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Some of the uses of
' the “Deuce”™ C()mpu_tcr n

Technical Problems

g S A

le series of articles appearing in this issue of The MNarconi Review
ves some idea how the advent of the * Deuce 7 computer has affected
‘e mathematical investigation of technical prohlems.

fLong before digital computers were available. it had been realized how
Lluable the methods of graphical and numerical trials were. especially
%1611 used in parallel with a purely analvtical approach. The twa.in fact,
£m always to be complementary. The main trouble. however, was the
ormous labour and =kill needed to carry the numerical trials to their
Yimate conclusion.

Imagine the laborious calculations required. for example. to introduee
ndom errors in the values of the slot depth and the slot angle of a linear
fray of more than one-hundred elements and working out say twenty
amples of polar diagrams of twenty linear array aerials with different
-ndom errors. This. however. is a tvpical computer caleulation which is
ate possible nowadays. and is described in Hewson's and Pacello’s
iticle.

Imagine also the labour of introducing small clianges in the values of
e frequency and the decay coefficient of the natural modes of a filter to
/mimize the least squares error in the resultant characteristic, and then,
bt content with doing this with just one natural mode. to repeat this
rocess with, say, six in succession and, having optimized cach separately,
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to go back to the beginning and start again. This is, in fact, what thi
finishing programme described by Brockington does on the ** Deuce.”
Having acquired this new and powerful tool, which allows the nlethod
of numerical analysis to come into their own at last, it is found that ng
only does it hasten the solution of problems which could already ham
been solved by the use of conventional calculating machines, but it open
up many new potentialities. It permits, for example, simulation, w hich {
almost an experimental approach, but which has a much greater facﬂﬂ'
for being kept under control than the more conventional type of phvsm0
experiment. For example, elaborating the aerial problem described abov¢
the solution of this is in effect a simulation of the building of say tw: enti
aerials, followed by the measurement of their polar diagrams. This sort HJ
work, assuming the simulation can be made realistic, could be instruments
in saving much money. Very often one has to build only a few of a speci|
device like this, and it is difficult to know what tolerances should be pt
on the various parameters, e.g. slot depth and angle in the problem quote|
The usual method, of course, is to play for safety and put tight toleranc
on everything. This naturally can put the cost of manufacture 1,
enormously. However, if a truly simulated model can be put into mx
“Deuce ” computer, various tolerances can be tried quite cheapl
and a more economic estimate of the requirements made. The linear arri
aerial problem, of course, is only one example of such a problem and- j
such is explained in Hewson’s and Pacello’s article. The usual procedug’?é
for tackling these problems, as is demonstrated by the companion artig
by Palmer, is to back up the numerical work by an analytical stuc
Assumptions have to be made in the analysis which can perhaps |
justified, or modified, by the experimental results obtained on the co:
puter. The analysis in return may also enable one to estimate the numl
of calculations required, so that one can plan the computer expernnel;
more economically. In fact these two articles give some idea of how pt
analysis and computer experiments can work together. As a result of ti
kind of process on a particular job, the theoretical approach very oft.
can be built up on a more solid basis, which in turn reduces the amount
computer time needed on any future problem of that tyvpe, and so on. é
The other example of the use of a computer in technical problems
developed in the paper by Skwirzynski and Zdunek in parallel with fq
complementary analytical approach, and the detailed mechanics of {
numerical methods are developed and discussed in more detail in 1(
papers of Brockington and Hull. The overall problem is that of lum}|x
constant filter design where rather special characteristics are requlr}‘
One obvious quasi-experimental approach is to use an analogue compul!
wherein one, in effect. builds up a filter with continuously adjustal“
components and then varies each in turn and observes the effects on-{:
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(aracterlstlc The components, of course, have to be very carefully
dlbrated and recalibrated every so often to ensure accuracy. This method
»uld seem at first to be much simpler than using a digital computer.
.mvever if a digital computer exists already which is being used for other
rposes its use for this type of problem becomes economic and in any
me has several advantages. Flrstly, there is no calibration required, in
bt the inherent accuracy of the  Deuce * is of several orders higher than
,,posmble with its analogue equivalent. Also by using the display facilities
dthe Deuce,” as described by both Brockington and Hull, the advantages
() seeing the values of the varied parameters and the corresponding
“raracterlstlc plotted as a graph make it at least as good as the analogue
omputer method for getting the feel of the problem. In fact the digital
puter’s displayed parameters (frequency and decay coefficients of the
bural modes) are in many ways more convenient than the actual
fmponent values which would, in effect, be displayed on an analogue
{ mputer. Also of course, there is no analogue computer method equivalent
{f the * Deuce ” programme developed by Brockington wherein the
§d»ohine carries on the optimization process itself far beyond the display
phsitivity of the machine.
IThe following articles thus give an insight into some of the possibilities
fusing a digital computer in technical analysis, which it is hoped may
ibve of interest to readers of The Marconi Review although it must, of
flirse, be realized that they exemplify only a small part of the uses to
"lich the computer is being put.
There are many other applications of the computer in the technical
ild. One important use not discussed here, is to the simulation of whole
dlar systems. This can give valuable data required for the design of the
Hlars and, of course, of their associated data handling equipment.
ffother important application is to find the maximum allowable tolerance
component values to give an economic manufacturing and testing
cess of printed circuit assemblies.

g@ P. S. BRANDON




THE APPLICATION OF “DEUCE” TO '
A PROBLEM IN AERIAL DESIGN !
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By J. HEWSON, M.A. and E. A. PACELLO, B.A. i

b
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The performcmce of a practical aerial may be adversely affected by unav ozdab
errors in its manufacture. The use of a digital computer to assess the effect (| n
the radiation pattern of a slotted waveguide aerial due to small random errol
in the cutting of the slots is described.

(

|
Introduction ]
In the problem of designing a linear array to produce a specified far-fie!
radiation pattern, it is convenient, if the number of radiating elements(
large, to consider a continuous aperture distribution F(x). The far- fie!,
radiation pattern in the plane of the array is given by the Fourier integr.

E (sin 0) = fa F (x) exp [jkx sin 0] dx (g

where 0 is the angle between the direction of the radiation and the norn:

2
to the array, 2a is the aperture width and & = 77': . The function F (x )§’
§

J;

chosen to give the required radiation pattern, e.g., side lobes below;?
specified level, and the designed strengths of the individual radiatif
elements are values of F (z) at points corresponding to the positions}
the elements. Due to errors in manufacture, it will not be possible |
produce the aperture distribution exactly and there will be some dev1at1
in the radiation pattern.
In general, F (z) will have both amplitude A (x), and phase  (r)sot E
F(2) = A (@) explj ¢ ()] i
If the errors in amplitude and phase are 3 4 (x) and 3 ¢ (x), the radlat%
pattern becomes 3

E’ (sin 0) = J (A 4+ 3A)expj (Y + 8) exp (jhx)sin O dx

T

If the errors are small and second order terms are neglected this reduces|
E' (sin §) = E (sin 0) + f (84 -+ jAdY] exp jy exp (jkx) sin 6 dx é’

.. i
Use of a Digital Computer i
It is convenient to evaluate expressions of the form (2) using a digi‘li
computer. A ““ Deuce ”’ programme is available which will evaluate Q?‘

Fourier Transform of a quite general function by numerical integrat(!

t
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r

1{?10 Simpson’s rule. This article deals with the case in which the errors
IAmmphtude and phase, 54 and 8¢ are random functions. Thus, when
ypulating the ordinates for the numerical integration, §4 and 3y are
¢cted from sets of random numbers having certain required properties.
Fj:se sets of random numbers are generated by a * Deuce ”’ programme.
iprder to get the right impression of the effect of such random functions
| necessary to evaluate (2) using a large number of different samples of
nes of 34 and 8¢ taken from the same sets of random numbers. For
qvenience the “Deuce” programme was written for a particular type of
1pr-free aperture distribution F (z) given by

: F(z) = acos2’-;—z 1 (1 — &) exp [@ <§>2] (3)

§

|

71 zero phase. This includes the cut-off (Gaussian and cos-squared
ributions as special cases.
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Fig. 1. Radiation patterns with slot-inclination errors
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Fig. 2. Radiation patterns w'th phase errors

An Aerial giving Low Side Lobes é

Following a suggestion by F. G. Gibney, it was found that the spe
case of (3) with « = 0-435, 3 = — 2-3 gave the low side lobes requirec
a particular application. The resulting radiation pattern is shown by %
bold curve in Figs. 1, 2 and 3. It will be seen that the side-lobe leve
below 44 dB. It was requlred to investigate the change in this side- l1§
level resulting from random errors.

The aperture distribution was to be realized by means of a rectangt
waveguide with transverse inclined slots cut in a narrow face of the gui
The amplitude distribution is determined by the conductances of
individual slots which in turn are governed by the inclinations of Ja

slots to the waveguide axis. The constant phase distribution can
produced by keeping the same slot length and slot spacing along |
guide. Errors in cutting the slots will produce errors in amplitude or pl{
of the equivalent aperture distribution. If the latter are known,
resulting radiation pattern can be found from equation (2). The rela‘cl,]‘hS
between slot and aperture distribution errors will now be considered. S

{',!’
|
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Fig. 3. Radiation patterns with slot-inclination and phase errors
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E ect of Mechanical Errors on Aperture Distribution
B {ORS IN SLOT INCLINATION
i‘@a radiated power from a slot is given approximately by
& A% = K P;sin? ¢
'

re ¢ is the slot inclination (i.e. an inclination - 5= © to the guide axis),

/' is the power transmitted past the slot and K is the same for all slots.
| he slot inclination is small (it is less than 11° in our case) and is subject
3a small error 8¢, the resulting error in the aperture distribution is

tirefore an amplitude error
b} o
| 34 = (K Py) % 3¢ (4)
f, as In our case, the guide is to be fed from one end, the power trans-

n‘i,ted past the m th slot from the feed end is
:[ x
‘!J PTm:PL _‘_Z\Arz

=m+1

i~

]
4
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where A4 2 is the power emitted by the  th slot, P, is the power lost in t
end- load and N is the number of slots. This function, which weights t|
slot-inclination errors, decreases from the feed end. For a given slot en
the resulting amplitude errors will therefore be greater nearer the feed e1)
SLOT-DEPTH ERRORS !
To achieve a zero phase distribution, it is necessary to ensure that 1;g
resonant frequency is the same for all slots. This means that the slots m‘
all have the same total length; those inclined at a greater angle to {
guide axis, and so shorter on the narrow face, being cut deeper. The shi
Af, in the resonant frequency is proportional to small changes in dep
The proportionality constant can be found experimentally. The pha
error produced by a frequency shift Af from f; is
af

fo '
where ¢ can be found experimentaily. If the error is small, this is approil

Af

mately 2Q — and the phase error is directly proportional to the dei
y 7 p 3 [ Y
0

error. In our case, a depth error of 0-039%, of the guide wavelength gav
phase error of 5°. y

tan~! 20Q

SLOT-POSITION ERRORS S;
A zero-phase aperture distribution requires the slots to be equally spas
along the guide. If the design slot spacing is [, a position error 8/ for

e~

R

slot will produce a phase error of 3T X 360° in the aperture distrf

T

the next being obtained by reversal of the sense of slot inclination. *
phase error is thus again proportional to the mechanical error.

The “ Deuce * Programme

From equations (2) and (4), the radiation pattern with slot- mchnat I
errors ¢ and phase errors 3¢ is given by \

E' (sin 0) = E (sin 0) - f [(KPT)Z S0 +j443¢] exp [ﬂ,w sin 6] da))
J—a i
In order to evaluate the integral, values of the functions (K P,)? anl‘ljﬂ

must first be calculated at values of x equi-spaced over the rang¢

b

s
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A

}\tegratlon In our case there are 129 slots and the functions are evaluated
, values of x corresponding to the slot positions. This number of ordinates
%sufﬁment to ensure accurate evaluations of the integral for the range of
lused.

! The functions are calculated for each slot from the aperture distribution
tven by equation (3). The design radiation pattern E (sin ) is then
mputed from equation (1) for a specified set of directions 6.

{1t is assumed that mechanical errors in a slot dimension are independent
it with the same probability distribution at each slot. Thus 3¢ and 8¢
re assumed to be random normal deviates with zero mean and with given
fandard deviations. Samples of random normal deviates, generated by
e programme, are taken as values of 8} and §¢ for each slot and the
ror term of equation (5) is computed. Addition of this to the first term
%é(sm 0) gives the required result, the far-field radiation pattern produced
iy the aerial with errors. The expression (5) is then computed for further
? mples of 8¢ and So.

b1 esults

%i«‘ypical results obtained from three runs of the programme are shown
" aphically. In each case, the error free aperture distribution was the one
sseribed above which gives the radiation pattern with 44 dB side lobes
~kown by the bold line in the diagrams. For Fig. 1, it was assumed that
ere was no phase error but that the standard deviation of the slot-
clination error was fifteen minutes. The resulting radiation patterns
om each of five samples of d¢ and 8¢ are shown. For Fig. 2 there was a
hase error of 5° standard deviation and no slot-inclination errors. Results
r simultaneous errors of fifteen minutes in slot inclination and 5° in
nase are shown in Fig. 3.

/A detailed analysis of the results will not be attempted here. The
iginal specification was for a 35 dB side-lobe level. The graphs show
iat this is unlikely to be achieved with manufacturing errors as large as
ifteen minutes in slot inclination and depth or spacing errors of 0-03%,
}‘,éld 1%, of guide wavelength respectively.

P
b
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THE EFFECTS OF ERRORS ON THE |
POLAR DIAGRAM OF A SLOT ARRAY

By D. S. PALMER, M.A.

4
‘

Algebraic expressions are given for the correlation between the errors in t/;ﬁ
field from a slotted wave-guide as measured in two directions, in terms of Ul
random errors tn field strength and phase which are assumed to be Z'nl‘TOdUCé:'
at each slot. Comparison with *‘ Deuce’ computations incorporating randol
phase errors shows close agreement. Extensions to a dish subject to error, an
to a two-dimensional array of radiating elements, are mentioned in gener!
terms.

f

The field radiated in a given direction is obtained in magnitude and phaj

as the sum of a number of vectors, one from each slot. It may be writti
as

m=-+2XN ;‘
M i
E ((")) + Z mfm +.] bmfm COS \v +.] sin — \v ) lj
4 | g
m=-—XN

— A +U +5F.

e T R

E

A (w), the correct field strength, is taken as real. There are 2.V
slots, and the weighting functions a,, and 6, depend on m only. f,, and j
represent the effect of machining errors; they are taken to be independe
random numbers from a normal or Gaussian distribution of zero mean a,
standard (RMS) deviation unity. o measures the angular position in t

e

R

D
beam; w = = sin 0, where D is the aperture width, x the wavelength, a

1)

St esact

it

0 the angle off the direction of the main beam. The range of w is appro
mately + N, and except near the main beam a difference of 1 mé
represents the width of a side-lobe, adjacent side-lobes having (corre|
fields of opposite sign. |
We wish to obtain information on the power | £ (0) | 2= (4 4+ U)? 4]
its statistical structure and in particular its coherence in order to ’rl
how many measurements are needed round the beam to give a reasonaf
guarantee that the off-centre radiation never exceeds a given limit. "

U and V in (2) both have the Gaussian distribution; near the cenl?
where 4 is large the error in the power depends on U only, and the acttl
power has a Gaussian distribution centred on A2 If 4 is zero and U and
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}"e independent with the same standard deviation (below), the actual
lower U? 4 V2 is exponentially distributed; this is the position between
!de-lobes away from the main beam and it may be a good approximation
or all points outside the main beam.

| The coherence between the powers radiated at positions », and o, is
neasured by the correlation, which is 1 if the errors at the two positions
‘ve exactly proportional (or — 1 if they are proportional but of opposite
ifon), and zero if the errors are independent.

Flop o) = U [ By |2 By [ 2} — O [ By |2} O | Ba 2] (3)

there &’ denotes “expected value”’—the average value over a large number
f cases; then the correlation between the two measured powers, r (©,, ©,),
glven by

F (0, wp) { F (00, 0y) F (0, 033) }-—QL (4)

i Since the number of slots is large, the series of Weights @, b, in (1) may

iz replaced by the functions a2 (x), b2 (x), where x = Y " has the range

-7; these functions appear in squared form. The phase error weighting
&IlCthIl b? (x) is proportional to the radiated power per slot, and the
| tensity error weighting function a2 () is proportional to the incident
bwer per slot, so for an array fed from one end,
E z
ﬁ

|

a2 (x) oc f b2 (y) dy.
—7

-

‘o

) N

i F ((*)15 (’32) - 4“41142 — (acc + bss)
T

: oy
{ﬁ + TCT { (acc —Lbss)z +(acs—_bsc)2 —l_(asc_bcs)z +(ass —l_bcc)z} (5)
: '
there «, = [ a? (z) cos 2 Cos wyx dx
v —TC

ad the other integrals are similarly defined with b2 substituted for a® and
nes for cosines.
{ The first term in (5) contains 4 1A, and may take either sign; the second,
ways positive, is independent of A and 4,. The first predominates when
Jue values are large compared to errors and the theoretical lobe structure
i preserved; the second predominates when the errors contribute more
E‘,) the power radiated off the main beam than the correct side-lobes.

ﬂ;g
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The expected values of the products of the field strength ervors them’

selves, U7 and 17, at two positions, are “

i

Ay {

5 (17] (]2) - ((1\,(, + bss) }

. ]

ey Y |

é (] 1] 2) = - (ass + bcc) {

', '

E UV, = (g — by S

T ‘ (

N {

g (1/72 lyl) = (asr - b('») i
FLS

If the Fourier expansions of a? (x) and b (x) are known in terms ¢

cos pxr and sin px (p = 0, 1, 2 . ). the integrals in (5) and (6) may 1

expressed in terms of the function

sinwt

@ () = s b

-
for instance COS P COS @t COS Wyt d

— T

i

.

l

=} { @ (poy +wy) o (p—wy—ws) 1+ ¢ (P4 —os)+ @ (p— oy (u._,)}.

R

«? (x) and b2 (x) must be positive and they ave unlikely to alter quickg‘j
as we pass along the array; hence the constant terms and the first coxf‘
ponents in the Fourier expansions are predominant, and the correlatiok
are found to drop off rapidly as the separation | w0 — | increases beyof
1, correlations are negligible when | o, — wy | > 1, 0 coherence
errors extends over a range of the order of one side-lobe. Two measu
ments per side-lobe are thus sufficient to keep the errors under contrf
This is confirmed by considering that the total aperture width contaif
only as many wavelengths as there are side-lobes: hence one measuren
per side-lobe (with phase) is enough to reconstruct the entire polar ({iagrﬁ
—this is equivalent to two measurements of the power only. |

Off the main beam, o, and w, may be taken as large compared Wi
w, — w, = 7 and with all the values of p entering into the lTourier ter!
cos px, sin px. We may also assume that 0% () is an even function of
and neglect «? (x), since n practice it is much easier to control the ﬁ(;i
strength error (depending on slot angle) than to control the phase ery’
(depending on slot depth). (7 and 17 are now independent with the 5&
standard deviation, and for a lag = both have the autocorrelation E

-
oC ( b2 (x) cos =z dz. This is the autocorrelation of a Gaussian rand(r;}
ST Y
function of power spectrum 0 (f/2r), which contains no frequencies Oéﬁ"
¥
;
§

|

|
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!
f) so the statistical behaviour of U and V far from the centre reduces to

16 behaviour of such a function. If side-lobes are small compared with

rors the radiated power U? + V?is the square of a Rayleigh distributed

\,ndom function, and the chance of the error exceeding a given value for
1 given angular stretch reduces to the properties of this function (see
Jce, Bell Syst. Tech. Jour. 37 (1958), p. 581).

In the “ Deuce ”” simulation a? (x) was zero; by (1) reversal of the sign
if @ now reverses the sign of U without altering V, so there is symmetry
:bout the centre in the power errors if the errors are large or the true
ER wer small (e.g. between side-lobes). The Gaussian error distribution used
prresponded to an RMS phase error of 13°, independent from slot to slot.
ourier analysis of 6% (x) for the array considered gives (— = x> =)
102 (x) = 0-394 + 0-494 cos x + 0-108 cos 2z + 0-004 cos 3z,

.ustrating the falling off of the higher terms mentioned above; no further

»efﬁelents exceed 0-0001. Ninety-one pairs of simulations at the points

.= 5, w, = b} gave

correlation of U, and U, = 0-890
; correlation of V; and V, = 0-887
correlation of power errors = 0-670.

J i

pr comparison, the algebraic method outlined here gives correlations
"0-890, 0-891, 0-675, respectively.

“Deuce ” also produced nineteen sets of values each at twenty-three
vints covering the five nearest side-lobes on each side of the centre, but
rcluding the main beam. If these figures are plotted graphically, the
mmetry of the two sides is apparent, particularly on a linear power,
Etther than a dB, scale; the true side-lobe structure is quite lost, but some

Kagrams show a convincing appearance of false side-lobes.
E{Negleetmg the correct values and using the Rayleigh function (above),
§e can say that for this model the level 30 dB below the main beam is
cceeded in the side-lobe region on an average once per 5-0 (true) side-
bes, the mean length of such an excursion being 0-95 side-lobe. The
Deuce ”’ results are insufficient to confirm this, but they agree quite well
ith the total number of points expected above this level (169, against
1% expected).
# In Fig. 1 overleaf, the results of the 19 x 23 = 437 ““ Deuce ”’ compu-
r*m‘olons are plotted to show P, the probability that power exceeds a given
\Vel x, against x. The P scale is logarithmic and the power scale is linear.
he percentage of values found above the —30 dB level is shown by
;, and the percentage expected on the Rayleigh basis is shown by B,
]pomt on the straight line through the point P = 1, power zero. The extent
u) which this line is distorted by the presence of real side-lobes is very
mall as can be seen from the position of the —44 dB level, that of the
tlghest correct side-lobe (the second).

M
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The requirement 909, chance of no off-centre radiation exceedity
—36 dB ” may be put in terms of slot depth error on the assumption ths
0-001” slot depth error corresponds to 7° phase error at that slot. It
found to lead to an RMS slot depth error of 0-00043”, which is wi;
within machining capabilities. '

In considering a dish rather than an array, we are working in tw;
dimensions and must also introduce the coherence range of the erroxﬁ;
this is no longer bound up with the wavelength by being isolated
discrete slots. We must distinguish between coherence less than a w av
length, greater than a wavelength but small compared with the dis
or of the order of the dish. If the dish is made in sectors, each sector bel
based on a series of rectangular or triangular areas between struts, t;
large-scale distortion errors become the most important.

Two approximations are possible; off the main beam the cos* and SL
terms may be given the average value , while near the centre such terr
must be expanded in terms of powers of the angle off. In the latter ca
considering phase errors only, we find that the dB loss at the position,
maximum gain varies as the square of the RMS error as a proportion
Wavelength independent of dish size or coherence interval. Angular d|
placement of point of maximum gain varies as (RMS error X coherelL
interval = area of dish) independent of wavelength, as we expect from t|

“geometrical” character of this error. |

Another case considered, intermediate between the array and the dli
is a two-dimensional array where each element has a phase and intensj
error peculiar to itself, and also has errors common to all elements of al
running the breadth of the array but independent of those on other li

(,

i
{
{
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DESIGN OF NETWORKS WITH
| PRESCRIBED DELAY AND
. AMPLITUDE CHARACTERISTICS

f
wJ. KL SKWIRZYNSKI, B. Sc., A. R. C. S., and J. ZDUNEK, Dipl. Ing.

he response of electric networks may be specified in many ways, but the most
hitious s to nominate both amplitude (attenuation) and phase (group
lay) over the whole frequency band. In this article it is proposed to present a
“Wneral and flexible design method for reactive quadripoles with specified group
day characteristics and to supplement this by suggesting means of equalizing
tenuation without effecting delay. This design method can obviously be
ended to cover any frequency band. However, for the purpose of clarity of
-esentation, we shall confine the discussion to low pass filters which are intended
pass signals of frequencies limited to a symmetrical band round zero and
hich can be realized as ladder structures between two resistive terminations.

ne insertion loss and phase of a reactive quadripole are not uniquely
yrrelated unless the network is of the minimum-phase type. Hence, while
mstructing a voltage insertion function of a general network, it is
sssible to concentrate initially on one or the other of the characteristics
1d then to correct the remaining one without modifying the former.

The standard procedure, which has been used for many years now,
pecially by television engineers, is to obtain an insertion loss function
wtisfying given amplitude requirements (e.g. Chebyshev characteristic
4 both the pass and the attenuation bands) and then to correct the
%:sult.a,nt- phase to the specified shape by adding all-pass networks.
hgenious analogue devices have been constructed(') which display the
Play characteristic and its change due to addition of such lattice elements.
crockington(2) devised an interesting and effective application of this
ethod to the digital computer ** Deuce.”

Here an analytic method will be presented. Thus, it is possible to
mstruet analytically an insertion function yielding the required group
play behaviour and then to correct the resultant amplitude by suitable
.ddition of real or imaginary poles (i.e. frequencies of infinite loss) without
hodifying the delay, provided that the network is purely reactive.

{ Section I contains an introduction to the general properties of insertion
mctions, their parameters and corresponding network structures. The
otation used here corresponds to that introduced in previous papers(*)(*).
‘tarting with a polynomial insertion ratio, its phase and amplitude are
lerived in terms of natural modes (zeros) of that polynomial and correlated
'y means of well known “ Bode integrals.”
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A method of constructing the required group delay model function is’
explained in section II. This function is obviously defined in several
successive contiguous frequency bands covering the whole frequeney
range, in terms of polynomials of direct and inverse powers of normalized:
angular frequency . A" Bode integral ” is then used in section III to:":
obtain the corresponding model dissipation function which is then con-
verted to a polynomial of given degree in the complex normalized angularlj
frequency p = j€2, by a least square (Chebyshev) approximation. i

The most commonly met requirement (e.g. in television or FM trans.
mission systems) is a network with flat group delay characteristic within
a specified pass- band Hence, a special model delay function is con{
structed, called a * Shifted Maximally Flat Delay ” (SMFD) func’monJ
which gives an explicit model amplitude function for any degree of
approximation. This function is derived and explained in section 1V|
Section V contains a general discussion of amplitude correction by means
of suitably positioned real and imaginary poles which, in terms of th¢
filter ladder structure, change a ‘“‘constant k’ ladder configuration int
an ‘‘m-derived 7’ one with or without mutual inductances. These polel
can be determined in several ways. Bennett(®) suggested a method ensuring
Chebyshev variation of amplitude within a pass-band; another metho
is presented here which has an added advantage of greater flexibility(?)

Finally section VI contains a brief description of a recently constructes
“ Deuce 7 programme enabling one to determine frequencies of infinit;
loss directly from visual observation of insertion loss(?).

i
L. VOLTAGE INSERTION FUNCTION AND THE PARAMETERS OF A REACTIVE QUADRIPOLE
Consider a reactive, four-terminal network connected between tw
resistances on both the input and the output ends. The voltage insertio
ratio(®) (%) is then a rational function of angular frequency €, where
27 |
Q /

= (1.1
Wy

(fis the frequency and wy = 2=f}; is a reference angular frequency.)
Thus

o _ () = A) 2B (@) (L.

Ve P (p) {
where p = jQ is the complex normalized angular frequency, V,, is th
voltage developed across the load resistor when connected directly to th
generator and V, is the voltage across this resistor when the reactive fouf
terminal network is connected between the load and the generator. Th
roots A + pB are the natural modes of the insertion function; since th
system is passive, these roots will lie on the left half of the complex p-plan(

S )
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/*)r the time being it will be sufficient to assume that there are no finite
vequen(:les of infinite loss and that the network is a minimum phase one.
hus P (p) = 1 and
i,

101' practical considerations, it is convenient to assume that 4 + pB
\n have at most one real root in p for in these cases A (p) can be realized(*)
{ a simple ladder filter with the number of branches equal to the degree
" the polynomial 4 + pB. Thus when the degree n of N (p) is odd:

|

A(p) =4 +pB (1.3)

) %(11—1) %(n—l)
5=0 s=0

Im—1

4y (A +pB) =(p + ao)n (P* + 2 0p + ) (1.5)

s=1

;

? 1d when » is even

S g

in
Ay(A +pB) = H (p* +2op + o) (1.7)

i}
»‘ s=1
]

1g la and Fig. 1b show typical ladder structures (in the T- configuration),
‘)r n =5 and n = 6 respectively, which can always be realized for a
iven set of constant parameters in (1.4-7).

! The insertion loss and phase of a network whose insertion voltage ratio
1 given by (1.3) and (1.4-7) becomes respectively:

I

W

i «(Q)=In | 4 +pB]| (1.8)
!&’,‘) o _1@ 19
; ¢ (Q) = tanh Y (1.9)

vhen calculated along the real frequency axis p = jQ. For convenience
1 (Q) is here measured in nepers and ¢ (Q) in radians. « (p) and o (p)
jre respectively, real and imaginary parts of the functlon In A (p). At
the zero frequency

%(0) =In A (0) =0 (1.10)
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Ry

|
(a) "
T T ‘
{

(b) ;

Fig. 1 T T
When the network is not equally terminated, i.e., when R, # R, i
Figs. 1a and 1b, i
A iR, R, :
InH=—1In-"; === < 1———‘—_} (l.ll;‘
\/T)( (Rl + RZ)H

. : . o : I
and the insertion loss is not equal to the diserimination function 1) (p
Thus in more general cases, when the termination resistances are nc
equal

D) =a(Q) ++nr, (1.1
The phase function, when expressed in terms of network parametey
defined in (1.5) and (1.7) becomes for n even

e AT

s

in

i‘ 29 L) h
tan”! - OE (l.l:é
= rI;

and for n odd |
P 1) |

RERY) ‘

0 (Q) = tan_l v + > tan™t 7 e (L.14

The group delay is defined as the denvatl\ e of phase function with respe;
to the angular frequency and is measured in seconds

L0V — 28 Q2 4ot

5 =

10 i‘

) = — A @) =9 (L1

Wy de l

where h
in \

- a

Do (€)2 g

A= > ZREE e (1.1¢

{

—t
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br n even, while for n odd: (1l

B 20, (Q% + p,2)
A A Q) = 2+£22+§Q4_2592+p (1.17)
) s—1
i
"here . gs — psz — 2&52 (118)

»The group delay is thus the sum total of contributions of all the zeros
| the voltage insertion ratio 4 + pB. It is an even function of frequency
\d it vanishes at infinite frequencies as 1/Q2.

Both « (p) and ¢ (p) defined in (1.8) and (1.9) or for that matter D (p)
d ¢ (p), defined in (1.12), are real and imaginary parts of a function of
mplex variable p:

InA(p) =1Ina(p) +jo (p) (1.19)
hey can thus be correlated by means of Hilbert Transforms(8). Bode, in
'8 classic book(®) has presented several such useful relations between
and ¢. One of these namely:

i“ o () = — Qfo d%\ [;\ ¢ (N) ] In } i—jg I dr (1.20)

T

gmms the basis of the method presented here.

CONSTRUCTION OF GROUP DELAY APPROXIMATING FUNCTION AND OF
CORRESPONDING INSERTION LOSS CHARACTERISTIC

\he construction of the insertion ratio which is presented here can be
ivided into three stages. First a model delay characteristic is built up in
rms of direct or inverse powers of Q, to fit as closely as necessary to the
fecified delay response. The corresponding phase characteristic obtained
¥ integration is then substituted into (1.21) to obtain insertion loss
P,nc‘mom in terms of elementary logarithmic integrals. The insertion loss
i obtained is not * ‘physical ” in the sense that it is not an exponential of
frequency polynomial. The second stage consists of a least square
iproximation of the loss function in terms of a polynomial of given degree.
ynally the amplitude response is corrected, without changing delay
‘aracteristic.

ySuppose that the group delay response as specified in the range
< Q < Q is shown in Fig. 2.

.| For clearness, we shall assume that the required delay is to be flat, say
WQ) =4y (0 < Q < Q), then to increase linearly and reach the value
AO atQ = AQ and subsequently to decrease as 1/Q2 at higher frequencies.

us:
1‘!@) = A(Q) = A, ;0 <Q<Q
Q) = 2,(0) - (AA.?u' (@1 —e+4]i0,<0<40, @
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2
A Q) = A (Q) = AoaAzg2 ; AQ, < Q <o
The model delay characteristic constructed above is continuous but Wlt}}
discontinuous derivatives at the boundaries of the three regions deﬁnec
by subscripts 1, 2, and 3. This will ensure that the resultant phase has al
best a continuous derivative in the whole frequency range. In practice 11!
is advisable to ensure at least a continuous derivative of delay. Thus on.

alg

Ag

Fig. 2 Np=0) ANp=10, 0

s e

divides the frequency range into several regions, in each of which dela
is specified by a polynomial in Q or 1/Q and whose coefficients aj
determined by boundary conditions at the ends of the ranges, ensurir
continuous derivatives to the required order. Let us suppose there ai
N ranges

TR,
T

B

L (Q) = z Dy, L ;0 < Q < Q)

A, (Q) = Z Dy A L0, < Q<O

- b
s i
) R
AL(Q) = > Dy & O, < Q< @ |
s i
The coefficients D ( (K = 1,2, . . . N) are determined by a set of ling

algebraic equations ensuring continuity at the boundary of ranges.
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%}Q Jast range {1y, -2 &1 -7 . the delay tends ta zer an 1512 Henee

< (§) should always be of the following form
Dy, Dy .
.}\ (32) = ilz N ‘13 e (an‘)

he phase characteristic is given hy.

%
!

e
% (L)) ’ A (1 ds - &)
148
i "
) e | od
. Y
sl it | A onds
StH
T
Sl wilh - | A0 d (2 3
) iy
Sy
! ANL] B NITEL L T OPS ' Aty
t it g
!

i the particular case shown i Fig 2 from 2 1 andd 2 4
§

(C) I VE T S (IR ¢ SR 0

(]
L A ) y 4K by T ) 1y
wlldy - | 1 Vatt 2o b o e} e (U N T ! 12,
“dd - il
3
f AL ) VR LR
() = {1 R gy ¢ 1 TR ,
?’i 2o - 1y 0
i e} £} r
1a )

F i oromventent 1o extract the wrale of delan o thas case A ALY
ance 1his quantity will e determaned b the gsmpleact of Dranches i the
pnal filter Thus i 20

(3
§ Ty oA Aol [H Jad a 148 b Ju l’]
! | ]
E [
_me (114, 1590, for »oeven o onddd
. i e
B

:?‘:qllﬁliiugs (2o and (2 ng the value of Y e determned i ternma of delay
haracteristic and complesits of hnal Riter
i The phaces g different ranges are then snbatitutesd an 41 21 and

8
3
i)

4
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freedom to adjust the final loss characteristic. This subject will be further,
discussed in section V. On the other hand, however, it is sometimes better!
to over-estimate the value of m, i.e, to choose m > n; this will enable one'
to judge the error in approximation by the size of the rejected harmonies:|
n—+1,n+2 ... m and also will provide greater flexibility in series)
truncation which is explained below.

Having computed m -+ 1 sampled values of e at Q given b

(3.3-5):

MO — g2x(0)
Ml — @22 (QW sin 6)
............................................................... (3.6)1,
M, = e () g
We require to fit into these an even cosine Fourier series: g
n I
C(0) = 2 C, cos 250 (3.7)&
s=0 %
This can be done quite simply(1?). The set (3.6) is first replaced by zamother.‘gi
|
Yo =31 M, i
Y, =M, %:;
Y2 — M2 r}.
............................................................... (3.8)§
Ym = *Mm—l fl‘(
then ;
m h
1 {
00 _ 2 YS i
m i
s=0 I
c, = ! ? 10Y 3.9
s=0
2 TSy g
C, =— Y — ‘
Toom E = 008
5=0

If m = n and is odd the set of Fourier cosine coefficients
Co O, Caeninvnnnnnnnnl. Cos -
can be used directly for transformation into a polynomial in p% On thel

|
where r = 1,2, ............... m— 1 !
{
(
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other hand if m > n, a *“ truncated ”” version of (3.7) has to be constructed:
n

}' Cr(0) = (', cos 2s0; n<<m (3.10)
1 — :

$

\

| The coefficients C/(s=0,1,2,...... ;N <m) are not in general equal to
7 ' C, but are modJﬁed so that the series (3.10) still fits as well as p0331ble
the set of values (3.6). Generally, the remaining values of set (3.9), 1

0 for n << s << m, are much smaller than the retained coefficients, Whlle
m

\ Z C; gives a measure of the error introduced by truncation. This

s=n+1

error is then distributed among C;, for 0 < s < n, in such a way as not
| to change the most significant figures in each retained C,. Thus, the safest
i way is to modify the first two or three largest coefficients, retaining the
other unchanged. Furthermore, the modification is carried out so that:

n

ZCSI — MO

s=0
bon<m (3.11)

: n

Z (— 1yC/ = M,

i s=0

' As an example, consider a set:

i
)

Oy = 1-428590
C, = 0-479391
< C, = 0-057382
i C, = 0-007733
;’ C, = 0-001471
| Cs = 0-000320
i C's = 0-000011
: C, = 0-000032
Cy = 0-000043
8
|where Z C, = 0-999999

Z (— 1)C, = 1-974823
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The value of # used in this computation was n = 3 and ]
4
3

Z O, = 0-998848

s=0
The error at 0 = 0: 0-001152 is now shared between Cyand C| so that §
C, = 1429390 !
C "= 0-479030 ]
Cy' = 0-057382 = (, 4
03’ = 0-007733 = C, §
while J
3

C." = 1-000000

. )

= g

3 |

Z (— 1)°C, = 1-973544 &

s=0 g

giving a possible truncated series. !

The Fourier series (3-7), or if truncated, the series (3.10), 1s now tran:

formed back to the complex angular frequency p; this can be done bi
relating cos 2s6 with 4

2s
sin 20 — (— 1) <Qﬁ> (3.11;{1.
W |

The coefficients U, of the polynomial in (p

Ny

U, — Z G (31548

qg=s

where T(’;,S are the positive values of the coefficients of the Chebysh@
polynomial 7'; (x),

> approximating to (3.}@
are given as If;

p- PLANE p- PLANE p- PLANE p-PLANE i
o o ofo o o
® ° o o o o
—_—
& o [} o o o
o o oo o [s] é
4
(@) (b) (e) (d) ~ J
Flig. 3 L
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2a(f) (a) e2a(n) (b)

Fig. 4 N n 1y N |
Extracting the roots on the left half of the p-plane (as in Figs. 3 (c‘j
and 3 (d)) one obtains the voltage insertion ratio ,
(p) =A + pB (3. 17%

The discrimination function (3.1) should be positive definite and generall'

speaking can exhibit two distinct behaviours in the frequency banc
0 < Q < Q. : it can either be monotonic (or almost monotonic) and alway
greater than unity as in Fig. 4 (a) or it can show a pronounced minimun
at some Q > Q. If the local minimum, like one in Fig. 4 (b) is very smalj
the Fourier series approximation may cross the () axis producing imaginar;
roots in (3.17); on the other hand curves like (2) in Fig. 4 (a) may producy
an imaginary root outside the approximation band. These two eventualitief.
occur particularly frequently where model group delay curves contaiy
two widely different levels in the pass band (e.g. for monotonic dela
characteristic) requiring one or more zeros near the real frequency axigs
These very non-realistic or too stringent delay requirements, embodie
in model curves, may produce realization troubles, which is after all to b
expected. A
Such approximations have to be rejected and a different Q choser,,
or another model delay curve constructed.

IV. FILTERS WITH “ SHIFTED MAXIMALLY FLAT * DELAY CHARACTERISTICS
Consider a model group delay function defined as follows. In the range ‘
0<Q<1 of the normalized angular frequency (here, for simplicity, w.
have accepted () = 1), the delay is constant and equal to some, as yé>
unspecified, value A,. In the remaining range 1<<Q<co, the delay 1
defined as follows: ‘

r

Ar(Q):Aoz:(—l)S(s>( +( )+( 3) 2) s
Q —

s=0

S () ()]

B S

S e
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i This function has the following properties:
AsQ— o

1
Q2

| - 8@ > Al 1) +2)
3111 accordance with the physical requirements of delay functions;
| ForQ =1,A,(1) = A, (4.3)
| ensuring continuity of delay value;
‘) "

ForQ =1, [Ar (Q)L:1 —0 (4.4)

forg=1,2,........ r

ensuring continuity of all the derivatives, including the " one of the
5%idelay curve at all frequencies.

The delay function (4.1) will thus be called the “shifted maximally
iflat (of ™ degree) delay function” (SMFD function).

The curves for » = 0, 1, 2, 3 are shown on Fig. 5 (full curves; the dotted

5 N
i 1y \\\\\
N

/ /| \ ]
J ‘\ \ 2 \
T~

| ; ,"I N ,
! \‘ s
' 3

|
Fig. 5. Model delay curves for SM F D networks

N

o)

; = 10 20 15 4 n=
2,A=A0<—6—£+i>,A0:%; r:-Z,A=A0<—— +—)~—A—>,Ao=~~.

i 3 2 13
Aoz%; r:],A=AO< — —,),A(,:n:

Qo Qs
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c2a (L) (a) c2a(n) (b)

Fig. 4 fp A& N o

f
Extracting the roots on the left half of the p-plane (as in Figs. 3 (cJ,
and 3 (d)) one obtains the voltage insertion ratio
Ap)=A4 + pB (3.17

The discrimination function (3.1) should be positive definite and generall;

speaking can exhibit two distinct behaviours in the frequency bang.

0 < Q < Q,:it can either be monotonic (or almost monotonic) and alway

greater than unity as in Fig. 4 (a) or it can show a pronounced minimur

at some Q > Q. If the local minimum, like one in Fig. 4 (b) is very smal}
the Fourier series approximation may cross the ( axis producing imaginar
roots in (3.17); on the other hand curves like (2) in Fig. 4 (¢) may produc

an imaginary root outside the approximation band. These two eventualitie
occur particularly frequently where model group delay curves contaif

two widely different levels in the pass band (e.g. for monotonic delal
characteristic) requiring one or more zeros near the real frequency axiy
These very non-realistic or too stringent delay requirements, embodiej
in model curves, may produce realization troubles, which is after all to &
expected.

Such approximations have to be rejected and a different choseﬁl
or another model delay curve constructed. l

&
IV. FILTERS WITH “ SHIFTED MAXIMALLY FLAT > DELAY CHARACTERISTICS

Consider a model group delay function defined as follows. In the rang:
0<Q<1 of the normalized angular frequency (here, for simplicity, W,
have accepted Q = 1), the delay is constant and equal to some, as ye
unspecified, value A . In the remaining range 1<Q< co, the delay
defined as follows: E
A _ s (TN 1) (r+2) I
(@ =8 > (1) TEDE g
s=0

S (B4 ()

R —

i

R
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{
\

* This function has the following properties:

. AsQ—

‘ 1 1

/ — AL (Q) 58+ 1) (r +2) o (4.2)

lin accordance with the physical requirements of delay functions:

| ForQ=1,4, (1) = A, (4.3)

| ensuring continuity of delay value;

f) ForQ =1 a! AL (Q ] 0 4.4

‘ Or—:@[r()ﬂzl = (4.4)
forg =1, 2,......... r

ensuring continuity of all the derivatives, including the ™ one of the

@dela,y curve at all frequencies.

The delay function (4.1) will thus be called the *shifted maximally
%ﬂat (of *" degree) delay function” (SMFD function).

The curves forr = 0, 1, 2, 3 are shown on Fig. 5 (full curves; the dotted
|

i

1 A/AO // // \\

L el

I
Fig. 5. Model delay curves for SMFD networks

N
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curves are the prolongations of (4.1) for Q < 1). From (2.4), the corres
ponding phase function is

o, (Q) =AQ ; for0< Q<1 (4.5

Q — 1 r+1 ‘5‘

:A0{1+(Q#1)[1——< o > ]};for0<£2<oot

‘«‘?\‘

AsQ — 0, o (Q)— A, (r + 2) (4.(?;
so that from (2.8) {
nw ¢

Ry e 2,

RAREICE) 1

where 7 is the number of branches in the final ladder filter. é
Substituting (4.5) into (1.15) we obtain the corresponding insertion losf‘
funection: i

n L/ — 1\ ! r4+Q
Q) =——— QJ — < > 1 dn 4.8
a, (L) 2 (r 4 2) R - n ?\—Qj (

a

orif » = Q - i

2 —x
Q

o () = " { " 1 1n 10—z dx (4.4

20 +2)Qr 1 [y 1 —Q +x 8

Integrating (4.9) by parts, the integrated terms will vanish at both limitg
so that: E
n 0 1 1 ]

o (Q) = o=yt | dy (410

©) Q(TH)QW“ y) [Hyﬂ_y] y ;

1+Q d

= LAf Q -z 4 1y+2 % b
2 1 2) 1), x !

r+2dx

1
+ (— 1)"+2J1_Q(Q ta—1) - (4.18

Expanding as binomials and integrating:

d
% (Q) = (“Q%@ﬁ [(1 FQF 2 In (14Q) 4 (— 1)+ (1— Q) +2In | 1—Q lg
r+2 §
n ?L_SS <Tj_2> [(1+£2)1‘+2+ (~~ 1)1-+1 (1_Q)r+2 {)
Lt ) ;
s=1

|
_ (1 _%_g))r-%—?——s._ (_l)r+l (1 . Q)r+2—s] (41‘!
Thus for example: (
2 R
%(Q):Z[an|l—§22| +<1_LQ>1H‘I+QI _Q] (i

i, o e
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\ AsQ — 0, 5 (0) = 0 and this is true for all 7. Similarly as Q — o0, « (Q) —
| 7 In Q so that er!™® — Qn (4.14)

‘ as required for a simple ladder filter of n branches.
1‘ Similarly, for » = 1, 2, 3, 4, when the slope is continuous at Q = 1 (see
Fig. 4) ete:

1]
§

4 (©) = Z[“;Q)s m+0)+ ST i) - 5]
§a3(g):ﬁ)[(l gfi)ln(l +Q) +Qg4ﬂ1n| 1—0Q -S'_Zz _%]
§'«4<Q> =15 [P matey - g 22 T ]

(4.15)
The model discrimination function 21 was used in a manner explained
iin section III, for n = 4 and # = 5. In each case (), was chosen in the
Ivicinity of (0 = 1, and the resulting group delay curves, computed from
polynomial voltage insertion ratios are shown in Figs. 5 and 6 for n = 4
and 5 respectively. Fig. 6 exhibits the case n = 4, i.e, quartic approximation
o (4.15) for Q, =0.9, 1.0 and 1.1. For each case six harmonics were
1 valuated and truncated, as explained in the preceding chapter as well as
four harmonics. It was found that resulting polynomial coefficients for
EN (p) were the same for both four and six truncated to four cases up to

I
i
!
1
3

25

D101

24

]

i (p2- 19576p - 1:1425)(p2 - 1-3654p - 2-0785)
I
’ l

] |
':2 23 =10 !
a, —
:i (p2-1°5763p + 2:2445)(p2 - 2:1907p - 13837)
|
/‘ N, 09
" (P2+23712p - 1-5861)(p2 - 17332p - 2-3602)
",‘ 22 8 PN
) | N

J Fig. 6

— T N TS
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the third decimal place. The polynomials N (p) are quoted in Fig. |
besides the corresponding delay curves; these refer to the six to fou|
harmonic truncation. Similar curves for n = 5 are shown in Fig. 7 fo,
Q, = 0.8, 0.95 and 1.1 where five harmonics were used directly. It is see{‘
from the figures that better results were obtained for n = 4 than fo
n = 5; on the other hand, however, the latter case might be more usefyf
for amplitude equalization allowing for greater flexibility, as explaine|
in the following section. Also delay is flatter when Q is somewhat les
than the reference frequency Q = 1, which is the limit of flat delay in thy
model curve. '

Y. AMPLITUDE CORRECTION

The network voltage insertion function, N (p) can be readily realized as
single ladder structure. When flat delay characteristic is specified and :
SMED function is used, as explained in the last section, the resultanf
insertion ratio is monotonic with frequency. Hence, in these circumstances

an equally terminated network can be produced. On the other hand, th ‘é
loss characteristic in the ““ pass band,” i.e, over the range of frequencie}’
where the delay is reasonably flat, varies rather considerably. k

Using a quintic approximation (illustrated in Fig. 7) for Q = 0-8 th%

/Lp) is shown in Fig. {4
A (0) 0
In the frequency band 0 << Q < 1, the insertion loss raises monotomcallé
from zero to about 4 dB. This insertion loss can now be equalized in th!
“pass band,” without modifying the group delay inthe following manner(¢!

S

resultant insertion loss characteristic 20 log

Consider a voltage insertion ratio
Ap)=4 +pB
Construct the square and the modulus squared of (5.1):
(A®)2= (4 +pBy

the zeros of (5.2) are the same as of (5.1) but are doubled. Hence its phas
(also delay) characteristic is twice that of (5.1).

AQ) =X () = 42— p B (5.4

The zeros of (5.3) consist of those of (5.1) and of their mirror images in thy
imaginary p-axis. Hence its phase (and also delay) is zero—the functlon 1~
entirely real on the real frequency axis—whereas the modulus of (5.5
is the same as the modulus of (5.2) on the real frequency axis. “

Suppose, for example, that the degree of the polynomial A4 -+ pB i
four (n = 4) so that: {
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N(p) =1+ Mp? + Myp* + IM,pS + M,p? (5.4
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AQ)

e i et ST e

]
\b
g

| 31 (p+0'9546)(p2 - 1'6054p+1-0607)(p2 + |+1318p+ 2:091 1)

N " (p~10859)(p2  1:9886p 1 1-4355)(p2 + 13365p +21937)
0 =095

|
5 /

\29

(p+1"1936)(p2 22009p + 16531)(p2+ |523|p 232|1
28
‘5 l 0

Fig. 7

This polynomial is now *telescoped (%) by removing the coefficient
of the highest power of p and replacing it by the corresponding expansion
jin terms of Chebyshev polynomials. These expansions are tabulated in
iLanczos’ book(1%) (p. 515). In particular, Lanczos tabulates expansions of

% (2Q)n :jnzn-lpn

ffﬁn terms of Chebyshev polynomials. Thus:

y 128 p8 =70 Ty + 56T, +28T, +8T, + T,

%{s&fhere:

‘? To = 3 .

7 T, = — (1 + 2p?) (5.9)

| T, =1+ 8 ]? + 8p*

| Te = — (1 + 18p® + 48p* 4 36p°)

1,’0 th&t

f 1 1 d T

| 8 —— __ 2 a9 18 5.6
& 128 a7 T I T T 1oy (5.6)



}
134 THE MARCONI REVIEW, THIRD QUARTER IQ6¢

The expansion (5.6) is now substituted into (5.4) without the last tern:

T ¢/128, to obtain j
P (p?) = My + M, 'p* + M, 'p* + M;'p* (571
1 §
where M, =1— % M, 2\
1 ]
M, = M, - M, (5.8)
2 {
5 {
M, =M,— - M, !
2 4 J
M, =M,—2M,

The polynomial P (p?) is, on the imaginary p-axis, the least squarei

(Chebyshev) approximation, within 0 << Q <C 1, of (5.4), with an erron

]

—
—

Fig. 8 g j

P
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of the order of 1/128 (or generally 2!=2n for the representation of p*n,

% since | Ty, | <1). As (5.2) and (5.4) have the same modulus, the insertion
i voltage ratio:

i —~ Vo _ (A -+ pBY

| Vz _— P (59)

has a flat modulus in the Chebyshev sense inside the band 0 < Q < 1
with a deviation + 1/128. The phase (group delay) of (5.2) is twice that of
| (5.1) except that, possibly in the stop band, if P (p?) has roots on the real
frequency axis, the phase will jump by m at each such root (the resistive
losses on an actual network will correspondingly modify the phase, but
mainly outside the pass band). The polynomial P (p?) will immediately be
serviceable only if its roots in p? are real, positive or negative. A negative
ﬁreal root, l.e. a factor (p? + Q2) will imply a real frequency of infinite loss
lin the insertion function; such a frequency can be realized by tuning the
aLappropriate element in the original low pass ladder (e.g. a shunt condenser
is replaced by a series tuned circuit as in Fig. 1). A positive real root,
lie. a factor (p* — Q2) will imply an Imaginary frequency of infinite loss
fin the insertion function; such a frequency can be realized by connecting
ta negative inductance (i.e. a mutual) in series with a condenser in a
{T-configuration ladder. If the roots of P (p®) are complex, more advanced
irealization techniques have to be used.

! Fig. 8 shows, schematically, the development of the final filter for the
case of n — 4. In Fig. 8 (a) a root distribution of 4 -+ pB in the complex
p-phase (e.g. for a SMFD network) is associated with a T-ladder. Fig. 8 (b)
shows the corresponding root distribution of (4 + pB)%, when the roots
are all doubled and the resulting *‘ constant k 7 ladder.

i Finally in Fig. 8 (¢) we see the effect of single successful telescoping
where an introduction of P (p2%) with two negative and one positive root
vesults in an “m-derived ”” ladder with a mutual inductance.

g The condition imposed on the roots of P (p?) is, generally speaking,
>xtremely stringent. Tt is dictated here by the requirement of simple
%‘ealization leading to a convenient reactive ladder structure. In most
practical cases, however, the roots of P (p?) obtained from telescoping
of (4 + pB)? will be complex, thereby prohibiting simple ladder
structures.

{ The appearance of complex roots in P (p2) is almost inherent in any
east square approximation to monotonic insertion-loss functions. Bennett
Jas introduced an approximation method involving, however, much
Jaore complicated mathematical manipulation. It has been shown in
ef. (6) that Bennett’s method is only worthy of consideration for n < 3,

hile the telescoping method described above is simpler and as accurate
or 7 > 4.,

RS RS TR AT &
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Sometimes the difficulty of complex roots may be overcome by furthe
telescoping of P (p) e.g. by removing the p¢ term in (5.7). This will, ol
course, introduce a larger error in the approximation. There is no guarante
however, that the new polynomial has real roots. {

A more radical approach is as follows. Say the insertion ratio N (p
tends to infinity as p2" at high frequencies; thus the introduction of
denominator consisting of one tactor will lower the rate of loss increas
However, an introduction of a real pole (p? - Q%) will create a region
very high loss in the vicinity of Q =(,. It is thus advantageous t
introduce real poles, if possible just outside the pass-band. .

The original selectivity specifications will suggest where such pole
should lie. Assuming this fequency is to be Q = Q,, one divides out (5.4
by the factor (p? + Q%)) and removes the residue of division by apprd
priate modification of the coefficient of the highest power in N (p),e.g. &k
n (5.4). The amount of this modification gives an error which will 1¢
similarly exhibited on the final loss curve near the edge of the pass-ban
The divided polynomial of lower degree is then tested again for real root} :
Naturally, the two methods, telescoping and infinite loss extraction, cal
be used successively with varying sequence. The probability of succe
will greatly increase when the order of polynomial (i.e. n) is higher.

In any case, analytic equalization of insertion-loss of flat delay respons{
is very laborious and difficult to control. {

i

VI. USE OF DIGITAL COMPUTER FOR INSERTION-LOSS EQUALIZATION }
The methods of amplitude equalization, by providing polynomif
insertion-loss functions with real or imaginary poles, described in the la
chapter, are not only difficult to control, but also to some extent iy
efficient. Thus, the degree of N (p), constructed so as to provide t}*g
required group delay characteristic, has to be doubled, thereby great:
increasing the complexity of the final network, without improving t}
shape of the delay curve in any way. \

Limiting the discussion to flat delay characteristics, these can ﬁ
achieved in two distinct fashions, either by the use of the Bode integral |
by direct visual construction, on a digital computer, as shown |
Brockington(2). Delay might be reasonably flat and then decrease aut:
matically beyond the reference frequency as in SMFD networks discussg
above; the corresponding insertion-loss curves then monotonical
increase as shown in Fig. 4 (a). On the other hand, a flat delay migly
beyond the reference frequency, increase to a more or less pronounc
peak, before falling off at large frequencies. Such a model delay curvei_
proposed in section II. The associated insertion-loss curve has then(j
correspondingly pronounced minimum (i.e. a relative gain with respe|
to zero frequency loss). The latter insertion-loss curves are much easi
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3 Fig. 9 | 2

to equalize in the Chebyshev sense either by telescoping(1®) or by using
Benett’s method.

~ The root extraction method, described in the last chapter, has been
programmed on * Deuce,” giving very convenient visual displays, by
Hull(7). A SMFD polynomial derived in Chapter ITT was used to produce
an equalized insertion ratio:

Voo _ 1y (p+11936) (p®+1-5231 p+2-3211) (p?42:2009 p 4 1-6531)

v, (p*+6-25) (p2—1-5376) (6.1)

R LR

iwhose insertion loss ratio is shown in Fig. 9 before and after introduction
of poles. The small mismatch in the pass band (i.e. a relative gain of
)-049 dB) will necessitate a non equal termination ratio in the realized
adder network, while the imaginary pole at p = - 1-5376 will introduce
nt least one mutual inductance. The filter has been realized as shown in
Fig. 10 with normalized components:

‘ 0-037310 1-5597 - 1:2723
r41:—"*7*R15 Ly = *R13 Ly = — 4y
wgy Wy Wy
L| L; L5
i
j L, Ly

i C T T C4
4 Fig. 10 | .
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0-43957 2-4148
02 =S — ’ 04 =
wg By wy R,
1 1
L,C, = —; L,Cy= — ——
20 =555 w2 e 15376 o2
e = R,
where w;, corresponds to € = 1 in Fig. 5 and B 0-8082.
1

The two inductances L, and L, are negative, resulting in two trans

P Y

f
I

i

\
y
\

formers in the final ﬁlter. A small predistortion(?), to account for finite d
values of coils, will cause removal of L,, which is very small, leaving on(
transformer and two condensers in the final predistorted filter.
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where G is the amplifier gain. The noise
measure is shown to have real significance in
as much as it is an invariant of a group of
lossless transformations of noise linear net-
works.

The presentation of the work is largely
mathematical and a good familiarity with
network matrix algebra is necessary in order
to follow the argument. The last chapter
contains useful application of the authors’
argument to the design of optimum noise
performance of conventional vacuum tubes
and of negative resistance amplifiers.



AN APPLICATION OF |
THE “DEUCE” COMPUTER TO
NETWORK DESIGN ;,

By D. J. BROCKINGTON, B.Sec. )

The design of a network with a prescribed phase characteristic can be accom
plished by trial and error, provided the trials can be made, and the error
observed, with sufficient rapidity. This article describes a method of design
which the mecessary rapidity is attarned by a slightly unorthodox wuse

the *“ Deuce ” computer. l

Introduction i

There is no exact method for designing an electrical network having ¥
prescribed phase characteristic. However, the inverse problem of com
puting the phase characteristic of a given network can be solved with nf
more than some rather tedious arithmetic, so that there is a pObSlblht \
of attacking the design problem by trial and error.
A method of pure trial and error, as opposed to an iterative method i}
which trial and error are only implicit, is not likely to succeed unless
means of rapid computation is available. To illustrate this, we wi
consider for the moment another problem, namely, the solution of !
polynomial equation. When the equation is linear or quadratic, direc
solution is possible, and hand computation is likely to be perfectly satis
factory. For equations of the third or fourth degree, direct methods az
available, though they are too cumbersome to be very popular; and fc]
the fifth degree or higher, no direct method is possible. In these casd
recourse is had to an iterative method, such as Newton’s, in which a§§
estimated solution is made to lead to the true one by successive applicatioﬂ
of a set procedure. We might call this analytical trial and error. It is quity
possible to solve an equation in this way by hand computation, but |
results are required quickly, or if the degree of the equation is partlcularl
high, we may be very glad to have the use of a high-speed digital coni
puter. Such a computer can be programmed to carry out the set procedure
and then left to repeat it until the true solution is found. This, one migh |
say, is the proper way to use such a computer. I
What should we do if no iterative method were available? The onlL
possible course would be to try various values of the variable, more or lesi,
at random, until we hit upon a root. This is what we mean by pure trid |
and error, and it can well be imagined that if pencil and paper were use(‘

-
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a lifetime might be spent in finding all the roots of an equation of, say,
the tenth degree. Yet such a method has been successfully used, with the
help of a computing machine®. In this case high-speed computation does
not merely save time; it actually makes the method possible, because
the errors resulting from consecutive trials are presented to the operator’s
mind in quick succession, and a kind of unconscious iterative procedure is
set up.

Many problems have been attacked in this way, usually with a specially
constructed analogue computer. Indeed, such a computer has recently
 been described for solving the network problem that we are now concerned
 with(*). There seems to be no fundamental objection, however. to the use
of a general purpose high-speed digital computer, if one is available, and
the English Electric ““ Deuce ” has been successfully employed on this
§as]pect of network design (among others) in the way shortly to be deseribed.

The Problem

iThe problem to be solved can be briefly outlined as follows. Any four-
iterminal electrical network is characterized by a transfer ratio, which is a
complex number varying with frequency. The modulus of this number
determines the attenuation of a signal at that frequency when it passes
through the network. Several methods are now known by which a network
tean be designed to have a specified attenuation-frequency characteristic,
that is, to behave as a wave filter. It is sometimes required, however, to
'specify the phase of the transfer ratio: that is, the change in phase of a
signal passing through the network. Such a specification is by no means
leasy to meet. A method of designing a wave filter to comply with specifica-
tions of both attenuation and phase shift is described elsewhere in this
issue(®) but it is also possible to obtain the desired result by the use of an
pqualizer in conjunction with a filter designed without taking account of
;phase.
i An equalizer, in this connection, is a network of the type often called
“a,ll—pass” and is connected in tandemn with a wave filter. The transfer
atio of an all-pass network has unit modulus at all frequencies, hut its
phase may, within limits, take any values. The problem is to synthesize
such a network having a phase characteristic which, when added to the
inavoidable phase characteristic of the accompanying filter, produces the
llesired characteristic in the combination.

Phase characteristics are usually discussed in terms of the “‘group delay.”
£, at any normalized angular frequency €2, the phase of the transfer ratio

Y

The Isograph. See FRY: Quart, Appl. Math. 3, p. 89 (1945). A device going by the same name and used for
the same purpose, but employing electrical analogues, is known to the writer, who, however, Is not aware of
any published description.

BERNATH, BINZ and SALVETTI: Tech. Mitt. . T.7T. 37, p. 445 (1959).

ShKWI‘RZYNSKI and ZDUNEK: Design of Networks with Prescribed Delay and Amplitude Characteristics, p. 115,
h this issue.



i
|
il
142 THE MARCONI REVIEW, THIRD QUARTER 196'

is ¢, then A = d$/dQis called the (normalized) group delay. (The correct;
" ness or otherwise of such a title has been the subject of many argument<
which we will not pursue.) It is then possible to write, for an all-pas

network,
r=mn

A=23 A, {
)
\

r=1

where each A, depends on a parameter p, = «, - jQ,, where in fact

o, : N :‘

it 1=0 |

A, = |
= % if O 4

Fr@ o Tarr@agp 1 r 0 4

Our problem is to find a set of n parameters p, such that A has as nearlf
as possible the desired form. The realization of a physical networj
represented by the p, is a separate problem(?), but we must mention tw!
practical restrictions that are important for our purpose. These are, the.

no two of the p, may be equal, and that no «, may be zero; apart from thi %

«, and (2, may take all non-negative values Also, the complex1ty of th
network increases with 7, and the maximum permissible value of n “é
usually specified. [,
Now a function such as A, can be computed on the *“ Deuce ” at sever!
values of () in a very short tlme in the programme to be described, corr;u
putation proper takes about 1/70 second at each Q. Since each of the
exerts its influence on A independently of the others, changing one %"
involves only computing the corresponding A, twice at each Q, for thj
original and changed values of p_. (The subtractlon and addition alsl
required take only a few microseconds.) The rapid computation needei$
for a trial-and-error method is thus provided; but we have also to
«, and € into the computer, and extract A from it. Here we are in =
dlfﬁculty, because we are intending to use the ““ Deuce,” we will not sal
In an improper manner, but in a manner not envisaged by its designer:
Normally the computer is given a large number of data, on punched card<
and works for several minutes producing a large number of results, also o{
punched cards. The data are prepared, and the results studied, aw ay fror j |
the computer, which meanwhile can be used for a different problem: fuw !

employment being essential for such costly apparatus. Using the normg

)
9
i
P

4 Each p, represents a pair of zeros — a, £ Q, and a pair of poles a, 4 jQ, of the transfer funetion. Wh(

Q, = 0 these reduce to one zero, — «,, and one pole, a,. Sce e.g. BOI)h Network Analysis and Feedbag
Allll)llfl("l Design, Chap. X1I (Van Nostrand, 1945). L

3 f i A
See e.g. BODE (foc. cit.) or the classic paper of ZOBEL: Bell Syst. Tech, Jour. 7, p. 438 (1928). /
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\ punched-card machinery we should not get far with trial and error; but
‘ certain facilities provided mainly for testing purposes can be pressed into

,service for input and output, as we shall see.

The Method
\Of the testing facilities mentioned, those chiefly concerned in the present
’ application are as follows.

1. The 32 input keys. These are Post Office key-switches, each represent-
ying a digit, which changes from 0 to 1 when the key is depressed; the
|whole set represents a number of 32 digits in the binary scale. By suitable
\programming the computer can be made to use this number, the keys
then usurping the function of the punched card reader.

2. The single-shot key. Operation of this key causes the computer to
jarry out an instruction marked in the programme as requiring such a
signal. Ordinary instructions are obeyed in sequence and require no signal.

3. The delay-line monitor. The 32-digit numbers occurring in the
i‘Deuce” are stored in groups of 32 in mercury delay lines, and the
sontents of any one of these stores can be displayed on a cathode ray tube
18 a 32 X 32 array of dots, a bright dot for 1 and a dim one for 0.

§ The delay-line monitor is in appearance strongly reminiscent of a piece
of squared paper, and by plotting delay characteristics on it we obtain
the result of each trial mueh mere quickly than by using the orthodox
punched card output. Any pattern of dots on the monitor of course “really”
epresents a set of 32 numbers; to establish a correspondence between
he quantities to be plotted and the numbers which, when stored in the
3lisplayed delay line, give the required appearance, is simply a question
of proper programming of the computer. The photographs illustrating
his article show typical plots; the limitations are obvious, but the accuracy
s sufficient for the success of the method.

The p, are also plotted on the monitor (Fig. 6 shows a set of three) so
hat o and Q, are each limited to 32 discrete values. To feed a pair of
alues into the computer we use the input keys, setting up on them a
jode number which will never have more than three “ones.” Consider
& and Q) arbitrarily scaled and rounded off so that each takes integral
yalues from 0 to 31; this covers all values of p, that can be plotted on a
2 X 32 array of points. Now in our code number let a ““one’” in the « th
lace mean either «, = « or Q, = a; the 32nd place will have no meaning.
he number with “ones” in the a th and b th places means either

nd these two cases can be distinguished by the 32nd digit if we arrange
:
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20
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?

that 0 in this place means « <Q,and 1,a, > Q. A “one” in the a;

place only has three possible meanings: I
|
k
P == a, S)I = a, gg
i
,=a,  =0,or i
, =0, Q =

restriction on «, enables us to use a smlple code number Wthh can |

set up very qulckly The computer works still more quickly, but ti

instruction causing the code number to be read is of the type requmng(

signal from the single-shot key, so that the operator has time to deeil
what to set up. y

i
18 \g {
D —

Fig. 1 *f ,
é& 3

il
but the last is excluded since no «, may be zero, and the others can &, <
distinguished as before if, instead of «, < L2, we write «, < ,. Thus t&«‘

J
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| The other restriction already mentioned, namely that no two of the P,
{may be equal, makes it possible to remove any p, from the trial set by
|proceeding in exactly the same way as for adding one to it. The programme
/is arranged so that any p, fed in is added to the set, and its A, computed
'and added to A, unless it is already present, in which case it is removed.
*\ The procedure for finding a suitable set of P, to meet a specification will
now be described by reference to an example.
:{"Example
In Fig. 1, curve A shows the delay characteristic of a certain filter of
féauer—Darlington' type. This filter was designed to meet a rather stringent
wpecification for attenuation, but unfortunately it quite fails to meet the
kspecification for delay, namely that this should be constant from Q — 0 to
) = 0-9. The design of a suitable equalizer proceeds as follows.
1. Decide on a reasonable constant level for A in the combination of
tilter and equalizer. Here 18 was chosen after two lower values had failed
10 give a useful result. In some cases this level may be specified.

2. Compute the difference between this constant level and the delay
of the filter at a sufficient number of frequencies for plotting. These
Hifferences make up the specification for the equalizer.

3. Feed this equalizer specification into the computer by the normal
bunched card machinery. The values are then suitably scaled and plotted
n a particular delay line, appearing on the monitor as in Fig. 2. Fig. 3 is
n ordinary plot of the values as fed in.

| 4. Feed in various trial values of P, up to the required number (in this
rase three), and adjust these values by removing and replacing until the

20

,3 Fig. 2 and Fig. 3 (right)
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corresponding delay characteristic is the best possible match to th

required one. The p, are fed in by means of the input keys and single-sh¢
key, as described, and by switching the monitor the delay characterist;
produced (Figs. 4 and 5) and the values of p, producing it (Figs. 6 and *

can be observed.

5. A permanent record can be obtained on punched cards by alterin

the course of the programme with another control. The stored values ¢

p, and A are unaffected by this procedure, so that further adjustment

can be made if desired.
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Fig. 6 and Fig. 7 (right)
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Naturally, some practice is necessary before a reasonable speed of

| operation is attained. Even then quite a large number of trials may be
; necessary; the result shown in the figures was obtained after about twenty
| minutes” work, though the time taken for one trial, from pressing the first
y key to seeing the complete plot, is only about 4 seconds. Some idea of the
§eﬁ“ect of altering one of the p, can be got from Figs. 8 to 11, which show

| the results of moving p; (in Fig. 7) one dot up, down, left and right
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respectively. Curve B in Fig. lisareproduction of the equalizer characteris(
tic in Fig. 5, and curve C shows the characteristic of the complete syster
of filter and equalizer (the sum of A and B). /
When such a characteristic has been obtained, it can be improved bw
another * Deuce ”” programme, in which the computer is left to do its owy
adjusting. This programme is of an orthodox nature, and as no dlspla
is called for the full accuracy of the computer is available, but it is no;
practicable to use it until a fairly close approximation has been reached
by the use of the display programme. Each «, and Q, is moved in tury
by a small amount at a time in the direction that reduces the mean squar(
error of the delay, until this error begins to increase again. When all the
p, have been dealt with, the procedure is repeated until no furthe'
mmprovement can be made. Curve D, Fig. 1, shows the effect of applvm
this programme to the previous result.
i
When it was required to design networks with specified phase characteris}
tics, the construction of an analogue computer was contemplated. Becaus}
of a lack of facilities for such work, it was not possible to proceed in thil
direction; but the *“ Deuce ” being available, the method described in thi
article was developed and has been successfully applied to a number ¢
networks. It is not suggested that the results are better, or have beet
obtained more quickly or cheaply, than if an analogue computer had beet
used; the application of “ Deuce ”’ to this problem was justified by th
special circumstances. A similar approach to other types of problem ma;
be worth considering as an alternative to the analogue computer.

Conclusion

e

e e

b
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INSERTION-LOSS EQUALIZATION .
WITH A DIGITAL COMPUTER

)
}
3’ By D. J. HULL, B.Sc
[
;}This article deals with one approach to the problem of equalizing the amplitude
response of a network which has a prescribed phase-delay characteristic. The
insertion loss voltage ratio of such a network is a polynomial in p = jQ, and
%‘he network may then be realized as a constant k configuration ladder filter.
Such a polynomial may be produced using the method described by D. J.
iBrockington(1) which by manipulation of the zeros in the complex frequency
p-plane provides a function whose phase-delay approximates closely to some
Hesired characteristic.
The amplitude of such an insertion-loss Junction is generally unsuitable for
1se as a filter response, but it is possible in some cases to equalize the response
0 as to obtain a desirable amplitude over the required frequency range,
without changing the phase-delay characteristic.

'ntroduction

onsider the insertion-loss function as a polynomial A (p) where p is the
;omplex angular frequency. To equalize this response whilst maintaining
he phase, it is obvious that entirely real factors must be added. In this

rticle we shall consider the effect of providing a real denominator of the
orm

P(p) = Kl l (P £Q 2 where Q2 > 0
s=1

R

A (0)
‘ and K = P 0)
This is then, an even polynomial in p.
i Since the resultant amplitude response is required to have infinite loss
t infinite frequency, we can state that the degree of A (p) must be greater

han the degree of P (p). Furthermore, since we desire a constant ampli-
iide response in the specified range, it can be seen that the respective

tmplitudes of A (p) and P (p) must have the same “‘shape’” over the range.
§(~he final amplitude response in dBs is now given by:

(

T} 20log | A (Q) | —201log | P (Q) |
3
71 =2010g]A(Q)[—QOlogK—QOZIOg]—'sz:szS[

|

m

s=1
ffhere the phase-delay characteristic is maintained.
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The amplitude response of A (p) may either increase or decrease as ¢
increases from zero, and tends to infinity as Q — oc (see ref. 2, p. 128),

If the amplitude of A (p) increases,\ a factor of the form

8 fomeeo o

»

—n

o}

Bnms
Fig. 1

U S,

1
il

(p* — Q%) o
Q2

x$8

needed in the denominator, since this has an amplitude response whm
increases monotonically with Q. The response of such a factor is shown il

Fig. 1.

If the response decreases initially, a factor of the form

required. In this case the frequency of infinite loss at Q = Q

1 !
Pl
s
sz . )

s Must b

beyond the required range of equalization. Fig. 2 shows the response il

dBs of such a factor.

i}:l

When a factor is chosen in this manner, the infinite loss at Q = Q )

provides much sharper cut-off beyond the specified range. g
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i[l‘APPLICATION OF A DIGITAL COMPUTER FOR AMPLITUDE DISPLAY
A programme has been written which will evaluate a given insertion-loss
junction over a specified range of normalized frequencies, and display it
In decibels on one of the monitor tubes of the computer (see ref. 1, p. 143)

A facility is then provided to construct a denominator of the required form
by feeding in the values of Q__ or JQ . from a set of keys on the control
banel. Factors may be added to, or withdrawn from, the denominator at
lvill, and after each operation the resultant amplitude is again displayed.
For the display. the horizontal scale corresponds to normalized frequency

, Pig. 3 Fig. 4
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over the range 0, < Q < Q) + 30 50, where Q, and 3() are chosen
cover the specified range. The vertical scale, which is in decibels, is varial;
and whenever the computer displays an amplitude this scale may |
altered to give either a more detailed, or more general, display of tl;
particular response. The dB scale can range between 0-001 dB and 9-999 ¢
per step, and these figures are also the limits for values of Q__. f

It may be seen that in this system fairly rapid adJustments can \
made to the denominator and the overall effect on the amplitude cd-
sidered immediately. This enables many combinations of factors to | &
tried in a short time. ‘

The following example, with illustrations, shows a typical set of resul]

Example
The example chosen is a two section network with flat delay, whe
insertion loss polynomial is:

A(p)=4-58012 + 12-94031p + 16-37161p2 -+ LL-77062p3 + 417648 p1 41

Four illustrations are given, of a set of displays obtained by the co!
puter, and are as follows:

Fig. No. Response Frequency Range dB Scale |/
3 A(p) 0—>5 2 dB/step i}
\ i
1 _f% 0—>5 1 dB step
p?— 1242
A(p
& - _(P ' = 0—>5 1 dB step ¥
(p? — 1:242) (p* + 2-52)
A ‘
6 ‘ A 0—1-3 05 dB 'stey

(02 — 128 (p* + 2:3%)

The mnetwork configuration, and realization, of this last case &
described elsewhere in this publication (see ref. 2, 1. 137). '

Finally the author wishes to acknowledge the help and encourageme
he has received from Mr. J. K. Skwi irzynski since the initial concepti
of this method of equalization.
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