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Some of the uscs of

the "Deuce" Computer ill
Technical Problems

le series of articles appearing in this issue of The Alarcon; 1?erif
-es some idea how the advent of the " Deuce computer has affected
,e mathematical investigation of technical problems.
,Long before digital computers were available, it had been realized how
Illuable the methods of graphical and numerical trials were. especially

en used in parallel with a purely analytical approach. The two. in fact,
?m always to be complementary. The main trouble. however, was the
tortuous labour and skill needed to carry the numerical trials to their
timate conclusion.
Imagine the laborious calculations required, for example. to introduce
.nilom errors in the values of the slot depth and the slot angle of a linear
ray of more than one -hundred elements and workin!, out say twenty
tamples of polar diagrams of twenty linear array aerials with different
'.j.ndom errors. This, however, is a typical computer calculation which is
ite possible nowadays, and is described in Hewson's and l'acello's
tide.
Imagine also the labour of introducing small changes in the values of
e frequency and the decay coefficient of the natural modes of a filter to
nimize the least squares error in the resultant characteristic. and then.
t content with doing this with just one natural mode. to reheat this
ocess with, say, six in succession and, having optimized. each separately,
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to go back to the beginning and start again. This is, in fact, what th
finishing programme described by Brockington does on the " Deuce."

Having acquired this new and powerful tool, which allows the metho
of numerical analysis to come into their own at last, it is found that nc
only does it hasten the solution of problems which could already hal,
been solved by the use of conventional calculating machines, but it open
up many new potentialities. It permits, for example, simulation, which
almost an experimental approach, but which has a much greater facilil
for being kept under control than the more conventional type of physic
experiment. For example, elaborating the aerial problem described abov
the solution of this is in effect a simulation of the building of say twent
aerials, followed by the measurement of their polar diagrams. This sort ci
work, assuming the simulation can be made realistic, could be instrument'
in saving much money. Very often one has to build only a few of a speci
device like this, and it is difficult to know what tolerances should be pi
on the various parameters, e.g. slot depth and angle in the problem quote
The usual method, of course, is to play for safety and put tight tolerano
on everything. This naturally can put the cost of manufacture
enormously. However, if a truly simulated model can be put into t
" Deuce " computer, various tolerances can be tried quite cheap]'
and a more economic estimate of the requirements made. The linear arr;
aerial problem, of course, is only one example of such a problem and.
such is explained in Hewson's and Pacello's article. The usual proceduj
for tackling these problems, as is demonstrated by the companion artic
by Palmer, is to back up the numerical work by an analytical stu
Assumptions have to be made in the analysis which can perhaps
justified, or modified, by the experimental results obtained on the co)
puter. The analysis in return may also enable one to estimate the numl,
of calculations required, so that one can plan the computer experime
more economically. In fact these two articles give some idea of how pi
analysis and computer experiments can work together. As a result of ti
kind of process on a particular job, the theoretical approach very of
can be built up on a more solid basis, which in turn reduces the amount r
computer time needed on any future problem of that type, and so on.

The other example of the use of a computer in technical problems'
developed in the paper by Skwirzynski and Zdunek in parallel with t
complementary analytical approach, and the detailed mechanics of
numerical methods are developed and discussed in more detail in
papers of Brockington and Hull. The overall problem is that of lum
constant filter design where rather special characteristics are requir
One obvious quasi -experimental approach is to use an analogue compu
wherein one, in effect, builds up a filter with continuously adjusta
components and then varies each in turn and observes the effects on-
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racteristic. The components, of course, have to be very carefully
ibrated and recalibrated every so often to ensure accuracy. This method
uld seem at first to be much simpler than using a digital computer.
wever, if a digital computer exists already which is being used for other
rposes, its use for this type of problem becomes economic and in any
-e has several advantages. Firstly, there is no calibration required, in
t the inherent accuracy of the " Deuce " is of several orders higher than
ossible with its analogue equivalent. Also by using the display facilities

the " Deuce," as described by both Brockington and Hull, the advantages
seeing the values of the varied parameters and the corresponding

, aracteristic plotted as a graph make it at least as good as the analogue
onputer method for getting the feel of the problem. In fact the digital

puter's displayed parameters (frequency and decay coefficients of the
Mural modes) are in many ways more convenient than the actual

ponent values which would, in effect, be displayed on an analogue
puter. Also of course, there is no analogue computer method equivalent
the " Deuce " programme developed by Brockington wherein the
chine carries on the optimization process itself far beyond the display
sitivity of the machine.
Ile following articles thus give an insight into some of the possibilities
using a digital computer in technical analysis, which it is hoped may
)ve of interest to readers of The Marconi Review although it must, of
irse, be realized that they exemplify only a small part of the uses to
ich the computer is being put.
There are many other applications of the computer in the technical
d. One important use not discussed here, is to the simulation of whole
ar systems. This can give valuable data required for the design of the

'''tars and, of course, of their associated data handling equipment.
other important application is to find the maximum allowable tolerance
component values to give an economic manufacturing and testing
cess of printed circuit assemblies.

P. S. BRANDON



THE APPLICATION OF " DEUCE " TO
A PROBLEM IN AERIAL DESIGN

By J. HEWSON, M.A. and E. A. PACELLO, B.A.

The performance of a practical aerial may be adversely affected by unavoida
errors in its manufacture. The use of a digital computer to assess the effect
the radiation pattern of a slotted waveguide aerial due to small random erro
in the cutting of the slots is described.

Introduction
In the problem of designing a linear array to produce a specified far -fie
radiation pattern, it is convenient, if the number of radiating elements
large, to consider a continuous aperture distribution F (x). The far -fie
radiation pattern in the plane of the array is given by the Fourier inte

a

E (sin 0) = F (x) exp [jkx sin 0] dxf a

where 0 is the angle between the direction of the radiation and the norn:

to the array, 2a is the aperture width and k =
2-rc.

The function F (x)

chosen to give the required radiation pattern, e.g., side lobes below
specified level, and the designed strengths of the individual radiati
elements are values of F (x) at points corresponding to the positions
the elements. Due to errors in manufacture, it will not be possible
produce the aperture distribution exactly and there will be some deviati
in the radiation pattern.

In general, F (x) will have both amplitude A (x), and phase 4 (x) so tl
F (x) = A (x) exp [j (x)]

If the errors in amplitude and phase are 8 A (x) and 8 LI) (x), the radiati
pattern becomes

a
E' (sin 0) = (A + aA) exp j (LP -I- 84)) exp (jkx) sin 0 dx

-a
If the errors are small and second order terms are neglected this reduce

a
E' (sin 0) = E (sin 0) + f [aA jA 84)] exp j4 exp (jkx) sin 0 dx

-a

Use of a Digital Computer
It is convenient to evaluate expressions of the form (2) using a dig
computer. A " Deuce " programme is available which will evaluate
Fourier Transform of a quite general function by numerical integrat
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ig Simpson's rule. This article deals with the case in which the errors
amplitude and phase, 8A and aq) are random functions. Thus, when
ulating the ordinates for the numerical integration, 8A and aq.) are
cted from sets of random numbers having certain required properties.
se sets ofrandom numbers are generated by a " Deuce " programme.
,rder to get the right impression of the effect of such random functions
necessary to evaluate (2) using a large number of different samples of
es of 8A and a,,b taken from the same sets of random numbers. For

venience the "Deuce" programme was written for a particular type of
r -free aperture distribution F (x) given by

Tcx
F (x) = a cost -2a + (1 - a) exp

a
p, (-)2] (3)

zero phase. This includes the cut-off Gaussian and cos -squared
ributions as special cases.
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Fig. 1. Radiation patterns with slot -inclination errors

6

2a SIN



106 THE MARCONI REVIEW, THIRD QUARTER 19;

I0

20

-o

w
0

30

o_

40

50

60
-6 -5 -4 0 I 2 3 4

2a SINE/

A

Fig. 2. Radiation patterns w-th phase errors

An Aerial giving Low Side Lobes
Following a suggestion by F. G. Gibney, it was found that the spe
case of (3) with a = 0.435, p = - 2.3 gave the low side lobes required
a particular application. The resulting radiation pattern is shown by
bold curve in Figs. 1, 2 and 3. It will be seen that the side -lobe lev
below 44 dB. It was required to investigate the change in this side -1
level resulting from random errors.

The aperture distribution was to be realized by means of a rectangi
waveguide with transverse inclined slots cut in a narrow face of the gu
The amplitude distribution is determined by the conductances of
individual slots which in turn are governed by the inclinations of
slots to the waveguide axis. The constant phase distribution can
produced by keeping the same slot length and slot spacing along
guide. Errors in cutting the slots will produce errors in amplitude or pl
of the equivalent aperture distribution. If the latter are known,
resulting radiation pattern can be found from equation (2). The relay'
between slot and aperture distribution errors will now be considered.
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Fig. 3. Radiation patterns with slot -inclination and phase errors
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Vect of Mechanical Errors on Aperture Distribution
ORS IN SLOT INCLINATION

radiated power from a slot is given approximately by
A2 = K PT sine cp

re
TC

cp is the slot inclination (i.e. an inclination
2-

- so to the guide axis),

is the power transmitted past the slot and K is the same for all slots.
ihe slot inclination is small (it is less than 11° in our case) and is subject
a small error 8 cp, the resulting error in the aperture distribution is

tn.efore an amplitude error

8A= (K P T) 2 a? (4)

f, as in our case, the guide is to be fed from one end, the power trans-
ted past the m th slot from the feed end is

P Tm= P L
Are

= m +1
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where Are is the power emitted by the r th slot, PL is the power lost in t
end -load, and N is the number of slots. This function, which weights t
slot -inclination errors, decreases from the feed end. For a given slot en
the resulting amplitude errors will therefore be greater nearer the feed e

SLOT -DEPTH ERRORS

To achieve a zero phase distribution, it is necessary to ensure that t
resonant frequency is the same for all slots. This means that the slots m
all have the same total length; those inclined at a greater angle to
guide axis, and so shorter on the narrow face, being cut deeper. The shi
Af, in the resonant frequency is proportional to small changes in dep
The proportionality constant can be found experimentally. The phe
error produced by a frequency shift Af from f0 is

tan -1 2Q
Of

fo

where Q can be found experimentally. If the error is small, this is appal -

mately 2Q
fo

Af and the phase error is directly proportional to the de- ,t

error. In our case, a depth error of 0.03% of the guide wavelength gall
phase error of 5°.

SLOT -POSITION ERRORS

A zero -phase aperture distribution requires the slots to be equally spat
along the guide. If the design slot spacing is 1, a position error 81 for

I a/
slot will produce a phase error of

2
- x 360° in the aperture distri

1
tion. The factor is due to the design slot spacing of approximately kl

half guide wavelength; a further 180° change in phase from one slot 0
the next being obtained by reversal of the sense of slot inclination. '
phase error is thus again proportional to the mechanical error.

The " Deuce " Programme
From equations (2) and (4), the radiation pattern with slot-inclina n
errors a p and phase errors aq) is given by

E' (sin 0) E (sin 0) + [(KPT) 2 jA exp [jkx sin 0] dx
-a9,

In order to evaluate the integral, values of the functions (KPT) 2 an A
must first be calculated at values of x equi-spaced over the rang
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tegration. In our case there are 129 slots and the functions are evaluated
values of x corresponding to the slot positions. This number of ordinates
sufficient to ensure accurate evaluations of the integral for the range of

Mused.
The functions are calculated for each slot from the aperture distribution
yen by equation (3). The design radiation pattern E (sin 0) is then
fftputed from equation (1) for a specified set of directions 0.
It is assumed that mechanical errors in a slot dimension are independent

'at with the same probability distribution at each slot. Thus ,(1), and aq,
e assumed to be random normal deviates with zero mean and with given
andard deviations. Samples of random normal deviates, generated by
e programme, are taken as values of 8(1) and 8 co for each slot and the
ror term of equation (5) is computed. Addition of this to the first term
(sin 0) gives the required result, the far -field radiation pattern produced
T the aerial with errors. The expression (5) is then computed for further

qmples of aq, and 8 Cp .

esults
ypical results obtained from three runs of the programme are shown
aphically. In each case, the error free aperture distribution was the one
scribed above which gives the radiation pattern with 44 dB side lobes
own by the bold line in the diagrams. For Fig. 1, it was assumed that
.ere was no phase error but that the standard deviation of the slot-
clination error was fifteen minutes. The resulting radiation patterns
om each of five samples of ay and ag.) are shown. For Fig. 2 there was a
ase error of 5° standard deviation and no slot -inclination errors. Results
r simultaneous errors of fifteen minutes in slot inclination and 5° in
ase are shown in Fig. 3.
A detailed analysis of the results will not be attempted here. The
vinal specification was for a 35 dB side -lobe level. The graphs show
at this is unlikely to be achieved with manufacturing errors as large as
een minutes in slot inclination and depth or spacing errors of 0.03%

1tcl 1% of guide wavelength respectively.

icknowledgements
le authors are indebted to E. M. Wells and F. G. Gibney for suggesting
e problem and for subsequent help and advice.



THE EFFECTS OF ERRORS ON THE
POLAR DIAGRAM OF A SLOT ARRAY

By D. S. PALMER, M.A.

Algebraic expressions are given for the correlation between the errors in
field from a slotted wave -guide as measured in two directions, in terms of ti
random errors in field strength and phase which are assumed to be introdud;
at each slot. Comparison with "Deuce" computations incorporating ranclol
phase errors shows close agreement. Extensions to a dish subject to error, al,
to a two-dimensional array of radiating elements, are mentioned in gener,
terms.

The field radiated in a given direction is obtained in magnitude and pha.
as the sum of a number of vectors, one from each slot. It may be writt,
as

m -+N

E (co) = A (c) + (amfm +j bm m) (cos mir + j sin min
-N

= A (c) + U + j V .

A (co), the correct field strength, is taken as real. There are 2 N +
slots, and the weighting functions an, and depend on m only. fill and
represent the effect of machining errors; they are taken to be independc
random numbers from a normal or Gaussian distribution of zero mean a
standard (RMS) deviation unity. o measures the angular position in t

beam; (,) = - sin 0, where D is the aperture width, T the wavelength,

0 the angle off the direction of the main beam. The range of o is appro
mately ± N, and except near the main beam a difference of 1 in
represents the width of a side -lobe, adjacent side -lobes having (corre
fields of opposite sign.

We wish to obtain information on the power I E (co) I 2 = (A + U)2 +
its statistical structure and in particular its coherence, in order to
how many measurements are needed round the beam to give a reasona
guarantee that the off-centre radiation never exceeds a given limit.

U and V in (2) both have the Gaussian distribution; near the cen
where A is large the error in the power depends on U only, and the act
power has a Gaussian distribution centred on A2. If A is zero and U
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e independent with the same standard deviation (below), the actual
ower U2 + V2 is exponentially distributed; this is the position between
de -lobes away from the main beam and it may be a good approximation
 all points outside the main beam.
The coherence between the powers radiated at positions 6)1 and co2 is
easured by the correlation, which is 1 if the errors at the two positions
e exactly proportional (or - 1 if they are proportional but of opposite
gn), and zero if the errors are independent.

F(6)1, 6)2) = I I El 12 1 E2 I 2 } 1E212} (3)

here e denotes "expected value"-the average value over a large number
,f cases; then the correlation between the two measured powers, r (6)1, 6)2),

given by
F (cur, 6)2) F (oh, Oh) F (6)2, 6)2)1.-1 (4)

Since the number of slots is large, the series of weights am, bm in (1) may

replaced by the functions a2 (x), b2 (x), where x = M7Thas
the range

7; these functions appear in squared form. The phase error weighting
notion b2 (x) is proportional to the radiated power per slot, and the
Lensity error weighting function a2 (x) is proportional to the incident
)wer per slot, so for an array fed from one end,

a2 (x) oc f b2 (y) dy.
--7C

F (col, cot) is given in terms of the weighting functions by

F (col, (02) = 4A1A2 - (a b55)
7r

2

+
2N

2 (ac, +bss)2 +(tics bs02 +(as, bes)2 +(ass -4,02}

here ace = a2 (x) cos coix cos ())2x dx

(5)

'ad the other integrals are similarly defined with b2 substituted for a2 and
nes for cosines.
The first term in (5) contains Alx42 and may take either sign; the second,
ways positive, is independent of Al and A2. The first predominates when
.ue values are large compared to errors and the theoretical lobe structure
preserved; the second predominates when the errors contribute more
the power radiated off the main beam than the correct side -lobes.
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The expected values of the products of the field strength errors thew;

selves, U and V, at two positions, are

twe (o = bss)
7r

e (vivo (a T b(.c)
r.

IV

e (u1r2) = (cies bsc)
TC

1\7.e T2l'1) = (as,, - bt.$)
rr

If the Fourier expansions of a2 (x) and b2 (x) are known in terms
cos px and sin px (p = 0, 1, 2 . .), the integrals in (5) and (ti) may 1
expressed in terms of the function

sin t
cp (t) = -

TC

for instance cos px cos (01x cos (,)2. dx

= I- 1 So (I) 4 - (61 ±(02)±(P (P -(-01- (00 + (P (P +6)1- 02) + Y (p - - - (ol -i- (02)1.

a2 (x) and b2 (x) must be positive and they are unlikely to alter quick
as we pass along the array; hence the constant terms and the first eou
ponents in the Fourier expansions are predominant, and the correlatio,
are found to drop off rapidly as the separation I col - (.02 I increases beyo

4; correlations are negligible when I col - (.0., I > 1, so coherence
errors extends over a range of the order of one side -lobe. Two measu
ments per side -lobe are thus sufficient to keep the errors under conte
This is confirmed by considering that the total aperture width eontai
only as many wavelengths as there are side -lobes; hence one measurem

per side -lobe (with phase) is enough to reconstruct the entire polar diagr

-this is equivalent to two measurements of the power only.
Off the main beam, col and (02 may be taken as large compared w'

612 - (01, = T and with all the values of p entering into the Fourier ter
cos px, sin px. We may also assume that 1)2 (.r) is an even function of

and neglect a2 (x), since in practice it is much easier to control the fig,
strength error (depending on slot angle) than to control the phase er
(depending on slot depth). U and 17 are now independent with the sa
standard deviation, and for a lag T both have the autocorrelation

OC

17r b2 (x) cos Tx dx. This is the autocorrelation of a Gaussian rand
rs

function of power spectrum b2 (f/27r), which contains no frequencies o
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so the statistical behaviour of U and V far from the centre reduces to
e behaviour of such a function. If side -lobes are small compared with
rors, the radiated power U2 + V2 is the square of a Rayleigh distributed
ndom function, and the chance of the error exceeding a given value for
given angular stretch reduces to the properties of this function (see
ice, Bell Syst. Tech. Jour. 37 (1958), p. 581).
In the " Deuce " simulation a2 (x) was zero; by (1) reversal of the sign
co now reverses the sign of U without altering V, so there is symmetry
out the centre in the power errors if the errors are large or the true
wer small (e.g. between side -lobes). The Gaussian error distribution used
rresponded to an RMS phase error of 13°, independent from slot to slot.

,ourier analysis of b2 (x) for the array considered gives (- Try x > 7c)
b2 (x) = 0.394 + 0.494 cos x 0.108 cos 2x + 0.004 cos 3x,
ustrating the falling off of the higher terms mentioned above; no further
iefficients exceed 0.0001. Ninety-one pairs of simulations at the points

= 5, c.)2 = 52 gave
correlation of U1 and U2 = 0.890
correlation of V1 and V2 = 0.887
correlation of power errors = 0.670.

)1' comparison, the algebraic method outlined here gives correlations
0.890, 0.891, 0.675, respectively.
" Deuce " also produced nineteen sets of values each at twenty-three

Ants covering the five nearest side -lobes on each side of the centre, but
.cluding the main beam. If these figures are plotted graphically, the

metry of the two sides is apparent, particularly on a linear power,
ether than a dB, scale; the true side -lobe structure is quite lost, but some
agrams show a convincing appearance of false side -lobes.

:i Neglecting the correct values and using the Rayleigh function (above),
e can say that for this model the level 30 dB below the main beam is
:ceeded in the side -lobe region on an average once per 5.0 (true) side-
bes, the mean length of such an excursion being 0.95 side -lobe. The
Deuce " results are insufficient to confirm this, but they agree quite well
th the total number of points expected above this level (16% against

)% expected).
In Fig. 1 overleaf, the results of the 19 x 23 = 437 " Deuce " compu-
tions are plotted to show P, the probability that power exceeds a given
vel x, against x. The P scale is logarithmic and the power scale is linear.
he percentage of values found above the -30 dB level is shown by
; and the percentage expected on the Rayleigh basis is shown by B,
point on the straight line through the point P = 1, power zero. The extent
which this line is distorted by the presence of real side -lobes is very
all, as can be seen from the position of the -44 dB level, that of the

ghest correct side -lobe (the second).
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The requirement " 90% chance of no off-centre radiation exceedii
-36 dB " may be put in terms of slot depth error on the assumption th.
0.001" slot depth error corresponds to 7° phase error at that slot. It
found to lead to an RMS slot depth error of 0.00045", which is wi
within machining capabilities.

In considering a dish rather than an array, we are working in t -W
dimensions and must also introduce the coherence range of the error
this is no longer bound up with the wavelength by being isolated
discrete slots. We must distinguish between coherence less than a way',
length, greater than a wavelength but small compared with the di.
or of the order of the dish. If the dish is made in sectors, each sector bei]t;
based on a series of rectangular or triangular areas between struts.
large-scale distortion errors become the most important.

Two approximations are possible; off the main beam the cost and si
terms may be given the average value 1, while near the centre such ten
must be expanded in terms of powers of the angle off. In the latter ca
considering phase errors only, we find that the dB loss at the position:
maximum gain varies as the square of the RMS error as a proportion
wavelength, independent of dish size or coherence interval. Angular d
placement of point of maximum gain varies as (RMS error x cohere
interval ± area of dish) independent of wavelength, as we expect from
"geometrical" character of this error.

Another case considered, intermediate between the array and the di
is a two-dimensional array where each element has a phase and intens
error peculiar to itself, and also has errors common to all elements of al
running the breadth of the array but independent of those on other lii



DESIGN OF NETWORKS WITH
PRESCRIBED DELAY AND

AMPLITUDE CHARACTERISTICS

!: J. K. SKWIRZYNSKI, B. Sc., A. R. C. S., and J. ZDUNEK, Dipl. Ing.

b e response of electric networks may be specified in many ways, but the most
bitious is to nominate both amplitude (attenuation) and phase (group

lay) over the whole frequency band. In this article it is proposed to present a
neral and flexible design method for reactive quadripoles with specified group
;lay characteristics and to supplement this by suggesting means of equalizing
tenuation without effecting delay. This design method can obviously be
.tended to cover any frequency band. However, for the purpose of clarity of
esentation, we shall confine the discussion to low pass filters which are intended
pass signals of frequencies limited to a symmetrical band round zero and

1iich can be realized as ladder structures between two resistive terminations.

1ie insertion loss and phase of a reactive quadripole are not uniquely
rrelated unless the network is of the minimum -phase type. Hence, while
onstructing a voltage insertion function of a general network, it is

imisible to concentrate initially on one or the other of the characteristics
id then to correct the remaining one without modifying the former.
The standard procedure, which has been used for many years now,
pecially by television engineers, is to obtain an insertion loss function
tisfying given amplitude requirements (e.g. Chebyshev characteristic
both the pass and the attenuation bands) and then to correct the

;sultant phase to the specified shape by adding all -pass networks.
igenious analogue devices have been constructed(') which display the
3lay characteristic and its change due to addition of such lattice elements.
.rockington(2) devised an interesting and effective application of this
ethod to the digital computer " Deuce."
Here an analytic method will be presented. Thus, it is possible to
instruct analytically an insertion function yielding the required group
clay behaviour and then to correct the resultant amplitude by suitable
iddition of real or imaginary poles (i.e. frequencies of infinite loss) without
odifying the delay, provided that the network is purely reactive.
Section I contains an introduction to the general properties of insertion
netions, their parameters and corresponding network structures. The
tation used here corresponds to that introduced in previous papers(3)( 4).

tasting with a polynomial insertion ratio, its phase and amplitude are
rived in terms of natural modes (zeros) of that polynomial and correlated

y means of well known " Bode integrals."
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A method of constructing the required group delay model function is'
explained in section II. This function is obviously defined in several,
successive contiguous frequency bands covering the whole frequency
range, in terms of polynomials of direct and inverse powers of normalize&
angular frequency U. A" Bode integral " is then used in section III tn
obtain the corresponding model dissipation function which is then con-
verted to a polynomial of given degree in the complex normalized angular,
frequency p = ju, by a least square (Chebyshev) approximation.

The most commonly met requirement (e.g. in television or FM trans-
mission systems) is a network with flat group delay characteristic withi
a specified pass -band. Hence, a special model delay function is con
structed, called a " Shifted Maximally Flat Delay " (SMFD) function
which gives an explicit model amplitude function for any degree oP
approximation. This function is derived and explained in section IV'
Section V contains a general discussion of amplitude correction by mean'
of suitably positioned real and imaginary poles which, in terms of th
filter ladder structure, change a "constant k" ladder configuration into"
an " m -derived " one with or without mutual inductances. These polei
can be determined in several ways. Bennett(5) suggested a method ensurin
Chebyshev variation of amplitude within a pass -band; another methoi
is presented here which has an added advantage of greater flexibility(6,

Finally section VI contains a brief description of a recently construct
" Deuce " programme enabling one to determine frequencies of infinitl
loss directly from visual observation of insertion loss(?).

I. VOLTAGE INSERTION FUNCTION AND THE PARAMETERS OF A REACTIVE QUADRIPO

Consider a reactive, four -terminal network connected between tw
resistances on both the input and the output ends. The voltage insertio
ratio(3) (4) is then a rational function of angular frequency U, where

-
(,)n

(f is the frequency and 6.)B = 24B is a reference angular frequency.)
Thus

(1.1

.V2,0 -A (p) = A (23) PB (P) (1.2
V2 P (P)

where p = ji-2 is the complex normalized angular frequency, V20 is t
voltage developed across the load resistor when connected directly to t
generator and V2 is the voltage across this resistor when the reactive fo
terminal network is connected between the load and the generator. T
roots A + pB are the natural modes of the insertion function; since t
system is passive, these roots will lie on the left half of the complex p -plan
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r the time being it will be sufficient to assume that there are no finite
quencies of infinite loss and that the network is a minimum phase one.
us P (p) = 1 and

A (p) = A ± pB (1.3)

r practical considerations, it is convenient to assume that A + pB
n have at most one real root in p for in these cases A (p) can be realized(4)
a simple ladder filter with the number of branches equal to the degree
the polynomial A + pB. Thus when the degree n of N (p) is odd:

A - - pB =
1

s=o s -o

1)

A0 (A + pB) = (19 c(0)-11 (132 + asp ps2)

1.d when n is even

A - pB = 1

r

A

n

1 1(n-1) (n-1)

}Asp2s + Bsp2S

s=1

(n - 2)

2s +

s=0

n

Ao(A ±pB)=n(p2 + 2 asp +p52)
s = 1

(1.4)

(1.5)

(1.7)

la and Fig. lb show typical ladder structures (in the T -configuration),
n = 5 and n = 6 respectively, which can always be realized for a

iven set of constant parameters in (1.4-7).
The insertion loss and phase of a network whose insertion voltage ratio

I; given by (1.3) and (1.4-7) becomes respectively:

oc (n) ln I A ± pB I (1 . 8)

cp tanh-1B (1.9)

when calculated along the real frequency axis p = ja For convenience
(SI) is here measured in nepers and co (12) in radians. a (p) and cp (p)

re, respectively, real and imaginary parts of the function In A (p). At
he zero frequency

a (0) = ln A (0) = 0 (1.10)
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(a)

Ri

When the network is not equally terminated, i.e., when
Figs. la and lb,

R1 R2

A 4R R2ln H = - ln
V

f'1G±)_ ; TIG
± R2)2

(1.11

and the insertion loss is not equal to the discrimination function D (p'
Thus in more general cases, when the termination resistances are nc
equal

D (Q) = a (f2) In 71G.

The phase function, when expressed in terms of network paramete
defined in (1.5) and (1.7) becomes for n even

and for n odd

n

2a 0.(Cl) = 2 tam-'
Ps2

2

s= 1

1 (n - 1)
SI

p (C2) = tan -1 --- ± tan- (1.1
ao

2

ap
-22

P -
s = 1

The group delay is defined as the derivative of phase function with resp
to the angular frequency and is measured in seconds

where

1 cis°
T (co) = A (Q) = (1.

COB cho

n

s = 1

c12 ps2)

4 2 ü2 ps4
(1.
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r n even, while for n odd:

A

0(02 +

ere

2

I (n -1)

+ >. tae 4-22 ps2)

Q4 - 2 ps4
s-1

119

(1.17)

ps2 2c(s2 (1.18)
The group delay is thus the sum total of contributions of all the zeros
the voltage insertion ratio A + p B. It is an even function of frequency
id it vanishes at infinite frequencies as 1422.
Both oc (p) and cp (p) defined in (1.8) and (1.9) or for that matter D (p)
d cp (p), defined in (1.12), are real and imaginary parts of a function of
mplex variable p:

In A (p) = In oc (p) j cp (p) (1.19)

0.ey can thus be correlated by means of Hilbert Transforms(8). Bode, in
s classic book(8) has presented several such useful relations between
and cp. One of these namely:

a(S2)
7c 0 dX

(X) ] In + C2 I dX
d [1

(1.20)X-C2I
rms the basis of the method presented here.

CONSTRUCTION OF GROUP DELAY APPROXIMATING FUNCTION AND OF
CORRESPONDING INSERTION LOSS CHARACTERISTIC

ie construction of the insertion ratio which is presented here can be
vided into three stages. First a model delay characteristic is built up in
ms of direct or inverse powers of 52, to fit as closely as necessary to the
ecified delay response. The corresponding phase characteristic obtained

1' 1r integration is then substituted into (1.21) to obtain insertion loss
nctions in terms of elementary logarithmic integrals. The insertion loss
obtained is not " physical " in the sense that it is not an exponential of
frequency polynomial. The second stage consists of a least square

oproximation of the loss function in terms of a polynomial of given degree.
nally the amplitude response is corrected, without changing delay
aracteristic.
Suppose that the group delay response as specified in the range
< S2 < 52i) is shown in Fig. 2.
For clearness, we shall assume that the required delay is to be fiat, say
(L)) = 6,0 (0 < 11 < Op), then to increase linearly and reach the value
0at fl = Aup and subsequently to decrease as 1/S-22 at higher frequencies.

ius:

(0) = Ai(E2) = A0 ; 0 < l<S2P

(L.2) = A.2 ( S.2 ) A° [(a - 1) - a A.]; < < AR) (2.1)(A - 1) f1p
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/-22

A (Q) = 03 (Q) = AoaA2 -P AS21, < Q < co

The model delay characteristic constructed above is continuous but witl
discontinuous derivatives at the boundaries of the three regions define
by subscripts 1, 2, and 3. This will ensure that the resultant phase has a
best a continuous derivative in the whole frequency range. In practice
is advisable to ensure at least a continuous derivative of delay. Thus on

divides the
is specified
determined
continuous
N ranges

a Ao

A

A(n)

A2 (a)

2 3

A3 (-n-)

Fig. 2 11p=11 A 11 p = IL 2

frequency range into several regions, in each of which dela
by a polynomial in Q or 1/Q and whose coefficients a
by boundary conditions at the ends of the ranges, ensuri
derivatives to the required order. Let us suppose there a

; 0 < Q < Qi

; C21 < < C12

(2

AN -1 (11) DN-1,s1S ; QN -2 < < 2N

; < Q < co

The coefficients DKs (K = 1, 2, . . . N) are determined by a set of ling
algebraic equations ensuring continuity at the boundary of ranges._



inc}, the, quantity
inal filter. 11

ICZ:s: OF NFT -01IKS

le last range - the dejav tvivk
(1.1) should alma ys 1)e of the folle.,,m4.: term

A, I.
I), I),

tie

the Olive characteristic is given I,v:

411 .1

:6419 I AI

7,;,2

1NartJcn1

'

LI
I

2 .1 [

f/

sli,,v,11 14.!

- 1.!

,1 sql

14411ve t he kill'
I 1.e

I.,

2,11

1.1 1-,,r 7-, eve r told

t 4 7er,w

121

2 1D

11) t1 -4t,) - 01

rolan41-4-1- 14-anc1 e), ts1 t!

II]

'7

c2.7 and (2,f): the Naluer ,,f A Ilk I UOrTi telstlillk 41.111V

aida 41JIl4lr\It0. WO fdvIr
III difkrit'nt r3t4.;:11`.* 31.rr LS'IG ONO 00 k00,41Jak 1 M*1 ii rliflrl



124 THE MARCONI REVIEW, THIRD QUARTER 196

freedom to adjust the final loss characteristic. This subject will be further
discussed in section V. On the other hand, however, it is sometimes bette
to over -estimate the value of m, i.e, to choose m > n; this will enable on
to judge the error in approximation by the size of the rejected harmonics:
n 1, n 2, .........m and also will provide greater flexibility in series
truncation which is explained below.

Having computed m 1 sampled values of eta(n) at C2 given b
(3.3-5):

mo e2a(0)

occ (°w sin 0)

Mm e2 (nw)

We require to fit into these an even cosine Fourier series:
m

C (0) = Cs cos 2s0

(3.6)

(3.7)

s=o
This can be done quite simply(1°). The set (3.6) is first replaced by another.

Yo = Mo
Y1 =
Y2 = M2

then
m

S=-0
m

Cm =
s=0

m

- 1)8Y,

2 ` Trsr
Cr =-> Ys cos

m m
s=o

where r = 1, 2, m - 1
If m = n and is odd the set of Fourier cosine coefficients

Co, C1, C2 Cm=,

(3.8)

(3.9)

can be used directly for transformation into a polynomial in p2. On the
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other hand if m > n, a " truncated " version of (3.7) has to be constructed:
n

CT(0) = 's cos 2s0; n < m (3.10)

s=O

The coefficients Cs' (s = 0, 1, 2, , n < m) are not in general equal to
Cs but are modified so that the series (3.10) still fits as well as possible
the set of values (3.6). Generally, the remaining values of set (3.9), i.e,
Cs for n < s < m, are much smaller than the retained coefficients, while

m

Cs gives a measure of the error introduced by truncation. This
s=n+1

error is then distributed among Cs, for 0 < 8 < n, in such a way as not
to change the most significant figures in each retained Cs. Thus, the safest
way is to modify the first two or three largest coefficients, retaining the
other unchanged. Furthermore, the modification is carried out so that:

n

s=0

(- 1)5C5' = Mm
s = 0

As an example, consider a set:

where

Co = 1.428590
C1 = 0.479391
C2 = 0.057382
C3 = 0.007733
C4 = 0.001471
C5 = 0.000320
C6 = 0.000011
C7 = 0.000032
C8 = 0.000043

8

Cs = 0.999999

s=o
8

(- 1)C5 = 1.974823

s=o

n < m (3.11)



126 THE MARCONI REVIEW, THIRD QUARTER I 9(

The value of n used in this computation was n = 3 and
3

Cs = 0.998848

s = o

The error at 0 = 0: 0.001152 is now shared between Co and C1 so that
Col = 1.429390
C1' = 0.479030
C2' = 0.057382 = C2
C3' = 0.007733 = C3

while
3

>24 C,' = 1.000000

s=o
3

(- 1)sCs' = 1.973544
s=o

giving a possible truncated series.
The Fourier series (3.7), or if truncated, the series (3.10), is now tram

formed back to the complex angular frequency p; this can be done b
relating cos 2s0 with

oc1(

(3.1tsin 2'0 = (- 1)S
\ 2s

W )

The coefficients U, of the polynomial in (S) approximating to (3J
are given as

Us=
11

q = s

Tq*, s (3.1`

where Tq*s are the positive values of the coefficients of the Chebyshe
polynomial Tq* (x),

0

p- PLANE

0

0

0

(a)

0

p - PLANE

0 0

0 0

0

0 0 0

(b)

p- PLANE

0 0

(c)

Fig. 3
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,2«(_ft)

Fig. 4 IL w

(a) e2 a(12) (b)

Extracting the roots on the left half of the p -plane (as in Figs. 3 (c'
and 3 (d)) one obtains the voltage insertion ratio

A (p) = A ± pB (3.17'
The discrimination function (3.1) should be positive definite and generall:
speaking can exhibit two distinct behaviours in the frequency ban(
0 < S2 < f2: it can either be monotonic (or almost monotonic) and alway
greater than unity as in Fig. 4 (a) or it can show a pronounced minimun
at some S2 > S2,. If the local minimum, like one in Fig. 4 (b) is very small
the Fourier series approximation may cross the C2 axis producing imaginal -
roots in (3.17); on the other hand curves like (2) in Fig. 4 (a) may produc
an imaginary root outside the approximation band. These two eventualitie
occur particularly frequently where model group delay curves contail,
two widely different levels in the pass band (e.g. for monotonic dela
characteristic) requiring one or more zeros near the real frequency axis;
These very non-realistic or too stringent delay requirements, embodie
in model curves, may produce realization troubles, which is after all to M
expected.

Such approximations have to be rejected and a different SI, choser1
or another model delay curve constructed.

IV. FILTERS WITH "SHIFTED MAXIMALLY FLAT" DELAY CHARACTERISTICS

Consider a model group delay function defined as follows. In the range
0 <S2<1 of the normalized angular frequency (here, for simplicity, w
have accepted flp = 1), the delay is constant and equal to some, as y
unspecified, value A0. In the remaining range 1<1-2< co, the delay I
defined as follows:

Or = AO
r \ (r + 1) (r + 2) Le2ss/(s+2)

s=o

=Ao[1.-(S-2-1-r±l(S2-1
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This function has the following properties:
As f2 -> ao

A, (f2) -> -1 Ao (r 1) (r + 2)
2 /-22

in accordance with the physical requirements of delay functions;
For n = 1, Ai. (1) = Ao

ensuring continuity of delay value;

For e 1, do% [Ai. (1-2)] 0
= I

for q = 1, 2,
ensuring continuity of all the derivatives, including the rth one of the
Idelay curve at all frequencies.

The delay function (4.1) will thus be called the "shifted maximally
Rat (of rth degree) delay function" (SMFD function).

The curves for r = 0, 1, 2, 3 are shown on Fig. 5 (full curves; the dotted

(4.2)

(4.3)

(4.4)

k

k

\

LVA
it -10

/
I

iI
i

i

II

''',, 2

3 ---\
I

I

I

I

I

I

r = 0

n
2

Fig. 5. Model delay curves for SMFD networks

;

r/77
0, A = A 0 , Do = ;

6 8 3- 2, A = Ao ± )
, A 0 = ;

r= 1, A 3A - I, =-- 6
10 20 15 4 \ Anr

r = 3, A = K-712 cp oi -n5 )' ro
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e2c( (-(1)
(a)

Fig. 4 .12w 11 O w SI

Extracting the roots on the left half of the p -plane (as in Figs. 3 (c
and 3 (d)) one obtains the voltage insertion ratio

A (p) = A ± p B (3.17

The discrimination function (3.1) should be positive definite and generall;
speaking can exhibit two distinct behaviours in the frequency ban
0 < S2 < S2: it can either be monotonic (or almost monotonic) and alway
greater than unity as in Fig. 4 (a) or it can show a pronounced minimm
at some S2 > S2W. If the local minimum, like one in Fig. 4 (b) is very smal
the Fourier series approximation may cross the S2 axis producing imaginar
roots in (3.17); on the other hand curves like (2) in Fig. 4 (a) may produc
an imaginary root outside the approximation band. These two eventualitic
occur particularly frequently where model group delay curves contai
two widely different levels in the pass band (e.g. for monotonic dela
characteristic) requiring one or more zeros near the real frequency axl
These very non-realistic or too stringent delay requirements, embodie
in model curves, may produce realization troubles, which is after all to
expected.

Such approximations have to be rejected and a different Q, chosei
or another model delay curve constructed.

IV. FILTERS WITH " SHIFTED MAXIMALLY FLAT " DELAY CHARACTERISTICS

Consider a model group delay function defined as follows. In the tune
<Sl<1 of the normalized angular frequency (here, for simplicity, -vs

have accepted S2p = 1), the delay is constant and equal to some, as yi
unspecified, value Do. In the remaining range 1<S2<09, the delay
defined as follows :

Or (f2) = A
r (r + 1) (r + 2)

8 ) (s + 2)

( r 1 ( S2 - 1 V+1]
SI -2
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This function has the following properties:
As e --> co

A, (LI) Ao (r 1) (r + 2) 1

c22

in accordance with the physical requirements of delay functions;
For C2= 1, A, (1) = Ao

ensuring continuity of delay value;

dq
For S2 = 1,

deq
[Ar (e)] = 0

c/ =1

for q = 1, 2,

129

(4.2)

(4.3)

(4.4)

censuring continuity of all the derivatives, including the rth one of the
delay curve at all frequencies.

The delay function (4.1) will thus be called the " shifted maximally
!flat (of rth degree) delay function" (SMFD function).

The curves for r = 0, 1, 2, 3 are shown on Fig. 5 (full curves; the dotted

I
\
\
,

\

...

iho
/
/

,-,
/

i'/

/
/

i

I

1

2

3 ---------,

I

I

I

I

r=o

_fl.

Fig. 5. Model delay curves for SMFD networks

1 nn= 0, A = Ao - , Ao =
n2 4

1 3 2 \ nnr= 1, A --= - ), Do= 4- 

2

nr 10 20 15 4 nrr2,A = Ao (-6 --8 ± --3 ), Ao = -8 ; r 3, A =Ao n3 + 6-4 - 6-4 )' A0=70n2 n. n4
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curves are the prolongations of (4.1) for f2 < 1). From (2.4), the corres
ponding phase function is

sor (Q) A0f2 ; for 0 < Q < 1 (4.5

-=00 1 ± (52 - 1) 1 - 1
1.41

, for 0 < < oo

As 12 co, yr (0) > Ao (r + 2) (4,(
so that from (2.8)

Ao = " (4.72 (r + 2)
where n is the number of branches in the final ladder filter.

Substituting (4.5) into (1.15) we obtain the corresponding insertion lok
function:

n (a - 1 r+1.
ar (C2) = 2 (r -1- 2) Ji X2 X

In

or if X - -x
oc,. (0) -

2 (r + 2) f2r+1 .10 r+11n

X +
X -

dX

1 + -x
1 - + x dx (4.4

Integrating (4.9) by parts, the integrated terms will vanish at both litniq
so that:

1; (0) 2 (r + 2) Qr o

(f2 + 2
d?/11 - y]

1+0n dx-x 1Y+2
2 r + 2) ur+ 1

Hr+2 1 (0 +x -.1_ 2 dx
(4.1

1-0
Expanding as binomials and integrating:

2 (r±2)Qr+
[0. +rnr+211.1(1 ±E-2)+ irl (1 cr+2

) lnll-f2
r + 2

( 1)s (r± +0r2+ (1 52)r+2S
8

s =1

(1 ± Q)r-f-2-s 1)r-1-1 (1 0)r -1-2-s]

Thus for example:

02)
oco (Q) = [2 In I 1 -Q21 + 1 +

In
1+52
1-52

(4.1

(4.1
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As f2 0, oco (0) = 0 and this is true for all r. Similarly as SI oo, ocn(e)
In f2 so that er(Q) ->- Stn (4.14)

as required for a simple ladder filter of n branches.
Similarly, for r = 1, 2, 3, 4, when the slope is continuous at S2 = 1 (see
Fig. 4) etc:

n r (1 + c2)3 (1 -
i--22

c2)3
i (Q) = -6 [ i--22

In (1 + f2) + In I 1 - S2 I - 51

S2 2 26«2 (e) = 8[(1 ± Q)4
ln (1 ± S2)

(1

3

)4
m I 1 - S2 I - -fp -

S23
. 31

9
77],'a3

(c2)
10

= [(1
S2

4)5 In (1 +S2) +
(1

S2
in I 1 S2

I - -22 - 6

0t4 (n) -
I

n
12

r (1-442)6 in (1,2) (1 C2)6 In 1
L SP f2 5

I -S-2 I -

(4.15)
The model discrimination function e2'1(n) was used in a manner explained

;du section III, for n = 4 and n = 5. In each case f2, was chosen in the
vicinity of e = 1, and the resulting group delay curves, computed from
polynomial voltage insertion ratios are shown in Figs. 5 and 6 for n = 4
and 5 respectively. Fig. 6 exhibits the case n = 4, i.e, quartic approximation

lbo (4.15) for 52,,, = 0.9, 1.0 and 1.1. For each case six harmonics were
valuated and truncated, as explained in the preceding chapter as well as

I our harmonics. It was found that resulting polynomial coefficients for
(p) were the same for both four and six truncated to four cases up to

25

2.4

23

2.2

o (ii)

(p2 1-9576p - I .1425)(32 1.3654p  2.0785)

w I0
(p2 I -5763p  2.2445)(p2  2.1907p 1.3837)

w

(p2 2.3712p , 1.586 I )(p2 1 .7332p 2.3602)

.5

Fig. 6
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the third decimal place. The polynomials N (p) are quoted in Fig.
besides the corresponding delay curves; these refer to the six to fo
harmonic truncation. Similar curves for n = 5 are shown in Fig. 7 fo
f2w = 0.8, 0.95 and 1.1 where five harmonics were used directly. It is see
from the figures that better results were obtained for n = 4 than fo
n = 5; on the other hand, however, the latter case might be more usefi
for amplitude equalization allowing for greater flexibility, as explaine
in the following section. Also delay is flatter when f2, is somewhat le
than the reference frequency f2 = 1, which is the limit of flat delay in th
model curve.

V. AMPLITUDE CORRECTION

The network voltage insertion function, N (p) can be readily realized as
single ladder structure. When flat delay characteristic is specified and
SMFD function is used, as explained in the last section, the results
insertion ratio is monotonic with frequency. Hence, in these circumstance
an equally terminated network can be produced. On the other hand, th
loss characteristic in the " pass band," i.e, over the range of frequencie
where the delay is reasonably flat, varies rather considerably.

Using a quintic approximation (illustrated in Fig. 7) for S2w = 0.8 th
(p)

resultant insertion loss characteristic 20 log is shown in Fig. f'
(0)

In the frequency band 0 < f2 < 1, the insertion loss raises monotonicallt
from zero to about 4 dB. This insertion loss can now be equalized in th,i
"pass band," without modifying the group delay in the following manner (I
Consider a voltage insertion ratio

A (p) = A ± pB
Construct the square and the modulus squared of (5.1):

( A (P)) 2 = (A P B)2
pp

the zeros of (5.2) are the same as of (5.1) but are doubled. Hence its pha4
(also delay) characteristic is twice that of (5.1).

A (p) 2 = N (p) = A2 - p2 B2 5.'

The zeros of (5.3) consist of those of (5.1) and of their mirror images in t
imaginary p -axis. Hence its phase (and also delay) is zero-the function
entirely real on the real frequency axis-whereas the modulus of (5.
is the same as the modulus of (5.2) on the real frequency axis.

Suppose, for example, that the degree of the polynomial A + pB
four (n = 4) so that:

N (p) + Mip 2 ± M2p 4 + Maps + M4p8
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32

3.1

30

'2.9

2.8

(p 0-9546)(p2 1.6054p -1-10607)(p2- 1.1318p i 2-0911)-

(p- -1 -0859)(p2 1.9886p I I -4355)(p2 3365p i-2.1937)

1. w=0.95

(p -1 -1936)(p2 2-2 09p 1 -6531)(p2 1 5231 p- 2 3211)

_11 w 0.8

.5

Fig. 7
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This polynomial is now "telescoped "(6) by removing the coefficient
of the highest power of p and replacing it by the corresponding expansion
in terms of Chebyshev polynomials. These expansions are tabulated in
Lanczos' book(10) (p. 515). In particular, Lanczos tabulates expansions of

(21-'2)n in2n-1pn

n terms of Chebyshev polynomials. Thus:

'where:

o that:

128 p8 = 70 To + 56 T2 ± 28 T4 ± 8 T6 T 8

TO = j2 -

T2 = - + 2p2)
T4 = 1 + 8p2 8p4
T6 = - (1 + 18p2 48p4 36p6)

p8 1 1 ,n25 ,n4 2p6= 128 4 ' 4 '
T8

128

(5.5)

(5.6)
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The expansion (5.6) is now substituted into (5.4) without the last ter 't

T8/128, to obtain

P (p2) =

where M0' = 1

M0' + Mi. 'p2 + 1112 'p4 + M3 '13 6 (5.7

111,
128 -

1- M4 (5.8

1112
M.

45 1114

3/3 = M2 2 M4

The polynomial P (p2) is, on the imaginary p -axis, the least squar
(Chebyshev) approximation, within 0 < f2 < 1, of (5.4), with an error

O

O

O

O

O

(u)

(c)

Fig. 8
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of the order of 1/128 (or generally 21-2n for the representation of p2n,
since I T2r, I < 1 ) . As (5.2) and (5.4) have the same modulus, the insertion
voltage ratio:

V20 (A ± pB)2
(5.9)

has a flat modulus in the Chebyshev sense inside the band 0 < S2 < 1
with a deviation + 1/128. The phase (group delay) of (5.2) is twice that of
(5.1) except that, possibly in the stop band, if P (p2) has roots on the real
frequency axis, the phase will jump by TZ at each such root (the resistive
losses on an actual network will correspondingly modify the phase, but
mainly outside the pass band). The polynomial P (p2) will immediately be
serviceable only if its roots in p2 are real, positive or negative. A negative
real root, i.e. a factor (p2 I22) will imply a real frequency of infinite loss
Lin the insertion function; such a frequency can be realized by tuning the
appropriate element in the original low pass ladder (e.g. a shunt condenser
is replaced by a series tuned circuit as in Fig. 1). A positive real root,
i.e. a factor (p2 - 122) will imply an imaginary frequency of infinite loss
in the insertion function; such a frequency can be realized by connecting
a negative inductance (i.e. a mutual) in series with a condenser in a
T -configuration ladder. If the roots of P (p2) are complex, more advanced
irealization techniques have to be used.

Fig. 8 shows, schematically, the development of the final filter for the
ase of n = 4. In Fig. 8 (a) a root distribution of A + pB in the complex

p -phase (e.g. for a SMFD network) is associated with a T -ladder. Fig. 8 (b)
ishows the corresponding root distribution of (A + pB)2, when the roots
are all doubled and the resulting " constant k " ladder.

Finally in Fig. 8 (c) we see the effect of single successful telescoping
where an introduction of P (p2) with two negative and one positive root
esults in an "m -derived " ladder with a mutual inductance.
The condition imposed on the roots of P (p2) is, generally speaking,

).xtremely stringent. It is dictated here by the requirement of simple
.ealization leading to a convenient reactive ladder structure. In most
)ractical cases, however, the roots of P (p2) obtained from telescoping
A (A + pB)2 will be complex, thereby prohibiting simple ladder
'structures.

The appearance of complex roots in P (p2) is almost inherent in any
Beast square approximation to monotonic insertion -loss functions. Bennett
tas introduced an approximation method involving, however, much
ore complicated mathematical manipulation. It has been shown in

ef. (6) that Bennett's method is only worthy of consideration for n < 3,
Ivhile the telescoping method described above is simpler and as accurate

n > 4.
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Sometimes the difficulty of complex roots may be overcome by furthe
telescoping of P (p) e.g. by removing the p6 term in (5.7). This will, o
course, introduce a larger error in the approximation. There is no guarante t.

however, that the new polynomial has real roots.
A more radical approach is as follows. Say the insertion ratio N (

tends to infinity as pen at high frequencies; thus the introduction of
denominator consisting of one factor will lower the rate of loss increas
However, an introduction of a real pole (p2 5221) will create a region
very high loss in the vicinity of fl = 52/. It is thus advantageous t
introduce real poles, if possible just outside the pass -band.

The original selectivity specifications will suggest where such pole
should lie. Assuming this fequency is to be S2 = 511, one divides out (5.
by the factor (p2 5221) and removes the residue of division by appr
priate modification of the coefficient of the highest power in N (p),e.g.11,
in (5.4). The amount of this modification gives an error which will 1'
similarly exhibited on the final loss curve near the edge of the pass -band..
The divided polynomial of lower degree is then tested again for real root I
Naturally, the two methods, telescoping and infinite loss extraction, ca
be used successively with varying sequence. The probability of succe
will greatly increase when the order of polynomial (i.e. n) is higher.

In any case, analytic equalization of insertion -loss of fiat delay respons,
is very laborious and difficult to control.

VI. USE OF DIGITAL COMPUTER FOR INSERTION -LOSS EQUALIZATION

The methods of amplitude equalization, by providing polynomq
insertion -loss functions with real or imaginary poles, described in the la
chapter, are not only difficult to control, but also to some extent
efficient. Thus, the degree of N (p), constructed so as to provide
required group delay characteristic, has to be doubled, thereby great
increasing the complexity of the final network, without improving tl
shape of the delay curve in any way.

Limiting the discussion to flat delay characteristics, these can 1
achieved in two distinct fashions, either by the use of the Bode integral
by direct visual construction, on a digital computer, as shown 1
Brockington(2). Delay might be reasonably flat and then decrease aut
matically beyond the reference frequency as in SMFD networks discuss
above; the corresponding insertion -loss curves then monotonical
increase as shown in Fig. 4 (a). On the other hand, a flat delay mig
beyond the reference frequency, increase to a more or less pronounc
peak, before falling off at large frequencies. Such a model delay curve
proposed in section II. The associated insertion -loss curve has then
correspondingly pronounced minimum (i.e. a relative gain with resp.
to zero frequency loss). The latter insertion -loss curves are much eas
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to equalize in the Chebyshev sense either by telescoping(10) or by using
'Benett's method.

The root extraction method, described in the last chapter, has been
programmed on "Deuce," giving very convenient visual displays, by
Hull('). A SMFD polynomial derived in Chapter III was used to produce
an equalized insertion ratio:

= H (p+11936)(p2+1.5231p+2.3211)(p2+22009p+1.6531)
(p2 +6 .25) (p2- 1 .5376) (6.1)

hose insertion loss ratio is shown in Fig. 9 before and after introduction
if poles. The small mismatch in the pass band (i.e. a relative gain of
).049 dB) will necessitate a non equal termination ratio in the realized
adder network, while the imaginary pole at p = 1.5376 will introduce

,at least one mutual inductance. The filter has been realized as shown in
fig. 10 with normalized components:

0.037310 1.5597 1.2723R L3= RI. L5=1
(1)13 6-/13 6)13

Fig. 10

Li

CZ

L3 L5
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C2
0.43957 2.4148

.=  C
cos 4 (4B-111

1 1
L2 C2 -

6.25 coB2
L4 C4

1 5376 (.0132

OwhereCUB corresponds to O. 1 in Fig. 5 and -,` = -8082.
-hi

The two inductances L1 and L4 are negative, resulting in two trans
formers in the final filter. A small predistortion(4), to account for finite
values of coils, will cause removal of L1, which is very small, leaving on
transformer and two condensers in the final predistorted filter.
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BOOK REVIEW
hRCUIT THEORY OF LINEAR NOISE NETWORKS by H. A. Haus and R. B. Adler
Published jointly by The Technology Press of the Massachusetts Institute of Technology
Ind John Wiley and Sons Inc, New York. Chapman and Hall Ltd., London. Price 36s.

his is one of the first volumes of a series of
"Technology Press Research Monographs"
Which, it is stated, will make accessible to
ibraries and to the independent worker
elected and important research studies-
Jublished up to now in semi -private ways,
perhaps as laboratory reports. The pub -

%hers should be congratulated on this
venture.
The authors, well known for their con-

Iributions to the subject, have attempted
dere a rational approach to the mathematical
escription of amplifier spot -noise perform-
nce. They argue convincingly that the
`best noise performance" is not determined
y the "lowest noise figure" F but rather
y the "noise measure" defined as follows:

F -1
M -

1
1 --G

where G is the amplifier gain. The noise
measure is shown to have real significance in
as much as it is an invariant of a group of
lossless transformations of noise linear net-
works.

The presentation of the work is largely
mathematical and a good familiarity with
network matrix algebra is necessary in order
to follow the argument. The last chapter
contains useful application of the authors'
argument to the design of optimum noise
performance of conventional vacuum tubes
and of negative resistance amplifiers.



AN APPLICATION OF
THE "DEUCE" COMPUTER TO

NETWORK DESIGN
By D. J. BROCKINGTON, B.Sc.

The design of a network with a prescribed phase characteristic can be accom
plished by trial and error, provided the trials can be made, and the error.
observed, with sufficient rapidity. This article describes a method of design i
which the necessary rapidity is attained by a slightly unorthodox use c
the "Deuce " computer.

Introduction
There is no exact method for designing an electrical network having
prescribed phase characteristic. However, the inverse problem of con,
puting the phase characteristic of a given network can be solved with n
more than some rather tedious arithmetic, so that there is a possibility
of attacking the design problem by trial and error.

A method of pure trial and error, as opposed to an iterative method
which trial and error are only implicit, is not likely to succeed unless .i
means of rapid computation is available. To illustrate this, we wt.'
consider for the moment another problem, namely, the solution of 1,
polynomial equation. When the equation is linear or quadratic, dire
solution is possible, and hand computation is likely to be perfectly satii
factory. For equations of the third or fourth degree, direct methods at
available, though they are too cumbersome to be very popular; and fc
the fifth degree or higher, no direct method is possible. In these cas
recourse is had to an iterative method, such as Newton's, in which a
estimated solution is made to lead to the true one by successive application
of a set procedure. We might call this analytical trial and error. It is quit
possible to solve an equation in this way by hand computation, but
results are required quickly, or if the degree of the equation is particular)
high, we may be very glad to have the use of a high-speed digital co
puter. Such a computer can be programmed to carry out the set procedur
and then left to repeat it until the true solution is found. This, one mig
say, is the proper way to use such a computer.

What should we do if no iterative method were available? The onl
possible course would be to try various values of the variable, more or le
at random, until we hit upon a root. This is what we mean by pure tri
and error, and it can well be imagined that if pencil and paper were use
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a lifetime might be spent in finding all the roots of an equation of, say,
the tenth degree. Yet such a method has been successfully used, with the
help of a computing machine('). In this case high-speed computation does
not merely save time; it actually makes the method possible, because
the errors resulting from consecutive trials are presented to the operator's
mind in quick succession, and a kind of unconscious iterative procedure is
set up.

Many problems have been attacked in this way, usually with a specially
I

constructed analogue computer. Indeed, such a computer has recently
been described for solving the network problem that we are now concerned
with(2). There seems to be no fundamental objection, however, to the use
of a general purpose high-speed digital computer, if one is available, and
the English Electric " Deuce " has been successfully employed on this

i aspect of network design (among others) in the way shortly to be described.

The Problem
The problem to be solved can be briefly outlined as follows. Any four -
terminal electrical network is characterized by a transfer ratio, which is a
complex number varying with frequency. The modulus of this number
determines the attenuation of a signal at that frequency when it passes
through the network. Several methods are now known by which a network
scan be designed to have a specified attenuation -frequency characteristic,
!that is, to behave as a wave filter. It is sometimes required, however, to
specify the phase of the transfer ratio: that is, the change in phase of a
signal passing through the network. Such a specification is by no means
easy to meet. A method of designing a wave filter to comply with specifica-

tions of both attenuation and phase shift is described elsewhere in this
vissue(3) but it is also possible to obtain the desired result by the use of an
}equalizer in conjunction with a filter designed without taking account of
phase.
) An equalizer, in this connection, is a network of the type often called
"all -pass" and is connected in tandem with a wave filter. The transfer
atio of an all -pass network has unit modulus at all frequencies, but its

phase may, within limits, take any values. The problem is to synthesize
such a network having a phase characteristic which, when added to the
navoidable phase characteristic of the accompanying filter, produces the
esired characteristic in the combination.
Phase characteristics are usually discussed in terms of the "group delay."

f, at any normalized angular frequency S2, the phase of the transfer ratio

The Isograph. See FRY: Quart. Appl. Math. 3, p. 89 (1945). A device going by the same name and used for
the same purpose, but employing electrical analogues, is known to the writer, who, however, is not aware of
any published description.
BERNATH, Bricz and SALVETTI: Tech. Mitt. P.T.T. 37, p. 445 (1959).
SKWIRZYNSKI and ZDIINEE: Design of Networks with Prescribed Delay and Amplitude Characteristics, p.115,
this issue.



142 THE MARCONI REVIEW, THIRD QUARTER 196

is 4, then A = d sb/du is called the (normalized) group delay. (The correct
ness or otherwise of such a title has been the subject of many argument,
which we will not pursue.) It is then possible to write, for an all -pa
network, r= n

A = 2E A,.

r = 1

where each A, depends on a parameter pr = ocr + A., where in fact

a,
2 K22

if '`r

ar a,.
if 0 0. (4)r2 + (K2 Or)2 art + (0 ± c2r)2 r

Our problem is to find a set of n parameters pr such that A has as nearl
as possible the desired form. The realization of a physical networ
represented by the pr is a separate problem(5), but we must mention tw
practical restrictions that are important for our purpose. These are, thel,
no two of the pr may be equal, and that no ar may be zero; apart from thi:'
a, and 0,. may take all non -negative values. Also, the complexity of th
network increases with n, and the maximum permissible value of n
usually specified.

Now a function such as A,. can be computed on the " Deuce " at sever
values of S2 in a very short time; in the programme to be described, co
putation proper takes about 1/70 second at each SI Since each of the
exerts its influence on A independently of the others, changing one A
involves only computing the corresponding Or twice at each 0, for th
original and changed values of pr. (The subtraction and addition als
required take only a few microseconds.) The rapid computation neede
for a trial -and -error method is thus provided; but we have also to pu
a, and 0r into the computer, and extract A from it. Here we are in
difficulty, because we are intending to use the " Deuce," we will not so
in an improper manner, but in a manner not envisaged by its designer
Normally the computer is given a large number of data, on punched card
and works for several minutes producing a large number of results, also
punched cards. The data are prepared, and the results studied, away fro
the computer, which meanwhile can be used for a different problem: fu
employment being essential for such costly apparatus. Using the norm

4 Each p,. represents a pair of zeros - a,. ± 0,. and a pair of poles a,. ± jOr of the transfer function. Wh
= 0 these reduce to one zero, - ar, and one pole, a,. See e.g. BODE: Network Analysis and Feedba

Amplifier Design, Chap. XII (Van Nostrand, 1945).

5 See e.g. BODE (toe. cit.) or the classic paper of ZonEr Bell Syst. Tech. Jour. 7, p. 438 (1928).
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punched -card machinery we should not get far with trial and error; but
certain facilities provided mainly for testing purposes can be pressed into
service for input and output, as we shall see.

The Method
10f the testing facilities mentiorzed, those chiefly concerned in the present
application are as follows.

1. The 32 input keys. These are Post Office key -switches, each represent-
ing a digit, which changes from 0 to 1 when the key is depressed; the
whole set represents a number of 32 digits in the binary scale. By suitable
,programming the computer can be made to use this number, the keys
Mien usurping the function of the punched card reader.

2. The single -shot key. Operation of this key causes the computer to
!carry out an instruction marked in the programme as requiring such a
;signal. Ordinary instructions are obeyed in sequence and require no signal.

3. The delay -line monitor. The 32 -digit numbers occurring in the
'Deuce " are stored in groups of 32 in mercury delay lines, and the
contents of any one of these stores can be displayed on a cathode ray tube
its a 32 x 32 array of dots, a bright dot for 1 and a dim one for 0.

The delay -line monitor is in appearance strongly reminiscent of a piece
lbf squared paper, and by plotting delay characteristics on it we obtain

e result of each trial much mere quickly than by using the orthodox
unched card output. Any pattern of dots on the monitor of course "really"
represents a set of 32 numbers; to establish a correspondence between
',he quantities to be plotted and the numbers which, when stored in the
lisplayed delay line, give the required appearance, is simply a question
)f proper programming of the computer. The photographs illustrating
his article show typical plots; the limitations are obvious, but the accuracy
sufficient for the success of the method.
The pr are also plotted on the monitor (Fig. 6 shows a set of three) so

hat a, and fl, are each limited to 32 discrete values. To feed a pair of
alues into the computer we use the input keys, setting up on them a
ode number which will never have more than three "ones." Consider

and f2, arbitrarily scaled and rounded off so that each takes integral
alues from 0 to 31; this covers all values of Pr that can be plotted on a
2 x 32 array of points. Now in our code number let a "one" in the a th
lace mean either a, = a or f2, = a; the 32nd place will have no meaning.
'he number with "ones" in the a th and b th places means either

a, = a, fl, = b, or
at = b, f2, = a,

d these two cases can be distinguished by the 32nd digit if we arrange
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that 0 in this place means a,. < fir, and 1, a,. > a,.. A "one" in the a
place only has three possible meanings:

ar = a, CI,. = a,
ar = a, f2r = 0, or
ar = 0, flr = a,

but the last is excluded since no ar may be zero, and the others can
distinguished as before if, instead of ; < fIr we write ar. < nr. Thus t
restriction on ar enables us to use a simple code number, which can
set up very quickly. The computer works still more quickly, but t
instruction causing the code number to be read is of the type requirin
signal from the single -shot key, so that the operator has time to deei
what to set up.
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The other restriction already mentioned, namely that no two of the p,.
may be equal, makes it possible to remove any pr from the trial set by
proceeding in exactly the same way as for adding one to it. The programme
is arranged so that any pr fed in is added to the set, and its Ar computed
and added to A, unless it is already present, in which case it is removed.

The procedure for finding a suitable set of pr to meet a specification will
!now be described by reference to an example.
Example
.In Fig. 1, curve A shows the delay characteristic of a certain filter of
Cauer-Darlington type. This filter was designed to meet a rather stringent
,specification for attenuation, but unfortunately it quite fails to meet the
specification for delay, namely that this should be constant from S2 = 0 to
n = The design of a suitable equalizer proceeds as follows.

1. Decide on a reasonable constant level for A in the combination of
rter and equalizer. Here 18 was chosen after two lower values had failed

give a useful result. In some cases this level may be specified.
2. Compute the difference between this constant level and the delay

f the filter at a sufficient number of frequencies for plotting. These
ifferences make up the specification for the equalizer.
3. Feed this equalizer specification into the computer by the normal

mnched card machinery. The values are then suitably scaled and plotted
n a particular delay line, appearing on the monitor as in Fig. 2. Fig. 3 is
n ordinary plot of the values as fed in.
4. Feed in various trial values of pr up to the required number (in this

:ase three), and adjust these values by removing and replacing until the

tl

11.
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..

a ..
... ..... .... ,..... ....

Fig. 2 and Fig. 3 (right)
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Fig. 4 and Fig. 5 (right)
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corresponding delay characteristic is the best possible match to th,
required one. The pr are fed in by means of the input keys and single-shc
key, as described, and by switching the monitor the delay characterist
produced (Figs. 4 and 5) and the values of pr producing it (Figs. 6 and
can be observed.

5. A permanent record can be obtained on punched cards by alterin
the course of the programme with another control. The stored values
pr and A are unaffected by this procedure, so that further adjustmen
can be made if desired.
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Naturally, some practice is necessary before a reasonable speed of
operation is attained. Even then quite a large number of trials may be
necessary; the result shown in the figures was obtained after about twenty
minutes' -work, though the time taken for one trial, from pressing the first
key to seeing the complete plot, is only about 4 seconds. Some idea of the
effect of altering one of the pr can be got from Figs. 8 to 11, which show
the results of moving p3 (in Fig. 7) one dot up, down, left and right

Fig. 8 Fig. 9

Fig. 11
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respectively. Curve B in Fig. 1 is a reproduction of the equalizer characteris
tic in Fig. 5, and curve C shows the characteristic of the complete syste
of filter and equalizer (the sum of A and B).

When such a characteristic has been obtained, it can be improved b
another " Deuce " programme, in which the computer is left to do its ow
adjusting. This programme is of an orthodox nature, and as no displa.
is called for the full accuracy of the computer is available, but it is no
practicable to use it until a fairly close approximation has been reache
by the use of the display programme. Each a,. and S-2, is moved in tur
by a small amount at a time in the direction that reduces the mean squar
error of the delay, until this error begins to increase again. When all th
pr have been dealt with, the procedure is repeated until no furthe )
improvement can be made. Curve D, Fig. 1, shows the effect of applyin
this programme to the previous result.

Conclusion
When it was required to design networks with specified phase characteriE
tics, the construction of an analogue computer was contemplated. Becaus
of a lack of facilities for such work, it was not possible to proceed in thi
direction; but the " Deuce " being available, the method described in thi
article was developed and has been successfully applied to a number o
networks. It is not suggested that the results are better, or have bee
obtained more quickly or cheaply, than if an analogue computer had bee -
used; the application of " Deuce " to this problem was justified by th
special circumstances. A similar approach to other types of problem ma.
be worth considering as an alternative to the analogue computer.
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INSERTION -LOSS EQUALIZATION,
WITH A DIGITAL COMPUTER

By D. J. HULL, B.Sc

This article deals with one approach to the problem of equalizing the amplitude
response of a network which has a prescribed phase -delay characteristic. The
insertion loss voltage ratio of such a network is a polynomial in p = and
Yte network may then be realized as a constant k configuration ladder filter.

Such a polynomial may be produced using the method described by D. J.
Brockington(1) which by manipulation of the zeros in the complex frequency
b -plane provides a function whose phase -delay approximates closely to some
desired characteristic.

The amplitude of such an insertion -loss function is generally unsuitable for
ise as a filter response, but it is possible in some cases to equalize the response
p as to obtain a desirable amplitude over the required frequency range,
vithout changing the phase -delay characteristic.

ntroduction
ionsider the insertion -loss function as a polynomial A (p) where p is the
omplex angular frequency. To equalize this response whilst maintaining
e phase, it is obvious that entirely real factors must be added. In this

rticle we shall consider the effect of providing a real denominator of the
01'111

m

P(p)=K11(p2±C2,s2)
s=1

where S-22 > 0
cos

A
and K

(0)

P (0)
his is then, an even polynomial in p.
Since the resultant amplitude response is required to have infinite loss

it infinite frequency, we can state that the degree of A (p) must be greater
Sian the degree of P (p). Furthermore, since we desire a constant ampli-
ode response in the specified range, it can be seen that the respective

plitudes of A (p) and P (p) must have the same "shape" over the range.
he final amplitude response in dBs is now given by:

20 log I A (f2) I- 20 log I P (f2) I

= 20 log I A (f2) I - 20 log K - 20 log I - 2 ± D s

s ---- 1

there the phase -delay characteristic is maintained.
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I 2dB

6dB

0 L5

Fig. 1

The amplitude response of A (p) may either increase or decrease as
increases from zero, and tends to infinity as SI -- oc (see ref. 2, p. 128)

(p2 cpcos)
If the amplitude of A (p) increases, a factor of the form

cos

needed in the denominator, since this has an amplitude response whic
increases monotonically with Q. The response of such a factor is shown i
Fig. 1.

,n
oos2If the response decreases initially, a factor of the form r ü2

ccs

required. In this case the frequency of infinite loss at Q = Q., must b
beyond the required range of equalization. Fig. 2 shows the response i
dBs of such a factor.

When a factor is chosen in this manner, the infinite loss at S2 = SZ
provides much sharper cut-off beyond the specified range.

-n

Fig. 2
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iPPLICATION OF A DIGITAL COMPUTER FOR AMPLITUDE DISPLAY

programme has been written which will evaluate a given insertion -loss
function over a specified range of normalized frequencies, and display it
In

decibels on one of the monitor tubes of the computer (see ref. 1, p. 143).
k facility is then provided to construct a denominator of the required form
y feeding in the values of S27, or j1-27, from a set of keys on the control
anel. Factors may be added to, or withdrawn from, the denominator at
vill, and after each operation the resultant amplitude is again displayed.
For the display, the horizontal scale corresponds to normalized frequency

Fig. 3

Fig. 5

Fig. 4

Fig. 6
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over the range 1-20 < f2 < C20 + 30 852, where i'20 and 8f1 are chosen
cover the specified range. The vertical scale, which is in decibels, is varial
and whenever the computer displays an amplitude this scale may
altered to give either a more detailed, or more general, display of tl
particular response. The dB scale can range between 0.001 dB and 9.999 c!
per step, and these figures are also the limits for values of c/.

It may be seen that in this system fairly rapid adjustments can
made to the denominator and the overall effect on the amplitude c
sidered immediately. This enables many combinations of factors to
tried in a short time.

The following example, with illustrations, shows a typical set of result

Example
The example chosen is a two section network with flat delay, wh(
insertion loss polynomial is:

A(p)=4-58012 12.94031p ± 16.37161p2+11.77062p3 4.17648p -4 -Hr

Four illustrations are given, of a set of displays obtained by the co
puter, and are as follows:

Fig. No. Response Frequency Range dB Scale
3 A (p) 0 -5 2 dB/step

4
A (p)

0-5 1 dB stepp2 - 1.242

5 A (p) 0-5 1 dB step- 1.242) (p2+ 2.52)

6
(p)

0 -1.5 .05 dB:stet(p2 - 1.242) (p2 + 2.52)

The network configuration, and realization, of this last case
described elsewhere in this publication (see ref. 2, p. 137).

Finally the author wishes to acknowledge the help and encouragem
he has received from Mr. J. K. Skwirzynski since the initial concepti
of this method of equalization.
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