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STEADY STATE SOLUTIONS OF TRANSMISSION 
LINE EQUATIONS 

S. O. Rice 

Methods of obtaining the steady state voltages and currents in a 
uniform transmission line consisting of several parallel wires are described 
in Part I. This line may or may not be acted upon by an externally 
impressed field distributed along its length. A square matrix r, which is a 
generalization of the propagation constant 7 for a single circuit, is intro- 
duced. Matrix expressions obtained for the voltages and currents in- 
volve r in much the same way as the corresponding single circuit expres- 
sions involve 7. In Part II similar methods are described for obtaining 
the voltages and currents in a transmission line composed of a number of 
multi-terminal symmetrical sections connected in tandem. Expressions 
for the voltages and currents in a line composed of unsymmetrical sections 
are also given. These sections may or may not contain generators. 

THE transmission lines considered here are of two kinds, namely the 
uniform transmission line, and the transmission line consisting of a 

number of identical sections connected in tandem. The problem discussed 
is that of determining the steady stale electrical behavior of these lines 
when the terminal conditions are given. Often there arises the problem 
of determining the currents induced in a uniform transmission line by an 
arbitrary impressed field of some fixed frequency or of determining the cur- 
rents produced by generators placed in the branches of the sections if the 
line is of the second kind. This is the type of problem with which we shall 
be particularly concerned. 

In dealing with the uniform transmission line it is found convenient to 
introduce a matrix P, which is a generalization of the propagation constant 7 
for a single wire with ground return, or for a single circuit. This enables us 
to obtain matrix expressions for the currents and voltages which are similar 
in form to the single circuit expressions. 

A similar situation exists for the transmission line composed of a number 
of symmetrical sections. However, when the sections are unsymmetrical 
the corresponding procedure does not appear to yield a corresponding sim- 
plification and the formulas are considerably more complicated than in the 
symmetrical case. 

This paper is divided into two parts corresponding to the two kinds of 
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transmission lines. The first part discusses the uniform line. After a 
statement of the transmission equations in matrix form, expressions for the 
voltages and currents are given. Two methods of evaluating these ex- 
pressions are described. The first is based upon a property possessed by 
many transmission systems, namely that the various modes of propagation 
have nearly the same speed. The second method is based upon equations 
which may be obtained by the formal application of a theorem due to 
Sylvester. The first part concludes with the proof that these two methods 
lead to the correct results. 

After a short introduction the second part discusses the difference equa- 
tions which govern the transmission in a line composed of multi-terminal 
sections. The sections may contain generators. Expressions for the volt- 
ages and currents in a symmetrical section line, i.e. a line whose sections are 
symmetrical, are stated and proved in much the same order as the corre- 
sponding expressions for the uniform line. A discussion of the unsymmetri- 
cal section line concludes the second part. 

A sketch of the solution of the uniform transmission line equations by 
the classical method is given in Appendix I. In Appendices II and III 
methods are described for solving the symmetrical section line difference 
equations. These methods are similar to the one of Appendix I. The 
method of Appendix III uses section constants which may be obtained from 
measurements made at one end of a typical section. 

Part I 

Uniform Transmission Lines 

1.1 Differential Equations 
For the sake of convenience in writing down equations we shall assume 

that the particular line under consideration consists of three parallel wires 
with ground return, or of three parallel circuits, denoted by the subscripts 
a, b, and c respectively. The differential equations for this line in an arbi- 
trary impressed field are1 

^ = —Zaaia — Zab ib — Zadc + IJjc) 
dx 

~ = -Zbaia - Zbbib - Zbcic + lb(x) (1.1) 
dx 

^ = -Zcaia - Zcbib - Zccic + lc(x) 
dx 

1 These equations are given in substance by J. R. Carson and R. S. Hoyt, B.S.T.J., 
Vol. 6, pp. 495-545 (1927). Equations (1.2) are equivalent to their equation (90) and 
equations (1.1) may be obtained by combining their equations (83), (84), and (94). We 
shall use the term "impressed field" to mean a field distributed along the line. According 
to our convention there is no impressed field when the line is energized only at the terminals. 
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and 

dia 
dx = —YaaVa " YabVb - YacVc + ta{x) 

^ = — Yba Va - YbbVb - YbcVc + tb{x) 

~ = - YcaVa - YcbVh - YccVc + tc{x) 

(1.2) 

where Zab = Zba, Yab = Yba , etc. If we are dealing with three parallel 
wires la(x), lb(x), lc(x) are the longitudinal components of the electric force 
of the impressed field at the wire surfaces; ta(x), tb{x), tc(x) are specified 
by the admittance of the direct leakage paths and the values of the im- 
pressed potentials at the wires. If there are no direct leakage paths the 
/'s are zero. 

In order to put these equations in matrix form2 we introduce the column 
matrices 

(1.3) 
Va la la{x) ta{x) 

V — vb i = ib , l{x) = lb{x) , t{x) = ib{x) 
Jc_ je_ Jc{x)_ Jcix)_ 

and the symmetrical square matrices 

Zaa Zab zac~ Yaa Yab Yac 

Z = zba Zbb Z be Y = Yba Ybb Ybc 
_Zca Zcb Zcc_ _YCa Ycb Ycc 

The equations (1.1) and (1.2) may now be written as 

= -Zi + l(x) 
dx 

dl = —Yv + l{x) 
dx 

and these are the equations to be solved. 
When there is no impressed field equations (1.5) give 

d'v 7V 

dx2 = ^ 

p = FZi 
dx- 

2 Cf. L. A. Pipes, Phil. Mag., Vol. 24 (1937), p. 97. 

(1.4) 

(1.5) 

(1.6) 
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and the analogy with the one circuit case leads us to put 

T2 = ZY, V = y/ZY (1.7) 

where T is a square matrix representing a generalization of the propagation 
constant. Putting aside for the moment the question of interpreting the 
square root, we note that interchanging the rows and columns in P2 = ZY 
gives 

r'2 = Y'Z' = YZ, V' = y/YZ (1.8) 

where the primes denote transposition. Y' and Z' are equal to F and Z 
respectively because of their symmetry. We thus expect P' to be associated 
with the propagation of i in the same way that P is associated with the 
propagation of v. 
1.2 Statement of Results for an Infinite Line—No Impressed Field 

It is shown that when there is no impressed field the voltages and currents 
at any point ^ in a transmission line extending from rr = 0 to ^ = oo are 
given by 

v{x) = e~xVv{o) = e~xVZ0i{o) 

i{x) = e-xV'i{o) (1.9) 

v{x) = Z0i(x) 

where e~xV is the square matrix defined by the convergent series of matrices3 

-xr j _ sP + + ... (1.10) 
112! 3! 

and is the transposed of e~xT. I denotes the unit matrix. Z0 is a 
square matrix and is called the characteristic impedance matrix: 

z0 = r
-1z = rr~l (i.n) 

Additional expressions of the same type for Z0 are given by equations 
(1.45). The matrix e~xrZ0, being of the nature of a transfer impedance, 
is symmetrical. 

The matrices e~xT and Z0 may be computed in several ways, the choice 
depending upon the circumstances. The first method to be described is 
useful when .v is not too large and when the propagation constants of the 
various modes of propagation are nearly equal to each other. In the case 
of open-wire lines these propagation constants are grouped around the 
value ju/v where v is of the order of 180,000 miles per second. The second 
method may be used for all cases, including those for which the series in 

3 Frazer, Duncan and Collar, "Elementary Matrices," Cambridge University Press, 
§2.5. In the work which follows, this text will be referred to as "F.D.C." 
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the first method converge too slowly to be of value. However, it requires 
the solution of an wth degree equation and the determination of the m 
modes of propagation where m is the number of circuits. For m = 2 
this is no handicap and the method is quite convenient. In this case 
the method is closely related to one described by John Riordan in an un- 
published memorandum. 

First Method: Multiply the matrices Z and Y together to obtain ZF. 
Choose the number y2 in 

ZF = ly2 + R, (1.12) 

where I is the unit matrix, so that the elements of R are small in comparison 
with y2. For many transmission lines it is possible to do this. F may be 
obtained by using the binomial theorem to expand the square root in the 
formula 

F = y/ZY = y(I + y-2R)\ (1.13) 

where y is that square root of y2 whose real and imaginary parts are non- 
negative. In carrying out the work it is convenient to introduce the matrix 
S whose elements are small in comparison with unity. 

r = 7(7 + S) (1.14) 

To compute S, first compute the matrix R/2y2 and then use the power 
series 

s=(*-)-* (*y+1 ^ v -5 ^ v 
\2y2J 2 \2y2) ^ 2 \2y2) 8 \2y2) 

+ Z(^Y_^Y + --- 8 \2y2J \6\2y2J ^ 

(1.15) 

This series will usually converge rapidly. The matrix e 'xl is given by 

where s is a number, z = yx, and e~'s is to be computed from 

exr = e z.e 's (1.16) 

+ + (1.17) 

 2 P' • • r  X F 
e is obtained from e by interchanging the rows and columns. The 
characteristic impedance matrix may be obtained from (1.11), 

Z0 = rY~\ 

zS , (zS)2 (zS) 

after computing F from 5" as in (1.14). 
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If only e~xV is required the following series may be used. 

<r'r = E fr T (1-18) 

p=o / p! 

where R, 7, and z have the same meaning as above and the coefficients are 
computed from 

bo = e'1, bi{z) = —e~z, 62(2) = e '^1 + 

ViW = S»W - 2-^ 

(Rx\0 

denotes/. 

Second Method: T, e~xl' and Z0 may be regarded as functions of the square 
matrix ZV. In order to express these functions in a form suitable for calcu- 
lation we apply Sylvester's theorem4. The characteristic matrix of ZI is 

/(y2) = 7"/ - ZT (1.19) 

where now y2 is regarded as a variable instead of a fixed number as in the 
first method. We shall suppose that ZF is a square matrix of order m 
and that the roots 71,72, 7m of the characteristic function, i.e. of the 
determinantal equation 

|/(72)1 = 0, (1-20) 

are distinct. Let the matrix Ffr2) be the adjoint of /(y2) and denote the 
derivative of the characteristic function by 

\fC) I'" = ^ 1/(7) I (1-21) 

Since 71, 72, • • • 7™ are all different j/frr) la) is unequal to zero for r = 
1,2, • • • m. Sylvester's theorem says that if P{ZY) is any polynomial 
in ZF then 

P{ZY) = E NiyDPiyl) (1.22) 
r=l 

where Piyl) is a scalar (and thus deviates from our convention that capital 
letters denote square matrices). ^(7?) is a square matrix: 

- rSr* M 

When m = 2, Niyl) is equal to / - A7(7i). 
4 F.D.C. §3.9. The « and X of the reference are the ZF and y2 of the present section. 
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Applying (1.22) to T, e xI and Z0 even though they are not polynomials 
in ZY gives results which may be verified to be true. 

r = Vzf = Z 

e~xT = = E NiyDe-*-" 

Zo = (ZF)i Y'1 = Z ^(7r)7r F-1 (1'24) 

<rirz0 = ZN(.yl)yre-""Y-1 

where the summations extend from r = 1 to r = m and 71, 72., • • • 7m 
are the square roots of 71 , 72 , • ■ ■ yl, respectively whose real parts are non- 
negative. 71,72, • • • 7m are also the propagation constants of the "normal 
modes" of propagation. Some light is thrown on the physical significance 
of the matrix ^(7^) by supposing that only the rth normal mode is being 
propagated on the transmission line. -A7^) is such that it can be expressed 
as a column matrix times a row matrix. The voltages in circuits 1,2, • • • m 
are proportional to the first, second, • • • wth elements, respectively of the 
column matrix. The currents in circuits 1,2, • • • m are proportional to the 
corresponding elements in the row matrix. 
1.3 Results for Any Uniform Line—No Impressed Field 

When the length of the line is finite the voltages and currents may be 
expressed as 

v(x) = cosh aT v{o) — sinh aT Z0i(o) 
(1.25) 

i{x) = — sinh .vT' Zf1v(o) + cosh aT' ifo) 

where Z0 and F have the same meaning as before. The matrices sinh aTZ0 

and sinh aT'ZJ1 are symmetrical. The square matrices cosh a.T and sinh aT 
are defined by the series 

r2 r2 x* F4 

cosh aT = 7 + -yp + + • • • 

3 3 ' (1-26) ., ^ xT ,x3r3 , 
sinh xT = y} + -yp + ■ ■ • 

cosh aF' is obtained by interchanging the rows and columns of cosh aT 
and sinh aT' is obtained similarly from sinh aT. Solving (1.25) for v(o) 
and i(o) gives 

v(o) = cosh aF v(x) sinh aT Z0i(x) 

ifo) — sinh aT' ZJxv(x) + cosh aT' i(x) 

As in the case of the infinite line, we have two ways of computing the 
coefficients of v{o) and ifo) in the expressions (1.25) for v(x) and i(x). 
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First Method: Choose a number 72 and compute the matrices R, S, F, Z0 

as described in the first method for the infinite line. The matrix e is 
given by 

zT z zS e = e -e 

where s = yx and es is computed from the series 

If the elements of are so large that the series converges slowly it may be 
SzS\ 

worthwhile to divide zS by 16, say, compute exp I ~ ) from the series, and 

then obtain ezS by four matrix multiplications. When es is known its 
inverse e~'s can be computed and e-xI obtained from (1.16). The hyper- 
bolic functions are given by 

cosh *r = | (exr + e-xV) (1 27) 

sinh »r = ^ (exr — e xr) 

which follow from the series definitions of the various matrices. 
If only the coefficients in (1.25) are required we may choose y2 and com- 

pute R and powers of the matrix Rx/2y. Then the coefficients in (1.25) 
are given by 

cosh*r= V (^\ aJ 
v~o\2y) ; 

id)' 
s\nhxTZ,= "-^Z (1.28) 

where R' is the transposed of R, and the scalar coefficient a,,(z) is a function 
of z = 7a- given by 

a0(z) = cosh z ai(z) = sinh z 

. . , sinh z 
a2\z) = cosh z - (j 29) 

ap+2(z) = flp(z) — 1 dp+iiz), 
z 

and it is understood that (Rx/2y)0 = I. 
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Second Method: Compute the propagation constants 71, 72, 7m 
and the square matrices Nirfl) given by (1.23) as in the second method for 
the infinite line. Then 

cosh aT = S iV(7r) cosh :V7r 

sinh rvT Z0 = sinh aT FF-1 

= 2 Nirf.) sinh xr/r 7rF~1 (1.30) 

sinh aT' Z71 = sinh aT' r/_1F 

= E N'(yl) Sinh^ V 
7r 

where N'tyl) is the transposed of iV(7r), -^(7r) being defined by (1.23), 
and the summations extend from r = 1 to r = m. 

When the transmission line consists of perfectly conducting wires strung 
on perfect insulators over a perfectly conducting earth the magnetic and 
electrostatic fields are related so as to make Z equal to ylV1 where 

7a = ju/c, 

co being 27r times the frequency and c the speed of light. 
It is interesting to apply the first method of solution to this line. Even 

though the proof of the first method, which is given in §1.10, does not cover 
this case there seems to be little doubt that the correct answer is obtained. 

We have 

ZV = 7a/ 

Choosing 7 = 70 gives R = 0 and therefore S = 0. It follows that 

r = 7a/, z0 =T-1 Z = yj1 Z 

cosh aT = cosh {xyj) = cosh a70 / 

sinh aT Z0 = sinh xy0y~l Z 

sinh aT' Z71 = sinh a70 y0Zrl 

When these are put into equations (1.25) the expressions for v{x) and i{x) 
in a perfect transmission line are obtained: 

v(x) = cosh xy0v(o) — s*n^ x^0 Zi(o) 
^ (1.31) 

i{x) = —y0 sinh xyoZ^vio) + cosh xy0i{6) 
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(1.32) 

1.4 Results for Any Uniform Line—Impressed Field 
The differential equations to be satisfied in this case are given by (1.5). 

A solution which reduces to v{o) and i{o) at x = 0 is 

j;(x) = cosh nT v{o) — sinh xT Z0i{o) 

4- [ cosh (.r — £)r/(£)<#: — f sinh (x — ^)r Z0t(£)d£ 
J0 Jo 

i(x) — —sinh .rl1' Z^'vio) + cosh xT' i(o) 

- f sinh (x - tir'Z^m dt. + [ cosh (x - £)T't(%) d£ 
Jo Jo 

The matrices cosh xF, sinh xT and Z0 are the same as the ones discussed in 
§1.2 and §1.3. The elements of the integral5 of a matrix U {U is not neces- 
sarily a square matrix) are given by the integrals of the corresponding 
elements of U. 

In many cases of practical interest the impressed field varies exponentially 
with respect to x. The column matrices l(x) and t{x) may then be ex- 
pressed as 

l{x) = e —xO 
K 
Xft 
X. 

l{x) = (1.33) 

where the X's and r's are constants and 6 is the propagation constant of 
the impressed field in the direction of the line. The integrations in the 
expressions (1.32) may be performed with the result 

v(x) = cosh xT v{o) — sinh xT Z0i{o) 

+ h (exr - e-x9I) (r + 0T)-\\ - Z0t) 

- h (e-xr - e-xeI) (r - eTy\\ + Z0r) (1.34) 
i{x) = —sinh xT' Zflv{o) + cosh xF' i{o) 

+ i {exV' - e-x,,I) (F' + eiy'iT - ZT'X) 

- i {e-xT' - e'n0i) (r' - eir\T + zy\) 

provided that the inverse matrices exist. The matrix (cir — e I)(r' + 
9/)-1 is the transposed of {exr — e lfl/)(r + 61) l, etc. If one of these 
matrices, say F - 61, has no inverse then it is necessary to evaluate the 

5 F.D.C. §2.10. 
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corresponding integral in some other way. Thus it may be advantageous 
to use the formula 

— {e~xT - e~x0I){V - eiy' = e"ir f eir~m dt 

(US) 

= <rir+ li (r - el) + fy (r - W + • • •] 

Two special cases of (1.34) are of interest. When the line is shorted at 
both ends, v{o) = w(.r) = 0, where x is the line length, and 

i(o) = i Z71 (sinh xrrl[(cxT - e"l0/)(r + 0/)-1(X - Z0t) 

- (e-
ir - e-xeI)(T - 0/)-1(X + Z0r)] 

iix) = e— 7ro
x (sinh .rr)-1[(cir - e9I){V - ^"'(X + Z0r) 

- (^r - e6I){V + dI)-\\ - Z0t)] 

When the line is terminated in its characteristic impedance at both ends, 
v{o) = —Z0i{o))v{x) = Z0i(x)y and 

i(o) = \{I - e~x9e~xV'){V' + dI)-l{Z-\ - r) 

i(x) = -i (e-'r' - e~xeI)(r' - dir\Z^l\ + r) 

The matrices occurring in the expressions (1.34) for z)(.v) and i{x) may 
be computed by the first or second method described for the uniform line 
in the absence of an impressed field. The second method involves the use 
of expansions similar to 

{exV - e~xeI){T + 0/)-,(X - Zqt) 

{exT' - e-x9I){V' + ^^-'(Zr'X - r) 

where the summations run from r = 1 to r = in and N'{yr) is the transposed 
of the square matrix N^l) given by (1.23). In obtaining these expansions 
by Sylvester's theorem, Z0 in the first is replaced by T^'Z and Z~l in the 
second by I"-1 Y. 

If we assume that an impressed field acts upon the perfect transmission 
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line of equations (1.31), we see that /(rr) = 0 because there are no direct 
leakage paths. We may also write 

{exV - e~x9I){T + 0/r1 = {exy°I - e'191){y0I + 0/)"1 

From this and similar equations it follows that 

z;(x) = cosh xyovio) — s'n^ x^0 zi{o) 
To 

1 - ej? _ g-
JTo - e-x9l x 

21 yo + 0 yo- 0 J (1.37) 

i(x) = —yo sinh xyo Z~lv(o) -f cosh xy0i(o) 
[xi0 —xB —Xfo —I®-] 

e ~ e + e-  
To + 0 To - 0 J 

7.5 Results for Infinite Uniform Line—Impressed Field 
When the line extends from s = 0 to .r = oo and the impressed field is such 

that the voltages and currents remain finite at x = <*>, the appropriate solu- 
tions may be obtained from the results of §1.4 by a limiting process. The 
condition that f(x) remain finite suggests that the coefficient of exr be zero 
in the expression (1.32) for v(x). This gives a relation between v(o) and 
i(o) which must be satisfied: 

v{o) = Z0i(o) - f e-(rm - Z0t(ii)]dii (1.38) 
Jo 

If the impressed field varies exponentially with x expression (1.34) gives 

v(o) = Z0i(o) - (F + ^"'(X - Z0t) (1.39) 

Expressions for v(x) and i{x) may be obtained by using relations (1.38) 
and (1.39) in (1.32) and (1.34) respectively. As these are somewhat 
lengthy we shall state only two which follow from (1.39). 

v(x) = e xl v(o) 

+ - e~x9I)[{X + ei)-\\ - Zor) 

- (F - ^^(X + Z0r)\ / x 
(L40) 

i{x) = Z0 e x v{o) 

+ \Z:\e-xV + e~x9I){T + dI)-\\ - Z0t) 

- \Z-\e-xV - e~x6I){T - QI)-\\ + Z0t) 
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Two similar expressions may be obtained in which the initial current i{o) 
instead of v{o) appears on the right. If the line is terminated in its char- 
acteristic impedance at x = 0, v{o) = —Z0i{o), and the voltages and currents 
produced by the impressed field are 

v{o) = -i (r + 0I)-\\ - Z0t) 
(IA1) 

i{o) = I Z7 (r + 61)-% - z0t) 

As in §1.4 these expressions may be computed by the first and second 
methods described in §1.3. For example, the application of the second 
method to the relation (1.39) which must exist between v{o) and i{o) in an 
infinite line gives 

v(o) = t N(y'r) \L ,•(„) _ 1 L-A T)1 (1.42) 
r-1 LTr 7r + ^ \ 7r / J 

where N(yr) is the square matrix (1.23). 
1.6 Outline of Proofs 

The proof of the results which have been stated is divided into three parts. 
In the first part it is shown that if F is a matrix such that (a) its square is 
ZY and (b) every element in the matrix c_l1 approaches zero as x —* co, 
then the expressions for v{x) and i{x) involving F and Z0 satisfy the trans- 
mission line equations. In the second part of the proof it is shown that if 
certain requirements are met F as obtained by the first method satisfies the 
conditions (a) and (b) and hence the expressions for v(x) and i(x) given by 
the first method are correct. The third part of the proof discusses a general 
procedure which may be used to prove the equations which constitute the 
second method. 

Both the second and the third parts of the proof are based upon the solu- 
tion of the transmission line equations which is sketched in Appendix I. 
This solution assumes that the propagation constants of the normal modes 
of propagation are unequal, and our proofs are limited accordingly. How- 
ever, considerations of continuity seem to show that the first method is 
valid even when two or more propagation constants are equal. Under the 
same circumstances the second method suggests the use of the confluent 
form of Sylvester's theorem.6 

7.7 Relations Obtained by Considering An Infinite Line 
We suppose that we are going to deal with transmission lines possessing 

the non-singular, symmetrical impedance and admittance matrices Z and Y. 
We further suppose that, by some means or other, we have determined a 
matrix F which satisfies the two conditions; (a) the square of F is 

F2 = ZY, (1.43) 

and (b) every element in the matrix c_l1 approaches zero as x —> oo. 
6 F.D.C. §3.10. 
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(1.44) 

(1.45) 

Consider a line extending from = 0 to rr = oo, there being no impressed 
field. Viewing the line at a: = 0 as an n terminal network shows that 
there is a symmetrical matrix Z0 such that v{o) = Z0i{p). Let this be 
taken as the definition of the characteristic impedance matrix Z0. We shall 
show from the differential equations of the line that 

1. The voltages and currents in the infinite line are given by 

z;(^) e~x^v{p) 

i(x) = e~zr i(o) 

2. The matrix Z0 satisfies the relations 

z0 = r-'z = zr'-1 = tv1 = y-'r' 

z;1 = z_Ir = r'z-1 = it-1 = t'^y 

v{x) = Z0i{x) (1-46) 

3. The matrices Z0, Z, and Y obey the commutation rules 

$(Y)Zo = ZMT') 

4>(r)Z = Z^^o (1.47) 

F$(r) = $(r')F 

where <l>(r) is any square matrix, such as e~ir, representable as a 
convergent power series in F with scalar coefficients. Furthermore, 
the matrices $(r)Z0, $(r)Z, and F<f>(r) are symmetrical. 

The differential equations of the transmission line are 

^ = -Zi, ~ = - Yv, ^ = ZVv (1.48) 
dx dx dx 

the third following from the first two when i is eliminated. That z)(.r) = 
e~xVv{o) is a solution of the third equation may be verified by direct substi- 
tution and differentiation7. Since this expression for v(x) approaches zero 
as a; —> oo and reduces to v{o) at re = 0, it represents the voltages in an 
infinite transmission line. Hence the first equation in (1.44) is true. Set- 
ting it in the first differential equation of (1.48), putting re = 0, replacing 
v{o) by Z0i{o), and noting that i{o) may be regarded as an arbitrary column 
gives 

rZ0 = Z (1.49) 

Since F was assumed to be non-singular, Z0 is equal to F 'Z. Z is sym- 
metrical and the reciprocity theorem for electrical networks requires that Z0 

7 The differentiation of the exponential function is discussed in F.D.C. §2.7. 
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be symmetrical, hence 

z0 =■ r^z = zr'-1 

The first group of equations in (1.45) follow from this together with the 
expression r2!'-1 for Z obtained from (1.43). The second group in (1.45) 
is obtained from the first group. 

The commutation rule for Z0 is obtained from (1.49) together with the 
equation obtained from (1.49) by transposition. Since Z is symmetrical 

rz0 = z0r', r2z0 = rz0r' = z0r
/2, 

rnz0 = z0T'n 

and the first of equations (1.47) follow from this. The second and third 
of equations (1.47) may be obtained similarly from the relations (1.45). 
The matrix 4>(r)Z0 is symmetrical since its transposed is Z0 [^(r)]' and 
this is equal to Z^r') = 4>(r)Z0. A similar argument applies to the 
other matrices in (1.47). 

The expression for i(x) in (1.44) may be obtained by Maclaurin's ex- 
pansion. Setting x = 0 in the second differential equation of (1.48), 

(—) 
\dx f o 

= -Yv{o) = -YZ0i{o) = -V'i{o) 

where we have used the equality between the first and last members of the 
first equation of (1.45) and where the subscript 0 denotes the value of the 
derivative at x = 0. Repeated differentiation gives 

ax- ax 

d i\ _ r,/2 (di \ _ ,3 

and so on. Hence 

=rli =-r ^ 

Y ^ fr xT" _i_ ^r'2 1 • 
t(x) = L TT + "2! J1 («) 

--xr'i{o) = e 

Equation (1.46) may now be obtained by using the commutation rule 
for Z0: 

v(x) = e~xrv(o) = e~xTZ0i{o) 

= Z0e'zV'i{o) = Z0i{x) 

This completes the proof of equations (1.44) to (1.47). 
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1.8 Proof of Relations for Any Uniform Line—Impressed Field 
Here it is shown that if a matrix T satisfies the two conditions of §1.7 

and if Z0 is the characteristic impedance matrix defined there, then the 
voltages and currents in any uniform line are given by the expressions (1.32). 
If suitable conditions are fulfilled the relation (1.38) between v{o) and i{o) 
for an infinite line may be obtained from (1.32). 

First of all, d(a:) and i{x) reduce to the required values of v(o) and i(o) 
at x = 0. All that remains to be shown is that v{x) and i{x) as given by 
(1.32) are solutions of the transmission line equations (1.5). By substitut- 
ing (1.32) in (1.5) and using the formulas 

cosh a;r = T sinh rrF = sinh xT T 
dx 

sinh rsF = F cosh a:r = cosh sT F 
dx 

which follow immediately from the series definitions (1.26) of the hyper- 
bolic functions, we obtain two matrix equations corresponding to the two 
differential equations. The terms in these equations involving v{o) may 
be canceled out provided 

F sinh xV = Z sinh .vF' ZJ1 

(1.50) 
F' cosh aT' Z0 = Y cosh .tF 

and these are seen to be true from (1.45) and (1.47). The terms involving 
i{o) may be canceled by a similar argument. The terms involving l{x) 
may be canceled provided 

jf sinh {x - £)r Tm ^ = jT Z sinh {x - t)T'Zf'm di- 

£ F' cosh (x - tiT'Zf'm <%= I' Y ^sh {x - ST /(f) dt 

and these are seen to be true when x in (1.50) is replaced by (x — £). The 
terms involving t{x) may be similarly canceled. Thus we have verified 
that fl(.T) and i{x) as given by (1.32) are solutions of the transmission line 
equation provided that the commutation rules (1.47) and the relations 
(1.45) involving Z0 of §1.7 are satisfied. This is the case when F is such 
that (a) F2 is equal to ZF and also (b) every element in e~Vl approaches 
zero as x —> oo. 

In order to establish equation (1.38) for the F of §1.7 several assumptions 
regarding the impressed field are required. Writing the hyperbolic func- 
tions in the first of equations (1.32) in exponential form and premultiplying 
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both sides by 2e ri gives 

2e-xrv(x) = ^(o) - Z0i(o) + jf e"tr[/(?) - Z0t^)]d^ 

+ e 2xrKo) + Z0i(o)] 

+ e-xT f e-{x-i)Tm + Z0t(l;)]dt 
Jo 

When a; —^ oo equation (1.38) is obtained provided that the impressed field 
and the terminal conditions at the far end are such that (a) v(x) remains 
finite, (b) the integral in (1.38) converges, and (c), the last expression on 
the right in the equation above approaches zero as x oo. 
1.9 Derivation of Equations (1.25) 

Although equations (1.25) may be obtained by setting l(x) = t(x) = 0 
in §1.8, it is of some interest to derive them directly. By repeated differ- 
entiation of the equations 

~=-ZiI f=-Yv (1.48) 
dx dx 

the second, third and higher order derivatives may be obtained. Using 
these in Maclaurin's expansion about x = 0 gives 

2 --4 

v(o) "(*) =\l + %-.ZY + ~ {ZVY + ■■■ 

iW = -[fj 

2! 1 4! 

_[n/ + 5TZF + fi(2I')I+ 

Yv(o) 
(,-51) 

' + h¥Z + h(FZ)2 + 

+ \i + y]
yz + i\ (fz)! + ■ • ■]'(») 

These series converge for all values of x and could be used for computation 
were it not for the unfortunate fact that in most problems a great many 
terms would be required for a satisfactory answer. For the time being, 
let F be any matrix whose square is ZY. The definitions (1.26) of the 
hyperbolic functions enable us to write (1.51) as 

v(x) = cosh .\T v{o) — sinh xT r_1Zf(o) 
(1.52) 

i(x) = —sinh xT' T' 1 Yv(o) + cosh xT' i(o) 

If in addition to being a matrix whose square is ZY, F is also such that 
every element in e~l1 approaches zero as x —* °c, then we may use the 
relations (1.45) for Z0 and obtain (1.25). 
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Incidentally, when we put ZY = /y2 + i? in (1.51) and rearrange the 
terms so as to get a power series in R we get the series (1.28). 
1.10 Proof of the First Method 

The first method consists essentially of determining F from the series 
expansion of (1.13): 

r = ci.53) iTTo n\ 7 

where (-?)« = (-5)(I)(I) ■••(«-!) when « > 0 and (—!)„ = 1, and 
then computing Z0 and the required exponential and hyperbolic functions 
of xT. From §1.7 and §1.8 it follows that the first method gives the correct 
result provided that F as determined by (1.53) satisfies the conditions: 
(a) its square is equal to ZT and (b) every element of e~xT approaches zero 
as # —* 00. 

These two conditions are satisfied by the matrix 

F = PGP'1 (1.54) 

where P and G are matrices defined by equations (Al.l) and (A1.3) of Ap- 
pendix I, G being a diagonal matrix whose rth element is 7r. For from 
(A1.9) the square of F is 

F2 = PG2P~1 = ZY 
Furthermore, 

-.r = g (PGP-)" 
0 n\ 

= P± err-1 (L55) 

0 n\ 

= PMix)?'1 

where M(x) is diagonal matrix (A1.5) whose rth element is e~yrX. Since 
the real part of 7, is positive and the elements of P are independent of x 
it follows that the second condition is satisfied. 

It will now be shown that PGP'1 may be expanded in the series (1.53) 
yr 

provided that 7 may be chosen so as to make all of the points fr = — > 

r = 1, 2, • • • w, in the complex f plane lie within that loop of the lemniscate 
| f2 - 1 | = 1 which contains the point f = 1. For then we may write 
the rth element in G as a convergent series: 

X (1.56) 
^ (-l)n (72 - 7')" 

7 ^0 n\ 72" 
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and PGP~l may be written as a convergent infinite series, the »th term 
of which contains the matrix (assuming only three circuits for the sake of 
simplicity) 

-2 2 
71—7 

0 
0 

0 
2 

72 
0 

0 
0 

2 2 
73 - 7 _ 

P-1 = Rn, (1.57) 

where the equality follows from the definition (1.12) of R and equation 
(A1.9) of Appendix I. This series for PGP~l is exactly the same as the 
series (1.53), and this completes the proof of the first method. 

The equations (1.18) and (1.28) which are incidental to the first method, 
will now be established for the case in which the matrix F occurring in 
them is equal to PGP~l. For then we have equation (1.55) and the 
equations 

cosh tfF = P 
cosh xyi 0 0 

0 cosh £72 0 
0 0 cosh .r73_ 

(1.58) 

sinh oT Zo = sinh aT F 1Z 

where sinh aT F-1 may be expressed in the same fashion as cosh aT, the 

rth element of the diagonal matrix being 
sinh xyT The elements in the 

7r 
diagonal matrices occurring in these expressions may be expanded in series 

by replacing 7r by its representation (1.56), assuming 

using8 

= g MP (-)" 

^1- 1 
7 

< 1, and 

P- 
AVi(z) 

cosh zVl + f = E (f) ^ 

sinh 2\/1 + ^ _ v1 /''zV 1 

VrTr o w p. 

~PP-i(2) 

where Ip-\{z) and Ap_i(s) are Bessel functions of the first and second kinds, 
respectively, for imaginary argument. Equations (1.18) and (1.28) are 
obtained when equation (1.57) and the Bessel function recurrence relations 
are used. 

8 These are special cases of formulas given in "Theory of Bessel Functions," by G. N. 
Watson, page 141. 
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1.11 Proof of the Second Method 
To establish the second method we must prove the various formulas 

which are used. These formulas all involve the square matrix iV(7r) de- 
fined by (1.23). ^ 

Since N{yl) is proportional to ptfr) it follows that N{yl) may be ex- 
pressed as 

N(yl) = PrPr ■■■ (1-59) 

where pr is the column matrix defined in Appendix I and pr is a row matrix 
specified by pr and Afrr). Applying Sylvester's theorem to the unit 
matrix gives 

Pi 

/ = S -^(Tr) = £ Pr Pr = [p\ , pi , Pi] P2 
_P3j 

where the two matrices on the extreme right are partitioned square matrices. 
From the definition of P in Appendix I it follows that 

[pi, Pi, pz\ — P) 
Pi 
P2 

_P3_ 

= P' (1.60) 

These relations enable us to verify the equations (1.24) when F is equal 
to PGP-1. Thus for the first of equations (1.24) 

F = PGP 1 = [/«!, , p3]G 

= [pi, Pi, P^ 
TiPi 
72 P2 

LT3 P3 J 
= 13 PrTrpr = S ^(7r)7r 

The second equation of (1.24) follows likewise from the expression (1.55) 
-xT for e 

The third equation of (1.24) follows at once from the first when we use 
(1.45), Z0 = FT-1. The fourth equation is obtained by writing 

e-irZ0 = PM{x)P'lPGP~1Y~1 

= PM{x)GP~1Y~1 

and proceeding as in the case of the first equation. 
All of the other equations connected with the second method may be 

proved in a similar way. Incidentally, the formulas obtained by the second 
method are closely related to the "special form of solution" described in 
§6.5 of F.D.C. 
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Part II 

Transmission Lines Composed of Multi-terminal Sections 

2.1 Introductory 
Some transmission systems may be regarded as consisting of a number 

of identical sections connected in tandem. The question of determining 
the steady state electrical behavior of such a system from a knowledge 
of the properties of a single section will be considered here. 

Each section will have a certain number, say m + 1, terminals on its 
left end and an equal number on the right. The case in which there are 
only two terminals {m = 1) has been completely worked out, and some 
studies of more general cases have been made. The ones which most nearly 
approach the point of view of the present paper are those due to S. Koizumi9. 

In the present work difference equations are used to solve the general 
case in much the same manner as they have been used in studying the 
two-terminal case. This approach differs from that used by Koizumi and 
throws additional light on the problem. 

In several lists of formulas, particularly in Appendix IV, I have included 
a number of results due to Koizumi for the sake of completeness. 
2.2 Transmission Equations for a Typical Section 

We consider the equations connecting the input and output currents and 
voltages for the «th section which is shown in Fig. 1. The directions which 
are assumed for positive current flow are indicated by arrows. The leads 
marked 0 play a special role in that all the voltages are 

li(n) — 

l2(n) — 

i-m (n)  

Vl T) 
V2 n) V2( 

v,(r 
i+i) 

+0 

Vmfnf 
1 

VmWi) 

0 0 

— 1,(0 + 1) 

.Lm(n ^ 0 

Fig. 1 

measured with respect to them, and the currents which they carry are the 
sum of the currents flowing into or out of the remaining terminals at the 
end under consideration. In applications to transmission lines the terminals 
0 would correspond to the ground or the cable sheath. 

The currents and voltages shown in Fig. 1 are related by a number of 
9 Archiv fiir Electrotechnik, Vol. 33, pp. 171-188, 609-622 (1939). See also a paper 

by M. G. Malti and S. E. Warschawski, Trans. A.I.E.E., Vol. 56, pp. 153-158 (1937). 
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(2.1) 

Vi{n) ii{n) 
vzin) 

i{n) = 
iiin) 

sets of 2m linear equations which may be conveniently written in matrix 
form. One such set is 

v{n) = Z\ii{n) — Z\ii{n + 1) + v°{n) 

v{n + 1) = Zziiin) — Z->ii{n + 1) + u0{n) 

Zn , Zu, Zn, Zo2 are square matrices of order m whose elements are im- 
pedances. v(n) and i(n) are the column matrices 

v(n) = 

The column matrices v0{n) and u0(n) arise from generators which may 
be acting within the wth section. If both ends of the section are open 
circuited so that i(n) = i(n + 1) = 0 the equations show that v{n) = 
v0{n), v(n + 1) = u"(n). Consequently, v0{n) and u°(n) give the open 
circuit voltages produced on the left and right ends of the wth section by 
the internal generators. If the section is a passive network then v0{n) = 
u0(n) = 0 and they do not appear in the equations. The subscripts on 
the square matrices, the Z's, are chosen so as to preserve the analogy for 
the simple case m = 1, where the left and right ends of the section are 
denoted by the subscripts 1 and 2, respectively. 

Solving the equation (1.1) for i{n) and i{n -f 1) gives 

i{n) = Yiiv(ji) + Yuv{n + 1) + i0{n) 

—i{n + 1) = Y2\v{n) -|- Ynv{n + 1) — j°{n) 

where the elements of the F's are admittances and i0{n), f{n) are the 
currents produced by the internal sources when the terminals on the right 
and left are short-circuited so that v{n) = v(n + 1) = 0. 

A third set of equations is 

v{n) = Av{n + 1) + Bi(n + 1) — Bj°{n) 

i{-n) = Cv{n + 1) + Di{n -(- 1) — Cu0(n) 

Solving these equations for v(n + 1) and i{n -}- 1) gives 

v(n 4- 1) = D'v{n) — B'i{n) + B'i0(n) 

i(n + 1) = — C'v{n) 4 A'i{n) 4 C'v0(n) 

There are a great many relations between the square matrices appearing 
in the equations (2.1) to (2.4). These are discussed in Appendix IV. 

(2.2) 

(2.31 

(2.41 
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For symmetrical sections F21 = F10, Fm = Fn, Z2i = Zn, Z22 = Zn 

and equations (2.1) and (2.2) become 

v{ii) = Zni{n) — Zui{n + 1) + v0{n) 

v{n -f- 1) = Ziii{)i) — Zni{n + 1) + u0{u) 

i{n) = Ynv{n) + Ynv{n + 1) + i0{n) 

-i{n + 1) = Ynv(n) + Ynv(n + 1) - j0{n) 

(2.5) 

(2.6) 

Eliminating i{n) from (2.5) and v{n) from (2.6) and using, from (A4.4), 
A = ZnZiz = — Yn Fu leads to the difference equations 

v{n + 1) + v(n — 1) — 2Av(n) = -6[i0(«) — j0(n — 1)] (2.7) 

i(n + 1) + i{n - 1) - lA'iin) = C[v0(n) - u0{n - 1)] (2.8) 

Since we also have B' = B, C = C, D' = A for symmetrical sections 
equations (2.4) become 

v{n + 1) = Av{n) — Bi(n) + Bi0{n) 
(2.9) 

i{n + 1) = —Cv(n) + A'i{n) + Cv0{n) 

We assume that the distribution of the sources in the branches of a sym- 
metrical network need not be symmetrical with respect to the two ends, 
even though the impedances of the branches are. 
2.3 Statement of Results for Infinite Symmetrical Section Line—Passive 

When the sections are passive the equations to be solved are, from (2.9), 

v{n + 1) = Avfn) — Bi{n) 
(2.10) 

i{n + 1) = —Cv{n) + A'i{n) 

If the line extends from « = 0 to « = 00 the solution is 

v{ii) = e~nrv{o) 

i{n) = e~nT i(o) (2.11) 

v(n) = Z0i{n) 

where the matrix e 1 is such that (a) the equation 

e~r + ev = 2A (2.12) 

is satisfied, e1 being the inverse of e~v, and (b) all the elements of the matrix 
e~nT approach zero as n —> co. In dealing with sections we shall never 
have occasion to consider T itself but only its exponential and associated 
functions. The characteristic impedance matrix Z0 is defined by the rela- 
tion between the initial currents and voltages in an infinite line 

d(o) = Z0i{o) (2.13) 
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A formal solution of (2.12) may be obtained by writing it as 

cosh T = ^1 (2.14) 

Then 

6~r = cosh r — sinh F 

= A - {A2 - If = A - {BCf 

where the square root is to be chosen so that condition (b) for e r is satis- 
fied. The characteristic impedance matrix Z0 is given by equations (2.34) 
of which the following two are representative. 

Z0 = (sinh r)_15 = sinh F C"1 (2.15) 
p  p 

where sinh F is given by 2 sinh T = e — e . 
The wide variety of sections makes it appear unlikely that there is a 

general method of determining e~v analogous to the first method discussed 
for the uniform line. However, in some cases rapidly convergent series 
for e~v and eT may be obtained. For example, suppose that the elements 
of (2A)-1 are small compared to those of 2A. Then, from (2.12), 

e
r = 2A - (2A)-1 - (2A)-3 - 2(2A)-6 - • • - 

e~v = (2A)-1 + (2A)-3 + 2(2A)-B + ••• 
Again, \i A2 - I = BC is expressible as iV + R where the elements of 
R are small in comparison with 72, we have (cf. equations (1.14), (1.15)) 

eT = a + + + ■■■] 

^ [ 7 + 2? ~ 2 (2?) +'"] 

Finally, it follows from a comparison of equations (2.11) and (A2.12) that 
a suitable e~x is given by 

g-
r = PNP-\ e-T' = QNQ-1 (2.16) 

where F, Q and A are the matrices designated by the same symbols in 
Appendices II and III. 

The formal application of Sylvester's theorem leads to a method of solving 
the symmetrical section line which is analogous to the second method 
discussed for the uniform line. Thus, if F{A) is any polynomial in A, then 

HA) = E Af(fr)P(f.) 
r=l 

(2.17) 
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where P(fr) is not a square matrix but a scalar and NQ;r) is the square 
matrix 

(2'I8) 

F(f) is the adjoint of the characteristic matrix 

/(f) = n - A (2.19) 

and fx, f2, • • • fm are the roots, assumed to be unequal, of the character- 
istic equation 

l/(f) I = o. 

The denominator in the expression for i\r(fr) is the derivative of the char- 
acteristic function: 

iwr-OH,-,. 

The formal application of Sylvester's theorem then gives 

COSh T = A = I,N(£r)£r 

e-r = A - U2 - /)* = 2i\7(rr)Xr 

e-"
r = 27V(rr)Xr

n 

Z0 = (sinh r)"1^ = 2 2 B 
(xr - Xr) 

(2.20) 

where N{^r) is given by (2.18), the summations run from r = 1 to r = in, 
and Xr is related to through 

2fr = Xr + X^, Xr = fr - (2.21) 

where the sign of the square root is chosen so that | Xr | < 1. Xr is related 
to e_1 in the same way that is related to cosh P. 
2.4 Results for Any Symmetrical Section Line—Passive 

The solutions of equations (2.10) which reduce to the given values v{o), 
i{o) at n = 0 are 

v{n) = cosh nT v(o) — sinh nT Z0i{o) 
(2-22) 

i{n) = —sinh nT' Z0 v(o) + cosh nT' i{o) 
 p 

where e and Z0 are the matrices of §2.3. These may be put in slightly 
different form by using the relations 

sinh «r Z0 = Z« sinh nV 

sinh nT' Zf[ = Zfl sinh wP 
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When (2.22) are interpreted by Sylvester's theorem we obtain 

,(«) = 2iV(fr) [Kxr + XrXo) - ^ f 5i(»)l 
1 -J . v (2.23) 

i(n) = m'itr) \- Cv{o) + l(xr" + V")«(o) 
L Xr — Xr 

where AT'(fr) is the transposed of N(£r) and N{£r) is given by (2.18) and 
the summations run from r = 1 to r = m. 
2.5 Results for Any Symmetrical Section Line—Active 

When the sections contain generators the equations to be solved are 
those of (2.9). The solutions corresponding to the initial values v{o) and 
i{o) are, for w ^ 1, 

v{n) = cosh nT v{o) — sinh «r Z0i{o) 

+ S {cosh (M — P)v Bi0(P - !) _ sinh (w _ P)v ZoCv0{p — 1)} 
P=1 (2.24) 

i{ii) = —sinh nV Z^xv{p) + cosh nV i{o) 

"T S {cosh (« — p)T' Cv0{p — 1) — sinh {n — p)V Z0 Bi (/? — 1)} 
p=i 

These may be simplified somewhat by replacing Z0C and Z0
1B by sinh T 

and sinh f, respectively. 
The series in the above expressions may be summed when the generators 

are such that 

v0(n) = e~n9i0, i0(n) = e~n6v° (2.25) 

where 0 is a scalar and i0 and v0 are column matrices whose elements are 
independent of n. Thus 

v{;n) = cosh nT v{o) — sinh nT Z0i{p) 

+ i(enr - e-"BI)(eT - e^ir'iBi0 - Z0Cvo) 

+ |(e~nr - e-"BI)(e-r - e-eirl{Bi0 + Z0Cv°) 

i(n) = — sinh nV Z^lv{o) + cosh nV i(o) 

+ i(e»r' _ e-ne/)(er' _ e-ei)'\Cv0 - Zf'Bi0) 

+ WnT' - e-nBI){e-v' - e-BlT\Cv° + Z^lBi0) 

provided that the inverse matrices exist. 

(2.26) 
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We may interpret these expressions by Sylvester's theorem. For 
example, 

n ^—n \n 

»(«) = L iv(rr) Kxr" + x;>W - ' Bi(o) 
r=l L Xr — Xr 

lxr_e-"Y 2BCvo\ 
+ 2^r^r -xT^rj (2-27) 

ix;1 - e-ne/ 2BCv0 \1 
+ 2 +xTr^JJ 

where ^(fr) is given by (2.18). 
When the line extends to n = <*> and the sources and end conditions 

satisfy suitable conditions we have the relation 
CO 

v(o) = Z0i(o) - E e-pr[Bi0(p - I) - Z0Cv0(p - 1)] (2.28) 
p—i 

When the impressed field is of the form (2.25) this becomes 

v(o) = Z0i(o) - (er - e-<>ir\Bi0 - Z0Cv0) (2.29) 

provided that the inverse matrix exists. Expressions for v{n) and i{n) 
in such an infinite line may be obtained by using (2.28) or (2.29) in (2.24) 
or (2.26). 

Applying Sylvester's theorem to (2.29) gives 

. tm.,(^ - ^ + £=%,) 

The last term within the braces may be replaced by 

2BCv0 

(X^ - Xr)(Xr1 - e"") 

2.6 Derivation of the Properties of an Infinite Line 
We shall consider a symmetrical section line which is specified by the 

equations 

f(« + 1) = Av(n) — Bi(n) 
(2.10) 

i(n + 1) = —Cv{n) + A'i(n) 

From these equations and the relations A2 — BC = I, AB = BA', A'C = 
CA of (A4.6) it follows that 

v{n -f 1) + v(n — 1) = 2Av(n) 
(2.31) 

i{n + 1) + i{n — 1) = 2A'i(n) 
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If e r is a matrix satisfying the conditions of §2.3, namely, (a) e satisfies 
the equation 

2 cosh r = er + e r = 2A (2.14) 

and (b), every element in e "r approaches zero as n—> ^, and if Z0 is 
defined by v(o) and i(o) for an infinite line as in (2.13), then 

1. In an infinite line 

v(n) = e~',rv(o), W (2.32) 
i(n) = e "r i(o), 

v(n) = Z0i(n) (2.33) 

2. The characteristic impedance matrix Z0 is given by 

Z0 = (sinh T)-1^ = 5(sinh T')-1 = C'1 sinh V = sinh T C"1 ^ ^ 

Z71 = -B-1 sinh T = sinh Y' B'1 = (sinh T')"^ = C(sinh Y)'1 

3. The matrices Z0, B and C obey the commutation rules 

$(e
r)Z0 = ZMer') 

<t>(er)B = B$(eT') (2.35) 

C<I>(er) = HeT')C 

where ^(c1^) is a square matrix representable as a sum of powers of e±r. 
The matrices <i'(er) Zo, 4>(er) B, and O^) are symmetrical. 

To prove these statements we proceed as follows: By direct substitution 
into (2.31) it is seen that v(n) = e~nrv(o) is a solution by virtue of condi- 
tion (a) satisfied by e~r. Since, by condition (b), v(n) —> o as « —» w it fol- 
lows that v(n) is the voltage in an infinite line. Similarly, i(n) = e nr i{o) 
is the current in such a line. Substituting the expressions (2.32) for d(«) 
and i{n) into the difference equations (2.10), setting n = 0, using the 
definition of Z0, and regarding v(o) and i(o) as arbitrary columns gives 

e-r = A - BZ^1 / n 
(2.36) 

e-
r = _czo + A' 

Applying condition (a) in the form of (2.14) to these equations gives 

BZ71 = sinh F, CZ0 = sinh Y' (2.37) 

Since the sections are symmetrical, B and C are symmetrical matrices, and 
from the reciprocal theorem for networks it follows that Z0 is also sym- 
metrical. These remarks and (2.37) lead to (2.34). Setting the expres- 
sions (2.32) for v(n) and i(ii) in the second of the difference equations (2.10) 
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using the definition of Z0, and regarding i{o) as an arbitrary column gives 

g-(n+l)r' = _Ce-nVZo + A'e-nV' 

{A' - e~T')e~nV' = Ce~nTZ0 

Replacing A' — e_r by CZ0, as follows from the case n = 0, and pre- 
multiplying by C_1 gives 

Z0e~n r' = e~n rZ0 

and this leads to the first of equations (2.35). From (2.34) and the rela- 
tions AB = BA', CA = A'C we have 

sinh T B = B sinh F' cosh F B = B cosh F' 

C sinh F = sinh F' C C cosh F = cosh F' C 

Addition and subtraction leads to 

e±rB = Be±r' Ce±r = g±r'C 

from which the last two of equations (2.35) follow. Since each of equations 
(2.35) expresses the equality of a matrix and its transposed, it follows that 
the matrices are symmetrical. 

Equation (2.33), which is almost self-evident on physical grounds, fol- 
lows from 

v{n) = e~"rv(o) = e~nrZ0i(o) 

= Z0e~nl i(o) = Zoi{n). 

2.7 Proof of Relations for Any Symmetrical Section Line 
The expressions (2.24) for v{n) and i{n) in a line whose sections contain 

generators may be verified to satisfy the difference equations (2.9). The 
expressions (2.34) for Z0 and the commutation rules (2.35) for B and C 
are used in the verification. Setting n = 1 in the expressions for v{n) and 
i{n) gives the difference equations (2.9) and hence v{n) and i{n) are the 
solutions whicb correspond to the initial values v{o) and i{o). 

In order to derive the relation (2.28) between v{o) and i{o) for an infinite 
line we put the hyperbolic functions in the expression (2.24) for v{n) in 
exponential form and multiply through by 2e~"r 

2e~n?v{n) = v(o) - Z0i(o) + E e-pr[Bi0(p - 1) - Z0Cvo(p - 1)] 
p=i 

+ e 2nT[v{o) + Zoi(o)] 

+ e-nr E e~(n-p)r[Bi0(p - 1) + Z0Cv0(p - 1)] 
p=i 



160 BELL SYSTEM TECHNICAL JOURNAL 

Hence, letting w —► oo and using condition (b) satisfied by e r, equation 
(2.28) is obtained provided that (i) the terminal conditions at the far end 
are such that v{n) remains finite, (ii) the sum in (2.28) converges, and (iii) 
the expression in the last line in the equation just above approaches zero 
as » —► qo . 

The results obtained by the formal application of Sylvester's theorem 
may be verified by using the results of Appendix II and writing iV(fr) as 
the product of a column matrix and a row matrix. They may also be 
verified more directly. For example, setting « = 0 in the expressions (2.23) 
for v{n) and i{n) in any passive symmetrical section line and using 

m 
T, Nttr) = r, (2.38) 
r-1 

which follows from Sylvester's theorem, we see that z)(«) and i(n) reduce 
to the appropriate values v{o) and i(o) at n = 0. Substituting v{n) and 
i{n) into the difference equations (2.10) and using 

BC = A2 - I 

(/fr - ^)iV(rr) = NitrWr ' A) = 0 ^ ^ 

= N^)B 

CNit) = A'(f)C, 

shows that they are solutions. The second of the relations (2.39) follows 
from the fact that A(fr) is proportional to the adjoint F(.tr) of /(fr)- In 
the third and fourth relations 

iV(f) = 
\m\a) 

which is in agreement with the definition (2.18) of A(fr). lo establish 
the third relation we start from,10 

(f/- d)F(r) = /1/(01 

(f/ - a) NM = / i/(r) \/\m r" 

Postmultiplication by B gives 

{{I-A) B = B (/(f) |/1/(f) I1" 

We also have 

10 F.D.C. §3.5. 

ai-Ava) =i\m\ 

(f/ - ^')iv'(f) = I l/(r) l/l/(f) I1" 
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Premultiplication by B and use of BA' = AB gives 

(!•/ - A)BN'(S) = B |/(f) |/|/(r) I'" 

Hence, the third equation in (2.39) holds except possibly for ^ , and 
from the concept of continuity it holds there also. The fourth equation in 
(2.39) may be proved in the same manner. 

The expression (2.20) for Z0 may be obtained by letting n become very 
large in the expression (2.23) for v(n). v(o) and i(o) must be related so that 
v{n) remains finite. Since | Xr | < 1 and the Xr's are unequal the coefficients 
of X7" must vanish. This requires 

NtMo) = WOM") 
Xr — Xr 

Summing r from 1 to m and using (2.38) gives the required expression for Z0 . 
2.8 The Unsymmetrical Section Line 

The method used here is analogous to those described in Appendices I and 
II for the uniform line and the symmetrical section line. The other methods 
apparently do not lead to the simplification which occurs in the symmetrical 
case. 

Equations (2.2) and (2.1) lead to the difference equations 

Yiiv{n + 2) + [Fix + F22]^(w + 1) + 12if(w) = —i°(n + 1) A~j0(n) (2.40) 

Zni{n + 2) — [Zn + Z^iQi + 1) + Zni^n) = v0{n + 1) — u0{n) (2.41) 

Both of these equations are of the form 

Gx{n + 2) + Hx{n + 1) + G'x{n) = g(n) (2.42) 

in which G and H are square matrices of order m, 11 being symmetrical and 
G' being the transposed of G. When the sections are passive equations 
(2.40) and (2.41) become 

I i2f(» + 2) + [I 11 + I 22MW + 1) + Ynv{n) = 0 (2.43) 

Ziii{n + 2) — [Zn + Zi^iiji + 1) + Zi&in) = 0 (2.44) 

In the passive, unsymmetrical case the expressions for v{ri) and i(w) are 
of the form 

v{n) = PNna + PA~nd 
(2.45) 

i{n) = OA" a — QA~nd 

Comparison with (A2.8) shows that in the symmetrical case P = P and 
Q = Q. The minus signs over P, Q, and d indicate that they are associated 
with propagation in the negative direction. The propagation constants of 
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the m modes of propagation are the same in the positive as in the negative 
direction, as indicated by the appearance of A" and A-" in (2.45). Cor- 
responding to any given propagation constant say Xr, there are two modes of 
propagation, one in a positive direction and the other in the negative 
direction. The distribution of the voltages corresponding to these two 
modes are given by the rth columns in P and P, respectively. The fact 
that P and P differ shows that the distributions differ according to the 
direction of propagation even though the propagation constant is the same. 
A is still the diagonal matrix defined in (A2.3) but now the computation of 
the elements K is more difficult than when the section is symmetrical. 
They are defined as the roots of the equation 

\G\2 + H\ + G'\ = 0 (2.46) 

which are less than unity in absolute value. The second of the equations 
(A4.5) shows that the roots of (2.46) are the same whether the Z's or the 
F's are used in place of G and H. Of course, this is to be expected on 
physical grounds. The third of the equations (A4.5) may be used to show 
that the roots of (2.46) are also the roots of 

\A - I \B / HK 
= 0 (2.47) 

XC \D - I 

From the form of (2.46) it follows that if Xr is a root so is Xr . This fact 
may be used to simplify the determination of Xr. When the substitution 

= X + X-1, X = f - Vf2 - 1 (A2-4) 

is made equation (2.46) may be written as 

0 = 1 (G + G')f + H + (G' - G) I 

0 = 1 (G + G')r + H ! 

+ (f2 — 1) times the sum of ^ determinants each ob- 

tained by replacing two columns of 1(G + G')f + // | by the cor- 
responding columns of (G — G') 

. . , , m(m — l)(w — 2)(m — 3) . 
+ (f2 — 1) times the sum of  ^  determi- 

nants each obtained by replacing four columns of |(G + G') f + 
II |by the corresponding columns of (G — G') 

+ • • • 

The last equation is a polynomial of degree m in f which is to be solved 
for its roots fi, f2, • • • Tm . For simplicity we assume that these roots are 
distinct. Xr is then determined from fr by the relations (A2.4), the sign 
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of the radical being chosen so that | Xr | < 1 as in the symmetrical case. In 
his second paper Koizumi has given a procedure which amounts to an 
alternative method of determining A. 

We shall first assume that the F's are known and that our equations are 

i(n) = V nv(n) + Ynv{n + 1) 
(2.48) 

—i(n + 1) = Vnv(n) + Vavin + 1) 

As described above A may be computed from the determinantal equation 

|/(X) | = 0 

where /(X) represents the matrix 

/(X) = F12X2 + (Fa + F22)X + F21 (2.49) 

Let pr be proportional to any non-zero column in F(Xr) where F{\) is the 
adjoint of /(X) and let pr be proportional to any non-zero row of FQKr). 
Then the matrices P and P in the expressions (2.45) for v{n) and i{n) are 
given by 

P =[px,p2,--- pm] 
(2.50) 

P = [Pi , P2 , • • • Pm] 

where pr is the column obtained by transposing the row p'r . The matrices 
Q and Q are obtained from P and P by means of the equations 

Q = YnP + F12PA = — F22P - Y2lPN~l 

- - , _ _ (2.51) 
Q = - YnP - F12PA 1 = F2cP + FaiPA 

which are derived from (2.45) and (2.48). 
The properties of the individual columns of P and P lead to the relations 

I i2PA2 -\- (1 a + 1 22)PA + Y21P = 0 
- _o - _ (2.52) 

1 i^PA + (1 a + Y12)PA I 21P = 0 

and these guarantee that the difference equations (2.48) will be satisfied 
when the expressions (2.45) for v{ii) and i{n) are used. 

When the Z's are known instead of the F's the procedure is much the 
same. The difference equations are 

v{n) = Zni{n) - Zi2t(« + 1) 
(2.53) 

v(n + 1) = Z2ii{n) — Z22i(» + 1) 

and the equation to determine the Xr's is 

1/(X) 1 = 0 
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where now /(X) represents the matrix 

/(X) = Z12X2 — (Zn + Z22)X + Z21 (2.54) 

Let qr be proportional to any non-zero column in ^(Xr) where /^(X) is the 
adjoint of /(X) and let qr be proportional to any non-zero row of F(^T). 
The matrices Q and Q in the expressions (2.45) for v(n) and i(n) are given by 

e -3.1 (2 55) 

Q = [qi, Qm] 

where gr is the column obtained by transposing the row ql . From (2.45) 
and (2.53) equations for P and P in terms of Q and Q are obtained: 

P = ZnQ - ZnQN = -Z^Q + Z^QJC1 

(2.56) 
P — —Z\\Q -\- Z12QA 1 = Z22Q Z21QA 

The difference equations (2.53) are satisfied by our expressions for v{n) and 
i{n) by virtue of the relations 

Z12(2A2 - (Zu + Zn)QN + ZnQ = 0 ^ ^ 

Z12QA 2 — (Zu -f- Zvi)Qh. + Z21Q = 0 

which are a consequence of the properties of the individual columns of 
() and Q. 

If the system extends to w = + » and if the voltages and currents are to 
remain finite at n = 00 the elements of a must be zero and the expressions 
(2.45) for v{n) and i{n) become . 

v{n) = PAna = PAnP~lv(o) 

i(n) = QAn a = QAnQ 1i(o) (2.58) 

v{n) = PQ^iin), On) = QP~lv{n) 

where we have assumed that P_1 and Q~l exist. We accordingly introduce 
the characteristic impedance and admittance matrices Z0 and Y0 associated 
with propagation in the positive direction, i.e., in the direction of n in- 
creasing. 

v{n) = ZJQi), i{ii) = Y0v{n), Z0 — F,,1 

Zo = PQ'1 = Zu - ZuQAQ'1 = -Z20 + ZnQA-'Q'1 (2.59) 

Y0 = QP~l = Fa + F12PAP"1 = - Fsj - YnPA^P'1 

Incidentally, since Z0 must be a symmetrical matrix the above equations 
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show that ZuQAQ 1 and ZziQN^QT1 are symmetrical. Z0 and Y0 satisfy the 
relations 

Z0CZ0 + ZJ) - AZ0 - B = 0 YoBYo + YoA — DY0 — C = 0 

(Z22 + Z0)Zri{Zn - Z0) = Z21, (F22 + F0)Fr2
1(F11 - F0) = F21 (2.60) 

ZoQNQT1 = PKP^Zc FqPAP-1 = QAQ~lY0 

The characteristic and admittance matrices Z0 and Y0 associated with 
propagation in the negative direction are introduced in a similar way. 
Suppose the system extends ton = — . Then a = o and 

v{n) = PA-" a = PA-nP-1z;(o) 

i{h) = QN~na = -0A-nQ-1i(o) (2.61) 

v{n) = —PQ~li{n), i(n) = —QP''lv{n) 

Hence we write 

v{n) = —Z0i{n), i{n) = —Y0v{n) 

Zu = PQ-1 = Z\\ + Z12QA-1Q-1 = Z22 - Z21QAQ-1 (2.62) 

F = QP-1 = - Fn - F12PA-1P-1 = F22 + F21PAP-1 

Z0 and F0 saiisfy the relations 

Z0CZ0 - ZJ) + AZ0 - B = 0 YoBYa - Y0A + DY0 - C = 0 
_ . _ _ , _ (2.63) 

(Zu - Za)Zr1
i(Z22 - Zo) = Z12 (Fn + F0)Fr1

1(F22 - F0) = F12 

The fact that Q'{Z0 + Z0)Q = P'(Y0 + Y0)P is a diagonal matrix may 
be used as a check on computations. 

When the expressions (2.45) for v(n) and i(n) are placed in (2.3), ;0(«) and 
u0(n) being zero, we obtain the relations 

PA-1 = AP + BQ PA — AP - BQ 
. „ . _ . (2-64) 

OA = CP + DQ QA = -CP + DQ 

When the typical section contains generators the difference equation to 
be solved is of the form (2.42) 

Gx(n + 2) + IIx(n + 1) + G'x(n) = gin) (2.42) 

This is true for symmetrical as well as unsymmetrical sections, G being a 
symmetrical matrix in the former case so that G' = G. The expressions for 
f(w) and i(n) are those of (2.45) with the particular solutions added: 

vQi) = PA"a + PA "a + u(n) 
(2.65) 

iin) = QA"a — QA "d + j(n) 
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where P, P, Q, Q are determined as before and u(n) and j(n) depend upon 
the generators. 

Here we shall consider only the physically important case in which the 
voltages of the generators in the nth section are proportional to e " where 6 
is a constant. In this case g(«) may be expressed as 

where g is a column matrix whose elements are independent of n. A 
particular solution is obtained by assuming 

In this case, a particular integral may be obtained by a method similar to 
one described in §5.11 of F.D.C. 

Classical Solution of Uniform Transmission Line Equations 

For the sake of convenience we again assume that there are three circuits 
in the transmission line. The equations to be solved are: 

We adopt here the notation associated with equations (1.19) and (1.20), 
/(y2) being the characteristic matrix of ZV, F(y2) the adjoint of/(y2), and 
7i , 72, 73(w = 3) being the roots, supposed distinct, of j /{y1) \ = 0. The 
propagation constants 7i, 72,73 are those square roots of 71,72,73 which in 
physical systems have a positive real part. 

The solution may be constructed" as follows: Let the column pr be 
proportional (with any convenient constant of proportionality) to any non- 
zero column of F(yl). The non-zero columns of P(7r) are proportional to 
each other according to a theorem in matrix algebra." Construct the 
square matrix P from the columns pi, pz, Ps '■ 

g{n) = ge nB (2.66) 

APPENDIX I 

P = iPh Pii Ps] 
11 The method is that described in F.D.C. §5.7(a) and §5.10 
1S F.D.C. §3.5 Theorem D. 

(Al.l) 



TRANSMISSION LINE EQUATIONS 167 

and obtain the square matrix Q from P: 

Q - ZrlPG = YPG~l 

where G is the diagonal matrix 

71 0 0 
G = 0 72 0 

_ 0 0 73_ 

The voltages and currents at any point x are 

v(x) = PM(x)a + PM(—x)d 

i(x) = QM{x)a - QM{—x)d 

(A1.2) 

(A1.3) 

(A 1.4) 

where a and d are arbitrary column matrices associated with propagation 
in the positive and negative directions of x and M(x) is the diagonal matrix 

M{x) = 

The values of a and d are to be determined from the boundary conditions. 
When the line extends to x = oc 

-Til 0 0 
0 0 (A1.5) 
0 0 e~ysx 

v{x) = PM ix)P~1vio) = Z0i{x) 

i{x) = QM{x)Q~1i{o) 

where the characteristic impedance matrix Zq is given by 

Zo = PQ'1 = PG~lP~1Z = PGP"1 Y~l 

= ZQG~1Q'1 -- V'QGQ'1 

(A1.6) 

(A1.7) 

Since v = preyrZ and i = qreyrX, where qr is the rth column of Q, are solutions 
the differential equations give 

(hi - ZY)pr = 0, (hi - YZ)qr = 0 

and from these it follows that 
,-1 

(A1.8) 

(A1.9) P~lZYP = Q~l YZQ = G' 

The relations (A1.8) may be used to prove the following: 
1. The elements in the rth column of Q are proportional to those in the 

non-zero rows of /^r)- 
2. The matrix P'Q is a diagonal matrix and from this it follows that if \p 

is any diagonal matrix 

WP-1)' = QiQ'1 (Ai.io) 
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3. The characteristic impedance matrix Zo satisfies the relation 

Z = ZqFZO (ALU) 

4. The inverse matrices P~l and Q~l always exist if 71. 72,73 are distinct. 

APPENDIX II 

Classical Solution of Symmetrical Section Line Equations—I 

The method of this section is very similar to that of Appendix I. The 
equations to be solved are (2.10) or one of the sets 

v{n) = Zni{n) — Z 121(11 + 1) 

v(jn -f- 1) = Z 121(11) — Ziii(n + 1) 

i(n) = Yiiv(n) + Yi2v(n + 1) 

-i(n + 1) = Yi2v(n) + Yiiv(n + 1) 

which are obtained from (2.5) and (2.6). We shall use the notation asso- 
ciated with equation (2.19),/(f) being the characteristic matrix of A, E(f) 
the adjoint of /(f), and f 1, fz, • • • fm the roots, assumed unequal, of the 
characteristic equation l/(f) | = 0. The diagonal matrices A and S are 
defined by 

(A2.1) 

(A2.2) 

A = 
"Xi 
0 
0 

0 
Xz 

0 

2 = 
Vf' -1 

0 
0 

0 .. 
\/fl-l 

vU -1_ 

(A2.3) 

where 

2fr — Xr + Xr X, = fr - Vf? " 1 = 
1 (A2.4) 

fr +Vll-1 

In general, electrical energy will be dissipated in the typical section and 
from the physical significance of Xr, as seen from equations (A2.8) below, it 
follows that the sign of the radical in (A2.4) may be chosen so that | Xr | < 1. 
Since = fr - Xr = KX/1 - Xr) it follows that 

S = |(A-1 - A) (A2.5) 

Let the column matrix sr be proportional to any non-zero column in 
E(fr) where F(f) is the adjoint of /(f). (It follows from the theory of 
matrices that the non-zero columns of E(f r) differ from each other only by a 
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multiplying factor.) The matrix 5 is then formed by taking Si to be the 
first column, S2 the second and so on. 

s = [si,S2, 5m] (A2.6) 

Similarly let the row matrix l'r be proportional to any nonvanishing row of 
F(^r) and form the matrix T where 

T tm] (A2.7) 

in which tr is the column matrix obtained by transposing t'r .13 

Solving our difference equations for the passive case by the customary 
method gives the expressions 

v(n) = PAna + PA~nd 
(A2.8) 

i(n) = QAna — QA nd 

for the voltages and the currents. P and Q are square matrices and a and d 
are column matrices whose elements are determined by the boundary con- 
ditions. a and d are of the same nature as constants of integration. The 
minus sign over d indicates that it is associated with propagation in the 
negative direction, i.e., in the direction of n decreasing. 

P and Q may be chosen in a number of ways, each choice requiring 
different values of a and d to represent the same system. In all cases, 
however, the rth column of P may be expressed as Q!r5r where ar is a scalar 
multiplier which may depend upon r. Similarly the rth column of Q may be 
expressed as /3r/r. When either P or Q has been chosen the other one is 
fixed since equations (A2.2) and (A2.1) require 

Q = YnP + T.oPA = -YnP - YnPA'1 

P = ZnQ. - ZnQA = -ZnQ + Z12QA~1 

Some useful choices are, 

(A2.9) 

1. P=S, Q = - Y12SZ = B~lSZ 

2. 

R
 

to II Q = zv2
ls = CS 

3. Q=T, P = ZuTZ = C~lTZ 

4. Q = T2 P = - YT2T = BT 

(A2.10) 

The particular choice to be made depends upon the system of difference 
equations which is being used. In choices 1 and 2, T is not required and in 
3 and 4, 5" is not required. However, if both S and 2' are known some of 

13 Methods of determining sr and I' are available. A description will be found in 
F.D.C. §4.12. 
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the matrix multiplication may be avoided. Taking choice 1 as an example, 
we may determine the rth row of Q from the expression /3r/r. To determine 
/3r only one element in the rth column of — I need be known, for fir is 
the quotient obtained by dividing this element by the corresponding element 
in tr. The product P'Q must be a diagonal matrix, and the same is true of 
S'T. This may serve to check computations. 

That the expressions for v(n) and i(n) given by (A2.8) and (A2.10) satisfy 
the transmission equations (A2.1), (A2.6) and (2.10) may be verified by 
direct substitution and use of 

5 (A + A"1) = 2AS r(A + A-1) = 2A'T (A2.ll) 

These relations follow from the properties of the individual columns of 
S and T. 

When the system extends to n = a must be zero in order that the 
voltages and currents may remain finite. This is true because Xr is chosen 
so that 1 Xr | < 1- From equations (A2.8) it follows that 

v(n) = PNn a = PAnP1v{o) 

i(n) = <3Ana = QAnQ~1i{o) (A2.12) 

v(n) = PQ~li{n) i{n) = QP lv{n) 

the reciprocal matrices Q~l and P"1 always exist when the sections are 
symmetrical and the roots , f2, • • • fm distinct. The last equations in 
(A2.12) suggest the introduction of the characteristic impedance and 
admittance matrices Z0 and T0 : 

vfn) = Z0i{n), i(n) = F0»(«), Z0 = VJ1 . 

Z0 = PQ'1 = Zn - ZnQAQ'1 = -Zu + Zx^A"^"1 

= SZ^S-'B = SZS~1Zn 

= ZnTZT^ = BTZ^T"1 (A2.13) 

Y0 = QP'1 = Fn + YnPAP'1 = - Yn - Fi2PA"1P"1 

= - YnSZS'1 - CSZ-'S'1 

= TZ'1T~1C = -TZT^Yn 

Not all of the expressions for Z0 and V0 obtainable from (A2.10) have been 
included in (A2.13). Z0 and Y0 are symmetrical matrices. Although P and 
Q are arbitrary to some extent the same is not true of Zo and F0. Com- 
puted values of Z0 and Y0 may be checked by use of the relations 

A2 — / = (ZoZT*)2 = {VnYc)
2 

Z0CZ0 = B, Y0BY0 = C (A2.14) 

F0Zi2 = -FI2Z0 



TRANSMISSION LINE EQUATIONS 171 

Sometimes it is desirable to terminate a line consisting of a finite number 
of sections by a network which simulates an infinite line. As is known, the 
elements in one such network may be obtained from I'0. Every terminal 
is joined to every other terminal, including the return terminal (denoted 
by the subscript o), by the branches of this network. The admittance of 
the branch connecting terminal i to terminal 7, i 7* 0,j 9* 0, is —y,/ where 
ya is the element in the fth row and 7th column of V0. The admittance 
of the branch connecting terminal i to terminal 0 is ya + ya + • • • + yu 
+ ■ • • + y'im , i.e., it is the sum of all the elements whose first subscript is i. 

APPENDIX III 

Classical Solution of Symmetrical Section Line Equations—II 

When the electrical properties of a typical symmetrical section are to be 
determined by measurement, equations (A2.1) and (A2.2) show that Zn 
and Fu may be obtained by measurements at one end. In order to obtain 
F12 and Z12 measurements have to be made at both ends. Expressions for 
v(n) and i(n) will now be given which depend only upon Zn and Fn and 
hence are useful in case the measurements are restricted to one end. 

The method is based upon the equations 

v(n + 2) + v(n) = Zii[i{n) — j(n + 2)] 
(A3.1) 

i(n + 2) + i(n) = Yn[v{n) — v(n + 2)] 

which may be derived from (A2.1) and (A2.2). Combining these equations 
leads to 

[/ — ZiiFii][z>(« + 2) + v(n — 2)] + 2 [/ + ZnYi\\v{n) = 0 

[/ — I nZn][i{n + 2) + i{n — 2)] + 2 [/ + FiiZii]i(«) = 0 

The first step in the solution is to solve the equation 

I R-I ~ Zulu | = 0 (A3.2) 

for its roots mi , M2» • • • Mm which we shall suppose are distinct. The diag- 
onal matrices M and M* are defined by 

Mi 0 ... 0 
0 M2 

M = 

0 Mm_ 

M* = 

rMl 0 
A 

M2 
0 

0 

(A3.3) 

and A is defined as in (A2.3) where Xr is given by 

X Mr = 
1 + x; 

.1 - XL 
(A3.4) 
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The sign of ^ is chosen so ".hat | Xr ] < 1, and this is the value to be used 
in M1. However, there is an ambiguity in the sign of Xr which is inherent 
in this method. A relation between A and A/1 is 

Mh = (/ + A2)(/ - A2)"1 (A3.5) 

Let Ur be proportional to any non-zero column and w'r be proportional 
to any non-zero row of the matrix adjoint to [/jr/ — ZnYn] and form the 
matrices 

U = [ui ,112, Um] 

W = [wi ,W2 , • • • Wm] 

(cf. equations (A2.6) and (A2.7) for S and T) where w,. is the column 
obtained from wT. 

The voltages and currents are given, as before, by 

v{n) = PA.71 a + PA~nd 
(A2.8) 

i(n) = QA"a - QA nd 

and there is again a number of ways in which P and Q may be chosen. In 
all cases the rth column of P may be expressed as oirnr and the rth column of 
Q as QrWr ■ The equations fixing Q when P is chosen and vice versa are, 
from equations (A3.1) 

n = YnPAT* 
(A3.6) 

P = ZnQM 1 

where M"* is the inverse of /f*. Equations (A3.6) may also be obtained 
from (A2.10). 

Suitable choices for P and Q are 

1. P = U, Q = YnUM~i = ZTiUM* 

2.P=UMi, Q = Fut/ = ZAiUM 
(A3.7) 

3. Q = W, P = ZnWM'* = YYiWM* 

4. <2 = WM*, P = ZnW = YTiWM 

P'Q and U'W must be diagonal matrices. That the expressions for v{n) 
and i{n) just derived satisfy the difference equations (A3.1) may be verified 
by making use of 

UM = ZnYnU, WM = YnZnW (A3.8) 

Equations (A3.8) follow from the properties of the individual columns of 
U and W. The characteristic impedance and admittance matrices are 



TRANSMISSION LINE EQUATIONS 173 

given by 

= PQ'1 = ZnQM^Q'1 = PM^p-'Yn1 

= UM^LT'Zn = UMhirlYYi 

= ZnWM^W'1 = YnWM^W1 

Y0 = QP'1 = YnPM^p-1 = QA^Q-'ZTi 

= VuUM^ir1 = zviUM^ir1 

= WM~Hv~lYn = WMHV-'Zu 

The matrices Z0 and Y0 may be checked by means of the relations 

ZoYn = ZnY0, Z0YnZ0 = Zn , Y0ZnY0 = F„ (A3.10) 

Another set of solutions may be based upon the equations 

2v(n) = —Zu[i(n + 1) — i(n — 1)] 
(A3.ll) 

2i(n) = Y u[v{;n + 1) — v{n — 1)] 

which are derivable from (A2.1) and (A2.2). Combining these equations 
gives, upon using YnZw = —BC, 

v(n + 2) — 2v(n) + v(n — 2) = iBCv(n) 
(A3.12) 

i(n -f- 2) — 2i(n) -f" i(n — 2) = 4CBi(n) 

However, we shall not consider these equations here beyond pointing out 
that they lead to 

P=ZuQZ, Q = -YnP? 

PZ2 -- BCP, QZ2 = CBQ 

which may also be derived from (A2.10). 

APPENDIX IV 

Relations Between the Square Matrices of 
a Multi-Terminal Section 

When the reciprocal theorems of network theory are applied to equations 
(2.1) and (2.2) it is found that Zn , Z21, Fn , F22 are symmetrical and 

Z21 = Z\2, I 21 = I 12 (A4.1) 

i.e., Z21 and F21 are the transposed matrices of Zn and IT2, respectively. 
Solving equations (2.1) for the currents and comparing the result with 

(2.2) shows that 

I"Zn Z12I 1 = fFn Fw"] f i0(n) ~| _ [Yu Fi2~| rf0(«)"] 
\_Z21 Z22J F22J' I-An)] [_ F21 F22JL"0(w)J 
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These are partitioned matrices. The square matrices have 2m rows and 
columns and the column matrices have 2m elements. The first of these 
relations may be written as 

[s £][?: a-G;] »«> 

where / denotes the unit diagonal matrix of order m. Multiplying the two 
matrices on the left together and equating the elements of the product 
to the elements on the right gives 

ZnFii + Z12F21 = I 

ZllFl2 + Zl2F22 =0 ,KA ^ 
(A4.3) 

Z21V11 + Z22F2X = 0 

Z21F12 -j- Z22F22 = I 

Transposing the matrices in these equations leads to other relations. Thus, 
from the first we obtain FnZu + F12Z21 = I. These equations also yield 
expressions for the F's in terms of the Z's and vice versa. 

A somewhat similar treatment involving equations (2.1) and (2.3) leads 
to expressions for the Z's in terms oi A, B,C and D, The 1 s may be like- 
wise expressed. These relations are given in the following table. 

'A B' 
C D 

T§ II Fn1 = Zn ~ Z12Z22Z21 

Yu = C - DB~lA - -Br 1 F121 — Z21 — Z22Z12Z11 

F21 = -B'1 T211 = Z12 — ZnZzi Z22 

F22 = B A Y22 = Z22 — Z 21Z11Z12 

Zn = AC'1 Zn = Fn — F12F22 F21 

Z12 = AC-XD - B = C'1 ZT2 = F21 - F22Fr21Fu 

Z21 = C'1 ZTx1 = Fn - F11Fii1F22 

Z22 — C D Z22 = F22 - F2iFri1F12 

A = ZiiZzi = — IT11 F22 

B = Z11Z21Z22 — Z12 — 1 21 

c = Zn1 = F12 - F11F?1
1F22 

D - Z^lZv = — FnFJi1 

r r D' -B'~\ AD' -BC = I AB' 

\ L-C A' J CD' = DC DA' - 

(A4.4) 

f v0{n) 1 _ [-4 Bl r n0(n) 1 
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The following equations in which X is an arbitrary scalar multiplier may 
be verified by equating coefficients of powers of X and using the relations 
just given. 

(Zn ~ XZii)(111 + XF12) = (XZ12 — Z22)(XT22 + F21) 

(X2Zi2 — XZ11 — XZ22 + Z2i)(Fii + XF12) 

= (XZ12 — Z22)(X2I 12 + XI'11 + XF22 + F21) (A4.5) 

f-F21 0¥ 
L 0 

\a - r \b 
XC \D - 

! = rXF22 + F21 X/ 1 
I j [_ X/ XZ22 — Z21J 

Sometimes it is of interest to obtain the elements of F12, say, when 
Zi,, Z22, Fu , F22 are known. Relations helpful in studying this problem 
are 

FnZiiFi2 = F12Z22F22, FiiZiiFn— Fu = F12Z22F21 

F121221121 = in — zr,1 Z12 = —Z11F12F221 

F21F11 F12 = F22 — Z221 Z21 = — F^OTiZu — I) 

When the typical section is symmetrical some simplification takes place 
and we have 

Fn = F22 Zh = ZO2 A = D' AB = B A' 

F12 = I'21 Z12 = Z21 B = B' A'C = CA 

C = C A2-BC = / (A4.6) 

ZnFii + Z10F12 = / A'B~lA - C = B-1 

Z11F12 + Z12Fi, = 0 

APPENDIX V 

Properties of the Matrix GX2 + //X + G' 

The matrix 

/(X) = GX2 + i7X + G' (A5.1) 

which entered the discussion of the case of unsymmetrical sections has a 
number of interesting properties which are given below. G and B are 
square matrices with m rows each, and H is required to be symmetrical. 
As before, we shall denote by Xi, • • • Xm , X71, • ■ • X^1 the 2 m roots of the 
determinantal equation 

|/(X) 1 = 0 
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and we shall suppose these roots to be distinct. Let the column kT and the 
row It be such that 

krlr = F{\r) (A5.2) 

where F{\) is the matrix adjoint to /(X), and let the square matrices K and 
L be defined by 

W 

K = [^1 , &2 , ' • • ^m], L — 
h 

lr 

(A5.3) 

Comparison of (A5.3) and (2.50) suggests that when G and H are expressed 
in terms of the F's we have the relations 

K = P, L = P' (A5.4) 

The method of choosing the column pr and the row p'r shows that they are 
related by 

Prp'r = yrF(\r) 

instead of (A5.2) where jr may turn out to be any non-zero constant, and 
consequently equations (AST) are not satisfied in general. Nevertheless K 
and L may be regarded as particular choices for P and P'. In the same way 
K and L may be regarded as particular choices for Q and Q' when G and II 
are expressed in terms of the Z's. There is still some arbitrariness connected 
with K and L since the product krlT is unchanged when the £r is multiplied 
by some number and K is divided by the same number. 

The relations which correspond to (2 ':2) and (2.57) are 

GA'A2 + HKN + G'K. = 0 
(A5.5) 

GL'ST2 + Z/Z/A"' + G'L' = 0 

where A is the diagonal matrix whose elements are Xi, X2, • • • Xm . These 
relations are consequences of the properties of kr and lr. Two more rela- 
tions may be obtained by transposition. From the first of (A5.5) and the 
transposed of the second it follows that 

GKKKr1 + + G'KK~lK~l = 0 
(A5.6) 

L~l\LG + 11 + L-\-lLG' = 0 

where it is assumed that the reciprocal matrices K 1 and L 1 exist. Com- 
binations similar to KKKT1, A'A^AT1, etc. enter the expressions (2.59) 
for Zo and F0. 
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By differentiating the equation 

/(X)F(X) = A(X)/, 

where A(X) is the determinant 

A(X) = |/(X) | = | GX2 + FX + G' |, 

it may be proved that 

GKAir1 + H + LT'ALG = L~lEKrl 

G'KA~lK'1 + // + L~lN~lLG' = -L~lEK~l 

in which E is the diagonal matrix 

r (i) 
A(Xi) 0 ... 0 

177 

E = 

(i) 
0 a(x2) 

(1) 
A(Xm)j 

and 
(1) r 

A(Xr) = [ .x A(X) cX Jx=xr 

(i) 
Since the roots Xr are assumed to be distinct, A(Xr) 5^ 0. 

We also have the equations 

KE~XL = L'E~lK' 

GKAE~lL - GL'A~lE~lK' = I 

(A5.7) 

(A5.8) 

The first equation of (A5.8) shows that KErlL is a symmetrical matrix. 
From this and the second equation it follows that 

GA'A/v"1 - GL'A~lL'~l - L~'EK~l (A5.9) 

From the first of equations (A5.7) and the second of (A5.6) 

GKAK~l - L~lA~lLG' = rlEK~l (A5.10) 

and the comparison with (A5.9) shows that the matrix GL'AT^L'^1 is sym- 
metrical. The other matrices of this type are also symmetrical as may now 
be seen from equations (A5.6) and (A5.7). Results of this sort may be 
obtained from physical principles by noting that Z0 and F0 must be sym- 
metrical matrices. 
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As an example of the application of these formulas we assume that G and 
H are expressed in terms of the F's. Then we may take K and L' to be 
particular choices of P and F and equation (A5.9) becomes 

FjoPAP-1 - IToPA-'P^1 = (P'TlEP-\ 

From equations (2.59) and (2.62) 

Y0 + F0 = YioPAP-1 - F12PA_1P-1 

and hence 

F'{Y0 + Y0)P = E. 

For the more general choice of P and P allowed in §2.8 the diagonal matrix 
E is replaced by a general diagonal matrix. Similarly it follows that 

Q'{Z0 + ZJQ 

is a diagonal matrix. 



Engineering Problems in Dimensions and Tolerances 

By W. W. WERRING 

Dimensional Units 

The basic unit in most considerations of dimensions in the United States 
is the inch. The value of the inch is so important that many companies 
including the Bell System maintain in their measurement laboratories a 
standard yard bar calibrated against the standard at the National Bureau 
of Standards. In spite of this it is an interesting and curious fact that 
though all have been much concerned over the legal value of the dollar 
there has been little interest even among engineers in the exact legal value 
of the inch. Actually there is no single answer to so simple a question as 
"What is an inch?" In fact, we have changed from a British inch and our 
own legal meter, to our inch and the International meter and now through 
action of the American Standards Association we are actually using an inch 
based on conversion from the International meter which is neither our 
own legal inch or the British legal inch—and the British are using it too. 
Table I shows this history of the legal inch in the United States. 

It will be seen that under the present status there exists a difference of 
two parts in a million between the legal inch and the inch used in the di- 
mensional work of industry. This difference is more theoretical than real 
in small dimensions and industrial use. The bill before Congress, sponsored 
by the Bureau of Standards is intended to eliminate this as well as any 
possible ambiguity in the U. S. inch. 

Decimal Dimensioning 

In subdividing the inch the modern trend in industry is toward the use of 
decimals instead of the older common fractions although fractions continue 
to be used, especially for dimensions of certain materials such as iron pipe, 
lumber, phenol fiber. In fact even a special decimal system based on using 
only the tenths and fiftieths of an inch is being considerably discussed by 
general industry. This system would use a scale on which the smallest 
division is or -020" instead of = .0156". It is in use by the Ford 
Motor Company and the values shown in Table II are some of those used 
in place of common fractions. The decimal equivalents of these common 
fractions are also shown rounded to 3 decimal places in accordance with 
American Standard Rules for Rounding off Numerical Values Z25.1-1940. 

In the Ford system one and two-digit decimals carry the general toler- 
179 
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ance of ± .010". When greater accuracy is required three-place decimals 
are used to express a minimum and a maximum value. 

The adoption of decimal dimensioning for all drawings prepared at Bell 
Telephone Laboratories is being actively considered. However, adoption 

TABLE I 
History of United States Dimensional Standards 

Action Resulting Dimensional Relationships 

Adoption for Customs Service and for distribution to individual states of 
standards intended to be the English yard based on a certain portion of 
an 82 inch bar imported in 1813. The portion selected was supposed 
to be identical with the English yard. 

Official copy of new British Imperial 
Yard accepted as standard 

Congress declared metric units law- 
ful and established legal equiva- 
lents 

Mendenhall Order set up Inter- 
national meter as the fundamental 
standard 

American Standards Association 
(Representing Industry) adopts 
1 inch = 2.54 centimeters 

Bill before Congress but held in 
committee for amendments 

International Meter = 39.370147 
British Inch 

Legal Meter 
U. S. 

in = 39.37 
British Inch 

International Meter 39.37 
U. S. Inch 

International Meter = 39.370078 
U. S.Inch 

International Meter 39.370078 
U. S. Inch 

TABLE II 
Examples of Ford Decimals Compared to Common Fractions 

Ford Decimal Common Fraction Decimal of Existing 
Common Fraction 

American Standard 
Decimal Equivalents 

(3 Place) 

.02 1/64 .015625 .016 

.03 1/32 .03125 .031 

.05 3/64 .046875 .047 

.06 1/16 .0625 .062 

.08 5/64 .078125 .078 

.3 7/32 .21875 .219 

.46 15/32 .46875 .469 

of decimal dimensioning would not of itself result in any changes in our 
system for establishing tolerance values. 

Raw Material Sizes 

In contrast to this continued trend toward simplification and rationaliza- 
tion of our systems of dimensional units raw material supply is still com- 
plicated by a multitude of obsolete systems of gauge sizes in every day use. 
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Many in industry have probably grown used to the standard gauges in 
particular fields but though gauge numbers were undoubtedly initiated as 
a simplified identification the variety of gauges and the variety of names 
for the same gauge now merely increases confusion. Sheet metals are 
handled in terms of a number of gauges such as B&S gauge, U. S. standard 
gauge and BWG gauge; and sheet soft rubber is even designated in decimals 
of such as It has become good practice to specify sizes by decimal 
dimension values and not by gauge numbers and holes by actual decimal 
size rather than by drill numbers. The actual sizes used, however, are 
determined in many cases by the values corresponding to old gauge num- 
bers long used commercially, though in large running items mills will and 
do manufacture to any specified decimal size. For some time it has been 
the practice of material manufacturers and other large industries thus to 
discontinue the use of gauge numbers though still using the decimal values 
of gauge sizes. 

There is now under way an effort, organized under committee B32 of the 
American Standards Association, to eliminate the old wire and sheet metal 
gauge systems entirely and set up a rational series of American standard 
thicknesses for all metal sheets and preferred diameters for wire, and insure 
availability in these sizes. The basic conception of a rational series of 
sizes is that a uniform degree of choice should be presented between suc- 
cessive sizes. Therefore each size should differ from the next by a fixed 
percentage. The series should therefore be geometric. A variety of geo- 
metric series could be used but in order to permit extending the series in- 
definitely by shifting the decimal point, the particular series based on the 
root of 10 has been established internationally as the Preferred Numbers 
Series for standard sizes. The 5 series is one having 5 numbers between 1 
and 10 (or between 10 and 100) and is produced by using as the multiplier 
the fifth root of 10; the 10 series is produced by multiplying by the 10th root 
of 10; the 20 series by multiplying by the 20th root of 10 etc. The complete 
Preferred Numbers Series is explained and listed in various forms in Ameri- 
can Standard Z17.1-1936. 

The subcommittee working on the sheet metal sizes has recently issued a 
proposed American Standard of preferred thicknesses for all uncoated flat 
metals thinner than .250". These thicknesses are all decimals based on the 
20 series of preferred numbers rounded in the standard manner to 3 decimal 
places. The Preferred Numbers and the proposed thicknesses are shown by 
Table III. It happens that this series closely approximates the Brown and 
Sharp gauge used in the nonferrous metals which simplifies that portion of 
the changeover. If this proposed American Standard is generally approved, 
as now appears most promising, we will be able to choose thicknesses of any 
metal interchangeably without the restrictions of ancient gauge sizes es- 
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TABLE HI 

Decimal Series of Preferred Numbers 10-100 Proposed Preferred American Standard Thicknesses 

5 Series 10 Series 20 Series 20    Under .010 .010 to .100 .1120 to .250 
^fio = 1.6 vTo = 1-25 VIO = 1.12 

10 10 10 .010 
11.2 .011 .112 

12.5 12.5 .012 .125 
14 .014 .140 

16 16 16 .016 .160 
18 .018 .180 

20 20 .020 .200 
22.4 .022 .224 

25 25 25 .025 
28 .028 

31.5 31.5 .032 
35.5 .036 

40 40 40 .004 .040 
45 .045 

50 50 .005 .050 
56 .056 

63 63 63 .006 .063 
71 .007 .071 

80 80 .008 .080 
90 .009 .090 

100 100 100 .100 

tablished for reasons which were possibly good and sufficient but which 
certainly have long been forgotten. Meanwhile, another subcommittee is 
investigating the possibility of applying a similar series to the diameters of 
wire. Probably diameters to 4 decimal places will be required. 

Dimensional Tolerances 

Part Tolerances 

Regardless of the dimension decided upon in a design it is obvious that it 
cannot be regularly manufactured to the exact size. Certain manufac- 
turing variations or tolerances must be expected and these introduce a large 
share of our dimensional problems. 

The usual statement on tolerances is that the larger the tolerance 
allowed the cheaper the part is to manufacture and, therefore, the tolerance 
specified should be the widest that will permit functioning. However, 
this is generally true only of overall tolerances which define the manufac- 
turing methods that may be used. It is true in the sense that apparatus is 
inexpensive to manufacture if it can be so designed that its functioning is 
largely independent of variations in dimensions. However, such design is 
not usually achieved and in much apparatus fairly good overall accuracy of 
dimensions and fit is necessary for uniform functioning. The problem of 
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setting tolerances then becomes one of distributing certain tolerances over 
various dimensions and different parts. This is a very difficult problem 
and in the case of any individual tolerance a larger value does not neces- 
sarily mean lower apparatus cost and may even mean the reverse. 
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Fig. 1—Total diameter tolerances of commercial round stock 

This is easily demonstrated in the case of part tolerances on dimensions 
which correspond to the dimensions of raw materials. Figure 1 shows the 
tolerances of commercial grades of round stock. If, for example, engineer- 
ing requirements dictate the use of a particular material there is no gain in 
specifying larger tolerances than those to which it is regularly furnished and 
doing so may require greater accuracy in the mating part. There may even 
be economy in the use of higher priced material produced to closer toler- 
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ances, as for example, drill rod instead of cold drawn steel through economy 
in the manufacture of associated parts. Similarly manufacture of cantilever 
springs from sheet stock produced to closer tolerances may reduce the cost 
of subsequent adjustments. Therefore, when individual part tolerances are 
involved consideration must always be given to the size tolerances of raw 
materials. 

The same situation exists in the case of tolerances on dimensions pro- 
duced by a manufacturer's own tools. While close overall limits will re- 
quire greater overall accuracy of the tools provided and greater frequency 
of set-ups the most economical distribution of tolerances will be that based 
upon the normal tolerances that can be expected from various manufactur- 
ing operations. Certain degrees of accuracy are inherent in certain types 
of machines and tools and allowing variations not in proportion to these 
values serves little if any purpose. Also there are types of combination 
tools and automatic machines, familiar in mass production practice with 
which wide tolerances are not an economy because accuracy is required for 
locating or nesting the part for subsequent operations. Since the dis- 
tribution of tolerances involves such complex factors of manufacturing 
method and cost as these, it is desirable for the designing engineer to de- 
termine and to indicate unmistakably the effect of tolerances upon func- 
tioning and, where interchangeability of individual parts in service is not 
involved, to allow manufacturing considerations to determine the distribu- 
tion of tolerances in an assembly. 

It is apparent that considerable study of the requirements for functioning 
of the design, of available materials and the limitations of manufacturing 
process are required to establish the most economic balance between per- 
formance of the apparatus and the required tolerances. Consideration 
should be given to these tolerance factors in cooperation with manufac- 
turing engineers in an early stage of a design problem so that they may 
influence the trend of design. This step may avoid the necessity for slow 
and costly manufacturing developments and delays in starting production. 
However, completely rigid adherence to the status quo of tolerances is not 
necessary in long range planning of major design projects. In such cases 
the trend of progress in materials and manufacture should be determined 
and anticipated. For example, some cantilever spring design requiring 
narrow control has been based on sheet material produced to tolerances 
not commercially available at the time but made so by the time it was 
needed for production. The extent of progress in this direction is shown 
by Fig. 2. 

Similar progress in manufacturing technique can also be expected. For 
example, the development of broaching from a comparatively crude opera- 
tion to the precision method it is today is recent and outstanding. 
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Cumulative Assembly Tolerances 

Another problem in choice of tolerances is in those cases where a con- 
siderable number of parts are additively assembled into a unit as in the case 
of "spring pileups" used on electrical contacting apparatus such as relays 
and switches. These consist of considerable numbers of sheet metal springs 
and insulators alternating and clamped by screws. If the overall toler- 
ance on such an assembly must be taken as the sum of the tolerances of the 
individual parts various courses of action are presented, the extremes of 
which are: 

1. Very small tolerances must be maintained on the individual parts or 
2. Adequate space must be provided in the apparatus for extremely 

large variations in the assembly. 
Small tolerances on the individual parts may be extremely expensive and 

large space allowances and provisions in associated parts for variations in 
the assembly may be a serious design handicap. 

However, it is recognized that there is obviously small probability that 
all minimum or all maximum parts will appear in any one assembly. It 
has been found satisfactory in certain types of such pileups to assume that 
the maximum dimensional variation that will actually be encountered in an 
assembly will not be greater than 70% of the sum of the part tolerances. A 
similar situation exists in many kinds of assemblies or associations of toler- 
ances. 

The statistical relationships involved in this problem are indicated by 
Fig. 3. The curves show the percentage of the cumulative part tolerances 
within which 99.7% of the assemblies may be expected to be found with 
different numbers of similar units in the assembly. The solid line is de- 
duced from theoretical relationships. It assumes that the parts are all of 
one kind, that the parts going to assembly are controlled, of normal dis- 
tribution and the limits are rationally set to represent the actual conditions. 
The dotted curves have been deduced from relationships which have been 
proposed as representing rectangular and triangular distributions of in- 
dividual part tolerances. The curves may not be truly representative of 
specific cases because of inconsistent selection of limits or erratic distribu- 
tions. However, they indicate that the 70% rule on pileups is probably on 
the safe side in most cases and that closer design of assembly or less re- 
strictive tolerances and cheaper manufacture of piece-parts might be readily 
possible either (1) by better control, (2) by actual mixing of lots of piece 
parts or (3) even merely by knowledge of the actual statistical distribution 
of part dimensions. 

The three points indicated in Fig. 3 show the results of a limited experi- 
ment in which pileups were assembled from 2083 individual insulators of 
yj" phenol fiber taken from factory stock. The estabhshment of curves 
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by this type of experiment using a sufficiently large and representative 
sample would be practicable and would permit considerable condensation 
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of design on a sound basis. In this particular case the parts used apparently 
came from only two different sheets of fiber as indicated by the distribution 
of thickness of the individual parts shown by Fig. 4. 
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Further statistical analysis of this type of situation is needed together 
with experimental determination of the distribution of dimensions actually 
encountered in specific cases. 

The distribution of dimensions in a product arises from a variety of causes. 
One type of cause is the variations such as those in the dimensions and 
physical properties of raw material which may produce different product 
dimensions even from a particular tool. A different and more systematic 
type of cause is the change in the dimensions of tools as a result of wear. 
The practice followed in establishing tool wear allowances will therefore 
affect the limits and statistical distribution of part dimensions during the 
life of the tool. Some designers and some tool makers consider that the 
specification of a nominal value with plus and minus variations requires a 
different handling of initial tool dimensions and wear allowances than does 
the specification only of minimum and maximum limits for a part dimen- 
sion. Equally good authority maintains that a manufacturer recognizes 
no difference. Establishment of standard practices in such matters is a 
needed step in determining the distribution of dimensions to be expected in 
machined parts. In the present absence of standards or of any consistent 
attitude on the subject it is necessary for designing and manufacturing 
engineers to reach an agreement in specific cases where this factor is im- 
portant. 

Such are the factors which determine the tolerances which can be obtained 
economically or which perhaps will be unavoidably encountered. It is 
necessary for a designer to keep informed of the interaction of these factors 
as his design crystallizes and he must also determine the effect of such toler- 
ances upon functioning in order to complete a design which will function 
properly when assembled in quantity production. 

Functional Dimensioning 

Effect of Tolerances 

If apparatus parts are minute or have complicated relative motions it is 
recognized that manufacturing drawings to the usual scale have serious 
limitations to their usefulness in the analysis of the effects of combinations of 
tolerances. In such cases designers frequently make layouts to larger 
scales or large scale adjustable models to investigate the effect of variations 
on functioning. Illustrations of this practice are numerous in the expe- 
rience of most designers of small apparatus. 

Even in large parts which are stationary in use the application of toler- 
ances, in effect, establishes several possible positions for each element and 
may present problems similar to those involving motion. These are not 
easily recognized because of a curious limitation inherent in small scale 
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drawings. This limitation is probably well known to most engineers but 
it is worthwhile to analyze it because it is important to be always aware 
of it. 

This limitation is the fact that in drawings the shape of the part and the 
effect of all nominal dimensions are actually shown graphically whereas, 
it is possible to indicate tolerances numerically but not graphically. We 
are therefore apt to visualize the part as it is graphically shown, that is, 
without tolerances and to think of the numerical tolerances one at a time 
rather than in combinations as they affect each other and the shape of the 
part. 

If any dimension, significantly affecting the design of a part, is changed 
the drawing is immediately corrected so that its meaning will be clear and 
the functioning of the part can be checked. This obviously facilitates de- 
sign and manufacture. Yet because they cannot be shown directly by 
regular drawing methods, we have grown accustomed to not being shown the 
effect of tolerances or changes in tolerances upon the shape of the part. 
Nevertheless it is obvious that these effects are critical in the functioning 
of the part or tolerances would not be set. The fact that these critical 
features of the design are not actually graphically shown and therefore are 
not easily seen and understood on the drafting board is a serious detriment 
in working out a design and in all later analysis of it. The full effect of 
interrelated variations particularly if in three dimensional space may ap- 
pear only after tools are in process or the first parts produced and this may 
be rather late for economy. 

Originally this difficult analysis of the effect of tolerances upon function- 
ing probably involved only the designer. The manufacturer tried to make 
the part as nearly as possible to the nominal values shown and variations 
from them were accidental. Tolerances were looked upon as an indication 
of the care required and as a means of inspection for acceptance or rejec- 
tion. With increasingly complex manufacturing tools the permitted toler- 
ances are utilized more and more in the design of tools to allow the greatest 
possible wear before defective parts are produced and the tools must be 
replaced. For mass production parts progressive step type tools are used 
in which a continuous strip of stock advances by various stages from blank 
sheet to finished part. Tools of this type are extremely expensive and in order 
to obtain maximum life full use of allowed variations is made in their de- 
sign. Design of such tools and the gauges required to maintain quality in 
mass production therefore also requires analysis of the effect of combma- 
tions of variables upon the desired part. As the designer has presumably 
already made this analysis, and incidentally is best qualified to do it, econ- 
omy and accuracy dictate that his analysis be transmitted to the manu- 
facturing engineer. The problem is to find means by which he can indicate 
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unmistakably on the drawing his analysis of the required functioning of the 
part and the manner in which he intends the tolerances to apply, in the 
event that there is any possibility of misunderstanding. 

The essence of this problem and some of the possibilities of solution can 
best be seen by reference to drawings which illustrate the major points. 

Figure 5 shows the drawing of a flat plate dimensioned from center lines 
but without any tolerances whatever. Some minor dimensions not in- 
volved in this discussion are omitted in the interest of simplification but 
the part shown is in every way a normal one. The meaning of the drawing 
is completely clear and can be interpreted in but one way no matter from 
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Fig. 5—Flat plate dimensioned without tolerances 

what standpoint the analysis is made. The reason for this is obviously 
that but one value is shown for every dimension. 

Figure 6 shows this same drawing dimensioned in exactly the same way 
with the exception that tolerances are shown for most of the dimensions. 
To the uninitiated it might appear to present no more problem than the 
previous drawing without tolerances because of the tendency to visualize 
the drawing in terms of the nominal dimensions only. 

When the engineer analyzes the effect of the combinations of the various 
tolerances shown, interesting questions immediately arise. In the first 
place the combination of holes dimensioned 1.25" =t .002" from the center 
line appears to be definitely located because on the drawing the center 
line is shown in a definite position. Yet when the tolerances are considered 
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the center line of this drawing could actually be shown in several different 
places as, for example: 

1. It may be a line through the centers of the two large holes. 
2. It may be a line anywhere from 2.992', to 3.008" from the outside 

edges. 
3. It may be 2.247" to 2.253" from the small holes in the center of the 

plate. 
4. It may be 2.615" to 2.635" from the holes numbered 2 and 4. 

In brief, the center line which appears so definitely located on the drawing 
may actually be rather an indefinite location on the part when the various 
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Fig. 6—Flat plate of Fig. 5 with the addition of tolerances 

tolerances are considered. While the differences in the possible interpreta- 
tions are in the order of thousandths of an inch nevertheless this order of 
magnitude is critical in this part or the indicated tolerances would not have 
been used. The interpretation of the center line which should be adopted 
will depend entirely upon the manner in which the part is intended to func- 
tion and therefore should be indicated by the designing engineer. Obvi- 
ously, not all designs or all dimensioning will present this difficulty but all 
should be studied from this viewpoint to determine whether or not they do. 

Functional Datum Positions 

When the type of uncertainty illustrated exists, it is necessary to 
indicate clearly the effect of tolerances on functioning by establishing 
the functional positions to which dimensions should refer. It may be 

l 
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difficult to do this graphically, in which case it is necessary to indicate by 
notes the particular interpretation which the designer intends. As an 
example, if the part of Figs. 5 and 6 functions by being located in position 
by means of the four holes numbered 1, 2, 3 and 4, the intentions of the 
designer are readily indicated by the following notes: 

1. Functional datum line I is midway between the centers of holes 1 and 
2 and the centers of holes 3 and 4. 

2. Functional datum line II is perpendicular to datum line I at a point 
midway between the centers of holes 2 and 4. 

These notes establish both horizontal and vertical center lines specifically 
in terms of the center of the one set of dimensions between the holes marked 

± 0,375 ±.005" 

4.500" ±.006" 

0.375" ±.005"-  
0.375"±.005"-} 

0.500"±.005'V 

Fig 7—Flat plate of Fig. 5 functionally dimensioned from outside edges with tolerances 

1, 2, 3 and 4. The term functional datum line is suggested as completely 
descriptive but other equivalent terms might be used. This information 
could be indicated on the drawing without the use of notes by the adoption 
and use of some standard convention or symbol to indicate the particular 
dimension bisected by the center line. 

If the functioning of this part were determined by location against the 
outside edges, this could be readily indicated by dimensioning the part as 
shown by Fig. 7 and using notes establishing the line A-B as one datum 
line and the perpendicular to it through A as the other. 

In either of these cases the drawing becomes completely definite and sub- 
ject to only one interpretation. In drawings of this type no change in the 
method of dimensioning may be required and the problem is solved simply 
by the addition of suitable notes or symbols indicating the intention of the 
designer as to functional datum lines. 
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It is sufficient to establish datum lines in the case of parts which are 
practically flat pieces with little depth but when a part has substantial 
depth it will be noted that center lines or other datum lines on a drawing 
really represent planes in space. In such parts it becomes necessary to 
establish datum planes rather than lines and three planes at right angles to 
each other are required. 

Figure 8 illustrates such a part which might be an armature such as is 
used in many pieces of electrical contacting apparatus. In the typical 
operation of such a part its functioning is determined by the relation of its 
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Fig. 8—Functional datum plane dimensioning of magnetic armature type of part 
Functional datum plane I passes through the common axis of the two .1285 in. diameter 

holes and .265 in. above the pole face gauge position. 
Functional datum plane II is perpendicular to plane I and passes through the common 

axis of the two .1285 in. diameter holes. 
Functional datum plane III is perpendicular to planes I and II and passes midway 

between the finished surfaces which are 1.578 ± .003 in. apart. 

various dimensions to the position of the pole face and the axis support. 
In order to indicate this on the drawing it is necessary to establish dimen- 
sioning as shown and add to the drawing the notes shown. 

These notes establish three functional datum planes, the first through 
the axis at the point of support and a distance .265" from the pole face 
area; the second at right angles to the first through the axis of support and 
the third at right angles to both the first and second and halfway between 
the finished surfaces 1.578" apart. With these planes established the 
application of all the limits and tolerances shown is based on the operating 
position and analysis of the design is simplified. The drawing and the 
intentions of the design engineer cannot be misunderstood. 
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The clear expression of the designer's intentions by datum plane dimen- 
sioning will be appreciated by all concerned with the drawing or the re- 
sulting part. Inspection of the part is expedited no less than production. 
The inspector can usually by means of gauge blocks or simple fixtures set 
the part up on a surface plate as indicated by the drawings datum planes 
and positions. He can then establish the conformance of the part with the 
drawing by simple measurements to the indicated horizontal and vertical 
planes. When production quantities justify special gauges the required 
design of the gauge is established clearly by the datum planes. 

Invariable or Gauge Dimensions 

The drawing of Fig. 8 just described illustrates the use of gauge dimen- 
sions. The dimensions .265,, and .718,, and the indicated half-inch di- 
ameter for the pole face are all gauge dimensions without tolerances and 
some statement must be made or understanding reached that they are 
considered invariable and tolerances not permitted. They represent, it 
might be said, theoretical dimensions, on the drawing, or in practice they 
represent tools or gauging apparatus made to the highest standards of 
accuracy. These invariable dimensions are necessary in order to establish 
a starting point for the dimensioning of the part. It may appear at first 
that stating that a dimension has no manufacturing tolerance or variation 
is a hardship upon the manufacturer but this is not really so because the 
dimensions are not ones which are actually manufactured in the part. They 
represent usually dimensions built into tools or gauging equipment which 
are made to a precision greatly superior to that represented by part tol- 
erances. 

Invariable dimensions, or better, gauging dimensions or whatever it is 
proposed to call them are really not a new invention and it is possible to 
cite easily recognized examples. For instance, the dimension 2.473" on 
Fig. 8 is an invariable gauging dimension not associated with the setting 
up of datum planes but typical of long standing use of invariable dimensions. 
We all can recall also the use of the term "theoretically correct position" 
and it is present practice in the case of vacuum tube bases and similar ap- 
paratus to designate the location of the contact studs in terms of a gauge 
having holes located on "true centers." Last but not least a minimum or 
maximum limit in its application is itself an invariable dimension. 

In effect, datum lines or planes established when necessary by use of 
invariable or gauging dimensions remove the uncertainty as to the de- 
signer's intentions and prevent misunderstandings between design, pro- 
duction and inspecting engineers. Admittedly they do not completely 
solve all problems of dimensions as probably nothing will. They do, how- 
ever, transfer whatever problems remain from the field of tolerances on 
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finished product to the realm of tool making tolerances and gauging toler- 
ances. The problem of how invariable is "invariable" remains but we are 
obviously then considering differences of an order of magnitude not usually 
vitally significant in the functioning of product parts. Theoretically, all 
"invariable" dimensions should be taken to the best accuracy of good 
gauging methods which means that any differences of opinion will be re- 
duced at least to one-fifth and probably to one-tenth of the order of magni- 
tude of those where tolerances themselves are involved. 

It will be necessary to specially identify gauging dimensions on drawings 
to distinguish them from ordinary unlimited dimensions and to indicate 
that they are dimensions for gauges to which only gauge tolerances apply. 

Practical Use of Datum Lines and Planes 

It is not usual to establish datum lines on all drawings but if their use is 
necessary in the layout and design of the part they need to be permanently 
identified. This use of datum lines and planes on drawings, where neces- 
sary, may require somewhat greater drafting effort in the actual production 
of the drawing but their use results in a simplification of design and of the 
work of those subsequently using the drawings. It reduces the effort ex- 
pended in analysis of drawings preparatory to the construction of tools 
and minimizes the possibility of misunderstandings or errors in tools. In 
products manufactured only intermittently it is particularly valuable as 
it minimizes the need for understandings and instructions supplementary 
to the drawings which may be forgotten between production periods or lost 
through shifts in personnel. 

The overall economy in engineering effort and the reduction of the numer- 
ous possibilities of error more than compensate for the increase in the actual 
work of indicating datum positions, lines or planes upon drawings. In 
addition the choice of design of punches and dies and similar tools by pro- 
duction engineers is better guided by the designer's requirements if func- 
tional datum lines are clearly identified. An obvious example is the use 
of either the inside or outside of a punched and formed part as the starting 
point. In brief datum plane dimensioning is a more explicit expression on 
the drawing, of the designers "end point requirements". 

When establishing datum planes, it is important to consider them in 
terms of the actual physical part rather than in terms of the drawing. 
Lines which appear as definite points on a drawing may not be actually part 
of the product when it is completed or may be on surfaces shown as a line 
on the drawing but rough or unfinished in the part. It is difficult to es- 
tablish any set of rules covering what shall or shall not be done because 
each drawing and each part must be considered practically as an individual 
case. That this is so will be amply demonstrated by a serious study of even 
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one part. However, there are obvious generalities which can be established 
and Fig. 9 shows some of them. 

An example of functional datum plane analysis and dimensioning in three 
dimensions of a complicated part is shown by Fig. 10. This is the die cast 
frame for a special selector switch. It is the base upon which many in- 
terrelated parts and subassemblies are mounted. The proper functioning 
of the completely assembled switch depends in large measure on proper 
manufacture of this casting. In effect, the switch is designed around a 
vertical shaft passing through points P and Q and planes 1 and 2 are, 
therefore, established through the axis of this shaft. The production 
planning engineers intend to design the die and withdraw die plugs from 
such directions that the mounting surfaces will be smooth, flat and without 
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Fig. 9—Types of datum positions 

any taper and they intend to use these surfaces as guiding points for their 
jigs and fixtures. It is for this reason that Plane 1 is established parallel 
to these mounting surfaces and an indicated distance from them. The 
other planes are established as shown on this drawing and described by the 
notes. With this arrangement of planes the designer's analysis in terms of 
Plane 1 is easily worked out and the reference of Plane 1 to the mounting 
surfaces permits the production or tool engineer to translate the design of 
the part into the design of his tools without necessity for further analysis 
and without the possibility of different interpretations. It will be noted 
that invariable or gauge dimensions are again used. The complete draw- 
ing of this part is very complicated and occupies a drawing practically 4 
ft. x 6 ft. The perspective sketch shown and the accompanying notes are 
incorporated in the drawing as a separate view. 
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Fig. 10—Functional datum planes of complicated switch frame 
Dimensions to datum line "X" or "Y" of the drawing of the frame refer to functional 

datum planes 1, 2 or 3 described below. Points "P" and "Q" are gauge points used in 
establishing these datum lines and planes. Points "P" and "Q" shall be half-way between 
the surfaces "A" and "B" and "C" and "D" respectively and 4.358 in. from the plane of 
surfaces "M" and "N" on the mounting lugs. 

Datum line "X" shall pass through the points "P" and "Q". 
Plane 1 shall be parallel to surfaces "M" and "N" and shall include datum line "X". 
Plane 2 shall be perpendicular to plane 1 and shall also include datum line "X". 
Plane 3 shall be perpendicular to plane 1 and to plane 2 at the point "P". 
Datum line "Y" passes through point "P" and is the intersection of planes 2 and 3. 
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Required Standardization 

It is not suggested that the drawings shown and the notes referred to 
represent a final practice on datum planes. A standard practice in desig- 
nation of planes and standard terminology and understanding on gauge 
points and gauge dimensions is required. It will probably be desirable to 
adopt some symbol or designation for use on drawings to distinguish gauge 
dimensions which are invariable from ordinary unlimited dimensions to 
which manufacturing engineers for their own purposes usually add shop 
tolerances. One thing is certain and that is that datum planes, dimensions 
and tolerances when established should be primarily in terms of the re- 
quired functioning of the apparatus. When that is done no one using the 
drawing in any capacity will have any doubts as to the designer's intention 
and this results in a great reduction in the discussions and analysis which 
might otherwise be necessary. 

Summary 

In summary it may be said that the whole approach to these problems in 
dimensions and tolerances should be on the basis of functioning. However, 
good engineering of dimensions and tolerances requires knowledge of what 
can reasonably be produced and the sources of reasonable tolerance values 
are: 

1. Raw material limits including some knowledge of future trends and 
developments. 

2. The normal accuracy of manufacture, also including anticipation of 
future improvement. 

3. Discussion of trend of design with manufacturing engineers. 
Solution of tolerance problems in the final design may involve all of the 

following steps: 
1. Study of the effect of combinations of tolerances on functioning, 

allowing for statistical effects in accumulations of tolerances. 
2. Discussion of this analysis with the production planning engineer 

because the analysis of tolerance combinations is important in the 
design of long life tools. 

3. Indication of the results of such an analysis by the method of dimen- 
sioning drawings. 

4. Indication on drawings of functional datum positions, lines or planes 
established on geometrically correct principles to permanently and 
unmistakably record the intentions of the designer regarding com- 
binations of variations wherever this is necessary. 



Time Division Multiplex Systems 

By W. R. BENNETT 

Introduction 

THE idea of transmitting and receiving independent signals over a 
common line by means of synchronized switches at the terminals is 

quite old and has been used in multiplex telegraphy for many years. In 
general if N signal channels are to be provided over one line, the switching 
cycle includes N equal time intervals, one of which is allotted to each 
channel. Each channel is connected to the line throughout a part of its 
particular time interval and is disconnected throughout the remainder of 
the cycle. Absence of interference between the channels depends upon 
the fact that the channels are connected to the line throughout mutually 
exclusive time intervals. It is thus possible to avoid the use of channel 
band filters such as are necessary in carrier systems employing frequency 
as the basis of separation. 

Application of time division multiplex methods to telephone channels 
has been proposed from time to time and some experiments have been 
made.1,2,3-4,5,6 It is fairly evident that the concept of simple on-and-off 
switching giving alternately transmission and complete suppression for the 
signal from a particular channel on the line is inadequate for speech waves 
in actual telephone circuits. Imperfections in the transmission properties 
of the line tend to distort the wave form of the successive signal components 
and prolong the contribution of one signal into the time allotted for a differ- 
ent channel. It is the object of this paper to present a general quantitative 
discussion of the factors which enter into the transmission of any type of 
signal by a system of this kind. It has been found possible to arrive at 
definite criteria for such matters as the required switching frequency, the 
conditions to be imposed on contact time for good crosstalk suppression 
with economy of frequency band, and the transmission requirements which 
must be met by the intervening circuit to hold the interference between 
channels to tolerable values. The analysis leads directly to a physical 
viewpoint of the whole process which, to those familiar with the carrier and 

1 Patten and Minor, U. S. Patent 745,734, 1903. 2 Electrical World, Dec. 5, 1903. 
3 Goldschmidl, U. S. Patent 1,087,113, Feb. 17, 1914. 4 Poirson, Soc. Fr. £/., Apr. 1920. 5 Marro, LOnde Eleclrique, Oct. 1938. 6 M. Cornilleau, Revue de Telephones, Telegraphes ct T. S. F., 13 (1935), pp. 625-643. 
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sideband philosophy of signal transmission, illuminates the manner in 
which departures from ideal amplitude and phase characteristics cause 
crosstalk between the several message channels. It further leads directly 
to other physical methods for producing and detecting a transmitted signal 
identical with the essential components derived in time division or switching 
processes. 

A first step in the theoretical solution of the problem was taken by 
Dr. J. R. Carson, who, in an unpublished memorandum of May 25, 1920, 
derived quantitative relations between band width and interchannel inter- 
ference in time division multiplex transmission. Applying Fourier series 
analysis to on-and-off switching, he showed that if the transmission medium 
had constant attenuation and linear phase shift for all frequencies below 
cutoff and no transmission of frequencies above the cutoff, the band width 
required for satisfactory multichannel telephony would be much wider than 
needed in conventional carrier methods. A further step was taken by 
Dr. H. Nyquist, who, in unpublished memoranda of August 24, 1936 and 
November 12, 1936,7 showed that the width of band necessary may be 
reduced by providing a specially devised type of non-uniform transmission 
characteristic. In the following discussion, we shall see that a similar 
result can be obtained by control of the switching, and specific switching 
processes will be described which allow a flat transmission band of minimum 
width to be used. 

In order to arrive at requirements which must be imposed on the various 
components of the system, we shall first give a theory of time division 
multiplex transmission in which both the switching processes and the 
transmission characteristic are completely general. Specific forms which 
give crosstalk suppression will then be discussed and effects of small de- 
partures estimated. 

General Theory 

We shall assume an iV-channel system with a sinusoidal signal impressed 
on the yth channel. An illustrative arrangement is shown in Fig. 1. Since 
the system is linear, we may represent currents and voltages by complex 
quantities with the understanding that the actual currents and voltages 
are the real components of the expressions used. Accordingly, let the 
signal voltage impressed on the/11 channel be 

Eiif) = (1) 
7 Basic concepts used in Nyquist's analysis were included in his paper, "Certain 

Topics in Telegraph Transmission Theory," A. I. E. E., Trans., April, 1928, pp. 617-644. 
Mention is also there made of the equivalence of signal shaping and equalizing in effect 
on reception of telegraph signals. 
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and let the switching between the yih channel and the line at the sending 
end be represented by: 

= Fj(j)Ej{l), (2) 

where /SJ(/) is the current flowing into the line from they"1 channel. The 
function F,(/) has the dimensions of an admittance and, in the arrangement 
shown in Fig. 1, is periodic in time with fundamental frequency q = 2tv/T 
radians per second, where T is the time occupied by one cycle of the switch- 
ing operation. In the interests of economy of analysis, it is preferable for 
our purposes to assume for Fj{t) a somewhat more general function of time 

SENDING RECEIVING 
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Fig. 1—Elementary arrangement for time division multiplex system 

than is directly obtainable with the elementary arrangement of Fig. 1. 
We shall let 

Fj{t) = S Amj cos [(v + mq)t - 0m/]. (3) 

To make the results applicable to Fig. 1, we merely let i' = 0; then by the 
usual Fourier series analysis, 

Aoj = Oo/2, A mj &mi "T bm 
VI > 0 

00; = 0, tan 6mj = bmj/ami ] 

2 fT+l1 

ami = ^ / ^(0 cos mqt dl 
1 h, 
2 rTYli 

bmj = ~ / Fj{t) sin mql dt, h arbitrary 
1 Jil 

(4) 
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The wave (3) consists of the output of the circuit of Fig. 1 with all frequen- 
cies shifted by a constant amount v radians per second; various means of 
accomplishing this result in the switching process will be discussed later. 
It is sufficient to point out here that such a shift in frequency is often de- 
sirable for optimum utilization of the transmission medium. Combining (2) 
and (3), we then have: 

/ .(/) _ y* ^ e-i{y+mq-Uj)l+iemj^ ^ 
2 m=0 

It is clear from (5) that the result of the switching process is the produc- 
tion of upper and lower side frequencies from the signal on each harmonic 
of the switching frequency. It is also evident that if more than one signal 
component is superimposed, the resulting side frequencies constitute side- 
bands of the same nature as used in amplitude modulation systems. A 
significant difference between time division and amplitude modulation 
appears in that in the latter only one sideband or at most one pair of side- 
bands is transmitted, while the essential character of time division depends 
on the transmission of a plurality of sidebands. Thus if one pair of side- 
bands were selected from the output (5) by filtering, the time division 
process would merely be a particular way of generating the sidebands 
required in an amplitude modulation system. 

The next step in a time division system is the transmission of the wave (5) 
over a line. The properties of the line in general may be specified by a 
complex transfer impedance, which we may express here by the ratio of 
open-circuit output voltage to input current: 

Er/I. = Z(io>) (6) 

The result of applying the wave (5) to the line is then the open-circuit 
voltage: 

&.-(/) = f t AmiZli(v + nq + 
Z m-° (7) 

+ f E A„Z*[Kv +mq- 2 m=o 

In the above we have adopted the notation Z*(iu) to represent the con- 
jugate of Z(fij) and have made use of the fact that the response of a network 
to the applied wave e~lul is the conjugate of the response to eu . 

At the receiving end another switching process takes place synchronously 
with that at the transmitting end. We shall assume that the switching 
process between the kth channel and the line is represented by the relation 

ITk{t) = Gk(t)Erj(t), (8) 
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where Irkit) is the current received in the ^th channel and Gk{t) is a periodic 
function of time with fundamental frequency q. It is understood that j 
and k may be any two of the N channels. We shall express Gk{t) in a 
manner analogous to the corresponding switching function at the trans- 
mitter, i.e., 

00 
Gkit) = S Bnk COS [(y + nq)t - (9) n=0 

Combining (7), (8), and (9), we find 

Irkit) = E Z AmiBnkZ[i{v + mq + co,-)] 
4 m=0 n=0 

^«(2»+(TO+n)5+ai,l<—_J_ ^i[{m—n)q+o}j] 

+ T E £ AmjBnkZ*[i{v + mq - coy)] 4 m=0 n=0 
^—il2v+(m+n)g—uj]t+i(0mj+tnb) _|_ g»[{n—»n)s+uy](+»(tfmj—(10) 

The received wave thus consists of a doubly infinite set of side frequencies 
involving harmonics of q. It is, however, possible to set up conditions 
under which the original signal may be selected and the frequencies involving 
the switching rate may be suppressed by filtering. If v = 0, such separation 
is possible provided 

wy < q/2 , (11) 

for it then follows that a low-pass filter with cutoff frequency at q/2 will 
not pass any of the components with frequencies dependent on q. The 
condition (11) follows from the fact that the lowest frequency of (10) 
dependent on q is q — coy, and hence we must make 9 — coy > coy in order to 
separate coy from q — coy. In other words the sidebands on adjacent har- 
monics must not overlap. If v > 0, the condition (11) also suffices as far 
as suppression of terms dependent on q are concerned, but an additional 
condition is required to suppress frequencies dependent on v in the special 
case in which v < q/2, i.e., the case of v less than the maximum allowable 
value of coy. For in the latter case the frequency 2v -f {m + n)q — coy is 
less than 5 — coy in the special case of m = n = 0. The additional condition 
needed is evidently either yloy = 0 or -Boa.- = 0. If v = 0 or if f > q/2, 
this condition is unnecessary. 

Assuming then that (11) is fulfilled, and that a low-pass filter with cutoff 
at q/2 is inserted in the output of each channel, we calculate for the typical 
channel output current: 

hkit) = YikEie**1, (12) 
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where the value of is as follows: 
Case 1, f = 0 

Yjk = AoiB^kZiiuj) 

+ 72 AmiBmkZ[i(niq + Ui)]e 'i9m' *nk) 

4 m=i 

+ Z AmjBmkZ*[i(ntq - 
4 m=i 

(13) 

Case 2, v > 0; ^0/ or Bok = 0 if f < q/2 

Yjk = 1- Z + mq + 0>,)]e i(8mi *mk> 

4 7n=o 

+ J- Z + mq - o}i)]ei(em'~*mk) 

4 m=0 
(H) 

The combination of an iV-channel time division multiplex system with 
low-pass filters in the receiving branches is thus found to be equivalent to 
a linear network having AT pairs of input and output terminals with the 
transfer admittance from the jth pair of input terminals to the &th pair of 
output terminals given by Yjk in (13) or (14). The transfer admittance is 
calculated by summing the contributions of upper and lower sidebands on 
harmonics of the switching frequency and is affected directly by the trans- 
mitting properties of the medium at the side band frequencies. The result 
we have obtained is of sufficient generality to include all cases we shall 
treat in this paper. We shall now proceed to specific examples. 

When an ideal commutator is used as a switching means, the switching 
functions for the N channels are identical except for a time displacement 
which is the same between all pairs of consecutive channels. This condition 
is expressed by: 

Thus the switching function for the first channel becomes a reference 
function, /^(O is the same except for a time delay of T/N, F3{t) is delayed 
by 2T/N, etc. Substitution of (15) in (3) gives the relations: 

If we further suppose that the commutator makes contact between the 
typical channel and the line throughout a fraction x of the time interval 

On-and-Oee Switching with Commutator 

Fy(Z) = FAl - (j - 1)T/N] (15) 

(16) 
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T/N allotted to that channel and breaks contact throughout the remainder 
of the switching cycle, we may write the reference switching function as: 

FM = 

Hence from (4) 

A, -xT/2n < t < xT/2N s 

0, xT/2N <t <{2N - x)T/2N/ 

Aq\ = Ax/N, 

2.4 . mxir . ^ 
Ami = — sin —-, m > 0 

miT J\ 

0mi = 0 

(17) 

(18) 

In the receiving device, the corresponding switching process should be 
delayed with respect to the transmitter by a time interval t0 equal to the 
time of transmission of the line. Hence we write 

£oi = Bx/N 

n 2B . mxir ^ n L 
Bmi = — sin — , m > 0 

mir JX 

'I'm 1 = mqlo 

(19) 

Bmj and dmj are related to Bmi and 4>„,i in a manner analogous to (16). 
The time of transmission of a distorting line is not precisely definable, 

but may be represented for our purpose by a linear phase component of 
Z(iu). That is, we write 

Z(/co) — Zo(ico)e — 1(0" (20) 

where /n is the slope of a straight line giving the best linear approximation 
to the phase vs. frequency curve, and Zo(/co) is the impedance function 
remaining after the subtraction of t0u from the actual phase shift ordinates. 
Substituting (15)-(19) in (12), we find 

Y,k = 

00 
+ E 

sin" mxir/N 
m- iT- 

Zo[i(mq + coj)]e ~Hj—k)2mTlN 

sin2 mxir/N v*r./ i(>-fc)2mir/A'\ /01>, 
+ 2_. , ' ZMmq - coy) \e 1 (21) ■n- it2 / n=l 
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If the attenuation of the line is constant throughout the range co,- to Mq + 
wj and all frequencies above the latter value are suppressed, (21) becomes 

r. = + itrrv")-« - " 

The crosstalk ratio or ratio of amplitude of signal received in the ^th channel 
to that received in the jth channel when signal is transmitted in the jth 

channel is, therefore, 

Yjk = \ trnr x/N ) ;  
Y,;- , , 0 sin trnr x/N\ 

1 + V niirx/N ) 

Results of calculations made for a 10-channel system from (23) for 
a: = 1 and x = .5, corresponding to no lost time and half lost time respec- 
tively in switching are shown in Fig. 2. It may be noted that adjacent 
channel crosstalk with half lost time is equivalent to alternate channel 
crosstalk with no lost time. Examination of the curves reveals a number 
of significant facts, among which are: 

1. Crosstalk is quite imperfectly suppressed when the band width of the 
line is smaller than the theoretical minimum—the width of one sideband 
multiplied by the number of channels. 

2. As the band width of the line is increased above the theoretical mini- 
mum, improvement in crosstalk suppression increases slowly, so that in 
general the use of frequency range on the line is uneconomical compared 
with other systems. For example, with no lost time in switching, the band 
width of the line must be increased tenfold to suppress adjacent channel 
crosstalk by 40 db. This conclusion is, however, to be qualified as follows: 

3. When the duration of contact is decreased (less of the available channel 
time used) definite optimum transmission band widths appear which give 
better crosstalk suppression than bands somewhat wider or narrower. This 
suggests the possibility of critical phase relations existing between the con- 
tributions from the various sidebands such that if the right number having 
proper amplitudes and phases can be combined, complete suppression of 
crosstalk may occur even when the transmitted band width is finite. 

When x, the fraction of contact time used, is made to approach zero, 
the limit of the amplitude factor (18) for the typical harmonic of the switch- 
ing function is Ami — 2Ax/N, which is independent of m. This is con- 
sistent with the known fact that a wave consisting of periodically repeated 
sharp pulses is composed of a large number of harmonics of nearly equal 
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amplitude. If we use very short contact durations in time division, we 
should accordingly expect a large number of sidebands of nearly equal 
amplitude. The combination of proper numbers and phases of these side- 
bands offers a key to the realization of a time division multiplex system 
giving good crosstalk suppression with economy of frequency band. 

Suppose that the duration of contact time is made sufficiently small to 
realize approximately the limiting values Ami = 2Ax/N, Bmi = 2Bx/N in 
transmitting and receiving respectively for the first 2M -f 1 of the side- 
bands and that by means of a low-pass filter with linear phase shift and 

so 
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Fig. 2—Crosstalk between adjacent channels of ten-channel time division multiplex sys- 
tem with on-and-off switching. No attenuation or phase distortion in pass band of line 

uniform attenuation in its pass-band all other sidebands are removed from 
the line. The expression (23) then becomes: 

z* 
Yn 

M 
1 -b 2 23 cos 2mir{k — j)/N m=-l 

1 + 2M 

1. k = j 

sin (2M l)7r(^ — j)/IV 
[(2M + 1) sin 7r(£ -j)/N 

, k 7* j 

(24) 

In particular, if 
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M = {N - l)/2, ' 

it follows that ' (25) 

Yiic/ya = 0, ^ 

Thus there exists in theory a system employing sidebands on zero fre- 
quency and the first {N - l)/2 harmonics of the switching frequency, in 
which multichannel transmission is possible without interchannel inter- 
ference. Since the required condition (25) may also be written N = 
2M + 1, an odd number of channels is obtained. Since N sidebands are 
transmitted, the band width used is the same as the minimum required for N 
single sideband amplitude modulation channels on a frequency discrimina- 
tion basis. Sidebands produced on higher harmonics in the time division 
process must be removed by filtering. 

It is to be noted that since it is equality of the N sideband contributions 
which is important and the amount of each contribution is determined by 
the transmission characteristic of the line as well as the transmitting and 
receiving switching processes, it would be theoretically possible to make up 
for sideband irregularities by equalizing the line. However, the equaliza- 
tion required in the line would be of "stairstep" type rather than smoothly 
varying with frequency since an error in the value of one harmonic of the 
switching function produces the same error throughout the entire range 
occupied by the pair of sidebands associated with that harmonic. 

General Switching Functions with Crosstalk Suppression and 
Minimum Band Width 

The above discussion based on the properties of a commutator has led 
us to an ideal switching function which is, except for an unimportant 
proportionality factor, 

(JV-l)/2 
Fj{t) = 1+2 ^ cos m[qt — {j — iVodd (26) 

m=l 

This type of switching is approximately realizable with synchronized com- 
mutators having contact widths very narrow in comparison with the spacing 
between contacts. For a 3000-cycIe speech band, the minimum switching 
rate would be 6000 cycles per second. Such a speed would be difficult to 
obtain with ordinary mechanical means but would be feasible with rotating 
electron beams. 

The concept of combining detected contributions from a number of 
sidebands in proper phase to give in-phase addition of desired components 
and cancellation of unwanted ones leads to a generalization of the switching 
processes over those possible with synchronized commutators. We note 
that the switching functions Fj{t) of (2) and Gk{t) of (9) are analogous to 
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carrier waves applied to a product modulator, and an electrical analogue 
of time division may be realized therefore by applying signal and a suitable 
carrier to a product modulator. Phase shifts in the carrier supply circuit 
may be made to serve the same purpose as the angular displacements 
between commutator segments. It is thus of interest to examine various 
other possible forms of the function Fwhich are suitable for multiplex 
transmission and investigate methods by which they can be realized. 

We note that (26) is suitable for an odd number of channels because it 
makes use of th^ direct signal component (or sideband on zero frequency) in 
addition to the paired sidebands on harmonics of the switching frequency. 
It seems reasonable to expect that systems for even numbers of channels 
can be devised using only upper and lower sidebands on harmonics and 
omitting the signal itself. Complete information for the separation of N 
channels should be contained in any set of N sidebands; hence we should 
not be forced to start with the sidebands of lowest frequency, but be able 
to use other sets with a more suitable place in the spectrum or with better 
equalization of amplitudes. 

We shall derive an expression for a quite general switching function 
meeting the desired conditions of freedom from crosstalk and economy of 
band width for an even number of channels by assuming the following 
forms for Amj and 0m i in (3), 

/A, n ^ m ^ n + N/2 - 1 \ 
•U = ( , (27) 

\0, m < n, or m > n + N/2 — 1 / 

6mi = (j - 1) (m + /,) ^ + « (28) 

The switching function assumed contains N/2 harmonics and hence will 
produce N sidebands. The values of n, //, a and if/ are first assumed to be 
arbitrary. At the receiving end, a switching function similar except for a 
time displacement /o will be assumed. That is, in (9), we take 

/B, n ^ m ^ n + N/2 - 1 \ 
Bmk = (29) 

\0, m < n or m > n + N/2 — 1/ 

= U' — 1) (w + h)\p + {mq + f)T + a (30) 

Transmission over the line is assumed to be of the distortionless form ob- 
tained by setting ZoO'co) = Zo, a constant, in (20). Substituting (27)-(30) 
in (14), we then calculate 

1, j = k 

2 sin N{j — k)\p/\ cos {An + 4// + N — 2)(j — k)\l//A 
N sin (J — k)\f//2 ' 

j k (31) 

y jk — 
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Figure 3 shows the curve of admittance vs. frequency required for on-and- 
off and plus-and-minus switching. Referred to the mid-band admittance as 
unity, the admittance is reduced to one-half (six db loss) at the frequencies 
rNq/2 and (r + 2)Nq/2 which are the nominal upper and lower cutoffs. 
N is an even integer and r is zero or any positive integer. The admittance 
curve has odd-symmetry about the cutoff frequencies—that is, if at a 
frequency x cycles below a cutoff frequency, the admittance has the value a, 
it must be 1 — a at a frequency x cycles above the cutoff. The nominal 
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Fig. 3—Vestigial sideband transmission in time division multiplex systems 

band transmitted in the case of on-and-off switching consists of the upper 
sideband on the harmonic rNq/2, the lower sideband on the harmonic 
(r + 2)Nq/2, and all intervening sidebands. In the case of plus-and-minus 
switching the upper and lower sidebands on frequencies {rN + \)q/2 to 
[(r + 2)N — \\q/2 inclusive are transmitted. Impairment of the nominal 
band by the filter is made up by transmitting the appropriate parts of 
sidebands outside the nominal range. It is easily verified that either of the 
systems depicted in Fig. 3 satisfies the required conditions for multiplex 
transmission without interchannel interference when the sidebands produced 
by a given signal have equal amplitudes over the range utilized. 
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Tue vesiigial method is required only when strong sidebands very near 
the desired ones must be removed. Modifications of the time division 
process exist in which vestigial filters are unnecessary because very little 
energy appears at unwanted side frequencies. It is clear that if we regard 
the problem as one of producing certain sidebands on carriers of definite 
phases, we are not restricted to commutating devices only but may make 
use of general modulator technique. Further details concerning specific 
circuit arrangements are described in U. S. Patent 2,213,938, W. R. Bennett; 
and U. S. Patent 2,213,941, E. Peterson. As a general guide the following 
table of carrier phases for an Ar-channel system (A7 even) is furnished: 

Table of Phase Shifts for ^-Channel System 
(iV/2 Carrier Frequencies Required) 

Carrier Frequency v v + q v + 2q v + iq 
Phase fChannel 1 0 0 0 0 
Shift 2 ir/N 3w/N Sir/N U/N 
In ] 3 lir/N Orr/iV IOtt/A' IIjt/A' 
Carrier [ 4 iv/N 9n/N IStt/A 2 It/A 

Transmission Requirements 

Practical success of a time division multiplex system requires the main- 
tenance of a satisfactory ratio of wanted signal to crosstalk. In order to 
accomplish this, the transmission link must preserve the amplitude and 
phase relations of a group of sidebands. A physical picture of the relations 
involved may be obtained from Fig. 4, which is drawn for the particular 
case of a 5-channel system of the on-and-off switching type. For this 
example the theory previously developed shows that five sidebands of 
equal amplitude are sufficient, namely—the signal itself (which may be 
regarded as a sideband on a carrier of zero frequency), the upper and lower 
sidebands on the switching frequency and on the second harmonic of the 
switching frequency. If we take the phases of the switching fundamental 
and its second harmonic as applied to the first channel as a reference, the 
proper phases of fundamental and second harmonic respectively for the 
other four channels are given by the following table: 

Channel Fundamental Second Harmonic 
Number Phase Phase 

2 72° 144° 
3 144° 288° 
4 216° 432° 
5 288° 576° 

In Fig. 4, we have assumed a single-frequency signal component as input 
to the first channel. If the line has distortionless attenuation and phase 
characteristics, the five resulting side frequencies are received in the first 
channel as the five in-phase vectors of equal amplitude shown in (o). Re- 
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ception in the second channel is shown by (b) in which the vector 1 represents 
the directly transmitted signal component (or sideband on d-c), 2 and 3 
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Fig. 4—Graphical representation of operation of time division multiplex system. Signal 
transmitted in channel 1 of 5-channeI 5-sideband system 

represent the detected components from the upper and lower side frequencies 
associated with the fundamental switching frequency, and 4 and 5 the 
components resulting from the upper and lower side frequencies of the 
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second harmonic. Components 2 and 3 are shifted —72° and +72° respec- 
tively and 4 and 5 are shifted —144° and +144° in relation to the phase of 
component 1. As shown in (6), the five vectors combine in the form of a 
closed polygon giving a resultant of zero amplitude. Similar vector dia- 
grams for reception in the third, fourth, and fifth channels are shown in 
(c), (</), and (e). The appropriate diagrams for transmission in channels 2, 
3, 4, and 5 and receiving in any channel can be obtained from (a) — (e) 
by cyclic permutation of the channel numbers, i.e., transmission in 1 and 
reception in 2 corresponds to transmission in 2 and reception in 3, etc. 

Production of crosstalk by phase and amplitude distortion in the trans- 
mission medium is illustrated by (/), Fig. (4), which shows the resultant 
component received in channel 2 when signal is transmitted in channel 1 
and an imperfect line is used to connect the transmitting and receiving 
terminals. The vector 1 is taken as the reference amplitude and phase. 
The gain characteristic of the line is assumed to be one db low at the side 
frequency producing vector 2, one db too high for vector 3, 0.5 db low for 
vector 4, and with no error for vector 5. The phase curve is assumed to 
depart from a straight line by —1°, —1°, —4°, +3° at the side frequencies 
from which components 2, 3, 4, 5 respectively are derived. The vector 
polygon fails to close and the resultant represents an unwanted signal 
received in channel 2 at a level 25 db below the wanted signal received in 
channel 1. 

We may make an estimate of the accuracy of the equalization required 
in the general case by writing the transfer impedance Z(fw) in the form: 

ZM = p(a,)Zoe-,ioU-,'0(w) (39) 

where /3(w) represents the departure of the phase shift from a straight line 
and the variation from flat gain is given by 

g(w) = 20 logio p(co) (40) 

The expression (39) may be rewritten as: 

ZM = [1 + zMJZoe-'0", (41) 

where 

z(tti)) = p^)e-ip(a) - 1 (42) 

If we assume that the switching function is of the general form (34), we 
calculate from (14) the general relation: 
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Yik = K 

N -\- 'Yj {"AOy + mq + w3)] + z*[i{v + mq — w,)]), j — k 
m= n 

n+^-l 

m=n 
i i \T_tO—t)(2m—2n+l)i/JV\ ■ , j, + z*[i(y + mq — Uj)\e ), J ^ k 

(43) 

where iv is a complex constant of proportionality. The case oij = k which 
gives transmission within the channel contains a variation with signal 
frequency caused by the summation of the departures from ideal transmis- 
sion at the N sideband frequencies. This term presumably will be unimpor- 
tant if the transmission characteristic is sufficiently good to meet crosstalk 
requirements; hence we may neglect the s and s* terms in the case of; = k 
and write the ratio of interference to desired signal as: 

2 
^ Yik 1 V /■ f/ I I M —iU~k) (2m—2n+l)x/ N 
Cik = 7F = ITr Y (sW" + + wy)]e X jj ly m=n 

i *rV i \i »(;-*:)(2m—2n+l)T/A,\ (AA\ + z*[t{v + mq — 0)j)\e ) (.44; 

The crosstalk ratio will in general vary with the signal frequency. The 
requirement would logically be based on the total interference power 
weighted in accordance with the interfering effect at individual frequencies. 
Thus we might set 

Xjk = Si [ " WM | Cjk \2do>i, (45) 

where Xjk represents the weighted interference power received in the ^th 

channel when a reference signal wave of mean power Sy is applied to the ;th 

channel. The limits of integration aja and cob are the lowest and highest 
signal frequencies used. The function Wy*(a)y) represents the proper 
weighting with frequency of the interference and takes into account the 
distribution of the interfering signal and the relative importance of the 
different interfering frequencies. 

Equation (45) is sufficient for computation of interchannel interference 
introduced by the line when the transmission characteristics of the line are 
known. A more valuable result, however, would be the expression of the 
required line characteristics in terms of the allowable interference. In 
general this would require some specification of the nature of the departures 
from the ideal characteristic. Except perhaps for systems with very few 
channels, it seems reasonable to assume that the departures are distributed 
fairly uniformly throughout the frequency range transmitted by the line, 
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and hence that for purposes of estimating requirements we may replace 
1 Cjk |" in (45) by its average value over the band. We may then write (45) 
in the form: 

I OTf = /'•'  - vik (46) 
Sj / Wji (coy) dwj 

JoJa 

The value of the right-hand member, which we have designated by the 
symbol U, is either known or can be determined for the particular type of 
signal. Hence our problem is reduced to finding the allowable departures 
in transmission which keep the mean square absolute value of C,* from 
exceeding a prescribed maximum value. 

We note that Cjk is the sum of N complex quantities, each of which is 
restricted to a range of values determined by the transfer impedance of the 
line in an individual band of frequencies. A convenient simplification may 
be made by regarding the N complex quantities as N independent chance 
variables. This is tantamount to assuming that departures in one band 
do not affect departures in any other band; the assumption is not strictly 
true, but should lead to no important error. We may then make use of the 
following theorem8: If 

• T = Mi + M2 + • • • + bnzn , (47) 

where zi, Z2, • • • z„ are « independent complex chance variables and 
bi, bz, • • ■ bn are complex constants, 

| T I = 1 ^1 |2 I Zi I" + • ■ • + 1 1' 1 2n |" (48) 

Application of this theorem to (44) gives 

   1 
n+l-1    

I C'k I2 = A72 S (I + m + wy)] I2 + ! z*[i{y + mq — coy)] |2) iV m=n 

= Wf/N, (49) 

if the average square of the absolute value of the departure is the same in all 
bands and is equal to | z |2, which we shall define as the average squared 
absolute value of the departure for the entire line band used. 

From (42) and (40), 

| z(/co) |" = 1 — 2p(co) cos 0(co) -f p2(co) 

= 1 - 2- 10e<u)/20 cos 0(co) + IQ"'"'/10 (50) 
8 R. S. Hoyt, B. S. T. J., Vol. XII, No. 1, Jan. 1933, p. 64. 
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Since it seems certain that g and 0 must remain small to make the system 
operative, we investigate the nature of (50) when expanded in powers of 
g and 0. The leading terms are: 

I 1" = ^fgir-2 ^ ^ + • ■ ■ (51) 

Hence for g and 0 small, we have independent of any correlation which may 
exist between g and 0,9 

i^y? = ((52) 

Let 

= /("), 4 = 9\o>) (53) 

Then from (46), (49), (52), 

(54) 

In (54) <ti is the r.m.s. departure of the gain in db from a constant and az 
is the r.m.s. departure of the phase shift in radians from a straight line. 
If 0-2 is expressed in degress instead of radians, (54) becomes 

Ujk = 10"3 (13.25 al + .3046 al)/N (55) 

The total interference received in any one channel is the sum of the 
individual contributions from the other iV — 1 channels. The addition 
factor required to express the total in terms of the interference from one 
channel depends on the nature of the individual loads. Thus if the proba- 
bility that any one channel is transmitting a signal wave is r, the average 
total interference power received in one channel is 

r^b 
X = t{N - l)Xjk = USj J WiMdvi, (56) 

where 

U = (N- l)rUik = ~ 1)r 10_3(13.25(ri + .3046o-^) (57) 

For large values of N, the ratio (N - 1)/N approaches unity, and the 
average interference becomes independent of the number of channels. 
The average interference may not be the most significant quantity, however. 
For example, if there is a considerable probability that all channels are 

9 This method of avoiding any assumption concerning correlation of attenuation and 
phase was suggested by Dr. T. C. Fry. 
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carrying energy simultaneously, as would be the case if the channels were 
subdivisions of a common signal band, the peak value of interference would 
probably be of more significance than the average value. 

It is convenient to let 

= 10 logw ^ (58) 

/Olb 
Wjk{uj) duj (59) 

-a 

II is the ratio expressed in db of mean signal power in one channel to the 
total interference power received in one channel, and F is the weighting 
factor expressed in db. From (56), 

U = iQ-w-rtlio ^ 

Equation (57) may be written in the form, 

j'+J.., <« 

where 

NU u a = ^W(N-X)r 

NU A degrees 

(62) 

Without the numerical factors, a and b are expressed in nepers and radians 
respectively. 

If we regard a\ and as variables, (61) determines a family of ellipses 
in which a and b are' the semi-axes. By assigning values to N, t, and 
II — F we may thus represent the requirements on gain and phase variation 
by elliptical boundaries in the o-iovplane. Figure 5 shows such a diagram 
constructed for a large number of channels each active one-fourth of the 
time and with flat weighting. In terms of the symbols above, we have set 
N/{N — 1) equal to unity, r = 1/4, and F = 0. Gain and phase variations 
included within a particular ellipse produce average interference power less 
than the amount designated on the boundary in terms of db down on mean 
power in one channel. The requirements imposed on both gain and phase 
variation are considerably more stringent than the corresponding require- 
ments for carrier systems using frequency discrimination and employing 
comparable band widths. 

Requirements on linear transmission of the line are, of course, not the 
only considerations involved in a comparison of time division multiplex 
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Fig. 5—Gain and phase requirements for transmission of time division multiplex signals. 
Each channel active 25% of lime 
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methods with competing methods of superimposing channels. Other 
aspects to be considered are the synchronization of transmitting and receiv- 
ing switching processes, the effects of non-linearities in the line, and the 
sensitivity of the system to external interference. It is thought, however, 
that the severe restrictions imposed on phase and attenuation characteristics 
when economy of band width is required form the weakest feature of the 
method and will in many cases provide the primary criterion for judging 
its availability in the solution of particular problems. Conversely, if the 
crosstalk requirements of the system are sufficiently mild to enable the 
transmission problem to be solved, the other problems also become relatively 
simplified. 
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Steady State Delay as Related to Aperiodic Signals 

By R. V. L. HARTLEY 

The concepts of phase and envelope delay, as applied to any linear 
system, rather than only to a medium, are discussed. Criteria are set 
up for the time of occurrence of that part of an aperiodic signal which 
corresponds to a small segment of the spectrum. The original spectrum 
of the signal gives the time of entry and this spectrum as modified by the 
phase characteristic of the system gives the time of exit. 

If the amplitude is constant over the segment, it is shown that when 
the criterion is the time of maximum envelope of the disturbance, the 
aperiodic delay is identical with the envelope delay. When it is the 
time of maximum absolute value, the delay depends on the signal spec- 
trum, the phase shift of the system, and the envelope delay, but not on 
the phase delay. 

If the amplitude vaies rapidly with frequency, the component of an 
aperiodic disturbance which corresponds to a narrow segment of the 
spectrum persists so long that the resulting over-lapping of neighboring 
segments makes their interpretation difficult. 

IN THE earlier applications of steady state theory to transmission prob- 
lems the emphasis was placed on the variation of amplitude with fre- 

quency. The use of long loaded lines made it necessary to take account 
of phase distortion1 as well. With the development of telephotography and 
television2, the phase characteristic was found to provide a useful index for 
predicting the overlapping of adjacent picture elements. For these purposes 
it has been found convenient to express the phase characteristic in terms of 
phase or envelope delay. These may be called "steady state delays" since 
they are defined and measured in terms of sinusoidal disturbances of ad- 
justable frequency. However, the signals for which they are intended to 
furnish an index are aperiodic in nature. It seemed worthwhile, therefore, 
to examine more closely the relations existing between "aperiodic delays," 
defined in terms of such signals, and steady state delays. 

Let us first review the development of the concepts of steady state delay. 
Early in the study of the propagation of sinusoidal waves a distinction was 
made between phase and group velocity. If we fix on a particular distance 
of transmission the ratio of this distance to each of these two velocities 
may be interpreted as a delay associated with the transmission. In the 

1 For discussion and references see "Phase Distortion and Phase Distortion Correc- 
tion," S. P. Mead, B. S. T. J., Vol. VII, p. 195, 1928. 2 Symposium on Television, B. S. T. J., Vol. VI, p. 551. 
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communication art, these delays have been called phase and envelope delay, 
respectively. If the medium exhibits dispersion they vary with frequency. 
Let us fix our attention on the conditions throughout the medium at a 
particular instant during the transmission of a sinusoidal disturbance. We 
may determine the total change of phase in passing from the input to the 
output. This may be more than a single cycle. If now we divide this 
phase shift by the frequency, expressed in the same angular units, we get 
the time which will be required for the phase at the input to progress to 
the output, or the phase delay. Also it may readily be shown that the 
derivative of this phase shift with respect to frequency is equal to the 
envelope delay as defined above in terms of the group velocity. The 
simplest treatment of this is based on the consideration of two sinusoidal 
waves of equal amplitude and slightly different frequencies. 

While these delays can be easily interpreted for most media, difficulties 
arise in the case of those substances which exhibit anomalous dispersion. 
Here, in the neighborhood of certain frequencies, the phase shift varies 
rapidly with frequency, and often appears to be discontinuous. Actually 
the apparent discontinuity is a region of very rapid decrease of phase with 
frequency, which leads to a negative value of envelope delay. In the same 
region the transmission varies rapidly with frequency, and selective reflec- 
tion occurs at the entering boundary. This effect can be explained in terms 
of resonance in the elements which make up the fine structure of the 
medium. 

The next step was to dissociate the idea of delay from that of velocity 
in a medium, and associate it with a steady state transfer characteristic 
between any two points of a linear system. This would permit its appli- 
cation to all sorts of complicated networks in which uniform propagation 
cannot be readily visualized. Here two types of characteristic are to 
be distinguished. One, which is associated with what might be called 
"damped" systems, exhibits a reasonably gradual variation of both phase 
shift and attenuation with frequency. This is the analog of a medium 
having normal dispersion. The other, which is associated with "resonant" 
systems, exhibits the phenomena associated with anomalous dispersion. 
In the case of filters and hollow wave guides these resonances give rise to 
regions of high attenuation and reactive impedance, which are the analogs 
of the regions of high absorption and selective reflection -at the boundary 
of a medium. In applying the idea of delay to networks then, we can expect 
the results to agree with our intuitions only so long as we keep away from 
the critical frequencies of resonant systems. 

In computing or measuring the phase shift of a system, at a single fre- 
quency, the result is indeterminate so far as the addition of multiples of 
2ir is concerned. This does not affect the envelope delay, which depends 
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only on the derivative, and so this type of delay can be generalized directly 
to include the transfer characteristics of arbitrary networks. To give an 
exact meaning to phase delay some convention would have to be adopted 
for determining what, if any, multiple of 2ir is to be added to the computed 
phase for the frequency in question. Apparently no such convention has 
been agreed upon which is of general application. For damped networks 
which transmit frequencies down to zero, it is customary to assume the 
phase shift to be zero at zero frequency, and, for higher frequencies, to add 
multiples of lir so that the phase shift varies continuously with frequency. 
If, then, B is the computed phase shift, between — tt and tt, we may repre- 
sent the continuously varying phase shift by 5 + 2w7r, where m is the 
number of discontinuities in B which have been eliminated in passing from 
zero to the frequency in question. The phase delay may then be defined as 

D B + lm* (1) 

CO 

Any similar convention for resonant systems would be less simple, and 
since, as will appear below, phase delay has little bearing on aperiodic 
signals, it seems unwise to attempt to formulate such a convention here. 

In contrast with steady state delay, let us now examine the delay of an 
aperiodic signal. If the signal is transmitted without distortion the con- 
cept of delay of the signal as a whole is simple. If, because of distortion, 
the sent and received signals are different we may still agree upon some 
recognizable feature of each as determining its time of occurrence. If the 
distortion is considerable the delay may vary greatly with the distinguishing 
characteristic chosen. For example, if it depends on the behavior of com- 
ponents of high frequency the delay may be quite different from what it 
is if it depends on those of low. In the first case the result would be little 
affected if, before transmission, the signal were sent through a high-pass 
filter and, in the second, if it went through a low-pass filter. In each case 
we measure a delay associated with a disturbance which comprises only 
those Fourier components of the signal which occupy a particular limited 
range of frequency. We may carry this idea farther and make use of a 
very narrow band-pass filter. By varying the mid-frequency of this band 
we obtain a delay which is a function of frequency. Its value, at any 
frequency, is the delay, as defined by our convention, of a disturbance 
which corresponds to that part of the spectrum of the signal which is in 
the immediate neighborhood of the frequency in question. Our problem 
then is to find recognizable features of a disturbance of this kind such that, 
when they are used as criteria of delay, the result can be related directly 
to the phase or envelope delay as defined in terms of periodic disturbances. 

Compared with the pair of equal sinusoids used in the derivation of 
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envelope delay, this disturbance differs in that, in any finite range of fre- 
quency, there are an infinity of sinusoids, the amplitudes of which need 
not all be the same. For simplicity, we assume the actual filter to be 
replaced by an idealized one in which there is no distortion within the band 
and no transmission outside it. If the signal as a whole be represented by 
a Fourier integral, we may obtain the desired disturbance, for an angular 
frequency, coj, by integrating from on — 5 to coi + b. The disturbance may 
be represented by 

where M is a constant dependent on the magnitude of the signal and a 
and 6 are functions of frequency and position which describe the spectrum 
of the signal at various points in the system. 

The first step is to perform the indicated integration and express the 
resulting function of time in a convenient form. For this we let 

Since we are interested only in small values of e we may replace a by 

Substituting these in (2) and performing the integration, we get 

e = OJ — coi. 

(4) 

(3) 

/(/) = real part of 2M exp [ —on + i(wir — (0i — ou^x)] 
sinh ( —-f iT)5 

If we introduce the angles, 

/3 = arc tan , 
T 

and 
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and take the real part, we get 

. . [(cosh Sa'i sin 5t)2 + (sinh Sa'i cos 5r)"]! 

/(/) = 2M exp {-ax) ^ + ^ 

cos(coir — (0i — wi^i) + ^ — t)- (5) 

Let us consider first the extreme case where the spectrum of the signal is 

(ei-wiQi) 
\ L»_ ETT 

UJ, 

TIME (r) 

sir 

Fig. 1—Elementary disturbance corresponding to a narrow segment of the spectrum 

uniform in amplitude in the neighborhood of ux, so that ai is zero. Then 

/(/) = 28M exp ( —oa) 8t cos (our — (0i — uxd'i)). 
5t 

(6) 

Here the amplitude includes a constant factor which is proportional to 
the bandwidth, 28, and to the magnitude, M exp( —on), at the frequency, 
coi, and a function of time, a plot of which is shown in Fig. 1. This function 
consists of a sinusoidal wave of frequency, on , the amplitude of which varies 
with time, the envelope being symmetrical about the instant, Te = 0i, 
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at which it is a maximum. Tc, the time of maximum envelope, is then a 
unique instant which is suitable for defining the time at which the dis- 
turbance occurs. It is determined solely by the slope of the phase frequency 
curve for the spectrum. 

The instant, Te, may be interpreted, in accordance with the principle 
of stationary phase, as the one at which the sinusoidal components of (2) 
are most nearly in the same phase, and so have the least destructive inter- 

12 TT r 

10 TT 

8 TT 

6 TT 

2 4TT 

2 TT OJi 0 I 0I 

FREQUENCY (w) UJ, 

an 
6|-UJi6| 

4TT 

-enAQ 

-BTTL 

Fig. 2—Graphical representation of the phase of an elementary disturbance 

ference. This condition will hold when the instantaneous phase angle is 
changing least rapidly with frequency, that is, when 

U - 0) = 0, do) 

from which 

t = 0i. 

The angle, 0i — wX, in (6), gives the phase of the wave at the instant, 
Te, when its envelope is a maximum. The interpretation of this angle will 
be aided by the geometrical construction of Fig. 2 which is similar to that 



228 BELL SYSTEM TECHNICAL JOURNAL 

employed for phase and group velocity3. The abscissae are values of w 
and the ordinates are values of phase in radians. A portion of the function, 
9, in the neighborhood of wi is shown. The distance, OB, is di. The slope 
of the tangent, CA, to the curve at A is e[. The distance, CB, is aji0i. 
Consequently, OC, or the intercept of this tangent on the phase axis, is 
01 _ Wl0(. ifj as shown in the figure, the absolute value of this intercept 

is greater than tt, we may transform (6) to a form in which the angle is 
less than tt, by the substitution 

tp = dy — d- 2«7r, (7) 

where n is an integer and 

I V I < T- 

In Fig. 2, n is 3, and <p is the distance DC. (6) then becomes 

f{t) = 28M exp ( —ai) cos (wir — <p), 

and <p is the ordinary phase lag of the sinusoid, relative to an origin of time 
given by the instant of maximum envelope. 

We may choose as the instant at which the disturbance occurs, not 2%, 
at which the envelope is a maximum, but Ta, at which the instantaneous 
value of the function has its maximum absolute value. Since 5 is small 
compared with on , this will occur very nearly at the smallest absolute value 
of r for which cos(£oir — (p) is ±1. This will occur for 

r = —, when —^ < y 
CO] Z z 

and for 

T = ^ ^ when —tt < tp < or - < <p < ir. 
oil L i 

From (4), (3) and (7), 

^ _ 0i + for 
a j 

0)1 

where k is an integer such that 

— ^ < ^ = 0i — coi0i + for < -. 

The significance of this can be seen from Fig. 3. Here, in addition to the 0 
curve of Fig. 2, there are plotted a series of curves whose ordinates differ 

3 Lamb, "Hydrodynamics," Cambridge U. Press 1916, p. 371. 
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from it by multiples of tt. In so far as any one purely sinusoidal component 
of the disturbance is concerned, values of phase determined by those curves 
which differ by an even multiple of tt would be indistinguishable. Those 
differing by an odd multiple would represent a reversal of sign. Let us 

0 + KTT 

+ 2TT 
9 + 

0,+ ktt 

FREQUENCY (uo) UJ, 

Fig. 3—Graphical representation of the time of maximum absolute value 

now select that curve for which the tangent at on intersects the phase axis 
nearest the origin, and call it 0 + for. Since, for the case drawn, 

DC\<\' 

k = 2n. 
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If it were greater we should have 

k = 2n ±1. 

It is then obvious that the time of maximum absolute value, Ta , is given 
by the slope of the line OE. It differs from Tc by the difference in slope of 
the lines OE and GE. 

We have then deduced from the spectrum of the disturbance its time of 
occurrence in terms of two definitions of the latter. The next step is to 
compare these times for the input and output and determine the corre- 
sponding delays. Let us consider first the case where the attenuation is 
independent of frequency, so that a[ is zero in the output signal also. We 
may then confine our attention to the phase, 0. Let us represent its value 
at the input by b, and the phase shift of the system by B. Then at the 
output 0 will be equal to b + B. If we take the time of occurrence as 
determined by the maximum envelope, these times at the input and output 
are 

Tc, = h[, 

TCl = b[ + B[ . 

The delay is then 

De = Tei — Te0 = Bi , 

which is by definition the envelope delay of the system. 
If we take the time of occurrenoe based on the maximum absolute value, 

we have, at the input, 

_ + ^OTT 
I a0 > Ui 

where 

— = 03\b\ + hir < ^. 

At the output, 

bi Bi (£o + foV 
Ta, = 

where 

"i 

— ^ < Ska = + -Bi — uiibi + Bi) + Oo + ka)ir < 
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The delay, 

While there is a superficial similarity between this and the phase delay (1), 
it is of little real significance; m, in (1), is determined by the aggregate 
increase in phase shift with frequency, while k, is determined mainly by the 
rate of increase at on . An example of a situation in which the two delays 
are very different, is furnished by a wave guide when the frequency only 
just exceeds the cutoff. The phase delay is then almost zero while the rate 
of change of phase shift with frequency is very large. 

Thus the delay based on maximum absolute value depends on both the 
envelope delay and the phase shift of the system, but not on the phase 
delay. There remains to examine this dependence in more detail. The 
value of £3 depends on the spectrum of the signal as well as the characteristic 
of the system. It is of interest to see if it can be replaced by a quantity 
derived from the system characteristic alone. The most obvious thing to 
try is a delay which is derived from the phase shift of the system in the 
same way that the time of absolute maximum is derived from that of the 
signal spectrum. This would be 

The difference between this and the aperiodic delay based on absolute 
value is 

where 

— - < ^2 — -Bl — OJl-Bi + kiiv < 

Ds- DA = - (ko *3), 

Since ^2 — ^3 is either zero or an integer and | T3 | is less than ^ , if 

< ^0 + ^2 < 
TT 

2 2 

Da — DA = 0. 
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If 

— TT <^r0 + ^r2,< — 

Da - Da= 
COl 

If 

^ + ^2 < 7r, 

Da- Da = 
Wl 

Thus the delay as derived from the system characteristic alone may be 
identical with the aperiodic delay based on maximum absolute value or it 

may differ from it by , that is by half a period. Which condition COi 
holds depends on the interrelation of the phase functions which characterize 
the signal spectrum at the input and the transmission of the system, and 
not on either of these functions alone. 

If the attenuation is not uniform, ct'i cannot be neglected and the expres- 
sion for the output signal becomes more complicated. Both the amplitude 
and phase in (5) vary with time in a manner which depends on the value 
chosen for 8. The expression becomes fairly simple, however, for the case 
where ai is very large, as in anomalous dispersion and in highly resonant 
systems. Then, even when 5 is small, we may assume that 

cosh (fiaj) = exp (± Sai), 

sinh (dai) = ± exp (± Sai), 

according as a[ ^ 0. 
The amplitude factor in (5) then becomes 

M exp ( —ai ± Sou) 
W + r2)* 

Here the exponent is equal to the value of a at that edge of the segment of 
the spectrum where the amplitude is greatest. The amplitude is sym- 
metrical about r = 0, that is, about / = 0i , at which point it has its maxi- 
mum value. Hence the instant of maximum envelope is still given by the 
slope of the phase, frequency curve, as when on is small. However, the 
maximum is now extremely flat and its sharpness no longer depends directly 
on 8. Over the range of values of r for which r2 < < on2, the amplitude is 
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sensibly constant. When r = ±a[, it is reduced to ^7^ times its maximum. 

For r2 > > a'l2, it varies inversely as j r | . 
To investigate the oscillating factor of (5) we note that now 

7 = ±5r ± 

where the sign of 5t depends on that of a[ and that of ^ does not. The 

oscillating factor then is 

cos [(coi + 5)r — (0i — 01101') — v], 

where 
/ 

17 = arctan —1 ± ^. (8) 
r 2 

The frequency, (on ^ 5), is that of the edge of the segment of the spectrum 
where the amplitude is relatively very large. The phase differs from that 
for small values of ai by a quantity rj which is an ambiguous function of the 
time r. This ambiguity may be removed if we assume that the phase 
varies continuously and that, for very small values of r, the amplitude has 
the same sign as the spectrum component corresponding to an infinitesimal 

/ 
value of 8. As r increases through zero, arctan — changes discontinuously 

r 

from ^ ^ to according as ai ^ 0. To avoid a similar discontinuity, 
£ £ 

TT 
in tj we say that the sign of - in (8) is to be taken opposite for positive and 

£ 
negative values of r. If we make it ± for r < 0, and + for r > 0, according 
as ai ^ 0, then r\ is zero in the neighborhood of r = 0. Since the amplitude 
factor is always positive, this corresponds to a spectral component of positive 

• TT   
amplitude. If we make the sign of - + for r < 0, and ± for r > 0, tj 

£ 
becomes ± tt, which is the equivalent of a negative amplitude. Hence a 
knowledge of the spectral component of frequency wi enables us to determine 

the sign in (8). For large values of (r), r; reduces to ±^. 
£ 

Here we have assumed the amplitude of the input signal to be independent 
of frequency. If this is not the case the same conditions hold at the input 
as have just been discussed for the output of a resonant system. 

The main conclusion to be drawn from the foregoing is that when the 
amplitude is changing rapidly with frequency, the component of an aperiodic 
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disturbance which corresponds to a narrow segment of the spectrum persists 
for a considerable period so that there is much overlapping of the contribu- 
tions of neighboring segments. It is therefore difficult to deduce the nature 
of the disturbance at any particular time from any narrow region of its 
spectrum. For the same reason it is difficult to associate the delay ex- 
perienced by an aperiodic signal with the steady state characteristic of a net- 
work when the attenuation of the latter is changing rapidly with frequency. 

The net result of our study then is that steady state phase delay has no 
direct relation to the particular types of delay of an aperiodic signal which 
we have chosen to investigate. When the amplitude does not change 
rapidly with frequency, envelope delay is identical with the delay produced 
in the maximum value of the envelope of a disturbance corresponding to 
that part of the signal spectrum which is in the immediate neighborhood 
of the frequency in question. The envelope delay, together with the phase 
shift, determines the delay in the maximum absolute value of this dis- 
turbance, subject to an uncertainty of half a period. This uncertainty 
depends on the particular combination of signal spectrum and system 
characteristic. When the amplitude does change rapidly with frequency, 
the envelope delay still gives the delay in the maximum value of the envelope. 
However, this maximum is so flat that the interpretation of the results is 
very difficult. 



Engineering Requirements for Program Transmission 
Circuits* 

By F. A. COWAN, R. G. McCURDY and I. E. LATTIMER 

Present-day program networks are reviewed from the standpoints of 
engineering, design, and operation as developed to meet the needs of 
the broadcasters. The factors requiring consideration in the further 
development of program networks in anticipation of future needs are 
also discussed. The presentation of the paper is supplemented by a 
demonstration of the quality obtainable by transmission over various 
types of telephone facilities. 

HE growth of radio broadcasting to the magnitude of a major national 
industry within the last twenty years has been accompanied by the 

development of a nation-wide system of wire-line networks interconnecting 
hundreds of broadcasting stations. Papers have been presented before 
this Institute from time to time1-'3 describing the types of plant used for 
these networks and discussing important features of their design and opera- 
tion. With these twenty years of experience as a background, it should 
now be of interest to review how the various requirements of broadcasting 
have influenced the development of the networks and to consider some of 
the factors which have determined the point to which transmission and 
operating features have so far been carried. 

Simply stated, broadcasting is a means by which sounds originated at one 
place are reproduced simultaneously to large numbers of listeners distributed 
over wide areas. The simplest possible radio broadcasting system would 
consist of a microphone, a radio broadcast transmitter and some radio 
receiving sets. Such a system could serve only the listeners within the 
comparatively limited service area of the transmitter. To serve the whole 
nation many transmitters must be established about the country. Further- 
more the most desirable sources of program are not usually in the neighbor- 
hood of the transmitter to which a particular listener can tune, since talent 
tends to be concentrated in certain parts of the country, and special events 
of interest may occur anywhere. To give a true country-wide service so 
that every listener can hear the programs he enjoys wherever they may 

* Presented at A.I.E.E. Winter Convention, Philadelphia, Pa., January 27-31, 1941. 
Published in Electrical Engineering, Transactions section, April 1941. 1 For all numbered references, see list at end of paper. 
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originate, a supplementary transmission system must be provided, inter- 
connecting the many studios and broadcasting stations. The wire networks 
that perform this function comprise the subject matter of this paper. 

The present extent of the wire-line facilities which are associated with the 
major portion of these networks is indicated in Fig. 1. The width of the 
lines on this chart has been made proportional to the numbers of circuits in 
the various sections. The total length of these circuits is in excess of 110,000 
miles, and it is not unusual for a program originating at some point on a 
network to traverse more than 7,000 miles of circuit before being broadcast 
by the most remote station. 

The requirements which the program networks must meet are in the final 
analysis determined largely by the needs of the broadcasters. The objective 
of a program network service is to meet these needs in as complete and 
prompt a manner as possible consistent with reasonable cost. With this 
objective in mind, it is necessary in planning the plant to consider not only 
the day-to-day needs, but the possible future needs as well. The importance 
of this may be appreciated when it is considered that plant provided today 
for program transmission service will need to be adaptable to the service 
requirements ten or twenty years hence. As a result of such planning, 
cables and equipment installed five, ten, and fifteen years ago meet present- 
day requirements, and, with some rearrangements, will take care of those 
likely to develop tomorrow. 

The detailed planning of program transmission circuits requires considera- 
tion of: 

1. The numbers of circuits likely to be required, section by section, over 
each route; 

2. The provisions for reliability, flexibility, operation, and supervision 
essential to a high-grade network sendee; 

3. The transmission requirements, or electrical characteristics, necessary 
to achieve a natural reproduction of the program. 

These three general classes of requirements will be considered in order. 

Number of Circuits Required 

The circuits which have been established on a full-time basis for continu- 
ing use form the backbone of the program networks. Even for these circuits, 
however, permanence is relative since frequent extensions and rearrange- 
ments are made to meet changing requirements of the broadcasters. Aside 
from these fulltime circuits there are intermittent requirements occasioned 
by special events and other short-period needs of the broadcasters, some of 
which involve networks almost as extensive as the full-time networks. 
In addition reliability of service requires provision for rerouting the net- 
works in the event of trouble. Figure .2 shows the year-by-year growth in 
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the operated mileage of program circuits for the period 1926 to 1940. 
Of the more than 110,000 miles of circuits shown for 1940, about 45,000 
miles have been provided for the short-period services and as stand-by 
facilities for protection. In addition to these, there are still other circuits, 
normally assigned to other services, which are arranged to be readily adapt- 
able to program service to supplement the reserve facilities maintained on a 
full-time basis. 

The time interval necessarily accompanying any extensive construction 
project makes it necessary to engineer plant considerably in advance of 
actual service requirements to meet, not only the expected growth, but also 
the changes in network routing. Figure 3 shows for two typical sections 
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Fig. 2—Growth in mileage of major network circuits 

along major routes the variations in requirements for full-time network 
circuits resulting from growth and rearrangements required by the broad- 
casters. While, in planning to meet these rapid variations in circuit 
requirements, advantage can be taken of some latitude which exists in the 
choice of routes for occasional services and protection facilities, the task of 
balancing the provision of circuits against requirements is an entertaining 
and at times difficult one for the circuit engineer. 

Operating Requirements 

Considering for a moment the variety of programs originating at many 
different points that can be heard on any home radio set in the course of an 
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evening without once changing the tuning, it will be apparent that minute- 
to-minute rearrangements of an established interconnecting network must 
be possible. For example, studios have to be changed from receiving to 
originating, sections of the network have to be made to transmit first in 

NEW YORK-ALBANY SECTION 

COLUMBUS-DAYTON SECTION 

1927 28 29 30 31 32 33 34 35 35 37 38 39 40 
YEAR 

Fig. 3—Variations in full-time program circuits 

one direction and then in the other, and branches have to be connected and 
disconnected. These changes in the network have to be made in the few 
seconds elapsing between the close of one program and the start of the next 
on the receipt of selected cue words or sounds. Even during the course of a 
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single program, switches or reversals may have to be made to change the 
originating point temporarily. To provide for these rapid changes, special 
operation and special switching and reversing equipment are required at 
many points along the network. Much of this equipment is under remote 
control from selected points. 

The greater portion of the switching of program circuits is done at about 
25 points throughout the country on the major networks. On the average 
more than 25,000 switching operations per month are performed at these 
25 points. During the busy hours of any typical evening there may be 
something over 500 men on duty at all of the offices about the networks. 

At points where switching requirements are simple, the switching equip- 
ment consists merely of a few keys. At the larger points where the switching 
requirements are complex, the switching equipment consists of elaborate 
relay and control arrangements. These are so designed that it is possible 
to set up in advance the circuit combinations required for the ensuing 
program period without disturbing the programs in progress. The actual 
switching operation takes place at the instant the monitoring attendants 
signal the the receipt of the last of selected cues, and not before then. This 
type of arrangement affords a maximum of protection against error, as it is 
possible to check the presetting for the next switch or make a last minute 
change if necessary any time before the switch has been made. 

Figure 4 shows a picture of such a switching arrangement in use at 
Omaha, Nebraska for one broadcasting company. At this point 13 circuits 
used in various trunk and branch sections of two networks are connected 
to the switching equipment. These are grouped in various combinations to 
take care of as many as five simultaneous programs. A maximum of five 
cues might, therefore, be involved in a switch at this point. 

The operation and maintenance of the networks are carried out by a 
special organization under centralized authority and trained in the applica- 
tion of uniform methods and procedures found by experience to be produc- 
tive of best results. Transmission is monitored continuously at strategic 
points about the networks. In order to facilitate the activities of this group 
many thousands of miles of intercommunicating telephone and telegraph 
circuits are provided full time for their use. 

A picture of a monitoring position in the program transmission office at 
Washington, D. C. is shown in Fig. 5. It will be noted that the monitoring 
attendant is using an individual headset. This is of a special high fidelity 
type and is used to avoid the confusion that would result from attempting 
to monitor a number of different programs simultaneously with loud- 
speakers. Loud-speakers are available, however, for supplementary checks 
of quality whenever required. 

Accurate transmission measuring equipment is necessary at the various 
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operating points about the networks to insure satisfactory transmission 
maintenance results. 
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Fig. 4—Switching panel at Omaha, Nebraska 

Transmission Requirements 

The general transmission requirement for a broadcasting system is that 
the program material be transmitted with a high degree of naturalness. 
Although the exact determination of the transmission characteristics which 
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would accomplish this involves many considerations it will be assumed in 
this discussion that an ideal transmittion system is one in which the sound 
waves impressed on the listeners' ears in the home are an exact replica of the 
sound waves striking the microphone in the distant studio. Limitations 
inherent in the human ear, in the program material to be transmitted, and 
in the usual listening conditions, however, make such ideal transmission 
unnecessary. In expressing the requirements for satisfactory transmission, 
frequency range, attenuation distortion, delay distortion, nonlinearity and 
noise are used as indices of quality. 
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Fig. 5—Monitoring position at Washington, D. C. 

Before taking up the transmission requirements of a program circuit, it is 
important to consider further the fundamental factors that are involved in 
fixing the characteristics considered desirable for the entire system. Ac- 
cording to Harvey Fletcher,4 the zone of audibility of the average normal 
human ear for pure or single frequency sounds is the area within the curve 
of Fig. 6. The abscissas represent frequency and the ordinates show the 
range of intensity recognizable as sound, between the lower limit or threshold 
of audibility and the upper limit where the sensation of pain is felt. It is 
seen that the extreme frequency range shown on the chart is from about 20 
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to 20,000 cycles per second. This range is for young people. It is consid- 
erably less for middle-aged and elderly people, and varies with individuals. 

In addition to the limitation of the ear there is the fact that there is little 
energy present in most program material in the extremes of this range, 
particularly in the upper frequencies. The energy versus frequency spectra 
of music and other forms of program have been published elsewhere.5 

Figure 7 shows the frequency range which must be transmitted for a number 
of instruments, speech, and certain noises, so that competent observers 
cannot detect any impairment.6 For whole orchestras, experiment has 
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Fig. 6—Limits of audible sound 

shown that the elimination of frequencies below 40 and above 15,000 cycles 
per second is undetectable.4 It the upper limit of the transmitted frequen- 
cies is lowered from 15,000 cycles, the impairment is at first barely detectable 
but increases at an accelerating rate. When the limit is materially lower 
than 8,000 cycles, the loss is readily apparent to many people. 

Another important consideration is volume range—that is the difference 
between the maximum and minimum levels of the program. The ordinates 
of Fig. 6 show that for part of the frequency range, the ear can respond to a 
range of intensities of more than 120 decibels, with perhaps 100 decibels as a 
mean. However, the following considerations show that the volume range 
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which the transmission system needs to accommodate is considerably nar- 
rower than the intensity range to which the ear can respond. 

In the first place, the range of program volumes to which the ear can 
respond is much less than the range of single-frequency intensities shown by 
the curve. Program waves are in general very irregular in shape, and even 
at constant volume contain large and small peaks differing in amplitude by 
many decibels. The range between the volume at which the highst peaks 
reach the maximum instantaneous intensity which the ear can tolerate and 
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Fig. 7—Audible frequency ranges of music, speech, and noise 
Observers voted for entire band by ratio of 60 to 40 over band shown by extremities 

of lines, and by ratio of 80 to 20 over band indicated by circles. Broken lines show range 
of noise accompanying music. 

the volume at which the smallest peaks are just above the threshold of audi- 
bility is therefore less by a number of decibels than the intensity range of 
the ear as measured by single frequencies. 

In the second place, the volume range of the usual program material 
has definite limits. Measurements have shown that a large symphony 
orchestra produces a maximum volume range of about 70 decibels.4 The 
volume range of most other types of program is considerably less than this, 
for example, being only about 25 to 30 decibles for dance music and as little 
as about 15 decibels for much of the dialogue of actors in radio drama. 
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In the third place, the usual listening conditions impose a definite limit 
on the useful volume range. The loudest passages in the music of a sym- 
phony orchestra correspond to a sound level of about +95 decibels at a point, 
say one-third the way back in an auditorium, but most people in their 
homes prefer a level which is lower than this by 5 to 10 decibels. Figure 8 
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Fig. 8—Residence room noise with radio sets silent 
Average 43 db. Standard deviation 5.5 db. 

shows the results of an extensive survey" of acoustic room noise in homes. 
It will be noted that the average noise level is +43 decibels on the sound- 
level scale, and that few homes are quieter than +30 decibels even in the 
suburbs. The signal-to-noise range inherent in the listening conditions, 
and allowing nothing for the noise contributed by the transmission system 
or the room noise where the program is being produced, is therefore 
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seen to be somewhere between 45 and 65 decibels. There is, therefore, no 
advantage to the listener in providing a permissible volume range materially • 
wider than this in the transmission system. 

The above discussion applies primarily to the transmission of symphonic 
and similar high-grade program material. Much program material is less 
exacting in its requirements, but on the other hand some sound effects 
such as the tearing of paper require the reproduction of higher frequencies 
for complete naturalness. 

With these broad considerations in mind, the requirements of high-quality 
program circuits may now be taken up. As has been noted, the program 
network is but one part of the over-all broadcasting system which, in ad- 
dition, includes microphones and studio equipment, radio transmitters, 
and the home receivers with their loud-speakers. It may be taken as a 
goal for the program networks that their transmission be nearly enough 
distortionless so that the over-all performance in regard to naturalness of 
reproduction will not be limited by them. 

To meet such a requirement for short program circuits having only one 
or two sections is not difficult technically and does not in general require 
costly types of plant. However, the vast country-wide program networks 
are made up of many sections of circuits in tandem, which as mentioned be- 
fore may total in some cases as much as 7,000 miles. This makes it necessary 
to design and operate the individual circuits to very close limits so that the 
cumulative discrepancies in the whole network will not exceed tolerable 
values; and to consider carefully the types of plant employed lest by virtue 
of sheer numbers of units involved, the total cost be out of line with the 
over-all grade of service being given the listner. These two conflicting 
factors are important ones in the consideration of transmission requirements 
for networks. The determination of the practical working characteristics 
of program networks involves a consideration not only of the physical and 
cost factors discussed above but also of such other factors as cost of studios, 
broadcast transmitters and receivers, and the limitations of the frequency 
allocations of broadcast stations. 

From the standpoint of frequency band the consideration of all factors has 
resulted in the major present-day program networks being set up to transmit 
a frequency band with an upper limit of about 5,000 cycles. All program 
facilities installed in the last ten years or so, however, have been designed 
to be adaptable to the future transmission of frequencies up to 8,000 cycles. 
Operation on an 8,000-cycle basis, however, requires the release of additional 
frequency space now occupied by other services in much of the plant and a 
general readjustment of the program-circuit characteristics. In 1933, 
experimental wire circuits were set up between Philadelphia and Washington 
to transmit frequency bands up to 15,000 cycles. These were employed in a 
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demonstration of stereophonic transmission and reproduction of music.4 

Studio-transmitter loops have been provided to transmit wider frequency 
bands than the 5,000 cycles currently provided on the nation-wide net- 
works. At the present time, many of the studio-transmitter loops are being 
set up to transmit bands up to 15,000 cycles. A demonstration will be 
given at the close of the paper of the transmission of programs over cable 
circuits about 1,200 miles in length with frequency bands extending to 
15,000, 8,000, and 5,000 cycles. The 5,000-cycle circuit is of the type in 
present commercial use. The 8,000-cycle circuit is of a type to which 
much of the present program plant can readily be modified. The 15,000- 
cycle circuit consists of a standard carrier system to which has been added 
program terminal equipment now under development. 

In the consideration of transmission requirements for program circuits 
other than nominal frequency band, the variation in performance with length 
and type of circuit is important, since the factors tending to impair trans- 
mission are in the nature of small amounts of distortion or noise which 
accumulate over the length of the circuit. If these effects varied in some 
definite manner with length, transmission requirements could be fixed on 
that basis. However, good engineering practice frequently requires choos- 
ing for the various sections of a long circuit, different types of facilities 
whose contributions to the total effects are not in proportion to their length. 
Even the determination of the maximum permissible distortion and noise 
on a circuit is influenced by outside factors such as are involved in the broad- 
casters weighing operating flexibility and cost against the frequency of 
occurrence of unfavorable network routings and the number of stations 
affected. For example, in order to secure operating flexibility with a mini- 
mum of total network mileage, most of the networks employ the so-called 
"round robin" principle for a part of the network. In this arrangement the 
circuit follows a route from station to station forming a continuous loop 
which returns to its starting point. This naturally results in increased 
circuit mileage between the program source and the more distant listeners 
with an attendant increase in undesired transmission effects. For these 
reasons no exact or specific transmission requirements can be stated for 
even the over-all performance of program transmission service. 

Volume Range 

The permissible volume range for a program circuit is determined by 
the maximum volume which can be transmitted as limited by nonlinear 
distortion or crosstalk, and the minimum volume which can be transmitted 
without impairment from the noise present on the circuit. 

In connection with their design the various types of program circuit are 
subjected to listening tests in which the transmission of program over a 
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long loop of the circuit is compared with transmission over a local distor- 
tionless circuit. Each type of circuit thus is rated as to the maximum 
volume it can transmit without noticeable distortion. The highest volume 
which can be permitted without excessive crosstalk into other program or 
message telephone circuits is also investigated, and whichever limit is the 
lower determines the maximum allowable working volume for service. 1 he 
range between the maximum permissible volume and the noise level on very 
long lengths of the present program circuits is about 45 or 50 decibels, 
except under some conditions on certain open-wire sections. On the indi- 
vidual links making up the long circuit, the range is 10 or 20 decibels greater 
than this. 

Attenuation and Delay Distortion 

Another important consideration is the amount of attenuation and delay 
(or phase) distortion to be permitted within the transmitted frequency band. 
It is the practice to equip program circuits with adjustable attentuation 
equalizers. By means of these once the desired frequency band has been 
chosen the deviation in attenuation at any frequency within that band, 
compared with that at 1,000 cycles, can be adjusted within close limits. On 
very long circuits, however, experience has shown that even with automatic 
regulating features and careful operation residual variations which may 
amount to several decibels may develop as a result of changing temperature 
and other conditions. These variations are kept within tolerable limits 
by readjustment of the equalizers from time to time. 

Associated with the attenuation distortion is another effect detrimental 
to program quality, namely, differences in time of transmission for different 
frequency components of the signal. In practice, circuits tend to have a 
lower velocity of transmission near the edges of the frequency band than 
in the middle portions. This results in frequency components near the 
edges being delayed as compared to the middle portions of the band. This 
difference in time of transmission is called delay distortion of the circuit. 
Careful listening tests have shown that it becomes noticeable if, at the 
highest transmitted frequency, the delay is more than eight milliseconds 
greater than at 1,000 cycles, and if, at 100 cycles, it is more than about 
15 milliseconds greater than at 1,000 cycles. It is controlled by careful 
attention to the design of loading systems, amplifiers, repeating coils, and 
all other elements of the circuit. Since such small amounts of over-all 
delay distortion are detectable and since networks frequently have 100 or 
more amplifiers in tandem between an originating point and the broad- 
casting stations on the more distant portions of the networks, it is necessary 
that the delay distortion of all individual components of a network be held 
to exceedingly close limits. Accumulations of residual delay distortion 
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which cannot be entirely eliminated in design are reduced by the use of 
delay equalizers along the circuits when they are set up. 

Conclusion 

From this discussion it is seen that the program networks are comprised 
of many parts, each of which must meet exacting requirements in order 
that over-all results will be satisfactory. It is seen that equally important 
with transmission are the requirements for plant flexibility, adequate 
reserves, uniform practices, and centralized supervision of the networks. 

The features discussed have been those found desirable for present-day 
network service. As indicated earlier, consideration of the needs of the 
future as well as those of the present is an essential feature of the design 
and engineering of the plant for program-network service. As a result 
of having done this it will be possible to provide with present plant, and 
with new plant currently being installed, adequate network facilities as 
the broadcasting art develops toward higher standards of performance. 
With the past experience as a guide, it appears that there should be no 
fundamental difficulty in meeting all reasonable requirements, always 
remembering that in the long run, requirements and costs bear definite 
relations to each other. 
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Notes on the Time Relation between Solar Emission and Terrestrial Dis- 
turbances.1 Clifford N. Anderson. Although the correlation between 
general solar activity and terrestrial disturbances is quite evident, the 
association of individual storms with specific sunspot groups has never 
been very satisfactory. Disturbances sometimes have occurred when no 
sunspots were visible and at other times large sunspots have been unaccom- 
panied by any abnormal disturbances. A possible explanation of such 
anomalies may lie in longer transit times for the disturbing solar emission 
than is usually assumed. Some indication is given in this paper that these 
transit times may range from periods as short as only one or two days to 
as much as three months. The corresponding velocities for the above 
transit times are of the order of 2000 and 20 kilometers per second. 

Curves show the approximate relation between the angle of emission, 
velocity, day of emission, and the days intervening between the passage of a 
spot through the central meridian of the sun and the corpuscular encounter 
with the earth. 

The Effect of the Earth's Curvature on Ground-Wave Propagation? 
Charles R. Burrows and Marion C. Gray. Curves are presented for 
the rapid calculation of the ground wave for radio propagation over a 
spherical earth of arbitrary ground constants, antenna heights, and polari- 
zation. 

Based on the pioneering work of G. N. Watson, a rigorous theory of the 
propagation of electromagnetic waves round a spherical earth has been 
developed in the past twenty years. Watson developed his method in 
detail only in the limiting case of an earth of infinite conductivity, bilt his 
work has since been extended by various authors to cover other values of 
the earth's conductivity. Theoretically, therefore, solutions are available 
for any values of the earth's constants (dielectric constant and conductivity) 
and for either vertically polarized or horizontally polarized waves. In 
practice, unfortunately, the computations required are lengthy and in- 
volved, and for the most part the recent theoretical papers have confined 
their calculations to a few specific values of the earth's constants. The 
present paper attempts to summarize the results so far obtained in a manner 

1 Proc. I.R.E., November 1940. 2 Proc. I.R.E., January 1941. 
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that will make them more easily available to the practical engineer, and to 
fill the gaps in these results by developing a series of curves from which the 
field for any values of the earth's constants may be read, with all the ac- 
curacy that could be expected in engineering practice. 

Electrical Breakdown of Anodically Oxidized Coatings on Aluminum: A 
Means of Checking Thickness of Anodized Finishes.3 K. G. Compton and 
A. Mendizza. The existing methods for determining the thickness of 
anodically produced oxide coatings on aluminum are relatively few and are 
almost entirely of a destructive nature. It is a fairly well established fact 
that, within the thickness limits normally encountered in practice, the 
voltage breakdown is a linear function of thickness of oxide film. The 
authors have endeavored to utilize this fact in developing a test method 
for determining the thickness of coatings produced under known and con- 
trolled conditions with practically no injury to the finish. Data are given 
which show the relationship between breakdown resistance, anodizing time, 
thickness of coating, current density and sealing of anodically oxidized 
polished commercially pure aluminum. Statistical data for the values ob- 
tained are also given, indicating the good reproducibility of the breakdown 
values. By calibrating a particular anodic process, satisfactory results 
may be obtained in a relatively short time and often without destroying or 
marring the article. Since the oxide coating is not entirely homogeneous 
it is necessary to obtain a fairly large number of readings for every test 
condition. The authors have found that approximately twenty-five read- 
ings are usually sufficient and can be made in a relatively short time. Al- 
though only one of the many anodizing possibilities has been investigated, 
the applicability of this method of evaluating the thickness of oxide coatings 
may be extended to all commercial treatments. 

Ultrasonic Absorption and Velocity Measurements in Numerous Liquids.* 
Gerald W. Willard. By means of ultrasonic light-diffraction phenomena 
the velocity and absorption of sound in some forty transparent liquids were 
measured in the frequency range of 6 to 30 Mc. Among the list of materials 
studied are mixtures of liquids in varying proportions, several solutions of 
solids in liquids, and a non-liquid jell. A novel-construction glass-to-metal- 
to-quartz cell made possible the study of highly solvent liquids. Velocity 
values were obtained from measurements of the diffraction spectra spacing. 
Absorption values were obtained by measurement of the sound radiator 
voltages required to produce certain color transmission effects at measured 
distances from the sound radiator. The use of a mercury arc light-source 

3 A.S.T.M. Proc., Vol. 40, 1940. 
^Jovr. Aeons. Soc. Amer., January 1941. 
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enhanced the necessary color effects. The relation between sound beam 
width (in the optical direction) and light transmission was studied. In 
general, the values of velocity obtained were found to be independent of 
frequency, and the absorption to be proportional to frequency squared and 
unrelated to calculated viscous and thermal losses. A simple calculation 
is proposed for estimating absorption errors caused by sound beam diffrac- 
tion and spreading. These apply as well to absorption measured in other 
methods than here used. 
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