
Bernard Babani Books

r-Programming

in C++

Programming in C++

by

Mark Walmsley

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of
this book to ensure that any projects, designs, modifications
and/or programs, etc., contained herewith, operate in a

correct and safe manner and also that any components
specified are normally available in Great Britain, the
Publishers and Author(s) do not accept responsibility in any
way for the failure (including fault in design) of any project,
design, modification or program to work correctly or for
damage caused to any equipment that it may be connected
to or used in conjunction with, or in respect of any other

damage or injury that may be so caused, nor do the

Publishers accept responsibility in any way for the failure to

obtain specified components.
Notice is also given that if equipment that is still under

warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 1997 BERNARD BABANI (publishing) LTD
First Published — October 1997

British Library Cataloguing in Publication Data:

A catalogue record for this book is available from the British Library

ISBN 0 85934 435 5

Cover Design by Gregor Arthur
Cover Illustration by Adam Willis

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

ABOUT THE AUTHOR

Mark Walmsley first discovered his interest in
computing in the early 80s after reading a book on COBOL
— he was soon writing programs in BASIC and shortly
afterwards learnt about Z80 machine code. Over the last
fifteen years he has gained considerable software
development experience working with assembly code
(for Z80, 68000 and 80x86 processors) and high-level
languages (Pascal, FORTRAN, C, C++ and Java) — he is
equally familiar with both UNIX and Windows operating
systems. Along the way he graduated first from Durham
University and then from York University gaining degrees in
Mathematics and Electronic Engineering — he eventually
returned to Durham to study for a PhD in Computational
Physics and there he was involved in developing simulation
software for modelling electronic components. More recently
his days are devoted to the twin pursuits of designing
multi-player computer games and writing books on
computer programming.

ABOUT THIS BOOK

This book provides an introduction to the C++
programming language and its use in the design of object
oriented software. The book is aimed at anyone interested in
learning about C++ and object oriented programming but
should be particularly useful for those wishing to rapidly
acquire a good understanding of the language and start
writing C++ programs. No prior knowledge of C++ (or
indeed C) is assumed although a general background in
computing will be helpful — the presentation is pyramidal in
structure with early chapters laying the foundations for those
that follow. Each new concept is fully explained with the
help of line-drawings and illustrative coding examples.

Following a general introduction in chapter 1 the book is
divided into three parts:

I. Basic Language Features (chapters 2 to 5)
II. Classes and Objects (chapters 6 to 10)
Ill. Advanced Language Features (chapters 11 to 15)

The first part discusses C++ data types, expressions,
statements and functions. Classes form the basis for all
object oriented facilities available in the C++ language —
the second part of the book covers constructors and
destructors, regular classes, operator overloading and
dynamic objects. The final part of the book examines the
different sorts of class provided by C++ (concrete, template,
inheritable, interface and exception) and details their uses.
The coverage throughout is broad rather than deep — many
esoteric details are omitted for the sake of clarity.

The book contains numerous coding examples and several
fully developed C++ classes — these can be modified to
form the basis of a personalized C++ softwaic library. All
the code has been compiled and tested under Microsoft's
Visual C++ (version 4.0) — no Microsoft specific extensions
are assumed and the software should work with any
compiler conforming to the current ANSI standard for the
C++ language.

CONTENTS

1. Overview of the C++ Language 1

The C++ Programming Language — Objects and Classes

— Building a C++ Program — The Hello Program — Class

Libraries and Software Components — Software Reusability

2. Data Types and Expressions 13

Basic C++ Data Types — Structured Data Types —

Expressions — Arithmetic Expressions — Assignment

Expressions — Comparison Expressions — Logical

Expressions — Bitwise Expressions — Input and Output

Streams — Finding the Average

3. Pointers, References and Arrays 27

Memory Storage — Address and Indirection Operators —

References — Pointer Types — Pointer Arithmetic —

Arrays — Strings — Multi-Dimensional Arrays

4. Statements 37

C++ Statement Types — Simple Statements — Block

Statements — Conditional Structured Statements —

Looping Structured Statements — Insertion Sort

5. Functions 49

C++ Functions — Invoking a Function — Pointers and

References — Return Values — The const Keyword —

Function Pointers — Function Overloading

6. Classes and Objects 59

From struct to class — C++ Objects — Encapsulation

— Object Pointers — Data and Function Categories —

Creating and Destroying Objects

7. Constructors and Destructors 69

Object Creation and Destruction — Constructors and

Destructors — The Default Constructor — Constructor

Overloading — Temporary Objects — Embedded Objects

— The STRING Class

8. Regular Classes 79

User-Friendly Classes — Default Constructor and Destructor

— Copy Constructor — Assignment Operator — Equality

Operators — Dictionaries

9. Operator Overloading 89

Operators and Operands — Arithmetic Operators

Subscript Operator — Increment and Decrement Operators

— Function Call Operator — Pointer Operator — Type

Conversion Operators — Friend Functions

10. Dynamic Objects 105

Static and Dynamic Objects — Dynamic Arrays

Reference Counting — Memory Management — Global new

and delete Operators

11. Concrete Classes 119

Class Categories — Hierarchical Data Structures — Lists —

Recursive Programming — Trees — Heaps — Collection

Classes

12. Templates 135

Type Parameters — Template Classes — The VECTOR

Class — Wrapper Classes — Template Functions

13. Inheritance 145

Base and Derived Classes — Deriving a Class — Protection

Keywords — Field and Function Overriding — Virtual

Functions — Pointers and Functions — Derived Class

Constructors — Virtual Destructors

14. Interfaces 161

Pure Virtual Functions — Polymorphism — Notification

Classes — The UNKNOWN Interface — Software

Components — Smart Interface Pointers

15. Exceptions 175

Error Handling Schemes — Throwing Exceptions — Error

Handler Selection — Unwinding the Stack — Constructors

1. Overview of the C++ Language

The C++ programming language was originally
conceived by Bjarne Stroustrup as an extension of the
popular C language that would provide support for object
oriented design. The C++ language started life as "C with
Classes" and only later received its present name — the
increment operator ++ denotes that C++ is something more
than C. Indeed C++ inherits many of its features from C. It
has a small number of intrinsic data types and programming
constructs but complex data structures and processing
algorithms can be built by combining the basic elements.
Furthermore, both C and C++ provide a plentiful supply of
operators for data manipulation. In fact, the main addition to
C found in C++ is the class mechanism. Each C++ class
defines a collection of objects all with similar characteristics,
and every C++ object belongs to some class. Thus C++
classes underlie all of the object oriented facilities available
in C++. An effective use of C++ consequently demands a
good understanding of the base language shared with C and
in addition a familiarity with the concepts of object oriented
programming (00P). This chapter presents an overview of
C++ as an object oriented programming language,
chapters 2 to 5 cover the basic language features and
chapters 6 to 10 discuss C++ classes and objects. Finally,
chapters 1 1 to 15 outline the mechanisms provided by C++
to assist in the design of software that can easily be reused
in new projects with little or no modification. The production
of reusable software is an excellent reason for adopting an
object oriented approach to software design.

1.1 The C++ Programming Language

A C++ program consists of a sequence of program
statements ordered from top to bottom. The C++ language
is free-format so that the text of the various statements may
(with a few restrictions) be laid out in a fashion that best
emphasizes the function of the code. In particular, extra
spaces, blank lines and comments can be added where
necessary and a semi-colon (;) is used to mark the end of a
statement. Each program statement performs one of three

1

basic operations:

1. To specify structure or format
2. To allocate storage space
3. To process data

For every piece of data processed by the program, these
three operations must be performed in sequence. Firstly, a
data structure may be specified by a statement such as:

struct DATE {

int Day;

int Month;

int Year;

1;

Here a DATE structure is declared as consisting of three
integers (it) which indicate the day, month and year. Of

course, the C++ language itself defines the structure of
some basic data types (such as int) to serve as building
blocks for other data types. To allocate storage space for
two data items, one of the basic type int and another of the
user-defined type DATE, requires a pair of statements such
as:

int count;

DATE today;

These statements create variables with the names count
and today as shown in the figure below:

count variable

today variable

integer

Day field

Month field

Year field

integer

integer

integer

2

The variables can now hold data of the relevant type and be
assigned values in subsequent data processing statements.
For example, after the statement:

count = 10;

the variable count holds the value 10. This value may be

modified as the count variable is processed further. To

define a constant piece of data requires a statement such
as:

const int TEN = 10;

A typical C++ program also defines a collection of

functions to process its data. A function in C++ is a modular
piece of code which accepts data in the form of variables
and constants, performs various calculations using these
parameters and finally returns a result. The format of the
parameters passed to a function must be specified by some
program statement that precedes the first use of the
function to process data. For example, the following

statement declares the Weekday () function as accepting a
single parameter of type DATE and returning an integer

result:

int Weekday (DATE) ;

The function calculates which day of the week corresponds
to its parameter and returns a coded result: Sunday - 0,
Moday - 1, , Saturday - 6. The important point to note is
that this function declaration statement must precede any
data processing statement such as:

count = Weekday (today) ;

This statement invokes the Weekday () function by passing

it the value of the today variable and then stores the result

calculated by the function in the count variable. The

processing statements actually executed by the Weekday ()

function must also be defined somewhere. A matching pair
of braces { J are used to enclose these statements — an

3

example of the syntax follows:

int Weekday(DATE date) {

// perform processing here

This introduction to the C++ language is expanded in
chapters 2 to 5.

1.2 Objects and Classes

In object oriented programming a problem is solved by
identifying the essential ingredients of the problem and
defining various object types to represent these concepts.
The interaction of the objects then models the original
problem and a solution may be expressed in natural terms.
The previous section looked at C++ constants and variables
for basic and structured types. The C++ language provides
built-in support for processing data of basic types — for
example, the arithmetic operations on integers (such as
addition or multiplication) form an intrinsic part of the C++
language. Objects in C++ allow the same sort of capabilities
to be provided for structured data types that are
user-defined. In other words, a C++ object comprises two
elements:

1. Structured data
2. Functions for manipulating this data

As an example, the C++ language provides an operator ++

which can be used to increment the value of an integer. An
analogous operation could be defined for a DATE object by

extending the structured data type DATE of section 1.1 with
the definition of a function that moves a DATE object from

today to tomorrow. However, C++ objects do not occur
individually but each one belongs to a particular class. All
objects from the same class share the code which defines
their functionality so that a C++ class provides a blue- print

4

for generating a whole set of objects all with the same basic
characteristics. Thus a DATE class could provide enough

DATE objects to fill in the entire calendar! The individual
objects are distinguished from each other by their own
personal data structures — this data is not shared by other
objects of the class. Hence, an object in C++ is associated
with:

1. Personal data
2. Code shared with other objects of the class

These two elements should be viewed as internal to the
object so that the implementation details are hidden from
the outside world — this notion is known as encapsulation'.
Of course, a program must be able to send requests to an
object (such as setting the Day, Month and Year fields of a

DATE object or asking it to move on a day) and the object

may want to acknowledge these requests. The solution is to
provide a well-defined communications interface for passing
messages to and from the object. As long as the program
makes requests through the interface and leaves the
internal processing to the object, encapsulation is
guaranteed. In C++ an interface is implemented as a series
of functions and requests are sent to an object by invoking
the appropriate functions. The details are covered in
chapters 5 and 6 but the following figure demonstrates the
essential ideas:

C++ Object

Send request --->

by invoking function

Function return value

provides reply •

Personal Datal

, Pointer

C++ Class

Shared Code

The benefit of encapsulating object implementation details
and instead communicating through an interface is that code
is modularised and interdependencies are reduced. Indeed

5

one object may be substituted for another as long as they
both support the same interface — this is the concept of
'polymorphism' and it is discussed more fully in chapters 13
and 14.

1.3 Building a C++ Program

The construction of a C++ program can be quite a
complicated business so it is important to understand the
three main steps involved. Each of these steps uses a
different tool:

1. Editor
2. Compiler
3. Linker

The editor is used to produce the text files containing the
C++ source code. These files are fed to the compiler which
checks them for errors in syntax and (assuming all is well)
proceeds to convert them into object files — these contain a
machine language version of the code. Finally, the linker
combines all the object files into a single executable file.
The process is illustrated in the following figure:

Program Design

EDITORJ

Source file

\If

COMPILER

Object file

LINKER

Executable file

6

<— Header files

Object/Library files

The figure shows that there are many different types of files.

To help distinguish between the various types, each
filename usually ends with the following extensions:

source file: . cpp or . cxx

header file: . h

object file: . 0 or .obj

library file: . lib

executable file: .exe

The source files contain C++ code consisting predominantly
of statements for data storage allocation and data
processing. The C++ program statements which specify
data structures and function parameter formats typically
appear in the header files. Header files are also a good

place for constant definition statements. Each header file
may be shared by a number of different source files all of
which use the data structures, constants and functions
declared in the header. A source file should contain include
directives for the compiler that name the header files

required:

#include <system.h>

#include "user.h"

There are two flavours of include directive — for header
files supplied by the system the filename must be enclosed
by angle brackets < > whilst for user-defined headers

double quotes " " are required instead. The include

directives typically appear at the head of a source file so
that the included specification statements and constant
definitions are placed before any other statements.

The code which implements the functions declared in the
header files is provided by separately compiled object files
and is linked into the executable file by the linker. A

collection of related object files may be packaged into a
single library file. This simplifies the process of providing the
linker with all the necessary object files (of which there may

be many).

7

1.4 The Hello Program

It is time to try your hand at producing a C++ program.
Every C++ program must contain the definition of a function
called main() which performs all the processing for the
program. When a C++ program is run control passes to the
main () function and after the main () function returns the
program execution ceases. The value returned from the
main () function may be used by the operating system as
the exit code for the program — a value of zero typically
indicates that processing completed normally. In a Windows
based environment the main () function is replaced by the
winmain () function but the overall process is basically
unchanged. The program shown below prints Hello! on
the screen:

#include <iostream.h>

int main (void) (
cout << "Hello!\n";

return 0;

This is a small program but there are lots of things to
understand. Firstly, the format of the main () function is

specified by the C++ language itself — it takes no
parameters (indicated by the keyword void) and returns an •
integer result. In this case, the return statement passes a

zero value back to the operating system. The only program
statement to perform any useful processing is:

cout << "Hello!\n";

The Hello! message is provided as a character string
value which must be enclosed in double quotes. The output
operator « prints this string on the screen by sending it to
the output stream cout (console output). The output
stream cout is in fact an object defined in the header file
iostream.h and so this header must be included with a
suitable directive to the compiler:

#include <iostream.h>

8

The output stream object cout is responsible for actually

printing the Hello! string on the screen. Finally, the \n

part of the character string is an escape sequence (newline)

that tells the cout object to position the cursor at the start of

the next line.

1.5 Class Libraries and Software Components

An object rarely exists in isolation and will usually be

designed to work in connection with other objects. For

example, in a document application one object may manage

the document as a whole and act in concert with other

objects, each of which controls an individual page within the

document. There are essentially two ways to group objects

into a larger functional unit:

1. Class Libraries

2. Software Components

A class library is simply a collection of related class

definitions. It is distributed with a set of header files that

describe the object interfaces provided by the library —

these header files must be included within the source files of

any application using the library. The other half of the

distribution consists of precompiled object code that

provides the implementation of the library classes — this

may be linked to the application code during the build

operation or dynamically during execution. The important

point to note is that the library and application are tightly

bound together and so changes to the class library nearly

always require that the application executable be rebuilt. On

the other hand, the objects within a software component are

entirely separate from the main application code and are

manipulated only through pointers to object interfaces.

Consequently, the main application and any components it

uses may be updated independently without continual

rebuilding. The following figure shows the construction of an

9

application from components:

Main Application

Component

Reusable Component

Object Object

[Object

Object LObject

Each application represents an activity performed by the
user such as searching a database, word-processing or
sending an e-mail message. The application typically
consists of several components each providing the
functionality for some aspect of the application's overall
processing. For example, a database application may
employ one component to interact with the user and another
to manipulate the database. Within each component are
objects that together implement the services provided by
the component. Every object is controlled by sending it
messages through a communications interface — in fact, an
object may support multiple interfaces, each one
representing a different facet of the object's operation.
Finally, the object interfaces are composed of various

functions and sending a request to an object is achieved by
invoking the appropriate function. Chapters 11 to 13 look at

class libraries and discuss how to design classes for
inclusion in a library whilst chapter 14 focuses on software
components.

1.6 Software Reusability

One excellent motive for working with objects is to
simplify the task of developing software which can be
readily reused. Class libraries and software components
permit such reuse but are essentially just ways of packaging
C++ classes. However, the C++ language itself provides
three basic mechanisms for enabling software reuse.

10

If the above constructor is supplied with a single float
argument it will act as a type conversion operator from type
float to type COMPLEX. This conversion will be applied

implicitly by C++:

COMPLEX z = 2.0;

Here the floating-point value 2.0 is implicitly converted to
a COMPLEX object. Similarly, real and complex numbers can
be mixed in an expression:

COMPLEX i = COMPLEX(0.0,1.0);

COMPLEX z = i*3+2;

The integer values 3 and 2 are converted to floating-point
values by a built-in conversion and then to temporary
COMPLEX objects — the C++ language will perform at most
one built-in conversion and one user-defined conversion on
each piece of data. Note that the overloaded * and +
operators must be provided with a COMPLEX object as their
left-hand operand — the next section demonstrates a
technique to overcome this restriction.

The second kind of user-defined type conversion operator is
defined as an overloaded operator. For example:

class COMPLEX f

public:

operator float(void) const;

COMPLEX::operator float(void) const (

return (float)sqrt(Real*Real+Imag*Imaq);

The operator function returns the modulus of the complex
number held by the COMPLEX object. Note that the return
type is not specified since it is implicit in the function name
— the function performs a type conversion from COMPLEX
to float. The result is calculated using the sqrt()

100

function which is declared in the math.h system header.

The type conversion will be applied implicitly in code such

as the following:

COMPLEX z;

float modulus - z;

Care should be exercised when defining type conversion
operators since they be may applied implicitly in unexpected
circumstances. For example, if the + operator is overloaded

by the COMPLEX class and type conversions from float to

COMPLEX and back both exist, then the following addition

expression is ambiguous:

float x;

COMPLEX z;

z+x;

The two possible interpretations of z+x are:

1. Convert z to type float and add x

2. Convert x to type COMPLEX and add z

However, the expression x+z uniquely specifies the first

option even though there is a float to COMPLEX

conversion available.

Of course, explicit type conversions involving user-defined
functions are also possible. For example:

z = COMPLEX(x);

X = float(z);

Alternatively using casting notation:

z = (COMPLEX)x;

x = (float)z;

9.8 Friend Functions

The final point about operator overloading is that it may
be performed using global friend functions instead of
functions belonging directly to a class. For a unary operator

101

the operand is passed as the lone parameter of the friend
function, whilst for a binary operator the left- and right-hand
operands appear as the first and second parameters

respectively — the left-hand operand need not be an object.
However, in other respects operator overloading with friend
functions is very similar to using class functions. For

example:

class COMPLEX f

friendCOMPLEXoperator+(float,constCOMPLEX&);

COMPLEX operator+(float x,const COMPLEX& z) f

return COMPLEX(x+z.Real,z.Imag);

The overloaded + operator function belonging to the

COMPLEX class and the above friend function together

permit the following pair of addition expressions involving a
mixture of real and complex numbers:

COMPLEX z;

COMPLEX i(0.0,1.0);

z = i+2;

z = 2+i;

The first addition invokes the class function whilst the
second invokes the friend function.

Friend functions are particularly useful when the « and »

operators are overloaded to perform input and output — in
this situation the stream object should be the left-hand
operand and so overloading with a function of another class
is not possible. The approach provides a more elegant
solution to input/output processing than does the definition
of assorted functions such as Print () for each class. For

example, the STRING class can replace the Print()

function defined in section 7.7 with an overloaded «

operator function.

102

The necessary modifications are as follows:

class STRING {

friend

°stream& operator<<(ostream&,const STRING&);

ostream&

operator<<(ostream& out,const STRING& string)

for (int i=0; i<string.Length; i++)

out << string.String[i];

return out;

1

A string can then be displayed with code such as the
following:

STRING hello("Hello");

cout << hello << '\n';

An output operator for the COMPLEX class may be similarly
defined:

class COMPLEX {

friend

°stream& operator« (ostream&, const COMPLEX&) ;

I;

°stream&

operator<<(ostream& out,const COMPLEX& z) {

out << '(';

out << z.Real;

out << ',';

out << z.Imag;

out << ')';

return out;

103

To display the complex number held by a COMPLEX object
the following code may be used:

COMPLEX z;
cout << " z = " << z << '\n';

The output statement will print:

z = (0,0)

104

10. Dynamic Objects

The global, local and temporary objects considered in
earlier chapters are examples of static objects — the
lifespan of these objects is determined at compile time. By
contrast dynamic objects are explicitly created and

destroyed at run-time using the new and delete operators.

Furthermore, storage space for static objects is typically
allocated on the stack whilst that for dynamic objects is
taken from a pool of free memory. Indeed the creation and
destruction of dynamic C++ objects is intimately linked with
the management of memory storage allocated to these

objects. This chapter examines two implementations of the
STRING class as examples of programming with dynamic

objects. The overloading of the new and delete operators

is also discussed.

10.1 Static and Dynamic Objects

The previous chapters have dealt with C++ objects that
may be categorized as follows:

1. Global Objects
2. Local Objects
3. Temporary Objects

Objects of these three sorts may be described as static
objects in the sense that their lifespan is fixed at compile
time — global objects exist throughout the entire execution
of the program, local objects exist whilst the block statement

in which they are declared is processed and temporary
objects exist during the evaluation of an expression. The
storage space for static objects is typically allocated on the
stack — the stack is a special area of memory reserved by
the program and the total storage available within the stack
is often limited. The operation of the stack is intimately tied
with function invocations — the figure on the following page
illustrates the state of the stack before, during and after a
function call.

105

Before Call

Allocated Allocated
Storage Storage

During Call After Call

Available
Storage

Current
Stack Frame

Available
Storage

Allocated
Storage

Available
Storage

A chunk of memory to hold the current stack frame is
allocated for the duration of the function call. The stack
frame contains such items as the function parameters, local
and temporary variables as well as the function return
address — the return address indicates the point in the
program where execution should resume once the function

returns. When function calls are nested, new stack frames

are added as the nested functions are entered and lost as

the functions return. Hence the amount of storage allocated

on the stack grows and shrinks as the program executes.

In addition to static objects C++ also provides dynamic

objects — the lifespan of a dynamic object is determined at

run-time and is under complete control of the programmer.

The creation and destruction of a dynamic object are not
directly related to function invocations and so storage for a

dynamic object cannot be allocated on the stack. Instead

storage for dynamic objects is allocated from a pool of free
memory which is typically much larger than the stack —

indeed the dynamic memory pool will usually contain all the

remaining memory not assigned to the stack or otherwise
required by the system.

The operators new and delete are provided to create and

destroy dynamic objects. The process is very similar to that

106

for static objects — during creation the following two steps
are performed:

1. Storage Allocation
2. Object Initialization

and during destruction the steps are:

1. Object Finalization
2. Storage Deallocation

As with static objects, dynamic objects are initialized by
invoking their constructor and they are finalized by invoking
their destructor. The only difference between static and

dynamic objects is that the former have storage allocated on
the stack whilst the latter have storage allocated from the

free memory pool. Here is an example of creating and

destroying a dynamic DATE object:

DATE* today = (DATE*) new DATE;

delete today;

The new keyword is followed by a type name and generates

a dynamic object of the specified class — the operator

returns a void pointer which must be cast to a pointer of

the appropriate type before being assigned to a pointer
variable. The dynamic object continues to exist until the
delete operator is applied to its pointer — at this point the

object is destroyed. Note that applying the delete operator

to a null pointer is allowed and has no effect.

Incidentally, the new and delete operators also work with

basic C++ types so the following code processes a dynamic
integer variable:

int* count = (int*) new int;

delete count;

107

A dynamic object (or variable) is never referenced by name
and is always manipulated through a pointer. For example:

DATE* yesterday = (DATE*) new DATE;

yesterday->SetDate(1,1,1970);

This code sets the value of the dynamic DATE object by

applying the -> operator to its yesterday pointer. The

information could also be passed directly to the object's
constructor:

DATE* yesterday = (DATE*) new DATE(1,1,1970);

Here the yesterday variable receives a pointer to a DATE

object which has already been initialized.

10.2 Dynamic Arrays

C++ also supports the creation of dynamic arrays — the
element type may be either built-in or user-defined. The
syntax is straightforward:

int* array - (int*) new int[10];

delete [1 array;

This code processes an array of ten integer elements. Note
the use of the [J marker with the delete operator — this

tells C++ that it must determine the length of the array to be
deleted. To enable this operation C++ stores the length of
each array as it is created — the E] mechanism means that

this value need only be stored for arrays and not for every
dynamic object. Nonetheless, the following (hypothetical)

notation would be nicer:

delete array[];

Anyway, when a dynamic array is created the default
constructor is invoked to initialize each array element —
unlike dynamic objects it is not possible to supply arguments
to each array element constructor.

108

The STRING class defined in section 7.7 used a static
characterarrayto hold its string — the class is updated here
to handle arbitrary length strings by replacing the static
array with a dynamic array. The class specification follows:

class STRING I

public:

STRING(const char* = 0);

STRING(const STRING&);

-STRING (void);

STRING& operator=(const STRING&);

STRING operator+(const STRING&) const;

private:

char* String;

int Length;

I;

The first constructor creates a dynamic character array just
largeenoughtohokithestring passed in asa parameter:

STRING::STRING(const char* string) (

Length = 0;

if (! string) return;

const char* letter = string;

while (* letter++) Length++;

if (! Length) return;

String = (char*) new char[Length];

for (int i=0; i<Length; i++)

String[i] = string[i];

The copy constructor is similar but the Length field can be
copied directly from the existing object:

STRING::STRING(const STRING& string) {

Length = string.Length;

if (! Length) return;

String = (char*) new char[Length];

for (int i=0; i<Length; i++)

String[i] = string.String[i];

109

These mechanisms are:

1. Object Linking and Embedding
2. Inheritance
3. Templates

The first option simply allows one object to be incorporated
within another, either directly (embedding) or through a
pointer (linking). The functionality provided by the inner
object is readily available to the outer object with no further
coding cost. Inheritance relies on the derivation of one C++
class from another (base) class. The derived class
automatically inherits many of the characteristics of the
base class. The mechanism of inheritance is discussed in
detail in chapter 13. Finally, templates provide a means of
creating several C++ classes from the definition of a single
template class thus avoiding unnecessary code duplication.
C++ template classes are the subject of chapter 12.

11

The copy constructor performs a deep copy as discussed in

section 8.3 — an alternative approach which employs

reference counting is presented in the next section.

The STRING class destructor is responsible for destroying

the character array if it exists:

STRING::-STRING(void)

if (Length)

delete [1 String;

The assignment operator for the class combines the

processing performed by the destructor and the copy

constructor. However, the function must first check that the

STRING object is not being assigned to itself — without this

check the object's dynamic character array would be deleted

before it could be copied.

STRING&

STRING::operator=(const STRING& string) {

if (this == & string)

return * this;

if (Length)

delete [] String;

Length = string.Length;

if (! Length)

return * this;

String - (char*) new char[Length];

for (int i=0; '<Length; i++)

String[i] = string.String[i];

return * this;

1

Finally, the + operator is overloaded to permit string

concatenation — the result of applying the concatenation

operator to a pair of strings is another string that contains

the original two strings one after the other. The STRING

110

class implements the concatenation operator as follows:

STRING

STRING::operator+(const STRING& right) const

{

int length = Length + right.Length;

if (! length)

return STRING();

char* string = (char*) new char[length+1];

for (int i=0; i<Length; i++)

string[i] = String[i];

for (i=0; i<right.Length; i++)

string[i+Length] = right.String[i];

string[length] = 0;

STRING leftright(string);

delete [] string;

return leftright;

The left- and right-hand STRING operands of the overloaded

operator have their string fields copied to a dynamic

character array. This array is then used to construct a new
STRING object which is returned as the result of the

concatenation. Here is some code to test the class:

STRING good("Good");

STRING bye("bye");

STRING goodbye = good+bye;

cout << goodbye << '\ n';

The STRING class needs a friend function to overload the

« operator — see section 9.8 for a suitable definition.

10.3 Reference Counting

An alternative method of implementing the STRING

class is to define a related TEXT class to hold the actual

character strings — each STRING object contains a pointer

to an associated TEXT object. The method involves shallow

copying of STRING objects — see section 8.3 for further

details on shallow and deep copying.

111

Each TEXT object maintains a reference count which
indicates how many STRING objects are currently
referencing it — whenever the reference count drops to zero
the TEXT object destroys itself. The TEXT class specification
is as follows:

class TEXT (

public:

TEXT(const char*);

-TEXT (void);

void Acquire (void);

void Release (void);

private:

char* String;

int Length;

int Count;

1;

The TEXT constructor stores the string parameter and sets
the count field to 1 indicating that one STRING object
references this TEXT object:

TEXT::TEXT(const char* string) (

Count = 1;
Length = 0;

if (! string) return;

const char* letter = string;

while (*letter++) Length++;

if (! Length) return;

String = (char*) new char[Length];

for (int i=0; i<Length; i++)

String[i] = string[i];

The destructor releases the dynamic character array if it
exists:

TEXT::-TEXT(void) (

if (Length)

delete H String;

112

The Acquire() and Release() functions respectively
increment and decrement the TEXT object's reference
count:

void TEXT::Acquire(void) f

Count++;

}

void TEXT::Release(void)

if (--Count) return;

delete this;

The Release () function is responsible for destroying the
TEXT object when its reference count drops to zero.

The STRING class specification follows:

class STRING f

public:

STRING(const char* = 0);

STRING(const STRING&);

-STRING (void);

STRING& operator=(const STRING&);

private:

TEXT* Text;

;

The first constructor creates an associated dynamic TEXT
object:

STRING::STRING(const char* string) f

Text = (TEXT*) new TEXT(string);

The destructor releases the reference to the TEXT object:

STRING::-STRING(void) (

Text->Release();

If the STRING object is holding the last reference to

113

the TEXT object when the destructor is invoked, the TEXT
object will also destroy itself.

The copy constructor duplicates only the pointer to the TEXT

object. However, the reference count for the TEXT object is
incremented by calling its Acquire() function:

STRING::STRING(const STRING& string) f

Text = string.Text;

Text->Acquire();

The assignment operator combines the actions of destructor
and copy constructor — as in the previous implementation
of the STRING class, a check must be made for

self-assignment to guard against releasing (and possibly
destroying) the TEXT object before it is acquired again.

STRING&

STRING::operator=(const STRING& string) f

if (Text == string.Text)

return * this;

Text->Release();

Text = string.Text;

Text->Acquire();

return * this;

To display the string represented by a STRING object the
two classes should define friend functions:

°stream&

operator<<(ostream& out,const STRING& string)

return (out << *(string.Text));

ostream&

operator<<(ostream& out,const TEXT& text) f

for (int i=0; i<text.Length; i++)

out << text.String[i];

return out;

1

114

10.4 Memory Management

Each C++ implementation supplies default versions of

the new and delete operators, but a class can overload

these operators much like any others. The first parameter of

the overloaded new operator must be of type size_t —

this type is defined in the stddef.h system header. The

overloaded delete operator may accept either one or two

parameters (but both variants are not allowed in the same
class) — the first parameter is a void pointer whilst the

second is of type size t. Additional parameters for the

new operator are considered in the next section whilst the

second parameter to the delete operator is discussed

further in chapter 13. For both the new and delete

operators, the size _t parameter indicates how many bytes

of memory should be allocated or deallocated. The new

operator must return a void pointer type and the delete

operator should return no result.

The POOL class will serve as an example of overloading the

new and delete operators. This class acquires a large pool

of memory and then allocates memory from the pool

whenever new POOL objects are created. The specification

for the POOL class follows:

class POOL f

public:

void* operator new(size_t);

void operator delete (vo id*) ;

private:

static POOL* Pool;

int Free;

int Data;

1;

The static Pool field belongs to the POOL class as a whole

and it is used to detect the creation of the first POOL object.

115

The field is initialized in a global statement that is processed

prior to execution of the main () function:

POOL* POOL::Pool = 0;

When the overloaded new operator is invoked, it checks

the Pool field and if it is zero the class memory pool is

acquired:

void* POOL: : operator new (size _t size) f

if (! Pool) f

Pool = (POOL*) :: new char[100*size];

for (int i=0; i<100; i++)

Pool[i].Free = 1;

1

for (int i=0; i<100; i++)

if (Pool[i].Free) break;

if (i<100) {

Pool[i].Free = 0;

return Pool+i;

}

return 0;

The global new operator is invoked to allocate a memory

pool by creating a dynamic character array. Since each

element of the character array will hold exactly one byte of

data, the allocated storage contains (100*size) bytes of

memory — this is just big enough to support a hundred

POOL objects. The global operator is specified by prefixing

the new keyword with the :: operator as discussed in the

next section. The static Pool field effectively acts as an

array of POOL objects — each element initially has its Free

field set to true to indicate that no dynamic POOL objects

have been created. At each invocation of the new operator,

the elements of the array are scanned to find an unallocated

object — the Free field of the new object is set to false.

116

The overloaded delete operator returns an object to the

pool by setting its Free field back to true:

void POOL: : operator delete(void* pointer) f

POOL* object = (POOL*) pointer;

object->Free - 1;

10.5 Global new and delete Operators

If a class does not overload the new and delete

operators, the global new and delete operator functions

provided by the C++ implementation are invoked instead.
The global operators are always available (even within a
class with overloaded versions) by prefixing the new and

delete keywords with the : : operator. It is possible to

redefine the global operators with user-defined functions.
The global new operator has an initial parameter of type

size_t whilst the global delete operator has a single

parameter of void pointer type. Overloaded versions of the

global new function can accept any number of additional

parameters (as can overloaded new operators defined by a

class) — these parameters are supplied in a parenthesized
list following the new keyword. For example:

DATE* today = (DATE*) new (1000) DATE (1, 1, 1970) ;

The value 1000 appears as the second parameter to the

new operator function whilst the other parameters (placed in
parentheses following the DATE type name) are passed

directly to the constructor of the dynamic object. One
possible use for the additional parameters to the new

operator could be to place objects from different classes in
separate memory pools.

117

118

11. Concrete Classes

Concrete classes are designed to provide some specific

functionality — the COMPLEX and STRING classes from the

previous chapters are examples of concrete classes. This
chapter looks at several more concrete classes which
embody the standard data structures commonly provided by
a utility class library — the class oriented nature of C++ is
especially well-suited to the implementation of these data
structures. Lists, trees and heaps are all considered as
examples of hierarchical data structures — such a structure
organises its data into a number of logical levels arranged in
a hierarchy below the root element. The manipulation of a
hierarchical data structure can be considerably easier if
recursive programming techniques are applied.

11.1 Class Categories

The remaining chapters in the book look at the various
categories of C++ class:

1. Concrete Classes

2. Template Classes
3. Base Classes
4. Interface Classes
5. Exception Classes

All the examples of classes described in earlier chapters are
concrete classes. They are designed for some specific
purpose — typical examples of concrete classes are the
utility classes found in a class library. This chapter looks at
utility classes for handling lists, trees and heaps. C++
templates allow several classes to be defined using a single
template class as a blue-print — the following chapter deals
with template classes in detail. Base classes (or inheritable
classes) are not complete classes in the same way that
concrete classes are — they provide some general
functionality but in most cases this must be extended with
the definition of a concrete class derived from the base
class. Chapter 13 explains inheritance in C++ and describes
the process of constructing base and derived classes. An

119

12

interface class is an extreme variety of inheritable class that
contains no functionality at all — its purpose is to specify the
precise format of the functions which are available for
communicating with objects of any concrete class derived
from the interface class. Chapter 14 covers interface
classes and their connection to software components.
Finally, exception classes are supported by C++ as a means
of structured error handling — chapter 15 discusses C++
exceptions and the related keywords try, throw and

catch.

11.2 Hierarchical Data Structures

In a flat data structure the individual elements are all
positioned at the same logical level and they can be
reached directly from the root of the data structure. For
example, a single-dimensional array is a flat data structure
— given the array name each of the elements can be
referenced using the [] operator. The following figure
demonstrates the idea for an array x containing four
elements:

Root of Data Structure

x[2] x[3]

The root of the data structure and the individual elements
are collectively known as nodes. In a flat data structure
there is a clear distinction between the root node (which
represents the whole structure) and the other nodes (which
represent individual elements). However, in a hierarchical
data structure this distinction is blurred and any node can
act as the root node of a sub-structure. For example, a
two-dimensional array may be regarded as a hierarchical
data structure — the two-by-two array x [2] [2] is depicted

120

as such in the following figure:

Root of Data Structure

 1
x 1

/N
x[0] x[1]

At the top level the root node refers to the array as a whole,
at the middle level each node refers to a row within the
array and finally at the bottom level each node refers to an
element within a row. In other words the root node
represents a two-dimensional array, the internal nodes
represent one-dimensional arrays and the terminal nodes
represent zero-dimensional arrays. So every node
represents an array and points to sub-arrays within that
array — only the dimension of the arrays decreases as the
structure is descended. Hence all nodes in a hierarchical
structure are in some sense indistinguishable — at every
level each node acts as the root of a sub-structure which
has essentially the same form as at any other level.

This chapter looks at three types of hierarchical data
structure (lists, trees and heaps) and discusses their
implementation as concrete C++ classes which could form
part of a utility class library.

11.3 Lists

Lists are similar data structures to arrays and contain a
number of items. Since these items can themselves be lists,
a list is a hierarchical data structure. However, the essential
functionality provided by a list can be examined by ignoring

121

the type of each item and treating the list as a flat data
structure. The items within a list are ordered from head to
tail as shown in the following figure:

Head
of
List

Item Item Item
Tail

Item of
List

Items can be added or removed at any point in the list and
the existing elements retain their relative ordering during
this operation.

A C++ list is typically implemented using pointers to link the

individual items together. An extra header item can be

added at the head of the list — its only purpose is to avoid

having an empty list. The item at the tail of the list sets its
pointer to zero to indicate that no more items follow. For
example, here is a list with two items:

Header Item A Item_ B

The earth symbol is employed to denote a null pointer. The
ITEM class implements a list item and has the following

specification:

class ITEM f

public:

ITEM (void)

void Add(ITEM*);

void Remove (ITEM*);

private:

ITEM* Next;

void* Data;

1;

The Next pointer creates the link to the next item in the list.

122

The default constructor simply zeroes the Next field — this
is useful when creating the header for an empty list. Each
ITEM object also contains a void pointer named Data —
this allows the item to hold any type of data. In particular, for
a hierarchical list structure the Data field could refer to an

entire sub-list.

The Add() function takes a pointer to an existing item in
the list and positions the new item after this item.

void ITEM::Add(ITEM* previous) 1

Next = previous->Next;

previous->Next = this;

The following figure illustrates the situation when item_c
has been placed after Item _A in the list depicted on the
left:

1 Header ---> Item_ A ---> Item_ C Item_ B

The Remove () function is similar to the Add () function:

void ITEM::Remove(ITEM* previous) [

previous->Next = Next;

Next = 0;

1

The problem with this solution is that a pointer to the
previous element must be supplied when an item is
removed from the list. However, each list item is an object
and objects should be delegated power whenever possible.
The provision of a Previous field in addition to the Next
field enables an ITEM object to determine its predecessor
during removal. The resulting list is known as a doubly-
linked list:

Header Item A

123

Item_B

To make the code more symmetrical a trailer item could be
added at the tail of the list:

Header --> Item A Item_ B Trailer

However, a simpler alternative is to wrap the pointers
around and form a circularly linked list — the header then
acts as a trailer too:

Header Item A Item B

The updated ITEM class specification follows:

class ITEM {

public:

ITEM (void)

void Add(ITEM*);

void Remove (void);

private:

ITEM* Next;

ITEM* Previous;

void* Data;

;

The default constructor sets the Next and Previous fields
to point to the item itself:

ITEM::ITEM(void) {

Next = Previous = this;

The Add () function must maintain the pointer links in both
directions:

void ITEM::Add(ITEM* previous) {

Next = previous->Next;

Previous = Next->Previous;

Previous->Next = this;

Next->Previous = this;

124

The Remove () function now does not need to be passed a

pointer to the previous item in the list:

void ITEM::Remove(void)

Previous->Next = Next;

Next->Previous = Previous;

Next - Previous = this;

Note that these functions rely heavily on the fact that C++
supports encapsulation only at the class level.

11.4 Recursive Programming

A recursive function is one which invokes itself — each
recursive function comprises two parts:

1. A nested function call
2. A terminating condition

The first part provides the recursion whilst the second part
prevents the function repeatedly invoking itself forever —
without the terminating condition the result is infinite
recursion and the program will eventually abort as it runs
out of stack space.

A simple example of recursion is the Factorial()

function which calculates the product of its integer argument
and all smaller integers:

Factorial(1) -= 1

Factorial(2) == 2*1 == 2

Factorial(3) == 3*2*1 == 6

Factorial(4) == 4*3*2*1 == 24

The recursive definition of this function follows:

int Factorial(int n) {

if (n == 1)

return 1;

return (n*Factorial(n-1));

1

125

The recursive function call is provided by the statement:

return (n*Factorial(n-1));

The conditional statement:

if (n == 1)
return 1;

checks for the terminating condition n==1.

Suppose the function is invoked by the following code:

int answer = Factorial(4);

Here a nested series of calls to the Factorial () function

occurs with n==4, n==3, n==2 and finally n==1. The results

passed back as the nested functions return are 1, 2, 6, and

finally 24.

In some cases the recursive definition of a function has an
iterative counterpart. For example:

int Factorial(int n) {
int factorial = 1;
for (int i=1; i<=n; i++)

factorial *= i;
return factorial;

The iterative solution is more efficient because it avoids the
overhead of several function invocations. However, a
recursive solution is often a lot simpler to code and this is
especially true for the hierarchical data structures (trees and
heaps) that are discussed in the next two sections.

11.5 Trees

A tree is a classic example of a hierarchical data
structure. It has a root node from which branches lead to
nodes at the first level, each of these nodes is the root for
its own sub-tree and more branches lead to nodes at the
second level — the structure is repeated until at the final

126

level are the leaf nodes. A binary tree supports just two
branches from each node — the following figure
demonstrates the layout of such a tree:

Root

Node

/\
Leaf Leaf

Leaf

Each node holds pointers to its left and right sub-trees —
either of these pointers may be null to indicate that the
sub-tree is empty. If both pointers are null then the node is a
leaf node.

The NODE class will implement the nodes within a tree

structure. Each NODE object contains Left and Right

pointer fields to refer to its sub-trees — an integer Data

field is also associated with the node.

class NODE {

public:

NODE(int);

void Add(NODE*&,NODE* = 0);

void Remove(NODE*&);

NODE* Find(int);

private:

NODE* Left;

NODE* Right;

NODE* Parent;

int Data;

127

The Parent field points to the node immediately above the

current node in the tree structure — it serves the same
function that the Previous field did in the ITEM class of

section 11.3, namely to allow a NODE object to remove itself

from the tree.

The constructor sets the Data field using its parameter and

simply zeroes the Left, Right and Parent pointers — the

pointer fields are properly initialized when the node is added
to a tree.

NODE::NODE(int data) {

Left = Right = Parent = 0;

Data = data;

New nodes will be placed in the tree acording to the value of
their Data field. If their data value is less than that of the
root node they will be placed in the left sub-tree of the root
— otherwise they will be placed in the right sub-tree of the
root. This decision process is applied recursively at each
level within the tree — the Add() function is therefore easy

to implement as a recursive function:

void NODE::Add(NODE*& root,NODE* parent) {

if (! root) {

root = this;

Left = Right = 0;

Parent = parent;

else if (Data < root->Data)
Add(root->Left,root);

else

Add(root->Right,root);

There are two interesting points concerning the Add()

function — firstly, the Parent field of the tree's root node

will be set to null by the optional parameter value and
secondly, the root parameter is passed as a reference to a

pointer so that the pointer value can be modified.

128

A new NODE is inserted into the tree by passing a pointer to
the tree's root node:

NODE* nodes[5];

for (int i=0; i<5; i++)

nodes[i] = new NODE(i);

NODE* root = 0;

nodes[3]->Add(root);

nodes[]]->Add(root);

nodes[4]->Add(root);

nodes[2]->Add(root);

nodes[0]->Add(root);

This code builds the following tree structure:

Data==3

/N
Data==1

/\
Data==0

Data==4

Data==2

The Remove () function has the following definition:

void NODE::Remove(NODE*& root) {

if (! Parent)

root = 0;

else if (Parent->Left == this)

Parent->Left = 0;

else

Parent->Right = 0;

Parent = 0;

}

This definition allows an entire sub-tree to be removed by

129

2. Data Types and Expressions

Chapter 1 introduced the notion of C++ data types —
there are both basic C++ data types defined by the
language and also structured types which may be
user-defined. C++ provides built-in operators to manipulate
data of the basic types whilst object classes can provide
similar functionality for structured data types. This chapter
details the basic types provided by C++ and looks at ways in
which they may be combined into structured types. Every
constant and variable used by a program must be
associated with some data type through the use of a

declaration statement. Thereafter, the data may be
processed in expression statements by applying various

C++ operators to it. There are many types of expressions in
C++ (arithmetic, assignment, comparison, logical and

bitwise) but each is considered here in turn. The chapter

concludes with an overview of the input/output mechanism
provided by the standard stream objects (cm n and cout).

2.1 Basic C++ Data Types

The C++ language only defines a small number of

intrinsic data types:

char — character type

short, int, long — integer types

float, double — floating-point types

The keywords (char, int, float, etc.) are reserved by the

C++ language and may not be used as names of
user-defined types, variables, functions and so on — this is

also true of other keywords (such as struct, if, return,

etc.) which will subsequently be introduced. Anyway, a

character variable is used to hold a single text character
(letter a-z or A-Z, digit O-9, punctuation mark, space, etc.)

and a character value is denoted by enclosing the character
within single quotes " . For example:

char letter = ' a';

13

invoking the function on the NODE object at the root of the

sub-tree.

The ordering of nodes within the tree allows a particular
node to be located easily given the value of its Data field. It

is usually much faster to search a tree structure than to
search an array containing the equivalent data elements —
this is especially true when the number of elements
becomes large. The Find() function is recursive and

resembles the Add () function:

NODE* NODE::Find(int data) 1

if (data == Data)

return this;

if (data<Data && Left)

return Left->Find(data);

else if (data>Data && Right)

return Right->Find(data);

return 0;

The tree is searched by invoking the Find() function on

the root node:

NODE* node = root->Find(2);

By providing each node with a key-value pair as data, the
tree could be used to implement a dictionary — see section
8.6 for more details.

11.6 Heaps

A heap is closely related to a tree — the main difference
is that a heap reorganises itself so that recently added
nodes appear near the root. Heaps are commonly employed
to manage storage space since the rapid location of
frequently-used storage improves efficiency. The BLOCK

class will implement a heap data structure — for a memory
management application new BLOCK objects can be

allocated using a similar technique to that described in
section 10.4 for the POOL class.

130

The BLOCK class has the following specification:

class BLOCK (

public:

BLOCK(int);

void Add(BLOCK*&);

void Remove(BLOCK*6);

private:

BLOCK* Left;

BLOCK* Right;

BLOCK* Parent;

int Data;

I;

The constructor zeroes the pointer fields and sets the Data
field using the parameter passed in. The Add() function
has the following recursive definition:

void BLOCK::Add(BLOCK*& root) {

if (! root)

Left = Right = 0;

else if (Data < root->Data) (

Add(root->Left);

root->Left = Right;

if (Right) Right->Parent = root;

Right = root;

root->Parent = this;

else {

Add(root->Right);

root->Right = Left;

if (Left) Left->Parent = root;

Left = root;

root->Parent = this;

}

root =

Parent

this;
= 0;

131

The following figures illustrates the transformations applied
after the recursive calls to Add () — note that the nested
calls leave the new node at the top of the sub-tree. During
these transformations it is essential to maintain the ordering
of tree nodes that was described in section 11.5 — this is
achieved by ensuring that the relative positions of the nodes
from left to right (as depicted below) are unaffected by the
reorganisation of the heap.

Firstly, when the new node is inserted in the left sub-tree of
the root:

Root Node

Before \ After

Node

[Left !Righti

Rest Left Root

Right Rest

In this case the following two steps are performed:

1. Move the right sub-tree of the new node to the old root
node as its left sub-tree

2. Move the old root (and its sub-trees) to the right sub-tree
of the new node

Secondly, when the new node is inserted in the right
sub-tree of the root:

Root

After
««t efore

Rest 'Node

Left] Right

Root

Rest]

Node'

Left

Right

The two transformation steps are simliar to before but are
reversed left-to-right. In any event, the new node always
finishes at the top of the heap!

132

The Remove () function deletes just one block from the
heap:

void BLOCK::Remove(BLOCK*& root)

BLOCK* block;

if (! Right) block = Left;

if (! Left) block = Right;

if (Left && Right) (

block = Left;

while (block->Right)

block = block->Right;

block->Right = Right;

Right->Parent = block;

block = Left;

}

Left = Right = 0;

if (block)

block->Parent = Parent;

if (! Parent)

root = block;

else if (Parent->Left == this)

Parent->Left = block;

else

Parent->Right = block;

Parent = 0;

{

{

If the removed node has only a left or right sub-tree, the root
node in this sub-tree is used to replace its parent. Otherwise
the right sub-tree is moved into the left sub-tree and the root
of the left sub-tree replaces the removed node. For
example:

Root Node

Before \ After \

Node
4......./ ---..........

Left Right

Rest

133

Left

Right

Rest

Both the Add() and Remove() functions maintain the
correct ordering of nodes within the heap and so the
Find() function defined for trees in section 11.5 will work

here too.

11.7 Collection Classes

Objects from the ITEM, NODE and BLOCK classes are

able to assemble themselves into list, tree and heap data
structures. The implementation of the functionality is hidden
within these classes — this is a good example of the object
oriented approach. However, it may be useful to process the
collection of objects within each hierarchical data structure
as a whole — this is the purpose of collection classes such
as LIST, TREE and HEAP. These classes provide higher
level services that may build on the functionality of the
ITEM, NODE and BLOCK classes. For example, the LIST
class could perform services such as the following:

1. Manage the list's header object

2. Track the current length of the list

3. Generate a new ITEM object and then call the object's

Add() function to place it at the head of the list

The third option is made available by defining an Insert ()

function for the LIST class — the service is requested by

invoking the function.

The essential idea is to separate the low-level code for
manipulating the individual data elements from the
high-level services which treat the collection of elements as
a single data structure.

134

12. Templates

C++ templates provide an important mechanism for

creating reusable software. The data processing performed

by C++ functions and classes is often influenced by the

parameter values supplied to them — these parameters can

be variables of basic and structured data types or even

objects of user-defined classes. Templates extend the

notion of parameterization by permitting not only data

values to be parameterized but also data types. C++

template classes enable the parameterization of data types

by treating a single template class as a blue- print for a

whole collection of classes — each of the classes generated

from the template performs essentially the same processing
but acts on variables and objects of differing types.

Consequently, the software which defines a template class

may be reused many times and unnecessary duplication of

coding effort can be avoided.

12.1 Type Parameters

The behaviour of an object can be controlled by passing

various parameters to its constructor. For example, the

ARRAY class of section 9.3 checks subscript values against

the bounds of an array — depending on the parameters

passed to the constructor of an ARRAY object, the upper and

lower bounds of the associated array change. Hence one

ARRAY object may accept a particular subscript whilst

another will reject it — the ARRAY class parameterizes the

array bounds. However, the data type of the array elements

is the same (float) for all ARRAY objects. To handle

bounds checking for an array of a new data type it would be

necessary to duplicate all the code for the ARRAY class and

then make the appropriate changes by replacing type

float with the new data type. An alternative approach that

avoids the duplication of code is to parameterize the data

type of the array elements — C++ templates are designed

to accommodate type parameterizations.

135

12.2 Template Classes

A template class may parameterize a data type — the
template serves as a blue-print for a whole collection of C++
classes all of which perform essentially the same processing
but applied to variables and objects of different data types.
For example, the ARRAY class may be converted into a

template as follows:

template <class T>

class ARRAY {

public:

T& operator[](int);

private:

T Array[100];

1;

A C++ template is prefixed by the template keyword and a

list of the template parameters in angle brackets. The
parameters can accept constant values (such as integers)
but a more common application is to parameterize a data
type — the keyword class is used to indicate a type

parameter and the parameterized type name follows.

For the parameterized version of the ARRAY class, the
Array field is an array of one hundred elements of data

type T and the overloaded subscript operator returns a
reference to one of these elements.

The template keyword is also required when the template

class is defined:

template <class T>

T& ARRAY<T>::operator[] (int) (

// define function here

136

Function definitions for a template class should accompany
the class specification in the header file. The name of the
template class is ARRAY<T> — when a concrete class is

generated from a class template the actual type name
replaces the T parameter in the class name.

It is now easy to create an ARRAY object which performs

bounds checking on an integer array with ten elements — all
that is required is the following declaration statement:

ARRAY<int> x(10);

The compiler takes care of generating the class code for this
choice of type parameter. Only code that is actually used
will be generated — to force the compiler to provide all the
code for the ARRAY<int> class the following statement

may be used:

template ARRAY<int›;

12.3 The VECTOR Class

The VECTOR class provides a fuller example of working

with C++ class templates. Each VECTOR object represents a
vector with components (x,y,z) in three-dimensional space

— the VECTOR class is useful for solving problems in
cartesian geometry or linear algebra. The class provides
overloaded operators to calculate the scalar and vector
products of a pair of vectors. For two vectors a== (x, y, z)

and b== (X, Y, Z) the scalar product is:

alb == x*X + y*Y + z*Z

and the vector product is:

a*b == (y*Z-z*Y, z*X-x*Z, x*Y-y*X)

These operations can be used to calculate the determinant
of a matrix m composed of the three vectors a, b and c:

det(m) == al(b*c) == cl(a*b) == bl (c-ka)

The VECTOR class is parameterized so that it will work with
floating-point or integer component values — the latter
choice can provide faster computations.

137

The VECTOR class specification follows:

template <class T>

class VECTOR {

public:

VECTOR(T = 0,T = 0,T = 0);

T operatorl(const VECTOR<T>&) const;

VECTOR<T> operator* (const VECTOR<T>&) const;

private:

T X,Y,Z;

1;

In a real implementation the class should be made regular
(see chapter 8) — the addition and subtraction operators
could also be usefully overloaded. The details are omitted
here so that the essentials of defining a template class can
be emphasized.

The constructor sets the X, y and z fields from the

arguments supplied:

template <class T>

VECTOR<T>::VECTOR(T x,T

X = x;

Y = y;

Z = z;

{

Note that the <T> extension to the class name need not be

applied to the constructor in either the class specification or
the function definition — the same is true for the destructor.

The scalar product is calculated with the following function:

template <class T>

VECTOR<T>::operatorl(constVECTOR<T>&v) const

1

return X*v.X+Y*v.Y+Z*v.Z;

138

The vector product is constructed with a local VECTOR<T>

object:

template <class T>

VECTOR<T>

VECTOR<T>: :operator* (const VECTOR<T>6t const

VECTOR<T> product;

product.X = Y*v.Z-Z*v.Y;

product.Y = Z*v.X-X*v.Z;

product.Z = X*v.Y-Y*v.X;

return product;

The following code calculates a determinant value:

VECTOR<int> a(9,5,3);

VECTOR<int> b(4,1,7);

VECTOR<int> c(6,8,2);

int det = al(b*c);

Such a calculation is useful when solving simultaneous
linear equations in three unknowns x, y and z.

12.4 Wrapper Classes

Template classes can help to avoid the duplication of
source code. However, there is a problem — the object
code for each of the classes built from a template must still
be generated whenever it is required. This automatic
generation of object code can increase the size of an
executable file considerably. The effect may be lessened by
placing most of the implementation in a concrete class and
then wrapping this class with a template class — in this case
only the wrapper code is duplicated and such code can be
kept to a minimum. The concrete class typically operates
with void pointers so that it can handle any type of data

and the wrapper classes provide type checking.

To provide an example of wrapper classes, the LIST class
is defined here as a collection class for the ITEM objects of

section 11.3 — objects of the ITEM class store their data

using a void pointer. The template class BASKET acts as a

139

A collection of characters forms a string and a character
string value is written within double quotes " ". The

program in chapter 1 used the character string "Hello! \n"

which includes the escape sequence \n (newline) — all

escape sequences start with a backslash \ and they are

each used to represent a single character that cannot be
typed directly such as newline (\ n), tab (\ t) or
formfeed (\ f). Character strings are closely related to

arrays and these are discussed in the next chapter.

An integer variable may be of type short, int or long and

holds a whole number such as - not:), 0 or 33. Both
positive and negative values are possible but the biggest
(most positive or most negative) values that the variable

can hold are implementation dependent. The principal
guarantee is that the range of the allowable values
increases (or remains the same) from short to int to

long. An int variable should use the native integer size of

the host computer which is typically 32 bits nowadays.
Unsigned integer types are available by employing the
keyword unsigned as follows:

unsigned int count;

The count variable then holds only positive values (or

zero).

Finally, variables of type float and double hold the

values of real numbers such as 3.14, 0.001 or 25E+25

which may include a fractional part. The letter E (or e) is

used to express floating-point numbers in scientific notation
— floating-point values are assumed to be of type double

unless the letter F (or f) is appended. As with integer types

the exact range of values which can be held by a float or

double variable depends on the C++ implementation.

Generally speaking, the float type should be used unless

the double type is required for extra range or precision.

14

wrapper that performs compile-time type checking on the
items stored by the LIST class — it also casts void

pointers to the appropriate type when items are retrieved
from the list. The SetData () and GetData () functions for
the ITEM class are defined below:

void ITEM::SetData(void* data) {

Data = data;

1

void* ITEM::GetData(void) {

return Data;

1

The Shift () function allows the LIST class to move along
its list of ITEM objects:

ITEM* ITEM::Shift(void) {

return Next;

1

The function could be parameterized to permit shifts in both
directions.

The LIST class has the following specification:

class LIST {

public:

LIST (void);

-LIST (void);

void Insert (void*);

void* Extract (void);

private:

ITEM* Header;

int Length;

1;

Most of the functionality for processing the list data structure
is placed in the LIST class — the code for the
corresponding wrapper class is kept to a minimum.

140

The LIST constructor creates a header item:

LIST::LIST(void) {

Header = (ITEM*) new ITEM;

Length = 0;

and the destructor empties the list:

LIST::-LIST(void) {

ITEM* item;

while (Length--) {

item = Header->Shift();

item->Remove();

delete item;

delete Header;

The Insert () function creates a new ITEM object, sets its
data and calls its Add () function to place it at the head of
the list:

void LIST::Insert(void* data) {

ITEM* item = (ITEM*) new ITEM;

item->SetData(data);

item->Add(Header);

Length++;

The Extract () function similarly retrieves data from the
head of the list:

void* LIST::Extract(void) {

if (! Length) return 0;

ITEM* item = Header->Shift();

void* data = item->GetData();

item->Remove();

delete item;

Length--;

return data;

141

Now a template wrapper class is straightforward to define
— the BASKET class specification is:

template <class T>

class BASKET f

public:

BASKET (void);

-BASKET (void);

void Store(T);

T Retrieve(void);

private:

LIST* List;

);

The BASKET class constructor and destructor simply create
and destroy the associated LIST object. The store()

function is:

template <class T>

void BASKET<T>::Store(T data) f

T* pointer = (T*) new T;

*pointer = data;

List->Insert (pointer);

A dynamic object of the parameterized type is created and
its value is set using the argument passed to the store 0
function — note that this assumes there is an appropriate
assignment operator available. Since the store () function
accepts data of a definite type, the compiler can perform
type-checking on the data that is to be inserted into the list.
The Retrieve() function is defined as follows:

template <class T>

T RASKET<T>::Retrieve(void) f

T* pointer = (T*) List->Extract();

if (! pointer) return 0;

T data = *pointer;

delete pointer;

return data;

142

Note that the void pointer returned by the LIST object is

cast to point at data of the parameterized type — the
referenced data is saved in a local variable before the
dynamic object that stored it is destroyed.

The BASKET class is a fairly general class for storing and

retrieving objects — it need not use a LIST object to

provide its implementation. For example, the BASKET class

specification may be modified to include a second
parameterized type:

template <class V,class T>

class BASKET f

private:

V* Holder;

);

The references to List in the store () and Retrieve ()

functions should be updated to refer instead to Holder.

Then any holder type y which supplies suitable Insert ()

and Extract () functions can be used with the BASKET

template class. The HEAP class might be one possibility:

BASKET<HEAP,int> basket;

basket.Store(6);

This code stores the integer value 6 in a wrapped HEAP

structure.

12.5 Template Functions

The C++ template mechanism also works with global
functions — every template parameter should appear in the
specification for the function parameter list. For example, a
template function Debug() may be defined that prints

debugging information about any variable or object it
receives as a parameter:

template <class T> void Debug(const T&);

143

A template function is defined in the usual way but the
template keyword and the template parameter list must
precede the definition:

template <class T>

void Debug(const T& object) f
cout << "Object at address: ";
cout << hex << &object << dec;
cout << '\n';

This function prints out the location in memory of its
object parameter. The stream manipulator hex changes
the format in which the address is displayed to hexadecimal
— similarly dec changes the format back to decimal.

A non-template version of Debug() which explicitly
specifies a parameter type will override the template
function for that type. For example:

void Debug(const int& i) f

cout << "Integer (" << i;
cout << ") at address: ";
cout << hex << &i << dec;
cout << '\n';

The following code:

OBJECT object;

int i(0);
Debug(object);
Debug(i);

prints the debugging information:

Object at address: Ox4153e57c
Integer (0) at address: Ox4153e578

As with template classes the object code for template
functions is only generated by the compiler whenever it is
required.

144

13. Inheritance

Inheritance is the principal mechanism in C++ for
enabling polymorphism — a collection of objects are
polymorphic if they exhibit different behaviours from one
another when they are sent identical messages.
Encapsulation and polymorphism form the foundations of
the object oriented programming philosophy —
encapsulation is concerned with hiding implementation
details whilst polymorphism allows diverse functionality to
be exposed to the outside world through a well-defined
communications interface. One C++ class may derive some
of its characteristics from another by the process of
inheritance. In particular, each derived class inherits the
interface defined by its base class — when new
implementations are provided for each derived class
objects from different derived classes become polymorphic.
This chapter covers the details of C++ inheritance — topics
include the specification of base and derived classes, the
process of inheriting or overriding base class fields and
functions, the invocation of real and virtual functions, and
finally the construction and destruction procedures for
objects of derived classes.

13.1 Base and Derived Classes

In C++ one class may be derived from another — the
original class is known as the base class of the derived
class. The derived class inherits many of its characteristics
from the base class — these fall into three categories:

1. Data
2. Code
3. Interfaces

The first two are the subject of this chapter whilst chapter 14
deals with interfaces. The data fields defined by the base
class are present in all objects of the derived class — the
derived class may add more data fields if it needs them.
Similarly, the functions of the base class are inherited by
objects of the derived class — the exceptions to this rule

145

include the base class constructor and destructor as well as
any overloaded assignment operators provided by the base
class. In particular, the inheritance of class characteristics
applies to static fields and functions — however, the static

data fields for base and derived classes are distinct.

Any C++ class can act as a base class but a good base
class is specifically designed as such. A base class should

ideally contain only functionality that is sufficiently general

to make the base class widely applicable — at the very least
it should be possible to derive at least two distinct classes
from a base class. In other words C++ inheritance is a
mechanism for software reuse — the source code provided
by the base class need not be duplicated for each of the

derived classes.

13.2 Deriving a Class

The derivation of a new class from a base class is
straightforward. The following specification for the DERIVED

class states that it inherits from the BASE class:

class DERIVED : public BASE f

The derived class name is followed by the : symbol, then

the keyword public and finally the base class name. The

public keyword indicates that the derivation is public —

this is the commonest sort of inheritance. In fact, public

derivation is the only kind of inheritance described in this

book and the public keyword may be omitted. The class

specification for the DERIVED class must occur after the

BASE class specification — a typical approach is to include

a header file for the BASE class.

In general, the DERIVED class can use its inherited fields

and functions exactly as if it had defined them itself. For

example, suppose the BASE class has a Data field and

146

also a Print () function:

class BASE (

public:

void Print (void);

int Data;

1;

The DERIVED class can create objects just like any other

class:

DERIVED object;

and such objects inherit their characteristics from the BASE

class:

object.Data = 0;

object.Print();

However, base class pointers can reference objects of the
derived class — indeed, a pointer to the derived class will
be implicitly cast to a base class pointer when required. For
example:

DERIVED object;

BASE* pointer = &object;

Here there is an implicit cast from DERIVED* pointer type
to BASE* pointer type before the pointer variable receives
the address of the object. This situation is similar to that
with void pointers — any type of data may be referenced

by a void pointer and implicit casts to void* pointer type

are applied when necessary.

Casts in the opposite direction from base class pointers to
derived class pointers must be explicitly requested — the
cast is only sensible when the referenced object is known to
belong to the derived class:

DERIVED object;

BASE* base = &object;

DERIVED* derived = (DERIVED*) base;

147

Finally, the DERIVED class may itself act as a base class for

yet another derived class. All the fields and functions of the
DERIVED class (including those inherited from the BASE

class) are available for inheriting as part of the new base
class. In this way an extended chain of classes can be built
with each class inheriting from the previous one in the
chain.

13.3 Protection Keywords

The private, protected and public keywords

guard against improper use of class fields and functions.

The private and public keywords have appeared in

many classes in previous chapters — the protected

keyword is only relevant when inheritance is involved. The

public keyword allows any source code to reference a field

or invoke a function — the private keyword restricts these

activities to functions belonging to the class and friend
functions. The private and public keywords provide

control that is too coarse when inheritance is involved. A

derived class may need fields or functions from the base
class — the private keyword is too restrictive but the

public keyword releases all control. In these situations the

protected keyword should appear in the base class

specification before any fields and functions that a derived

class may need — protected fields and functions can be
used by both the base and derived class functions as well as
friends of these classes. With public derivation the protected

members of the base class become protected members of
the derived class — this is useful if the derived class
becomes the base class for yet another derived class.

Finally, note that the private, protected and public

keywords only provide compile-time protection — they are
intended to identify inadvertent uses of fields and functions.

It is easy to by-pass these protection mechanisms at
run-time using devious means — for example, an object
pointer may be cast to a character pointer and the entire

contents of the object read byte by byte.

148

13.4 Field and Function Overriding

Derived classes may define new fields in addition to
those they inherit from their base class. For example:

class BASE

protected:

int Data;

class DERIVED : public BASE {

private:

int Array[100];

Here the base class has the integer Data field — this is

inherited by the DERIVED class which also defines a new

Array field. If the same name is used for fields in both the

base and derived classes then the latter field overrides the
former — within the functions of the derived class the name
refers to the derived class field. For example:

class DERIVED : public BASE {

public:

void SetData(float);

private:

float Data;

void DERIVED::SetData(float data) {

Data = data;

Here the SetData() function assigns a value to the

floating-point field of the DERIVED class and not the integer

field inherited from the BASE class. To reference the

149

Sometimes it may be necessary to convert from one type to
another — this may be achieved by employing a cast as in
the following example:

int count;
float average = 2.5;
count = (int)average;

The value of the float expression is converted (cast) to an

integer type by discarding the fractional part. The cast
ensures that the compiler does not object to the assignment
statement — if the conversion were made automatically
(without the cast) important information may be lost. An
alternative notation is:

count int(average);

Similar conversions between other types are possible by
specifying the appropriate data type in the cast statement.

There have already been several examples of a variable
declaration statement. This consists of a type name followed
by a variable name. Sufficient storage space is allocated to
the variable to hold a value of the specified type. A slight
variation of the declaration statement includes an equals
sign followed by a value. In this case, the variable is
initialized to hold the given value. For example:

int count = 10;

This allocates storage for the count variable and initializes

it with the value 10. An alternative notation is:

int count(10);

If a variable holds a constant value it should be declared
using the cons t keyword and an initialization value must be

supplied:

const int TEN = 10;

Finally, several variables of the same type may be declared

15

overridden field the : : operator is available. For example:

class DERIVED : public BASE {

public:

void SetData(float);

void SetData(int);

private:

float Data;

I;

void DERIVED::SetData(float data) {

Data = data;

1

void DERIVED::SetData(int data) (

BASE::Data = data;

The SetData () function is overloaded to permit either

base or derived field to be set.

An alternative approach is have a SetData () function

defined in both base and derived classes — the base class
function is overridden much like the base class Data field

was overridden previously. However, a derived class
function overrides all functions with the same name that
occur in the base class — overloading the base class
functions with different parameter lists does not prevent the
overriding. The new BASE class specification is:

class BASE {

public:

void SetData(int);

private:

int Data;

1;

The BASE class defines a SetData() function which

150

accepts an integer parameter:

void RASE::SetData(int data) f
Data = data;

1

The DERIVED class has a SetData() function that
overrides the BASE class version even though it accepts a
different parameter type:

class DERIVED : public BASE f

public:

DERIVED (void);

void SetData(float);

private:

float Data;

1;

void DERIVED::SetData(float data) f

Data = data;

1

The DERIVED class constructor zeroes both the Data fields
with function calls:

DERIVED::DERIVED(void) f

SetData(0);
BASE::SetData(0);

The first function call to SetData () invokes the DERIVED
class function — the overridden base class version must be
invoked using the : : operator.

13.5 Virtual Functions

The previous section described the overriding of class
functions — the functions discussed there were real
functions but C++ also supports virtual functions. Virtual
functions behave somewhat differently to real functions —
they are only important when dealing with objects of a

151

derived class. Virtual functions are marked as such by
preceding them in the class specfication with the virtual

keyword. As an example of virtual functions the FRUIT base

class will be defined:

class FRUIT (

public:

void WhoAmI(void) const;

protected:

virtual void GetName(void) const;

;

The WhoAmI() function is invoked to tell a FRUIT to print a

description of itself:

void FRUIT::WhoAmI(void) const {

cout << " I am

GetName();

If ;

The GetName () function actually supplies the name of the

fruit — the FRUIT class is a base class and represents all

fruits so its GetName () function is general:

void FRUIT::GetName(void) const {

cout << "a fruit.\n";

The following code:

FRUIT fruit;

fruit.WhoAmI();

prints the message:

I am a fruit.

Now that the FRUIT base class has been defined specific

fruit classes can be derived from it — the derived classes

will print a particular fruit name when the WhoAmI()

152

function is invoked. For example, the APPLE fruit class

follows:

class APPLE : public FRUIT {

protected:

virtual void GetName(void) const;

} ;

void APPLE::GetName(void) const 1

cout << " an apple.\n";

The APPLE class inherits the WhoAmI () function and

overrides the GetName () function. An APPLE object may

be created and the WhoA.mI () function invoked:

APPLE apple;

apple.WhoAmI();

This executes the code for the WhoAmI () code from the

FRUIT base class. If the GetName () function were real the

result would be:

I am a fruit.

However, the following situation now arises:

1. A base class function executes within an object of a
derived class

2. The base class function invokes a virtual function

3. The derived class of the object overrides the virtual
function

In these circumstances the base class function must call the

derived class version of the virtual function.

Here the base class function is WhoAmI U , the object is

apple and it belongs to the derived APPLE class which

overrides the virtual GetName() function. Hence the

WhoArnI () function must use the APPLE class version of

the GetName() function.

153

The apple.WhoAmI () call thus produces the message:

I am an apple.

When the WhoArnI) function is invoked for objects of

different classes (FRUIT or APPLE) the processing that is
performed differs — this is an example of polymorphism.
The next section provides another example and Chapter 14
discusses the whole subject in more detail.

13.6 Pointers and Functions

The previous two sections have discussed the selection
of a real or virtual function when the function invocation is
made directly by name. Actually, these function calls
employ the implicit this pointer — this section extends the

ideas to cover function invocations made through a general
pointer. For real functions the decision of whether to call the
base class function or an overriding version from a derived
class is made at compile-time. If the function is invoked
using a base class pointer then the base class function is
used — this is true even if the base class pointer references
an object of a derived class. To provide an example the
following modifications are made to the FRUIT class:

class FRUIT {

public:

void WhoAmI(void) const;

;

void FRUIT::WhoAmI(void) const {

cout << " I am a fruit.\n";

and to the derived APPLE class:

class APPLE : public FRUIT{

public:

void WhoAmI(void) const;

};

void APPLE::WhoAmI(void) const {

cout << " I am an apple.\n";

1

154

The code below demonstrates the choice of real function:

FRUIT* fruit - (FRUIT*) new FRUIT;

FRUIT* apple - (FRUIT*) new APPLE;

fruit->WhoAmI();

apple->WhoAmI();

Both calls to WhoAmI () print the message:

I am a fruit.

To obtain the proper response from the apple object it is
necessary to cast its pointer to APPLE* type. For example:

APPLE* apple = (APPLE*) new APPLE;

apple->WhoAmI();

Now the derived class function is invoked. In general, to
obtain the overriding version of a real function, a derived
object must be referenced by a pointer for the derived class.

These rules also cover function invocations made through
the implicit this pointer. Within base class functions the

this pointer is a base class pointer whilst within functions

explicitly defined by the derived class the this pointer is a

derived class pointer — however, within functions inherited
from the base class the this pointer is a base class pointer.

The choice of virtual functions is not made at compile time
but at run-time and the class of the object is important as
well as the pointers used. For a base class object, the base
class virtual function is invoked — similarly for a derived
class object referenced through a pointer for the derived

class, the derived class virtual function is invoked. The
interesting case occurs when:

1. A base class pointer references an object of the derived
class

2. The pointer is used to invoke a virtual function

3. The derived class of the object overrides the virtual
function

155

This situation exactly mirrors that involving the implicit this
pointer as discussed at the end in section 13.5.
Consequently, the derived class version of the virtual
function is invoked. As an example, the APPLE and BANANA

classes are both derived from the FRUIT base class and
this class now adds the keyword virtual to its WhoAmI()

function to make it virtual:

class FRUIT {

public:

virtual void WhoAmI() const;

1;

class APPLE : public FRUIT {

public:

virtual void WhoAmI() const;

;

class BANANA : public FRUIT

virtual void WhoAmI() const;

The overriding versions of the WhoAmI() function are

suitably defined. The following code processes a BASKET
object (see section 12.4) which holds a collection of FRUIT*

pointers:

BASKET<FRUIT*> basket;

FRUIT* apple = (FRUIT*) new APPLE;

FRUIT* banana = (FRUIT*) new BANANA;

basket.Store(apple);

basket.Store(banana);

FRUIT* fruit;

while (fruit = basket.Retrieve())

fruit->WhoAmI();

delete fruit;

When the WhoAmI() function is called for each of the fruits
in the basket, the appropriate derived class version of the

156

virtual function is chosen. If a first- in- last-out storage
mechanism for the basket object is assumed then the code

prints the following:

I am a banana.

I am an apple.

This is another example of polymorphism — the APPLE and

BANANA objects perform different processing when the

WhoArnI () function is invoked.

There is an exception to the above rules for function
selection. When a base class constructor (or destructor) is
called during the creation (or destruction) of a derived class
object the implicit this pointer is a base class pointer —

however, only functions from the base class are invoked
even if they are virtual and overridden by the derived class.
The following sections discuss the construction and
destruction processes more fully.

13.7 Derived Class Constructors

The standard procedure for creating and destroying an
object was discussed in chapter 7 — there are a number of
modifications when the object belongs to a derived class. At
creation the following steps are taken:

1. Storage Allocation
2. Base Class Initialization
3. Derived Class Initialization

The base class initialization step intializes any objects
embedded by the base class and then invokes the base
class constructor code. The base class initialization is not
influenced by the existence of the derived class — in
particular no virtual functions from the derived class are
invoked. The derived class initialization performs similar

processing for the derived class — the fields and functions
inherited from the base class are available at this point.

Chapter 7 introduced the : notation for choosing a

constructor for any embedded objects — this notation may

157

also indicate which constructor will initialize the base class.
If no constructor is explicitly specified for an embedded
object or the base class then the default constructor of the
appropriate class is invoked. For example, the EMBEDDED
class holds a string passed to its constructor:

class EMBEDDED f

public:

EMBEDDED(const char*);

private:

char String[100];

int Length;

;

EMBEDDED::EMBEDDED(const char* string) f

Length = 0;

if (! string) return;

while (String[Length] = * string++)

Length++;

The BASE class uses an embedded object to hold a "Base"
string in its BaseName field:

class BASE {

public:

BASE(int = 0);

private:

EMBEDDED BaseName;

;

BASE::BASE(int i) : BaseName("Base") {

I

As described in section 7.6 the embedded BaseName object
is initialized just before the BASE class constructor is
executed.

158

Now the DERIVED class is derived from the BASE class — it

also embeds an EMBEDDED object but passes a "Derived"

string instead of a "Base" string as a parameter:

class DERIVED : public BASE f

public:

DERIVED (void);

private:

EMBEDDED Name;

} ;

DERIVED::DERIVED(void)

: BASE(123), Name("Derived") {

In fact, a DERIVED object contains two EMBEDDED

objects — one inherited from the BASE class and another

embedded directly. As well as initializing the second of
these objects, the DERIVED class constructor explicitly

passes the value 123 to the BASE class constructor.

13.8 Virtual Destructors

The destruction process is the exact opposite of the
creation process:

1. Derived Class Finalization
2. Base Class Finalization
3. Storage Deallocation

The derived class finalization invokes the derived class
destructor and then finalizes any objects embedded by the
derived class. The base class finalization performs simliar
processing for the base class. However, when a derived
class object has the delete operator applied to a base

class pointer which references it, the derived class
finalization is not performed if the destructors are real
functions. To avoid this happening the destructors should be

159

in a single statement by using commas to separate the
individual variable names:

int count, sum, total;

2.2 Structured Data Types

Now that the basic C++ types have been discussed, this
section looks at combining these elements to form
user-defined structured data types. Such a type is declared
using the keyword struct. For example:

struct DATE f

int Day;

int Month;

int Year;

1;

The word following the struct keyword is the name of the

new data type, here DATE. The specification of the

structured data type is enclosed in a matched pair of braces
{ } and a semi-colon must follow. The DATE type contains

three elements (called fields) with the names Day, Month

and Year. An uninitialized variable of the new type is

declared as follows:

DATE yesterday;

Alternatively the variable may be assigned an initial value:

DATE yesterday = { 1,1,1970};

The bracketed values in the initializer are stored in the fields
of the yesterday variable with the first one being assigned

to the Day field, the second to the Month field and the third

to the Year field. Hence the yesterday variable

represents 1st January 1970. As with variables of basic
types, the const keyword may be employed to prevent a

variable of a structured data type from changing its value
after it has been initialized in a declaration statement:

const DATE yesterday = 11,1,19701;

16

declared as virtual functions:

class BASE f

public:

virtual -BASE(void);

class DERIVED: public BASE {

public:

virtual - DERIVED (void);

Furthermore, if the derived class overloads the delete

operator its version is only invoked if the destructors are
virtual. Alternatively, if the derived class inherits an
overloaded delete operator from the base class which has

two parameters, then the second parameter (of size t

type) will only report the correct size for derived objects if
virtual destructors are used.

160

14. Interfaces

An interface class contains no code — its sole purpose
is to force a derived class to support a well-defined set of
functions. Interface classes are abstract classes and cannot
generate objects directly — derived classes must provide
implementations of the interface's functions before objects
can be created. Objects from different classes that
implement the same interface are interchangeable with one
another — this is a classic example of polymorphism.
A notification class is a type of interface class that allows an
object to send notifications of internal events — notifications
complete the two-way exchange of messages between
objects. Within a software component an object typically
supports multiple interfaces each representing a different
facet of the object's functionality. The UNKNOWN interface
class is designed to simplify the use of multiple interfaces
with C++ objects — smart pointers can automate some of
the troublesome book-keeping details.

14.1 Pure Virtual Functions

The previous chapter introduced the notion of virtual
functions — the FRUIT base class contained general

implementations of its virtual functions which where
overridden by more specific implementations in the derived
classes. However, it is possible to declare a virtual function
in a base class without providing any implementation of the
function — such a function is known as a pure virtual
function and it is denoted in the base class specification with
the = 0 marker. For example:

class FRUIT f

public:

virtual void Draw(void) - 0;

Here the FRUIT class defines a pure virtual Draw ()

function — the function draws an illustration of the fruit

161

represented by an object. Without a generic depiction of a
fruit the Draw () function cannot be implemented in the

base class — instead it must be overridden in each derived
class by providing code that draws individual fruits.

If a class defines a pure virtual function or inherits such a
function without overiding it then the class is an abstract
class. An abstract class cannot be used to create objects —
however, a class derived from the abstract class which
implements all its virtual functions can create objects.
Consequently the pure virtual functions declared by a base

class force the derived classes to support these functions as
part of their communications interface — for example, every
object of a class derived from the FRUIT class can be sent

a message by invoking its Draw() function.

An extreme example of this approach is to specify a base
class which contains only pure virtual functions — the class
is then known as an interface class. If a concrete class
inherits its interface from such a class, there is complete
separation of interface and implementation. For example:

class HOLDER f

public:

virtual void Insert(int) = 0;

virtual int Extract(void) = 0;

1;

The HOLDER interface class specifies an interface that must

be supported by all classes derived it. The interface defines
the services which may be expected from a class designed
to hold a collection of integer values — the LIST, TREE

and HEAP collection classes discussed in section 11.7 are

examples of classes that could support the HOLDER

interface.

14.2 Polymorphism

In a C++ context polymorphism occurs when a collection
of objects each exhibit their own individual behaviours upon
receipt of identical messages — the name polymorphism is

162

applied because the objects in the collection represent many
possible forms. Polymorphism arises when interface and

implementation are separated — the interface remains

constant but the implementation may change. The following

figure illustrates the process of communicating with an

object through an interface defined by an interface class:

Derived Object

Outside
World

Inherited Interface

Function

Function

Function

As long as the functions in the interface remain the same

the underlying object may be changed — any object which

supports the same interface will suffice. Of course, for this

to work it is necessary to define the processing expected of

each interface function — the interface class only fixes the

function parameter formats and the function return types. It

is the responsibility of the implementor of a new class

supporting the interface to adhere to the functionality

specification. The interchangeability of objects that results

when a number of classes are derived from a common
interface is a classic example of polymorphism — objects of

different derived types are sent the same messages through

the inherited interface but perform their own individual

processing.

In general, an interface is used to group together a related

set of functions and hence it defines one facet of an object's
functionality. The C++ language only allows an object to

support one interface directly — section 14.4 discusses

techniques for overcoming this limitation. Nonetheless, an

object may conceptually support any number of interfaces

— each interface is specified by a different interface class.

163

The following figure depicts an object with two distinct

interfaces:

Object with Multiple Interfaces

First Interface Second Interface

Function

Function

Function

Function

Function

To permit one object to be substituted for another they must
both support a common set of interfaces — the individual

objects are polymorphic with respect to this shared set of

interfaces. Of course, the two objects may also support

other interfaces which they do not share but the
polymorphism does not extend to these interfaces.

14.3 Notification Classes

Notification classes are a useful variety of interface

class. These classes are needed when an object wishes to

notify the outside world of events that occur within the object

— they complement other interface classes which permit

messages to be sent to an object from the outside world.

The following figure demonstrates the idea:

Master Object Slave Object

Notification
Object

-> Interface

The master object sends messages to the slave through the
usual interface communications mechanism — if the slave

164

wants to send messages back to the master it passes them

to a notification object within the master. The slave class

catalogues the sorts of messages it will send by defining an

associated notification class — this is an interface base

class from which the actual class of the notification object

must be derived.

The notification class NOTIFY specifies an interface with

two functions:

class NOTIFY f

public:

virtual void MultipleEvents(int) = 0;

virtual void SingleEvent(void) = 0;

const static int Event 1;

const static int Event 2;

The notification class is designed to provide notification of

three possible events that may occur within a SLAVE object:

FirstEvent, SecondEvent and ThirdEvent. The

function MultipleEvents () is called if either of the first

two events occurs whilst the SingleEvent () function is

only called if the last event occurs. The function

mui tipleEvents () passes one of the constants Event _1

or Event _2 as a parameter to identify the relevant event.

Constant static data fields are acceptable additions to an

interface class — they should be defined globally:

const int NOTIFY::Event_l = 1;

const int NOTIFY::Event_2 = 2;

The SLAVE class source file is a good place for these

constant definitions.

Whenever a MASTER object wants to receive notifications

from a SLAVE object it must derive its own class from

the NOTIFY class.

165

For example:

class MONITOR : public NOTIFY {

public:

virtual void MultipleEvents(int);

virtual void SingleEvent(void);

I;

The interface functions are provided with appropriate
implementations:

void MONITOR::MultipleEvents(int event) {

if (event == NOTIFY::Event_1) {

// processing for FirstEvent

}

else if (event == NOTIFY::Event_2) {

// processing for SecondEvent

void MONITOR::SingleEvent(void) {

// processing for ThirdEvent

The SLAVE object must be able to send messages to its
masters notification object — a common technique is to
pass a pointer into the SLAVE class constructor:

class SLAVE {

public:

SLAVE(NOTIFY*);

private:

NOTIFY* Notify;

I;

SLAVE::SLAVE(NOTIFY* notify) {

Notify = notify;

Now the MASTER object can create a SLAVE object and

166

pass it a pointer to the masters MONITOR object:

MONITOR monitor;

SLAVE slave(&monitor);

Since the MONITOR class is derived from the NOTIFY class
the pointer is implicitly cast to NOTIFY* type. Now

whenever an event occurs within the SLAVE object it can
send a notification to the MASTER object:

if (Notify)

Notify->MultipleEvents(NOTIFY::Event_1);

if (Notify)

Notify->MultipleEvents(NOTIFY::Event_2);

if (Notify)

Notify->SingleEvent();

The MultipleEvents() and SingleEvent() functions

are invoked through a base pointer but they are virtual
functions and so the code from the derived MONITOR class
is executed. The MASTER object thus receives notifications

from its SLAVE object.

14.4 The UNKNOWN Interface

Unfortunately the C++ language does not directly
support the notion of objects with multiple interfaces. It does
allow a derived class to inherit from multiple base classes
through the mechanism of multiple inheritance but all the
inherited functions are merged into a single interface.
Provided the merging operation does not result in any
function name clashes, the individual interfaces can be
selected by appropriate pointer casting. Nonetheless,
programming with multiple inheritance can rapidly become

167

complicated and there is a simpler solution — the UNKNOWN

interface. The UNKNOWN interface specifies the minimal

functionality that any interface should provide in order to
support objects with multiple interfaces — it forms a base
class for all other such interfaces. The UNKNOWN class

specification follows:

class UNKNOWN (

public:

virtual int Query(int,UNKNOWN**) = 0;

virtual void Acquire(void) = 0;

virtual void Release(void) = 0;

The Query () function is the most important — its purpose

is to determine which other interfaces an object supports.
The first parameter provides an interface ID that uniquely
identifies the type of interface required. If such an interface
is supported by the object the function returns true and a
pointer to the interface is stored at the address provided by
the second parameter — otherwise the function returns false
and a null pointer is stored. For example:

UNKNOWN* pointer = GetInterfacePointer(...);

UNKNOWN* interface;

int okay =

pointer->Query(INTERFACE_ID,&interface);

The Query () call asks whether the object supports the

interface identified by the INTERFACE ID parameter — if it

does the interface pointer is set to reference this

interface. In this way any number of interface pointers can
be acquired for the object's interfaces — however, the first
one must be obtained in some other manner. A typical
approach is to call an operating system function such as
GetInterfacePointer () — the next section discusses

this point in more detail.

Finally, an object should continue to exist as long as any
pointers still reference its interfaces — when the last
reference is removed the object can destroy itself. This

168

mode of operation is enabled by the Acquire() and

Release() functions which respectively increment and,

decrement a reference count held by the object —

whenever a new interface pointer is returned by the

Query() function the Acquire() function is called

internally. Reference counting is discussed in more detail in

section 10.3 — automating the calls to Acquire() and

Release() is the subject of section 14.6.

14.5 Software Components

The UNKNOWN interface is particularly useful when

working with software components. Each component

registers the objects it contains and the interfaces supported

by these objects. Code in other components can then call a

function such as GetInterfacePointer() to request a

particular interface pointer for a particular object. The
register-request exchange to transfer interface pointers from
one component to another must be mediated by the

operating system — in Microsoft's model this is the

responsibility of COM. The following figure demonstrates

the process of exchanging an interface pointer:

Before Exchange

Requesting
Component

Pointeirl

After Exchange

Requesting
Component

Pointer]

Operating
System

Operating
System ,

Registering
Component

Object

169

Registering
Component

Object

An alternative way to set the individual fields of a structured
data object is to use the dot operator:

DATE yesterday;

yesterday.Day = 1;

yesterday.Month = 1;

yesterday.Year = 1970;

These ideas will be developed further in chapter 6 when
structured data types are extended to act as C++ objects.

Another C++ keyword related to struct is union. This is

used to define a new data type as follows:

union RATE

int Percentage;

float Fraction;

1;

A variable of type RATE may hold either an int value or a

float value but not both simultaneously since the storage

space for the two fields is shared. For example:

RATE multiplier;

Here the multiplier variable may be used to hold a

percentage integer value:

multiplier.Percentage - 75;

Alternatively it can hold a fractional floating-point value:

multiplier.Fraction = 0.75;

Unions are not particularly useful in C++ and will not be
discussed further.

2.3 Expressions

Most data processing in C++ is performed using
expressions. An expression is formed by combining
constants, variables and objects with various operators. One
expression can be combined within another as a

17

Once the interface pointer has been exchanged the
operating system plays no further part and one component
sends messages directly to an object in the other
component. After the initial exchange further interface
pointers for the object can be requested using the Query ()

function — the object may also provide other functions that
return interface pointers to different objects within its

component. A common technique is to arrange a
component's objects within a hierarchy and let objects at
each level supply pointers for objects at the next level —
the first pointer requested is for an object at the top of the
hierarchy.

14.6 Smart Interface Pointers

One problem with the Acquire () and Release ()

functions for interface pointers is that it is all too easy to
forget to invoke them. Smart pointers can automate the
process — see section 9.6 for more information. The
approach adopted here uses the COMMON base class to

provide the functionality common to all types of interface
pointer — this base class is inherited by template classes
that each correspond to a different interface type. The
technique is similar to that described in section 12.4 but
now inheritance replaces embedding as the wrapping
mechanism. The COMMON class specification follows:

class COMMON f

public:

COMMON (void);

COMMON(int,int);

COMMON(const COMMON&);

-COMMON (void);

COMMON& operator=(const COMMON&);

COMMON Query(int) const;

protected:

UNKNOWN* Interface;

int Status;

) ;

170

The default constructor simply sets the status field to
false. The next constructor is a wrapper function to invoke
the GetinterfacePointer() function supplied by the

operating system — it takes parameters to identify the type
of object and interface required:

COMMON::COMMON(int classID,int interfaceID) {

Status = GetInterfacePointer(classID,

interfaceID,&Interface);

The copy constructor takes care of the call to Acquire ()

needed when an interface pointer is duplicated:

COMMON::COMMON(const COMMON& x) 1

Interface = x.Interface;

Status = x.Status;

if (Status)

Interface->Acquire();

Similarly the destructor calls the Release() function:

COMMON::-COMMON(void) 1

if (Status)

Interface->Release();

The assignment operator combines the actions of the
destructor and copy constructor:

COMMON& COMMON::operator-(const COMMON& x) f

if (this == & x)

return * this;

if (Status)

Interface->Release();

Interface = x.Interface;

Status = x.Status;

if (Status)

Interface->Acquire();

return *this;

171

The COMMON class Query () function is a wrapper function
for the UNKNOWN interface Query () function:

COMMON COMMON::Query(int ID) const {

COMMON x;

if (Status) x.Status =

Interface->Query(ID,&(x.Interface));

return x;

The POINTER<T> template classes act as wrappers for the
COMMON base class — the template class specification
follows:

template <class T>

class POINTER : public COMMON {

POINTER (void)

POINTER(int,int);

POINTER(const COMMON&);

POINTER<T>& operator=(const POINTER<T>&);

T* operator->(void) const;

;

The three constructors just invoke their counterparts in the
base class:

template <class T>

POINTER<T>::POINTER(void) : COMMON() {}

template <classT>

POINTER<T>::POINTER(int classID,

int interfaceID)

: COMMON(classID,interfaceID) {}

template <class T>

POINTER<T>::POINTER(const COMMON& x)

: COMMON(x) (I

The last of these acts as a type conversion operator — its

172

main purpose is to permit the result of a Query () request

to be assigned to any type of POINTER<T> object.

Finally, the overloaded -> operator is used to invoke the
other functions belonging to an interface — the template
type parameter T is required so that the Interface pointer
may be cast from UNKNOWN* type to T* type:

template <class T>

T* POINTER<T>::operator->(void) const

if (! Status)

exit (999)

return (T*)Interface;

The POINTER<T> template classes are easy to use — the
Acquire() and Release() interface functions are
invoked automatically whenever this is necessary. For
example, suppose the INTERFACE class is derived from
the UNKNOWN class and includes the Explode () function:

int main (void) {

POINTER<UNKNOWN> first(CLASS ID,UNKNOWN_ID);

POINTER<INTERFACE> second; —

second = first.Query(INTERFACE_ID);

second->Explode();

return 0;

1

The CLASS ID parameter selects a particular type of object
whilst the UNKNOWN ID and INTERFACE ID parameters
select the appropriate interfaces on the object. Note that the
object is manipulated only through pointers to its interfaces
and is never available directly. When the block statement of
the main () function is exited, the first and second
smart pointers are both destroyed — their destructors
automatically release the interface pointers to the object. To
hold an interface pointer from one block statement to
another a dynamic POINTER<T> object may be used.

173

174

15. Exceptions

C++ exceptions provide a mechanism for structured

error handling. Whenever an error is detected an exception
may be thrown — this action passes information about the
error from the point in the program where the error occurs to

a higher level handler that knows how to deal with the

problem. The C++ language defines the try, throw and

catch keywords to support its exception mechanism — a

section of code which may throw an exception is enclosed

within a try block and thrown exceptions are caught by

handlers that supply the error processing. In this way the

program statements which perform the basic processing are

separated from those which handle errors. The C++

exception mechanism is fully integrated with object creation

and destruction procedures — whenever the throwing of an

exception causes a block statement to be exited any local

objects are automatically destroyed. Furthermore, an

exception thrown from within an object constructor is treated

in a unique manner.

15.1 Error Handling Schemes

The traditional approach to error handling is not
structured — there are typically three options on finding an

error:

1. Generate an error code
2. Transfer the flow of control

3. Terminate the program

An error code may be returned as the result of a function or

used to set a global error variable. In either case the

responsibility for handling the error is simply passed on —

the error code should be tested at some point but this is not

always done. For example, the new operator returns a null

pointer if there is no more memory available to create a new

object — the returned pointer should always be checked for

a null value but this rarely happens.

175

The second option upon encountering an error is to transfer

control to a set of program statements that will process the

error — an error handler. This approach also requires

constant checking for the occurrence of an error with the

result that the main purpose of the code is often obscured.

C++ provides the goto statement for transferring program

control but the destination must be within the current

function — the setjmp 0 and iongjmp () functions

provided by the standard C libraries can increase the extent

of the jump but they do not interact well with C++ objects.

Finally, it may be impossible to handle an error satisfactorily

and the only remaining option is to terminate the program —

in earlier chapters the exit() function has been invoked

when serious errors occur.

In many situations the processing of errors can be elegantly

handled by the C++ exception mechanism. The technique

combines the 'error code' and 'control transfer' approaches

by passing error information directly from the point at which

the error occurs to the error handler. This has several

advantages:

1. Once an error is detected it cannot be overlooked

2. Most code can assume there are no errors

3. The error and its handler may be widely separated

The first statement holds since control is always transferred

when an error is detected — furthermore, control will only

flow normally if no errors are encountered so the second

statement follows. Finally, errors usually occur within

low-level routines which do not understand the context of

the error sufficiently well to be able to handle them — this

job is much better suited to higer level routines but these

rarely bother to check for error codes generated by the

functions they invoke. The exception mechanism can

transfer information about the error directly from a low-level

routine to its high-level handler.

176

15.2 Throwing Exceptions

An exception in C++ is a variable or object containing
information about an error — it is transferred from the point
at which the error occurs directly to an error handler. The
process of reporting an error with an exception is known as
throwing an exception — the throw keyword is used to

throw an exception:

int error = 1001;

throw error;

Here the throw statement causes the integer error code

1001 to be passed to an error handler. For C++ to find a
suitable handler the code must be enclosed in a try block:

try I

int error = 1001;

throw error;

catch (int i) f

cout << "Error code " << i;

cout << " caught.\n";

exit(999);

The try block is followed by a catch block which contains
the code for the error handler. In fact, any number of error
handlers can follow a try block each with their own catch

block — the different handlers are distinguished by the type
of exception that they catch. The code within the catch
blocks is only executed if an exception is thrown from the
try block — if the try block is exited normally then control
passes to the statement following the last catch block. The

parentheses after the catch keyword contain the type of

exception caught as well as the local name of the exception
— an exception is always copied to a variable or object that

177

is local to the catch block of the handler. The previous
example copies the value of the error variable to the local
variable i before printing the following message:

Error code 1001 caught.

The program then terminates with a call to the exit
function. When an error can be successfully handled the
program may instead continue its execution — if a catch
block completes normally control is transferred to the
statement following the last catch block in the list.

The INTEGER class of chapter 9 is extended here to
overload the division operator:

class MATH ERROR f

public:

int Code;

;

class INTEGER f

public:

INTEGER(int = 0);

INTEGER operator! (const INTEGER&) const;

operator int(void) const;

private:

int Data;

The overloaded / operator throws a MATH _ERROR exception
if division by zero is attempted:

INTEGER

INTEGER::operator/(const INTEGER& i) const f

if (i.Data == 0) f

MATH ERROR error;

error.Code = 1001;

throw error;

return INTEGER(Data/i.Data);

178

Now code may be written within a try block under the

assumption that division by zero will not occur:

int i,j,k;

INTEGER I,J,K;

while (1)

try

cout << " Enter two integers ...\ n";

cm n >> i >> j;

I = INTEGER(i);

J = INTEGER(j);

K = I/J;

k = int(K);

cout << i << '/' << j;

cout << " = " << k;

cout << '\ n';

1

catch (MATH ERROR error) (

if (error.Code == 1001)

cout << "Division by Zero!\n";

The while loop repeatedly asks for two integers and prints

out the result of dividing one by the other. The actual

division operator takes two INTEGER operands — there are

type conversions from int to INTEGER and back. If the

overloaded division operator from the INTEGER class

detects an attempt to divide by zero a MATH_ERROR

exception is thrown — the exception is caught by a handler

and the following message is printed:

Division by Zero!

The while loop then continues to ask for another pair of

integers. The important point to note is that the basic

processing (input, division, ouput) can assume no errors will

occur — the error handler is completely separate from the

rest of the code.

179

sub-expression and parentheses () may be used to

ensure the correct order of evaluation. For example:

answer - 7*(3+6);

Every C++ expression has an effect and a result. The result
is simply the value produced by the expression whilst the

effect is something that happens because the expression is

calculated. Many expressions have no noticeable effect —

however, those that do include the assignment expressions,
expressions involving the increment/decrement operators
(++ and --) and expressions which invoke functions.

2.4 Arithmetic Expressions

Arithmetic operators are defined for the integer and

floating-point types. There are unary operators which act on

a single operand and binary operators which combine a pair
of operands. The binary operators are + (add), - (subtract),

* (multiply) and / (divide). For example:

six = 6;
seven = 7;
answer = six*seven;

Here the answer 42 is generated. For integers there is also

the % operator which gives the remainder after dividing one

integer by another:

int remainder = 15 % 6;

This initializes the remainder variable with the value 3.

The unary minus operator negates a value:

five = 5;
answer - - five;

The most interesting arithmetic operators are the unary

operators ++ (increment) and -- (decrement) which

respectively increase or decrease the value of an integer
variable by 1.

18

15.3 Error Handler Selection

A try block may be followed by a number of catch
blocks each for a different error handler — the question
arises as to which handler to use when an exception is
thrown. The previous section noted that a handler specifies
which type of exception it catches by placing the type name
in parentheses after the catch keyword — however, there
are a few complications.

Firstly, the exception is always passed to the handler by
value and never by reference. Consequently, a catch block
which handles a particular type (or class) is equivalent to
one which handles references to this type (or class) —
furthermore, the const keyword is ignored when selecting a
handler.

More importantly a catch handler for a base class will also
catch objects from a derived class. This fact is useful if the
exception classes are arranged into a hierarchy — general
error processing may be performed in a base class handler
whilst more specific processing is possible in a derived class
handler. Since catch handlers are scanned from top to
bottom of the list until a match is found, the handlers for
derived classes must precede those for the corresponding
base class — the C++ rules for implicit casting of pointer
types means that the same is true for handlers which catch
pointer types.

Finally, the ... symbol is used to indicate that a handler
will accept any type of exception — such a handler should
be last in the list following the try block.

As an example, suppose a DIVIDE BY ZERO class derives

from the MATH ERROR class:

class DIVIDE BY ZERO : public MATH ERROR {

DIVIDE BY ZERO (void) ;

I;

DIVIDE BY ZER0::DIVIDE BY ZERO(void) f

Code —= 1001;

180

The following arrangement of catch handlers is possible:

try f

catch (DIVIDE BY ZERO error) 1

// specific error processing

1
catch (MATH ERROR error) (

// general. MATH _ERROR processing

catch (...) (

// general error processing

If a handler cannot be found in the list following the try
block the exception is passed on to any enclosing try block
and the process repeats. The same thing happens if an
exception is thrown from a catch handler — the keyword
throw on its own rethrows the original exception. When the
outermost try block is reached and no handler can be
found, the program will terminate.

15.4 Unwinding the Stack

The clever thing about exceptions is that they coordinate
their activities with the creation and destruction of local
objects. Whenever a block statement is exited through the
action of throwing an exception any objects local to the
block are destroyed. As discussed in secion 10.1 local
objects are typically stored on the stack and so the process
of automatically destroying the local objects is known as
unwinding the stack. For example, the OBJECT class defines
the following constructor and destructor:

OBJECT::OBJECT(void) {

cout << "Creating Object ...\n";

OBJECT::-OBJECT(veid) (

cout << "Destroying Object ...\n";

1

181

The following code demonstrates what happens when an
exception is thrown:

try f

OBJECT object;

int error = 1001;

throw error;

catch (int i) (

cout << " Error code " << i;

cout << " caught.\n";

exit(999);

}

The object is destroyed before the exception is caught —
the following messages are printed:

Creating Object ...

Destroying Object ...

Error code 1001 caught.

In particular, the stack is unwound when a function is
invoked from within a try block and it then proceeds to

throw an exception — any local objects created by the
function are destroyed before control is passed to an error
handler for the try block.

15.5 Constructors

Constructors interact with exceptions in a unique way. If
an exception is thrown from within a constructor then the
object is not considered to be fully constructed — the
destructor is not called for the object. For an object with
embedded objects the construction process involves two
steps:

1. Construct the embedded objects
2. Execute the object's own constructor

182

If an exception is thrown in either step, the only destructors
invoked are those for embedded objects which were fully
constructed before the exception was thrown. Similarly for
an object of a derived class the construction steps are:

1. Construct embedded objects defined in the base class
2. Execute the object's own base class constructor
3. Construct embedded objects defined in the derived class
4. Execute the object's own derived class constructor

Again if an exception is thrown only fully constructed
embedded objects have their destructors invoked — the
base class destructor is called only if the base class
constructor completed successfully.

A constructor is often used to acquire resources for the
object — the destructor will release these resource. For
example:

OBJECT::OBJECT(void) (

Storage = (char*) new char[1000];

if (! Storage) (

OUT OF MEMORY exception;

throw exception;

OBJECT::-OBJECT(void) {

delete (} Storage;

Here the OBJECT class acquires one thousand bytes of

storage for each object to use. An OUT OF MEMORY

exception is thrown by the constructor if it cannot acquire its
storage — in this case the matching call to the destructor to
release the resource becomes unnecessary and indeed
never happens.

183

Bernard Babani Books

Programming in C++
The object oriented approach is revolutionising the soft-

ware development process. C++ is a powerful object ori-

ented programming language which inherits many of its

features from the ever popular C. This book introduces the

fundamental principles of the object oriented model and

demonstrates how to apply them to C++ programs. If you

need to rapidly acquire a working knowledge of C++ and

start producing effective code (or simply want to know

more about the subject) then this book is for you!

The topics covered include:

• Basic Language Features: data structures, operators and

expressions, programming statements and algorithms, function

calls, indirection using pointers and references.

• Object Oriented Design: separating implementation from inter-

face, encapsulation and polymorphism.

• Classes and Objects: object constructors and destructors, pro-

tection keywords, class functions and friend functions.

• Software Reusability: templates, inheritance, class libraries and

software components.

• Advanced Language Features: dynamic objects and memory

management, overloading functions and operators, virtual

functions, structured error handling using exceptions.

The book assumes only a general background in computing

and lays firm foundations before presenting more complex

material - each new concept is fully explained with the help

of line-drawings and illustrative coding examples.

BP 435

£6 .99

ISBN 0-85934-435-5

11 1
9 780859 344357

00699>

For example:

count = 3;
count++;

The second statement increments the value of count to 4.
As well as this effect of altering the value of a variable, the
increment/decrement operators also produce an expression
result which may be used within a larger expression. The
result of the increment/decrement sub-expression is the
value of the variable either before or after it is modified
(depending on whether the operator is placed to the right or
left of the variable name). For example:

count = 3;
answer = 5 * count++;

The processing steps performed by the second statement
are as follows:

1. The count++ expression yields the result 3

2. Since the ++ operator follows its count operand, the

variable's value is incremented to 4 only after the result of
the sub-expression is generated

3. 5 is multiplied by 3 to give the answer 15

By contrast, the following statements use the prefix form of
the operator:

count = 3;
answer = 5 * ++count;

Again the value of count is set to 4 but now the value of
answer is 20.

2.5 Assignment Expressions

The ++ and -- operators provide expressions with an
effect and a result. The various assignment operators
(=, +=, *= and so on) also do this. The basic assignment

operator = simply assigns a value to a variable — this is the
effect of the assignment expression. However, the

19

assignment expression also produces a result which is a
reference to the variable appearing on the left-hand side of
the equals sign. The most common use is to chain together
assignments which are then executed from right to left. For

example:

int row, column;
row = column = 0;

The chained assignment expression performs the following
processing:

1. The value of zero is assigned to the column variable

2. The sub-expression column = o yields a reference to

the column variable

3. The other assignment is then effectively row = column

and so the value of column (0) is copied to row

The overall effect is that both row and column variables

are assigned the value O.

The other types of assignment operator combine the basic
assignment operation with an arithmetic (or bitwise)
operation. For example:

total += count;

This expression adds the value of count to the current

value of total and then stores the result in the total

variable as its new value. Similar operators are the -=, *=,

and /= operators.

2.6 Comparison Expressions

Comparison expressions test a pair of operands for
equality or inequality or relative ordering (less than, greater
than, etc.) by using the following operators:

== equal to
< less than

> greater than

!= not equal to
<= less than or equal to

>= greater than or equal to

20

Do not confuse the assignment operator (=) with the equality

operator (—). A comparison expression yields the logical

result true (represented by a non-zero value) if the relation it
represents holds, and yields false (represented by a zero
value) otherwise. Some examples are shown below — note

that the results of these expressions are not used here.

six = 6;
seven = 7;

six == seven; (false)

six != seven; (true)

six < seven; (true)

six >= seven; (false)

The logical result of a comparison expression may be
further combined in a logical expression as discussed in the
next section. Both comparison and logical expressions are

typically employed to control program flow — chapter 4
discusses flow control and the associated C++ programming
constructs.

2.7 Logical Expressions

Logical expressions process true (non-zero) and false
(zero) values. The logical operators are:

&& and

I I or

I not

The && and I operators are binary and so take two

operands. The && (and) operator yields true if both the first

and the second operands are true, and yields false

otherwise. On the other hand, the I (or) operator yields

true if either the first or the second operand is true, and

yields false otherwise. Both operators are short-circuit
operators which means that the left-hand operand is always
evaluated but the right-hand operand is evaluated only if the
evaluation is necessary to determine the overall result of the

logical expression.

21

Hence for the && (and) operator the procedure is:

1. Evaluate the left-hand operand

2. If it is false, return the result of the expression as false

3. Otherwise evaluate the right-hand operand

4. Return the result of the expression

The procedure for the I I (or) operator is similar. For

example:

five = 5;

six = 6;

seven = 7;

(five < six) && (six <= seven);

The logical && expression evaluates both of its operands

and generates the result true (which is simply discarded in

this example). The ! (not) operator changes true to false

and false to true. Hence the following logical expression is

true:

black = 0;

white — 1;

!(black == white);

Finally, the ternary operator ?: takes a logical expression as

its first operand and depending whether this is true or false

the operator proceeds to evaluate either its second or third

operand (but not both) with the result being available for use

in any containing expression.

six = 6;

seven = 7;

smaller = (six < seven) ? six : seven;

Here the variable six is tested against the variable seven

and since six holds a smaller value than seven, the

variable smaller is assigned the value 6.

22

2.8 Bitwise Expressions

The bitwise operators & (and) and I (or) combine integer
values one bit at a time. For each bit position the result is

defined by the following tables:

& (and) operator I (or) operator

0 1

o
1

00

0 1

0 1

0 0 1

1 1 1

The following code demonstrates the effect of the bitwise
operators:

three = 3;

nine = 9;

one = three & nine;

eleven = three I nine;

The variables one and eleven are assigned the values 1
and 11 respectively The unary bitwise operator - (not)

swops bits from 0 to 1 and from 1 to O. Bitwise expressions

are typically used with flag variables where each bit of an
integer acts as a flag to indicate whether or not some option
is enabled. For example:

int flags = MATH_COPROCESSORIMEMORY_CACHE;

This sets the appropriate bits in the flags variable to select

the desired options.

2.9 Input and Output Streams

The Hello program in chapter 1 introduced the notion
of performing input/output with data streams and used the
cout output stream object to display a string on the screen.

There is naturally a corresponding input stream object
called cm n (console input) for reading data in from the

keyboard. The two stream objects cm n and cout work with
the stream input and output operators » and « and they

23

can handle all the basic C++ types such as characters,
strings, integers and floating-point numbers. For example:

int count;

cm n >> count;

count++;

cout << count << '\ n';

This code reads in a value for the count variable,
increments the variable and then prints it out on the screen.
Note that the stream expressions can be chained from left
to right — here a newline character is sent to the output
stream after the count variable is printed. The stream
objects should always appear to the left of the input/output
operators.

2.10 Finding the Average

The following program demonstrates some of the ideas
from this chapter. It reads in a pair of integers and stores
them in the variables x and y. The average is computed
and the result is printed out.

#include <iostream.h>

int main (void) f

int x,y;

float average;

cout << "Enter two integers ...\n";
cm n >> x >> y;

average = 0.5*(x+y);

cout << "The average is " << average;

cout << '\n';

return 0;

When this program is run the following text appears on the
screen:

Enter two integers ...

36

The average is 4.5

24

Note that the input values (3 and 6) are automatically
echoed to the screen as they are typed. The expression
statement that performs the computation is:

average = 0.5*(x+y);

Multiplication by the floating-point constant 0.5 ensures that
the sum x+y is converted to a floating-point value before
the average is calculated — dividing by the integer 2 would
perform an integer calculation with the resulting value 4. An
alternate method is to use an explicit type cast:

average = float(x+y)/2;

In any binary operation involving an integer and a
floating-point value, the integer is converted to a
floating-point number before the two values are combined.

25

26

3. Pointers, References and Arrays

Chapter 2 introduced the notion of allocating storage
space for a variable or constant by providing a declaration
statement which specifies the data type. This chapter
discusses in more detail how memory storage is allocated to
newly declared data and describes the use of pointers to
reference these storage locations. An important feature of
the C++ language is that data may be manipulated indirectly
through such pointers. Arithmetic operations on the pointer
themselves are also possible and these operations are
especially relevant when dealing with arrays. An array is a
collection of several items all of the same type — the
individual elements within the array are selected through the
use of an integer subscript. This chapter covers both single-
and multi-dimensional arrays and also looks at character
arrays (strings).

3.1 Memory Storage

A variable declaration statement may be used to
allocate storage space for the variable. This storage is
located somewhere within the computers memory. The
memory is organised as an array of cells each containing
8 bits (1 byte) of information. Every memory cell is assigned
a unique address to identify it from all the other cells — the
addresses take integer values beginning with zero at the
start of memory and increasing by one for each new cell.
The following figure shows the layout of memory cells:

Start of Memory

Address 0

Address 1

Address N-1

Address N

Cell

Cell

Cell

Cell

End of Memory

27

3.2 Address and Indirection Operators

A char variable requires only 8 bits of storage and so it

is allocated a single memory cell. To find the memory
address of the char variable, the address operator & is
applied:

char letter;

char* cell;

cell = &letter;

Here the address of the letter variable is assigned to the
cell variable. If the letter variable is stored in cell number
54178 then after the assignment, the cell variable will

have this number as its value. The cell variable is
declared as being of type char* which means that it is a
pointer to a character variable — in this context the
symbol * indicates a pointer type. Pointer variables are
used to hold addresses of other variables — their value
points to the memory location of the variable that they
reference. The following figure illustrates the state of the
letter and cell variables after the code fragment above
has executed:

cell variable

address of

letter variable

letter variable

value of

letter variable

The & operator returns the address of a variable — to

manipulate the variable given only its address requires the
dereferencing (or indirection) operator * which converts an

address into a reference to a variable. The reference can be
used anywhere that the variable name could appear directly.
For example, the following code prints the letter a onto the

screen:

char letter = ' a';

cout << letter << '\ n';

The same result can be achieved indirectly using a pointer

28

as follows:

char letter = ' a';

char* pointer = &letter;

cout << *pointer << '\ n';

Note that a variable reference is not the same thing as the
value of the variable. The following code demonstrates that
a reference may appear on the left-hand side of an
assignment operator (just like the variable name could) —
this is not possible with a value.

char letter;

char* pointer = &letter;

*pointer -

cout << letter << 1\n';

Here the letter variable is assigned a value indirectly
using a dereferenced pointer. The final statement
demonstrates this by printing out the letter variable
directly.

3.3 References

Unlike its parent language C, C++ provides reference
types in addition to its pointer types. References do not use
the & and * operators but simply provide new names

(aliases) for a variable. For example, here is another variant
on the above theme:

char letter;

char& reference = letter;

reference =

cout << letter << '\ n';

In the same way that the * symbol is used to declare a

variable of a pointer type, the & symbol indicates a

reference type. A reference must be initialized when it is
declared and cannot be redefined to reference a new
variable. References are particularly useful as function
parameters and will be discussed further in chapter 5.

29

3.4 Pointer Types

A char variable can be stored in a single memory cell,

but this is not generally true for variables of other types. For
example, an int variable typically requires 32 bits of
storage nowadays so each integer must occupy four
memory cells. The four cells allocated are located at
consecutive addresses but the exact way that the integer is
stored within these cells is machine dependent. However,
the & operator always returns the address of the first cell

used. In other respects the & and * operators work with

other data types in much the same way as with character
variables and pointers. For example:

int total;
int* pointer = & total;
*pointer = 6;
cout << total << '\ n';

Here total is assigned a value 6 before being printed.

A pointer which is currently pointing to no variable may be
assigned the value zero (0) — this makes it a null pointer. It

is then illegal to apply the indirection operator * to the

pointer and a run-time error will result if this is attempted.

int* pointer = 0;
*pointer = 6; // run-time error

In complete contrast to null pointers C++ also supports
void pointers. Such a pointer may reference any type of

variable but cannot be dereferenced directly. To manipulate
the variable the pointer must be cast to a pointer of the
correct type. For example:

int total;
void* void pointer = & total;
int* int_pointer = (int*)void_pointer;
*void pointer = 6; // compile-time error
*int pointer = 6; // okay

30

The syntax for a pointer cast is similar to a cast between
basic C++ types but (as in a declaration statement) the
symbol * must appear to denote a pointer type. However,
the pointer type in a cast expression must be enclosed by
parentheses. Any pointer type can be cast to any other
(although this may not always be sensible). Some pointer
casts are implicit, for example:

int total;

void* pointer = & total;

Here an implicit cast is performed from int* pointer type

to void* pointer type. The explicit version is:

void* pointer = (void*)&total;

Finally, the const keyword may appear in a pointer

declaration statement to modify the pointer type. There are
two variants:

1. The pointer value must be constant
2. The value of the variable pointed at must be constant

In the first case the pointer must be initialized when it is
declared and cannot subsequently be changed. Nonetheless
the referenced variable may be altered indirectly through
the pointer.

int count;

int* const pointer = & count;

*pointer = 6; // okay

In the second case the pointer value may change as
required but the dereferenced pointer may not appear on the
left-hand side of an assignment expression.

const int count = 9;

const int* pointer;

pointer = & count;

*pointer = 6; // compile- time error

Of course, the two variants can be combined and then

31

neither the pointer nor the variable may be modified. For
example:

const int count - 9;

const int' const pointer = & count;

The const keyword is used in a similar fashion with

references.

3.5 Pointer Arithmetic

Some arithmetic operations may be performed on the
pointers themselves. The increment/decrement operators
(++ and --) can be applied to a pointer just as they can to

an integer variable — the only difference here is the size of

the increment or decrement. With integers the value always
changes by 1, but for pointers the value changes by the

number of memory cells needed to store a variable of the
data type associated with the pointer. For example, if an
int variable occupies four bytes of storage then

the ++ operator will increase the value of an int* pointer

by 4 and the -- operator will decrease its value by 4.

Similary, an integer value may be added to (or subtracted

from) a pointer and the result is identical to applying the

increment (or decrement) operator the number of times
indicated by the integer value. This movement of a pointer
in variable-sized steps is useful if several variables of the
same type are located one after another in memory — the
following section on arrays discusses this idea more fully.

Finally, if two pointers are initially equal and one is moved a
certain number of steps, then applying the difference

operator to the two pointers yields the number of steps

moved. For example:

pointerl = pointer2;

pointer2++;

pointer2++;

int count - pointer2-pointerl;

Here the value of count is set to 2.

32

3.6 Arrays

Chapter 2 described how the struct keyword can be

used to combine basic data types to form a larger structure.
Another possibility is to define an array of elements all of
the same basic type — the individual elements are stored
one after another in memory. The C++ language provides

built-in support for arrays by allowing array variables to be
declared and by supplying the subscript operator [] to

reference the elements of an array. The following statement
allocates storage for an array of five integers:

int x[5];

The individual elements may be referred to as to x [0],

x [1] , , x [4] and they are stored in memory as follows:

Name x[0] x[1] x[2] x[3] x[4]

integer integer integer integer integer

Address N N+Size N+2*Size N+3*Size N+4*Size

The number of memory cells used to store each integer is
denoted in the figure by the quantity Size. The sizeof

operator will indicate the number of bytes needed to store a
variable of a particular type — for 32 bit integers

sizeof (int) equals 4.

The [] operator is closely related to the * dereferencing

operator and provides a reference to an element of the
array. The particular element referenced is identified by the
subscript which appears between the square brackets — the
first element always has the subscript o. Indeed for any

subscript n the following identity holds:

x[n] == * (x+n)

The array name x on its own supplies a pointer to the first

element in the array and so x+n is a pointer to the element

with subscript n. Further * (x+n) is a reference to this

33

element — however, the notation x [n] is usually preferred.
The following code uses an initializer list to set the array
elements and then sums the individual values:

int x[5] = { 7,8,6,9,5};
int total = x[0]+x[1]+x[2]+x[3]+x[4];

A much better way to process arrays is to apply the looping
constructs discussed in chapter 4.

3.7 Strings

Character arrays are known as strings — the C++
language allows constant string values to be defined by
enclosing the characters in double quotes. The effect of
such a definition is to store the array of characters
somewhere in memory and to supply a character pointer
that points to the first element of the array. In addition to the
characters which appear between the quotes another
element is automatically placed at the end of the array. This
final element has the value zero and can be used to identify
the end of the string. For example:

char* string = "Hello";

This statements results in the following memory usage:

string variable

pointer --> 'H' , e , '1' '1' t o t o

The pointer must not be used to modify the elements of the
string constant. If a string needs to be altered then it should
be stored in a character array:

char string[6] = {' H','e','1', 111,10',0];

To simplify the initialization of such arrays C++ supports the
following short-hand notation:

char string[6] = "Hello";

Note that the length of the array must allow for the

34

terminating zero character. The elements of a character
array may change as required.

Here is a short program to print out a Help! message. It

demonstrates some of the ideas about pointers and arrays
presented in this chapter.

#include <iostream.h>

int main(void) {
char string[6] = " Hello";
char* letter = string;
letter += 3;
*letter = ' p';
string[4] =
cout << string << '\ n';
return 0;

3.8 Multi-Dimensional Arrays

The C++ language also supports multi-dimensional
arrays — these use several subscripts to identify an element
within the array. For example, a checker board may be
represented as a two-dimensional array with one subscript
for the row and another for the column. The declaration of a
multi-dimensional array is quite straightforward:

int board[8][8];

The top left-hand square of the board would correspond to
the element board [0] [0] whilst for the bottom right-hand

square the corresponding element would be board [7] [7].
A general square located by the values of row and column

corresponds to the array element board [row] [column] .

The elements for the board array are stored one after

another in memory — the elements for the first row
(board [0] [0], , board[0] [) are stored first,
followed immediately by those for the second row and so
on.

35

terminating zero character. The elements of a character
array may change as required.

Here is a short program to print out a Help! message. It
demonstrates some of the ideas about pointers and arrays
presented in this chapter.

#include <iostream.h>

int main(void) {

char string[6] = "Hello";

char* letter = string;

letter += 3;

*letter = ' p';

string[4]
cout << string << '\ n';

return 0;

3.8 Multi-Dimensional Arrays

The C++ language also supports multi-dimensional
arrays — these use several subscripts to identify an element
within the array. For example, a checker board may be
represented as a two-dimensional array with one subscript
for the row and another for the column. The declaration of a
multi-dimensional array is quite straightforward:

int board[8][8];

The top left-hand square of the board would correspond to
the element board[0] [0] whilst for the bottom right-hand
square the corresponding element would be board[7] [7] .
A general square located by the values of row and column
corresponds to the array element board[row] [column] .
The elements for the board array are stored one after
another in memory — the elements for the first row
(board[0] [0], , board[0][7]) are stored first,
followed immediately by those for the second row and so
on.

35

4. Statements

The C++ language provides only a few program

statement types and related keywords. However, nesting of

statements one within another is permitted so that the basic

elements can be combined to implement quite complex

algorithms. This chapter summarizes the various statement

types (simple, block and structured) which are available in

C++. Block statements allow a number of related

statements to be grouped as one — it is important to

understand the interaction of block statements and data

storage allocation in C++. Program execution usually flows

from one statement to the next in top to bottom fashion —

structured statements are designed specifically to modify

this pattern of execution. The structured statements

available in C++ include the conditional if, if-else and

switch statements as well as the looping while, do-

while and for statements.

4.1 C++ Statement Types

A C++ program consists of collection of program

statements ordered from top to bottom. Some statements

specify new data types or the format of function parameter

lists — such statements are discussed further in chapters 5

and 6. The remaining statements implement the program's

functionality by declaring variables and performing data

processing — there are essentially three sorts of these

statements:

1. Simple statements

2. Block statements

3. Structured statements

Examples of simple and block statements have appeared in

previous chapters — this chapter is principally concerned

with introducing the structured statements. The following

sections each describe a different statement type.

37

4.2 Simple Statements

Simple statements are always terminated by a
semi-colon (;) and come in three flavours:

1. Declaration statements
2. Expression statements
3. Transfer statements

Declaration and expression statements were discussed at
length in chapters 2 and 3 Examples are:

int x,y;

float average;

average = float(x+y)/2;

Program execution usually flows from one statement to the
next but this natural flow may be broken and control
transferred elsewhere by the occurrence of a transfer
statement. The return statement is one example:

int main(void) f

return 0;

}

Here control passes back to the operating system — chapter
5 looks at the return statement in more detail. Other

transfer statements include:

break;

continue;

These are used in conjunction with the structured
statements presented in sections 4.4 and 4.5.

4.3 Block Statements

A block statement is simply a collection of other
statements bracketed by a matching pair of braces { I and

serves to group the enclosed statements as a single
statement. Note that no semi-colon appears at the end of a

38

block statement:

{ Statement Statement ... Statement Statement }

A block statement is employed where the syntax of C++
permits only one statement but several statements are
required to perform the necessary processing. Of course,
the enclosed statements can themselves be block
statements and so blocks can be nested to any depth.

One important point about block statements is that they
influence the allocation of data storage space in memory. A
declaration statement is used to allocate the storage space
initially. If the declaration statement is not enclosed by a
block statement then a global variable is defined which
exists for the entire time that the program is running.
However, if the declaration statement is enclosed by a block
statement then a local variable is defined. The local variable
only exists until program control exits the (innermost) block
statement containing the variable's declaration statement.
Once a local variable ceases to exist its storage space is
deallocated and any pointers which reference the variable
should no longer be used. For example:

int x; // global variable

jut main (void) 1
int y; // local variable

{
jut z; // local variable

return 0;

The local variable z ceases to exist when the inner block is

exited and the local variable y ceases to exist when the

main() function returns.

Different variables in different blocks may have the same
name. When the name is used in an expression it refers to
the variable declared within the innermost block containing
the expression statement.

39

For example:

include <iostream.h>

int main (void) 1

int x = 1;

{
int x =
cout <<

1

2;
=

This program will print:

x = 2

" << x << \n';

since the name x in the stream output statement refers to

the x variable declared within the inner block.

4.4 Conditional Structured Statements

Structured statements control how the thread of
execution flows through a C++ program. The syntax for a
structured statement is defined by the C++ language —
such a statement always contains one or more other
statements within itself. There are two sorts of structured
statement:

1. Conditional statements
2. Looping statements

These are discussed in this section and the next
respectively.

The simplest conditional statement is the if statement —

this structured statement executes a contained statement
conditionally according to the result of a logical expression.

if (Expression)

Statement

The contained statement is executed if the bracketed
expression is true (non-zero) but if the expression is false

40

(zero) then control passes directly to the statement following

the if statement and the contained statement is not

executed. For example:

int total = 6;

if (total<9)

total++;

cout << total;

The comparision total<9 is true so the total variable is

incremented and the value 7 is printed.

There is also an if-else conditional structured statement:

if (Expression)

Statement1
else

Statement2

Here either Statement1 or Statement2 is executed (but not

both) depending on whether the expression evaluates to

true or false. The action is very similar to the ?: operator

described in chapter 2. For example:

if (x<O)

absolute = - x;

else

absolute - x;

or equivalently:

absolute = (x<O) ? -x : x;

Here the absolute variable is made to hold the magnitude

of x by reversing the sign of negative values.

As with block statements nesting of structured statements is

possible — in fact (with a few restrictions) all statement

types are interchangeable as far as nesting is concerned.

41

An example of nested if-else statements follows:

cout << "The letter is";

if (letter == ' a')

cout << " ' a'.";

else if (letter == ' b')

cout << " ' b'.";

else

cout << " not ' a' or ' b'.";

cout << '\n';

The C++ language provides the switch statement as an

alternative method of coding such tests:

switch (Expression)

BlockStatement

The above example may be recoded as:

cout << "The letter is";

switch (letter) (

case 'a':

cout << " ' a'.";

break;

case 'b':

cout << " ' b'.";

break;

default:

cout << " not ' a' or

break;

}
cout << '\n';

The case labels specify possible values of the bracketed

expression which follows the switch keyword. Control

passes to the statement immediately after the appropriate
case label (or after the default label if no other labels

match). The break statements transfer control out of the

block statement contained by the switch statement.

42

4.5 Looping Structured Statements

The second kind of structured statements are looping

constructs. The simplest is the while statement which has

the following syntax:

while (Expression)

Statement

The processing performed by the while statement is

depicted in the following figure.

from previous statement

evaluate Expression

is result true?

Yes

execute Statement

No

to next statement

The contained statement forms the body of a loop which is

repeatedly executed until the logical expression evaluates

as false (zero). A typical application is to copy one character

string to another:

char message[6];

char* string - "Hello";

jut i = 0;

while (message[i] = * string) {
i++;
string++;

cout << message << '\n';

Here the zero value at the end of the string causes the

43

while loop to terminate. A null statement sometimes
appears as the body of a while loop. For example, the
previous loop may be rewritten as:

while (message[i++] - * string++)

The lone semi-colon marks the end of a null statement
contained by the while statement.

The break and continue transfer statements may appear

within the loop body to alter the usual program flow of the
loop. The break statement immediately exits the loop

whilst the continue statement ends the current iteration of

the loop body and starts to re-evaluate the controlling
expression.

A slight variation of the while statement is the do-while

statement which always executes the loop body at least
once.

do

Statement
while (Expression) ;

The operation of a do-while loop is depicted below.

evaluate Expression

from previous r is result true?

1, Yes statement

execute Statement

No

to next statement

The while loop is typically employed when the number of

iterations is unknown beforehand — alternatively if the

44

number of iterations can be predicted a for loop may be

more suitable.

for (lnitializer; ControlExpression; IterationExpression)

Statement

The for statement performs the processing shown in the

following figure:

from previous statement

execute lnitializer

evaluate ControlExpression

is result true?

Yes

execute Statement

No

evaluate IterationExpression

to next statement

In comparison to a while loop the main difference is that

initialization may be performed and after each pass through

the loop an iteration expression is evaluated — this
expression typically updates the value of a loop counter. For
example:

int x[5] = { 5,7,9,8,6};

int total = 0;

for (int i=0; i<5; i++)

total += x[i];

cout << "The total is " << total << '\ n';

45

Here the five elements of the x array are summed to

calculate the value of total. Note that a variable may be
declared as part of the loop initialization — the variable
continues to exist until the block containing the for

statement is exited.

As with a while100p,the break and continue transfer

statements may appear within the body of a for loop to
alter the usual flow of control. The break statement
immediately exits the loop whilst the continue statement
transfers control to the evaluation of the iteration
expression.

4.6 Insertion Sort

A simple method of sorting a list of integers is the
insertion sort. The following program implements an
insertion sort for an array of five integers.

#include <iostream.h>

int main (void) (
cout << " Enter five integers ...\ n";

int x[5];

int i,j,n,t;

for (n=0; n<5; n++) {

cm n >> t;

i = 0;

while (i<n && t>x[i])

for (j=n; j>i; j--)

x[j] = x[j-l];
x[i] = t;

1
cout << " Sorted list:";

for (n=0; n<5; n++)

cout << ' ' << x[n];
cout << '\n';

return 0;

Starting with an empty array, each item in turn is inserted at

46

the correct position within the array — any existing items at
the end of the array are moved along to make room for the
new item. The while statement:

while (i<n && t>x[i])

i++;

finds the correct place to insert the new item and the for

statement:

for (j=n; j--)
x[j] = x[j-1];

moves existing items which follow the new item.

47

48

5. Functions

All data processing in a C++ program is performed by
functions — the operating system passes control to the
main () function and expression statements within main ()

invoke yet other functions. A C++ function is a block of code
which accepts a number of data items as input, performs
various operations using these parameters and finally yields
a result. Whilst the function is executing it may also produce

side-effects such as opening a file, clearing the screen or
updating a database. This chapter details the process of

declaring, defining and invoking a function. A function

declaration specifies the function parameter list and return
type — the corresponding function definition lists the
processing steps which will be performed when the function

is invoked. The various possibilities for function call

semantics (by-value, by-pointer and by-reference) are also
discussed. Finally, a function name in C++ may be
overloaded by providing different function definitions for

different types of parameter — optional parameters are also
supported.

5.1 C++ Functions

Chapter 1 outlined the use of functions in a C++ to
perform data processing — the whole of a C++ program is
contained within the single function main H. Each C++

function is a modular piece of code which accepts a number

of data parameters, performs calculations using these

parameters and finally generates a result — the result can
be processed further within an expression statement. There
are three important steps involved in working with a C++

function:

1. Function declaration

2. Function definition

3. Function invocation

A function declaration statement specifies the format of the
function parameter list and the type of result returned by

49

the function. For example:

char Letter(int);

This statement specifies that the function Letter () takes a

single parameter of type int and returns a result of type

char. The Letter () function is intended to provide the

letter of the alphabet corresponding to its integer parameter
— for example, a parameter value of 1 returns the letter a
whilst a parameter value of 26 returns the letter z. The

processing performed by the Letter () function must be
defined somewhere — the definition should follow the
function declaration statement.

char Letter(int i) f

char alphabet[28] =

" abcdefghijklmnopqrstuvwxyz";

return alphabet[i];

1

The processing performed by the function is defined by a
series of program statements enclosed by a matching pair
of braces { — in other words a function is defined using a
single block statement. The general syntax is:

RetumType FunctionName (ParameterList)

BlockStatement

Individual parameters within the parameter list are
separated by commas. If the function requires no
parameters the keyword void should appear between the

parentheses. Similarly the keyword void is placed before

the function name to denote that the function does not

return a result.

For the Letter() function defined above, the result is

taken from an array of characters. Note that alphabet [0]

is the first element of this array and it contains a space
character — similarly alphabet [271 is the final element of

the array and it contains a zero character.

50

To invoke the Letter () function requires a statement such

as:

char letter = Letter (13) ;

This assigns the value ' mT to the letter variable.

Any statement which invokes a function must appear after
the corresponding function declaration. However, the
relative position of the function definition and the function

invocation is unimportant. Indeed these may occur in
different source files if these files share a header that
contains the function declaration.

header file

function
declaration

source file

include
directive

function
definition

source file

include
directive

function
invocation

The function definition provides an implementation of the
function whilst the function declaration defines a
communications interface between the function and any
other code which wishes to invoke it. This approach of
separating implementation from interface is particularly
important for objects — the next chapter discusses this idea
further.

5.2 Invoking a Function

This section examines the processing which occurs
when a function is invoked. For each function invocation the
parameters of the function are assigned actual values
(arguments). These are provided by the statement which

51

invokes the function. For example:

char letter = Letter(13);

char Letter(int i) f

Here the argument 13 is assigned to the i parameter. The

variable i is local to the block statement defining the

Letter () function and ceases to exist when the function

returns. In particular, if the Letter () function is invoked

with a variable as an argument then i is initialized using the

value of the variable but if i were to be subsequently

modified these changes would not be reflected by the
argument variable. For example:

int position = 13;

char letter = Letter(position);

char Letter(int i) f
char alphabet[27] =

"abcdefghijklmnoqrstuvwxyz";
return alphabet[-- i];

Here the value of the position argument is copied to i

during initialization of the parameter. Then i is

decremented to account for the fact that array subscripts are
zero-based. However, the position variable itself is

unaffected by the function call.

These semantics are known as call-by-value since only the

value of the argument is passed to the function. Similarly
return-by-value semantics are applied when returning the
result of a function. For the Letter() function the

character selected from the alphabet array is copied to a
temporary character variable. The function then returns and
the alphabet array ceases to exist. The value of the

temporary variable is available within the statement that

52

invoked the function and so can be assigned to the letter

variable. However, once the invoking statement finishes its
processing the temporary variable disappears too.

5.3 Pointers and References

There may be times when a function must modify data
that exists outside of the function. C++ provides two
methods to circumvent the limitations of call- by-value
semantics:

1. call- by-pointer
2. call- by-reference

The first option is simply an extension of the call-by-value
approach but passes a pointer to a variable instead of the
variable itself — the value of the pointer argument is still
copied to the corresponding function parameter. For

example:

int x = 3;

Square(&x);

cout << "x = " << x << T\n';

void Square(int* pointer) {

int i = *pointer;

*pointer = i*i;

return;

The square () function squares the value of an integer

variable. The address of the variable should be passed as
the argument to the function and this address is used to
initialize the pointer parameter. By dereferencing this

pointer the actual value (not a copy) of the x variable can be

manipulated. Hence the code prints:

x=9

Note that the Square () function has a void return type

since it does not produce a result — it is invoked only for its
effect.

53

An array is automatically passed to a function using
call-by-pointer semantics — the function parameter receives
a pointer to the first element of the array. For example:

int a[5] = { 6,9,7,5,8};
int answer = Sum(a);

int Sum(int* array) f
int total = 0;
for (int i=0; i<5; i++)

total += array[i];
return total;

The second method of modifying the value of a function
argument is to employ a C++ reference. The square ()

example can be rewritten as:

int x = 3;
Square (x);
cout << "x = " << x << '\n';

void Square(int& i) f
i = i*i;
return;

1

The syntax is often more elegant when references are
substituted for pointers since the address and dereferencing
operators are unnecessary. Within the Square () function

the reference i is an alias for the x variable and so any

operations involving i affect x directly.

5.4 Return Values

As discussed in section 5.2 the value returned from a
function is usually stored in a temporary variable. However,
as with function parameter passing there are actually three
possibilities:

1. return-by-value
2. return-by-pointer
3. return-by-reference

The first option returns a temporary value which exists only

54

whilst the expression which invoked the function is being
evaluated. The second option is a variant of the first where
the temporary variable holds a pointer to more persistent
data. For example:

char* word = " alphabet";

char letter = * Letter(word,5);

cout << "The fifth letter is: ";

cout << letter << '\n';

char* Letter(char* string,int i)

i--;

return (string+i);

The Letter() function returns a pointer to the fifth letter of
the "alphabet" string. The pointer is temporary but the
character pointed at is more permanent. It is important to
avoid mistakes such as the following:

char* Letter(int i) {

char alphabet[28] =
" abcdefghijklmnopqrstuvwxyz";

return (alphabet+i);

1

Here a pointer is returned which references data that no
longer exists after the function returns.

The third option for returning a result from a function is to
employ a reference. Again it is important to ensure that the
reference is not for a variable which is local to the function.
The following example computes the fourth power of the x
variable:

int x - 3;

Square(Square(x));
cout << "x = " << x '\n';

int& Square(int& i) {

i = i*i;

return i;

1

55

This code prints:

x = 81

The inner call of Square () squares x from 3 to 9 and

returns a reference to x. The outer call then uses this

reference to again square x from 9 to 81.

5.5 The const Keyword

The const keyword can be employed with function

declarations in many different ways. These can be
categorized as follows:

1. constant parameters
2. constant result
3. constant object

The first two possibilities apply when pointers or references
are used to pass function parameters or return a result.
Chapter 3 discussed the basic meaning of the const

keyword with pointers and references but there are two
important applications relating specifically to functions.
Firstly, call- by-pointer or call- by-reference semantics may
be used simply to avoid the overhead involved in copying
the value of an argument to the corresponding parameter.
The argument is not to be modified by the function and this
should be indicated by placing the const keyword in the

function parameter list before the relevant parameter. For
example:

int Weekday (const DATE&) ;

This declares the Weekday () function as accepting a

reference to a variable of the user-defined type DATE — the

const keyword indicates that the DATE variable will not be

altered by the Weekday () function through this reference.

Similarly, return-by-pointer or return-by-reference semantics
may be employed to return a result without having to copy
the value to a temporary variable. However, if the variable
referred to must not be modified using the returned pointer
or reference then the keyword const should precede the

function return type.

56

Finally, the third use of const with functions places the
keyword after the function parameter list. This usage is
relevant only to functions defined for a C++ class and will be
covered in the next chapter — the const keyword indicates
that invoking the function will not change the internal state
of the associated object.

5.6 Function Pointers

Just as the name of an array is automatically converted
to a pointer so is the name of a function when written
without an argument list. Such function pointers may be
used to invoke the function indirectly. For example:

void (*pointer)(void);

if (arriving)

pointer = Hello;

else

pointer = Goodbye;

(*pointer)();

void Hello (void) f

cout << "Hello!\n";

void Goodbye (void) f

cout << "Goodbye!\n";

The declaration statement:

void (*pointer) (void);

declares the pointer variable as being a pointer to a
function taking no arguments and returning no result.
Depending on the logical value of arriving the pointer is
set to reference either the Hello() function or the
Goodbye () function. The expression:

(*pointer)();

invokes the function referenced by the pointer and so prints
either Hello! or Goodbye! as appropriate.

57

5.7 Function Overloading

A feature of C++ is the ability to define several functions
all with the same name but having different types of
parameters — this is known as "function overloading". The
particular function invoked is determined by the types of
arguments passed to the function. The actual selection
procedure is quite involved but overloaded functions are
generally easy to use. For example:

char* Next(char*);

char* Next(char*,int);

The Next () functions are used to move a pointer along a
string — the first function always moves the pointer one
step whilst the second function allows the number of steps
to be specified by an integer parameter. Typical
implementations might be:

char* Next(char* string) f

return ++string;

char* Next(char* string,int 1) f

return (string+i);

An alternative approach here would be to declare a single
Next () function with an optional parameter:

char * Next(char*,int = 1);

char* Next(char* string,int i) {

return (string+i);

The integer parameter defaults to the value 1 if it is not

supplied in the argument list. Optional parameters must
always be located at the end of the parameter list.

Only the function name and the parameter types are used to
distinguish one overloaded function from another.
Consequently there cannot be two functions which differ
only in their return type.

58

6. Classes and Objects

C++ classes form the basis for all object oriented
mechanisms supported by the language. A C++ class can
be obtained by combining a user-defined data structure with
functions designed to manipulate this data. The technique
permits a C++ class to provide its objects with similar
facilities to those supplied intrinsically by C++ for built-in
data types. A class specification lists both object data
structures and related function declarations — these class
functions are defined in a similar manner to the global
functions discussed in Chapter 5. Objects of a C++ class are
created in essentially the same way as variables of basic
and structured data types although the procedure is slightly

more complicated. Thereafter the program code sends
requests to an object by invoking the appropriate functions
and the object manages its own internal data structures — a
reply may be returned as the result of the function
invocation. The . and -> operators are used to associate a

function call with a particular object. The object
implementation details are hidden from the outside world
and all communications pass through an interface specified
by the format declarations for the class functions.

6.1 From struct to class

Chapter 2 discussed the use of the struct keyword for

specifying structured data types. This section details the
extension of a structured data type into a C++ class by the
addition of functions which will manipulate the data. Here

the starting point is the structured data type DATE:

struct DATE (

int Day;
int Month;

int Year;

;

The first step is to change the keyword struct to class

and add some function declarations.

59

For example:

class DATE f

public:

void SetDate(int,int,int);

int GetDay(void) const;

int GetMonth(void) const;

int GetYear(void) const;

int Day;

int Month;

int Year;

1 ;

The SetDate() function takes three integer parameters
which will be assigned to the Day, Month and Year fields.

The GetDay(), GetMonth() and GetYear() functions
each return the value of an individual field — the const

keywords following each function indicate that the functions
do not alter the internal state of the DATE object. The
public keyword is explained in section 6.3. The next step

is to provide function definitions:

void DATE: : SetDate (int day,intmonth,int year) {

Day = day;

Month = month;

Year = year;

1

int DATE::GetDay(void) const {

return Day;

)

int DATE::GetMonth(void) const {

return Month;

}

int DATE::GetYear(void) const f

return Year;

)

The class name DATE followed by the :: operator must
precede the function name in each of the definitions. Within

60

these functions the Day, Month and Year fields are simply

referred to by name.

6.2 C++ Objects

Now that the DATE class has been defined it is possible
to create objects of the class. The notation is identical to
that for variables of basic or structured data types:

DATE yesterday;

The declaration statement allocates storage space for the
yesterday object — the object ceases to exist when the
block containing this declaration is exited. The object
contains its own personal Day, Month and Year fields as
well as a pointer to the functions which it shares with all
other objects of the DATE class. As with a variable of a
structured data type, the fields contained by an object may
be referenced by applying the . operator:

yesterday.Day = 1;

yesterday.Month - 1;

yesterday.Year = 1970;

However, the object's functions may be invoked in a similar
manner. For example:

yesterday.SetDate(1,1,1970);

int month = yesterday.GetMonth();

An alternative way to describe the action of each of these
statements is to say that the yesterday object receives a
message, performs some internal processing and sends
back a reply if appropriate.

6.3 Encapsulation

The technique of communicating with an object using
messages allows the functionality of the object to be split
into two:

1. Interface
2. Implementation

The communications interface fixes the format of messages

61

sent and received by the object — it is specified by the
function declaration statements for the object's class. Upon
receipt of a message, the object performs some internal
processing — the implementation details are determined by
the data structures which the object contains and by the
related function definitions. The important point is that when
the implementation is isolated from the interface then the
internal workings of the object may be hidden from the
outside world — this idea is known as encapsulation' and it
is depicted in the following figure:

External

L Code

Outside World

Interface

• —›
Internal

Implementation

Object

External code can continue to successfully communicate
through the interface even if the implementation is changed.
For example, the implementation of the DATE class may be

hidden by addition of the private keyword:

class DATE f

public:

void SetDate(int,int,int);

int GetDay(void) const;

int GetMonth(void) const;

int GetYear(void) const;

private:

int Day;

int Month;

int Year;

1;

The public keyword allows the fields and functions which

follow to be referenced by any program code. However, the
private keyword restricts this activity just to code within

the function definitions for the class. Since C++ objects
share function code this means that encapsulation occurs at

62

the class level — C++ is thus class oriented rather than
object oriented and this fact is exploited in later chapters.

Anyway, the Day, Month and Year fields are now private to

the DATE class and implementation details are consequently

hidden. The class can change its implementation but retain
the same interface:

class DATE f

public:

void SetDate(int,int,int);

int GetDay(void) const;

int GetMonth(void) const;

int GetYear(void) const;

private:

int Seconds;

I;

Here the date is stored internally as the number of seconds
since 1st January 1970. Existing external code will still
function as before but needs to be recompiled with the new
class specification. Chapters 13 and 14 look at ways in
which even this recompilation step can be avoided.

6.4 Object Pointers

Pointers (and references) can be used with objects in

much the same way as with variables. The & operator gives

the address of an object and the * operator dereferences an

object pointer.

DATE yesterday;

DATE* pointer = & yesterday;

The . operator will work with a dereferenced object pointer

to reference a field or function:

(*pointer).Year = 1970;

(*pointer).SetDate(1,1,1970);

However, it is more usual to apply the -> operator directly

63

to the pointer:

pointer->Year = 1970;

pointer->SetDate(1,1,1970);

Finally, within the function definitions for a class the

keyword this supplies a pointer to the object for which the

function was invoked. The this pointer is used implicitly

within these functions to reference the object's fields and
functions. For example, the SetDate () function definition

appearing in section 6.1 may be rewritten in explicit form as
follows:

void DATE: : SetDate (int day, int month, int year) {

this->Day = day;

this->Month - month;

this->Year = year;

One possible use for the this keyword is to return a

reference to the object itself:

DATE& DATE::GetDate(void) {

return * this;

6.5 Data and Function Categories

Data which is declared in a statement that does not lie

within a block is global data — it is initialized before the
main () function starts to run and continues to exist until the

program terminates. Similarly, a function which is declared
outside of a class specification is a global function and it can
be invoked from anywhere within the program. The names

of global data and functions can be hidden by the same
name being declared within a block or class but the global
version is always available by prefixing the name with the
:: operator.

64

For example:

int x = 1;

int main (void)

int x = 2;

cout << "x =

return 0;

}

1

It << :: x << '\n';

This will print:

x = 1

since : : x refers to the global variable x.

Global functions generally cannot manipulate data or invoke
functions which are private elements of a class. However, a
function can be granted this right by including it in the
class specification preceded by the friend keyword. For

example:

class DATE;

void Print(DATE&);

class DATE {

friend void Print(DATE&);

private:

int Day;

int Month;

int Year;

1;

void Print(DATE& date) {

cout << "The date is ";

cout << date.Day << '/';

cout << date.Month << '/';

cout << date.Year << '.';

cout << '\n';

}

65

The forward declaration:

class DATE;

allows the Print () function to use the DATE& type in its
declaration statement. The Print () function prints out a
representation of the DATE object — chapter 9
demonstrates a more elegant way to do this. The friend
keyword can also be used with functions belonging to
another class — alternatively all functions of another class
may be made into friend functions by a single statement
such as:

friend class ClassName;

within the specification of the first class.

Finally, the keyword static may appear in a class

specification to denote that a field or function belongs to the
class as a whole rather than to individual objects of the
class. Such elements may be referenced by prefixing their
names with the class name and the :: operator. For
example:

class MATH (

public:

const static float Pi;

static int Random(void);

I;

const float MATH::Pi = 3.142;

int Main (void) {

cout << "The random number is: ";

cout << MATH::Random() << '\ n';

return 0;

Static data fields should be declared globally — constant
fields like Pi must also be initialized. A good place for these
declarations is in the class source file along with the function
definitions — if they appear in a header file there is the

66

possibility of allocating storage for the same data more than
once. The Random () function returns a random number
and can be invoked without first creating any objects of
type MATH.

6.6 Creating and Destroying Objects

There are essentially four categories of objects:

1. Temporary objects
2. Local objects
3. Dynamic objects
4. Global objects

These are listed in order of generally increasing length of
existence. Temporary objects exist only within the statement
which processes them — they are usually created implicitly
as function return values but the next chapter discusses how
to create temporary objects explicitly. Local objects exist
from the point at which their declaration statement is
encountered until the block containing this statement is
exited. Dynamic objects are created and destroyed explicitly
by the programmer with the new and delete keywords —

this is the topic of chapter 10. Finally, global objects exist
throughout the execution of the program. The following
chapter examines the object creation and destruction
processes in more detail.

67

68

7. Constructors and Destructors

During the execution of a program numerous C++
objects may be created and destroyed. When an object is

created storage space is allocated for it in memory —

deallocation of the storage occurs when the object is

destroyed. At creation the object may require initialization to
place it in a well-defined state and to acquire any system
resources that it utilizes — similarly during finalization the
object may need to release any resources it holds before
ceasing to exist. To define the initialization and finalization
procedures for an object its class must provide constructor
and destructor functions that are implicitly invoked to
perform the necessary processing. The constructor function
can be overloaded to provide a variety of ways of initializing
an object. A constructor which takes no parameters acts as
a default constructor — it is invoked when no initialization

arguments are available. Finally, a temporary object may be
created by an explicit call to a class constructor. These
objects can serve as constant values within expressions in a
similar fashion to the integer, floating-point and character
values supported directly by the C++ language.

7.1 Object Creation and Destruction

Most objects are created when a declaration for the
object is encountered — the object continues to exist until
the block containing the declaration statement is exited.

Two operations occur when an object is created:

1. Storage Allocation
2. Object Initialization

and similarly two operations occur when the object is
destroyed:

1. Object Finalization

2. Storage Deallocation

The storage allocation and deallocation operations are fairly
straightforward — sufficient memory space is made

69

available to the object to hold its data and so on. Chapter 10
delves a little more deeply into the management of memory
storage. The initialization operation puts the object into a
well-defined state and acquires any system resources that
the object may need to perform its function — the
corresponding finalization operation releases these
resources. Unless explicitly specified by the program code
both initialization and finalization operations are effectively
null.

7.2 Constructors and Destructors

To provide initialization and finalization for an object its
class must define respectively constructor and destructor
functions. The name of the constructor is the same as the
name of the class whilst the name of destructor prepends
the - character to the class name. For example:

test. h:

class TEST f

public:

TEST (void);

-TEST (void);

I;

test.cpp:

#include "test. h"

TEST::TEST(void) {

cout << " Initializing ...\ n";

TEST::-TEST(void) f

cout << " Finalizing ...\ n";

The TEST class performs no useful purpose except to

demonstrate when the constructor TEST () and destructor

-TEST () are invoked. The class specification appears in

the test. h header file whilst the function definitions appear

70

in the text. cpp source file. Note that constructors and
destructors do not have return types — furthermore a
destructor always has an empty parameter list.

Here is a program to test the TEST class:

#include <iostream.h>

#include "test.h"

int main (void) {

cout << " Before Object Creation\n";

{
TEST test;

cout << "Object Exists\n";

cout << "After Object Destruction\n";

return 0;

The TEST class specification within the test . h header file

is included by the directive:

#include "test.h"

The sharing of a header file between two source files is
depicted at the end of section 5.1 — the discussion there
regarding global functions applies equally well to classes.
The program produces the following output:

Before Object Creation

Initializing ...
Object Exists

Finalizing ...
After Object Destruction

Hence the constructor is implicitly invoked to perform
initialization when the object is created by its declaration
statement — the constructor call occurs immediately after
memory storage has been allocated for the object. Similarly,
the destructor is implicitly invoked to perform finalization
just before the object's storage space is deallocated — here
the object is destroyed when the inner block containing its
declaration statement is exited.

71

7.3 The Default Constructor

A class can define only a single destructor but it may
have several constructors — this is an example of the
function overloading technique discussed in section 5.7. The
default constructor is the constructor which takes no
parameters. If no constructors are explicitly defined then the
implicit null constructor acts as a default constructor. If any
constructors are explicitly defined then a default constructor
must be supplied if it is needed — a constructor which has
all its parameters optional can serve as a default
constructor. The default constructor is needed in situations
where an object of the class is created but no parameters
are available. For example, an object declaration statement
which does not include an initializer invokes the default
constructor:

TEST test;

Similarly, if an array of objects are declared then the default
constructor is used to initialize each element of the array:

TEST test [10] ;

7.4 Constructor Overloading

As noted in the previous section, a class may overload
its constructor function. The COMPLEX class will serve as an

example of constructor overloading — the class is further
developed in chapters 8 and 9. An object of the COMPLEX
class represents a complex number — just as real numbers
correspond to points on a line so complex numbers
correspond to points in a plane:

Imaginary Axis

Y

 > Real Axis

72

The point at coordinates (x,y) corresponds to the complex
number x+iy — the x-axis is the real axis and the y-axis is
the imaginary axis. The extraordinary thing about complex
numbers is that i*i equals - 1 but in other respects they act
much like real numbers. The COMPLEX class defines a pair
of constructors:

class COMPLEX (

public:

COMPLEX(float = 0.0,float = 0.0);

COMPLEX(const COMPLEX&);

private:

float Real;

float Imag;

I;

COMPLEX::COMPLEX(float real,float imag) {

Real = real;

Imag = imag;

1

COMPLEX::COMPLEX(const COMPLEX& complex) (

Real = complex.Real;

Imag = complex.Imag;

I

The first constructor has both parameters optional and so
can serve as a default constructor:

COMPLEX z;

Alternatively, both real and imaginary components can be
supplied as parameters:

COMPLEX z (1. 0, 1. 0) ;

Finally, if the first constructor is supplied with a single
float parameter then it can act as a type conversion
operator from type float to type COMPLEX. Type
conversion operators are discussed further in chapter 9.

73

The second constructor copies the value of one COMPLEX
object to another and so can act as a copy constructor:

COMPLEX z(1.0,1.0);

COMPLEX w = z;

Here the copy constructor is invoked to copy the value of z
to w. Copy constructors are covered in more detail in the
next chapter.

7.5 Temporary Objects

Temporary objects are usually created implicitly to hold
the result of a function call. However, they may be created
explicitly by directly invoking a constructor function. For
example:

COMPLEX z = COMPLEX(1.0,1.0);

Here a temporary COMPLEX object is created and then used
to initialize the z object — in some cases a compiler may be
able to optimize the code so that a temporary object is not
actually created but the effect is the same. This usage of
temporary objects is similar to that involving the integer,
floating-point and character constants that are directly
supported by C++. A comparable example would be:

char letter = ' a';

Similarly, it may be helpful to explicitly generate temporary
objects within an expression to serve as constants from a
user-defined class.

7.6 Embedded Objects

In C++ one method of reusing software is to embed one
object within another. The embedded object is simply listed
as another data field in the class specification for the
embedding object. For example, suppose an INNER class is
declared:

class INNER f

I;

74

Now an object of class INNER may be embedded within

each object of class OUTER as follows:

class OUTER 1

private:

INNER Inner;

) ;

When an object has another object embedded within it, the

creation and destruction procedures are modified slightly.
The memory storage supplied to the OUTER object includes

enough space to hold the INNER object as well as any other

data that is required. The initialization and finalization
procedures are also a bit more complicated. For creation of
an OUTER object the steps are as follows:

1. Storage Allocation
2. INNER Object Initialization

3. OUTER Object Initialization

and similarly for destruction of the OUTER object the steps

are:

1. OUTER Object Finalization

2. INNER Object Finalization
3. Storage Deallocation

In particular, note that when either the constructor or the
destructor for the OUTER object is called the INNER object is

in good health. The final point to explain is what happens
when the INNER object is initialized — of course, a

constructor for the INNER class is invoked but which one? If

no constructor is explicitly specified then the default
INNER () constructor is called. However, C++ supports the

: notation to explicitly specify a constructor for the

embedded object as part of the OUTER() constructor

definition.

75

For example:

OUTER::OUTER(void) : Inner() (

}

Here the default INNER () constructor is explicitly invoked

— the invocation appears between the : symbol and the
opening brace of the OUTER () constructor. Naturally if the
INNER class has other constructors besides the default one
they may be chosen instead. For example, if there is an
INNER (it) constructor declared then the following code is

possible:

OUTER::OUTER(void) : Inner(123) f

1

The : notation also allows ordinary data fields within an
object to be initialized before the constructor block is
executed. For example:

class OUTER (

private:

INNER Inner;

int Data;

} ;

OUTER::OUTER(void) : Inner(123), Data(0) {

}

The individual items following the : symbol are separated
by commas and the initialization values for ordinary data
fields appear within parentheses.

76

7.7 The STRING Class

In C++ character strings are usually held in arrays with a
terminating zero character — the STRING class will package
a character string within an object and add some useful
functions to manipulate strings. The class is fully developed
throughout the next three chapters. This section considers
the definition of a constuctor that initializes a STRING object
given a C++ character pointer.

class STRING f

public:

STRING(const char* = 0);

void Print(void) const;

private:

char String[100];

int Length;

;

The constructor takes an optional char* parameter and so
will act as a default constructor. The internal character
array String is used to hold the string represented by the
STRING object — the string will not have a terminating zero
character and so the length is stored in the Length field.
The constructor is defined as follows:

STRING::STRING(const char* string) f

Length = 0;

if (string)

while (String[Length] = * string++)

Length++;

return;

The characters from the C++ string initializer are copied one
at time to the string array until a terminating zero
character is encountered. There is no check that the
string array is big enough to hold the character string
supplied — chapter 10 will fix this problem. The STRING

77

class also provides a Print() function to display its string:

void STRING::Print(void) const {

for (int i=0; i<Length; i++)

cout << String[i];

cout << '\n';

return;

1

The following program demonstrates the STRING class:

#include "string, h"

int main (void) (
STRING hello ("Hello!");

hello.Print(b

return 0;

}

The program creates a STRING object named hello and
initializes it with the "Hello!" string — the Hello!
message is then printed by invoking the Print () function
of the hello object.

78

8. Regular Classes

This chapter discusses ways of making a C++ class as
user-friendly as possible. The C++ language supports
various built-in operations to handle the intrinsic character,
integer and floating-point types — C++ classes can provide
similar facilities for user-defined data types. Indeed some
functions are essential for practically every class — a
regular class is one which supports at least this minimal
functionality. The relevant functions are the default
constructor, the destructor, the copy constructor, the
assignment operator, the equality operator and the
inequality operator. C++ implicitly supplies basic versions of
these functions if they are not explicitly defined. This
chapter examines the individual functions in turn using the
COMPLEX and STRING classes as examples.

8.1 User-Friendly Classes

The C++ language defines certain built-in operations for
its basic data types. For example, a new integer variable
can be created with a declaration statement:

int x;

Similarly, one variable can be assigned to another:

y = x;

C++ classes can provide similar functionality for
user-defined data types — this helps to make objects much
easier to work with. For example, the COMPLEX class
introduced in the previous chapter is more user-friendly if it
supports statements such as:

COMPLEX z;

and:

w = z;

These two statements should respectively declare an
uninitialized COMPLEX object and assign the value of one

79

COMPLEX object to another. In such situations the C++
language supplies appropriate implicit functions for classes
that do not define explicit versions — these implicit
functions are discussed further in subsequent sections.
Nonetheless, it is usually worthwhile defining the following
functions explicitly:

1. Default constructor
2. Copy constructor
3. Assignment operator
4. Equality and inequality operators
5. Destructor

Any class which defines these functions (or accepts their
implicit counterparts) is known as a 'regular' class — a
regular class is typically quite user-friendly.

8.2 Default Constructor and Destructor

As discussed in the previous chapter, the implicit forms
of the default constructor and destructor perform no
noticeable processing. The default constructor is one which
takes no parameters — a constructor with all its parameters
optional can act as the default constructor. If any
constructor is explicitly defined for a class then the implicit
default constructor is not available. In particular this
prevents the declaration of uninitialized objects and arrays
of objects — the default constructor must be explicitly
defined to enable these declarations.

8.3 Copy Constructor

A copy constructor is used to initialize a new object by
copying the value of an existing object of the same class.
The C++ language provides an implicit copy constructor
which copies each data field in turn — if the class uses
embedded objects then the procedure is applied recursively
to each embedded object. The entire copy operation may
reduce to a simple memory-to-memory copy.

The commonest form of copy constructor takes a constant
reference to an existing object as a parameter — this object

80

will not be modified by the construction process. For
example, the DATE class can declare a copy constructor
with the following function format:

DATE(const DATE&);

The parameter must be passed by reference since
call-by-value semantics require the copy constructor to
initialize the function parameter and this would lead to
infinite recursion.

The COMPLEX class copy constructor is defined as follows:

class COMPLEX (

public:

COMPLEX(const COMPLEX&);

private:

float Real;

float Imag;

;

COMPLEX::COMPLEX(const COMPLEX& complex) {

Real = complex.Real;

Imag = complex.Imag;

The action of this copy constructor is the same as that of the
implicit version. Note that the Real and Imag fields of the
existing object can be referenced within the constructor by
applying the . operator to the function parameter. This is
possible even though the fields are declared as private data
— C++ supports encapsulation only at the class level and
not at the object level. As another example here is a copy
constructor for the STRING class:

STRING::STRING(const STRING& string) {

Length = string.Length;

for (int i=0; i<Length; i++)

String[i] = string.String[i];

81

The COMPLEX and STRING class copy constructors both

perform a shallow copy operation. A shallow copy simply
copies the contents of one object to another — this is the
only sort of copy operation available implicitly. However, if
the original object contains a pointer field then a shallow
copy just copies the pointer and so both the new and
existing objects reference the same item through their
pointers. This is depicted in the following figure:

Existing Object

Pointer

New Object

Pointer

Original Data

In contrast, a deep copy duplicates the data referenced by
the pointer and the new object receives a pointer to the new
copy of the data. If the data itself contains pointers this
process can descend through several levels. The following
figure demonstrates a deep copy involving one level of
indirection:

Existing Object

Pointer

Original Data

New Object

Pointer

Copy of Data

A compromise between shallow and deep copying options is
to perform a shallow copy of a pointer but to maintain a
reference count for the data pointed at. When the reference
count drops to zero the data is no longer needed and may
be discarded. These ideas are developed further in chapter
10 when the STRING class is updated to handle arbitrary

length strings.

82

8.4 Assignment Operator

A feature of the C++ language is that the action of
operators on user-defined types can be defined. This topic is
covered in detail in the next chapter but this section and the
next look at assignment and equality operators. The
processing performed by the assignment is usually very
similar to that performed by the copy constructor — the
implicit version of the assignment operator just copies the
contents of one object to another in much the same way as
the implicit copy constructor. In fact, the main difference
between a copy constructor and an assignment operator is
that the former initializes a newly created object whilst the
latter changes the value of an existing object. The
assignment operator thus effectively combines the actions
of the destructor and the copy constructor since assigning a
new value to a object is a lot like erasing its contents and
starting again. An assignment operator for the COMPLEX

class may be defined as:

COMPLEX COMPLEX::operator=(COMPLEX complex) {

Real = complex.Real;

Imag = complex.Imag;

return * this;

The function name is formed using the keyword operator

and the = operator symbol. An operator function is invoked
by applying the operator within an expression statement in
the usual fashion. For example:

COMPLEX w,z;

w = z;

The expression statement invokes the assignment operator
function for the COMPLEX class to copy the value of z to w.

Note that the assignment operator returns a COMPLEX value

so that assignments can be chained:

w = z = COMPLEX(1.0,1.0);

The above definition for the assignment operator causes the

83

function to be invoked using both call-by-value and
return-by-value semantics — this involves a lot of copying
and the process can be made more efficient by employing
references:

COMPLEX&

COMPLEX::operator=(const COMPLEX& complex) f

Real = complex.Real;
Imag = complex.Imag;

return *this;

Here is another example involving the STRING class:

STRING&

STRING::operator=(const STRING& string) {

Length = string.Length;

for (int i=0; i<Length; i++)

String[i] = string.String[i];

return *this;

8.5 Equality Operators

There are no implicit equality or inequality operators
supplied by C++. Nonetheless, it can often be useful to
define these functions explicitly since the notion of two
objects being equal (or unequal) is usually sensible. For the
COMPLEX class these operators may be defined as follows:

int

COMPLEX::operator==(const COMPLEX& complex) {

return (Real==complex.Real

&& Imag==complex.Imag);

int

COMPLEX::operator!=(const COMPLEX& complex) {

return !(*this == complex);

Both functions return a logical result that can be processed

84

further within a logical expression. The inequality operator is
defined in terms of the equality operator — this ensures that
exactly one of the two operators returns true when
comparing the same pair of COMPLEX objects. The use of

these operators is intuitive as the following example
demonstrates:

COMPLEX w;

COMPLEX z = COMPLEX(1.0,1.0);

if (w != z) {

The equality operators for the STRING class are a little more

complicated:

int STRING::operator==(const STRING& string)

if (Length != string.Length)

return 0;

for (int i=0; i<Length; i++)

if (String[i] != string.String[i])

return 0;

return 1;

int STRING::operator!=(const STRING& string)

return !(* this == string);

Here two STRING objects are equal if and only if they hold
identical character strings of the same length.

8.6 Dictionaries

A dictionary is a collection of entries each containing two
elements:

1. Key
2. Value

85

For example, in a dictionary of words each key is a word
and the corresponding value is its definition. The folowing
code scans through the dictionary array of ENTRY
objects looking for an entry which matches a given key:

ENTRY dictionary[100];

ENTRY entry = ENTRY(key);

int i = 0;

while (entry != dictionary[i])
i++;

entry = dictionary[i];

There is no error checking to ensure that a valid entry
actually exists in the dictionary array. Of course, the
code requires the ENTRY class to be defined properly — to
keep things simple both key and value elements in the
ENTRY objects are integers.

class ENTRY (

public:

ENTRY(int = 0,int = 0);

ENTRY(const ENTRY&);

ENTRY& operator=(const ENTRY&);

int operator==(const ENTRY&);

int operator!=(const ENTRY&);

private:

int Key;

int Value;

;

The first constructor builds an entry from a key-value pair —
if only the key parameter is supplied as an argument then
the value field is filled with a null value.

ENTRY::ENTRY(int key,int value) (

Key = key;
Value = value;

1

86

The definitions for the copy constructor and the assignment
operator are very similar:

ENTRY::ENTRY(const ENTRY& entry) {

Key = entry.Key;

Value = entry.Value;

}

ENTRY& ENTRY::operator=(const ENTRY& entry) {

Key = entry.Key;

Value = entry.Value;

return * this;

Finally, the equality operators are defined as follows:

int ENTRY::operator==(const ENTRY& entry) {

return (Key == entry.Key);

}

int ENTRY::operator!=(const ENTRY& entry) {

return (Key != entry.Key);

1

The interesting point is that the equality operators work just
with the Key fields of the ENTRY objects they compare

whilst the copy constructor and the assignment operator
duplicate both the Key and Value fields.

87

88

9. Operator Overloading

Operator overloading is an important feature of the C++
language — it allows the C++ operators to work with
user-defined objects in much the same way as they do with
variables of basic data types. To overload an operator a
class must define a function which specifies the processing
that is performed when the operator is applied to an object
of the class. Most C++ operators can be overloaded. In
general, the operator functions can produce any effect and
return any result that is appropriate — the only restriction is
that the overloaded versions must appear in expressions
using the same syntax as their built-in counterparts.
However, some operators require particular attention and
they are discussed in detail in this chapter — such operators
include the increment/decrement operators, the subscript
operator, the function call operator and the pointer operator.
Type conversion operators convert data from one type to

another — operator overloading permits conversion to and
from user-defined class types. Finally, the « and »

operators may be overloaded to provide consistent handling
of stream input/output processing.

9.1 Operators and Operands

The previous chapter looked at three operators which
can be overloaded by a class — these were the assignment
operator, the equality operator and the inequality operator.
Most C++ operators can be overloaded in this way. For
binary operators the left-hand operand must be an object of
the class defining the operator function whilst the right-hand
operand is passed as a parameter to the function. For unary
operators the object is the only operand and the operator

function takes no parameters.

The INTEGER class provides a simple example of both

binary and unary operators — the binary form of the
overloaded - operator performs subtraction whilst the unary

form performs negation. Each INTEGER object holds an

integer Data field upon which the operations actually

89

operate. The class specification is as follows:

class INTEGER f

public:

INTEGER(int = o);

INTEGER operator-(INTEGER) const;

INTEGER operator-(void) const;

void Print(void) const;

private:

int Data;

1;

The constructor simply stores an integer data value within
the object:

INTEGER::INTEGER(int data) {

Data = data;

1

The overloaded operator functions have names composed
of the keyword operator and the - operator symbol. The
two functions are distinguished by their different parameter
lists:

INTEGER

INTEGER::operator-(INTEGER integer) const

{

return INTEGER(Data-integer.Data);

1

INTEGER INTEGER: : operator-(void) const f

return INTEGER(- Data);

1

In both cases a temporary INTEGER object is used to

construct the result of the operator function. The INTEGER

class also includes a Print () function to display the data it

contains:

void INTEGER::Print(void) const (

cout << Data << '\ n';
1

90

The application of the INTEGER class is straightforward:

INTEGER i(7),j(3);

INTEGER k = i-j;

k.Print();

k = - j;

k.Print();

In the declaration statement for k the binary - operator

function is invoked whilst in the assignment statement the
unary - operator function is invoked instead. Hence the

code prints the values 4 and -3 respectively.

9.2 Arithmetic Operators

For the COMPLEX class the arithmetic operators + (add),

- (subtract), * (multiply) and / (divide) all need to be

defined. In complex addition and subtraction the real and
imaginary components of a complex number are treated
separately. If z and w have the following complex values:

w == u-1- Iv

z == x+iiy

then

w+z == (u+x)+i(v+y)

This may be implemented in the COMPLEX class by

overloading the + operator as follows:

COMPLEX

COMPLEX::operator+(const COMPLEX& z) const f

return COMPLEX(Real+z.Real,Imag+z.Imag);

The subtraction operator is similar. For multiplication the
relation i*i == -1 must be applied:

w*z == (u+iv)*(x+iy) == (u*x-v*y)+i(v*x+u*y)

The implementation of the overloaded * operator for

91

the COMPLEX class is consequently:

COMPLEX

COMPLEX::operator*(const COMPLEX& z) const f

float real = Real*z.Real-Imag*z.Imag;

float imag = Imag*z.Real+Real*z.Imag;

return COMPLEX(real,imag);

The most complicated operation is complex division. To
calculate w/z it is necessary to multiply both w and z by
x-íy (the conjugate of z):

w*(x-iy) == (u*x+v*y)+i(v*x-u*y)

z* (x-iy) == x*x+y*y

The denominator of the fraction (x*x+y*y) is then real and

it can be used to scale the real and imaginary components
of the numerator appropriately. The implementation of the
overloaded / operator for the COMPLEX class follows:

COMPLEX

COMPLEX::operator/(const COMPLEX& z) const I

float real = Real*z.Real+Imag*z.Imag;

float imag = Imag*z.Real-Real*z.Imag;

float denom = z.Real*z.Real+z.Imag*z.Imag;

if (denom == 0)

exit (999);

return COMPLEX(real/denom,imag/denom);

1

If the denominator of the division is zero the program
terminates abruptly with a call to the exit () function. This

function is declared in the stciiib h system header and so
the header file should be included by the source file for the
COMPLEX class. Chapter 15 discusses another method of
handling error conditions that involves C++ exceptions.

With the arithmetic operator functions defined, the COMPLEX

class allows complex numbers to be manipulated easily —
the functionality supplied by the COMPLEX class is

92

analogous to the built-in support for real numbers that is
provided by the intrinsic C++ type float. For example:

COMPLEX x(2.0);

COMPLEX y(3.0);

COMPLEX i(0.0,1.0);

COMPLEX z;

z = x+i*y;

The z object is assigned a complex value of 2+3i by this

code. Sections 9.7 and 9.8 discuss in more detail the
subject of mixing real and complex data within an
expression.

9.3 Subscript Operator

The subscript operator H is typically overloaded to

select an individual item from a collection of items. A simple
example is provided by the STRING class introduced in the

previous two chapters:

char STRING::operatorMint) {

if (i<0 11 i>=Length)

return 0;

else

return String[i];

The subscript selects a character from the string held by the
object — if the subscript falls outside the range of the string
array then a zero character is returned.

A related application is to provide bounds checking for an
array — in C++ if an array subscript tries to reference an
element beyond the bounds of the array the result is often
the modification of some unrelated piece of data that is
stored in memory adjacent to the array. This sort of error
can be very hard to trace — the ARRAY class checks that a
subscript is within range before permitting the corresponding
element to be referenced. As defined here the ARRAY class

contains a float array and allows the subscript of the first

element to be set by the class constructor — arrays in C++

93

are intrinsically zero-based but one-based arrays are
sometimes useful. The ARRAY class specification follows:

class ARRAY {

public:

ARRAY(int,int = 0);

float& operator[](it);

private:

float Array[100];

int Length;

int Base;

The constructor simply stores its parameters in the Length
and Base fields — a check is also performed on the
requested array length.

ARRAY::ARRAY(int length,int base) (

if (length<0 II length>=100)

exit(999);

Length = length;

Base = base;

The overloaded H operator performs most of the wort — it
checks each subscript against the bounds of the array and if
it is within bounds then a reference to the appropriate
element is returned.

float& ARRAY::operator[](int i) (

i -= Base;

if (i<0 II i>=Length)

exit(999);

return Array[i];

Here is an example which uses the ARRAY class:

ARRAY Months(12,1);

Months[6] = 0.0;

Months[13] = 0.0;

94

The Months array contains twelve elements and the first

element is Months [1] Hence the first assignment

statement references the array element for June whilst the
second causes the program to abort with an array bounds
error.

9.4 Increment and Decrement Operators

The overloading of the increment and decrement
operators is complicated by the fact that they occur in two
forms:

1. Prefix form
2. Postfix form

In prefix form the operators precede their operand whilst in
postfix form they follow it. When these operators are
overloaded, the two forms are distinguished by allotting the
postfix operator function a dummy integer parameter — the
prefix operator function takes no parameters. The INTEGER

class from section 9.1 can be extended to support both
forms of increment operator with the following modifications:

class INTEGER {

public:

INTEGER operator++(void);

INTEGER operator++(int);

;

The prefix form of the operator is overloaded as follows:

INTEGER INTEGER::operator++(void) f

return INTEGER(++Data);

1

The postfix form is implemented in a similar fashion:

INTEGER INTEGER::operator++(int junk) f

return INTEGER(Data++);

1

95

The operators are applied in the usual way:

INTEGER 1(0);

i.Print();

This code prints out the value 2 as expected.

9.5 Function Call Operator

The function call operator () is interesting in that it can

take any number of parameters — the operator can be

overloaded several times by the same class as long as the
parameter list for each version is different. One possible
application is to extract a substring by providing the start
and stop positions within a larger string as parameters:

STRING

STRING::operator()(int start,int stop) const

{

int length = stop- start;

const char* string = String+start;

return STRING(string,length);

The function performs no error-checking and relies on a
STRING constructor which takes two parameters:

STRING::STRING(const char* string,int length)

Length = length;

for (int i=0; i<Length; i++)

String[i] = * string++;

The substring operator is easy to use:

STRING hippo("Hipp0");

STRING hi = hippo(0,2);

hi.Print();

96

Another possible application for an overloaded function call
operator is to reference elements within a multi-dimensional
array. For example, the MATRIX class implements a

two-dimensional array:

class MATRIX [

public:

MATRIX(int);

float& operator()(int,int);

private:

float Array[100];

int Dimension;

;

The constructor accepts the second dimension of the matrix
as a parameter:

MATRIX::MATRIX(int dimension) {

Dimension - dimension;

The () operator acts as a subscript operator which takes

two parameters:

float& MATRIX::operator()(int i,int j) I

return Array[i*Dimension+j];

The elements of the two-dimensional array are stored within
the memory space allocated to the one-dimensional array
field Array. The elements for the first row (i==0) of the

matrix are followed immediately by those for the second row
(i==1) and so on. As described in section 3.8 this layout

mimics the way in which C++ stores multi-dimensional
arrays.

9.6 Pointer Operator

The overloading of the pointer operator -> is handled in

rather an unusual way. The first action is to invoke the
overloaded operator function — the object associated with
the function call is the left-hand operand of the -> operator.

97

For example:

class POINTER f

INTEGER* operator->(void);

POINTER pointer;

pointer->Print();

Here the -> operator function for the pointer object is
invoked. The function must take no parameters and return
one of the following:

1. a pointer
2. an object of a class that overloads the -> operator

In the first case the built-in -> operator is applied using the
returned pointer and the original right-hand operand. In the
above example the Print () function of an INTEGER object
is invoked.

In the second case the whole procedure is applied
recursively using the new object in place of the original
operand. For example:

class SLAVE f

INTEGER* operator->(void);

class MASTER f

SLAVE operator->(void);

98

The following code provides a demonstration:

MASTER pointer;

pointer->Print();

Here the MASTER object supplies a SLAVE object which

returns a pointer to an INTEGER object. The Print()

function is then called for the INTEGER object.

The point of overloading the -> operator is that some

user-defined processing (often error checking) can be
performed before the pointer is dereferenced. Objects with
an overloaded -> operator are consequently known as

'smart pointers' — this topic is discussed further in
chapter 14.

9.7 Type Conversion Operators

Type conversion operators are closely related to type
casts. The C++ language supplies type conversion
operators to cast between the basic types:

float x;

int count = int(x);

C++ will sometimes apply type conversion operators
implicitly — in particular this is true for type conversion
operators that are user-defined. There are essentially two
ways to provide a user-defined type conversion operator —
both involve class functions:

1. A constructor
2. An overloaded operator

In the first case the constructor should take a single
parameter — the conversion is from the type of the
parameter to the class type. For example:

class COMPLEX (

public:

COMPLEX(float = 0.0,float = 0.0);

99

