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The report consists of three major sections. The first discusses 
mathematical specialists in industry, calls attention to the essentially 
consultative character of their work, and makes some observations 
regarding the education, employment and supervision of this type of 
personnel. 

The second section deals, not with the work of these specialists, but 
with the uses to which mathematics is put at the hands of industrial 
workers in general, the various ways in which it contributes to the 
economy and effectiveness of research, and the kinds of mathematics 
that are most used. A number of illustrations are given, together with 
brief surveys of the utilization of mathematics in four important indus- 
tries: communications, electrical manufacturing, petroleum and aircraft. 

The third section is devoted to statistics, which touches industrial 
life at rather different points, and hence could not conveniently be in- 
cluded in the general discussion. 

Introduction 

MATHEMATICAL technique is used in some form in most research 
and development activities, but the men who use these techniques 

would not usually be called mathematicians. 
Mathematicians also play an important role in industrial research, but 

their services are of a special character and do not touch the development 
program at nearly so many points. 

Because of this contrast between the ubiquity of mathematics and 
the fewness of the mathematicians, this report is divided into sharply 
differentiated parts. Under "Mathematicians in Industry" an attempt 
is made to explain what sort of service may be expected of industrial 
mathematicians, and to develop some principles of primary importance in 
employing and managing them. An attempt is also made to appraise 
future demand for men of this type, and to discuss the sources from which 
they can be drawn. Under "Mathematics in Industry" appear brief 
surveys of the extent and character of the utilization of mathematics in a 
few special industries, and examples of specific problems in the solution of 
which mathematical methods have been necessary or advantageous. 

* This discussion of the part which Mathematics might play and to a certain extent 
is playing in industry was prepared for the National Research Council Survey of Industrial 
Research, a survey undertaken at the request of the National Resources Planning Board. 
The document which the survey produced has been published as "Research—A National 
Resource, Part II, Industrial Research" and is available through the Government Print- 
ing Office. 
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In these two sections mathematics is interpreted broadly to include 
not only the fundamental subjects, algebra, geometry, analysis, etc., 
but also their manifestations in applied form as mechanics, elasticity, 
electromagnetic theory, hydrodynamics, etc. Statistics, however, touches 
industrial activity in a rather different way, and is therefore discussed 
separately under a third heading, "Industrial Statistics and Statisticians." 

One observation which will be made in more detail later is worthy of 
mention here, because of the present and prospective scarcity of suitably 
trained industrial mathematicians. Though the United States holds a 
position of outstanding leadership in pure mathematics, there is no school 
which provides an adequate mathematical training for the student who 
wishes to use the subject in the field of industrial applications rather than 
to cultivate it as an end in itself. Both science generally, and its industrial 
applications in particular, would be advanced if a group of suitable teachers 
were brought together in an institution where there was also a strong 
interest in the basic sciences and in engineering. 

Mathematicians in Industry 

What is a Mathematician? 

If every man who now and then computes the average of a set of instru- 
mental readings or solves a differential equation is a mathematician, there 
are few research workers who are not. If, on the other hand, only those 
who are primarily engaged in making additions to mathematical knowledge 
are mathematicians, there are almost none in industry. Neither definition 
is sound. The first is absurd; the second not closely related to the essential 
nature of mathematical thought. This report adopts a definition based 
upon the character of the man's thinking rather than the ultimate use to 
which his thinking is put. 

Some men would be called mathematicians in any man's language; 
others physicists or engineers. These typical men are differentiated in 
certain essential respects: 

The typical mathematician feels great confidence in a conclusion reached 
by careful reasoning. He is not convinced to the same degree by experi- 
mental evidence. For the typical engineer these statements may be 
reversed. Confronted by a carefully thought-out theory which predicts a 
certain result, and a carefully performed experiment which fails to produce 
it, the typical mathematician asks first, "What is wrong with the experi- 
ment?" and the typical engineer, "What is wrong with the argument?" 
Because of this confidence in thought processes the mathematician turns 
naturally to paper and pencil in many situations in which the engineer or 
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physicist would resort to the laboratory. For the same reason the mathe- 
matician in his "pure" form delights in building logical structures, such as 
topology or abstract algebra, which have no apparent connection with the 
world of physical reality and which would not interest the typical engineer; 
while conversely the engineer or physicist in his "pure" form takes great 
interest in such useful information as a table of hardness data which may, 
so far as he is aware, be totally unrelated to any theory, and which the 
typical mathematician would find quite boring. 

A second characteristic of the typical mathematician is his highly critical 
attitude toward the details of a demonstration. For almost any other 
class of men an argument may be good enough, even though some minor 
question remains open. For the mathematician an argument is either 
perfect in every detail, in form as well as in substance, or else it is wrong. 
There are no intermediate classes. He calls this "rigorous thinking," and 
says it is necessary if his conclusions are to be of permanent value. The 
typical engineer calls it "hair splitting," and says that if he indulged in it he 
would never get anything done. 

The mathematician also tends to idealize any situation with which 
he is confronted. His gases are "ideal," his conductors "perfect," his 
surfaces "smooth." He admires this process and calls it "getting down to 
essentials"; the engineer or physicist is likely to dub it somewhat con- 
temptuously "ignoring the facts." 

A fourth and closely related characteristic is the desire for generality. 
Confronted with the problem of solving the simple equation s3 — 1 = 0, 
he solves x" — 1 = 0 instead. Or asked about the torsional vibration 
of a galvanometer suspension, he studies a fiber loaded with any number 
of mirrors at arbitrary points along its length. He calls this "conserving 
his energy"; he is solving a whole class of problems at once instead of dealing 
with them piecemeal. The engineer calls it "wasting his time"; of what 
use is a galvanometer with more than one mirror? 

In the vast army of scientific workers who cannot be tagged so easily 
with the badge of some one profession, those may properly be called "mathe- 
maticians" whose work is dominated by these four characteristics of greater 
confidence in logical than experimental proof, severe criticism of details, 
idealization, and generalization. The boundaries of the profession are 
perhaps not made sharper by this definition, but it has the merit of being 
based upon type of mind, which is an attribute of the man himself, and not 
upon such superficial and frequently accidental matters as the courses he 
took in college or the sort of job he holds. 

It is, moreover, a more fundamental distinction than can be drawn 
between, say, physicist, chemist and astronomer. That is why the mathe- 
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matician holds toward industry a different relationship than other scientists, 
a relationship which must be clearly understood by management if his 
services are to be successfully exploited. 

The Place of the Mathematician in Industrial Research 

The typical mathematician described above is not the sort of man to 
carry on an industrial project. He is a dreamer, not much interested 
in things or the dollars they can be sold for. He is a perfectionist, unwilling 
to compromise; idealizes to the point of impracticality; is so concerned with 
the broad horizon that he cannot keep his eye on the ball. These traits 
are not weaknesses; they are, on the contrary, of the highest importance 
in the job of finding a system of thought which will harmonize the complex 
phenomena of the physical world, that is in reducing nature to a science. 
The job of industry, however, is not the advancement of natural science, 
but the development, production and sale of marketable goods. The 
physicist, the chemist, and especially the engineer, with their interest in 
facts, things and money are obviously better adapted to contribute directly 
to these ends. To the extent that the mathematician takes on project 
responsibility, he is forced to compromise; he must specialize instead of 
generalize; he must deal with concrete detail instead of abstract principles. 
Some mathematicians cannot do these things at all; some by diligence and 
self-restraint can do them very well. To the extent, however, that they 
succeed along these lines they are functioning not as mathematicians 
but as engineers. As mathematicians their place in industry is not to 
supply the infinite attention to practical detail by which good products, 
convenient services, and efficient processes are devised; their function is 
to give counsel and assistance to those who do supply these things, to 
appraise their everyday problems in the light of scientific thought, and 
conversely to translate the abstract language of science into terms more 
suitable for concrete exploitation. p- 

In other words, the mathematician in industry, to the extent to which 
he functions as a mathematician, is a consultant, not a project man. 

Qualifications Necessary for Success as an Industrial Mathematician 

The successful industrial mathematician must not only be competent 
as a mathematician; he must also have the other qualities which a consultant 
requires: 

First, though his major interests will necessarily be abstract, he must have 
sufficient interest in practical affairs to provide stimuli for useful work and 
to reconcile him to the compromises and approximations which are neces- 
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sary even in the theoretical treatment of practical problems. This usually 
means that the type of mathematician who could not do a good engineering 
job if he turned his hand to it will not get on very well in an industrial career. 

Second, he must be gregarious and sympathetic. If he shuts himself 
off from his associates, much of his thinking will have no bearing on their 
needs and that which does will exert less influence than it might. If he 
does not translate his thoughts into their language, they will miss the 
significance of much of his work and he will have but a limited clientele. 

Third, he must be cooperative and unselfish. A man cannot be at once 
consultant and competitor to his associates. Self-seeking attempts to gain 
credit for his contributions to the industry will inevitably alienate his 
clientele. There are two reasons for this: In the first place a mathemati- 
cian's appraisal of mathematical work, even if made from a detached point 
of view, is heavily weighted on the side of its fundamental scientific sig- 
nificance, whereas its industrial value should be judged on very different 
grounds and can best be appraised by the engineer. In the second place, 
the engineer in charge of a project can give credit without embarrassment 
for help received; it is to his credit to have known where help was to be had. 
The same story told by another, and particularly by the consultant himself, 
has an entirely different flavor. 

Fourth, he must be versatile. Jobs change, and even the same job 
may give rise to questions which require very different mathematical 
techniques. 

Fifth, he must be a man of outstanding ability. No one wants the 
advice of mediocrity. Among industrial mathematicians there is no place 
for the average man. 

Employment and Supervision 

Perhaps the greatest hazard in hiring mathematicians for industry 
arises from the fact that the employment officer is not often a judge of 
mathematical ability. Paradoxically, however, his mistakes are not 
usually made in judging mathematical aptitude, since general scholastic 
rating is an unusually trustworthy index of mathematical ability. But 
because of a feeling of incompetence bred by his lack of mathematical 
lore, he spreads the mantle of charity over other characteristics with regard 
to which he should trust his own judgment. If, for example, the applicant 
gives an incoherent account of the problems on which he has been working, 
the interviewer excuses it on the ground of his own lack of mathematical 
training, an excuse which would be quite adequate if the circumstances 
demanded that he meet the applicant on the applicant's ground. What he 
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overlooks is that the applicant has failed to meet him on his own ground; 
has failed, in other words, to display the essential ability to translate his 
thoughts into the language of his hearer. Or perhaps a personality defect 
is excused on the ground that "after all, he will be working by himself and 
won't have to meet people," whereas in fact the real value of a consultant 
comes not in what he does at his desk, but in how much of it gets through 
to his associates. The applicant who is boastful or pushing or querulous 
should not be hired on the general theory that "all mathematicians are 
queer." 

High standards in all such matters, and an interest in practical things 
as well, are as important as technical mathematical ability. These are 
stiff specifications, and the men to fill them are not to be found in every 
market place. They are, however, the requirements implicit in the nature 
of the job and no good can come from failing to recognize them. 

After the right man is hired, he is not a difficult person to supervise if 
his function as a consultant to the rest of the stafi is kept clearly in mind. 
The broad objectives must be to avoid barriers which would tend to deter 
his associates from seeking his services, and to assure that his work is justly 
appraised and fairly compensated. 

The three barriers most likely to arise between him and his associates 
are jealousy, red tape and unavailability. 

Jealousy is unavoidable if the man himself is self-seeking; once such 
a man is hired trouble is inevitable. But the man is not always to blame. 
A generous and cooperative recruit will be spoiled by an atmosphere too 
highly charged with progress reports, or by a salary policy which bases 
revisions upon the dollar value of the last year's work. Actually the 
"progress" which is significant to management will be far more accurately 
appraised by his colleagues than by himself, hence his reports have little 
value except as they give him an opportunity to review and criticize his 
own activities. If too much emphasis is placed upon them, even this 
value will be lost and they will be written in the spirit of making a case for 
himself, which is exactly the spirit most certain to breed jealousy. Simi- 
larly, a salary policy based on dollar returns is essentially unjust, for the 
money value of various bits of theoretical work has almost no correlation 
with the scientific acumen which they require. This does not mean that a 
mathematician's pay should, in the long run, be independent of the dollar 
value of his services. It means only that whether he gets a raise this year, 
and how big it shall be, should properly be based on the size, character and 
satisfaction of his clientele, and not upon the commercial importance of the 
questions they saw fit to bring him last year. 
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Red tape is easily avoided by avoiding it. No engineer, whatever his 
rank in the organization, ought ever need permission to consult a mathe- 
matician in the company's employ, and the mathematician in turn ought 
not need a specific work order or expense allowance before giving his advice. 
In this respect he should be on the same basis as the free-lance investigators 
who are to be found in most large research laboratories, and who are 
generally known as staff engineers. 

Unavailability is a more serious matter. It is well recognized that 
in industrial research the urgent job always tends to take precedence 
over the important one. Left to themselves, fundamental studies give 
way to the detailed development "which ought to go into production 
next month." Mathematical studies are no more susceptible than other 
fundamental research to such interruptions, but the effect upon the career 
of the mathematician may be more far-reaching, for as soon as he is assigned 
an urgent project of special character his availability as a consultant ceases 
or at best is temporarily impaired. If his value to the industry is greater 
as a project man than as a consultant this need not be a cause for regret; 
but to turn a good mathematician into a poor engineer, or an irreplaceable 
mathematician into a replaceable engineer, is unfortunate for both employer 
and employee. 

The Mathematical Research Department of the Bell Telephone Laboratories 

In the Bell Telephone Laboratories men of this type have been grouped 
together as a separate organization unit. They have no more specific 
function than to be helpful to their associates in other parts of the Labora- 
tories. No engineer is obliged to consult them about any phase of his work; 
no particular jobs come to them by reason of prerogative; conversely, 
there is no sort of help which an engineer or physicist may not seek from 
them if he so desires. No routine need be complied with in advance in 
order to secure their services, and no report is required afterwards, though 
written reports are frequently prepared when needed for scientific record. 
The expense of the group is distributed broadly over the activities of the 
Laboratories, not charged to specific jobs. Every effort is made to maintain 
a spirit of service among the members of this group, and though respon- 
sibility for engineering projects occasionally descends upon them, it is 
regarded as an undesirable necessity to be avoided whenever possible and 
liquidated at the earliest opportunity. 

The group has functioned successfully for a number of years. Its mem- 
bers are respected by their engineering associates, and like their jobs. 
Information regarding their activities reaches management almost entirely 
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through spontaneous acknowledgments made by the engineers they assist. 
These expressions of appreciation are generous, but rather erratic in that 
they concentrate attention first on one man, then on another, as the genius 
and training of the individual happen to click with the important job of 
the moment. This has not affected the morale of the group adversely, 
probably because a serious effort is made to avoid erratic salary revisions in 
which the man who is at the moment in the limelight benefits at the expense 
of others who are doing equally good but less conspicuous work. 

From the standpoint of the men, the principal advantages of being 
associated together instead of distributed through the engineering depart- 
ments, is the stimulus of contact with men of like interests. From the 
standpoint of management, the advantages are wider availability, greater 
flexibility in matching the talents of the man with the requirements of the 
job, and a more uniform appraisal of ability because of supervision by a 
man of adequate mathematical background. 

So far as is known, mathematicians have not been organized into separate 
administrative groups in other industries. In most laboratories their 
numbers have been thought too small to make such an arrangement feasible, 
and they have been treated as staff engineers distributed throughout the 
various general departments. It is believed, however, that there are a 
few industries in which this arrangement could be introduced with profit at 
this time, and that it has sufflcient merit to justify its adoption wherever 
possible. 

The Mathematician in the Small Laboratory 

What has been said above relates primarily to conditions in large indus- 
tries. The qualifications for success in the small industry are not dissimilar, 
though the relative emphasis to be placed upon them is somewhat different. 
Matters of personality (gregariousness, unselfishness, etc.) are not quite so 
important, because they are offset to some extent by the friendly coherence 
of the small group. On the other hand, a strong interest in things as well as 
ideas, and the ability to translate from the language of concrete experience 
to that of abstract thought and conversely, take on even greater importance. 
As Dr. H. M. Evjen, himself a worker in a small laboratory, says: 

"In order to be of optimum value, the mathematician must keep in close touch 
with realities. In a sufficiently large organization, employing both theoretical 
and experimental men, the best results, therefore, can be obtained only by the 
closest cooperation between the two groups. In smaller organizations, employing 
—for instance—only one scientifically qualified man, it is difficult to say whether 
this man should be of the theoretical or the experimental type. If he is a theo- 
retical man, no success can be expected unless he is willing to roll up his sleeves 
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and get his feet firmly planted on the ground. In fact, even if he has highly 
■v. qualified experimental assistants, he should not feel averse to 'getting down in 

the dirt.' Secondhand information is always of inferior quality.... 
The mathematician not only is useful as an auxiliary to whom the practical 

man can turn with special problems. A properly trained mathematician, with a 
sufficiently broad vision, can be very much more useful as an active participant 
in the industrial problems. Due to his training in exact thinking he should be 
better able to see through the maze of intricate details and discover the funda- 
mental problems involved." 

Number Employed 

The number of mathematicians employed in communications, electrical 
manufacturing, petroleum and aircraft is estimated at about 100. The 
number employed in other places is no doubt somewhat less, but it is 
probably not an insignificant part of the whole, since mathematicians are 
found here and there in some very small industries. For example, the 
Brush Development Company with a total engineering force of only 17, has 
found it desirable to supplement this group with a man hired specifically 
as a consultant in mathematics. 

It is perhaps not too wide of the mark to estimate the total number at 
150, not including actuaries and statisticians. 

This number can be checked in another way. The membership list 
of the American Mathematical Society lists 202 men with industrial ad- 
dresses. Of these, 102 are in financial and insurance firms and are pre- 
sumably statisticians. The remaining 100 names are those of industrial 
employees with mathematical interests strong enough to belong to an 
organization devoted exclusively to the promotion of mathematical research. 
Some of these are not mathematicians by the definition adopted in this 
report. On the other hand, there are also 158 names for which only street 
addresses are given, some of whom are known to be industrial mathemati- 
cians. Balancing these uncertainties against one another, and remembering 
that many industrial mathematicians find little profit in belonging to an 
association devoted primarily to pure mathematics, the estimate given 
above does not appear unreasonable. 

Future Demand 

The appraisal of future demand is even more speculative than the estima- 
tion of present personnel. Two statements, however, seem warranted: 
(1) The demand for mathematicians will never be comparable to that for 
physicists, chemists or engineers. (2) It will certainly increase beyond 
the number at present employed. 

The first statement is justified by the fact that physicists, chemists, 
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and other experimental workers deal directly with the natural laws and 
natural resources which it is the business of industry to exploit, whereas 
mathematicians touch these things only in a secondary way. 

The second statement would perhaps be granted on the general ground 
that throughout the whole of industry, research is becoming more complex 
and theoretical, and hence the value of consultants in general, and of 
mathematical consultants in particular, must increase. It is not necessary, 
however, to rely solely on such general considerations. Direct evidence 
exists in certain industries, notably aircraft,1 where many of the major 
research problems are generally recognized to be more readily accessible to 
theoretical than experimental study, and in certain others, such as industrial 
chemistry,2 where one may reasonably assume that modern molecular 
physics will soon begin to play an important part in determining speeds of 
reaction. There is also the general alertness of executives to the dollar 
value of a theoretical framework in planning expensive experiments, and 
the gradually changing attitude toward mathematics that stems from it. 
As Dr. W. R. Burwell, Chairman of the Brush Development Company, 
writes: 

"There is a definite trend toward a greater use of mathematics in industry 
which is somewhat commensurate with the trend toward the acceptance of re- 
search and development departments as necessary adjuncts to successful busi- 
nesses. It is becoming more and more generally recognized that mathematics 
is not only a necessary tool for all engineers, physicists and chemists who make 
any pretense of going beyond strictly observational methods and experimental 
solutions to their problems but that it is also performing an important function 
as the recording medium for those generalizations which lay the foundation for 
the advances of scientific knowledge.... 

Even in an organization as small as ours, the use as a consultant is really 
important and we are constantly having instances where the mathematician 
because of his training is serving as an interpreter of mathematical and physical 
theories, sometimes influencing the direction of experimental work and sometimes 
eliminating the need for it." 

If, therefore, the estimate of 150 mathematicians in industry at present is 
realistic, it may not be too wide of the mark to forecast several times that 
number a decade or so hence. 

Source of Supply 

Based on these estimates, a demand for new personnel of the order 
of 10 a year may be predicted. This number sounds small; but if we 
reiterate that mediocrity has no place in the consulting field, and that 

1 See pages 31-34. s See pages 30-31. 
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these 10 must be exceptional men, it does not seem unreasonable to ask 
where they may be found. 

Most mathematicians now in industry were trained as physicists or 
as electrical or mechanical engineers, and gravitated into their present 
work because of a strong interest in mathematics. Few came from the 
mathematical departments of universities. As scientists they are university 
trained, but as mathematicians they are self-educated. 

Their training has not been ideal. Industrial mathematics is being 
carried on by graduates of engineering or physics not so much because 
of the value of that training as because of the weakness of mathematical 
education in America. The properly trained industrial mathematician 
should have, beyond the usual courses of college grade, a good working 
background of algebra (matrices, tensor theory, etc.), some geometry, 
particularly the analytic sort, and as much analysis as he can absorb 
(function theory, theory of differential and integral equations, orthogonal 
functions, calculus of variations, etc.). These should have been taught 
with an attitude sympathetic to their applications, and reinforced by 
theoretical courses in sound, heat, light and electricity, and by heavy 
emphasis upon mechanics, elasticity, hydrodynamics, thermodynamics and 
electromagnetic field theory. He should understand what rigor is so that 
he will not unwittingly indulge in unsound argument, but he should also 
gain experience in such useful but sometimes treacherous practices as the 
use of divergent series or the modification of terms in differential equations. 
He should have enough basic physics and chemistry of the experimental 
sort to give him a realistic outlook on the power as well as the perils of 
experimental technique. By the time he has acquired this training he will 
usually also have acquired a Ph.D. degree, but the degree itself is not now, 
and is not likely to become, the almost indispensable prerequisite to employ- 
ment that it is in university life. 

There is nowhere in America a school where this training can be acquired. 
No school has attempted to build a faculty of mathematics with such train- 
ing in mind. Hence industry has had to make such shift as might be with 
ersatz mathematicians culled from departments of physics and engineering. 
To make matters worse, a student with strong theoretical interests who 
enrolls in physics these days is almost certain to spend most of his time on 
modern mathematical physics, which insists almost as little upon fidelity 
to experience and experiment as does "pure" mathematics, from which it 
differs more essentially in matters of language and rigor than of general 
philosophic attitude. At the moment, therefore, engineering schools must 
be looked upon as the most hopeful sources of industrial mathematicians. 
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Historically it is easy to explain how this situation came about. Fifty 
years ago America was so backward in the field of mathematics that there 
was not even a national association of mathematicians. A quarter of a 
century later it was just coming of age in mathematics and was properly, 
if not indeed necessarily, devoting its entire attention to improving the 
quality of instruction in the "pure" field. The first faint indications that 
industrial mathematics might someday become a career had indeed begun 
to appear, but they were not impressive enough to attract the attention of 
university executives. 

Today we lead the world in pure mathematics, and perhaps also in 
that other field of mathematics which has somehow come to be known as 
modern physics. We have strong centers of actuarial and statistical 
training. But in the field of applied mathematics which is the particular 
subject of this report, we stand no further forward than at the turn of the 
century, and far behind most European countries. 

A quarter of a century ago it would have been difficult to find suitable 
teachers. Just now it could be done, primarily because a number of 
European scholars of the right type have been forced to come here, and a 
few others have developed spontaneously within our own borders. There 
are perhaps half a dozen of them, but they are so scattered, sometimes in 
such unpropitious places, as to have little influence on the development of 
industrial personnel. 

It is unfortunate that no university with strong engineering and science 
departments has seen fit to bring this group together and establish a center 
of training in industrial mathematics. We have estimated a demand of 
about 10 exceptional graduates per year. If that estimate is even remotely 
related to the facts, such a department would have a most important job 
to do. 

Mathematics in Industry 

Subjects Used 

As Dr. H. M. Evjen, Research Physicist of the Geophysical Section 
of the Shell Oil Company, remarks: 

"Higher mathematics, of course, means simply those branches of the science 
which have not as yet found a wide field of application and hence have not as 
yet, so to speak, emerged from obscurity. It is, therefore, a temporal and sub- 
jective term." 

If this is accepted as a definition of higher mathematics—and it is a 
valid one for the pure science as well as for its applications—it follows 
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automatically that industry relies principally upon the lower branches. 
What it uses much, ceases by the very muchness of its use to be high. 
The theory of linear differential equations, for example, is a subject by 
which the average well-trained engineer of 1890 would have been completely 
baffled. The well-trained engineer of 1940 takes it in his stride and regards 
it as almost commonplace. The well-trained engineer of 1990 will certainly 
regard as equally commonplace the theory of analytic functions, matrices 
and the characteristic numbers (Eigenwerte) of differential equations, 
which today are thought of as quite advanced. 

With this as a background, there need be no apology associated with 
the statement that such simple processes as algebra, trigonometry and 
the elements of calculus are the most common and the most productive 
in modern industrial research. They frequently lead to results of the 
greatest practical importance. The single sideband system of carrier 
transmission, for example, was a mathematical invention. It virtually 
doubled the number of long distance calls that could be handled simul- 
taneously over a given line. Yet the only mathematics involved in its 
development was a single trigonometric equation, the formula for the 
sine of the sum of two angles. 

Next in order of usefulness come such subjects as linear differential 
equations (e.g., in studying the reaction of mechanical and electrical 
systems to applied forces, the strains in elastic bodies, heat flow, stability 
of electric circuits and of coupled mechanical systems, etc.); the theory of 
functions of a complex variable (particularly in dealing with potential 
theory and wave transmission, propagation of radio waves and of currents in 
wires, gravitational and electric fields as used in prospecting for oil, design 
of filters and equalizers for communication systems, etc.); Fourier, Bessel, 
and other orthogonal series (in problems of heat flow, flow of currents in 
transmission lines, deformation and vibration of gases, liquids and elastic 
solids, etc.); the theory of determinants (particularly in solving complicated 
linear differential equations, especially in the study of coupled dynamical 
systems); and the like. 

Less frequently we meet such subjects as integral equations, which 
has been made the basis of one version of the Heaviside operational calculus, 
and which has also been used in studying the seismic and electric methods 
of prospecting for oil; matrix algebra, which has been applied to the study of 
rotating electric machinery, to the vibration of aircraft wings, and in the 
equivalence problem in electric circuit theory; the calculus of variations, in 
improving the efficiency of relays; and even such abstract subjects as 
Boolean algebra, in designing relay circuits; the theory of numbers, in the 
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design of reduction gears, and in developing a systematic method for 
splicing telephone cables; and analysis situs, in the classification of electric 
networks. 

Least frequently of all, but by no means never, the industrial mathemati- 
cian is forced to invent techniques which the pure mathematician has 
overlooked. The method of symmetric coordinates for the study of 
polyphase power systems; the Heaviside3 calculus for the study of transients 
in linear dynamical systems; the method of matrix iteration in aerodynamic 
theory;4 much of the technique used in the design of electric filters and 
equalizers—these may stand as illustrative examples. 

The student of modern mathematics will be impressed at once by two 
aspects of this review: first, by the heavy emphasis on algebra and analysis, 
and the almost complete absence of geometry beyond the elementary 
grade; second, the complete absence of the specific techniques which play 
such a large role in modern physics and astrophysics. It is not easy to 
say just why advanced geometry plays no larger part in industrial research; 
however, the fact remains that it does not.5 As regards modern physics, 
one may perhaps extrapolate from past history and infer that what is now 
being found useful in interatomic physics will soon be needed in industrial 
chemistry. In making this extrapolation, however, it is well to bear in 
mind that the physics in question is for the most part a mental discipline, 
its connection with the world of reality still ill-defined and incompletely 
understood. Therefore it may not prove to be as quickly assimilable into 
technology as have other disciplines whose symbols could be more imme- 
diately identified with experience.6 

' Heaviside was not himself an industrial employee, but the reformulation of his work 
in terms of integral equations, and its interpretation in terms of Fourier transforms were 
both carried out in America by industrial mathematicians. 

4 This method was developed in The National Physical Laboratory of England, in 
the course of studies which in America would probably have been undertaken by a govern- 
ment or industrial laboratory. 6 Mr. Hall C. Hibbard of the Lockheed Aircraft Corporation comments on this remark 
as follows: "It is possible that the usefulness of this principle of mathematics has been 
overlooked to a large extent in certain fields where it might be applied to advantage. 
In particular, that phase of engineering known as 'lofting,' which deals with the devel- 
opment of smooth curved surfaces, might offer an interesting field for certain types of 
advanced geometry. Practically all of this work is now done by 'cut and try' methods 
and the application of mathematics would no doubt save a great deal of time. The same 
thing is true in the field of stress analysis, where a great deal of time is absorbed in de- 
termining the location and direction of certain structural members. It is even possible 
that the application of vector analysis technique would greatly simplify certain forms of 
structural analysis, particularly space frameworks. The lack of application of geometry 
in these fields is probably due to the wide gap that exists between the mathematician 
and the 'practical' designer and draftsman. Advanced geometry might also turn out 
to be a very useful tool in connection with problems that we are now encountering in 
the forming of flat sheet into surfaces with double curvature, an operation that is exten- 
sively employed in aircraft manufacture." 4 In this connection, see the quotation from Dr. E. C. Williams on pages 30-31. 
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Finally, we must remark upon two facts: (1) that approximate solutions 
of problems, and hence methods of iteration (successive approximation), 
play a much more conspicuous role in applied mathematics than in the 
pure science; (2) that the highly convenient assumption that linear ap- 
proximations to natural laws (such as Hooke's law and Ohm's law) are 
sufficiently exact for practical purposes is less often true than formerly 
was the case, so that nonlinear differential equations are of great importance 
to the modern engineer. 

Types of Service Performed by Mathematics 

Leaving aside the important but rather trite observation that mathe- 
matics is a language which simplifies the process of thinking and makes it 
more reliable, and that this is its principal service to industry, we may 
distinguish certain less inclusive, but perhaps for that reason more illu- 
minating, categories of usefulness. 

First: It provides a basis for interpreting data in terms of a preconceived 
theory, thus making it possible to draw deductions from them regarding 
things which could not be observed conveniently, if at all. 

(a) An illustration is the standard method for locating faults on telephone lines. 
Mathematical theory shows that a fault will affect the impedance of the line in 
a way which varies with frequency, and that the distance from the place of meas- 
urement to the fault can be deduced at once from the frequencies at which the 
impedance is most conspicuously affected. This is obviously much more con- 
venient than hunting the fault directly. 

(ft) A second illustration is the mapping of geological strata by means of meas- 
urements made upon the surface of the earth. One method extensively employed 
uses a large number of seismographs, each of which records the miniature earth- 
quake shock produced at its location by a charge of dynamite set off at a known 
place. A theory of reflection and refraction similar to that used in geometrical 
optics shows that certain observable characteristics of these records are related 
to the depth and tilt of the underground layers, and hence enables the situation 
of these layers to be plotted. By this means the location of the highest point 
of an oil-bearing stratum can be found, and the most favorable position for 
drilling determined. 

Underground geology is also studied by means of gravity, electrical or magnetic 
measurements upon the surface. In this case the basic theory is that of the 
Newtonian potential field, and the interpretation of the data leads into the subject 
of inverse boundary value problems, which is still insufficiently understood. 
Enough progress has been made in several geophysical laboratories, however, so 
that the gravity method is now being widely used, and the electrical methods 
appear promising for some applications. 

Second: When data are incompatible with the preconceived theory, 
a mathematical study frequently aids in perfecting the theory itself. The 
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A mathematical method of systematically designing a circuit of predetermined 
impedance has been developed in Bell Telephone Laboratories. The given 
impedance, as a function of frequency, is expanded in a Slieltjes continued 
fraction, whose terms give the electrical constants of the desired network. 
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classical illustration in pure science is the discovery of the planet Neptune. 
The motion of the planet Uranus was found to be inconsistent with the 
predictions of the Newtonian theory of gravitation, if the solar system 
consisted only of the seven planets then known. Mathematical investiga- 
tion indicated, however, that if an eighth planet of a certain size was 
assumed to be moving in a certain orbit, these discrepancies disappeared. 
Upon turning a telescope to the spot predicted, the new planet was found. 

An illustration comes from the aircraft industry. I quote it from a 
report sent me by Mr. C. T. Reid, Director of Education of the Douglas 
Aircraft Company: 

(c) "The behaviour of airplanes with 'power on' did not check closely enough 
with stability predictions which had been made without consideration of the 
effects of the application of power; therefore, a purely mathematical analysis of 
the longitudinal motion of an airplane was carried out, involving the solution of 
three simultaneous linear first-degree differential equations. The results led to 
the development of equations for dynamic longitudinal stability with 'power on' 
which enable the aerodynamicist more accurately to predict the stability char- 
acteristics of a given design. 'Power-on' dynamic longitudinal stability is an 
important design criterion in aircraft construction." 

(d) Another illustration arises in communication engineering. Theoretical 
studies had established the fact that vacuum tubes would spontaneously generate 
noise because of the discrete character of the electrons of which the space current 
is composed. The theory predicted how loud this noise would be in any particular 
type of vacuum tube, a most significant result since it established a limit to the 
weakness of signals which could be amplified by this type of tube. The predic- 
tions of the theory were supported by experimental data so long as the tubes were 
operating without appreciable space charge. But it was found that when space 
charge was present the noise level fell far below the predicted minimum. In this 
case the missing factor in the theory was immediately obvious, but an under- 
standing of the mechanism by which the reduction was affected and its incorpo- 
ration into the theory in a workable form, required an extensive and difficult 
mathematical attack. 

Third: It is frequently necessary in practice to extrapolate test data 
from one set of dimensions to a widely different set, and in such cases 
some sort of mathematical background is almost essential. 

An example of this kind of service, concerned with the theory of arcs in 
various gases, is furnished me by Mr. P. L. Alger, Staff Assistant to the 
Vice President in Charge of Engineering, of the General Electric Company: 

(e) "An example of this kind of problem is that of the theory of arcs in various 
gases. It has been experimentally known that the duration, stability and voltage 
characteristics of electric arcs in different gases and under different pressures 
vary very widely. The behaviour of such arcs is of great importance, both in 
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welding and in the design of circuit breakers and other protective devices. Re- 
cently a mathematical theory has been developed which relates the arc phenomena 
to the heat transfer characteristics of different gases. This theory has given 
excellent correlation between the known experimental results, and has enabled 
very useful predictions of performance under new conditions to be made. The 
theory has been applied in the design of high voltage air circuit breakers, which 
are of important commercial value, and it is also greatly curtailing the time and 
expense necessary to develop many other devices in which arc phenomena are 
of importance." 

A second example, furnished me by Mr. Reid, has to do with the inter- 
pretation of wind-tunnel data in aerodynamics: 

(/) "Here it is obviously impracticable to perform full-scale tests of such parts 
as wings or fuselage, much less of entire aircraft, and the extrapolation from the 
results of wind-tunnel measurements to the full-scale characteristics of airplanes 
must be based on theoretical considerations." 

Fourth: Mathematics frequently aids in promoting economy either by 
reducing the amount of experimentation required, or by replacing it entirely. 
Instances of this kind are met everywhere in industry, not only in research 
activities, but in perfecting the design of apparatus and in its subsequent 
manufacture as well. 

Mr. Alger describes in general terms one situation frequently met in 
research activities as follows: 

"The first type of problem is one in which there are so many different inde- 
pendent dimensions of a proposed shape to be chosen, or in general so many 
independent variables, that it is hopeless to find the optimum proportions by 
experiment. The truth of this can readily be seen when it is realized that the 
number of test observations to be made increases exponentially with the number 
of variables. If 10 points are required to establish a performance curve for one 
variable, 1,000 observations will be required if there are 3 independent variables, 
and a million if there are 6 variables." 

As an illustration he cites the following problem: 

(g) "An example of this kind of problem is that of designing a T dovetail to 
hold the salient poles in place on a high speed synchronous generator. A large 
machine of this type may have 10 or more laminated poles carrying heavy copper 
field coils, each assembled pole weighing several tons and traveling at a surface 
peripheral speed of 3 miles a minute. The centrifugal force on each pound of 
the pole then amounts to approximately 500 pounds. The problem of designing 
dovetails to hold these poles in place, even at over speed, is, therefore, one of 
great importance and technical difficulty. For each such dovetail, there are 
7 different dimensions which may be independently chosen. While empirical 
methods have enabled satisfactory results to be obtained in some cases, appli- 
cation of mathematics has recently enabled marked improvements in dovetail 
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designs to be made. Generally speaking, these improvements have permitted an 
overall strength increase of 20 per cent to be obtained under steady stresses, 
and much higher gains to be made under fatigue stress conditions; while at the 
same time the certainty of obtaining the desired results on new designs has been 
very greatly enhanced." 

A second example was brought to my attention by Mr. L. W. Wallace, 
Director of the Engineering and Research Division of the Crane Company: 

(/<) "A pipe fitting weighing several hundred pounds and intended for high 
pressure service had a neck of elliptical cross-section. As originally designed, 
the thickness of the casting was intentionally not uniform, the variations having 
been introduced empirically to strengthen it where strength was supposed to be 
most needed. A redesign carried out on the basis of the theory of elasticity 
showed the distribution of metal to be inefficient and resulted in a new casting 
in which the weight was reduced by half, while at the same time the bursting 
strength was doubled. The method used in arriving at this result is an interesting 
illustration of sensible mathematical idealization. The casting was regarded as 
an elliptical cylinder under hydrostatic pressure. As the stresses for this idealized 
structure were already known, the design problem reduced at once to the simple 
matter of establishing thicknesses sufficient to withstand these stresses." 

Another example from the field of geophysical prospecting is furnished 
by Mr. Eugene McDermott, President of Geophysical Service, Inc.: 

(f) "A specific case of mathematical research in instrument design was recently 
encountered. The instrument in question was intended for the measurement of 
gravity. After the machine had been completely built it was found to be unex- 
plainably inaccurate. After weeks of trial and error it was turned over to a 
mathematician to try to find the trouble. He soon showed by simple trigonom- 
etry that the axis of the instrument would have to be located on its pivot with 
an accuracy which is not attainable. He also pointed out a means of avoiding 
this feature by a relatively simple change in design, and this appears to have 
remedied the trouble." 

Another illustration from the petroleum industry, but this time con- 
cerned with the production of oil rather than prospecting for it, comes 
from Dr. E. C. Williams, Vice President in Charge of Research of the Shell 
Development Company: 

{j) "The petroleum industry has one important problem not found in other 
fields; it has to do with oil production from the ground. A mathematical problem 
arising from this subject is the following: The oil-gas mixture underground flows 
under pressure through porous media; with a certain spacing of wells, determine 
the most economical way to recover this mixture. This is sometimes equivalent 
to asking: 'In what way can the largest fraction of the oil be obtained over a 
certain period of time?' Simplified problems of this kind have been solved by 
potential theorv methods, since classical hydrodynamics becomes too involved, 
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and in the general problems where the flow constants vary with liquid-gas com- 
position, etc., partial differential equations are found which can be solved by 
approximate methods. On the basis of the solution of this mathematical problem, 
aided by extensive laboratory determinations of the required constants, one is 
able to find the best of several ways of producing from a given oil field." 

As a final example under the heading of economy, we may mention the 
flight testing requirements imposed upon the aircraft industry by the Civil 
Aeronautics Authority. Of these, Mr. E. T. Allen, Director of Flight and 
Research of the Boeing Aircraft Company, says: 

(£) "It was formerly required that each type of transport plane must be tested 
at all the altitudes at which it was intended to be flown, and at all flying fields 
where it was expected to be used. The cost of such testing was extremely high. 
A mathematical study of steady flight performance has, however, identified the 
basic parameters and established their relations to one another. This has made 
possible a scientific interpretation of flight test data taken at any suitable location 
convenient to the aircraft factory, and a reliable conclusion therefrom as to the 
performance to be expected under other conditions. This has greatly reduced 
both the cost and the time necessary to establish performance figures." 

Fifth: Sometimes experiments are virtually impossible and mathematics 
must fill the breach. An example comes to me from Mr. Hall C. Hibbard, 
Vice President and Chief Engineer of the Lockheed Aircraft Corporation: 

(/) "An unfortunate phenomenon that must be dealt with in aircraft design is a 
type of violent vibration which may be set up in the wings if the plane is flown 
too fast. It is known as flutter, and is highly dangerous, since the vibrations 
may be of such intense character as to cause loss of control or even structural 
failure. The technical problem is therefore to be sure that the critical speed at 
which flutter would occur is higher than any at which the craft would ever be 
flown. It is a phenomenon with respect to which wind tunnel experimentation 
is difficult, and flight testing very dangerous. It has been the subject of a number 
of mathematical investigations, the results of which have reached a sufficiently 
advanced stage that they are now being used to predict the critical speeds and 
flutter frequencies of aircraft while still in the design stage. Even more im- 
portant, the mathematical Investigation of this problem points the way to modifi- 
cations of design which will insure that flutter cannot occur in the usable speed 
range." 

Telephony provides a second example: 

(#») The equipment in an automatic telephone exchange must be capable of 
connecting any calling subscriber with any called subscriber. It consists of several 
stages of switches, each of which can be caused to make connection with a number 
of trunks which lead in turn to switches in the next succeeding stage. Enough 
switches must be provided so that only a very small proportion of subscribers' 
calls will fail to be served immediately. Since the demands made by the sub- 
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scribers fluctuate from moment to moment, the number of switches required de- 
pends in part upon the height to which the crests occasionally rise in this fluctu- 
ating load. It is also influenced, however, by the way the trunks are arranged, 
by the order in which the switches choose them, and by many other factors. 
Experimental appraisal of the effect of these various factors is impossible, both 
because it would be very costly, and because it would be exceedingly slow. Mathe- 
matically, however, they have been studied by the theory of a priori probability,7 

which is used not only in determining how much apparatus to install in a working 
exchange, but also in comparing the relative merits of alternative arrangements 
while in the development stage. 

Sixth: Mathematics is frequently useful in devising so-called crucial 
experiments to distinguish once for all between rival theories. A famous 
example in the field of physics was the study of the refraction of starlight 
near the sun's disc, which afforded a means of deciding between Newtonian 
and relativistic mechanics. In this case, mathematical investigation 
showed that the result to be expected was different according to the two 
theories, and astronomical observations confirmed the prediction of rela- 
tivistic mechanics. In the industrial field, an example of this kind comes 
to me from Dr. Joseph A. Sharpe, Chief Physicist in the Geophysical 
Laboratory of the Stanolind Oil and Gas Company: 

(«) "As an example of the second sort of use of analysis there is the case of 
our study of 'ground-roll,' the large amplitude, low frequency surficial wave 
which caused so much grief in the early days of seismic reflection prospecting 
when filters were not used as extensively as at present. We hope to use our study 
of this wave motion as an aid to a better understanding of the properties of the 
surficial layers of soil and their effects on the reflected waves in which we are 
primarily interested. 

Two views on the ground-roll are current, although neither is based on very 
much observation, and this of an uncontrolled sort. One view states that the 
ground-roll is an elastic wave. Analysis predicts that this wave will have a 
certain velocity in relation to the velocities of other waves, that it will have a 
certain direction of particle motion and relation of maximum horizontal to maxi- 
mum vertical component of displacement, that it will attenuate with distance 
according to a certain law, that it will attenuate with depth in a certain way, 
and that its velocity will follow a certain dispersion law. The second view main- 
tains that the 'ground-roll' is a wave in a viscous fluid, and analysis predicts a 
behavior which is similar in certain cases, and different in others, to that of the 
elastic wave. Having the predictions of the analysis at hand, we are enabled to 
devise a group of observations, and the special equipment for their prosecution, 
which will provide crucial tests of the two hypotheses." 

Seventh: Mathematics also frequently performs a negative service, but 
one which is sometimes of very great importance, in forestalling the search 

7 Not statistics, which is a posteriori probability. This is one of the few cases in industry 
where the a priori theory finds application. 
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for the impossible; for many desirable objectives in industry are as un- 
attainable as perpetual motion machines, and frequently the only way to 
recognize the fact is by means of a mathematical argument. 

(o) A certain type of electric wave filter which is usually referred to as an 
"ideal" filter would be very useful if it could be produced. However, it has been 
shown mathematically that such a structure would respond to a signal before the 
signal reached it; in other words, that it would have the gift of prophecy. Since 
this is absurd, it follows that no such filter can be built, and consequently no one 
tries to build it. 

Still another example from the field of communication deals with the 
design of feedback amplifiers. 

{p) In practice, any amplifier is intended to handle signals in a given frequency 
band. For various reasons, it is preferable not to have it amplify disturbances 
outside this band, and hence its gain characteristic is made to drop off as rapidly 
as possible outside the limits of the useful band. It has been shown theoretically, 
however, that the gain cannot decrease at more than a certain rate, which can 
easily be computed, without causing the amplifier to become unstable. As a 
matter of fact, the allowable rate at which the gain may fall is often surprisingly 
low, and a great deal of design effort would be wasted in the attempt to obtain 
an impossible degree of discrimination if the theoretical limitations were unknown. 

Eighth: Finally, mathematics frequently plays an important part in 
reducing complicated theoretical results and complicated methods of 
calculation to readily available working form. So many and so varied 
are the services falling in this category that it is difficult to illustrate them 
by means of examples. We arbitrarily restrict ourselves to two, chosen 
primarily for the sake of variety. The first comes from Mr. Hibbard: 

(9) "In aircraft design the metal skin, though thin, contributes a large part of 
the structural strength. Nevertheless, such thin metallic plates will buckle or 
wrinkle after a certain critical load is exceeded. Beyond this point the usual 
structural theories can not be applied directly and it is therefore necessary to 
introduce new methods of attack to predict the ultimate strength of the structure. 
These stiffened plates are difficult to deal with theoretically, but by interpreting 
the effect of the stiffeners as equivalent to an increase in plate thickness or a 
decrease in plate width, the calculations can be brought within useful bounds." 

The reduction of electric transducers to equivalent T or 11 configurations, 
the interpretation of the elastic reaction of air upon a microphone as equiva- 
lent to an increase in the mass of its diaphragm, the postulation of an 
"image current" as a substitute for the currents induced in a conducting 
ground by a transmission line above it, and a host of other common pro- 
cedures could be cited as similar instances of simplification based upon 
more or less valid mathematical reasoning. 
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The second example is furnished by Dr. E. U. Condon, Associate Director 
of the Research Laboratories of the Westinghouse Electric and Manu- 
facturing Company: 

(r) "In the manufacture of rotating machinery it is of extreme importance to 
have the rotating parts dynamically balanced, in order to reduce to a minimum 
the vibration reaction on the bearings which unbalance produces. Theory shows 
the phases and amplitudes of the bearing vibrations produced by excess masses 
located at various places on the rotor; conversely, by solving backward from 
observed vibration data, one can compute what correction is needed to eliminate 
the unbalance. Recently a most valuable machine has been developed which 
not only measures the unbalance, but also automatically shows what correction 
should be made, thus eliminating the necessity for these calculations. 

The rotor to be balanced is whirled in bearings on which are mounted micro- 
phones that generate alternating voltages corresponding to the vibrations of the 
bearings. These voltages are fed into an analyzing network, which automatically 
indicates the correction needed in order to achieve dynamic balance. In some 
cases the output of the balancing machine has been arranged to set up a drilling 
machine so it will automatically remove the right amount of metal at the right 
place. These machines are finding application in the manufacture of small 
motors, of automobile crankshafts, and in the heavy rotors of power machines." 

In the same class would come the isograph, by means of which the 
complex roots of polynomials can be located; the tensor gauge which 
registers the principal components of strain in a stressed membrane without 
advance knowledge of the principal axes; and slide rules for a great variety 
of special purposes such as computations with complex numbers, the 
calculation of aircraft performance, aircraft weight and balance, and the 
like. Perhaps we ought also include in the same category the use of soap- 
bubble films for the study of elastic stresses in beams, the use of current 
flow in tanks of electrolyte for the study of potential fields, and the use of 
steel balls rolling on rubber membranes stretched over irregular supports 
as a means of studying the trajectories of electrons in complicated electric 
fields. These are all mechanical methods for saving mathematical labor, 
but they are more than that, for they all rest upon a foundation of mathe- 
matical theory. They are, in fact, examples of the use of mathematics to 
avoid the use of mathematics. 

Mathematics in Some Particular Industries 

Communications 

The communication field is the one in which mathematical methods 
of research have been most freely used. This is due partly to the fact 
that the transmission of electric waves along wires and through the ether 
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follows laws which are particularly amenable to mathematical study; 
partly also to the fact that so much of the research has been centralized 
in a single laboratory, thus bringing together a large number of engineers 
into a single compact group, and justifying the employment of consultative 
specialists. Most important of all, however, is the fact that there are two 
devices—vacuum tubes and electrical networks—without which modern 
long-distance telephony would be impossible; and one of these, the electrical 
network, is and has been since its earliest days almost entirely a product of 
mathematical research. Mathematics has thus been as essential to the 
development of nation-wide telephony as copper wire or carbon microphones. 

Number of Mathematicians. The Mathematical Research Department of 
the Bell Telephone Laboratories contains 14 mathematicians. Perhaps 
an equal number of men scattered through various engineering departments 
should also be classified as mathematicians according to the definition 
adopted for this report. Say a total of 25 or 30 for the Bell Laboratories, a 
few more for the Bell System as a whole, and perhaps 40 or 50 for the entire 
communication field including the companies interested in radio and 
television. A few of these men carry on a considerable amount of experi- 
mentation, but their significant work is theoretical. 

In addition, there is a much larger number of men who use mathematical 
methods extensively in their daily work, but whose mental type is not that 
which we have described as mathematical, and who are therefore not in- 
cluded in the numbers quoted above. This is true in particular of the 
engineers who have the responsibility for designing networks. 

Uses of Mathematics. Mathematical activity is most intense: (1) in 
designing wave filters and equalizers, (2) in studying transmission by 
wire and ether, the concomitant problems of antenna radiation and recep- 
tion, inductive interference between lines, etc., (3) in studying various 
problems related to the standard of service in telephone exchanges, such as 
the amount of equipment required, the probability of delays and double 
connections, the hunting time of switches, etc., (4) in providing a rational 
basis for the design of instruments, such as transmitters and receivers, 
vacuum tubes, television scanning devices, etc., (5) in developing efficient 
statistical methods for the planning and interpretation of experiments, and 
for controlling the quality of manufactured apparatus. 

Future Prospects. During the last 20 years the number of men employed 
in communication research has increased with great rapidity, but this rapid 
expansion appears to be about over. A large increase in the mathematical 
personnel of the industry therefore appears unlikely. It seems inevitable 
that the problems will increase in complexity, and that theoretical methods 
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will become increasingly important, but it is believed that this trend will be 
matched by progressively better trained engineering personnel, rather than 
by an increased number of mathematicians. Indeed, unless the qualifica- 
tions of the mathematicians rise progressively with those of the engineers, 
it may turn out that less rather than more will be employed. 

Electrical Manufacturing 

Substantially all the research in the power fields is carried on by a few 
electrical manufacturers. The power companies usually accept and exploit 
such equipment as the manufacturers supply, and contribute to improved 
design principally through their criticisms of past performance. Many of 
their engineers, however, are individually active in the invention and 
development of improved equipment. 

Number of Mathematicians. The number of mathematicians in the 
industry is smaller than in communications, and is not easy to estimate 
because their work is less segregated from other activities. The total 
number who would here be rated as mathematicians is probably about 20. 

As in communications, some are engaged partly in experimental work. 
There are some, however, whose relationship as consultants is clearly 
recognized, and there is evidence that management is becoming increasingly 
conscious of the nature and value of their services. 

Uses of Mathematics. Mathematical activity is most intense: (1) in 
studying structural and dynamic problems, such as the strain, creep and 
fatigue in machine parts, vibration and instability in turbines and other 
rotating machinery, etc., (2) in appraising the evil effects of suddenly 
applied loads, lightning or faults upon power lines, and their associated 
sources of power, and devising methods to minimize these effects, (3) in 
studying system performance, particularly the most effective or economical 
location of proposed new equipment, and the evaluation of performances of 
alternative transmission or distribution systems, (4) in refining the design 
of generators, motors, transformers and the like, so as to improve their 
electrical efficiency and reliability, and in similar improvement of the thermal 
efficiency of turbines, (5) in the design of miscellaneous instruments and 
apparatus. 

Statistical methods are being introduced into manufacturing and research, 
but are not yet utilized to the same extent as in telephony. 

Future Prospects. The amount of money spent on development in these 
industries is gradually increasing, and as in other fields the problems are 
becoming more complex. Hence a slow increase in the number of mathe- 
maticians seems probable, with rising standards in the qualifications re- 
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quired, not only as to mathematical training, but as to temperament and 
personality as well. 

The Petroleum Industry 

The petroleum industry consists of many producing units of various 
sizes, highly competitive in character, and surrounded by a number of 
consulting service organizations, all of which are small. The larger produc- 
ing companies—and within their resources, the service units also—maintain 
research laboratories. They tend to be secretive about the developments 
which take place in these, sometimes to a surprising degree. Hence there 
is much duplication of effort, particularly in such matters as the design of 
instruments for geophysical prospecting, and in methods of interpreting the 
data derived from them. 

Number of Mathematicians. The industry employs more mathematicians 
than is generally appreciated, some of them men of very considerable ability. 
The total of first-rank men is perhaps 15 or 20. Due to the small size of the 
individual research staffs, however, most of these men carry considerable 
project responsibility along with their theoretical work. This is the 
normal state of affairs in small groups: the abnormality is the lack of 
contact with, and stimulus from, similar men in other companies. 

Uses of Mathematics. Petroleum research extends in three directions: 
prospecting for oil, producing it, and refining it. 

There are five recognized methods of prospecting: gravity, seismic, 
electric, magnetic and chemical. In the first four, important mathematical 
problems arise in designing sufficiently sensitive instruments and in inter- 
preting data. The fifth requires the use of statistical methods. 

Research on methods of producing a field has led to a few mathematical 
studies of underground flow, and would undoubtedly give rise to others if 
the results of these studies could be profitably applied. However, since 
the rate at which oil is brought to the surface is almost entirely determined 
by law, and the same is indirectly true of well location also, mathematical 
consideration of the subject is largely sterile, at least so far as American 
oil fields are concerned. 

The third activity—refining—is essentially a chemical industry. Hence 
the following remarks by Dr. E. C. Williams, Vice President in Charge of 
Research of the Shell Development Company, presumably apply not only 
to the petroleum business, but to manufacturing chemistry in general: 

"The two chief problems in chemistry are (aside from the identification of 
substances): The calculation of chemical equilibrium and the calculation of the 
rates of attainment of these equilibria. The first problem, involving thermo- 
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dynamics and statistical mechanics, is rather well understood and usually, by very 
simple computations, information sufficiently accurate for industrial application, 
at least, can be found. Frequently, when several equilibria are possible simul- 
taneously, complicated equations arise, but we rarely solve them directly, but 
rather set up tables of the dependent variable (the per cent conversion possible) 
as a function of the independent variables (temperature, pressure concentration). 
The sources of these data, however, are numerous and at times require complicated 
mathematics, as in the calculation of thermodynamic properties from spectro- 
scopic data via quantum statistics. 

The situation is much less favorable in the calculation of the rates of chemical 
reactions. A semi-empirical method, based on quantum mechanics, has been 
applied with a little success to some of the simplest reactions taking place in the 
gas phase, but virtually no progress has been made in the more important field 
of heterogeneous reactions (reactions of gases on surfaces, for example). We may 
say that no satisfactory mathematical theory for such calculation exists at the 
present time. Some progress is being made, but we are far from being able to 
predict a suitable catalyst for any desired reaction. For the present we are happy 
to be able to account for observations made on some simple reactions." 

Future Prospects. It is inconceivable that research in the industry will 
not continue at at least its present level. Hence more, rather than less 
mathematical work will probably be undertaken in prospecting and in 
refining. A demand of moderate proportions should exist for able mathe- 
maticians with a suitable background of geology and classical physics 
for the geophysical work, and of physical chemistry and molecular physics in 
the chemical field. 

Aircraft Manufacture 

The aircraft industry also consists of a number of independent units, 
and is highly competitive. It is a new industry in which rapid technical 
development and rapid increase in size has been the rule. It has depended 
primarily upon government-supported laboratories and, to a lesser extent, 
upon the universities for its research, and has busied itself with the exploita- 
tion of that research in the advancement of aircraft design. No unit of the 
industry has had or, for that matter, now has a research laboratory, in the 
sense in which the words would be used in older and larger businesses, but 
the beginnings of research departments have appeared, and individual 
researchers and research projects are clearly recognizable. 

Numbers of Mathematicians. Some men in the engineering departments 
of these companies should undoubtedly be classed as mathematicians, but 
it is impossible to make even an approximate estimate of their number. 
It is possible, however, to cite pertinent information which bears on the 
importance of mathematics to the industry. 
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The design of a modern four-engine transport plane requires about 
600,000 hours of engineering time up to the point where complete working 
drawings have been prepared. About 100,000 hours are spent on mathe- 
matical analysis of structures, performance, lift distribution and stability. 
Most of this work is routine, but some is fundamental in character, as is 
evident from several of the examples mentioned earlier in this report. 

Of 670 men in the engineering department of one of the larger com- 
panies, about 25 have mathematical training beyond that usually obtained 
by engineers, and 10 or so of these are using this advanced training to a 
significant extent. 

Uses of Mathematics. In designing an airplane, five factors are of 
particular importance. These may be used to indicate the directions 
in which mathematical research may be expected. 

(1) Performance (that is, pay-load, range, speed, climbing rate, etc.) 
In the past, forecasts of performance have been based almost entirely 

on empirical data. Mathematical methods of estimation are now being 
developed from hydrodynamic theory, however, and are being used to an 
increasingly greater extent. 

(2) Lift and Drag (i.e., the force variation over the wings) 
This is the principal objective in the aerodynamic design of the wing. 

The technique of prediction rests on two supports: wind tunnel experi- 
ments and airfoil theory, by means of which experimental data are inter- 
preted and applied. For example, airfoil theory suggests the shape of 
airfoil to avoid unfavorable pressure distributions and is leading to im- 
proved wing sections. This part of aircraft design is already highly 
mathematical, but a number of fundamental problems still remain unsolved. 
For example, the theory is still unable to predict stall, and too little is 
known about optimum shapes or about turbulence, though the recently 
developed statistical theory of turbulence has contributed to the under- 
standing of the airflow over an airplane and resulted directly in a decrease 
in airplane drag and consequent improvement in performance. 

(3) Stability (inherent steadiness of motion) 
The stability of an airplane in flight is inherent in its aerodynamic 

design and quite distinct from its control or maneuverability. The theory 
of "small oscillations" has been successfully applied to rectilinear flight. 
More recently the problem of predicting the response of an airplane to 
control maneuvers has used the Heaviside operational calculus. Current 
problems of dynamical stability in which applied mathematicians are inter- 
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ested are the behavior of an airplane when running on the ground and the 
behavior of seaplanes when running on the water (porpoising). 

(4) Structural Safety 
Very precise appraisal of structural strength is required in aircraft 

design. In most industries inaccuracy can be compensated by increased 
factors of safety, but the pay-load of an airplane is so small a proportion 
of its total weight that slight increases in factors of safety would seriously 
reduce its carrying power or even make it unable to get off the ground. 
Mathematical methods have always been used in this phase of aircraft 
design in so far as they were available. The standard technique is first to 
design a part on the basis of calculated strength, then build and test it, 
and if the tests do not agree with predictions, revise the design and build 
and test the modified part. This process is continued as many times as 
necessary to attain a satisfactory result. It is slow and expensive. The- 
oretical methods are now reliable enough that the majority of structural 
tests confirm predictions with sufficient accuracy to require no revision. 
However, new problems constantly present themselves—the introduction of 
pressurized cabins recently gave rise to several—and hence continual 
mathematical study is required. A beginning has also been made in the 
use of the principles of probability in setting up structural loading factors. 

(5) Flutter 
We have already commented upon the impracticability of studying 

this phenomenon by any means other than the mathematical. The general 
equations are complicated, and have only been solved by making important 
simplifying assumptions. The results are serviceable for check purposes, 
but need further elaboration. The importance of the problem increases 
progressively as more efficient planes are designed, and the necessity for an 
adequate mathematical theory is becoming critical. 

Future Prospects. It appears inevitable that from motives of economy 
the industry will rely increasingly upon theoretical methods of design, 
and that mathematics will play a larger part in the future than at present. 
It is also probable that for competitive reasons the various companies 
will supplement government research by fundamental studies of their own. 
Furthermore, in view of the present fragmentary state of aerodynamic 
theory, it would not be surprising if part of the research effort was devoted 
to the improvement of the basic theory itself. 

The reliability of these predictions is, of course, conditioned by the 
financial prospects of the industry. Just now, war orders are causing 
abnormal inflation of earnings; when these cease, retrenchment will be 
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inevitable. The industry is not highly mechanized, however, and hence 
its present cycle of inflation does not imply so large an expenditure for 
plant as would be true in most manufacturing fields. For this reason, 
the period of deflation may prove to be one of large war profits in the bank, 
but insufficient orders to occupy the time of many competent technical 
men whom the management would be reluctant to let go. If this should 
occur, an almost explosive development of research may take place. 

Whether the development is explosive or not, however, it is probable 
that the industry will soon become one of the largest employers of industrial 
mathematicians. 

Industrial Statistics and Statisticians 

The subject of statistics enters the business world at points quite dis- 
tinct from those touched by the rest of mathematics. Moreover, the types 
of business activity to which it most frequently applies—insurance and 
finance, economic forecasting, market surveys, elasticity of demand against 
price, benefit and pension plans, etc.—belong to the field of economics which 
is the subject of a separate report, and need not be touched on here. 

There are certain other respects in which statistical theory could be 
of great service in industry, but they have been exploited to only a limited 
extent. This report must therefore point out these hopeful fields rather 
than record achievements in them. 

Statisticians in Industry 

By "statistician" we mean a person versed in and using the mathematical 
theory of statistics, not one who collects, charts and scrutinizes factual 
data. In the business world the word is more often used in the latter sense. 

There is a very great difference between the number of statisticians 
in industry, and the number of men interested in some form of statistics. 
How great the discrepancy is will be clear from a comparison of the mem- 
bership of the American Statistical Association, which devotes itself to the 
application of statistics in its broadest sense, and of the American Institute 
of Mathematical Statistics, which confines itself narrowly to the develop- 
ment of statistical technique. The former lists 277 names with industrial 
addresses; the latter only 10. 

Statistics in Industry 

Dr. W. A. Shewhart, Research Statistician of the Bell Telephone Labora- 
tories, has delineated broadly and succinctly the field in which statistics 
may be expected to find application as follows: 
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"Since inductive inferences are only probable, or, in other words, since repeti- 
tions of any operation under the same essential conditions cannot be expected to 
give identical results, we need a scientific method that will indicate the degree of 
observed variability that should not be left to chance. Hence it appears that the 
use of mathematical statistics is essential to the development of an adequate 
scientific method, and that mathematical statistics may be expected to be of 
potential use wherever scientific method can be used to advantage." 

More specifically, there are five recognizable types of industrial engi- 
neering activity in which statistical theory either is, or should be used. 

(а) In studying experimental data to determine whether the observed 
variations should be regarded as accidental or significant. An example 
is found in the field of geochemical prospecting. The surface soil overlying 
regions in which there is oil contains a higher proportion of hydrocarbons 
and waxes than occur in other locations. Chemical analysis of surface soil 
therefore affords a means of prospecting for oil. Mr. Eugene McDermott 
writes: 

"In the geochemical method, it was found necessary to determine between 
samples showing significantly high analysis values, and those which were normal 
values. These normal sample values, of course, had considerable variation be- 
tween themselves, due to analysis and in larger part sampling errors. After 
examining these data for a long period of time, it was decided to approach the 
problem statistically. This disclosed at once that areas surveyed could be divided 
into positive (having significant values, and hence favorable from the standpoint 
of petroleum possibilities), negative (no significant values and unfavorable for 
petroleum) and marginal (indeterminate). The latter case is always the most 
difficult one in surveying, and while we are now able to recognize it, further work 
is needed to fully interpret it. This kind of mathematics is being applied at the 
present moment, and bids fair to solve the problem." 

(б) In planning the kind of experiments from which such data arise. 
Whether variations are or are not significant depends in no small degree 
upon the fashion in which the data were taken. Consideration of the 
experiment in advance from a statistical point of view often results in 
economy of procedure, or even points the difference between a trustworthy 
and a meaningless result. 

The following example is quoted from an address by Dr. R. H. Pickard, 
Director of the British Cotton Research Association: 

"To illustrate the advantage of good experimental design I may refer to some 
experiments carried out at the Shirley Institute to find the effect of various treat- 
ments on a quality of cloth. This quality varies considerably at different parts 
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of the same piece of cloth, and in order to measure the effect of the treatments 
the tests are repeated systematically so that the variations are 'averaged out.' 
Some of the natural variation, however, is systematic, and by adopting a 'Latin 
Square' arrangement of treatments on the cloth (such as is much used in agri- 
cultural yield trials), these systematic variations are eliminated from the com- 
parison, and in the instance quoted the result was to reduce by one-half the 
number of tests necessary for a given significance as compared with a random 
arrangement."8 

To the extent to which biology becomes an important element in indus- 
trial research—and it would appear to be on the point of doing so in such 
fields as food manufacturing—it can be expected that the type of statistical 
work listed under (a) and (6) will rapidly increase. 

(c) In laying out an inspection routine. Manufacturing inspection 
frequently yields data which are best interpreted statistically, either 
because only spot-checks are taken, or because the method of inspection 
gives measurements which are themselves subject to accidental fluctuation. 
In such cases statistical theory is of great advantage in setting up an 
effective and economical inspection program. It is being so used in certain 
industries, notably in electrical manufacturing and textiles, but the poten- 
tial field of usefulness is far from covered. 

The following example is quoted from an address by Mr. Warner Eustis, 
Staff Officer on Research of the Kendall Company: 

"Surgical sutures are twisted strands of sheep intestine, which has been slit 
lengthwise. . . . After a stated number of days a sewing with such material, im- 
planted in the body during a surgical operation, will be digested and disappear 
as the healing processes progressively take up the load originally held by the 
suture Here is a product which it is impossible to test in any way without 
destroying the product, especially as each suture is sealed in an individual, steri- 
lized tube. Our final product tests must all be conducted by breaking open a 
sterile tube and testing the product therein. The quality appraisal of such a 
product naturally rests upon probability, rather than upon an actual testing of 
each item. Due to the nature of such a product, in which a single failure may 
destroy human life, the need for accurate quality appraisal is superlative."9 

{d) In the control of manufacturing processes. Inspection is not merely 
a means of discarding bad product; it is also a means of detecting trouble 
in the factory. This is obvious in the extreme cases when the product is 

8 "The Application of Statistical Methods to Production and Research in Industry," 
by R. H. Pickard, Supplement to the Journal of the Royal Statistical Society, Vol. 1, 
No. 2, 1934, pp. 9-10. 

8 "Why the Kendall Company is interested in Statistical Methods," by Warner Eustis, 
Proceedings of the Industrial Statistics Conference held at M. I. T., Cambridge, Mass., 
Sept. 8-9, 1938, pp. CXLIII-CXLIV, published by Pitman Publishing Corporation. 
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unusually bad. By the use of suitable routines set up in accordance with 
statistical theory, the day-to-day results of inspection can be used to detect 
incipient degradation in the process of manufacture which might otherwise 
escape notice. This procedure is used extensively by the Western Electric 
Company in assuring uniform quality in many items of manufacture, and 
to a lesser extent in other industries. Of it, Mr. J. M. Juran, Manufactur- 
ing Engineer of the Western Electric Company, says: 

"Too frequently we have seen an inspection group grow lax in vigilance until a 
complaint from the customer wakes them up. They promptly swing the pen- 
dulum a full stroke in the opposite direction, and the factory groans in its effort 
to meet the now unreasonable demands. A sound and steady control, like a 
sound currency in commercial relations, gives factory foremen a feeling of confi- 
dence and gives the consumer a feeling that control is being exercised before the 
product reaches him."10 

{e) In writing rational specifications. Obviously, if such a procedure 
helps the manufacturer to assure uniform quality, it is also of value to the 
purchaser of his products. Hence the subject of statistics enters into 
the writing of the buyer's specifications. It has been so used to a limited 
extent in the Bell System in connection with telephone apparatus, and by 
the United States Government in the purchase of munitions. However, 
it must still be rated as a relatively undeveloped field. Of it, Captain 
Leslie E. Simon, Ordnance Department of the United States Army, says: 

"Statistical methods have proved to be a powerful tool in the critical examina- 
tion of some ammunition specifications prior to final approval. Their use, either 
directly or indirectly, is almost essential in determining a reasonable and economic 
standard of quality through the method of comparing the quality desired with 
that which can be reasonably expected under good manufacturing practice. In 
like manner, the statistical technique renders a valuable service in framing the 
acceptance specification. Through its use the quantity and kind of evidence 
which will be accepted as proof that the product will meet the standard of quality 
can be clearly expressed in a fair, unequivocal and operationally verifiable way." 

Conclusion 

It is perhaps unusual to conclude a survey of this sort by stating the 
impressions which it has made upon its writer. In the present instance, 
however, the element of self-education has been so large that these im- 
pressions may summarize the report better than any more formal recapitu- 
lation. They are: 

10 "Inspectors' Errors in Quality Control," by J. M. Juran, Mechanical Eneineerine, 
Oct., 1935, pp. 643-644. 
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(1) Because of its general significance as the language of natural science, 
mathematics already pervades the whole of industrial research. 

(2) Its field of usefulness is nevertheless growing, partly through the 
development of new industries such as the aircraft business, and partly 
through the incorporation of new scientific developments into industrial 
research, as in the application of quantum physics in chemical manufac- 
turing and statistical theory in the control of manufacturing processes. 

(3) The need for professional mathematicians in industry will grow 
as the complexity of industrial research increases, though their number 
will never be comparable to that of physicists or chemists. 

(4) There is a serious lack of university courses for the graduate training 
of industrial mathematicians. 

(5) Management, which is already keenly alive to the importance of 
mathematics, is also rapidly awakening to the value of mathematicians 
and the peculiar relationship which they bear to other scientific personnel. 

This last observation is not trivial. There was a day when, in engi- 
neering circles, mathematicians were rather contemptuously characterized 
as queer and incompetent. That day is about over. Just now, an attitude 
more commonly met is one of amazed pride in pointing to some employee 
who "isn't like most mathematicians; he gives you an answer you can use, 
and isn't afraid to make approximations." As the proper function of the 
industrial mathematician becomes better understood, these proud remarks 
will no doubt cease. Those who are adapted to the job will be taken for 
granted; the others will be recognized as personnel errors and not mistaken 
for the professional type. Perhaps the present report may speed this day. 
If so, it will have been a service to the profession and to industry. 



The Transmission Characteristics of Toll Telephone Cables 
at Carrier Frequencies 

By C. M. HEBBERT 

IN THE design of a new telephone transmission system a knowledge of 
the characteristics of the medium over which the waves are to pass is, 

of course, a prerequisite. What painstaking experimentation is necessary 
to accumulate such knowledge, however, what voluminous data are involved, 
what minutiae of detail, and what extremes of accuracy, are things far 
less obvious. 

Recent papers have described a new 12-channel carrier telephone system 
for operation over cable pairs.1 For this system a knowledge of the maxi- 
mum cable losses is needed in order to determine the necessary repeater 
gains. Accurate data on the insertion loss slope versus frequency are 
required so that compensating equalizers can be designed to give uniform 
transmission over the frequency band. In order to design a regulating 
system to compensate for the variations in attenuation which result from 
changes in cable temperature, precise knowledge of these variations as a 
function of frequency is essential. It is necessary to know the impedance 
of the cable pairs in order that the amplifier impedance may be matched to 
it, thereby avoiding reflections which would aggravate cross-talk effects. 
For various purposes, e.g., testing the cables, designing the coils to balance 
out crosstalk, etc., it is also necessary to know the fundamental parameters 
(resistance, inductance, capacitance and conductance) or so-called primary 
constants of the pairs. The velocity of transmission also plays a part in 
determining the characteristics of the channels. In addition to all these 
transmission characteristics, it is, of course, essential to know the cross- 
talk couplings between different pairs. This subject has been treated 
elsewhere2, however, and is not considered herein. 

In order that the cable carrier systems may be applied in the plant with- 
out requiring extensive transmission measurements on each individual 
carrier pair in each repeater section, it is important that the differences in 
the transmission characteristics between different pairs be known. The 
problem therefore becomes one of statistical analysis. In most cases the 

1 "A Carrier Telephone System for Toll Cables," C. W. Green and E. I. Green, B.S.T.J., 
Vol. 17, January 1938, page 80. "Experience in Applying Carrier Telephone Systems to 
Toll Cables," W. B. Bedell, G. B. Ransom and W. A. Stevens, Vol. 18, October 
1939, page 547. 2 "Crosstalk and Noise Features of Cable Carrier Telephone System," M. A. Weaver, 
R. S. Tucker and P. S. Darnell, B.S.TJ., Vol. 17, January 1938, page 137. 
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effects involved are cumulative with distance and the accuracy involved 
in the determination of the various characteristics is therefore set by the 
maximum distance over which the system is designed to operate. For a 
distance of 4000 miles the total loss at the top frequency of 60 kc. will be 
approximately 16,000 db, the attenuation difference between the top fre- 
quency of 60 kc. and the bottom frequency of 12 kc. nearly 6000 db if the 
cable is at about the average temperature, 550F. The range of variation 
in loss with temperature, assuming aerial cable over the whole distance, 
will be about ±8 per cent of the total at 60 kc. It is desired to correct 
these frequency differences in loss and variations with temperature so 
accurately that individual channels will be constant to within ±2 db. 

Prior to the beginning of experimentation with cable carrier systems 
limited use had been made, in connection with carrier systems operated over 
open-wire lines at frequencies up to 30 kc., of conductors in relatively short 
entrance and intermediate cables. The available data, however, were 
quite inadequate for the cable carrier problem. Accordingly, an extensive 
series of tests was undertaken. Reels of standard toll cable were placed 
in temperature controlled rooms where the extreme temperature variations 
of the mid-west could be substantially duplicated (the actual laboratory 
temperatures ranged from just below 0° F to 120° F) and measurements 
were made to determine the changes in the parameters of the cable ac- 
companying these wide temperature variations at frequencies from 1 kc. 
to 100 kc. and higher in some cases. Certain of the tests even studied the 
effect of varying the humidity content of the cables. Further measure- 
ments were then made on suitable lengths of pairs in actual commercial 
cables in which carrier systems were to be installed. These results cor- 
roborated and extended the data from the laboratory measurements; the 
subsequent operation of equalizers, regulators, etc., based upon these data, 
showed no essential discrepancies. 

The present paper, after referring to the types of toll cables employed for 
the new carrier systems, outlines the methods employed in determining their 
characteristics both in the laboratory and in the field, summarizes these 
characteristics for typical 19-gauge cable at frequencies up to 100 kc. and 
finally extends them to frequencies as high as 700 kc. for 16 and 19-gauge 
cables. 

Types of Carrier Toll Cables 

The type K carrier system has been designed so that it may be applied 
to existing cables, thus in many cases avoiding the installation of expensive 
new cables. Most of the standard toll cable in the Bell System contains 
chiefly 19-gauge paper insulated conductors in "multiple twin quads," i.e., 
two conductors are twisted together to form a pair and two pairs twisted 
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together to make a quad. The nominal capacitance of a pair is .062 mf. 
per mile. There are various twist lengths of both pairs and quads in a given 
cable as well as cables ranging in size from 12-quad cable to the oversize 
19-gauge cable containing 225 quads. Some type K is operating over 
"paired" cable, i.e., cable in which only the wires of each pair are twisted 
together. 

Operation in two directions is accomplished by using either a separate 
cable for each direction or a single cable with two groups of conductors 
separated by a layer shield. This avoids serious near-end crosstalk effects 
which would result from the large level difference existing between opposite 
directions at a repeater point. 

Methods of Measurement 

As mentioned above, 250-foot reels of standard toll cable were placed 
in a special room which could be accurately maintained at any desired 
temperature from about zero to 120 degrees, Fahrenheit, and measurements 
made for various frequencies and temperatures. For the most part, these 
consisted of open-circuit admittance and short-circuit impedance measure- 
ments on part of the pairs in the cable at temperatures of about zero, 30, 
50, 90 and 120 degrees F., over the frequency range from 4 to 100 kc. From 
these measurements computations could then be made to determine the 
resistance, inductance, capacitance and conductance as well as the attenu- 
ation, phase constant and characteristic impedance of this type of cable at 
the different temperatures and frequencies. Detailed data on frequency 
and temperature variations of these quantities are given below. Most of 
these data were obtained from measurements made on 16- and 19-gauge 
pairs in a typical reel-length of standard toll cable. The temperature is 
difficult to maintain at a constant level and d-c. resistances of certain pairs 
were measured at frequent intervals during the process in order to get ac- 
curate temperature readings by comparing with resistance-temperature 
curves of these pairs. Thermocouples were also attached to the cable 
at various points along its length and sheath temperatures determined 
from them. After stabilizing the room temperature as closely as possible, 
the variations in cable temperature took place slowly enough to be allowed 
for in the computations. 

After the selection of the Toledo-South Bend route for a trial installation, 
further measurements were made on certain of the pairs in this cable. The 
test sections, extending out of Lagrange, Indiana, were made about 10 
miles long in order to obtain the averaging effect of length. For this dis- 
tance it was not possible to use open and short-circuit measurements as 
was done in the laboratory, and a substitution method3 was devised (Fig. 1). 

3 This was devised by H. B. Noyes and will be described by him in a paper in the 
Bell Laboratories Record. 
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This consists essentially of first measuring the input and output a-c. currents 
at the two ends of the test pair by means of thermocouple-milliammeter 
arrangements and then immediately sending d-c. over another pair (called 
reference pair in Fig. 1) built out to a convenient fixed d-c. resistance, the 
same for all measurements, and adjusting resistance networks at both 
ends of the line until the meter readings are the same as for the a-c. Suit- 
able charts then enable readings of attenuation (insertion loss) corresponding 
to the d-c. (and therefore also to the a-c.) readings to be made very 
rapidly. 
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Rbo rs 
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/ 140- 
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Fig. 1—Simplified attenuation measuring circuit 

Toll Cable Characteristics Below 100 Kc. 

Primary Line Parameters 

The four primary line parameters, R, L, G and C—series resistance, series 
inductance, shunt leakage and shunt capacitance—are of the same sort for 
all kinds of transmission lines, but the relative importance of the various 
elements changes considerably with frequency and the type of structure 
considered. The old name primary "constants" is obviously a misnomer, 
and it is simpler to speak of them as line "parameters," since this does not 
necessarily imply anything regarding their constancy or inconstancy under 
various conditions. 

The "true" or distributed values of these parameters are usually obtained 
from measurements of the open circuit admittance, G' -\-juC', and the short- 
circuit impedance, R' + juL' of the actual pair in a short length of cable, 
by means of the following formulas: 
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R (resistance) = R'{\ — | uL'C) + ■ • • 

L (inductance) = 1/(1 — \o?L'C' • ■ •) + i • 

G (conductance) = ^'(1 — f JVC • • ■) - f R'wCA + f R'uL'C'3 

C (capacitance) = C'(l — ^ o?L'C' + | R'C • • •) (1) 

These formulas give accuracies within one per cent for reel-lengths of 500 
feet or less and frequencies up to 100 kilocycles for 19-gauge cables having a 
capacity of .062 mf per mile. All the curves of R, L, G, C herewith are 
based on true values obtained from such computations. 

Resistance 

The quantity R, series resistance in ohms per mile, has a large variation 
with frequency produced by the well-known phenomenon called skin effect 
and another large increment, resulting from the closeness of the wires in 
cables, known as the proximity effect.4'7. The magnitude of the proximity 
effect varies with the diameter of the conductors as well as with their separa- 
tion. The curves in Fig. 2 show the increment in resistance resulting from 
skin effect and the total increase including proximity effect as computed 
for a pair of wires separated by various multiples of their diameters. The 
abscissa, J5, in Fig. 2 is a sort of universal parameter used in data on skin 
effect so that a single curve will suffice for various gauges. If / is frequency 
in cycles per second and R0 is the d-c. resistance for 1000 feet of the wire 
(not a 1000-foot loop), the parameter B is given by the equation 

b = =f vm (2) 

for 19-gauge wire so that 5 = 80 corresponds to 51,200 cycles. According 
to the curves at 5 = 80 (51.2 kc), the skin effect increases the a-c. resistance 
to about 12 per cent more than the d-c. resistance. 

For a separation of two diameters between centers of the wires of a pair 
{k = .25) the proximity effect adds another 6 per cent to the resistance 
ratio making the total a-c. resistance about 1.18 times the d-c. resistance 
at 51.2 kc. If the wires are closer together {k = .4) the a-c. resistance is 
computed to be about 1.30 times the d-c., which is about the ratio actually 
measured. The effects caused by the presence of the adjacent pair in a 

4 J- R- Carson, "Wave Propagation over Parallel Wires—The Proximity Effect." 
Phil. Mag., Vol. 41, April 1921, pp. 607-633. 

6 A. E. Kennelly, F. A. Laws and P. H. Pierce, "Experimental Researches on Skin 
Effect in Conductors," A.I.E.E. Trans., Vol. 34, Part 2, 1915, pp. 1953-2021. 6 A. E. Kennelly and H. A. Affel, "Skin Effect Resistance Measurements of Conductors 
at Radio Frequencies," I.R.E. Proc., Vol. 4, No. 6, Dec. 1916, pp. 523-574. 7 Giinter Wuckel, "Physics of Telephone Cables at High Frequencies," EFD 47. 
(Nov. 1937) pp. 209-224. 
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quad, the surrounding wires and the lead sheath are not included in these 
computations. 

These values assume a temperature of 20° Centigrade (68° Fahrenheit) 
but if the temperature varies, so also does the resistance. Figure 3 shows 
the a-c. temperature coefficient of resistance and its variation with tem- 
perature for 19-gauge pairs in ohms per ohm per degree, Fahrenheit, i.e., 
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Fig. 2—Skin effect and proximity effect on a.-c. resistance of toll cable pairs 

1 — 
& dt 

(3) 

here A is the a-c. temperature coefficient of resistance of copper at h 
egrees, Fahrenheit. The a-c. resistance R at temperature t is given by 
ire formula 

i? = [1 + Ait - /l)] (4) 

where i?i is the a-c. resistance at temperature h degrees, Fahrenheit. The 
coefficient A decreases with increasing frequency, but not indefinitely; it 
approaches 1/2 the d-c. coefficient as its asymptotic limit with frequency. 
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The normal variation of air temperatures in the middle western part 
of the country is from about 1° Fahrenheit, (—17° Centigrade) to plus 109° 
Fahrenheit (43° Centigrade). Extremely hot summers like that in 1936, 
which was preceded by a severe winter, show even higher temperatures and 
there are occasional periods in mid-western winters when the temperature 
hovers continuously around —30° F., for a week or two. These tempera- 
tures are almost the temperatures assumed by open wires, but wires inside 
a lead sheath like those in an aerial cable are subjected to much higher than 
air temperatures in hot weather when exposed to direct sunlight in the 
absence of wind. Some observations made at Lagrange, Indiana, in 1936 
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Fig. 3—Resistance-temperature coefficient—in ohms per ohm per 1° 
fahr.-19 gauge cable 

on d-c. resistance of cable pairs showed that temperatures in the ten miles 
of cable averaged about 122° Fahrenheit (50° Centigrade) when the air 
temperature read on thermometers was about 104° Fahrenheit (40° Centi- 
grade). Similar data taken at Chester, New Jersey, showed temperatures 
in the cables 20° to 25° Fahrenheit higher than the air temperature on 
hot bright days. 

The actual observed cable temperature range in that season (1936) as 
indicated by the d-c. resistance measurements was thus from —4° Fahren- 
heit (—20° Centigrade) to 122° Fahrenheit (50° Centigrade). In terms of 
a-c. resistance changes, this amounts to a resistance change of about 20 
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ohms per mile at 50 kc., the resistance at the lower temperature being 
about 96 ohms per mile and at the higher temperature about 116 ohms 
per mile. This amounts to about ± 10 per cent variation from the mean. 

In addition to the wide annual variations, there are daily variations of 
as much as 50° Fahrenheit at times, that is, almost half as much as the 
normal annual variation. The practical importance of these large re- 
sistance changes lies in their large contribution to changes in attenuation 
as will be brought out more fully in connection with variations of attenua- 
tion with temperature. 
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Fig. 4—Resistance per mile vs. frequency—19 gauge pairs 

Underground and buried cable are, of course, not subjected to such wide 
annual variations and daily variations are almost entirely eliminated by 
the attenuation of heat changes by the soil. Cable in ducts usually lies 
well below the freezing line and this depth at the same time protects it from 
the summer's heat. The normal range for cable in ducts is from about 
freezing to about 70 degrees, F. Cable buried only a foot or so underground 
would have a considerably larger annual temperature range but a great deal 
of such cable is buried two to three feet deep. 

Curves in Fig. 4 show the actual a-c. resistance variation with frequency 
and in Fig. 5 are shown temperature variations of resistance at typical 
frequencies for 19-gauge toll pairs in a reel-length of standard toll cable. 
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In addition to the variations with frequency and temperature there are 
the initial differences between pairs on account of manufacturing processes, 

30 50 70 ioo no 120 
TEMP-DEGREES FAHR 

Fig. 5—Resistance per mile vs. temperature—19 gauge pairs 

etc. One such source of variation in resistance of pairs is the difference 
in wire diameters caused by wear of the dies used in drawing wire.8 The 

8 John R. Shea and Samuel McMullan, "Developments in the Manufacture of Copper 
Wire," B.S.T.J., VI (April 1927)tpp. 187-216. 
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permissible variation in diameter for ordinary toll cable is ± 1 per cent 
which means a d-c. resistance variation of about ± 2 per cent. 

Still another cause of resistance variation is the presence of small quan- 
tities of impurities in the copper which show up as a reduction of as much as 
2 per cent in the conductivity. This causes trouble in calibrating tem- 
perature-resistance curves in the laboratory setup. 

Finally, in a single reel length the outside pairs are longer than the in- 
side pairs. The total pair-to-pair variation in resistance from the average 
of the reel caused by all these factors amounts to about ± 3 per cent with 
a standard deviation of about 1.5 per cent. 

Inductance 

The inductance of a circuit formed by two parallel wires closely spaced 
relative to their length is 

L = 0.64374 |^2.3026 logic ^ -f- X 10-3 henrys per loop mile (5) 

where d, the wire diameter, and D, the separation of the wires, are measured 
in the same unit; n is the permeability, and 5 is a frequency factor. 

As is well known, the tendency of alternating currents to concentrate 
on the surface of a wire reduces the magnetic flux within the wire and 
decreases the internal inductance of the wire. This internal inductance 
is given by the term in Equation (5). In like manner, the "proximity 
effect" produces a concentration of current density in the adjacent portions 
of the two wires of a pair. 

Another term might well be added to formula (5) to represent this 
proximity effect. The procedure outlined by J. R. Carson on pages 625 
and 626 of the Philosophical Magazine paper4 of 1921 has been carried out 
with the results given in an Appendix to this paper. Formula (11a) of 
the Appendix gives the ratio, A, of the a-c. inductance of the pair (less the 
"geometric inductance") to the a-c. inductance of a wire with concentric 
return, which is given by a well-known formula (7a in the Appendix). 
It will be seen that the factor introduced by proximity effect decreases with 
frequency but is asymptotic to a definite value, depending upon the separa- 
tion of the two wires, as the frequency increases indefinitely. Similar curves 
are given in an extensive study of the mutual inductance of four parallel 
wires of a quad by R. S. Hoyt and Sallie Pero Mead9. Their theoretical 
studies agree closely with experimental values given by R. N. Hunter and 

9 Ray S. Hoyt and Sallie Pero Mead, "Mutual Impedances of Parallel Wires," B.S.T J., 
XIV (1935), pp. 509-533. 
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R. P. Booth10 who made measurements on 18-gauge and 20-gauge pairs in 
various arrangements and on a 55-foot length of 19-gauge quadded cable. 

Overall inductance variations of 19-gauge pairs with frequency and 
temperature are shown by the curves of Figs. 6 and 7. 

The magnitude of inductance variations from pair to pair in reel lengths 
of cable is about ±3 per cent from the mean with a standard deviation of 
about 1.5 per cent. 
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Fig. 6—Inductance per mile vs. frequency—19 gauge pairs 

Capacitance 

The usual formula for capacitance of two parallel wires in space, separated 
by a distance negligible compared with their length, is 

x jq-6 fara(js per i00p miie (5) 

logio 

Conditions in a cable are vastly different from those assumed in this formula 
which assumes that the two wires are at a great distance from other wires 
and from the ground. In the cable, pairs are twisted and, in addition, other 
wires are very near and the sheath is effectively at ground potential, resulting 
in a considerable modification of the capacitance. Moreover, the formula 
assumes that the wires are in air, which has a dielectric constant almost 
equal to unity. (1.00059 at 0° Centigrade) The dielectric constant of 

10 R. N. Hunter and R. P. Booth, "Cable Crosstalk—Effect of Non-Uniform Current 
Distribution in the Wires," B.S.T.J., XIV (1935) pp. 179-194. 
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the paper in cables varies from 1.7 to 1.9 depending upon the amount of air 
and impurities contained in the paper. Of the space around the wires 
inside the sheath about 40 per cent is filled with paper and the remaining 
60 per cent with air. Frequency and temperature of the cable affect the 
true dielectric constant in a complicated way. Slight amounts of moisture 
remaining in the cable even after drying affect the dielectric constant and 
the capacitance as well as the leakage conductance and introduce further 
changes in the frequency-temperature characteristics. 

Results of an extensive study of the dielectric constant were given by 
E. J. Murphy and S. O. Morgan in a series of recent papers11. They point 
out (first paper, p. 494; second paper, p. 641) that a dielectric may be 
thought of as an assemblage of bound charges, that is charged particles which 
are so bound together that they are not able to drift from one electrode to 
the other under the action of an applied electric field of uniform intensity. 
But the applied field disturbs the equilibrium of the forces acting on the 
bound charges and they take up new equilibrium positions, thereby increas- 
ing their potential energy when the applied field is removed. Then when 
the applied field is removed, some of this energy is dissipated as heat in 
the dielectric. If the applied field is alternating, the bound charges swing 
back and forth with certain amplitudes and the sum of the product of the 
amplitude by the charge extended over all the bound charges in a unit 
volume determines the dielectric constant of the material. The energy 
dissipated as heat by the motions of the bound charges is the dielectric loss, 
which is proportional to the a-c. conductivity after the d-c. conductivity has 
been subtracted from it. 

Considering the fact that positive and negative charges will be displaced 
in opposite directions and such a motion constitutes an electric current, there 
is thus what is called a polarization current or charging current flowing while 
the polarization (or displacement of charges) is being formed. If the 
current alternates too rapidly for the polarization to form completely before 
the field reverses its direction, the magnitude of the dielectric polarization 
and the dielectric constant will be reduced. The result of this lag, therefore, 
is that the dielectric constant (and likewise the capacity) decreases with 
increasing frequency. This is the phenomenon known as anomalous dis- 
persion from its relation to the anomalous dispersion of light, i.e., at visible 
frequencies. 

A further important concept in dielectric theory is that the molecules of 
all dielectrics except those in which the positive and negative charges are 
symmetrically located, possess a permanent electric moment characteristic 

11 E. J. Murphy and S. O. Morgan, "The Dielectric Properties of Insulating Materials," 
B.S.T.J. XVI (1937) pp. 493-512; XVII (1938) pp. 640-669; XVIII (1939) pp. 502-537. 
These are referred to as "First Paper," etc. 
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of those molecules. These polarized molecules are called dipoles and when 
an electric field is applied the dipole axes tend to line up in the direction of 
the applied field. It is probable that for a combination dielectric such as 
the paper and air in cables with possible traces of moisture, in spite of oven- 
drying, the dipoles constitute only part of the charges. The frequency also 
is too low, in most of the data, to emphasize the effects due to dipoles. The 
paper-air combination introduces another slowing up of the polarization 
process on account of interfacial polarization. Maxwell showed that if the 
dielectric in a condenser consisted of two layers of materials having different 
constants, the capacity depends upon the charging time because of time 
required in charging the interface between the two dielectrics. For a-c. 
this means a decreasing capacity with increasing frequency and, since there 
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Fig. 8—Capacitance per mile vs. frequency—19 gauge pairs 

are effectively an immense number of interfaces between paper and air in 
the cable, this effect must be of some importance. 

Increasing the temperature increases the thermal energy of the molecules 
and their consequent thermal motion which helps maintain the random 
orientation of the molecules. Thus, the thermal motion opposes the action 
of the electric field in maintaining the alignment of the dipoles so that as 
the temperature rises, the polarization is reduced. But in the cable there 
are unequal expansions of the copper and the lead sheath which may act to 
increase the internal pressure as the temperature rises, increasing dielectric 
densities as well as bringing the wires closer together. 

The final result of all these effects on the capacitance of the cable pairs is 
shown by the curves of Fig. 8, which give the 19-gauge capacitance-frequency 
relations for several temperatures. Figure 9 shows the variation of 
capacitance with temperature for several frequencies. The largest change 

JOT 

9 0o_ 

s 5 jO~ 

JO 0 

0 



CHARACTERISTICS OF TOLL TELEPHONE CABLES 307 

•0626 

.0624 

.0622 

.0620 

.0618 

.0616 
7 Z 

.0614 

.0612 7 

.0610 

z KC iu .0608 
7 

uj .0606 
7 

.0604 

.0602 

.0600 

.0596 

.0596 

• 0594 

0592 

■ 059 0 

.0588 

.0586 10 20 30 40 50 60 70 80 90 "00 110 120 

TEMR— DEGREES FAHR. 
Fig. 9—Capacitance per mile vs. temperature—19 gauge pairs 

shown is at 100 kc. and amounts to about 6 per cent increase for 120 
increase in temperature. 

degrees 
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Leakage Conductance 

The variation in the dielectric constant of the insulating layers of paper 
is further reflected in the leakage conductance, G. This is probably the 
most inconstant of the parameters and is a function of separation of the wires 
and their diameters, as well as frequency and temperature and the nature 
of the dielectric. Humidity, if present, is a highly important contributor 
to high leakance, but in properly dried cables the humidity is not very great. 
It will be seen in the later discussion of attenuation and the factors affecting 
it that conductance is a much less important factor, relatively, than it is for 
open-wire lines. 
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Fig. 10—Conductance per mile vs. frequency—19 gauge pairs 

The curves of Fig. 10 show the variation of conductance of 19-gauge pairs 
with frequency at five temperatures from zero to 120° F. When plotted on 
log-log paper these curves are nearly linear, showing that conductance varies 
with frequency approximately according to a formula of the type 

G = aF" (7) 

where a is about .0001 X 10 6 and k is about 1.33 for the 57° data. F. B* 
Livingston in a paper12 on conductance in cables stated that for the data 
there given k averaged about 1.3. 

The range of conductance from pair to pair in a reel is about ±11 per 
cent from the average and the standard deviation about 5.5 per cent. 

12 F. B. Livingston, "Conductance in Telephone Cables," Bell Laboratories Record, 
Vol. XVI (Dec. 1937) p. 141. 
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As might be expected, temperature has a great deal to do with the value 
of G. Variations with temperature shown by the curves in Fig. 11 may be 
expressed for small temperature ranges by the equation 

G = Gi [1 + k{t - h)] (8) 

where Gi is the value of G at the temperature /i and k is the temperature 
coefficient of leakage conductance. Curves of k based on measurements on 
a 61-pair, 16-gauge cable are given in Fig. 12 in the neighborhood of 70 
degrees Fahrenheit. It will be noticed that k is negative below 1203 kc. 
but at high frequencies the coefficient increases rapidly from its minimum 
value reached at about 500 kc. 
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Fig. 12—Conductance-temperature coefficient; micromhos per mi. per 10F. 
16 AVVG 61-pair paper insulated cable at 70oF. 

It was mentioned above that moisture in the cable has a pronounced effect 
on the conductance. To drive out excess moisture during manufacture the 
reels of paper covered cable (or cores) are placed in vacuum driers13 and then 
stored in a room maintained at about 110° F. and at a relative humidity of 
1/2 of 1 per cent or less until the cables are covered with their lead-antimony 
sheaths. The lead presses are adjacent to the ovens and the cable is fed 
through the wall directly into the press so that it emerges at the opposite 
side covered with the sheath. This procedure minimizes the amount of 
moisture entering the paper of the cables after they have been dried. The 
practical measure of the moisture content and the effectiveness of the drying 

13 C. D. Hart, "Recent Developments in the Process of Manufacturing Lead-Covered 
Telephone Cable," B.S.T.J., VII (1928) pp. 321-342. 
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is the value of the quantity G/2C = conductance divided by twice the 
capacitance, both measured at the room temperature in the factory. The 
quantity G/2C is used because it is the coefficient in the leakage component 
of attenuation as explained in connection with the formula (12) below for 
high-frequency attenuation. The average value of G/2C for 1000 cycles 
at 70° F. is about 8.3. This quantity increases with frequency and at the 
same time decreases with temperature in the same way G changes, since the 
capacitance changes are relatively so much smaller than the conductance 
changes. 

Layer to Layer Variations of Primary Parameters 

The values of the primary parameters vary from inside layers to outside 
layers of cables, in addition to variations mentioned under specific param- 
eters above. There are three basic reasons for this variation with location 
in the cable. The first is that the length of an outside pair is usually 
considerably greater than the length of an inside pair. Unusual twisting 
of the inside layers might make up for this difference but in the ordinary 
construction this is not done. This increase in length amounts to as much as 
1 or 2 per cent and is reflected at once in the d-c. resistance as well as in the 
a-c. parameters. 

The second reason is that, particularly in the outside layer, the sheath 
being made of lead-antimony, has electrical properties considerably different 
from the properties of copper wires. The large size of the sheath relative 
to the wires is an important factor. High-frequency currents in the wires 
near the sheath produce fields cutting the sheath which affects the fields in 
a different fashion from the way adjacent copper wires affect the field of a 
pair of conductors near the center. 

The third reason, closely allied to the second, is that the conductors in 
the core of the cable are surrounded by a practically symmetrical mass of 
copper conductors and paper plus the sheath, while conductors in any other 
layer are surrounded by an unsymmetrical arrangement of conductors and 
paper. 

A fourth factor is the variation in the amount of space allowed pairs in 
the core by the pressure of the outside layers. 

The magnitude of these effects is indicated by the curves of Fig. 13, show- 
ing layer-to-layer variations in per cent for Resistance, Inductance, Con- 
ductance and Capacitance. Such large variations would be of considerable 
importance were it not for the fact that in the process of splicing pairs are 
made to pass, in effect, from inside to outside of the cable and vice versa. 
A long study of these variations will be found in the paper by Wuckel7. 
The effects of splicing together sections slightly different in their character- 
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istics were given for impedance, attenuation and delay distortion by Pierre 
Mertz and K. W. Pfleger14. 

Closely allied to these effects is the possibility of temperature differences 
across the section of cable in actual installed cables. Splicing usually takes 
care of this, too, but there are traces of such a lag in cases where the pairs 
remain in the outer part of the cable for a long distance and then pass to the 
inner group for the remaining part of the line. No such cross-sectional 
variation entered into the laboratory measurements as the temperatures 
were sufficiently well maintained close to given desired values. 

Attenuation 

The propagation constant 7 is given by the familiar formula 

7 = a + y/3 = a/ {_R -f- juL) {G -j- joiC) 

= >VZy(i + A)(1+j^ (9) 

The real part, a, is the attenuation in nepers and the imaginary part, /3, is 
the phase in radians. Expressing the attenuation in terms of reals, gives 

2a2 = VCK2 + a^L'KG2 + co2C2) - (co'TC - RG) 

= (a LCs/(1 + 2?2/a)2Z,2)(l + G2/co2C2) - (a>2ZC - RG) (10) 

In cables, G/coC is small as compared to unity, in which case (10) may be 
reduced to the approximate form 

2a2 = co'ZCVl + i?2/co2L2 - (W
2ZC - RG) (11) 

The formula for /32 is the same as for a except for the sign of the last two 
terms in (10) and (11), that is, the sign in front of the parenthesis is + 
instead of —. 

By expanding the square root term in (10) and using only first order terms 
in the expansion, another approximate form, frequently found useful in 
checking high-frequency values, is obtained, viz., 

(2^+27:)^ (i2) 

(Terms neglected in this approximation all include powers of oj in their 
denominators and so become negligible at high frequencies.) The first 
term is commonly called the "resistance component of attenuation" and 
represents series losses. The second term represents shunt losses and is 
called the "leakage component of attenuation". The quantity \/L/C, as is 
well known, represents the nominal characteristic impedance of the circuit. 

14 Pierre Mertz and K. W. Pfleger, "Irregularities in Broad-Band Wire Transmission 
Circuits," B.S.T.J., XVI (Oct. 1937) pp. 541-559. 
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The shapes of attenuation-frequency curves at high, low and intermediate 
temperatures are shown by the curves of Fig. 14. These curves do not 
appear to be strikingly different in shape but more detailed study of the 
variations with temperature show the rate of change (decibels per degree per 
mile) to vary with frequency according to the curve of Fig. 15. The fre- 
quency of maximum rate of variation depends upon the gauge, as does the 
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Fig. 14—Attenuation; decibels per mile—19 gauge pairs 

actual rate of change. If the curves are plotted as attenuation coefficients 
(db per db per degree, Fahrenheit) with the abscissa 

frequency 
Rdc per 1000 ft' 

the same as for skin and proximity effects in Fig. 2, the peaks are brought 
together as indicated in Fig. 16. 



CHARACTERISTICS OF TOLL TELEPHONE CABLES 315 

UJ .006 
_J 

.005 
L: o tt 
Q. .004 1/) 
QJ 
U 
Q 10 20 70 90 100 30 40 50 60 

FREQUENCY-KILOCYCLES 
Fig. 15—Temperature variation of attenuation; decibels per degree Fahrenheit per mile 

vs. frequency—19 gauge pairs 
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The change in attenuation with temperature may be formulated in various 
ways as a function of its component variables, R, L, G, C, the most obvious 
way being to take the partial derivatives of one of the equations (9), (10), or 
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(11) with respect to R, L, G and C, in order to get a differential expression 
da in terms of dR, dL, dC and dG. This may then be interpreted as a 
change with temperature or a manufacturing variation, or a variation of 
attenuation from pair to pair in the cable. This procedure applied to (10) 
results in the formula 

fa-da = [g + Ry/iG' + wC')/{R' + wi')] dR 

+ [r + aVUe + ^/(G2 + "C2)] dG 

- [yc - a,2iV(G2 + JO/iR' + CO1!,1)] dL 

- [a,2i - o)2cV(JS2 + w2£2)/(G2 + w2G2)] dC (13) 

Curves of Fig. 17 show the components of the temperature variation pro- 
duced by changes mR,L,G and C for standard 19-gauge cable. 

A better formula from the point of view of equalizer design results from 
applying Taylor's series expansion to equation (9) and taking the real part 
of the resulting expressions. In this method, the variables are taken to be 
LC, R/L and G/C which effectively reduces the number of variables by one. 
There is a further advantage which appears in equation (14), below, namely, 
that the coefficient of the per cent variation in LC is just 1/2 the attenuation 
constant a and this means, therefore, only a slight addition to the basic 
equalizer which matches the curve for a vs frequency. There are thus 
added only two new types of temperature equalizers, one for R/L and one 
for G/C correction. Since equation (10) is already in the real form, it is 
more straightforward to expand it by Taylor's series and use the required 
number of terms. The formula thus obtained is naturally the same as that 
obtained from (9) and is as follows: 

a A(IC) . 1 -R / a2 + JLC MR/L) 
Aa~ 2 LC ^ 2 col]/ 1+ Ry<JD R/L 

1 G / a2 + rfLC A (G/C) 
+ 2 a)C V 1 + G2/co2C2 G/C 

1 R2 (R/fa>Z,)\/a2 co2 AC + \/q!2 — RG TA(R/I.)"| _j_ _ < 

~ Srfl2 V(1 + R-/^W L R/L \ 

Application of this formula gives slightly different values for the tempera- 
ture-attenuation coefficient at different parts of the temperature range for 
most frequencies. This means that the change of attenuation with tempera- 
ture is not quite linear. The nonlinearity is so small below 100 kc. that it 
has not been measured with any certainty on lengths of cable varying from 
500 feet up to 10 miles, but on long cable carrier circuits corrections for it 
may become necessary. 

The formula has another use, however, in determining the effects of small 
manufacturing variations on the probable attenuation of cables made up 
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of the resulting product, as well as computing fairly accurately the attenua- 
tion of all the pairs in a layer by means of the average values of the constants 
and the departures of the values of the constants of the individual pairs 
from the average values. Actual attenuation variations of pairs in a reel 

56 

52 

48 

44 

40 

i 32 

{4 28 
cr 
< 24 

UJ 
^ 20 O u 0 16 
£ Q. 
^ '2 _i UJ 

UJ O 
4 

0 

-4- 

-8 

-12 

R 

/' 

/ 

/ 

C 

L 

^ G 

8 12 16 20 24- 2 8 32 3 6 40 44 48 52 56 60 
FREQUENCY - KILOCYCLES 

Fig. 17—Analysis of variation of attenuation with temperature; variations due to the 
components R, L, G, C—19 gauge pairs 

are about ±5 per cent and the standard deviation of the variations is about 
2.5 per cent. 

Practically, since G/wC is small, formula (11) may be used in the Taylor 
series expansion with the variables R/L, LC and RG. This gives the formula 

RC 
4a.Aa = =.A(j?/Z) + A(2?G) 

Vl + i?2/co2Z2 

+ co2(Vi + R'/rfu - I)A(Z:C) (IS) 
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Components of Aa/AT computed by formula (15) are given in Fig. 18 
It is evident that changes in R/L are responsible for most of the change in 
attenuation since the small changes in attenuation introduced by ALC and 
ARC tend to annul each other over most of the frequency range shown. 
This is to be expected from the approximate high-frequency formula (12) 
in which G/2C is much smaller than R/2L. 
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Fig. 18—Components ot ^ = DB per QF. per mile = QAR/L + CiALC + C^ARG vs. 
temperature—19 gauge pairs 

Phase Change and Velocity 

As pointed out above, merely changing the signs of the last parenthetical 
expression in equations (10) and (11) gives corresponding formulas for phase 
angle in radians. Fortunately, the phase change is nearly, though not 
quite, linear with frequency (Fig. 19). The velocity, F = co//3, for 19-gauge 
pairs is about 105,000 miles per second at 10 kc. and increases slowly to about 
125,000 mps. at 100 kc. At high frequencies the internal inductance is 
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small and, if the inductance L is expressed in abhenries and capacitance C 
in abstat-microfarads, then V2 = l/LC = 1/k, where k is the dielectric 
constant15. 

Impedance 

The characteristic impedance is 

z" = 4/iBi (16) 

which has a large reactive component at low frequencies as shown by the 
curves of Fig. 20, based on the same reel-length measurements as the curves 
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a 1.4 UJ 
!; ' -2 
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for R, L, G and C in Figs. 3 to 11. In actual long cables the curves are 
irregular with frequency as a consequence of small irregularities along the 
line13. (See, for example, Fig. 26.) There are also small variations with 
temperature; for the resistance component about ±1.5 per cent from the 
average for the temperature range zero to 120° F. at 10 kc., and about ± 1 
per cent at 100 kc. The reactive component varies ± 10 per cent at 10 kc. 
over the same temperature range*. 

16 G. H. Livens, "The Theory of Electricity," p. 456 and p. 539. 
* K. Simizu and I. Miyamoto, "Effect of Temperature on the Non-Loaded Carrier 

Cable, Nippon Elec. Comm. Eng., May 1939, p. 596-599. Give similar data on the 
variation of parameters and attenuation for spiral-four cable at frequencies 0-30 kc. and 
temperatures 0-50oC. They do not specify the length measured but state that the wire 
diameter was 1.5 mm. From their d-c. resistance data the length appears to have been 
about 160 feet. 
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Fig. 19—Phase; radians per mile—16 gauge pairs 360F. 
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Fig. 20—Characteristic impedance, Z = R - jx-, temperature 90oF.—19 gauge pairs 

Characteristics or Toll Cable Above 100 Kc. 

The preceding discussion has dealt largely with the characteristics of toll 
bibles up to 100 kc. However, some measurements have been made 
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extending to much higher frequencies. In the laboratories measurements 
were made on 16 and 19-gauge pairs in reel-lengths at frequencies up to 
about 3000 kilocycles. Field data at frequencies from 100 kc. to 2000 kc. 
were obtained on 16-gauge and 19-gauge pairs in cables about 3 miles long at 
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Fig. 21—Attenuation of 16 gauge cable pairs 
A, on reel, 247 feet; B, fourteen reels, 1.3 miles; C, aerial cable, 3.6 miles, Ticonderoga, 

N. Y. 

Ticonderoga, New York. A third set of data was obtained from measure- 
ments on 7000 feet of a special type (61-pair) of 16-gauge cable on reels in 
the laboratory under controlled temperature conditions. Figure 21 shows 
the attenuation values to 2000 kc. obtained in the three sets of 16-gauge 
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Fig. 22—Attenuation of 19 gauge cable pairs 
A, on reel, 247 feet Bell Tel. Labs., Inc.; B, aerial cable, 3.6 miles, Ticonderoga, N. Y. 

Curves A and B show average of 10 pairs. 

data at 68 degrees Fahrenheit. Figure 22 shows results on 19-gauge pairs 
it 55 degrees from field and laboratory data up to 700 kc. 
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The curves of the change in attenuation per degree F. per mile 
(db/l0F./mi) as shown by Figs. 23 and 24 are highly dependent upon the 
temperature, showing that at these high frequencies the attenuation is de- 
cidedly nonlinear with temperature in the toll cables. 
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Fig. 23—Variation in attenuation at different temperatures for 10F. change in 

temperature; aerial cable—16 gauge pairs 
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Fig. 24—Variation in attenuation at different temperatures for 10F. change in 
temperature; aerial cable—19 gauge pairs 

Toll Entrance Cable 

The insertion losses measured between 125-ohm resistances on various 
lengths of 13, 16 and 19-gauge toll entrance cables at Denver, Colorado, 
are shown in Fig. 25. The data have been reduced to a per-mile basis by 
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Fig. 25—Carrier frequency loss* of toll entrance cable; non-loaded, quadded—tempera- 
ture 60oF., approx. 
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'ig. 26—Carrier frequency impedance of toll entrance cable, Denver, Colo—19 gauge, 
quadded, non-loaded—terminated in 125 ohms 
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direct division of the measured attenuations by the lengths. This is, of 
course, not strictly accurate, but the errors are very small at these fre- 
quencies. This is nonloaded cable and frequencies measured were from 10 
kc. to 200 kc. The values check closely the values shown in the previous 
figures for frequencies below 100 kc. The 13-gauge figures are the first of 
such data given herein but the first laboratory measurements on reel-lengths 
(begun in 1921) included reels of 13-gauge cable, and curves of 13-gauge 
attenuation and impedance were given in a paper16 by E. H. Colpitts and 
O. B. Blackwell. 

Corresponding data on impedance show the values given on Fig. 26. 
The wavy characteristic of these curves, as mentioned in the section on 
Impedance above, is caused by small irregularities in the pairs, particularly 
differences between pairs in successive reel-lengths giving rise to reflection 
currents at certain frequencies14. In new construction smoother impedance 
characteristics can be obtained when it is important to do so, by close con- 
trol of the product during manufacture, followed by suitable splicing 
methods. 
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APPENDIX 

Wave Propagation over Two Parallel Wires: The Proximity 
Effect—Inductance* 

In his paper4 on the Proximity Effect, J. R. Carson carried out the detailed 
computations for the ratio C of the a-c. resistance of two parallel wires to 
the a-c. resistance of a wire when the return conductor is concentric. He 
gave a formal expression for the impedance (equation 64 of his paper), viz., 

R iX = 2Z -)- ipL (la) 

This simple equation is complicated by the fact that Z and L are given by 
two complex expressions involving Bessel functions and the set of harmonic 
coefficients of the Fourier-Bessel expansion for the axial electric force in 

16 E. H. Colpitts and O. B. Blackwell, "Carrier Current Telephony and Telegraphy," 
Jour. A. I. E. E. XL, Feb. 1921, pp. 205-300. 

* This work, done under the direction of Mr. J. R. Carson, was completed in April, 
1922. For the general theory of wave propagation on parallel conductors see a paper by 
Chester Snow, "Alternating Current Distribution in Cylindrical Conductors," Proc. Int. 
Math. Congress, Toronto (1924) Vol. II, pp. 157-218. 
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one of the wires and the separation of the wires. The Bessel functions are of 
order zero to infinity and the argument, b, is given by 

b = iay/ AirXnip (2a) 

where 
a = radius of the wire in cm. 
X = conductivity of wire in c.g.s. units 
H = permeability of wire in c.g.s. units 
p = 2t times the frequency in cycles per second 
i = 

The separation comes in by way of the quantity k, the ratio a/c of the radius 
to the interaxial separation of the wires, and a function 5 which can be 
expressed as a continued fraction in k2, viz., 

1 
s =   

i ^ 

(3a) 

i- 1 - ... 

which results in 

from which 

1 
s = 

1 - k*s 

1 - Vl - 4£2 

5 2k2 

(4a) 

(5a) 

as given by Carson's equation (38). 
The actual expression for R + iX is as follows: 

R + iX = 2Z + ipL 

= —4ip log ks + 2Zo^l + S ( —^)n^n-A»//oJ (6a) 

where 

Zo = i?o + iXo 

2p Uov'o — UqVq . . 2p 7/o«0 + VoVo /7q-v 
= t +1 T ( ' 

which is the impedance of a wire with concentric return expressed as usual17 

in terms of the ber and bei functions related to the Bessel functions by the 
formula 

17 Russell, "Alternating Currents," Edition 1904, Vol. I, p. 370. 
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Un + ivn = Jn {hi Vi) (8a) 

and primes denote derivatives with respect to b. 
Substituting Zq from (7a) in (6a) and carrying out the algebraic processes 

involved gives finally 

R +iX = 2 RoC + i{-4:p\ogks + 2 K Xo) (9a) 
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Fig. 27—Values of correction factor, K 

For 2k = .75 and .50 

4 Xo til + vl 
Z) n(k2s) 

2 \n+l W„—ifn—1 — Un-lVn-l 

and 

X = 1 + 2 Z (k2s2) 

4/> 

bRo ul + vl 

/ / /2 , '2 
nWn_lt>„_l — 2tn_lfn-l Wo + fO 

2 . 2 
Wn-1 + fn-1 
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2 i 2 
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+ jjTF Z n{k2s)n+1bg 
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= 1 + ^ Mn—1 ®n—1 Mn—]Vn—l 
bXo Un-1 + f n-1 

+ #■ e «(^i)"+igMn-"lr' "r""'1 

0^0 Wn—1 + «n-l 

0 Wo + fo 
(11a) 
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Fig. 28—Values of auxiliary functions 

jtC-, - 
m = 



CHARACTERISTICS OF TOLL TELEPHONE CABLES 329 

In these formulas 
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The curves of figures 28-30 show the auxiliary functions vs b and figure 27 
the correction factor K. The dotted curve for K is computed from Mie's 
formula18 (14a) for small b. Two values of 2k are shown, .75 and .50, 
respectively. 

G. Mie18 gave formulas for small and large values of b, as follows: 
For small b, 
18 G. Mie, Annalen der Physik, Vol. 11, (1900) pp. 201-249. 
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L = I — A\ogk — In — l'n (14a) 

where /„ = .417 h'/\6 - .003 68/256 

l'n = b\\.Mk2 - .9m4 - .652k6 - A96k6 •. .)/16 

- b\.633k2 - 1.354^ + .539^6 + .584^ ...)/256 

I |.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

For large b, 

b = a ^/4TTXp 
Fig. 30—Values of auxiliary functions 

u\ + v] ber'* + bei"> 
Mb) 

ul + vl ber* + bei* 

At l , 2-^2 ^ 3 L = -4 log ks + -y- Cm - ^ (15a) 

where Cm = s/{2 — 5). 



Some Analyses of Wave Shapes Used in Harmonic Producers 

By F. R. STANSEL 

Analyses by Fourier's Series have been made of waves consisting of 
sinusoidal, rectangular and trapezoidal pulses and also waves of the type 
found in multivibrator circuits. The method of increasing harmonic 
content by modulating a wave with a submultiple is treated mathe- 
matically. 

HE heterodyne method of frequency comparison requires, except in 
the case of the comparison of nearly identical frequencies, the genera- 

tion of harmonics of either the unknown, or of the standard frequency or 
of both. These harmonics may be generated directly in the modulator 
which produces the difference frequency, or "beat note", or may be gener- 
ated in an entirely separate circuit before the frequency is applied to the 
modulator. An example of the latter is the multivibrator circuit often used 
in connection with a frequency standard to produce a series of harmonics of 
this standard frequency. 

The design of harmonic generators for frequency measuring equipment 
presents a different problem from the design of equipment for producing a 
single harmonic such as doubler or tripler stage in a radio transmitter. In 
the latter case the amplitude of the one harmonic and the efficiency are of 
primary importance. In frequency measuring equipment, although a large 
amplitude of each harmonic is desirable, it is of greater importance that each 
harmonic within the range to be used, which may be up to the 100th or 150th 
harmonic or even higher, be present and that the amplitude of nearby 
harmonics be of the same order of magnitude. Unless the latter conditions 
are met, there is a danger that the beats obtained with a weak harmonic 
will either be entirely overlooked or mistaken for a higher order modulation 
product. 

The generation of harmonics is usually accomplished by the distortion of 
the wave shape in some nonlinear circuit element such as a vacuum tube. 
One such harmonic generator consists of a vacuum tube biased so that there 
is no output for a portion of the cycle. The plate current of such a tube may 
be approximated by a sine wave shaped pulse such as shown in Fig. 1. Any 
such periodic wave can be resolved into its harmonic components1 and in 
the case of this wave the amplitude of the nth harmonic is found to be 

1 This and the subsequent analyses were made by application of Fourier's Series. See 
I. S. Sokolnikoff and E. S. SokuInikoU, "Higher Mathematics for Engineers and Physi- 
cists," Chapter VI. 
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A fsin {n — 1)6/2 _ sin {n + l)^"! 

«7r(l — cos 6/2) 1_ « — 1 »+l J 

in which ^ is the amplitude of the pulse and h the pulse width as shown 
in Fig. 1. 
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Fig. 1—Harmonic content of a wave consisting of sinusoidal pulses 

0.03 

r l< 0.02 
-b -- ^b = 5 

LFL- 

0.0 
5 0.008 
i 0.006 
uj 0.005 
-J 0.004 

V \ 
0.003 

O 0.002 
I 

1 I 
180 160 80 100 120 140 

HARMONIC NUMBER (n) 

Fig. 2—Harmonic content of a wave consisting of rectangular pulses 

The form of this expression immediately suggests that for some harmonics 
the terms 

sin [n — \)h/2 sin (» + 1)6/2 
n — \ w + 1 

may become equal to zero causing these harmonics to vanish. That this 
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is the case is shown in the curves of Fig. 1 in which the harmonic amplitudes 
are plotted against n for pulse widths of 5°, 2° and 1°. With a 5° pulse 
harmonics in the vicinity of the 105th and again the 150th become negligibly 
small. For a shorter pulse width the amplitude of the lower harmonics 
decreases but all harmonics up to beyond the 200th are present. 

The wave shown in Fig. 1 can only be considered as a first approximation 
of the plate current in such a harmonic generator as it implicitly assumes 
that the tube is linear to cut-off. More frequently sufficient excitation is 
placed on the grid of the tube to saturate it and the resulting current wave 
may better be represented by a series of rectangular pulses such as shown 

(b) 

j 1 

711 

n n n 
| 

I U L 

Fig. 3—Oscillograms of the plate current of a vacuum tube showing the transition from 
sinusoidal to rectangular pulses as excitation is increased 

(a) Excitation 6 volts 
(b) Excitation 8 volts 
(c) Excitation 10 volts 
(d) Excitation 20 volts 

in Fig. 2. This transition from sine wave pulses to rectangular pulses as 
the grid excitation is increased is shown in the series of oscillographs in Fig. 3. 

The analysis of a wave consisting of rectangular pulses such as the one in 
Fig. 2 shows the amplitude of the nth harmonic to be 

. 2A . nt> 
nn = — sin — 

mr 2 (2) 

From this equation it is seen that certain of the harmonics are not present 
as the expression (2) becomes equal to zero whenever 
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2t 
n — — m 

o 

m — 1,2, 3, 4, 

(3) 

Thus for a rectangular pulse of 5° (7r/36 radians) pulse width the 72nd, 
144th, 216th, etc. harmonics vanish, and harmonics in the vicinity of these 
missing harmonics have lower amplitudes as can be seen from the curves 
of Fig. 2. 

As the pulse width of a rectangular wave increases, the number of har- 
monics which vanish increases. For a pulse width of 90° every fourth 
harmonic is missing. For a pulse width of 180°, the familiar square wave, 
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Fig. 4—Comparison of the harmonic content of waves consisting of rectangular and o 
trapezoidal pulses 

every even harmonic vanishes and the wave contains only odd harmonics. 
As the pulse width is increased beyond 180° the number of harmonics in- 
creases and it can be shown that a wave having a pulse width greater than 
180° will have the same harmonic content2 as a wave of pulse width (360°— 
b). Thus for a large harmonic content it is desirable to have a wave having 
either extremely narrow pulses or pulses lasting nearly 360°. 

True rectangular pulses are never obtained in practice. One common 
type of distortion in such pulses when obtained by the "limiter" action of a 
vacuum tube consists in the pulses having sloping rather than vertical sides. 
The sloping sides arise from the fact that the pulses are essentially sine waves 

2 This statement is correct for absolute magnitude of the harmonics only. Certain of 
the harmonics in the two waves will be 180° out of phase. 
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with their tops chopped off. The analysis of a pulse of the dimensions 
shown in Fig. 4 shows that the amplitude of the nth harmonics is given by 
the expression 

, 4.4 f nh nc~\ . . 
K = LC05 2 - C0S 2 J (4) 

In order to show better the relationship between a wave of rectangular 
pulses and one of trapezoidal pulses, consider the ratio of the nth harmonic 
for these two waves. From (2) and (4) 

//„ for trap, pulse _ 2 (cos nh/2 — cos nc/2) 
hn for rect. pulse n{c — b) sin nb/2 

Substituting c - 6 = 5 and expanding cos nc/2 = cos {nb/2 + n8/2), 
the right hand side of (5) becomes 

2 f cos nb/2 cos nb/2 cos n8/2 . . P ,^"1 . . 
"s  TTo —  • TTt 1" sin w5/2 (6) n8 Lsin nb/2 sin nb/2 J 

For small values of n8/2, that is for trapezoidal waves whose base is only 
slightly wider than the top, cos n8/2 may be replaced by unity and sin n8/2 
by n8/2. The first two terms then cancel and the approximation 

K for trap, pulse ^ ^ 
hn for rect. pulse = 

is obtained showing that a slight slope in the sides of the pulse has only a 
second order effect on the harmonic content of the wave. 

The curve in Fig. 4 shows the harmonic content of a rectangular wave 
having a pulse width of 10° compared with that of a trapezoidal wave having 
a pulse width of 10° at the top and 11° at the bottom. For lower harmonics 
the amplitudes are nearly the same, but in the vicinity of the 36th harmonic 
there is an essential difference. For the rectangular pulse, the 36th har- 
monic vanishes, while the trapezoidal pulse has a minimum at a somewhat 
lower value of n and all harmonics have finite values.3 This is shown in 
Table 1 which tabulates the amplitude of the harmonics in this case. 

A second form of distortion in rectangular pulses is the rounding of the 
corners at both the top and the bottoms of the pulse. This type of distor- 
tion is more difficult to analyze and while no complete analysis has been 
made the effect of such distortion is known to be, in general, to reduce the 
amplitude of the higher harmonics. 

3 In discussing the curves in Fig. 1 thru 5 it must be remembered that while these are 
drawn as solid lines, the lines have a meaning only for integral values of n. Fractional 
values of n are meaningless. 
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From the examination of these cases it is evident that in the design of a 
harmonic generator of the type here considered the decision as to the pulse 

TABLE 1 
Harmonic Content of Rectangular and Trapezoidal Pulses Shown in Figure 4 

Harmonic 
Harmonic amplitude _ hn 

Pulse height A 

Rectangular Trapezoidal 

Fundamental .0555 .0581 
2 .0554 .0580 
3 .0550 .0576 
4 .0545 .0570 
5 .0540 .0563 

10 .0488 .0505 
15 .0411 .0416 
20 .0314 .0307 
25 .0209 .0191 
30 .01061 .00811 
32 .00681 .00411 
33 .00501 .00226 
34 .00325 .000489 
35 .001901 -.001085 
36 0 -.00276 
37 -.00180 -.00412 
38 - .00291 -.00557 
40 - .00545 -.00791 

0 TTT ZTT 

% 

I 40 60 80 100 120 140 
HARMONIC NUMBER (n) 

Fig. 5—Harmonic content of multivibrator wave 
(a) Odd harmonics t = 1/2 
(b) Even harmonics r = 1/2 
(c) Odd harmonics r = 1/10 
(d) Even harmonics t = 1/10 
(e) All harmonics r = 0 

180 200 
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width must be based on the type of service to which it is to be put. If only 
a few harmonics are required, a considerable gain in the amplitudes of the 
harmonics can be obtained by using a wider pulse width. When a wide 
range of harmonics is required, the band width must be greatly reduced to 
avoid blank intervals in the frequency spectrum. 

A second type of harmonic generator is the multivibrator. The output 
wave of such a harmonic generator has a shape similar to that shown in 
Fig. 5. The current pulse lasts for a complete 180° rising abruptly to the 
peak value, then falling more or less exponentially to a lower value and 
finally breaking abruptly to zero. Assuming an exponential decay this 
wave will be found to contain the following harmonics 

hn = —. for even harmonics (8) 
V^tt2 + (In r)2 

hn = —. for odd harmonics (9) 
y/ri1 tt2 + (In r)2 

Except for small values of n, the (In r)2 term is negligible and these equa- 
tions can be written 

hn =  — for even harmonics (10) 
rnr 

hn = for odd harmonics (11) 
rnr 

In all of the above equations r = B/A, the ratio of the amplitude at the 
end to the amplitude at the beginning of the pulse. 

The curves in Fig. 5 show the harmonic content of such a wave for r = ^ 
and r = yq. In the first case the amplitudes of the odd and even harmonics 
differ by approximately 9.5 db while in the second case the amplitudes are 
not greatly different. The dotted curve shows the limiting condition which 
all harmonics approach as r approaches zero, that is as the current at the 
end of the pulse approaches zero. 

The analysis of such a pulse except assuming a linear rather than ex- 
ponential decay yields the following equations 

hn =  — for even harmonics (12) 
wtt 

hn = — \/(1 + r)2 + for odd harmonics (13) n-K y n tt* 
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As n becomes large the second term under the radical becomes small and 
(13) becomes 

lin = for odd harmonics (14) 
nir 

Equations (12) and (14) are identical with (10) and (11) showing that in 
harmonic generators of this type the harmonic content of the output wave 
is primarily a function of the initial and final values of the current rather 
than of the shape of the decay curve. 

All of the foregoing curves show that the amplitudes of the higher har- 
monics are quite small so that in many applications some method of in- 
creasing their amplitudes may be required. This can be accomplished by 
the use of tuned amplifiers. An alternative method is to modulate a 
standard frequency wave with a lower derived frequency. 

1 1 i , . 
U- f-J-* f f -f— -f-- » f— -f— -f- -f— - f- 

mf 
FREQUENCY 

Fig. 6—Frequency spectrum of wave of frequency mf modulated by a series of pulses of 
frequency f 

Assume a standard frequency of the form 

A cos mwt 

This wave is completely modulated by a rectangular wave of frequency 
u/ltr and pulse width b. The modulated wave will then be of the form 

I = A[\ + Kf{t)] cos mwt (15) 

As shown previously the modulating wave is of the form 

/(/) = — -f- ^ — sin ^ cos nut (16) 
27r n=l wtt 2 

For 100 per cent modulation AT = 1. Since 

cos {mul) + cos {nut) = | cos {in + n) ut h cos (w — n) ut (17) 

the modulated wave is 

A b A . nb / i \ < % = — cos mut + 2^ — sin — cos (tn + n) ut 
"-1 W7r 2 ^ (18) 

-h ^ — sin cos {m — n) ut 
n-l wtt 2 
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The frequency spectrum of this wave is shown in Fig. 6. The original 
standard frequency mu/2-K is present and on either side above and below 
w/27r cycles apart are additional components. The rate at which the am- 
plitude of these frequencies dies out depends on the modulating pulse width 
and is equal to half the amplitude of the corresponding harmonic in Fig. 2. 

If the standard frequency is not a pure wave but contains harmonics 
each of these harmonics will be modulated by the rectangular pulses, that is 
the function (16). The result will be a series of frequency spectra similar 
to the one in Fig. 6, each centered at one of the harmonics of the standard 
frequency. By proper choice of the frequency of the modulating wave 
these spectra may be made to overlap giving a continuous series of harmonic 
of the modulating frequency with much larger amplitudes than can be 
obtained from a straightforward harmonic generator. As an example, a 
one-megacycle wave heavily modulated with 100 kc was found to give strong 
100 kc harmonics up to well over 35 mc. 
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Forces and Atoms: The World of the Physicist* 

By KARL K. DARROW 

ONE of the signs whereby a physicist may be known is a fondness for 
putting dots upon blackboards. This is not an irrational habit, but a 

symbolic practice. It is a symbol of his manner of regarding the world as 
a multitude incredibly enormous of particles incredibly small. The dots 
stand for the particles, and the bare regions of the blackboard for the empty 
spaces between them. The habit has not indeed been universal. Many a 
thinker has preferred to consider the world as a continuum, a solid or jelly 
or fluid; and we shall see that this alternative has always been very near in 
the background, even when the "atomists" were at their most triumphant. 
Let me however defer this other idea, and derive as much as possible from 
the notion of particles in a void. 

But when the dots are set down on the otherwise clean board with regions 
of black emptiness between, the story is far from completed. It is, in fact, 
only begun, for the major part is yet to be written: the account of the forces 
among the particles. Though these last be separated from each other by 
spaces apparently empty, yet they are not unconscious of each other, for 
each of them is subject to a force—the resultant of many forces, due to all 
rest. 

One might attach an arrow to each dot, to signify the strength and the 
direction of the force which acts upon it. One might draw wandering 
curves all over the board, to intimate at every point the direction and 
strength of the force which a particle would feel, were it to be at that point. 
This is accepted practice, but it would be worth the doing only if our assump- 
tions and our ambitions were much more specific than for the present they 
are. Perhaps at least the blackboard should be smeared with a uniform 
coating of chalk, to signify that a particle in space is not left entirely to 
itself, but feels the influence of the others. Among our not-so-distant 
ancestors there seems to have been a psychological need for a gesture of the 
sort; they talked about space as though it were filled with a "medium" or 
"aether", because it seemed wrong to them to say that space is empty if 
the particles which wander in it are subject to forces. Our generation has 
nearly lost the need, whether of an aether to occupy actual space or of a 

* Opening lecture of a course on "Nuclear Physics and Theory of Solids" delivered 
in the Spring semester of 1941, during the author's tenure of the William Allan Neilson 
chair at Smith College. 
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smear of chalk to symbolize it on the blackboard. Let us say that space 
is empty and leave the blackboard black between the dots, without deeming 
ourselves deprived of the right of saying that the particles exert and suffer 
forces on and from one another. 

What is there to be said about the forces? A very great deal! for most of 
theoretical physics is made up of beliefs or ideas about the forces, augmented 
by the mathematical operations—very hard and very long-winded, in far 
too many cases—required for making the ideas really useful. So great a 
programme is indicated by that sentence, that I am wasting words in adding 
that it will not be fulfilled in one or two lectures, nor in the whole of the 
course. Only the most general of statements can be made in what follows. 
Of these I lay down at once the first, which is negative and self-evident: 

The forces cannot be purely repulsive. For if they were, all of the particles 
would rush off into the uttermost depths of space, and we should have no 
model at all for a universe which, with all its faults, does manage at least to 
stick together. 

Therefore there must be attractive forces, and these by and large must 
overpower the repulsive ones, if any such there be. 

But need there be any repulsive forces at all? (Let the sophisticated 
reader now forget for a little that there are electrical forces which are repul- 
sive, so that he may enquire with an open mind as to whether such could 
be avoided.) At first, it may not seem so; and one may invoke the great 
authority of Newton, who is often thought to have contented himself with 
assigning to all bodies the power of attracting one another with the force 
of gravity. He did not so content himself, and we shall learn this shortly. 
For the moment, let it be remembered that forces of attraction unopposed 
would tend to draw all of the particles of the universe into a single compact 
clump. If the volume of each particle were infinitely small, so also would be 
that of the ultimate clump; if the volume of each particle were irreducible 
below a certain minimum—but we shall ere long find what that idea can 
involve us in! Briefly, there must be something to oppose the attractive 
forces. To call this something by the name of "force", or even to call it 
by any single name, would be to limit it unduly. So to the second general 
statement I give the form: 

There must be attractive forces, but there must also be antagonists to them. 
If someone wanted a particular problem of the theory of physics identified 

to him as the profoundest, the problem of these antagonists might well be 
selected as such. 

There is indeed one famed and spectacular case, which makes one antago- 
nist clear. It is the case of the heavenly bodies: the planets revolving 
around the sun, the satellites around the planets. Why does not the moon 
fall onto the earth and the earth fall into the sun? Newton's laws of motion 
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tell the answer. The antagonist is motion—or, to speak more precisely, 
momentum—or, to speak yet more precisely, angular momentum. If two 
particles attract one another but are moving with a relative motion which is 
not along the line that joins them, they never will meet. However great 
the attraction between them, it cannot draw them together. Attraction 
can do no more than constrain them to swing in permanent orbits around 
their common centre of mass. Therefore, 

The celestial bodies exhibit to us a system kept stable by the attraction of 
gravity, with motion for the antagonist thereto. 

However natural this statement may now seem, it is by no means an 
idea inborn in the human mind. There was an era when it was believed 
that motion dies out of itself, unless continually sustained by a never-ceasing 
stimulus. Were motion to die out of itself, it could not be an eternal 
antagonist to gravity. Newton cleared the way for the new idea by abolish- 
ing the old one. 

May we now assume that the ultimate particles of the world act on each 
other by gravity alone, with motion as the sole antagonist to keep the 
universe from gathering into a single clump? 

The answer to this question is a forthright and irrevocable NO. 
That the answer should be no is not at all surprising to this generation, 

which is familiar with other forces than gravity, the electromagnetic forces 
especially. Those who underrate the prowess of our forerunners may feel 
surprise on hearing that the negative answer was quite as apparent to 
Newton. No apology is ever needed for quoting verbatim what Newton 
wrote in English, though it is a dangerous act for the quoter, whose writing 
must suffer by contrast with the simple elegance of the seventeenth century. 
Incurring the danger, I cite from the Opticks (a book of which the name falls 
decidedly short of the scope): 

"The attractions of gravity, magnetism and electricity reach to very 
sensible distances, and so have been observed by vulgar eyes, and there 
may be others which reach to so small distances as hitherto escape observa- 
tion The parts of all homogeneal hard bodies which fully touch one 
another stick together very strongly. And for explaining how this may be, 
some have invented hooked atoms, which is begging the question; and others 
tell us that bodies are glued together by rest, that is, by an occult quality, 
or rather by nothing; and others, that they stick together by conspiring 
motions, that is, by relative rest among themselves1. I had rather infer 
from their cohesion, that their particles attract one another by some force, 
which in immediate contact is exceedingly strong, at small distances per- 

1 These remarks seem to be aimed at Lucretius, or else at the Greeks from whom 
Lucretius took some of his ideas. 
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forms chemical operations, and reaches not far from the particles with any 
sensible effect." 

Further along in the Opticks we read: 
"Thus Nature will be very conformable to herself and very simple, per- 

forming all the great motions of the heavenly bodies by the attraction of 
gravity which intercedes those bodies, and almost all the small ones of their 
particles by some other attractive and repelling powers which intercede the 
particles." 

With the powerful aid of Newton we have now distinguished between the 
attractive force of gravity and another attractive force, for which I retain 
the old-fashioned name "cohesion". I give another basis of distinction, 
one which could not have been found until in the mid-nineteenth century 
the equivalence of heat with mechanical work was established. Consider a 
piece of solid or liquid matter, and put the question: how much work must 
be done to tear its atoms apart and dissipate them into the infinite reaches 
of space, if the only force whereby they act on one another is the attraction 
of gravity? The question is answerable, if it is known how massive the 
atoms are and how far apart (on the average) they are. These things are 
known. The result of the computation is to be compared with the amount 
of work which is actually expended—in the form of heat—when the solid or 
liquid is volatilized into vapor. It is found that only about the billionth 
part of a millionth part of the heat so spent is devoted to "breaking down 
the gravitational bond", to doing work against the attraction of gravity 
which is overcome when the atoms are dispersed2. All the rest is required 
for overcoming that more intimate force of cohesion. 

Gravity now is pushed into the background, and sinks into the relative 
insignificance which may be gauged from the fact that in the endless specula- 
tions of physicists and chemists as to how matter is built up and joined 
together, it is completely left out. The force which dominates the planets, 
which makes a hill so hard to climb and a height so dangerous to fall from— 
how amazing that it should be trivial, compared with others which the flame 
of the gas-jet vanquishes as the water boils out of the kettle! Trivial of 
course by comparison only, and at small distances, not at great; or to phrase 
the situation better, it is the force of cohesion which is trivial at great 
distances, gigantic at small. This is the contrast which is implied by the 
technical terms of physics, "long-range forces" versus "short-range forces". 

2 The computation for mercury was made by my colleague Dr. L. A. MacColl, on the 
basis most favorable to gravity: by assuming mercury to be a continuum, or in other words, 
to be made up of infinitesimal atoms infinitely close together—an assumption giving 
the greatest possible value to the work required for spreading the mercury through infinite 
space, if gravity be the only restraint. The latent heat of vaporization of mercury is 
found by experiment to be 1.88.1016 times this value. Thus the contrast mentioned in 
the text is not contingent upon knowledge of the mass and spacing of the atoms, though 
the knowledge is available if wanted. 
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Gravity is long-range, because it falls away gently with increase of distance; 
cohesion is short-range, because it falls away precipitately. We shall soon 
be meeting with other examples of either character. 

One other fact to illustrate the short-range quality of the cohesive forces: 
When a kettle of water is boiling away on the stove, the amount of heat 
consumed in dispersing the first cubic inch that departs is the same as is 
spent in dispersing the second, and the third, and each of the others down 
to and including the last. This could not be so, if the particles were drawn 
together by important long-range forces; for then each cubic inch would be 
easier to drive off than that which last preceded it into the vaporous state, 
since there would be less of the liquid remaining behind to attract it. 

The celestial bodies—useful as they have been in showing us the laws of 
motion—have therefore served us badly by hinting that gravity is the sole 
attractive force, a hint which is quite misleading. In another important 
respect they fail to give us a lead: they show us no examples of collision. 
Collision, more commonly known as impact, is one of the most important of 
earthly phenomena, as it is one of the most uncomfortable. The apple 
which fell in the orchard of Newton, and inspired him with the law of gravita- 
tion, may have been a legendary apple; if it was real, we may be sure that it 
ended its fall in a collision—ended its fall, not its existence. It did not pass 
through the globe and pop out of the ground in the Antipodes; it did not 
instantly merge with the grass or the soil of the orchard; it bounced and 
rolled a little, perhaps, and then lay quietly pressing against the earth, 
entire and whole. The earth was impenetrable to the apple, as the apple 
to the earth. 

We do not even have to look to impact, to be taught this lesson about 
the impenetrable. Not less impressive than the fact that the piece of iron 
sticks together, is the fact that it does not shrink. For any particular 
choice of temperature and pressure, it has a particular volume which is its 
own. Work or heat must be expended to dilate it or tear it apart alto- 
gether, but also work must be expended to make it denser. 

Having ascribed to attractive forces the fact that it takes heat—or let 
me say henceforward, energy—to vaporize a piece of matter solid or liquid, 
we now ascribe to repulsive forces the fact that it takes energy to squeeze 
the piece. The forces must be short-range—still more short-range than are 
the cohesive forces, inasmuch as these come into play to capture the atoms 
and hold them together, before those get their opportunity of crying "hold, 
enough!" They must be very potent, for the most terrific pressures which 
have been achieved by man do not avail to squeeze the most compressible 
solid into half of its original volume. Why talk of artificial pressures? 
everywhere in the globe of the earth, except within a hundred miles of the 
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surface, the pressure is greater by far than any of them; and yet, the average 
density of the earth is less than double that of its superficial crust. 

We have imagined that as two atoms approach each other, the gravita- 
tional force between them rises gently, the cohesive force remaining unde- 
tectable till they come very close together, when at some critical distance it 
begins a sharp and sudden rise which quickly carries its value far over that 
of gravity. Now we are to conceive of yet a third force, repulsive, unde- 
tectable till they come still closer together, then at a lesser critical distance 
entering on a sharper more sudden rise which rapidly carries its value far 
over those of both of the other two. 

This essential and powerful force has no name of its own. This is because 
it is usually described in words not conveying directly the notion of force. 
What we have now encountered is the concept of the incompressible atom, 
the particle of irreducible volume—the doctrine that the atoms are to be 
pictured not as infinitely small like the points of geometry, but as hard 
impenetrable elastic pellets, minute indeed but not inconceivably so. This 
is a doctrine frankly expressed by many a thinker of the past, who perhaps 
was more unwilling than we to receive uncritically that difficult dogma of 
the point of infinite smallness. Hearken again to Newton: "It seems 
probable to me that God in the beginning formed matter in solid, hard, 
massy, impenetrable, moveable particles . . . incomparably harder than 
any porous bodies compounded of them; even so very hard, as never to wear 
or break in pieces; no ordinary power being able to divide what God himself 
made one in the first creation." 

The completely unsqueezable atom corresponds to a force of repulsion 
which passes suddenly from zero to an infinite strength at a certain critical 
distance. The critical distance is the "radius of the atom." Reversely the 
idea of a force of repulsion rising rapidly indeed, but always continuously, 
as two particles draw nearer—this corresponds to a squeezable atom, with- 
out a definite radius. Solids and liquids in bulk are compressible, and this 
seems to rule out the former idea, which anyhow is more drastic than one 
likes to accept. It is not ruled entirely out, for there may be interstices 
among the particles, and the shrinkage entailed by pressure may be ascribed 
to the atoms so setting themselves that the cavities lessen in size. However, 
this does not seem adequate, and it is better to accept a compressible atom 
and make it share with the cavities the responsibility for the shrinkage. 
Then there is also the fact that solids expand when warmed. This is 
ascribed to the atoms dancing around with the heat, and so we approach a 
new situation in which repulsion and motion are allied as the two antagonists 
to cohesion. 

Instead of exploring this situation further, let us ask whether there is a 
difference between the concept of the more-or-less squeezable atom and that 
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of the force-field curiously devised which I have been describing? Formally, 
there is not. But in respect of the path which the mind next tries to follow, 
there is a difference, and a great one. 

The compressible atom being accepted, one asks, of what is it made? 
and finds that one is thinking of a continuous substance, elastic and dense. 
One who is trying to become a thoroughgoing atomist is hardly pleased to 
discover a continuum at the base of the theory. The displeasure would not 
be long-lasting, if by assigning a few simple qualities to the continuum one 
could arrive at the right numerical values for things that can be measured— 
if one could infer, for instance, that the continuum by its nature divides itself 
into globules of just the same radii as the structure of crystals demands for 
the atoms. We are to meet in nuclear physics with a calculation singularly 
like this—but in general, the feat has not been done. It is not an adequate 
retort to say that the thoroughgoing atomist is obliged to assign to his 
atoms the sizes and the masses which they actually have, without giving 
any deeper reason. He manages to avoid the question; it becomes im- 
perious, when the continuum is brought upon the scene. The road to 
success may lie by way of the continuum, but it is a road that has not been 
successfully trodden. 

The force-field around the point-particle being accepted, one asks, why 
this so curious force-field? An inverse-square field would seem so natural 
as not even to ask for further explanation (but this is probably because the 
human mind has had two and a half centuries for getting accustomed to it). 
This combination of a short-range attraction with a repulsion still shorter in 
range cries out from explanation. Could one but somehow reduce it all to 
inverse-square forces, one would be more contented. This road seems 
impassable, but already it has been trodden—built and trodden—to splendid 
successes. Therefore I lay aside the compressible atom scooped out of a 
continuum, mentioning that even now we have not heard the last of it. Two 
stages of preparation are now required. 

First, I must take more care henceforward in using the words "atom" and 
"particle". Hitherto I have used them interchangeably; from this moment 
on, "atom" is to have one meaning and "particle" another. Of the two, 
it will be "atom" which comes the closer to meaning what both words have 
meant up to now. Atom will attract atom by the force of cohesion; atom 
will repel atom by the nameless short-range force. The atoms in their turn 
will be made up of more elementary particles, bearing such names as "nu- 
cleus" and "electron". As to the forces between them,—that is the topic to 
which we are coming. 

Second, I must introduce at long last the forces which the reader has so 
long been missing from this discourse: the electromagnetic. 

Of these, it is the "electrostatic" force which stationary charges exert on 
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one another which concerns us the most. Newton spoke of it in one of the 
passages which I have just been citing, but the pleasure was denied him of 
knowing how it resembles gravity. Both follow the law of the inverse- 
square; yet two centuries were to elapse between the years when Newton 
proved this for the one and Coulomb for the other. The electrostatic force 
is broader though than gravity, for it includes an attraction and a repulsion. 
There are two categories of charge, the positive and the negative: any 
charge repels those of its own category, attracts those of the other. 

This entry upon the scene of a long-range repulsion modifies the prospects 
of a successful picture of the world as a congeries of particles, and seems at 
first glance to brighten them greatly. Dismiss gravity—forget about 
cohesion—put the question: in an imaginary universe made up of electrified 
particles some positive and some negative, acting on one another by electro- 
static forces only, is it possible to have stability with all of the particles 
standing still? 

Again the answer is no. This is not, however, too disappointing: we are 
accustomed to motion as the antagonist of gravity in the celestial case; shall 
we not now introduce it to be an ally to the electrostatic repulsion, the two 
of them conjointly being the antagonists of the attraction? 

Now with real surprise and disappointment, one stands confronted again 
by the ruthless negative answer. The past revives: I have said that a pre- 
Newtonian philosopher would scarcely have accepted motion as the death- 
less antagonist to gravity, because he would have believed that motion dies 
out of itself. Well, the motion of an electrified particle does die out of itself 
—so says the electromagnetic theory. A proviso must here be inserted for 
correctness' sake, though it does not alter the situation. Uniform motion 
does not tend to die out—but uniform motion is useless to our ambitions. 
The orbital motion of a planet, the swing of a pendulum,—on these the 
theory must be built; but these are accelerated motions; and accelerated 
motions destroy themselves, when the moving body is electrified. Their 
energy passes into light, and the body sinks to rest. Aristotle was avenged 
in the nineteenth century on those who sneered at him; for what he had 
believed of motion generally, was in effect what they believed of the motion 
of electricity. Still, as nearly everyone knows, there is, after all, an electri- 
cal theory of matter; the elementary particles are deemed to be electrified, 
and the forces between them are deemed to be electromagnetic. 

How is all this to be reconciled? By a statement which is the prelude to 
the final one—provided, that is, that all works out as well as physicists now 
hope, and provided also that we avert our eyes from the phenomena called 
"nuclear". Having imagined the elementary particles as points possessed 
of mass and bearing charges, and acting upon one another by electromag- 
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netic forces, we are to treat their motions by the method of quantum 
mechanics, and not by the method of classic mechanics. 

I will not pretend that this is a slight innovation, nor try to represent it as 
anything less than a great and difficult revolution in some of our most 
cherished habits of thought. Concepts formerly sharp, even those of posi- 
tion and motion themselves, become hazy; there are pitfalls and labyrinths; 
the mathematical technique is novel and hard. Yet in the picture of the 
universe as now presented, there are particles possessed of charge and mass; 
there are electromagnetic forces between the particles; there is motion of 
the particles; there is radiation, which it is just barely permissible to dis- 
regard in an outline like this one, and which I am disregarding; and outside 
of the realm of "nuclear" phenomena, there is nothing else. The stability 
of the world, that is to say, of the picture, is assured by attractions and 
repulsions electrical in nature, and by motion, with radiation playing an 
essential part. 

The hydrogen atom appears before the eye of the mind as a system of a 
nucleus and an electron: two particles of known, equal and opposite charges, 
of known unequal masses, attracting one another by electrostatic force. 
The force draws them together, but there is kinetic energy and there is 
motion, and so they stay apart. It takes a definite amount of energy to 
separate them, and the theory derives its actual value very exactly from a 
basic principle. Any other atom appears before the mind as a system of a 
nucleus and two or more electrons. The nucleus bears a positive charge, 
the electrons are negative; the nucleus attracts the electrons, but they repel 
one another; there is motion; between the attraction and the motion and the 
repulsion, there is stability. A molecule is a system of two or more nuclei 
positively charged and two or more electrons negatively charged, and the 
same three qualities hold the balance. A tangible piece of metal is an 
enormous multitude of nuclei and electrons, these latter enjoying a very 
wide variety of motions, some moving almost as freely as though the metal 
were a vacuum: again the balance is held, the metal tending neither to shrink 
nor to explode. 

All this is a programme for the explanation of Nature; and it is a pro- 
gramme which has been largely fulfilled—wherefore this lecture and a 
portion of the course. Not everything has been explained, nor ever will be. 
Quite apart from the phenomena called nuclear, there are countless things 
and happenings on earth which are so complicated, that they may well obey 
our fundamental laws without ever giving us the chance to prove it. If 
we should apply our assumptions to them and start to work out the conse- 
quences, it would take a geological era to finish the job. Perhaps all phe- 
nomena of life are of this type. The most that can be asked for is, that the 
theory should deal capably with all the phenomena for which it cannot 
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reasonably be claimed that they are so complex as to defy any theory. I 
do not allege that our theory of massive particles, electromagnetic forces 
and quantum mechanics has done even this. It has, however, done a great 
deal, so much that it takes a rather skeptical physicist to deny it in the 
realms to which it lays claim. 

In the light of this theory, let us consider the situation of the several 
forces. 

Gravity remains apart and inaccessible, one of the ultimate forces, quite 
probably a quality of space as Einstein has proposed. 

The electromagnetic forces remain ultimate, not explained in terms of 
anything else, united among themselves by the theory of relativity, responsi- 
ble for the incessant passage of energy to and fro between matter and light 
which is one of the major features of the world. The ionization of atoms, 
the generation and the absorption of light, show us these forces at work 
within the atoms, holding together the electrified particles of which the 
atoms are made, balanced by motion and by their own dual character of 
attractions and repulsions. 

Cohesion, and the chemical forces which bind atoms into molecules and 
grade insensibly into cohesion, and the nameless repulsive force which holds 
the balance to them and led many to the concept of the more-or-less-com- 
pressible atom: these are derivable from the electromagnetic forces between 
the elementary particles whereof the atoms are made up. I repeat: derivable 
from the electromagnetic forces, with the aid of quantum mechanics,—without 
which aid they would not have been derived. In the literature one finds 
incessant reference to "exchange forces"; these are not a novel category, but 
a step in the derivation.3 Here are the fields of research where work is the 
most active. The theory of chemical forces, which some call "quantum 
chemistry", is well advanced; the theory of metals, not so well. Much 
earlier and much more often than we like, do we impinge on the class of 
phenomena, for which it can all too reasonably be claimed that they are so 
complex as to defy the theorist probably for all time. Yet there are many 
simple ones which have brilliantly been explained, and there is satisfaction 
on the whole—until one raises the eyes and looks ahead: for the nuclear 
phenomena are still before us. 

As a prelude to these we may view the electron itself. Hardly have we 
begun to "look narrowly" upon it, before we see the spectre rising up of 
that old antithesis between the point-atom and the atom carven out of a 
continuum; nor is it long before the spectre grows more frightful than it was 
in the earlier case. If the point-electron is adopted, all the old conceptual 

• There is also a strange quality of Nature bearing in quantum-mechanics the name 
of "the exclusion-principle of Pauli," which to some extent resembles a repulsive force 
acting between similar particles such as electron and electron or proton and proton, under 
very special conditions. 
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troubles return in the company of a new one. The intrinsic energy of this 
point-particle is infinite—so says the electromagnetic theory; the mass must 
therefore be infinite—so says the relation of Einstein of which I will presently 
show the power. If from this alternative we rebound to that of a globule of 
continuous electrical fluid, the old difficulties come back in the company of 
another new one. The parts of the globule of negative electricity repel 
each other, so our electron-model turns out to be a high-explosive bomb. 
The reader if he wishes may seek in Lorentz' "Theory of Electrons", a classic 
of some thirty years ago, the details of a scheme for preventing the electron 
from exploding by means of nonelectrical forces—a surrender, therefore, of 
the viewpomt that the ultimate forces are electrical. 

Leaving these difficulties still unmastered, I turn to nuclear physics. This 
is a term which covers two fields: on the one hand, the structure and the 
qualities of atom-nuclei; on the other, some remarkable attributes of 
electrons, which they display either when they have tremendous energies, 
or under conditions which it takes tremendous energies to create. "Tre- 
mendous" energies are enjoyed by electrons fresh from radioactive sub- 
stances, are obtained from the cyclotron and the electrostatic generator, 
and are found at their extremest in the cosmic rays. Of these attributes 
the only one which I will mention is mortality. 

Mortality: this is a very obnoxious attribute for an elementary particle. 
All atomists heretofore have devised their atoms specifically to be immortal, 
to be the immortal things, to be the one thing permanently changeless under 
the flux of phenomena. But the electron is mortal, subject to birth and to 
death. Electrons are born in pairs, a positive and a negative springing to- 
gether into existence. Electrons die in pairs, a positive uniting with a 
negative and the two of them passing out of existence. 

These are not exactly cases of something coming out of nothing and 
something turning into nothing. Energy, mass and momentum are all 
conserved. Corpuscles of light disappear where and when an electron-pair 
is born, are born where and when a pair of electrons vanishes. So far as 
can be told, the corpuscles of light possess just the energy, just the mass 
and just the momentum which is destined to go to the nascent electrons or 
to be left unpossessed by those about to die. Now I have to admit my 
fault in not elevating earlier the corpuscles of light to a parity with the 
electrons and the atoms. They have the singular attribute of moving 
always with the same speed (when in a vacuum); they do not collide with 
one another, or rather such collisions have not been detected, though 
collisions with electrons are known; and they suffer from mortality, very 
much more so than do electrons. (Positive electrons are so rare, that 
negative electrons enjoy an almost perfect security.) Immortality is re- 
served for energy and mass and momentum. Now we feel ourselves swerv- 
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ing again toward a continuum-theory. The ground is slippery, and I step 
hastily from it into the last section of this lecture, into nuclear physics 
proper. 

All of the theory of nuclei is firmly grounded on one basic statement, which 
is this: the masses of all nuclei are nearly integer multiples of a common 
unit, this being slightly less than the mass of the lightest among them. 

Here is a statement bitterly disappointing! the little word "nearly" and 
the three little words "slightly less than" conjointly make a bright hope 
stillborn. Were it not for those words, we should already have joyously 
leaped to the conclusion that all nuclei are clusters of a single kind of 
fundamental particle, different clusters differing only in how many of the 
particles they comprise. The conclusion is so tempting that one is quite 
unable to resist it, hoping against hope that the words of frustration can 
somehow or other be cancelled. Soothing the reader with this veiled as- 
surance, I adopt the conclusion. 

The conclusion itself must be tempered at once, for there is a second 
basic statement coequal with the first: the charges of all nuclei are integer 
multiples of a common unit of charge. No pernicious adverbs here! this 
statement is an exact one, to the best of our knowledge and belief. The 
common unit of charge, as nearly everyone knows, is equal to the electron- 
charge and positive in sign. 

The conclusion would still be sound, if the charges of all nuclei were pro- 
portionate to their masses (we should merely attribute an equal charge to 
every particle). Definitely this is not so, being most strikingly denied by 
the fact of "isobars": there are nucleus-types agreeing in mass, disagreeing 
in charge. We seek the next simplest assumption, and find that it suffices: 
Two types of fundamental particles—equal in mass—the one of them 
charged positively, the other neutral—each nucleus to be distinguished by 
two integers, one being the number of the charged component particles 
of the cluster, the other the number of the neutrals—"proton" and "neu- 
tron" for the names of the two. 

This is the beginning of the programme for nuclear theory. Having 
taken the first step by writing it down, we enter upon the second—and find 
ourselves on the very road which our ancestors trod when atomic theory was 
new, facing the same ascents, the same passes and the same morasses. 
The long-range forces—the short-range forces—the cohesion—the repulsion 
—the more-or-less-incompressible particle—the troubles of the concept 
of the point-particle—the countervailing troubles of the continuum carven 
into globules—the dream of reducing everything to long-range forces and 
motion holding each other in balance—every one of these rejoins us on our 
journey. The mighty difference is, that the road still ends in the darkness, 
and the dream is still a dream. Therefore it is that the language of nuclear 
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theorists wanders about in the most disconcerting way, so that often in a 
single article the wording in one place will be intelligible only to a few 
hundred (if so many) of the most advanced of specialists, and in another 
will sound like the voice of Newton speaking out of the Opticks, only in a 
much more cumbrous manner. 

In the atomic world we have already seen how gravitation is neglected, 
being pushed into the background by the electromagnetic forces and the 
cohesions and repulsions derivable from these. Now in their turn the 
electromagnetic forces must recede into the background. This sounds 
extraordinary. Have we not all been told of the supreme importance of 
nuclear charges? Have we not been taught that by its charge a nucleus 
attracts electrons and organizes them into a family about itself and so 
creates an atom,—an atom which coheres with others, so that the world 
as we know it is organized by the charges of nuclei? All this is true, and 
very important from our viewpoint—but not so important, it seems, from 
the viewpoint of a nucleus. To this little cluster of protons and neutrons, 
the mass is more important than the charge; the total number of its com- 
ponent particles is more important than the number of protons separately 
or the number of neutrons separately; the cohesive forces are more impor- 
tant than the electrical. Perhaps a nucleus cares little about its charge, 
and nothing at all about the swarm of electrons which that charge coerces 
to swirl about it like a cloud of flies, though if it were not for those swirls 
the world would be barren and dead. 

The cohesive forces certainly overpower the electrical. We are in no 
doubt of this, for the electrical forces are repulsive. Newton had gravity 
available for binding his atoms together; it was of the right type but inade- 
quate, so he gave it cohesion as an ally. The electrostatic force between 
proton and proton is a repulsion, so to bind such particles together the 
Newtons of nuclear physics must overcome it with cohesion as an adversary. 
How greatly it is overcome is shown in much the same sort of way, as I 
followed when invoking the vaporization of solids to show how greatly 
the cohesion of atom with atom surpasses gravity. It is possible (at the 
end I will mention how) to compare the amount of energy required for 
tearing apart a cluster of two protons and a neutron with that required for 
tearing apart a cluster of two neutrons and one proton. The two amounts 
differ by only a few per cent; and more surprising yet, the former is the 
greater! Though the first-named of the clusters contains the inherent 
explosive power of two protons trying to drive themselves apart by the 
long-range repulsion, it is stuck tighter together than the other, which 
contains nothing of the sort. As a minor detail this shows that the cohesive 
forces depend to some extent on whether the particles are neutrons or pro- 
tons; but the major conclusion is, that the cohesive forces are the masters. 
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Are they short-range or long-range? By calling them "cohesive" I have 
already committed myself, but correctly. There is an argument quite 
similar to the second which I drew from the vaporization of liquids. Think 
again of the kettle of water boiling away on the stove. It takes as much 
energy from the flame to disperse the last cubic inch of water that goes as 
it does to drive off the first, despite the fact that the first is exposed to all 
the long-range forces of attraction exerted on it by all the other cubic inches 
remaining in the kettle, and the last is not. Therefore the long-range 
forces which act between atom and atom are trivial, and cohesion is a force 
exerted by the atoms on their near neighbors only. Think now of the 
cluster of protons and neutrons which is a nucleus—a massive one by choice, 
built of two hundred particles or more. Imagine it taken to pieces by 
detaching one particle after another. I admit that this precise experiment 
is beyond the art of the physicist, but for a certain reason—the one which 
I have already promised to give, and will give at the end—he is as confident 
of its result, as he ever is of the result of any experiment which he has not 
actually performed. The result is, that it takes roughly as much energy to 
remove a particle when there are two hundred left behind to pull it back, 
as when there are but a dozen left behind, or any number in between. 
Therefore the long-range forces which act between the fundamental particles 
are minor, and the intra-nuclear cohesion is a short-range force. 

I have carefully made these last statements rather weaker than their 
analogues for the water boiling away. The amount of energy required for 
taking away a particle does depend to some extent on the number left 
behind, and the long-range forces are therefore minor but not trivial. If 
the long-range forces are attractive, the binding-energy of a particle—this 
is the shorter name which is given to the "energy required for taking away 
a particle"4—must be greater, the greater the size of the cluster, i.e., the 
greater the mass of the nucleus. Now for nuclei of some fifty particles or 
more, the contrary is the case. Therefore the long-range force, or the major 
one if there are more than one, is a repulsion. We already know of one 
long-range repulsion, to wit, the electrostatic force between proton and 
proton. Is this the force in question? The answer is oddly difficult to 
give with assurance, but at present is believed to be yes. 

If the answer is definitely yes, then the electrostatic force has after all one 
role of supreme importance in nuclei. It fixes their maximum size and 
their maximum charge, therefore limits the number of chemical elements, 
and may indeed be all that prevents the universe from caving together into 
a single lump of protons and neutrons with the electrons fluttering help- 

4 It ought strictly to be called the "unbinding-energy" or "binding lack-of-energy," 
since it is given as positive when energy must be contributed to the system in order to 
detach the particle. 
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lessly around it. So long have the chemists been on the search for new 
elements, and so completely have they searched, that we may believe them 
when they say that apart from the works of the "atom-smashers," no 
nucleus exists having more than 238 particles altogether, 92 of which are 
protons. Even the atom-smashers or (as I should rather call them) the 
transmuters, for all the wonder and power of their art, have not forced the 
total number of protons upward by more than two or the total number of 
particles altogether upward by more than one. Moreover all of the two 
dozen or so most massive nuclei known are subject to explosion—to explo- 
sions quite terrific, some of them spontaneous, others touched off by what 
seems a very minor cause. It may therefore be taken as nearly certain 
that there is an upper limit to the size of nuclei, and probable that it is 
electrostatic force that sets the limit. 

Now we come down to the short-range repulsion. Such a one there must 
be, for again we can rehearse the ancient argument. A piece of iron does 
not shrink into a point; therefore the iron atoms must either exert a force 
of repulsion or else be more-or-less compressible pellets. A nucleus does 
not shrink into a point, but offers an impenetrable front, measurable though 
small, to an oncoming neutron; therefore the nuclear particles—but why 
repeat the words? 

Shall we interpret neutrons and protons alike as systems of particles 
still smaller, acting on one another by electromagnetic forces, to be treated 
by quantum mechanics? Alas, if there is one surety in this field, it is that 
we cannot play quite the same game twice. Quantum mechanics may not 
be used up (some think that it is) but the electromagnetic forces certainly 
are. In this direction we have as yet no leadership. 

Shall we then adopt the compressible globule or the point-particle with 
a curious field of force surrounding it? Though the language of nuclear 
theorists verges sometimes on the former, it is the latter practice which is 
common—a fact which will hardly surprise the reader. In the specialized 
literature, one finds many a speculation and (what is of more moment) 
many an inference about the force-field which is drawn pretty directly from 
reliable data. As a rule the inferences are expressed in language very 
different from the phrases of this lecture: "interaction" is used instead 
of "force-field," and there are queer and slightly comic technical terms 
such as "potential-well." When you read of a "rectangular potential- 
well," interpret that what I have been calling the "cohesive force" becomes 
suddenly enormous at a certain specific radius; when of an "error-well" (!) 
understand that the cohesive force increases rapidly according to a certain 
law with decline of distance; when of a "Coulomb interaction" realize that 
it is the inverse-square force-field of the electrostatic repulsion between 
proton and proton. Of these interactions I will give only two facts: first, 
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that the short-range attraction is confined within a very few times 10-13 

cm of the centre of the proton or neutron, whereas the cohesive attraction 
of atom for atom spreads over a radius a hundred thousand times as great; 
second, that the three short-range attractions of proton for proton, neutron 
for neutron and neutron for proton are nearly the same. 

Shall we adopt the force-fields as given to us by experiment, with some 
plausible assumptions added (for one cannot as yet do without them) 
and operate on them by the procedures of quantum mechanics, hoping to 
arrive at (say) values of binding-energies compatible with the data? This 
is the present, or perhaps I should say the recent, programme of nuclear 
theory. If one reads the theoretical papers of any one year out of the last 
ten, one may readily get the impression that success is just around the 
corner. But if one reads the papers of two or more years and takes note 
of the rapid changes, the prospect does not look quite so rosy—nor when 
one overhears the conversations of the theorists themselves. I will not 
conduct the reader down the paths which are as yet so tortuous and hazy; 
it will be better to fill in the picture with a few of the many remaining details. 

Mass was the first of properties (along with hardness) to be assigned to 
the elementary particles; the second was charge; to these have lately been 
added angular momentum and magnetic moment. It is difficult to say 
when the idea of a spinning atom was first propounded (one recalls the 
vortices in a continuous fluid which Kelvin introduced as one of the most 
brilliant of all attempts to contrive a continuum and atoms as a part of it) 
but easy to fix the time when the idea of the spinning electron became so 
definite and sharp, as to be successfully used in explaining crucial data; 
this was 1925. The electron, the proton and the neutron all have equal 
angular momentum; its amount, common to these three which at present 
claim most strongly the rank of elementary particle, is one of the universal 
constants. When protons and neutrons are assembled in a nucleus, their 
axes of spin all point in an identical direction, though not by any means 
necessarily in the same sense in that direction. It is possible for a nucleus 
to have zero angular momentum, through half of its particles setting them- 
selves in the one sense and half in the other; the lightest nucleus for which 
this happens is the alpha-particle, composed of two protons and two neu- 
trons. The magnetic moments of the three elementary particles are very 
far from equal, that of the electron being some seven hundred times as 
great as that of the proton, which in turn is half again as great as that 
of the neutron. One of the tragedies of theoretical physics occurred in 
this connection. A principle of quantum mechanics had been proposed, 
superbly capable of serving as a basis for most of the incomplete principles 
which had already so well justified themselves in atomic physics, and 
including among its parts the actual values of the angular momentum and 
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magnetic moment of the electron. Its empire would have been extended, 
had the ratio of the magnetic moments of proton and electron been equal 
to the reciprocal of the ratio of the masses of these two—actually the 
former ratio is too great by a factor of 2.78. This contretemps has led 
many to deny the title of "elementary" particle to the proton; while as for 
the neutron, the fact that it lacks an apparent electric charge while never- 
theless displaying a magnetic moment leaves it also open to suspicion. 

Few readers of these pages will be unaware that electrons are observed 
proceeding out of nuclei: it may well be a source of wonderment that they 
are denied a residence in these assemblages of protons and neutrons only. 
This is of course another example of the mortality of the electron. Having 
observed that it is subject to birth and to death, should we be deterred 
from supposing that it is born as it quits the nucleus from which it comes? 
This rhetorical question gives a false impression of the course of history. 
There was indeed an era when electrons were believed to inhabit nuclei, 
when nuclei were regarded as assemblies of protons and electrons only. 
It ended in 1932; but the observation of the birth and the death of electrons 
did not ensue for yet another year. What happened in 1932 was the dis- 
covery of the free neutron. Only when this particle had been discovered 
did a physicist (Heisenberg) think it worth while to begin to develop in 
detail the theory that the components of nuclei are protons and neutrons 
and no other particles but these. 

Now I bring this article to a close by fulfilling my promise to speak of 
Einstein's relation between energy and mass, which on the one hand has 
been rigorously tested in the realm of nuclear physics, and on the other 
has extended that realm. 

The relation may be worded in several ways; I will employ the shortest: 
energy has mass. 

Now imagine an assemblage of particles sticking together. "Sticking 
together" is not the dignified phrase of a physicist; such a one would say, 
more abstractly but more exactly, that energy must be given the particles 
to take them apart. But energy has mass; therefore the mass of the as- 
semblage must be augmented, when they are taken apart. Therefore the 
mass of the interconnected assembly is less than the sum of the masses of 
the particles when free. 

Now with a single stroke this principle does away with what otherwise 
would have been a quite unsurmountable obstacle to the doctrine that all 
nuclei are made up of protons and neutrons. For "proton" and "neutron" 
are not merely the names of hypothetical particles whereof nuclei are 
made up; they are also the names of the two lightest of nuclei. These two 
lightest of the nuclei are so massive, that it could not possibly be said that 
the other nuclei are made up of them, were it not for the detraction of mass 
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which occurs when they are bound up together. This deficit of mass 
corresponds to the unbinding-energy or, badly called, the binding-energy of 
which I earlier spoke. The binding-energy is the amount of energy which 
must be supplied to the nucleus, to break it up into protons and neutrons. 
The deficit of mass—the difference between the actual mass of the nucleus, 
and the masses of all of its neutrons and protons dispersed into freedom— 
is related to the binding-energy by Einstein's relation. 

I have said that this relation has been tested in the realm of nuclear 
physics, and has served also to extend that realm. The possibility of testing 
arises from the fact that in certain cases the physicist is able to convert a 
system of two nuclei into a system of two other nuclei, the masses of all 
four being known. This seems a somewhat pedantic way of expressing the 
well-known fact that in performing an act of transmutation, the physicist 
causes one nucleus as "projectile" to impinge upon another as "target," 
whereupon the two merge and two others spring apart from the scene of 
the merger. The masses of the two initial nuclei do not as a rule add up 
to the same precise sum as the masses of the two final nuclei. But if to the 
first pair of masses we add that of the kinetic energy of the projectile, and 
if the second pair is augmented by that of the kinetic energies of the final 
nuclei—why, then, the equation balances, and Einstein's relation is justified. 

As for the extensions of the realm of nuclear physics, or let me rather 
say, the realm of physics generally: no fewer than three have been stressed 
in these few pages. First, mass could not be conserved in the birth or 
the death of electron-pairs, were not the energy of the electrons accompanied 
by its mass when it passes out of or into the form of radiant energy. Then, 
we should not so soon have known that the system of two protons and one 
neutron requires less energy to unbind it, than the system of two neutrons 
and one proton; this was deducible from the masses of these two nuclei, 
before it was attested by the discovery that the former changes spontane- 
ously into the latter. Then, we should not have the evidence that the 
binding-energy of the individual particle lessens, as the number of particles 
remaining behind in the nucleus increases; for this is a statement derived 
from observations on the masses of the nuclei. 

So all seems well with the model of the nucleus as a system of protons and 
neutrons, and the particle-theory stands triumphant. Yet notice at what 
a price this triumph has been bought! Of all the attributes of the fun- 
damental atom, of the elementary particle, constancy of mass was the earliest 
and the most firmly accepted. The elementary particle was a bit of immuta- 
ble mass, set forever apart from change. Now it turns out that when the par- 
ticle adheres to another, some of its mass departs. What has departed is 
not perished and gone. It is known sometimes to have passed into radiant 
energy, sometimes into energy of motion, sometimes into that mingling of 
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the two which is known by the name of heat. Changelessness has ceased 
to be the quality of the atom, remaining that of the mass and the energy 
of the world as a whole. Immortality has gone from the atom back into the 
continuum. This is as good a place as any to step out from the incessant 
alternation, never yet ended and probably endless, between the particle 
and the continuum as the basis of thought about physics. 
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Tentative Standards for Wood Poles Become Approved American Stand- 
ards} Richard C. Eggleston. The six American Tentative Standards 
covering specifications for wood poles, several of which were approved by 
the American Standards Association as tentative in 1931 and the rest in 
1933, have now been reviewed by the ASA committee and approved by 
the ASA as full American Standards. In reviewing the standards, the 
committee found that the general principles of the standard requirements 
have been universally recognized as a satisfactory basis for the selection of 
poles. Covering as they do northern white cedar poles, western red cedar 
poles, chestnut poles, southern pine poles, lodgepole pine poles, and Douglas 
fir poles, the standards represent a rational uniform standardization system 
for the six major pole timbers of the United States. 

The standards establish practical limits that can be applied economically 
in the production of poles for general use, but they are intended also to be 
flexible enough to cover the purchase of poles of high quality for special 
purposes. At the same time, it is not desired that they should be so restric- 
tive that any considerable quantity of usable poles produced under normal 
production practices would be labeled substandard because of the specifica- 
tion restrictions. 

The standard specifications include material requirements for shape and 
straightness of grain, limit defects such as knots, checks, insect damage and 
decay, and define the minimum quality of acceptable poles. In the stan- 
dards, departures from straightness are held within practical limits for 
ordinary use. Decay and the presence of wood-rotting fungi are gen- 
erally prohibited. Definite limitations on knots are set, and fire-killed poles 
are acceptable only by special agreement between producer and purchaser. 

The standard dimensions now included with the specifications in one 
standard for each type of pole, were based on recommended fibre stresses 
contained in the American Standard for Ultimate Fiber Stresses of Wood 
Poles (05a-1930). They were approved as American Standards from their 
inception, and until they were included with the specifications in the present 
American Standards they were considered as separate standards. These 
standard dimensions have all been prepared according to the same prin- 
ciples for all types of poles. The sizes at six feet from the butt in all six 
standards have been so fixed with respect to ground-line resisting moments, 

1 Industrial Standardization, June 1941. 
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that, for any given class and length of pole, all six species are equal in 
strength. In calculating these six-feet-from-butt sizes, distance from the 
butt to the ground line for any given pole was assumed, by definition, to be 
as shown in the column in the tables headed "Ground Line Distance from 
Butt." The equality-in-strength principle holds good, however, for any 
reasonable depth of set required. 

Approval of the six standards at this time followed a policy adopted by 
the Standards Council of the American Standards Association in April 1939. 
At that time the Standards Council decided to withdraw approval of stand- 
ards having a tentative status, and requested the reconsideration of such 
standards with the idea of either discarding them or of advancing them to 
American Standards. 

Equilibrium Relations in the Solid State of the Iron-Cobalt System.2 W. C. 
Ellis and E. S. Greiner. There are important transformations in the 
solid in the iron-cobalt system. One of these originates from the A3 trans- 
formation in iron. Cobalt in the binary system at first raises the A3 trans- 
formation to a maximum in the region of 45 weight per cent cobalt. Fur- 
ther additions decrease the temperature of transformation which rapidly 
approaches room temperature in the region of 80 weight per cent cobalt. 
An extended two phase region from 76.5 to 88.5 weight per cent cobalt was 
established at 600 degrees Cent. (1110 degrees Fahr.). 

An order-disorder transition occurs in the alpha phase in the region of 50 
weight per cent cobalt. The critical temperature of order is in the neighbor- 
hood of 700. degrees Cent. (1290 degrees Fahr.) depending upon the com- 
position. The ordered arrangement has the cesium chloride structure. 

The lattice constants of the alpha phase deviate widely from a linear 
function of the cobalt content. The first additions of cobalt increase the 
cell size to a maximum at approximately 20 per cent cobalt. Further addi- 
tions result in a contraction in the cell size to the limit of the alpha phase. 
Compositions in the region of 50 per cent cobalt exhibit an increase in cell 
size on ordering. 

Determination of Microphone Performance* F. L. Hopper and F. F. 
Romanow. Methods of determining the performance characteristics of 
microphones by acoustic measurements are described. Work factors in- 
volving the accuracy of the methods are discussed. The correlation be- 
tween a microphone's performance as determined by acoustic measure- 
ment and by listening tests is reported. Application of both types of test 
to a studio type of cardioid microphone is given as an example. 

s Trans. Amer. Soc. for Metals, June 1941. 3 Jour. Soc. of Motion Picture Engineers, April 1941. 
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Room Noise Spectra at Subscribers' Telephone Locations.i Daniel F. 
Hoth. That room noise can be a distinct handicap to conversation by 
masking the speech sounds in the ear of the listener and thus impairing the 
ease and accuracy of reception is of considerable concern to the telephone 
engineer. Room noise not only complicates the problems involved in the 
design and engineering of telephone systems capable of affording satisfactory 
service, but it is also one of the factors which affect the costs of the telephone 
plant. The effects of noise on telephone conversation depend, of course, 
upon the characteristics of the noises which occur at the places where tele- 
phones are being used. The arrangements and practices necessary for 
reducing the effects of noise depend upon a knowledge of these characteris- 
tics. As a result numerous measurements of room noise have been made 
from time to time over a period of many years by Bell System engineers. 
For the most part such measurements have involved the determination of a 
single figure to represent the noise measured, as in the recent survey of sound 
levels described by Mr. D. F. Seacord in the July 1940 issue of The Journal 
of the Acoustical Society of America. While such measurements are in- 
valuable in providing information on the frequency of occurrence of differ- 
ent noise levels at telephone locations, their value is enhanced by additional 
measurements of the distribution of the noise energy throughout the fre- 
quency band involved in the reception of speech. The present paper de- 
scribes such measurements and shows the effects of a number of contributing 
factors on the spectrum of the noise. It is shown that the spectrum of room 
noise has a characteristic shape. 

Film Scanner for Use in Television Transmission Tests.5 Axel G. Jen- 
sen. This paper describes the design and construction ol a television film 
scanner primarily intended for use as a testing tool in designing circuits 
suitable for television program transmission. 

The equipment employs electronic scanning and the image dissector is 
used as the electronic pickup device. The image dissector has a high 
degree of linearity between light input and signal output and the picture 
signal is not accompanied by any spurious shading signals. Furthermore, 
the direct-current component of the television signal is directly available at 
the output of the tube. The lower sensitivity of the dissector tube is not 
important in this case since a highly efficient optical projection system makes 
it possible to override noise to a high degree. 

In film scanners for entertainment purposes it is desirable to use ordinary 
24-frame motion pictures and such film scanners therefore include a me- 

* Jour. Acous. Soc. Amer., April 1941. 6 Proc. I.R.E., May 1941. 
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chanical or optical translating mechanism for translating the 24-frame film 
picture into a 30-frame interlaced television picture. In the present equip- 
ment it was found more expedient to simplify the construction by allowing 
the use of specially printed film. O/dinary 24-frame film is "stretched" by 
printing every other frame twice and the remaining frames three times in 
succession, thereby producing a film with a total of 60 frames instead of the 
original 24. Vertical scanning is then obtained by the continuous motion of 
this film at the rate of 60 frames per second and horizontal scanning by a 
simple electronic line sweep in the dissector tube. 

Acoustic Design Features of Studio Stages, Monitor Rooms, and Review 
Roams.6 D. P. Loye. A survey was made of studio experience, and meas- 
urements were made of stages, review rooms, and other units. These data 
were correlated and used as a valuable guide in the determination of the 
optimum characteristics and dimensions recommended for major studio 
scoring stages, monitor rooms, dubbing rooms, review rooms, and studio 
theaters. 

Information regarding Hollywood preview theaters is included in an 
Appendix. 

A New Microphone Providing Uniform Directivity over an Extended Fre- 
quency Ranged R. N. Marshall and W. R. Harry. A new microphone 
is described which consists of a moving coil pressure element combined with 
an improved ribbon pressure gradient element to give a cardioid directional 
characteristic. The theory of operation is reviewed, and consideration is 
then given to variations in directivity caused by diffraction, separation of 
the elements, and disparities in their phase and response characteristics. 
It is then shown how these variations are largely eliminated by equalization 
in the electrical circuit so that the resulting directivity is practically in- 
dependent of frequency throughout the range from 70 to 8000 cycles. The 
use of a moving coil pressure element makes high efficiency possible, while 
the design of an unusually rugged ribbon element provides a marked reduc- 
tion in noise due to air currents. Several useful directional patterns in 
addition to the cardioid pattern are provided in the new microphone, and 
the theory and merits of these patterns are presented. Finally some of the 
results which were obtained in field trials of the new microphone are dis- 
cussed. 

The Magnetostriction, Young's Modulus and Damping of 68 Permalloy as 
Dependent on Magnetization and Heat Treatment.6 H. J. Willlams, R. M. 

6 Jour. Soc. of Motion Picture Engineers, June 1941. 7 Jour. Acous. Soc. Amer., April 1941. 8 Phys. Rev., June 15, 1941. 
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Bozorth and H. Christensen. This paper describes measurements of the 
changes in certain physical properties of 68 Permalloy that result from dif- 
ferent thermal and mechanical treatments and considers them in relation 
to the domain theory. The magnetostriction varied with heat treatment 
from 2.5 X 10-6 to 22 X 10~6. The change in Young's modulus with 
magnetization to saturation varied from 0.09 to 10.5 per cent. The damp- 
ing of mechanical vibrations was also measured as dependent on magnetiza- 
tion and heat treatment. Young's modulus and the damping constant 
were determined by measuring the natural frequency of vibration and the 
width of the resonance curve of a hollow rectangle magnetized parallel to 
its sides so that the magnetic circuit was complete without air gaps or end 
effects. 
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