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PREFACE

This book is the outgrowth of a course in vacuum-tube design given
for many years at Stanford University to senior and graduate students in
electrical enginecring and physics. It is concerned with the determina-
tion of vacuum-tube characteristics in terms of the electron action within
the tube. The book attempts to bridge the gap between the physical
laws that lie behind the electron behavior and the external characteristics
of the tubes themselves.

It is hoped that the point of view taken will be acceptable to both
physicists and engineers. The development of the physical laws involved
is indicated, after which emphasis is placed upon their description and
utilization. Although this book cannot pretend to give much design
information, the attempt has been to include enough of the basic relations,
physical data, and significant references to make it a useful reference
source to vacuum experimenters and tube designers.

Vacuum tubes may seem a rather special subject to which to restrict
the material in a book. Actually this is not so. In preparing the book
so much material was collected that the contents had to be restricted to
first-order effects. It is felt that although engineers and physicists work-
ing with vacuum tubes are primarily concerned with the utilization of
already developed tubes, the successful application of these tubes is
greatly enhanced by a knowledge of their limitations and an understand-
ing of the origin of their characteristics. This is particularly true since
there are many occasions when it is desired to use tubes under conditions
different from those specified by the manufacturer. Under these condi-
tions it is imperative to know how far one may depart from recommended
operating conditions without exceeding some design limitation of the
tube. This, in turn, requires a knowledge of how the tube operates.

Circuits and tube applications are so completely covered in the text-
book and periodical literature that no effort has been made to include
information on these subjects. Only in the case of ultra-high-frequency
tubes where the tube cannot be completely separated from the circuit
have circuit considerations been included.

The author is indebted to many people for assistance rendered in the
preparation of this book. He is particularly indebted to Dr. F. E. Ter-
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man, dean of the Stanford School of Engineering, who was a constant
source of inspiration and encouragement, and who made many valuable
suggestions and gave much direct assistance in checking the work. The
author is also indebted to Prof. Paul Kirkpatrick, head of the Physics
Department at Stanford, for suggestions on the material of Chaps. 3 to
6 and 9; to Prof. L. Marton for suggestions on the material of Chaps. 13
to 15 and 20; and to C. V. Litton for much information and suggestions
relative to Chap. 21. He is indebted to Evelyn G. Sarson, who typed a
large part of the manuscript in its final form. O. O. Pardee and Will
Harman assisted in the correction of the entire work. Lastly, the author
is more than a little indebted to his wife, who personally typed much of
the manuscript and was a source of constant assistance.

KArL R. SPANGENBERG

Paro Arro, Cavrr.
January, 1948
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CHAPTER 1

INTRODUCTION

VACUUM tubes are found as basic or auxiliary elements in numerous
technical devices now in use. They are indispensable in communication
systems and industrial control. Their development has facilitated
advances in the fields of power and transportation. Without the
vacuum tube we should be back in the days of the gravity-cell telegraph
and the ringer telephone.

In the United States the number of vacuum tubes in use is several
times the number of human beings and household pets. The 50,000,000
radio sets manufactured in the United States in the year 1947, alone
contained more vacuum tubes than the adult population of the country.
Associated with the 25,000,000 telephones and 120,000,000 miles of tele-
phone and telegraph wire in the United States are many more vacuum
tubes. Various industrial devices include almost as many more. The
United States uses nearly half the world’s total of vacuum tubes.

One may conclude that there are many vacuum tubes in use. They
must be of some importance. They are.

1.1. Devices Using Vacuum Tubes. This book is more concerned
with the properties and functions of vacuum tubes than with the systems
utilizing these properties. However, it is well to be reminded of the
extent of vacuum-tube applications and the degree to which we are
dependent upon them. The following devices are totally dependent
upon vaccum tubes.

Radio Receivers. These are too well known to require much descrip-
tion. They range from portable receivers the size of a brick and capable
of receiving local broadcast stations to large-size all-wave receivers
capable of picking up a signal stronger than the noise level from any
point on the globe. Even the smallest receivers use 4 or 5 vacuum tubes.
The average home receiver has about 7 tubes. An all-wave receiver may
have 20 or more tubes.

Radio Transmitters. Transmitters range from portable walkie-talkie
sets to large power-broadcast and short-wave stations. In output power
they vary from 0.1 watt to hundreds of kilowatts. In frequency they
may range from 100 k¢ to 60,000 mc. The short-wave transmitters are

capable of producing an audible signal at any point on the earth’s surface.
1
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Transmitters may use voice or code. They may incorporate static-
elimination or secrecy features in their operation. A small transmitter
may use only a few vacuum tubes. The largest transmitters may use
50 or more tubes.

Long-distance Wire Telephones. The connections between telephone
stations on the same continent are effected by wire transmission lines
rather than by radio. When the distance between telephone stations is
large, it is necessary to amplify the speech energy about every 16 miles
for cables and every 50 miles for open-wire lines. Each speech amplifier
contains several vacuum tubes and amplifies the speech power from about
10 microwatts to about 1 milliwatt, a power amplification of 100. Thus
a telephone call from San Francisco to New York passes through 30 or
more speech amplifiers.

Television Systems. Television systems achieve the modern miracle of
reproducing a visual scene at a point remote from the original. This is
done entirely with vacuum tubes and electrical-circuit elements. No me-
chanical devices are needed. In its present stage of development the
reproduced picture as viewed from 6 ft on an 8-in. cathode-ray-tube
screen is as good as a motion picture seen from the first row of the balcony.
Each television transmitter contains hundreds of vacuum tubes, including
a special camera tube. Every television receiver contains 20 or more
tubes, including a special viewing tube.

Measurement Devices. Electronic measurement devices are too
numerous tc mention. Quantities that can be measured, besides all the
electrical quantities, are color, weight, light intensity, odor, time interval,
and many others. In fact, it can be said that any quantity which can
be measured at all can probably be measured by electronic means.

Industrial Control. The number of electronic industrial-control
devices is legion. They include counting circuits, sorting systems, illu-
mination-control systems, welding-control devices, and liquid- and
gaseous-flow regulators. Typical devices are those which automatically
regulate temperature or humidity. All these devices have their primary
dependence upon the vacuum tubes in them.

In addition to the above devices, which are totally dependent upon
vacuum tubes, there are many others that have acquired a strong depend-
ence upon electronic devices. Thus all commercial flying makes constant,
use of radio communications to keep posted on the weather and on
terminal traffic and to keep ground stations posted on plane positions
as well as to guide the planes directly. The invasion of other fields by
electronics has already been considerable and is bound to be greater in
time to come.

1.2. Functions of Vacuum Tubes. Although the applications of
vacuum tubes are almost infinite, the specific functions that vacuum tubes
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can perform by virtue of their own properties are relatively few. It is
these few fundamental functions and their combinations that give rise
to the numerous applications.

A list of the functions of vacuum tubes is bound to be an arbitrary
one since the tube cannot function by itself without an associated circuit.
However, some of the jobs that vacuum tubes can perform are so funda-
mental that they may be considered properties of the tube itself, inde-
pendent of the associated circuits.

The principal functions that may be performed by vacuum tubes are
listed below.

Rectification. Vacuum tubes are able to convert alternating currents
to direct currents. This is known as “rectification.” Rectification is an
inherent property of vacuum tubes because current can flow in only one
direction from a source of electrons.

If a sinusoidal wave of voltage is applied to a vacuum tube of the
right type, current will flow in only one direction, giving rise to a succes-
sion of half-wave pulses all of the same polarity. It is possible to connect
another like tube to insert half-wave pulses of the same polarity between
the pulses of the first tube. The average of these pulses constitutes a
direct current; the other frequency components are rejected by a filter
circuit.

Rectification is important because electronic devices operate best on
direct current, while power is usually generated and transmitted in alter-
nating form. It is thus necessary to convert, or rectify, the a-c power to
d-c power.

Amplification. The amplification of voltage or power is the outstand-
ing function that vacuum tubes are able to perform. With the exception
of the mechanical torque amplifier, no other device can do anything
like it. Strictly speaking, the vacuum tube does not amplify power but
rather controls the flow of a relatively large amount of power from one
source with a small amount of power from another source. The British
use the expression ‘‘electric valve’’ for certain types of electron tubes.
This term is really better than ours, for it indicates the nature of the
amplifying action.

Oscillation. 'The generation of high-frequency alternating currents,
or oscillation, is another remarkable function that vacuum tubes can
perform. Oscillation is obtained by causing part of the output of an
amplifier to excite the amplifier and thus make the device self-excited
and self-sustaining. Tubes can be built that will produce oscillations
at frequencies as low as 1 cycle per sec, while other tubes can be built
that will oscillate at frequencies as high as 60,000 mc per sec.

Frequency Conversion. Vacuum tubes are able to shift the frequency
of a wave. This they are able to do by an electrical “beat” action.
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Thus a wave of a given frequency can be mixed with a wave of another
frequency in a vacuum tube, and among the products of the interaction
is found the difference of the two frequencies. If one of the original
waves had certain effects associated with it, these same effects are
associated with the difference frequency. The beat action results from
the nonlinear characteristics of the vacuum tube.

Modulation. The transmission of intelligence by radio waves or by
certain types of wire telephony requires the use of frequencies higher than
those audible. It is necessary to superimpose the audible frequencies
upon the higher transmitted frequency. This superimposition is known
as ‘““modulation.” Modulation is best performed by vacuum tubes.

Basically, modulation takes the form of varying some property of the
r-f wave at the audible rate. The commonest form of modulation varies
the amplitude of the r-f wave in accordance with the intelligence to be
transmitted. This is known as ‘‘amplitude modulation.” Frequency
modulation is also common.

Detection. Detection is the inverse of modulation and is sometimes
known as ‘‘demodulation.” Itis the process of extracting the intelligence
from the modulated wave. In the case of amplitude modulation the
detection may be effected by rectifying the r-f wave and then utilizing
the average value of the rectified wave, since it follows the amplitude varia-
tions in magnitude. Detection of modulated radio signals is best per-
formed by vacuum tubes over most of the range of radio frequencies.

Light-image Production. It is possible for vacuum tubes to convert
part of their output energy into visible light. This is done in cathode-
ray tubes in which a stream of electrons is caused to hit a fluorescent
screen, causing light to be emitted. The cathode-ray tube can be used
for viewing wave forms and for doing many other wonderful things,
including the reproduction of visual scenes. The fundamental property
involved here is the conversion of electrical energy into visual energy.

Photoelectric Action. Vacuum tubes can be made that will convert
light energy into electrical energy. This is possible by virtue of the
photoelectric effect, which is the emission of electrons from certain sur-
faces when illuminated with visual energy. The liberated electrons con-
stitute an electric current whose measure is related to the frequency and
intensity of the exciting light. Tubes making use of this principle are
known as ‘“‘photoelectric tubes.” The photoelectric tube is one of the
tubes most extensively used in industrial-control systems.

The above paragraphs have given a bird’s-eye view of the functions
of vacuum tubes. The reader is probably familiar with all the above
functions, which are now commonly encountered in everyday life. The
rest of the book is devoted to the description and explanation of the
characteristics of the vacuum tubes themselves.



CHAPTER 2

BASIC TUBE TYPES

THE electronic engineer has about a dozen types of vacuum tube he
can call upon for his high-frequency and industrial-control circuits.
This is a surprisingly small number of distinct tube types. The small
number of types is balanced, however, by the large number of forms in
which each type may appear, as determined by the required power
capacity and frequency range.

The purpose of this chapter is to list the basic types and their funda-
mental characteristics as a prelude to a detailed study of their charac-
teristics and the physical laws from which these are derived.

2.1. Vacuum Dijode. The vacuum diode is a two-electrode vacuum
tube. One electrode acts as an 40
emitter of electrons and is called SYMBOL
the ‘““cathode.” The other elec- F
trode acts as a collector of elec- 32
trons and is called the ‘““‘anode” L L
or “plate.” The emitter may be | 6H6
either directly or indirectly
heated. In physical form the
vacuum diode may vary from a
small metal tube to a large glass
rectifier tube.

The current-voltage charac- -
. . . v
teristics of a typical diode are 0 i
shown in Fig. 2.1. The current 0 2
follows a three-halves-power law F16. 2.1.—Plate-current—plate-voltage

of voltagg over the Pormal TANEE  characteristics of a diode.

of operation. At high values of

plate voltage or at low values of heater current the plate current tends
to be limited by the cathode emission and to increase only very slowly
with plate voltage.

The most useful property of the diode is that it passes current only
in one direction. This property makes the diode useful as a detector

znd as a rectifier for d-¢c power supplies.
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2.2. Vacuum Triode. A vacuum triode is a three-electrode tube con-
taining an emitting electrode called the ‘‘cathode,” a control electrode
called the ‘“grid,” and a current-collecting electrode called the ‘““anode’
or ‘“‘plate.”

The emitting electrode may be an indirectly heated oxide cathode,
an oxide-coated filament, or a filament of tungsten or thoriated tungsten.

The control electrode, usually in the form of a grid of fine wire, sur--
rounds the emitter and is in turn surrounded by the plate in the common:

LR T N
L) //f%@///

\RiAaeNiaAs
RIS IIABE)
; //// /////;\0

NN AN s

0
0 50 100 150 250 300 350 400 450 500
Plafe volts
F1g. 2.2.—Plate-current—plate-voltage characteristics of a triode.

est form of triode. By virtue of its proximity to the cathode the grid is
able to influence the electrostatic field at the cathode to a greater extent
than can the plate, and thus it is able to control the low of current from
the cathode. The grid is usually operated on a slight negative potential
so that the electrons will pass between the grid wires without hitting the
wires themselves.

Some typical characteristics of a triode illustrating the variation of
plate current with plate voltage for various fixed values of grid voltage
are shown in Fig. 2.2. The plate current increases if either grid or plate
voltage is increased. The increase in plate current for a given increase
in grid voltage is always much larger than the increase in plate current
for the same increase in plate voltage.



BASIC TUBE TYPES 7

The relative effectiveness of the plate and grid potentials in controlling
the plate current is known as the amplification factor of the tube (mu;
symbol g). The amplification factor is the maximum amplification that
can be obtained by using the tube as an amplifier. With triodes the
useful amplification is about two-thirds of the amplification factor.

Study of the family of curves of Fig. 2.2 shows that all the curves
are alike in shape and further are somewhat similar to the characteristic
of a diode. This is true in that the plate current of a triode is found to
vary nearly as the three-halves power of an equivalent voltage which is

2 SYMBOL
e AR
B B
§ 8~ 6J7 /
E\- — Tefo:'so&e
S6
.:§ / EG ==2v.
oA
a g /
2 \\ / l"a=~4y
~
0

0 S0 100 150 200 250 300 350
Plate voltage

Fi1a. 2.3.—Plate-current—plate-voltage characteristics of a
screen-grid tube. V, = 6.3 volts, V,, = 100 volts.

the sum of the plate voltage divided by mu and the grid voltage.

Triodes have their greatest use as power amplifiers. They are also
used extensively in control applications wherever a small voltage is
wanted to control an appreciable amount of current.

2.3. Screen-grid Tube. The screen-grid tube is a four-element
vacuum tube. The four elements are cathode, control grid, screen grid,
and plate. The electrode construction is similar to that of the triode
except that an extra grid of mesh a little coarser than that of the control
grid is inserted between the control grid and the plate.

The screen-grid tube is the historical predecessor of the pentode.
Its invention was the result of an effort to overcome a limitation of the
triode. Triodes do not work well as amplifiers of high frequencies, for
the high interelectrode capacity between plate and grid causes the tube
to regenerate and oscillate. In the screen-grid tube the capacity between



8 VACUUM TUBES

the control grid and plate is reduced by inserting the extra grid, known
as the “screen grid,” between these elements. The insertion of the
screen grid and its operation at a constant potential succeeded in produc-
ing the low control-grid—plate capacity desired but caused distortions in
the plate-current—plate-voltage characteristics, for the new electrode
arrangement permitted secondary electron flow between plate and screen
grid. This detrimental effect was overcome in the pentode by the addi-
tion of a coarse-mesh suppressor grid between screen grid and plate.

The screen-grid tube is usually operated with cathode near ground
potential, control grid at a small negative potential, and screen grid and
plate at a medium and high positive potential, respectively. Some
typical screen-grid-tube plate-current—plate-voltage characteristics are
shown in Fig. 2.3. The dips in the low-voltage portion of the curves are
the result of secondary electron current flowing from plate to screen.
The low slope of the high-voltage portion of the curves results from the
fact that the cathode is screened from the plate by the screen grid as
well as by the control grid, and hence the magnitude of the plate current
is increased only a little by an increase in plate voltage. Secreen-grid
tubes have been rendered virtually obsolete by the development of the
pentode and some special tetrodes not subject to the tremendous dis-
tortions of current characteristics by secondary emission. Screen-grid
tubes may be used as a-f and r-f amplifiers. They are also occasionally
used in laboratory apparatus in which it is desirable to utilize the negative
resistance characteristic which is available at the points on the current
characteristics where the slope is negative.

2.4. Pentode. The pentode is a five-element high-vacuum tube.
The five electrodes, in the order in which they occur in the tube, are
cathode, control grid, screen grid, suppressor grid, and plate. In normal
operation the cathode is operated near ground potential, the control grid
at a small negative potential, the screen grid at a relatively large positive
potential, the suppressor grid at cathode potential, and the plate at the
screen potential or a more positive potential.

Some typical plate-current—plate-voltage curves of a pentode are
shown in Fig. 2.4. In these it is seen that the insertion of the suppressor
grid at cathode potential between screen grid and plate has eliminated the
distortions in the characteristic observed in the case of the screen-grid
tube. This it does by causing a negative potential gradient at both the
screen grid and plate, which suppresses the secondary electrons from these
electrodes. The slope of the plate-current characteristic for high plate
voltages is even less than in the screen-grid tube, for there is another
screening grid between plate and cathode in the pentode. The result of
this high screening action is to make the amplification factor of the
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pentode extremely high, of the order of 1,000 or more, and to give the
tube a high effective resistance in the plate circuit. The pentode is,
in fact, very nearly a constant-current device. The variation of plate
current with grid voltage, which is measured by a factor known as the
“grid-plate transconductance’” or, more commonly, the ‘“mutual con-
ductance’’ of the tube, is about the same as in the triode. Only about
one-tenth of the high amplification factor of the pentode can be realized

14 T T ’7
SYMBOL r 6SL 7
AVERAGE PLATE CHARACTERISTICS
12— VF=6.3volts  Screen volts =100
‘ Suppressor volts=0
0—— 0
“ Control- zr/'a' volts =
o //L/—’ -Fa5
a8 ——
k: / A -0
= — |
Eg y- -5
[N
5 V/ -2.0
a 4 e -2.5
/
7] -3.0
/‘ B _35
2 S
V =4.0
5.0
0
0 50 100 150 200 250 300 350 400 450 ~ 500

Plate volts
Fig. 2.4.—Plate-current—plate-voltage characteristics of a pentode.

in amplifier operation. However, the reduced plate—control-grid
capacity makes the pentode a better tube in voltage-amplifier applications.

The pentode is a versatile tube. It can be connected to give diode,
triode, and screen-grid as well as pentode action. It is available in
constant- and variable-mu forms. It is probably the most extensively
used tube in low-power applications. There are probably more pentodes
in use today than any other type of electron tube. A cutaway drawing
of a pentode showing the electrode structure is given in Fig. 2.5.

2.5. Beam-power Tube. The beam-power tube is a special type of
tetrode. It is designed so that the electrons move from cathode to
plate in dense sheets. This effect is achieved by making the control
grid and screen grid of the same pitch and aligning the grid wires. The
electrode structure of the tube is shown in Fig. 2.6.
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The effect of the dense current sheets between the screen grid and
plate is to depress the potential between these two electrodes within the

18 HEADER SKIRT
19 LEAD WIRE

20 CRIMPED LOCK
21 OCTAL BASE
22 EXHAUST TUBE

1 METAL ENVELOPE

2 SPACER SHIELD

3 INSULATING SPACER
4 MOUNT SUPPORT

5 CONTROL GRID

6 COATED CATHODE 23 BASE PIN
7 SCREEN 24 EXHAUST TIP
8 HEATER 25 ALUGNING KEY
9 SUPPRESSOR 26 SOLDER
10 PLATE 27 ALIGNING PLUG
11 BATALUM
GETTER
12 CONICAL
STEM SHIELD
13 HEADER

14 GLASS SEAL
15 HEADER INSERT
16 GLASS-BUTTON STEM
SEAL
17 CYLINDRICAL BASE S
SHIELD DETAIL OF BASE SHIELDING
F16. 2.5.—Cutaway picture of a single-ended metal-envelope pentode.

tube because of the high concentration of negative charge. The poten-

tial between screen grid and plate is depressed enough so that secondary
electron flow from plate to grid is suppressed without the aid of a sup-



BASIC TUBE TYPES 11

pressor grid. Thus the tube represents another solution to the problem
of overcoming the distortions in the current characteristics of the ordi-
nary screen-grid tube.

The plate-current—plate-voltage characteristics of a beam-power tube
are shown in Fig. 2.7. It is seen that these characteristics are free of the
dip in the shoulder due to secondary electron flow. The distinctive
features of the beam-power tube’s characteristics as contrasted with the
pentode characteristics are that the plate current rises much more rapidly
at low plate potentials and the condition of complete transmission of

Beam-forming plate .||
Cathode .

el

N
F1g. 2.6.—Cutaway view of the electrode arrangement in a
beam-power tube. (Courtesy of RCA.)

current to the plate is reached at a lower plate potential. The plate
current rises rapidly because the high space-charge density blocks the
flow of electrons to the plate at low plate potentials, and this blocking
action stops quite abruptly as the plate potential is increased. In the
beam-power tube, complete transmission of current passed by the screen
grid to the plate occurs when the plate potential has risen to about
20 per cent of the screen-grid potential, whereas in the pentode the trans-
mission is not complete until the plate potential has risen to about 50 per
cent of the screen-grid potential. This results from the behavior of the
individual electrons, which, in the beam-power tube, are more uniform in
direction and velocity than in the pentode, in which the electrons are
strongly deflected by the suppressor grid.

The beam-power tube is made in small and medium-size metal tubes
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and in a medium-size glass tube. The beam-power tube is used in many
ways. It is extensively employed as an audio-power amplifier tube and
also as a r-f amplifier and oscillator tube.

2.6. Cathode-ray Tubes. The cathode-ray tube is in a class by itself
among the vacuum tubes. It makes use of the geometrical form rather
than the intensity of its electron stream and converts the energy of its
electron stream into a visual indication. In its commonest application

350
AVERAGE PLATE CHARACTERISTICS
300 ¥V =6.3volts Screen volts = 250 —
| +10 |
// SYMBOL
250 7' Y
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® — | )
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£ 150 T —
[ /—r“_——’—___—
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a
100
I—
// .
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50— —=
/\‘,._/‘WL’_-—_—— ‘25
0 — _ -35'; 50
0 50 100 150 200 250 300 350 400 450 500
Plate volts

Fic. 2.7.—Plate-current—plate-voltage characteristics of a team-power tube.

the cathode-ray tube uses its electron beam to show the shape of an
applied voltage wave as a light trace upon a fluorescent screen. The
cathode-ray tube is an electronic oscilloscope that produces on a screen
a light spot that can be deflected in two dimensions.

The cathode-ray tube is generally housed in a large glass envelope
shaped like an Erlenmeyer flask. In the neck of the glass envelope is
located a set of electrodes known as the “electron gun.” This gun serves
to produce a circular beam of electrons that is fired at the large end of
the envelope, which is covered with a fluorescent material. Also housed
in the neck of the envelope are deflecting devices that serve to bend the
beam in horizontal and vertical directions. The fluorescent screen on
the inside of the large end of the envelope gives off light at the point at
which the electron beam strikes.
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In physical size the ordinary cathode-ray tubes range from 10 to
20 in. in length and have fluorescent screens from 3 to 5 in. in diameter.
The tubes operate with a beam-accelerating potential between 800 and
10,000 volts. The electrode arrangement in a typical cathode-ray tube
is shown in Fig. 2.8.

Cathode-ray tubes are principally used to observe electrical wave
forms. They may also be used to compare frequencies, plot the B-H
curves of iron, and plot the current-voltage characteristics of vacuum
tubes. They are extensively employed as indicators of elapsed-time
intervals in ionosphere height-measuring devices and radar sets. They
are built in a special form known as the ‘“‘kinescope’’ for use as television

(g

F1c. 2.8.—Typical electrode arrangement in a cathode-ray tube. X, cathode; G,
control grid; H, accelerating electrode; F, focusing electrode; A, final accelerating
electrode; O, limiting apertures; B, vertical deflecting plates; C, horizoutal deflecting
plates.

viewing tubes. They have so many uses as measuring and testing devices
that no radio or electronic laboratory worthy of the name is without
one.

2.7. Klystron. The klystron is a newcomer to the group of vacuum
tubes in use today. It is a special ultra-high-frequency tube that is capa-
ble of generating, detecting, and amplifying radio waves ranging in fre-
quency from 600 to 30,000 mc (50 to 1 cm).

The principle of operation of the klystron amplifier differs from that
of other vacuum tubes. It makes use of a velocity-modulation principle
that causes a stream of electrons, which initially has a uniform current
density, to form in bunches. It is the periodic bunch impact that excites
the output resonator, from which energy is extracted. This use of a beam
passing through gaps in closed cavity resonators built into the tube made
it possible for the klystron to overcome the transit-time limitations that
the conventional negative-grid tubes encounter at high frequencies.

A cutaway drawing of an early type of klystron is shown in Fig. 2.9.
The beam of electrons used in the tube is generated in a catbode at one
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end of the tube. The electrons liberated from this cathode are acceler-
ated toward the main body of the tube, where they pass through a tube
and then through a set of grids in a cavity resonator. In passing through
this first resonator some of the electrons are speeded up and some slowed
down by an alternating axial electric field. This action, called ‘‘ velocity
modulation,”” causes the electrons to form in bunches by the time they
pass through the grids of the second resonator, and it is the bunch

SymBoL

Fig. 2.9.—Cutaway view of a two-resonator klystron oscillator.

impact here that converts the kinetic energy of the electrons into high-
frequency electromagnetic energy of the second, or catching, resonator.

A klystron tube may be used as an oscillator by feeding part of the
output from the output resonator back to the input resonator. The
tube will oscillate when the total phase shift around the circuit compose€
of the input resonator, the electron beam, the output resonator, and the
coupling line back to the input resonator is some integral multiple of
360 deg. Because of this phase requirement it is found that the oscillating
action is voltage selective; 7.e., the tube will oscillate at certain voltages
but not at others since the phase-angle equivalent of the transit time of
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the electrons along the beam is involved.

of klystron output versus beam v
oscillates at certain select bands
of voltage. The maximum power
output that can be obtained from
a klystron is nearly inversely pro-
portional to the frequency for
which the tube is designed, being
about 200 watts at 40 cm.

2.8. Magnetron. The magne-
tron is a vacuum tube whose
current may be influenced by a
magnetic field. In certain special
forms it is useful as an ultra-high-
frequency oscillator. As such it
may oscillate at wave lengths
from 100 to 1 em. It is capable

15

In Fig. 2.10 is shown a curve

oltage. This shows how the tube

Fic. 2.10.—Power output—beam voltage
characteristics of a two-resonator klystron

oscillator. This is a picture of an oscillo-
scope trace, which shows that oscillations
are selective with beam voltage.

of a continuous power output of several hundred watts and instantane-
ous powers of several thousand kilowatts.

Early forms of the tube were

of the split-anode type. The
important parts of this type of

o

OOOOO
A

magnetron are the cathode, fre-
quently in the form of a straight

wire filament, and the anode, in

o
o

the form of a circular plate con-
centric with the cathode and split
into an even number of similar

Relative plate current

o

segments. The segments of the

05 10
Relative magnetic field

F1G. 2.11.—Cutoff characteristic of a split-
anode magnetron. The curve shows that
as the axial magnetic field is increased the
plate current is at first constant and then
suddenly drops rapidly to zero. This
results from the electrons becoming pro-
gressively more curved in their paths until
they finally are unable to reach the plate.

L

plate are operated at the same
positive d-¢ potential relative to
the cathode, and a magnetic field
is applied parallel to the tube
axis. This combination of elec-
tric and magnetic fields causes the
electrons emitted from the cathode
to move in nearly circular paths
in the region between cathode and
anode.

5

The radii of the nearly circular electron paths in a magnetron
depend upon the strength of the radial electric field and the axial mag-
netic field. The radii of the paths decrease as the electric field is
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decreased or as the magnetic field is increased. Thus if a magnetron
has its circular plate segments maintained at a constant d-c¢ potential
and the strength of the axial magnetic field is increased from zero strength
to a large value, the electrons in the tube will at first move radially from
the cathode to the plate and then move in paths which are more and more
strongly curved until finally the magnetic-field strength is reached at
which the electrons miss the plate entirely. This action is shown in
Fig. 2.11, in which there is given a plate-current—-magnetic-field charac-
teristic and sketches of the associated electron paths. It is seen that

/ % Jé: Outpyt
{ C =Cathode
Magnetic freld
, / /s perpendicular

SYMBOL fo paper

F16. 2.12.—Electrode structure of a multianode cavity-resonator magne-
tron. The outer electrode serves as the anode. Each of the hole-and-slot
combinations acts like a parallel resonant L-C circuit.

the magnetic field is capable of entirely cutting off the current from the
plate.

For operation as a high-frequency oscillator the plate segments are
made part of resonant circuits, and the magnetic field is adjusted to
approximately the value that causes the electrons just to graze the plate.
If any small disturbance occurs, a complex electronic action results
in which the damped oscillation of the resonant circuit affects the electron
paths so that some electrons extract energy from the system while others
give up part of their kinetic energy to the oscillating system. The tube
can be adjusted so that energy is extracted from the majority of the
electrons as they graze the plates, and thus powerful oscillations are
maintained.

Modern super-high-frequency magnetrons are made in the form of a
multianode cavity. The basic structure of such magnetrons is shown in
Fig. 2.12. The cathode is in the form of a cylinder of appreciable diam-
eter located in the center of the structure. The anodes are cut out of
one piece of metal and have the form of a large circular hole in a block
with radial slots leading out to smaller circular holes. Electrically,
each slot and terminating hole are equivalent to a tuned resonant circuit,
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the slot having a predominantly capacitive action and the terminating
hole having a predominantly inductive action. One of the resonant
conditions possible in this equivalent circuit is one in which alternate
segments of the anode exhibit the same electrical polarity and thus give
the same action as a split multisegment anode, with the advantage that
the fields associated with this resonance are confined. Under proper
conditions of voltage and magnetic-field strength parallel to the long axis
of the cathode, energy will be transferred from the swarm of gyrating
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Fic. 2.13+—Current-illumination curves of a typical vacuum
phototube. The current is linear with the illumination. Al-
though actual currents are quite small, the voltage developed
across the large series resistors used is ample for operating
vacuum-tube devices.

electrons around the anode to the resonant circuit and powerful oscilla-
tions will be sustained.

2.9. Phototubes. The phototube is a vacuum tube that permits
current to pass through it when light falls upon one of its electrodes. The
tubes are generally small and contain an electrode in the form of a half
cylinder coated with some photosensitive material such as caesium oxide.
Various other light-sensitive materials enable the phototube to respond
to light of different colors or even to irvisible radiations.
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Phototubes are extensively used for counting and sorting devices.
They may be used to operate doors and drinking fountains, to turn on
lights, and to provide safety devices for machine operators. They may
be employed anywhere where the interruption or detection of a beam of
light is to be correlated with some operation.

Phototubes are able to operate by virtue of an effect known as
‘“‘photoemission.” Certain materials exhibit the property of emitting
electrons when exposed to light. The number of electrons emitted is
directly proportional to the intensity of the illumination so that a variable
light intensity may be translated into a variable electric current or
potential. Use is made of this linear property in the recording and
reproduction of sound on film. The sensitivity of a phototube in con-
junction with a voltage amplifier is so great it may be used to study the
light from stars. A typical set of current-illumination curves of a vacuum
phototube is given in Fig. 2.13.



CHAPTER 3

ELECTRONS AND IONS

3.1. The Electron. It is the electron that makes vacuum tubes possi-
ble and endows them with their remarkable properties. The electron
is one of the fundamental particles of matter. It is the lightest particle
known. It cannot be subdivided into anything smaller than itself. It
is so small that it cannot be observed directly; all observations of its
properties must be made in terms of the effects associated with it, such
effects as the heat generated upon impact of an electron with a stationary
object or the magnetic field surrounding an electron in motion.

For most of the purposes of electronics the electron may be considered
to be a small, dense particle carrying a negative charge of electricity.
However, it should be borne in mind that this picture of the electron is
far from adequate. There are some applications in which the electron
displays more of a ‘“wave’’ aspect than a ‘“‘particle”” aspect. This is
the case with the electron microscope, where a high-velocity beam of
electrons acts as though it were a light ray of very short wave length.

In the majority of applications the particle aspect of the electron
predominates, with the following characteristics:

Mass. ...t 9.1066 X 1073 kg
Negative charge.......................... 1.6020 X 107! coulomb
Apparentradius............. .. ... ... 1.9 X107 cm

It is seen that the electron is very dense and is highly charged. It
has an apparent density of 0.50 X 10'! g per ¢m3, which is millions of
times greater than that of our heaviest metals (the density of iron is
7.86 g per cm?®). Further, if the classic concepts of electrostatics be
applied to the electron, it may be thought of as being charged to a
potential of about 750 kv.

Electrons are a basic constituent of all matter, being the planetary
unit of all atoms. No matter can exist without electrons, but electrons
may exist by themselves. It is the free electrons that are responsible
for most electrical phenomena. They are the units that carry the cur~
rent in vacuum tubes. They constitute currents in conductors when in
motion. Their motion in special conductors such as antennas gives rise
to electromagnetic radiations. They constitute cathode rays and beta
rays and are emitted from hot bodies.

19
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3.2. The Proton. The proton is the companion piece to the electron.
It is the fundamental particle carrying a positive charge of electricity.
It, too, is a constituent of all matter, existing as it does in the nucleus
of all atoms. The vital statistics of the proton are that its charge is the
same in magnitude as that of the electron but with a positive sign, that
its mass is 1,845 times that of the electron, and that its apparent diameter
is a little less than 10~!® cm. The proton is not nearly so much in
evidence as is the electron in vacuum tubes. It rarely exists as an isolated
particle. Because of its great mass it has a smaller effect than does the
electron in determining the characteristics of materials and in constituting
a current flow.

3.3. Other Fundamental Particles. Until 1932 the electron and the
proton were the only fundamental particles known. Then there were
found a number of other fundamental particles whose rarity and short
life had hitherto precluded their discovery.

Among these new particles is the neutron, which is basically a proton
with no charge. There is also a positron, which is an electron with a
positive charge. There is some evidence of a neutrino, which is a particle
of small mass and with no charge. Strangest of all is the mesotron, often
abbreviated as ‘“meson,” which is a particle with about one-tenth the
mass of the proton and carrying either a positive or a negative charge.
These particles, however, are of no concern to the electronic engineer since
they seldom make their appearance in ordinary vacuum tubes.

Another “particle” that has been known for some time is the photon.
The photon, though classed as a particle, exhibits a wave nature most of
the time and is the one particle whose dual nature is most evident.
It is a packet of electromagnetic energy whose apparent mass is directly
proportional to the frequency of its wave aspect. It carries no charge.

3.4. Atoms and Molecules. Electrically neutral combinations of
electrons and protons constitute atoms according to the atomic theory
of Rutherford, Bohr, and subsequent workers. The word ‘“‘atom’ is
derived from the Greek word meaning ‘‘indivisible.” Atoms are indi-
visible in the sense that they are the smallest bits of matter which main-
tain the properties of the several elements of materials of which they are
part. There are 92 types of atoms, corresponding to 92 materials
known as “elements.” Combinations of the different atoms form mole-
cules, which are the smallest constituent parts of all other materials
composing the physical world.

The basic structure of the atom is believed to be a kind of planetary
system consisting of a nucleus, which is a group of neutrons and protons,
and having a group of planetary electrons equal to the number of protons
in the nucleus.
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The simplest atom is that of hydrogen. It has 1 nuclear proton
and 1 planetary electron. To get an idea of the size of such an atom,
if the proton were 1 cm in radius, the electron would normally be spaced
a distance of 5 km. The helium atom is the next simplest atom. Its
nucleus consists of 2 protons and 2 neutrons. It has 2 planetary
electrons. Other atoms are relatively more complicated. The oxygen
atom has 8 nuclear protons and 8 nuclear neutrons, whose charge is
balanced by that of 8 planetary electrons.

The weight of an atom is determined almost entirely by the sum of
the number of protons and neutrons in its nucleus. The physical prop-
erties of the atom are determined by the number and arrangement of its
planetary electrons. The number of the planetary electrons of an atom
of an element is known as the ‘““‘atomic number”’ of that element. The
order of the elements when listed according to their atomic number is
very nearly but not exactly the same as the order according to the atomic
weights. If the elements are arranged in a periodic table according to
their atomic weights and chemical affinity (valence), as was done by
Mendelyeev, it is found that elements with similar characteristics are
grouped in columns of equal valence (see Appendix I for a periodic table
of the elements).

The planetary electrons of an atom were shown by Bohr to lie in
restricted orbits. They were further found to lie in shells about the
nucleus, each shell having a maximum capacity for electrons. The
maximum capacity of the successive shells from the nucleus out is 2,
8, 18, 32, 18, 18, 2. Thus the atom of neon, whose atomic number is
10 and whose atomic weight is 20.183, has 10 planetary electrons arranged
with 2 electrons in the first shell and 8 in the second. These 10 electrons
balance the electrical charge of the nucleus, which consists of 10 protons
and 12 neutrons.

The number of electrons in the outermost shell of an atom determines
its valence and is the principal factor in determining the physical prop-
erties of the atom. Atoms with an outer shell filled to its capacity are
relatively inactive, while atoms with only 1 electron in their outer
shell are most active.

The atomic weights of the elements are taken as relative to that of
oxygen, which is chosen to be 16. The fact that the atomic weights are
not integers is due in most cases to the fact that there exist atoms of the
same element with different numbers of neutrons in the nucleus. The
atomic weight of a sample of an element is then determined by the rela-
tive number of these different atoms. Atoms with the same number of
planetary electrons but with different numbers of nuclear neutrons are
known as ‘‘isotopes’’ of the same element. Neon has isotopes with 20,
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21, and 22 nuclear particles mixed in such a way that the atomic weight
is 20.183. Hydrogen has isotopes with 0, 1, and 2 nuclear neutrons.
The first isotope is the common one. The others are the relatively rare
“heavy hydrogen’’ isotopes.

Combinations of the atoms of the elements form molecules. The
molecule is the smallest particle of a compound which can exist without
losing the characteristics of that compound. Molecules range in size
from those of atomic size to a few large enough to be seen with an elec-
tron microscope. The molecules of some elements are not just single
atoms but groups of two identical atoms.

3.5. Ions. An ion is a molecule or atom with a charge of electricity
acquired by the loss or gain of one or more electrons. Electrons in the
outer shell of an atom are rather loosely bound to the atom and so may
be dislodged by impact of a particle or by exposure to X rays. Ioniza-
tion of an atom of an element does not change it from one element to
another. This is because the nucleus of the atom is unchanged and the
form of the nucleus determines the arrangement of the electrons in
neutral form.

Ions are important in vacuum tubes because they constitute a cur-
rent when in motion and thus affect the characteristics of tubes, if they
exist in sufficient number. Since even the most completely evacuated
tubes contain billions of molecules per cubic centimeter, ions are always
created by the impact of electrons and depending upon the type of tube
may be a large factor in determining the tube characteristics.

Ions are of most importance in certain special tubes that contain
considerable amounts of a definite gaseous element deliberately introduced
in great quantities and are an important factor in the tube operation.



CHAPTER 4

ELECTRONIC EMISSION

~
hVERY vacuum tube depends for its action upon a stream of electrons
that acts as a carrier of current. As necessary as the stream of electrons
is the electrode that emits them. Whatever the nature of the tube and
the arrangement of electrodes, an emitting electrode cannot be dispensed
with. Even in cold-cathode tubes, one of the electrodes is treated with
a low-work-function material to facilitate the production of some elec-
trons that will initiate the action.

In general, the excellence of performance of a given tube depends
upon the efficiency with which free electrons are produced. When the
emission fails, the tube is useless. We infer correctly then, that the
subject of electron emission is worthy of considerable study.

The types of electronic emission may be listed as follows:

1. Thermionic, or primary, emission.
2. Secondary emission.

3. Photoelectric emission.

4. Field emission.

The common feature of all types of emission is that energy is imparted
to the free electrons in a solid in an amount sufficient to enable them to
overcome the restraining forces at its surface and thus escape from the
solid. '

The types of emissicn differ only in the way in which the escape
energy is imparted to the free electrons. Thermionic emission occurs
when a material is heated to incandescence in a vacuum. In this case
the escape energy is imparted by heating the material. Secondary emis-
ston occurs when a high-velocity electron or ion strikes a material in a
vacuum and knocks out one or more electrons. In this case the energy
that enables the free electrons to escape comes from the striking particle.
Photoelectric emission occurs when energy in the form of light falls upon
a surface. Field emission occurs at cold surfaces under the influence of
extremely strong fields.

All types of emission are most effective in vacuum. If the emission
did occur in air, the emitted electrons would not get very far through

the relatively dense surrounding atmosphere. Most metals would burn
23
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up in air at the temperatures to which they must be raised to emit sat-
isfactorily. Only primary and secondary emission will be discussed in
this chapter. Photoelectric emission will be discussed in a separate
chapter. Field emission is not yet of much practical importance.

4.1. Theory of Thermionic Emission. Every metal has a crystalline
structure of its atoms, i.e., the atoms have an orderly arrangement in
some sort of lattice pattern. The atoms in this lattice structure have
certain of their outer electrons loosely bound. These loosely bound
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F16. 4.1.—Maxwellian and Fermi-Dirac distribution of velocities in
1 cu mm of solid tungsten. The abscissa gives the relative number
of electrons in a velocity increment of 10~3 meters per sec in units of
10'° electrons.

electrons may move from atom to atom in a relatively unresiricted
fashion. Such electrons are known as the “free electrons’ in the metal
in that they are not bound to any one atom. The free electrons in a
metal act much like the molecules in a gas. An increase in temperature
increases their activity and average velocity. A potential gradient in
the metal causes them to move progressively in one direction, giving
rise to a conduction-current flow.

Because of the atomic restraints it is not expected that the velocity
distribution in a metal is Maxwellian, as is almost exactly the case for
gases. The true distribution was found by Fermi and Dirac from quan-
tum-mechanical statistical considerations. For comparison there are
shown in Fig. 4.1 the Maxwellian and Fermi-Dirac distribution of veloci-
ties. The distinctive feature of the Fermi-Dirac distribution of velocities
is that at zero temperature only a small fraction of the electrons have
zero velocity. As temperature increases, the velocity and corresponding
energy distribution change so that more electrons have higher velocities.
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The high-velocity electrons that escape from the metal constitute the
emitted current.

The Maxwellian distribution of velocities referred to above and
shown in Fig. 4.1 is one given by the equation

2
Yy = ﬂ e’ 4.1)

V'
This is the general form of the probability y that a particle will have a
velocity x times the most probable velocity. It applies perfectly for
most gases but does not give the true picture for electrons in metals.
For large velocities, however, the Maxwellian and Fermi-Dirae distribu-
tions differ only by a constant. Thus the electrons emitted from an
incandescent surface do have a Maxwellian distribution, but the energies
of the electrons are (at 3000°K) about 1,000 times those predicted from
the simple Maxwellian theory. Upon converting Eq. (4.1) to a form
involving energy instead of velocity and taking the derivative properly,
the fraction nﬁo of the emitted electrons that can move against a retarding

field of V volts is given by
o= * (4.2)

where —e is charge of the electron, 1.602 X 10—!® coulomb

k is Boltzmann’s constant, 1.380 X 1023 watt-sec per °K

T is absolute temperature, 273+ °C
A nomographic chart of Eq. (4.2) is given in Fig. 4.2. From this it is
seen that about 50 per cent of the electrons emitted from a cathode at
1500°K, typical oxide operating temperature, have velocities greater
than 0.09 volt.

Work Function. The surface restraints that prevent the majority
of the free electrons in a metal from leaving it are the electrostatic forces
produced by the charges in the atoms. These come not only from the
residual positive charges but also from a rearrangement of the negative
charges. A free electron must have a certain minimum kinetic energy
before it can tear itself free from these forces. The work per unit charge
required to free an electron from the influence of the charges in the metal
and thus to escape from it is known as the work function of the metal.
The work function is usually expressed in volts.

The electrostatic forces within a metal are rather complex and not
completely understood. Indications are that the forces are small within
the metal, reach a maximum several atomic diameters outside the metal,
and then decrease according to an inverse-square law at greater dis-
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F1g. 4.2.—The velocity distribution of electrons resulting from thermionic emission
as given by Eq. (4.2). The nomographic chart gives the fraction of the emitted
electrons associated with a given cathode temperature that can overcome a retarding
potential of a given number of volts.
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tances, where an image action manifests itself. It would be expected
that the work function would decrease as the distance between the
atoms in the crystalline structure increased. This turns out to be the
case, and experimentally, a curve of the work function of the alkali
metals of the first column of the periodic table plotted against their
atomic spacing is a smooth one, nearly inversely proportional to the
square root of the atomic spacing, as may be seen in Fig. 4.3. Conclusions
for other metals can hardly be drawn, for there are so few having the
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F1c. 4.3.—Work function of the alkali metals as a func-
tion of atomic spacing. The curve shows that for a
given crystal structure, the further the atoms are apart
the lower is the work function.

same valence and crystalline structure. Since the atomic spacing is a
periodic function of the atomic number, the work function is also a
periodic function of the atomic number.

No completely successful theoretical determination of the work func-
tion has apparently as yet been made. The general nature of the restrain-
ing forces is probably very much like that shown in Fig. 4.4. Within
the metal the force has an average value of zero. Near the surface there
are the attractive forces of atoms that have lost an electron by emission
and forces due to rearrangement of residual charges. The forces are
undoubtedly greatest near the surface, where the force-producing
charges are closest and yet not symmetrically disposed with respect to
the surface. Well outside the surface the force is probably one that
varies with the inverse square of the distance from the metal, for in this
region the charges in the metal arrange themselves so as to give the effect
of an image charge of the electron escaping from the metal. The force
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cannot be inverse-square law all the way out from the surface, for then
an infinite energy would be needed for escape. It may be concluded that
the work function depends in some complex way upon the atomic spac-
ing, crystal structure, and valence of the metal.

The work function of materials is most accurately determined experi-
mentally from observations of the photoele~tric emission of the material,
\
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F1G. 4.4.—Restraining force on an electron near a metal surface.
At large distances from the metal the force is that due to an image
charge located in the metal.

but it may also be deduced from the thermionic-emission characteristics.
A list of the work functions of the metal emitters most often used is
given in Table I.1:2

! Hugnes, A. L., and L. A. DuBripcg, “Photoelectric Emission Phenomena,”
McGraw-Hill, New York, 1932.

2 BECKER, J. A., Thermionic Emission and Adsorption, Rev. Modern Phys., vol
7, pp. 95-128, April, 1935.
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TABLE I
EMISSION CONSTANTS OF THE METALS
Probable ¢r,* Average ¢p,t | Melting temp., | Lattice const,
volts volts °C angstrom units

Ag 4.7 4.6 960.5 4.08
Al 3.0 3.0 659.7 4.04
Au 4.8 4.78 1063 4.07
Ba 2.52 850 5.015
Bi 4.1 4.2 271.3 4.75
C 4.7 4.77 >3500 2.455
Ca 3.2 3.0 810 5.56
Cd 4.1 4.0 320.9 2.97
Cs 1.8 1.67 28.5 6.05
Cu 4.1 4.3 1083 3.61
Fe 4.7 4.74 1535 2.90
Hg 4.5 4.53 —38.87

K 1.8 1.90 62.3 5.33
Li 2.2 2.21 186.0 3.46
Mg 2.4 2.43 651.0 3.20
Mo 4.3 4.15 2620 3.14
Na 1.9 2.0 97.5 4.24
Ni 5.0 5.01 1455 2.66
Pb 4.0 3.9 327.4 4.94
Pt 6.0 6.3 1773.5 3.91
Rb 1.8 1.82 38.5 5.62
Sr 2.1 2.06 800 6.05
Ta 4.1 4.13 3269 3.28
Th 3.4 3.50 1845 5.07
w 4.52 4.61 3370 3.16
Zn 8.3 3.44 419.47 2.66
Zr 4.1 3.73 1900 3.22

* Work function as determined by thermionic measurements.
t Work function as determined by photoelectric measurements.

The Emission Equation. In view of the foregoing discussion it would
be expected that the emission from a metal would depend upon its tempera~
ture and upon the work function. Richardson! and Dushman? have

1 RicuarpsoN, O. W, The Distribution of the Molecules of a Gas in a Field of
Force, Phil. Mag., vol. 28 (No. 5), pp. 633-647, 1914.

2 DusaMaN, S., Electron Emission from Metals as a Function of Temperature,
Phys. Rev., vol. 21 (No. 6), pp. 623-636, 1923. See also the summarizing source
article, 8. Dushman, Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476,
October, 1930, which gives a comprehensive survey of the subject as developed to that
date. See also the book, A. L. Riemann, ‘ Thermionic Emission,” Wiley, New York,
1934.
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shown this to be the case and have shown specifically that the thermionic
emission from a metal is given by

bo

J=AT% T (4.3)
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F1a. 4.5.—Characteristics of the common emitters shown
as a curve of log J/T? against 1/7- This typeof plot
demonstrates the validity of the Richardson-Dushman
equation (4.3). The y-axis intercepts give the emission
constant A. The slope of the lines is proportional to
the work function of the emitter.

where J is current density, amperes per cm?
A is 120.4 amperes per cm*® per deg?, a universal theoretical constant
T is absolute temperature, °K (273 + °C)
be is temperature equivalent of the work function, 11,600¢0,°K
¢o is work function of the metal, volts

Equation (4.3) may be derived from zither thermodynamic or quantum-
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mechanical considerations. The resulting equation is the same in either
case.

From the form of the emission equation (4.3) it is seen that if the
logarithm of Ti’z be plotted against the reciprocal of T there will result a
straight line whose slope is —bo and whose y-axis intercept is In, A. The
correctness of the emission equation has been verified by so plotting
cxperimentally determined results. It is found in all cases that the
results produce a straight line. A group of such curves for common
emitters is given in Fig. 4.5. In this figure those lines with the lowest
slope correspond to metals with the lowest work function. Theoretically,
the intercept should be 2.08, corresponding to the log 10120.4. Actually,
it is about 1.78, corresponding to a value of 4 of 60 instead of 120.4 for
most of the pure metals. Values of A are found higher as well as lower
than the theoretical values so that the theory is not discredited by this
discrepancy. There is some evidence that the work function is not
entirely independent of temperature as has been assumed in the deriva-
tion of the emission equation. The differences in the value of the work
function as determined by thermionic and photoelectric methods may
possibly be due to temperature. A decrease in the work function of 6
parts per 100,000 per degree would cause the observed discrepancy in
the constant A.

The exponential term in the emission equation accounts for most of
the variation of emission with temperature. The variation with the 7
term is so small that the correctness of the exponent 2 can hardly be
verified experimentally. In the case of tungsten at 2500°K a 1 per ceat
change in temperature changes the T2 term by 2 per cent but changes the
exponential term by 20 per cent. This causes the emission-temperature
function to be one of the most rapidly varying functions found in
nature. Doubling the temperature may increase the emission by a factor
of 107. Halving the work function will have nearly the same effect as
doubling.

The quantities of the curves of Fig. 4.5 are not in very convenient
form for ordinary use, and therefore a better method of representing the
emission characteristics of materials is sought. It is possible to plot
emission current against temperature directly as in Fig. 4.6, but the
variation of current with temperature is so rapid that such a curve is not
very satisfactory. It would also be possible to plot emission against
heating power by making use of the fact that at the high temperatures
required for emission most of the power is lost through radiation accord-
ing to the Stefan-Boltzmann law.
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P = KerT* (4.4)
where P is radiated power, watts per cm?
K is 5.73 X 10712 watt per cm? per deg!, a universal constant
known as the ‘‘Stefan-Boltzmann constant”
er is radiation efficiency as fractional radiation of a black body or

perfect radiator
Such a plot gives curves that are nearly but not quite straight lines because

of the two temperature factors in the thermionic-emission equation. It
1000
900
800
I
100 & % j
i {
600 g b ?f
H-H i
500 3 3 5
3
400
300
[ /I
200
/l
100
/ /
e

0
1000 1400 1800 2200 2600 3000 3400 3800
Temperature,°K

Fi1c. 4.6.—The emission-current density of a tungsten

emitter as a function of temperature.
is possible, however, to warp the lines of the emission scale to take account
of the nonuniform temperature variation and get a straight-line plot as
shown in Fig. 4.7. The coordinate paper used in Fig. 4.7 is known as
“power-emission paper.” On it curves of emission against heating
power are straight lines to the extent that the radiation efficiency of the
emitter remains constant with temperature. Contours of emission effi-
ciency in milliamperes per watt are also readily drawn. Since heat-
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radiation efficiency varies rather slowly with temperature, as shown in

Fig. 4.8, the emission-power curves can be extrapolated as straight lines

with considerable assurance.

Radiation efficiency is defined as the per
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Fic. 4.7.—FEmission-current density as a function of heating power for typical exam-

ples of various emitter types.

the different emitters.

The curves show the relative emission efficiencies of

Black-body radiation as given
Power-emission paper is manufactured

and sold by the Keuffel and Esser Company.

cent of black-body, or perfect, radiation.
by Eq. (4.4) is shown in Fig. 4.9.
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Types of Emitter.—Because of the dependence of emission upon
temperature and the work function it is not necessarily true that the
metal with the lowest work function is the best emitter. This is shown
by the case of caesium, which has the lowest work function of all the
metals, 1.8 volts. It cannot be made to give much thermionic emission
because it can be raised only to 300°K, slightly over average room tem-
perature, before it melts. On the other hand, tungsten, which has a
rather high work function, 4.52 volts, has the highest melting temperature
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Fi6. 4.8.—The radiation efficiency of various metals used in vacuum-
tube construction as a function of temperature. Efficiency is given
as a fraction of black-body radiation, which is shown in Fig. 4.9.

of all the metals, 3655°K, and as a result gives the highest emission of all
the pure metals just below its melting temperature. Caesium, however,
is preferred for photoelectric emission and secondary emission where
temperature is not a factor.

It has been found that it is possible to raise some metals to tempera-
tures higher than their melting temperatures in the pure state by using
them in various chemical and physical combinations. Thus a monatomic
layer of thorium on tungsten can be operated at or above the melting
temperature of thorium itself. Also, it has been found that small bits
of the pure metal can be made to diffuse out of an oxide in the case of
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the rare-earth metals so that advantage can be taken of the low work
function of these metals, which would otherwise melt at low temperatures.

From the above remarks it is seen that three classes of emitters exist.
They are

1. Pure metals.

2. Atomic-film emitters.

3. Oxide emitters.
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F16. 4.9.—The thermal radiation of a black body or ideal radiator as a function
of temperature as given by the Stefan-Boltzmann law of Eq. (4.4).
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These different types of thermionic emitters will now be discussed
separately.

4.2. Emission of Pure Metals. Tungsten. The pure metals follow
the Richardson-Dushman emission equation as closely as can be deter-
mined experimentally. In general, the metals with suitable physical
characteristics for emission have a relatively high work function and
so even at best are not very good emitters. Of all the metals tungsten
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is the most extensively used because it can be raised to a higher tempera-
ture without melting than any other metal. Although tungsten has a
desirable high melting temperature, its other physical characteristics are
less desirable. It is a hard metal to work because of its crystalline
structure. It was not until 1908, when Coolidge discovered that tung-
sten becomes ductile when extensively worked, that it became practical
to use the metal at all. Tungsten cannot be drawn into wire form as
can most metals but must be hammered into shape, a process known
&s ‘“‘swaging.”

The emission characteristics of tungsten have been extensively
studied, and more is known of its thermionic behavior than is known of
any other metal.!:?

The principal characteristics of tungsten as given by Jones and
Langmuir are recorded in Table II. The data in this table are for a wire
of unit length and unit diameter. The characteristics for any other
diameter and length are readily determined by the dimensional equations
given. The principal features of tungsten emission are given in the
curves of Fig. 4.10. An example of the use of Table II is given in Prob.
4.3.

Because of its relatively low emission, tungsten is not used as an
emitter unless the application is such that other emitters cannot be used.
Tungsten is used almost exclusively for filaments of tubes with plate
potentials higher than 4,900 volts. This is because other emitters can-
not stand the positive-ion bombardment at energies corresponding to
this high potential. The positive ions referred to have their origin in
residual gases in the tube. All other emitters have their emission
impaired when subjected to bombardment by these high-energy particles.
Except for the brittleness caused by crystallization at high temperatures,
tungsten filaments are more rugged than any other. Like all emitters,
tungsten is subject to reduction of emission from contamination by
various gases. Tungsten cleans up more readily by heating or bombard-
ment than any other material.

Tantalum. The only other pure-metal emitter of any importance is
tantalum. Tantalum cannot be heated to as high a temperature as
tungsten because its melting temperature is 3300°K. However, the
work function of tantalum is relatively low, being 4.1 volts against 4.53
volts for tungsten, so that its emission is at least ten times that from

1Jones, H. A, and I. LanemUIRr, The Characteristics of Tungsten Filaments as
Functions of Temperature, Gen. Elec. Rev., vol. 30, Part I, pp. 310-319, June;
Part II, pp. 354-361, July; Part III, pp. 408-412, August, 1927.

2ForsYTHE, W. E., and A. G. WorTHING, The Properties of Tungsten and the
Characteristics of Tungsten Lamps, Astrophys. Jour., vol. 61, pp. 146-185.
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TABLE II
SPECIFIC CHARACTERISTICS OF IDEAL TUNGSTEN FILAMENTS*
(For a wire 1 em in length and 1 em in diameter)

R X108 g 2 v x o M Rz

T oK wr, w Rd? /ﬁ' vvd X 103, I, I, ' R
’ id TX 108, l ud g per cm? per R

amps per . _ar

watts per cm? ohm-cm cm% volts per amp per cm? sec, R

emb? evaporation

273 | < T 7 L [ 0.911
293 0.0 6.99 0.0 0.0 eeeea D 1.00
300 0.000100 7.20 3.727 0.02683 | .....covviienn | viiiiiin., 1.03
400 0.00624 10.26 24.67 0.2530 | .......... R B 1.467
500 0.0305 13.45 47.62 0.6404 | .......oiieein ] iiaaaaL, 1.924
600 0.0954 16.85 75.25 1.268 [ ..o | ieeiii 2.41
700 0.240 20.49 108.2 b2 R - J e N 4.93
800 0.530 24.19 148.0 3.881 | ..o | eeniaal, 3.46
900 1.041 27.94 193.1 5393 L i e 4.00
1,000 1.891 31.74 244 .1 7.749 3.36 X 10725(1.16 X 10-%3 | 4.54
1,100 3.223 35.58 301.0 10.71 4.77 X 10713 6.81 X 10-3°| 5.08
1,200 5.210 39.46 363.4 14.34 3.06 X 10-11(1.01 X 10-26| 5.65
1,300 8.060 43 .40 430.9 18.70 1.01 X 107° (4.22 X 10-2¢| 6.22
1,400 12.01 47.37 503.5 23.85 2.08 X 1078 7.88 X 1022 6.78
1,500 17.33 51.40 580.6 29.85 2.87 X 1077 |7.42 X 10~2¢; 7.36
1,600 24.32 55.46 662.2 36.73 2.91 X 1076 |3.92 X 10-18; 7.93
1,700 33.28 59.58 747.3 44.52 2.22 X 1075 11.31 X 10-16| 8.52
1,800 44 .54 63.74 836.0 53.28 1.40 X 10-¢ 2.97 X 10-15| 9.12
1,930 58.45 67.94 927 .4 63.02 7.15 X 1074 (4.62 X 10-14| 9.72
2,000 75.37 72.19 | 1,022 73.75 3.15 X 1073 (5.51 X 10-13| 10.33
2,100 95.69 76.49 | 1,119 85.57 1.23 X 1072 [4.95 X 10-12) 10.93
2,200 119.8 80.83 | 1,217 98.40 4.17 X 102 |3.92 X 10-1 | 11.57
2,300 148.2 85.22 | 1,319 112. 4 1.28 X 10! [2.45 X 10-t0} 12.19
2,400 181.2 89.65 | 1,422 127.5 0.364 1.37 X 107 | 12.83
2,500 219.3 94.13 | 1,526 143.6 0.935 6.36 X 10° | 13.47
2,600 263.0 98.66 | 1,632 161.1 2.25 2.76 X 1078 | 14.12
2,700 312.7 103.22 | 1,741 179.7 5.12 9.95 X 10-7 | 14.76
2,800 368.9 107.85 | 1,849 199.5 11.11 3.51 X 1077 | 15.43
2,900 432 .4 112.51 | 1,961 220.6 22.95 1.08 X 10-¢ | 16.10
3,000 503.5 117.21 | 2,072 243.0 44.40 3.04 X 1078 | 16.77
3,100 583.0 121.95 | 2,187 266.7 83.0 8.35 X 106 | 17.46
3,200 671.5 126.76 | 2,301 291.7 150.2 2.09 X 10-s | 18.15
3,300 769.7 131.60 | 2,418 318.3 265.2 5.02 X 1075 | 18.83
3,400 878.3 136.49 | 2,537 346.2 446.0 1.12 X 10-¢ | 19.53
3,500 998.0 141.42 | 2,657 375.7 732.0 2.38 X 104 | 20.24
3,600 (1,130 146.40 | 2,777 406.7 1,173 4.86 X 10-¢ | 20.95
3.655 11,202 149.15 | 2,838 423 .4 1,505 7.15 X 10-¢ | 21.34

* The values given are taken from H. A. Jones and I. Langmuir. The Characteristics of Tungsten
Filaments, Gen. Elec. Rev., vol. 30, pp. 312-313, 1927, Table I. The notation of Jones and Langmuir is
retained in this table.
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tungsten at any temperature less than 2500°K. Tantalum has the advan-
tage over tungsten that it can be worked in sheet form to produce
specially shaped cathodes, and the like. A disadvantage is that it is
easily contaminated by residual gases, which form oxides that greatly
reduce the emission.

4.3. Atomic-film Emitters. It is possible to get emission higher than
that from pure metals from an atomic film of one metal on another.
Of the various combinations that are possible, the most extensively used
is that of thorium on tungsten. It was discovered by Langmuir and
Rogers that the small amount of thorium put into tungsten to reduce
the crystallization gave rise to very high emission under certain conditions.
What apparently happens is that a certain amount of thorium in the
metal diffuses to the surface, where it emits much as thorium would,
with the advantage that the thorium can be heated above its own melting
temperature and that the work function is reduced by the redistribution
of charges in the tungsten and surface layer of thorium.

Thorium was originally added to tungsten to reduce crystallization.
As now added to increase the emission, the amount is about 114 per cent,
and this amount is quite critical. If more than this amount is added,
the tungsten wire is too hard to work. If less is added, there may not
be enough to produce high emission. The thorium is added in the form
of thoria (thorium oxide, ThOy).

A rather intricate schedule of operations is required to produce and
activate a film of thorium on tungsten. The process includes the fol-
lowing steps:

1. Reduction of Thoria to Metallic Thorium. This is achieved by
heating the filament to 2800°K for 1 or 2 min. During this time, most
of the thorium oxide is reduced to thorium, and such thorium as reaches
the surface evaporates. If the emission is measured at this point, it
will be found to be very nearly the emission of pure tungsten.

2. Diffusion of Metallic Thorium to the Surface. This takes place as
the filament i8 held at a temperature of 2100°K for a period of 15 to
30 min. During this time the emission increases by a factor of about
1,000. The explanation of this behavior is that metallic thorium dif-
fuses to the surface, where it builds up a monatomic layer of thorium.
Studies with the electron microscope! show that the thorium arrives at
the surface both through pores in the tungsten and at the grain boundaries,
from which places it spreads over the surface. At this reduced tempera-
ture the evaporation is not very large. In the range of temperatures
between 2100 and 2300°K the thorium diffuses to the surface faster than

1 BRUCHE, E., and H. Many, Ueber das Emissions bild von thorierten Volfram und
thoriertem Molybdin, Zest. fiir Tech. Phys., vol. 16, pp. 623627, December, 1935.
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it evaporates, so that this is a suitable range for activation. In this
range of temperature the percentage of the surface covered varies from
20 to 85 per cent, decreasing as temperature increases as shown in Fig.
4.11. The final layer of thorium that forms is believed to be monatomie.

3. Operation. After the above treatment the filament temperature is
reduced to 1900°K, where it may be operated for long periods of time in
a very stable fashion. At this temperature, both the diffusion and
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Fi1c. 4.11.—The emission of thoriated tungsten as a
function of temperature. O indicates operating range
of temperatures; A, activation range; D, diffusion
range, and R, reduction range.

evaporation are low, but there is a sufficient preponderance of diffusion
to maintain a good emitting surface. Any temperature below 1900°K
is suitable for operation. At this temperature, the tungsten surface is
about 85 per cent covered by thorium, and the life of the coating is
several thousand hours. If the temperature is reduced, the effective
work function is decreased, the life is increased, the percentage surface
coverage is increased, but the emission is decreased.

It is interesting to note that the thoriated tungsten filaments are
usually operated at 1900°K, which is nearly the melting temperature of
thorium, something that could not be done with the pure metal because
of its softness at this high temperature. Also, the work function of
thoriated tungsten filaments is 2.6 volts for a 100 per cent covered sur-
face, and this work function is lower than the work function either of
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tungsten, 4.51 volts, or of thorium, 3.4 volts. The work function of
thoriated tungsten is a linear function of the surface coverage given by
¢ = 4.51 — 1.96 volts, where 6 is the fraction of the tungsten surface
covered by thorium. The reason why the work function is reduced by
having the metals in combination is that most of the electrons in the
thorium layer are drawn toward the tungsten base. This produces a
dipole layer on the surface, with its positive end outward. This means
that in most of the surface region the electrostatic forces are outward,
opposing the image forces and thus reducing the work function.

Thoriated tungsten surfaces are always carbonized to increase the
life. It has been found that if some of the tungsten is converted to
tungsten carbide (W.C) the evaporation of thorium from its surface is
greatly reduced.! The rate of evaporation of thorium from a tungsten
carbide surface at 2200°K is only about one-sixth of that from an uncar-
bonized surface at this temperature. Carbonization may be achieved
by heating the filament to a temperature of 1600°K in a vapor of some
hydrocarbon such as naphthalene or acetylene. It may also be achieved
by heating the filament to red heat in an atmosphere of hydrogen while
in contact with a carbon surface. As the filament is converted to tung-
sten carbide, its electrical conductance decreases until when totally con-
verted it is about 6 per cent of the original value. The electrical resist-
ance is therefore an excellent index of the degree of conversion. In prac-
tice, it is found that the conversion cannot be carried beyond the point
where the conductance is reduced to 80 per cent of its original value, for
the tungsten carbide is so brittle that the filament would be dangerously
weakened by further action.

The fact that the layer of thorium on tungsten is monatomic is evi-
denced by at least two aspects of the behavior of the composite emitter
surface. (1) If the filament is deactivated by heating to a higher tem-
perature after having been activated, the manner in which the emission
reduces with time is independent of the length of time the film has been
activated. This indicates that the activation beyond a certain point
does not add any more emitting material to the surface, which can be the
case only if the layer is monatomic and surplus atoms are lost by evapora-
tion. (2) There is no discontinuity in the emission characteristics during
the activation process.

Monatomic films other than thorium on tungsten may be used. It is
found that they are not as stable as a thorium layer because of more
rapid diffusion and evaporation, and hence they are not much used.
Curves showing the emission characteristics of various combinations are

!'KoLLEr, L. R., “The Physics of Electron Tubes,” 1st ed., McGraw-Hill, New
York, 1934.
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shown in Fig. 4.12. In this figure the notation O-W means that the
emitting metal is on an oxidized tungsten surface.

4.4. Oxide Emitters. In 1904, Wehnelt discovered that copious
electron emission could be obtained from alkaline-earth oxide coatings.
The entire development of small vacuum tubes is based upon this dis-
covery, for oxide coatings are used almost exclusively as a source of
emission in them. The alkaline-earth metals that are readily available
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F1G. 4.12.—The emission of monatomic films on tungsten. (After
Dushman.)

are barium, strontium, and calcium, and it is their oxides that have been
found to give such high emission. Modern oxide coatings are usually
a half-and-half mixture of the oxides of barium and strontium. Such a
coating will give high emission at low temperatures with a high thermal
efficiency; thus at 1000°K an emission of 100 ma per cm? at an efficiency
of 20 ma per watt input is readily obtained. This is about the same
emission ac is given by a tungsten filament at 2300°K, but the emission
efficiency here is only 1 ma per watt. The oxide coatings may be applied
either to an indirectly heated cathode surface or directly to a filament.
They are particularly well adapted to making specially shaped unipo-
tential cathodes.

Theory of Oxide Emission. Oxide emission has been the subject of
extensive study for the last 30 years though it has not been until recently
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that an explanation of the action has been available in fairly complete
form.1=%

The accumulated evidence indicates that the emission takes place from

particles of free metal on the surface of the oxide coating. The free
metal is made available by the following mechanisms:

1. Chemical reaction of the oxide with the core metal.

2. Electrolytic reduction by the gradient of potential through the
oxide coating.

3. Reduction of the oxide by positive-ion bombardment.

It was discovered early that the core metal played a part in the elec-
tron emission. It was even believed that electrons were liberated at the
core. This was disproved by showing that there was no emission from
the core metal when the coating was removed by mechanical shock.
Further, the emission was shown to be independent of the size and shape
of the core. Also, the photoelectric work function of the oxide surface
was the same as the thermionic work function. However, the most
conclusive evidence that the emission is from the surface is that the same
emission characteristics are obtained from an oxide coating if metal is
vaporized onto the surface as is obtained by the normal process of activa-
tion. Different core metals do, however, exhibit different effects upon
the emission. In the order of their reaction titanium, tantulum, nickel,
and molybdenum will react with the alkaline-earth oxides to produce
core-metal oxide and free alkaline earth. The action is evidenced by the
fact that oxides can be activated by heating alone. The titanium reac-
tion is probably responsible for the excellent performance obtained with
cores of ‘“Konel”’ metal, which is an alloy of nickel, iron, cobalt, and
titanium. The metal most used for core metals is nickel, which is pre-
ferred because of its excellent physical properties and low cost.

Free alkaline-earth metal is also made available by the electrolytic
action associated with the passage of current through the coating. The
earth oxides dissociate under the usual condition of polarity. The metal
ion goes to the core, and the oxygen ion is liberated. This action can
be detected by the liberation of oxygen.

Dissociation of the oxides is also caused by positive-ion bombardment.

! BLEWETT, J. P., Properties of Oxide Coated Cathodes, Jour. Appl. Phys., vol. 10,
Part I, October, 1939, pp. 668-679; Part II, pp. 831848, December, 1939.

? Dusaman, S., Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381476,
October, 1930.

3 RIEMANN, op. cit.

¢ BECKER, op. cit.

8 BLEWETT, J. P., Oxide Coated Cathode Literature, 1940-1945, Jour. Appl. Phys.,
vol. 17, pp. 643-647, August, 1946.
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Even in the best vacuums there are enough ions present to give an appre-
ciable action. The fact that activation is greatly facilitated by applica-
tion of a positive potential to the tube in processing is considered sufficient
evidence of the existence of this action.

As with the atomic-film emitters the resultant work function is lower
than that of the pure metals alone, and these are already very low.
Reported values of the work function of oxides have shown a tremendous
variation until recently, when improved vacuum techniques and a better
understanding of the mechanism have given rise to some fairly consistent
values. The work functions of the oxides are now believed to lie within
25 per cent of the following values:

BaO 1.1 volts
SrO 1.4 volts
CaO 1.9 volts
BaO + SrO 1.0 volts

Emission from the combination of barium and strontium oxides is
seen to be better than from either one alone. The reduction in work
function over that of the pure metals is again probably due to an elec-
trical double layer formed by a monatomic coating of the pure metal on
the oxide. Values of the emission constant A also show a great range of
variation as reported by various observers. It has been found that both
the emission constant and the work function change with the degree of
activation of the oxide coatings. Both decrease with activation, and
experimentally it is found that the work function is a linear function
of the logarithm of the emission constant. Properly speaking, it is not
correct to ascribe an emission constant to oxide coatings, for the emission
law in this case is slightly different from the Richardson-Dushman law.!
An equivalent emission constant is of the order of 0.01 amperes per cm?
per deg.

Electron-microscope studics of oxide emission show that there is no
relation between surface irregularities and emission.? Variations in
work function are observed with orientation of crystal faces. The
emission surface does not change much with degree of activation though
the emission may change greatly. Emission is improved by reducing
oxide particle size, as may be done by using colloidal particles.

In operation, an oxide cathode has to establish an equilibrium between
rate of production of free emitting metal and evaporation of the same,
This means the establishment of an equilibrium between electrolysis,
diffusion, and evaporation. This latter will be disturbed if the tempera-
ture of the oxide or the amount of current is changed. Under normal

' BLEWETT, Properties of Oxide Coated Cathodes, Part I, op. cit.

2 Heinze, W., and S. WAGENER, Vorgiinge bei Aktivierung von Oxydkathoden,

Zeit. fur Tech. Phys., vol. 17 (No. 12). pp. 645-653, 1936.
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conditions the equilibrium adjusts itself to the current drawn so quickly
that no change is evident. If, however, the cathode temperature is low
or if the emission is partly contaminated or partly exhausted, there will
be evident an adjustment of emission over a period of seconds or even
minutes as the current drawn is suddenly changed.

The adjustment is of the following nature: If the voltage on a tube is
increased, the current immediately increases and then drops slowly,
coming to rest at a value between the previous and initial value. If the
voltage is decreased, the current will immediately decrease and then
slowly rise to a value between the previous and initial value.

Activation of Oxide Ematters. Since the alkaline-earth oxides are not
stable in air, the coating must be applied to the cathode or filament in
the form of a carbonate or hydroxide. The carbonates are most exten-
sively used, being held to the surface with an organic binder. Coatings
of a thickness of 0.010 to 0.020 in. work well. When a coating has been
applied and the tube evacuated, the coating is activated by first heating
it to a temperature of about 1500°K for a few minutes. This reduces the
carbonates to oxides, and during this time copious CO: is evolved.
Considerable thermal reduction also occurs, with attendant evaporation
of liberated metal. The oxide coating is then operated at a temperature
of about 1000°K with a potential of about 100 volts applied to an adjacent
electrode through a protective resistor. Electrolysis and positive-ion
bombardment then occur, and the emission will build up slowly to a
final value, when the filament will be ready for use.

Various other methods of applying coatings may be used. Heating
in air is recommended to eliminate the organic binder. For a water
paste the coating should be baked in an inactive gas to get good adherence.
Hydroxides, which are very good for coating tungsten, may be dipped
and then baked in air to get a so-called ““combined coating.”

Specific Emission Characteristics. The lines of Fig. 4.5 show the
behavior of oxide coatings in comparison with other emitters. The low
work function is evident from the small negative slope of the curve.
Emission as a function of power is shown in Fig. 4.7 in contrast with
other emitters. The higher emission efficiencies are evident. The
emission obtainable from oxide coatings has increased with the years.
This may continue, though an increase over present values by more than
a factor of 10 is not probable. Some comparative emission efficiencies
are

Ma per Cm? per Watt

Pure tungsten filament........................ 2-10
Thoriated tungsten filaments.................. 5-100
Oxide-coated indirectly heated cathodes......... 10-200

Oxide-coated filaments........................ 200-1,000
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Under normal conditions the life of an oxide coating should be several
thousand hours. Cessation of emission is due to exhaustion of free metal
in the oxide. In mixed coatings there is a preferential evaporation of the
barium, which finally leaves the relatively less efficient strontium to give
a greatly reduced emission.

Oxide coatings are more easily damaged or poisoned than any other
type of coating. They are particularly susceptible to poisoning by
oxygen. Emission may be reduced by several powers of 10 by the pres-
ence of oxygen at a pressure of 10—* mm of mercury, while a pressure of
10-3 mm will inhibit emission completely. Oxide coatings are seldom
used on tubes where they will be subjected to bombardment of more than
1,000 volts. Bombardment by particles of higher energy will disintegrate
an oxide coating completely.

Transient Emission. The monatomic layer of barium of the oxide
coating has tremendous instantaneous-emission potentialities. Such a
layer may yield instantaneous emission as great as 100 amperes per
cm? When short-time high voltages are applied, such large emission
may be realized.!:? The high voltage exhausts the available emission in a
time of the order of milliseconds. When this happens, the supply of
free barium must be resupplied through processes of reduction and dif-
fusion. Since this takes an appreciable time, a current-voltage plot of a
diode operated under these conditions at 60 cycles exhibits pronounced
exhaustion effects, giving risec to a loop in the retrace characteristic.
When a very sharp pulse of voltage is applied to an emitting surface, the
emitted current consists of a capacitive displacement component as well
as the conduction component. As a result, the current pulse will gener-
ally have an initial peak with a subsequent rapid decay.

4.6. Schottky Effect. A departure from the Richardson-Dushman
emission equation occurs when the emitting surface is subjected to a
strong positive potential gradient. Effectively the field reduces the work
function. As a result, the current from an emitter increases with the
potential applied even though the temperature is kept constant and the
emission is not affected by the space charge of the electrons.

The action may be understood by referring to Fig. 4.13, in which the
effect of a constant gradient of potential upon the normal potential
barrier at the surface of the emitter is shown. The combination of the
constant gradient and the normal potential barrier is seen to give a new
potential barrier, which has a maximum at a certain distance d. from

18crapg, O. H., Analysis of Rectifier Operation, Proc. I.R.E., vol. 31 (No. 7),
pp. 341-361, 1943.

2 CooMBES, E. A., Pulsed Properties of Oxide Cathodes, Jour. Appl. Phys., vol. 17,
pp- 647-654, August, 1946.
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the surface. This distance is known as the “critical escape distance”
because once an electron gets beyond this distance the electrostatic
forces are outward rather than restraining and thus an electron keeps on
moving. Upon equating the image field with the gradient, the maximum
of the restraining potential is found to occur at a distance

1 e
= 5\ (4.5

where ¢ is the charge on the electron, E is the potential gradient, and ¢,
is the dielectric constant of free space of value 8.85 X 10— for rational-
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F16. 4 13.—Diagram of the potential barrier associated
with the Schottky effect.

ized mks units. The crest of the potential barrier has been reduced by
the work the electron would have to do to overcome the image force
e [eE
2 \4meo
volts. The work function is further reduced the same amount owing to
the fact that the potential at the distance d.is reduced by the amount d.E.

from the surface from d. to infinity. This amount of work is

The total reduction in the effective work function is thus e ‘,'4£

TEQ
volts. When this correction is made for the work function in the Rich-
ardson-Dushman equation, it is found that the ratio of the emitted current
in the presence of the strong electric field to the normal emission current
is given by
= e4.4ou”/f (4.6)

<o
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where /& is the emission-current density in the presence of the strong
electric field, J is the normal emission-current density, e is the Napierian
base 2.718, E is now the negative gradient of potential in volts per centi-
meter, and T is the temperature in degrees Kelvin. This equation may
be verified experimentally by plotting the logarithm of Jz against the
square root of E. The experimental results are found to give a good
straight line for all but low values of gradient at which the current drops
more rapidly than this simple theory predicts. The slope of the line is, of
4.403 logm €

e

4.6. Contact Difference of Potential. Another factor that occasion-
ally enters the emission picture is “contact difference of potential.”
This term is given to the effect observed when two dissimilar metals are
put in good electrical contact. It is found that a small potential differ-
ence will exist between the free surfaces of the two different metals.
This difference of potential turns out to be the difference between the
work functions of the metals and arises from the fact that electrons can
move more readily from the metal of low work function to the metal of
high work function than vice versa. The differential action results in
an equilibrium that leaves the metal of low work function positively
charged relatively to the metal of high work function by just the differ-
ence of the work functions. In ordinary vacuum tubes contact differ-
ences of potential are usually less than {¢ volt and so do not cause
serious trouble except in special cases. Such differences of potential
as may arise from contact of dissimilar metals will be most serious in
such places as the cathode—control-grid circuit.

4.7. Secondary Emission. Another form of emission that plays an
important role in vacuum tubes is secondary emission. This occurs
when a surface is struck by electrons or ions of appreciable velocity.
Secondary emission caused by the bombardment of electrons is the more
important case and occurs whenever the striking electrons have energies
corresponding to a few volts or more. When this happens, the striking
electrons may knock one or more electrons out of the material, giving rise to
areverse component of current. The electrons knocked out of a material,
known as ‘“secondary” electrons, may number more than the “striking,”
or ‘“primary,” electrons. There is no violation of the conservation of
energy law when this happens, for the velocity of the secondary electrons
is for the most part very low. Secondary emission is commonly encoun-~
tered in multiple-electrode tubes, where it has the effect of altering some-
what the normal primary-electron current characteristics. It occurs in
cathode-ray tubes where the beam electrons hit the fluorescent screen,
and is necessary there to complete the circuit for the current flow. It

course,
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is deliberately used in a number of types of clectron-multiplier tubes,
where it makes possible a high amplification of current by a purely elec-
tronic action.

Secondary-emission characteristics of materials are measured by
means of the apparatus shown schematically in Fig. 4.14. In the arrange-
ment shown a beam of electrons is directed at a target inside of a sphere
at a higher potential, which attracts the secondary electrons liberated
at the target. The ratio of secondary- to primary-electron current can
be read for any primary-electron potential.! For a long time there were
great discrepancies in the reported secondary-emission characteristics of

Collecfor

{sphere  Secondary
3 {_electrons

Primary (
electrors,
Cathode

Diaphragm. ]
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Fic. 4.14.—Apparatus for the measurement of secondary-
emission characteristics.

the various metals. It was evident that small traces of impurities or
surface contaminations made a great difference in the secondary-emission
characteristics. Techniques have now been refined to the point where
the values reported by various investigators are fairly consistent. The
average secondary-emission characteristics of the materials commonly
used in vacuum tubes when only the ordinary precautions against con-
tamination are taken are shown in Fig. 4.15.2

Variation of Secondary Emission with Primary-electron Potential. In
Fig. 4.16 are shown the secondary characteristics of the common metals
presented in curve form, giving the ratio of secondary- to primary-elec-

1 See KoLLaTh, R., Sekundarelektronemission fester Korper, Physik. Zeit., vol. 38,
pp. 202-224, Mar. 15, 1937, for an excellent discussion of methods of measurement

and results obtained up to that date.
2 Harrigs, J. H. OwEN, Secondary Electron Radiation, Electronics, vol. 17, pp.

100-108, 180, September, 1944.
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tron current as a function of the primary-electron potential as reported
by Bruining and DeBoer.! These results probably are more reliable
than any previously reported, for the investigators used a special appara-
tus in which the metal to be tested was evaporated onto the target in
a vacuum just before the measurement was made. The results presented
show lower ratios of secondary- to primary-electron current than those
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F1g. 4.15.—Secondary-emission characteristics of the metals under ordinary

conditions. The curve shows the ratio of the number of secondary to pri-

mary electrons for vaiious primary-electron impact velocities expressed in

volts. (After Harries.)

previously reported. This is probably due to the fact that with previous
handling the metals became partly oxidized and oxidized surfaces are

! BrRuining, H., and J. H. DEBOER, S8econdary Emission, Part I, Secondary Emis-
sion of Metals, Physica, vol. 5, pp. 17-30, January, 1938; Part II, Absorption of
Secondary Electrons, Physica, vol. 8, pp. 901-912, December, 1938; Part I1I, Second-
ary Electron Emission Caused by Bombardment with Slow Primary Electrons,
Physica, vol. 5, pp. 913-917, December, 1938; Part 1V, Compounds with a High
Capacity for Secondary Electron Emission, Physica, vol. 6, pp. 823-833, August, 1939;
Part V, Mechanism of Secondary Electron Emission, Physica, vol. 6, pp. 834-839,
August, 1939; Part VI, Influence of Externally Adsorbed Ions and Atoms, on the
Secondary Electron Emission of Metals, Physica, vol. 6, pp. 941-950, October, 1939.
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known to have higher secondary emission than those which are not.
The curves of Fig. 4.15 show that all the metals have a low secondary
emission at low primary-electron potentials. Most of the metals have
a maximum secondary emission between 200 and 400 volts of primary
potential, which then decreases slowly, becoming constant at a value
between 50 and 95 per cent of the maximum value. Most of the uncon-
taminated metals have a maximum ratio of secondary- to primary-elec-
tron currents less than 1 though it should be remembered that metals
as encountered in tubes are seldom uncontaminated and will have
maximum ratios of the order of 1 to 5.

Although the complete theory of secondary-electron emission is as
yet not worked out, a great deal is known of the mechanism.’»2 When
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Fi16. 4.16.—Secondary-emission characteristics of metals with

inappreciable surface contamination. (After Bruining and
DeBoer.)

primary electrons strike a surface at right angles, they may knock electrons
out of the atoms near the surface and those with velocity components
directed toward the surface may be able to overcome the surface-poten-
tial restraints and escape from the metal. Each primary electron may
shake up several atoms, thus giving rise to several electrons emitted per
primary electron. It should be noted that the source of secondary elec-
trons lies almost entirely in the electrons of the surface atoms and not in the
free electrons of the metal. If a normally directed primary electron strikes
a free electron, it cannot give it a component of velocity directed toward
the surface. Electrons knocked out of atoms, however, may have such

1Ibid., Part V.

? Woorbringg, D. E., Theory of Secondary Emission, Phys. Rev., vol. 56, pp.
562-578, Sept. 15, 1939,
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a component.

will at first knock out more and more secondary electrons.

As the potential of the primary electron is increased, it

However,

as the potential is further increased, the surface atoms are exposed to
the primary-electron forces for a shorter time, i.e., the so-called “col

y electrons radiated
1

N
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e
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percentage of primary impact energy
Fi1e. 4.17.—The relative velocity
distribution of secondary electrons.
About 90 per cent of the secondary
electrons will have velocities in
range I, 7 per cent in range II,
and 3 per cent in range III.

o

emitted from a metal.
velocities below 20 volts.

lision diameter” decreases, and the pri-
mary electron will first knock electrons
out of atoms when it has slowed down
upon penetration into the metal. Thus
at the maximum of emission it is
believed that the majority of the sec-
ondary electrons are liberated a depth
of several atoms into the metal.l
Beyond this potential the primaries
penetrate still farther into the metal,
and the probability that the electrons
knocked out of the atoms at this depth
will reach the surface decreases, with
the result that the secondary emission
decreases.

Velocity Distribution of Secondary
Electrons. In Fig. 4.17 is shown a
typical curve of the distribution of
velocities in the secondary electrons

Most of the electrons, about 90 per cent, have
The electrons naturally fall into three groups

as indicated in the figure. These are as follows:

Group 1—0 to 20 volts. This group comprises about 90 per cent of
all the secondaries for primary potentials of 50 volts or more.
There is a pronounced maximum in this group at about 10 volts.
These are the electrons which are shaken out of the atoms as a
result of the passage of the primary electrons and do not have much

energy.

Group I1—20 volts to 98 per cent of the primary-electron potential.
These comprise about 7 per cent of the total secondary current.
They represent high-energy electrons knocked out of atoms and
elastic reflections of the primary electrons at a considerable depth

in the metal.

Group III—98 to 100 per cent of primary-electron potential.

This

group comprises only about 3 per cent of the secondary current

! BruiNning, H., Depth at Which Secondary Electrons Are Liberated, Physica,
vol. 3, pp. 1046-1052, September, 1936.
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and has a maximum at about 99 per cent of the primary-electron
potential. This group arises from elastic reflections of primary
electrons from atoms near the surface of the metal, not really
secondary electrons at all.

Another representation of the secondary-electron velocity distribu-
tion is obtained if potential between sphere and target of the apparatus
of Fig. 4.14 is made negative instead of positive and the current of the
sphere is measured against the retarding potential. The resultant curve
is shown in Fig. 4.18. This curve is an average for measurements on
various metals with primary-electron

potentials in the range of 275 to 1,000 §§ 100
volts. Curves like those in Fig. 4.17  5S g
are obtained by taking the negative :ﬁ; \
derivative of curves such as those in  Z-§ 60 \
Fig. 4.18. RN

Variation of Secondary Emission 3”,‘__:40 N

. . e N

with Angle. When primary electrons 82 2 N
strike a surface at right angles, it is §3%
found that secondary electrons are ©S30 020630100
emitted at all angles. The spray of 0 Retarding potential as percentage

secondary electrons seems to follow of primary impact energy

very nearly a cosine law of distribution
under all conditions.
When the primary electrons strike

Fig. 4.18.—Collector current as a
function of retarding potential of the
secondary-emission measuring appa-

a metal surface at an angle, it is ratusof Fig. 4.14.

found that the distribution of the angle on the secondaries is still nearly
a cosine-law variation. More important than this is the fact that the
secondary- to primary-emission ratio increases as the primary electrons
strike more nearly parallel to the surface. Some typical curves showing
the variation of the secondary- to primary-emission ratio are given in
Fig. 4.19. The increase in secondary emission with angle is largely due
to the fact that at angles other than normal the primary electron may
knock free electrons out of the metal as well as electrons out of atoms.
The variation of emission is given quite closely by!

RO = Roeﬁ(l—cosﬂ)

@.7)

where 6 is angle between normal and direction of primary electrons
Ry is ratio of secondary to primary electrons at angle 6
Rq is ratio of secondary to primary electrons at angle zero
€ is Napierian base 2.718

t BRuINING and DEBOER, op. cit., Part I1.
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P is a coefficient that increases with primary potential and is pro-
portional to the primary-electron penetration

Secondary Emission of Composite Layers.

Certain combination sur-

faces have been found to have pronouncedly higher secondary emission

o g055(1-cos6)
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F1c. 4.19.—Variation of secondary-emission ratio with
angle of primary impact. Note that the secondary-emis-
sion ratio increases as the angle of incidence becomes
more nearly grazing. (After Bruining and DeBoer.)

than the pure metals. Such surfaces are the alkalihalides on a base of
the alkali metal and alkali oxides on various metal bases. All these
combinations show the same general secondary-emission characteristics
as do the pure metals except that the current ratios instead of being
in the vicinity of unity may be as high as 8 to 11. The velocity distribu-
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tion for composite surfaces is much narrower than for the pure metals,
i.e., a given percentage of the total electrons are included in a lower
range of velocities, 85 per cent in the first 3 volts. Below are given data
on some of the alkali halides.!

TABLE III
MAXIMUM SECONDARY-EMISSION RATIOS OF ALKALI HALIDES
Compound Maximum Ratio
LiF
NaF
Ca.Fz
NaCl
KCl
RbCl
CsCl
NaBr
Nal
KI

[5,]

OO Wot,
5]

D LI GO0 N0 =~ D

Of the alkali oxides, by far the best emitter is caesium oxide,
partly reduced, on a base of silver. Some typical curves for alkali
oxides are shown in Fig. 4.20. This same combination gives very
high photoemission. Photoemissive surfaces are prepared in the same
way.

In connection with composite surfaces it should be noted that a com-
bination with a low work function does not necessarily have a high
secondary- to primary-electron ratio, and vice versa. Thus tungsten
with a work function of 4.52 volts has a maximum ratio of 1.5. Con-
tamination with oxygen increases the work function to 9.25 volts but
increases rather than decreases the maximum ratio.? This probably
means that electrons are more readily knocked out of the surface atoms
and so give increased secondary emission even though they require more
energy to escape from the surface. For a given combination of elements,
however, the secondary emission usually increases with decreasing work
function. Thus, if caesium on caesium oxide on silver is contaminated
with oxygen, the work function increases and the secondary emission
decreases. Also, in the case of molybdenum partly coated with barium
the work function passes through a maximum with a given percentage
of the surface covered, as is evidenced by the photoelectric emission.
The secondary emission passes through a maximum with the same

! BRUINING and DEBOER, op. cit., Part V.
?Zworykin, V. K., and G, A, MorToN, “Television,” p. 32, Wiley, New York,
1940.
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percentage of surface coverage though the maximum is not nearly so
pronounced.!

Secondary Emission of Insulators. Insulators as well as conductors
may emit secondary electrons. Measurements on insulators are more
difficult to make because the potential of the insulator cannot be meas-
ured directly. The characteristics can, however, be deduced from the
potential that the insulator assumes relative to a spherical collector
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F16. 4.20.—8econdary emission of the alkali oxides. (Reprinted
by permission from * Television” by V. K. Zworykin and G. A.
Morton, Wiley, New York, 1940.)

electrode when bombarded with electrons of different potentials. The
general features of the secondary emission of insulators may be summed
as follows:? Insulators exhibit curves of ratio of secondary- to primary-
electron current versus primary-electron potential that are similar to
those of the metals. Ratios usually exceed 1 over a considerable range
of potentials, a maximum occurring between 300 and 800 volts. As with
the metals, the ratio rises rapidly to a maximum and then drops slowly.
As with the metals, most of the secondary electrons are emitted perpen-
dicularly to the surface, following very nearly a cosine law of distribution

! BruiNiNGg and DEBOER, op. cit., Part VI.
2 KOLLATH, 90. cit.
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regardless of the direction of the primary electrons. Upon bombard-
ment at an angle the secondary- to primary-electron ratio increases as
the primary electrons strike more nearly parallel to the surface up to a
critical angle, beyond which the ratio drops to a small value less than
unity and remains nearly constant. The critical angle depends upon the
material and is a function of temperature, the angle with the normal
increasing with temperature. The explanation of the sudden drop in
emission with increased angle with the normal of primary-electron bom-
bardment seems to be that a layer of negative charge forms on the sur-
face which traps, by a space-charge action, the primary electrons and
the secondary electrons they would have freed.

In nermal action an insulator will have its potential influenced by its
secondary-emission characteristics. The action will depend upon the
primary-electron energy relative to the secondary-emission characteris-
tics. Action can be divided into three cases as follows:

1. Primary-electron potential below that at which secondary-
to primary-current ratio is unity. Here the number of secondary
electrons emitted is less than the number of primaries, and so the
insulator acquires a negative potential that is large enough to repel
most of the primaries. This constitutes a blocking action. The
insulator is finally in stable equilibrium at zero potential.

2. Secondary- to primary-current ratio greater than unity. Under
this condition the insulator gives off more electrons than it acquires
and so becomes more positive than its surroundings. When this
happens, the insulator reattracts the slow secondaries and so
remains a few volts more positive than the potential through which
the primary electrons have been accelerated.

3. Primary-electron potential greater than that at which secondary-
to primary-current ratio has dropped to unity. In such cases the
insulator will gain more electrons than it loses and so will become
more negative in potential until the primary electrons are retarded
to the point where the ratio of secondary to primary current is unity.
At this potential, the primary- and secondary-electron currents
are equal, and the insulator is in stable equilibrium.



CHAPTER 5
DETERMINATION OF POTENTIAL FIELDS

THE fundamental theoretical technique necessary for the study of the
internal behavior of a vacuum tube is that of determining the distribution
of the electric potential within the tube. From the determination of the
electric potential within a tube can be deduced the amplification factor
of the tube, the focusing properties of the electrodes, and the current-
voltage characteristics. In short, the determination of the distribution
of the electric potential within a tube is the point of departure for the
study of almost all its characteristics.

The methods of determining the potential fields of vacuum tubes are
rather special. The most extensive information is obtained from con-
formal transformations and from solutions of the Laplace differential
equation. The particular transformations and functional forms most
frequently encountered in tubes are ordinarily given only a fraction of
the total space allotted to the entire subject of electrostatics in books
devoted to this subject. For this reason a brief review will be given of
all the standard methods of determining potential fields, including some
numerical and graphical methods, so that the elegance of the special
methods mentioned will be appreciated.

6.1. Units and Dimensions. In this book there will be used the
system of rationalized mks units. For this system the units of length,
mass, and time are the meter, kilogram, and second, respectively and the
electrical units are the usual practical ones—the volt, the ampere, the
coulomb, etc. The term ‘‘rationalized” indicates that the factor 4«
has been incorporated into the arbitrary constants in such a way that
the greatest over-all simplicity of all relations is obtained. This is done
in such a way that the factor 4r does not appear in relations involving
plane geometry and rectangular coordinates but does appear in relations
involving spherical geometry. A further feature of the rationalized mks
system of units is that the equivalent dielectric constant of free space and
the equivalent permeability of free space are not unity but have some
specific values. These are the only two values that need to be known
in this system to work practical problems, whereas in some of the other
systems a whole table of conversion factors has to be invoked every time

a practical problem is solved.
58



DETERMINATION OF POTENTIAL FIELDS 59

65.2. Fundamental Quantities and Definitions: Forces between
Charges. All electrostatic relations are based upon the application of the
observed effects of charges upon one another. Qualitatively, the obser-
vations are that there are two kinds of charges, that like repel and unlike
attract, that the force between charges decreases as the distance between
them increases. Quantitatively, all this is expressed by Coulomb’s law,

_ Qg2 !
F=1"5 (5.1)

where F is the radially directed force in newtons (1 newton equals 10%
dynes) between charges ¢; and ¢, in coulombs, r is the distance between
charges in meters, and e is the so-called ‘“‘dielectric constant’’ of the
medium. The dielectric constant is equal to the product of the relative
dielectric constant and the dielectric constant of free space,

£ = g% (5.2)

where ¢, is the relative dielectric constant as would be determined by the
ratio of capacity of a condenser using the medium and free space as
dielectric and e is the equivalent dielectric constant of free space whose
value turns out to be 8.85 X 10712 farad per meter in rationalized mks
units,

The region in the vicinity of electric charges is referred to as the
electric field. The electric intensity E at any point in such a field is
the force per unit charge on a small test charge placed at the point. The
intensity, which will also be shown to be the negative gradient of the
electric potential, is a vecfor quantity in that it has both magnitude and
direction.

Intensity at a distance r from a charge ¢ is, by Coulomb’s law,

Bl = (5.3)

Where more than one charge is concerned,
2 g» cos (x,1s)
= @@
4mer,?

z gn cos (y,r2)
E, ==

E. (5.4)

dwer,? (5.5)
The summation must be taken by a summation of components where
(z,rn) is the angle between a line parallel to the z axis and the vector
from the charge ¢, to the point at which the intensity is being determined.
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A line of force, or a line of flux, is a line drawn so that it has every-
where the direction of the electric intensity. Lines of flux originate on
positive charges and terminate on negative charges. In the rationalized
mks system of units one line of flur emanates from every unit positive
charge. The density of the flux lines is known as the displacement or
flux density. Displacement and intensity are related by the expression

D = ¢E* (5.6)

where D is the displacement, or number of flux lines per square meter,
and e is the dielectric constant of the medium. Equation (5.6) is, for
homogeneous isotropic dielectrics, strictly analogous to the expression
B = uH, which applies for magnetic fields.

The potential at sny point in an electric field is defined as the work
per unit charge required to bring a small positive test charge from infinity
to the point in question (symbol V). Potential is a scalar quantity, 7.e.,
completely specified when its magnitude alone is given. Applying this
definition to obtain the potential at a distance r from a charge ¢,

_ r _ r q ____L
V= /der_ gl = g (5.7)

The minus sign appears because the work is being done against the force.
The potential obtained above is in volts if ¢ is in coulombs and r is in
meters. The work is independent of the path. The potential at a
point due to a number of charges is equal to the sum of the potentials

due to the separate charges,
Gn
V= z oy (5.8)

For a continuous distribution of charge over a surface,

1 7

where ¢ is the surface density of charge, da is the element of area, and
the integration is taken over the area of the surface. For a continuous
distribution of charge throughout a volume,

1

—_* | P
V=i | 2w (5.9b)

* Bold-faced capitals will be employed to designate vector quantities when used
1n the vector sense. Components of vectors are themselves vectors but may usually
be treated as scalar quantities when dealt with separately.
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where p is the volume density of charge, dv is an element of volume, and
the integration is taken over the volume.

The difference of potential between two points in a1 electric field is
defined as the work per unit charge required to bring a small positive
test charge from one point to the other. This difference is independent
of the path by which it is evaluated.

From the definition of potential it is seen that the intensity is the
negative gradient of potential, the negative sign indicating that the force
is exerted in a direction opposite to that of increasing potential. The
gradient of the potential is a vector having the magnitude and direction
of the maximum variation of potential. Thus

_
|E| = — 3 (5.10)

The force per unit charge in any general direction is given by

av

ol (5.11)

Ecosa = —

where « is the angle between the direction considered and the gradient
of potential. Components of intensity are conveniently related to
potential by

)4

E.= -~ (5.12a)
v

E,=-% (5.12b)

The form that components of intensity have in terms of derivatives
of potential depends upon the coordinates in which the potential and
distances are expressed. In all cases the component expressions cor-
responding to Eq. (6.10) have the form of the limiting value of the ratio
of an increment of potential to an increment of length in the direction of
the variable considered. Expressions for the intensity as a negative
gradient of potential are given in Appendix II for the coordinate systems
most commonly used.

6.3. Solution of Potential Fields by Summation of Intensities. The
electric field around any distribution of charges may be found by sum-
ming the forces due to the charges by means of Eq. (5.4). Forces are
best summed one component at a time. The procedure can usually be
simplified by choosing the axes to take advantage of any symmetries.
When an expression for each of the components of intensity has been
found, the resultant intensity has a magnitude that is the square root
of the sum of the squares of the components. The direction cosines of
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the resultant vector are given by the ratio of the respective componenls
to the magnitude of the resultant.

Ezample: Find the electric intensity on the axis of a right-circular cylinder of
radius a and length & at a distance z, from the end of the cylinder if the cylinder
has a charge uniformly distributed throughout its volume of density p. In the
configuration of Fig. 5.1 let z be the distance from the point P to the point on
the axis corresponding to an element of volume in the cylinder. The elementary
volume is given by

dv = rdr df dz

and the corresponding element of charge is given by

dg=pdy

|< --------- h ~!4 Xo---- >

F1G. 5.1.—Notation for the evaluation of the axial intensity due
to a cylindrical distribution of charge.

By symmetry there will be only an z component of intensity at the point P on
the axis to which the element of charge will contribute

dE _prdrdfdzx T 1
YT T g2 (r* + z2)% 4me

which will be recognized as being of the form

This differential expression must be integrated with respect to its three variables,
0 from 0 to 2mr, r from 0 to a, and z from x, to zo + 2. When this triple inte-
gration has been performed, the resulting expression for the intensity on the
axis is

1
E.=2m[h - V@ TP F @+ VarFat | =
6.4. Summation of Potentials. The potential at any point in a field
may similarly be obtained by application of Eq. (5.7). This procedure
is in general easier to apply than the direct evaluation of the intensity,
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for the summation for potentials is algebraic, whereas that for intensities
must be vectorial. The expression for the components of intensity is,
of course, derivable from the expression for potential.

Ezample: Find the potential at a distance ¢ from the center of a spherical
shell with inner and outer radii r; and r» and with a charge uniformly distributed
throughout its volume of charge density p.

The element of volume in spherical coordinates is

dv = r?sin 0 dr df d¢
where the symbols have the significance indicated in Fig. 5.2 and ¢ is the azimuth-

F1c. 5.2.—Notation for the evaluation of the potential due
to a charge uniformly distributed throughout a spherical
shell.

al angle. Then the potential at the point P due to the element of charge
associated with the above element of volume is
pr*sin @drdfde 1

av = y 4mre

It is convenient to use the distance y instead of the angle 6 as a variable. The
two quantities are related by the law of cosines

y = (c? 4+ r2 — 2cr cos 0)%
8o that, for constant r,

cr sin 0 d@
dy = ——
y y

Making this substitution into the expression for the element of volume,

1
4re

_p [ 2x fe+r _l_
V_C,/n,/:) ﬁ‘r rdydd)dr&n

W=%@wm
80 that
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The result of this integration gives

From this it is seen that the potential at the point P is the same as though the
entire charge of the shell were concentrated at its center.

6.6. Gauss’s Law. Gauss’s law is one of the most useful relations in
electrostatics. It enables one to
determine quickly the field and
potential around any symmetrical
distributions of charge. The law
may be stated as follows: The
integral of the normal outward com-
ponent of electric flux over any closed
surface is equal to a constant times
the total charge enclosed by the sur-
Jace. For rationalized mks units,
the constant is unity.

Consider a closed surface S
enclosing a single point charge q as
shown in Fig. 5.3. Then the outward component of electric flux for the
element of area dS is

Fi1c. 5.3.—Notation for the evaluation
of Gauss’s law, Eq. (5.17).

D, dS = D cos adS (5.13a)
D,dS = 'gfz cos a dS (5.13b)

It will be recognized that %‘g cos « is the element of solid angle about the

point charge intercepted by the area dS, since solid angle is measured by
area intercepted on a unit sphere just as linear angle may be measured
by arc length on a unit circle. Thus

do = 98 e0sa jgs « (5.14)
where dQ is an element of solid angle. Then

qdQ

D, dS = i (5.15)

If this is integrated over the entire surface surrounding the point charge,
fD,dS =g¢q (5.16)

since there are 4r units of solid angle around a point.
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Since the law of superposition holds for the potentials due to charges,
the integral of the outward normal component of flux is equal to the
total charge enclosed when the closed surface contains more than a single
charge.

For a volume distribution of charge the law can be written

D cos a dS = [pdv (5.17)

where p is the volume charge density, v indicates volume, and the other
symbols have the previous significance.

Ezample: Consider the case of a uniform distribution ot charge on a circular
wire of infinite length. From considerations of symmetry it is evident that the

D

Fic. 5.4.—The flux associated with a linear distri-
bution of charge.

electric field will everywhere be radial and will be constant along the length of the
wire. The equipotential surfaces will be cylinders concentric about the wire,
and the flux lines will be straight radial lines.

Let the charge be uniformly distributed along the wire with a density of A
units per unit length. Draw a cylinder of radius r about the wire of radius a.
Then the electric lux D = ¢E is everywhere outwardly directed as shown in
Fig. 5.4. The integral of normal component of flux per unit length of this wire
is equal to the product of the displacement and the area of the cylinder per
unit length. This product must be equal to the linear charge density, so that
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This gives the intensity at any distance r from a wire with a linear charge density.
The potential at any distance r from the wire is found by integrating the
negative of the field with respect to r, giving

V=- % Inr 4+ C
The constant is necessary to adjust the potential to a prescribed value at some
particular distance since the potential about a cylindrical wire, unlike that about
a point charge, does not vanish at an infinite value of the radius.
In the case of two concentric cylinders of radii 7, and r, having potentials
V. and V,, respectively, the potential between them is

1111_1
VE) = Vit V= V) —]
In =
™1
If
Vi=0
Vz lllrl1

V() = — ~

In —

T1

From Gauss’s law it may also be deduced that the field adjacent to a
plane with a surface charge density o is given by ;: and is normal to the

plane. It may also be verified that a charge uniformly distributed
throughout a sphere or over the surface of a sphere looks to an observer
outside the sphere as though the charge were all concentrated at the center
of the sphere so that the laws for point charges hold.

The above results are summarized in the following table:

Plane Cylindrical Spherical
Geometry
—x

Total positive charge............. o X area A X length q
Charge density.................. o per unit area | X per unit axial q
length area

. 4 A q
Intensity E..................... 2 - o

. oz A q
Potential V....................... . +C e Inr +C e
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6.6. Poisson’s and Laplace’s Equations. Poisson’s and Laplace’s
equations are differential expressions of Gauss’s law applied to an ele-
ment of volume. Poisson’s equation applies to regions containing charge.

+2Z

-7 +Yy

Fia. 5.5.—Notation used in the derivation of Laplace’s
equation in rectangular coordinates, Eq. (5.24).

Laplace’s equation is the same equation for the case of no charge. The
equations are derived as follows:

Consider an element of volume in an electric field as shown in Fig. 5.5. If
the intensity at the origin is E, then

Flux into back face = eE, Ay Az

Flux out of front face = e

A:z:) Ay Az

Net outward flux through front and back faces = e Bali

Similarly
Net outward flux through left and right faces = e Ax Ay Az
and
Net outward flux through bottom and top faces = e aaE Az Ay Az
Upon combining these, the outward flux through all faces is

JF,

by Gauss’s law where p is the volume charge density. The above equality is
abbreviated

Divergence E = V- E = g (5.19)

in which the element of volume has been cancelled and the term “divergence” has



68 VACUUM TUBES

been applied to the limiting value of the net outward flux per element of volume
as the element of volume approaches zero.

But
E = negative gradient of V (5.20a)
frequently abbreviated
E=-vVV (5.200)
or in component form
av
E.= — 3%
av
E, = — 3y (5.21)
av*
E, = — 71

Making these substitutions into Eq. (5.18),

v oV | oW
oz T oyt v o T

(5.22)

LR

which is Poisson’s equation. This is abbreviated
oy = _ P
VY = — e (5.23)

In a region free of charge, p = 0 so that

v . a9 9
Fyes + ay? + 9 = 0 (5.24)

which is Laplace’s equation. This is abbreviated
vV =0 (5.25a)
If the derivation is made in terms of general coordinates u;, u,, and u;

with scale factors hy, ks, and ks, respectively, so that an element of arc
length is related to the coordinates and scale factors by

ds? = h12 du12 + h22 du22 + h32 du32

then Laplace’s equation assumes the general form

1 0 (hohs dV d [hih3dV
2 —_— R i - P A
vV = hlhghz l:aul ( h1 aul) + ous ( h2 6u2>
d [hihe 8V
T 5w ( hs a—u3>] (5:250)

Interpretations of Laplace’s Equation. As has been mentioned before
and as is evident from the development of the equation, Laplace’s equa-
tion is a differential expression of Gauss’s law for an element of volume.

* See Appendix II.
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In the language of differential equations it says that the net electric flux
emerging from an element of volume in a region free of charge is zero.

Another interpretation that can be given to Laplace’s equation in the
two-dimensional case is that it is an equivalent way of saying that the
potential at any point in a field is the average of the potentials at four
equally spaced surrounding points. Thus if there is given a set of curves
of equal potentials in the vicinity of some electrodes, known as a “con-
tour representation of potentials,” then the potential at any point, say
the point (2,2), is the average of the potentials at the four surrounding
coordinate points, for the case assumed, the average of the potentials
at the points (2,1), (3,2), (2,3), and (1,2). This property will be proved
in a subsequent section.

Laplace’s equation can also be interpreted in terms of the curvature
of the potential profiles of a field configuration. Two-dimensional fields
can be represented either by contours of equipotential or by potential
profiles just as we can draw either a contour map or a set of profiles for
a topographic representation of terrain. In the profile representation
we draw potential as an ordinate against distance along some line as
abscissa. It will be remembered from elementary calculus that the
curvature of any curve is given by

%
2
1 _g___ @& (5.26)

< @T

from which it is seen that the sign of the curvature is determined by the
sign of the second derivative in the numerator since the denominator is
always positive. If we now examine Laplace’sequation in twodimensions,

otV a9V

Fye + Fon =0 (5.27)
we see that the two terms may be interpreted as giving the sign of the
curvature of the profiles in the z and y directions. By Eq. (5.27) the
curvatures must be of opposite nature since the sum of the terms is
zero; and hence if the profile in the x cut at some point in the field is
concave upward, then the profile in the y cut at the same point must be
concave downward.

Examination of a simple case will illustrate the property described
above. In Fig. 5.6a is shown the contour representation for the case
of a concentric line with a circular inner conductor and a rectangular
outer conductor. The solid lines represent the equipotential lines or
contours. In Fig. 5.6b is shown the potential profile along the line ab,
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and it will be seen that the profile is curved away from the axis at the
point e. In Fig. 5.6¢ is shown the potential profile along the line cd,
and it will be seen that the profile is curved toward the axis at the point e.

Solutions of Laplace’s Equation in Two Dimensions. The form which
the solutions of Laplace’s equation take depends upon the coordinates
in which the equation is expressed. For rectangular coordinates Laplace’s

b

e
1
1
d
(6)
F1e. 5.6.—Example showing the relation between the
curvatures of the profiles of a potential field.

equation has the form of Eq. (5.27). The solutions of this equation have
the form

V = (A cos kx + B sin kz)(C cosh ky + D sinh ky) (5.28a)
or
V = (A cos ky + B sin ky)(C cosh kx + D sinh kx) (5.28b)

The above results are arrived at by assuming that ¥ has a solution of the
form XY where X is a function of z alone and Y is a function of y alone.
If the product XY is substituted for V in Eq. (5.27), there results upon

differentiation and rearrangement
1 d*X 1 d?Y
Xd =~ Y (5.29)

It is seen that the left-hand member is a function of = alone and that the
right-hand member is a function of y alone. These can be equal only
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if each equals the same constant. If this constant is taken as —k?, then
we may write two component equations in the place of Eq. (5.29),

2
» %Zi—% = k2 (5.30)
Yay = +k* (5.31)
The solution of Eq. (5.30) is
X = A cos kx + B sin kx (5.32)
and the solution of Eq. (5.31) is
Y = C cosh ky + D sinh ky (5.33)

Thus V is given by the product of X and Y, resulting in the solution of
Eq. (5.28a) where multiple values of k as
determined by imposed conditions are
allowed. If the separation constant ischosen
as +k? instead of —k?, then the solution of .
Eq. (5.28b) results.

For the polar coordinates of Fig. 5.7
Laplace’s equation has the form

la(aV 19V

-

rar\"or) Tage =0 (639

Fi1g. 5.7.—Polar coordinate

when the problem is one of axial symmetry. .
notation.

This has a solution in the form
V = (a cos n8 + b sin né){cr* + dr—") (5.35)

as may be shown by the method demonstrated above using n? as the
separation constant. When n equals zero the second factor in Eq. (5.35)
iIsc +dlnr.

For the cylindrical coordinates of Fig. 5.8 Laplace’s equation, for cases
of axial symmetry, has the form

19 < aV) L3 (5.36)

ror\"ar )t oz
This has a solution of the form
V = [aJo(kr) + bNo(kr))(c sinh kz + d cosh k2) (5.37)

where Jo and N, are the zero-order Bessel and Neumann functions.
Since the Neumann function of zero is infinite, this term is not often
encountered in electronics problems. Most potential configurations have
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a finite potential along the axis of symmetry, as in electrostatic electron
lenses where there is no conductor along the axis.
In order to apply the above solutions to definite problems it is neces-
sary to evaluate the constants in such a way that the potential function
fits the prescribed boundary condi-
r tions. If the constants can be selected
so that the function fits all the bound-
aries (electrodes), then it will define
the potential at all points in the field.
Z The potential solutions frequently
appear as a series summation of terms
\J of the form indicated above.
Dufference Form of Laplace’s Equa-
tion. We may write Laplace’s equa-
tion in the form of a difference equa-
tion of which the differential equation
is the limiting form. To do this
we shall assume that the potential is
known at a number of points whose spacing is finite though small.
We shall assume that the points are at the intersections of a rectangular
lattice as shown in Fig. 5.9 and that the spacing between the points is
h,1-3. The conclusions that we shall draw from the difference equation
set up on this basis will apply also to the differential equation and its
solution.
Consider the first derivative of potential at the point (0) in the zy
plane. The difference operators corresponding to the partial derivatives
are given by

¢)\

Fic. 5.8.—Cylindrical coordinate no-
tation.

v % Vi — Vo) (5.38)
O V=) (5.39)
%’ = (Ve = V) (5.40)
Z—Tyf - % (Vo — Vi) (5.41)

1 Morsg, P. M., and HErMaN FesuBacH, ‘‘Methods of Theoretical Physics,”
Massachusetts Institute of Technology, 1946, pp. 139-147.

2 BHorTLEY, G. H., and R. WELLER, The Numerical Solution of LaPlace’s Equa-
tion, Jour. Appl. Phys., vol. 9, pp. 334-348, May, 1938. Probably the best single
reference on this subject.

3 FroceT, M. M., and M. M. LeviN, A Rational Approach to the Numerical Solu-
tion of LaPlace's Equation, Jour. Appl. Phys., vol. 12, pp. 596-604, August, 1941.
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The difference operators corresponding to the second derivatives are

given by
2 1
A R ORI
2V 1 ,
@—2 Y (V2= Vi) = (Vo — V)]

Upon substituting these values in Laplace’s equa-
tion there results

Vo= 2(Vi+ Vot Vs + V) (5.44)

which states that the potential at the center of a
square is the average of the potentials at the cor-
ners of the square.

It is possible to obtain numerical values of
potential for various electrode configurations by
means of Eq. (5.44). The procedure is to break
up the field whose potential is desired into a suit-
able lattice, assume reasonable values of potential
at each point in the lattice, and then apply Eq.
(5.44) successively to each of the points, always
using any new values of potential obtained.

(5.42)

(5.43)

F16. 5.9.—Arrange-
ment of net points for
the difference form of
Laplace’s equation in
two-dimensional rec-
tangular coordinates,
Eq. (5.44).

Successive applications of this procedure will correct any errors in the
original assumptions, and the values of potential at any point will con-
verge quite rapidly to the correct value. It is well to start with a coarse

network and then make it finer.

~
W,
Y "X "y~
Z~ 1
- 370
4

lsi] : “‘r__)/z

F1c. 5.10.—Arrangement of net points for the difference
form of Laplace’s equation in two-dimensional cylindrical

coordinates, Eqgs. (5.45) and (5.46).

The expression given in Eq. (5.44) was derived for two-dimensional
rectangular coordinates. For two-dimensional problems of axial sym-
metry expressed in terms of the cylindrical coordinates of Fig. 5.8 that
hold for electrostatic electron lenses, and the like; the corresponding
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expression for the lattice of Fig. 5.10 is
1 h
Vo = i Vi+Va+Vs+Vy) + 3 (Vi—Vs) (5.45)

in which the points 1 and 2 are on a line parallel to the axis and point 3
is closer to the axis than point 4. The expres-
sion [Eq. (5.45)] works for all parts of the field
except points on the axis for which

|
]
<) Vo= %(Vo+ Vo4 47,)  (546)

i It will be noticed that Eq. (5.45) reduces to

é Eq. (5.44) for large values of r.

| The above manipulations for the cylin-
drical case can be simplified by a change of

°°§ variable. If as a new variable there be taken

Plate 00 v

+ y = ¥V (5.47)
then the Laplace equation reduces to
92 0%y Y
At At =0 (5.48)

The corresponding net-point equation is

Grid -10v,

N+ Y+ ys+ ya (5.49)

Yo = b
(4 - 472)

which is much simpler to apply than Eq. (5.45).
: The case of two-dimensional polar coordi-
, + nates can be reduced to the rectangular coordi-
|
|
|

nate treatment by changing the variables
according to

Cathode Ov
N
Fic. 5.11.—The potential d v =lIn.r 15.50)
field of a triode, calculated &0 _ 55
from the difference form of v=20 (5. 1)
Laplace’s  equation, Eq.  por g lattice of equal increments of u and v,
(5.44). Eq. (5.44) applies directly. The reasons for

this will become evident when the transformation W = In, Z has been
studied.

In Fig. 5.11 is shown the potential field inside a half section of a
plane-electrode triode as calculated from repeated application of the
difference form of Laplace’s equation, Eq. (5.44).
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6.7. Elastic-membrane Models of Potential. It is possible to repre-
sent two-dimensional potential problems having a z-axis symmetry by
the elevation of a deformed elastic membrane. If an elastic membrane
is uniformly stretched in all directions and leveled when suspended in a
plane frame and is then deformed from its original plane by displacing
the membrane distances proportional to electrode voltages with blocks
shaped like the electrodes to be studied, then the displacement of the
membrane at any point from the original plane is proprotional to the
potential at that point in the field. In other words, the membrane is a
topographic model of the potential field with vertical displacement pro-
portional to potential. The deformed surface that is obtained is a very
good representation of the potential field. This is because the surface
will deform itself so that its area will be a minimum. Analytically this
is expressed by making

[ G @ o

where z is the elevation and = and y are the coordinates in the horizontal
plane. This is a problem in the calculus of variations that is converted
into a problem in differential equations by applying to the equation for
S that is in the form

dz dz
S = / / F (x,y,z, e @) dz dy (5.53)

The Euler differential equation

9 (/]
&Fz3+é_?;pzu+Fz—O (554)

where the subscripts indicate differentiation with respect to the following
factors:

0z
az
0z
dy
oF
dz,
oF
9z,
oF
T 8z
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Application of the Euler equation yields as the differential equation of
the deformed surface'—3

az\* ] a2 az\’| 9% 3% 9z oz
[1+(@)]a—y2+[1+(a—x>]5—ﬁ, 2axay£:a_y_0 (5.55)

which reduces to Laplace’s equation,

e o _
art ' oy

(5.56)

for g; « 1 and (;i; & 1. If the angles of all lines on the surface are kept

below 6 deg with the horizontal, the departure in deformation from that
representing the true potential at any point will be less than 1 per cent.
Some practical considerations are of importance. A No. 30 rubber
surgical dam makes a good membrane. It should be stretched enough
so that it will be tight and not sag and yet not be too close to the rubber’s
elastic limit. A linear stretch of about 14 works well. It helps in
obtaining a uniform stretch to mark coordinate lines on the sheet before
stretching and then stretch so that these are straight and of the proper
spacing.

The applications of the elastic-membrane model of potential are
somewhat limited, for it is accurate only for small deformations, it can
be used to represent only two-dimensional problems with a z-axis (stack-
ing) symmetry—it cannot exactly represent problems with a rotational
symmetry about an axis—and it cannot be modified to include space-
charge effects. In spite of these limitations, models of this sort have
been used extensively by various laboratories in their studies of potential
fields and electron paths; in the latter regard it yields much information
in a short time. The use of the membrane in determining electron
paths will be mentioned in a later section. Figure 5.12 shows the elastic
membrane model used in the Electrical Engineering Department of
Stanford University.

5.8. Current-flow Models of Potential. The laws which govern the
flow of current in a uniformly conducting medium are the same as those
which govern the “flow” of electrostatic-flux lines in a vacuum. This

1 KLEYNEN, P. H. J. A., Motion of an Electron in Two Dimensional Electrostatic
Field, Philips Tech. Rev., vol. 2 (No. 11), pp. 338-345, 1937. Original article on this
subject.

2 SrrutT, M. J. O., “Moderne Mehrgitter-Elektronenroehren,” pp. 3-6, Springer,
Berlin, 1938.

3ZworykiN, V. K., and J. A. RascamaN, The Electrostatic Electron Multiplier,
Proc. I.R.E., vol. 27, pp. 558-565, September, 1939.
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makes it possible to set up current-flow models of electrode systems and
to measure the potential at any point.

The equations for the components of current density in a continuous
and uniform medium such as some electrolyte are given by Ohm’s law in
terms of the gradient of potential as

av

Jz= —g¢ oz (5.57a)
14
Jy = —g @ (5571))

for the two-dimensional case, where J is current density and ¢ is the
specific conductivity of the medium.

FiG. 5.12.—Elastic-membrane model of potential.

Since the flow of current in a medium of constant conductivity corre-
sponds to an irrotational flow of an incompressible fluid, as much current
will flow into any element of volume as flows out of it. This condition
is sometimes expressed by saying that the divergence of the current is
zero, which may be expressed mathematically as

aJ. | oJ, _
et e =0 (5.58)
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Substitution of the components of Eq. (5.57) into Eq. (5.58) yields
Laplace’s equation in the form

v v
Fye + el =0 (5.59)

Upon comparing the above equations with those developed for the elec-
trostatic field it is seen that an exact correspondence can be established.
The relations may be tabulated in one-to-oue correspondence as follows:

Currents Electrostatic Fields
Quantities
J Current density D Displacement flux
g Specific conductivity e, Dielectric constant,
V Potential V Potential
Relations
v v v av
J: = —'QEJ Jy = —g:ﬁ- D, = —25’ y = —85
aJs | oSy _ aD: |, aD, _
2z T ay 0 az T dy
a2V | vV v v
a2t Tor =0 oz Tap =0

From the above tabulation it is seen that the correspondence between
the current flow and electrostatic field is quite complete. It is thus

Plate-.] Y/ XF—

Grid _|..

Cathode -\

F16. 5.13.—Current-flow model of a cylindrical triode.

necessary only to set up a current-flow model with electrodes geometrically
similar to those of the electrostatic problem whose solution is desired and
to measure the potential contours. The model is easily set up for two-
dimensional problems by means of a flat tank. A weak solution of
copper sulphate may be used as an electrolyte. This has a fairly good
tonductivity and has no polarizing action with copper electrodes. The
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equipotential contours can be traced with a probe connected to two
resistances forming two arms of a bridge. The other arms of the bridge
are in the electrolyte. By setting the external resistances any equipo-
tential contour can be traced by observing the points at which a null
indication is received. Tanks may be made of wood cemented to a glass
plate. A large sheet of coordinate paper may be put under the glass to
identify the location of points and thus facilitate their transfer to another
sheet for plotting. It is also possible to use a pantograph for plotting
directly. In using a flat tank it is absolutely necessary that the liquid
be of the same depth at all points. Placing the tank upon a board with
leveling screws makes it easy to level.
Figure 5.13 shows a tank of the type
describea. This particular tank rep-
resents a section of a cylindrical elec-
trode triode.

The arrangement of resistors
used with triode current-flow models
is shown in Fig. 5.14. The resistors
R, and R, are used to set the rela-
tive positive plate and negative grid
potentials. The resistors Ry and | AN 1, \
R, in the bridge arms are used to deter-
mine the potential of the contour
to be traced. If the resistors R; and rﬂr]

R, are set in the ratio of 2 to 8,

the probe will trace out the contour F¥6. 5.14.—Circuit arrangement for

having 80 per cent of the plate- ™Measuring potential contours on a

cathode potential, since the percent- current-flow model of a plane-elec-
. . trode triode section.

age voltage of the contour is given

by R

Ri+ R;
It is also possible to use a cathode-ray oscilloscope. If the probe and
Ry,R; junction are connected to the vertical plates and a voltage in
phase with the electrode potentials is connected to the horizontal plates,
there will result a straight-line Lissajous figure whose slope will be zero
when the probe is in the proper position. The advantage of this arrange-
ment is that the slope of the line will be negative or positive according
to whether the probe is to one side or the other of the proper position.
A low frequency of the order of 50 to 100 cycles should be used. If the
frequency is too low, it is difficult to detect a null. If it is too high, the
distributed capacities affect the balance.

It should be observed in the model of Fig. 5.14 that the proper

Headphones are conveniently used as balance detectors.
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conditions of symmetry are obtained along the nonconducting boundaries
which are indicated by dotted lines. Here the current flow must be
parallel to the boundary, which ensures that the potential contours are
at right angles to the nonconducting boundaries, since the equipotentials
are perpendicular to the flow lines. It will also be true that the equipo-
tentials will be perpendicular to all lines of symmetry running in the
direction of the flow. Flow lines will be perpendicular to conducting
surfaces. The flow will also be parallel to
the top and bottom of the liquid layer
since the air above and the glass below
% are nonconducting.

For problems involving axial symme-
try such as are encountered in electron
optics, a slightly different arrangement
of electrodes must be used. Here it is
necessary to reproduce conditions of axial
symmetry and it is not correct to use a
uniform depth of electrolyte as in Fiz. 5.14
without special electrodes. To obtain
correct results, either the electrodes or
the volumetric shape of the electrolyte
must be changed. It is possible to use a
deep flat tank if the electrodes are shaped

Fic. 5.15.—Arrangement for
measuring potential contours on

a current-flow model of an elec-
tron lens. The lens electrodes
are cylinders of revolution that
require a tilted tank to represent
a wedge-shaped portion of the
potential field. The edge of the
wedge-shaped portion of electro-
lyte corresponds to the axis of the
electrodes.

like portions of half cylinders with their
edges at the surface of the electrolyte.
For such an arrangement the probe should
be kept at the surface of the electrolyte.
A more convenient arrangement is to use
a wedge-shaped electrolyte. Use of such
a section corresponds to a pie-shaped
section of small angle cut out of the field
of revolution as shown in Fig. 5.15. The

wedge-shaped volume of electrolyte is obtained by simply tilting
a flat tank. Properly speaking the electrodes should be portions of
cylinders, but if the angle of the electrolyte wedge is small enough, say
less than 5 deg, they may be portions of planes without introducing any
appreciable error.

5.9. Sketching of Flux and Potential Fields. The properties of
electrostatic fields are such that, with a little practice, it is possible to
sketch fields with considerable accuracy without recourse to mathematical
methods. It is known, for instance, that flux and potential lines are
everywhere at right angles to each other. Flux lines emerge at right
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angles from conducting surfaces. Potential lines near‘conductors tend
to have the same shape as the conductor. These and other useful prop-
erties may be summarized as follows:

1.
2.
3.

o &R ao oR

PROPERTIES USEFUL IN SKETCHING FIELDS

Flux and potential lines form orthogonal families of curves.

Flux lines are perpendicular to conductors at conductor surface.
Potential contours close to conductors tend to have the same form
as the conductors.

\NARRR\N AN\

Conductor swurface
N\

N\
[
o=

Conductor surface
F1c. 5.16.—Sketch of flux and potential lines in an inside
right-angled corner. This sketch was made by the method of
Sec. 5.9 without mechanical or numerical aids.

Potential lines are parallel or perpendicular to lines of symmetry;
constructional bisectors may exist.

Flux-potential patterns should be drawn with curvilinear squares,
i.e., a four-sided figure, with right angles at the corners and with
equal average lengths of opposite sides, which maintains these
properties upon infinite subdivision.

Same potential difference exists across each square.

Same flux passes through each square.

. Each square has the same attraction for the conductor face.

. Each square has the same energy storage.
. Each flux line represents the same increment of capacity between

electrodes.

Most of the above properties are self-evident. In Fig. 5.16 is shown
a plot of the flux and potential inside of a right-angled corner. This
plot was sketched, not calculated. It will be observed that all the curvi-



82 VACUUM TUBES

linear squares upon infinite subdivision will still be curvilinear squares.
The principal line of symmetry is shown by the center line. The con-
structional bisectors are shown by dotted lines.

A flux plot to be of value should include

1. Shape of fields at large distances as well as small distances from
the charges (conductors).

2. Location of all conductors and charges.

3. Geometrical symmetries of any kind.

4. All singular points, i.e., “saddle” points, giving rise to a crossing
of equipotential contours.

The above enumeration is actually quite general, and all these inclu-
sions are not always necessary in electronic problems. Singular points
occur where there is an apparent intersection of potential contours.
This occurs only where the equipotential surface is saddle-shaped.!2

5.10. Method of Conformal Transformations. The method of con-
formal transformation is based upon solutions of Laplace’s equation in
two-dimensional rectangular coordinates and functions of the complex
variable z = z + 7y. Most functions of the complex variable of the
form

W = f(z) (5.60)
are separable into real and imaginary parts
W = E(z,y) + iF(z,y) (5.61)

in which each part is a solution of Laplace’s equation. The two parts
of the complex function, E(z,y) and F(z,y), further represent orthogonal
families of curves. They may hence be taken as representing flux and
equipotential lines. The functions having the above properties are
known as analytic functions (to be defined more explicitly).

Every analytic function of the complex variable may thus be con-
sidered to represent the flux and potential field of some set of electrodes.
Fields may further be transformed by means of analytic functions from
one form to another. Thus, given a function that gives the field cor-
responding to one set of electrodes, the application of another function
will transform this field into one corresponding to another set of elec-
trodes. In the course of this transformation all the properties of flux
and potential fields are preserved.

Analytic functions when used for making transformations have the
property of preserving the angles between lines and of making corre-

! Moorg, A. D., Mapping of Magnetic and Electric Fields, Elec. Jour., vol. 23,
pp. 355-362, July, 1926.

2 8tevENsON, A. R., and R. H. Park, Graphical Determination of Magnetic
Fields, Trans. A.I.E.E., vol. 46, pp. 112-135, February, 1927.
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sponding incremental areas similar in shape. It is for these reasons
that the transformations are called “ conformal.”

Application of the method of conformal transformations usually
takes the form of finding a transformation which converts the electrodes
(equipotentials) of some simple field to the structure of which the field
is desired. The field of the simple electrodes can usually be determined,
and then the transformation converts the entire field to that of the more
complex arrangement.

Conformal transformations are familiar to everyone in the form of
maps. The surface of the earth may be mapped in many ways, which
give apparently different shapes to the land masses. The different shapes
are, however, merely different representations of the same thing. Most
maps could be transformed from one form to another by means of con-
formal transformations, since the transformations would preserve the
angles between river tributaries and keep the shape of small areas the
same. Anexample of thisidea is found in the logarithmic transformation,
which, as will be shown, is capable of transforming a polar azimuthal
equidistant projection of the Northern Hemisphere into what is approxi-
mately a Mercator projection of this hemisphere.

Complex Functions Satisfy Laplace’s Equation. In studying conformal
transformations it will first be shown that functions of the complex
variable z = x + 1y are solutions of Laplace’s equation in two-dimensional
coordinates,

Y 62f
e + (5.62)
where
fzy) = f(x + iy) = f(2) (5.63)
This follows since
of _dfoz _ df
dz  dzdozx dz (5.64)
o _ dY
yr = 2 (5.65)
Similarly
o _droe_df
- day i (5.66)
f _  d¥
s = T @ (5.67)

It is evident that these partial derivatives are such as to satisfy Laplace’s
equation in the form of Eq. (5.62). The converse of this property is
also true, viz., that solutions of Laplace’s equation in two-dimensional
rectangular coordinates are expressible as functions of the complex
variable.
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Ezample: Let
f(z) = Az* 4+ Bz
= Ax? 4 24izy — Ay 4 Bz + ¢By
Then
af .
(.E=2A:c+2Azy+0+B+0
Y
Froie 24
And
af . .
3y =0+ 24z — 2Ay + 0 + B
2.
;’7{ - —24

Laplace’s equation is seen to be satisfied.
It is also true that the real and imaginary parts of the functiopo are solutions
of Laplace’s equation.
fz) = E(z,y) + il (z,y)
where
E(z,y) = Az? — Ay* + Bz
and
F(z,y) = 24zy + By
It is evident that

02E 03E

T ap = -MU=0
and that

0 = 9%

a7t ap =0—-0=0

Definition of Analytic Functions. The properties of functions of the
complex variable will now be considered. It was mentioned above that
a large group of functions had the desired properties, and such functions
were referred to as ‘“analytic functions.” It will be remembered that,
in the study of functions of the real variable, attention is usually restricted
to functions which are continuous and functions of which the derivative
at any point is independent of the direction in which we approach the
point as we take the limit of the ratio of the increment of the function
to the increment of the variable. Similarly in studying functions of the
complex variable we shall restrict attention to functions having a deriva-
tive that is independent of the direction of approach to the point in
question. This is necessary because only functions having this property
also have the desired properties of potential functions. Mathematicians
use the term analytic to describe such functions.

Consider

W = f(2) = f(z + iy) (5.68)
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Such a function is said to be analytic if it has a derivative that is
independent of the direction of the increment of the variable Az as it
approaches zero.

For a single real variable

) f(x + Az) — fla) _ . Af
(@) = Az = Jlim 2 (5.69)
For the complex variable z = z 4 iy
vy — i S A2) — f(z) . Af
ro - RS w6
Let
W=u4w = flz + iy)
If the function is analytic,
tim &% = jim AW _ i AW (5.71)
az—0 Az az—0 AT ay—0 t Ay
Az=Az+idy  Az=Az+i0 az=0+1i Ay
In derivative form
aw _ oW _  .W
dz T e T ‘o (5.72)
But
W=u-+1w
Therefore
oW _ ou |, .
and
114 fou |, .ov
-1 ?y“ = -1 (a—y o+ 'La—y (574)
.OW ov . ou :
-1 —@ = a—y — 1 2’?/ (575)
Hence
. 9v i) du
o= + s 51—/ 3y (5.76)
Equating real and imaginary parts,
ou o
%z~ ay (5.77)
9 _ou
3~ oy (5.78)

These equations are known as the ‘Cauchy-Riemann conditions’’ and
serve to identify analytic functions.
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Dividing Eq. (5.77) By Eq. (5.78),

ou adv
oz L @ (5.79)
=T
dy ox

which is the orthogonality condition for two functions since the deriva-
tive of a function of z and y is

of
dy _ _ 9z
I 2]_’ (5.80)
ay

and curves are perpendicular if the derivative of one curve is the negative
reciprocal of the derivative of the other. If we take derivatives of the
Cauchy-Riemann equations with respect to = and y, respectively, then

o%u o

3zt~ 9z 91 E (5.81)
% d%u
5z oy = - 8—1/2 (5.82)
Subtracting these gives
o , o
Fyes + a =0 (5.83)

or Laplace’s equation holds for the real part of the function. Similarly,
Laplace’s equation holds for the imaginary part.

To summarize, an analytic function is one whose derivative is inde-
pendent of the direction of the increment of the variable as the increment
approaches zero. For such a function the Cauchy-Riemann conditions
hold. Analytic functions have real and imaginary parts which are orthog-
onal to each other and each one of which is a solution of Laplace’s
equation.

It will be recognized that functions may be analytic except at certain
points just as functions of a real variable may be continuous except at
certain points. Such points are frequently those at which the function
has a pole, i.e., assumes an infinite value. It is possible to use such func-
tions if the regions in which the function is not analytic are excluded
from consideration.

A serious limitation of the method of conformal transformations is
that it is not always possible to find the transformation which will con-
vert one set of electrodes to another. In general, there is no definite
method by which the transformation which fits a set of electrodes can be
found. An exception to this remark is the Schwartz-Christoffel trans-
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formation, which transforms the real axis in the W plane into any poly-
gon in the Z plane, but this transformation does not find much use in the
field of electronics. However, it is also possible to use methods of
successive approximations and series expansions. Fortunately, the trans-
formations necessary for the most important vacuum-tube problems are known.

The Logarithmic Transformation. The transformation that solves the
problem of determining fields in the plane-electrode triode is known. It
is the logarithmic transformation

W =In.2Z (5.84)

where ¢ = 2.718 is the Napierian base.
This is analytic for all finite values of z and y other than zero.

The nature of the logarithmic transformation can best be understood
by studying its component relations. It is most convenient to use polar
coordinates in the Z plane and rectangular coordinates in the W plane.
Thus let

Z = re't (5.85)
and
W=u-1w (5.86)
In these coordinates
u+ 1t =In.r+ 10 (5.87)

so that the component equations relating the real and imaginary parts
are

u=In.r (5.88)
v=20 (5.89)
or, solved for r and 6,
r o= ¢ (5.90)
6=v (5.91)

This function is readily proved to be analytic for finite values of the argu-
ment by application of the Cauchy-Riemann equations.

Examination of the v component of W shows that it is multiple-
valued, in fact infinitely so. This occurs because any angle in the Z
plane can be written as an angle less than 2= plus any integral multiple
of 2r. The angle 6 can be written as 6 4+ 2wn, where 7 is any positive
or negative integer. Thus, corresponding to any point in the Z plane
there are an infinite number of points in the W plane evenly spaced by a
distance 2r along a vertical line.

From Eq. (5.88) it is seen that any circle about the origin in the Z
plane, r = k, transforms into a line parallel to the v axis in the W plane,
u = In k.* Circles with radii less than 1 give lines in the left half of the

* Hereafter, the notation In r will be used to designate the natural logarithm of r,
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W plane since the logarithms of numbers less than 1 are negative, and
circles with radii greater than 1 give lines in the right half of the W plane
since the logarithms of numbers greater than 1 are positive. Any radial
line  through the origin, 8 = k, transforms into a set of lines in-the W
plane parallel to the u axis and spaced a distance 2w, v + 2rn = k.
These relations are shown in Fig. 5.17. From this it is seen that a single

point in the Z plane such as r = 1.5, 8 = % transforms into a series of

points u = In 1.5, v = g + 2nx in the W plane. Thus a single point in

the Z plane that may be taken as representing a line charge transforms

N B
Y
N .
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F1G. 5.17.—The logarithmic transformation, W = In. Z.

into a row of line charges evenly spaced in the W plane. This gives the
arrangement corresponding to a grid of evenly spaced parallel wires and
is the basis for the plane-electrode representation.

The nature of the logarithmic transformation is better understood if
the transformation be effected in a series of steps. Imagine the Z-coordi-
nate plane to be a stretched elastic membrane. If the polar-coordinate
diagram of the Z plane shown in Fig. 5.18a be split along the negative x
axis and the upper and lower edges be rotated clockwise and counter-
clockwise, respectively, the pie-shaped section of Fig. 5.18b will result.
If now the point on the pie is stretched to the left and the outer edge is
compressed, the configuration shown in Fig. 5.18¢ results. Finally the
left and right edges are made the same length and are stretched to nega-
tive and positive infinity, respectively, to give a strip of the W plane as
shown in Fig. 5.184.
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The nature of the logarithmic transformation is also well illustrated
by relationship between certain types of maps. Thus, if the Northern
Hemisphere on a polar azimuthal equidistant projection be taken as the
Z plane, then the Northern Hemisphere on a Mercator projection corre-
sponds very closely to the W = In. Z plane. It will be recognized that
each of these two common maps is but a different representation of a
part of the earth’s surface. In Fig. 5.19 is shown a polar azimuthal
projection of the Northern Hemisphere. In Fig. 5.20 is shown a Mer-
cator projection of the Northern Hemisphere.

The polar azimuthal equidistant projection is made by unfolding
the earth’s surface and stretching it out until it is a plane tangent to the

(a) b)

W PLANE
(c) (d)

F16. 5.18.—Steps in a progressive transformation from the Z to the Ine Z plane.

pole with distances from the pole made equal to the great-circle distances
on the actual sphere. This is indicated in Fig. 5.21. The longitude lines
become straight lines through the pole, and the latitude circles remain
circles.

Mercator’s projection is approximated by surrounding the earth witha
circular cylinder tangent to the earth at the equator as in Fig. 5.22 and
extending to infinity in both directions. Points on the earth’s surface
are then projected onto this cylinder by drawing a line from the earth’s
center through the point in question and extending it until it hits the
cylinder. The cylinder is then cut and unfolded to give a plane surface.
The latitude circles on the sphere become a series of parallel straight
lines on the Mercator projection. The longitude circles become another
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set of equidistant parallel straight lines perpendicular to the latitude
lines.

It is easily seen that the latitude circles, r = k, in the polar azimuthal
equidistant projection become straight lines parallel to the equator,
u = In k, in the Mercator projection. The longitude lines through the
pole in the polar azimuthal equidistant projection, § = K, become a set
of evenly spaced lines perpendicular to the equator in the Mercator

08!

Fi1g. 5.19.—The polar azimuthal equidistant proiection of the North-
ern Hemisphere. This may be considered as a polar-coordinate
representation of the Z plane.

projection, » = K. The pole, which is the center of things in the polar
azimuthal equidistant projection, recedes to infinity in the Mercator
projection. Distortions in the different representations are evident.
The polar azimuthal equidistant projection gives its most accurate repre-
sentation near the pole but stretches out the equator disproportionately,
causing Africa to be too wide. The Mercator projection is most accurate
in the band around the equator but causes areas near the poles to be
disproportionately large. Greenland on a Mercator projection looks
larger than South America but is actually only one-tenth as large.
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F1a. 5.20.—The Mercator projection of the Northern Hemisphere. This map results from applying the transformation W = In. Z to the
polar azimuthal equidistant projection of Fig. 5.19.

SATAId TVILNALOd 40 NOILVNIWYALAQG

16



92 VACUUM TUBES

Observe, however, that angles and the similarity of small areas are
preserved.

The Function W = Z"». The simple power function given by raising
Z to some rational fractional power is the function that gives the fields
inside of a cylindrical triode. As usually written, this function is

W =Zm» (5.92)
It may also be written
InZ .
W=¢n (5.93)
or
W =in2Z (5.94)

but the form of Eq. (5.92) is preferred.

The nature of the power function may
best be understood by examining the form
of the function for a specific value of n.
Consider the case of n = 2. Then

W = 2% (5.95)

or
Z=w: (5.96)

Using rectangular components for both Z
and W,

Fia. 5.21.—Construction of _ ,

the polar azimuthal equi- d Z=z+iy (5.97)
distant projection. an

W =u+ 1w (5.98)
Making these substitutions,

x4+ 1ty = u? 4+ 2uw — v? (5.99)
from which, by equating real and imaginary parts, the component equa-
tions are

z = u? — v? (5.100)
and
y = 2uv (5.101)
These component equations satisfy the Cauchy-Riemann conditions
. or _ dy _ 9 _  dy _ .
since o = = = 2u and - am 2v. Letting z and y assume

various constant values, it is seen that the component equations (5.100)
and (5.101) represent two families of orthogonal hyperbolas previously
shown in Fig. 5.16. For a better comparison the Z and W planes are
shown in Fig. 5.23, in which corresponding flux and potential lines are
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indicated. Tt will be seen from this figure that the upper half of the Z
plane transforms into the first quadrant of the W plane. The trans-
formation is double-valued, i.e., one point in the Z plane transforms into
two points in the W plane. For example, the point (0,4) in the Z plane

B

F1c. 5.22.—Construction of the Mercator projection.

transformsinto the point (1.414,1.414) and alsothe point (—1.414,—1.414)
in the W plane. For most purposes only the first, or ‘““principal,” value
of the multiple values is used, though all of them have the correct mathe-
matical properties. It can further be seen that if the polar representa-

YIS O
8 8 8 R 8
y=3
y=2
y=/
y=0
o |
A==yt y=-/
N I
Z PLANE

Fi1G. 5.23.—The transformation W = Z%,

tion of points is used the angle of the point in the W plane is half the
angle of the corresponding point in the Z plane and the radius vector
of a point in the W plane is the square root of the radius vector of the
corresponding point in the Z plane.



94 VACUUM TUBES

In the general case of the function W = ZV», the function is n-valued
if n is an integer. As a result, the upper half of the Z plane transforms

into a segment of the W plane having an angle :—; Angles in the W plane

are %th the corresponding values in the Z plane (principal values), and

radius vectors have a magnitude in the W plane that is the nth root of
the radius vector of the corresponding points in the Z plane.

g S
ol ‘\" =—v"
o ““%‘%’l‘ I' A
RSKRKT
N

FiG. 5.24—Polar azimuthal equidistant projection of the North-
ern Hemisphere transformed by W = Z,

The component relations are not readily written in rectangular com-
ponents for any general integral value of n. In polar form, however,
they are quite simple. Let

Z =1/0 = réf? (5.85)
as before; and let

W = R/¢ = Ré# (5.102)
Then the component equations in polar form are

R=run (5.103)
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and
(5.104)

Sle

¢=

The nature of the transformation W = ZV» may be indicated as a
kind of deformation of the Z plane. Upon comparing the W- and Z-plane
representations in Fig. 5.23, it is seen that if the upper half of the Z
plane be cut along the negative z axis and if the upper edge of the nega-
tive z axis be swung clockwise 90 deg and the lower half of the negative

- N

Fia. 5.25—Polar azimuthal equidistant projection of the North-
ern Hemisphere transformed by W = Z%.

2 axis be swung counterclockwise 90 deg then the W-plane representation
will result if the intermediate regions are allowed to deform accordingly.
A set of polar maps can also be drawn to illustrate the nature of the
transformation. In Fig. 5.24 are shown maps illustrating the nature of
the transformation W = Z*. It is seen that the representation is
double-valued and that the scale of distances from the pole in the W-plane
representation is quadratic rather than linear; the land areas are pushed
out from the pole toward the equator though the map as a whole differs
surprisingly little from the usual representation.
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In Fig. 5.25 are shown maps illustrating the nature of the trans-
formation W = Z%. This transformation is quadruple-valued, <.e.,
every point in the Northern Hemisphere is repeated four times in the
W-plane representation. The scale of distances from the pole is quartic
in the W plane, with the result that the land masses are compressed
strongly near the equator.

An inkling of how this transformation is used is obtained if we con-
sider that in the polar azimuthal equidistant or Z-plane representation
a cathode wire be located at the North Pole, a grid wire be located at
Iceland, and the equator be a circular plate surrounding both. Then
we have a simple tube structure with one cathode wire, one grid wire,
and one plate. If then the transformation W = Z% be used, the corre-
sponding W-plane representation has one cathode wire at the pole as
before, a surrounding plate at the equator as before, but four grid wires
located at the four Icelands, which are evenly spaced around the 66°
latitude circle. If the potential field can be found in the Z plane, then
it can be transformed into the W plane just as the land outlines have
been transformed. This is what Chap. 7 is mostly about.



CHAPTER 6

LAWS OF ELECTRON MOTION

ALL electronic devices depend for their action upon the effect of applied
electric or magnetic fields upon electron flow within the device. The
applied fields may control the direction or the magnitude of the current
flow or both. In this chapter there will be studied the effect of fields
upon the electron paths when the electrons are present in small enough
number so that their presence does not change the applied fields. In a
subsequent chapter there will be studied the effect of fields upon electron
flow when the electrons are present in sufficiently large numbers to
influence the fields.

6.1. Electron in a Uniform Electric Field. An electron in a uniform
electrostatic field experiences a constant force in the direction of increas-
ing potential. As a result, the laws governing an electron starting from
rest are the same as those which apply to a body falling freely under the
influence of gravity until very high velocities are reached. From New-
ton’s second law,

d’z
m T = —Ee (6.1)
where m is mass of the electron, 9.107 X 10-3! kg

z is distance, meters
¢ is time, sec

—FE = % is gradient of potential, volts per meter

e is magnitude of the charge of the electron,
1.602 X 10— coulomb
A first integration of Eq. (6.1) gives

dx e
U= = T m Et meters per sec (6.2)
the constant being zero because the velocity is taken as zero when time

is zero. A second integration gives

-1

3 % Et? meters (6.3)

97

r =
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in which the constant is again zero for an electron starting from rest at a
point of zero potential.
If time is eliminated between Egs. (6.2) and (6.3), there results

Lemy? = eV (6.4a)
where V = — Ez is the potential through which the electron has fallen.

Equation (6.4a) states that the kinetic energy acquired by an electron
starting from rest is equal to the potential energy which it has lost.

Solving for v,
v = —2Eze = 2¢V meters per sec (6.4b)
N\ m m

The relation between Eqgs. (6.2), (6.3), and (6.4a) and the correspond-
ing equations for a falling body is evident. It is seen that the quantity

— Eg_ is the equivalent of the gravitational constant.

If the values for charge and mass be substituted and all quantities
be expressed in practical units, then

v = 1.7568 X 101E¢ meters per sec (6.5)
x = 0.879 X 10'1Es? meters (6.6)
v = 5.93 X 105V meters per sec (6.7a)

where v is velocity, meters per sec

E is gradient, volts per meter

V is potential, volts

z is distance through which the electron has been accelerated
The above expressions are not accurate for potentials exceeding 30,000
volts.

The ratio of the charge to the mass of the electron is so high that a
small voltage will impart a tremendous velocity to the electron. It
takes only three-tenths of a microvolt to give an electron a velocity of 700
mph which is approximately the velocity of sound. Although the speeds
of electrons are very high, their energy is low because of their minute
mass.

Electron speeds are frequently expressed in terms of the corresponding
voltage. Energies are also designated in terms of electron volts, 1 elec-
tron volt being equal to 1.602 X 10—® watt-sec. An electron that has
“fallen” through 1 volt of potential is said to have acquired an energy
of 1 electron volt.

If an electron enters a region of uniform field at a point zo with an
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initial velocity vo parallel to the field, then

v = — % Et 4+ v meters per sec (6.8)

z — ﬁ E2 4 vt + x4 meters (6.9)

where 1z, is the initial distance in meters.
Eliminating ¢ between Egs. (6.8) and (6.9),

Lm@? — ve?) = e(V — Vo) (6.10a)
or
v=2593 X 10V — V, meters per sec (6.10b)

Equations (6.4), (6.7), and (6.10b), which give velocity in terms of
potential, are not restricted to uniform fields or to one-dimensional fields.
This is due to the fact that these equations express the conservation of
energy and hence are independent of the electron path and the nature
of the potential field.

6.2. Initial Velocity Not Parallel to Field. When an electron enters
a region of a uniform field with an initial velocity that is at an angle with
the gradient of potential, the electron follows a parabolic trajectory.
This is because it experiences a constant force in the direction of the
gradient and no force at right angles to this. The case is analogous to
the mechanical case of a projectile fired from a gun in the absence of
friction. The projectile is subjected to a constant downward force but
has no force affecting the component of velocity parallel to the earth’s
surface.

The differential equations for the components of electron motion when
the electron meets a retarding component of field are

dy e

@@= " m E (6.11)
and
dx
STk 0 (6.12)

The initial conditions that determine the solution of these equations
are as follows:
When ¢ = 0,
dy
dt
dz
dt

= vy cos 8 y=0

vo Sin 6 z=0
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where 6 is the angle that the initial velocity makes with the gradient
of potential and v, is the initial velocity.
A first integration gives

dy _ e
a2 T m Et 4+ vo cos 6 (6.13)
and
de _ v sin 6 (6.14)
dl 0 .
A second integration gives
= — ¢ pp
y=—5- Et? 4+ vy cos ¢ (6.15)
and
x = vosin 01 (6.16)

\ NANNNNN N
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¥ Trajectory

Electron
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FiG. 6.1.—Parabolic electron trajectory in a uniform elec-
tric field. This case results from the injection of an elec-
tron with an initial velocity into a region where the electric
field has a uniform retarding action.

Elimination of the time factor between Eqs. (6.15) and (6.16) gives
the equation of the parabolic trajectory
_ —Ex? z
Y= 4V,sin’0 " tan @
where V, is the potential corresponding to the initial velocity. This is
observed to be the equation of a parabola in r and y and to be independent
of the system of electrical units used. The notation used in all the above
equations corresponds to that shown in Fig. 6.1,

(6.17)
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The slope of the trajectory at any point is given by

—Ezx 1
2V, sin? @ ° tan @

where « is the angle that the tangent to the parabola makes with the

horizontal axis.
The maximum height to which the electron rises is

tan o« = (6.18)

2
yn = 2 o (6.19)
and the horizontal displacement corresponding to this is
2 = 2V, sin @ cos 0
™ E

6.3. Electrostatic Deflection of Cathode-ray Beams. An application
of the situation analyzed in the last section is found in the deflecting plates

(6.20)

P

e L3
b E K
a T = - - - - - -

Fi1a. 6.2.—Electrostatic deflection of an electron beam. The electron enters the
region of deflecting field at right angles to the field. The trajectory is parabolic
between the plates. :

of the ordinary cathode-ray tube. Here a stream of electrons enters a
region of a uniform field, traverses a parabolic path while under the
influence of this field, and leaves the region between the plates at a
different angle from that at which it enters. It then travels in a straight
line until it hits the fluorescent screen.

In this case, as may be seen by reference to Fig. 6.2, the electron
enters the deflecting field at right angles, making the angle 6 equal to
90 deg. The potential gradient is Vs/a. For this condition the slope
of the trajectory upon emerging from the plates after a distance of travel
b in the horizontal direction is, by Eq. (6.18)

Vab 1

tana = 2G_Vr. + ; (621)
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where V; is the potential between plates and V, is the potential corre-
sponding to the initial velocity. But

tan o = %'-l (6.22)
so that
_1bVy
Ya = 2TV0 (6.23)

This expression is only an approximate one, for it neglects the fringing
effect of the flux lines around the end of the deflecting plates.

In most cathode-ray tubes the deflecting plates are not parallel but
slope apart so that the electron in passing between them is subjected
to a constantly decreasing gradient. When this is the case, the expres-
sions obtained previously cannot be used and the problem must be
solved anew. This is readily done by setting the gradient between the
plates equal to

av _ Va (6.24)

@— (az—ax)x

al+ b

where a; and a, are the separations of the ends of the deflecting plates
where the beam enters and leaves, respectively. Other symbols have
their previous significance. The expression for the crosswise acceleration
involving this factor is then integrated to obtain the crosswise component,
of velocity at the point where the beam emerges from between the
deflecting plates. The ratio of the crosswise to the axial velocity multi-
plied by the distance to the fluorescent screen is then equal to the screen
displacement. This has the form

In <a_2>
bV a;
y= 2V a1 a_2 -1 (6.25)
a

which reduces to Eq. (6.23) when a; = a,. From this it is seen that the
effect of spreading the deflecting plates at one end is to decrease the
deflection. If the separation of the plates is increased 50 per cent at
the far end, the deflection is decreased to 81.2 per cent of its value for the
parallel plates having the near-end spacing. The deflection for divergent.
plates is, however, slightly greater than for parallel plates having their
spacing equal to the average spacing of the divergent plates. Equatior.
(6.25) is still in error because it takes no account of the flux fringing at
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the ends of the deflecting plates.!'? The effect of the fringing is to
increase the effective length of the plates.

6.4. Relativity Correction for Velocity. The general expression
developed in Sec. 6.1 giving electron velocity as proportional to the square
root of potential is valid only for velocities low compared with the
velocity of light. This is due to the fact that according to the theory of
relativity the mass of a particle changes with its velocity, and in the
derivation of the expressions of Sec. 6.1 the mass was assumed constant.

One of the postulates of the theory of relativity is that nothing can
move with a speed greater than the velocity of light. As a consequence of
this upper limit on velocity, it is seen that a body subjected to a constant
force must have its mass increase as it is accelerated, or otherwise its
velocity would increase indefinitely and finally violate the postulate by
exceeding the velocity of light. If, however, the mass of the particle
increases as its velocity increases, a constant force produces an accelera-
tion that decreases with velocity and permits the possibility of an upper
limit to velocity.

Another conclusion of the theory of relativity is that matter and energy
are equivalent. Mass may be considered a manifestation of energy. To
relate this to the remarks of the previous paragraph, the energy expended
in accelerating an electron manifests itself as an increase in its mass.
From this idea, the law for the change of mass with velocity and the cor-
responding law for velocity in terms of potential are readily deduced.

Mass and energy are related by a factor ¢?, where ¢ is the velocity of
light..

w = ¢’m (6.26)

where w is energy in watt-seconds, ¢ is the velocity of light, 3 X 10%
meters per sec, and m is mass in kilograms.
Consider the increase in mass that an electron experiences as it is
accelerated. Then
ctdm = dw = F ds (6.27)

where dm is the increase in mass, dw is the energy expended in accelerating
the particle, F is the applied force, and s is the distance factor.
According to Newton’s second law,

- % (m) (6.28)

1 See also BENHAM, W., Inclined Deflecting Plates, Wireless Eng., vol. 13 (No. 148)
pp. 10-13, 1936.

t HINTERBERGER, O., Correction for End Effects in Oscilloscope Deflecting Plates,
Zeit. fur Phys., vol. 105, pp. 561-512, July, August, 1937.
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this being the general statement of the law when a variation in mass is
encountered. Making this substitution into Eq. (6.27), and integrating

/ /d(mv) ds = /vd(mv) (6.29)

Equating the integrands and separating variables,

dm vdy

which integrates to give

[ll’l m]’,,,"o = [11’1 (6—2__1—02)~E] (631)

0

giving the result sought,

m= "0 (6.32)

where m, is the rest mass of the electron.! It isseen that at low velocities
the mass is practically the rest mass. As the velocity increases, the mass
increases, slowly at first and then quite rapidly. At one-tenth the
velocity of light (2,600 volts) the mass has only increased by 14 of 1 per
cent. The mass tends to become infinite as the velocity of light is
approached.

The expression for mass as determined by the velocity can now be
applied to obtain an expression for velocity as a function of potential.
This is best done by equating the expressions for potential and kinetic
energy, the latter involving the general expression for the mass as a
function of the velocity.

Potential energy, Ve = kinetic energy, —e [ E ds (6.33)

/E@:fE“m /mm (6.34)

1 This is what is known as the ‘‘transverse mass’’ of the electron because it is the
effective mass of the electron to transverse deflection where the magnitude of the
velocity is not changed appreciably. It should be distinguished from the ‘“longitu-

But

dinal masgs,” which has the value 35’ Which is the effective mass that an

Mo
vl
(1-2)
electron presents to longitudinal acceleration where the mass as well as the velocity
changes.
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In this expression
dv dm

d
—ek = 3 (mv) =m a + > (6.35)
Hence
Ve=/m—vdl+/v—vdt (6.36)
Ve = [mvdv + fv:dm (6.37)

If now the general expression for m as a function of velocity be sub-
stituted and the integrals be evaluated between the limits of 0 and » on
the variable », there results

1
Ve = TnOC2 —-*W -1 (6.38)
(%)
This is readily solved for velocity.
- \/ 1 — ! (6.39)
v=e (1 + 1.965 X 10-¢V)? :
The corresponding expression for mass as a function of potential is
m = mo(1 4+ 1.965 X 10-%V) (6.40a)

The results of the above analysis deserve considerable study. Con-
sider first the way in which the mass varies. Referring to Eq. (6.32), it is
seen that at very small velocities the mass is practically the rest mass.
As the velocity is increased, the mass at first increases parabolically with
the velocity,

m = ( +3 62 (6.40b)

This expression is approximately correct until the velocity reaches one-
tenth the velocity of light. At this velocity the mass has increased only
14 of 1 per cent.

From Eq. (6.40a) it is seen that the mass increases linearly with the
potential. This happens because of the energy relation, which requires
that the potential energy acquired manifest itself as an increase in mass.
At about 500,000 volts the mass of the electron has doubled. This
voltage is not ordinarily reached in ordinary tubes. At 5,000 volts the
mass has increased by 1 per cent.

The velocity of the electron follows the low-voltage law of Eq. (6.7)
until very large voltages are reached. Even at 100,000 volts the velocity
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Fi1c. 6.3.—Electron velocity as a function of accelerating potential. For voltages up to about 30,000 volts, the velocity is proportional to
the square root of potential. Above this voltage relativity considerations apply, with the result that the velocity increases less rapidly

and assumes a limiting value equal to the velocity of light.

At 3,000,000 volts the electron velocity is 99 per cent of the velocity of light.
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has dropped only 714 per cent from the low-voltage value given by Eq.
(6.7a), which may be written

VYV
306 (6.7b)

By 1,000,000 volts, however, the velocity has reached 93 per cent of the
velocity of light. Above 1,000,000 volts the velocity becomes closer and
closer to the velocity of light but experiences no rapid change with voltage.

The above relations are shown in Fig. 6.3. On this log-log plot it is
seen that velocity follows the half-power law of potential well up to about
100,000 volts. Between 100,000 and 1,000,000 volts the change from the
half-power law occurs, and above 1,000,000 volts the velocity is practi-
cally constant. Several convenient reference points may be taken from
this curve. An electron reaches one-tenth the velocity of light at about
2,600 volts. If there were no change of mass with velocity, the electron
would reach the velocity of light at about 260,000 volts.

6.6. Two-dimensional Electric Fields. Electrons are frequently
exposed to fields that are not uniform but that are two-dimensional or
more. It is generally quite difficult to determine exactly what the elec-
tron path is by analytical methods.

The fundamental differential equations involved are quite simple,
but they are usually difficult if not impossible to solve. In rectangular
coordinates the differential equations are

v
c

d*x e
Eﬁ' = - E Ez(x’y) (6'41)
and
d?* e
G = — = Eoy) (6.42)
where
_ _ 9V (zy)
E:. = o (6.43)
and
_ _ 9V (zy)
B, = - =52 (6.44)

When these equations can be solved, they give the components of electron
displacement parametrically in terms of ¢.

When the potentials are given in two-dimensional circular-cylinder
coordinates with an axial symmetry, as is the case in most electron-
optical problems, the equations have the same form as those above. It
is necessary only to substitute r for z and z for y to get the corresponding
equations for this case.
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For two-dimensional polar coordinates, such as are used for the
cylindrical triode, the equations are quite different and still more difficult
to solve. In terms of a radial variable r and an angular variable 6 the
differential equations of motion are

dr de\’' e d V
+29‘ﬁ’_13ﬂ’ (6.46)

dt2 dtdt rmof

These equations are most readily obtained by applying the Lagrangian
operator to the energy equation, which in these coordinates has the form

)+ @)-r om

The difficulty in solving these two-dimensional problems arises from
the fact that the variables in the component equations are rarely separable.

Ezample: One of the few two-dimensional problems that can be solved exactly
is that of an electron released from a point on the side of an interior right-angled
conducting corner at zero potential. The potential configuration is shown in
Fig. 5.16. The equation for the potential is V = kzy so that the components
of electric intensity are E. = —ky and E, = —kz. The differential equations
of motion are then

d%

e
322— = E ky (6.48)
and
d e
azzy = kx (6.49)

It is convenient to make the substitution "%k = w? Ifeachequation is differ-

entiated twice and the relations from the original equations substituted, there
result
d‘z

Gi = o (6.50)
and

d4

dt—i’ = Yy (6.51)

in which a separation of the variables has been achieved. When these equations
are solved subject to the initial conditions that when

t=0
z=0
y=a
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0
o
there results
z = % (cosh wt — cos wt) (6.52)
and
y = —% (cosh wt + cos wt) (6.53)

The above solutions may be obtained either by standard methnds or by the
operational calculus. The nature of the solution is more apparent if the com-
ponent displacements are referred to the line y = x, that is, if the system be
rotated 45 deg clockwise. When this is done,

T, = —\L;—Q cosh wt (6.54)

a
= —— cos wt
=R

This same result may be obtained more quickly if the original potential field
be rotated 45 deg clockwise before formulating the differential equations. When
this is done, the field has the form shown in Fig. 6.4 and the potential is

(6.55)

k
=3 (z,2 — y1?) and E. = —kzx,, E, = +ky

The differential equations are then

d2
7;*1 = I (656)
d2
Wy; = —wy (6.57)

Here the variables are already separated in equations of lower order; and when
these are solved subject to the conditions that when

t=20
o= L
1 \/5
a
y1=7§
dxl
g =9
dy, _
7 0

the same solution as was obtained above results.
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Examination of the solution shows that the electron oscillates about the line of
symmetry while moving outward at a constantly increasing rate. It is also seen
that the shape of the trajectory is independent of the strength of the field and
also of the charge and mass of the electron. This is a general characteristic of
such problems. The transit time, however, does depend upon all three of these
factors. This means that a heavier particle starting under the same conditions
will trace out the same path but be slower in doing so.

Y

\I\ Electron path

Fi1c. 6.4.—Path of an electron released from a point on the wall of a right-angled
corner. Note that the electron does not follow a flux line but, because of its
finite mass, overshoots the line of symmetry and subsequently oscillates about
it.

If the general differential equations (6.41) and (6.42) are combined
with the energy equation

G+ @0 e

and the factor ¢ be eliminated between them, there results a differential
equation in the coordinates x and y alone,

2V (z,y) % - [E,Z—Z _ E] [1 + (Z-i) ] (6.59)

This equation is no easier to solve than those previously given, but several
important properties of electron trajectories can be deduced from it.



LAWS OF ELECTRON MOTION

111

1. The mass and charge of the electron do not appear in the equation.
This means that the path taken will be independent of these factors.
2. The equation is not changed if either voltage or distance is changed

by a constant factor.

This means that the path will be the same

for all magnitudes of voltage as long as the form of the field is

not changed.

3. If the tube structure is enlarged by any factor, then the trajectory

will be enlarged by the same factor.

6.6. Electron in a Uniform Magnetic Field. An electron in motion
constitutes a minute electric current of magnitude —ev, where e is the

magnitude of the charge on the electron and
v is its velocity. As such, an electron in a
magnetic field experiences a sidewise force
just as does a wire carrying current. The
magnitude of this force in newtons is Bev sin 6,
where B is the magnetic-flux density in
webers per square meter (1 weber per meter?
equals 10* gausses) and 6 is the angle
between the vectors representing the field
and the velocity, the latter being in units of
meters per second. When the electron enters
the field at right angles to it, the force is
simply Bev directed at right angles to the
velocity. The relative directions of field,
velocity, and force are shown in Fig. 6.5.
The force changes the direction but not the
magnitude of the velocity and in this case is
continuously exerted at right angles to the
instantaneous velocity because the direction
of the force changes with the direction of the

2
4
F

Fic. 6.5.—The direction of
the force on an electron rela-
tive to the velocity and mag-
netic field that produce it.
The force is the vector prod-
uct of the magnetic-flux
density and the velocity. If
B is turned into v, then F
advances like a right-hand
screw.

veloeity. This fulfills the conditions necessary for a circular motion of
the electron in a plane normal to the magnetic field.

The force developed by the magnetic field may be considered as a
centripetal force that must equal the centrifugal force developed by the

circular motion of the electron.

2

newtons

Equating these forces,

(6.60)

where R is the radius of the circular electron path. From this the radius

of the circular path is

R =

o3

y
B

meters

(6.61)
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It is more convenient for application of this formula to express the
physical quantities in numerical form and to use the potential correspond-
ing to the velocity. With these changes the expression for the radius of
the circular path becomes

/Y7

R =337 X 10~ meters (6.62)

where V is the electron velocity in equivalent volts and B is the magnetic-
flux density in webers per square meter (104 gausses). This relation
shows that, the stronger the field and the smaller the velocity of the
electron, the smaller the circle in which it moves. The results of this
relation are compactly presented in the nomogram of Fig. 6.6.

If the particle is not an electron but an ion of mass m, and with n times

the charge of the electron, the radius is given by
_ 337 e MV
R, = B X 10 mn
where m. is the mass of an electron and B is magnetic-flux density in
webers per square meter.

Since the radius of the circle followed by the particle is proportional
to the velocity, the period corresponding to one loop is independent of
the initial velocity and depends only upon the magnetic field. The
period is given by the circumference of the circle divided by the velocity,

meters (6.63)

2rm 1
T = "e— E sec (664)
In practical units this is
T = 3—%—5 micromicroseconds (6.65)

The value of the period can be obtained from the nomogram of Fig. 6.6
by observing that the period in microseconds is the same as the radius in
centimeters when the potential is 11.22 mv.

For particles with a mass m, and having n times the charge of the
electron the period is

—355m, micromicroseconds (6.66)
nB m,

The fact that the period is independent of the velocity is significant
and useful. If a number of electrons of different velocities be injected
into a uniform magnetic field, they will trace out circles of different size
but they will all return to the starting point at the same time. Use 1s
made of this property in magnetic focusing of electron beams.



1072

Radius, cm.

lllllllllli |lllIlILLl lllllIlM’

l]llTTIIlll |

S

0

Im ]"ll I'I'I

IIII 1 I“lllllll

l
lv]vllllll ]

A
1

vIIITTI I T Illll})-v”[l

llll

lj[llllllllllllllll]llJ_LLlJll I |lll|l|l§ l J

3

vlvvllullnnlrvlllrl LI Illlllll] T I

w
-] )
C w
o 3
(8] [~}
() o>
(] -
N2 p}
.9 o
E\\ “
- (o]
= .0
b
o N 5
- c
[ o>
a [
b
\

N\

AN

T

108

108
104
RY:)
03 6‘0
Y
{02
10
1
N\
AN
AN
\<
e
y %
10 e,
AN
102

Electron energy, volts

106

104

10

102

10!

10-2

F1c. 6.6.—Nomographic chart giving the radius of the circular path of an
electron in a uniform magnetic field as a function of the magnetic field strength

and the electron energy in volts, Eq. (6.62).
of a single rotation as a function of magnetic field strength, Eq. (6.85).

The chart also gives the period
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If an electron enters a magnetic field at an angle 6 with the field,
then there is a component of velocity parallel to the field, v cos 6, that is
unaffected by the magnetic field. The other component of velocity,
that normal to the field, v sin 6, produces a circular motion which com-
bines with the parallel motion to give a helical path. The radius of the
helix is given by
3.37 X 10~¢ 1/V sin 6

B
where V is in volts and B is in units of webers per square mster (10*
gausses). The pitch of the helix is given by the product of the parallel
component of velocity and the period as determined from Eq. (6.65).

21.2 X 10~¢/V cos 8
p= B

It will be observed that for small angles the pitch does not vary much
with the angle. Hence, if a magnetic field is placed parallel to a beam of
electrons in a cathode-ray tube, the electrons will return to positions cor-
responding to their original relative position in a distance p along the
beam. This is the principle of magnetic focusing, which is used to keep
electron beams from spreading. All the electrons trace out helical paths
of different radii but of the same pitch. Magnetic focusing cannot do
more than reproduce the original beam diameter, and the field must be
adjusted to produce this effect at the point desired.

6.7. Behavior of Electrons in Nonuniform Magnetic Fields. The
paths followed by electrons in nonuniform magnetic fields are extremely
complex. Little can be said about them except in certain simple limiting
cases. In all cases the magnitude of the velocity will be unchanged because
no energy 1s added to or taken from the electron when subjected to the influence
of a steady magnetic field alone. In contrast, the direction of the velocity
can experience very involved changes. The general form of the force
equation depends upon the components of field and velocity. An z
component of force results from a y component of field and a z component
of velocity and also from a z component of field and a y component of
velocity. Upon writing the components of force in terms of components
of acceleration the general differential equations for three-dimensional
rectangular components are

R = meters (6.67)

meters (6.68)

mdi dz dy
car -~ Bg By
mdly ., dr dz

mdz _ pdy _pdo
car ~Ba By



LAWS OF ELECTRON MOTION 115

When the components of field vary from point to point, these equa-
tions are practically insoluble.

In electron-optics work, circular cylindrical coordinates r, 6, and z
are used where the coordinates specify radial distance, angle, and axial
distance, respectively. Here the equations have the same general form
as Eqgs. (6.69) but are quite different in their specific appearance. They

are
d?r do\’ dz rde
[a?' (d7> ] =Bog — Bgr

m LAY N (6.70)
?[rdt( dt)]’B‘dz B’dz
m| d% rdo dr
?[W]_B' dr _B”dz

where the terms in the brackets on the left-hand side of the equations are
the components of acceleration in the r, 8, and z directions, respectively.

Ezample: 1t is a known property that low-velocity electrons in a strong
magnetic field will describe a tightly coiled spiral path which wraps itself around
one of the flux lines and will thus follow the magnetic field. This property will
be proved in the case of the magnetic field around a long, straight wire carrying
current.

In this case there is only a 6 component of field of magnitude 2#"1;, where I is

the wire current. The 7 and z components of field are zero. For this condition,
neglecting constants, Eqs. (6.70) become

de
(@) =15 ®71)
1d (,db
~5(25) =0 (6.72)
az 1d
a—j = — ;d—: (6.73)

These equations cannot be solved exactly, but the nature of the path can be
closely determined by some judicious approximations and observations. Inte-
grating Eq. (6.73) with respect to time,

___11 ( ) (6.74)

where r, is a constant of integration. Integrating Eq. (6.72)

248 _ 6.75
rdt Oa (. )
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where Cs is a constant of integration. Substituting Eqgs. (6.74) and (6.75) into

Eq. (6.71),
o[ )]+
sy Iln ™ + s (6.76)
This expression would be difficult to integrate exactly, but the form of the varia-
tion in r can be determined. It is seen that there is a value of r for which the
acceleration is zero and that for values of 7 slightly less than this the acceleration
is positive, while for values of r slightly greater than this the acceleration is
negative. This means that, if the initial » component of velocity is small, the

electron will oscillate about the value of r for

which the acceleration is zero. Hence the
expression for the r component of position is of
7 the form

r=r, — asin kt (6.77)

With this variation of r the z component of
velocity is also seen to be periodic of small varia-
tion from Eq. (6.74), and hence z oscillates
about its original value. Similarly the # com-
ponent of velocity is periodic and of small varia-

tion from Eq. (6.75) so that the value of Zg isa

constant with a superimposed periodic variation.
The net result of these component displace-
ments is that the electron will spiral around a
flux line in some fashion, keeping a constant
average value of r and z, and progress in the 8
o direction with a constant average velocity as
Fig. 6.7.—The motion of a low- shown in Fig. 6.7. Use of this property is made
in television pickup tubes of the Orthicon type.!

velocity electron about a mag-
netic flux line. In the absence 6.8. Combined Electric and Magnetic
of strong electric fields, low-  pjelds. When an electron is subjected to
velocity electrons will spiral 4} oombined action of both electric and
about magnetic flux lines. magnetic fields, the paths tend to become
quite complex. Some simple cases can be studied, however.

When an electron starts irom rest under the influence of parallel
electric and magnetic fields, the electron moves in the direction of the
electric field and is unaffected by the magnetic field. The path in this
case is a straight line, and the electron behaves as though the magnetic
field did not exist.

If an electron with a given velocity is injected into a region containing
electric and magnetic fields at right angles to each other and each at right

1 RosE, A., and H. Iams, Television Pickup Tubes Using Low-velocity Electron
Beam Scanning, Proc. I.R.E., vol. 27, pp. 547-555, September, 1939.
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angles to the initial velocity, then there is a certain ratio of electric- to
magnetic-field strength for which the electron is not deflected in its path.
This occurs when the force due to the electric field is equal and opposite
to that produced by the magnetic field. For this condition

g =593 X 105V, =0 meters per sec (6.78)
where v is the original velocity and V, the potential that produced it.
As long as the above relation holds, the electron moves in a straight line.
If any of the quantities involved is changed, the electron will be deflected
from the straight-line path.

If an electron starts from rest in the presence of uniform electric and
magnetic fields that are mutually perpendicular, it first experiences a
force in the direction of the electric field and is unaffected by the magnetic
field because of the low velocity. As it acquires velocity, it is deflected
sidewise by the magnetic field. This action turns it around and brings
it to rest at a point corresponding to its original position but displaced
to one side. If the electron is then free to move, the action is repeated
and the resulting path is a cycloid. The cycloidal nature of the path can
be seen by considering that, if the magnetic field were moving in a direc-
tion mutually perpendicular to the electric field and to itself at a velocity
given by Eq. (6.78), then to an observer moving with the magnetic field
the effects of the two fields would cancel as far as forces parallel to the
electric field were concerned. To this same observer the electron would
behave as though it were injected into a magnetic field alone with a
velocity given by Eq. (6.78) in a direction opposite to that of the observ-
er’s motion, and the resulting path would be a circle to this observer. To
someone standing still relative to the fields the motion would be a circular
motion combined with a translational motion, which in this case because
of the equality of the velocity components gives rise to a cycloidal path.

For the relative position of the fields shown in Fig. 6.8, where B is in
the negative z direction, the differential equations of motion are

d*y e dV  Bedx

@ " mdy md 6.79)
and

d’z _ Bedy

o md (6.80)

These equations are more simply written in the form

(a — wi) (6.81)
wy (6.82)

Il

i
P

]
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where the dots indicate derivatives with respect to time and a = %Z—

3o

and 0 = %~ The initial conditions are that, when ¢ is zero, y, z, 7, and

% are also zero.
Integrating Eq. (6.82) with respect to time,

H
/ ~--Electron
trajectory

F1c. 6.8.—The cycloidal path resulting when an electron is
liberated at zero velocity in crossed uniform electric and mag-
netic fields. The electron progresses in the positive = direction
when the gradient of the electric field is in the positive y direc-
tion and the magnetic field is in the negative z direction.

since, when ¢ equals zero, £ and y are also zero. When this value of £ is
substituted in Eq. (6.81), there results

j=a— oYy (6.84)

This can be solved either by standard methods or by the operational
calculus to give

y = %2 (1 — cos wt) (6.85)

and the corresponding expression for z is from an integration of Eq. (6.83),
a .

=5 (wt — sin wi) (6.86)

The last two equations above give the motion of the electron para-
metrically in terms of £.  The motion is seen to consist of a uniform trans-
lation in the z direction with a superimposed circular motion.
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The maximum displacement in the y direction is

v
Y = %‘ﬁ — 1138 X 101 %% (6.87)

The displacement in the z direction corresponding to one cycle of the
motion is found by substituting the value of time that restores the value
of y to zero. This occurs for w equal to 2r so that

To = TYm (6.88)

which 1s also to be expected from the ratio of the circumference to the
radius of the generating circle that produces the cycloidal motion.

When an electron is injected into a region with uniform electric and
magnetic fields at right angles to each other but with a finite initial
velocity normal to the magnetic field, it will follow a trochoidal path in a
plane normal to the magnetic field. Geometrically the trochoidal path is
generated by a point on the rim of a wheel that is rolling along a straight
line on a smaller diameter hub. The cycloid is the special case of the
trochoid for which the diameters of the rolling and tracing circles are
the same.

The differential equations for the case of an initial velocity are the
same as for the cycloidal case [Eqgs. (6.81) and (6.82)]; but in this case
the initial conditions are different, and the form of the solution is hence
different. When ¢ is zero, y and x are zero, but y = vy, £ = vo.. Hence
the first integration of Eq. (6.83) for the configuration of Fig. 6.8 gives

= wY — Vo (689)

When this substitution is made in Eq. (6.81) and this expression inte-
grated twice to obtain the value for y, there results

_ (a— w”ﬂz)ii — cos wi) + %’” sin wt (6.90)

Y

Substituting this in Eq. (6.89) and integrating to get the corresponding
expression for z,

a__—j;_ovﬁ sin wi (6.91)

x=g+(1—coswt)£°—”-—
w w
The two equations (6.90) and (6.91) determine completely the nature
of the trochoidal path. The corresponding expressions for the com-
ponents of velocity are

a — Wy,

Y = Voy COS wi — sin wt (6.92)

wl

a — 0z
———— cos wi (6.93)

. _a .
z 5+vo,,s1nwt—
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From the velocity-component equations it is seen that there is a constant
z component of velocity of magnitude g- This corresponds to the

translational velocity of the circles that generate the trochoidal motion.
To achieve this translational velocity the radius of the rolling circle must

be %2 since the angular velocity of the velocity vectors is w. The initial

conditions also require that the instantaneous velocity of rotation of a
point on the tracing circle be equal to the vector difference of the initial

AN \X\\\\\\\\\s\w\}\\d\\\\
_E=T:;l_;f ®H

qun Y ‘Rolling circle (v, fev)
Tracing circle (vp/w)
F16. 6.9.—Trochoidal electron path resulting when an electron is
injected with a finite velocity into a region of uniform crossed electric
and magnetic fields. The electron will progress in the positive z
direction when the gradient of the electric potential is in the positive
y direction and the magnetic field is in the negative z direction.

velocity and the translational velocity. This relation is shown by the
vector diagram of Fig. 6.9.

If the scale of the velocity-vector diagram be taken the same as that
of the diagram showing the generating circles and the resulting path,
the electron path can be constructed graphically in quite a simple manner.
It will be observed that the terms in Eqgs. (6.90) and (6.91) giving the
instantaneous displacements are the same as those in Egs. (6.92) and
(6.93) for the component velocities except for the w factors. The center
of the generating circles in the initial position is given by rotating the
rotational vector v,, 90 deg in a clockwise direction. The radius of
the tracing circle is then given by the length of the rotational vector
v,, and the radius of the rolling circle is given by the length of the vector
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v, the translational velocity. With the rolling and tracing circles and
their initial position given, the path is readily constructed gecmetrically
for any case. This construction is also illustrated in Fig. 6.9.

6.9. Approximate Numerical and Graphical Methods for Determining
Electron Paths. The number of cases in which the motion of an electron
under the influence of applied fields can be determined exactly is actually
quite small and restricted to very simple cases. Hence the need exists
for methods that will give an approximate answer when the fields are
more complex, as they usually are.

Method of Joined Circular Segments. When an electron is moving
through a potential field, the instantaneous radius of curvature of its
path is determined by its velocity and by the sidewise force that is
exerted on it by the field.! The sidewise force exerted on the electron
depends upon the component of the gradient of potential normal to the
instantaneous direction. This component of the gradient will be desig-
nated by v.V. The actual sidewise force is ey,V. This force must
equal the centrifugal force of the electron in its instantaneous circular
motion, and this is given by 7: where R is the instantaneous radius of
curvature. Equating these two forces and substituting 2eV for mw?,

2¢V

'—RT = eV,.V (6.94)
from which
R = 3‘; (6.95)

This is the instantaneous radius of curvature of the electron path at
any point in the field, as shown in Fig. 6.10, on the assumption that the
electron started from rest at a point of zero potential. It will be observed
that the radius of curvature is independent of the mass and charge of the
electron and also of the scale of potential, checking the conclusions drawn
from the differential equations of the electron path.

By calculating the radius of curvature at a point in the field by Eq.
(6.95), drawing a small segment of arc, and then applying this process
repeatedly a good approximation to the actual curve traced by the elec-
tronis obtained. The potential at any point in the field is easily obtained,
and the normal component of gradient is the projection of the vector
giving the magnitude and direction of the greatest variation of potential
upon a line normal to the electron’s path. The method is subject to
cumulative error unless the average potential and average normal

1 SauingER, H., Tracing Electron Paths in Electric Fields, Electronics, vol. 10,
pp. 50-54, October, 1937.
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gradient over each segment of arc is used. If the segment of arc drawn
at each step is kept a constant fraction of the radius of curvature, say
one-twentieth, the error will not be great. It is also possible to derive
simple expressions for the position of the next step in terms of the dis-

placement and change of angle when the radius of curvature is so large
vhat the arc segment is not easily drawn, as is frequently the case.

F16. 6.10.—The instantaneous radius of cur-
vature of an electron path in a region of
varying potential. The instantaneous radius
of curvature is equal to twice the potential at
the point in question divided by the compo-
nent of the gradient of potential perpendic-
ular to the path.

Several ingenious gadgets have been devised that make the applica-
tion of the principle outlined above purely a mechanical one.:> These
make use of a double probe in a current-flow model that has been set up
to give the electric field involved. The double probe picks up a voltage
proportional to the component of gradient in the direction of its align-
ment, and the average potential of the probes gives the potential at the
point. The probe is connected to a small cart attached to a pantograph.
The cart is steered in such a way that the instantaneous curvature of
path which it is tracing is determined by the relation Eq. (6.95). Adjust-

1 GABOR, D., Mechanical Tracer for Electron Trajectories, Nature, vol. 139, p. 373,
February, 1937.

2LANGMUIR, D., Automatic Plotting of Electron Trajectories, Nature, vol. 139,
pp. 1066-1067, June 19, 1937.
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ments on the steering are made as continuously as possible from the
information picked up by the double probe as it traces out the path.
These devices are capable of considerable accuracy.

Use of Elastic-membrane Model of Potential to Determine Electron
Paths. 1In a previous chapter it was pointed out that the elevation of the
surface of a stretched elastic membrane approximated closely the solu-
tion of Laplace’s equation when the deformations were small. Actually
such a model of potential fields is of more use in determining electron
paths than in solving potential problems. This is because it is found
that the laws governing the motion of a small sphere rolling on the mem-
brane are strictly analogous to the laws governing the motion of an elec-
tron in an electric field, and hence the path of such a sphere is a good
approximation of the path of an electron in the corresponding electric
field.

Except for frictional effects the kinetic energy picked up by a small
sphere, say a 3{g-in. ball bearing, is equal to the potential energy it has
lost owing to its change in elevation. This is exactly what happens to
the electron. In the case of the mechanical model, however, the kinetic
energy is divided between translational and rotational components. As
long as the sphere rolls with a given circle of contact, the proportionality
between these two components of the kinetic energy is constant and the
path of the sphere will be similar to that of the electron. Although it is
difficult to prove mathematically, it can readily be shown by experiments
with a large sphere on a hard, curved surface that the sphere will turn
relatively sharp corners and finish with the same rolling circle of contact
as it had initially. The sphere can actually change its direction by about
300 deg without losing its original circle of rolling contact. If the angle
is more than 300 deg, the turn introduces a spinning action that spoils
the energy relations indicated above. Actually, it is the radius of curva-
ture of the path rather than the angle that matters. Roughly, the
limiting radius of the path is five times the radius of the sphere.

Application of the Principle of Least Action. In many electron-
trajectory problems use can be made of the principle of least action.
This principle states that in a potential field of the type encountered in
vacuum-tube problems a particle will move between two points by such
a path that the action, defined as the integral of momentum with distance,
will have a minimum value. This means that, if the paths are known and
conditions are such that only one electron goes through each point, con-
tours of constant action calculated from the defining integral will be
everywhere perpendicular to the electron paths. Hence, if the electron
paths are known, contours of constant action can be found that give the
path of all electrons. If the electron paths are not known, as is generally
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the case, it is still possible to calculate the contours of constant action by
methods involving successive approximation.

This is done by assuming a path of the electrons that is known to be
close to the true path and then calculating the action along the assumed
path. The process is easy, for the square root of potential can be sub-
stituted for velocity so that action is given by

A= fmvds = +/2em / V7V ds /7(_6.96)

When the action along the assumed paths has been calculated, a first
approximation to the action function has been obtained and correspond-
ing contours of constant action can be drawn. If now curves be drawn
normal to these contours of constant action, these will give a more accurate
representation of the electron paths than those originally assumed. The
second approximation to the action function can then be calculated along
the improved paths and the process repeated to give any desired degree
of accuracy. This is seen to be a perturbation process between action
and potential.

In actual application in cases where the electron deflections are slight
the first step of the process gives results that are sufficiently accurate.!?
The errors involved compensate because of the fact that, when the
assumed path is shorter than the actual path, the potentials involved are
smaller. In the determination of electron paths in tubes the assumption
of straight-line paths initially is usually sufficiently good for cases in
which the electron deflections are slight. The method is not accurate in
the vicinity of any line of symmetry.

1 LANGE, H., Current Division in Triodes and Its Significance in the Determination
of Contact Potential, Zeit. fiir Hochfrequenz., vol. 31, pp. 105-109, 133-140, 191-196,
1928.

2 SpANGENBERG, KARL, Current Division in Plane-electrode Triodes, Proc. I.R.E.,
vol. 28, pp. 226-236, May, 1940.



CHAPTER 7

ELECTROSTATIC FIELD OF A TRIODE

7.1. Method of Solution. The electrostatic fields within tubes are
most readily obtained by means of the conformal transformations given
in a previous chapter. These transformations give potential configura-
tions that represent closely the fields encountered in tubes, whose elec-
trode configuration is somewhat idealized. The cathode is assumed to be
a plane or cylindrical surface, which it rarely is in practice. The elec-
trodes are assumed to be infinite in length and breadth so that tube con-
stants per unit area evaluated on this assumption do not include end
effects.

It should be pointed out that, since the solutions obtained are not
mathematically exact, various degrees of approximation are possible.
In general, the more accurate the solution, the more complex and cum-
bersome the expressions obtained. Where extreme accuracy is desired,
the method of conformal transformations is used as a starting point for
series representations. Imaging or series procedures may also be used,
but these have not proved of great value as a general method.

In spite of the above-mentioned departures from exactness the for-
mulas obtained by the application of the method of conformal trans-
formations meet the accuracy requirements of modern engineering.

7.2. Electrostatic Field of a Plane-electrode Low-mu Triode. The
field of a low-mu triode may be determined by a method outlined by
Maxwell.! Vacuum tubes had not yet been invented in Maxwell’s time,
but his analysis of the electrostatic field about a shielding screen of parallel
wires is readily applied to the problem of the triode field.

The field analysis is based upon the Z-plane configuration shown in
Fig. 7.1a. This consists of two line charges located within a large cylin-
der. One line charge is located at the origin and has a linear-charge
density of 4¢.. The other is located at the point (1,0) and has a linear-
charge density of +¢,. The field at great distances from these lines is
nearly circular and may be fitted to that of a circular electrode whose
radius is large compared with the distance between the line charges. It
may be seen that the Z-plane representation represents a simple tube

! Maxwkerr, J. CLErk, “Electricity and Magnetism,” 3d ed., Vol. I, Sec. 203,

Cambridge, London, 1904.
125
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with a cathode wire at the origin and a single grid wire at the point (1,0)
surrounded by a circular plate. This simple tube has electrical charac-
teristics the same as those of the plane-electrode and cylindrical-electrode
structures that may be derived from it.

To obtain the field within the plane-electrode tube it is necessary
to obtain an expression for the field in the Z plane of Fig. 7.1a and then
transform this expression by the logarithmic transformation to fit that
of the electrode configuration of Fig. 7.1b, which closely represents
the structure of a practical tube. The potential at any point in the Z
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F16. 7.1.—Elementary triode and equivalent plane-electrode triode.

plane is given by the sum of the potentials resulting from each of the line
charges. Polar coordinates will be used in the Z-plane relations.
The potential at any point (p,8) is given by

V.= —

9o _ 9
req In p, e Inp+C (7.1)

where p; is the distance from the point in question to the grid-wire charge
at the point (1,0) and C is a constant that adjusts the level of potential,
and in will be used hereafter to denote the natural logarithm. Making
use of the law of cosines,
- _ 2 _ _ 49 2
V. Ire In (p2+ 1 — 2p cos 0) res In p2 4+ C (7.2)

0

The logarithmic transformation with a suitable coefficient will be
used. The coeflicient is selected so that in the plane-electrode structure
of Fig. 7.1b the grid wires are spaced a distance a.
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a
\,'W =5 InZ (7.3)

The component parts of this equation are

u = 2%_ In p or p=¢€% (7.4)
af 2mv
v = Z or 6 = —a— (7.5)

in which u and v are the real and imaginary parts of W, respectively, and p
and 6 are the polar coordinates in the Z plane. Making the above sub-
stitutions in Eq. (7.2),

4ru 27u 21['1)) B qe 4ru

_ _ % re 9. a “mv ry
Vo = s, In (e +1 2¢ ¢ cos a Ines +C (7.6)

47['80

The above expression gives very closely the potential inside of a plane
triode. Examination of its form will show that the equipotential lines in
the vicinity of the origin and the points (0,1 na) are circles, one set of
which may be fitted to the grid wires. For large positive and negative
values of u the equipotentials are almost planes that may be fitted to the
plate and cathode planes, respectively. The general potential expression
of Eq. (7.6) gives potential in terms of the charges g,, ¢., and the constant
C. For application it is also necessary to evaluate these constants in
terms of the electrode potentials.

To evaluate the constants of Eq. (7.6) let the plate plane be located
at u = +d,, where d,, = a. When this relation between d,, and a
holds, the second and third terms of the argument of the first logarithm
will be less than 1 per cent of the first term and may thus be neglected.
Making the substitution v = +4d,, into Eq. (7.6),

_ dyrgo _ dy»q.
Vo= ase T amy +C (7.7
Let the cathode plane be located at —d.,, where d., = a. In this
case the first and third terms of the first logarithm argument will be small
compared with 1 so that the first term is substantially zero. Making

the substitution » = —d., into Eq. (7.6),
— 0 4 Geste
Ve=0+ as, +C (7.8)

Let the grid wires be located at the points (0, + na) and be of radius
r, and potential V,. Ifr, < 210: the potentials at points (0,r,) and (r,,0)
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differ by only a few per cent. Into Eq. (7.6) substitute the valuesu = 0,
v =7,

V, = 23”0 In <2 sin ) +C (7.9)

If the cathode potential is set at a reference level of potential of
zero, then
¢ = — oot (7.10)

aeg

from which Eqgs. (7.7) and (7.9) become

. = _ dots _ (dey + dop)ge (7.11)
agg agg
and
In (2 sin ——) 9
— — - dcggc
v, = 5o - (7.12)

It is already possible to obtain the amplification factor of the tube
from Eqgs. (7.11) and (7.12). The amplification factor of a tube is the
ratio of the plate voltage to the negative of grid voltage for a condition
of cutoff.! In terms of the electric field within the tube, cutoff exists
when the gradient of potential at the cathode is zero, which in turn
occurs when the cathode charge is zero. If ¢.is made zero in the above
two equations and the ratio taken as indicated,

—2nd,,

“=—_~—
aln<2sin-7zq>
a

If Egs. (7.11) and (7.12) are solved for ¢. and ¢, in terms of V,and V,
and the expressions simplified by use of Eq. (7.13),

(7.13)

_ ea(Vy, + uVy)
=~ oy + duy + pdey) (7.14a)

and
— £0aﬂ[(dgp _+" dcg) V{I - dC!] VP]
dﬂp(dap + dvq + P'*dcg)

The expression for p of Eq. (7.13) given above is the simplest expres-
sion that adequately gives the amplification factor of a plane-electrode
triode. Examination of this expression shows that the amplification
factor increases as the grid-plate distance increases. This is in accord

(7.14b)

g

! For a more general definition of the amplification factor see the chapter on

Triode Characteristics.
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with physical reasoning since the more remote the plate is the more
influence the grid has. Amplification factor is also increased if the grid-
wire spacing is decreased since this makes the grid more effective in
controlling the off-cathode gradient of potential. Amplification is also
increased if the grid-wire radius is increased, as would be expected. It
will be observed that according to Eq. (7.13) the amplification factor is
independent “of the cathode-grid distance. This is approximately true
as long as the approximations made in deriving the expression are not
exceeded, i.e., as long as the cathode-grid distance is not less than the
grid-wire spacing. This may be understood by considering that the
cathode charge is zero at cutoff. Thus for a cutoff condition all the flux
lines originating on the grid terminate on the plate, and though some of
them start toward the cathode they turn and end on the plate so that
as long as the cathode is not too close to the grid the field pattern is not
disturbed and the amplification factor is independent of cathode-grid
distance. This interpretation will be discussed further in connection
with equipotential contours and potential-profiie plots.

Contour Representation of Potential Field. The form of the potential
field resulting from the equations developed above may be best studied
by examining the plots of the equipotential lines. A group of these
equipotential contour plots of a typical plane triode are shown in Fig.
7.2 for various potentials. The contours of Fig. 7.2a show the field
configuration for the case of the grid biased beyond cutoff. It will be
observed that the gradient of potential at the cathode is negative. In
the line of the grids the potential is increasingly negative in moving from
cathode to grid. Along this same line the potential is increasingly posi-
tive in moving from grid to plate. Along the line from cathode to plate
midway between grid wires the potential is at first negative and then
positive. The dotted lines shown represent the boundary between the
various types of equipotential lines. In the area within the dotted lines
including the grid wires the equipotential lines aie closed curves about
the grid wires. In the other areas the equipotential lines run continu-
ously from one section of the triode to adjoining sections, always on one
side of the grid plane.

The other equipotential plots may be interpreted in a similar fashion.
It will be observed that all the plots have some features in common.
The equipotential lines close to the grid wires are nearly circular in all
cases. The equipotential lines close to the plate and cathode are nearly
straight lines. The equipotential lines may be divided into two groups,
those which completely enclose the grid and those which run along from
section to section. It will be observed that in some cases the equipo-
tential lines of the second type listed above cross the grid plane between
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F1a. 7.2.—Equipotential contours in the plane-electrode triode: (a) grid beyond
cutoff potential; (b) grid at cutoff potential; (c) grid negative at half cutoff
value; (d) grid at zero potential; (e) grid positive.
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grid wires but always pass the grid wires on the same side in moving
from section to section. This behavior is observed in the case of the
10 per cent contour for ¥V, = 0. In all the cases shown the equipotentials
are bowed toward the cathode through the grid plane. Only if the grid
is more positive than the potential that gives a uniform positive potential
gradient from plate to grid will the contours
that cross the grld.plane pe bowed towax:d — 100
the plate. The equipotential plots shown in
Fig. 7.2 were obtained with an electrolytic-
trough model of potential. The equipoten-
tials calculated from Eq. (7.6) would be
almost the same in shape. For comparison 4
a contour plot calculated by Eq. (7.6) is
shown in Fig. 7.3. This plot represents an
extreme condition of potential and dimen-
sions. The grid-wire radius is 14¢ of the
grid-wire spacing. It will be observed that
the grid-wire contour is not quite circular.
It is of proper width in the plane of the grid
wires but is longer in the direction at right
angles to this. Because of this distortion
of shape, which increases as the ratio of grid-
wire diameter to grid-wire spacing increases,
the formula for the amplification factor of
Eq. (7.13) becomes inaccurate when the
above ratio, known as the screening fraction,
becomes greater than 1{g. In the following
section a more accurate formula is given,
which is good up to screening fractions of 1§.

Profile Representation of Potential Field.
The potential fields of a low-mu triode may
also be: studied by rgference to profile repre- tours in a plane-electrode triode
sentations of po.tentlal'. These curves sl.low with equal positive grid and
how the potential varies along certain lines pjate potentials.
within the tube. The most common profile
representations are shown along lines running from cathode to plate.
In particular, two profiles are particularly informative. These are the
profiles through the grid wire in a line running from cathode to plate at
right angles to each of the latter, and in a line midway between grid
wires. Such profiles are shown in Fig. 7.4.

In Fig. 7.4a are shown the profiles for a condition of a tube biased
beyond cutoff. Here it is seen that the gradient of potential at the

CATHODE
F1c. 7.3.—Equipotential con-
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cathode is negative, thus making it impossible for electrons to leave the
cathode. This is true because most electrons that do succeed in getting
away because of some initial velocity are driven back by the negative
gradient of potential. In the line of the grids the potential goes strongly
negative until it reaches the negative grid potential. Beyond the grid
the gradient is positive. In the line between the grid wires the potential
is pulled negative at first by the presence of the negative grid, and it
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F1c. 7.4a.—Potential profiles of a plane-electrode triode, with
grid at twice the cutoff value of potential.

then becomes positive. It will be observed that the potential profiles
are straight lines near the cathode and also near the plate. Further, it
is only in the vicinity of the grid that there is a great variation in the
value of potential in moving parallel to the cathode and plate planes.

In Fig. 7.4b are shown the potential profiles for the case of the grid
biased to approximately cutoff. Here it is seen that the gradient at the
cathode is zero. In the line of the grid wires the potential first goes
negative to the value of grid potential and then positive. In the line
between the grid wires the potential becomes increasingly positive in
moving from cathode to plate. In this representation the amplification
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factor of the tube is given by the ratio of positive plate to negative grid
potential. It is evident from these profiles why the amplification factor
is independent of the cathode-grid distance provided that this is not too
small. Up to a distance of about half the cathode-grid spacing the poten-
tial on both profiles is substantially zero for the particular dimensions
shown. Hence in this particular case a cathode at zero potential
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F1c. 7.4b.—Potential profiles of a plane-electrode triode, with

grid at the cutoff value of potential.

-40 -20

could be put at any distance greater than half the cathode-grid distance
shown without changing the shape or position of the potential profiles
to the right of the profiles. The curves of Fig. 7.4b show the potential
conditions that will just allow current to flow.

In Fig. 7.4c are shown profiles for a negative grid potential greater
than that which gives the cutoff condition. Here the gradient of poten-
tial at the cathode is positive even though the grid is negative. The
curves shown represent the potentials that would exist in the absence
of current, say in a cold tube. Although this condition of potential
would permit current to flow, the actual flow would depress the profiles
in the vicinity of the cathode, as will be described in a later chapter.
In Fig. 7.4d the grid is at zero potential, and it is now possible for elec-
irons to reach the grid, which has not previously been possible for nega-
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FiG. 7.4c.—Potential profiles in a plane-electrode triode, with grid
negative at half the cutoff value of potential, which is the usual
Class A operating condition.
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F1e. 7.4d—Potential profiles in a plane-electrode triode, with
grid at zero potential,
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tive grid potentials. In Fig. 7.4e is shown an extreme condition of
positive grid potential. Here the grid is as positive as the plate. This
condition may be reached at the peak of the cycle in Class C power
amplifiers.

In all cases the profiles are straight lines in the vicinity of the cathode
and plate. For a condition of grid potential more negative than that
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F1a. 7.4e.—Potential profiles in a plane-electrode triode, with
grid and plate at the same positive potential. This condition
may exist at the peak of the current pulse in a Class C amplifier.

of cutoff the slope of the straight-line portion at the cathode is negative.
Above cutoff it is positive. The general form of the profiles corresponds
to that which one would expect from a deformed elastic membrane.
In each case the grid pushes a hole in what would otherwise be a straight-
line profile from cathode to plate. Curvature requirements are met here.
It will be observed that when one profile is concave upward the other is
concave downward.

7.3. Electrostatic Field of a Low-mu Cylindrical-electrode Triode.
The same fundamental tube configuration as was used for the plane-
electrode triode in Fig. 7.1a can be used to develop the cylindrical-electrode
triode. In this case, however, the transformation equation takes the
form

W = s, ZV¥ (7.15)
to give the electrode arrangement of a cylindrical triode with N grid
wires as shown in Fig. 7.5b. Let the coordinates in the Z plane be ¢
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and 0 and in the W plane s and ¢; let s, be the radius of the grid-wire
circle. Then the components of the transformation equation in polar
coordinates are

(7.16)

and

(7.17)

B %'

Z PLANE W PLANE
(a) (6)

Fi1g. 7.5.—Elementary triode and equivalent cylindrical-electrode triode.
As before, the equation for the potential at any point in the Z plane
is
Vi=—-2 In(p24+1—-2pcos60) — L Inp2+C (7.2
47l’£0

47I'£ 0

Substitution of the component transformation equations gives

q s\ s\
— _ % s _ S
Vo= Ire; In [(sg) +1-2 (sg> cos N¢]

N
— 2y (;) +C (1.18)

4‘7[‘80

This gives the equation of a potential field in which the contours are
circles close to the origin and at great distances from the origin. The

contours are also circles about the points (s = 8,,¢ = 2%) where k

assumes integral values from zero to N.
The three sets of circles can be fitted to the cathode, plate, and grid
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wires, respectively. To fit the cathode to one of the circles close to
and about the origin let s = s, <'s;. Then

V.=o0— 20N, <i> +c (7.19)

41!'80 Sy

To fit the large circles centered at the origin to the plate electrode
let s = s,>> s,. Then Eq. (7.18) becomes

Vy = Wy (3) Wy, () 4 (7.20)

41!’80 Sy 4meo

To fit one of the small circles about the point (s,,0) to one of the

grid wires let s = s, and ¢ = %’: where R, is the grid-wire radius. Then
g

_ 2, . NR,
Ve = Ime, In <2 sin %5, +C (7.21)

The three equations (7.19), (7.20), and (7.21) express the elec-
trode potentials in terms of the cathode and grid-wire charges. For
the W-plane representation the charges are those of one pie-shaped

section of angle %

As before, the amplification factor may be found by setting the
cathode charge and potential zero and taking the ratio of plate to nega-
tive grid potential. From this operation

Nln (ﬁ’)
p=— —— % _ (7.22)

In (2 sin NR”)
2s,

The way in which the amplification factor of a cylindrical triode varies
with the various electrode dimensions can be seen by inspection of Eq.
(7.22). As the number of grid wires is increased, the amplification factor
increases since N appears as a linear factor in the numerator and as a
logarithmic factor in the denominator. This is to be expected from
physical reasoning since an increase in the number of grid wires increases
the effectiveness of the grid in controlling the off-cathode gradient and
hence in controlling the current. The amplification factor increases as
the plate radius is increased, also to be expected since this makes the
plate less effective in controlling the current. The amplification factor
increases as the radius of the grid-wire cylinder decreases since the factor
in the numerator is more effective than that in the denominator. The
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amplification factor also increases as the grid-wire radius is increased.
Because of the way in which the factors combine, high amplification
factors may be obtained more readily with cylindrical-electrode structures
than with plane-electrode structures.

100

Fia. 7.6.—Equipotential contours in the cylindrical-electrode triode:
(a) grid beyond cutoff potential; (b) grid at cutoff potential; (c)
grid negative but above cutoff potential; (d) grid at zero potential;
(e) grid at “natural” potential; (f) grid at positive plate potential.

As in the case of the parallel-electrode tube it is desirable to express
the charges in terms of the electrode potentials. This is done by setting
the cathode potential equal to zero and solving for g¢. and g,.

sy _ Vs . NR,
. 2me IiV‘J In (S—) N In (2 sin %s, )] |
) ) 1 (%) 4 Lo (2 - NRa)]
N [ln (s,) In (s,) + N In <SC> In (2 sin %s,
e, [V,, In <§—) +V,In (2-”)]
Qe = — ‘ -
$p Se 1 Sp . NR,,)]
N [ln <s—p> In (;;) + N In (Sc) In (2 sin %,

(7.23)

(7.24)
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Potential Contours of a Cylindrical Triode. Contour representations
of potential are shown in Fig. 7.6 for various relative electrode potentials.
The contours of the cylindrical triode exhibit the same general charac-
teristics as those of the plane-electrode triode. In each case the con-
tours near any electrode have the same shape as the electrode. This
means that the contours about the cathode and just inside the plate are
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F1c. 7.7a.—Potential profiles in a cylindrical triode,
with grid at twice the cutoff value of potential.

circles concentric about the center of the tube. There are also circles
about each of the grid wires. The circles inside the plate have a non-
linear spacing in the case of the cylindrical triode. This is better under-
stood by reference to the potential profiles.

Potential Profiles of a Cylindrical Triode. Reference to the potential
profiles of Fig. 7.7 reveals several striking differences between the plane-
electrode and cylindrical-electrode cases. Although the profiles have the
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same general trend, they are characterized by different curvature char-
acteristics. In the plane-electrode case the profiles through and between
the grid wires coincided near the cathode and plate and were nearly
straight lines there. In the case of the cylindrical triode they do again
coincide but are curved instead of straight. The coincident profiles
near the plate tend to be logarithmic in shape, as would be the case in a
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Fig. 7.7b.—Potential profiles in a cylindrical triode,
with grid at the cutoff value of potential.

cylindrical diode. The same is true for the profiles near the cathode,
though in the particular case of the relatively high-mu tube shown, the
region in which the profiles coincide near the cathode is small because of
the short cathode-grid distance.

Below cutoff in Fig. 7.7a the cathode gradient of potential is negative.
At cutoff as in Fig. 7.7b it is zero, and it can again be seen that this
condition of zero cathode gradient s independent of the grid-cathode
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distance provided that the distance is not too small. In the particular
figure shown any larger cathode-grid distance would not change the
amplification factor of the tube. The remaining figures show the profiles
for a grid negative, but above cutoff in Fig. 7.7¢, for a grid at zero poten-
tial in Fig. 7.7d, and for an extreme condition of positive grid potential
in Fig. 7.7e.
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F1c. 7.7c.—Potential profiles in a cylindrical triode,
with grid 