]

=2{a+c+z(r—l)l

le+0r—=Dle+1(r=1]---[e+ (z = 1)(r = 1)]

gzl

.(c—l)(c—2) coe (e —2)
a¢+1 ¥

The probability of loss corresponds to the probability that all trunks
are busy: i.e., the sum of the probabilities R. . This can be referred to as
the dual-use-of-trunks formula, D(e,a,,1) for ¢ trunks, a erlangs of
offered direct load, ratio r of holding times, and one trunk in reserve.
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D(earl) = > R,

[e + 0(r — D]le + 1(r — 1)]
: crfe 4+ (2= 1D (r — 1)
=0 zlr?
.(c —1){e —=2) --- (¢ — 2)
- @ . (16)

c—1

;ﬂ[a—l-c—l-z(r—l)]

e + 0(r — Dle + 1(r — 1)]
cevfe+(z = D(r —1)]

zlre

(e —=1}e—2) --+ (¢ —2)
az+1

The amount of S/F traffic in erlangs that can be accommodated is
denoted b. It is given by

c—1 c—1
b =228 + 2 2R.. (17)
z=0 z=0

Tquations (16) and (17) constitute the results sought.

The load b can be determined by a simpler formula when the grade
of service D(ec,a,r,1) has been calculated. This formula can be arrived
at by the following reasoning. The load in terms of trunks occupied is
¢ — 1 at all times, plus one additional trunk with probability D(c,a,r,1).
The erlang load in terms of traffic carried is b for the S/I" traffic and
all — D(e,a,nr1)] for the dircet traffic. [The portion eD(e,a,r,1) is
cleared under the assumption of lost-calls-cleared.] Equating the two
results yields the following equation,

b+ all — D(carl)] =c¢c— 14+ D(canrl) (18)
and therefore
b=e¢—1—a[ll — D(e,anr1)] + D(ecanrl)
(19)
=¢— (a+ 1[I — D(carl)].

It should be pointed out that for »r — o the probabilities K. — 0
as 1/r (except for Ry). In this limiting case the probability of loss tends
to B(e,a) with the difference—i.e., the impairment due to the S/I" traf-
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fic—being of the order of 1/». This can be written

lim [D(canr,1) — Blea)] =0 (;) (20)
The probabilities By, So, Si, -+ Sea tend to become, respectively,

G, Gor,Goz Gu.

2.2.2 Two Trunks in Reserve, s = 2

In this case, the queue of S/F traffic is denied access to the trunk
group unless two trunks will remain idle after transmission of an S/
message is initiated. A queue of 5/F traffic is again assumed to exist at
all times, which means that as soon as three trunks in the trunk group
become idle, one of them is taken for transmission of an S/F message.
When one (or two) of the reserve trunks becomes busy with the direct
traffic, S/I" transmission is stopped on the trunk on which the next (in
time sequence) termination of an S/F message occurs. The flow diagram
of the process is shown in Fig. 3. In states S, two trunks are idle; in
states W, one trunk is idle; in states R, all trunks are busy. Thus, in
state 8., z trunks are busy with the S/F traffic and (¢ — z — 2) with
the direect traffic; in state W, | z trunks are busy with the S/1" traffic and
(¢ — z — 1) with the direet traffic; in state R, , z trunks are busy with
the S/T traffic and (¢ — z) with the direct traffic. The transition prob-
ability coefficients are as given in the I'ig. 3.

Three basic equations are presented now, which state that the net
transition flow through three cut-sets is zero under the steady-state con-
ditions. The three cut-sets are indicated in Fig. 3 by lines of dots.

aS.+ (z+ 1Ry =(c—z2—1)W. 4 (e —2z—1)8., (21)
(e —z2—1)8,4 =zrR. + 2rW, (22)
(c —z+ 2R, = [e + z(r — 1)]R. = alW.. (23)

On the basis of (23), (22) can be rewritten as follows:

(¢ —z— I)S_I:zv'[l—!—c—#:lﬁ’z

a
- o[+ o 7

(24)

and similarly,
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Fig. 3 — Markov chain for trunk oceupancy under lost-calls-cleared assumption, dual use of trunks, two trunks in

reserve.




1426 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1962

e+ (z4+1)(r — 1)]1,1,:+1

a

(¢ —z—2)8, (z+1)?|:
(25)
W

=)
e+ (z+1)(r—1)

Introducing the relation from (25) into the left side of (21) and the
relation from (24) into the right side of (21), we obtain

rn|:1+ § — @2 :l
+e+ (24 1)(r—1)

_ [(C @ T (1 n ‘#1—))] W, (26)

[ +z("1)‘1+c+z(r:—1)}

- (z+1)'r[1 +

We assume R, is known and proceed to derive the other probabilities in
the following manner: W is determined from R, through the use of (23),
which is rewritten in a convenient form as (27). S. is determined from
W. through the use of (26), which is rewritten in a convenient form as
(28). R.1 is determined from S, through the use of (25), which is
rewritten in a convenient form as (29):

W, = e+ 2(r — 1)] (27)
a
+(-—1—1+——2L:l
sz=[c i ot alr = Dy, (28)
a[1+ e —2—2 :|
a+c+(z4+1)(r—1)

(e —2z — 2)a (29)

Rz+1=(z+1)[a+c+(z-|—1)(?—1)]

We obtain, using (27), for z = 0,

W,y = E’Ozi‘”] R, (30)

Using (28), forz = 0,
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Ora
s e iy = 1) = 1+———]
|:‘ ' cF 00 =Dy,

S[I= 0 o
c—0—2
a [] + aFeFior= _"ﬁ:l (1)
Ora
_[”’0“ =D =1+ 05e= 1)][c+0(:-ﬁ1':5h,
= 0
c—0-2 a-
I:]+a+c+l(r—l):|
Using (29), for z = 0, '
(r—()—u)ﬂ '-1
’ = Irfa + ¢+ 1(r — D]
Ora
_[H'O(T_“_l+c+0cr—1)][c+0(r—1)] )
B I:l L_c=0-2 } a o
a+ec+ 1(r —1)
c—0—2
e T e T =D "
Using (27), for z = 1,
W, = w}gl_ (33)
a
Using (28), forz = 1,
lra
e+ 1(r—1) =1 4 ———n——
S, = g~ 1(r — 1) W,. (34)

a[1+ c—1—2 ]
a+t+e+2(r—1)

I'inally

kra
. _._1[('-|—f(r—l) +—T.r_—:|
R:=I'It+f\(; UH + k(r — 1)

k=0 k= ¢ — k — -
”[1 I T 1)(7'—1)] (35)

== (e — k — 2a
‘1.-133(:’\'+ Dirle + (k + D(r — n]
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kra
II(-I-/.?—I)HI:C—I_]G“._I) +k(1’—1):|

=0 c—k — 2
“[1+a+c+(k 1)(r—1J] )

ﬁ (¢ —k — 2)a
k=0 (k + 1)rle + (b + 1)(r — 1)]

I:c-}-k(r—l) —1+_ﬁfﬂ—-]

S=I—Ic+ii(f'—-lH c+kir—1)
ok k=0 c—k—2
a[l+a+c+(fc+1)(r—l):l i

T (e — k— 2)a
I=I(L + 1)rfe + (k+ 1)(r — l)]

Now R, can be determined, since

=2 e—2

2 R +ZW+Z;S—1 (38)
The probability of loss D(e,a,r,2) is equal to the probability that all
trunks are busy
c—=2
D(capr2) = 2 R.. (39)
z=0
When values for R. obtainable from (35), (36), (37), and (38) are used
in (39), it can be regarded as the dual-use-of-trunks formula D(¢,a,r,2)
for ¢ trunks, a erlangs of offered direct load, ratio of holding times r, and
two trunks in reserve,
The amount b of the S/T traffic in erlangs that can be accommodated
is given by

c—2 c—2 c—2
b= zR. + 2 2W.+ 2 a8.. (40)
z=0 z=0 z=0

It should be pointed out that for r — co, the probabilities R, — 0 as
1/r* (except for Ry) and the probabilities W, — 0 as 1/r (except for
Wy). In this limiting case, the probability of loss tends to B(e,a) with
the difference — i.e., the impairment due to S/F traffic — being of the
order 1/r*:

lim [Dlear2) — Blea)] = 0 (}) (41)

r—>o0

The probabilities Ry, Wy, Sy, Si, -+ 8.2 tend to become, respectively,
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G., Gy, G o, Gy -+ Gy. The load b becomes
b=c¢—2—all —D(car2)]+ 26, 4 Gy (42)

This can be seen by the following reasoning. The load in terms of trunks
oceupied is (¢ — 2) trunks at all times, one additional trunk with the
probability 7._; and two additional trunks with the probability @, .
The erlang load in terms of traffic carried is b for the 8/F and a[l —
D(e,a,r,2)] for the direet traffic. Equating the two results yields (42).

III. RESULTS AND CONCLUSIONS

The recurrence relations for trunk occupancy probabilities as derived
above were programmed on an IBM 704 computer by Miss B. Berman.
Two types of programs were written:

i. The grade of service of direct traffic and the amount of S/1" traffic
accommodated are caleulated for a given amount @ of direct traffic, a
given number of trunks in a trunk group, and either one or two trunks
in reserve.

#7. The amount a of direct traffic and the amount of S8/I" traffic are
caleulated for a given grade of service assigned to direct traffic, a given
number of trunks in a trunk group, and either one or two trunks in re-
serve. This computer program is similar to (7) except that it involves
suceessive approximations in the amount of direet traflic to obtain the
desired grade of service.

These computer programs were used for trunk groups ranging in size
from 2 to 48 trunks. Special attention was given to one ratio of the aver-
age holding time of direct traffic to the average holding time of S/I"
trafic, r = T'/to = 300/3.6 = 83.3. This ratio was selected to correspond
to the average holding times which were originally expected in the
UNICOM system, for which the study was initially done. For the direct
traffic, T = 5 minutes = 300 seconds, and for the S/F trafhic, {, = 3.6
seconds. This last figure was obtained by assuming 150 words for the
average message length, 42-bits-per-word digital coding, and 2400-bits-
per-second transmission speed. Approximately one second is allowed in
the total for the average time required to establish the connection. Thus,
on the average, for one fully loaded trunk, 1000 S/F messages per hour
is the equivalent of only 12 direct calls.

Caleulations in the first type of program above were made for offered
loads of direct traffiec determined by the formula B(c,a) = 0.05. The
resulting grade of service of direct traffic and the amount of S/I traffic
carried for » = 83.3 are presented in Table I. (The grade of service is
plotted as a solid line in IFigs. 4 and 5.) It can be seen that substantial



TasLE I — D(e,a, 83.3,5) anD b ror B(c,a) = 0.05

| One Trunk in Reserve Two Trunks in Reserve
[ a
D(c,8,83.3,1) b Dfc,a,83.3,2) b
2 0.38132 0.05255 0.69127 — —_
3 0. 89940 0.05477 1.20463 0.05003 0.41676
4 1.52462 0.05670 1.61853 0.05008 0.79092
5 2.21848 0.05842 1.96954 0.05014 1.11664
6 2.96033 0.05996 2.27714 0.05021 1.40371
7 3.73782 0.06137 2.55294 0.05028 1.66049
8 4.54297 0.06267 2.80439 0.05036 1.89308
9 5.37025 0.06387 3.03662 0.05044 2.10599
10 6.21572 0.06500 3.25327 0.05052 2.30257
12 7.95007 0.06704 3.64998 0.05069 2.65643
16 11.54361 0.07053 4.34111 0.05105 3.25047
20 15,24928 0.07344 4.94398 0.05140 3.74232
24 19.03073 0.07592 5.49001 0.05176 4.,16546
30 24.80184 0.07908 6.23847 0.05229 4.71144
36 30.65736 0.08173 6.92986 0.05279 5.18284
48 42.53693 0.08598 8.20641 0.05374 5.98058
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Fig. 4 — Grade of service D(c,a,r,1) with a given by B(c,a) = 0.05, v8 number
of trunks ¢,
1430
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Fig. 5 — Grade of service D(e,a,r,2) with a given by B(c,a) = 0.05, vs number
of trunks c.

amounts of S/T traffic can be carried. When one trunk is held in reserve,
the amount ranges from 0.7 erlang (700 messages per hour) in the case
of a trunk group with 2 trunks, to 8.2 erlangs (8200 messages per hour)
in the ease of a trunk group with 48 trunks, When two trunks are held
in reserve, the amount ranges from 0.42 erlang (420 messages per hour)
in the case of a trunk group with 3 trunks, to 6.0 erlangs (6000 messages
per hour) in the case of a trunk group with 48 trunks.

The impairment in grade of service to direet traffic — i.e., the differ-
ence between the grade of service under the dual use of trunks and the
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grade of service when no S/ traffic is sent (for the same amount of
direct traffic) — is rather small when 1 trunk is held in reserve and
practically insignificant when 2 trunks are held in reserve. The impair-
ment increases from 0.003 for the 2-trunk group to 0.036 for the 48-trunk
group when 1 trunk is held in reserve, and from 0.00003 for the 3-trunk
group to 0.0037 for the 48-trunk group when 2 trunks are held in reserve.

Similar ecalculations were carried out for different ratios r of holding
times, ranging from 100 to 1. The grade of service to the direct traffic
is plotted, with r as a parameter, as dashed lines in Ifigs. 4 and 5. The
impairment, increases rapidly with decreasing ». If the impairment were
plotted as a function of r, it can be seen that for » > 10 the impairment
obeys closely the asymptotie functional relation 1/r of (20) for s = 1
and 1/r* of (41) for s = 2. For lower r, the impairment increases more
slowly than 1/r for s = 1, or 1/72 for s = 2. The capacity b for carrying
S/T" traffic increases slowly with the increase of probability of loss,
which is indicated for s = 1 by (19).

Calculations in the second type of program were used to obtain the
offered amount of direct traffie, which will result in grade of service
0.05 under the dual use of trunks: i.e., load @ in erlangs determined by
D(c,a,83.3,1) = 0.05 and by D(c,a,83.3,2) = 0.05. The amount b of
S/T" traffic was computed at the same time. These results are presented
in Table IT and Fig. 6. Comparing dual use of trunks having 1 trunk in
reserve with use of trunks for direct traffic only at the same grade of
serviee, it ean be seen that for the 2-trunk group, 0.7 erlangs of 8/T

TaBLE IT —a anDp b For D{e,a,83.3,s) = 0.05

One Trunk in Reserve Two Trunks in Reserve
D(c,a,83.3,1) = 0.05 D(c,0,83.3,2) = 0.05
¢
@ b @ b

2 0.36953 0.69894 — —

3 0.85954 1.23344 0.89912 0.41686

4 1.44427 1.67795 1.52364 0.79143

5 2.08803 2.06637 2.21629 1.11790

G 2.77203 2.41657 2.95642 1.40608

7 3.48519 2.73907 3.73167 1.66431

8 4.22041 3.04060 4.53409 1.89868
9 4.97202 3.325672 5.35812 2.11369
10 5.73925 3.59771 6.19983 2.31268
12 7.30392 4.11127 7.92525 2.67221
16 10.52058 5.055645 11.49555 3.28063
20 13.80962 5.93086 15.17145 3.79025
24 17.14272 6.76441 18.91730 4.23396
30 22.19328 7.96639 24.62530 4 81501
36 27.28129 9.13277 30.40758 5.32546
48 37.51678 11.40906 42.11484 6.21013
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traffic (700 messages per hour) can be sent at the cost of decreasing the
offered direct load from 0.381 erlang to 0.369 erlang: i.e. by 0.012 erlang
(a fraction 0.14 of the average holding time of a direct call). For the
48-trunk group, 11.4 erlangs of S/F traffic (11,400 messages per hour)
can be sent at the cost of decreasing the offered direct load from 42.5
erlangs to 37.5 erlangs: i.e. by 5.0 erlangs (60 direct calls). Making a
similar comparison when two trunks are held in reserve, it will be noted
that if the offered load a determined by B(e,a) = 0.05 were to be plotted
in Fig. 6, it would virtually coincide with the plotted offered load a
determined by D(e,a,83.3,2) = 0.05. Thus, the decrease in direct capacity
is negligible. In Table IIT an example is presented of trunk occupancy
probabilities which result from a caleulation in the second type of pro-
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TasLe 11T — Trunk Occurancy PROBABILITIES

One Trunk in Reserve Two Trunks in Reserve
P(5,a,83.3,1) = 0.03 ~ 1)(5,a,83.3,2) = 0.05
R S: R: W, Sy

0 0.03912 0.09368 0 0.04977 0.11229 0.19610
1 (1.00450 0. 18807 1 0.00018 0.00688 0.27160
2 0.00338 0.27508 2 0.00004 0.00322 0.24702
3 0.00220 | 0.26559 3 0.00001 | 0.00098 | 0.11190
4 0.00080 0.12758

Total 0.05000 0.95000 0.05000 0.12337 0.82663

gram; probabilities B. and S. for D(5,a,83.3,1) and the probabilities
R., W., and 8. for D(5,a,83.3,2) are given.

These caleulations were repeated for different values of » ranging
from 100 to 1. The capacity a for carrying direct traffic determined by
D(e,a,r,1) = 0.05 is plotted in Fig. 7 and by D(e,a,r,2) = 0.05 in Fig. 8.

The following conclusions can be drawn from the numerical results.
The dual use of long-haul trunks for both direct and S/F traffic can be
economically attractive. The caleulations indicate that when one or two
trunks are held in reserve for possible arrivals of direct traffic, it is pos-
sible to send large amounts of S/I' traffic on the same trunk groups as
direct traffic with little or negligible impairment of the direct traffic,
provided the parameters of group size and the number of trunks held
in reserve are properly selected. The dual use of trunks is especially
attractive if the average holding time of the S/I" traffic is short compared
with the average holding time of the direct traffic. When the holding
time of the S/F traffic approaches the average holding time of the direct
traffic, the capacity for carrying direct traffic deteriorates sharply, unless
two trunks (or more, for large trunk-groups) are held in reserve.

The potential economies are believed to be of greatest importance in
systems with small trunk groups. A manipulation of the data (1 trunk
in reserve) will serve to point out that the gain in trunk group efficiency
is very substantial in the smaller groups and decreases as the number
of trunks increases. The trunk efficiency is the load carried divided by
the number of trunks. The load carried is [l — B(e,a)la = 0.95a (from
Table 1) when no S/F traffie is present, and

[1 — D(c,a,r,l]a + b = 0.95a + b

(from Table IT) under the dual use of trunks. The 2-trunk group increases
in efficiency from 18 to about 52 per cent, the 10-trunk group from 59
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Fig. 7 — Offered load of direct traffic a defined by D(¢,a,r,1) = 0.05, vs ratio
of holding times r.

to about 90 per cent, and the 48-trunk group from 84 to about 98 per
cent. These advances are significant in terms of possible savings in long-
haul transmission plant.

This method of operating circuit groups at such a high level of occu-
pancy remains to be evaluated in terms of the grade of service of the
S/T user. The grade of serviee of the S/F traffic has not been discussed

The analysis given here was confined to a single trunk group carrying
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traffic between two points. The problems of alternate routing and
through-switching of traffic are yet to be explored.
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Glossary of Symbols

a Offered amount of direet traffic, in erlangs, during busy hour.

b Amount of S/I7 traffic per busy hour that can be accommo-
dated, in erlangs.

¢ Number of trunks in a trunk group.

s Number of trunks held in reserve.

ly Average holding time of S/F traffic.

T Average holding time of direct traffic.

r Ratio of the average holding time of direct traffic to the
average holding time of 5/I traffic, T/t .

Be,a) Grade of service to direct traffic on lost-calls-cleared basis,
with ¢ trunks in the trunk-group and an offered load a.

D(c,ar,s) Grade of service to direct traffic on lost-calls-cleared basis,
with ¢ trunks in the trunk-group, offered load a of direct
traffie, ratio of holding times r, and s trunks in reserve for
possible arrivals of direct traffic.

(V. Probability of exactly a trunks being occupied by direct
traffic.

n Expected number of arrivals of direct traffic during the
busy hour,

R. Probability of, or state of, all-trunks-busy, with S/I' traffic
on z trunks.

S. Probability of, or state of, specified number of trunks (one
when s = 1, two when s = 2) in reserve, with S/F traffic
on z trunks.

V. Probability of, or state of, one trunk in reserve, with S/I°
traffic on z trunks (under the operating method where
s = 2).

x Number of trunks occeupied by direct traffic.

z Number of trunks occupied by S/F traffie,
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Over-All Characteristics of a TASI System

By J. M. FRASER, D. B. BULLOCK, and N. G. LONG
(Manuseript received September 19, 1061)

TASI (Time Assignment Speeeh Interpolation) has been in service on
transatlantic submarine cable channels since mid-1960. Measurement of
service quality on one TASI system (White Plains-London) indicales
that system performance equals or exceeds the original engineering objec-
twes in all but a few cases. Field modifications now betng made should
bring these exceptions into closer agreement with objectives.

A companion papert discusses in detail the design considerations for
TASI speech detectors and deseribes subjective tests made to determine the
marvimum permissible loading of TASI circuils without tmpairment of
Sernee.

TASI, an abbreviation of Time Assignment Speech Interpolation, is
a high-speed switching and transmission system which uses the idle time
in telephone calls to interpolate additional talkers.!** In a normal tele-
phone conversation each subscriber speaks less than half of the time.
The remainder of the time is composed of listening, gaps between words
and syllables, and pauses while the operator or subscriber leaves the
line. Measurements on working transatlantic channels, I"ig. 1, show that
a TAST speech detector with a sensitivity of —40 dbm is operated by
speech from one talker on the average about 40 per cent of the time the
circuit is busy at the switchboard. Since long distance circuits use sep-
arate facilities for the two directions of transmission, each one-way
channel is, on the average, free about 60 per cent of the time.

In order to take advantage of this free time to interpolate additional
conversations, a considerable group of channels must be available. An
attempt to interpolate two independent conversations on a single channel
would result in a large percentage of the speech being lost, since the
probability of both talkers speaking at the same time is high. However,
with a large group of channels serving a larger group of talkers, the vari-
ations in demand become much smaller. Even with 74 talkers on 37
channels, the percentage of speech lost (freeze-out fraction) is reduced to
a point where there is no noticeable effect on continuity of conversation.

1430
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The increase in channel capacity with TASI is illustrated in Fig. 2,
which gives the TASI advantage (ratio of switchboard positions, or
trunks, to channels) for a range of activities and number of channels.
A freeze-out fraction of 0.5 per cent has been assumed for each curve,
since this amount of speech loss has been found from tests to have a
negligible effect on transmission quality.

It will be noted in Fig. 2 that a TASI advantage of at least two can
be obtained on a 37 channel group as long as the average activity is not
significantly greater than 40 per cent. TASI is designed to use 36 chan-
nels for speech interpolation and one additional channel as a control
channel for transmitting disconneet and error checking signals. This
fits the needs of present day submarine cable systems, since 37 is close
to the maximum number of channels that can be made available for
TASI out of the total 48 channels derived by submarine cable type
channel equipment? employing 3-ke filter spacing. The remainder of the
channels are required for special services such as program material and
certain types of data which are ordinarily not transmitted through TASI.
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The first TASI system was put in service in June, 1960 on the trans-
atlantic cable system between White Plains and London (TAT-1) and
the second followed a few months later on the cable between New York
and Paris (TAT-2). TASI is well suited to submarine cable application
for several reasons. Although TASI requires considerable expensive ter-
minal equipment, it is an economical means of doubling the number of
conversations that can be handled on expensive submarine cable facil-
ities. In addition, TASI is easier to apply to long submarine cables than
to the land plant with its many branching points and alternate routes.

The principal purpose of this paper is to describe the application of
TASI to the White Plains—London submarine cable system. The channel
requirements that must be met for TASI operation are detailed along
with measurements of the combined system characteristics, such as
noise, bandwidth, ete. Measurements of the amount of speech lost in
an actual working system are ecompared with earlier theoretical com-
putations.

[. DESCRIPTION O OVER-ALL SYSTEM

The message channels on the land portions of the TAT-1 system em-
ploy standard 4-ke channel spacing, and the undersea channels are
spaced at 3-ke intervals. The land and undersea-type channels are inter-
connected at voice frequencies at Sydney Mines, Nova Scotia and Oban,
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Fig. 3 — TASI equipment — one direction of transmission.

Scotland. A typical message circuit between the TASI terminals at
White Plains and London extends from about 275 to 3150 cps.

Fig. 3 shows a block diagram of the TASI equipment for one direc-
tion of transmission; an independent TAST is used in the opposite direc-
tion of transmission. Presence of speech on a trunk causes the speech
detector to operate, initiating a request for a channel. The transmitting
common control equipment selects an idle channel, if one exists, and
assigns it to the requesting trunk. Before the talker is connected to the
channel, a “connect” signal is sent over the assigned channel specifying
the trunk to be connected to that channel at the distant receiving ter-
minal. During the time required to connect talker and listener the initial
part of the talker’s speech is clipped. In order to minimize clipping the
signaling time has been made as short as possible, 17 ms, consistent with
reliable signaling and quiet switching. The signal information consists
of a single burst of 4 tones out of a possible 14, ranging in frequency
from 615 to 2419 e¢ps. Once a talker is assigned a channel he does not
lose the connection as long as he continues talking. When he stops talk-
ing he may still retain the connection unless he has to be disconnected
to provide a channel for another talker. A similar burst of 4 tones out of
15 (615 to 27301 cps) is used to disconnect the talker and the listener,
but this signal is sent over a separate control channel. During periods
when no disconnect signals are being used, the same type of code sig-
nals are used to send information over the control channel as to the
trunk-channel connections existing at the transmitting end. This con-
nection-checking information overrides any earlier information and
determines the connection made at the receiver. In addition, a compari-
son at the receiver between existing and overriding information is used
to detect bad channels.

As shown in Fig. 2, the number of trunks which can be served by TASI
depends upon the number of channels available. To prevent excessive
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speech loss when the connecting channels fail, TAST has been designed
to automatieally remove bad channels from service; trunks are then
removed until the proper trunk-channel ratio is reached.

In addition to the provisions for automatically reducing the number
of conneeted trunks and channels, TASI contains audible and visible
alarms to identify internal failures. In the event of a major failure in
TASI the terminals automatically switch themselves out at both ends,
reducing the number of connected trunks to the number of available
channels. TASI is also switched out automatically if both the regular
and alternate control channels fail. If only the regular control channel
fails, the disconnect and error checking signals are automatieally switched
to the alternate control channel and TASI will continue to operate with
only & momentary interruption.

When TASI is switched out, the voice-frequency amplifiers associated
with TASI are also switched out. The schematic relationship of these
voice-frequency amplifiers and other transmission equipment is shown
for one terminal in I'ig. 4 along with typical operating level points. The
combination of VI* amplifiers, TASI, and appropriate attenuation pads
provides a zero-loss deviee and also provides optimum transmission levels
to TASI.

The echo suppressor shown in Fig. 4 performs the usual function of
preventing echoes, generated at points of impedance mismateh, from
reaching a subseriber’s ear and interfering with normal conversation.

TRUNKS CHANNELS
| I

TRANSMITTING 162 o

L" TASI CHANNEL
TRANSMITTER BANK
MODU-
LATOR

—=— HYBRID ECHO SIGNALING SPEECH
SUPPRESSOR EQUIPMENT DETECTOR
. CHANNEL
= /1 BANK
- +7 J-zg +7 | DEMODU-
RECEIVING LATOR

—-/6 = TRANSMISSION LEVEL

TFig. 4 — TASI and associated equipment.
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On TASI circuits, these suppressors must be of the receiving end split
type at each end of the circuit to prevent the distant talker’s echo from
operating the speech detector. The location of a split suppressor is shown
schematically in Iig. 4. Speech received from the distant party reaches
the echo suppressor and operates it, causing a large loss to be inserted
in the transmitting path before the speech detector. This large loss pre-
vents most of the echoes capable of operating the speech detector from
reaching the speech detector, but the initial part of the echo may get
through because the existing echo suppressors were designed with a
slow operate time to minimize operation on line noise. On the other
hand, the speech detectors must be relatively fast operating to mini-
mize initial clipping of speech. The result is that the operate time of the
echo suppressors is about 7 ms longer than that of the speech detectors.
During this interval the speech detector may be operated by echoes be-
fore the echo suppressor can operate. To minimize this difficulty, and
still use existing echo suppressors, the speech detectors are equipped with
fast-acting circuits which reduce the sensitivity of the speech detectors
as much as 13 db depending on the energy present on the receiving side
of the trunk. This echo protector function of the speech detector reduces
the probability of operating during the initial part of the spurt; the
large loss inserted later by the echo suppressors prevents operation
during the remainder of the spurt, which usually contains the higher
energy.

In addition to the equipment shown in Fig. 4, compandors can be
applied to noisy channels as necessary to meet noise objectives. Tests
have indicated that TASI can signal satisfactorily through Bell System
1A-type compandors or their British equivalent.

1.1 Toll Signaling and Supervision

Because TASI is a time sharing device, there are problems involved
in transmitting supervisory and dialing pulses. TASI can work satis-
factorily with the present ringdown manual arrangement, but it is ob-
vious that the usual method of continuous supervision by means of a
steady tone during the idle time cannot be used. Likewise, dial pulses
cannot compete for a TASI channel on the same basis as a talker, be-
cause TASI clipping would cause signaling errors. A burst signaling sys-
tem is required.

1I. ENGINEERING OBJECTIVES FOR TASI

In order that TASI could operate over existing telephone facilities
and would fit in with existing performance standards, certain engineering



TASI SYSTEM CHARACTERISTICS 1445

TABLE I — ENGINEERING OBJECTIVES FOR TASI

Capacity At least 72 message trunks to be operated over 37, 3-kc
spaced cable channels. If the number of available channels
is less than 37, the number of trunks to be provided by
TASI will be less, as illustrated in Fig. 2. If the total busy-
hour speech activity is inereased above about 409, the
maximum number of trunks to be provided will be less.

Speech quality With the TASI system fully loaded as defined above, the
degradation to speech quality due to TASI should not
exceed about 1 db. When the number of talkers equals the
number of available channels, the TASI degradation
should be close to 0 db.

Signaling errors | On the average, during the busy hour, no more than 0.01%
of the talkspurts transmitted should be lost because of
signaling errors if the transmission medium meets the
objectives noted in Table II. Assuming that the average
activity is 4097, this means about one talkspurt lost in
thirty average 10-minute calls.

Reliability The reliability objective is that the amount of time trunks
are removed from service because of TASI failure shall be
less than 0.19; of the total time.

Frequency re- The TASI transmitter and receiver connected back to back

sponse should pass a band of 200-3500 ¢ps. The average variation
from flatness of all the ehannels should be within 4-0.5 db
over this frequency range. In addition the standard devia-
tion of the variations from the average should not exceed
0.2 db.

Nel loss The net loss at 1000 cps through the TASI equipment alone
should be adjustable to within 0.15 db of 0 db and should
stay within £0.15 db of the adjusted value for at least
one month.

Circuit, The noise generated by TASI in the transmission path should
not exceed about 12 dba as measured at the zero level
points.

Crosstalk To provide adequate crosstalk performance, an equal level

coupling loss of 70 db should be obtained between talking
paths in TASI. This applies to both near-end and far-end
crosstalk,

objectives were set up to guide the planning and development of TASI.
They were considered as reasonable goals rather than rigid requirements,
These objectives are listed in Table 1.

IIT. CHARACTERISTICS OF CHANNELS FOR TASI

Because of the high-speed signaling used in TASI and because sub-
seribers are switched rapidly between channels, the transmission re-
quirements of the channels connecting TASI terminals are somewhat
tighter than required for the usual telephone message service. The char-
acteristics of importance to TAST are listed in Table II.
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TaBLE IT — ReEQUIRED TrANSMISSION CHARACTERISTIC OF
Connecring CHANNELS FOrR TAST

Minimum bandwidth

Flatness of band 565 to 2550
eps

1-ke net loss value of any
channel

Envelope delay distortion
565 to 2550 eps

Flat delay

RMS noise

Crosstalk

Frequency stability (565 to
2550 eps)

Working levels for TASI
(excluding pads or ampli-
fiers outside of TASI)

300 ¢ps—2900 cps (10-db cutoff frequencies).

Difference between maximum and minimum loss
should not exceed 2.5 db.

Not more than =3 db from the nominal value.
Not greater than 2 ms.

Maximum difference between channels should be
no more than 10-15 ms at 1000 eps. (The control
channel should be one of the fastest.)

Without compandors, 38 dba at zero transmission
level (38 dba 0). With compandors, noise on line
ahead of compandors should not exceed 51 dba 0.

Difference in output noise between channels
should not exceed 6 db.

Tqual level crosstalk loss on all channels should
be at least 60 db.

No frequency shifted more than 2 eps.

Transmitting terminal input, —2 with respect to
zero transmission level point. Receiving ter-
minal input, +4 with respect to zero transmis-
sion level point,

1V. MEASURED TRANSMISSION CHARACTERISTICS

After TASI was installed on TAT-1 extensive measurements and tests

were made to determine how closely TASI came to meeting the engineer-
ing objectives and how TASI operated in the environment of the tele-
phone plant. The results of the tests and measurements are given briefly
in the following paragraphs.

4.1 Frequency Response

Fig. 5 shows the frequency response of a TAT-1 message channel,
with and without TASI. Figure 5 applies to most connection channels,
although a few channels differ significantly due to channel bank and
pilot filters. The sharp cutoff frequencies of the channel, about 275 and
3150 cps, are principally due to the 3-ke submarine cable terminal
equipment. It can be seen that TAST does not affect the frequency re-
sponse of the system appreciably.
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Fig. 5 — Frequeney response — TAT-1.

4.2 Net Loss Variations

The net loss variations on TAT-1 are kept to a minimum through the
use of pilot-controlled automatic gain controls. An associated alarm re-
porting system informs all important stations automatically if the pilot
levels deviate heyond prescribed limits.

Fig. 6 shows a distribution of the difference in net loss of successive
talkspurts experienced by a typical White Plains—London subseriber
talking through TASI during the busy hour. These changes are due to
differences in the net losses of the channels and the various paths through
TASI. Only 8 per cent of the changes were greater than about 3 db,
which is just noticeable. There were no changes greater than about 5
dh. During periods of light traffic, the number of switches between
channels, and the number of net loss changes, will decrease and cease
entirely if traffie is very light.

4.3 Envelope Delay Distortion

A fixed delay equalizer was added to each of the TAT-1 message chan-
nels to reduce the delay distortion. In addition, the voice-frequency
interconnections between land and undersea channels were arranged
to avoid combinations having excessive delay distortion. The median
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Fig. 6 — Net loss differences.

value of delay distortion of the resulting White Plains—London message
channels is under 0.5 ms, with no channel being worse than 1.6 ms, within
the TASI signaling band (565 to 2550 ¢/s).

Fig. 7 shows the delay distortion of a typical message channel before
equalization, and after the addition of equalizers plus TASI. Channels
located in the frequency spectrum near the cutoffs of group connector
filters and pilot-frequency filters have delay distortion characteristies
significantly different from the example on Fig. 7, particularly at the
lower and upper edges of the passband.

4.4 Noise

TASI contributes very little to the over-all system noise; the average
of the TAT-1 channels is about 36 dba at zero transmission level (ab-
breviated “36 dba 0”’), and the average noise generated by TASI plus
amplifiers is less than 12 dba 0. Since noise is increasing slowly on the
transatlantic circuits caused by the change in cable characteristics with
time, compandors have been installed on some channels. This will not
influence the operation of TASI.
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When a channel is disconnected during a conversation, the listener
may nofice a change in the background noise, because he no longer hears
the channel noise of the whole system but instead hears only the noise
of the trunk connecting him to TASI. To prevent the subscriber from
feeling that he has lost his circuit due to the sudden noise change be-
tween successive connections, the receiving TASI terminal transmits
random noise of about 33 dba 0 toward the listener whenever his trunk
is not connected to a channel.

V. SPEECH CLIPPING

In addition to the measurements described above, measurements were
made of the amount of speech clipped from subscribers making ealls
through the TAT-1 TASI system during the busy hour. The measured
ralues were compared with computed values which were based on meas-
ured speech activities and talkspurt lengths.

The computations took into account the two major components of
speech clipping in TASI, which are:

1. Signaling elipping, which is the time lost (17 ms) while a new con-
nection is established;
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2. Freeze-out, which is the time lost because no channels are available.

The length and frequency of these clips will vary from call-to-call due
to loading, speech habits, or statistical chance.

In addition to signaling and freeze-out, some clipping is also caused
by (a) speech-detector response time and threshold; (b) disconnection
delays caused by control channel crowding during heavy loading. How-
ever, tests! have shown that the TASI speech detector introduces neg-
ligible speech impairment, and as described later it is estimated that
control channel overload contributes very little clipping.

The results of the computations for various trunk-channel combina-
tions are shown in Fig. 8 for the median call, and in Tlig. 9 for the worst
1 per cent case. TAST can operate with a maximum of 36 speech channels
plus one for control, but because of the demands for special services, 37
channels are not available on all systems for TASI. Results are shown,
therefore, assuming different numbers of channels are available to TASI.

The right-hand scale in Figs. 8 and 9 gives the estimated db impair-
ment corresponding to the speech loss shown by the left-hand scale. The
upper solid curves assume that during the busy hours the circuits are
carrying calls 100 per cent of the time (A = 1.0); the lower dotted curves
assume that over the busy hours the average loading of the circuits is
0.85.

As shown in Fig. 8, for example, a subseriber in a 74 trunk, 36 + 1-
channel fully-loaded system will have 1.1 per cent or less of his speech
clipped during 50 per cent of his calls; Iig. 9 shows that this same sub-
seriber will lose 2.9 per cent or less of his speech during 1 per cent of his
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calls, In a TASI system with an average loading of 0.85, the median
clipping would he 0.6 per cent or less, and the upper 1 per cent clipping
would be 1.6 per cent or less. The loading factor varies with season, world
events, ete. In order to be conservative, and to provide good quality
speech even during peak periods, the recommended trunk-channel ratios
shown in Table ITI assume 100 per cent loading of all trunks.

TaBLE 11T — RecomMENDED OPERATING CONDITIONS

Approximate percentage of speech clipped
Number of connection channels | Normal max. no. of talker
available te TASL trunks

Median-% 1-%
24 41 47 19, 3%
28+ 1 a6 1 3
32 41 65 1 3
3641 74 1 3

The dots in Figs. 8 and 9 for 47 trunks on 24 + 1 channels represent
measurements made during the busy hours on the TAT-1 TASI sys-
tem. Since the results lie between the A = 1 and A = 0.85 computed
values, the indieations are that the loading of this system, during the
busy hours, is between 0.85 and 1.0. Direct measurements of circuit
usage were made and confirm that the average lies in this range.

Fig. 10 shows the complete distribution of the measured speech
loss during subseriber calls caused by signaling elipping and freeze-out
on TAT-1. Both computed and measured curves of the two components
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are approximately log normal. The good agreement shown in Fig. 10
between computed values (assuming A = 0.85) and the measured values
indicates that with respect to freeze-out fraction the operating TASI
behaves statistically as expected.

VI. CLIPF LENGTHS

Another important characteristic of TASI clipping is the distribution
of the lengths of clips a talker experiences. The length of clip a talker
receives whenever he receives a new connection is composed of two
major parts; the constant signaling clip (17 ms) and the freeze-out,
which may vary from 0 ms to 500 ms (upper limit for all practical pur-
poses), depending upon the instantaneous load. The computed distribu-
tion of clip lengths a subscriber may experience in a 47/24 4 1 TASI
is shown in Fig. 11 for A = 0.85 and A = 1 together with measured
values on the New York-London TASI system. The measured 1 per
cent clip length in this system was about 60 ms. Here again the meas-
ured values lie between A = 0.85 and A = 1, indicating the actual load-
ing was between these two values. While the computed distributions
are for a 47/24 + 1 TASI installation, the distributions apply fairly
well to all the trunk-channel ratios shown in Table III.
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VII. CONTROL CHANNEL CAPACITY

As mentioned earlier, control channel erowding under heavy loading
conditions can delay disconnections and in some cases increase clipping
by delaying subsequent connections.

In a 74 talker, 36 4+ 1 channel TASI system in which each spurt re-
quires a new connection, it is estimated that disconnects are delayed, on
the average, about 4 ms each. This results in an estimated inerease in
average freeze-out fraction of less than 0.2 per cent. Since a working
system switches less often than every spurt — a fact confirmed by meas-
urement — the actual effect of control channel crowding is believed less
than the above estimate indicates. Although in some rare cases bunching
could seriously effect individual talkers, it appears that control channel
overload contributes negligible clipping.

VIII. CONCLUSIONS

TAST has been operated successfully on submarine eable systems to
provide approximately twice as many good quality message trunks as
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existed before TASI. The measurements made on an installed TASI
system have shown that TASI has come close to meeting its engineer-
ing objectives and that field modifications now going on will bring closer
agreement between performance and objectives. The close agreement
between computations of speech clipping and the measured values show
that TASI theory is well understood and that TASI in the field is con-
forming closely to theory.

REFERENCES

1. Bullington, K., and Fraser, J. M., Engineering Aspects of TASI, B.8.T.J.,,
38, 1059, pp. 3563-364.

2. O'Neill, E. F., TASI—Time Assignment Speech Interpolation, Bell Labora-
tories Record, 37, 19569, pp. 83-87.

3. Tucker, R. 8, Sixteen-Channel Banks for Submarine Cables, Bell Labora-
tories Record, 38, 1960, pp. 248-252.

4, Miedema, H., and Schachtman, M. G., TASI Quality — Effect of Speech
Detectors and Interpolation, this issue, pp. 1455-1473.



TASI Quality — Effect of Speech

Detectors and Interpolation

By H. MIEDEMA and M. G. SCHACHTMAN

(Munuseript received September 19, 1961)

This article describes tests made to select design parameters for the
speech detectors in the TAST system. Results of subjective tests carried out
lo determine mazimum permissible loading of TASI circuits during busy
hours are also described. Finally, conclusions drawn from observations on
a working TASI system are given. These observations indicale that TAST
is a more satisfactory method of increasing transatlantic cable capacily
than alternate methods, such as the use of 2-ke channel banks.

I. INTRODUCTION

TAST ( Time Assignment Speech Interpolation) is a new component
in the telephone system that can approximately double the message
capacity of existing long submarine eables. With TASI many calls share
the same facilities, each requiring an available channel only when speech
is transmitted. In order to recognize that speech is being transmitted
by the subscriber, a highly sensitive speech detector is required. To
assign the speech to an idle channel and to connect the proper talker
and listener at each end requires a rapid switching system. A description
of the switching system and other related matters can be found in other
sources.!*# This paper deals with: (a) the work carried out to select the
parameters of a speech detector satisfactory for TASI operation and
(h) the results of subjective tests made to determine the approximate
elfect of the type of speech clipping that can occur in a fully loaded TAST
during busy traffic periods.

Some speech is lost whenever the number of individuals talking or
starting to talk in one direction on TASI ecircuits exceeds the number of
available channels. The amount of lost speech must be kept small so
that the transmission quality is not affected appreciably. On the aver-
age, less than 0.5 per cent of the total speech is lost due to interpolation,
as long as the number of calls in progress is held to no more than twice

1455
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the number of channels. The effect of this loss on transmission quality is
practically negligible.

In addition to the speech lost through interpolation, some speech is
lost during the time required to connect a talker and his listener at the
other end to the assigned channel. In TASI the switching time (17 milli-
seconds) has been kept as short as possible, consistent with reliable
signaling. During the busy hours a subscriber will be switched about
every second talkspurt; however, during occasional periods of peak load,
the subseriber may be switched almost every talkspurt. Consecuently,
17 milliseconds will be clipped from a large number of talkspurts during
the busy hours. In order to minimize the amount of speech lost due to
switching time, T ASI has been designed so that a subseriber loses his
channel only when it is not needed by that subscriber and when it is
required by another talker.

A third possible source of lost speech results from the operate time of
the speech detector. Whenever a talker has to be reconnected to a
channel, the speech detector must recognize that speech is present and
initiate the proper action. The interval between the time that the speech
starts and the speech detector reacts adds to the amount of lost speech.
The operate time of the speech detector can be kept small compared
with the clipping caused by interpolation and connect signaling, but it
should not be made so fast that the detector operates too often on noise.

In order to determine suitable speech-detector characteristics, sub-
jective laboratory tests and field measurements were made on working
transatlantic ecircuits. Since the demand for transatlantic circuits ex-
ceeded the capacity of the existing cable facilities, the schedule for
developing TASI was of necessity very short for such a complex system.
The tight schedule limited the type and length of test to the minimum
needed for reasonable assurance that a satisfactory speech detector
could be built. Consequently, a straightforward voltage threshold de-
tector was chosen instead of a more complicated type. The first part of
this paper deseribes the test results that led to the selection of the speech-
detector characteristics. The second part of this paper describes the
results of subjective tests to determine the impairment in speech quality
caused by various amounts of lost speech. This work was needed as a
guide to the maximum number of circuits that can be assigned to TASI
without affecting speech quality adversely.

II. SPEECH DETECTOR CHARACTERISTICS

The ideal speech detector for TASI should operate only when speech
is present and should not operate when noise and extraneous signals
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are present. A practical detector must represent a compromise between
ideal operation on speech signals and ideal rejection of noise signals. In
addition, the activity, or percentage of the total time that a detector
is operated, must be minimized. The parameters of the detector were
chosen to insure that it

i. operates when very low levels of speech are present,

71. operates a minimum amount of time on line noise, and

i1, minimizes the number of times a subscriber must be switched,
consistent with allowing twice as many calls as there are channels avail-
able.

The speech-detector parameters are interrelated and one parameter
could not be selected without considering the effect on all other parame-
ters. In order to choose the best combination, a series of subjective tests
were made in the laboratory to find the speech-detector characteristics
that provided good results under simulated plant conditions. Later,
field measurements were made during a large number of transatlantic
telephone calls to determine the performance of several possible speech
detectors under actual plant conditions for a wide variety of talkers.
The field tests measured speech activities, talkspurt lengths, and number
of talkspurts. The combined results of the laboratory subjective tests
and field measurements led to the choice of speech-detector character-
istics shown in Table I. Each of these parameters will be treated separ-
ately.

When the speech detector is made too sensitive, the detector operates
on noise and thereby reduces the possible TASI advantage. Conversely,
when the speech detector is not sensitive enough, part of the first syllable
is lost before the detector is operated. A sensitivity of the TASI speech
detector of —40 dbm at zero transmission level when combined with
an adequate speech detector hangover (slow release time) results in
satisfactory speech quality with volumes as low as —31 vu and also
results in minimum false operations due to noise. As shown on Tig. 1,
a —31 vu talker has a lower volume than almost all talkers on trans-
atlantie calls.

TaBLE [ — TASI SpeEecH DeTECTOR CHARACTERISTICS

1000-cps sensitivity —40dbm at zero transmission level point*
Frequency range 500-3000 cps

Operate time 5 milliseconds

Hangover (release time) 240 milliseconds “‘deferred’

Echo suppression Maximum 13 db

* The zero transmission level point is a point to which all level points in a toll
system can be referred. Tt is analogous to citing altitude by referring to height
above sea level. The zero level point is at the transmitting toll switehboard of the
system under consideration.
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If the speech detector responded only to speech power within a very
narrow frequency band, the problem of noise activity would be greatly
reduced. However, for a speech detector with a fixed sensitivity to
recognize initial consonants from many talkers, it is desirable to have a
reasonably wide frequency band. Tests have shown that a bandwidth
of approximately 500 to 3000 cps is suitable for telephone speech. If the
bandwidth were extended below 500 ¢ps or above 3000 cps, noise opera-
tions would be increased and the initial speech power seen by the de-
tector would not be increased sufficiently to permit an offsetting decrease
in sensitivity.

To operate the speech detector the power on the line must remain
above —40 dbm for about 5 milliseconds. Laboratory experiments have
shown that when the operate time is made as fast as possible, the detector
sensitivity for equal quality speech can be decreased to about —37 dbm.
However, the faster operate time results in inereased operation of the
speech detector by noise spikes which increases the activity even with
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Fig. 1 — Subscriber speech volume distribution on transatlantic telephone
circuits.
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the lower sensitivity. Alternatively, an increase in operate time from 5
to 10 milliseconds requires an additional 3 db increase in sensitivity
(—43 dbm) with no significant reduetion in noise activity.

The sensitivity threshold of —40 dbm used for the detector is sub-
stantially above the threshold of hearing; hence, noticeable dropouts may
oceur when the speech power is below the sensitivity threshold. The ear
is particularly sensitive to the loss of weak syllables as well as clips within
words and closely connected phrases. Consequently, the speech detector
should not release until the speech power has remained below the thresh-
old for a period of time that is comparable to the time of one additional
syllable. The hangover required for satisfactory transmission of low
speech volumes varies with sensitivity and amounts to about 240 milli-
seconds for 1 —40 dbm detector, A much shorter hangover results in a
higher TASI switching rate which increases the amount of speech lost by
connect signaling elipping; a longer hangover results in increased speech
activity and higher interpolation speech loss. Listening tests have
shown that good transmission quality for weak talkers can be obtained
with the combinations of sensitivity and hangover shown in Fig. 2.

Peaks of noise higher than —40 dbm may operate the speech detector
and hence add to the circuit activity. Most of the noise peaks last less
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than 5 milliseconds and are virtually eliminated by the 5-millisecond
operate time of the speech detector. Once the speech detector is oper-
ated, however, the circuit cannot be released until the hangover time
has elapsed. The effects of those noise peaks, which last from 5 to about
50 milliseconds, are minimized by the use of the deferred hangover
characteristic shown in Fig. 3. The minimum hangover time is about 25
milliseconds. Noise peaks lasting substantially longer than 50 milli-
seconds are indistinguishable from speech syllables and operate the
circuit to the extent of the full hangover of 240 milliseconds. The
combination of 5-millisecond operate time, —40 dbm sensitivity, 240
milliseconds deferred hangover, and 500 to 3000 cps frequency range is
about optimum for the expected telephone speech and noise levels.

In the preceding sections only the operation of the speech detector by
normal speech and noise incoming to the TASI system has been consid-
ered. In the actual telephone plant, another group of unwanted signals,
called echoes, can result in false operations of the detector. Transatlantic
cable circuits have a one-way delay of about 40 milliseconds and this
amount is sufficient to require echo suppressors in the four-wire part
of the plant to prevent subscribers from hearing the echo returned from
the two-wire part. The echo suppressors have an operate time of about
12 milliseconds to minimize false operation by noise. At times, the slowly
operating suppressor will permit small bursts of echo to get past the
suppressor at the beginning of talkspurts from the distant terminal.
The distant listener is unaware of these short echoes which are therefore
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of no consequence in non-TASI circuits. However, on TASI-equipped
cirenits, these short echoes can operate the faster acting (5 milliseconds)
speech detector and thereby use valuable channel time. The echo path
is shown in Fig. 4 for an individual trunk in which the TASI terminal is
represented in simplified form.

To prevent these short echoes from operating the detector, an echo
protecting circuit was added to the speech detector and connected to the
receiving trunk output. When the distant talker is active, his speech
reduces the sensitivity of the near-end speech detector at a uniform rate
up to a maximum sensitivity decrease of 13 db as shown in Iig. 5 This
value was chosen after consideration of the existing return losses in the
plant and of the characteristies of the echo suppressors. The objective
wus the elimination of nearly all echo operation under all operating
conditions. Measurements on many calls have confirmed that echo oper-
ation of the speech detector is negligible.

III. LABORATORY TESTS AND FIELD MEASUREMENTS ON SPEECH DETECTORS

I'rom the foregoing description of the interaction of speech-detector
parameters, it is apparent that there are several combinations which will
result in a speech detector capable of recognizing the presence of speech
and acting on this signal with hardly any effect on the speech quality.
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Listening tests in the laboratory were made to determine the speech-
detector sensitivity required for each type of detector over a range of
speech levels. These tests were made using tape recordings of a number
of voices, both male and female.

Speech from the tape recorder operated the speech detector, which in
turn operated a gate to connect the observers to the tape recorder. The
arrangement was such that observers could hear the recorded speech
only when the detector was active. The observers were selected from Bell
Telephone Laboratories personnel, both technical and clerical. They
were asked to determine the minimum sensitivity required for accept-
able speech quality. The rapid deterioration of speech quality when the
specch-detector sensitivity was reduced below a certain minimum made
this adjustment critical for each observer and resulted in a reproducible
relation between speech-detector sensitivity and speech level. While
each observer had a well defined tolerance level, the variation of the
results among individuals was large. The sensitivity selected as satis-
factory for a given speech detector was the value that satisfied 50 per
cent of all observers for the minimum speech level of —31 vu at the
zero transmission level point.

After determining several combinations of speech-detector character-
isties that resulted in equal speech quality, various speech detectors
were connected across transatlantic trunks to determine for each call
the number of operations and the activity. The average activity of trans-
atlantic subscribers, determined from measurements on many calls,
determines to a large extent the possible TASI advantage (ratio of trunks
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Fig. 6 — Average speech-detector activity during busy hour on transatlantic
telephone circuits.

to channels). The number of operations affects how often a subscriber
is disconnected from and reconnected to the channels. The results of the
field measurements are shown by the four sloping lines on I'ig. 6. On the
same figure, curve A indicates the locus of points for constant and ac-
ceptable quality from Fig. 2. This locus permits the selection of the
detector that provides acceptable quality and minimum activity. It will
be noted that the point of minimum activity on curve A is not very
sharply defined. Two speech detectors, points N (240 milliseconds hang-
over) and M (125 milliseconds hangover), were selected for further
study. The average activity and talkspurt length resulting from each
of these detectors were obtained from the measurements on transatlantic
calls and are summarized in Table IT.

It will be noted in Table IT that the activity from the 240-millisecond
detector is higher than for the 125-millisecond detector. However, the
talkspurt length for the customer using the 240-millisecond detector is
almost twice as long as for the 125-millisecond detector. As a guide in
the choice between these detectors, computations were made to deter-
mine the total amount of speech a subseriber would lose during the busy
hour if one or the other detector were used in TASI. The computed
speech loss (interpolation plus switching) associated with each detector
is shown on Fig. 7. The total speech lost is slightly less for the 240-milli-
second hangover detector. Although use of the 240-millisecond de-
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TABLE II — MEASURED ACTIVITIES AND TALKSPURT LENGTHS FOR
TransaTLANTIC SPEECH OrIGINATING IN U.S.

125-millisecond Detector 240-millisecond Detector
Activity
Operator 23% 249,
Subseriber 47% 48%
*Average during busy hour 389, 39%

Duration of average detector operation

Operator 0.4 second 0.7 second
Subseriber 0.8 second 1.3 second
*Average during busy hour 0.6 second 1.1 second

* The results for operators and subscribers are combined in the ratio of 0.375
to 0.625, respectively. This ratio was found to be approximately the division of
operator and subseriber time on transatlantic trunks during the busy hour.

+~ 6

Z

¥

& 5 {
o

= |
~ 4 /
L)

o]

3

T

G2 /
w

&

w2 ’.’
w

o

z

9

o

I,__,_--""‘
Eo — |

35 40 45 50 55 60 65 70 75 80 85
AVAILABLE TRUNKS 36+1 CHANNEL SYSTEM

Fig. 7 — Subscriber speech losses caused by TASI signaling and interpolation.

tector results in a higher activity than the 125-millisecond detector and
a slight increase in interpolation elipping, these disadvantages are more
than offset by the fewer switching operations.

1V. SUBJECTIVE EVALUATION OF CLIPPING

The preceding tests showed that a satisfactory speech detector could
be built whose impairment would be negligible. Additional tests were
needed to determine how much clipping of all types could be tolerated
without a significant impairment in speech quality. These quantitative
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tests were needed in order to specify the maximum number of eircuits
that could be used with TASI.

Under normal operation, TASI clipping consists of many segments
which are short compared with an average syllable length. During the
busiest hours of the day, about one-half of the talkspurts will experience
some clipping but in most eases, it will be limited to the 17-millisecond
switching clip. Only one talkspurt in 10,000 will be clipped longer than
about 0.4 second. Since the listener rarely misses a syllable, the result is
a slight abruptness in speech which has a negligible effect on intelligi-
bility.

The initial series of subjective tests to evaluate clipping in TASI was
conducted before an actual TASI terminal became available. Preselected
clips of a fixed length were introduced at the beginning of every Kth
talkspurt, where K was 1, 2, --- | etc. By eliminating the randomness
of TASI, the testing time was shortened and the data could be analyzed
to discover whether the most significant factor affecting the impairment
of TASI was the total speech lost or the pattern of clip occurrence. In
this series of tests, the percentage of total speech time lost by elipping
was varied from 0 to 6 per cent, which encompassed the expected range
of TASI clipping. A group of observers placed normal business ecalls
over circuits in which the amount of elipping would be controlled and
measured. The observers were asked to base their replies solely upon
quality considerations and to rate the calls as either “good,” “fair,” or
“poor.” The testing methods are described more fully in the Appendix.

The results of the clipping tests are shown on Fig. 8. Each point rep-
resents the percentage of calls rated “good” out of groups of more than
75 test calls for each condition. The left-hand scale indicates the amount
of impairment found to elicit the corresponding percentages of ‘“‘good”
responses in a previous study of other degradations.* The curve was an
approximate fit with a second-order polynomial using the least squares
method.

Impairment in db has the following meaning: if a telephone subscriber
is given the choice between the transmission system under test and a
reference transmission system, how much loss could be inserted in the
reference path for the subseriber to rate the circuits as equivalent? The
loss inserted is defined to be the impairment, and is usually expressed in
db. This impairment has been determined in the past for such things as
noisy systems, restricted bandwidth, ete., but has not been determined
directly in this study. The rendering of the present data into db of im-
pairment rests on the assumption that “percentage good” means the
same thing in this and the Coolidge-Reier study. This assumption is
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unlikely to hold with great precision, so the impairment figures given
here (and the implied comparability with other impairments) must not
be considered precise quantities. This reservation also applies to similar
conversions referred to later in this paper including those involving
intelligibility figures. The use of such impairments provides a common
denominator for comparing the effect of these different forms of speech
degradation.

After the initial series of tests had been completed, another series of
tests expanded the measurements to still greater amounts of clipping,
in order to evaluate the loss in intelligibility that might occur with un-
usually high TAST loadings. The second series of tests used articulation
methods and measured the degree of successful communication rather
than simply quality as before. By this time a working TASI terminal
was available so the oceurrence and duration of the clipping were essen-
tially the same as in normal TASI operation. The tests used “phonet-
ically balanced” words and both the articulation in percentage of correct
words and the percentage of lost speech were measured. The results of
three articulation tests for widely different amounts of lost speech are
shown by the dots on Fig. 9. The upper dotted curve is based on the
three artieulation tests, while the lower dotted curve has been taken from
Tig. 8. The combined result is indicated by the solid line. The translation
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from the percentage of correct words to db impairment made use of
previously published results.® The testing methods are deseribed more
fully in the Appendix.

The foregoing tests indicated that the impairment is determined for
the most part by the percentage of speech lost, at least for the case of
normal TASI clipping which has certain definite characteristics: the
clips are of short duration, they occur only at the beginning of talk-
spurts and they are irregularly distributed throughout a call. Hence,
these results do not necessarily apply to the case where long clips of
many syllables occur very infrequently.

The results on Fig. 9 can be applied to a statistical analysis of TASI
clipping to obtain an estimated impairment for an actual TAST system.
Tig. 10 shows the probable busy-hour impairment for a typical trans-
atlantic TASI system, which uses 36 interpolation channels plus one
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channel for disconneet and error checking signals. The estimates on Iig.
10 are based on the amount of lost speech which has been computed
from appropriate distributions of subseriber activities and talkspurt
lengths as a function of the number of trunks available for service.

The median eurve indieates that in 50 per cent of the calls, the im-
pairment caused by TASI will be less than 2 db as long as the number
of active ecircuits is no more than 74 trunks on 36 4 1 channels. How-
ever, the impairment amounts to about 4 db for one call in a hundred
and to about 6 db for one call in 10,000. For comparison purposes,
the approximate impairments of 2-ke and 3-ke underseas channel banks
are also indicated on Fig. 10. It will be noted that on nearly every call,
a 2:1 TASI advantage causes less busy-hour impairment than would
have been obtained through the use of 2-ke channel banks. In addition,
the TASI impairment decreases rapidly as the number of talkers de-
creases during non-peak periods, while the impairment caused by narrow
channels is independent of the traffic load.

V. DETERMINATION OF THE GRADE OF SERVICE

The foregoing results are presented in terms of db impairment to
permit an easy comparison between TASI and alternate methods of
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Fig. 10 — Busy-hour subscriber impairment due to TASL.
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obtaining additional channels. It is also of interest from an operating
standpoint to estimate the over-all grade of service on transatlantic calls
when the additional practical factors such as variations in net loss, band-
width and talker volumes are included. For more aceurate results, the
effect, of each component should be investigated under all possible con-
ditions of the other factors such as noise, volume bandwidth, ete., in
order to look for possible interaction effects. However, in order to find
the small effects looked for in this study, many samples would be re-
quired for each combination, and the amount of work involved would
be almost prohibitive. Past experience indicates that a rough estimate
of the over-all impairment ean be obtained by adding together the in-
dividual impairments in db and then expressing the end result in the
“good,” “fair,” and “poor”’ ratings.

On this basis the estimated grade of service on transatlantic calls with
TASI applied to 36 3-ke interpolation channels is shown on Fig. 11 for
loading conditions that are equal to or greater than the normal operating
condition of 74 trunks on 36 + 1 channels. For comparison the estimated
grade of service is given for 3-ke underseas channel banks used without
TAST as well as the desired objective for all long-distance circuits. While
this objective is not fully met at present, it is expected that the TASI
grade of service under normal operation will be improved and will ap-
proach the desired objective as the result of the current program to im-
prove local plant transmission. Figures 10 and 11 also indicate that dur-
ing emergency peak periods, TASI can provide a greater number of
higher quality cirenits than can be realized with 2-ke channel bank
equipment.

VI. SUBSEQUENT OBSERVATIONS OF TASI IN SERVICE

After TASI systems were put in service on transatlantic telephone
cables, service observations were made on several TASI circuits as well
as on a reference non-TASI circuit. The results indicated that the per-
centage of calls rated “good” by a qualified serviee observer was prac-
tically the same for TASI and non-TASI trunks.

The grade of service for greater than normal TASI loading was meas-
ured when additional trunks were utilized for emergency service at the
time of a break in one of the transatlantic cables. One transatlantic
system was utilized with TASI to earry traffic normally carried by both
transatlantic systems. Table IIT gives the grade of service for normal
loading and for two conditions of greater than normal loading. With
the exception of a somewhat greater “poor” rating for 90 trunks, the
observations on operating circuits correspond to those predicted in Fig. 11.
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TasLE IIT — TASI GRADE OF SERVICE FOR NORMAL AND PEAK
PrrIoD LOADING AS DETERMINED BY TuLEPHONE COMPANY
ServicE OBSERVERS

Trunks on 36 + 1 channels| Per cent Rating “‘good’’ | Per cent Rating “fair’’ | Per cent Rating “poor”
B

74 90 9 1
84 87 11 2
90 74 16 10

VII. CONCLUSION

The data from these service observations combined with the other
results presented in this paper give assurance that most telephone users
making ecalls through a TAST system with normal load will not be aware
that their conversation is being interpolated. This holds even during the
busy period when any degradation that does exist is at a maximum.
During emergency conditions when service is partially disrupted, TASI
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provides additional cireuits with only a moderate decrease in grade of
service. This is felt to be preferable to long service delays.
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APPENDIX
Method of Conducting the Tests

A1 I'nitial Series of Conversational Tests

The random nature of speech and clipping, and the dependence of the
subjective ratings on the environment in which the clipping oceurs in-
dicated that the tests of clipping should be conducted under the most
representative conditions. To implement this requirement, observers at
Bell Telephone Laboratories engaged in normal telephone conversations
in which the TASI clipping was introduced and the bandwidth and net
loss were those of a typical transatlantic circuit. These calls were from
the desks of the observers and consisted of normal business traffic that
corresponded well with typical traflic on transatlantic calls. Following
each call they rated the quality of the circuit as “good,” “fair,” or
“poor.” A total of 45 hours of test calls made by 25 talkers was analyzed.

The results of the tests were analyzed and yielded the percentage of
all test calls rated “good” in over-all quality of transmission. The rating
of per cent “good” for the various clipping conditions was converted to
db impairment by the previously mentioned relation between subjective
ratings and received volume. This step assumes that the impairment is
roughly equivalent to the effect of a decrease in received volume on a
transatlantic cireuit.

The individual data points are plotted in Fig 8 and the resulting
curve is repeated as the lower portion of the curve of Fig. 9. The percent-
age of speech lost is determined by the length of the clip, the frequency of
occurrence (every Kth talkspurt) and the average talkspurt length.
For these tests, the 125-millisecond hangover detector was used which
results in an average talkspurt length of about 0.5 second. Thus, for 30
milliseconds, K = 2, a 30 millisecond clip occurs on every second talk-
spurt of length 0.5 second, and this condition results in a percentage
speech loss of 3 per cent. As indicated in Fig. 8, speech losses of 3 per
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cent and 6 per cent resulted from more than one test condition. These
different conditions were used to determine whether the manner in
which a given percentage speech loss occurs results in a significant vari-
ation in the impairment. Such a significant variation is not apparent
from the results. Rather, the spread that occurred can be attributed
more to variability in the testing than to the different ways of producing
clipping. While each point represents more than 75 test calls rated by
observers, the estimated confidence interval is only 42 db because only
3 separate ratings were possible. The solid curve has been used for TASI
engineering but any use for other purposes should take into account the
testing methods and the variations that are inherent in such subjective
tests.

A.2 Articulation Tests

Articulation tests were conducted to obtain information about the
effect of clipping when the amount of lost speech was great enough to
affect comprehension. Single word articulation tests were chosen to
provide the severest type of test of TASI clipping,.

These tests were conducted with a list of one hundred ‘“‘phonetically
balanced”’® words, which have been so chosen that all speech sounds are
represented according to their frequeney of occurrence in normal speech.
The list of words was recorded using four different voices which were
combined so that twenty-five words from the list were recorded by each
voice. Two male and two female voices were used.

The recorded lists of words were played through a TASI terminal
which was artificially loaded to insure the desired amount of TASI
clipping. The clipped speech was played back in the laboratory through
standard telephone handsets. Six technical and nontechnical observers
were used for each test. The speech levels at the receivers and the re-
ceiver noise were adjusted to simulate an average transatlantic connec-
tion. The observers wrote down the words as they heard them and their
responses were compared with the original lists to determine the pho-
netically balanced word articulation in per cent.

The approximate impairment in db corresponding to the per cent PB
word articulation can be obtained from previous information that relates
phonetically balanced word articulation to syllable articulation and
syllable articulation to volume above threshold. By this means the
articulation results for the conditions tested are related to the corre-
sponding volumes, and the variation in these volumes from the reference
condition yields the impairment in db.
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Comment on "Discrimination against Unwanted
Orders in the Fabry-Perot Resonator”

(Manuseript received May 18, 1962)

In the above paper,! Kleinman and Kisliuk state that “Fox and Li
have investigated these configurations and the corresponding frequencies
and losses for interferometers consisting of perfectly reflecting plates in
air. In the usual laboratory interferometer the Fox and Li modes cannot
be resolved because of insufficient reflectivity of the plates. Therefore
the role played by these modes in optical masers is not settled.”

Unfortunately these statements might be interpreted to mean that
there is doubt as to the validity of the normal mode concept applied to
maser interferometers.

We should like to correct the impression that the analysis of Fox and
Li* was limited to perfectly reflecting mirrors. As a matter of fact, the re-
flectivity of the mirrors is completely unimportant in determining the
normal modes, providing only that it is uniform over the mirrors.

It is quite true that in most solid state masers the inhomogeneities of
the medium appear to create so much chaos in the radiation fields that
correlation with a simple theoretical picture is often hard to demonstrate.
However, gas masers appear to behave in a reasonably ideal way, and
both the near-field and far-field radiation patterns for these masers
appear to confirm the normal mode picture. In the case of such a maser
equipped with plane mirrors, Herriott? has observed 1.3 me beats which
correspond well with the expected difference frequency between the
dominant (even-symmefric) mode and the lowest order odd-symmetric
maode.

An even more striking confirmation is seen in Herriott’s pictures® of
the light distribution across the plane mirrors of his helium-neon maser.
These show fairly symmetrical multi-lobed distributions, which are at
least qualitatively what one would expect for low-order transverse
modes.

Finally the very beautiful pictures of Kogelnik and Rigrod* have
demonstrated convineingly the existence of higher order modes in a
helium-neon maser with concave mirrors.

With regard to passive interferometers, E. H. Scheibe has reporteds

1475
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that in 1955 a “spurious” resonance was observed in a parallel plate
resonator at 9.4 kme. This turns out to have been the lowest order inter-
ferometer mode. Scheibe states that his value of measured Q agrees well
with the loss curves of Fox and Li and with a curve given by Goubau
and Christian. Christian and Goubau® have given a number of measured
values for diffraction loss in a parallel-plate resonator over a range of
values in N and have shown that these all agree closely with the theo-
retical loss curve given by Fox and Li for the dominant mode. Good
evidence for higher order modes exists in a report by Culshaw’ on a
millimeter wave interferometer in which small subsidiary resonances (Fig.
6 of Culshaw) appeared at slightly greater reflector separations than the
main resonances. The observed separations agree within a few per cent
with what would be predicted from the results of Fox and Li for a TEM
mode.

These findings leave very little doubt that the iterative normal mode
picture does apply to laboratory interferometers, either with loss or
with gain.

A. G. FOX
TINGYE LI

D. A. KLEINMAN
P. P. KISLIUK
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