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The perception of depth involves monocular and binocular depth cues.
The latter seem simpler and more suitable for investigation. Particularly
important is the problem of finding binocular parallax, which involves match-
ing patterns of the left and right visual fields. Stereo pictures of familiar ob-
jects or line drawings preclude the separation of interacting cues, and
thus this pattern -matching process is difficult to investigate. More insight
into the process can be gained by using unfamiliar picture material devoid
of all cues except binocular parallax. To this end, artificial stereo picture
pairs were generated on a digital computer. When viewed monocularly, they
appear completely random, but if viewed binocularly, certain correlated
point domains are seen in depth. By introducing distortions in this material
and testing for perception of depth, it is possible to show that pattern -
matching of corresponding points of the left and right visual fields can be
achieved by first combining the two fields and then searching for patterns
in the fused field. By this technique, some interesting properties of this
fused binocular field are revealed, and a simple analog model is derived.
The interaction between the monocular and binocular fields is also described.
A number of stereo images that demonstrate these and other findings are
presented.

I. INTRODUCTION

The question of how the two-dimensional projections of the visual
world that are supplied to the left and right eyes are matched and com-
bined to reveal the impression of depth is an extremely interesting one.
Because of an incorrect analogy derived from measuring distances with
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a range finder, it is commonly thought that this problem is rather triv-
ial. Admittedly, it is fairly simple to determine binocular parallax by
aligning selected portions of an object in the left and right fields of a
range finder and computing depth by trigonometrical calculations. The
intriguing part of this problem is to explain the remarkable ability of
humans to establish correspondence between complicated patterns in the
two monocular fields. This pattern -matching process is the one being in-
vestigated here.

It seems quite clear that patterns perceived in depth afford a promising
means for exploring pattern -matching. However, it is well known that
the perception of depth under familiar conditions is mediated by many
complex cues, both binocular and monocular, which are not easily kept
under the control of the experimenter. Thus, many previous explorations
have used stereo pictures of familiar objects or line drawings, preclud-
ing the separation of interacting cues. The investigation reported here
utilized patterns devoid of all cues except binocular parallax, by using
artificially created stereo images with known topological properties. Such
visual displays ordinarily never occur in real -life situations, and a digital
computer (with a video transducer at its output) was programmed to
generate them. When these unfamiliar pictures are viewed stereo-
scopically, peculiar and often unexpected depth effects can be seen. In
addition, the perception time of depth under such circumstances is some-
times in the order of minutes (instead of the few milliseconds required
for familiar stereo images). This slowing down of the visual process fa-
cilitated the present investigation without having much effect on the
stability of depth impression after depth was finally perceived.

This paper reports a study of binocular depth perception based upon
such presentations. In Section II the problem is posed explicitly and a
summary of the results is given. The intent is to provide the essence of
this investigation without going into details. The remaining sections are
arranged along the sequence of ideas presented in Section II, with the
intention of being more specific and of supplying more data. In the last
section the new technique of this investigation is evaluated with some
possible future applications.

A pair of Fresnel lenses has been enclosed on page 1161 of this issue of
the Bell System Technical Journal. They may be used for viewing the
stereoscopic illustrations in this paper. Directions for their use may be
found in the Appendix.

II. PROBLEM POSING AND SUMMARY OF RESULTS

Human beings exhibit great ability in utilizing binocular parallax to
establish the relative depth of objects in the visual field. This process
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involves finding horizontal shifts between corresponding point domains
in the left and right visual fields. The observer seems able to establish
this correspondence almost without effort or deliberation, even when the
fields differ in brightness and shape (due to reflections and perspective)
and in picture material (due to hidden objects seen by only one eye).
Thus, depth perception might be likened to the solution of a complicated
pattern -recognition problem.

This paper attacks the problem of depth perception as a pattern -recog-
nition problem and poses the following question: In determining binoc-
ular parallax do we first recognize monocular patterns in the left and
right fields and then fuse them (monocular pattern recognition), or do
we first combine the two fields in some manner and then perform all
further processings on the fused field [e.g., search for certain patterns
(binocular pattern recognition)], or do we utilize a combination of both
processes? This question is appropriate both for macropatterns (higher
organization of points into objects) and for micropatterns (a few adjacent
points). Figs. 1, 2 and 3 attempt merely to illustrate these three pos-
sibilities and do not necessarily have relevance to physiological systems.

Artificial stereo images were created by an IBM 704 digital computer.
Right and left images each consisting of 10,000 bright-
ness points, which were assigned one of 16 quantized brightness values
at random. In a peripheral "surround" region, the images were identical;
in a square -shaped central region, the right-hand image differed from the
left by a uniform horizontal displacement. When viewed monocularly,
the images appear completely random. But when viewed stereoscopi-
cally, this image pair gives the impression of a square markedly in front
of (or behind) the surround. By fusing the photographs in Fig. 4 (using
two lenses as prisms with a diameter of 2 inches or more and 10 to 18
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Fig. 1 - Depth perception by monocular pattern recognition.
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Fig. 2 - Depth perception by binocular pattern recognition.

inches focal length, such as those supplied with this issue) this depth
effect can be demonstrated.

Of course, depth perception under these conditions takes longer to
establish because of the absence of monocular cues. Still, once depth is
perceived, it is quite stable. This experiment shows quite clearly that
it is possible to perceive depth without monocular macropatterns. How-
ever, if binocular pattern recognition is the principal depth mechanism,
the same statement should be true for micropatterns.
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Fig. 3 - Depth perception by monocular and binocular pattern recognition.
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Fig. 4 - Stereo pair with center square above the background.

To study this matter, micropatterns in the stereo pair were drastically
altered by blacking out a regular pattern of points in the left field and
making the corresponding points white in the right field. Fig. 5 shows
the result of this process, where the perturbation grid consists of every
even point of every even line. The microstructure of the left and right
images is highly different, and yet the center square stands out clearly
from the surround.

In spite of the difference in microstructure of the left and right fields,
this experiment may not be decisive. It could be argued that the regular
perturbation grid is recognized monocularly in its random surround and
disregarded, and that the remaining, unaltered points in the two fields
possess the same microstructure. It was found, however, that the difficulty
of monocularly recognizing the perturbation grid could be increased

Fig. 5 - Stereo pair with superimposed unmixed perturbation grid.
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Fig. 6 - Stereo pair as in Fig. 5, but quantized into two levels.

greatly without increasing the difficulty of perceiving depth. For in-
stance, when the random fields are quantized into two levels (black and
white), the perturbation grid composed of black (or white) points seems
more difficult to find in this surround than in one composed of 16 bright-
ness levels (with many medium grays). The depth effect in Fig. 6 (two -
level quantization) can be obtained with the same ease as it can in Fig. 5
(16 -level quantization). This makes the assumption of monocularly rec-
ognizing the grid very improbable. Together with other evidence (to be
discussed in Section VII), it therefore suggests strongly that the two
fields are combined first and that the processing is done on the fused field.

Other experiments making use of similar techniques are described.
The results shed light on pattern recognition as it is involved in binocu-
lar vision. The problem of detecting certain regions in the fused binocu-
lar field in order to find depth was particularly investigated. According
to these findings, those point domains that are seen in depth (and thus
have to be detected in the binocular field) need not possess a Gestalt,
but the connectivity of the points must be preserved. In the above -de-
scribed regular perturbation grid, the unaltered points are still connected
along one-dimensional arrays (along every other line and column). But
if meshlike perturbation grids are applied (which leave the same per
cent of points unaltered as in the experiments that will be shown in
Figs. 20 and 21, but limit the connectivity of points to small subregions),
the depth effect is greatly reduced (as will be seen in Figs. 26 and 27).

As an interesting analogy to certain properties of the binocular field
the notion of the difference field is introduced (see Section IX). Although
this model is probably very naive, nevertheless the influence of various
perturbations on depth perception often can be predicted by realizing
some trivial properties of the corresponding difference field.



BINOCULAR DEPTH PERCEPTION 1131

The concluding experiments investigate the role of monocular macro -
patterns in depth perception. It is shown that their presence greatly en-
hances the depth effect; thus, monocular and binocular pattern recog-
nition can occur simultaneously as a mixed process. This statement seems
to be the final answer to the original problem.

III. BRIEF EVALUATION OF MONOCULAR AND BINOCULAR DEPTH CUES

Depth perception is an interaction of extremely complicated mental
processes. These processes utilize certain depth cues which usually are
divided into binocular and monocular depth cues. In Table I, a list of
these cues is given (without aspiring to completeness).'

Most of the monocular depth cues require a tremendous memory ca-
pacity; for instance, familiarity with perceived objects implies a catalog
of no mean extent.

Binocular depth cues seem simpler and more akin to data processing.
Binocular convergence and accommodation are very weak depth cues
(as tachistoscopic experiments' have shown), and they can be ignored
in favor of binocular parallax, which is apparently the principal binocular
cue. The invention of the stereoscope' strikingly demonstrated man's
ability to utilize binocular parallax in order to perceive depth - that is,
to determine correspondence between points in the left and right visual
fields and measure the horizontal displacements between them. The im-
portance of monocular depth cues in supplementing binocular depth cues
is great, as can be demonstrated by the reversed depth effect. It is well

TABLE I

Binocular Depth Cues

Binocular parallax
Convergence of eyes
Correlative accommodation (focusing)

Monocular Depth Cues

Linear perspective (such as converging railroad tracks)
Apparent size of objects of known size (which decreases with distance of observer)
Monocular parallax (change of appearance with change of observer's position)
Shadow patterns (the light -and -shade relations yielding relief)
Interposition (the superposing of near objects on far objects)
Changes due to atmospheric conditions (such as haze, blurring of outlines)
Accommodation (focusing on an object with one eye)
Retinal gradient of texture (decreasing size of texture elements with distance)
Retinal gradient of size of similar objects (rate of decrease of size of houses, fence

posts, telegraph poles, etc.)
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known that, by interchanging the left and right picture pair in a stereo-
scope, unfamiliar objects reverse their depth coordinates (far points be-
come near, convex surfaces become concave, etc.). For a familiar object
(e.g., a human face) the reversal of depth relationships usually does not
take place; that is, the monocular depth cues counteract the binocular
ones.

To cancel the effect of these involved monocular depth cues and concen-
trate on the binocular parallax, most work with stereoscopes uses line
drawings for visual stimulus. These drawings comprise simple dots, lines,
circles, etc., with different parallax shifts in the right and left fields, and
are practically free of monocular depth cues. A vivid depth effect can
still be obtained.

The above -mentioned tachistoscopic experiment deserves some addi-
tional explanation. A stereo pair consisting of simple line drawings (with
parallax shifts in nasal or temporal directions) was flashed for a brief
period (in the order of a few milliseconds). Viewing it stereoscopically,
subjects could tell almost without any error which of the drawings were
in front of or behind a reference plane. This experiment tells nothing
about the time required to perceive depth because of the long -persistent
afterimages, but it gives some insight into depth processes. First of all,
during the short exposure period no convergence or any other motion of
the eyes can take place. This fact excludes convergence and accommoda-
tion as important depth cues. Second, it demonstrates that during fusion
the left and right fields must be labeled, because otherwise the percep-
tion of near and far would be confused.

The following investigations are based on the possibility of separating
the monocular and binocular depth cues, and concentrate on the problem
of how binocular parallax can give the impression of depth.

IV. MACROPATTERN AND MICROPATTERN RECOGNITION; MONOCULAR AND

BINOCULAR PATTERN RECOGNITION

It seems clear that a basic aspect of depth perception is recognition of
binocular parallax, which consists of a parallax shift between correspond-
ing points in the left and right visual fields. The shift is parallel to the
base line (of the eyes); thus, the corresponding points in the left and
right fields must lie on the same horizontal line. Now, to determine the
exact amount of parallax shift, it is necessary to find the corresponding
points in the left and right visual fields. Because the base distance
(between the two eyes) and the focal length of the eyes (looking at the
stereo pictures at a given distance) are known, there is a simple trigo-
nometric relationship between the parallax shift and the actual depth.
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Thus, determining the parallax for every point is analogous to the re-
construction of three-dimensional space. So we come to the kernel of the
problem: How can we fuse points in the left and right fields and establish
correspondence between them in a stereo sense, when the two fields may
differ quite drastically from each other?

The left and right fields of a stereo pair can differ: (a) in brightness
(due to different reflections); (b) in perspective (expansion, rotation,
shift, etc., of point domains); and (c) by hidden parts (seen only by one
eye). Obviously, one is able somehow to find the points in the two fields
that belong to considerably different patterns. How is this equivalence
established? Do we recognize a face, a square, a few adjacent points,
etc., in the left and right visual fields separately and then pick up the
corresponding points, or do we first fuse the two fields and perform
certain pattern -recognition tasks on this fused field?

To make these questions more precise we introduce the following termi-
nology: Pattern recognition can be divided into two classes. First,
micropattern recognition concerns simple pattern organizations that take
into account some geometrical, topological characteristics in a point's
immediate neighborhood. Second, macropattern recognition is a higher -
order organization of several points. Points grouped together and recog-
nized as a face, square, number, etc., are examples of what is meant by
this conception.

The first half of another useful dichotomy is monocular pattern recog-
nition, which is performed on the visual field seen by one eye. Binocular
pattern recognition is performed on the fused field, which is a combina-
tion of the left and right monocular fields. It belongs to a special class
of processings that incorporate characteristics that intuitively are also
important in ordinary (monocular) pattern recognition. Nevertheless,
binocular pattern recognition need not necessarily be identical or even
similar to monocular pattern recognition.

With these distinctions in mind, we may ask: Is the basic mechanism
of binocular fusion a monocular pattern recognition (Fig. 1), or a binoc-
ular pattern recognition (Fig. 2), or a combination of both (Fig. 3)?
These possibilities multiply when we further differentiate between micro -
pattern and macropattern recognition in each case.

V. DEPTH PERCEPTION WITHOUT MONOCULAR MACROPATTERN RECOGNITION

In aerial reconnaissance it is known that objects camouflaged by a
complex background are very difficult to detect monocularly but jump
out if viewed stereoscopically. Though the macropattern (hidden object)
is difficuit to see monocularly, it can be seen. Therefore, this evidence is
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not sufficient to prove that depth can be perceived without monocular
macropattern recognition.

To investigate this problem, a special visual presentation was created
by means of the IBM 704 digital computer and a television transducer
developed in the Visual and Acoustics Research Department of Bell
Telephone Laboratories.4'5'6 A pseudo random number routine was pro-
grammed to generate random numbers in sequence according to a uni-
form probability distribution. These numbers were quantized in 16 levels,
which were written on tape and then translated by means of a digital -
to -analog converter and a special television scanner into 16 brightness
levels between black and white. (The quality of present scanning tech-
niques and of photographic processes limits the resolution in brightness,
and the final pictures have actually less than 16 identifiable levels.) The
television scanner used has the format of a two-dimensional rectangular
matrix of 99 rows, each consisting of 105 picture elements. Thus, a pic-
ture consists of 105 X 99 = 10,395 points, whose brightness assume
randomly any of the 16 values between the maximum black and white.

A left- and a right-hand stereo image are created by the above -men-
tioned technique in the following way:

In a peripheral "surround" region, the right- and left-hand images are
identical (i.e., the same random brightness points are copied in the two
pictures in the same locations); however, in a square -shaped central
region, the right image differs from the left by a uniform horizontal
displacement. Fig. 7 illustrates this procedure on a small matrix of 6 X
6 elements. The background points are indicated with small letters hav-
ing a range of eight letters (brightness values) taken at random. The
shifted square in the center has 2 X 2 elements (indicated by capital

abac d f
gehdcb
ef AGag
eaDBec
f c def e

dgchba

abacdf
gehdcb
eAGc a g

eDBdec
f cdef e

dgchba
Fig. 7 - Illustration of method by which stereo random pictures are generated.



BINOCULAR DEPTH PERCEPTION 1135

letters), and the parallax shift in the right field is one picture element to
the left.

The distinction between small and capital letters is only for illustra-
tion; they possess the same range and distribution, and therefore no
macropattern can be seen on any of these random images viewed sepa-
rately. Those points which are seen only by one eye [e.g., the right side
of the square on the right image (c, d)] are generated by the same random
number routine.

Fig. 4 showed a stereo pair of 99 X 105 picture elements, the hidden
central square having 40 X 40 elements, and the parallax shift (A) being
four picture elements. Both of these pictures, viewed separately, give an
entirely random impression, and only an experiment can determine
whether when fused stereoscopically the center square will be seen in
depth in front of (or behind) the surround.

The images presented can be fused easily by using two simple lenses
(of more than two-inch diameter and 10- to 18 -inch focal length) as
prisms. After fusion, there is a vivid depth effect. The square is in front
of the background plane, and the depth impression is very stable. It is
interesting that the depth effect does not appear at once, but appears
only after a fairly long time in comparison to that in familiar stereo
pictures. A curious learning process can be experienced; that is, the
time required to get the depth effect diminishes after repetitive trials.
The problem of what is really learned here is an interesting question in
itself and deserves further investigation.

The fuzziness of the edges of the square is mainly due to the fact that,
by chance, some of the brightness points along the edges of the square
can belong to both the square and the background, and there is a tend-
ency to interpret them ambiguously. The probability that two or more
adjacent points should become ambiguous is very low, so the fuzziness
of the edges is about ±1 picture element in width. (These rough edges
reveal that no "Gestalt organization" takes place in binocular fusion
though the square has a "good Gestalt.")

Fig. 8 demonstrates another stereo pair generated in the above way by
the computer, but now there are three planes: the background plane, a
central rectangle 60 X 40 in size and with a parallax shift of AI = 4,
and a third rectangle 20 X 40 in size and with a parallax shift of 02 = 8.
It takes some time to get the bigger rectangle in front of the background,
but it usually takes even more time to get the smaller rectangle in front
of the bigger one. After the three different planes of depth are perceived
they remain very stable. The same is true for the reversed depth effect.
If the left and right images are interchanged (thus the parallax shifts
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Fig. 10 - Stereo pair with two different planes of depth above background.

monocular macropattern recognition. We must now investigate this
same matter for micropattern recognition, if the flow chart for depth
perception is to be established. In Sections VI and VII this problem is
investigated.

VI. EFFECTS OF INTRODUCED PERTURBATIONS ON THE DEPTH PERCEPTION

OF STEREO RANDOM FIELDS

If we compare ordinary stereo photographs of real -life objects, the
left and right pictures can differ substantially without being difficult to
fuse.

In the present investigation we concentrate only on local perturba-
tions, such as differences in brightness, and ignore the problem of differ-
ences in perspective (expansions, rotations, etc.), which belongs to the
class of perturbations extending over the pictures according to compli-
cated laws.

The perturbations were introduced in only one of the two pictures,
leaving the other unchanged. The perturbations naturally have an effect
on the general appearance of the fused image and on the stability of
depth perception, but these are not really the effects we are interested
in. Our basic question was to find out whether or not, after a given type
and amount of perturbation, depth could still be perceived. In other
words, to what extent can the brain solve the problem of pattern -match-
ing after distortions are introduced?

In the following investigations some limitations are imposed on the
input material. The random stereo images contain only point domains
with a uniform parallax shift. The value of the parallax shift and the
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Fig. 11 - Stereo pair with gaussian noise perturbation (14-db signal to noise).

size of the center square is kept constant. The stereo pair before pertur-
bation is like Fig. 4, i.e., two 40 X 40 squares with A = 4.

The first type of perturbation introduced was the addition of gaussian
noise on one of the stereo images. In Fig. 11 gaussian noise is added to
the left picture. The signal-to-noise ratio (peak -to -peak signal to aver-
age noise) is 14 db. Nevertheless, the square is clearly visible in depth
though several ambiguous points on the background and the square give
rise to a lacy appearance. Even with a perturbation of 6 db signal to noise,
the depth effect can be obtained, although the image is markedly dete-
riorated. Some additional findings will be discussed in Section IX.

Another type of noise is introduced by quantizing one of the stereo
pairs in fewer levels than the other image. In Fig. 12 the left picture is

Fig. 12 - Stereo pair with quantizing noise perturbation.
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Fig. 13 - Stereo pair with blurred left picture.
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quantized only into two levels (black and white). A decision level in the
middle gray was chosen, and whenever a brightness point was greater
than this it was represented as white, otherwise as black. The right pic-
ture is not altered and has 16 brightness levels (actually, on the photo-
graph reproduced here, it has less, but there are more than four). This
perturbation, in effect, yields to a special type of noise, sometimes called
quantizing noise, and by fusing the stereo pair of Fig. 12 it becomes
apparent that even this disturbance does not cancel the depth effect.

The next experiment uses a random stereo pair similar to Fig. 4 (hut
both the left and right images are quantized into two levels), and the
left image is blurred (see Fig. 13). The blur is introduced in the computer
by taking each point of the original image and adding to it its surround-
ing points with equal weights. The blurred u i* brightness points of Fig.
13 were obtained according to the following operation:

8

Ui* = s E ,

j=0

using the notations in Fig. 14.

UL6 UL3 UL5

r 0 0 0
*

Lk= -§- 2_
UL2 UL0 Ult
0

j= 0

......
U17 U14 U18

Fig. 14 - Illustration of the method by which blurring was introduced.
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Fig. 15 - Stereo pair with positive pictures quantized into two levels.

This amount of blurring reduces the information content of the left
image considerably, but it is still enough to carry the depth information.
What is more, the eye is able somehow to see the whole as a sharp pic-
ture.

The following experiment is instructive in itself, and will be referred
to in Fig. 15 shows pair (as does Fig. 4), but
both left and right pictures are quantized into two levels. Depth can be
easily perceived. Now in Fig. 16 the left picture is identical to the left
picture in Fig. 15, but the right picture is the negative of the right
picture in Fig. 15. Thus, all points are complemented. Experimenting
with Fig. 16, we can conclude that it is not possible to fuse a positive and
a negative picture. In addition, strong binocular rivalry can be experi-
enced.

Fig. 16 - Stereo pair with positive and negative pictures quantized into two
levels.
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In these presentations, special care was taken to ensure uniformness
of the black and white values. (To avoid filter ringing, we used a "sam-
ple and hold" circuit without filter in the digital -to -analog converter).
The bars on the left side illustrate the effect of fusion and rivalry of
more extended uniform areas. This experiment shows that one of the
greatest perturbations we can introduce is to use maximum black or
white points in one field and their complements in the other.

VII. DEPTH PERCEPTION WITHOUT MONOCULAR MICROPATTERN RECOGNI-

TION

The perturbations introduced in the previous section were not drastic,
and so the corresponding micropatterns in the left and right images still
had some resemblance to each other. Nevertheless, it is apparent that
fusion is not the result of a simple point-to-point correspondence between
the stereo images. At least, certain coding operations that enhance the
resemblances between corresponding micropatterns are required before
fusion.

In the next experiments, the resemblance between the left and right
micropatterns is drastically reduced; despite this fact, depth can be per-
ceived in several situations.

In all the experiments that follow, the original stereo image is identical
to the one in Fig. 4, with either 16 or two brightness levels and 0 = 4.
Then, a regular grid is superimposed on the left and right random fields,
as shown in Fig. 17.

Every second point in every second line (shaded squares) is changed
to maximum black in the left field and to maximum white in the right
field. As shown, 25 per cent of the points are so treated, with the result
that these points cannot be fused. The rest is unaltered. This arrange-
ment of the perturbation grid removes similarities between the micro -
patterns of the stereo pairs in the following sense: There are not any corre-
sponding points in the left and right images which have an identical
neighborhood. At least one point is changed to its complement in any
micropattern 2 X 2 or greater in size. Fig. 5 shows such a stereo pair of
16 brightness levels having a black grid in the left field and a correspond-
ing white grid in the right field.

The grid cannot be seen monocularly, since it is embodied in the ran-
dom field. When Fig. 5 is viewed binocularly, however, the square jumps
out and is quite stable.

This experiment is still not decisive. One might argue that the re-
semblance between corresponding micropatterns is not completely re-
moved because, along every other horizontal or vertical line (these are
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Fig. 17 - Illustration of the method by which the unmixed regular perturba-
tion grid was generated.

unaltered), the micropatterns in the two fields are identical. A search-
ing operation might exist that finds in the left and right monocular fields
such identical one-dimensional arrays. To investigate this objection the
following experiment was performed:

The same regular perturbation grid of Fig. 17 was used, but with a
modification. Instead of uniformly blackening out all of the grid points
in the left field, these points were made black or white at random. Then,
the corresponding points in the right-hand field were assigned the com-
plementary values (see Fig. 18).

Fig. 19 shows a 16 -level random stereo field with this kind of mixed
regular grid. Under these conditions depth is not perceived. Because in
both perturbations (according to Fig. 5 and Fig. 19) the same points are
left unaltered in the left and right fields and the same points are also
perturbed, the fact that depth can be perceived in one case and not in
the other removes the above objection.

Even this experiment is not a final proof that monocular micropattern
recognition does not play some part in fusion. It might still be argued
that this striking difference between depth perception, using for pertur-
bation the unmixed grid (Fig. 5) or the mixed grid (Fig. 19), could be
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Fig. 18 - Illustration of the method by which the mixed regular perturbation
grid was generated.

explained by this hypothesis of monocular pattern recognition: In the
unmixed case the regular grid might be recognized monocularly by an
unconscious process, then disregarded, and the remaining random points
could now be fused monocularly without any difficulty. In the case of
the mixed grid, this grid is not apparent monocularly, so the removal of

Fig. 19 - Stereo pair with mixed regular perturbation grid.
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the grid points is not possible, and no fusion can take place. This hypoth-
esis seems very improbable. Even to suppose that the regular grid can
be recognized and removed unconsciously is unlikely, but, in addition,
the monocular recognition of certain regularities in random fields would
require extremely complex operations (e.g., autocorrelation technique
detects only the periodicities of the hidden regularities without deter-
mining the location of the grid points). Even assuming that such a proc-
ess exists, it certainly could find a regular grid composed of maximum
black (or white) points much more easily in a surround of random bright-
ness points of 16 levels (with many medium grays) than it could in a
surround having only black and white random points. To check this
assumption, we used the unmixed regular grid of Fig. 5 with only the
modification of quantizing the random fields into two levels. Fig. 6 shows
this case, with the result that depth can be perceived even sooner than
with 16 -level quantization, which disproves the assumption of monocu-
lar recognition and removal of the regular perturbation grid.

The stereo pair in Fig. 20 originally had a random field quantized into
two levels, and a checkerboard -like perturbation grid was superimposed
as illustrated in Fig. 21. Here, 50 per cent of the total points are comple-
mented, and the regular grid has a double periodicity. Even in this case
the depth effect can be easily obtained by fusing Fig. 20.

In these last experiments, the left and right images differ from each
other considerably and the monocular recognition of the perturbation
grid is made very difficult, yet we can still fuse the unaltered points with
ease. These results disprove the hypothesis of monocular pattern recog-
nition (both in the micro and macro sense), and suggest the second al-
ternative: that the two fields are first combined and all further process-
ings are performed on the fused binocular field.
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Fig. 21 - Illustration of the method by which the "checkerboard" perturba-
tion grid was generated.

VIII. THE CONNECTION BETWEEN BINOCULAR PATTERN RECOGNITION AND

DEPTH PERCEPTION

The demonstrations in the previous sections strongly suggest that,
under these conditions, the perception of depth utilizes certain process-
ings performed entirely on the fused binocular field. We intentionally do
not yet call these processings binocular pattern recognition, because we
must first investigate the feasibility of some processes that in ordinary
usage are regarded as simpler than pattern recognition.

It has already been shown that matching corresponding point domains
in the two fields does not require organizing these point domains into a
higher entity of monocular macropatterns or micropatterns. One might
think that the matching of corresponding point domains (instead of
corresponding patterns) could be achieved by searching for a best fit
according to some similarity criterion (e.g., maximum cross -correlation).
A simple way to find correspondence between points in the two fields is
to select a zone (of arbitrary shape) around any point in the left field
and search for a zone in the right field (having the same shape) that is
most similar to the left zone according to a given criterion. If this zone -
matching were performed for every point in the visual field and each
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point were assigned the parallax shift (or depth value) so obtained, the
final three-dimensional representation could be achieved. But such a
process cannot work. If the zone size is small, noise can easily destroy
any zone -matching; if the zone size is increased, ambiguities arise at the
boundaries of objects which are at different distances. For instance, this
process could never detect a one-dimensional array in front of a back-
ground plane, which is relatively an easy task for a human.

A more sophisticated version of this processing would be to vary the
shapes of the zones during the zone -matching: finding a best fit would
determine both the corresponding zones and their shapes. Now, in the
absence of monocular cues, to search for a best fit and simultaneously
vary the shapes in all possible ways seems a very inefficient and time-
consuming operation. In addition, some of our previous results make such
processes seem less than likely. For instance, in the case of the unmixed
perturbation grid (Fig. 17) - where depth was perceived - we could
imagine that a zone having the shape of a horizontal (or vertical) array
might be found. But the same process would also have selected the same
zone shape and properly matched these zones in the case of the mixed
grid (Fig. 18), although depth was not perceived in this case.

Thus, it seems difficult to find simple operations (avoiding the use of
pattern recognition) that give depth information consistent with that
abstracted by the human visual mechanism. However, it is possible to
demonstrate certain properties of point domains that are necessary in
order for them to be seen in depth. These properties incorporate concepts
such as connectivity, minimum size of a point domain, organization of
close or periodic parts in higher entities, etc. We intuitively associate
these notions with pattern -recognition operations. Therefore, our find-
ings suggest that, under certain conditions, the perception of depth de-
pends upon binocular pattern recognition. There is, of course, no evi-
dence that this pattern recognition on the binocular field is identical to
ordinary (monocular) pattern recognition. Nevertheless, an understand-
ing of binocular pattern recognition may well be revealing when the
broader aspects of pattern perception are considered. We will proceed,
therefore, to investigate certain properties of patterns in the binocular
field that yield depth effects.

The first question usually raised is this: Must the point domains pos-
sess any familiar pattern for them to be seen in depth? The answer is no.
Any connected point domain can be seen in depth regardless of the shape
of its boundary. The point domain should be connected at least in one
limension. This one-dimensional connectivity is a trivial property, which
avery object in real life possesses, and the following experiments show
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Fig. 22 - Illustration of the method by which a transparent center square was
generated above another square (using horizontal arrays).

that this important property is preserved in the binocular field. Fig. 22

demonstrates the way in which a random stereo field (Fig. 23) is gener-
with every even line (of 40 -picture -element length) having a paral-

lax shift of Ai = 4, and every odd line having one of 02 = 6.
The even and the odd lines each form a square that can be seen in

depth; the far one appears to have a regular surface; the closer square
seems transparent. Either horizontal or vertical connectivity yields the
same results. Fig. 24 shows such a case, where the pattern is composed of
vertical random arrays of 40 picture elements in length. Twenty even

Fig. 23 - Stereo pair with a transparent square (composed of horizontal ar-
rays) above the center square.
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Fig. 26 - Stereo pair with meshlike perturbation grid.

the depth effect is now greatly reduced. The only explanation offhand is
the fact that the perturbation mesh limits the connectivity to small,
separated subdomains. It is also interesting that these subdomains must
possess a critical size in order to be seen in depth. The investigation of
this quantitative aspect is not attempted at the present.
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UNALTERED RANDOM BRIGHTNESS
POINTS (OF 16 LEVELS)

BLACK AND WHITE POINTS OF
THE PERTURBATION GRID

Fig. 27 - Illustration of the method by which a meshlike perturbation grid
was generated.
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These findings might suggest that the patterns seen in the binocular
field are similar to contour lines, which consist of continuous one-dimen-
sional arrays and connect the points of equal parallax shift. In the next
section a simple analog model will he derived along these lines.

IX. THE DIFFERENCE FIELD AS A SIMPLE ANALOG TO THE BINOCULAR FIELD

A simple model is an aid in getting greater insight into properties of
the binocular field. The model that follows appears to have several prop-
erties in common with the binocular field as perceived, but on the whole
it is probably a crude approximation.

In the following we accept the assumption that binocular pattern
recognition is performed entirely on the binocular field in order to derive
depth information, and we remember that the image points belonging
to the left and right fields must be labeled. The binocular field f(L, R)
is a function of the left and right fields (L and R); thus, the set of all
points in the binocular field is a function of the set of brightness points
L(x, y) and R(x, y) in the monocular fields, where x and y are the coor-
dinates.

Now the value of f(L, R) at some point x, y must not be merely a
function of L(x, y) and R(x, y), but must in fact depend on the values of
L and R at other points. Thus, it must not be of the form

f(x, y) = f[L(x, y), R(x, y)]

because the crucial information, namely, to which field a certain point
originally belonged, would be lost thereby.

In the previous section it was shown that cross -correlation also cannot
be the combining operation between L and R. To derive a simple model
of the binocular field, we generalize the notion of cross -correlation, with
L and R being combined in the following way:

gk(x, y) = L(x, y) * R(x k, y)

where k is a positive number referring to a given horizontal shift to the
right and * refers to an operation (as yet unspecified). We call the set
of all gk functions (as k varies in a given range) the analog binocular field
and all further processings will he performed on this field. We call this
processing binocular pattern recognition without further specifying it at
the present.

To be more specific, we now choose a particular L * R by demanding
that it be a simple operation. Addition or multiplication seems less
favorable than substraction or division; this assumption is based on the
experiments with Fig. 17, where the perturbation with an unmixed grid
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gave depth effect, and Fig. 18, where the mixed regular grid did not.
Neither go = L(x, y) R(x, y) nor go = L(x, y) R(x, y) would discrim-
inate between Fig. 17 and Fig. 18 (being identical for both cases),
whereas both L(x, y) - R(x, y) and L(x, y)/R(x, y) could account for
the difference in depth impression.

Finally, we choose Dk(x, y) = L(x, y) - R(x k, y) as the simplest
operation at hand, and call Dk the difference field having a parallax shift
of k picture elements. The set of all Dk fields is an analog binocular field,
which is designated as the difference field D. In these investigations, we
limit k to integers in a given range; thus, the final model consists of a
finite number of difference fields of different parallax shifts. Now, de-
termining the binocular parallax is equivalent to finding patterns in
some of the Dk fields. We called this processing binocular pattern recog-
nition, and in this analogy we regard it as being identical to ordinary
(monocular) pattern recognition.

In the case of our regular presentation (that is, the random stereo field
containing a square with a parallax shift of four picture elements sur-
rounded by a background with zero parallax shift), the following dif-
ference fields will be obtained: (a) Dk for k 0 or 4 are random fields
where each brightness point has a triangular probability distribution
[this is the result of taking the convolution between the two uniformly
distributed random variables L and R, which gives the triangular prob-
ability distribution of (L - R)]; (b) Do will be zero for every point in
the background and will be random for every other point, that is, for
the square and for points seen only by one eye; (c) D4 will be zero for
the central square and random elsewhere. (Do and D4 are shown as the
left and right pictures in Fig. 28.) Here the zero difference corresponds

Fig. 28 - Difference fields Do and D4 for the case of Fig. 4.
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Fig. 29 - Difference fields Do and D4 for the case of Fig. 5.

to a medium -gray level, the maximum positive difference to maximum
white and the maximum negative difference to maximum black.

Only Do and D4 are presented, because all other difference fields con-
sist entirely of random brightness points. In the case of familiar stereo
pairs, the difference field Dk contains points of near -zero value forming
contour -lines having equal parallax shifts of k picture elements.

The next two pictures, in Fig. 29, show Do and D4 for the case of the
unmixed perturbation grid in Fig. 5. Through the perturbation grid, the
uniformly gray background (or square, respectively) is clearly visible.
Now, taking the mixed perturbation grid in Fig. 19, Do and D4 should be
very similar to the unmixed case. In the unmixed case the perturbation
grid is always black (or always white) for Do , which for the mixed case

Fig. 30 - Difference fields Do and D4 for the case of Fig. 19.
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Fig. 31 - Difference fields Do and D4 for the case of Fig. 13.

yields the same regular grid, but the grid points can take black and
white at random. The left picture in Fig. 30 shows Do in this case, and
it is now striking how well, in contrast to Fig. 29, the random central
square is hidden by this type of perturbation. The right picture in Fig.
30 is D4 for the mixed perturbation grid. Here, the grid points can take
black and white values with 25 per cent probability each, and gray values
with 50 per cent probability. Therefore, only 12.5 per cent of D4 is effec-
tively perturbed, but, because of the random appearance of this perturba-
tion, it is more effective in hiding the central square than is 25 per cent
perturbation of the unmixed grid. The uniform regions must be detected
both in Do and D4 to get depth.

In the next picture (Fig. 31), Do and D4 are presented for the blurred
picture of Fig. 13. The separation between the square and background is
clearly visible, which confirms the fact that depth is also well perceived
in this case.

By introducing gaussian noise perturbation in the stereo pairs (as in
Fig. 11), Do and D4 were determined. Subjective experiments were then
conducted to determine the amount of noise that cancels depth, and this
amount was compared with the noise needed to hide the square in the
difference fields.

The results of this experiment, using ten subjects, indicated that the
threshold of perceiving depth was 6 db signal to noise (with a very rapid
decline in depth perception below this value), and that the same thresh-
old value was obtained for the detection of the square in the difference
fields.

As was emphasized before, the difference fields are probably very
crude analogies for the binocular fields; nevertheless, it is worthwhile to
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mention the following fact: In the course of these investigations a great
number of different perturbations were introduced in the stereo random
fields. As a result of this process, the obtained stereo pairs could be rank -
ordered according to stability and time required to perceive depth. This
same ordering process was performed on the corresponding difference
fields based on the separability of the central square and its surround.
It turned out that the two established hierarchies were identical, except
for borderline cases. Naturally, such subtleties cannot be explained by
our simple analogy, especially if we consider the following: We per-
formed monocular pattern recognition on the difference field in order
to detect certain regions, while binocular pattern recognition was per-
formed on the binocular field to get depth. There is no evidence that the
laws of binocular pattern recognition are identical to ordinary (monocu-
lar) pattern recognition. (For instance, it is known that connectivity is
an important monocular pattern -recognition cue that seems to be even
more emphasized in binocular pattern recognition.)

Even the assumption of using a linear operation (subtraction) in the
model is naturally an oversimplification. In the next experiment we
demonstrate a nonlinear phenomenon of the binocular space. The per-
turbation grid in Fig. 32 is used. Here, every even sample in every even
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Fig. 32 - Illustration of the method by which the alternately mixed perturba-
tion grid was generated.
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Fig. 35 - Stereo pair with brighter center square.

being present. In this section it will be demonstrated, nonetheless, that
monocular macropattern recognition enhances depth perception. The
same random stereo images are used, but the average value of the bright-
ness points of the square is increased. Because of this, the random points
in the square are brighter than the surround, and the square can be also
seen monocularly. Fig. 35 demonstrates this case; it is apparent that the
depth effect is obtained much faster than it is with missing monocular
cues. According to this, we can suppose that depth perception is a com-
bination of binocular and monocular pattern recognition, as was sug-
gested in Fig. 3.

The actual processes of depth perception are, of course, much more
complicated than the simplified diagram in Fig. 3. The different blocks
are probably connected in many ways. Complicated feedback loops exist

Fig. 36 - Stereo pair with whiter left and blacker right center square.
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Fig. 37 - Stereo pair with left picture attenuated three times.

1157

between the binocular field and the monocular fields, between the binocu-
lar pattern recognizer and the depth perceiver, etc. Fig. 36 demonstrates
such a feedback between the binocular and monocular fields. Here, the
random points in the left square have a mean value 20 per cent less
than the surround and 20 per cent more than the surround in the right
field. By fusing Fig. 36 we can see the square in depth with apparently
the same brightness as the surround.

Fig. 37 shows another interesting case, where the left brightness values
are attenuated by dividing them with a factor of three. In this experi-
ment, A = 7 picture elements and the center square is only 30 X 30.
Depth is still easily perceived, according to expectation.'

Another even more complicated operation takes place in the monocu-
lar fields in connection with the binocular field. In Fig. 38 the left plc-

Fig. 38 - Stereo pair with right picture expanded by 10 per cent.
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ture is contracted 10 per cent in both height and width. Even with this
tremendous size discrepancy, fusion is possible and depth can be per-
ceived. The same is true for rotations. More than ±6 degrees rotation
from the base line can be tolerated and depth perceived.

The thorough investigation of these processes is the key to real under-
standing of depth perception. Some of the techniques developed here
might be useful in such further exploration.

XI. SOME PROPERTIES OF THE DEPTH PERCEIVER

In Figs. 1, 2 and 3 the pattern recognizers were followed by a block
called the "depth perceiver." This unit might have the function of co-
ordinating several pattern -recognition tasks and assigning depth to vari-
ous points. Even those points that have no parallax (seen by one eye
only) will be located in depth. When there is no contextual reason to
assign a particular depth to certain ambiguous point domains, there is a
general tendency to see them in the farthest plane.

This tendency can be demonstrated by fusing Fig. 39. Here, the am-
biguous random points lie in the place of the uniform black square seen
behind the surround. Some investigations of ambiguous stereo effects
(without parallax shift) were recently carried on with a similar result.8

The depth perceiver is particularly sensitive to any vertical shift
(perpendicular to the base line). Parallax shifts with slight vertical com-
ponents will not give rise to depth effects, probably because such shifts
cannot occur in life. It seems reasonable to assume that the depth per-
ceiver utilizes monocular depth cues too.

Naturally, all such divisions into different blocks are mere specula-

Fig. 39 - Stereo pair with uniformly black center square behind the random
foreground.
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tions until other psychological and physiological findings give adequate
support.

XII. CONCLUSION

The peculiar depth effects that have been demonstrated strongly sug-
gest that, under these conditions, depth perception is closely related to
pattern recognition processes on the binocular field. Someone could raise
the question: What is the merit of showing that binocular and not mo-
nocular pattern recognition is required in depth perception if the processes
of pattern recognition are still unknown?

To answer this, we must realize that pattern -recognition processes are
complex and highly nonlinear in nature. Because of this, it is very impor-
tant which operations are performed on the input patterns before recog-
nition. (For instance, upon performing the pattern -recognition task on
the difference fields of Fig. 29 and Fig. 30, the qualitative difference of
perceiving depth in the two cases is instantly apparent, which could not
be simply explained if the recognition had been performed on the mo-
nocular patterns of Fig. 5 and Fig. 19.)

Thus, the discovery of certain transformations of the input patterns
that facilitate the recognition task provides better understanding of the
laws of pattern recognition.

These experiments indicated also that, without monocular cues or
Gestalt, depth can be still perceived. In order to be seen in depth, the pat-
terns need to possess much simpler properties (e.g., one-dimensional
connectivity, adequate number of connected points, etc.) than we origi-
nally expected. These properties might be simple enough to be simulated
by present computer technology. Thus, the findings of this study might
give a new impetus to the development of devices that will determine
depth automatically.

The technique of stereo random fields also has several advantages in
a great variety of possible applications. In binocular fusion studies, the
problem of binocular rivalry sometimes makes investigation cumbersome.
These stimuli have a self -checking feature against binocular rivalry;
namely, as long as depth is seen, no rivalry can be present.

The long time constants needed to perceive depth in certain presenta-
tions indicate that depth perception depends very much on the input
material. From the order of a few milliseconds (required for simple stereo
pictures), we can easily increase the perception time to the order of
minutes. This slowing down of a process can be very advantageous in
investigations of learning, pattern recognition, etc.

The stability of the random stereo fields is also very useful. Because
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Fig. 40 - Illustration showing how presented stereo pictures should be viewed.

nearly all points carry depth information, the stereo image is very stable
and points with greater parallax shifts than in the ordinary case can be
fused.

Such stimuli could also possibly be used in apparent motion studies.
This technique was found to be a useful tool in color studies to examine

the role of color in depth perception.
But perhaps the most useful property of this method is the elimina-

tion of context and higher organization from the input stimulus, which
makes it possible to isolate and study less formidable problems.

--2ND PLANE

-15T PLANE

BACKGROUND

DEPTH DEPTH

Fig. 41 - The subjective illusion seen when Fig. 8 is viewed stereoscopically.
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APPENDIX

The presented stereo pictures can be fused if they are viewed through
a pair of lenses used as prisms, as shown in Fig. 40. The focal length of
the lenses should be 10 to 18 inches and their diameter around 11 inches
or more, as is the case with the ones accompanying this paper. Some-
times it takes several minutes to get the depth effect.

0
If fusion of the left and right images cannot be obtained y, a stiff

paper or cardboard septum to 14 inches long) placed b ween the
two stereo pictures and perpendicular to the page will probably elim-
inate the difficulty (see Fig. 40). Viewers who ordinarily wear glasses
should not remove them when using thetlenses.

For example, the subjective illusion that is-een whe-riFig. 8 is viewed
stereoscopically is illustrated in Fig. 41.

Paste envelope here,
flap down and
to the right
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Models for Approximating Basilar
Membrane Displacement

By J. L. FLANAGAN

(Manuscript received April 1, 1960)

Three analytical models are developed for estimating the displacement
of the basilar membrane in the human ear when the sound pressure at the
eardrum is known. Frequency -domain data, derived experimentally by
Bekesy, are Fourier -transformed to examine the impulse response of the
membrane. Time -domain and frequency -domain responses of the models
are compared with the experimental data. Excitation of the models by peri-
odic impulses is considered. Calculations of membrane displacement are
made for excitation by positive pulses, and by alternately positive and nega-
tive pulses. Applicability of the results to the perception of pitch is indicated.

I. INTRODUCTION

In the course of developing an hypothesis to account for results ob-
tained in two experiments on pitch perception,' ,2 it became desirable to
have a tractable model from which the displacement of the basilar mem-
brane at a given point could be estimated from a knowledge of the sound
pressure at the eardrum. This report describes the results of an effort to
deduce such a model.

II. MECHANICAL PROPERTIES OF THE MIDDLE EAR AND COCHLEA

To recall facts and establish a frame of reference, a simplified sketch
of the peripheral mechanism of hearing is shown in Fig. 1. The cochlea,
actually wound in a snail -shell-like spiral in man, is sketched here un-
rolled and stretched out. It contains the perilymph fluid and is parti-
tioned longitudinally by a duct formed by Reissner's membrane and the
basilar membrane. The duct, roughly triangular in cross section, is filled
with another fluid, endolymph. Resting upon the basilar membrane
within the cochlea duct is the organ of Corti. This organ, immersed in
the endolymph, serves as the termination of the auditory nerve. Bekesy3
has established that the basilar membrane and Reissner's membrane

1163
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Fig. 1 - Schematic drawing of the human ear.

HELICOTREMA

vibrate cophasically when the ear is stimulated by sound in the lower
range of audible frequencies. Because Reissner's membrane does not
enter into the present development, only the basilar membrane is
sketched in the schematic diagram.

A sound wave impinging on the ear is led down the external canal
and sets the drum into vibration. The vibration is transmitted by the
ossicular chain to the cochlea, where the piston -action of the stapes
foot -plate produces a compressional wave in the fluid. Because of its
distributed mass and elastic and viscous constants, and because of the
pressure release at the round window, the basilar membrane vibrates
selectively according to the frequency content of the stimulus. Displace-
ment of the basilar membrane causes pressure to be exerted (by another
membrane in the cochlea duct, the tectorial) upon the hairs emanating
from hair cells in the organ of Corti. When the hairs are sufficiently de-
formed, electrical discharges are produced in the nerve fibers.

The mechanical properties of the cochlea have been studied in detail
by Bekesy.4 He found that, when the stapes is driven sinusoidally with
constant amplitude of displacement, the amplitude of displacement of

points along the low -frequency (or apical) end of the basilar membrane
varies with frequency as shown in Fig. 2. The peak displacement of
each point is normalized to unity. His measurements' of the difference
in phase between the displacement of the stapes and the displacement of
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points along the membrane are sketched in Fig. 3. In addition to these
data, Bekesy found' that, when the sound pressure is constant at the
eardrum, the magnitude of volume displacement of the round window
is nearly constant up to around 2000 cps. To the extent that the peri-
lymph is incompressible and the walls of the cochlea rigid, the volume
displacement of the round window is equal that of the stapes footplate.

Data reported by Zwislocki6 and by Bekesy5 indicate that, for fre-
quencies below 1000 cps, the over-all impedance of the middle ear and
cochlea is predominantly elastic, owing principally to the compliance of
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Fig. 3 - Relative amplitude and phase of basilar membrane displacement as
a function of distance along the membrane (after Bekesy3).
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the middle ear air cavity, the round window membrane and the liga-
ments retaining the ossicles and drum. For these frequencies, therefore,
the displacement of the stapes is essentially proportional to, and in
phase with, the sound pressure at the eardrum. At frequencies above 1000
cps, the inertial and viscous elements of the middle ear and cochlea
become more important, and the velocity of the stapes apparently may
lag in phase the pressure at the drum by as much as r/2 radians or more
(hence, the stapes displacement may lag the pressure by as much as it
radians or more). For frequencies above about 1000 or 2000 cps, the
indications are that amplitude of stapes displacement begins to decrease
appreciably for constant pressure at the eardrum. *

Because the physical dimensions and mechanical properties of the
basilar membrane change along its length (for example, the membrane
increases in width, thickness and compliance going toward the apical
end), the volume displacement of the membrane per unit length, per
unit pressure across it, changes with distance from the stapes. For a
constant amplitude of stapes displacement, therefore, the amplitude of
the maximally displaced point is not constant with frequency. Bekesy4
gives the ratio of amplitude of volume displacement of the stapes to
amplitude of the maximally displaced point, as shown in Fig. 4. These
data show that, for frequencies below 1000 cps, the amplitude of the

* Zwislocki's data suggest a decrease of the order of 12 to 18 db/octave; Be-
kesy's average data seem to agree roughly with this. In one preparation, however,
Bekesy obtained a fall of about 30 db/octave.
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maximum increases approximately 4 or 5 db/octave. At around 1000 cps
the curve flattens off.

In measurements of the absolute value of membrane displacement,
Bekesy finds the maximal displacement at 200 cps to be 10-4 cm at the
threshold of feeling (about 140 db referred to 0.0002 dyne /cm2) and,
through extrapolation, 10-11 cm at the threshold of hearing.* For a given
frequency and a given point on the membrane, Bekesy's data indicate
that the mechanical vibrations of the stapes and basilar membrane are
essentially linearly related until sound pressures above the threshold of
feeling are reached. There is evidence, however, that the ear is capable
of producing perceptible subjective components at sound levels less than
this value.

As stated at the outset, we desire an analytical relation for estimating
the basilar membrane displacement at a given point from a knowledge
of the sound pressure at the eardrum, valid at least in the frequency
range below 1000 cps. It is in this range that the stapes displacement is
in phase with, and proportional to, the pressure at the drum. The experi-
mental data that the model must describe are the frequency -domain
data just discussed. The approximation problem may, of course, be ap-
proached in either the time or frequency domains; usually it is helpful
to maintain some insight in both domains. Consequently, we would
first like to inquire as to the form of the displacement response of a point
toward the low -frequency end of the membrane to an impulse of pres-
sure applied at the eardrum.

III. INVERSE FOURIER TRANSFORMATION OF BEKESY'S DATA

The phase data of Fig. 3 are at best meager, but they are most defini-
tive for the 200 -cps point. Let us, therefore, take the 200 -cps point for
a sample calculation. Deducing the phase response from Fig. 3, t and
taking the amplitude response from Fig. 2, we may plot the data as
shown in Fig. 5.$ Let us make two assumptions about the system with
which we are dealing: first, the impulse response, h(t), of the point
under consideration is Fourier transformable (i.e., f h2(t) dt < oo );
and second, the system is a stable one having no complex poles with real

* The diameter of a hydrogen atom is about 10-8 cm.
t Because peak displacement increases at around 5 db/octave, the possibility

exists that the displacement of the point that responds maximally to a given fre-
quency might not be the greatest displacement of the membrane for that fre-
quency. However, the frequency response of a given point generally rises at a rate
greater than 5 db/octave in the vicinity of its resonance; consequently, the great-
est displacement occurs essentially at the maximally responding point.

$ As closely as I can determine from the Akustische Zeitschrift data, the maxi-
mum displacement of the "200 -cps point" falls at about 210-220 cps.
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parts equal to, or greater than, zero (i.e., the system exhibits no output
until an input is applied, and the final value of the impulse response is
zero).

Taking the data of Fig. 5 as the magnitude, I H(co) I, and phase, cI)(co),

respectively, of the Fourier transform, H(w), of the impulse response,
h(t), we wish to calculate the inverse transform:

h(t) = -1 f H tho. (1)
2.7r.

In Cartesian form, H(w) is
H(w) = Re H(w) j Im H(w),

where

Re H(w) = I H(w) cos 01)(co),

Im H(.,) = I H(w) I sin cl)(co).

Because Re H(w) is an even function of co and Im H(w) an odd func-
tion, (1) reduces to:

h(t) = 1 l Re H(co) cos cot dco -
1
- Im H(co) sin cot dcor°

7 0 7 0

= hi(t) h2(t),

(2)

(3)
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where hi(t) is an even function of time and h2(t) an odd function. Be-
cause of the assumptions regarding stability [i.e., h(t) = 0, for t < 0]:

hi(t) = -h2(t) for t < 0,
and

hi(t) = h2(t) for t > 0. (4)

Hence (3) can be written:

h(t) = 2 f Re H(co) cos cot do) for t > O. (5)
0

To calculate h(t), then, only Re H(w) is needed. For the data of Fig. 5,
Re H(w) is plotted in Fig. 6.*

In the absence of an analytical specification of Re H(w), we have
graphically evaluated the integral (5) by using the approximation:

40

h( t,) = E Re H(w.) cos wtaiw, (6)

where:

Can = nwo

wo = (270(10) radians per second

Ow = (27r)(10) radians per second,

ti = (0.4 X 10-3)i, i = 0, 1, 2, , 27.

* Re H(w) was obtained from a large linear plot of I H(w) I and 1(w), not from
a semilog plot such as Fig. 5. Estimates, where needed (such as end points of
curves), were made on the linear plot.
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The impulse response computed by the approximation (6) is shown in

Fig. 7.
One notices that the graphical transform yields a nonzero value at

t = 0, and suggests a nonzero response for t < 0. The reason for this
might be one of several: (a) the phase and amplitude data of Fig. 5 may
not be compatible to satisfy the assumptions made about the system;
(b) the data of Fig. 5 suggest that the amplitude response may be band -

limited, and it was so treated in the computation; (c) the quantization
used in (6) may introduce an error in the calculation of h(t).

Of these three possibilities, the first two seem the more likely sources
of discrepancy. The phase data in Fig. 3 suggest that at very low fre-
quencies the phase difference between the displacements of the membrane
and stapes is essentially zero. We know, however, that the scalas vestibuli
and tympani communicate at the helicotrema. Consequently, a constant
displacement of the stapes cannot sustain a constant displacement of
the membrane. This argues, therefore, that the amplitude of membrane
displacement must go to zero as zero frequency is approached, and the
frequency -domain transform of displacement must have at least one
zero at the origin of the complex frequency plane. If this is the case, and
if the transform is minimum phase, the phase response near zero fre-

quency must be at least r/2. Intuitively, too, it appears that constant
displacement near the helicotrema requires constant velocity of the
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Fig. 7 - Impulse response of the point on the basilar membrane characterized
by the amplitude and phase data of Fig. 5. The inverse Fourier transform is ob-
tained by graphical integration of the experimental frequency -domain data.
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Mapes, arguing again for a derivative relationship between displacements
at low frequencies. It seems likely then, that, as low frequencies are ap-
proached, the phase of the membrane displacement begins to lead that
of the stapes and at zero frequency goes to 7r/2. Measurement of the
phase relations at low frequencies undoubtedly is difficult, owing to
minuscule displacement of the membrane.

In connection with possibility (b), the amplitude data in Fig. 2 sug-
gest that the membrane displacement is essentially band -limited and di-
minishes to zero for frequencies below about 0.05 and above about 2.0
times the resonant frequency. This should be interpreted, however, with
an appreciation of the magnitudes of displacement being observed (on
the order of 10-4 cm)and the precision attaining thereto. In the graphical
transformation, an effort was made to follow the experimental indications
as exactly as possible. The amplitude function was treated as mathemati-
cally band -limited and was considered to have zero value for frequencies
above 400 cps and below 5 cps. This probably is not realistic for the
physical system.

Nevertheless, the inverse transform of the experimental data will pro-
vide a helpful guide for appraising the responses of the models to be de-
veloped in the next section.

IV. MODELS FOR BASILAR MEMBRANE DISPLACEMENT

A model for calculating the displacement of the basilar membrane at
a given point must fit the frequency -domain data shown in Figs. 2 and 3.
The response curves for various points along the membrane are not un-
like those of bandpass filters having relatively sizable in -band delays.
The peak values of the curves of Fig. 2 have been normalized to unity,
but, as we recall from the previous discussion and from Fig. 4, the peak
response rises at about 5 db/octave in the frequency range up to 1000
cps. Above about 2000 cps, the peak response probably falls at something
around 12 db/octave, and the stapes displacement is no longer in -phase
with the pressure at the drum.

If the data of Figs. 2 and 3 are normalized with respect to the fre-
quency of the maximum response, the curves of Figs. 8 and 9 are ob-
tained, respectively.* Except for the 150 -cps case, the phase curves are
estimated by reading points vertically from Fig. 3. The 150 -cps curve
is a single complete phase response published by Bekesy.3

* I have replotted these data as carefully as possible from the published curves
of Bekesy. In reviewing the literature a small discrepancy appears between the
amplitude curves published in Akustische Zeitschrift and those which appear later
in the Handbook of Experimental Psychology. I judged this to be due to rounding
and smoothing in redrafting the latter, and hence gave more weight to the earlier
data.
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One notices that, except for the 100 -cps case, the amplitude curves fall
close together and represent resonances whose bandwidths are essentially
constant percentages of the resonant frequencies (i.e., constant "Q").
The 100 -cps curve is slightly broader than the others. The lower skirt
of the amplitude curves rises at about 6 db/octave, while the upper skirt
falls at approximately 20 to 30 db/octave. The total phase change in
passing through a resonance is of the order of 3r. The phase curves for
the lower frequency points have the greater slopes (i.e., dcl)/dco) inside
the passbands, and the delay for the lower frequency points is therefore
greater. (This is, of course, as it should be, since the time required to
propagate energy from the eardrum to points near the apical end of the
membrane is greater than it is for points lying at the basal end.)

As a minor digression, it is interesting to notice that the slopes of the
phase curves in the vicinity of resonance indicate delay values about
twice as large as the transit times measured by Bekesy.4 Measuring the
slopes of the phase curves in this region ( again, from the linear plot)
yields:

Resonant Frequency, f Phase Delay, thisidw 2rf(dOldw)

100 cps 11.8 msec 7.4 radians
150 7.2 6.8
200 6.4 8.0
300 4.5 8.5

These times represent the delays of the frequency components containing
the greatest portion of the stimulus energy, and do not represent the
times at which a response first appears (i.e., transit times). Looking
back at the graphically determined impulse response for the 200 -cps
point (Fig. 7), one sees that the greatest displacement occurs at approxi-
mately 6.3 milliseconds. The time at which the response essentially be-
gins is of the order of 2.5 milliseconds, which is in close agreement with
Bekesy's measurements. It is also interesting to note in passing that
the product of resonant frequency and delay near resonance (i.e., the
third column) is roughly constant. This fact will be utilized in adjusting
the phase response of the models.

To return to the question of fitting a function to the frequency -domain
data, at least for the frequency range below 1000 cps, let us consider a
model whose Laplace transform is the ratio of rational polynomials.
There will be, of course, an infinite number of possibilities for fitting the
data, depending upon the criterion and precision of fit. We would, how-
ever, like to have an approximation that is both computationally simple
and hopefully adequate to explain certain subjective results in pitch -

matching. Any criterion of fit must ultimately have its roots in psycho -
acoustic phenomena. Since such cannot be specified at this time, it would
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seem that conventional curve -fitting techniques and least -squares cri-
teria might be discarded in favor of a basically intuitive approach.

The skirt slopes of the amplitude curves suggest a frequency function
that has a simple zero in the vicinity of the origin of the complex fre-
quency plane, and a denominator whose degree is about four or five
greater than that of the numerator. The relationship between the real
and imaginary parts of its complex conjugate poles ought to be such as
to maintain the constant -percentage bandwidth character of the re-
sponses. The amplitude at resonance ought to vary in the manner pre-
scribed earlier, and the phase and delay characteristics presumably
should be representative of the experimental data. (The question of
phase at low frequencies will necessarily receive some further considera-
tion.)

As one of the simpler possibilities for approximating the amplitude
and phase data, consider a function having two pairs of synchronously
tuned complex -conjugate poles, one negative -real axis pole, and one
negative -real axis zero near the origin. Adorned with necessary con-
stants, such a function has a Laplace transform:

Fi(s) = c104+r e

ST

[(s 2
e (7)

2S ± a) p

where:
c1 is a positive real scale factor which yields the appropriate absolute

value of displacement;
#4÷' is a factor that produces the proper variation in amplitude of reso-

nance with resonant frequency (if, as previously suggested, a figure of
5 db/octave rise in the resonant peak is accepted, then r = 0.83);

CsT is a delay factor (T seconds) to bring the phase response into
line with the experimental phase data.

The function has second -order poles at s = -a ± j#, a simple pole
at s = -7 and a simple zero at s = - e. By virtue of the constant -per-
centage bandwidth properties of the membrane resonances, we let 13 and

a be related by a constant: # = ka. The value of the function for real
frequencies (i.e., s = jco) is:

F1( = e1041' (6 4: sic')
-1- jco) [(32 /32 2\ 20 ejw7. (8)

w)



BASILAR MEMBRANE DISPLACEMENT MODELS 1175

As with the experimental data, it is convenient to work with frequency
normalized. Let r = (co/13).* Then (8) becomes:

[
1

-

\'13

Fi(i0 = co' (/ 7,1 r2)+J
cior. (9)

One notices that fitting the phase and amplitude data of Bekesy near
to zero frequency presents somewhat of a dilemma (as it does with all
other minimum -phase functions that we have considered). To diminish
the amplitude response at low frequencies, one needs the zero of the
function close to the origin. Although the phase at zero frequency ob-
viously remains zero so long as the function zero is in the left -half plane,
the phase "bulges" appreciably positive at low frequencies if the zero is
placed too close to the origin. By empirical adjustment of the parame-
ters, a compromise position was obtained for the zero, and corresponding
values for k, T and -y were deduced. The values arrived at are:

k = 2.0,

37T =
4-tj

seconds.

(10)

In order to match phase responses, one notices that the delay, T, is
taken to vary inversely with the resonant frequency, /3. For the constant
chosen, the added delay at 100 cps, for example, is approximately 4 milli-
seconds. This delay, in conjunction with the w -dependent delay, is in
reasonable agreement with Bekesy's measurements of transit time down
the membrane.

A plot of

I /IVA") I

Fi(irmax)

where tmax is the frequency of peak displacement, is given in Fig. 104'
The hatched region represents, for comparison, the variability among the

* This normalizes real frequency with respect to the imaginary part of the pole
frequency. The latter is not necessarily the same as the frequency of maximum
response.

t Note that for the present parameters the resonant peak does not fall exactly
at = 1.0, but more nearly at r = 0.95.
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200, 400 and 800 cps curves of Fig. 8. A plot of L FI(B-) = c1)1(A-) is

given in Fig. 11.
If the experimental phase data at low frequencies are not taken too

seriously, and the phase of (9) allowed to approach 7/2, then the zero
might be placed at the origin (i.e., e = 0). The amplitude response for

this situation is shown by the dashed portion of the I Fi(j0 I curve in
Fig. 10.

At high frequencies, function (9) attenuates as r--4, or at about 24
db/octave. Some of Bekesy's data indicate attenuations slightly greater
than this. As another possibility, therefore, a function having a simple

zero at the origin and third-order, complex -conjugate poles was con-
sidered. Its Laplace transform is:

F2(s) = czeEr (11)8 T

[( + «)2 ± #2]3

where the constants are defined in a manner similar to (7). The real fre-
quency response in terms of normalized frequency is:

F2( jr
1 2 3 -

D- iroT
2) = c23T

1 + ,; +Jo-
(1 )

k-

. ]

A reasonable fit to the resonant bandwidth is obtained for k = 2.0 with
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07' = 3w/4, as before. For these values, a plot of I F2(jr) I/I F2(jr.)
is given in Fig. 10 and L F2(j?-) is given in Fig. 11.

With a thought toward inverse transformations for the approximating
functions, one function that provides a respectable fit and has a particu-
larly simple inverse transform is the following:

2
s2 + 2as ± (a2

_sT (13)
F3(s) = c3,34+r

[(s +a) + 1393

Or, in terms of the normalized real frequency,
( 1 1

- -I-

.2) _L

3.

2

lc
F3(it) - e-gsr ( 14 )

[(I-k2+
1 - +j2

This function has simple zeros at s = a( -1 E k/ 1/5) and third -
order poles at s = a( -1 ± jk). The function obviously becomes non -
minimum phase for k > Va. Because the separation between zeros is
2k/Va, the zero at s = a(-1 k/V3) has the greatest influence on
amplitude response for the minimum phase conditions (i.e., k
For values of k = 1.7 and 13T = 37/4, the amplitude and phase responses
of (14) are shown in Figs. 10 and 11, respectively.
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V. INVERSE TRANSFORMS OF THE MODELS

It is pertinent to examine the inverse transforms of the models (7),
(11) and (13) (i.e., their responses to unit impulses applied at t = 0)
and to compare these responses with the impulse response obtained for
the experimental data (Fig. 7).

Inverse transforming (7) is a particularly cumbersome procedure. In
the interest of conciseness, the details of the inverse transformations for
all the functions are relegated to the Appendix. Only the results will be
used here. For function Fi(s), the impulse response turns out to be:

f1(t) = c101+71[0.033 0.36013(t - T)]e-l'(')/2 sin (3(t - T)

+ [0.575 - 0.3200(t - T) ]CI3(e-T)/2 cos 0(t - T)

- 0.575 e -'9(e-7)1 for t T

Mt) = 0 for t < T,

where T is the previously specified delay.
In a similar manner, the inverse transform of F2(8) is:

f2(t)c0

8 2

[13(t - T)]2 /3(t - 71) e--tio-T)/2 -

-[0(t - T)]2 23(t - T))e-P0-7112 cos /3(t - T)]

f2(t) = 0

for t 11,

for t < T.

(15)

(16)

As indicated earlier, the inverse transform of F3 ( s) is particularly
simple, this being the principal reason for presenting its fit. Its inverse is:

.f3(t) = C3

6+r6
-TA2eso--79/1.7 sin i3(t - for t T

(17)

/3(t) = 0 for t < T.

For comparison purposes, the impulse responses fi(t), f2(t) and f3(1)
are plotted in Fig. 12, together with the graphically determined re-
sponse of Fig. 7. In this plot relative delays have been equalized to com-
pare waveforms. Because the scale constants c1 , c2 and c3 have not been
taken into account, the amplitude scales for the different curves are rela-
tive. The curves have been plotted, however, for approximately equal
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peak -to -peak values. The fits to the experimental data do not seem un-
realistic, in view of the questions raised earlier. One notices that, in most
instances, the positive impulses produce the greatest deflection in the
negative direction. Equalization of the delays to bring the curves into
coincidence were such as to make the absolute origins (#t = 0) for each
response the following number of radians to the left:

Function Radians to Absolute Origins

200 cps, experimental 2.3
fi(1) 1.9
f2(t) 2.4
f3(t) 1.5

Of the functions displayed, f2(t) and f3(t) appear to fit the graphically
derived impulse response better than ft(t) does. In the frequency domain,
however, Fi(s) appears to afford the slightly better fit.

VI. RESPONSE OF MODELS TO PERIODIC IMPULSE EXCITATION

If an excitation of periodic unit impulses is delivered to a linear sys-
tem, the periodic response is a doubly infinite, linear superposition of
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responses to single impulses, or:

g(t) = - nr), (18)
11 = -

where f(t) is the response to a single impulse, applied at t = 0, T is the
period of excitation and g(t) is the periodic response. If F(w) is the
Fourier transform of f(t), it can be shown that:

g(t) = ± 1 F(nwoeinuot,
n =-co T

(19)

where coo = 27r/T is the fundamental frequency of excitation. Because
g(t) is a real function of time for a physically realizable system, the am-
plitude spectrum is even; i.e., I F(w) I = I F( co) I ; and the phase spec-
trum is odd; i.e., (DM = --(13( -co). Relation (19) can therefore be
written:

go) ..
27r

}/i1(0) I + 2 E Fou,,o) cos Ewa + 4,(nwo)] (20)
_,

00

By way of example, let us look at the response of function F1(w) [see
(8)] to an excitation of periodic impulses. Suppose we first take the case
where Fi(co) specifies a point on the membrane tuned to the fundamental
frequency of excitation. Let the resonant frequency of the point be
f3 = coo. Then r = w/wo = moo/coo = n and Fi(nwo) = Fi(t- = n), and
the periodic response is:

gx(t) =

FIQ = 0) + 2 I FM* = n) I cos [ni3xt = n)] r.

As determined in previous calculations, values of F1(r) arc:

ft
F1(31
ciftzr

0(0, degrees

0 0 0.06

1 1 0.67 - 248
2 2 0.08 - 534
3 3 0.01 - 706

(21)

Obviously, in this case the displacement response of the membrane is
principally fundamental, the second harmonic being slightly more than
one -tenth the amplitude of the fundamental. A plot, on a relative ampli-
tude scale, of these first four terms is shown in Fig. 13(a).
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Fig. 13 - Displacement responses of model Fi(s) to excitation by periodic im-
pulses. The three conditions represent: (a) the displacement of a point on the
membrane resonant to the fundamental frequency, wo ; (b) the displacement of a
point resonant to the second harmonic; (c) the same as (b) except with the funda-
mental frequency component eliminated from the stimulus.

Consider next a point on the membrane tuned to the second harmonic
of the stimulus (i.e., 13y = 2coo = 2(x). Then = w/2wo = nco0/100 = n/2
and Fi(nwo) = Fi(r = n/2). In this case:

=

Oy f
= 0) + 2 E 171 = cos [n t (DI@ = 712)1

(22)
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Functional values for this case from previous computations are:

it
pia.)
cipyr

0(r), degrees

0 0 0.06 0
1 0.5 0.37 -69
2 1.0 0.67 -248
3 1.5 0.27 -422
4 2.0 0.08 -534
5 2.5 0.03 -626

Because of the form of (9), note that the amplitude scale factors for
gu(t) and gi(t) are in the ratio (13Mir = 2r.* The response g(t) of the
point resonant at the second harmonic of the excitation is plotted in
Fig. 13(b).

If the stimulus is ideally high-pass filtered to remove the de and funda-
mental terms, then the periodic response at point 13y is that shown in Fig.
13(c).

The shape of a single period at 0 , with the fundamental present, is
already similar to the impulse response. If one examines points tuned
higher in frequency, the time resolution increases because the bandwidth
increases, and the response becomes more and more identifiable as re-
peated impulse responses (i.e., nonoverlapping impulse responses).

An even more instructive insight is obtained if one considers periodic
excitation by alternately positive and negative impulses. Such a train is
odd -harmonic in equal amplitudet and, like the repeated positive pulses,
has a phase spectrum that is zero. To vary the example, let us consider
the response of F2(8) [see (11)] to this excitation. Following an approach
identical to that just described, but dealing only with odd spectral com-
ponents, the responses of Fig. 14 are obtained. Once again we recall that
the amplitude scales, shown here as relative, are in the ratio Or.

The response of a point tuned to the fundamental is essentially a
sinusoid at the fundamental frequency and is shown in Fig. 14(a). The
displacement of the membrane point tuned to the second harmonic
(where there is no stimulus energy) is shown in Fig. 14(b). It exhibits a
displacement in which the fundamental periodicity can be discerned
when the fundamental component is present. Without the fundamental
the response is relatively low -amplitude third harmonic. The point tuned
to the third harmonic, Fig. 14(c), displaces essentially at the third har-

* The implication here, of course, is that we are still dealing with frequency
ranges below 1000 cps, where the membrane resonances are assumed to vary in
peak displacement, as previously discussed.

t The equal -amplitude spectral lines have twice the amplitude of those for
repeated positive impulses.
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monic frequency whether the fundamental is present or absent. The
point tuned to the fourth harmonic, Fig. 14(d), begins to exhibit funda-
mental periodicity again, regardless of whether fundamental is present
or not. The point tuned to the fifth harmonic, Fig. 14(e), yields a re-
sponse which is very nearly nonoverlapping, superposed impulse re-
sponses.

Quantification of the membrane displacement in this manner offers a
basis for a number of useful speculations on the perception of periodic
pulses.

VII. CONCERNING RELATIVE AMPLITUDES OF DISPLACEMENT

Since relative amplitude of displacement may be of importance in the
conversion of membrane displacement into nervous activity, it is worth-
while to examine amplitude relations further. We have seen that, if the
membrane is excited with periodic impulses at a fundamental frequency
to which a point near the apical (low -frequency) end is resonant, this
point executes a displacement which is nearly the fundamental sinusoid.
A point toward the basal (high -frequency) end, whose resonance curve
embraces a substantial number of harmonics, yields a periodic response,
which is essentially a succession of negligibly -overlapping impulse re-
sponses. Because such points respond simultaneously (except for transit
delay), and because their peak amplitudes have implications in hy-
potheses about pitch perception, let us compare the peak amplitudes of
a "fundamental -responding" point with that of an "impulse -responding"
point. For the sake of varying the examples further, let us work with
model F3(s), in (13), and its impulse response f3(t), in (17). We are in-
terested in the absolute extremum of (17). The times of the extrema can
be found by differentiating (17), setting to zero and solving, which gives:

1 _1[ 1.7/3(t T )
- tan t > T. (23)
13 f3(t - T) - 3.41'

The envelope maximum occurs at:

3.4 ,

tmax envel = G- -r T. (24)

It is not necessary to solve the truncendental relation (23), since we al-
ready have (17) plotted to a reasonable precision in Fig. 12. Using the
latter data, we get for the absolute maximum of f3(t),

l+r

i Mt) I.= c34 (1.4) = (0.23)c3/3pl+r, (25)
6
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where the subscript p denotes a point toward the high -frequency end of
the membrane. In a parallel manner, the amplitude of a point, q, tuned
to the fundamental frequency can be obtained from relation (20). In
this case, i3g = coo and

g3(t) I fund ~ -C.1).;-°r 2 I F3(t- = 1)1

- c30,r(0.83)

- c30q1+r(0.26).

The ratio of these two peak displacements is, therefore

1 -f -r

R3
f3( matt- (0.88) (O
g3(t) 'fund

(26)

(27)

If the same computations are made for the other two models, Fi(s)
and F2(8), the ratios are:

1+r= (0.80) (1)
/3q

R2 = (0.82) (32 .Y r

(28)

Since /3,, > )3, and since the experimentally determined exponent
r 0.8, the peak amplitudes of the impulse -responding points exceed
those of the fundamental -responding points, at least in the frequency
range below 1000 cps (i.e., roughly over the apical half of the mem-
brane).

VIII. EVALUATION OF SCALE CONSTANTS Ci , C2 AND C3

Bekesy's data show that the maximum deflection of the basilar mem-
brane at a frequency of 1000 cps and a sound pressure level of 134 db
referred to 0.0002 dyne/cm2 (i.e., 102 dynes/cm2) is approximately 10-4
cm. His measurements also indicate that the mechanical functioning of
the middle and inner ear is essentially linear to the threshold of feeling.
In the models, therefore, the constants c1 , c2 and c2 should be chosen to
provide peak displacements at resonance equal to

[(10-7 cm3 /dyne)
27,(1000)1
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The amplitude responses of the models at resonance are:

= 1.0) = c0(0.66),

I F2(1* = 1.0) =c0(0.92),
F3(- = 1.0) I = c3fir(0.83).

The values of the constants, therefore, should be:

io-7-
(0.66)[27(1000)]* '

10-7

- (0.92)[27(1000)r
10-7

C3 -
(0.83)[21-(1000)]*

IX. APPLICATION TO PITCH PERCEPTION

(29)

(30)

As suggested at the outset, the present computations were precipi-
tated by a particular need. In drafting a paper to report two earlier ex-
periments on pitch perception,1,2 it became painfully obvious, as soon
as the discussion section was reached, that little quantitative basis
existed for interpreting the subjective data. The models described here
were developed in an attempt to alleviate this situation.

In the pitch experiments it became necessary to explain how three
different modes of pitch perception arise when periodic pulse trains
stimulate the ear. One mode ascribes a pitch to the stimulus equal to
the pulse rate, regardless of the polarity pattern of the train; in other
words, positive pulses (condensations) are not discriminated from nega-
tive pulses (rarefactions). A second mode ascribes a pitch equal to the
mathematical fundamental whether energy is present at this frequency;
this mode includes the situation which has been labeled "residue" phe-
nomenon. The third mode assigns a pitch equal to the frequency of the
lowest spectral component present in the stimulus.

The first mode characteristically operates at low values of pulse rate
(usually below 100 pps in unmasked situations). The second usually
obtains for fundamental frequencies in the approximate range 200 to
500 cps. The third seems to hold for fundamental frequencies around 1000
cps and higher when the lowest -frequency component is rejected by
HP filtering.

Without launching into the details of the psychophysical experiments,
the applicability of the models to the perception of pulses can at least
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be indicated. It is of consequence, for example, to ascertain to what
extent the subjective pitch modes are manifested in the mechanical
operation of the cochlea. Looking again at Fig. 14, one can observe dis-
placement patterns that might be considered favorable for giving rise
to the pitch modes just outlined. This presumes, of course, certain hy-
potheses about the mechanism of converting displacement information
into electrical discharges in the nerve fiber. A discussion of these im-
portant details, however, is more appropriate in another place. Even so,
Fig. 14 suggests several things.

When the membrane is excited over most of its length by a periodic
pulse stimulus, the higher -frequency portion probably is effective in
supplying only pulse -rate information, no matter what the polarity
pattern of the train. In this region of the membrane the pulses are well
resolved in time (i.e., the displacement is essentially nonoverlapping
impulse responses), and the "overshoot" of the response to each pulse
is substantial. Under certain assumptions about the transduction of dis-
placement into nervous activity, the latter fact can be construed as
favorable for eliciting nerve volleys in synchrony with each pulse. *

Information on fundamental frequency might be manifested in two
ways: (a) If the fundamental component is present in the stimulus, then
the point on the membrane tuned to the fundamental responds strongly
with near sinusoidal displacement. (b) If, on the other hand, the funda-
mental is absent, the lowest -frequency part of the membrane receiving
excitation will embrace a small number of spectral lines within its fre-
quency response. Its displacement generally will exhibit the fundamental
periodicity in a form favorable for triggering one nerve volley per funda-
mental period.

So far these comments have not considered the importance of relative
amplitudes of displacement. This question appears to be of particular
consequence in evoking the second, or fundamental, pitch mode. Although
the indications are that most significant neural information originates
from the point of greatest displacement, there is evidence that subjects
may give preference to the fundamental mode over the pulse -rate mode
even though the former may be correlated with smaller membrane dis-
placements than is the latter. Relative amplitudes of displacement very
likely undergo nonsimple transformations in the neural conversion proc-
ess.

Still open, too, is the question of the third pitch mode. Although our
models are limited to the frequency range below 1000 cps (because they

* There also is evidence that the t ransduction may be sensitive to spatial deriv-
atives of displacement as well as to displacement. This, too, could facilitate per-
ception of the pulse -rate mode.
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do not adequately account for middle -ear transmission above this fre-
quency), an explanation, fabricated of flimsy substance, can be suggested
for the third mode. Bekesy's data suggest that the amplitude of maximal
displacement of the membrane falls appreciably (about 12 db/octave
or more) for frequencies above 1000 cps. In this region, then, that part
of the membrane responding to the lowest -frequency component would
exceed in amplitude those parts responding to higher -frequency com-
ponents. If amplitude of displacement is at all important in the conver-
sion process (and it most probably is), then the third mode is favored
provided the lowest -frequency component is not too high in harmonic
number. As indicated earlier, the third mode has been observed when
either the fundamental, or the fundamental and second harmonic, is
rejected from the stimulus. This mode has obtained in our pitch -match-
ing experiments for fundamentals in the frequency range around 1000
cps and slightly higher.

One final comment is of interest along these same lines. It has been
reported in the literature that if a periodic train of positive pulses is
high-pass filtered at around 3000 and 4000 cps, one hears a "residue"
pitch equal to the fundamental frequency. Our models suggest, how-
ever, a response more nearly correlated with pulse rate. If one uses a
stimulus in which pulse rate and fundamental frequency are confounded
(as with positive pulses), then the former result might obtain. If, on
the other hand, a stimulus such as alternate positive and negative pulses
were used, the subjective impression may well be that of pulse rate. If
the latter is in fact the case, then a fundamental "residue" pitch does

not exist for this condition. *
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APPENDIX

Inverse Transforms for Fi(s), F2(s) and F3(s)

When the function Fi(s) of (7) is disencumbered of its constants, the
problem of inverse transformation amounts to calculating the inverse

* Since drafting this paper, I have set up the latter experiment and listened to
alternate positive and negative pulses HP -filtered at 3000 and 4000 cps. I made
pitch matches fairly consistently at the pulse rate. A second listener, on the other
hand, made matches that were generally higher than the pulse rate, suggesting
that my preconceived notions may have influenced my data. It is unequivocal,
however, that one would not match to the fundamental frequency.
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transform of:

1189

(s E

=
K1(s)

1[(s+a)2+7) ,3212

E -y

(s
(31)

+ a)2 02] 'Y)[lis .-raN2 -r P2]

= /Ca(s) Kb(s).

The inverses of Ka(s) and Kb(s) can be obtained in the usual manner
by making partial fraction expansions in terms of the singularities, ac-
count being taken of the order of the poles, and evaluating the residues
in each pole. Or, having got the inverse for If a(s) , the inverse for Kb(s)
can be computed from:

Kb(t) = [(e -7)e1 * [2-1/C.(8)], (32)

where * indicates convolution.
For the present case these standard procedures prove rather cumber-

some and messy. Because of the favorable initial values of the function
and its first two derivatives [namely, M0+) = 4-1(04.) = 14(04 = 0],
derivative relationships can be used to obviate evaluating residues
performing the convolution.* The derivative relations of use here are
the following: If the function f (t) has the Laplace transform F (s), then

(_1)n d"

as
F,(n s) - tf (t) , (33)

and

dif(t) sn-if(o+) - sn-2://(0+) -1(0+).
dtn

We start, with two well-known transform pairs:

1
e -at sin fit = hi(t), (35)+ a)2 /32 13

and
(s ± a)

-> e -at cos flt = h2(t). (36)
Rs a)2 139

Applying (33) through (36) gives
Rs 4502 /32]

t e cos tat = th2(t). (37)Rs + a)2 +1392

* I am indebted to B. F. Logan of the Acoustics Research Department of Bell
Telephone Laboratories, who pointed out to me the utility of the derivative rela-
tionships in obtaining transforms for these functions.
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One notices that Ko(s) can be expressed as a simple combination of (35)

and (37), namely,

1 1 { 1 (s a)2 - 02 }
(38)Rs + ay ± 0212 202 (s a)2 + 02 Rs+ a)2+ 0212

and

1 1

[(s + a)2 0212
->

2132
(111 - th2).

Application of (34) through (39) gives

or at
Rs ± a)2 0212 'id. 27!) fi2

and

(39)

(40)

a2 02 2

at) h2-)a)2 0212 ( 2#2 20 -

The inverse of Kci(s) is, therefore, (39). The inverse of Kb (s) can be
obtained from a partial fraction expansion followed by application of
(39), (40) and (41). Expand Ka(s) as:

( 6

1 A G(s) (42)
8 ;) Rs a)2 #212 ± 7) [(8 a)2 $212

where A is a constant and

G(s) = (a0 ais a2s2 a3s3

If A and G(s) are evaluated, one gets

A - (E -y) (E -y)
[(s a)2 1392 s=-7 [72 - 2a7 a2 132]2

ao = 1 [E - y - A (a2 02)21,

a, = A[ -y(4« - y) - 2(3a2 + 02)1,

a2 = -A(4« - 7),

a1 = -A.

(43)

The inverse transform of Kb(s), therefore, is a summation of terms (39)
through (41), with the appropriate multiplicative constants.
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Two differentiations (with respect to s) of (35) give the transform
pair:

[(8 + a)2 /32/31 1-'6thRs 4_ ay + #213 6 1,

which is the function used as the model F3(s) of (13).
In an essentially parallel manner, one obtains the pair:

[(s ± a)2 + 82J3._L[h1(aet2 + et - 3a) + h2(3at - leen804

This is the function used as the model F2(s) of (11).
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Design and Performance of Ultraprecise
2.5-mc Quartz Crystal Units

By A. W. WARNER

(Manuscript received March 29, 1960)

A 2.5-mc crystal unit has been developed for use in a new, extremely
stable frequency standard oscillator. A well-balanced design was achieved
by using a 30 -mm -diameter, piano -convex, polished quartz plate, coated
with gold and operated on its fifth overtone. The quartz plate is mounted
on its quiescent edge in an evacuated bulb, and achieves a Q of five to six
million, representative of the Q of the quartz itself. The temperature coeffi-
cient, current coefficient, frequency adjustment tolerance and frequency ag-
ing of the crystal unit are all consistent with a frequency stability in the
order of one part in 1010. It was necessary to develop polishing methods that
would not disturb the crystal structure of the quartz plate and new methods
of orienting the crystallographic axes to achieve better temperature coefficient
control. New methods of mounting the quartz plate were found that avoid
strain and reduce the effects of shock and vibration. The new crystal unit
makes possible oscillators characterized by excellent frequency stability,
small and uniform aging and straightforward design. For periods up to
one month, the frequency stability of such standards compares favorably with
that of atomic frequency standards.

I. INTRODUCTION

The quality of a quartz crystal frequency standard is determined by
the crystal -controlled oscillator, and particularly by the mechanically
vibrating, piezoelectrically excited quartz plate. Special quartz crystal
resonators, characterized by high Q, excellent frequency stability under
shock and vibration, and small change with time, have been developed
for use in a new general-purpose, extremely stable frequency standard.

The development of improved oven and oscillator circuits has con-
tributed substantially to this improved standard, and will be reported in
a separate article. Over-all performance of an experimental oscillator has
been reported briefly,' and similar oscillators are in operation at the Na-
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tional Bureau of Standards (see Section 4.5 of this paper), the Naval Re-
search Laboratory and Bell Telephone Laboratories.

In this article particular emphasis will be given to the quartz resonator,
considering (a) the design principles, (b) the development of the present
design and the related processing techniques and (c) the properties of the
quartz resonator as a circuit element, including its thermal, mechanical
and temporal characteristics. In order to limit the scope, a cursory
knowledge2'3 of crystal unit fabrication will be assumed, and only a brief
recapitulation of facts already published will be given.

The development of highly stable crystal resonators is a continuing
work, because each new achievement in frequency accuracy and stability
generates the need for still greater accuracy and stability; to meet these
needs, the underlying causes of frequency aging and many other special

aspects of the behavior of crystal -controlled oscillators must be more
fully understood. A solution of these problems will require further funda-
mental investigation into the nature of the materials involved.

Such development work for improving quartz oscillators is not likely
to be made superfluous in the immediate future by atomic and molecular
frequency standards. Atomic standards, whose frequency stability is bet-
ter than a part per billion for very long periods of time, employ quartz
oscillators as part of their circuitry. Thus, their short -time stability is

that of the crystal -controlled oscillator. As atomic standards are im-
proved, the need for higher -Q crystal resonators will be increased. Fur-
thermore, as the long-time frequency stability of quartz oscillators is im-
proved, they can be operated for longer periods of time independent of an
atomic frequency reference. Use of the oscillator alone would, of course,
reduce the size, weight and complexity of the frequency standard.

II. DESIGN PRINCIPLES

In this section the significant parameters in the design of a crystal
unit of the highest practical precision are considered, including (a) use
of edge -mounted crystal plates operating in high -frequency thickness
shear, (b) desirable crystal unit characteristics and their correlation to
a well balanced design, (c) the role of quartz plate size and (d) the inde-
pendence of Q and inductance, and the best choice for the value of the
inductance.

There are two basic design concepts in use today for the construction of

high -precision quartz crystal units. One makes use of low -frequency,
large -size quartz plates supported at nodal points by arrangements of
cords and springs or rods, or by soldered wires. Its advantage lies in a
high potential Q and a large frequency -determining dimension. Its dis-
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advantage lies in the fact that the mounting structure is part of the
frequency -determining, mechanically vibrating portion of the crystal
unit, making it unstable with respect to shock and vibration and con-
tributing to frequency aging. The other design concept, and the one to be
described here, is the use of edge -mounted crystal units in high -frequency
thickness shear operation in order to decouple the mechanically vibrat-
ing portion of the quartz plate from the mounting. By use of convex
shaping, the mechanical vibration can be confined to the center of the
crystal plate, leaving the edge quiescent. Such units can be more closely
adjusted to frequency and have improved frequency stability characteris-
tics and other operating advantages as shown in Section IV. The construc-
tion details are quite different, relying on carefully designed machines
rather than on individual craftmanship.

The crystal unit or resonator for a primary frequency standard must
be characterized by high Q, low temperature coefficient of frequency at
the operating temperature, low frequency drift with time, low current
coefficient, relatively high impedance and small frequency -adjustment
tolerance. There is no particular order of importance among these fac-
tors, since neglect of any one of them will largely nullify the precision
that would be attainable through the use of extreme care with the others.

These requirements, along with performance factors for the oven and
circuit, fall naturally into several groupings, with each factor in a group
being interrelated with other factors in that group. One combination is
the Q of the crystal unit, its frequency accuracy (since frequency adjust-
ment by circuit means is limited by the probable stability of the control-
ling circuit element) and the phase stability of the oscillator circuit. Other
combinations are (a) the crystal unit frequency -temperature characteris-
tics such as temperature coefficient and susceptibility to thermal shock,
the oven temperature, and the degree of oven temperature control; (b) the
crystal unit frequency -current characteristic, the oscillator current level
and the oscillator current control. Care must be taken to see that no
combination contributes more than about five parts in 1011 frequency
change if the over-all design is to be stable to one part in 1010.

In the design of AT -cut high -frequency shear mode crystal units the
following two facts must be considered: (a) the Q of the quartz itself,
at normal temperatures, increases as the frequency of operation is de-
creased' and (b) the lowest frequency at which the crystal unit can be op-
erated without significant external losses is severely restricted by the
availability of sufficiently large quartz plates. Since circuit phase stabil-
ity is likely to be better at lower frequencies where the Q of quartz is
higher, there is a definite advantage in the use of large quartz plates.
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To achieve a Q limited only by the quartz itself, other causes of energy
dissipation must be reduced to a negligible point. The following have
been found effective:

(a) evacuate the enclosure, thus removing air damping;
(b) choose the size and shape of the quartz plate so that the edge is

quiescent, thus eliminating energy loss through the edge and the mount-
ing structure;

(c) polish the crystal plate major surfaces, thus removing minor im-
perfections that can dissipate energy in the active portion of the quartz
plate (an improvement in Q of about 10 per cent can be achieved).

Once condition (b) has been met, the Q cannot be increased at a given
frequency by changing the inductance of the unit, by using other modes
of vibration or overtones, or by using electrodes of a different size. Under
these conditions, the ratio of L1 to RI, and thus the Q, in the equivalent
electrical circuit, Fig. 1, has been found to remain essentially constant,
subject only to the three operations enumerated above. This is, of course,
reasonable, since there is no change in the source of energy dissipation.

The inductance can be selected, therefore, to operate at an optimum
impedance for a better match of crystal unit to circuit. An optimum im-
pedance may be achieved by using an overtone mode of vibration (re-
versal of phase in the thickness direction). For a given frequency, an
overtone mode unit requires a thicker quartz plate (desirable for fre-
quency stability) and has values of L1 and R1 of Fig. 1 that are larger by
the cube of the overtone employed. The impedance can also be raised
by using other modes of vibration that are permitted by reversals in
phase along the length or width of the quartz plate, or by parallel field
excitation.' These methods, however, are less desirable than the use of the
harmonically related overtone mode, since they do not permit the de-
sirable increase in the thickness or frequency determining dimension.

Employing these principles, the crystal unit design proceeded about as
follows :

i. The largest practical quartz plate, in view of the quartz supply and
probable demand, was selected (30 mm diameter).

Fig. 1 - Equivalent circuit of crystal unit in vicinity of its operating frequency.
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ii. The lowest frequency that could be used without energy loss at the
edge of the quartz plate was determined (2.5 mc).

iii. The highest overtone (which is also the greatest thickness and
highest L1 C1 ratio) that would allow a practical adjustment tolerance
was chosen (fifth overtone and one part per 107 frequency adjustment
tolerance).

The resulting crystal plate is believed to have the highest Q, the lowest
frequency and the best impedance level that can be obtained from a
30 -mm quartz plate in which the edge and mounting structure are not
part of the mechanically vibrating (frequency -determining) part of the
crystal unit.

III. DEVELOPMENT OF DESIGN AND PROCESSING TECHNIQUES

3.1 Experimental Determination of Quartz Plate Size and Contour

In a study4 to determine the optimum contour and overtone for AT -
cut, plated, 12.5 -mm -diameter quartz plates, a series of measurements
were made on several quartz blanks of different thicknesses, resonant at
approximately 0.7, 1, 3 and 5 mc. Progressive contours from flat to the
maximum permitted by the individual blank thickness were used. When
these data were correlated, it became evident (a) that the maximum Q
obtainable was an inverse function of frequency and (b) that there was
a lower limit of frequency below which the Q fell off and became er-
ratic regardless of contour. In other experiments a variation in electrode
thickness from 700 to 2100 angstroms at 5 mc failed to show any effect
on Q. Likewise, carefully polished quartz surfaces did not show more than
a 10 per cent improvement in Q over that of carefully lapped and etched
plates. Data taken at 10 mc on crystal units having quartz plates vibrat-
ing in the third, fifth and ninth overtone indicated the same maximum Q.
This represents a 3 -to -1 difference in quartz plate thickness and a 27 -
to -1 difference in the equivalent electrical inductance and resistance.
Data were also taken on larger plates and on higher -frequency plates.
The Q data from these tests are summarized on Fig. 2, which shows the
most probable room temperature value for the internal friction of quartz,
ranging from 15 X 106 at 1 me to 0.15 X 106 at 100 mc, and the fre-
quency limitation for 15-, 30- and 90 -mm diameter plates. Therefore,
with 30 mm having been chosen as the largest practical size for the quartz
blank, the operating frequency of 2.5 me is determined.

A chart relating optimum contour to overtone and frequency for AT -

cut half -inch piano -convex plates can be found in an earlier paper by the
author.' By linear enlargement or reduction of the dimensions, the ap-
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operation.

proximate contour for larger or smaller blanks can be determined, indi-
cating a piano -convex contour 4 inches in radius for the 30 -mm diameter,
fifth overtone, 2.5 -me quartz plate.

It is well known2 that a nodal plane exists that is centrally located
between the faces of a quartz plate vibrating in thickness shear. For this
reason, many AT -cut crystal units are designed with a double convex
contour, with the mounting points on or near the nodal plane. It has been
found, however, that, when the frequency, size and contour are chosen
to produce the maximum Q, a piano -convex shape may be used with no
loss in Q, and with great benefit in temperature -coefficient control and
general handling during fabircation.

The final dimension to be determined, the thickness, was chosen to
provide the correct impedance level for minimizing the effects of lead
wire capacitance and circuit variations. A thickness of 3.4 mm was cho-
sen, permitting operation on the fifth harmonically related overtone witl:
a series -resonant resistance of 55 ohms and an inductance of 19.5 henries
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3.2 Experimental Development of Quartz Polishing Methods

The benefits derived from the use of polished quartz plates are im-
proved electrical performance, particularly frequency stability at low
current levels, and reduced frequency aging. The surface is not only more
easily cleaned, since there are no scratches and fissures to trap con-
taminants, but the surface area is greatly reduced, requiring less gold for
a conducting electrode and reducing the effects of residual contaminants.

The polishing techniques that have been developed differ in many re-
spects from those used in the surface finishing of glass lenses. It is cus-
tomary in polishing glass lenses to use a carefully prepared pitch lap and
rouge, or its equivalent. Since pitch is a brittle material, close control
over the curvature can be maintained. Furthermore, small scratches re-
sulting from unavoidable foreign particles are reduced by the use of suf-
ficient pressure to cause local melting and flow of the glass.

Such methods have not been found suitable for contoured quartz
plates, nor are they necessary. The curvature is not critical, so there is
no need for a brittle lap. Quartz is harder and has a higher melting point
than glass and is crystalline in form, and any melting or scratch removal
is both undesirable and difficult. A soft material such as an asphalt or
cork mixture has proved better for the lap, since it can yield under pres-
sure to give a uniform polish and can absorb foreign particles that would
otherwise scratch the surface. Fig. 3 shows a polishing machine using
two Trojan automatic bowl -feed sphere polishers. The polishing bowl has
been covered with a inch sheet of cork and rubber (Corprene, Arm-
strong Cork Co.). Barnsite, a form of cerium oxide, is used as the polish-
ing agent.

If polishing time is to be kept within practical limits, care must be
given to surface preparation prior to polishing. There are two require-
ments: first, that surface penetration be small and second, that good
thickness control be maintained, since final polish must occur at a thick-
ness determined by the resonant frequency of the quartz blank. Both of
these requirements have been met by the use of a resinoid-bonded di-
amond wheel to generate the convex surface. The apparatus is similar to
diamond curve generators used in the lens inudstry, with the following
exceptions: (a) a vacuum chuck is used to precisely hold the quartz blank;
(b) a 3 -inch -diameter, 180 -mesh, resinoid-bonded diamond wheel is used
and (c) a positive mechanical feed at 0.012 -inch per minute is used.
Thickness can be controlled within 0.01 mm, and the time of grinding is
less than 3 minutes. The penetration is less than 20 microns, and may be
removed by lapping for a few minutes with a cast-iron lap and emery
mixture, followed by 5 to 10 minutes of polishing.
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Fig. 3 - Equipment used to polish quartz crystal plates.

Three experimental procedures were developed in connection with the
study of polishing techniques and the resultant quartz crystal surfaces:

First, a 200 -power microsocpe was equipped with a dark field con-
denser, which clearly delineated scratches and cracks in the quartz sur-
face. Fig. 4 is an enlargement of a picture taken through this microscope
of what appeared to the unaided eye to be a well-polished blank. Since
the blank is curved, all portions are not in focus in the picture. By refin-
ing the polishing technique, i.e., choosing best pressure, stroke and time,
as well as the best preparation, surfaces that appeared clear by this in-
spection were consistently produced with 5 to 10 minutes of polishing.

Second, the spread of values for the Bragg angle of the 011 face was
measured, using a double -crystal goniometer.7 This apparatus, shown in
Fig. 5, is used principally for orientation measurements connected with
the temperature coefficient. However, by using the same refined polish-
ing techniques for the reference crystal, extremely sharp curves were
obtained when the amplitude of the reflected X-ray beam was plotted
against orientation. Fig. 6 shows typical results for quartz plates at
various stages of polish. In particular, the use of etching to remove
strained, slightly misoriented material is shown to be unnecessary sub-



Fig. 4 - Dark -field photomicrograph of polished quartz plate; magnified 1000X.
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Fig. 5 - Double -crystal goniometer used for orientation measurements.
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sequent to polishing, and therefore this is better performed as the last
step before polishing.

Third, samples of polished quartz plates were studied by electron dif-
fraction, following methods outlined by Arnold.8 The advantage of this
method lies in the fact that a beam of fast electrons (50 kv) will pene-
trate only a few hundred angstrom units before diffraction takes place,
thus involving only the first few surface layers of the quartz plate. Should
the formation of a misoriented or amorphous surface layer result from
the polishing processes, it would be evident in the resulting diffraction
pattern. Fig. 7 shows one such pattern obtained from a quartz plate
polished using asphalt and barnsite. The lines observed are known as
Kikuchi lines, and it is sufficient for the purpose of this discussion to
quote from Arnold :8 "Kikuchi line patterns are indicative of the highest
type of crystalline perfection, since the slightest distortion of the crystal
would cause the Kikuchi lines to spread out and become lost in the gen-
eral background radiation."
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Fig. 7 - Electron diffraction pattern, showing Kikuchi lines.

3.3 Studies of Correlation Between X -Ray Orientation and Temperature
Coefficient

The relationship between the resonant frequency of the quartz reso-
nator, f, and temperature, t, can be expressed by

f,- = 1 - (24 X 10-11)(10 - ti)2(t - ti) + (8 X 10-11)(t - ti)3, (1)
Ji

where
f = frequency at inflection temperature, 27°C,
ti = temperature of inflection point,
to = temperature at which the temperature coefficient is zero.

The value of to - ti , which establishes the temperature at which the
temperature coefficient of frequency is zero, is a function of the orienta-
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Fig. 8 - Temperature at which the temperature coefficient of frequency is
zero vs. the crystal plate orientation about the x axis.

tion of the quartz plate with respect to its crystallographic axes, in par-
ticular the rotation about the x axis, c1). Fig. 8 shows the best determina-
tion to date of this relationship. By plotting f versus t for various values
of to in (1), a family of curves is produced, as shown in Fig. 9. A close
control over the angle of cut not only permits specification of an operat-
ing temperature, to , near room temperature, but also provides a much
better temperature coefficient in the vicinity of to . This makes it less
necessary to be concerned about an exact determination of to or about a
small shift in the oven control temperature. Determination of the angle
to a few tenths of a minute of arc is very desirable, along with a close
correlation between the measured angle and the observed temperature
coefficient. The problems are related to the following requirements:

(a) an X-ray beam capable of resolving 0.1' of arc;
(b) a crystalline surface sufficiently free from misoriented quartz;
(c) a method of defining the plane that controls the temperature co-

efficient;
(d) sufficiently accurate jigs and fixtures.

The double -crystal X-ray goniometer was shown in Fig. 5; it is a modi-
fied General Electric XRD1. Requirement (a) above is fulfilled by the
use of a polished reference crystal from which a well-defined beam is
reflected.' A quartz surface prepared as described above (Section 3.2) is
more than adequate to meet requirement (b).

The nodal plane of Section 3.1, which controls the temperature coeffi-
cient, is, of course, physically inaccessible. However, an adequate surface
[requirement (c)], from which to determine the temperature coefficient
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in contoured quartz plates, may be obtained by piano -convex shaping.
The orientation of the convex side has almost no effect on the tempera-
ture coefficient, since a slight tilt of this surface with respect to the flat
side only shifts the point of greatest thickness a little off center. The
16 -mm diameter electrodes more than cover the actively vibrating por-
tion of the crystal unit, and there is no measurbale effect on perform-
ance.

The principal problem in measuring the effective orientation of the
flat side - that of physically defining the surface - resolves itself into
a choice between two methods of securing the crystal to the goniometer
table: (a) the use of three reference points and (b) the use of a reference
plane. If irregularities exist in the quartz surface, there is a possibility
that one or more points will not be representative of the controlling
surface at the center of the plate. Likewise, when a reference plane is
used, the presence of dust or contamination or a slight departure from
flatness can shift the orientation. The work described in this article was
done using a vacuum chuck with a polished reference surface. Assurance
of cleanliness and reasonable flatness was obtained by observing inter-



1206 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

ference rings between the polished quartz surface and the surface of the
vacuum chuck.

Sufficient measuring accuracy in the X-ray fixture itself [requirement
(d)] was obtained by the use of a micrometer screw operating on a ball
precisely imbedded in the arm of the goniometer (Fig. 5). This use of a
linear measuring device to measure arc is permissible because of the
limited range involved. In operating the goniometer, use is made of the
Oil atomic plane at an angle determined to be 38°12.7' from the optic
axis. The desired orientation for zero temperature coefficient of fre-
quency in the vicinity of 35°20' is about 3° from this reference plane.
Therefore, the value for the radius of the goniometer arm was chosen so
that the micrometer would be direct reading (one revolution per degree)
and exactly correct at 38°12.7' and at two points 3° on either side, with
the error at intermediate points not exceeding five seconds of arc. A
two -pound weight and cable are used to hold the arm against the mi-
crometer to insure against backlash and uneven tension.

3.4 New Method of Mounting and Measurements to Determine Its
Effectiveness

A new mounting structure, Fig. 10, was devised for the 2.5-mc crystal
unit in order to provide a support that was rigid yet free from the effects

POLISHED, SHAPED
QUARTZ PLATE

SOLDER
NICKEL RIBBON

W= 0.060" TH= 0.003"

MOUNTED CRYSTAL
PLATE

CENTERING
SPRING

T-11 BULB

CRYSTAL UNIT

2"

Fig. 10 - New mounting structure combining ruggedness with freedom from
strain.



ULTRAPRECISE 2.5 -MC QUARTZ CRYSTAL UNITS 1207

of thermally induced strains. The mounting assembly consists of a
pressed -glass disc platform with three fused Kovar terminals. These
terminals are welded on one side to the stem press of the glass bulb.
The crystal plate is fastened to the terminals on the other side by rib-
bon -shaped elements of nickel.

The use of the three -ribbon mount permits relatively free radial ex-
pansion of the crystal plate, while adequately restraining the plate from
translation or rotation during mechanical shock.

Experiments using crystal plates mounted with 0.050 -inch rods in
place of ribbons have shown that the time for the frequency to recover
to within a few parts in 108 after a large temperature change (such as
an oven shutdown) is reduced from 12 hours for the 0.050 -inch rod
mount to 2 hours for the ribbon mount. The time for frequency stabiliza-
tion to about one part per billion per day likewise appears to be affected
by residual strains, since it is two weeks for the rod support and two
hours for the ribbon support. Experiments using a crystal plate sus-
pended on soft copper wires showed no difference in frequency change
with temperature from that of the ribbon -mounted unit, indicating that
the ribbon support is essentially strainfree.

3.5 Procedures Used in Forming Electrodes

Electrodes are required in order to couple piezoelectrically to the
quartz plate. From the standpoint of stability of the mechanical reso-
nance, such electrodes would be best placed outside of the crystal plate
enclosure. However, electrical considerations, such as the value and
stability of the static capacitance, require that the electrode be an inte-
gral part of the vibrating quartz plate.

Gold is used as the electrode material because of proven characteristics
such as ease of deposition, good electrical conductivity, softness, resist-
ance to corrosion and good stability with time. Every effort is made to
insure that the gold film, which is formed by evaporation under vacuum,
is pure, soft and dense. To be sure, the handling properties of plated
crystal units during fabrication are enhanced when certain impurities
are present. Zinc and aluminum are effective in making the gold elec-
trode relatively hard, adherent and scratch -resistant. Such electrodes
are not, however, best for applications where the highest precision is
desired. Experiments have shown that small amounts of impurities
( <1 per cent) contribute to frequency -aging, probably through migra-
tion of one metal through the other, and that the superior adherence
contributes to frequency instability through strains set up at the gold
quartz interface.
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In order to eliminate surface contamination, the vacuum system em-
ployed was specially designed, using oil -free bakable solenoid -operated
valves and liquid -nitrogen traps. All vacuum baking to outgas the surface
and to provide a hot substrate is done with large -area, relatively low -
temperature conducting -glass plates rather than with open filaments.
Up to five quartz plates are mounted vertically in the plating chamber,
and electrodes are formed simulanteously on both sides by evaporating
gold from eight small tungsten heaters, which are placed to assure even
distribution. The apparatus is shown on Fig. 11. A gold electrode 16 mm
in diameter and about 700 angstroms thick has proved adequate for this

application.

3.6 Frequency -Adjustment Technique

The exact frequency desired from a crystal -controlled oscillator is
obtained partly by controlling the natural resonant frequency of the
crystal resonator during fabrication and partly by selecting or adjusting
circuit elements in the oscillating loop. The adjustment of the natural
resonance during fabrication of the quartz plate is simplified when the

Fig. 11 - Apparatus used to form gold electrodes in vacuum on quartz plates.
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control range is large. However, an upper limit to the control range is
set by the probable stability of the controlling circuit element, usually
a series capacitor. The slope of the crystal unit reactance with frequency
is about 0.7 ohms foi one part in 109 frequency change, as seen in Fig.
13. For example, an assumed instability of a series capacitor of only
0.01 per cent would require a value of 100/10 or larger to limit the fre-
quency change to one part per 101°. Under these conditions, practical
limitations on size of the capacitor would limit the adjustable range to
a few parts in 10g.

Adjustment of the resonant frequency of the quartz plate to this degree
is accomplished by adding gold to the electrode surface while the crystal
plate is in oscillation, making use of the vacuum evaporation apparatus
described above. The sequence of operations is as follows: (a) The exact
frequency change desired is measured under final use conditions - that
is, at operating temperature and proper circuit adjustment. (b) The
crystal unit is placed in the vacuum chamber and gold deposition ini-
tiated. (c) The frequency change is monitored and controlled by continu-
ous frequency measurement during deposition.

This method will usually result in finished crystal units not more than
five parts per 107 from nominal frequency. The small error in frequency
results principally from subsequent glass sealing operations and the
cleaning effect of a final vacuum bake. When sufficient numbers of
crystal units are processed in series, closer tolerances can be obtained
by a method of compensation that uses measurements of finished units
to provide information for the frequency adjustment of subsequent units

3.7 Hermetic Seal Techniques

Measurements of frequency aging of crystal units in both metal and
glass enclosures' have shown the superiority of glass enclosures, probably
because glass can be more effectively outgassed and cleaned at the tem-
peratures involved.

The crystal plate should not be exposed to high temperatures, both to
prevent a shift in resonant frequency and to avoid damage to the mount-
ing attachment at the quartz plate. For this reason, a flared stem assem-
bly and a close -tolerance baffle plate (also used as a support) are em-
ployed to keep the high temperatures involved in glass sealing away
from the quartz plate. For the same reason, the seal is accomplished
quickly with a minimum of glass annealing.

Following the stem -to -bulb seal, the unit is evacuated and baked for
six hours at 140°C. The optimum length of time has been established
experimentally, and is a function of the vacuum system design. With
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the new vacuum system described above, using oil -free valves and
specially designed liquid nitrogen traps, it has been found that a six-hour

bake can be used to good effect.
Following the baking, and with the vacuum at about 10-6 mm of

mercury, the glass tabulation is sealed by means of a small flame.

IV. PROPERTIES OF THE QUARTZ RESONATOR

4.1 The Crystal Unit as a Circuit Element

Table I lists the electrical properties of the new 2.5-mc crystal unit,
and the equivalent circuit of the crystal unit in the vicinity of its operat-
ing frequency was shown in Fig. 1. The capacity in the upper branch
represents the static capacitance of the crystal and its holder. The lower
branch represents the electrical equivalence of the mechanical resonance
of the crystal, which has an impedance approximately given by

Zl
f

= R1 + 220.11.4
A- (2)

where Al is the difference between the operating frequency and the crys-
tal series resonant frequency, f, . The total impedance of the crystal,
then, is

ZiZoZ, -
Z1 + Zo 

This simplifies to

Zc = R, jX, = Rl
j of

2wLi -f,

Co tif Co Af1 - 2
7t;

1 - 2 -,,,
jr

(3)

(4)

when one uses the fact that the magnitude of the impedance Z1 is much
smaller (at the operating frequency) than the magnitude of the imped-
ance Zo .

TABLE I

Series resonant resistance, R1
Inductance, L1
Dynamic capacitance, CI

Static capacitance, Co
r = co/el
Nominal capacitance for operation at standard frequency
Manufacturing tolerance on frequency

65 ± 10 ohms
19.5 henries
0.00021 I.4d
4 X 106
4.0 tillf

19,000
50 pilf

±6 pp 107
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Fig. 12 - Effective resistance and reactance vs. frequency for the 2.5 -me
crystal unit.

The first term of (4) is the effective resistance, R6 , and the second term
the effective reactance, X, , of the crystal. These are plotted versus the
fractional frequency deviation from crystal resonance, Afil , in Fig. 12.
The range of operating frequencies shown in the figure is based on the
crystal manufacturing tolerances and the expected total aging.

The sensitivity of the oscillating frequency to changes in the reactance
of the circuitry associated with the crystal depends on the "stiffness"
or reactance slope of the crystal at the operating frequency. This is
obtained by differentiating X, with respect to fractional frequency
deviations:

dXe 2coL1

d(Af/fr) Co Af)
Clfr

Equation (5) is plotted as a function of ffir in Fig. 13.

(5)
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Fig. 13 - Reactance slope vs. frequency for the 2.5 -me crystal unit.

From Figs. 12 and 13 we may obtain the requirements imposed on the
oscillating circuit by the crystal. These are:

i. The range of negative resistance required of the circuit is -51 to
-75 ohms.

ii. The negative reactance of the circuit should be adjustable from
400 to 1700 ohms.

iii. The total negative reactance of the circuit should be stable to
better than 0.1 ohm for a frequency stability of one part in 1010.

Other requirements imposed by the crystal on the circuit are:
iv. The crystal current should be stabilized at about 70 microamperes

to a constancy of 1 db.
v. The circuit should contain elements to prevent oscillation at un-

wanted crystal modes of resonance, in particular the third overtone fre-
quency near 1.5 me.

4.2 Temperature Coefficient of Frequency

The relationship between orientation of the quartz plate with respect
to its crystallographic axes and the temperature of the zero temperature
coefficient is shown on Fig. 8. By maintaining the angle to 35°20' ± 1'
the temperature coefficient will go through zero at a temperature, to ,
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which lies between 42°C and 57°C. In the vicinity of to , the relative
deviation of frequency at temperature t from the frequency at to is given
by (1).

In order to prevent possible temperature -control aging of 0.1°C from
causing a frequency change of more than one part per 101°, the tempera-
ture of the thermostat must agree with to within 0.1°C.

It can be seen that the actual temperature coefficient, which is better
than one part per 10° per degree, is not a limiting factor in any reason-
able oven construction. On the other hand, strains due to temperature
changes in the quartz itself are a limiting factor and a temporary shift
of one part per 1010 will occur if a temperature change of 5 millidegrees
per hour is maintained for 10 minutes or more.

4.3 Current Coefficient of Frequency

The frequency of a crystal unit depends to a small extent on the crystal
current. If uncoupled to other modes of vibration, the relationship at
low currents is approximately Al f = Di'. Fig. 14 shows a typical curve
of frequency versus current for the 2.5-mc crystal unit. In order to keep
the current coefficient below one part per 10° per db, currents of less
than 100 microamperes are necessary.

The current coefficient of frequency in this application is not believed
due to dissipation, since the total power is less than 10-7 calorie per
second, and also because the effect is nearly instantaneous. The most
likely explanation is that the elastic constant varies with strain; that is,
Hooke's Law is really not obeyed. Further studies indicate that the
frequency change is a function of the amplitude of the strains due to
oscillation, and that it is independent of Q and frequency.
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Fig. 14 - Frequency vs. crystal current for the 2.5-mc crystal unit.
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4.4 Mechanical Stability

The crystal plate will withstand a static load of 2 lbs (200 g's) in any
direction without any apparent movement with respect to its mounting
platform. The mounting plate is in turn anchored to the glass bulb by
three peripheral springs and the three nickel wires in the glass stem
press. Severe shock, such as a four -inch drop, will dislodge the platform,
and should be avoided. Normal shipping, however, should have no effect
on the crystal unit properties. Similarly mounted 5 -me crystal units
have withstood lOg vibration to 2000 cycles with no permanent fre-
quency change greater than one part per 109.

There is an orientation effect on frequency caused by gravity -induced
strains, as shown on Fig. 15. The preferred orientation is with the unit
installed with the odd mounting ribbon vertical, which will allow a +20°
tilt without affecting the frequency more than one part per 1010.

4.5 Frequency Stabilization and Aging

It is customary to differentiate between the rapid frequency drift
associated with initial operation of a frequency standard, here called
stabilization, and the slower frequency drift known as aging. Whereas
the former will have become negligible after a few weeks or months, the
latter can extend over several years.

Naturally, the drift should be as small as possible. If it cannot be
avoided, it should be a simple function of time, to permit extrapolation.

No uniform result has been obtained in the initial stabilization of the
quartz resonators. Evidence suggests9 that the frequency change is due
principally to a transfer of mass to and from the quartz plate, initiated
by a shift in temperature. The rate of transfer and the degree of per-
manence of the transfer will be a function of the vapor pressure of the
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Fig. 15 - Effect of gravity -induced strains on frequency at 2.5 inc.
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particular contaminant and the degree of adherence (which may be
molecular, chemical or mechanical) between the contaminant and its
substrate. Since the equilibrium reached at any given operating condi-
tion is not likely to repeat itself, the initial frequency drift cannot be
accurately predicted. The magnitude of this drift is not more than a few
parts in 109, and may be reduced as improved cleaning techniques in
manufacture are developed. Use of a carefully controlled temperature
cycle each time the oven is re -started can also reduce this initial uncer-
tainty by as much as a factor of ten. In any case, the drift rate can be
expected to decrease to about one part in 109 per month by the third
month of operation.

The aging of new quartz resonators has not proved uniform, either.
Operation at 50°C has, however, consistently shown less aging than
operation at 75°C. Of five oscillators at 50° for which records have been
kept, the rate varies from one to ten parts in 1010 per month. One such
oscillator is used in connection with the National Bureau of Standards
broadcast from Station WWV, and its frequency versus that of an
atomicron at the station has been published.10 Its aging rate after about
12 months of operation appears to be about two parts per 1010 per month.
One oscillator operated at Bell Telephone Laboi atories, Whippany, New
Jersey, which has been monitored by use of a 60-kc broadcast by the
National Bureau of Standards from Station KK2XEI in Boulder, Colo-
rado and from MSF in Rugby, England, is shown on Fig. 16. This oscil-
lator was considerably better than one part per 109 per month, even in
the second month, but the indicated long time rate will be in the order
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Fig. 16 - Frequency aging data, 2.5-mc crystal unit - KK2XEI received
signal vs. Whippany frequency standard.
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of one part per 10' per year for some time to come. Fig. 17 shows that
the frequency change is a simple exponential curve, and can be easily

extrapolated.

4.6 Short -Time Frequency Stability

Short -time frequency stability cannot be determined without a care-
ful analysis of the properties of the frequency measuring system. Even
assuming a correct phase relation between oscillator circuit and crystal
unit, the stability will be unavoidably lost due to the necessary amplifier
and lines, and, ultimately, the measuring equipment itself. These phase
distortions cannot be readily distinguished from true frequency varia-

tions.
Measurements have been made at various multiplier frequencies up

to 1000 me in an attempt to find the best conditions for measurement,
and the following figures represent the results to date:

0.1 -second averaging: two parts in 109;
1 -second averaging: two parts in 1010;

10 -second averaging: two parts in 1011.

Since both oscillators contribute to the instability, we may assume that
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one oscillator is at least twice as good. That is, the mean relative devia-
tion is one part in 1011 or better when the frequency is averaged for 10
seconds or longer.

V. CONCLUSION

The new 2.5 -me crystal units will make possible general -use oscillators
characterized by high frequency stability, comparatively little aging,
good linearity and uncomplicated design. Such standards compare
favorably with atomic standards for periods up to one month or more,
and have an advantage over atomic standards in that they may be set
to an exact frequency and are more portable and rugged.

The crystal units are uniform in Q and frequency, and need not be
specially selected. Although the use of a relatively high frequency and
electrodes integral with the quartz plate might be questioned, experi-
ments have demonstrated that the associated difficulties can be as easily
dealt with as can those associated with a resonant mounting or isolated
electrodes characteristic of low -frequency units. Various advantages
accrue from the fact that only the center portion of the quartz plate
and its pure gold electrodes determine the resonant frequency. Among
these are exceptional stability under conditions of shock and vibration,
and uniform and highly predictable electrical characteristics.

The development work leading to the design and fabrication of 2.5-
mc crystal units and associated oscillators and ovens has been supported
in part by development contracts with the Rome Air Development
Center and the U. S. Army Signal Research and Development Labora-
tory.
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Some Further Theory of Group Codes
By DAVID SLEPIAN

(Manuscript received April 5, 1960)

The notion of equivalence for group codes is explored in some detail. A
dual for a code, and the sum and product of two or more codes, are defined.
Properties of these constructs are investigated. Indecomposable codes are
defined and are shown to be optimal in two different senses. Various classes
of codes are enumerated.

INTRODUCTION

This paper is a collection of results on the theory of group error -cor-
recting codes for use on binary channels. It investigates further certain
topics introduced in an earlier paper' by the author. The reader will
be assumed to be familiar with the contents of this earlier paper as well
as with the general nature of the coding problem in information theory.

The evident trend to digital transmission systems has given rise in
recent years to an increased interest in coding as a possible practical
means of error control. Lacking an "explicit solution" to the coding
problem in any real sense, many investigators have chosen in an ad hoc
manner promising special classes of parity -check codes and have ex-
amined their properties. A large and useful literature of special codes
has resulted.

The approach taken here is different. No special codes are examined;
rather, we attempt to shed some additional light on the structure of the
class of all group codes. Our original aim was to parametrize in some
manner the various equivalence classes of group codes. If such a parame-
trization could be effected, one could then hope to express the error
probability of a code in terms of the parameters, and possibly to see how
to choose the parameters to obtain codes of small error probability. We
have fallen far short of this goal.

The main results to be found in this paper are as follows. A natural
dual for a group cod ?, is defined. For any two group codes, a product
code and a sum code are defined and certain properties of these opera-
tions are investigated These operations have the important property of

1219
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maintaining equivalence in the sense that if a and a' are equivalent
group codes and 63 and 63' are equivalent group codes, then a + 63 is
equivalent to a' + 63' and (2,03 is equivalent to a'63'. This result in turn
leads to an arithmetic of equivalence classes of codes. The notion of an
(additively) indecomposable equivalence class is introduced, and it is

shown that an arbitrary equivalence class can be written in a unique
manner as a sum of indecomposable equivalence classes. It is then
shown that one can limit the search for best codes (with two commonly
used meanings for "best") to the indecomposable equivalence classes.
Enumeration formulae for the types of equivalence classes are given,
and these formulae are evaluated for small values of the pertinent param-
eters.

In the interest of simplicity of exposition, we have restricted our at-
tention to binary codes, although many of the results obtained hold for
codes consisting of sequences of elements drawn from any finite field.
Also, in an effort to make the paper available to as wide a class of readers

as possible, we have carefully eschewed the specialized vocabulary of
modern algebra,* although many of our results could be stated more
succinctly in these terms. In addition, as an aid to the casual reader
we adopt once more the format of Ref. 1: Part I contains definitions,
examples and results; Part II contains additional theory and proofs
of the less obvious assertions of Part I. The terminology of Ref. 1 is
maintained with one exception : the word "code" is here used as a syno-
nym for "alphabet," as has become accepted practice in the literature.

There is some overlap of material with that found in the paper of

Fontaine and Peterson' which appeared after much of this work was
done. In the interest of making this paper self-contained, we repeat some
material that might have been quoted from that paper.

Part I - DEFINITIONS, EXAMPLES AND RESULTS

1.1 Recall of Previous Paper' and Some New Definitions

An (n,k )-alphabet, or (n,k)-code, is an unordered collection of 2k dis-

tinct n -place binary sequences that forms an Abelian group under the
operation of mod 2 addition of the sequences term by term. The ele-
ments of the group, that is, the n -place binary sequences, are also called
"letters." We assume always in this paper that n > k > 0.

We denote specific group codes by large script letters, a, 63, etc. We
denote the letters of a by A 1 , A2 , etc., and the digits of a letter by lower-
case Latin letters. Thus, for example, a particular letter of the (n,k )-

* In modern terminology, we are studying properties of subspaces of a finite
dimensional linear vector space over a finite field.
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code a is the binary sequence Al = (ai , a2 , , a). It is frequently
convenient to regard the letters Al , A2 etc. as n -dimensional vectors.

A particular (n,k)-code can be specified by listing its 2k letters. It
can also be specified by listing k of its generators, i.e., any k linearly in-
dependent letters of the code. These k generators can be displayed as a
binary matrix of rank k, with k rows and n columns. The rows of the
matrix are the generators of the code. Such a matrix will be called a
generator matrix and will be denoted typically by the symbol S2. When
referring to different generator matrices of a specific code a, we shall
write fl,( a), C22( a), etc.

Many generator matrices correspond to the same code. The first
generator can be chosen in 2k - 1 ways, since the all -zero sequence or
identity, I, of the group code cannot serve as a generator. The second
generator can be chosen in 2k - 2' ways. The third can be chosen in
2k - 22 ways, since the first two generators determine a group of order
22. Proceeding in this way, we find

(2" 20) (2k 21) (2" 22) (2k 2k-1)

= 2"k -1)12(2k - 1)(2k-1 - 1)(2k-2 - 1)  (3)(1)
different generator matrices for a given (n,k)-code. Indeed, if S21 and i22
are generator matrices for the same code, then S21 = 012, where g is a
nonsingular k X k binary matrix and all operations implied in the matrix
product 022 are carried out mod 2. The collection of k X k nonsingular
binary matrices forms a group under matrix multiplication (arthimetic
mod 2) which we shall denote by Gk . G is of order Mk . [Gk is the
general linear group of dimension k over a field of two elements, fre-
quently denoted by GL(k, 2).] If S2 is any generator matrix for an (n,k)-
code, then, as g runs through Gk gS1 gives the Mk distinct generator
matrices associated with the code.

In all that follows we shall frequently omit the phrase "all arithmetic
mod 2." It will generally be clear from the context whether the field in
question is the reals, the complex numbers, or the two element field.

It was shown in Ref. l that every group code is a parity -check code and
that every parity -check code is a group code. Let A be a binary matrix
of n - k = 1 rows and n columns and of rank 1. Let Xi, be the entry in
the ith row and jth column of A, i = 1, 2, , 1 and j = 1, 2, , n.
The equations

or

(1)

AA: = 0 (2)

74

E Xijai = 0,
j=1

i= 1, 2, ,1,
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where A is the binary row vector A = (a1 , a2 , , a.) and the tilde
denotes transpose, have k linearly independent solutions, say A1 , A2

, Ak . These k vectors can be taken as the generators of an (n,k)-
code. Since every linear combination of the vectors A1, , Ak also
satisfies (2), every generator matrix 2 of this (n,k)-code satisfies

Af2 = 0.

The matrix A is called a parity -check matrix for the (n,k)-code.
A given (n,k)-code has many parity -check matrices. Indeed, if A is

one such, so is gA for every g contained in Gn-k . There are therefore
Mn-k distinct parity -check matrices associated with a given (n,k)-code.
We shall denote the different parity -check matrices of a specific (n,k)-
code a by Ai( a), A2(a), etc.

1.2 Equivalence

As in Ref. 1, we define two (n,k)-codes to be equivalent if one can be

obtained from the other by a fixed permutation of the places of every
letter. The concept has been illustrated in Section 1.7 of Ref. 1. Equiva-
lent (n,k)-codes have the same transmission properties over the binary
symmetric channel.

We denote the fact that codes a and (33 are equivalent by the sym-

bolism a .33. It is immediately established that this is a true equiva-
lence relation; i.e., that et sa, that a (B implies Ga ti=_. a; and that

if a Ca and Ca e, then a e. The totality of (n,k)-codes can
therefore be broken down into disjoint equivalence classes. We denote
by 6, the equivalence class containing a.

This equivalence of codes induces an equivalence relation among the
totality of possible generator matrices. Two such matrices, say 21 and
22 , will be called equivalent (written 21 22) if there exists a g in Gk
and an n X n permutation matrix such that gala = 122 . That is, two
k X n 2 -matrices are equivalent if one can be obtained from the other
by permuting columns and/or forming nonsingular linear combinations
of the rows mod 2. Clearly, two equivalent 2 -matrices, when considered
as generator matrices, give rise to equivalent codes. Equivalent codes
have equivalent generator matrices.

The task of analyzing group codes would be greatly simplified if a
canonical form could be found for each equivalence class of 0-matrices.
That is, for a given n and k, we should like to be able to write down one
generator matrix from each equivalence class. This would provide a
simple means of describing each of the essentially different (n,k)-codes.
The number of equivalence classes of (n,k)-codes is very much smaller
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than the number of distinct (n,k )-codes. They are enumerated in Sec-
tion 1.9. Here we present further only two results pertaining to equiva-
lence.

Every k X n SI-matrix is equivalent to an 0 -matrix whose first k rows and
columns are the k X k unit matrix. That is, a is equivalent to the parti-
tioned matrix 1 (I k M), where I k is the k X k unit matrix and M is
a matrix of k rows and 1 = n - k columns.

An a -matrix with the above structure will be said to be in M -form.
Unfortunately, two k X n 0 -matrices in M -form having different M -
matrices (even apart from permutations of rows and columns) can be
equivalent.

A second result is
Theorem 1: A necessary and sufficient condition for two k X n 0 -matri-

ces to be equivalent is that their columns can be placed into a one-to-one
correspondence that preserves mod 2 addition of the columns.

Examples: Let

1 0 0 1 1' '0 1 1 1 1)

01= 0 1 0 1 1 , 02 = 1 1 0 0 1

,0 0 1 0 1, 0 1 0 1 0

.

Then al , for if we denote the columns of al by u1 , u2 , , u6 and
those of a2 by v1 , v2 , , v6 and establish the correspondence ui <-) v3 ,

u2 <-4 v5 , u3 <-4 v2 , u4 4-> v1 , u5 4-) v4 , one sees that u1 , u2 , u3 are independent
as are v3 , v5 , v2 and that the equations u4 = u1 + u2 and u5 = u1
u2 u3 have the analogs v1 = v3
and 22 are equivalent to

v5 and v4 = v3 -I- v3 -I- v2 . Both 121

1 0 0 1 0'

03 = 0 1 0 1 1 .

0 1 0 1,

The matrices ai and n3 are both in M -form and are equivalent, although
they have different M -matrices.

The preceding considerations of equivalence for 0 -matrices have their
obvious analogs for parity -check matrices.

1.3 Duality

There is a natural duality between (n,k)-codes and (n,/) -codes, where
1 = n - k. In Ref. 1 it was noted that the two sets of codes are equi-
numerous. We elaborate further on this notion here.
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In Section 1.1 it was remarked that every generator matrix 0( a) for
a given (n,k)-code a and every parity check matrix A( a) for this code
satisfies

A.(a)(a) = 0. (3)

The transpose of this relation is

S2(a)A(a) = 0.

Thus, every parity check matrix A(Ct) of an (n,k)-code a can be regarded
as a generator matrix for a particular (n,l)-code hereafter called the dual
of a and denoted at. Every generator matrix 12( a) is a parity check matrix
for at.

The above can be regarded as defining at by the relation

S2(at) = A(0,).

One immediately finds that

(at)t a

and that

(4)

a ea implies at (13t. (5)

The equivalence classes of (n,k)-codes can therefore be put in a natural
way into one-to-one correspondence with the equivalence classes of
(n,l)-codes:

It is convenient to define

d corresponds to at.

= at.

There is a simple way of passing from a k X n generator matrix fl in
M -form for a code in c to a generator matrix ST in M -form for a code
in sit. If fZ = (/k M) defines a code in d, then IV = (I ff) defines
a code in fit. Here M is the transpose of M.

1.4 The Sum of Two Codes

Let a he an (n,k)-code and 63 be an (n',k')-code. We define a new
code e by the partitioned generator matrix

0

z(e) = (6)
o .Q(04 
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The code e is an (n n', k k') -code called the sum of a and IS and we
write e = at + 03. It is easy to show that this is a valid definition and
does not depend on the particular generator matrices chosen for a and Ca.

If A( a) and A( 63) are parity -check matrices for a and a respectively,
then

A(a) 0
A(e) = ( :   (7)

0 iA(()

is a parity -check matrix for e = a + a.
Transmission of a letter from e amounts to transmitting a letter from

a followed by a letter from a. Because of the independence of the noise
on the channel from one transmitted digit to the next,* it follows at once
that if Qi(a), Qi(01) and We) (see Section 1.6, Ref. 1) are the proba-
bility of no error for codes a,63ande= 0,-1-11 respectively, then Q'( e) =
Q1( a)(21(0.).

If e = a + 63, a generator matrix for e need not appear in the block
form (6). A parity -check matrix for e need not appear in the block form
(7). The columns of a generator or parity -check matrix for e, however,
separate into two sets. All columns of the first set are linearly inde-
pendent of all columns of the second set, and vice versa. Furthermore,
if a linear combination of the columns sums to zero, the terms of this
sum belonging to the first set separately sum to zero. The two sets of
columns are said to be independent. (See Section 2.2 of this paper for
further detail.) Since column dependences of a matrix are unaffected by
premultiplication by a nonsingular matrix, we have that a code is equiva-
lent to a sum of two codes if and only if the columns of its 11 -matrices or
A -matrices separate into independent sets.

Some readily established properties of the sum just defined follow:

a L-/- a' and 63 t."-..1 implies a + a3 `.-1 + (8)

+ +«; (9)

a + (63 + e) = + (ii) + e; (10)

if e= + = at + (11)

1.5 The Product of Two Codes

We first remind the reader of the definition and elementary properties
of the direct or Kronecker product of two matrices. Let R = (rii) be a

* Whenever probabilities are discussed in this paper, the usual binary sym-
metric channel is assumed.
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matrix with a rows and b columns. Let S = (sii) be a matrix with c
rows and d columns. The Kronecker product T = /? X S of R times S
(the order of factors is important) is the matrix of ac rows and bd col-
umns with partitioned structure

r115 r128 ribS

7'215 r22S r2bS
T=RXS=

7.45 ra25 rabS

The rows and columns of T can be labelled by pairs of integers so that
a typical element of T is ti;:k/ = riksit . These indexing pairs are listed
in dictionary order, so that ij precedes i'j' if either i < i', or, when
i = i', if j < j'. For example 14 precedes 23, and 63 precedes 64.

One readily establishes the following properties for the Kronecker

product:

IQ X (R X 8) = (Q X R) X S,

RXS=RXS,

(12)

(13)

(P X (2)(R X 5) = (PR) X (QS),
R X S = u(S X R)A

(14)

(15)

In (13), the tilde indicates transpose. In (14), it is assumed that the
columns of P are equinumerous with the rows of 1? and that the columns
of Q are equinumerous with the rows of S. The product PR indicates
the usual matrix product. In (15), if R has a rows and b columns and
S has c rows and d columns, then a andµ are permutation matrices of
dimension ac and bd respectively and these matrices depend only on the
numbers a, b, c and d and not the entries of R or S.

Leta be an (n,k)-code and let 63 be an (n',k')-code. We define a new
code e by

12(e) = R(a) x 0(63). (16)

The code e so defined is an (nn',kAO-code called the product of a and
63 and we write e = am. It is an easy consequence of the properties of
the Kronecker product that e so defined is an (nnl,kk')-code and does
not depend on the particular generator matrices used for a and 63 in
(16).
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From (12) through (15) the following properties of code multiplica-
tion are readily established:

a' and 63 -:"L-2 63' implies aea 0/03', (17)

al33 (18)

d(cle) (aea)e, (19)

a( 63 e) as33 ae. (20)

We note that ( a63)* is not equivalent to ate in general.
Let a, 63 and e = aea be respectively an (n,k)-, an (n',k')- and an

(nn',kk')-code with generator matrices 0, and 0" and parity -check
matrices A, A' and A". There does not seem to be a simple expression
for a parity -check matrix for e in terms of A and A'. However, if we
confine our examination of codes to equivalences only, the structure of
the parity checks for the product of two codes can be described simply.

We may suppose, then, that 0 and 0' are in M -form. The structure of
0" is then given, up to equivalences, by

0" = (/k M) X (/k, M')

(II: X ./k, /-k X 111' M X I le M X M').
Denote the last nn' - kk' columns of this last matrix by N. Then
(Inn'-kk' g) is the parity -check matrix for a code equivalent to e.

It is readily seen from (21) that a code e' equivalent to e can be
described as follows. The k' information places of 63 are replaced by
letters (n -place binary sequences) of the code a. This accounts for the
kk' information places of e' and for the k' (n - k) check places of e'
described by the block IV X k, in (21). The n' - k' parity checks of
CB are then applied to these k' "information hyperplaces." The block
lk X IV' in (21) describes repeated application of checks of 63 over the
first k positions of the information hyperplaces of e' and accounts for
(n' - k')k checks. The block M X M' gives (n - k)(n' - k') addi-
tional checks over the information places of e'.

Up to equivalence, the product of two codes can be described in an-
other, perhaps more simple, manner. Let 0 = aca, where a is an (n,k)-
code and (B is an (n',k')-code. Then e is equivalent to the (nn',kk')-code
e' obtained as follows. a is equivalent to a code a' with k information
places and n - k check places; 63 is equivalent to a code (B' with k'
information places and n' - k' check places. In both a' and (33', the
check digits are mod 2 sums only over the information places. Write the
kk' information places of e' in a rectangular array of k' rows and k
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columns. Treat each row of the array as the k information places of a

letter of a' and affix the corresponding check digits to obtain k' rows
each of n binary digits. Regard each column of the array as the k' in-
formation places of a letter of 63' and affix to each column the n' - k'
corresponding 63' check digits. The nn' binary digits so obtained, read
off in some fixed order, give the corresponding letter of e'. It is to be
noted that, in this description of e', (n - k)(n' - k') of the check digits
involve sums over other check digits, whereas in the description given
by the last block of (21) these check digits are given as linear sums over
the information places only.

1.6 Arithmetic of Equivalence Classes

The sum and product of group codes introduced in the preceding two
sections provide an arithmetic of equivalence classes of codes. As before,
let 6, denote the equivalence class of codes to which the (n,k)-code
belongs. We define the sum of two equivalence classes by

+ da' + g3).

The self -consistency of this definition follows from (8). Similarly we
define a product

which is seen to he consistent from (17). Equations (8) through ( 11)
and (17) through (20) give at once

+ sct = +
+ ((is +e) = (ri + (13) +

etd:i =

$1(63e) = (M)e,
a(ct. + e) = acr3 +

The simple two -letter code, 1, consisting of the letters 0 and 1 with
parameters n = 1, k = 1 and generator matrix Si = (1) has the property

= 6,1 =

for all equivalence classes et.

1.7 Indecomposable Codes

To avoid repeated cumbersome statements about trivial cases, in this
section and the next we exclude from consideration codes whose generator
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matrices contain columns of zeros. Such columns correspond to wasted
digits in the code. A new code with smaller n value and the same k
value can be obtained by deleting such all -zero columns. This property
of possessing no columns of zeros is maintained under equivalence. If
a possesses the property, it is not necessarily true, however, that at has
no columns of zeros.

It may happen that an (n,k)-code a is equivalent to the sum of two
or more codes. In this case, we call a decomposable. If a is not equiva-
lent to the sum of two or more codes, we call a indecomposable.

If a is decomposable, all codes equivalent to a are also decomposable;
if a is indecomposable, all codes equivalent to a are also indecomposable.
We can therefore speak of an equivalence class 6, of codes as being either
decomposable or indecomposable according as its members are or are
not decomposable.

Theorem 2: Every (n,k)-code a is equivalent to a sum of indecomposable
codes: a + a2 +  + , where al , a2 , , are indecom-
posable. Furthermore, this decomposition is unique in the following sense.
If also a a,' + a2 + - + am", where a11, a2' ,  , am,' are
indecomposable, then m = m', a, a11', a2 '212',  , a,,',
where i2 , , im are the integers 1, 2, , m in some order.

Theorem 2 can be stated in terms of equivalence classes as follows:
Every equivalence class & of codes can be expressed as a sum of indecom-
posable equivalence classes d = d2 +  + d . The indecompos-
able summands di , et,, , d,,, are uniquely determined apart from order
by d.

A further consequence of Theorem 2 is
Theorem 3 (cancellation law of addition): Let d, eT3' and .6 be any three

equivalence classes of group codes. Then, if d = d 8, it follows
that SI = 8. (This theorem holds also when codes with columns of zeros
are allowed.)

1.8 Optimal Properties of Indecomposable Codes

A useful property of indecomposable codes is stated in the following
theorem.

Theorem 4: Let a be a decomposable (n,k)-code, k < n, with probability
of no err.; Q,( a). There exists an indecomposable (n,k)-code, (P, whose
probability of no error (21(19) satisfies Qi(69 > (2,( a).

In this theorem, Qi( a) is the probability that a letter of a be decoded
correctly when a maximum likelihood detector is used as the decoder
(see Section 1.6, Ref. 1). A similar meaning holds for Qi( (P). The
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n

k

1 2 3 4 5

X= S R S R S R S R S R

1 X 1 1X1 1

2 X 1 1 1

X 1

3 X 1 1 2 1 1

X 1 1 1

4 X 1 1 3 1 3 1 1

X 2 1 1

5 X 1 1 4 2 6 2 4 1 1

X 1 1 3 1 1

6 X 1 1 6 3 12 5 11 3 5

X 1 1 4 2 4

7 X 1 1 7 4 21 10 27 10 17

X 1 1 5 4 8

8 X 1 1 9 5 34 18 63 28 54 1

X 6 5 15

9 X 1 1 11 7 54 31 134 71 163
X 5 5 29

10 X 1 1 13 8 82 51 276 164 465 21

X 4 4 46

11 X 1 1 15 10 120 79 544 361 1283 8(

X 3 3 64 (

12 X 1 1 18 12 174 121 1048 751 3480 24!

X 2 2 89

13 X 1 1 20 14 244 177 1956 1503 9256 72,

X 1 1 112 1:

14 X 1 1 23 16 337 254 3577 2887 24282 203,
X 1 1 128 1!

15 X 1 1 26 19 453 356 6395 5393 62812 553!

X 1 1 144 1

16 X 1 1 29 21 613 490 11217 9763 160106 1462;

X 145 1

17 X 1 1 32 24 808 661 19307 17273 401824 3767
X 129 1

18 X 1 1 36 27 1056 882 32685 29839 992033 9475
X 113 1

19 X 1 1 39 30 1361 1157 54413 50557 2.40633 2.329
X 91

1230
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k

G 7 8 9

S R S R S R S R

1

1

6 1 1

5 1 1

25 5 7 1 1

14 4 6 1 1

99 31 35 7 8 1 1
38 19 22 6 7 1 1

385 164 170 51 47 8 9 1
105 70 80 35 32 7 8 1

1472 809 847 361 277 79 61 10
273 220 312 190 151 59 44 9

5676 3749 4408 2484 1775 751 436 121
700 629 1285 977 821 465 266 96

22101 16749 24297 16749 12616 7240 3557 1503
1794 1700 5632 4875 5098 3689 1948 1041

87404 72783 143270 113662 102445 72783 34942 20341
4579 4463 26792 24920 37191 31227 17934 12476

350097 311233 901491 784390 957357 784390 428260 311233
11635 11505 137493 132811 320663 293070 213773 175114

.41325 1.31126 5.98528 5.51748 10.1746 9.09877 6.59254 5.51748
29091 28946 745413 733654 3.18608 3.04662 3.27631 2.94948

.70816 5.44572 41.1752 39.2920 119.235 112.170 123.425 112.170
70600 70454 4.14506 4.11584 34.7994 34.0492 61.2716 58.0573

2.9032 22.2371 287.813 280.215 1482.30 1434.04 2647.03 2516.51
164705 164575 22.9827 22.9120 397.232 393.075 1296.46 1261.52

0.6994 89.0390 2009.86 1979.34 18884.5 18548.3 76284.2 59541.8
366089 365976 124.432 124.268 4558.66 4535.64 29032.1 28634.1

1231
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theorem thus states that the search for best codes can be restricted to
indecomposable codes when "best" means large values of Q.

Another criterion frequently used to evaluate codes is the nearest
neighbor distance, d. This quantity is the smallest nonzero weight of
the letters of the code. If d = 2e + 1, then the code can correct all com-
binations of e or fewer digit errors in any transmitted letter. For a given
n and k, it is not necessarily true that the code with largest d value has
the largest Qi value.

The search for codes of largest nearest neighbor distance can also be
limited to indecomposable codes as a result of

Theorem 5: Let a be an (n,k)-code, k < n, with nearest neighbor dis-
tance d(a). There exists an indecomposable (n,k)-code, 6', with nearest
neighbor distance d(6)) z d( a).

A convenient test exists for determining whether a given )-matrix in
M -form is the generator matrix of an indecomposable code. Two ele-
ments, m and mit, , of M are said to be connected if they both have
value 1 and lie either in the same column or the same row of M. A
path in M is a sequence of elements of M each of which is connected to
its successor except for the last element of the sequence. In terms of
these definitions, we have the following

Test: Let a be an (n,k)-code with k < n. Then a is decomposable if
and only if M contains a path containing elements from every row of M.

The above test is meaningless for (n,n)-codes. The (1,1) -code is
indecomposable. For n 1, the (n,n)-code is decomposable.

It is easy to show from this test for decomposability that a is an
indecomposable (n,k)-code with no column of zeros if and only if at
is indecomposable and has no column of zeros.

The test for decomposability can also be used to establish that e =
aea is indecomposable if and only if a and CB are indecomposable.

1.9 Enumeration of Equivalence Classes

Although we have not succeeded in parametrizing the equivalence
classes of (n,k)-codes, we can systematically enumerate these classes by
a modified Polya scheme.' The details of the method are given in Section
2.8. Here we present the results of a computation.

We shall denote by Snk the number of equivalence classes of (n,k)-
codes with no columns of zero.

A generator matrix for an (n,k)-code may or may not have repeated
columns. The multiplicities of columns in an 0 -matrix are preserved
under equivalence. Of interest are the (n,k)-codes whose 0 -matrices
have no repeated columns. We denote by Snk the number of equivalence
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classes of (n,k)-codes having no repeated columns and no columns of
zeros.

We adopt an analogous notation for the number of indecomposable
equivalence classes. The number of equivalence classes of indecompos-
able (n,k)-codes with no columns of zeros is denoted by Rnk . The num-
ber of equivalence classes of indecomposable (n,k)-codes with no re-
peated columns and no columns of zeros is denoted by Rnk

Table I lists values of Snk Snk Rnk and Rnk . The box in row n and
column k contains Snk in the upper left corner, Snk in the lower left
corner, Rnk in the upper right corner and Rnk in the lower right corner.
All entries are given to six significant figures. Numbers containing a
decimal point are to be multiplied by 106.

From a table of values of Snk , one can easily construct a table of
values of W nk , the number of equivalence classes of (n,k)-codes (zero
columns and repetition allowed). Table II is a short table of values of

TABLE TI - VALUES OF N nk AND Wnk

k

0 1 2 3 4 S

1 N
II'

1

1

1

1

2 N 1 3 1

IV 1 2 1

3 N 1 7 7 1

IV 1 3 3 1

4 N 1 15 35 15 1

H' 1 4 6 4 1

5 N 1 31 155 155 31 1
11' 1 5 10 10 5 1

6 N 1 63 651 1395 651 63
IV 1 6 16 22 16 6

7 N 1 127 2667 11811 11811 2667
II' 1 7 23 43 43 23

8 N 1 255 10795 97155 200787 97155
IV 1 8 32 77 106 77

9 N 1 511 43435 788035 3309747 3309747
IV 1 9 43 131 240 240

10 N 1 1023 174251 6347715 53743987 109221651
IV 1 10 56 213 516 705
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Wnk along with values of No, , the total number of distinct (n,k)-codes.
One has No, = N. t , Wnk = W n1 1 = n - k. The familiar appearance
of the first five rows of the Wnk table provides a good example of the
perils of too hasty extrapolation in mathematics.

Part II - ADDITIONAL THEORY AND PROOFS OF THEOREMS OF PART I

2.1 Proof of Theorem 1

Theorem 1 asserts that a necessary and sufficient condition for two
k X n 0 -matrices, say 0 and Sr, to be equivalent is that their columns
can be placed into a one-to-one correspondence that preserves mod 2
addition of the columns.

The necessity of the condition follows trivially from the fact that
equivalence means gflo = 0' for some nonsingular g and some permuta-
tion matrix a. For the one-to-one correspondence of the theorem, asso-
ciate the ith column of 0u, say ci , with the ith column of 0', say ci',

i = 1, 2, , n. Then gci = ci', i = 1, 2, , n. Thus, if ci c; =
ck , then gci gc; = gck , or ci' cl = ck'. Since g is nonsingular, it
also follows that ci' c/ = ck' implies ci = ck 

To prove the sufficiency of the condition, suppose that the columns
of 0 and 0' can be placed into a one-to-one correspondence that preserves
mod 2 addition of columns. Let a permute the columns of 0 so that the
ith column of &k corresponds to the ith column of S2', i = 1, 2, , n.

Let g E Gk and an n X n permutation matrix, reduce Sla to M-form.
Then mod 2 addition of columns is preserved between gRaii and g0'µ
when the ith column of the former is associated with the ith column of
the latter, i = 1, 2, , n. The first k columns of g00 -,u are independent
since the first k columns of g00-'1.4 are. Therefore the matrix gi formed by
the first k rows and k columns of gOoli is nonsingular. The matrix
gr'gacrA is in M -form and, when its ith column is associated with the
ith column of mod 2 addition of columns is still preserved. But
then columns k 1, k 2, , n of these two matrices are identical
linear combinations of their identical first k columns, so that gi-lgariA =

It follows then that 0' = fragrarg.,az so that fl' and 0 are equivalent.

2.2 Decomposition of Sets of Vectors

In this section we present five lemmas and a theorem concerning
linear dependence of vectors. This material is preparatory for the proof
of Theorem 2. While it is true that Theorem 2 can be proved much more
directly (and abstractly) than is done here, it is felt that the procedure
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to be followed gives more insight into the nature of the problem at hand
than do the shorter more abstract proofs.

Here we shall consider collections of vectors drawn with possible
repetitions from a finite dimensional vector space over a finite field of
scalars. In the application to be made later, the vectors will be columns
taken from the generator matrix of a code, and the scalars will as usual
be zero or one. The reader may, if he wishes, restrict his considerations
to vectors and scalars of this sort. Throughout this section, we agree to
exclude the null- or zero -vector from consideration as a member of any
of the collections of vectors we may discuss.

Let SI , 82  , S. be nonempty finite sets of vectors. Denote the
vectors of Si by vi; , j = 1, 2, , ri , for i = 1, 2, , m. The sets
Si , S2 , , Sm are then called independent if every relation of the form

implies

E E o

r;

E = 0,
;ai

1, 2, , m.

Clearly, no vector in any one such set can be written as a linear combina-
tion of vectors taken only from the other sets. Directly from the defini-
tion of independence we also have

Lemma 1: Let the sets Si be independent and let Ri be a subset of Si ,

i = 1, 2, , m. Then the nonempty sets among 1?i , R2 , , R, are in-
dependent.

A set, S, of vectors is called indecomposable if S cannot be written as
a union of two or more independent subsets of S. Every vector in an
indecomposable set containing more than one vector can be written as
a linear combination of other vectors in the set. Clearly, a set S that is
not indecomposable is the union of independent indecomposable sub-
sets, Si , S2 , S. . In this case we say that S can be decomposed
into independent indecomposable components Si , S2 , , S. .

A linear form 1 = a2v2 +  + «iv; is called irreducible if no
collection of j - 1 or fewer of the terms aivi , a2v2 ,  , aivi sums to
zero; otherwise, the linear form is called reducible. Two linear forms are
called disjoint if the respective sets of vectors with nonzero coefficients
in the two forms are disjoint. We have then

Lemma 2: Every reducible linear form that is equal to zero is the sum of
disjoint irreducible linear forms each of which is zero.

Proof: Suppose 1 = a2v2 +  + aiv to be reducible where
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all the a's are different from zero. Then there are subsets of terms of 1
that add to zero. Choose such a subset containing a minimal number of
terms and call the sum of these terms the linear form 11. The form /I
must be irreducible or it would not contain a minimal number of terms.
Repeat this procedure for 1 - ll = 12 = 0. After a finite number of
steps we obtain an irreducible form li and 1 = 11 + l2 +  + li . The
forms so obtained are disjoint by construction.

Let S contain r vectors. One can form pr - 1 linear forms

Eailri

of these vectors where not all the a's are zero. Here p is the number of
elements in the field of scalars (p = 2 in the applications to follow).
From this list of linear forms, delete those that do not sum to zero.
From the remaining forms, delete those that are reducible. One arrives
then at a uniquely determined set 2 of irreducible sums, each one of
which is zero. Two vectors of S, say vi and v2 , are said to be directly
connected to each other if they appear together as terms in any one of
the irreducible sums of 2. A vector of S not appearing in any of the
linear forms of 2 is said to be directly connected to itself. Two vectors of
S, v1 and v2 , are said to be connected if there exist vectors

vii , vi2 ,  , vig

of S such that vl is directly connected to vi vig is directly connected
to v2 and via is directly connected to via , a = 1, 2, , q - 1.
If v1 is connected to v2 , we write v1 ti v2 . Evidently, for all vectors

, v2 , v3 of S we have: (a) vi v1 ; (b) v1 r'S-1 v2 implies v2 ^-) v1 ;

(c) if v1 N v2 and v2 r., v3 , then vi c-, v3 . The vectors of S are therefore
uniquely separated into disjoint equivalence classes by the connectedness

relation N.
Lemma 3: The totality of vectors of S belonging to an equivalence class

E of connected vectors forms an indecomposable set.
For, suppose E could be written as the union of two independent sub-

sets Si and S2 of E. Since all elements of E are connected, there must
be a v1 in Si and a v2 in 52 such that v1 is directly connected to v2 . There
is therefore a linear form in 2 of the form

alvl a2V2 E aiVi = 0

with al 0, a3 0. By the definition of independence, the terms in
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this sum belonging to Si add to zero, as do the terms belonging to AS2 .

But this contradicts the irreducibility of sums in 2.
Lemma 4: Distinct equivalence classes Si , S2 , , Sm of connected

vectors of S are independent sets of vectors.
Proof: Consider any linear form

/ = EE
of vectors of S that is zero. Suppose 1 contains vectors from different
equivalence classes with nonzero coefficients. Then, since 1 = 0, I can-
not be irreducible, for in this case the vectors in different equivalence
classes would be directly connected. Since it is reducible, I can be written
by Lemma 2 as the sum of disjoint irreducible forms each of which is
zero. But none of these forms can contain vectors from different equiva-
lence classes. Adding together all the irreducible forms containing
vectors from any one equivalence class, we get

EaiiVii = 0, i = 1, 2, , m.

Lemma 6: All vectors of an indecomposable subset P of S belong to the
same equivalence class of connected vectors.

For, let Ri be the set of vectors of P that belongs to the equivalence
class Si , i = 1, 2, , m. By Lemmas 1 and 4, the sets Ri are
independent and the assumed indecomposable set P is then exhibited
as the union of independent subsets. This is a contradiction unless all
the Ri but one are empty.

The preceding lemmas and definitions allow us to state finally the
following

Theorem 6: A set S of vectors can be decomposed into independent in -

decomposable components in only one way.
Proof: We have seen that S can be separated into equivalence classes

of connected vectors in a unique manner. Lemmas 3 and 4 show these
equivalence classes to be a decomposition of S into independent inde-
composable sets. Suppose now that S could be decomposed in another
manner into independent indecomposable sets. Lemma 5 shows that each
such indecomposable set is completely contained in an equivalence class.
There cannot be more than one such indecomposable set in any equiva-
lence class, for then the equivalence class would be the union of two or
more independent subsets which contradicts Lemma 3.

We point out once again in closing this section that the vectors of the
set S here considered need not be distinct. S may contain several copies
of a single vector of the linear vector space under consideration.
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2.3 Proof of Theorem 2

Let us regard the columns of a generator matrix 12( a) as a collection
of vectors. The linear relations satisfied by a set of vectors determine
whether or not the set is indecomposable. The linear relations satisfied
by the column vectors of generator matrices of equivalent codes are
identical (except for possible renumbering of the columns). It follows
immediately that a code a is indecomposable if and only if the columns
of any (and hence every) generator matrix St( a) form an indecompos-
able set of vectors. With this remark, we proceed to the proof of Theorem
2.

That every (n,k)-code a is equivalent to a sum of indecomposable
codes follows readily from the definitions of indecomposable codes and
equivalence. Here we show only that if a f-1-- a1 + a2 +  + an, and
a _Q1- al' + a2' +  + a,/ where the a, and a1' are indecomposable,
then m = m' and ai j = 1,2, , m, where , i2 , , i, are
the integers 1, 2,  , m in some order.

If R, S, , are matrices of respective size r X r', s X s', , we

denote by diag (R, S, ) the (r s -I-  ) X (r' s'  ) par-
titioned matrix having R in its first r row and r' columns, S in rows
r 1 to r s and columns r' 1 to r' s', etc., and zeros elsewhere.
Set

12 = diag [St( al), 2(a2), , sgan.)1,

= diag poi% s2(a2'), ,

Then, by hypothesis, 12 = g1J'r, where a, is an indecomposable (ni ,k i)-

code, i = 1, 2,  , m; a,' is an indecomposable (nl,kl)-code, j = 1, 2,
, m'; and

(22)

E ki = E k/ = k,

E ni = En,' = n.

The columns of S2 decompose into independent indecomposable sets
, 82 , , Sm . Here Si consists of the first n1 columns of St, 82 con-

sists of the next n2 column of 2, etc. The columns of 1'o satisfy linear
relations identical with those satisfied by the columns of SI since SZ =
Oa, and hence, from Theorem 6, the first n1 columns of fro- are an in -
decomposable set SI', the next n2 columns of Ira- are an indecomposable
set 82', etc., and these sets are independent. But the columns of il'a
are a reordering of the columns of S2' and the latter are exhibited as m'
independent indecomposable sets in (22). Therefore, m = m' and nil' =
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it; , j = 1, 2, , m, where it , i2 , , im are the integers 1, 2, ,

m listed in some order. It follows then that S/ consists entirely of those
columns of 1' that contain I2( aid' ), j = 1, 2, , m. We can then write
E2'a- = /AZ", where /.1 is ask X k permutation matrix,

SZ" = diag [S( , ai,' )0-2 ,
. .

, Q( )(Tn.],

and aj is an nj X n; permutation matrix, j = 1, 2, , m. On setting
g" = gi.e, we have g"1-2" = a.

Let T1 be the matrix of the first n1 columns of 0, T2 be the matrix of
the next n2 columns of E2, etc. Let T1" be the matrix of the first n1 col-
umns of 0", T2" be the matrix of the next n2 columns of St", etc. Then
g"T;" = T; , j = 1, 2,  , m. But T; is of rank k; and g" is non-
singular, so that From E = E k; = k, we find =
k ; , j = 1, 2,  , m.

Now partition g" in rows according to k1 , k2 , , km and in columns
according to n1 , n2 nin . Denote the ith diagonal submatrix of g"
by gi . Then g"ir = fl yields gj12( sga,), j = 1, 2, , m.
A comparison of ranks in these equations shows that the g; are nonsingu-
lar. Therefore a5 , j = 1, 2,  , m, and the theorem is
proved.

2.4 The Test for Inclecomposability

We have seen that an (n,k)-code a is indecomposable if and only if
the columns of any generator matrix SI( a) are an indecomposable col-
lection of vectors. If sga) is in M -form its first k columns are inde-
pendent and each contains a single one. The other columns of a(a) can
each be expressed as an irreducible sum of these first k columns. From
Section 2.2 it follows that the columns of Si( a) will form an indecompos-
able set of vectors if and only if the first k columns of 12(a) are connected
to each other. The reader can readily translate this statement into the
test described in Section 1.8.

2.5 Proof of Theorem 3

The hypothesis 4 + d3 = e means that, for codes a, 63 and e
respectively in el., c and e,

± a+ e.
Then

+ a2 +  + a. + + (B2 +  + (Bs
ti a1 + a2 +  + as + ei + e2 +  + e7 ,
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where the a; , (B; and e; are the (unique) indecomposable code com-
ponents respectively of a, 03 and e. By Theorem 2 we have i3 = 7,
and there is a one-to-one correspondence set up by the equivalence re-

lation between elements of the set H1 = , , as , 63r, , (13,91

and the set H2 = I al , - , a., e, , , If all the 03's map into
e's in this correspondence, then E (33, E = '& and the
theorem is proved. Suppose then that 031 maps into ail of H2 . If ai, of
H1 maps into a e, say e, , then 031 ai, , and we go on to ex-
amine another 03 of I/1. If, however, ai, of H1 maps into ail of H2
we then consider ai, in 111 . Proceeding in this manner, we must ul-
timately reach an a in H1 that is mapped onto a e, since the a's in
H1 and H2 are equinumerous and (B, of H1 is mapped onto an a of H2 .
This yields a chain of equivalences starting with 031 and ending with a
e. Each 03 then is equivalent to a e and, by reversing the argument, we
find a one-to-one equivalence correspondence among the 03's and (3's.
It follows then that (C3 =

2.6 Proof of Theorem 4

Theorem 4 states that if a is an indecomposable (n,k)-code, k < n,
with probability of no error (ma), then there exists an indecomposable
(n,k)-code, 0), with probability of no error (21(0?) > Qi( a).

Proof: The given code a is equivalent, by Theorem 2, to a code a'
that is the sum of indecomposable codes:

a' = $311 + (B2+  + (am,

where (Bi is an indecomposable (ni , ki)-code and Eki = k, E ni = n.
Let (Bi have probability of no error Q1(03i) when used with a maximum
likelihood detector. Then a' has probability of no error Q,( a') =
Qi((B1)Qi(i332)  Qi((3.). [See remark following (7).]

We shall show below that the theorem is true for m = 2. The proof
for general m then follows readily by induction. For, suppose the theo-
rem to be true for m = 2, 3,  , r. If then a' = + 632 + - + ear +
car+1, by the induction hypothesis there is an indecomposable

(n - nr+1,k - kr+1)-code (B' with (21((B') Q1(030(21(632)  (21( (Br)

The decomposable code a" = CB' ± (13,4_1 has probability of no error
(21( a") = (21((3)Q,((f3r.,_,). Again by the induction hypothesis, there
exists an indecomposable (n,k)-code, P, with Q1( (P) > Qi(Ct'') =
(21((B')(2,((B,4-1) Q1030(21(632) (21(63,)(21(St+i) = Qi(a'). The
theorem is then true also for m = 2, 3, - , r 1.

To prove the theorem for m = 2, we distinguish two cases. First sup-
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pose n2 1. We can suppose the generator matrices for 631 and 432
written in M -form so that a generator matrix for a' has the form

M2o 14,,
) (23 )

I : Ml 0 0

Consider now the (n,k)-code 63 wit h generator matrix

1l - 1

00.  0
11:1 ill 0

00  0
(24)

0 i 0 1k2 1112

where the upper right section of S1( 6)) has one row of l's and k1 - 1 rows
of zeros. We observe first that 6) is indecomposable, since 63 is equivalent
to a code with generator matrix in M -form with

1 1  1

00  0
. . .

M=
00  0

. . . . . . . . .

0 M2

Since 631 and 632 are indecomposable, both M1 and M2 have paths that
contain all their rows, by the test of Section 1.8. A single path contain-
ing all rows of ill is then easily obtained by joining together the paths
for M1 and M2 by some of the ones of the upper right block of M. The
code associated with AI is thus indecomposable, and so is 6).

The last k1 - 1 rows of 52(631) generate an (n1 , ki - 1) -code. Let the
letters of this code be B11', B12',

7 B1; , where a = Let the first
row of 0(630 be denoted by B11. Then the µl = 2h1 letters of eal are
B11', B12', , B1; and B11 + B11', B11 -I- B12'7  7 B11 4-B161. Let the
letters of 632 be B21 , B22 , B2,2 where 112 = 212. Then the letters of
a' can be denoted by the ti1i42 symbols (B1;', B21) and (B11 B11', B2J),
where i = 1, 2, , a and j = 1, 2, , J.12 . The notation here is that
(B11', BO stands for the sequence B11' followed by the sequence B21
for example.

In the notation just introduced, the m1th2 letters of 63 are (B11 , B21) and
(B11 B11' , B21), where i = 1, 2, , a and j = 1, 2, , "12 and B21
denotes the sequence B2; with its last n2 - k2 = /2 places complemented.
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That is, B2j is obtained from B2 by changing to zero every one in the
last /2 places of B2j and by changing to one every zero in the last 12

places of B2
Consider now transmitting with over a binary symmetric channel

using the following decoding rules. Apply the maximum likelihood de-
tector for 631 to the first ni digits of a received sequence R. One thus
obtains a letter of 631 , say By.. If B11 is one of the letters B11', B12',  ,
B1.1, apply the maximum likelihood detector for 632 to the last n2 places
of R to obtain a letter of 632 , say B2j . The pair (B1, ,B21) is taken as the
decoded version of R. If,however, B11 is one of the letters B11 + B11',
B11 + B121 y y

B11 + B1,1, complement the last 12 places of R, and
then apply the maximum likelihood detector of (B2 to the last n2 digits
of this new sequence derived from R. A letter B2j say, of 632 will be
obtained. The decoded version of R is taken to (B11, B21).

It is readily seen that on using the indecomposable code (P with this
decoding scheme, the probability of no error is (11( (Bl)(21( (2). Since the
maximum likelihood detector for (P must do as well, (21( 6)) > Qi((31) 

Qi( 632) = (41( a') = Qi(a), and the theorem is proved for this case.

If n2 = 1, but 1, reverse the roles of 631 and (B2 in the preceding
argument. The case n1 = n2 = 1 has been excluded by the condition
k < n, for n1 = n2 = 1 implies k1 = k2 = 1, or n = k = 2.

This completes the proof.

2.7 Proof of Theorem 5

The nearest neighbor distance, d( a), of a group code a is the
smallest of the nonzero weights of the letters of a. If a and a' are

equivalent, d(a) = d( a') and indeed the list of weights of letters of a

is the same set of numbers as the list of weights of the letters of a'. It
is easy to see that if a = (B + e then d(a,) = min [d((B), d(e)j.
Thus, if a -f-Ld- + (B2 +  + d( a) = min [d(132,1), d(1332),  ,

( (Bm)].
The proof of Theorem 5 follows the outline of the proof of Theorem 4.

The inductive part of the proof only requires substituting d's for Q's.
The pertinent equations are:

d((B') min [d((1), d(032), , d(a3,)],

d(a") = min [d(63'), d( (3,.+1)),

d( (3) z d(a") = min [d((B'), d(63,44)]
min{min [d( 630, , d(3,)], d((Br+1)1

= min P((31),  , d((,+1)] = d(a') = d(a).
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To prove the theorem for m = 2, we again consider a generator matrix
for a' in the form given by (23). Without loss of generality, we suppose
d( a') = d(dii), so that d( d( 632). Now suppose /2 = n2 - k2 >= 1.

We compare a' with the indecomposable code 6) given by (24). The
nonzero letters of (P are the 2"k2 - 1 nontrivial linear combinations
of the rows of ft( (P). Every such linear combination that contains one
or more of the first k1 rows of 0( (P) has weight d(611), since the first
n, places will be a nonzero letter of 431 and the last n2 places have weight

0. Every linear combination of rows of ft( 6)) that does not contain
any of the first k1 rows is just a letter of (332 preceded by n1 zeros, and
hence has weight >= d(632) >= d( (BO. We thus have d((P) > d(631) =
d(a').

If /2 = 0, then k2 = n2 = 1, since a2 is assumed indecomposable.
Then d(612) = 1 and, since d(63,) 5 d((32), d(a') = d(031) = 1. How-
ever, for every indecomposable (n,k)-code (P, we have d(W) > 1 =
d(c, and so the theorem is proved for m = 2.

2.8 Enumeration Formulae

Let G be a finite group with elements a g2 / gr where r is the
order of G. Define gi g; if there exists an element g E G such that
gi = gg,g1. The equivalence relation partitions G into equivalence
classes Ci , C2 " Cp called classes of conjugate elements. Now suppose
that corresponding to each element gi of G there is a permutation,
(r(gi), of m objects Si , 52 , , S, of a set S such that if gig' = gk,
then Q(gi)a(gi) = cr(gk). We define two of the objects of the collection
S, say Si and Si, to be equivalent if there is a a(gi), gi E G, that re-
places Si by Si . The collection of objects S is then partitioned into
equivalence classes. A well-known theorem (p. 231, Ref. 3) gives, for
the number of equivalence classes N of S,

N = 1 t n(Ci)x(Ci). (25)r i=1

Here n(Ci) is the number of elements of G in the equivalence class Ci
and x(Ci) is the number of elements of S left invariant by any cr(gi),
gi E Ci . [It is easy to show that if gi gi , then Q(gi) and cr(g;) leave
the same number of elements of S invariant.]

We apply this theorem to the enumeration of (n,k)-codes as follows.
For the group G we choose the collection Gk of nonsingular k X k mat-
rices (mod 2) of order

2k 20 2k (2k 2k-1
(26)
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Let vi , v2 , , v2k_1 be the nonzero k -place binary column vectors.
For the sets Sl , 52 , , S,n we choose the m = (2k - 1)" possible
collections of the v's taken n at a time (repetitions of v's within any S
allowed). The elements of Gk permute the 2k - 1 vectors v among them-
selves by ordinary matrix multiplication. That is, if givi = vi , we say
that gi induces a permutation 12(gi) that replaces v; by vi . The permu-
tation i.t(gi) of the v's in turn induces a permutation (r(gi) of the sets

, S2, , Snt . We note that if n =< 2k - 1, then

(2k - 1\
n

of the m S's have the property of containing only distinct vectors (no
repetitions), and these in special S's are permuted among themselves
under cr(gi). We denote by er(gi) the permutation of these 771 special

S's induced by gi .
We now define two k X n binary matrices ft and 12', regardless of their

rank, to be equivalent if there exists a g E Gk and an n X n permutation
matrix v such that St' = ggv. The number of equivalence classes of

k X n -matrices none of which has columns of zeros is then clearly the
same as the number of equivalence classes of the sets Si , , S. . Ap-
plying (25), we write

m=

- E n(C,)x(Ci), (27)

Tnk E n(CA(C,), (28)
G1k I

where I Gk I is given by (26) , n(Ci) is the number of elements of Gk in
class Ci , and x(Ci) and R(Ci) are the number of objects left invariant
respectively by cr(gi) and a (gi),gi E Cri . The quantities T nk and Tnk
are, respectively, the number of equivalence classes of k X n matrices
with no columns of zeros and the number of equivalence classes of

k X n matrices with no columns of zeros and no repeated columns.
The matrices ft in the above enumeration may have rank less than

k. It is easy to show, however, that

Snk = T n,k T11 k-1

Snk= Tn,k Tn,k-1

(30)

(31)

k = 2, , n, n = 1, 2, , where, as in Section 1.9, Snk and
Snk are, respectively, the number of equivalence classes of (n,k)-codes
with no column of zeros and the number with neither repeated columns
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nor columns of zeros. We also have S, = 1 for n = 1, 2, and
= 1, 51 = 0 for n > 1.

The group Gk has been well studied, and the detail needed to evaluate
(27) and (28) can be taken from the literature. Here we omit all deriva-
tions and only present such definitions and formulae as needed for our
purpose. The structure of Gk is given in detail by Dickson ;4 a recipe for
getting the cycle structure of the permutations of the v's induced by ele-
ments of Gk is given by Elspas.5

A polynomial of degree d > 0,

P xd aixd-1 a2xd-2 + as ,

where the a's are zero or one, is said to be irreducible if it cannot be
written as the product of two or more polynomials with coefficients zero
or one, where each factor is of degree greater than zero. (All addition of
coefficients is to be done mod 2.) For each d there are a finite number of
irreducible polynomials. In what follows, we shall exclude from con-
sideration the irreducible polynomial P(x) = x. The first few irreducible
polynomials are x + 1, x2 -I- x + 1, x3 + x + 1, x3 + x2 + 1. A more
comprehensive table of irreducible polynomials is given by Church,°
where, for each irreducible polynomial, P, there is also listed the small-
est integer e such that P divides xe - 1. We suppose the irreducible
polynomials to be numbered, and denote them by Pi , P2 , P3 , . We
let di denote the degree of Pi and e1 denote the smallest integer e such
that Pi divides xe - 1. We further let td be the number of irreducible
polynomials of degree d or less.

A partition of an integer a into positive integral parts Al , A2

say a = Xi + A2 +  + Ai, , can also be written in the form
a

a = 1a1 2a2 +  + aaa = E iai

Here ai designates how many parts have the value i. We shall use bold-
face Greek letters to denote partitions. The absolute value sign will de-
note the value of the integer being partitioned. For example, a will de-
note a particular partition,

a

E ja
1

of the integer a = a I. When dealing with many partitions al , tY2

etc., we shall denote the numbers of parts of various size of by ail ,

ail , etc., so that
lad

"i I = E jai/
5=1
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We admit the single partition of zero, 0, ini o one part. For this partition,
all a's are zero.

The classes of conjugate elements of Gk can be specified conveniently
by tk-place symbols. The ith place in such a class symbol corresponds to
the ith of the irreducible polynomials of degree S k. Each place in such
a class symbol is occupied by a partition. If the symbol for a class of Gk
is

, cr.2 , , ark),

we require

(32)

rA

E I.,' di = k. (33)
i-1

The various classes of Gk are given by all the distinct symbols (32) that
can be formed subject to (33). The sums in (27) and (28) are over such
class symbols.

We now give a recipe for the integers n(C) of (27) and (28). (See
p. 235, Ref. 4.) We first write

ii(C)

Then, if C is specified by (32),

D(C) =

Here

where

and

D(C) 

ilf(ai df)
1=1

lad

f(ai = 2-1°kro1T
1=1

= (2rj - 2°j)(2r1 - 21j) (2rj -

lad la; 1 ail

0(at) = E - 1) + 2 Ej«ii «it 0,

1=j+1

To compute the quantities x(Ci) and R(Ci) of (27) and (28), we
need to know the cycle structure of the permutation of the v's induced by
an element of class Ci of Gk . Let an element of Ci , as given by (32),
permute the v's into Ili cycles of length i, where i = 1, 2, , 2k - 1.
An algorithm for finding the v's is given by Elspas.6 Introduce indeter-
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minates zl , 22 , , and define the product of two z's by the rule

ZaZb = CZd

where c is the greatest common divisor of a and b and d is the least
common multiple of a and b. Then the v's may be obtained from

2k-1 tk *If
E vi(c)z, = H H
1=1 ,=1 j=.1

where the linear forms H(i,j) in the z's are obtained recursively by

H(i,j) = H(i, j - 1) + 2`4(j -')(24i - 1)
zg,j,

qi;

= 1,2, ,

qi; =

where b; is the smallest integer such that 2'i ?_ j, and H(i3O) = z, , i = 1,
2, . .

An element of Gk permutes the v's in cycles. A collection 8; of n v's
will remain invariant under this permutation only if Si is composed of
complete sets of the v's that are permuted in cycles. It is not hard to
determine the number of Si that remain fixed when the cycle structure of
the permutation of the v's is given. We write only the final result:

2k-1

E 71kr =
Gk

E n(C1) IT (1 - tiri"')
i

2k_i
E T kr = ra-,1" n.(Ci) II (1 + tipcco.

The utterly formidable series of formulae and algorithms from (32) on
were used, along with (30) and (31), to compute the Snk and Snk given
on Table I. The Rnk were found from the Snk by a generating function
scheme which will not be described in detail here. When the Rnk are
known for k = 1, 2, , ko and n = 1, 2, , no , these numbers can
be used to find the number of equivalence classes of decomposable
(no + 1, ko)-codes, (no , ko 1) -codes and (no + 1, ko 1) -codes. By
subtracting the number of decomposable equivalence classes from the
appropriate Snk , new values of Rnk are found.

The programming of these formulae for the IBM 704 presented a
number of interesting problems. All quantities involved are integers. In
the program, they were maintained as integers. The division indicated in
(27) then provides a check as to the accuracy of the sum. Unfortunately,
the integers involved are frequently enormous. Modest answers in Ta-
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ble I of magnitude 101 to 102 were obtained as the result of computations
involving integers of magnitude 1030. The total machine time needed to
compute the results presented was about 45 minutes.

2.9 An Alternate Approach to Enumeration

In Ref. 1 we regarded any subgroup of order 2k of the group B of
n -place binary sequences under mod 2 addition as an (n,k)-code. Thus
codes with columns of zeros were admitted. It was also pointed out that
G. is the group of automorphisms of B . If we regard the elements of
B as column vectors, then multiplication of each element of B by an
n X n matrix g E G sends the element into a new element of B and
this defines the automorphism associated with g.

In an automorphism of B , subgroups of B are sent into subgroups.
We denote by ga, the subgroup into which the (n,k)-code a is sent under
the automorphism g. As g runs through G. , ga runs through all Aria (n,k)-

codes.
Now let H be the subgroup of G that leaves a invariant, i.e., H con-

sists of all those elements g E G for which get, = a. Let S be the sub-
group of G consisting of all n! n X n permutation matrices. Then the
elements SH (the collection of distinct elements of G obtained by
multiplying every element of 2 on the right by every element of H) send
a into an equivalent code, and it is easy to show that SnH contains all
elements of G that send a into an equivalent code. Let g2 E G send a
into a nonequivalent code a2 . Then g2 SH. Every element of the
collection Sg2H (i.e., all elements sg2h with s E S , h E H) then sends
a into a code equivalent to a2 , and again it is easily shown that every
element of G that sends a into a code equivalent to a2 is contained in

Sfig2H.
A collection of the form S,igH is called a double coset of G. with respect

to S. and H. Two double cosets of G with respect to 8 and H, say
SgiH and Sg2H, are either disjoint or identical. The group G can thus
be decomposed into disjoint double cosets SngiH, Sng2H, , S,,gH.
The argument of the preceding paragraph can be continued to show that
p, the number of double cosets of G with respect to S and H, is the
number, W.k of equivalence classes of (n,k )-codes (zero columns per-
mitted).

The following formula' for the number, p, of double cosets of a finite

group G of order I G I with respect to the subgroups H1 and H2 respec-
tively of order I H1 I and I H2 I;

I G E n1(Ci)n2((%)
P I Hi II H2 i n(C)

(34)
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could then be applied to the case at hand to compute With . In (34) the
sum is over the classes Ci of conjugate elements of G, n(C i) is the num-
ber of elements of G in class Ci , and ni(C i) is the number of elements
of Ci that lie in H1 ,j = 1, 2. An appropriate choice for a in the enumer-
ation in question would be the (n,k)-code whose last n - k columns are
zero. The set of all matrices of Gn whose last n - k rows contain only
zero in their first k columns then makes up the subgroup H. We do not
carry out the details of the enumeration by this method further here.

2.10 Equivalence for M -forms

We have commented in Section 1.2 that two equivalent 1 -matrices
both in M -form may have different M -matrices. It is natural to inquire
into the different M -forms possible for 1 -matrices within an equivalence
class.*

The M -forms of all matrices equivalent to 0 can be obtained as fol-
lows. Make any permutation of the columns of 12 that causes the resultant
matrix, fl', to have its first k columns linearly independent. Premultiply
11' by the inverse of the matrix formed by its first k columns.

Now let

100- 0 MII M12    M1/

SZ = 010. 0 M2IM22  M21

000 1 MkIMk2   Mk /

= (him),

where 1 = n - k. The permutations of the columns of 0 that replace its
first k columns by independent columns can be generated by repeated
applications of three types of elementary permutations: (a) interchange
of position of two among the last 1 columns of 0; (b) interchange of posi-
tion of two among the first k columns of 0; (c) interchanging one of the
first le columns with one of the last 1 columns. A type (a) transposition
is a column transposition of M and SZ is still in M -form. A type (b)
transposition involving columns i and j yields a matrix that can be
brought into M -form by premultiplication by the permutation matrix
that interchanges rows i and j. The new ill differs from the old only by
interchange of rows i and j. A type (c) transposition, which interchanges
column j of M with column i of Ik , is valid only if mi.; = 1 (otherwise
the first le columns of the new 0 would not be independent). Let such a
transposition send 0 into 0'. Let column j of M have ones in rows i, pl ,

P2 Pr and zeros elsewhere. Then 2' can be brought into M -form
* The equivalence described here has been investigated independently and in

a more general setting by Tucker.8
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by premultiplication by a matrix that adds row i of 0' to rows pl , P2 ,
, pr . The new M -matrix is then obtained from the original M -matrix

by these operations: leave column j unchanged; except in column j, add

row i to rows pi , p2 , , pr . We call this a pivotal operation on M about
the position mi; , provided int; = 1.

Define two M -matrices to be equivalent if one can be obtained from
the other by repeated applications in any order of permutations of rows
or columns or by pivotal operations. Then two 0 -matrices are equivalent
if and only if when reduced to M -form their M -matrices are equivalent.
Equivalent M -matrices, when prefixed by a unit matrix, yield equivalent
a -matrices. We have not been able to find a systematic method of reduc-
ing a given k X 1 binary matrix to a canonical form by means of pivotal
operations and permutations of rows and columns.

2.11 Miscellaneous Comments and Problems

The Q for the sum of two codes is the product of the Q's for the sum-
mands. What is the relationship for the Q of a product in terms of the
Q's of the factors? What is the relationship between the Q of a code and
the Q of its dual? Answers to both of these questions probably require
some detailed knowledge of the structure of the codes involved beyond
a mere statement of their Q's. What detail must be known?

Decomposition of codes with respect to addition has been explored.
Certain optimal properties of indecomposable codes and a unique de-
composition theorem have been proved. Decomposition with respect to
multiplication can be defined in a similar manner. Do analogous the-
orems hold in this case?

When n < 2" - 1, an 0 -matrix need not have repeated columns. If an
indecomposable Si -matrix does have repeated columns, the correspond-
ing code can be viewed as having several check digits that are identical
linear combinations of the information places. Intuitively, this seems
like a wasteful use of the check digits. Is it. possible to prove a theorem
to the effect that if n < 2" - 1, there is an (n,k)-code with no repeated
columns with a Q as great as that for any (n,k) -code with repeated col-
umns? All cases of known best group codes with n < 2" - 1 have no
repeated columns.

A strong statement about group codes with no repeated columns that
might be conjectured is the following: "Let a be an (n,k)-code with
n < 2" - 2. Let 63 be any (n 1, k) -code formed from a by adjoining
to 0( a) any one of the columns already present in 0( a). Let e be an
(n 1, k) -code formed by adjoining to 0(a) a column c not already
present in 0( a). Then c can be chosen so that Q( e) Q(63) for all 63."
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This conjecture has been shown not to be true for all a. E. F. Moore of
Bell Telephone Laboratories has constructed a code sa such that the new
code formed by repeating a parity check of a is strictly better than any
code formed from a by adding a new type parity check. The falsity of
this conjecture does not preclude the possibility of a thoerem of the sort
mentioned in the previous paragraph. One should not expect to pass
from a good (n,k)-code to a good (n 1, k) -code in any simple manner:
the structure of a best (n 1, k) -code may be quite different from the
structure of a best (n,k)-code.

In this connection, we point out that there are many (n,k)-codes that
cannot be improved by the addition of a single parity check. This situa-
tion obtains whenever the coset leaders of the given code are unique (or,
in geometrical terms, when there are no vertices of the n -cube on the
boundaries of the maximum -likelihood regions). Adding a single parity
check to such a code to form an (n 1, k) -code leaves the value of Q
unaltered.

The notions of addition and multiplication for group codes can be
easily generalized to hold for block codes. How much of the theory de-
veloped remains in this case?

The foregoing are but a few of the many questions that arise naturally
from this work. Most of them have not yet been investigated in any de-
tail. We have, it is clear, raised more questions than we have answered.
Perhaps this is inherent in the nature of research.
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Capacity of a Burst -Noise Channel

By E. N. GILBERT

(Manuscript received March 15, 1960)

A model of a burst -noise binary channel uses a Markov chain with two
stales G and B. In state G, transmission is error -free. In state B, the chan-
nel has only probability h of transmitting a digit correctly. For suitably
small values of the probabilities, p, P of the B ---) G and G B transitions,
the model simulates burst -noise channels. Probability formulas relate the
parameters p, P, h to easily measured statistics and provide run distribu-
tions for comparison with experimental measurements. The capacity C of
the model channel exceeds the capacity C(sym. bin.) of a memoryless sym-
metric binary channel with the same error probability. However, the differ-
ence is slight for some values of h,p,P; then, time -division encoding schemes
may be fairly efficient.

I. INTRODUCTION

In information theory the symmetric binary channel is the classical
model of a noisy binary channel. This channel generates a sequence of
binary noise digits zn , which it adds (modulo 2) to input digits 3%.
to produce output digits y = x zn . The symmetric binary channel
is memoryless; a sequence of independent trials produces the noise digits
zn . Each trial has the same probability P(1) of producing an error and
probability 1 - P(1) = P(0) of no error. The capacity C(sym. bin.)
of this channel is well known (see Shannon') :

C(sym. bin.) = 1 P(0) log, P(0) + P(1) log, P(1).

Channels with memory occur in practice. If radio static or switching
transients produce the noise, the errors group into isolated bursts (sev-
eral errors close together). Independent trials fail to simulate such a
burst -noise. Section II of this paper presents a model of a burst -noise
channel that is simple enough to permit calculation of the channel ca-
pacity C (see Sections III and VI). Sections IV and V give run distribu-
tions, the covariance function and other probability formulas as aids to

1253
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testing the model's applicability and to picking model parameters which
match measured statistical data.

Of all binary channels with a given error probability P(1), the sym-
metric binary channel has least capacity. Indeed, if an encoding for
signaling over the symmetric binary channel at a rate R is known, then
N sources can use this encoding in time -division multiplex at rates R/N,
each over a burst -noise channel. Here, N must be large enough so that
noise digits N apart are nearly independent. Time division protects
against other noise patterns besides bursts; still less redundant schemes
are possible. The possible increase in signaling rate C - C(sym. bin.)
will be seen to be often surprisingly small (see Fig. 4).

II. THE MODEL

A Markov chain with two states can be used to generate bursts. The
two states will be called G (for good) and B (for bad or for burst). In
state G the noise digit is always z,, = 0. In state B a coin is tossed to
decide whether z will be 0 or 1.

The coin -tossing feature is included because actual bursts contain
good digits interspersed with the errors. In the formulas that follow a
biased coin is allowed (probability h of making no error in state B).
All computations given here take h = 0.50, which seems a reasonable
value.

After producing the noise digit z , the Markov chain makes a transi-
tion to prepare for z+1 . To simulate burst noise, the states B and G
must tend to persist; i.e., the transition probabilities P = Prob(G B)
and p = Prob(B G) will be small and the probabilities Q = 1 - P,
q = 1 - p of remaining in G and B will be large. Fig. 1 is a transition
diagram for the Markov chain.

Runs of G will alternate with runs of B. The run lengths have geo-
metric distributions with mean 1/P for the G -runs and mean 1/p for

Fig. 1 - Transition diagram for the Markov chain.
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the B -runs. The geometric distribution of G -runs seems reasonable. If
the various clicks, pops and crashes, which might cause errors on a real
channel, are not related to one another, then the times between such
events will have the geometric distribution (see Feller,2 Section XIII.9).
Only mathematical simplicity justifies the geometric distribution of
B -runs; one might construct more accurate models. Section III men-
tions one way of elaborating this one; however, complicated models may
be useless without adequate statistical data to determine all the model
parameters. Section V will illustrate some of the difficulties in determin-
ing just the three parameters P, p and h.

The following 500 digits form a typical sample of burst -noise with
parameters P = 0.03, p = 0.25, h = 0.5, produced by using random
numbers:

0621101710"110101110111101510421028110201037

110"1001e101101023110410181015110111011011105.

The exponents are run lengths; i.e., 062 denotes a run of 62 consecutive
zeros. As expected, long runs of good digits separate the bursts.

The 500 -digit sample illustrates the impossibility of reconstructing
the sequence of states from the sequence of digits. In portions of some
of the long runs of zeros, the Markov chain was in state B; this went
unnoticed because the coin tosses produced only zeros. The sample
also contains one burst 11041 in which a short sojourn into state G pro-
duced three of the four zeros.

The fraction of time spent in state B is P(B) = P/(p P). Since
errors occur only in state B, and then just with probability 1 - h, the
error probability is

P(1) = (1 - 11)P (B) = (1 - h)

III. THE CAPACITY

P P.
(1'

Let H denote the entropy of the sequence of noise digits  ,z1 ,z2 , .

For all inputs x to the burst -noise channel, the conditional entropy,
Hx(y), of the output y knowing the input x is the same:

H1(y) = H.

A simple argument then shows that the capacity C of .the burst -noise
channel is C = 1 -H (a monogram source with probabilities 0.5 for
0 and 0.5 for 1 attains the rate C).
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Shannon' (Section 7) gives a simple way of computing an entropy
H from state probabilities [P(G), P(B) here] and transition probabil-
ities. McMillan3 (Section 2.0) notes that this result tacitly assumes that
the state sequence is reconstructible from the digit sequence. Since a
reconstruction is impossible here, H has a more complicated formula.

A definition of H is

H = lim E P(zi ,  ,zN)h(zi ,  ,ZN),
N-100 z i=0 ,1

(2)

with

h(zi ,  ,zN) = - E P(z+, I z, ,  ,ZN) log2 P(zN+1 I zi,  ,z,v). (3)
zN +1=0

If zi = 1, the corresponding state is certainly B and

,  ,zi±; I z1, ,1) = P(zi+i ,  ,,zi±; I 1) (4)

follows for all j > 1. Then,

P(zN+1 I zl ,  Uzi -1
,  ,zN) = P(zikt-1-1 I 1,zi-}-1 , . ,zN)

follows and also

h(zi,  ,z1_, ,1,zi4.1,  ,zN) = h(1,zi+i , ,zN)

Thus, just the number of consecutive zeros at the end of the block
(z, ,  ,zN) determine h(zi ,  ,zN) completely. Each of the 2Nh's in the
sum (2) is one of the N + 1 numbers

h(1),h(10),  ,h(10k),  ,h(10K-1),h(OK)

(again exponents denote run lengths). After using this simplification in
(2), summing and letting N -> oo, the result is

H = E p(loK)h(1oK). (5)
x=0

The terms of (5) involve probabilities of runs of zeros. Section IV
will give a formula for the conditional probability, u(K), of a run of
K or more zeros following a one, that is, u(K) = P(OK I 1). The con-
vention u(0) = 1 will be adopted. Then, in (5),

P(10K) = P(1)u(K)

[(1) gives P(1)]. Also, (:3), together with P(0 110K) = u(K 1)/u(K),
provides an expression for h(10K):
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h(10K) = u(K + 1)
log2

u(K + 1)
u(K) u(K)

-E1 - u(K log2 [1
u(K ± 1)1

u(K) u(K) j
Using (6), the terms of (5) rearrange into

CO

(6)

C = 1 + P(1) E v(K) log2 v(K), (7)
K=0

where v(K) = u(K) - u(K 1). Section IV contains formulas for
v(K). Although (7) seems simpler than (5) and (6), it converges slowly.
In Section V the computation method uses a modification of (5) and
(6)

Note that v(K) = P(OK1 I 1). Another derivation of (7) proceeds
by showing that the noise sequence consists of successive blocks of
digits of the form 1,01,001,  ,OK1, , chosen independently, and with
probability v(K) for the block OK1. Then - E v(K) log2 v(K) is the
information per block and P(1) is the average number of blocks per
digit.

Equations (5), (6) and (7) apply to certain other channels. These
formulas followed just from (4), which holds whenever the lengths of
successive runs of zero are independent. Whenever such independence
can be assumed, a more elaborate model might use v(0),v(1),v(2), ,

directly as parameters. Then P(1) in (7) is

P(1) = [E (K 1)v (K)]-1.
K=0

As a check, the symmetric binary channel has v(K) = P ( 1 )[P ( ) ]K

and (7) sums to C(sym. bin.).

IV. PROBABILITIES

Recurrent events theory (Feller,' Section XIII) provides some prob-
abilities needed in Sections V and VI.

4.1 Recurrence Times for State B

Let fK denote the conditional probability, in state B, that the first
return to B will happen at step K:

fK = P (GK -1B B).

Then fl = q, f2 = pP and .fK = pl2K-2P for K > 2. It is convenient to
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make these probabilities the coefficients of a generating function F(t)
of recurrence time probabilities:

2F(t) = = qt
1

PPIhec
Qt 

(8 )

For example, the probability fir(m) that the mth return to B happens
at step K has the generating function

E fK(m)tic [F(t)r. (9)

The probability of no return to B in k steps is pQk-1. Then the prob-
ability s(K,m) of exactly m returns to B in K steps (but not necessarily
a return on step K) is

K-m
s(K,m) f K(m)

K=1

The corresponding generating function is

E s(K,m)tK
1

pt
Qt

(1 + )[F(t)im (10)
.1r1

4.2. Recurrence Times for Ones

Starting from a one (and hence from B), the next one must occur at
a return to B, but not necessarily the first return. The probability that
the next one occurs at the mth return to B and at step K is

hm-1(1 - h)fK("''

Then, recurrence time probabilities for ones are

v(K - 1) = P(OK-11 1) = met - h)fic(m).

Equation (9) now provides the generating function V(t) = E v(K)tx :

tV (t) - (1 - h)F(t)
1 - hF(t)

Likewise, the probability u(K) that no one appears in the next K
steps is

u(K) = E s(K,m)hm,
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which has generating function

U(t) - 1 + (p - (2)t
(1 - Qt)[1 - hF(t)]

By (8),

(12)

1 (p - Q)t
U(t) - (13)

D(t)

where D(t) = 1 - (Q hq)t - h(p - Q)t2.
Factor the quadratic D(t):

D(t) = (1 - Jt)(1 - Lt),

where 2J = Q hq ((2 hq)2 4h(p - Q) and L is the same
expression with negative square root. Now, (13) becomes

U(t) 1 + (p Q)1 J L
-L \1 - Jt 1 -L1) 

The coefficient. of 1K in the power series for U(t) is

(e/ p - Q)JK - (L P Q)LKu(K) - (14)J -L
To find a recurrence formula for u(K), write (13) as D(t)U(t) = 1 +
(p - Q)/ and equate coefficients of tK :

u(K) = (Q hq)u(K - 1) h(p - Q)u(K - 2) (15)

for K = 2,3, . Initial values are

u(0) = 1, u(1) = p hq.

For calculating, (15) is more convenient than (14).
Similar steps lead from (11) to

- h
-Lv(K)

= J
[(qJ p - Q)JK - (qL p - Q)LK]. (16)

For K = 2,3, , v(K) also satisfies (15), but with initial values

v(0) = (1 - h)q, v(1) = (1 - h)(pP hq2).

4.3. Covariance

The covariance function of this binary noise is just. a joint probability
r(K) = Proh(zo = 1, zR = 1). A formula for the generating function
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R = E r(K)tic is

R(t) = P(1) [1 tV (t) [tV (O]2 + 

P(1)
1 - tV(t)

P(1)D(t)
(1 - t)[1 (p - Q)t]

The term P(1)[tV(t)]m in the sum generates the probabilities of finding
zo = zK = 1, with exactly m - 1 of the digits z1 , equal to 1.

An explicit formula for r(K) follows by expanding R(t) in a power
series:

r(0) = P(1),

r(K) = P(1)2[1 + p(q 73 K = 1,2, .

V. PARAMETER MATCHING

(17)

The three parameters p, P, h are not directly observable, so methods
of deducing them from statistical measurements must now be considered.
We will express p, P, h as functions of three other easily estimated noise
parameters. One suitable set of three parameters (involving only trigram
statistics) is

a = P(1), b = P(1 11) , c = P(111)
P(101) -I- P(111)

Here, c is the conditional probability of finding the place between two
ones filled by a one, and it has the expression

(1 - h)q2
q2 + pp 

Solving for p, P, h in terms of a, b, c,

ac -b21 - p = q - 2ac - b(a c)

h = 1 - - ,
q

P- ap
1 - h - a '

(18)

If h = 0.5 is assumed, then q = 2b and no c measurement, is needed.
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For illustration, the 500 -digit sample in Section II contains thirty-
eight l's, fifteen 11's, seven 101's, and three 111's. Estimates of a, b, c
are a = 38/500, b = 15/38, c = 3/10. With these estimates, (18) gives
ridiculous parameters (p is negative). The trouble is that 500 digits
provide too small a sample. In particular, the estimate c = 3/10, based
on only 10 observations, is far from the correct value c = 0.49. If h =
0.50 is assumed, the estimates become p = 0.21, P = 0.036 (compare
with true values p = 0.25, P = 0.03).

After finding p, P, and h, the results of Section IV suggest compari-
sons between run measurements and the probabilities u(K) or r(K).
Fig. 2 shows curves of some run probabilities P(1e) = P(1)u(K) (on
a log scale) versus K. As shown by (14), these curves straighten out for
large K with slopes determined by J.

Fig. 2 - Typical run distributions, with h =
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Data on runs of zero can provide another estimate of p, P, h. The
fraction of runs of length K or more is an estimate of u(K). By (14),
one expects to find constants J, L, A such that

u(K) = AJK + (1 - A)LK. (19)

These constants are easily found by fitting a curve of the form (19) to
t he measured run distribution. First, A and J are chosen to give the
correct behavior AJK for large K. Afterward, L is chosen to improve
the fit for small K. Expressions for p, P, h in terms of A, J, L are

L./h - J - A(J -L)'
(1 - L)(1 - J)

1 - h

p = A(/ - L) (1 - J) ("L - hi.
Fig. 3 shows run distributions for two different telephone circuits

transmitting were two
in a recent large-scale program of telephone circuit measurements (see
Alexander, Gryb and Nast.4 * Channel 1146 carried an exchange call; it
used loaded cable and only local exchange switching facilities. Channel
1296 was a toll channel longer than 500 miles; it used K -carrier, a radio
path, and loaded cables at the ends. These channels were chosen as
examples because they were two of the noisiest cases measured, and
thus provided plenty of data. The step functions in Fig. 3 show the
fractions of zero runs of lengths K or more from a sample of about 130
consecutive zero runs for each channel. The smooth curves show the
curves (19) that fit these distributions. In the case of channel 1146,
u(K) = 0.9946K provided a good fit; then channel 1146 was well ap-
proximated by a symmetric binary channel with p = 0.9946. The results
for channel 1296. look more like Fig. 2. The straight line asymptote is
the function AJK with parameters A = 0.184 and J = 0.99743 chosen
to approximate the data for large K. The parameter value L = 0.81
makes the curve (19) fit the data for small K. These values of A, J, L
provide the estimates

h = 0.84, P = 0.003, p = 0.034.

* The curves appearing in Ref. 4 show only combined data from hundreds of
channels. Since these channels differ greatly among themselves, the curves in
Ref. 4 do not have the form (19).
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Fig. 4 - Capacities C and C(sym. bin.) as functions of p,P, with h = Z.

The 500 -digit sample of Section II provides a run distribution with
more statistical fluctuations than in Fig. 3 because of the smaller sample
size. The curve fitting yields A = 0.385, J = 0.961, L = 0.32 and h =
0.432, P = 0.047, p = 0.232.

VI. CAPACITY COMPUTATIONS

By (14) and (16), u(K) and v(K) behave like multiples of Jic for
large K. In the most interesting cases P is small and J is nearly 1.0
(J > Q always); then (7) converges slowly. However,

u(K + 1) j
u(K)

for large K and, by (6),

h(10K) J log2 J - (1 - J) log2 (1 - J) = ho .
Here, h(10K) approaches its limiting value ho rapidly; indeed, L =
Q hq - When h = 0.5, typical values of L are about 0.5 or
less, and the Li' term in (14) becomes negligible when K reaches 10 or
15. Thus, the approximation h(10K) = ho is good for all K > Ko where
Ko is only moderately large. The corresponding terms of the infinite
series (5) sum to

P(10K)ho = hoP(1) u(K)
K=K0 K=K 0

IC5-1

110[1 - P(1) E U(K)].
K=0
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The last step used the identity

P(1)[u(0) u(1) + v(2) + ] = 1,
which follows from (13) with t = 1. Then, the first Ko - 1 terms of
(5), together with the correction just derived, suffice to compute C
accurately.

Fig. 4 shows contours of constant C and C(sym. bin.) versus p,P for
h = 0.5. [C(sym. bin.) was computed with P(1) given by (1)]. If the
average burst length is not large (p not too small), the difference between
the two capacities is slight.

The author is indebted to Miss M. A. Lounsberry for the computa-
tions shown in Figs. 2 and 4.
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Automata and Finite Automata
By C. Y. LEE

(Manuscript received March 17, 1960)

Since it is not clear, in general, how an automaton should best be charac-
terized, one of the purposes of this paper is to find ways to go from one
characterization to another. In doing so, we have not been completely impar-
tial-the programming approach has been emphasized more than the others.
There are perhaps two reasons for this emphasis: First and the more ob-
vious one is the closeness between theoretical programming discussed here
and programming of digital computers. Secondly, the programming approach
has provided a way of looking at automata that seems to make certain ideas
less obscure-the construction of a universal program in Section III of this
paper is one such example. In the theory of finite automata, Theorem 3 is
an attempt to unify the ideas of complete and partial automata, which have
generally been treated separately in the past.

I. INTRODUCTION

The invention of modern computers seems to have been anticipated
by many years by Turing.' Yet it is remarkable how little the progress of
computers has been influenced by Turing's work. There is, perhaps, a
basic difference in viewpoint that may account for this lack of conver-
gence. Turing looked at machines from the point of view of their internal
behavior. Although Turing originated the concept of universal machines,
his idea seems to correspond much closer to that of our special-purpose
machines. Every machine, by virtue of its state description, performs a
specific task; a machine is altered only if its internal structure is altered.
Computers, on the other hand, are generally specified in terms of their
external capabilities. Their internal structure remains more or less fixed
once they come into being. A computer is then a universal machine in
disguise, and every Turing machine corresponds to a particular com-
puter program. One may therefore study the behavior and structure of
programs rather than work with states.

The first step in this direction was perhaps taken by Wang,' who based
his ideas of machines on a computer (which he called a B -machine) that

1267
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had four kinds of instructions: move to the right or left; mark; transfer
conditionally. A B -machine is close to the ultimate in simplicity, but is
still capable of computing everything that a Turing machine is capable
of and, with a suitable program, is capable of being universal.

As a model, B -machines are attractive because of their intrinsic sim-
plicity. On the other hand, because a B -machine does not have the
ability to erase, it is very difficult to write even fairly simple programs
without having to work out intricate details. In this paper we have,
therefore, introduced a modified B-machine-one which is em-
powered with the ability to erase. We have called a machine of this
kind a W -machine.

The similarities and differences between W -machines and two -symbol
Turing machines are shown in Sections II and III. In Section IV we
describe the construction of a universal W -machine to show the kinds of
techniques involved in W -machine programming. It may be interesting
to note here that, once a few useful subprograms are written, the main
linkage program takes but a few instructions. Because of its simplicity,
one may suspect that it is harder to construct sophisticated combina-
torial or symbol -operation kinds of programs on a W -machine than it is
on a more complex computer. But we would not be surprised if such a
suspicion turns out to be groundless; what makes a W -machine a poor
computer may well be only its disregard for time.

The subfamily of W -machines in which each machine has a bounded
memory constitutes the family of finite automata. Because finite auto-
mata are abstract models of sequential switching circuits, there has been
much current interest in their behavior. As a result, there have been a
number of approaches to problems in connection with finite automata.
In Section V it is shown that finite automata may be characterized by
the deletion of one of the five kinds of W -machine instructions. There is
thus a program analog of finite automata.

In Section VI the relation between finite automata and sets of input
sequences is discussed. Among other things we present within our frame-
work a result of Kleene3 that makes it possible to represent finite auto-
mata by algebraic -like expressions. This characterization seems very
natural in many ways, except that the expressions can easily get very
lengthy. The problem of how best to handle these expressions appears
very intriguing and, as far as we know, is quite open.

II. TURING MACHINES

A machine will be called an A -machine if it consists, aside from its
control mechanism, of the following:
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i. A one-way potentially infinite tape (say infinite to the right) di.
vided into squares. Each square can either be marked (having in it the
symbol 1) or erased (having in it the symbol 0), and

ii. A reading and writing head that scans some square of the tape at
any discrete moment of time. Since the tape is finite to the left, the
machine is assumed to stop if the read-write head is ordered to go to
the left of the leftmost square of the tape.

The content co of the tape of the A -machine previous to the initial
moment of time, consisting of a finite sequence of zeros and ones, is
called the (tape) input to the A -machine. As time advances, the tape
content would change unless some stable condition is reached, so that
we would get a sequence c of tape contents (co , ci ,  ), where c is a
later tape content than ci if i < j, and where ci 0 ci+i . The sequence c
is called the external behavior of the A -machine relative to the tape
input co . Two A -machines are said to be completely equivalent if they
have identical external behaviors relative to all tape inputs. That is,
two A -machines are completely equivalent if they cannot be distin-
guished by anyone observing just the sequence of tape contents.

The idea of complete equivalence is too stringent at times. If an A -
machine is used to compute values of a function, what the machine does
while it is processing its data is, in a sense, irrelevant as long as the final
answer turns out to be the desired answer. We will, later on, also con-
sider a less stringent type of equivalence.

The fact that an A -machine has a potentially infinite tape implies
that it has an indefinitely large memory. It might be helpful to keep the
notion that the tape is finite at any moment, but that at any moment a
finite amount of blank tape may be added to the right whenever such a
demand arises. In the same way, it is helpful to note that every input
is a finite sequence of zeros and ones. We will, however, speak of the
null input, meaning a string of zeros indefinitely long. The null input
corresponds to an indefinitely long blank tape.

We will consider the following model of a Turing machine, hereafter
called a T -machine, as one of the A -machines. In addition to being an
A -machine, it has k active internal states q1, q2 , , qk and an inactive
state qo in which the machine is assumed to stop. The machine can have
one of the following combination of actions: erase or mark the square
under scan; move the read-write head one square to the left or one
square to the right; go into some state q; . A T -machine is completely
specified if its combination of actions is specified for every state of the
machine and each of the two symbols under scan, and if the initial
state and the initial square under scan are given.
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For instance, the following one -state (i.e. one active state) T-machine,
if st:arted initially scanning a square in the interior of its tape, will have
its read-write head swinging back and forth, changing ones to zeros while
going in one direction and changing zeros to ones while going in the
other direction. The read-write head will either proceed indefinitely to
the right or will eventually stop at the leftmost square. In this and later
description of A -machines, we will use the letter m to denote the action
of marking the square under scan ; e for the action of erasing the square
under scan; + for the action of moving the read-write head one square
to the right of the square under scan; and - for the action of moving
the read-write head one square to the left :

State

*q

Symbol

0

in, -1-, q e, q

Here q designates the single active state of the T -machine, and *denotes
the fact that q is also the initial state of this machine. If the square
under scan is not marked, a mark is put in it, the read-write head moves
one square to the right, and the machine returns to state q. If the square
under scan is marked, it is then erased, the read-write head moves one
square to the left, and the machine again returns to state q.

From now on, we will at times use the notation qi ; m or e, + or - ,
q; ; m or e, + or -, qk for each combination of actions of any T -machine.
Thus, the combination of actions of the one -state T -machine in question
can be written: q; m, +, q; e, -, q.

Ill. NV -MACHINES

A W -machine is an A -machine together with a program made up of

an ordered list of the following five types of base instructions: (a) e:
erase the square under scan; (b) m: mark the square under scan; (c) +:
move the read-write head one square to the right; (d) - : move the read-
write head one square to the left; and (e) t(A): transfer to program
address A if the square under scan is marked, otherwise transfer to the
next program address on the ordered list. These base instructions are
executed in order by a control mechanism. The initial program address
and the initial square under scan are given.

A program of a W -machine consisting of all base instructions with
each instruction having a separate address is called a base program. Let
us consider a W -machine completely equivalent to the one -state T-
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machine illustrated earlier. The base program for this machine is

1, t7
2. m
3. +
4. 17
5. m
6. 12

7. e

8. -
9. t7

10. m
11. 12.
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We note that the instructions in the program refer to only two ad-
dresses, address 2 and address 7. The program may therefore be equally
well written

1. /3

2. m, +, /3, m,

3. e, -, 13, m, £2,

where the instructions contained in one line are understood to be exe-
cuted consecutively. This notation simplifies the writing of W -machine
programs and will be used in this paper wherever it is convenient to do
so.

A base program of a W -machine is said to be minimal if there is no
NV -machine completely equivalent to it with fewer base instructions in
its program. In order not to have to consider special cases later, let us
agree at this stage to rule out certain trivial redundancies in W -machine
programs. Consider two W -machines, W1 and W2 , as follows:

3 I achine
1. m
2. +
3. tl

Machine W2
1. m
2. e
3. m
4. +
5. 11.

Machines W1 and W2 are not completely equivalent, since they have
nonidentical external behavior. The difference is, however, of a minor
nature. We will therefore agree that., whenever a W -machine program
contains consecutive instructions

A. e or m

A + 1. e or m

A + c or m,
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only the last instruction (in address A + i) will be retained, and the
others will be deleted. Furthermore, if it should become necessary to
mark and erase a square in succession, the final symbol in that square
will be accepted as the output symbol for that moment.

The fact that a base program is minimal itself implies that the base
program cannot contain certain subprograms.

Lemma 1:

Let P be a minimal base program of a W -machine. Then P cannot
have two consecutive addresses A and A + 1 having in them the fol-
lowing base instructions:

(i) A. t(B) (iii) A.

A + 1. t(C); A + 1. e;

(ii) A. e (iv) A.

A + 1. t(C); A + 1. m.

Proof: In (i) and (ii), if address A + 1 is never referred to, P cannot
be minimal since the (A + 1)th instruction can be deleted. On the
other hand, if there is some instruction t(A + 1) in P, such an instruc-
tion can be changed to t(C), again making the (A + 1)th instruction
superfluous. This proves (i) and (ii); (iii) and (iv) are obvious, and the
lemma follows.

Theorem 1:

I. Given a W -machine having b base instructions, there is a completely
equivalent T -machine with not more than b states.

II. Given a T -machine with s states, there is a completely equivalent
W -machine with not more than 10s + 1 base instructions.

Proof: Let a W -machine with b base instructions be given. That there
is a completely equivalent T -machine is clear. It remains for us to show
for part I of the theorem that b states would suffice.

Let P be a minimal base program for the W -machine and A be the
initial address of P. Then, by Lemma 1, the base instructions in ad-
dresses A and A + 1 are one of the following:

(i) A. t(B) (iv) A. in or e

A + 1. e; A + 1. + or - ;
(ii) A. t(B) (v) A. + or -

A + 1. in; A + 1. in or e;

(iii) A. t(B) (vi) A. + or -
A + 1. + or - ; A + 1. + or - .
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In (i), (ii) and (iii), we assert that the base instruction in address B
can be made one of the following:

(a) B. e or (b) B. + or -.
This is true because, if the instruction in B should be 1(C) and the in-
struction in C should be t(D) and so on, then at some point in the chain,
say address E, the instruction must be a nontransfer instruction, for
otherwise the program would not have been minimal. We may then
replace the instruction t(B) in A by t(E). On the other hand, if the
instruction in B should be m, then the instruction in A could have been
replaced by:

A. t(B ± 1);

and the assertion follows.
In (i) and case (a), by Lemma 1, the base instructions in addresses

A + 2 and B 1 must be + or - . Thus, address A can be associated
with a T -machine state

q(A); e, + or - , q(A + 3); e, ± or - , q(B + 2).
Similarly, in case (b) address A can be associated with a T -machine
state

q(A); e, + or -, q(A + 3); m, + or -, q(B + 1).
It should be noted that a T -machine state may replace more than
just address A. For example, in (i) case (a) the T -machine state replaces
the five addresses A, A + 1, A + 2, B and B 1 if none of these ad-
dresses is referred to elsewhere in the program. Therefore, in going from
a W -machine to a T -machine as described by the procedure outlined
here, the T -machine will in general have fewer than b states.

In (ii), the (A + 2)th instruction can be either

A + 2. or - or A + 2. t(C).

The former is no different from (i). In the latter, the instruction in
address C can be made one of the following:

C. e or C. + or - .

The T -machine states to be associated with address A in case (a) cor-
responding to these two subcases are respectively

q(A); e, + or -, q(C 2); e, + or -, q(B + 2),
and

q(.1); , + or -, q(C + 1); e, + or -, q(B + 2)
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and in case (b) are respectively

q(A); e, + or -, q(C + 2); m, + or -, q(B + 1),

and

q(A); m, + or - , q(C + 1); m, + or - , q(B + 1).

Case (iii) is similar to (i). In (iv) and (v), the two addresses, A and
A + 1, can obviously be associated with a single T -machine state. In
(vi), each address A or A + 1 may be associated with a single T -ma-
chine state. Therefore, there is a completely equivalent T -machine with
not more than b states and part I of the theorem follows.

To prove part II, let a T -machine with s states be given with states
q; ,i = 1, 2, , s:

qi; ai(0), b,(0), qi(0); ai(1),bi(1), qi(1),

where a; is either m or e and b; is either + or - . Associate with each
state qi two addresses A; and A i of a W -machine:

A . ai(0), bi(0), t[Aii(0)], m, t[A i(0)];

Ai.. ai(1), b t[A'i(1)], m, t[A i(1)].

Next, if qi is the initial state of the 'f -machine, we will add an initial
address A - 1 where we have

A; - 1. t(A;).

The W -machine so defined is completely equivalent to the T -machine,
having exactly lOs 1 base instructions. This proves part II of the
theorem.

The bound lOs + 1 on the number of base instructions cannot be
lowered if the first address is to be always the initial address of a W -
machine program. If we are allowed to begin a program at some inter-
mediate address, the bound lOs + 1 can be lowered to perhaps 8s 1.

From this result, it follows that whatever is true about T -machines
is functionally true about W -machines, and conversely. The choice of
whether to use the T -machine or the W -machine model is therefore
somewhat arbitrary. We have found that the T -machine model is con-
venient for state description of finite automata (Section V) and the
W -machine model more satisfactory for problems involving operations
with symbols. The latter contention is illustrated by a universal W -ma-
chine described below.
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IV. A UNIVERSAL W -MACHINE.

A very interesting result of Turing' was his construction of a machine
which is capable of imitating any target machine when given a descrip-
tion of the target machine. Such a machine is known as a universal
Turing machine. To our knowledge there have been two independent
and very ingenious constructions of universal machines which greatly
simplified Turing's work. The earlier one is due to Moore' and the other
to Ikeno.5 Moore's machine has two symbols and three tapes, and can
be reduced to nine states. Ikeno's machine requires six symbols and
ten states, giving a state -symbol product of 60.

A word should perhaps be said in regard to the two extra tapes in the
case of Moore's machine and the four extra symbols used in Ikeno's
machine. In either case, the universal machine is just slightly different
from the target machines it imitates. It would be more "authentic" for
a universal machine to be immediately within the class of all target
machines it imitates. It also seems that it is as direct to construct such
an "authentic" machine as otherwise. For these reasons, we include here
the construction of a universal W -machine as an example.

Let U denote the universal W -machine to be constructed. Let the
squares on the tape of U he divided into two classes: a -squares and b -
squares. If the squares are numbered beginning with one for the left-
most square and proceeding to the right, then the a -squares are the
odd -numbered squares and the b -squares the even -numbered squares.
The b -squares are there to serve as markers. The description of the
target machine together with the data occupies only the a -squares. In
order to clarify coding, the contents of a -squares are underlined. Thus
1 0 would mean a mark and a blank in adjacent a -squares, the content
of the inbetween b -square has been left unspecified.

The W -machine instructions are coded as follows:

Instruction Code

* (Stop) 1

1 1

1 1 1

1 1 1 1

e 1 1 1 1 1

t(n) 11111111.
n ones
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The program and data of the target W -machine that the universal
W -machine U is to imitate occupy only the a -squares on the tape of U.
The instructions are coded in sequence, with a single blank a -square
separating adjacent instructions. The data go directly into a -squares
without modification. There is a single blank a -square between the last
instruction and the data.

The first two a -squares are blank and all a -squares to the right of the
data are blank. The b -squares are all marked except for (a) the first
b -square, (b) the b -square immediately to the right of the data square
under scan and (c) all b -squares to the right of square x, where x is the
a -square to the right of the last data a -square.

The coding scheme will be made clear by an example. Suppose the
program of the target W -machine is

1. t3
2.
3. m
4. t2,

where the initial address is address 1 and the data are

1 0 1 1

where the third symbol is the initial symbol under scan. In the coded
form, the tape of U would have contents

Begin

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

t3

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

t2

Symbol under scan
I

0 1 1 1 0 1 1 0 1 1 0 0 0

Data

The program for the universal W -machine U is divided into a main

program P and a number of subprograms. The various subprograms are
designated by symbolic addresses as follows:



RT
LT
MK
ER
TR

RTZ
LTZ
RDZ
LDZ
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One square to the right.
One square to the left.
Mark square under scan.
Erase square under scan.
Transfer if data square under scan is marked. If transfer is
effective, go to the beginning of tape and hunt to the right
until the correct instruction has been found. Otherwise, go
to the next instruction.
Right to zero.
Left to zero.
Right to double zero.
Left to double zero.

The program for U begins with the main program P. It first examines
the instruction to be carried out. If the instruction should be +,
m ore, the program enters subprograms RT, LT, MK or ER respectively.
If the instruction should he 1(n), the program enters subprogram TR.

Let us begin with the basic subroutines RTZ, LTZ, RDZ and LDZ:
RTZ
LTZ
RDZ
LDZ

1. +2, /1.
1. -2, /1.
1. +2, tl, +2, 11.
1. -2, 11, -2, 11.

Next the subprograms TR, RT, LT, MK and ER:

TR

LT

RT
MK
ER

1. +, e, RTZ, /2, t(LT3),
2. LDZ, +4,
3. e, RTZ, m, +, 14, +, LTZ, RDZ, m, t(P),
4. +, e, LTZ, - , RDZ, m, RTZ, +2, e, LDZ, m, 13.
1. +, e, RTZ, m, -2,
2. e,
3. LTZ, m, +, 1(P).
1. +, e, RTZ, m, +2, m, t(LT2).
1. +, e, RTZ, -, m, t(ER2).
1. +, e, RTZ, e,

2. -, t(LT3).
Finally, the main program P:

P 1. +2, /2, *,
2. +2, /3, RT,
3. +2, 14, LT,
4. +2, 15, MK,
5. +2, t(TR), ER.
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After the following sequence of instructions of the target machine has
been executed :

the tape contents read:

Begin

t3, m, 12, -I-,

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

t3

Begin
instruction m

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12

Symbol
under scan

0 1 1 0 1- 1 1. 1 0 0 0-0

Data

We will call a target W -machine admissible if its read-write head never
goes to the left of the leftmost square on tape. Machine U then imitates
all admissible target machines and is itself admissible.

It may be interesting to note that the coding for machine U does not
make an intrinsic distinction between program and data. The burden
of distinguishing which is program and which is data is therefore on the
coder.

Using the conversion procedure discussed in the proof of Theorem 1,
there is a T -machine completely equivalent to the W -machine U with
about 74 internal states. t The program for U itself requires some 125
base instructions. As things go, it is not impossible for someone to im-
prove our result to a 50 base instruction universal W -machine or a 25 -
state universal T -machine or perhaps even better. The answer to the
problem of finding a universal machine with the smallest state -symbol
product posed by Shannon6 seems to be quite remote, even for two -
symbol machines.

Some of the ideas that resulted in this construction were due to D. Younger,
who indicated a possible reduction to a machine of about 56 states.
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V. FINITE AUTOMATA

There is a subfamily of T -machines that are abstract models of a
class of switching circuits called sequential circuits. The dominant trait
of these machines is a strictly limited memory, so that they are called
finite automata. (These machines are also known as sequential machines.)
Because of their limited memory, rather simple tasks lie beyond the
reach of finite automata. For instance, there is no finite automaton that,
having the null input and ejecting symbols one at a time, will give us
the successive digits of r or, for that matter, any number that is not
rational. On the other hand, many decision problems become finite
problems for finite automata; in fact, in some cases efficient algorithms
have been found.

A two -symbol finite automaton consists of
i. A finite number of internal states go , gi , , .

ii. An alphabet of two symbols: so = 0, si = 1.
iii. A map M whose domain and range are both subsets of the set of

state -symbol pairs. If M is defined for a state -symbol pair (qi , si),
then .111(gi , s;) is another pair (q, , sr). The symbol s5 is called an
input symbol. The symbol sr is called an output symbol, and is
completely determined by qi ; that is, sr is independent of the
input symbol s; .

iv. An initial state go , which can reach every state qi , 0 < i < n,
via some suitable input sequence of symbols.

In the definition of a finite automaton given above, we included those
automata in which the map M may be undefined for some state -symbol
pairs (qi, s1). We will call such automata partial automata. Partial
automata in the past have been treated somewhat differently from
complete automata. By considering certain input sequences called
acceptable sequences, we will be able to treat partial and complete
automata on a uniform basis.

5.1 Finite Automata and TV* -Machines.

In the beginning of this section we mentioned that finite automata can
be regarded as a subfamily of T -machines, and hence as a subfamily of
W -machines. Let us call a W -machine a W* -machine if the base program
of the W -machine does not. contain the instruction " - "; that is, if the
read-write head of the W -machine never moves to the left. We will see
that, by suitable interpretation of inputs and outputs, every finite
automaton is completely equivalent to some W* -machine and, further-
more, that every W* -machine differs from some finite automaton by at
most. a unit of delay in the output.
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Let S be a finite automaton; S may then be considered as a T -machine
in the following sense: An input sequence of symbols to S corresponds to
having this sequence of symbols on the tape of the T -machine, beginning
with the initial input symbol on the leftmost square of the tape. In
operation, the T -machine begins by scanning the initial square, writes
the output symbol on the square being scanned, moves one square to the
right and goes into its next state. At any moment, therefore, the previous
output is contained in the square just to the left of the read-write head,
and the present input is contained in the square directly under the read-
write head. In this way the read-write head of the T -machine never
moves to the left. It follows from Theorem 1, therefore, that there is a
W -machine whose program consists of no base instruction of the form
" - " and is such that this W -machine and the T -machine are completely

equivalent.
Conversely, suppose a W* -machine is given. By Theorem 1, there is a

T -machine completely equivalent to this W* -machine such that its
read-write head never travels to the left. Such a T -machine may not be
in the form of a finite automaton since its output symbol may be a func-
tion of both the input symbol and the current state of the machine. We
wish to show therefore that such a T -machine differs from a finite
automaton by at most a unit of delay in the output.

Consider a T -machine whose read-write head never travels to the
left. It then consists of states of the following kind :

qi; ai , , g; ; bi , +, qk ,

where ai and bi are either e or m. In the particular case ai = bi for some
i, the output becomes in no way dependent upon the input. We will

therefore consider only those states qi for which ai bi .

Let us now form a new T -machine by splitting each such state qi of
the original T -machine into two states, qio and gii , such that we have
for the new machine,

gio; ai , -F, Do; ai , +,

and

qii ; bi, +, qk0 ; bi , +, qkl

and, if qo should be the initial state of the original T -machine, add a new
state qo* as the initial state of the new machine:

qo*; e, +, goo; e, -1-, on

In operation, the new machine imitates the original machine faithfully,
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except that the output of the new machine is delayed by a unit of time;
that is, the present output of the new machine is the previous output
of the original machine. We have therefore

Theorem 2: Every finite automaton with s states is completely equiva-
lent to a W* -machine with not more than lOs + 1 base instructions.
Every W* -machine with b base instructions differs from a finite automa-
ton of not more than 2b 1 states by at most one unit of delay in the
output.

An Example. Consider the following W* -machine:

1. 16
2. +
3. m
4. 18
5. e

6.
7. 12
8.+
9.

10. 15.

This W* -machine is completely equivalent to a five -state T -machine
with initial state qi:

State

q3

q7
(19

qio

Symbol

0

e, +, q3
In, -I-, (19

e, +,
e, qio
e, +, stop

in, q7

4-, q9

in, 4-, q9

vs, -I-, Do
e, q7

The T -machine is not in the form of a finite automaton, since its output
symbols depend on both the state and the input symbol. Let us there-
fore split each state whose output symbol is different for different input
symbols into two states and, in addition, define a new initial state q0*.
The machine then becomes:

State
Symbol

0

*go*
e, qi,o e, ql,t

qi,o e, ±, (.13 e, q3
(ft,' in, -F, q7,0 Tn, A-, gla

q3 in, +, q3,0 in, +, q9.1

q7,0 e, q9,0 e, +, q9.1
(17,1 nt, ±, qa in, -I-, q3
(19,0 e, (Do e, +, qto

qio
in, +, (pc,
e, +, stop

in, qlo
e, +, q7.1
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This machine is identical with the original W* -machine except that
its output symbols are delayed by a unit of time and its initial output
symbol is always a zero. For the same input, the sequence of the tape
contents of the two machines are therefore not exactly the same; the
tape content of the new machine to the left of the read-write head is
the tape content of the original machine to the left of the read-write
head translated one square to the right. The tape contents of the two
machines to the right of the read-write head are, of course, the same.

Since the output of a finite automaton depends only on its state, and
since the symbol + is redundant, the state -symbol table of a finite
automaton can be simplified. For instance, the nine -state machine given
in the example can be given by:

State
Symbol

Output
0

*qo*
,0

q1,1
q3

q7,0
q7
q0.0
q9,1
qio

qi.0
q3
Q7.0
Q9.0
q0.0
qa
qv)
940
stop

qi..

q7 .1

q0,1
q0.1
q3
qto
qto

q7,1

0
0

1

1

0

0

For complete automata, except for including the initial state in our
model, this description is the same as that given by Moore.7 In the same
way, the description of the five -state T -machine in the example which
is completely equivalent to the original W* -machine can also be simpli-
fied. We may write

State
Symbol

0

Outputs

*qi

qa
q7
Q9

9'10

(13

Q10

stop

q7
Q9

Q3

Qlo

Q7

0
1

0

0

0

1

1

1

1

0

where to each state may be associated two output symbols, one for each
input symbol. This description is essentially the model of sequential
machines used by Huffman' and Mealy.' It is quite clear from the fore-
going that there is a close relationship between these two models, and
that one may go freely from one to the other. t

Another way of relating models of finite automata is discussed by Cadden.0
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5.2 Finite Automata with a Minimum Number of States

A problem of interest to switching circuit designers is finding finite
automata having a smallest number of states. In relay circuit design,
for example, the number of relays needed is usually a monotone function
of the number of states the circuit has. For such circuits, therefore, the
number of states becomes in a way a measure of cost.

Let A be a partial finite automaton. A finite sequence is said to be an
acceptable sequence for A if there is an output sequence and a terminating
state when this sequence is presented as the input sequence to A, with
A beginning in its initial state. We will call the set of all acceptable
sequences for A the acceptable set for A and denote this set by R(A).
Now let A and B be two partial finite automata and let the intersection
RAB = R(A) A R(B) be called the common acceptable set for A and B.
Then A and B are said to be completely equivalent with respect to RAB if,
for all input sequences belonging to RAB , A and B give identical output
sequences. If R is a subset of RAH then equivalence of A and B with
respect to R is defined similarly. It is clear that this definition of com-
plete equivalence is the same as that given before for T- and W -machines,
except the input sequences are now restricted to just the acceptable
sequences.

As an example consider A and B defined as

A: B:

State
Symbol

Output State
Symbol

Output
0 0

*ao at 1 *bo bt 1

a, 0 bi 52 0
bs b, 0

The acceptable set R(A) for A is the set of all finite sequences {0, 01,
011, 0111, } and the acceptable set R(B) for B is the set of finite
sequences 11, 11, 110, 1101, 11010, 110101, 1. There is no sequence
that is acceptable to both A and B. The common acceptable set RAB is
therefore empty.

Theorem 3: Let A and B be two partial finite automata with a and b
states respectively, where a, b > 1. Let RAB be the common acceptable
set for A and B and let RAB(l) be the subset of RAB such that every
sequence in RAB(i) is of length Then A and B are completely equiva-
lent with respect to RA!, if and only if they are completely equivalent
with respect to RAB(l) for = ab - 2.

Before going through the proof, it would be helpful to discuss some
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notations that will be used later. If A is a finite automaton, its initial
state will be denoted by ao . If q is any state of A, we will denote the
output symbol associated with the state q by co(q). Moreover, let s =
(so , si , , sm_i) be an acceptable input sequence for A. Then we will
at times let ai stand for the state reached by A after receiving the ith
symbol of s. It will be convenient here to speak of the motion diagram
for A:

Input symbols: 80 Si sm_i

Transition of states of A : ao ai a2 am_1 .

Proof: The theorem is clear in one direction. In the other direction, let
A and B be completely equivalent with respect to the set RAR(ab - 2);
that is, A and B will give identical output sequences to every commonly
acceptable sequence of length not greater than ab - 2.

Let us now suppose that there is a common acceptable sequence s =
(so , si , , sm_i) of minimum length m where m > ab - 2 such that
in the motion diagram for A and B we have

So Si Sna-1

/N /NI
ao a1 a2 (6_1 an,

bo bi b2 bm_i bm

where

co(ai) = co(bi) for i = 0, 1, , m - 1 but co(am) co(b.) .

There are now two cases to consider. The case m > ab - 1 is simpler and
will be left to the reader.

Let us therefore assume m = ab - 1. In the motion diagram above,
we have then exactly ab pairs of states: (ao , bo), (a1 , b1), , (a b,).
First, suppose that these ab pairs are not distinct; that is, suppose
(a1 , b1) = (a5 , b5) for some 0 < i < j < m. The motion diagram then
becomes

So Si Si ' Sm-1/\ /NI
ao al ai a,-4.1 a; ai+1 am_i am

/\
b0 bi . bi bi+i bi bi+1 b ro-lb m 

Consider the common acceptable sequence s* = (so , ; Si -1 , Si ;
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, s,_i), which is of length 1, where 1 < m = ab - 1. Since co(am)
w(bm), A and B would give different output sequences to the input
sequence s*, contradicting our hypothesis that A and B are completely
equivalent with respect to RAB (ab - 2). We must therefore assume that
the ab pairs of states (ao , bo), , (a bm) are distinct, and thus in-
clude every possible, pair of states of A and B.

Now let am and / be states of A and B respectively such that a,'
am and b, bm . Then we assert co(am) 0.(a,) and w(bm) co(b,). For,
if w(am) = p(a,), then co(a,) w(bm). This is impossible, however, since
the pair (am , bm) is one of the ab distinct pairs of states. The same argu-
ment shows w(bm) co(bm). We have now then the inequality co(an)
co(b,). But again this is impossible. This concludes the proof.

Although we cannot say that the bound ab - 2 is the best for all
pairs (a, b), we will show that ab - 2 is very close to the best we can
hope for. To do this we will now exhibit a pair of families of finite auto-
mata.

Consider first a family of finite antomata m > 1, as follows:

State
Symbol

0

at
a2

an,
ao

Output

0
0

0

0

Next, define a family of finite automata 1B), n 1, as follows:

State
Symbol

Output
0

*1)0 bo 0
bi bi b2 (1

b.
b-1
bn bn

0
1

For any pair of automata (Am , Bn), one from each family, the set
RAmBn of all commonly acceptable sequences consists of all sequences
each of which must be of the form

0 0 0 1 0 0 0 1 0 0 0 1,
0's m 0's m 0's
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since these are the only sequences acceptable to Am . For these two finite
automata (Am , B), the minimum length of any input sequence in
RAmBn that would cause A. and B to give different output sequences
would be ab - min (a, b), where in this case a = m + 1 and b = n 1.

For instance, the motion diagram for the pair (A 2 , BO would be

0 0 1 0 0 1 0 0 1/\ /\ /\ /\ /\ /\ /\ /\
ao a, a2 ao al a2 ao a, a, ao

/\ /\ /\ /\ /\ /\
bo bo bo b1 bl b1 b, b2 b2 b3.

Since b3 is the only state of B3 that gives an output symbol of 1, we see
that the input sequence (0 0 1 0 0 1 0 0 1) is the first such sequence
that causes A, and B3 to give different output symbols.

In general, by the same construction, we find that given two finite
automata, one from each of these families, no input sequence of length
less than ab - min (a, b) would enable us to tell them apart. We there-
fore have

Theorem 4: Theorem 3 would not hold if I were made less than
ab - min (a, b).

In particular, we note that Theorem 3 implies Theorem 4 for the case
min (a, b) = 2. For the cases min (a, b) > 2, there may be some slight
improvement' possible for Theorem 3.

Actually, Theorem 3 is interesting for another reason. It is essentially
a theorem showing the existence of a decision procedure for finding
finite automata with a minimum number of states. Historically, the
problem of finding finite automata with a minimum number of states
was studied and solved in a rather special way. Thus, both Moore and
Huffman' gave ingenious procedures for state minimization of complete
finite automata. It was not uncommon for people to assume that these
procedures also worked for partial automata before the introduction of
several interesting counter -examples by Ginsburg.'2 As we see from
Theorem 3, much of the earlier confusion was probably due to a disre-
gard of the idea of acceptable sequences.

VI. FINITE AUTOMATA DEFINED BY INPUT SEQUENCES

Up to now we have shown that finite automata can be described in two
different ways. In the definition given in the previous section, a finite

t In the paper by Rabin and Scott," a theorem similar to Theorem 3 was ob-
tained for the family of complete automata. In view of the fact that they were
dealing exclusively with complete automata, their theorem could be considerably
improved.
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automaton is characterized essentially by its state -symbol table. On the
other hand, one may characterize a finite automaton by giving its W* -
machine program. The latter characterization illustrates the close paral-
lel between computer programming and logical design. In this section,
following the earlier work of Kleene,3 we will consider a third characteri-
zation of partial finite automata. This characterization leads to a very
interesting algebraic -like structure for finite automata. Our purpose here
is to connect this characterization with the others. Much of the work
along the approach of Kleene had been pursued and simplified by Myhill"
and Rabin and Scott." The interested reader may refer to these papers
and other unpublished work by Myhill.

Let A be a finite automaton. A finite input sequence to A is said to
be a signal sequence for A if this input sequence causes A to terminate
in a state whose output is the symbol 1. The set of all signal sequences
for a finite automaton A is called the signal set for A, and is denoted by
r(A).

Given a finite automaton A, the signal set r (A) is uniquely defined.
On the other hand, if signal sets are to represent finite automata, it
would be most desirable that two "different" automata have different
signal sets. Let us consider automata A and B given by

A: B:

State
Symbol

Output State
Symbol

Output
0 0 1

*ao a, 1 *bo b2 1

a, 0 61 62 0

62 bl 0

If nothing is said about input sequences, one may say that A and B are
different, since every input sequence acceptable to A is unacceptable to
B and vice versa, although A and B both have the empty set as their
signal set. In order to have a clear-cut correspondence between signal
sets and finite automata, we must therefore restrict ourselves to accept-
able sequences.

Theorem 5: Let A and B be two finite automata and RAB the common
acceptable set for A and B. Then A and B are completely equivalent
with respect to RAB if and only if A and B have the same signal set.

Proof: From the definition of signal set, it is clear that, if A and B
are completely equivalent with respect to RAB , then r(A) = r(B).
Now suppose A and B have the same signal set but are not completely
equivalent with respect to RAB . Then there is some input sequence
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so , sl , , s_1 in RAn giving the motion diagram

so Si

ao a1 a2 an -1 an

/N /N
bo b1 b2 1),--1 ba

such that w(an) co(b); that is, the output symbols associated with
states a and bn are different. Since we are considering only two -symbol
automata, it is clear that the input sequence so , si , , sn_i cannot
be a signal sequence for both A and B. The proof now follows from this
contradiction.

We see from this that signal sets indeed represent finite automata. In
many ways this is a rather natural characterization. For example, con-
sider a sequential lock on a vault. The vault can be opened only if a
given sequence s of symbols is applied to the lock. Any other sequence
of input symbols may cause the lock to go into an alarm state. In this
case, we may consider the lock as a finite automaton defined by the one -
element signal set {s}.

There are other situations, however, where it seems simpler to describe
a finite automaton by its W* -machine program or its state -symbol table.
It is therefore not clear in general how a finite automaton is best charac-
terized; as far as we can tell, a great deal depends on personal taste.
The next best thing one can do, therefore, is to find ways to go from one
form of characterization to another.

We will begin by redefining several operations on sets of finite se-
quences due to Kleene. Let X and Y be two sets of finite sequences;
X v Y is then the set union of X with Y. By X Y, called the string
product of X with Y, we mean the set of all concatenated finite sequences
of the form xy with x E X y E Y. Finally, by the closure of the set X,
denoted by X*, is meant the set

X*=0vXvXXvXXXv
where 0 is the empty set.

To illustrate the use of these operations, let us consider the following
automaton A:

State
Symbol

Output
0

*ao a1 ao 0

a1 ao 1
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The signal set of A is then given by
P(A) = 1* 0 (1 1* 0)*,

where we have used the notations 0 and 1 to stand for the one -element
sets {0} and {1}.

In general, to find the signal set for some finite automaton A is not
as straightforward as this example indicates. We will describe below
one such procedure. t

Let A be a finite automaton with k states ao , al , , ak_i. Then
by P(ai , a;) we mean the set of all finite sequences such that beginning
with state ai , each of these sequences causes A to terminate in state a; .
Furthermore, let us denote by P(ai , a; ; a'5) the set of all finite sequences
such that, beginning with state ai , each of these sequences not only causes
A to terminate in state a; , but also never causes A to pass through state
a; . In other words, it is permissible for ai = a; , but in the chain of
states ai , , a; , the state ai must not appear other than at either
end. Then it is clear that

Lemma 2: P(ai , a;) = P(ai , a; ; a';) [P(a; , a; ; a;)]*.
More generally, let so , si , , sn_i be a sequence in P(ai , a;) with

the motion diagram

So 51 " Sn-1

ai a5, ah, a;_, a;

We denote by P(ai , a; ; a: a'i , a:,) a subset of P(ai, a1) such
that a sequence so , SI Sn-1 is in P(ai ai, ai2 ,   ai.)
and only if the two sets of states (ai, , ail , ,ai,) and (a5, , ,

ai,) are disjoint. In other words, P(ai , a; ; ail , ai, , , ai.,) is the
set of finite sequences such that, beginning with state ai , each of these
sequences not only causes A to terminate in state a; but also causes A
never to go through states ai ai , a,m . It is permissible, how-
ever, for ai or a; to be one of the states ai, , ai, , , aim

Lemma 3: Let A be a finite automaton with k states ao , al , ,

ak_i . Then, for all pairs of states ai , a; , and for all m, 1 < m k - 1,

P (a i , ; ;  . . , aim) =

P(ai , a; ; ai, , v p(a, , aim+, ; a,1 , . . ,

[P(aim, aim+, ; a: * a, ; a,, , , a:m÷,).

Proof: Suppose that an input sequence belongs to the set on the left-
hand side. Then this sequence causes A to either go through state

t In an unpublished report shown to me by H. Wang, I found a similar result
worked out independently by R. McNaughton and H. Yamada.
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or it does not. If it does not, then it clearly belongs to P(ai , ai ; a:, ,

, ai,,,). If it does, then it belongs to the second set on the right
hand side. Conversely, suppose a sequence belongs to the set on the right
hand side. Then it clearly belongs to P(ai , a; ; ai , aim), and the
proof follows.

Combining the two lemmas, we get
Theorem 6: Let A be a finite automaton with k states ao , al ,

. Let ao be the initial state of A and ar are , , art, be all those
states of A whose output symbol is one. Then the signal set for A is the
union

71

r(A) = v P(ao , ari; aril [P(a, , a ; a)]*,
i=i

which can be obtained by repeated application of Lemma 3.
As an illustration, let us consider the automaton A below :

State
Symbol

0

ao
al

a2

ao
al
a2

Output

al
a2
al

1

1

0

By Lemma 2, we have

r(A) = P(ao , ao ; ao) [P(ao , ao ; aio)]*

v P(ao, ;a,) [P(al , ; a;)]*.

Now

Therefore,

P(ao , ao ; ao) = 0,

P(ao , al ; ai) = 0* 1,

P(ai , ai ; = 0 v 1 0* 1.

r(A) = o o* v o* v 1 o*

The expressions for signal sets can get very lengthy. The problem of
reducing the length of these expressions without recourse to an exhaus-
tive search appears very difficult and intriguing.
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The next problem we will consider is how to give a state -symbol
characterization of signal sets. The procedure we will describe here is a
modification of the abstract ideas of Rabin and Scott" and Myhill.13

Let us begin this discussion of several examples. Let A and B be the
following finite automata:

A: B:

State

*ao
a,

Symbol

0

a, ao
ao

Output State
Symbol

0 1

o *bo b,
1 b, bo bo

Output

0
1

\Nit 11 signal sets 1'(A) = 1* 0 (1 1* 0)* and P(B) = (0 v 1) [(0 v 1)
(0 v 1)]*.

Example 1. Suppose we wish to construct an automaton C such that
T(C) = P(A) v r(B). We begin by defining a set of new states (ao , bo),

(ao , b1), (a1 , bo), (a1 b1), some of which may turn out to be superfluous.
The state (ao , bo) is defined to be the initial state of C. Beginning with
the state (ao , bo), we can construct a part of C:

State
Symbol

0

Output

(ao , bo) (a, , b,) (ao , b,) co(ao) v co(bo) = 0

where, if we let Mc denote the function taking state -symbol pairs to
states for the automaton C and co be the function taking states to output
symbols, then

and

c[(ao , bo), 0] = A (ao , 0), MB(bo , 0)),

c[(ao , bo), 1] = (MA(ao , 1), 3/(bo , 1))

co[(ao , bo)] = w(ao) v co(bo).

In this process, we reached two new states (al , b1) and (ao , b1). Con-
tinuing the process, we eventually get for C the state -symbol table
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Slate

*(ao , bo)
(ao , bt)

, b1)
(a, , b0)

bo
bi

Symbol

0 1

Output

(a1 , b1)
(a, , b0)

bo

be

(ao , bi)
(ao , bo)
(ao ,
(ao , b,)

bo

0
1

1

1

0
1

Let us suppose that an input sequence so , sl , , sn_i belongs to
r(A) and gives the motion diagram

So Si ' Sn-1

ao ai, cti2 ain_, ain.

Then the same sequence would give rise to a chain of states of C such
that the terminal state of this chain must be (ain , bi) for some state b5
of B. Since

w(ain , = co(ai,,) v w(1);) = 1,

it follows that this input sequence belongs to r(C) and r(A) c r(C).
In the same way, we may show that r(B) c P(C).

Conversely, if a sequence in r(C) gives a chain of states of C: (ao , bo),
(a1 b11), , (ain , bin), then either co(ain) = 1 or co(bin) = 1. There-
fore, this input sequence is either in 11(A) or r(B), and thus r(A) v
r(B) = r(C).

Example 2. We wish to construct a finite automaton C such that
r(c) = r(A)r(B). We begin with the initial state of A as the initial
state for C. Now, whenever a state of A is reached whose output symbol
is a 1, we must then allow C the opportunity to imitate the behavior of
B. In such cases, therefore, new states may be created. Thus, a part of
the state -symbol table for C would be

State
Symbol

0 1

*ao
at

ao
(ao , bi)

Output

0
1

The state (ao , b1) is defined by Of A(cti , 111 B(bo , 1)). In this way, the
new state allows C to imitate immediately the behavior of state bo of
B. Also, if either w(ao) = 1 or w(bi) = 1, then co(ao , b1) = 1. We may
therefore continue this process to get for C the state -symbol table:
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State
Symbol

Output
0

*ao a1 ao 0

a1
i(ao, b ) 1

bo bo 0

bo
(ao , b1) (al , bo) (ao , bo) 1

(a1 , bo) bi (ao , b1) 1

(ao , bo) (al , b1) (ao , b,) 0
(al , b1) (b1 , bo) (a, , bo , b,) 1

(b1 , (bo , b1) (bo , b,) 1

(ao , bo , bi) (al , bo , b,) (ao , bo , b1) 1

, bo , b,) (b1 , bo) (ao , bo bi) 1

where we see that (al , bo , b1) = (ai , b1).
The process can be formulated as follows: If (ai , , a; , bk ,

b,,,) is a new state, then

Mci(ai ai bk , b,), xJ

= (Mc(ai, x), , Me(cti, x), MB(bk , x), , MB(b. , x))

where x is either 0 or 1, and co[(ai , , a; , bk , , b,)] = (.0(ai) v
v w(bk) v v w(b,). Also, if ai is any state such that co(ai) = 1,

then Mc(ai , x) = (31 A(ai , x), MB(bo , x)). For all other a; and for all
bk we have

2110(a; , x) = M A(a; , x),

M c(bk , x) = MB(bk , x),

where x is again either 0 or 1.
Example 3. We wish to construct an automaton C such that F(C) =

[r(A)]*. The idea here is that whenever a state of A is reached whose
output symbol is a 1, we must allow C the opportunity to begin again
at state ao of A. Furthermore, since the empty sequence is a member of
F(C), it is necessary to define for C a new initial state Co whose output
symbol is 1. Following this line of thought, we see that the state -symbol
table for C is

State
Symbol

Output
0

*co ao ao 1

ao a1 ao
ao

0
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In general, the process is formulated as follows. If (ai , - , ai) is a new
state, then

Mc[(ai , , (0, x] = (111c(ct , x), , Mc(ai

where x is either 0 or 1 and

co[(ai , , a3)] = w(a2) v v co(a 3).

If ai is any state of A whose output symbol is 1,

Mc(ai , x) = (MA(ai , X), MA (ao x)),

For all other states a of A,
111 c(ai , x) = llf A(a; , x), x = 0 or 1.

The ideas of conversion from signal sets to state -symbol table for
a finite automaton are all contained in these examples. Since to state a
theorem means a repetition of what we outlined in the examples, we will
content ourselves with the following form of Kleene's result.'

Remark. Let r(A) be a set of finite sequences built up from the opera-
tions union, string product and closure operating on a finite set of finite
sequences. That is, r(A) is given by a finite expression involving the
operations union, string product and closure. Then, following the proce-
dures outlined in Examples 1, 2 and 3, a finite automaton can be con-
structed having r(A) as its signal set.

This remark, together with Theorem 6, thus provides the two-way
linkage between finite automata and signal sets.

VII. CONCLUDING REMARKS

x = 0 or 1.

We have discussed three approaches to a theory of automata and finite
automata: the state -symbol table model, the W -machine program model
and the signal -set model. Of these, we are most intrigued by the pro-
gramming model. This approach not only resembles strongly computer
programming, but it also offers possibilities of symbol operation and
other combinatorial programs, all based on a very simple and elegant
program structure. (One other model not studied here is a system pro-
posed by Post.) It is quite possible a combination of these systems may
offer deeper insight into the global structure of programming and auto-
mata which is lacking at present.
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Transition Probabilities for
Telephone Traffic

By V. E. BENE;

(Manuscript received April 21, 1960)

A stochastic model for the occupancy N(t) of a telephone trunk group is
specified by the conditions that arriving calls form a renewal process, that
holding times have a negative exponential distribution, and that lost calls are
cleared. The transition probabilities of N(t) are determined, and their limits
are studied. These transition probabilities have practical value in making
theoretical estimates of sampling error in traffic measurements, and in the
study of overflow traffic.

I. INTRODUCTION

We shall study a stochastic process {N(t), t > 0}, which is a mathe-
matical model for the occupancy of N service facilities, with no provisions
for delays. For example, N(t) can be interpreted as the number of (fully
accessible) telephone channels (trunks) out of a group of N such in use
at time I, with lost calls cleared. Also, we can think of N(t) as the num-
ber of items on order at time t in an idealized inventory situation in
which at most N items can be on order at one time (see Arrow, Karlin
and Scarf' ). Throughout the paper we use terminology appropriate to an
application to telephone trunking. The process N(t) is determined by
the following assumptions:

i. Holding times of trunks are independent, each with the same nega-
tive exponential distribution function, of mean 7-1, y being the "hang-up
rate."

ii. Times between successive attempts to place a call (interarrival
times) are independent ; each has the distribution function A(  ), where
A( ) is arbitrary except for the condition A(0) = 0. This assumption
covers Poisson arrivals as a special case. The mean of A(  ), when it
exists, is denoted by µl .

* This work was completed while the author was visiting lecturer at Dartmouth
College, 1959-60.
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iii. There are N trunks, N being finite.
iv. Calls that find all N trunks busy are lost, and are cleared from the

system without effect on the flow of arrivals (no retrials). These or
similar assumptions appear in Palm,2 and in Pollaczek certain prop-
erties of N(t) itself have been studied by Takfics,7'8.2 Cohen" and Bend!'

II. SUMMARY

The random process of interest is N(t), which is interpreted as the
number of trunks in use, or the number of calls in progress, at time t;
N(t) is a random step function fluctuating in unit steps from 0 to N.

For the most part, we restrict attention to that version of N(t), written
N(t - 0), that is continuous from the left.

The present paper is chiefly theoretical in character. It provides (a)
formulas for the Laplace transforms of the transition probabilities of the
stochastic process N(t - 0), and (b) a statistical description of the calls

that overflow a trunk group of the kind described in Section I. The for-
mulas will be exemplified and used in a second paper," where specific
applications to switch counting and traffic averaging are described.

We begin Section III with a general account telling what transition
probabilities are and why they are useful and interesting in traffic
theory. The primary result, Theorem 1, can then be stated; it completely
characterizes the transition probabilities

Pr IN(t - 0) = n I N(0+) =

as functions of t by determining their Laplace transforms, under the
restriction that A(  ) has a probability density. Section III ends with
a computation of some important transition probabilities for Poisson
arrivals; practical consequences of these results will be developed in the
second paper."

We prove Theorem 1 in the Appendix A. If y(t) is the time elapsed
since the last call arrival prior to t, the process {N(t - 0 ),y(t)} is Mar-
kov, and we calculate its distributions from the usual Kolmogorov equa-
tions. The stationary distribution of this Markov process is determined

in Appendix B.
In Appendix C the process N(t - 0) is studied directly in terms of

renewal theory and regenerative processes, using results of Smith." No
assumptions of absolute continuity are made. This procedure leads to an
extension of Theorem 1, and other results outlined in the next para-
graphs. ( Details are omitted. )

Let R be this event: a call arrives and finds n trunks in use. Each
occurrence of R , where 0 S n N, is a regeneration point of N(t - 0),
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in the sense that the history of N(t - 0) prior to the given occurrence
of R. is statistically irrelevant to the development of N(t - 0) after
the occurrence. Let x,, he the time elapsing from an occurrence of R.
to the next occurrence of R. We prove x,, < 00 with probability one,
and, if

= fx dA (x) < 00,
0

then E{x,.,} < 00.
The underlying probability functions that we calculate in Appendix

C are, for 0 n N:

Q (t) = E Pr (kth call arrives before t and finds n trunks busy}
(1)

Ei number of occurrences of R. in [04)1.

From this interpretation it is apparent that the Q() are unbounded
monotone functions; one may expect them to be ultimately linear. The
transition probabilities of N(t - 0) can be represented in terms of the
functions Q.(  ) and the transition probabilities of the simple death
process with death rate 7 per head of population, if the Qn() are eval-
uated for appropriate initial conditions. This is done in Appendix C.
With this representation we investigate the existence of

lim Pr {A r(t - 0) = n}.

From Theorem 4 and the solutions for the Laplace-Stieltjes transforms
of the Q(  ), this limit, when it exists, can be evaluated explicitly, using
the relation

E=
pn

where pn is the equilibrium probability that an arriving cell will find n
trunks in use. (For p see Refs. 7 and 11.)

III. TRANSITION PROBABILITIES OF N(t)

The transition probabilities of a stochastic process xt tell how likely it
is that the random function x(.) take on a value z at a time t, if it is
known that it took on the value y at time s. Such a transition probability
is written

Pr { xt = z = Y} (2)

the vertical bar being read and interpreted as "given that or "if."
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In other words, (2) expresses the relevance of the information that the
event {z, = y} has occurred to the likelihood that the event {xt = z}
will occur. In still other words, (2) expresses the dependence of the
event {xi = z} on (x. = y).

The chief practical use of transition probabilities for models of tele-
phone traffic is in computation of covariance functions; these, in turn, are
used to compute theoretical estimates of sampling error in actual traffic
measurements, such as time averages and switch counts. To see how
this happens in a particular case, we consider the use of the continuous
time average

M(T) = -1 N(t) dtf
as an estimate of the carried load. The variance of M is

E{11P} - E2{M1 =

T-2 f - E{N(1))E{N(s)}1ds dt.
0 13

The integrand is just the covariance R(t,$) between N(t) and N(s);
if N(t) is stationary in the wide sense, so that R(t,$) = R(t - s), then
(3) reduces (by partial integrations) to

Var IMI = 27-2 (T - t)R(t) dt. (4)
0

(3)

The covariance R(t) can be written in terms of the transition proba-
bilities of N() as

N N N 2

R(t) = E E mnpm Pr N(t) = n I N(0) = - (E mp,) , (5)
m=0 n..0

where {p.} is the stationary distribution of N(). Formulas (4) and (5)
then indicate how the transition probabilities can be used to find the
variance of M.

Our basic result concerning transition probabilities is most easily ex-
plained and understood after some of the notions used in stating it are
discussed. The first few are merely abbreviations; we let

A*(s) = f e-"dA(t) = a0(s) ,
0

a(s) = A*(s ny),
Xo = 1,

1 - a"(s) ' 1 - a3(s)
a(s) a1(s)
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These Laplace transforms enter because we shall be characterizing the
Laplace transforms of the transition probabilities in terms of the hang-up
rate y and the transform A* (s) of the interarrival probability density.

In the summary we have denoted by R. the event: a call arrives and
finds n trunks in use. We let q.(t,0) be the "density" of R at time t,
that is, the rate at which R. is occurring at t, and we letN

b  (I) = E () mt,o) (6)
n n

be the associated binomial moment. From (1), it can be seen that
dQ./dt = q.(40) , when the former exists. The b.(  ) and the q( .,0) are
also related by the inversion formula

N- n

qn(40) = E (-1)' (n j) b' (t)
n

More generally, we use q.(t,u) as a density function in the variable u
with the heuristic meaning

q.(t,u)du = Pr (N (t - 0) = n and n < y(t) S u + du).
We can now state
Theorem 1: The transition probabilities of N (t - 0) may be deter-

mined from the generating function formula

E N ( I-0)

where

rt
= E (ino - y,0)[Py(x)r-43N.H. - A(y)] dll

+ fE 11--AA(y(y-) dye-
(7)

P(x) = 1 + (x - 1)C",
and the Laplace transforms of the binomial moments bn(  ) are given
by

71

b - kn*
b.*(s) = (XO-1 {1)0* -

\
E

k *

1 - A* (s)'
fro*

N

+
X ;_ilci*(s)

1 - ao(s) :7=1 aj(s)
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where
co N 0\ a(t u) du

Ic* = Laplace transform of
io j qi`( '741 e 1 - A(u)

The kn* introduce dependence on the boundary conditions at t = 0
expressed by the functions q.(0,u). The Kronecker symbol 4,2 in (7)
indicates that a call is lost if it finds all trunks busy.

To show how Theorem 1 can be used we shall compute the Laplace
transforms of

Pr iN(t) = N I N(0) = m = 0, 1, , N,

in the important special case of Poisson arrivals at rate a, for which a
great simplification of the formulas occurs. In this case,

A(t) = 1 -
{0

t>0,
< 0.

Also, we set = hang-up rate = 1, which amounts to measuring time
in units of mean holding time; then

an(s) - a + as
(8)

Our choice of the transition probability to the "all trunks busy" con-
dition {NW = N} as an example is not arbitrary; it turns out that, in
many cases, including Poisson arrivals, the mean of N(1) and the co-
variance depend only on the transition probability to the "boundary"
condition IN(t) = N. A similar situation occurs in the theory of queues
with one server: the mean delay can be written as an integral of the
probability of being on the "boundary," i.e., the chance that the server
is idle."

Since arrivals are Poisson, the y(  ) process is in fact superfluous, and
we may assume N(0) = m,y(0) = 0, so that

k*(s) =
fo

(m a
a ) at = n)a -Fs + n m,

(9)

= 0 , n > m

In formula (7) (Theorem 1) set x = 1 w, and take Laplace transforms
with respect to t; the coefficient of w' is

f0 --st
e Pr {NO) N N(0) = ml di

e-at-Nl-at dt[qN* qN__1* ON77,1,
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where q*(s) is the transform of qn(t,0). Now, from (6), (9) and (24)
we find

hence

qN* - 15NmaN(s)q* q_1* -
aN(s)

e-8` Pr IN(t) = NIN(0) = m} dt =
a

(10)

This result can also he obtained heuristically as follows:

a = total density of arrivals at t

= qN(t,0) a[1 - Pr IN(t - 0) = NH;
taking Laplace transforms, we get (10).

From Theorem 1 and (10), we find

qN*

a

a,

(m\ (m)1 - ao(s) (10 - ao(s)] . [1 - 1(0]
0 ao(s)

+  ±
ao(s)  am_i(s)

1 - ao(s) (Ar
ao(s) t7=011

But, for our example, (8) implies

1 - an(s) _s n
an(s) a

hence, defining (after J. Riordan in the Appendix to Wilkinson';) the
"sigma" functions ok(m) by

am
ao(m) = crk(M)

L. + j - J.\ a
J-0 \ j -

with m (but not k) an integer, we can show that elqN* reduces to

Cal Pr {N(t) N I N(0) = ml dt- aN mnla8(M) (11)
S PSCI,±1(N)

This and similar results for Poisson arrivals have been found by S. 0.
Rice in unpublished work.

t The "sigma" functions are related to the Poisson-Charlier polynomials p(x) =--

a"i2(n!)i E ( -1).-i (i) j!a-i (j) by 1,010 = (-0"1(1)1!)-4pm(-k). See Szego.'6
i-o
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Since the event IN (t) = NJ (the "all trunks busy" condition) is of
primary interest, the transition probability

pNN(t) = Pr EN (t) = N I N (0) = NJ

has been used (e.g. by Kostenu) as a "recovery" or "relaxation" function
that is characteristic of the dynamic behavior of the system, especially
of its approach to equilibrium from the "all trunks busy" condition.
Such a function has been computed from (11) and plotted as Fig. 1,
for a (heavy) load of 10 erlangs offered to 5 trunks, giving a loss proba-
bility of 0.563.

IV. OVERFLOW TRAFFIC

In the design and engineering of trunking plans in telephony, it is
common practice to offer the calls lost by one trunk group to a second
or overflow group. It has been discovered that the right choices of group
size and the pooling of overflow traffic can lead to efficient trunking
arrangements, called graded multiples. For this reason, some theoretical
work, as well as much empirical study, has been devoted to the statisti-
cal behavior of overflowing calls. The principal references are to Brock-
meyer,18 Cohen,'° Kosten,19 Palm,2 Takacs,'" and Wilkinson!'

In accordance with current usage in mathematical literature, let us
refer to a sequence of mutually independent, identically distributed,
positive random variables as a renewal process. The interarrival times
that we have assumed in the model describing the trunk group then form
a renewal process. It has been shown by Palm2 that, if calls arriving in

EQUILIBRIUM VALUE = Pr LOSS J = 0.563

r T
0.05 0.10 0.15 0.20 0.25 0.30 0.35

t

Fig. 1 - "Recovery function" Pr IN (t)=NIN (0) = NI for N = 5 trunks and
a = 10 erlangs (heavy traffic).
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a renewal process are served by a finite group of trunks, with exponential
holding times and lost calls cleared, then the overflowing calls can also
be described by a renewal process. That is, the time intervals between
successive overflowing calls are mutually independent and identically
distributed. Palm also showed how the distribution function of these
interoverflow times can be calculated from the interarrival distribution,
the hang-up rate and the group size.

We can deduce Palm's results in a simple way from our basic theorem
and give a general formula for the Laplace-Stieltjes transform of the
interoverflow distribution. Let ON(t) be the average number of overflows
occurring in the closed interval [0,1], assuming that an overflow occurred
at time 0. Thus ON(t) is the particular form of QN(t) that arises when
ul = 0 and N(0-) = N. We use G(u) to denote the distribution func-
tion of the interoverflow times. Since these times are independent, it
can be seen that

ON(t) = U(t) f ONO - u)dG(u) , t >0 , (12)
0

where U(t) is 1 for I 0, and 0 otherwise. If ON* (s) and G*(s) are the
G, then

G*(s)
ON' (S) -1,-

ON (s)

which determines G(u) uniquely if ON* is known.
Since, as noted, ON* is the particular case of QN* arising when u1 = 0

and N(0 - ) = N, a formula for it can be found from (32). In the particu-
lar case being considered

K.* = (N),

and so ON* is given by

1

1 - A* (s)
N\1 - ao(8) (N\[1 - ao(s)] [1 - aN-1(s)] (13)1 ai(s) N a1(s)  aN(s)

N\ [1 - ai(s)] [1 - a(s)]
,t=o \n f ai(s) a(s)

If pi = x dA(x) < 00 , the mean time between overflows is
0

PN
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where pN is the equilibrium probability of loss (studied in Refs. 7 and
11).

For N = 1, (13) gives

0*_ 1 - A*(s) A*(7 s)
1 - A*(s)

A*(7 s)G* - 1 - A*(s) A*( -y s) 

Since A*(y s) is the Laplace-Stieltjes transform of

L1(t) = f dA(u)
.0

(15) can be inverted to give

G(t) = Eicon(t) = {a(A)1(t),

where

(14)

(15)

(16)

SO1 = Ll

On -F1 = SOn * (A - L1)

and "*" denotes Stieltjes convolution.
Formula (13) agrees with the recurrence relation given by Palm2 for

the overflow distribution from N trunks. The "one -trunk" case of (14)
through (16) is important theoretically because all other cases can be
obtained from it by iteration. Formula (16) defines a mapping G = a(A)
and the interoverflow distribution for N trunks can be written as aN ( A) ,

the Nth iterate.
For one trunk, the first two moments of the interoverflow time u are

Efuj = -41

2

2

2

E{212} = 1± 411 [1 - f tc (-14,1

a1 a1- mi .0

where = fu1 dA. In particular, the ratio of second to first moment

is

Efu21 2,,,- - + - 1 - f.* te-71 dA(t)].
E{u} /21 al o
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so that the mapping always increases this ratio, by an amount pro-
portional to Ei .

APPENDIX A

Approach Using a Markov Process

Let N(t) be the number of trunks in use at time 1. To study the dis-
tribution of N(t) we introduce the two-dimensional process {N(t),y(01,
where y(t) is the length of the time interval from t back to the last
arrival epoch prior to 1. We assume that A(  ) is absolutely continuous,
with a continuous density a(  ).

The reason for using the two-dimensional variate is that, unless arriv-
als are Poisson, the N(t) process by itself is not Markov. To avail our-
selves of the functional equations satisfied by the distributions of Markov
processes, we include y(t) in the "state of the system." This inclusion
does result in a Markov process. The device of "Markovization" by the
inclusion of variables has been suggested and developed by Cox," and
also has been used by Takics.7'8.9

It is natural physically to think of the random functions N(t) and
y(t) as being continuous from the right. However, we shall assume only
that y(t) is always defined to be equal to y(t + 0), and shall study the
two processes {N(t 0),y(t + 0)} and {N(t - 0),y(t + 0)1 jointly.

That N(t - 0) and N(t 0) are not the same process is clear:
N(1- 0) = N and y(t) = 0 imply N(t+ 0) = N; but, if N(t 0) = N,
y(t) = 0, then N(t - 0) = N or N - 1 according as the call that just
arrived is lost or accommodated. The analysis of N(t - 0) and N(t 0)
shall be carried out in terms of two sets of probability density functions,
p(t,y) and g(t,y), where

p(t,y)dy = Pr (N(t + 0) = n and y < y(t) < y

qn(t,y)dy = Pr {N(t - 0) = 71 and y < y(t) < y dy}.

Lemma: pn(t,y) = qn(t,y) for almost all y.
Proof: Let P he a basic probability measure determined by our as-

sumptions (i) through (iv) of Section I; P is defined for sets of elements
w in a space R. We assume further that N(t,w) is separable, so that

Se = n - u) = N(t 0) = N(t u)}
0<u <,

is a measurable set.
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Now if y(t) > S > e, then y(t - e) = y(t) - e, almost surely, and

Pr IS, N(t 0), Y(t) > 61 > e-27Ne 1 A (8 e)

1 - A(s)

independently of N(t + 0), almost everywhere, so that;

Pr IS, I y(t) > ol > e 2YNf 1 - A(6 + )
1 - A((5)

The sets S, are monotone nondecreasing, so So = Jim S, as e 0 is
measurable, and

Pr I So I y(t) > 81 = 1, almost everywhere [P], (17)

and So is the co -set on which N(t) is constant in some interval (1 - u,
t+u). The lemma follows from (17).

It remains to establish the relationship between pn(t,y) and qn(t,y)
when y = 0. From our previous remarks about N(t - 0) and N(t 0)
it can be seen that

pN(t,0) = qN(t,0) qN_1(1,0),

p (t,0) = q_1(t,0), I it <= N - 1,

pu(t,0) = 0.

To formulate the Kolmogorov equations for p(t,) and qn(t,), we
need the function X( ) defined by

X (y) -
a(y) A(y) < 1.1 - A(y)'

This is the probability density that an interarrival time will end in the
next dy, given that it has lasted a time y to date. The functions q(t,  ),
where 0 < n < N, (with qN-0 = 0), satisfy the difference -differential
system

[6749 yn X(y)1 q = 1)q.+1, (18)

and the behavior of the densities qn(t,  ) for y = 0 is determined by the
additional condition

q(t,0) =
0

q(t,y)X(y) dy . (19)
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We introduce the generating function

11,(x,t,y) = E x"q,,(t,y),
n

and from (18) obtain

[a
+ 57

a+ -y(x - 1) + x(y)]1G = 0, (20)

whose general solution is

1/1(x,t,y) = K{t - y, e -"(x - 1)}[1 - A(y)].

Before continuing, we note that the functions pn(t,y) also satisfy the
system (18), but that the analog of (19) is

=f pn(t,Y)X(Y) (1y, (21)
.0

where the Kronecker (5 symbol is used to indicate that all arriving call
is lost if it finds all N trunks busy. The generating function v(s,t,y) of
the pn(t,y) is also a solution of (20).

The function 1,1/(x,t,  ) is y -continuous for y > 0, so, from the lemma
proved previously, we conclude that 0(x,t,y) = co(x,t,y) almost every-
where in y, and that

lim 4/(x,t,y) = go(x,t,0).

Because of the "lost calls cleared" assumption, we must have

#(x,t,0+) = x#(x,t,0) - XN(x - I.)q,v(t,0)

= (IC:1( X )

so that is discontinuous in y at y = 0.
Let P = P(x) abbreviate 1 + (x - 1)e-'. It can be verified that

the function K( , ) in the solution of (20) is given by

K(u, z) = (1 + z)1,1,(1 z,u,0) - z(1 z)NqN(u,0), t y,

(1 ze",0,-u)
1 - A( - u) '

for the solution tsti(x,t,y). From this we find that, for t > y,

,P(s,t,y) =

Pylk(P ,/ - y,0)[1 - A(y)] - - 1)PNqN(t - y,0)[1 - A(y)],

t < y,
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while, for t < y,

\ 1 -A (y)
4'(x,t,y) = gP1,0,11 - 1/ 1 - A(y - t) 

The solution for go(x,t,y) is analogous; in view of this and of the close
relationship between co and 4', only 4, shall be treated from now on.

The function 4'(s,0,y) represents initial conditions, and is considered
as given. To find 1//(x,t,0), we use the integral condition (19), and con-
clude that

re

4G(s,t,0) = ,t - y,O)Pya(y) dy
0

.e

-1 (Py - 1)Py'v (MO - Y,O)a(Y) dy
 0

(22)

a(y) dy+ 0(P 0,y - t)
Je 1 - A(y - t) 

To solve the functional -integral equation (22), we set x = 1 w,

and equate coefficients of like powers of w. This yields

bn(t) = [b(t - y) bn_i(t - y)

(n - 1 /),(t - y)] e"Ya(y) dy kn(t),

where
N

b(i) = (i) cdtp),
n

k(t) fe° -nyt a(t u) du

Note that

n z 0,
(23)

bolt) = q(t,0) = 0(14,0).

Let the Laplace transforms of bn(  ), kn( ) be bn*(8), kn*(8), respec-
tively. We obtain a simple recurrence for the b* by applying the Laplace
transformation to (23). The recurrence is

b* = a(s) {b* bn_1* - n N
1
)bN*} k*, n 0, (24)
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A*(s) = f dA(u),

a(s) = A*(s wy)1*

To find bo*, let x approach 1 in (22); then P(x) goes to 1, and we reach
the following renewal equation for bo(t):

bo(t) = f bo(t - y)a(y) dy + Ice 4/(1'0'u) a(t u) du. (25)
o 1 - A(u)

It can be verified that the last term on the right of (25) is just ko(t);
upon solving (25) by transforms, we find that bo* = ko*/[1 -

It can be seen that bo(t) is the density of arrivals at the time t; thus
bo(t) is a familiar function of renewal theory, for which the reader is
referred to Smith2 and the bibliography therein.

The solution of the recurrence (24) is

b,:* = {bo* - N
N

b *)=1.1-1
where

k7 *

an (s)
Xj_if , (26)

X0 = 1,
1- a, (s)

X
a (s)

In particular, the Laplace transform of the density (at t) of arrivals
finding all trunks busy is given by

ko* EC-41, X i_ik;*(s)

1)N* = qN* = f e-"qN(t,0) dt - 1 - ao(s) J=--1 ails) (27)
E(N)n/

The generating function of distr {N(t - 0)) is
00

x"-°)) = f tgx, 1, y) (11/

= I E - y,o)[Py(x)].-"-'N-R - A(y)1 dy (28)

1 - A(y)
+ J E q(0,y - 0[Pi(x)r dy.1 - A(y - t)

t The functions a(s) are to be distinguished from the constants a of Ref. 11,
which use the same model and notation. The two quantities are related by a
A* (n -y) = a(0).
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APPENDIX B

The Stationary Distribution of [N(t),y(t))

We now consider which initial distributions qn(0,u) for IN(0-1- ),
y(0-1- )1 are stationary, i.e., are invariant under the transition probabili-
ties of the Markov process {N(t - 0),y(t)}, studied in Appendix A.
Intuitively, since we show in Theorem 3 of Appendix C that a limiting
distribution exists as t - 00 , we expect this limit to give the stationary
distribution. This is the content of

Theorem 2: If A(u) has a continuous derivative and ,u1 < 00, the
x,u function

2 pnpun+i-oNn(x) 1 - A(u)
0, (29)

generates the unique stationary distribution of I N (0+ ),y(0)} ; (29) is
a generating function in x and a probability density in u. The number
p is the equilibrium probability that an arriving customer find n trunks
busy.

To show that (29) generates a stationary distribution, it is sufficient
to prove that the choice of (29) for the initial condition makes each
qn(t,0) = pnhti for all t. This is equivalent to

or to

with

*(s) = pn

b*(s) =
SY

bu = )Pi.it

In order to use the recurrence (24) and the formula (27) for qN*, we
must first calculate the quantities len* imposed by (29). Now kn(t) is
the nth binomial moment associated with the generating function

1,14/), ,O,y - t)
dA(y)

1 -A (y - t)
for lk (x ,O,u) given by (29). Thus, Ion(i) is associated with

E
1

pPy_ti+n-5'"[P,(x)] dA(y).
n
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This is equal to

- I pP+ti+n-4"(x) dA(u),

and so, for n > 0,

kn(t) = 141-1 1).-1 -

The Laplace transform of this is

For n = 0,

(//, N PN}
-11711

J. dA(u).

1 a - a(s)
kn* = {b. + bn-1 -

N
PN

sui

ko(t) - 1 - A(1)

ko* -
1 - A*(s) 1 - ao(s)

sill

n> O.

We now note that, for these kn*, the condition bN* = pN/sAt1 implies
bn* = bn/sµ1 for all lower n. This can be proved by induction from (24).
We now substitute these kn* in (27) for qN* (= bN*). If we divide out
a factor [1 - ao(s)] in the numerator, the first term is 1/sm. ; the general
term is

N) 1[1 - ai(s)] [1 - - a(s)][I) - PA -n - 1 (sili)ai(s) an(s)

Using the recurrence of Ref. 11,

bn = a. [b. + b.-1 - Ay] ,n - 1 n> 0,

we find after much algebra that qN* = , which proves the theorem.
The stationary value pN/iii for the density qN(t,0) has the following
physical interpretation : 1/A1 is the equilibrium density of arrivals, and
pN is the chance that such an arrival find all trunks busy.

The uniqueness of the stationary distribution follows from that of
the limiting distribution as I 00 . For two distinct stationary distribu-
tions of necessity give rise to distinct limits, contradicting Theorem 4
of Appendix C.

The analog of Theorem 2 for the more general formulation of Appendix
C is proved by the same form of argument that established Theorem 2,
with the difference that Laplace-Stieltjes transforms are involved, and
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that special mention must be made of the "periodic" case, in which
A (  ) is concentrated on a lattice.

APPENDIX C

Approach Via Renewal Theory and Regenerative Processes

This last appendix is a quick sketch of results for general distributions
A(  ); no proofs are given.

Smith" has defined a regenerative stochastic process x( t) as one for
which there is an event R such that, if R occurs at t, then knowledge of
x(s) for s < / loses all prognostic value, and the future development of
x(r) for 7 > t depends only on the fact that R occurred at t. The points
at which R occurs are called regeneration points of the process.

Let Rn denote the event: an arriving customer finds n trunks busy.
Since the interarrival times form a renewal process, each point in time
at which Rn occurs is a regeneration point of N(t - 0), for all 0 5 n
N. In fact, we have already" made use of this property of the arrival
process in constructing the imbedded Markov chain.

We are therefore in a position to use Smith's results" directly. The
regenerative property of Rn implies that the time intervals between suc-
cessive occurrences of R form a renewal process, i.e., a sequence of
independent, identically distributed variates. To apply the results of
Ref. 13 we must investigate whether these variates are proper, i.e.,
finite almost surely, and whether they have finite expectations. We
content ourselves with the following result:

Theorem 3: Let xm,n he the time elapsing from an occurrence of R.
until the next occurrence of Ra . Then

x, < 00 with probability 1,

and, if the mean interarrival time Ai = f x dA < 00 , then

Efx,,} < 00.

We use the following notations:

ui = the ith interarrival time, i = 1, 2, 3, ,

ri(m) = the time interval between the (i - 1)th and the
ith occurrences of R. ,

Uk = E ui = the epoch of the kth arrival,
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Xk(m) = E ri(m) = the epoch of the kth occurrence of the event R

T = the epoch of the last arrival prior to t and
after 0.

The ui all have the common distribution A(u), except for u1 , which
has G. Also, the rt(m) have a common distribution, except for ri(m).

During the interval ( Tt , t), the process N(x - 0) forms a pure death
process whose transition probabilities 1)... () are known. Let U(s) be
the unit step function at 0 and 3.N the Kronecker delta. The probabil-
ity that N(t - 0) = n can be represented as

Pr {N(t - 0) = = Elppico+),n(t)U(ul - t)1
e

I+ E pm+,--a.N,n(t - u) d Pr {T1 < u and N(T t - 0) = ml,
n-1<m<N 0

where the measure implicit in the E operation is the joint distribution of
N(0+) and u1 . With the notations just introduced in mind, it can be
verified that

CO

Pr {Tt < u and N(11, - 0) = in} = E Pr = X k(m) u)
k=1

= [1 A(t - v)]d E Pr { Uk V and N(Uk - 0) =m}

[1 - A(t - v)] E Pr {Xk(m)

the series being absolutely convergent. By introducing

Q(t) = E Pr { Uk 5 t and N(Uk - 0) = n},

we can write

Pr {N(t - 0) = n} = EfPN(0+).n(t)U(ul -
+ E I p,,,+._o,,.(t - - Act - u)j (!Q,, (v).

11-1,..rnN 0

This representation has been used by Takics7 to study rim Pr {N(t -
0) = as t -4 00 by methods similar to those used in the proof of
Theorem 4.

We can now describe directly some conditions under which Pr IN(1 -
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0) = n} goes to a limiting distribution as t ---> 0, independent of initial
conditions. The result is due essentially to Takics.7

Theorem 4: If A(u) is not periodic, if u1 < 00 almost surely, if µl =
El ui} < > 1, then

oo
f

lira Pr {N(t - 0) = n} = E f n +1-6mp bn kU
[1 - A(u)]

du.
1.6.0 n-lnISN 0 E {Y...}

This result follows at once from the previous results of this section and
Theorem 2 of Smith,13 upon noting that pn,k(u) is a linear combination
of monotone decreasing functions. From Theorem 3 of Smith21 there also

follows
Theorem 5: If A (u) has period p, if n1 < 00 almost surely, if ul =

E{ui} < 00, i > 1, and 0 < y < p, then

Hai Pr {N(kp y - 0) = =
k-÷oo

E E pm+1_,,,,(kp + y) {l - A(kp y)]

n -l< m< N k E

We now derive and solve equations for the quantities

Q,(u) = E Pr { Uk u and N( Uk, - 0) = m},
k

which occur in the representation for the probability Pr {N(t - 0) = n}.
Using the generating variable x and the abbreviation

Py(x) = 1 (x - 1)e-",
we find that

E xn Pr I U k+1
n=0

py7"+"-,(x) dA(y) du Pr { k u and A r - 0) = m}.
f0

The series formed by adding all these equations up on the index k are
absolutely convergent; hence no additional generating functions are
needed, and we reach the equation:

00

E xn E Pr { t and N(U k - 0) = n}=
n=0 k=1

E xn Pr {it' < t and N(u1 - 0) = n}

t -u

t and N(Uk+l - 0) = n1 =

(30)

+ E 1)"`+""'N(s) dA (y) d E Pr { Uk and

N( Uk - 0) =
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This is an integral -functional equation for the function

'(x,t) = E x," E Pr Uk t and N( Uk - 0) =n},
n k

which is closely related to the function 4,(x,t,0) treated in Appendix A.
In fact, when NI, is absolutely continuous in t, then 4, is its derivative,
and (22) is similar to (30) in the special case where the density 4, exists.

Equation (30) may be solved by the same method as (22), except
that Laplace-Stieltjes transforms replace the ordinary Laplace integrals
used for (22). We introduce the following notations:

(2.(t) for E Pr { r and N (U k - 0) = 11}

B(t) for

t)

,
c3) Q1(t),,n n

for E J) Pr { t and N (u1 - 0) = j }.
n 11

When each of Q , B. and K is absolutely continuous, the corresponding
(lower case) quantities q(t,0),b.(t) and len(t) are the respective deriva-
tives. Let the respective Laplace-Stieltjes transforms of Q , B. and K.
be Qn*, B* and K.*. Then (30) leads to the recurrence

B.* = an(s) {B.* + - B K.*. (31)

The rest of the solution is in complete analogy with the solution for the
b.*, q* in Appendix A. We find

B N(t) = QN(t),

B (2(t) = *(1,t).

The function *(1,t) satisfies the renewal equation

*(1,t) = I - y) dA(y) G(t),
0

where G = distr {ui}. The Laplace-Stieltjes transform of 4,(1,t) is

*
Bo* =Jo C." dx1,(1,t) - 1- A*(s) 1 -

Ko

A*(s).
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The solution of the recurrence (31) is

B* =

a(s) 1B0* E N * 5* 1 - ai(s)1
ie. 1- a(s) J.-1W - N a;(s) 0 ai(s) f'

where the first term of the products is taken to be one. The Q* are given
in terms of the B.* by the equation

N -n

Q.* = (-1)l (n B
n "+'i=o

In particular, the analog of (27) is

B N* = QN* = dt E Pr{Uk t and N (Uk - 0) --- N}
o

= [1 - 21*(s)]-1

Ki* [1 - ao(s)]
al(s)

(32)

 ± K N* [1 - ao(s)] [1 - aN-i(s)]
al(s) aN(s)

1 + (1
al(s) aN(s)

1 - al(s)
1 al(s)

+ Ar

(1[1 - al(s) [1 - aN(s)]

From the representation of Pr IN (t - 0) = n) it can be seen that
the generating function of N(t - 0) is

E f.r,"-°) } = tA"±)(x)U(14 - t)

+EfePt_,,"---'"N(.1)[1. - - u)] dcin(u),
7, 0

with P t(x) = 1 (x - 1)e -7e, and U the unit step at zero. It follows
that the Laplace transform (with respect to t) of the generating function
of N(t - 0) is

I-8 .N0-0) =e Ix (it f e-"EfP P+)(x)11(711 - t) } dt

+ E Q.,,*(s) e-"P,"+""NOOR - A(y)] dy.
0

When lira Eta.,N(t-0)I, exists as t -> , we can use Abel's theorem
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for the Laplace transform to evaluate the limits lira Pr {N(t - 0) = n}
explicitly. As s 0,

sG*(s)sQ*(s) = lim 1 - F,*(s)
1

Erx,1
But from (32) we find

lim sQ(s) =

Jxx dA(x)

where p7, is the equilibrium probability that an arriving customer finds
n trunks busy. (These probabilities have been studied in Takitcs7 and
Benekil inter alia.) Hence

E{x,n} = mean recurrence time of R.

x dA(x)
o

Pn Pn

and, from Theorem 3,

f R - A(u)]lim Pr {N(t - 0) = n} = E Pm I Pm44-5m,Thn(u) du
1 -boo n-1 m N m1

lim E12/0-0,1 E py,,(x) [1 - A(y)) ,
aY,(-.

Wit ll

Pv(x) = 1 (x - 1)e-'11.
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An Alternative Approach to the
Realization of Network Transfer

Functions: The N -Path Filter

By L. E. FRANKS and I. W. SANDBERG

(Manuscript received April 14, 1960)

A particular time -varying network consisting of several parallel trans-
mission paths, each containing input and output modulators, is described
and analyzed. It is shown that, under certain conditions, the network may
be characterized by a transfer function. A particular form of this transfer
function yields periodic filtering characteristics over a limited frequency
band without employing distributed elements. Techniques are also presented
for realizing highly selective band-pass filters without the use of magnetic
elements. Some practical applications are discussed in detail and experi-
mental verification is presented.

I. INTRODUCTION

The application of conventional design techniques to network prob-
lems in systems operating at relatively low frequencies often leads to
impractical circuits. In addition, designs based on active RC techniques
are frequently very sensitive to small changes in element values. Alter-
natively, a time -varying network approach to the solution of a wide
class of such problems appears to be particularly promising.

The time -varying network described and analyzed in this paper con-
sists of a parallel combination of N identical linear time -invariant net-
works, each operating between input and output modulators. Attention
is focused upon several properties of this configuration that are of the-
oretical as well as practical importance. In particular, these properties
include :

i. Periodic filtering characteristics can be obtained over a limited
frequency band without employing distributed elements. The practical
uses for this property include the realization of low-frequency comb
filters.

1321
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ii. Narrow -band band-pass and band -elimination filters can be re-
alized at very low frequencies by networks free from magnetic elements.
The center frequency of these filters is electronically controllable.

iii. An exact low-pass to band-pass translated version of the con-
stituent network transfer function can be realized. The low-pass to band-
pass transformation technique can also be applied to driving -point
immittances.

The network under consideration is shown in block diagram form in
Fig. 1. The time functions u(t), v(t), x.(t) and yn(t) may be interpreted
to be either voltages or currents. The input modulators (multipliers)
operate on the input u( 0 to produce the inputs

xn(t) = u(t)p[t - (n - 1) r]

to the N identical linear time -invariant networks with impulse response
h(t). The outputs yn( 0 are passed through output modulators to form
path outputs vn(t). The final output v(t) is the sum of the path outputs.
The time functions p[t - (n - 1) r] and q[t - (n - 1) r] are periodic
with period T, where T = Nr.

In the next section the general input-output relationship for the N -
path configuration is developed and discussed. The following sections
are concerned with features associated with particular types of modu-
lating functions. Some practical applications are discussed in detail and
experimental verification is presented.

Fig. 1.- The N -path configuration.



THE N -PATH FILTER

II. GENERAL PROPERTIES OF THE N -PATH CONFIGURATION

2.1 General Input -Output Relationship

1323

In this section we derive the relationship between V(8) and U(s),
the network's frequency domain output and input t

The periodic functions p(t) and q(t) can be expressed by their com-
plex Fourier series:

p(t) = E P,e""",

q(t) = E Qiel"",
z --co

where coo = 2r/T = 27r/Nr. It is convenient to define

p(t) = p[t - (n - 1)7],

(1)

(2)
q(t) = q[t - (n - 1)7].

Since multiplication in the time domain corresponds to convolution
in the frequency domain, it follows that

V(s) = E v(s) = E (s) (MO. (3)

Using the relation

(s) - - a) (4)s - a
and (1), (2) and (3), we obtain

N i=+.
TT(s) = E E Qle"("-1)1TX(s - jlwo)H(s - jlwo), (5)

v-1

where

X(8)H(s) = Y (s). (6)

Similarly,

Xn(s) = U(s) 0 P(s) (7)

and
m-Fc.

X(s - jlwo) = E P,e-j"(n-1)""*U[s - j(m 1)wo].
1/1 -=-

The time function and its Laplace transform are denoted, in accordance with
the usual notation, by lower and upper case letters respectively.
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Substituting (7) into (5) gives

V = E Qipmciwo(n-ixi+norms - jlwo) U[s -
n,1,m

The summation over n is the following geometric series:

N = N , m = kN ,
Eemi..(n-i)(/+m)r
n=1 = 0, otherwise,

where k is an integer. Using (9), we obtain

V(s) = N E QiPkN_,H(s - ihmou(s - ikNwo.
k,1

It is convenient to write (10) in the form
k --f -co

V (S) = E F(k,$) - jkArcoo),

z=l-ce

F(k,$) = N E QipkN_ims - ik00).

(8)

Expressions (11) and (12) constitute the general input-output rela-
tionship for the N -path structure.

2.2 Transfer Function for N -Path Configuration

The quantity F(k,$) in (11) and (12) completely characterizes the
time -varying network of Fig. 1. It describes operationally the relation
between the input signal and output signal, as is shown symbolically in
Fig. 2(a). In this sense, F(k,$) may be considered analogous to the
characterization of a constant -parameter network in terms of a transfer
function. A feature of the N -path configuration of particular interest
from the network theory viewpoint is that, with certain band -limiting
restrictions on the input and output signals, a transfer function relation
between input and output can be derived. It is this property that will
be investigated in the remainder of the paper.

If U(s) evaluated on the jw-axis essentially vanishes outside the in-
terval I 0) I < N04/2, it follows that

V(jw) = F(0,jw)U(jw) in I co
Ncoo< (13)

Furthermore, if V(jco) vanishes outside the interval I w I < Nwo/2, then
V(s) and U(s) can be related by a transfer function T(s):

T(s) - V (s)
U(s)'



where
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T(jw) = F(0, jw) in I w
Nwo<

2

0 in I I > Ncoo.

2
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(14)

These band -limiting constraints can be accomplished by preceding and
following the time -varying network with ideal low-pass filters having
cutoff at (.0c = N(.00/2. With the addition of these low-pass filters, the
time -varying network is equivalent to a constant -parameter network
having a transfer function, F(0,8), preceded and followed by ideal low-
pass filters, as shown in Fig. 2(b).

An alternate expression for the transfer function will be developed in
the following equations. This expression leads to a closed form for
F(0,$).

From (12),

F (0,$) = N p_,Q,H(s - jlwo). (15)

This can be written as the Laplace transform of the product of the im-

F (k, s)
u(t) v (t)

0o

V(s)=i F(k,$) U(s-jk Nwo)
k=-oo

u (t)

(a)

T (s)

7-IDEAL IDEAL

F(o,$) FILTER
LOW-PASSLOW-PASS

FILTER
Nwo NWo v(t)

c 2 Ci) c 2

L
V (s)=T(s) U(s) (b)

Fig. 2 - (a) Symbolic representation of F(k,$); (b) equivalent constant -param-
eter network.
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pulse response of the component networks, h(t), and a periodic function
with period T:

where

P(0,$) = 2[h(t)N P_1(21e+H

= 2[h(t) E r(t - kT) 1,
k=-0

E r(t - kT) = N E P_IQie+11"`.
k=-co 1=-0

(16)

(17)

The pulse r(t) depends only on the modulating functions and not on the
response characteristics of the component networks. The identification
of r(t) with p(t) and q(t) is not unique. However, a particularly useful
relation is obtained by considering p(t) and q(t) to be represented by
infinite pulse trains wherein each pulse assumes the shape of one period
of the modulating functions; that is,

q(t) = E b(t - kn,
A

where

a(t) = p(t) in 0 t < T,

= 0 otherwise;

b(t) = q(t) in 0 < t T,

= 0 otherwise.

Then it can be shown that

(18)

(19)

Tr(t) = lo a(y)b(y t) dy (20)

satisfies (17). Notice that r(t), like a(t) and b(t), is a duration -limited
function, in that

r(t) = 0 for I t I > T. (21)

Since the Laplace transform of a product of time functions is given by
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the convolution of their transforms, (16) becomes

and

where

F(0,$) = H(s) £ E r(t kT)1 (22)

[ r(t - kT)] = R(s) + E A ( -s)B(8)e-akr , (23)

T

R(s) = f r(t)e-" dt,

A(s) = a(t)e -$1 dt

T

B(s) = f b(t)e-" dt.
0

(24)

The terms in k form a geometric series that is readily summed, so that

F(0,$) = H(s)

N A(-s)B(s)e-
R(s) (25)

1 - e-87'

2.3 Transfer Function for Rational H(s)

If we now assume that H(s) is rational in s and regular at infinity,
then, assuming only simple poles,

H(s) = co + E (26)s -
From (25),

F(0,$) =

cor(0) E cr
i=i

R(s - si)
N - s)B(s - si)e-(8-8or

1 - e-(8-8i)T
(27)

The functions R(s) and A(-s)B(s) have no singularities in the finite
part of the s -plane. Thus, the singularities of F(0,$) are given by the
zeros of 1 - c -(8-8')T, which lie equally spaced at intervals of 27/T on
lines parallel to the j = w axis.
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III. SPECIFIC TYPES OF MODULATING FUNCTIONS

In this section the properties of the N -path configuration are examined
for specific types of modulation that reveal particularly interesting
properties of the structure.

3.1 Sinusoidal Modulation

Suppose that the modulating functions possess only a finite number
of sinusoidal components:

where

M

p(t) = E .13,ei"" e,
m-Af

MM

q(t) = E Qine!`"mt
m --M

P_, = 1):1 and Q -m = Qm.

The case for N > 2M deserves special attention, for then

QtPkN-i = 0

and, from (11) and (12),

for k 0,

(28)

V (s)
u(s)- F(0's). (29)

Therefore, the network exhibits a transfer function T(s) for N > 2M,
without band -limiting restrictions, which is given by

T(s) = F(0,8).

Note that the transfer function is a finite sum of frequency -translated
versions of H(s). In particular, when PQ. = 0 for I m I 1, we have

T(s) = N[a1H(s - jwo) ai (s jwo)1, (30)

where

a1 = (21P-1

a "low-pass to band-pass transformation" of the transfer function H(s) t.
f This result can also be obtained with only two parallel paths.' Single sinusoid

modulating functions are employed, the two functions in one path being in phase
with each other and in quadrature with the functions in the other path. A similar
configuration has been considered by Hines and Desoer in unpublished work.
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A particularly difficult practical network problem is the low -frequency
realization of highly selective band-pass filters. Procedures that avoid
the use of magnetic elements are inviting, but active RC techniques often
lead to a high degree of transfer function sensitivity to both the active
and passive parameters. An alternate approach based on (30) appears
to be attractive, and should provide a considerable increase in the degree
of immunity from network parameter variations. Implementation of a
similar approach is discussed in more detail in Section 5.2.

The transfer function poles of a passive RC network are distinct and
on the negative -real axis of the complex -frequency plane. Consequently,
if H(s) is the transfer function of an RC network, the over-all transfer
function T(s) of (30) can have only distinct pairs of complex -conjugate
poles with identical imaginary parts. It is desirable to circumvent this
restriction without employing magnetic or active elements. It is suffi-
cient to consider the synthesis of the transfer function

T(s) =
N(s),

(31)
D(s)

where T(s) has only simple complex -conjugate poles, since transfer func-
tions with multiple -order poles can be realized as the product of transfer
functions having only simple poles. We assume that T(s) is stable and
regular at infinity. Equation (31) can be expressed as

T(s) = K. biE + , .- (32)
S + O - Jon S + a, I- Joh

From (30), each of the series terms can be separately realized with the
passive transfer function Hi(s) = 1/(s ai). Evidently we require

bi = NOJP-ii (33)

Hence, a realization of (32) consists of M similar sections in parallel,
with an additional section that realizes the constant term. The main ob-
jection to this realization technique is that a large number of modulators
may be required, but it demonstrates that any transfer function that is
regular at infinity and stable can be realized with sinusoidal modulators,
a source of modulating frequencies and simple passive RC structures.

While this paper is primarily concerned with the synthesis of transfer
functions, it is worthwhile to sacrifice some degree of continuity here to
point out the relevance and extension of the preceding discussion to the
synthesis of driving -point impedances. The results of this section apply
also to the case where U(s) and V(s) are interpreted to correspond to
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the transforms of voltage and current at the same port. The forms taken
by the network for this special application are shown in Fig. 3. Suppose,
for example, that the nth two -port network in Fig. 3(a) is character-
ized by

in'(t) = p[t - (n - 1)T]en(t),
(34)

in(t) = q[t - (n - 1)T]e'(t),
where p(t) and q(t) are given by (28). The driving -point admittance

(s)

E (s) n=I

(a)

n =

Ln (t) Lin(t)

[Z(is)

en (t) ern (t)
I Z(S)

-I

n = N

(

L'n t )
[1

+ en(t) -

(b)

en(t)

un(t)

E (s)
I (s)

Z (s)11

n = N

Fig. 3 - Forms taken by network when U(s) and V(s) are interpreted as cor-
responding to transforms of voltage and current at same port.
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Yi = I (s)/ E(s) is given by F (0,$), with H (s) replaced by Z(s). That is,

Y in(s) =
M

N PoQ0Z (s) + NL [a.Z (s - plum)) a!Z (s jmwo)J,
m=1

where

(35)

am = ,P _, and N > 2M.

For the special case where P , = 0 for I m I 1 and a1 is real,

Y i(8) = Nat[Z (8 - jwo) Z(s ± jwo) (36)

For example, if Z(s) = 1/sC,

2Nal
17"(s) C 6.2 ± woe'

(37)

the admittance of an inductor and capacitor in series.
As in the transfer function case, (36) (and the analogous relations for

the following three other networks discussed here) can be realized with
only two parallel paths. Single sinusoid modulating functions are em-
ployed, the two functions in each two -port network being in quadrature
with the corresponding functions in the other two -port network.

If the two -port networks in Fig. 3(a) are characterized by

e' (t) = p[t - (n - 1)7]e,i(t),

i(t) = q[t - (n - 1)7]i,,' (t),
we obtain

Y j(s) =

where

(38)

M (39)
NP0Q0Y(s) + NE [a. Y (s - jmwo) atlf(s imcoo)),

m-=1

Y(s) 1

Z(s) 

The two dual networks take the form shown in Fig. 3(b).

3.2 Jump Modulation

The physical implementation of the transfer function of (15) can be
accomplished without the difficulties normally encountered in the realiza-
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t

p(t) 0

t
w(t)

0

P2

(a)

Pr
PR

PI
Pi

(b)

o T/R
TIME, t --*

T

Fig. 4 - (a) Modulating function p(t) with R jumps in fundamental interval
T; (b) periodic switching function w(t).

tion of accurate multiplier circuitry by means of a scheme called jump
modulation. This scheme uses modulating functions having a finite num-
ber of equally spaced discontinuities or jumps in each fundamental in-
terval. The functions assume a constant value between jumps. Modula-
tors of this type can be realized by conventional switching techniques.
Suppose that the modulating function p(t) has R jumps in the funda-
mental interval T, as shown in Fig. 4(a):

p(t) = E prw [t - (r - 1) T= E ej(m27/T)i (40)
r=1 T? M= -

where w(t) is the periodic switching function shown in Fig. 4(b).
The Fourier coefficients of p(t) are given by

1 1 R
r(T/R)

P e-j(m2wIT)t dt = E pr e-j(m2r/T) dt. (41)
T oP T r=1 1(7--1)(T/R)

Thus, the sequence of values Pm is given by a linear transformation of the
sequence of values, pr :

R ei(mrIR) sin
mgrD

nm = E --..7(271R)mr

r=1 mir Pr (42)
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For design purposes, the inverse of this transformation is desired in
order that an appropriate set, pr , can be determined from an arbitrarily
prescribed set, P . Obviously, only R values can be independently pre-
scribed for the complex numbers Pm and, since p(t) is real, it is always
required that P,= n and Po be real. Hence, for example, a set' of
values pr can be found such that all the Fourier coefficients Pm can
be arbitrarily specified for I m I < R/2. In this case, the inverse trans-
formation corresponding to (42) is relatively simple :t

-Amy/ R) M7r
(R-1)12 e R(I? odd) = ej(2r/ R)rrn-rspr I'm (43)

( R -1 ) / 2 . M7
S111 -

R

When R is even,t

pr (R even)
R /2-1

m=-2+1

e
-J(.7,1 R) M7

R
ej(27,1R)rm j

2
1 rpR/2 (44)

sin M7

A case of particular interest in the N -path configuration is for R = N,
when the jumps occur simultaneously in all paths and a common timing
source can be used for operating the switches. If the bandwidth of the
component networks is sufficiently small compared to coo , the transfer
function can be expressed approximately in terms of the first N/2 Fourier
coefficients:

N12

71(jw) N E ,P _,H (jco - jmwo),
m= -N12

(45)

where all the values of either P,,, or Qm or both can be arbitrarily chosen.

3.3 Pulse Modulation

A special case of jump modulation of considerable practical importance
is for the set fp' = 1, p2 = p3 = = pR, = 01 and qi = 1, q2 =
q3 = = qR, = 0}, so that

t See Appendix A for derivation of the inverse transformation.
From (42), it is seen that the real part of PR/2 must vanish, since

PR,2 = ei,",_12)
sin (7/2)

R(7/2) r=1
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P(t) = wi(t),
q(t) = w2(t),

If the input generator, u(t), is a current source, each modulator in Fig.
1 can be replaced by a simple switch. In fact, when Ri and R2 > N, the
entire set of input and output modulators would then be equivalent to a
pair of N -contact rotary switches on a common shaft rotating at a rate of
1/T cps. The dwell time at each contact of the input and output switches
is given by di = T/Ri and d2 = T/R2 , respectively. In this case, the
switches are essentially signal -sampling devices, hence the general con-
figuration using this type of modulation will hereafter be referred to as
the N -path sampled -data network.

Besides being relatively simple to implement, the N -path sampled -
data network has some very interesting transfer function characteristics.
If the component networks have a low-pass characteristic with band-
width small compared to coo , the transfer function for large N will ap-
pear as a sequence of narrow, equally spaced passbands of identical
shape and nearly equal height, centered at integral multiples of coo .

This corresponds to the so-called "comb filter" characteristic, which is
frequently employed in the detection of periodic signals immersed in wide
band noise. Furthermore, it will be shown that the function F(0,$) be-
comes periodic on the jw-axis as the dwell times di and d2 approach zero.
When H(s) is rational in s, this periodic function is of the form generally
associated with the network functions of circuits containing resistors
and ideal delay lines.

IV. TRANSFER FUNCTION FOR N -PATH SAMPLED -DATA NETWORK

(46)

The expression for F (0,$) in terms of r(t) as given in (22) is especially
convenient for finding the transfer function of the N -path sampled -data
network. Also, if H(s) is rational in s and regular at infinity, then (27 )
gives an exact closed -form expression for F (0,$).

Suppose, for example, that di = d2 = d < T. Then r(t) is simply the
triangular pulse,

SO

r(t) = (d - I t I) hill d,

= 0 otherwise,

(47)

_ N rds - (1- e'd)1
(48)
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(1 - e8d) (1 - e -8d)A( -s)B(s) -
esd -8d
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(49)

Then, assuming H(s) to be in the form of (26), the transfer function
is obtained directly from (27):

F(0,$) =

coNd N m - 1 + Aid) (ex`d - 1 -
T

+
T i=1 X,2) 1 -

where

(50)

Xi = s - 8i .

When I Aid I < 1, the transfer function can be approximated by a func-
tion that is periodic for values of s on any line parallel to the jco-axis. If
the first three terms in the power series expansion for eAi d and e- i d are
retained, then

F (0,$)
coNd Nd2 -kx1 e-(8-8i)T

T 2T 1 -e
for

(51)

Is - << 1.

The relation (51) can be obtained in a different manner by application
of conventional sampled -data techniques.2 These techniques provide an
alternate approach worthy of investigation, since they lead to a simple
single -path sampled -data network, which is equivalent to the N -path
sampled -data network. The approximation involved in this method of
analysis consists of replacing sampling switches by impulse modulators
(nu), as shown in Fig. 5(a). The train of narrow rectangular modulating
pulses, w(t), has been replaced by an impulse train, where the magnitude
of each impulse is equal to the area of the corresponding rectangular
pulse. Hence,

P(t) (5(t - kT),
k=-to

E S(t - kT).

(52)

(53)
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Then,

and

for all m

for all m.

In this case, F(k,$) in (12) is independent of k and

did722F(k,$) = G(s) = N li(s

Then,

(54)

V (s) = G(s) U(s - jkNwod (55)

This input-output relation is identical to that of a single -path sampled -
data network having an input impulse modulator with sampling interval,
T = T/N, followed by a network with a transfer function, TG(s), which,

s = jw, is period ()Jo . The periodic property of the

u (t) IM
(T)

u (t) IM
(r)

u (t)

(a)

v (t)IM d2 n
(-r)

TG (s)
v (t)

(b)

TG (s)

(c)

IM
(1)

v (t)

v (t)

Fig. 5 - (a) Approximate representation of N -path sampled -data network;
(b) and (c) equivalent single -path networks.
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network following the impulse modulator in Fig. 5(b) allows the deriva-
tion of another equivalent network with the impulse modulator at the
output, as shown in Fig. 5(c). These simple equivalent networks are
very convenient for analysis purposes when one or more N -path con-
figurations are component parts of a larger system.

The Fourier coefficients for the expression of G(s) when s = jw are
obtained directly from the sample values, h(rT), of the impulse response
of one of the component networks. If

then

gr =

CO

G(jw) = E gr e2
ism

co 012

WO f-. o 12

1 G(jw)e-5(r2r",) dw

(Ndid2\ 1
\ T2 j wo

(Ndi d 2

7'2

ron co

E H(jw _ iht,o)
J-0/2

1 r(T)
2r -30 \H( .)w)e3rTw

d,

NT d2gr = h(-r71).

(56)

(57)

The integral in (56) is the Fourier inversion integral for h(t). At dis-
continuities in h(t) the inversion integral gives the mean value of the
right- and left-hand limits at the discontinuity. Hence, for physically
realizable component networks.

G(s) Nclid2rh(0±) h(rT)er8T(58)
T L 2

This expansion is particularly useful when H(s) is a rational function of
s. In this case, the series can be summed and G(s) is given in closed form.
Assuming H(s) has simple poles, thent

h(t) = E ci eit for t 0 (59)
i=1

and, from (58),

Nd1d2 1m ( E er(1,_81.
T i=i 2 r=1

(60)

t In this analysis we require that H(s) -) 0 as s -) co (co = 0) since the Laplace
transform for a product of impulse functions is not defined.
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..e/
/ 1

//
/ ,

RPS
, N\

i T \ 1
- RPS
T ,-a

E (.Jw)

I( jai)

(b)

Fig. 6 - The N -capacitor element.

The sum over r in (60) is a geometric series and can be written in
closed form, so that

G(s) 1 2Nd d 1 +
ci

2T 1 - e(8 '1-8) T
(61)

Note the equivalence between (61) obtained by conventional sampled -
data techniques and the direct approximation of (51) to the transfer
function of the N -path sampled -data network.

A simple example that illustrates the application of the preceding
techniques is the case where each component network is a single capaci-
tor, as shown in Fig. 6(a). t Capacitor loss is accounted for by the inclu-
sion of a resistance, R across each capacitor. The relation between in-
put current and output voltage is represented by G(s) in (61), where

H(s) =
1

C

R,C

t This case has been described in the literature.3'4

(62)



so that

and

where

and
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M = 1,

= - 1

,
R,C

1Cl = - ,

= d2 = d

G(s) = Ro [1 -I- pe-871
1 - pc -81j '

-TI R cC
P =

Nd2Ro -
2TC.

(63)

(64)

The expression of (64) is equal to the driving -point impedance of a length
of lossless transmission line of characteristic impedance, Ro , terminated
at a distance corresponding to an electrical delay of T/2 seconds. The
termination is characterized by a reflection coefficient p = e-TIRcc , or
equivalently, by a resistance, R', where

R' = R0

If the capacitors are lossless, then

N d2 1 ±-87 S
G(s)

= 2TC
- Ro coth T,

(65)

(66)

which is equal to the driving -point impedance of the same length of
lossless transmission line with open -circuit termination.

V. SOME PRACTICAL APPLICATIONS FOR THE N- PATH SAMPLED - DATA
NETWORK

5.1 Delay Network

The transcendental nature of GO) of (66) for the N -capacitor element
suggests the possibility of realizing an all -pass constant -delay characteris-
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tic over a limited bandwidth without the use of inductors. One of several
possible configurations for accomplishing this is the simple feedback
network shown in Fig. 7, where the N -capacitor element is contained in
the feedback path.

For the analysis of this circuit, it is assumed that the forward gain,
11, is sufficiently large that the error voltage, v1 -I- v3 , is essentially zero.
Note that

v2(t) = v3(t) R2i(t) (67)

and, hence, because of the low-pass filter at the output, only the com-
ponents of V3(jw) and /(jco) in the frequency range I co < N(.40/2 are
of interest. If VI( jc0) [and hence V3(jw)] is limited to this same band-
width, then

I(s) = Y(s)V3(s)

and

ViV4
77' (s) = [1 + R2Y(s)] K (68)

over the frequency band of interest, and Y(s) is a function of the N -path
type.

The constant -delay characteristic is obtained by making the RIC time
constant very small compared to the contact dwell time, d. Roughly
speaking, this means that the capacitors charge up to the applied voltage
in the time interval d, during which their respective switches are closed,
and the resulting current flow is a sequence of narrow exponentially de-
caying pulses occurring T seconds apart. An approximate representation

v2

w
R2

N -CAPACITOR
ELEMENT

Fig. 7 - Constant -delay network.

LOW-PASS
FILTER

A (.Jw)
0

V4
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HOLD
CIRCUIT

git-(n-i)
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Fig. 8 -N -path network used for describing the behavior of the constant -de-
lay network.

of this behavior in terms of the general N -path configuration is shown in
Fig. 8. The applied voltage, V3 is sampled with an impulse modulator
at the time of the nth switch closure and held at this value for T seconds
by means of the hold circuit, Ws). The current flowing in the series
combination of H1 and C in response to the applied voltage steps is ob-
tained by means of the transfer function

where

H2(s)
1 s

s + a

1a = >> d.

The transfer function Y(s) is obtained from (25), where

A(s) = 1,
N ( 1 -R(s) =

7-1
B(s) =

T

Then,

(69)

(70)

Y(s) - N 1 - e-87' 0
1 - (1 - e-sd) e-sT

MI s + a s s(1 - e -8T)

N(1 - e -8T) {(8+a)d [1 - e -(84 -al e --(8-1-a)71
(71)

_
TR1(s a)

1 - e- + 1 - e-(8-FoT 5 '

Since ad > 1, terms involving the factor Cad are neglected, and (71)
is approximated by

Y(s)TRia (1 - e -8T) (72)
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3MS 

Fig. 9 - Measured step response of delay network.

in the frequency range I s I << a. Hence, in this limited frequency range
the transfer function of the delay network becomes

N ) VR2 CV4 (s)TRiaK - (1 + '2 + TIC
s, (73)

V

which is a constant -delay, all -pass characteristic for

NRI N R2CK = 1 - 1
TRia

(74)

An exact analysis of the circuit of Fig. 7 indicates that (73) is valid
at low frequencies and that, by making the gain of the upper path, K,
a frequency -dependent function, the constant-delay characteristic can
be obtained over essentially the entire interval I co I < No30/2. The meas-
ured step response of the delay network is illustrated in Fig. 9. The N -
capacitor element was constructed using a 64 -contact rotary switch
(d/T 0.61) motor driven at a speed of 60 rps. Capacitors having a
value of 0.1 microfarad were connected to each of the contacts.

A useful figure of merit for any delay network is its delay -bandwidth
product. In this case, the delay is T seconds. The bandwidth is limited
by that of the low-pass filter used to recover the output signal from the
sampled data. This bandwidth cannot be greater than 1/2T cps, and
NT = T, so that

(delay) (bandwith) (75)
2
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5.2 Narrow -Band Band -Pass Filler

If the component networks in the N -path sampled -data networks have
a low-pass characteristic with bandwidth small compared to wo , the
transfer function, F(0,j(.0), appears as a sequence of narrow passbands
centered at multiples of wo , as previously noted. Consequently, this
scheme is useful for the realization of highly selective band-pass filters.
When only a single passband is required, the realization can be accom-
plished with a minimum value of N = 3, since the transfer function rela-
tion is valid for I w I 5_ (N/2)(40 . The band -limiting filter required at
the output can also provide a low -frequency cutoff, so that the passband
centered at zero frequency can be eliminated; the resulting transfer func-
tion is

where

Vico) = N /100.)
1 did)

[01 - lcoo) aIjco ±H( Iwo)] , (76)

al

I. I. r-
= eicTI T)(d1-d2) T n T

rdi rel2

T

This result is similar to the low-pass to band-pass transformation dis-
cussed in Section 3.1.

Since the band-pass characteristic is simply a frequency translation of
a low-pass characteristic, it has arithmetic symmetry about the center
frequency. Another advantage of this realization technique is that the
filter can be easily tuned without altering the shape of the characteristic.
The tuning is accomplished simply by changing the frequency of the
timing source that controls the switching rate.

Implementation of the transfer function of (76) with series -sampling
switches would require a current source at the input and negligible load-
ing at the output. Analysis of the more practical circuit of Fig. 10, in-
cluding source resistance, R1 , and load resistance, R2 requires a some-
what different approach. Details of this analysis are carried out in
Appendix B. The resulting transfer function is again a frequency -trans-
lated version of a low-pass characteristic:

\ E2(j(4) N d2
T (JCL) ) = Ei(jw) T [oiG(jw Jw0) G(Jw + .104)] . (77)
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j

Fig. 10 - Practical circuit for realization of narrow -band filter characteristics.

The low-pass characteristic, G(jw), is given by the voltage transfer ratio
of one of the component networks operating between a source resistance,
RIT/di , and a load resistance, R2T/d2 , as shown in Figs 11.

A highly selective narrow -band filter using this scheme with N = 4
was constructed, using silicon diode input and output sampling switches
controlled by two transistor multivibrator circuits. The center frequency
of the filter was set at 25 kc. The low-pass component networks were
three -section RC ladder networks with a bandwidth of approximately
3 cps. The Q -factor of a resonant circuit with the same bandwidth and
center frequency would be greater than 4000. The selectivity of the
sampled -data filter is even greater than the resonant circuit having this
Q -factor, since the roll -off rate is greater. The measured frequency -
response data and equivalent low-pass network are shown graphically
in Fig. 12.

+o

V, (w)

-\\/1 (co) = G (co)

zij(w)
0+

T
R2' c12" V2 (CO)

Fig. 11 - Equivalent low-pass network.
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Fig. 12 - Frequency response and one of the constituent equivalent low-pass
networks for sampled -data filter.

VI. CONCLUSION

The time -varying network configuration described in this paper ex-
hibits several properties of both theoretical and practical significance.

A general input-output relation for the N -path structure has been
derived. With the introduction of band -limiting restrictions, this rela-
tion can be expressed by a transfer function that is valid over a fre-
quency band directly proportional to N, the number of parallel paths.
In some special cases, however, band -limiting restrictions are unneces-
sary.

Several useful properties of the transfer function are maintained when
the modulation is restricted to a type readily implemented by conven-
tional switching techniques. The case where the modulators are replaced
by series -sampling switches is examined in detail.

An important practical feature of the realization techniques discussed
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lies in the fact that network characteristics can be controlled by chang-
ing the modulation functions rather than by changing circuit element
values. Hence, the techniques are readily adaptable to electronic or
other automatic methods of control.

APPENDIX A

Determination of the Jump Modulation Function from a Prescribed Set of
Fourier Coefficients.

The inversion of (40) could be accomplished by straightforward appli-
cation of matrix methods, however the particular form of p(t) affords a
simple explicit expression for the elements of the inverse matrix. Note
that the R functions comprising p(t) in (40) form an orthogonal set, so
that

Hence,

fo

T

p(t)w[t - (r - 1) pT dt = pr. (78)

R
T

Pr =
p ef (m27 ri r)tw [ 7'

I (r - 1) Ridt .

After interchanging summation and integration (79) becomes
r(TIR)

pr = Pm e
T)

"Wy E
f(r-1) (T/R)

Mir.
s

=R E e-l('''IR) If ej(271-1 R)inr

m=-32 ntr

The values of Pm are not independent. From (42), it is seen that

m Pm Pm+kR
m kR

Now (80) can be written as a finite sum over m:

(79)

(80)

(81)

R/2 e- j(mirl R)
sin nor

R e+ j(2r R)r mPr = R Pm (82)
(in kR)2'

where the prime on the summation over m is taken to mean that when
R is even, the end terms of the series (m = ±R/2) are added with half
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weight to avoid duplication in the sum over k. The series in k is summable
and can be shown to be equal to

m mr2 (1/i7rto

k -=-co (in + kR)2 R2 1?)

Substitution of (83) into (82) gives

MIT
R12
E, -4(.1R)

e:1(21r1R)rmpmPr =
tis,=-R12 sin

R

(83)

(84)

This expression is written in the two forms of (43) and (44) for the cases
of R odd and even respectively.

APPENDIX B

Equivalent Low -Pass Characteristic for Sampled -Data Realization of Band -
Pass Filter

Referring to Fig. 10, we see that the following constraints are imposed :

)

i,(30)

-I(t) - e1(t) - vni(t)
Pn(t)

V n2(t)

R2 qn(t) ;

1 e--5(n2r 1 T) (n -1)r

ns-co

= 1 ct
R2

(85)

 [El( jw - jmwo) - Vi(jco - jinwo)1 , (86)

--j(m2r/ T)(n-I),
M e

Vn2( - jmwo) 

Representing the component networks in terms of open -circuit im-
pedance parameters,

Vi(jw) = zu(jw)/I(iw) z12(jw)/.2(ice),

Vn2(jw) = z21(ico)ini(ico) z22(.76)/.200

Substitution of (86) into (87) results in infinite -order difference equa-
tions in 171(jw) and V2(jw) of the type normally encountered with peri-
odically time -varying networks. However, the fact that the component

(87)
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networks are designed to have very narrow -band characteristics affords

a considerable simplification of the equations.
If

then

I zo(i.) I 0

Vi(ico) 0

I vn2(ico) I 0

coo
for 0.) --2

coo
for I co - 2 

(88)

(89)

The relations (88) and (89) permit the elimination of all terms except
= 0 in the sums involving Vni(jco) and 177,2(jco). Hence, for I co I

w012,

211 7) TT Z12 fl TT
/ 0) v v n2 =

R1 R2

Zil -j(n127/ 7') (lz )rE,E e
R1 171

Z21 (1 Z22 n0)17
V n2 =

Ri R2

where

221 e -j(m2r/ 7') ( )TEI. jw - ifftWO
Ri .

d1 d2
Po = -

T
Qo = y 

(90)

(91)

Eliminating V,21 from (90),

vo(jw) T G(Jw) E e_i,m2,r(T)(7-1),Ei(iw - jrnwo)

where

T
22111,

7

G (
02

.1.GO

( R27)
211 + R,rr) (222 +

d2
- 212221

(93)
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the output voltage of the N -path configuration is given by

V = it)(t)q(t),
rt=1

N

172(.M) =
0 -j(12r/T)(n-1)97n2CM

. E Ert=,1

Substituting (92) into (94),

N
V 2( j(0) = T E E

/,m
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(94)

(95)

G(jco - j1c00)E1[jw - j(1 m)wol

and, summing over n as was done in (9),

. NT
V2(jw) =

dl
(itG(jci) - jkNo)(1) (9(i)

Now, if Ei(jw) is band -limited such that

iEl.(ico) I -:t2 0 for 1 w I< two(97)
and V2(jw) is followed by a low-pass filter with cutoff at w = Nwo/2,

E2(ja)) NT
Ei(jw) d1

(98)

Now, suppose that the low-pass filter is replaced by a band-pass filter
that selects only the passband corresponding to 1 = +1. Then,

E2 . Nd2 .

El OW) = [aiG(30) - jwo) aiG(jw .icoo)], (99)

where

a1 =e 71(d1-c12)

. rd2
sin 1 sin

rdo
\ T J T

The transfer function of (99) is equivalent to that of (76), where the
low-pass function, G(jw) in this case, is simply related to the low-pass
characteristic of one of the component networks. Examination of the
relation (93) shows that G(jw) is simply the voltage transfer ratio of
one of the component networks operating between a source resistance of
RI( T/di ) and a load resistance R2( T/d2), as shown in Fig. 11. This
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equivalent low-pass network provides the basis for synthesis of the pre-
scribed band-pass characteristic.
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Magnetic Latching Crossbar Switches:

A New Development in Magnetic Properties of
Tool Steel

By F. A. ZUPA

(Manuscript received April 12, 1960)

A magnetic latching function in crossbar switch hold magnets is obtained
by means of a specially designed magnet core made of high -carbon tool steel.
The fabricated core detail is given a hardening heat -treating cycle, regulated
to produce a particular degree of physical hardness that was found to impart
the optimum combination of magnetic properties needed to obtain pulse
operation and magnetic latching of the electromagnet under a wide range of
contact spring loads. The nominal latching force developed with this new
electromagnet design is 4 lbs, with a cylindrical core of only 0.11 square inch
cross-sectional area. The electrical operating power need be only 2.5 watts
applied for 0.100 second or about 18.0 watts for 0.015 second, and the re-
verse release pulse strength is about 50 per cent of the operate value. The
coexisting values of coercive force, residual induction and magnetic perme-
abilities obtained in this design are new and useful to the art of designing
electromagnetic switching devices with a magnetic latching function.

I. INTRODUCTION

Since the introduction of the dial -type telephone switching systems,
switching devices such as relays and electromagnets have become the
most essential and widely used of all the components in the telephone
central office. Many notable improvements on these switching devices
have made it possible for the telephone systems to grow and serve the
increasing population of customers. The advancements on these devices
have dealt largely with their sensitivity and speed of operation, contact
switching capacity, service life and reliability. In contrast to these im-
provements, however, it appears that very little has been done to save
operating power by utilizing residual magnetic energy to effectively hold
the electromagnets in the operated position without continuous current
drain. Recently, however, a new electromagnet core design that provides

1351
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this function was developed for crossbar switch hold magnets. This
utilizes a new combination of magnetic properties that have been found
to exist in high carbon steel after it has undergone a suitable hardening

heat -treating cycle.
There are no mechanical locking features associated with this new

magnetic latching hold -magnet design. The magnetic latching force de-
veloped at the termination of the short electrical operating pulse is ob-
tained solely by the efficient use of the residual magnetic induction and
coercive force properties of the new magnet core. To restore the electro-
magnet to its nonoperated position, it is only necessary to re -energize
the magnet coil with another short pulse of lower current strength and
opposite polarity.

The total amount of electrical power necessary to energize the mag-
netic latching hold magnet is about 2.5 watts applied for only 0.100
second. Since many hold magnets must hold during each telephone
conversation, this represents a very large power saving compared to the
power used by the present nonlatching hold magnets. This design of
magnetic latching hold magnets makes it possible to use 100- and 200-
crosspoint crossbar switches in remote locations where the power supply
is very small compared to that in a central office. A notable application
of this new magnet core development is the conversion of existing cross-
bar switch hold magnets to magnetic latching operation, as might be
used in telephone line concentrators.

II. NEED FOR A NEW MAGNET CORE MATERIAL

The state of the art in the design of electromagnets and the processing
of associated magnetic materials for useful magnetic properties has ad-
vanced with many notable improvements during the past thirty years.
It is of interest to observe the direction that some of the improvements in
magnetic materials have taken in relation to what is required for mag-
netic latching functions.

In the class of soft magnetic materials, such as the magnetic irons and
low carbon steels normally used for relays and electromagnets, the effort
has been directed mainly toward greater permeability and associated
reduction of coercive force. Since this is in the direction of reducing the
quantity of the stored electromagnetic energy, usually represented by
the product of the coercive force and remanence, this class of materials
is definitely not suitable for a magnetic latching function. The property
of low coercive force and associated greater permeability, of course, is
very useful for obtaining greater operating sensitivity and greater release -

to -operate ratios.
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In the class of hard magnetic materials normally used for permanent
magnets, the effort has been directed to increase the coercive force, even
at the expense of a reduction in remanence, as long as the result was an
increase in the numerical value of the product of coercive force in oersteds
and remanence in gausses. In spite of the high values of magnetic energy
that can be stored in them, permanent magnet materials would not be
satisfactory in the core of a magnetic latching electromagnet, primarily
because the required operating power would be several times as high as
is practical in switching circuits. In general, this is due to the inherent
high magnetic reluctance or low magnetic permeability of hard magnetic
materials that are processed to be permanent magnets. Magnet cores
that are made from materials commonly used for permanent magnets
are therefore not conducive to efficient magnetic latching designs, es-
pecially when the contact spring loads on the same electromagnet range
from small to large values from one operation to another, as they do in
crossbar switch hold magnets. The required range of contact spring
loads will be described later.

It appears, therefore, that past developments in magnetic materials
have not been in the direction of producing a high order of quality in
both operating and magnetic latching properties. The development of an
economical and workable magnetic latching hold magnet design re-
quired the development of new coexisting combination of values of per-
meability, coercive force and remanence in a suitable magnet core ma-
terial. A description of this development and the resulting operating
capabilities of the magnetic latching crossbar switches that have been
designed for new telephone equipment will be given, with special em-
phasis on the essential electromagnet design principles that guided this
development.

III. BASIC FACTORS GOVERNING DESIGN OF THE LATCHING MAGNET

The combination of magnetic properties that must be obtained in the
magnetic circuit of the electromagnet to satisfactorily meet the operating
and latching functions is dependent upon the following primary fac-
tors:

i. the permissible mechanical form and size of the electromagnet and
its switching functions;

ii. the range of contact spring loads to be applied to one magnet
assembly;

iii. the range of the electrical pulses, in time and power values, avail-
able to operate and release the magnet.
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It is therefore desirable to first describe these conditions, in order to
follow the steps taken in the magnet core development.

3.1 The Structure and Switching Functions of the Crossbar Switch Hold
Magnet

The magnetic latching hold -magnet design will be used for the same
type of contact switching functions as those of the nonlatching hold
magnets presently used in the crossbar switches of crossbar switching
telephone systems, except that the loads will cover a wider range of
values. As illustrated by Fig. 1, the hold magnet is the motor element
of the vertical unit assembly. The latter, as its name implies, provides
a vertical row of ten levels of crosspoint contacts, each level consisting
of two to six pairs of make contact springs that are used for transmission
and control circuit connections, and a separate assembly of hold -off nor-
mal contact springs (HON), consisting of two or three pairs of make or
break contacts that are used for common control circuit connections.

The select magnets and vertical units are mechanically linked by hori-
zontal select bars carrying flexible wire fingers that can be rotated
through a small angle in either of two directions. The crossbar switch
therefore represents a rectangular coordinate arrangement of 100 or
200 crosspoints, any one of which may be selected by the operation of

SET OF
CROSSPOINT WIRE
CONTACTS FINGER

SELECT
MAGNET

SELECT -MAGNET
ARMATURE

HOLD
MAGNET

VERTICAL UNIT

HOLD -MAGNET
ARMATURE

HON
CONTACTS

SELECT BAR

Fig. 1 - Crossbar switch, showing location of hold magnet as motor element
of vertical unit assembly.
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a particular select magnet and hold magnet. The total number of con-
tacts that may be actuated by one hold magnet depends upon the
circuit operating sequence of the select magnets in the crossbar switch,
as described below.

The operation of a select magnet rotates the select bar associated
with it, thereby interposing a wire finger between each hold magnet
armature and the end of each card supporting the moving springs of
each set of crosspoint contacts that lies in the horizontal level corre-
sponding to the operated select magnet. Then the operation of a par-
ticular hold magnet determines which set of crosspoint contacts is
selected in that horizontal level. Sometimes two select magnets are
energized simultaneously in order to select one set of crosspoint contacts
in each of two horizontal levels by the operation of one hold magnet.
Sometimes the hold magnet is operated to switch the HON contacts
without any crosspoint contacts. The quantitative values of the differ-
ent contact spring loads that may be applied to one hold magnet are
shown graphically in Fig. 2.

3.2 Mechanical Load Forces Affecting the Design of the Magnet

Each curve of Fig. 2 shows the rate at which the spring load builds
up on the hold magnet armature, as the armature moves from the non -
operated position to the operated position against the core poleface.
As indicated, the maximum crosspoint and HON contact spring load
may build up to a value of 1150 grams and the minimum HON spring
load may be only 140 grams. These individual load values are very
important, because the new hold magnet design, to be successful, must
be capable of operating, latching and releasing with any one of the load
values, under any one of the extremes of the circuit operating power
conditions.

There are two important magnetic requirements on the new magnet
design that are affected by the maximum load build-up rate shown in
Fig. 2. The first is that the magnetic force of attraction acting on the
armature during its operating travel shall always exceed the force re-
quired to move the corresponding instantaneous load by a substantial
amount. It is this differential, together with the electrical time constant
of the magnet coil (the time rate of coil current development), that
governs the operating or switching time of the electromagnet. The
second requirement on the core is that the magnetic latching force
shall always exceed by a substantial amount the force required to hold
the maximum load of 1150 grams. It is this differential that governs
the ability of the latched magnet to withstand disturbing forces that
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Fig. 2 - Range of contact spring loads on magnetic latching hold magnets.

may be developed by shock and vibration when the equipment is
mounted on a telephone pole. If the disturbing vibrations should cause
the armature to bounce or lift off the core poleface by only a
fraction of one mill -inch, the spring load might then cause the premature
release of the armature. More will be said later about the latching force
margin, the disturbing forces and the effect of very small separations
between the mating poleface surfaces.

The minimum load value of 140 grams is also an important considera-
tion in the new magnet design, because it affects the permissible limits
of the strength of the reverse release pulse that may be applied to the
latched electromagnet without false reoperation. This means that the
minimum electrical strength of the release pulse must be strong enough
to always release the lightly loaded armature, but that the maximum
pulse strength must not reoperate it. Failure to release or false reopera-
tion are trouble conditions that must be guarded against in the mag-
netic latching design.
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3.3 Operate and Release Pulses Prescribed by the Circuit Conditions

Since the electrical power available in some of the circuits that will
use the new switches is limited, it was necessary to place a limit on the
maximum current strength in the individual operating pulse for the
magnetic latching magnet design. Circuit and equipment design con-
siderations also determined the limiting values of the voltage and the
time duration of the operating and releasing pulses. The limiting pulse
values, insofar as they affect the magnet design, were set up, tentatively,
to be as follows:

Energizing pulse: maximum 0.2 ampere at 22 to 28 volts for a mini-
mum of 0.100 second;

Operating time (to switch all contacts): maximum 0.050 second;
Releasing time (to restore all contacts): maximum 0.050 second.

IV. DEVELOPMENT OF THE MAGNET CORE DESIGN

From the foregoing analysis of the work loads and the power available
to perform the electrical operate, magnetic latching and unlatching
functions, the level of the magnetic properties that should be available
in the magnetic circuit of the new electromagnet design can be esti-
mated. It should be noted also that., while the magnetic circuit consists
of a core, an armature and a yoke or return polepiece, in order to main-
tain the present construction and mode of operation of the crossbar
switch, the first efforts were directed to realize the design objectives
with only a simple change in the material and design of the core.

The next step taken in the development of the design, therefore, was
to make an analysis of the commercially available magnetic materials
that might be suitable for the new magnet core design. Since the maxi-
mum contact spring loads represented by Fig. 2 are comparable to
those of the present nonlatching hold magnets, the new magnet core
material had to be capable of developing a level of magnetic induction
strength that was not much below that of the presently used core, which
is made of annealed low -carbon steel, in order to operate the electro-
magnet on reasonable values of magnetomotive force. The residual
magnetic induction of the material, however, should be supported by
a much stronger coercive force value, in order to produce and maintain
the desired high level of magnetic latching force. It appeared that one
type of magnetic material that should be considered was the magnet
steels, which can be processed to develop (a) high flux strength at reason-
ably low magnetizing forces and (b) high remanence with a suitable
value of coercive force. A brief analysis of the essential magnetic proper-
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ties of known steels that have at least some of the desired magnetic char-
acteristics is given below.

Table I shows a comparison of the pertinent magnetic properties of
(a) annealed 0.10 per cent carbon steel, which is widely used for the
magnetic circuit of many types of electromagnetic switching devices
with simple operating requirements;  (b) hardened 0.9 per cent carbon
steel and (c) hardened 5 per cent tungsten steel, both of which were
used for making permanent magnets about 50 years ago, before the
development of more efficient permanent magnet alloys containing less
iron and more of other alloying elements.

The 0.10 carbon steel has adequate values of magnetic permeability
and saturation induction to develop the required open-polegap tractive
forces. Its coercive force, however, is too low to retain the residual flux
density required to produce the needed latching force. The hardened
high -carbon and tungsten steels have the necessary coercive force, but
their permeability is too low to develop the required values of flux
densities with the available operating power. The combination of values
of magnetic properties needed to develop the required tractive and
latching forces, with the operating magnetizing force available in the
electromagnet, will be described later.

4.1 Selection of Magnet Core Material for Study

It appeared, therefore, that the magnetic properties required to meet
the desired operating and latching functions were in between those of
the annealed low carbon steel and the hard permanent magnet type of
steel. Since the magnetic properties of high carbon steels are known to
vary with the hardness of the physical structure of the steel, it was
conceived that a critical study of this relation, instead of the usual

TABLE I-TYPICAL DATA FOR ANNEALED LOW -CARBON MAGNET STEEL

AND HARDENED HIGH -CARBON PERMANENT MAGNET STEEL

Magnetic Characteristic Annealed
0.10 Carbon Steel

Quench -Hardened
0.9 Carbon Steel

Quench -Hardened
0.7 Carbon

5.0 Tungsten Steel

Saturation induction, 13, , in
gausses

21,000 12,000 13,000

Residual induction, Br , in
gausses

10,000 to 14,000 8,500 to 10,000 8,500 to 10,300

Coercive force, H8 in oer-
steds

1.8 50 70

Permeability, Amax 2,000 111 123

Note: These data are representative of the magnetic properties obtained with
test ring samples of the material and the magnetizing force (H.) value is gen-
erally 300 or more oersteds.
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study relating magnetic properties to heat -treating temperature cycles,
should disclose the best combination of operating and latching mag-
netic properties possible with the high carbon steel. This new approach
to evaluate the magnetic properties of hardenable steel was better than
relying only on the measured temperatures and time of the heat -treating
cycles, because the iron -carbon alloys resulting from the latter cycles
usually vary considerably with the size and shape of the specimens.
A laboratory study was therefore undertaken to determine the quanti-
tative relation between the measured physical hardness produced by
controlled heat treatments and the magnetic operating and latching
properties, using a commercially available high -carbon steel for the
magnet core test specimens.

In order to carry out the above study so that the results would be
directly applicable to the magnet core design, the type of high -carbon
steel selected for the study was determined on its merits from the stand-
point of uniformity in composition and commercial availability in the
round stock size best suited to the hold magnet design, 0.375 inch
diameter. With these factors in mind, a tool steel having the nominal
composition of iron plus 1.2 per cent carbon, 0.3 manganese, 0.22 silicon,
0.10 vanadium, 0.025 sulfur and phosphorous was selected. This grade
of steel has been used for many years by the machine industries, pri-
marily for making hardened tools and machine parts. Machine shop
practices on the quenching and tempering of parts made from this grade
of tool steel show that the parts can be hardened over a wide range of
hardness values by first heating them to about 1475°F, immediately
quenching in a liquid cooling medium (water or oil), then reheating at
a lower temperature and slowly cooling in air at room temperature,
the value of the reheating temperature being the principal determinant
of the physical hardness of the parts. It should be noted, however, that
the time cycles of heating and cooling, and the ambient atmospheric
conditions during heating from the standpoint of minimizing decarburi-
zation, have important effects on the resulting chemical and physical
changes that take place in the structure of the steel parts. The labora-
tory study therefore was planned with well -controlled experiments in
heat treatment and the evaluation of the associated magnetic properties
that control the operate, latching and unlatching functions in the electro-
magnet.

4.2 Development of the Magnet Core Poleface Design

In order to have the results of the experiments on the magnetic
properties of the steel specimens directly applicable to the hold -magnet
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design, the size and shape of the test specimens were designed to repre-
sent an efficient magnet -core design. It is of interest, therefore, to ex-
amine the effect of the size and shape of the core poleface surface on
the operating and latching characteristics of the electromagnet. The
importance of the poleface design cannot be overemphasized, because
the working margins obtained in the operating and latching capabilities
of the magnet are largely affected by the poleface design. Some of the
functional aspects of the poleface design are discussed below. In this
discussion the core specimen is assumed to be a finch -diameter rod,
approximately 3.5 inches in over-all length, because this is the maximum
size that can be conveniently used in the present crossbar switch struc-
ture.

The following general relation between poleface area and magnetic
force of attraction may be used to estimate the optimum value of the
area for (a) the open polegap force and (b) the closed polegap or latch-
ing force:

(1)
2F = (1) k

87i -A 980

where F = the force in grams,
= the magnetic flux in maxwells, between the poleface area

A and the mating surface area on the armature,
A = the poleface area in square centimeters,
k = a constant, the value of which corrects for the nonperpen-

dicularity in the direction of 4) between the mating polefaces.
Based on experience with flux measurements on this type of magnetic

circuit design, the value of k is slightly less than one for the closed
polegap condition. For the open polegap conditions, the greater the gap
the smaller is that value.

Since the value of the polegap flux 4) is determined by the applied coil
ampere -turns and the corresponding values of magnetic reluctances pre-
vailing in the complete magnetic circuit of the electromagnet, one im-
portant portion of which is that of polegap, the general effect of poleface
area A on the force F can be described by referring to the ampere -turn
and reluctance form of the force equation

27r(NI)2
F =

A(Ro R9)2

where NI = ampere -turns,
Ro = sum of all reluctances in the magnetic circuit except that

of the polegap,
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R, = 1/12A = polegap reluctance,
1 = length of the polegap,

p = permeability of air and metal finishes in the polegap.
It can be shown, therefore, that when 1 is very small, as it is in the

latched condition of the polegap, since R9 is then also relatively small,
the value of F is made greater by using a smaller value of A up to the
limit when its value results in a significant increase in the value of
Ro Ro .

Conversely, when the values of 1 are relatively large, as they are dur-
ing the operating travel of the magnet armature, the corresponding
values of R, are large enough to be controlling in their effect on the
values of F. Then the value of F is made greater by increasing the area
A up to the limit when its effect on the value of (Ro R,)2 is no longer
significant.

Another important consideration in the design of the core poleface
was its shape or geometry. This factor deals with the uniformity of
the closed-polegap reluctance, as affected by the relative alignment of
the armature poleface surface against that of the core. It is well known
that two mating flat poleface surfaces usually make only a line contact
and therefore result in an angular airgap. In this magnet design, a for-
ward displacement of about 0.005 inch in the position of the core with a
plane poleface would result in a separation of about 0.003 inch at the
center of the core poleface. To avoid the detrimental effect of unavoidable
misalignments, the poleface surface on the core was shaped like the
surface of a 16 -inch -diameter sphere, while the mating poleface surface
on the armature was flat (commercial quality). As can be seen from
the sketches in Fig. 3, the common contact area between a flat and a
spherical surface is affected comparatively little when the core is dis-
placed about 0.005 inch. Under common manufacturing conditions,
therefore, the use of a large -radius spherical poleface mating with a
flat poleface results in considerably less variation in the closed polegap
reluctance, particularly with the type of hold magnet structure shown
in Fig. 4.

This is by no means intended to represent a complete discussion of
the effects of poleface area and shape on the magnetic force of attrac-
tion. It is sufficient to show, however, that the latching force is greater
with a smaller poleface area at the expense of some loss in the force of
attraction at the large open polegaps, and that the strength and uni-
formity of the latching force are better with the spherical surface.

Referring to Fig. 4, observe that the magnet core of the nonlatching
design (present crossbar switches) has a poleface area much larger than
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the cross-sectional area of the core, the enlarged poleface being produced
by an automatic cold heading operation on the soft steel rod. This
poleface design was made to obtain greater efficiency in producing the
open polegap tractive forces. The magnet core of the magnetic latching
design (new crossbar switches for the line concentrator), however, re-
quires a much smaller poleface area. The value of its area was deter-
mined on the basis of providing a latching force of at least 1450 grams,
in order to have about 25 per cent margin above the latching force
required to hold the maximum load of 1150 grams. This margin was
determined by estimating the effect of vibrations and shocks on the
hold magnet when the crossbar switches and associated equipment are
mounted on a telephone pole. Available data on the amplitudes and
frequencies of vibration that may occur on a telephone pole indicated
that the resulting acceleration may be as high as 1 g at the mounting
position of the crossbar switch. In view of the wide range of compliances
and masses in the structural parts of the crossbar switches, the estimated
margin of minimum 300 grams between the maximum load and the
minimum latching force was considered a suitable temporary value,
until confirmed by laboratory vibration tests.

In order to develop a minimum latching force of 1450 grams with a

POINT OF
CONTACT, P.,

8" SPHERICALI- RADIUS
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CORES I

DISPLACED
0.0054" -1

SPHERICAL
CORE POLEFACE

0.0061"

PLANE
CORE POLEFACE

Fig. 3 - Schematic showing general effect of armature misalignment on closed-
polegap reluctance.
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Fig. 4 - Hold magnet structure with large -radius spherical poleface mating
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I -inch -diameter magnet core, the most efficient poleface area was es-
timated by assuming expected values of residual magnetic induction
and coercive force in the body of the prospective magnet core, under
the influence of the self -demagnetizing action of the magnetic circuit.
As shown by the Br values given in Table I, it appeared reasonable to
assume that the residual induction of a high quality steel core should
be at least 9,000 gausses. With these assumed values of latching force
and residual flux density the estimated poleface area A was obtained as
follows:

In the relation

F 43'1=
STA 980

let F = 1650 grams (average value) and k = 0.85 (estimated value).
Since the cross-sectional area of the core is 0.71 sq cm, a flux density

of 9000 gausses represents 6300 maxwells in the core. Assuming a loss
of 10 per cent due to core surface leakage, the value of 4 reaching the
poleface is 5670 maxwells.
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Therefore, A = 0.651 sq cm, or very nearly the same as the cross-
sectional area of the core.

With regard to the importance attached to poleface design, it may
he of interest to note that the mating of a spherical with a plane surface
is not new with this magnetic latching design. It was first used to obtain
uniformly closed polegap reluctances in the design of the Bell System's
Y type (slow release) relay, in 1935, and again in the more recent design
of the AG type (slow release) relay.

4.3 Illagnetomotive Force Available To Energize the Electromagnet

After the structural size and shape of the magnetic circuit was well
defined, it was necessary to determine the minimum level of operating
ampere -turns that would be available in the magnet coil to develop the
required magnetic properties. The need for this is apparent when it is
considered that the residual magnetic properties obtained from the
saturating level of magnetization are different than those obtained from
apprecially lower levels.

Knowing the available winding space in the magnet coil and the
electrical pulse strength in the circuit, and assuming worst circuit op-
erating conditions under outdoor extreme temperatures of -40° to
+140°F, the steady-state value of coil ampere -turns available to ener-
gize the electromagnet was found to be a minimum of 565 and a maxi-
mum of 1065. This wide range of magnetomotive force was partly due
to a circuit condition that placed two of the magnet coils in parallel
and both in series with a protective lamp. These extremes of circuit
operating values account for the importance attached to the minimum
and maximum total load values described earlier.

V. INVESTIGATION OF MAGNETIC PROPERTIES WITH THE NEW MAGNET

CORE DESIGN

The purpose of this investigation was to determine whether the se-
lected high -carbon tool steel core could be made to yield a combination
of pertinent magnetic property values when the magnet was energized
with the available magnetomotive force values. The processing of the
steel core, of course, was to be a reproducible hardening heat treatment.
The essential experiments and test results in this investigation can now
be described in relation to the desired design capabilities. Since the pur-
pose of this study was to find the relation between the physical hardness
of the steel core, as produced by hardening heat treatments, and the
resulting pulse operating and latching characteristics, a practical test
method was used to determine the relation, in addition to the direct
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measurements for magnetic characteristics of the individual steel core
specimens.

5.1 Procedure for Evaluation of Test Results

The criterion used for the appraisal of the test results is a special form
of demagnetization curve plotted in terms of the instantaneous values
of magnetic latching force in grams and demagnetizing magnetomotive
force in ampere -turns, as the applied saturation magnetizing force is
abruptly reversed to the demagnetizing value. Each demagnetization
curve represents the typical data obtained on several test cores having
the same particular level of physical hardness, and each core was tested
with the same hold magnet structure and coil. It should be noted that
the preparation of the test -core specimens involved the establishment
of uniform machining of the core poleface and uniform heat treatment
processes, in order to minimize extraneous variables.

With regard to the determination of physical hardness, in order to
obtain data directly applicable to subsequent manufacturing test re-
quirements, each test core was measured on the 30-N scale of a Rockwell
superficial hardness tester, before the corrosion protective finish was
applied to its surface. This nondestructive and simple method of meas-
uring hardness is one of the accepted inspection testing methods. How-
ever, since it measures hardness to a depth that is only a small fraction
of the cross section, its accuracy depends upon the uniformity of the
hardness throughout the volume of the test specimen. This presented
no serious problem, because the small radial depth and uniform section
of the core specimens assures a reasonably uniform hardness.
With regard to the Rockwell hardness numbers used to designate the

physical hardness of each test specimen, it should be noted that they
represent the actual 30-N scale readings as taken on the cylindrical
surface of the 0.375 -inch -diameter cores before the application of the
protective finish. In order to reproduce the same physical hardness
represented by these Rockwell hardness numbers on parts having dif-
ferent radii of curvature or having flat surfaces, the numerical values
should be corrected according to the empirical tables furnished with the
Rockwell tester. For example, in our data, the hardness readings from
54 to 64 would become 55.5 to 65 when converted to represent readings
on flat surfaces.

5.2 Magnetic Latching Forces Versus Hardness

The characteristics of two cores of widely different degrees of hard-
ness are shown in Fig. 5, one representing the maximum and the other
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Fig. 5 - Magnetic latching characteristics of hold magnets with cores of max
imum and minimum physical hardness.

the minimum hardness. Each curve is designated by the Rockwell 30-N
hardness number, as measured on the cylindrical surface of the test
core. The number 81 represents the maximum hardness value, as ob-
tained after quenching and then reheating to a stress -relieving tempera-
ture of 350°F; the number 35 represents the minimum hardness value
on the core, as obtained with a high -temperature (about 1600°F) nor-
malizing heat treatment. Observe that the number 81 (hard) core de-
veloped an open circuit latching force of 800 grams, which is only 57
per cent of the required minimum value. Its demagnetizing pulse strength,
however, was 250 NI, a value that is greater than desired for controlling
the release of the electromagnet with the minimum load of 140 grams.
In contrast to this permanent -magnet type of core, observe that the
number 35 (soft) core developed a latching force of 900 grams, while its
demagnetizing value was only 73 NI. It was evident, therefore, that
neither of these cores representing extreme levels of physical hardness
had the necessary magnetic residual induction strength. More details
on their magnetic characteristics will be given later, by showing some
of the actual magnetization hysteresis loops of the test -core specimens.

Fig. 6 shows the magnetic latching characteristic curves of the two
cores having Rockwell hardness numbers of 72 and 41, together with
the former set of curves for comparison. Observe that the number 72
hardness core developed a latching force of 1200 grams, while the num-
ber 41 core developed a latching force of 1350 grams. Compared to the
slightly harder and softer cores with hardness numbers of 81 and 35,
respectively, a gain of 50 per cent in latching force is realized for each
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Fig. 6 - Effect of small changes in hardness of core on resulting latching force.

of the two intermediate hardness cores. Observe also that the correspond-
ing demagnetizing ampere -turn values have changed considerably, the
more important change being on the number 41 hardness core.

From the designer's viewpoint, the above results are very encouraging,
in spite of the fact that the open -circuit latching force is still appreciably
below the required minimum of 1450 grams. It is significant that a 50
per cent increase in latching force results from a relatively small change
in physical hardness. The rate at which this improvement is made by
the remainder of the intermediate hardness values is therefore of even
greater interest.

Fig. 7 shows an additional set of four characteristics curves, each
representing a different level of core hardness, and this completes the
range of core hardness levels that was investigated. Examination of the
added curves shows that the open -circuit latching force continues to
increase from both ends of the hardness range, and that the optimum
latching force value of 1800 grams occurs with the number 60 hardness
core. The demagnetizing ampere -turn value, however, continually de-
creases as the hardness number decreases.

The eight magnetic latching characteristic curves in Fig. 7 show that
there is an outstanding improvement in the magnetic properties of the
tool steel cores when their physical hardness, as produced by hardening
heat treatments, is in the Rockwell hardness range (30-N) of 54 to 64.
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Fig. 7 - Magnetic latching characteristics of additional hold magnets with
cores of different physical hardness.

The latching force values of 1500 to 1800 grams that were obtained in
this hardness range provide the working margins that are necessary for
the crossbar switch hold magnets. It is of interest, therefore, to examine
these results from the standpoint of their reproducibility and associated
variables. Also, it is desirable to examine the basic magnetic properties
of the core material with these hardening heat treatments, in terms of
values that can be used for other possible design applications.

The electrical operate -soak value, which determined the level of
magnetic flux density established in each test core prior to the measure-
ments for its latching force and reverse release characteristic, was kept
constant at the minimum worst circuit pulse value of 565 ampere -turns.
It should be noted that, with operate -soak values of greater magnetizing
force, the latching characteristics are slightly different, because the re-
sulting residual induction (Br) values tend to be greater, while the
coercive force (He) values are not appreciably different. The magnitude
of these effects is indicated by the following test results obtained with
the same test cores.

With an operate value of 960 ampere -turns, the reverse -release ampere -
turn value required to reduce the latching force to zero was found to be
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practically the same as that obtained with the minimum operate value,
thereby indicating practically no difference in He values. The open -
circuit latching force, however, was found to be greater, up to about 10
per cent for each of the test cores with different hardness values, thereby
indicating an increase of about 5 per cent in the B,. value. Since a 10
per cent difference in latching force is not a very large increase, these
data show that the operate pulse value of 565 ampere -turns is sufficient
to develop a substantial magnetic saturation in the test cores when the
electromagnet is in the operated (closed polegap) position. The degree
of saturation in the individual core, as determined by flux measurements,
will be presented later.

Another important factor considered in the appraisal of the magnitude
of open -circuit latching forces obtainable with this type of electromagnet
design was the effect of small irregularities or foreign matter on or be-
tween the mating poleface surfaces. The magnitude of this effect is
illustrated by observing the following test results.

With a given core of optimum magnetic properties (core with number
60 hardness value) assembled in a normal electromagnet, and the arma-
ture and core poleface surfaces being of good commercial smoothness
and coated with a commercial nickel protective finish, the introduction
of a 0.0005 -inch -thick nonmagnetic separator between the mating pole -
faces was found to reduce the open circuit latching force by as much as
15 per cent. The reason for this effect, it can be shown, is that the added
0.0005 -inch airgap increases both the flux leakage and the magnetic
reluctance at the closed polegap. Since the latching force varies directly
as the square of the flux value, a loss of about 7 per cent in the effective
residual flux would account for a loss of about 15 per cent in force. It is
obvious, therefore, that a protective finish of nickel (due to its magnetic
permeability) is more desirable than a nonmagnetic zinc or cadmium
finish.

5.3 Reproducibility of Optimum Magnetic Properties

An important factor in determining the reproducibility of magnetic
latching characteristics is the sensitivity of the hardened steel core to
variations from the optimum physical hardness value, during manufac-
ture. This effect is indicated by the latching curves of Fig. 8(a). These
curves are representative of the data obtained with cores in the numbers
58 to 62 Rockwell (30-N) hardness range, and with magnet assemblies
having the expected range of quality in parts and alignment. The latch-
ing curves show that the physical structures in the high -carbon steel
cores, as obtained by heat treatments producing Rockwell hardness
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readings of 58 to 62 on the 30-N scale, yield a combination of magnetic
properties that provides satisfactory margins for the required magnetic
latching function.

Tests were made also to determine the stability of the operating and
latching properties from the standpoint of magnetic aging on the magnet
cores. After about 200 hours of heating at a temperature of 100°C, no
significant change due to aging could be detected.

Fig. 8(b) shows the operate pull curves for the same test parts and
assemblies. The magnetic pull curve obtained with the minimum operat-
ing pulse strength of 565 NI shows that the open -gap tractive force is
always considerably greater than the contact spring load, as the armature
moves from the maximum -open polegap to the closed polegap position.
The force differential between the load and the 565 NI pull, at each in-
stantaneous value of polegap, determines the armature travel time. This
time value, plus the time required for the current to build up to the just -
operate value that starts the travel, is the maximum total operating
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time of the electromagnet. Since operating or switching times are of great
importance, it is of interest to observe the following time data.

5.4 Switching Times with Magnetic Latching Hold Magnet

Fig. 9 represents a typical oscillogram of the operating -time char-
acteristic of the magnetic latching hold magnet as it functions in a
crossbar switch when load and operating power conditions are as fol-
lows: The contact spring load is the heaviest that may be encountered
in the remote unit of a line concentrator; the circuit voltage is at the
minimum value of 22 volts; and the circuit resistance is at the maximum
value that provides the steady state value of 565 NI.

At zero time, two select magnets are energized simultaneously. At
0.030 second, the dip in the curve shows that the two associated select
bars have rotated and interposed two wire fingers between the test hold
magnet armature and crosspoint contacts on two separate horizontal
levels. At 0.044 second, the test hold magnet is energized by the worst
circuit current pulse. At 0.077 second, the test hold magnet armature
has completed the switching of all contacts in the two crosspoints and
in the HON spring assembly and has just reached the core poleface.
At 0.122 second, the current has just reached about 95 per cent of its
ultimate steady-state value.

These test values therefore show that the hold magnet operate time is
a maximum of 0.033 second, and that the time required by the minimum
circuit energizing pulse to build up the magnetic induction in the core
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Fig. 9 - Hold magnet operating -time characteristics with minimum pulse strength.
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to about 95 per cent of its steady-state value is 0.078 second. The latter
time value represents a satisfactory margin, since 0.100 second was set
up as the minimum time for the duration of the 22 -volt energizing pulse.
In this connection, it should be noted that the energizing pulse time can
be reduced to much lower values by simply using higher operating
voltage values to speed up the build up time of the energizing current
to the same saturating value. For example, the pulse time required to
obtain the same latching force capability was found to be only 0.015
second when the circuit voltage was increased to 90 volts and the ohmic
resistance of the magnet circuit was increased to limit the steady-state
current value to 0.200 ampere.

VI. FLUX MEASUREMENTS ON NEW MAGNET CORE

In order to observe the magnetic properties of the new magnet core
material by itself, each of the core specimens representing the eight dif-
ferent levels of physical hardness was measured for its B -H magnetiza-
tion characteristics. The measurements were made on a Bell Telephone
Laboratories Cioffi recording flux meter system, which employs a Chat -
took magnetic potentiometer and an H integrator to measure and record
the applied magnetizing force on the 3.5 -inch -long test core specimen
while it is being magnetized by the field between the poles of an electro-
magnet. The flux density B in the test specimen is measured and recorded
directly from the test search coil on the specimen and the B integrator
part of the system. Fig. 10 shows three of the B -H hysteresis loops so
obtained. Each loop is designated by the hardness number of the steel
core test specimen. The portion of each loop that lies in quadrants I
and II represents the useful magnetic properties that determine the
operate, latching and unlatching capabilities of any electromagnet using
the corresponding core material, with a magnetizing force value of
ilmax equal to 143 oersteds.

The pertinent magnetic properties represented by the hysteresis loop
for the (Rockwell 30-N) 60 steel in Fig. 10 are as follows:

B8 = 16,300 gausses at Hmax = 143 oersteds,
Br = 13,300 gausses when Hinax is reduced to zero,
H, = 24 oersteds,

Amax = 320.
Referring to the typical data on magnetic properties given in Table I,

it is seen that the values of the magnetic properties given above, al-
though obtained with a much lower H. value, are between those of
the typical annealed low -carbon magnet. steel and the hard permanent -
magnet -type steels, insofar as the B8 and H, values are concerned. The
Br value, however, is superior or at least comparable to that of the
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Fig. 10 - Magnetic properties of tool steel core specimens representing mini-
mum, maximum and optimum levels of physical hardness.

annealed low -carbon steel. The fact that the B,. value is supported by
an H, value of 24 oersteds accounts for the outstanding strength and
endurance of the magnetic latching force in the new design. The fact
that the associated value of permeability iimax is 320 accounts for the
satisfactory operating magnetic pull obtained on the minimum pulse
strength.

VII. CONCLUSION

It can be concluded, therefore, that a new combination of coexisting
values of magnetic properties has been found in high -carbon steel that



1374 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

makes it possible to use this steel as core material in the magnetic latch-
ing crossbar switch hold magnet. Four codes of such crossbar switches
have been designed, and the first tool -made samples thereof have satis-
factorily met all acceptance tests and laboratory life tests simulating the
extreme field service conditions that may be encountered in a line con-
centrator.
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