
http://www.epemag.wimborne.co.uk
WhPI-75S MONTORING STSTELI Padio linked PC data logging

SUSTAIN PEDAL Easy to build sustain or glissando LICHT ALARM Multiple use light triggered design

Phizzy B Computers • Ingenuity Unlimited Circuit Surgery • New Technology Update •Innovations

WIND GENERATORS 380 WATT 1.14 metre dia blades, Carbon matrix blades, 3 year waranty. 12 vdc output, 24 v version avalable, control electronics included. brushless neodymium cubic curve atternator, only two moving parts, maintenance free, simple roof
top installation, start up speed 7 mph , max output (30mph) 380 w . $£ 499$ ref AIR1
HYDROPONICS DO YOU GROW YOUR OWN? We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test TELEKINETIC ENHANCER PLANS Mystrfy and amaze your friends by creating motion with no known apparent means or cause produces positive motion and effect. Excelient for science projects. produces positive motion and efiect Excelient tor science projectis.
magic shows, party demonstrations or senious research $\&$ development magic s stows, party cemonstrations
of this strange and amazing phychic phenomenon.

£ 4 /set Ref FTKKE1

ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembied can produce highly effective stimuli. This materal must be used cautiously it is for use as entertainment at
those experienced in its use $£ 15 /$ set Ref $F / E \cdot \mathrm{H}$ 2
those experienced in its use $£ 15 /$ set Ref F/EHz
GRAVITY GENERATOR PLANS This unique pian demonstrates a simple electrica! phenomena that produces an ant1-gravity effect You can actually build a small mock spaceship out of simple materais and
without any visible means cause it to levitate $£ 10 /$ set Ref $F / G R A 1$ without any visible means- cause it to levitate $£$ to/set Ref $F /$ GRA 1
WORLDS SMALLEST TESLA COIL/LIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a ar', St Elmo's fire Corona excellent science project or conversation piece $£ 5 /$ set Ref $\mathrm{F} / \mathrm{BTC}$ 4/LG5
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood withouta second matching unit. Use on teeiephone to prevent third party listening and bugging, £ $6 /$ set Ref FNSS.
PULSED TV JOKER PLANS Little hand held device utilises puise techniques that will completery disrupt TV picture and sound works on FM tool DISCRETION ADVISED $88 /$ set Ref FTT 5
burning, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of buming and melting materials over a conssderable distance. This laser is one of the most efficient. converting 10% input power into useful output. Not only is this device a workhorse
in welding, cutting and heat processing materials but it is also a likely in welding, cutting and heat processing materials but it is also a likely
candidate as an effective directed energy bearm weapon against candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very well utilize a laser of thistype to blasta channeinin the atmosphere for a tigh energy stream of neutrons or other particles the device is eastly
applicabie to buming and etching wood, cutting, plastics, textiles eto applicable to bumin
$E 12 /$ set Ref $F / C 7$
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam. atomize iquides, Many cleaning uses for PC boards, jewiery, Coins, smai parts etc $£ 6 /$ set Ref F NLB 1
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate $£ 6 / \mathrm{set}$ Ref $\mathrm{F} / \mathrm{DOG}$ 2
LASER BOUŃCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without ganing access. $£ 12 /$ set Ref F / PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with external Handheld, has large transduu
controis $£ 6 /$ set Ref FIPSP4
INFINITY TRANSMITTER PLANS Telephone tine grabbert room monitor. The uttimate in home/ofice security and safetyl simple to usel Call your home or office phone, push a secret tone on your
telephone to access ether. A) On premises sound and voices or B) telephone to access etther. A) On premises sound and voices or B)
Existing conversaton with break-in capability foremergencymessages Existing conversation
$£ 7$ Ref $F T T E L E G R A B$
ELECTROMAGNETIC GUN PLANS Projects a meta object a considerable distance-requires adult supervision $£ 5$ ref FIEML2 electric man plans, shock people with the TOUCH OF YOUR HAND! $£ 5 / \mathrm{set}$ Ref F/EMA:
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND high de voltage, solid state tesca coil and VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{vdc}$, many possible experiments. $£ 10$ Ref F FHVM $7 /$ CL4.

Works with mostmodern video's, TVs, Composite monitors, video grabber cards. Pal, $9 \mathrm{vP-P}$, composite, $750 \mathrm{hm}, 1 / 3^{\prime \prime}$ $\mathrm{CCD}, 4 \mathrm{~mm} \mathrm{F2.8}, 500 \times 582$, 12 vdc , mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$
CIRCUIT PACKS Packs of 35 circuit diagrams covering lasers, SW radios, geigers, bugs, char etc Pack1, Pack2. Pack $3 £ 4.99$ each SMOKE ALARMS Mains powered, made by the famous Gent company, easy fit next to light fittings, power point. £4.99 ref SMKX CONVERT YOUR TV INTO A VGA MONITOR FOR £25! Converts a colour TV into a basic VGA screen. Complete with buit in psu, lead and s/ware. Ideal for laptops or a cheap upgrade. S ${ }^{\text {kit }}$ form for home assembly SALE PRICE $£ 25$ REF SA34

- 15 WATT FM TRANSMITTER Already assembled but some $R F$ knowledge will be useful for setting up Preamp req'd, 4 stage 80 $108 \mathrm{mhz}, 12-18 \mathrm{vad}$, can use ground plane, yagi or dipole $£ 69$ ref 1021
$* 4$ WATT FM TRANSMITTER KIT Small *4 WATT FM TRANSMITTER KIT Small but powerful FM
transmitter kit 3 RF stages, mic \& aucio preamp inc. $£ 24$ ref 1028
PIR CAMERABult in CCTV camera (composite output) IR strobe ight,PIR detector and battery backup. Designed to 'squirt pictures down the 'phone line but works well as a standalone unit. Bargain price $£ 49.95$ ref SS84, 3 or more $£ 44.95$ ref $\mathrm{SSB0}$.
4AH D SIZE NICADS pack of $4 £ 10$ ref 4 AHPK ELECTRIC FENCE KIT Everything you need to build a 12 vac electric fence. complete with 200 m of electric fence wire. $£ 49$ ref AR2 SENDER KIT Contains all components to build a AN transmitter complete with case $£ 35$ ref VSXX2
UV LIGHTS 4 ' flourescent $340 \mathrm{~nm} £ 38.99$ ref UV23 33 KILO LIFT MAGNET Neodynium, 32 mm £ 15 ref MAG33 10 WATT SOLAR PANEL Amorbhous silicon panel fitted in a $\begin{array}{ll}\text { anodized aluminum frame Panel measures } 3 \text { ' by } 1 \text { with screw } \\ \text { terminals for easy connection } & 3^{\prime} \times 1^{\prime} \text { solar panel } £ 55 \text { ref MAG45 }\end{array}$ Unframed 4 pack ($3^{\prime} \times 1^{\prime}$) £58.99 ref SOLX
Unframed 4 pack ($3^{\prime} \times 1^{\prime}$) £58.99 ref SOLX
12V SOLAR POWERED WATER PUMP Perfect for many 12VDC uses, ranging from solar fountains to hydroponics' Small and compact yet powerful. Will work direct from our 10 watt solar panet in bright sunlight. Max head: 17 f Max flow $=8 \mathrm{Lpm}, 1.5 \mathrm{ARef}$ AC8 $£ 18.99$ SOLAR ENERGY BANK KIT 50×6 " $\times 12^{\prime \prime} 6 \mathrm{v}$ solar panels(amorphous) +50 diodes $£ 99$ ref EF112 PINHOLE CAMERA MODULE WITH AUDIO: Superb board camera with on board sound! extra small just 28 mm square (including microphone) ideal for covert survellance Can be hidden inside anything, even a matchbox! Complete with 15 metre cable. psu
and twivcr connnectors $£ 7395$ ref CC6
SOI ARMOTORS Tin Ss CCE
SOLAR MOTORS Tiny motors which run quite nappily on voltages from 3 - 12 Vdc Works on our 6 vamorphous 6 " panels and you can run them from the sun! 32 mm dia 20 mm thick $£ 1.50$ each
WALKIE TALKIES 1 MILE RANGE £37/PAIR REF MAG30 ORILL OPERATED PUMP fits to any drill in seconds, uses standard garden hose, pumps up to $40 \mathrm{gph}!8899$ ref DRL3
GIANT SCREEN VIEWERTurn your TV picture into a supersize screen! This high preciston Fresnel tens converts even the smaliest screen up to a massive 26'. at a fraction of the cost of a big TV. Easily fitted in minutes. Also ideal for PC monitors etc $£ 26.95$ ref SVGA2 TELEPHONES Just in this week is a huge delivery of telephones, a"t brand new and boxed. Two plece construction whth the following eatures- llluminated keypad, tone or pulse (switchable), reacall redial and pause, highow and off ringer switch and quaity construction inished in a smart off white coiour and is supplied with a standard Intemational lead (same as US or modems) if you wish to have a BT ead supplied to convert the phones these are also available at $£ 1.55$ IQUID CRYSTAL DISP AYS Bargain
LIQUID CRYSTAL DISPLAYS Bargain prices
20 character 2 line, $83 \times 19 \mathrm{~mm}$ £3.99 ref SMC2024A
16 character 4 line, $62 \times 25 \mathrm{~mm}$ £ 5.99 ref SMC1640A 40 character 1 line $154 \times 16 \mathrm{~mm}$ £ 6.00 ref SMC 4011 A LM255X HITACHI LAPTOP SCREENS $240 \times 100 \mathrm{~mm}$, 640×200 dots. New with data $£ 15$ ref LM2 SEALED LEAD ACID BATTERIES
12V 6.5AH, NEW £12 REF BATT 12
12V 6.5AH, S/HAND PACK OF 5 £20 REF EF99 12 V 15 AH AS NEW, £ 18 REF LOT8
THE ULTIMATE ENCLOSURE for your projects must be one of theselWell made ABS screw together berge case measuring 120 $\times 150 \times 50 \mathrm{~mm}$ Fitted with rubber feet and front mounted LED. Inside s a pcb fitted with other bits and pieces you may find useful Sold as a pack of tive for $£ 10$ ret MD1, pack of 20 for $£ 19.95$ ref MD2 YOUR HOME COULD BE SELF SUFFICENT IN
ELECTRICITY Comprehensive plans with loads of info on designing systems, panels control electronics etc $£ 7$ ref PV9 LOW COST CORDLESS MIC 500 range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}$. $193 \times 26 \times 39 \mathrm{~mm}, 9 \mathrm{~V}$ PP3 battery required. $£ 17$ ref MAG15P1 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug $12 v 2$ watt $£ 12.99$ REF AUG1OP3 SOLAR POWER LAB SPECIAL $2 \times 6^{\prime \prime} \times 6^{\prime \prime} 6 \mathrm{~V} 130 \mathrm{~mA}$ cells. 4 ED's, wire, buzzer, switch + 1 relay or motor £7.99 REF SA27 SOLAR NICAD CHARGERS $4 \times$ AA size $£ 999$ ref 6P476, $2 \times$ SOLAR NICAD CHARGERS $4 \times$ AA size $£ 999$ ref 6P476, $2 \times$
C size $£ 9.99$ ref 6P477 C size $£ 9.99$ ref 6P477
AIR RIFLES . 22 As used by the Chinese army for training, so there is a iot about! $£ 39.95$ Ref EF 78500 pellets $£ 4.50$ ref EF 80

Interactive websites designed and hosted. bullnet.co.uk

REGISTER FOR OUR ELECTRONIC NEWSLETTERS BULL-ELECTRICAL.COM BULL ELECTRICAL

250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE with order plus e4.00 P\&P plus Vat. 24 HOUR SERVICE $\mathbf{1 6 . 5 0}$ PLUS VAT.
overseas orders at cost plitses. 50
(ACCESS,VISA, SWITCH, AMERICAN EXPRESS)
phone orders: 01273203500
FAX 01273323077
Sales@bull-electrical.com

200 WATT INVERTERS piugs straight into your car cigarette lighter socket and is fitted with a 13A socket so you can run your manns operated devices from your car battery $£ 49.95$ ref SS66 THE TRUTH MACHINE Tells it someone is lying by miero tremors in their voice, battery operated, works in gen

and on the 'ohone and TV as well $£ 42.49$ ref TO3 INFRA RED FILM 6 " square piece of flexble intra

INFRA RED FILM $6^{\prime \prime}$ square piece of lexble infra red film that whll onty allow IR light through. Perfect for converting ordinary torches lights, headilghts etc to infra red output only using standard light buibs Easily out to shape $6^{\prime \prime}$ square $£ 15$ ref IRF2
HYDROGEN FUEL CELL PLANS Loads of information on hydrogen storage and production. Practical plans to build a Hydrogen thel cell (goood workshop facilities required) $£ 8$ set ref FCP1
STIRLING ENGINE PLANS interesting information pack Covering all aspects of Strrling engines, puctures of home made EnERGY SAVER PLUGS Saves up to 15% eiectricty when ENERGY SAVER PLUGS Saves up to 15% electricity when
used with fridges, motors up to $2 A$, fight bulbs, soiderng irons etc. $\varepsilon 9$ ea used with fridges, motors up to 2 A, iligh
ref LOT71, 10 pack $£ 69$ ref LOT72
12 V OPERATED SMOKE BOMBS Type 3 is a 12 v trigger and 3 smoke cannisters. each cannister will fill a room in a very short space
of timel $£ 14.99$ ref $S B 3$ Type 2 is 20 smaller cannisters isuitabie for of timel $£ 14.99$ ref SB3. Type 2 is 20 smaller cannisters (suitable for simulated equipment tres etc) and 1 trigger module for $£ 29$ ret SB2 Type 1 is a $12 v$ trigger and 20 large cannisters $£ 49$ ref SB1
HI POWER ZENON VARIABLE STROBES Useful 12 V PCB fitted with hi power strobe tube and control electronics and speed control potentiometer: Perfect for interesting projects etc $70 \times 55 \mathrm{~mm}$ 12 vac operation. $£ 6$ ea ref FLS1, pack of $10 £ 49$ ref FLS2 DRILL OPERATED PUMP Fits to any drill in seconds, uses standard garden hose.pumps up to 40 gph! $£ 899$ ref DRL3 NEW LASER POINTERS 4.5 mw . 75 metre range, hand held unit runs on two AA batteries (supplied) 670 nm $£ 29$ ref DEC49
HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers all aspecis of spirit production from everyday materials Includes construction details of simple stills etc $£ 12$ ret MS3 NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! less than 1 " square and a 10 m voice pickup range. £28 Ref LOT 102 BUILD YOU OWN WINDFARM FROM SCRAP NEW pubication gives step by step guide to building wind generators and propelliors. Armed with this publication and a good local scrap yard could make you self sufficient in electricity $£ 12$ ref LOT8
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams 12 V 100 mA auto electronic shutter, 3.6 mm F2 lens, CCIR 512×492 pixels, video output is $1 v \rho-\mathrm{p}(75 \mathrm{ohm})$. Works directly into a scart or video ingut on a tv or video. IR sensitive. £ 49 ref EF 137
IR LAMP KIT Suitable for the above camera, enables the camera to be used in total darkness! $£ 6$ ref EF 138
UK SCANNING DIRECTORY As suppled to Police, MOD, M 15 and $G C H Q$! coverers everyth ing from secret government frequencies eye in the sky, prisons, miltary aviation etc $£ 1850$ ref SCANB INFRA RED POWERBEAM Handheld battery powered lamp inch reflector, gives out powerful pure infrared light! perfect for CCTV 9 ref PB
SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser. $X K$ and $K A$ bands, speed cameras, and all known
speed detection systems. 360 degree coverage, front\& speed detection systems, 360 degree coverage front\& CHIFTAN TANK DOUBLE LASERS
CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER OPTICS Could be adapted for laser listener, long range communlcations etc Double beam units designed to fit in the gur barrel of a tank. each unit has two semı conductor lasers and motor drive units for alignement 7 mide range, no circuit diagrams due to
MOD, new pnce $£ 50,000$? us? $£ 199$ Each unit has wo gallium MOD, new pnce $£ 50,000$? us? $£ 199$ Each unit has two gallium
Arsenlde injection lasers. 1×9 watt. 1×3 watt. 900 nm wavelength, Arsenlde injection lasers, 1×9 watt, 1×3 watt. 900 nm wavelength,
$28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency The units also contain an electronic $28 v d c, 600$ hz pulse frequency The unts also contain an electronic
recewer to detect reflected signals from targets. £199 Re' LoT4 MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL $£ 9.95$ Cased with fyleads, designed to read standard credit cardsl complete with control elctronics PCB and manua covering everything you could want to know about whats hidden in that magnetic strip on your card! just $£ 9.95$ ref BAR31
EXTERNAL CAMERA introducing the Bulldog model 4 vanda resistant camera in heavy steel case for interior or exterior use. Top quality case housing a 420 line camera module. Each camera is sup. plied with a 15 m cable terminating in Scart and phono plugs Muti angle bracket for easy installation in any situation A 12 vdc Psu is aiso included Easily installed in a few minutes, plugs straight into CR or TV (phono or scart) Bargain price $£ 89.95$ ref CC1 $340 \times 180 \mathrm{~mm}$ MOTORS Single phase 240 CV , brand new, 2 poie $340 \times 180 \mathrm{~mm}$, 2850 pm , builitin automatice reser overload protecto keyed shaft ($40 \times 16 \mathrm{~mm}$) Made by Leeson. £99 each ref LEE1
LOPTX Made by Samsung for colour TV $£ 3$ each ref SS5? LOPTX Made by Samsung for colour TV $£ 3$ each ref S 552 LAPTOP LCD SCREENS $240 \times 175 \mathrm{~mm}$, £ 12 ref SS51 PIR WITH BUILT IN CCTV CAMERA Module also includes an infra red strobe light. battery backup etc 320×240 pixels, 90×65 fietd of view $£ 49.95$ ea ref $\$ \$ 81,3$ or more $£ 44.95$ ref $\$ S 82$ WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you infor. mation on setting up clfferent pusinesses, you peruse these at your leisure using the text editor on your PC. Also included is the certitileste enabling you to reproduce (and sell) the manuals as much as you likel £14 ref EP74
HIGH POWER DC MOTORS, PERMANENT MAGNET 12-24voperation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaft with a machined flat on
it Fixing is simple using the two threaded bolts protruding from the it Fixing is simple u
tront $£ 22$ ret MOT4
ELECTRONIC SPEED CONTROLLER KIT For the above motor is $£ 19$ ref MAG17. Save $£ 5$ if you buy them both together,
motor pius speed controller rrp is $£ 41$, ofer price $£ 36$ ref MOT5A

Online
web catalogue bull-electrical.com

Apply a little magic with Donitronics

Pre-designed PCB's with post design flexibility

LCD text modules from £ 6.20
LCD graphics modules from $£ 39.99$
12 V plug top CE approved PSU £ 3.99
PIC16F84-04/P new unused parts $£ 3.30$
Microchip 1998 DROM only £ 4.99

All prices exclude VAT at 17.5% Subject to $£ 3$ P\&P

	SimmStick development platform, and cheap PIC programmer. Lots of options. Designed for PIC chips, can be used for other Micros.	6
DT003	Simmstick mini-bus, power supply, and comms port with D-9 and Max-232.	£ 5.55
01	A PicStic equivalent circuit on a SimmStick platform. PicStic versions 1, 2, and 3, all rolled up into one, plus a Max-232 and 24LCxx type EEprom. 1"	£ 2.96
D	Designed for the Atmel AVR 40 pin Micros. Can be used for non-AVR Micros	7
DT104	Designed for the Atmel AVR 20 pin Micros. Can be used for the earlier versions such as the AT89C2051, as reset inversion is provided. 1" module	£ 2.96
0	One Inch Prototype board.	£ 2.96
DT202	Two Inch Prototype board	£ 4.07
DT203	24 LED's, $4 / 8$ switches on a SimmStick platform. 2" module. Uses 1 to 3 ULN2803's, 4 momentary switches, 8 link selected switches.	£ 4.07
DT	Expansion board for SimmStick Bus. $\mathbf{2}^{\prime \prime}$ Module.	£ 4.07
DT205	Relay board for 4 relays. Carries a partial bus on to the next module so that a total of 16 relays could be used by cascading four boards	5.55

For additional information, please call or visit the web site - www.asamicros.com

Tel: 01706371695
Fax: 01706375896
Email: sales@asamicros.com

ASA Micros Ltd.
21 Edmunds Fold Littleborough Lancs. OL15 9LS

Advertisement

Vann Draper is offering over 20\% discount to readers of Everyday Practical Electronics on their temperature controlled soldering stations.

The SL20 bargraph display soldering station normally sells at $£ 69.33$ and is available to readers of EPE at only $£ 55$ fully inclusive of vat \& delivery.

The SL30 digital display version is normally priced at $£ 81.08$ but for readers of EPE the price is just £65 fully inclusive.

Both soldering stations feature 24 V 48 W elements for rapid heating and have full electronic temperature control between $150^{\circ} \mathrm{C}$ and $450^{\circ} \mathrm{C}$.

The SL20 and SL30 are supplied ready to use complete with a 48 W iron, 0.8 mm long-life bit, mains lead, operating instructions and a 12 month guarantee.
To order simply post the coupon to Vann Draper Electronics Ltd at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
Alternatively tel 01162771400 , fax 01162773945
or email sales@vanndraper.co.uk

20\% discount for EPE readers

Temperature controlled soldering stations

Vann Draper Electronics Ltd
The test \& measurement specialists www.vanndraper.co.uk Grundig, Kenwood, Hitachi, Fluke, Avo, Advance

```
Use this coupon tor your order
Please supply me
    SL20 soldering station(s) at &55 inc vat & del
    .. SL 30 soldering station(s) at £65 inc vat & del
    Extra 0.8mm bit(s) at £1.65 inc vat & del
    1.6mm bit(s) at }{1.65\mathrm{ inc vat & del
    3.2mm bit(s) at &1.65 inc vat & del
I Name
|
Address
|
Tel No:
Total &
Cheques payable to Vann Draper Electronics Ltd
Or debit my visa. mastercard or switchcard.
Card type:
| Card No:
Expiry date:
                                    Switch iss No
Signature:
|
Overseas readers can still obtain this discount but carriage
Charges vary according to country. Please telephone, fax, email or,
wite to Vann Draper.
```


VIDEOS ON ELECTRONICS

A range of videos (selected by EPE editorial staff) designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes originate from VCR Educational Products Co, an American supplier. (All videos are to the UK PAL standard on VHS tapes,)

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.
VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more. Order Code VT201 VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in com. mon circuits. Order Code VT202 VT203 57 minutes. Part Three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output

Order Code VT102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, fip.flops, counters, etc. Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306

WTBELESS MONTOZANG sISTEM

JAMES HUMPHRIS

Low cost radio-linked short-range data logging is now readily and simply available.

UNTIL recently, the lack of availability of low-cost data transmitters meant that the use of telecommunications within the home for hobbyists or for educational purposes was either too expensive or complicated to be practical.

Increases in the demand for such devices, along with improvements in the technology, mean that various companies are massproducing telemetry equipment that is low cost and can legally be used in the domestic environment. This equipment usually consists of pairs of radio transmitter and receiver modules that are suited for shortrange data transfer purposes.
This article describes a project that makes use of such modules in order to monitor domestic conditions or environments without the need for wires. The basic system is used with a.m. (amplitude modulated) modules, although the use of f.m. (frequency modulated) modules is discussed in Part 2.

The system is based around a PIC microcontroller and can be used to monitor the activity of virtually any number of different conditions within a small area, i.e. around a house or within a classroom or workshop. The beauty of this system is its incredible flexibility!

It has been designed to comply with Home Office regulation MPT1340 and does not need a licence for use in the UK.

Fig.1. Block diagram of the Wireless Monitoring System.

A PC -compatible computer (running Windows $3.1,95$ or 98) is required to display the recorded data.

For compactness, surface mount devices are used for the Transmitter. The Receiver circuit board uses "standard" throughhole components.

WAVES NOT WIRES

Radio waves have several distinct advantages over lengths of wire. Typically,

radio waves are far more robust; they cannot be cut or broken and do not degrade over time. Sensing devices linked by radio waves tend to be less physically intrusive and more independent. Keeping the actual sensor local to the transmitter virtually eliminates any noise or degradation in the signal being monitored.

Furthermore, any hard-wired sensing interface has a limited number of inputs that need to be manually configured every time a change is required in the system configuration. Using radio waves not only increases the number of sensors that can be used, but also provides the added flexibility of being able to be brought on and off line as required.

Damage caused by faults in an r.f. (radio frequency) system is limited to the transmitting device and sensor interface at which it occurs, rather than affecting the whole system. Sensors can also be placed upon mobile equipment such as robots or vehicles and provide continuous data over a short range without trailing wires.

This project consists of a minimum of two units, a single Transmitter and a Receiver connected to a local PC-compatible computer, as shown Fig.1. As many units as are required to perform the task can be added, and information logged by the PC. Every time an output change occurs in the sensor connected to a transmitter, a message is sent to a receiver connected to the PC. The latter can then analyse and process the information.

Due to the low power radio modules used, the emphasis here is not on the physical range of operation, but more to providing increased flexibility and fewer wires!

APPLICATIONS

The transmitters have been designed to make any hardware very simple and place all of the strain on the software running them. This means that by re-programming the devices, many types of data logging can be achieved.

For example, the PIC could be programmed to collect and store information regarding a sensor signal for a long period before transmitting this information at a later time. Useful, for example, to monitor temperatures and speeds in a vehicle, downloading the data once back at base.

Alternatively, it could be programmed to transmit a message only if a sensor output fell below or rose above a predetermined level. It is due to this wide range of configurations that a specific system is described here, but advice is given to readers who may wish to reprogram their own PICs.
output of which is regulated within the receiver to 5 V . Two l.e.d.s are used to show the status of the r.f. and the RS232 channels. The modulation of the r.f. channel and RS232 line is performed entirely by the microcontroller in real time.

TRANSMITTER DESIGN

The Transmitter circuit diagram is shown in Fig.4. This design incorporates an on-board temperature sensor (R2) and tilt switch (S5), both of which can be monitored by the software.

Any change in the temperature of the air around R2, which is a negative-coefficient thermistor, causes a proportional change on the voltage at ICl pin 2 . This level is constantly digitised by an analogue-to-digital converter (ADC) inside the PIC (IC1). The PIC is an 8-bit processor and hence the converter has 256 discrete output levels.

When the output of the ADC changes, the PIC then transmits a message. In the configuration used, the minimum detec-
table temperature change is $\pm 0.3^{\circ} \mathrm{C}$. Each transmission lasts for 330 ms which means that the maximum rate of change of temperature that is accurately measurable is one degree per second.

The output from the tilt switch S5 is fed directly to pin 1 of ICl , and is also continuously monitored for a change in state. When a high level is detected, continuous messages are transmitted.

The bit periods required for the communication across both the r.f. and RS 232 channels are produced by timing routines within the PIC. This means that the hardware is kept simple, but the crystal frequency used must be a direct multiple of the frequency required. In this case, 3.6864 MHz is chosen since when divided by 12288 , it provides the 300 baud bit-rate used in the r.f. channel, and when divided by 384 provides the 9600 -baud bit-rate required for RS232 communication.

Dual-in-line (d.i.l.) switches S1 to S3 can be used to allow software options to be chosen without needing to reprogram the PIC. However, the software provided does not make use of this feature and

Fig.2. Transmitter block diagram.

A further advantage is that the PIC consumes a very low quiescent current. This means that the transmitter units can be battery powered and operate over very long periods without the need for any maintenance.

HOW IT WORKS

The block diagram of the transmitter unit's operation is shown in Fig.2. Two sensor interfaces provide one digital and one analogue channel. The output from the sensor interface is fed directly into the microcontroller that continuously monitors the inputs. When a change occurs in either of these levels, the radio transmitter is passed a serial message consisting of the digitised sensor information.

A single 3.6 V Lithium cell is used to power the unit. It is thus completely independent in use and suffers no external interference from other equipment.

The receiver block diagram is shown in Fig.3. The radio receiver monitors all the activity on the specific radio channel to which it is tuned, and converts the presence or absence of the r.f. carrier to logic high or low respectively. This signal is monitored by the microcontroller, which determines the validity of the data stream.

If a valid data packet is detected, it is processed and re-modulated into the correct timing protocol for RS232 data. This signal is converted into RS232 levels by a line driver and is then passed on to the PC via a serial port.

Power is supplied to the receiver via a standard mains power adaptor, the

Fig.3. Block schematic diagram for the Receiver.

Fig.4. Complete circuit diagram for the Transmitter. Note that switches S1 to S4 are d.i.l. slide types.

Fig.5. Using a PIC to control transmitter r.f. modulation.
therefore small wire links or zero ohm resistors must be soldered across the pads to effectively connect all of the switches permanently closed.

When a high level is present at pin 13 of IC1, transmitter module IC2 is switched on. Resistor R5 and capacitor C3 are used to limit the current and minimise the slew rate of the signal that drives IC2. The positive pin of IC2 is modulated by a 418 MHz carrier wave that excites the inductor L 1 and variable capacitor C 4 that provides the r.f. signal to the antenna.

This provides a very simple modulation scheme where free space is radiated by r.f. when a high level output is produced by the PIC and not radiated when a low output is produced. This method has the advantage of consuming current for only part of the transmitted data word rather than using a constantly modulated carrier, which would consume current all of the time. See Fig. 5.

OTHER SENSORS

This design is not limited to the types of sensor shown here. Other types such as light dependent resistors (l.d.r.s), gas sensors, liquid level sensors. pressure switches, proximity detectors, accelerometers, pressure pads, humidity sensors or pressure gauges etc., can all be implemented as necessary without the need for any software change in the transmitter's PIC.

Switch sensors can be directly replaced by S5 with the removal of resistor R3 if necessary.

Note that the value of resistor R1 needs to be adjusted for use with other types of passive resistance sensors (in position R 2), or removed if the sensor is an active type.

If the value of Rl is adjusted, it is important to ensure that the current flowing through R1 and position R2 is kept around $50 \mu \mathrm{~A}$. Currents smaller than this may cause the input resistance of the PIC to load the resistor network and produce inaccurate measurements. Similarly, any current higher than this level will result in a reduction of the battery life.

TRANSMISSION RANGE

When it is all properly tuned, transmitter/receiver separation of 10 metres in free space has been achieved. However, in an environment where the signal is blocked by walls and ceilings. due to the relatively low signal power transmitted, this is limited to around tive metres.
It should also be noted that as the battery charge deteriorates, the transmitting range will be reduced. With the use of lithium cells, however, this deterioration is very rapid and occurs only at the very end of their useful life. It is a good indicator of a dying battery if many errors are suddenly received in messages during reception.

Positioning of the p.c.b. inside the Transmitter case.

TRANSMITTER CONSTRUCTION

The printed circuit board (p.c.b.) component layout for the Transmitter is shown in Fig.6. This board is available from the EPE PCB Service, code 219.

The completed board is only $33 \mathrm{~mm} \times$ 32 mm square by 15 mm deep (height). It is double-sided and uses a mixture of standard (through-hole) and surface mount components. The PIC, transmitter module and tilt switch are the only through-hole components, everything else is industry-standard surface mount size.

It would have been possible to reduce the size of the board further by using a surface mount PIC. However, programming adaptors for these devices are expensive and somewhat hard to come
by, so a socketed d.i.l. device has been retained for simplicity.

Assembly is relatively simple. It is recommended that a fine tipped soldering iron and pair of tweezers are used to solder the smallest parts as they can easily be destroyed by excessive heat. It is important to solder resistors R4 and R5 before the socket for ICl as they lie under this socket and are very difficult to access once it is in place.

The socket for IC1 must be soldered on both sides of the board. It is recommended that a piece of $1 \mathrm{~mm} \times 2 \mathrm{~mm} \times 30 \mathrm{~mm}$ cardboard is inserted under the socket in order to lift the device up above the board whilst soldering the topside. This ensures that there is enough space on the top of the board to mount the socket whilst the legs are still accessible from underneath it.

Fig.6. Transmitter component layout on the small "surface mount" p.c.b. The PIC, transmitter module and tilt switch S5 are the only non-surface mount devices.

COMPONEVIS

Transmitter		
Resistors		
R1	56 k (see text)	
R2	10 k thermistor bead, n.t.c.	
R3	10 k	See
R4	1 M	220
R5	220	TALO
All resistors (except R2)	TALK	

surface mount package 1206. Page

Capacitors

C1, C2 22p ceramic, SM package 1206 (2 off)
C3 220p ceramic, SM package 1208
C4 3p to 5p trimmer, TZBX4, surface mount

Semiconductors

IC1	PIC16C71 microcontroller pre-programmed (see text)
IC2	LQ-TX418A-S (a.m.) or TXM418-A (f.m.) transmitter module (see text)

Miscellaneous
B1 $\quad 3.6 \mathrm{~V}$ lithium cell, AA size
L1 $\quad 15 \mathrm{nH}$ inductor, SM
S1 to S4 4-way d.i.l. slide switch module, surface mount
S5 tilt switch (see text)
X1 $\quad 3.6864 \mathrm{MHz}$ crystal, surface mount
Printed circuit board available from the EPE PCB Service, code 219 (Transmitter); 18 -pin d.i.l. socket; antenna, $0.5 \mathrm{~mm} \times 90 \mathrm{~mm}$ solid-core copper wire (see text); handheld plastic case, 56 mm $\times 71 \mathrm{~mm} \times 18 \mathrm{~mm}$, connecting wire; solder, etc.

Approx Cost Guidance Only excluding battery

The only other slightly tricky part of the assembly is soldering inductor L1. This device is a surface mount 0805 type and measures only $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 2 \mathrm{~mm}$ and is easily damaged. Care must be taken to make sure that no whiskers of solder are between the pads before soldering as removal once soldered is very difficult and will probably render it useless.

Check that the ground connection for the transmitter module is properly made on both sides of the board at every grounding point as this provides a solid ground connection throughout the copper.

Sensors R2 and S5 (temperature and tilt) can be mounted either on the board, or on flying leads as necessary for the specific application.

Finally, note that the positive lead of the transmitter module is marked with a spot. Failure to observe the polarity of this device will result in it not working and is an expensive mistake!

The antenna used is a short whip type. It is simply made from a 90 mm length of solid copper wire of 0.5 mm diameter with one end soldered to the junction of C4 and Ll on the p.c.b.

The pre-programmed $\mathrm{PlC16C71}$ needs to be firmly placed into the socket with-
out bending any of its pins! Once this is completed, a quick test is to check the current consumption of the unit with S4 switched on. This should be either 0.5 mA or 25 mA depending on whether or not the unit is transmitting. (A transmission can be forced by manually changing the sensor output e.g. changing the temperature around the sensor.)

The finished Transmitter is tuned using a non-metallic trimmer to adjust variable capacitor C 4 for the best performance, but this needs to be completed in conjunction with the finished Receiver unit and will be discussed in Part 2.

OBSERVING MPT1340

This design uses a radio frequency that does not require a licence for use within the UK. However, in order to comply with Home Office regulation MPT1340, it is necessary to enclose the unit within a suitable box so that external adjustment cannot be made to the transmitter module. There are also restrictions on aerial use.

Both the transmitter and receiver enclosures must be clearly labelled as indicated below with lettering not less than 2 mm in height:

The transmitter antenna must be of an integral type. The Radio Communications Agency (RA) defines an integral antenna as "one which is designed to be connected permanently to the transmitter or receiver without the use of an external feeder'". It is important, therefore, that the antenna is not accessible from the outside world and
must not be removable.
In this instance, as long as the actual antenna wire is covered by a suitable sheath, such as a length of plastic wirecladding and sealed at one end using a suitable adhesive, then it can be considered as integral. The receiver antenna can be integral or external as required.

TRANSMITTER ENCLOSURE

Any box suited to the final application can be used to enclose the Transmitter board. The type of box used here allows the user easy access to the integral battery compartment and all switches on the p.c.b.

Flying leads connect the power to the p.c.b. from the battery holder at the bottom of the box. The positive connection is in the centre of the board and ground near the variable capacitor C 4 . The finished p.c.b. is simply stuck to the base of the enclosure using a sticky pad or glued with a suitable adhesive.

This enclosure also allows easy access to the PIC if any reprogramming is required, and for changing the battery when necessary.

The antenna is brought out through a small hole in the front plate of the enclosure. It must conform to MPT1340 as discussed earlier.

BATTERY LIFE

A single AA type Lithium cell powers the unit. This cell is non-standard with a terminal voltage of 3.6 V and capacity of $2 \cdot 3 \mathrm{Ah}$. The transmitter has a standby current consumption of around 0.5 mA and a transmitting consumption of 25 mA .

This means that each cell would theoretically last for 4600 hours (around 6.5 months) in standby mode and 92 hours (almost four days) constant transmission. In use the life of the cell will lie somewhere between these two limits, depending on the number of transmissions made.

The type of battery used is not critical, and hence the enclosure does not neces-

Two completed Transmitters. One with remote thermistor sensor and the other showing the required "licence exempt" label.
 tic cable sleeving covering the antenna (aerial).
sarily require an internal battery compartment. If required, the unit can be powered from any supply between 3 V and 6 V d.c. Do bear in mind, though, that a high capacity cell is required if the particular application demands that the unit be switched on for long periods at a time.

RECEIVER CIRCUIT

The full circuit diagram for the Receiver is shown in Fig.7. The receiver module (IC3) receives and decodes anything that it happens to receive on the 418 MHz channel and translates this information into a logic signal on its Data pin 13.

This information is serially passed into the PIC (IC2) that tests any data for its validity. Once valid data is detected, the PIC passes a serial signal to RS232 line driver (IC4) that is used to interface to the computer.

The communication to the PC is very simple, using no handshaking and only requiring data (pin 2) and ground (pin 5) connections, via socket SK1. However, in order to use some terminal applications which require handshaking, it is necessary to link computer connections RTS (Ready to Send - pin 8) and CTS (Clear to Send - pin 7) together. This must be completed at the back of the connector in the Receiver unit.

There are three light emitting diodes (l.e.d.s) shown in the circuit, D1 to D3. Two of which are mainly used for diagnostic testing during programming, but are also useful when setting up the equipment. The status of the RS232 line is indicated by l.e.d. D1, that of the r.f. channel by D2, and D3 indicates when the unit is switched on.

Indicators D1 and D2 will flash quickly when the unit is receiving and transferring information. If the PIC has received information, but not determined it to be invalid, then D2 will flash but not D1.

The input voltage is regulated down to 5 V by ICl. This allows any power supply source from 7 V to 30 V d.c. to be used. To use the Receiver with an input voltage of 5 V or $6 \mathrm{~V}, \mathrm{ICl}$ should be omitted.
Test point TP1 - connected to pin 12 of the receiver module IC3 - is used
(Right) Layout of components on the completed Receiver p.c.b. The receiver module is shown mounted at rightangles to the board at the top.
when tuning the Transmitter unit in order to achieve the best reception. This pin acts as a Relative Signal Strength Indicator (RSSI) and provides an analogue signal output that corresponds to the strength of the received carrier wave.

RECEIVER CONSTRUCTION

The Receiver uses a conventional single-sided printed circuit board and consists of all through-hole components, apart from the crystal X1. The latter is a

Fig.7. Full circuit diagram for the Receiver section of the Wireless Monitoring System. If the circuit is to be powered from a 5 V to 6 V source, IC1 can be omitted.

surface mount device and is mounted on the reverse, copper side, of the board Details of the board component layout are shown in Fig.8. This board is available from the EPE PCB Service, code 220.

Construction is straightforward, but note that IC1 and IC4 should be mounted in sockets, Take care when handling IC3 as it is easily damaged by static electricity.

Observe the correct polarity of l.e.d.s D1 and D2. If preferred, they could be mounted on the front of the enclosure via flying leads to show diagnostic information whilst in use. They provide a useful
indicator to the number of valid messages that are received.

RECEIVER ENCLOSURE

A fully enclosed metal box for the receiver is recommended as this provides good screening against radio frequency interference and improves performance significantly. The type used here is extruded aluminium with internal slots for p.c.b.s. The advantage of this box is that the two end plates can hold the connectors and the antenna whilst the p.c.b. is firmly held inside.

The r.f. status l.e.d. mounted and wired on the front panel. This can also be accompanied by the RS232 com status l.e.d. if preferred.

Rear view of the completed Receiver.

Wiring from the p.c.b. to the D-type connector and the power socket on the rear panel.

Slotting the p.c.b. into the case.

Fig.9. Serial cable interconnection details between the Receiver and the PC RS232 serial port.

The antenna should be connected through the top of the board and soldered on the underside. This can then be led out through a small hole in the front panel of the case along with le.d.s D1 and D2, if preferred.

The antenna can be screened inside the hox before it reaches the outside world but it has been found not to provide any significant improvement in performance. There should be 90 mm of antenna wire outside the enclosure.

RS232

The rear of the unit holds the connectors for the RS232 and power leads. A low voltage d.c. power connector of 2.1 mm diameter is used for the power supply as this type is adopted by many of the readymade mains adaptors to which this unit is well suited. Other power connectors may be used if required.

Note that with some adaptors the outer contact must be connected to ground as this is directly connected to the case. If a plastic socket is used, then ensure that the enclosure is connected to ground via a solder tag at one of the connector screws.

It is not essential to use a D-type connector on the rear of the unit to connect the serial cable. but this is recommended as it allows the use of ready-made serial leads. If
a ready-made lead is used, make sure that it is a "straight through"' type, i.e. transmit and receive are not crossed over inside the connectors. The necessary connections for the serial cable are shown in Fig.9.

RESOURCES

Software for the Wireless Monitoring System is available on a $3 \cdot 5$-inch PCcompatible disk from the $E P E P C B$ Service (for details see that page in this issue - the software is free but there is nominal post and handling charge for the disk). It is also available for free download from our web site: ftp://ftp.epemag.wimborne.co.uk/pub/

PICS/wireless.

Pre-programmed PIC16C71s are available, see this month's Shop Talk page. Information on obtaining other "spccial" components for this design are also given on this same page.

The transmitter boards are supplied as a pair, one for a.m. and one for the f.m. adaptor. codes 219 and 219a, respectively. The receiver boards are also supplied as a pair. again one for a.m. and one for the f.m. adaptor. codes 220 and 220 a respectively. See the EPE PCB Senvice page for price details.

Next Month: Testing, setting-up, sottware and f.m. adapator details.

INTERNET REFERENCES

The following web sites may be of use to any readers interested in developing equipment based on the 418 MHz frequency:

http://www.Iprs.co.uk	Radio module distributor
http://www.radiometrix.co.uk	Radio module distributor
http://www.control-network-solutions.co.uk	Radio module distributor
http://www.rfsolutions.co.uk	Radio module distributor
http://www.zdwebopedia.com/TERM/t/telematics.htmI	Some definitions
http://www.open.gov.uk/radiocom/ra_wel.htm	MPT specifications

http://www.radiometrix.co.uk
http://www.control-network-solutions.co.uk
tp./www.risolutions.co.uk http://www.open.gov.uk/radiocom/ra_wel.htm

Radio module distributor Radio module distributor Radio module distributor Some definitions MPT specifications

ONLY $29 \mathrm{~mm} \times 29 \mathrm{~mm}$ Lotso F 10 S 19.95 (Esach) $£ 19.95$ LOTS OF 5 OTS OF 2 C23 SAMPLE E25.95 Add P\&P E3 ANY ORDER VAT INCLUDED

Quad speed Toshiba 1/3rd height SCSI cd.fom dnves........................ each. 6 for $£ 100$	
	meg. 30 -pin parity simms...£3.75 each, 4 for $£ 12$
	4 meg . 30 -pin parity simms..... $£ 13$ each, 4 for $£ 50$
	256 k pipeline burst cache $£ 4.50$ each
	512 k pipeline burst cache..................... 59 each
	Trident 512 k video cards....................... 12 each
	Trident 1mb VLB video cards.............. £20 each
	Internal VGA leads............ $£ 2.50$ each, 10 for $£ 20$
	3-device SCSI leads £3 each
	IDE leads ... $£ 2$ each
	Hard and floppy drive 1DE controller cards£5
	14,400 internal voice/fax/data modem $£ 15$
	28,800 internal voice/lax/data modem $£ 28$
	3ib mixed component pack £4.95
	Jumbo component pack $£ 10$
	250 ofl mixed capacitors........................... $£ 4.95$
	250 off i.c. sockets.................................. $£ 3.95$
	1000 off mixed ceramic caps..................... $£ 7.50{ }^{*}$
	20 off mixed crystalsf/ilters...........................9.95
	25 off mixed relays...................................... $£ 3.50$
	Brand new 360k 51/4" loppy drive $£ 4.50$
$51 / 4$ to $31 / 2 "$ floppy drive converter leads. $£ 1.50^{*}$	

12MB $51 / 4$ * floppy drive..................................... 10
12 V d.c $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$ g geared motor
£1.50 each, 10 for $£ 12$
SCSI 2 fast differential hard drives
1 Gig .
2 Gig

- Gigabyte laptop drives, $21 / 2 \mathrm{in}$. IDE

QUANTITY DISCOUNTS AVAILABLE PLEASE RING.
We also buy alt forms of electronic components, p.s.u's, disk drives etc Lists to below address. Tel/Fax: 01480300819

SPECIAL EPE
 READER OFFER

 M80Si

EPE, in association with B.K. Electronics, are pleased to be able to bring you this exceptional offer on a British designed and built Hi-Fi Amplifier.

Don't miss out, offer ends 31 March 1999

M80Si MARCATO STEREO INTEGRATED HI-FI AMPLIFIER

A British Hi-Fi Amplifier at an exceptional price. This new $80 \mathrm{~W}+80 \mathrm{~W}$ stereo amplifier has been produced by B.K.
Electronics and rivals amplifiers costing nearly twice our special offer price.
The specification of the M80Si Marcato Integrated Amplifier is:

- Output Power
- Input Sensitivity
- Frequency Response

Distortion
Signal-to-Noise Ratio

- Power Requirements
- Dimensions (w $\times \mathrm{h} \times \mathrm{d}$)

80W r.m.s. per channel into 8!? 150 mV for full output 20 Hz to $25 \mathrm{kHz}-1 \mathrm{~dB}$ 0.03\%

90 dB
230 V to 240 V a.c., 50 Hz to
60 Hz
$435 \mathrm{~mm} \times 70 \mathrm{~mm} \times 287 \mathrm{~mm}$

- Outputs
6.4 kg

AV, CD, AUX, TUNER, VIDEO, TAPE, DIRECT routed direct, thus avoiding the selector switch, IEC MAINS SOCKET
RECORD, HEADPHONES, LOUDSPEAKERS - four2 sets of 4 mm banana sockets for conventional or bi-wired connection
POWER (with indicator), MUTE, BALANCE, MONO, VOLUME, DIRECT, INPUT SELECTOR

The amplifier comes with a full 12 month guarantee

Offer Price

including VAT and $p \& p$
Normally £299 plus p\&p

B.K. ELECTRONICS - EPE SPECIAL OFFER ORDER FORM

Fill in and send with your payment, or phone or fax us with your order and credit card details
Full name:
Address:

Post code
Tel. No.

Signature

I enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for ε.
Please charge my Visa/Mastercard: £......................... Card expiry date
Card No
Please send: M80Si MARCATO HI-FI STEREO AUDIO AMPLIFIER
Offer ends 31 March 1999. Orders normally sent within 7 days

DONT MISS THIS EXCEPTIONAL READER
 OFFER

Send you order to:
EPE OFFERS, Allen House, East Borough, Wimborne,

Dorset BH21 1PF
Tel: 01202881749
Fax: 01202841692
OVERSEAS ORDERS:
Price includes delivery to anywhere in the UK Overseas orders add $£ 5.50$ for delivery We cannot reply to overseas orders or queries by fax

Interested in programming PIC microcontrollers? PICtutor by John Becker

Deluxe PICtutor Hardware

Developed from our famous and incredibly popular EPE PIC Tutorial series by John Becker (EPE March to May '98) this CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC×84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop.

This interactive presentation uses the specially developed Virtual PIC simulator to show exactly what is happening as you run, or step through, a program. In this way the CD brings the EPE P/C Tutoria series to life and provides the easiest and best ever introduction to the subject.

Nearly 40 tutorials cover almost every aspect of PIC programming in an easy to follow logical sequence

HARDWARE

Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICiutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the les sons learned. The hardware will also be an invaluable development and programming tool for future work once you have mastered PIC software writing

Two levels of PICtutor hardware are available - Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials - it can be upgraded to Deluxe at a later date, by adding components, if required

The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus I.c.d. and 4 -digit 7 -segment I.e.d. displays. It allows users to program and control all functions and both ports of the PIC and to follow the 39 tutorials on the CD-ROM

All hardware is supplied fully built and tested and includes a PIG16F84 electrically erasable programmable microcontroller.

CD-ROM

Hobbyist/Student
£45 inc. VAT
Institutional (Schools/HE/FE Industry) £99 plus VAT
Institutional 10 user (Network Licence) £199 plus VAT HARDWARE

Standard PICtutor Development Kit........................ £47 inc. VAT
Deluxe PICtutor Development Kit...
Deluxe Export Version £99 plus VAT

6 plus Va
(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)
Minimum system requirements for these CD-ROMs: PC witt. $486 / 33 \mathrm{MHz}$, VGA+256 colours, CD-ROM drive, 8MB RAM, 8 MB hard disk space. Windows $3.1 / 95 / 98 / \mathrm{NT}$, mouse, sound card (not required for PICtutor or Modular Circuit Design).

ORDERING
 ALL PRICES INCLUDE UK POSTAGE
 Student/Single User/Standard Version price includes postage to most countries in the world
 EU residents outside the UK add $£ 5$ for airmail postage per order

OVERSEAS ORDERS: Institutional, Multiple User and Deluxe Versions overseas readers add $£ 5$ to the basic price of each order for airmail postage (do not add VAT unless you live in an EU country, then add $17 \frac{1}{2} \%$ VAT or provide your official VAT registration number).

Send your order to:
 Direct Book Service

33 Gravel Hill, Merley Wimborne
Dorset BH21 1RW
(Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ltd. To order by phone ring 01202881749 . Fax: 01202841692
We cannot reply to overseas orders by Fax
Goods are normally sent within seven days

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible.
Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. They could earn you some real cash and a prize!

50MSPS Dual Chas
Oscilloscope • 25 MHz Spectrum Analyser - Multimeter • Frequency Meter - Signal Generator If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours. Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-4Os will be presented to the runners up.

Zener Diode Tester - 風 Cap on the knee

The purpose of the circuit diagram illustrated in Fig. 1 is to help in measuring the value of an unidentified Zener diode. It is centred around a common LM317 voltage regulator (IC1) which is connected in its constant-current mode. The current is set to under 5 mA , being calculated by the formula $I=1.25 \mathrm{~V} / \mathrm{R}$ and this flows through the Zener diode being tested. A voltmeter can be connected in parallel with the Zener and the Zener voltage read directly.

By adjusting control potentiometer VR1, it is possible to vary the voltage on transistor TR1 emitter (e), which provides an adjustable voltage to the current limiter. VR1 is then adjusted until the 1.e.d. D10 illuminates to indicate that current is flowing, when the test voltage may be read.
The circuit operates from a mains power supply. To measure diodes up to. say, 33 V d.c. it is normally necessary to use a trans-

Fig. 1. Zener Diode Tester.

Microcontroller Interface for AC Monitoring

\bar{T}Pll Mne valine he CIRCuIt of Fig. 2 was designed in order to interface a PIC microcontroller to a standard clip-on DVM (digital voltmeter) current probe. The PIC device chosen must have an analogue input and the software depends on the application used.
The circuit utilises low-noise LMC6084 operational amplifiers (ICla and IC1b) as a precision rectifier and a filter (ICIc) with presettable gain to give a response to the average current. The interface circuit requires a low impedance current probe providing 1 mV per ampere to be connected to the input. The accuracy of the circuit is about as good as the 8 -bit ADC used within the microcontroller when one per cent resistors are employed

Gerard la Rooy, New Zealand.

Reverse Polarity Indicator

- Connection Protection

N ORDER to provide reverse polarity protection for some 12 V and 24 V d.c. equipment, the circuit diagram of Fig. 3 was devised. This uses a MOSFET power transistor, TR2, to virtually eliminate the problem of undesirable forward voltage drop, which would be apparent if ordinary rectifiers were used for protection, and the circuit even outperformed a Schottky diode in this respect.

The voltage drop is determined by the on-resistance of TR2 and the current flowing into the load. Since the MOSFET is used in its reverse-conducting mode it is feasible to expect an effective on-resistance of about 20 per cent below the manufacturer's specifications, which are usually given in forward conducting mode. Two lightemitting diodes (l.e.d.s D2 and D3) are incorporated to indicate correct or reversed polarities.

The circuit can be scaled up by paralleling MOSFETs or by placing a Schottky diode in parallel with the transistor, to get the best of both worlds. It is advisable to heatsink the MOSFET because of its significant positive temperature co-efficient.

Gerard la Rooy, New Zealand.
Fig. 3 (right) Circuit diagram for a "low-dropout" Reverse Polarity Indicator for d.c. equipment.

Fig.4a. A.F. Sweep Signal Generator first stage - OV-11V-OV Ramp Generator.

A.F. Sweep Signal Generator

TMore Scope he purpose of the A.F. Sweep Generator circuit in Fig. 4 (shown in stages) is to provide an audio test signal in the range of 20 Hz to 20 kHz . This can be set either to a single frequency or a sweep range of up to ten octaves which can be used to check the frequency response of an audio amplifier etc.
The design provides Square wave, Triangular wave and an approximate Sine wave. The output level is 0 V to 6 V r.m.s.

On the Ramp

The first stage of the generator gives a continuous 0 V to 11 V to 0 V ramp which is used to sweep the audio frequency output, and may also be used as a timebase for an oscilloscope. This should be set to two seconds per cycle using VR1, as the 20 Hz to 40 Hz octave needs a certain amount of time to complete a few cycles. This stage also provides fixed triangle and square wave outputs.

Fig.4c. Circuit for the Voltage Controlled Oscillator (v.c.o.) third stage.

An LF353 gives a fairly symmetrical positive and negative output, although it was found necessary to set a voltage differential using diodes on the positive and negative supply rails. The resulting +13.6 V and -14.2 V gives a fairly good $\pm 12 \mathrm{~V}$ output swing.

On the prototype the square, triangular and sine wave outputs were connected to a switch and a 5 kilohm potentiometer and then on to phono sockets. The ramp and square wave output signals were also brought out to front panel sockets for use as a timebase signal. The ramp can be used as channel B input for X / Y plotting, or use a slow timebase ($0.1 \mathrm{sec} / \mathrm{div}$.), and trigger the oscilloscope on the falling or rising edge of the square wave.
J.D. Gray,

London N10.

INGENUITY UNLIMITED

BE INTERACTIVE
U is your forum where you can offer other readers the benefit of your Ingenuity. Share those ideas and earn some cash and possibly a prize!

Sine of the Times

The second stage produces a logarithmic curve so that ten divisions across an oscilloscope tube correspond to ten octaves: 20 Hz , $40 \mathrm{~Hz}, 80 \mathrm{~Hz}, 160 \mathrm{~Hz}, 320 \mathrm{~Hz}, 640 \mathrm{~Hz}, 1280 \mathrm{~Hz}$, $2560 \mathrm{~Hz}, 5120 \mathrm{~Hz}, 10240 \mathrm{~Hz}$ and 20480 Hz . Its two outputs labelled +Vc and -Vc connect to the third stage which is a v.c.o. The two signal voltages required are +7 V and -7 V for $20 \mathrm{kHz}, 3.5 \mathrm{~V}$ for $10 \mathrm{kHz}, 1.75 \mathrm{~V}$ for 5 kHz etc. down to about $\pm 170 \mathrm{mV}$ for 20 Hz . A square wave is also provided by the v.c.o.
The final stage buffers the triangle wave produced and sets it to $6 \mathrm{~V}(24 \mathrm{~V}$ pk-pk) and a non-linear impedance formed by diodes D18 to D27 and neighbouring resistors, R43 to R47, is used to generate an approximation to a sine wave. The output is also set to 6 V r.m.s. (about 17 V pk-pk) using VR8. It is best to use a sine wave for frequency response curves, as square or triangular waves contain odd harmonics.

Power Supply

A mains power supply provides +15 V and -15 V), together with a 5 V reference. For the op.amps, LF353s are recommended particularly where the op.amp is used as a comparator as it has a good slew rate. This is also required to produce a reasonable triangular wave at 20 kHz .

Fig.4d. Circuit diagram for the Buffer stage.

Fig.4e. Mains power supply circuit for the A.F. Sweep Signal Generator.

TERRY de VAUX-BALBIRNIE B,Sc

Schools switch on to the new government solar initiative.

Surely everyone has heard of the greenhouse effect and its association with global warming. It comes about because all fossil fuels contain carbon - the chief offenders being coal, natural gas and oil products. As they burn, they release carbon dioxide into the atmosphere and this increases the amount occurring naturally.
A hundred years ago, there were about 300 parts per million (ppm) of carbon dioxide in the air. In recent years this has risen to some 350 ppm - an increase of nearly 17 per cent.

TIPPING THE BALANCE

The sun's high-frequency energy passes through the atmosphere fairly easily. About 30 per cent of it then reflects back into space. However, the reflected energy is at a lower frequency and it is more difficult for this to penetrate the blanket of carbon dioxide.
With the natural balance upset, and less energy flowing back into space, the average temperature of the earth's surface rises. This is very much like a garden greenhouse with the glass taking the place of carbon dioxide (see Fig.1).
Any marked increase in the earth's temperature would have catastrophic consequences in the long run. Melting of the polar ice-caps and the thermal expansion of water would both increase the volume presently occupying the oceans and this would cause large areas of low-lying land to become flooded.
In addition, the fossil fuels will eventually run out. It is therefore vital to reduce our dependence on these fuels and to obtain as much as possible of our energy needs from renewable (everlasting) sources. These include wind, waves and the direct use of solar power.
There seems to be a global wish to reduce the contribution made by nuclear energy because of its inherent danger, problems with disposal of radioactive waste and the ultimate cost of decommissioning the plants.

ON TARGET

To go some way towards reducing our need for fossil fuels, the UK government
has set a target to obtain 10 per cent of the national electricity requirement from renewable sources by the year 2010 .

Already, wind turbines are making a useful input. These are to be seen in coastal areas and other open places either singly or grouped into "wind farms". A typical medium-size wind turbine (aerogenerator) will produce a peak (maximum) power of some 275 kW and they are useful where the amount of wind justifies their use.

Flg.1. The greenhouse effect.
Wind turbines are an indirect way of utilising the sun's energy (since this causes the differences in temperature which make the wind blow in the first place).

PHOTOVOLTAICS

Apart from such indirect methods, solar power can be utilised directly using photovoltaic cells. These convert some of the energy striking their sensitive surface into direct current electricity. It is important to note the difference between active solar systems which generate electricity and passive ones which simply heat up water and which are less useful.

Photovoltaic cells have the advantage of having no moving parts and are therefore
silent in operation and very reliable. The United Kingdom lags behind Japan, Germany, Switzerland and the USA in the use and development of photovoltaic power although it is beginning to catch up.

The photovoltaic effect was first noticed by Antoine Becquerel in 1837 when sunlight shone on one of his electrodes during an experiment involving electrolysis. However, purpose-made devices were not made until the 1870 s and used the element selenium. Although selenium is still occasionally used for special purposes, silicon is almost always used today

Photovoltaic cells are, in effect, diodes where light falls on a $p-n$ junction. The energy of the photons creates electron-hole pairs in the material. The electrons can then flow through an external circuit returning to the silicon and re-combining with the holes. This process goes on indefinitely as long a light source exists.
Unfortunately, most of the electrons combine with holes directly in the material itself - that is. without flowing through the external circuit. This is why the efficiency is very low, between about five per cent and ten per cent, depending on type.

A BIT OF FORESIGHT

To raise awareness and to develop the technologies which Britain will need in the next millennium, the Government set up the Technology Foresight Challenge. Ideas were invited for innovative schemes which would fulfil that objective and funding was offered to the winners.
Out of 530 entries, the best 24 were subsequently chosen. One of these was the Scolar programme and this was established in 1996 using $£ 1 \mathrm{~m}$ from the Foresight Challenge fund. In this, Philip Wolfe of the Intersolar Group fulfilled a wish to raise awareness in the use of photovoltaics in the UK by providing small-scale school-based systems.

Intersolar have considerable experience in the manufacture of thin-film amorphous photovoltaic cells (one of the options used in the Scolar projects). From its factory in South Wales, the company supplies eight per cent of the world market.
Together with Intersolar, the resources of the various other photovoltaic expert groups in industry and the universities were pooled together with the assistance of various financial institutions. Contributions would be sought from the participating schools and the balance of the cost met by the group

A thin-film-silicon facade on a south facing wall - it looks good and generates power too! (Intersolar).
members and government funding. Everything taken into account, the programme total amounts to some $£ 2.5 \mathrm{~m}$.
The aim of the Scolar project is to give schools and colleges an opportunity to operate a photovoltaic system of their own. Applications to participate are invited although certain criteria need to be met (interested teachers and lecturers should see the addresses at the end).

The aim is for 100 systems to be in operation by the year 2000 . The data from each site will be linked via the Intemet to make it available to a wide audience and to aid research into further applications for solar technology. It will also enable comparisons to be made between the different sites.

It is this Internet-based aspect which is the key to the scheme and that which makes it more innovative than many of the larger programmes presently in operation in other parts of the world

While producing sufficient power to operate a few computers, the scheme gives a unique opportunity for the students to investigate renewable energy in general and solar energy in particular. This will be integrated with the teaching programme and forms links with the National Curriculum notably in Science, Geography and Design and Technology (D\&T).

FINDING THE MONEY

Participating schools are required to pay about one-third of the subsidised cost (about $\mathbf{£ 4 5 0 0}$) of the system of their choice. The school's contribution will probably be a mix of the proceeds of fund-raising, local authority grants and sponsorship from local industry. For its part, the school receives a fully-installed photovoltaic panel system, a dedicated computer with Internet connection and an Internet-based resource package.

There are also monitoring facilities, including a control panel which may be placed anywhere in the school (for example, the reception area). This will give a read-out of the power output at any time (in watts) plus the total amount generated (in kWh).

The photovoltaic panels themselves may be presented in a variety of architectural styles. For example, covered walkways,
wall cladding or window louvres. The students are encouraged to select the most suitable design for their own environment. They also suggest the best type of panels to use.

The only fully up-and-running Scolar scheme at the time of writing (Autumn. 1998) is at the Cardinal Hinsley High School for boys in Willesden, West London and this was switched on by Energy Minister John Battle on the 14th July, 1998. He also announced a further 16 schools and colleges around the UK which had won approval to participate.
"This is precisely the kind of activity I want to encourage through the Government's Foresight Initiative," said John Battle. "The link with schools and colleges is particularly valuable as it gives first hand experience to the generation that will see this exciting technology come to fruition.'

The photovoltaic panels at the school. were chosen to form a canopy over the entrance of the hut used by the Renewable Energy Club run by science teacher, George Nagle.

The club is involved in the small-scale generation of electricity by various renewable means. As well as the photovoltaic panels, the club owns several wind turbines
(two of them home-made) and can even produce electricity by pedalling a bicycle coupled to a generator! The total output is collated every twelve hours and the value downloaded on to the Internet.

A "free energy eco-aware" classroom was also established where all the energy to run it (including heating and lighting) was to be obtained from the wind and photovoltaic power. The classroom seats twenty students in a laboratory-style arrangement. Children from neighbouring schools are invited to watch videos and demonstrations. They can also gain hands-on experience in investigations about renewable energy and in the construction of small wind turbines of their own.

WATT'S AVAILABLE?

On a sunny summer day in the UK, the power reaching the earth's surface from the sun is about 1 kW (one thousand watts) per square metre. On a cloudy day, it is likely to be about one-tenth of this figure. Even with a conversion efficiency of only five to ten per cent, solar cells could provide between 50 W and 100 W per square metre peak.

Note that, as a power source for a satellite, solar panels provide a much higher output because the sun's energy reaches them direct rather than through the atmosphere, which absorbs much of the energy.

From a purely "electronics" point of view, that fact that solar cells produce direct (rather than alternating) current seems attractive. However, since much consumer equipment is designed to operate from the mains, an inverter is usually needed to convert the output to 230 V a.c. This also makes it easy to integrate the system with the mains so that it can "fill in"' at times of low light or high demand.

NO PREMIUM

At the time of writing, a photovoltaic system (after inversion to provide a.c. power) cannot, with advantage, be grid connected as may be a wind turbine. The main reason is that energy cannot be sold on to the grid under the Government's nonfossil fuel obligation (NFFO).

By this scheme, the National Grid buys electricity generated by most renewable means and pays a premium price for it (a few pence more than conventionally-gener-

Crystalline silicon solar panels used at the Cardinal Hinsley school.
ated electricity). The difference is funded by the Government.

The aim is to give encouragement to near-market small-scale generators by, for example, wind, hydroelectric systems and waste-burning. "Near-market" means that the cost of production per kilowatt-hour must approach that generated by conventional means (because, at present, conven-tionally-generated electricity is still cheap). Without assistance, there might be little hope of these methods developing to the point where they could compete economically in the short to medium term.
By its nature, the NFFO is aimed at generators having a worthwhile surplus over and above their own requirements (say, 1MW or more) to make the process of metering and sale worthwhile. Unfortunately, photovoltaic power at present costs some five to ten times the retail price of conventionally-generated electricity and (according to Government sources) it could be a decade or more before the prices converge.

It is therefore thought that to buy electricity under the NFFO would not achieve its purpose because the difference in price is too wide. Also, at present. photovoltaic systems are either small-scale projects or used to augment electricity generated by conventional means at a particular site such as a factory or office. There is usually no surplus.

It is interesting to note that the Government is currently reviewing its policy on photovoltaics and altemative energy in general.

GROWN AND SLICED

The Scolar project at the Cardinal Hinsley school uses crystalline silicon cells. However, it is thought that many projects will use thin-film amorphous silicon panels of the type manufactured by Intersolar. Crystalline cells consist of individual wafers of silicon which are grown, sliced and connected together to make a panel.

Different power and voltage configurations with solar cells.

Until relatively recently, this was the preferred method being largely funded by the space industry in the '60s. However, although efficient, the technology is comparatively expensive. Thin-film amorphous silicon has the advantage of being produced by a fully-automated process. This means that the technology is much cheaper per watt of power generated.

Miniature panels of this type are to be seen as the power source in "solar" calculators. They are also used to provide garden and outbuilding lighting where a small lead-acid or nickel-cadmium battery is charged during the day ready for use at night.

PROCESS TECHNIQUE

In the thin-film process, the material is vaporised and allowed to fall on glass where it forms a solid layer 0.3 microns thick. Lasers are then used to define the size of each cell. Since the individual units are produced and connected automatically, each panel has only two connecting leads. The panels are laminated between toughened glass and a rigid substrate which weatherproofs them and makes them robust enough to be handled without breakage.
The maximum current output is proportional to the area of each cell and the amount of light falling on all of them. The voltage is proportional to the number of cells connected in series (see Fig.2). Each cell provides an open circuit voltage of about $900 \mathrm{mV}(0.9 \mathrm{~V})$ but, in practice when on load, it gives some 600 mV . This remains substantially constant down to low light levels. Practical panels, such as those manufactured by Intersolar, are often designed to provide a nominal $12 \mathrm{~V}, 24 \mathrm{~V}$ or 48 V on-load output.
The key to gaining a useful amount of energy is to use a large total area of panels. To give an idea of the practical output, a one square metre thin-film amorphous panel sited in the UK will give a peak output (that is, in full direct sunshine) of some 42 watts (say 12 V at 3.5 A). Some power is generated in weak light but, of course, there is virtually no output at night.
For 1 kW peak output, an area of about $20 \mathrm{~m}^{2}$ is therefore needed. Very large panels can be fabricated from smaller standardsized units and used as the external cladding for a building. Large south-facing (northfacing in the southern hemisphere) arrays may therefore be constructed. As well as generating power, these look attractive, appearing rather like tinted glass. They also cost less than traditional cladding materials such as marble and granite.
As an example, the facade of the Building Research Centre in Watford, consists of a nominal $50 \mathrm{~m}^{2}$ of thin-film photovoltaic panels (35 panels each $1350 \mathrm{~mm} \times 930 \mathrm{~mm}$) generating some 2.5 kW peak which is the lighting load for a new energy efficient office on site. The expected annual yield is about 1500 MWh . Other projects include the photovoltaic panels on a roof at the Ford factory in Bridgend and at the Newcastle United football stadium.

By contrast with these large-scale projects, the Scolar system at the Cardinal Hinsley Schocl is much smaller. It provides only 600 watts peak with an expected annual yield of 450 kWh . Even so, the output is sufficient to operate a few

An array of thin-film silicon solar panels. Thin-film silicon is one of the design options for Scolar projects.
computers (a typical PC complete with monitor requires some 100 W to 200 W).

RAISING AWARENESS

The school-based systems are designed to raise awareness of the future possibilities of photovoltaic power and to be a teaching aid. They are not intended to generate largescale power and those participating must not see the scheme as a cost-cutting exercise.

Unfortunately, it appears that some head teachers are mis-informed (or over-optimistic!) and have inflated ideas of the capability and little knowledge of the philosophy behind the schemes. One report in a regional newspaper seen by the author stated that there would be sufficient power to provide heating and lighting for a block of twelve classrooms! Maybe this head looked at his capital outlay and calculated how much conventionally-generated electricity could have been bought for that price!

Renewable means of generating electricity have come of age. How much photovoltaics will ultimately contribute to that generated by the wind, waves, tides, geothermal and waste-burning will depend on the rate at which the price of conventionally-generated electricity rises (due to reduced availability of fuel and any "carbon tax" which might be imposed in the future) and how much that generated by renewable means falls (as the technology develops and more people use it beneficially).

PARTICIPATION CRITERIA

Whether or not a school or college will be selected to participate in a Scolar project will depend on a number of criteria. There must be enthusiasm on the part of the students and staff and a willingness to contribute some $£ 4500$ towards the cost of the system. The school will also need a suitable south-facing site which is not shaded from mid-day sun.
Any school or college which is interested in participating should contact:

Daniel Davis, HGa Burderop Park, Swindon, Wiltshire SN4 0QD. Tel: 01793 814756. Fax: 01793 815020. E-mail: dgd@hga.co.uk
For general enquiries:
Gavin Conibeer, Environmental Exchange Unit, 11 Bevington Road, Oxford University, Oxford OX2 6NB. Tel: 01865 284690. Fax:01865 284691. E-mail: gavin.conibeer@ecu.ox.ac.uk.
There is also a web site at www.scolar.org.uk/scolar.

SURVBIITANCE PROFPSSIONAL, QUANHY RIMS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter

Smallest room transmitter kit in the world Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3 V -12V operation. 500 m range
§16.45
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. 3 V -12V operation. 1000 m range.
$£ 13.45$
STX High-performance Room Transmitter
High performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, including mic. $6 \mathrm{~V}-12 \mathrm{~V}$ operation, 1500 m range. $£ 15.45$ VT500 High-power Room Transmitter
Powerful 250 mW output providing excellent range and performance.
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. $9 \mathrm{~V}-12 \mathrm{~V}$ operation. 3000 m range.
§16.45
VXT Voice-Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range. $£ 19.45$ HVX400 Mains Powered Room Transmitter
Connects directly to 240 V A.C. supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm} .500 \mathrm{~m}$ range
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this iransmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...... $£ 22.95$

SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range......... $£ 23.95$ SCDM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9 \mathrm{~V}$ - 12 V operation

ATR2 Micro-Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$ Powered from line

1345

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radio Control Switch

Remote control anything around your home or garden, oulside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way di.i. switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up 10200 m .
Complete System (2 kits)....
Individual Transmitter DLTX
ncividual Transmitter DLX £37.95

MBX- 1 Hi-Fi Micro Broadcaster

Not technically a surveillance device but a great idea! Connects to the headphone output of your $\mathrm{Hi}-\mathrm{Fi}$, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your farvourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. $9 V$ operation. 250 m range......

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$!
Connects to line (anywhere) and switches on and oft with phone use.
All conversation transmitted. Powered from line. 500 m range.
TLX 700 Micro-miniature Telephone Transmitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range.
$£ 13.45$
STLX High-performance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and oft with phone use. All conversations transmitted. Powered from line.
Size $22 \mathrm{~mm} \times 22 \mathrm{~mm} .1500 \mathrm{~m}$ range.
£16.45

TKX900 Signalling/Tracking Transmitter

Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
CD400 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of puise and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
£30.95
CD600 Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular; taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation........................... $£ 50.95$
QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX 180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
QLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
QSX180 Line Powered Crystal Controlled Phone Transmitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
QRX 180 Crystal Controlled FM Receiver
For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as pre-buift and aligned module ready to connect on board so no difficulty setting up. Output to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.,
$£ 60.95$

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add $£ 2.00$ per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Dratt and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 01827714476.
OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

> DEPT. EE
> The Workshops, 25 Main Road. Baxterley, Near Atherstone, Warwickshire CV9 2LE

VISITORS STRICTLY BY APPOINTMENT ONLY

including
 NEW SIMULATOR

"the

BEST all-round PROGRAM ${ }^{\text {P }}$

EWW CAD Review Round Up September 1998

Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability ${ }_{\text {throughout" }}$

EWW CAD Review Round Up September 1998

Sahemetic Coptile

- Produces attractive schematics like in the magazines.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further information \& upgrade prices.

Electronics

Write, phone or fax for your free demo disk, or ask aboit our full evaluation kit. Tel: 01756753440 . Fax:01756 752857. EMAll:imo@labcenter.co.uk 53-55 Main St, Grassington. BD23 5AA. WWW: htp:/www labcenler.co.uk

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

Interested in programming PIC microcontrollers? PICtutor by John Becker

Deluxe PICtutor Hardware

Developed from our famous and incredibly popular EPE PIC Tutorial series by John Becker (EPE March to May '98) this CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontroilers with special emphasis on the PICx84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop.

This interactive presentation uses the specially developed Virtual PIC simulator to show exactly what is happening as you run, or step through, a program. In this way the CD brings the EPE PIC Tutorial series to life and provides the easiest and best ever introduction to the subject.
Nearly 40 tutorials cover almost every aspect of PIC programming in an easy to follow logical sequence.

hardware

Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work once you have mastered PIC software writing.
Two levels of PiCtutor hardware are available - Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials - it can be upgraded to Deluxe at a later date, by adding components, if required.

The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus I.c.d. and 4 -digit 7 -segment I.e.d. displays. It allows users to program and control all functions and both ports of the PIC and to follow the 39 tutorials on the CD-ROM.

All hardware is supplied fully built and tested and includes a PIC16F84 electrically erasable programmable microcontroiler. CD-ROM
Hobbyist/Student
£45 inc. VAT
Institutional (Schools/HE/FE Industry) \qquad £99 plus VAT
Institutional 10 user (Network Licence) £199 plus VAT

HARDWARE

Standard PICtutor Development Kit....................... £47 inc. VAT
Deluxe PICtutor Development Kit............................... £99 plus VAT
Deluxe Export Version
£96 plus VAT
(UK and EU customers add VAT at 17.5% to "plus VAT" prices)

Minimum system requirements for these CD-ROMs: PC witt. $486 / 33 \mathrm{MHz}$, VGA +256 colours, CD-ROM drive, 8 MB RAM,
8MB hard disk space. Windows $3.1 / 95 / 98 / \mathrm{NT}$, mouse, sound card (not required for PICtutor or Modular Circuit Design).

CD-ROM ORDER FORM

Please send me:
\square Electronic Circuits \& Components + The Parts Gallery Digital Electronics PICtutor

PICtutor Development Kit - Standard PICtutor Development Kit - Deluxe

Deluxe Export
Modular Circuit Design - Single User
Modular Circuit Design - Multiple User
I Full name:
| Address

Post code: \qquad Tel. No:

Signature:I enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$.

Card No:
Please supply name and address of card holder if different to the delivery address.

Version required:
Hobbyist/Student Institutional Institutional 10 user

ORDERING
 ALL PRICES INCLUDE UK POSTAGE
 Student/Single User/Standard Version price includes postage to most countries in the world
 EU residents outside the UK add 65 for airmail postage per order

OVERSEAS ORDERS: Institutional, Multiple User and Deluxe Versions overseas readers add $£ 5$ to the basic price of each order for airmail postage (do not add VAT unless you live in an EU country, then add $17 \frac{1}{2} \%$ VAT or provide your official VAT registration number).

Send your order to:
Direct Book Service
33 Gravel Hill, Merley Wimborne Dorset BH21 1RW
(Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ltd. To order by phone ring 01202881749 . Fax: 01202841692
We cannot reply to overseas orders by Fax Goods are normally sent within seven days

> ELECTRONIC CIRCUITS \& COMPONENTS + THE PARTS GALLERY by Mike Tooley
ELECTRONIC CIRCUITS \& COMPONENTS
Electronic Circuits \& Components provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding as they proceed through the sections on the CD-ROM. Sections on the disk include
Fundamentals: units \& multiples, electricity, electric circuits,
alternating circuits
Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes. transistors, op.amps, logic gates. Passive Circuits Active Circuits

THE PARTS GALLERY

Many students have a good understanding of electronic theory but still have difficulty in recognising the vast number of different types of electronic components and symbols. The Parts Gallery helps overcome this problem; it will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Selections on the disk include: Components
Components Quiz
Symbols
Symbols Quiz
Circuit Technology

Logic laboratory

Circuit technology screen

Hobbyist/Student .. £34 inc VAT
Institutional (Schools/HE/FE/Industry)
. $£ 89$ plus VAT
Institutional 10 user (Network Licence)
E169 plus VAT

DIGITAL ELECTRONICS by Mike Tooley

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits \& Components, and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen.

Virtual laboratory - traffic lights

Microprocessor

FUNDAMENTALS

Fundamentals introduces the basics of digital electronics including binary and hexadecimat numbering systems, ASCII, basic logic gates and their operation, monostable action and circuits, and bistables - including JK and D-type flip-flops

COMBINATIONAL LOGIC

Multiple gate circuits, equivalent logic functions and specialised logic functions such as majority vote, parity checker, scrambler, half and full adders. Includes fully interactive virtual laboratories for all circuits

SEQUENTIAL LOGIC

Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers.

DIGITAL SYSTEMS

A / D and D / A converters and their parameters, traffic light controllers, memories and microprocessors architecture, bus systems and their arithmetic logic unit.
GALLERY
A catalogue of commonly used IC schematics taken from the $74 \times x$ and 40xx series. Also includes photographs of common digital integrated circuits and circuit technology.

Hobbyist/Student £45 inc VAT Institutional (Schools/HE/FE Industry) $£ 99$ plus VAT Institutional 10 user (Network Licence) £199 plus VAT

This CD-ROM has been developed from Max Horsey's Teach-In series A Guide to Modular Circuit Design (EPE Nov '95 to Aug '96). This highly acclaimed series presented a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects.
Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbists who want to get to grips with project design.

Over seventy different Input, Processor and Output modules are illustrated and fully described together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc. A full contents list and alphabetical index are provided and, at every stage, alternative modules are offered.
Written by a highly experienced author and teacher (Max is Head of Electronics at Radley College), this CD brings it all together for all
students of electronics.

Single User Version £19.95 inc. VAT
Multiple User Version £34 p/us VAT

MODULAR CIRCUIT DESIGN by Max Horsey and Philip Clayton

Listing 1

\#Assign a label to input port \$F011 \#Assign a label to output port $\$ \mathrm{~F} 030$
\#Set start address to $\$ 4000$
LOOP:
INPORT1: .EQU \$F011

OUTPORTO: EOU \$F030
. ORG $\$ 4000$
\#Load accumulator from I/P port 1
\#Store accumulator to $0 / P$ port 0
\#Jump to LOOP and do it all again
l.e.d. turns on again. (Verify that all of the buttons work by pressing and releasing them in turn.)

Initially, this may seem to be counterintuitive, because we typically expect that pressing a switch will cause a light to turn on. But our input board is behaving exactly as it was designed, because its pullup resistors hold the inputs at logic 1 , and pressing a switch connects that input to a logic 0 .

We could have wired our input board the opposite way around had we wished but we didn't! Why not? Well one very good reason was that wiring the board the way we did allowed us to introduce a very important point, which is that logic 0 s and 1s mean whatever we want them to mean at any particular time.

Before we proceed, reset your PhizzyB and dismiss the PBLink utility (as we noted in Part 3, whilst the PBLink utility is active it will slow your PC, because it's constantly bouncing packets of information back and forth to your PhizzyB).

If you don't have a real PhizzyB, you can replicate this experiment on your simulator. Use the Memory -> Load RAM command to load ccexpl.ram into the simulator's memory and then set this program running.

Enter a value of 11111111 into the binary field on the generic input board at address $\$$ F011 (the binary field is the one indicated by a percent " \%" character). Don't forget to click that board's Set button to present this value to the input port, at which time all of the l.e.d.s on the bargraph display will light up.

Now enter the following values to represent the effects of pressing the switches in the real world:

Value Switch

111111100
$11111101 \quad 1$
111110112
111101113
111011114
110111115
101111116
011111117
11111111 None
When you've finished, reset the simulator, and proceed to the second experiment.

EXPERIMENT 2

Inverting the inputs

As we just discussed, we typically expect that pressing a switch will cause a light to tum on rather than turn off. However, one of the great things about computers is that we can use software (programs) to modify the way things work in hardware (the physical bits and pieces in the real world). Let's examine an example of this.

Use the assembler to load your ccexpl.asm program and save it out as ccexp2.asm. Now add an XOR \%11111111 instruction between the existing LDA (load accumulator) and the STA (store accumulator) instructions as follows:

LDA [INPORT1]
 XOR \%11111111
 STA [OUTPORT0]

From earlier articles in this series we know that XORing a bit with a logic 1 has the same effect as inverting that bit. In this case we're XORing the contents of our 8 -bit accumulator with eight 1 s , which will invert each bit in the accumulator. (We could have achieved exactly the same effect using XOR \$FF in hexadecimal or XOR 255 in decimal.)
So this new program will loop around loading a value from the input port into the accumulator, inverting all of the bits in the accumulator, and writing this new value to the output port.
Assemble this program to generate the corresponding ccexp2.ram file, then use your PBLink utility to download this program to the PhizzyB and set the little rascal running. As you see, the l.e.d.s on the bargraph display now go out, and it's only when you press one of the switches that the related l.e.d. tums on. (Verify that all of the buttons work ${ }^{\prime} y$ pressing and releasing them in turn.)
When you've finished playing, reset your PhizzyB and dismiss the PBLink utility. Note that you can test this new program on the PhizzyB Simulator using exactly the same input values that you used before.

EXPERIMENT 3

CMPA Instruction

One instruction we haven't looked at before is CMPA (compare accumulator), which allows us to compare the numerical
value of the current contents of the accumulator to some other numerical value. In order to investigate this instruction, use your assembler to save the ccexp2.asm program as ccexp3.asm, and then modify this program as shown in Listing 2.
Don't Panic! This isn't as complicated as it looks. We commence with an LDA to load a value from the switches into the accumulator, and we follow this with an XOR to invert the contents of the accumulator. Now we use a JZ (jump if zero) to test whether the accumulator contains zero - if it does we jump back to the LOOP label. Thus, this portion of the program simply loops around waiting for us to press one of the switches.

As soon as we do press a switch, the JZ instruction fails and we "drop through" to the CMPA instruction. One thing you need to know is that the CMPA instruction assumes that both values being compared are unsigned binary numbers. (The concepts of signed and unsigned binary numbers were discussed in last month's PhizzyB Bonus Article.)

The way the CMPA instruction works is that it compares the current value in the accumulator with another value that we specify. If the value in the accumulator is the bigger, the Carry flag is set to 1 and the Zero flag is cleared to 0 . If the two values are equal, the Zero flag is set to 1 and the Carry flag is cleared to 0 . And if the value in the accumulator is the smaller, then both the Carry and Zero flags are cleared to zero.

In this particular program, we're comparing the value in the accumulator (which reflects the switch we just pressed) with a binary value of 00001000 . So if the value in the accumulator is the bigger, this means that we must have pressed one of the switches numbered $4,5,6$ or 7 .

Alternatively, if the value in the accumulator is not the bigger, then we must have pressed one of switches numbered 0 , 1,2 or 3 . (With regard to the previous sentence, note that we specifically didn't say "... if the value in the accumulator is the smaller...". This is because if we press switch 3 the two values will be equal - you have to be very precise when you're talking about the actions of programs.)
Thus, following the CMPA, a JC (jump if carry) instruction is used to decide what we do. If the carry flag is set, we know that the value in the accumulator was the bigger, and we jump to label IS7TO4

Listing 2

INPORT1:	. EqU	\$F011	\#Assign a label to input port \$F011
OUTPORTO:	. EQU	\$F030	\#Assign a label to output port \$F030
	. ORG	\$4000	\#Set start address to \$4000
LOOP:	LDA	[INPORT1]	\#Load accumulator from I/P port
	XOR	811111111	\#Invert contents of accumulator
	Jz	[LOOP]	\#If ACC $=0$ jump back to LOOP
	CMPA	\%00001000	\#otherwise compare accumulator
	Jc	[IS7T04]]	\#Jump to IS7TO4
IS3T00:	LDA	800001111	\#Load ACC with 00001111
	STA	[OUTPORT0]	\#store accurmulator to $0 / P$ port 0
	JMP	[LOOP]	\#Jump to LOOP and do it all again
IS7T04:	LDA	811110000	\#Load ACC with 11110000
	STA	[OUTPORT0]	\#Store accumulator to 0/P port 0
	JMP	[LOOP]	\#Jump to LOOP and do it all again
	. END		

(meaning "this switch is one of those numbered 7 to 4").

At this point we load the accumulator with a binary value of 11110000 , store it to the output port, and jump back to LOOP to wait for another switch to be pressed. Note that the 11110000 value we load into the accumulator has no particular significance - it's just something we'll recognize when it appears on the l.e.d.s.

Of course, if the value in the accumulator isn't the bigger when we perform the CMPA, then the Carry flag will be cleared to zero, the JC instruction will fail, and the program will "drop through"' to the IS3TO0 label (meaning "this switch is one of those numbered 3 to $0^{\prime \prime}$) be careful not to get the letter " O " of "TO', confused with the number " 0 '" at the end of this label.

In this case we load the accumulator with a binary value of 00001111 , store it to the output port, and jump back to LOOP to wait for another switch to be pressed (again, this 00001111 value has no particular significance).
So let's assemble this program to generate the corresponding ccexp3.ram file, use the PBLink utility to download this file to your PhizzyB, and run the program. Try pressing one of the 0 to 3 switches and observe the right-most four l.e.d.s light up, then try pressing one of the 4 to 7 switches and note the left-most four l.e.d.s light up.

Continue to experiment with this program until your heart stops pounding, then reset the PhizzyB, dismiss the PBLink utility, and proceed to the next section. (You can also replicate this experiment on your simulator if you wish - remember to use the binary pattems 11111110 through 01111111 to represent the action of pressing switches 0 through 7 , respectively.)

POLLING PROBLEMS

The previous experiment relied on the program looping around reading from the input port and waiting for something to happen. This technique is referred to as polling, and it tends to occupy a lot of the CPU's time and resources. Using the polling technique was perfectly acceptable in the case of Experiment 3, because we weren't using the CPU to do anything else anyway, but what if we did want to use the CPU for another purpose?

As an example, here's an experiment you can perform for yourself. Take the simple l.e.d. output board you created in Part 2 and plug it into the external output port at address $\$$ F031. Now write a program that performs a simple binary count and displays it on this output board. In fact you can use the testl.asm file that was supplied with your PhizzyB Simulator as a basis for this program, but remember to save it out under another name.

Also, you'll have to change the address of the output port to $\$$ F03l and the label associated with this port to OUTPORT1 (remember to change this label wherever it is used throughout the program).

You'll also note that this program contains a simple subroutine called WAIT, which is used to slow the count sequence down so that you can see what's happening (subroutines were introduced in Part 3).

Once you have this program running, modify it such that every time it performs a count, it also checks our new polling switch
device connected to input port \$F011. If none of the switches are pressed, then make the program return to performing its binary count. But if one of the switches is pressed, then make the program perform the same comparison and display the same values to the output port at $\$ F 030$ as we did in Experiment 3 above (and then let it return to performing its binary count).

As you'll discover, one big problem we find when we try to combine this polling technique with the binary count is that we're trying to do two very distinct things, but that the code for both these things becomes somewhat intermeshed. This makes it difficult to write the program, and also to understand it and modify it later.

Even worse, suppose that you press and release a switch whilst the program is executing the WAIT subroutine. In this case your program might not even notice that you'd pressed the switch at all! All of these points mean that the polling technique has to be used with discretion. One altemative is to use a technique caller interrupt-driven //O as discussed presently.

Note that if you find creating the program discussed in this section to be a little too taxing and/or time-consuming. you'll be happy to know that we've created one for you to peruse and ponder, ccextral.asm. It's on the PhizzyB Bonus disk we'll discuss later.

IRQ AND IACK

As discussed in the previous section, there are a number of problems associated with a polling strategy. What we would like to do is to create a program that can concentrate on the task for which it was intended (performing a binary count in this case), without being obliged to constantly keep on checking to see if we've pressed a switch on our input device.

However, when we do press a switch, we want the CPU to respond as quickly as it can by performing the comparison, displaying the result on output port $\$ \mathrm{FO} 0$, and returning to its binary count.

To facilitate this sort of thing, the CPU has a special input called the IRQ (interrupt request) and a special output called the IACK (interrupt acknowledge), as shown in Fig. 2.

For a number of reasons (mostly historical). control signals are usually active-low (that is, their active state is a logic 0), and the IRQ is no exception. What this means is
that we usually maintain the IRQ signal at a logic 1 , so pulling it to a logic 0 tells the CPU that something interesting is happening (this request is stored inside the CPU in a register called the interrupt latch).

Similarly, when the CPU starts to respond to an interrupt (as discussed in a moment), it places its IACK output into an active-low state to tell devices in the outside world that it's doing something. (Note that we won't be using the IACK output at this time.)

INTERRUPT MASK

Thus far we've introduced four status flags: Z (Zero), C (Carry), O (Overflow), and N (Negative). In fact there is a fifth flag called I (Interrupt Mask). The interrupt mask is somewhat different to the other status flags, in that it is not set as the result of a logical or arithmetic instruction or condition. Instead, the interrupt mask is used to tell the CPU whether of not it is allowed to respond to interrupts.

Following a power-up or reset condition, the interrupt mask flag is initialized to its inactive state (a logic 0 in the case of the PhizzyB). This means that, by default, the PhizzyB will NOT respond to interrupts. Thus, in order for the PhizzyB to accept an interrupt request, we first have to use a SETIM (set interrupt mask) instruction, which loads the I flag with a logic 1.

The way this works is that the CPU checks the state of the interrupt mask every time it completes an instruction (Fig.3). If the mask is inactive the CPU proceeds to the next instruction, otherwise it checks the interrupt latch to see if an interrupt has been requested. If no interrupt was requested the CPU again proceeds to the next instruction, otherwise it jumps to a special subroutine called an interrupt service routine (discussed a little later).

INTERRUPT BOARD

In order to understand how all of this works, let's consider the second input board described in this month's construction article, the Interrupt Switch board. This board also contains eight switches that are wired in much the same way as the first board. However, in this case the outputs from the switches are used to drive the inputs of an 8-bit register.

The outputs from the switches are also used to drive an 8 -input NAND gate. We know that the outputs from the switches are

Fig.2. The CPU has a special Interrupt (IRQ) input and Interrupt Acknowledge (IACK) output.

Fig.3. Interrupts handing flow-chart.
our patterns to the output port at $\$$ F030, we use a POPA (discussed in Part 3) to reload the accumulator's original value from the stack, followed by an RTI (return from interrupt).
The RTI acts like the RTS (return from subroutine) instruction we considered in Part 3 , in that it returns the CPU to the point in the program it was at when the interrupt was originally called. (In fact the RTI is a little different to the RTS but we won't go into that here - see also the Further Reading sec-
usually at logic 1 (due to the pull-up resistors), which means that the output from the NAND gate is usually at logic 0 . When any of the switches are pressed, the output from the NAND gate transitions from a logic 0 to a logic 1 . This "rising edge" is used to load the 8 -bit register with the current values on the switches
Furthermore, the output from the NAND gate is inverted by another chip to generate an IRQ signal. This means that when a switch is pressed, the resulting logic 1 coming out of the NAND is converted into a logic 0 on the IRQ signal (where this logic 0 is the IRQ's active state).
Let's proceed to an experiment that will let us sink our teeth into all of this..

EXPERIMENT 4

Interrupt-driven I/O

Before we start, power down the PhizzyB, unplug the polled switch module from the input port at address $\$$ F011, and replace it with the interrupt-driven switch board. Also, take the l.e.d. output module you created in Part 2, and plug it in to the output port at address $\$$ F031. Now use the assembler to create the program shown in Listing 3 and save this as ccexp4a.asm.
The main body of this program loops around writing out a simple pattern to the l.e.d. module. Every time the program goes around the loop it calls a subroutine called WAIT that adds an element of delay so that we can see what's happening.
Assemble this program to generate the corresponding ccexp4a.ram file. Power-up your PhizzyB, download this program into it, run it to make sure that it works as expected, then reset PhizzyB.
Now save your program as ccexp4b.asm, then add the interrupt service routine shown in Listing 4. Add it just after the end of the WAIT subroutine and just before the .END directive.
This interrupt service routine is very similar to the program from Experiment 3. The first thing we do when we enter the routine is to push the current value in the accumulator onto the stack so that we can preserve it for later. Next we load the accumulator with the value from the switch device and perform the CMPA instruction.
Once we've finished comparing the accumulator and storing one or other of
tion at the end of this article).
But how is this interrupt service routine called? Well, we need to add two more instructions at the beginning of the program following the BLDSP, so that it becomes:

.ORG $\$ 4000$
 BLDSP \$4FFF
 BLDIV COMPARE
 SETIM

The BLDIV (big load interrupt vector) instruction is used to load a special 16 -bit addressing register - the Interrupt Vector - inside the CPU with the address of the interrupt service routine. In this case, we've used the BLDIV COMPARE statement, because we know that the assembler will automatically substitute the label COMPARE with its associated address (pretty cunning eh?).

Following the BLDIV, we use a SETIM instruction to set the interrupt mask to its active state, which will allow the CPU to see future interrupt requests.

What this means is that when we run this program, the CPU will happily concentrate on the main body of the program, which displays our simple rotating bit pattern on the display module connected to output port \$F031. However, whenever we press one of the switches on the interruptdriven switch board, that board will activate the IRQ signal, and the CPU will jump to the interrupt service routine.

Thus we see that there are a number of advantages of this interrupt-driven scheme over a polling approach. First, the main body of the program doesn't have to keep on checking the value on the input device. Second, the two functions are kept very separate and distinct, which makes understanding them and modifying them much easier. Third, even if we press a

Listing 4

COMPARE:	PUSHA		\#Store current ACC onto the stack
	LDA	[INPORT1]	\#Load ACC with value from switches
	XOR	\%11111111	\#Invert the value in the ACC
	CMPA	800001000	\#Compare ACC to 800001000
	JC	[IS7TO4]	\#Jump if carry to IS7TO4
IS3TOO:	LDA	800001111	\#Load ACC with 00001111
	STA	[OUTPORT0]	\#Store accumulator to $0 / P$ port 0
	POPA		\#Get original ACC from stack
	RTI		\#Return from interrupt routine
IS7TO4:	LDA	811110000	\#Load ACC with 11110000
	STA	[OUTPORT0]	\#Store accumulator to $0 / P$ port 0
	POPA		\#Get original ACC from stack
	RTI		\#Return from interrupt routine

switch while the program is in the WAIT subroutine the interrupt will still occur, which means that we won't miss a switchpress.

So let's assemble this program to generate the corresponding ccexp4b.ram file, download it to the PhizzyB, and set it running. Observe the program driving the display at \$F031 as before. Now try clicking one of the 0 to 3 switches followed by one of the 4 to 7 switches and observe that the \$F030 display updates as we expect, and the \$F031 display then continues with no perceivable interruption.

ANOTHER BONUS ARTICLE

What? Another bonus article? The problem is that there's just so much good stuff to tell you, yet so little time (and space) in which to tell you it all. So what we've done is to write a second bonus article that describes how to use the PhizzyB to time something and to display the result on the simple liquid crystal display (l.c.d.) output device we described in Part 3.

Quite apart from anything else, this new bonus article will also introduce you to the 16 -bit addition, subtraction, multiplication, and division subroutines we supplied with your PhizzyB Simulator (you can use the assembler to peruse the add16.asm, subl6.asm, and suchlike files that you'll find in your data directory).

For your delectation and delight, this second bonus article is available as an Adobe Acrobat PDF file on the $E P E$ web site and on disk. See the Bonus Resources section at the end for details on getting this article.

ADDITIONAL EXPERIMENTS

You will have noted that both of the switch input boards discussed this month have an additional 16 -pin header, comprising eight signal pins and eight ground pins. This allows you to bypass the switches on the board, and to connect extemal switches. For example, in the fullness of time we will be attaching microswitches around the periphery of our forthcoming PhizzyBot.

We will then be connecting these switches to one or other of our input switch boards via these 16 -pin headers, and using them to detect when the PhizzyBot bumps into something.

But you shouldn't limit yourself to our experiments, because there are a whole lot of things you can do yourself. For example, you might decide to create a model of a road junction with traffic lights. In this case you could easily use the PhizzyB to control the model traffic lights.

Furthermore, you could mount small magnets to the underside of your model cars, and also attach magnetically operated reed-switches under the entrances to the junction. These reed-switches could then be connected to the 16 -pin headers on our input switch boards.

As another example, you could create a ramp with one microswitch at the top and another at the bottom, such that rolling a ball down the ramp will trigger one switch and then the other. Coupling this with the l.c.d. module described in our second bonus article would allow you to implement a
simple event timer that times how long it takes the ball to roll down the slope.

Obviously these are just simple suggestions. If these experiments don't take your fancy, there are numerous other things you can do. In fact, if you think of any interesting experiments you could perform using these devices, please E-mail us at info@maxmon.com and tell us about them and we'll share them with other readers.

SHIFTY BUGS

In PhizzyB Part 3, Jan '99, Fig.2b showed the SHR (shift right) instruction as copying the MS bit back into itself (we show the same thing in the bonus article).

This diagram reflects an "arithmetic shift right" and this is the way it's supposed to work (and it is the way that the real PhizzyB works), but for some weird reason the simulator actually performs a "logical shift right'" which means that it shifts a zero into the MS bit.

The simplest fix is to force the real PhizzyB to act like the simulator. This can be achieved by following a SHR instruction with an AND as follows:
<instruction>
<instruction>
SHR
AND \%01111111
<instruction>
<instruction>
This forces the MS bit to be a logic 0 (which is what the simulator does incorrectly anyway).

Unfortunately, forcing the simulator to perform an arithmetic shift like it's supposed to (and like the real PhizzyB does) is much more painful. There are several ways to achieve this - one of the simplest to understand is to create a SHRA (shift right arithmetic) subroutine as follows:
\# Main body of program
<instruction>
<instruction>
JSR [SHRA]

> \# Instead of a SHR jump to SHRA subroutine
<instruction>
<instruction>
In the subroutine we use a JN (Jump if negative) instruction to decide whether or not to set the MS bit to 1 as follows:

\#\#\# Start of subroutine SHRA

SHRA: JN [SHR1] \# If MS bit is 1 jump to SHR1 SHRO: SHR $\quad \begin{aligned} & \text { \# Otherwise just } \\ & \text { shift right (logical) }\end{aligned}$ RTS \# Return from subroutine
SHR 1: SHR \# Shift right (logical) OR \% 10000000 \# Force MS Bit to 1 RTS \# Return from subroutine.
\#\# End of subroutine

BONUS RESOURCES

The PhizzyB bonus articles can be downloaded via the Intemet from the EPE FTP site. The first is at:
ftp://ftp.epemag.wimborne.co.uk/pub/ phizzyb/ebonus.pdf
and the second at:
ftp://ftp.epemag.wimborne.co.uk/pub/ phizzyb/ebonus2.pdf

The file ccextral.asm referred to earlier is at:
ftp://ftp.epemag.wimborne.co.uk/pub/ phizzyb/.
Remember to download it as a binary file.
For the benefit of non-Internet users these files are also available on a $3 \cdot 5$-inch floppy disk from the Editorial office. The software is free but there is a nominal charge to cover admin and postage costs: UK $£ 2.75$, Overseas $£ 3.35$ surface mail, $£ 4.35$ airmail. Order as PhizzyB Bonus Disk.

FURTHER READING

The basic concept of interrupts is relatively simple, but as usual there's a lot more to this subject than first meets the eye. For example, we haven't discussed what would happen if you had two input devices, both of which required the ability to trigger an interrupt. Similarly, we haven't discussed what happens if a new interrupt is requested whilst a previous interrupt is being serviced (which leads into the discussion of nested interrupts).

The bottom line is that there's much more to this topic than we can cover here. But turn that frown upside down into a smile, because all is not yet lost! If you want to know more about all of this, then one place to start is our book Bebop BYTES Back (An Unconventional Guide to Computers), which is available from the $E P E$ Direct Book Service.

NEXT MONTH

Next month the excitement really starts, because we'll be describing how to build the chassis for our PhizzyBot, and Alan will be describing how to construct a motor controller output board so that the PhizzyBot can go mobile.

Meanwhile we'll be using the switch devices from this month as collision detectors to allow the PhizzyBot to recognize when it's bumped into something.

BEE-LINE

Max and Alvin would love to hear from you via their web site http://www.maxmon.com.
So, too, would we for possible inclusion on our Readout pages!

VARIAELE VOLTAGGE TRANSFORMERS

 INPUT 220V/240V AC 50/60 OUTPUT OV-260V PANEL MOUNTING Price SHROUDED0.5 KVA 2.5 amp max $\quad £ 34.00$ 845.25
 $\begin{array}{llr}\text { 2KVA } 10 \text { amp max } & \text { E65.00 } & \text { (} £ 62.57 \text { inc VAT } \\ \text { E8.50 } \\ \text { (} £ 86.36 \text { inc VAT }\end{array}$ 3KVA 15 amp max \quad E86.50 (£86.36 inc E8AT.50
 Buy direct fom the imponters. Keenest prices in the country. New manuff. surpius "C Core" tropic Now mant. surpus "C Core" tropicalised with top plate
and solder connections. $0-240 \mathrm{~V}$ AC. $5-0-100-110-120 \mathrm{~V}$ \&
Screen Wh 10.5K Size: H $195 \times 155 \times 135 \mathrm{mmm}$
rice f 35.00 . Carr. E 750 (549.94 nCl) COMPREMENSIVE RANGE OF
TRANSFORMEAS LT-HSOLATION \& AUTO
 $\frac{\text { mains lead or open trame type. Available to immediate del }}{\text { ULTRA VIOLET BLACK LIGHT BLUE }}$ FLUORESCENT TUBES
4 C
40 wat $£ 14.00$ (Callers only) H2 20 watt 89.00 (callers only)
2 in 8 watt $\varepsilon 4.80+750$ psp §16.45 inc VAT
E10.58 inc VAT in 6 watr $\sum 3.06+500$ plp (C6.52 inc VAI)
(55.24 inc VAT)
230 V AC BALLAST KIT

The above Tubes are 350040000 angast (350400 um) idoal for Other Wavelengtts of UVI TVBE avaidible for Germacral
Senstive appicapons. Please tileophone your enqunes.
400 WATT BLACK LIGHT GES Mercury BUE UV LAMP Var lo sulable for se with a 400 P.F. Ballast.
RANGE OF XENON FLASHTUBES
Wiho/Phone your anquifies
Designed for Disco, Theatrical
 Case and reflector $\mathrm{E} 24.00+£ 3.00$ pso
SAE for further detaits Incuuding

5 KVA ISOLATION TRANSFORMER New Ex-Equipment, fully shrouded, Line Noise Suppresslon, Ulitra Isolation Transformer with
lerminal covers and knock-out cable entries.俍
Prmmary $120 \mathrm{~V} / 240 \mathrm{~V}$, Secondary $120 \mathrm{~V} / 240 \mathrm{~V}$,
$50 / 60 \mathrm{~Hz}, 0.005 \mathrm{pF}$ Capacitance. Size, $1.37 \mathrm{~cm} \times \mathrm{W}$ $9 \mathrm{~cm} x$. H 16 cm , Weight 42 kilos. Price $£ 12$
AT. Ex.warehouse. Carriage on request. 24V DC SIEMENS CONTACTOR Type 3 TH 4022 OB $2 \times$ NO and $2 \times$ NC 230 V AC $10 A$
Contacts. Screw or Din Rail fxing Size H $120 \times W \mathrm{~W}$ 075 mm . Brand Now Price $\varepsilon 7.63$ inct. PsP and VAT.
240 V AC WESTOOL SOLENIODS T12 Mod 1 Rat. 1 Max stroke 5 /ain. Base mounting
$1 / 21$ s. stroke 510 s pull approx. TT6 Mod. 1 Rat. 1 Max. stroke 1 in. Base mounting 1/2in. stroke 151 bs pull
 Pnce incl. p\&p \& VAT. TTS E5.88,
SERIES 400 E7.64.
AXIAL COOLING FAN
330 V AC 120 mm I COOLING FAN $£ 7.29$ incl. P\&P and VAT. Other voltages and sizes available from stock

INSTRUMENT CASE
Brand new. Manulactured by Imhot. L $31 \times$ H $18 \times$
 It E28.20 inclusive.
DIE CAST ALUMINIUM BOX with intemal PCB guioas internal size $265 \times 165 \times$
50 mm deep. Price 9.93 ind. P\&o \& VAT. 2 olf $£ 17.80$
230 V AC SYNCHRONOUS GEARED MOTORS Brand new Ovid Goarbox Grouzat hpe motors. RPM anti $\mathbf{C w} .89 .99$ ind. P\&D \& VAT. 20 RPM anti aw . Depth 40 mm . 11.16 incl. plep \& VAT.

SOLID STATE EHT UNIT
Input $230 \mathrm{~V} / 240 \mathrm{~V}$ AC, Output approx 15 KV . Producing 10 mm spark. Buitt-in 10 sec
timer. Easily modified for 20 sec, timer. Easily modified for $20 \mathrm{sec}, 30 \mathrm{sec}$
to continuous. Designed for boiler ignition Dozens of uses in the field of physics and electronics, e.g. suplying neon or argon
tubes etc. Price less case $88.50+£ 2.40$ p\& tubes etc. Price less case $£ 8.50+£ 2.40$ p $\& p$ EPROH ERASURE KIT Build your own EPROM ERASURE for a traction of the price of a made-up unit. Kit of parts less case
incuides 12 In 8 watt 2537 Angst Tube Ballast unit, part ncuudes 121 in 8 watt 2537 Angst Tube Ballast unit, pair
at bi-pin leads, neon indicalor, orvort swilch. safety ncroswith and circuit $£ 15.00+£ 2.00$ psp
WASHING MACHINE WATER PUMP Brand new 240 VAC fan cooted. Can be used for a
variety of purposess iniel 11/n., outtet in. dia. Price variety of purposes. Inlet $11 /$ in., outtet in. ©ia. Prioe
includes p\&p. \& VAT. $\$ 11.20$ each or 2 for $£ 20.50$

.
againl Good intro to several basic circuits, 3 stan
 up to 100V/5A. Pulse width modulation gives matax

imum torque at all speeds. $5-15 V \mathrm{CD}$. $3067-\mathrm{kT}$ | 59.95 |
| :---: |
| $3 V 15$ |

SVVI.5V TO OV BATTERY CONVERTER Replace
 Aeries RADVO KIT Tuneo Radio Froquency front-
 TRMN SOUNDS 4 selectable sounds Whistle blowing, level crossing be chugging, \&t clicket-clicck. Ail
components inc. speaker suppliod AUDIO TO LGGT MODULATOR C of one or more lights in response to an ensity
 Voltage experience requirad. 3012-KT f695
THREE TMER CIACUTSS in one kit 3 PCB' G components monake imers for atow scond or 8 CHANNEL IT TXPX COIfrols 8 reiavs using IR

1OW STEEREO AMPLIFIE
MODULE

 Tamoustete plans tor buibto y the acts sikiece on the terget phone. device
 ${ }^{12 V O C}$ into $4 W$ speakers Ideal car beoster an 1201 into
$3091-\mathrm{K} 7$
f6. 2 Sb
STFRERO VU METER shows paak music power
using 2 rows of 10 LED's (green, yellow, real)

${ }^{\text {12-EBT PC DATA }}$ DACOUISTION SYSTEM USE YOur

 Or 8 Bead motors. 3 Hun modes. $3109-k T$ E73.55 laser diode. Atrractive plastic case supplied. 3070 KTLEA.
ULTRASONIC MOVEMENT DETECTOR Xtal controlled oscillator, detactor gircuit \& edge mounted transsucers
75×40 m
Adiustable
Ouputs to drive extern
Plus AUDIO EDUCATIONAL LASER - SECURITY © TEST GEAR P BOOKS a more instructions quality project kats are supplied with all components. fibre glass PCB's \& compresensve 100 kits \& publications. Mail order only Please ADD $£ 2.00$ P. \& P. to all orders (Europe $£ 3$, Rest of working dars but please allow 28 dass for delivery Prices include VAT at 17.5%
Quasar Electronics Unit 14 Sunnningdale BISHOP'S STORTFORD Herts CM23 2PA
Uasar Electronics Unit 14 Sunnilingdale BISHOP'S STORTFORD Herts CM23 2 RA
Tel. Fax 01279 306504 E-mail: epesales@quasar-electronics.freaserve. co.uk E-mail: epesasasequasar-efectronics. frease
Web site: http:///www.quasar-electronics. freeserve.co.uk

PhizzyB COMPUTERS

Construction - 8-bit Switch and Latch

Polling and interrupts set us on course for our super wheelie - the fabulous PhizzyBot!

THIS month's assignment is the construction of two 8 -switch input devices for connection to the PhizzyB input port. The first project is a straightforward home-made keypad which hooks directly to the PhizzyB board via the standard 20-way IDC lead used previously. The second project is more ambitious, as it demonstrates how the PhizzyB can handle Interrupts generated by an external system. It incorporates some simple logic circuitry.

For one of the demonstrations, you also need the simple l.e.d. output board, constructed in Part 2.

Both of the projects are expandable. The switch boards can be utilised later on to connect to a series of external switches, including microswitches or limit switches used in robotics or buggy applications including the forthcoming PhizzyBot, a simple motorised chassis which obeys your every command. Well, most of them. Hence the switches provide a series of simple on-off control signals which can also be utilised in more advanced systems.

Although both circuits are fairly straightforward, assembly is somewhat trickier than the modules previously described, mainly because of the need to interconnect a fair number of parts on a PhizzyB I/O board. It must be said that the interwiring is therefore quite a lot more intricate and challenging, but we give practical advice to help ensure that both modules will function first time. We think it's important that PhizzyB owners gain not only the ability to program the wee beastie, but also to roll up their sleeves and tackle the hardware aspects with confidence. Read on!

SIMPLE 8-BIT SWITCH

The first module is a simple 8-bit switch input unit - see Fig.1a. This contains eight switches ($\mathbf{S 0}$ to $\mathbf{S 7}$) each having a pull-up resistor (R 0 to R 7) and a 10 nF capacitor to help reduce "noise" and switch contact bounce.

All eight switches operate in the same way. For example, by closing $\$ 7$, the signal IP7 will be shorted to 0V. When the switch is opened, the IP7 signal will be pulled high again by resistor R7, because if there is no current flowing through the resistor then there is no voltage drop across it. All eight input signals connect to the standard PhizzyB IDC connector as before.

This circuit should be assembled on one half of a 4 -up PhizzyB I/O board (combined sections A and B). A new board should be slit down the middle, using a Dremel cutting disk or fine hacksaw blade along the row of holes provided as a guide for this purpose (as discussed in Part 2). Both halves of the

Fig.1. Circuit diagram and board layout for a simple 8 -switch input "polling" module.
complete board will be used to assemble this month's projects.

The recommended layout of components for the 8 -bit switch module is shown in Fig.lb. It is very common, when prototyping a circuit, to interwire the components using a " point to point" technique which involves soldering the wire links on the underside of the board. This is perfectly adequate and is, in fact, the only way in which these circuits can be assembled on this board because the switches obscure the above-board holes, rendering them inaccessible.

In order to help with assembly, we've taken the unusual step of not only numbering the switches starting at SO (instead of S1), but also the accompanying resistors and capacitors, starting at R0 and C0. Thus, all similarly numbered parts are grouped together.

Fig.2. Switch wiring details.

ASSEMBLY

It is best to start assembly by locating the push-switches on the board. The specified types can be made to fit the board without any problems, by very slightly manipulating their pinouts. Each switch has four pins which are paired internally. This means

Under-side wiring for the 8 -switch input "polling" module.

Top-side view of the 8 -switch input "polling" module.
that the switch can actually be used to form a "bridge" which joins neighbouring copper strips together on the PhizzyB I/O board, see Fig. 2.

Note that both busbars are used, the top one supplies +5 V to the resistors, and the bottom busbar supplies 0V. Solder the resistors and capacitors into the board next to each switch as shown. Follow on with the two rows of 8 -way pin headers (which can be used to hook external switches to the module), then solder the 20 -way IDC box header (CON1) into place, observing the direction of the centre notch and pin 1 .

With the parts in place, the interwiring should be completed on the underside (solder side) of the board. No wiring diagram is given, as all the relevant information is obtainable from the circuit diagram. Carrying out the wiring will prove straightforward provided that a methodical technique is used. Simply follow the circuit diagram and tick each wire on the drawing when you have soldered it into place.

Single core (solid core) hook-up wire should be used. and we strongly recommend purchasing a small reel of "wire-wrapping" silver-plated Kynar wire (size $1 / 0.25 \mathrm{~mm}$, 33s.w.g. or 30a.w.g.). Although it is very thin diameter, it has heat resistant insulation which won't melt during soldering. A fine diameter soldering bit is essential on the iron, and fine gauge solder will help. Fine gauge wire strippers will be needed as well.

Notice that the six in-line holes at the

"top" of each switch, as shown in Fig.2, should be connected to 0 V . Similarly, the six in-line holes at the "bottom" of the switch are used to carry the IP signals to the 20 -way connector and 16 -way header.

You will soon develop your own wiring technique, but remember that the secret is to be really methodical and don't lose your place! The author found it best to strip the insulation from the end of the wire, insert the bared end into the relevant hole and then apply 1 mm or so of solder to fill the solder pad and make the connection. Then the wire was cut from the reel and the other end stripped and soldered.

A systematic technique evolved from this and the board was soon completed. Also remember to wire the +5 V and 0 V rails as per the drawing. To finish off with, a spray-on coating of p.c.b. lacquer on the solder side will protect the soldering from deterioration.

CHECK-IN

Hook the newly constructed switch input module to port $\$ F 011$ on the PhizzyB. Then the following test program should be run:

\# Start of program for Board 1 .org \$4000
 loop: Ida [\$F011] sta [\$F030] jmp [loop] .end \# End of program for Board 1

Enter it via your keyboard, then assemble and save it as boardltest.asm, after which load the resulting ,ram file into the PhizzyB.
When you run this routine (press the Run button on the PhizzyB) all eight "internal" l.e.d.s on the PhizzyB board at port address $\$$ F030 will light up. Whenever you press (and hold) one of the switches on

Fig.3(a). Basic circuit diagram of the 8-bit latch and (b) the pinouts of the associated i.c.s.

COMPONENIS

INTERRUPT MODULE

Resistors

R0 to R7 22k (8 off)
All $0.25 \mathrm{~W} 5 \%$ carbon film

Capacitors

C0 to C7 10 n polyester (8 off)

Semiconductors

IC1	74LS30 8-input
	NAND gate
IC2	Schmitt inverter
IC3	74LS574 or
	74HCT574 octal
	latch

Miscellaneous

S0 to 57 push-to-make switch, p.c.b. mounting (8 off)
20-way IDC box header (see text); 8pin p.c.b. header (2 off); half of PhizzyB I/O board (combined sections A and B); 14 -pin d.i.I. socket (2 off); 20 -pin di.I. socket; Kynar hook-up wire (see text); solder.

Approx. Cost Guidance Only
 $£ 15$

your newly assembled switch module, that corresponding l.e.d. will go out. Release the switch to restore the l.e.d. Test all eight switches this way. There is every chance that the system will work first time. Give yourself a well-deserved pat on the back!

INTERRUPT BOARD

The second board is considerably more challenging, and we recommend that you allow at least two hours to work through the circuit methodically. The use of nar-row-gauge wire-wrapping wire is necessary to accommodate the higher density of the interwiring.

The circuit diagram detailing the interconnection of logic chips used on this board is shown in Fig.3a, with the pinouts of the chips shown in Fig.3b. In Fig.4a, the logic of the switch interwiring to the chips is shown in a similar simplified fashion to that used in Fig. 1.

The status of any of the switches S 0 to S7 (are they on or off - high or low) is fed jointly to the 8 -input NAND gate IC1, and to the 8 -bit latch IC3.

Fig.4. Switch circuit diagram and board layout for the 8-bit interrupt latch.

Normally, all the switch outputs are held high by their respective resistors (R 0 to R7), and so the output of the NAND gate is low. If one or more of the switches is pressed, the NAND gate output goes high. IC2 inverts the output level from IC1, and the change in level can be used as an interrupt signal (IRQ) by other circuits, including PhizzyB itself.

The output from IC1 also controls the latch IC3. When the CLK pin 11 goes high the data on the other inputs (pins 2 to 9) is copied to the outputs (pins 19 to 12). When the CLK input goes low again, the data now within IC3 remains stored (latched) on the outputs until the next positive-going change on the CLK pin.

MORE ASSEMBLY

The layout of the components on the board is illustrated in Fig.4b. The assembly routine is the same as before, starting with the switches and surrounding discrete components, noting that this time the resistors should be mounted vertically (bend one wire around the shaft of a screwdriver). It is wise to use dual-in-line sockets to carry the three integrated circuits, which should be retained in their packaging until ready for insertion.

As with the previous board, provided that a completely methodical wiring approach is adopted, there is an excellent chance that the assembled board will work first time. As before, simply take your time

Underside wiring for the 8-bit interrupt latch.

Topside view of the 8-bit interrupt latch.

The 8-bit interrupt latch connected to PhizzyB.

The interrupt latch and l.e.d. output modules connected to PhizzyB.
and don't lose your place. (Lock the door at this point if you have to!)
Once again, the switch is used to bridge neighbouring copper strips in the printed circuit board, to produce strips of six holes. The "top" row of the switch's track is again wired to 0 V , as before. This time, though, use the "lower" row of holes under the switch to connect to the 16 -way header as well as one input of the NAND gate IC1.
The need to work on the underside of the board can be awfully confusing for beginners, especially with regard to the i.c. sockets, where some mental gymnastics with the pin numbers may be required!
Work through the entire circuit using point-to-point soldering as before. It is very easy to lose one's place when completing the interwiring, so use the same technique as previously, and ticking off each wire in the circuit diagram after it has been installed.

Continue with the 16 -pin header: the author soldered a length of bare wire along one set of headers to link them to the 0 V bus. Solder the 20-way IDC connector.
It can be tedious trying to double-check the wiring, but you should at least inspect the wiring for any obvious mistakes (dry joints, or wires touching each other). If you are happy that everything seems to be connected correctly (and before you insert the chips), then a practical approach involves simply switching on and see what happens!

If all is well, and after switching off, insert each chip into its corresponding socket.
Finally, a coating of spray-on p.c.b. lacquer will be of great benefit in protecting
the rather delicate wiring on the solder side.

INTERRUPT TESTING

In order to demonstrate how a computer program can respond to an externally generated Interrupt signal, the test routine for the Interrupt switch module uses the l.e.d. display board (constructed in Part 2) on PhizzyB output port $\$$ F031. The newlybuilt Interrupt switch board should be connected to the $\$$ F011 input port.
The following program is needed to test the board:

\# Start of program for Board 2 .org $\$ 4000$
 bldsp \$4FFF
 bldiv IRRUPT
 setim
 Ida $\$ 00$
 loop: sta [\$F031]
 inca
 jmp [loop]
 IRRUPT:
 pusha
 Ida [\$F011]
 sta [\$F030]
 popa
 rti

\# end of program for Board 2
Enter it via your keyboard, assemble and save it as board2test.asm, and load the resulting .ram file into the PhizzyB.

Now run the program. The program will display a binary count on the external 8-bit l.e.d. module connected to output port $\$$ F031. When you press a switch on the new

Interrupt board, this "latches" the values of all the switches into the 8 -bit latch IC3, and it simultaneously generates an interrupt signal at the output of IC2.
The interrupt routine IRRUPT loads the value from $\$$ F011, outputs it to the internal 8 -bit I.e.d. module at $\$ \mathrm{~F} 030$ on the main PhizzyB board, and then returns control to the body of the program, which resumes the binary count on the external l.e.d.s. The process happens instantaneously as far as the observer is concerned.
When the first switch is pressed, all of the l.e.d.s at $\$ \mathrm{~F} 030$ on the PhizzyB will light up except the l.e.d. corresponding to the switch you pressed. When you release the switch this pattern stays - and it will stay like that until you press another switch. By pressing the Interrupt switches in turn, starting with $\$ 7$, an l.e.d. will be seen to extinguish on the PhizzyB l.e.d. output port $\$$ F030, starting with the mostsignificant bit (the left-most).

If you have problems, test the simple things first. Check with a voltmeter that all three chips on the Interrupt board are powered with 5 V . Are the supplies to the busbars wired? Also look closely to see if any bare wires are accidentally touching each other. The author confesses to having omitted one wire (the clock feed) which, after connection, resulted in the board working exactly as described. The missing wire was easily detected because it had not been ticked off in the circuit diagram!

In the next instalment: we will describe the PhizzyBot, a simple motorised buggy which will respond to the computerised commands of the PhizzyB.

Buy your magazine on-line. EPE, the first magazine in the world to be available to buy from the web. $\$ 3.95$ per issue, $\$ 23.95$ for a year's subscription.

New Technology Update

 Ian Poole looks at the latest techinologies

 Ian Poole looks at the latest techinologies employed in radio frequency semiconductors employed in radio frequency semiconductors used in cellular phones

 used in cellular phones}

THE CELLULAR telephone industry has given an enormous impetus to the development of radio frequency semiconductors in recent years. Now a variety of new and improved devices are beginning to make their mark, many of which may not be familiar to those more used to digital or lower frequencies.

However, these devices are widely used in phones and base stations. In view of the enormous volumes being produced, they are not nearly as expensive as they were even a few years ago.

MESFETS

Today the MESFET can be considered as the workhorse for many r.f. applications. As well as being used for many discrete components, the technology also forms the basis of many of the monolithic microwave i.c.s that are used in the cel lular industry today.

The name MESFET stands for metal-semiconductor field effect transistor. Surprisingly, these devices were first reported as early as 1966 and the first ones demonstrated in 1967 when FET technology was in its comparative infancy

Fig.1. Construction of a MESFET device.

The devices feature gates formed by metal-semiconductor Schottky barrier junctions. The semiconductor material is normally gallium arsenide and the substrate is made to be semi-insulating to reduce parasitic capacitance. Above this is a very thin active layer that is often created using ion implantation, see Fig. 1.

Although this is probably the cheapest method of creating the channel, an epitaxially grown one is normally able to give a higher performance because the crystal structure is left more intact Typically, channel depth is only about $0.2 \mu \mathrm{~m}$ and doped to give an n-type material. The choice of material and n-type doping are made to give the maximum carrier mobility required to enable good high frequency performance.

The small dimensions for the channel are critical to the correct operation of the device, and therefore they have to be accurately controlled. The source and drain regions are normally fabricated using ion implantation.

The contacts for the source and drain are often made from gold-germanium alloys
for gallium arsenide devices. The gate contact can be made from a variety of materials including aluminium, platinum, or a complex titanium, platinum, gold layered structure.
Gate length is the key to many of the performance figures, and especially that of the high frequency limit. The standard MESFET processes produce gate lengths of around $0.5 \mu \mathrm{~m}$ and this relates to a top operating frequency of about 18 GHz . Where higher frequencies are required, a more refined process can produce a gate length of around $0.25 \mu \mathrm{~m}$ which enables operation up to frequencies around 25 GHz .
One of the main disadvantages of the depletion mode MESFET, the type that is most commonly used, is that it requires a negative voltage on the gate. Whilst this can be derived by placing a resistor in the drain/source circuit, this utilises valuable voltage and means that a separate negative supply is required.

PHEMT

To achieve improved performance, but at a cost, a device called a PHEMT (pseudomorphic high electron mobility transistor) can be used. In the past these devices were only associated with frequencies well into the microwave region. However, they have a number of advantages that have lead to the technology becoming somewhat cheaper and open to use in the cellular phone industry.
These devices possess a heterojunction, i.e. a junction in which not only does the doping change to give p-type and n type materials, but also the base material changes. Typically the two materials might be aluminium gallium arsenide (AlGaAs) and gallium arsenide (GaAs). The structure of a PHEMT device is shown in Fig. 2.
The key to the operation of the PHEMT lies in the heterojunction. At the junction of the two materials there is a very thin buffer region. This is typically only $30 \AA$ to $60 \AA$.

Here the carriers are spacially separated from those in the doped region. This results in the carriers in this region having an exceedingly high mobility, allowing very high levels of performance to be achieved.

However, this performance is at a cost. PHEMT technology requires costly GaAs epitaxial wafers and is one reason why these devices are not as cheap as other devices being targetted at this area of the market.
The higher frequency performance of the PHEMT gives it some advantages in operation, but the key one for cellular telephone use is the fact that it can operate at a lower supply voltage than its MESFET
counterpart. Typically these devices can operate down to 3 V against 4 V for MESFETs.

This is crucial in a market where portability is essential and battery life, size and weight are key factors in determining the success of a product. All of these are dependent upon the current drawn by the product.

Naturally, performance is not everything. Cost is a key driver in the decision about whether to use a device or not and fractions of a penny can lead to significant savings where large quantities are to be used.

In some manufacturing sites production is measured in integer millions. This means that even a penny saved on each unit can result in a cost saving of $£ 10,000$ per million units made.

To ensure that the PHEMT is viable to use it must produce the most cost effective design. Unfortunately there are comparatively few manufacturers, unlike MESFETs for which there are far more. Even then, some only manufacture for the more traditional microwave region.

Fig.2. Internal structure of a PHEMT.
However, with the technology for PHEMTs becoming cheaper, and the vast possibilities for sales of these devices into the cellular industry, more companies are entering the market.

HBT

Another device generating a large amount of interest is the HBT or heterojunction transistor. This is a modified bipolar transistor where the emitter and base utilise different materials.

This has the effect of allowing electrons and not holes to be injected into the base region. By utilising this factor in conjunction with careful design of the transistor itself to reduce transit times and minority carrier storage, the response of the transistor can be improved significantly over more traditional approaches.
Those devices that have been targetted at this area of the industry have a flat response to over 3 GHz . In addition to this the other advantage of the HBT is that it can run from a single supply rather than the dual supply normally employed for MESFETs and PHEMTs.

The final advantage of the HBT is that it is manufactured with a vertical structure. Because of the topology, it is found that vertical structures support a higher power density than lateral devices which include MESFETs and PHEMTs. This makes them ideal for power amplifier applications.

Whilst it may seem that the HBT has impressive credentials, it is not the ideal device it may appear at first sight. The high material cost of this device is a major set back in an industry that is fiercely price sensitive because of the highly competitive nature of the business. This alone will considerably reduce its usage.

To overcome this, manufacturers are looking carefully at the fabrication techniques used for the device. The tolerances are far less than those for more common
devices like MESFETs where an emitter width of only $2 \mu \mathrm{~m}$ is quite common.

It is also possible to fabricate more HBTs than MESFETs on a particular sized die. This should mean that it will be possible to reduce the cost of these devices considerably as processes are improved.

The other problem that has dogged the HBT is its reliability record. It is thought that this has mainly resulted from the manufacturing process. This is being addressed by the manufacturers of these devices and already a ten-fold improvement has been seen.

With further improvements a certainty, it should be possible to bring these devices into line with the requirements of the industry. Even then it may take a while for
the devices to be fully accepted as they will still have a reputation to change. Fortunately in an industry changing as fast as the cellular phone industry this should not be a major problem.

Golden Oldies

Whilst many look at the new and upcoming technologies, there is still a lot of life left in the more traditional devices. Ordinary bipolar junction transistor technology can still provide excellent performance at a low price. MOSFET technology can also give a good account of itself.

However, it is likely that in the coming years there will be a steady change from the more traditional technologies to the newer ones like MESFETs, PHEMTs and HBTs.

\section*{| $S G C O P$ |
| :---: | :---: | :---: |
| with David Barrington |}

Wireless Monitoring System

Under normal circumstances sourcing and locating parts for the Wireless Monitoring System could have been quite a nightmare, particularly regarding the use of surface mount devices to obtain such a compact design for the Transmitter. Thanks to the guidance of the author, James Humphris, in highlighting some of the "specials", the task has been eased quite considerably.

Starting with the Transmitter. The grey palm-sized plastic case came from the M-series stocked by Farnell (买 01132636311 or http://www.farnell.com), code 775-629. Next, the 2 -pin a.m. 418 MHz transmitter module type LQ-TX418A is stocked by Maplin, code NV08J. It is also possibly stocked by Radio-Tech (\% 01992 576107 , but not shown in their advert. Check both for prices.

The following surface and non-surface mount devices are all listed by Farnell or Maplin. Murata TZBX4 series trimmer capacitor; F-code 499-432 (min 10 off); M-code VI65V (blue). Siemens 15 nH SM inductor, F-code 200-566 (min 10 off); 3.6864 MHz crystal (surface mount), F-code 699-822; 4-way surface mount d.i.l. switch, F-code 693-730.

Due to the dangers associated with mercury, we prefer to recommend that readers use the non-toxic version of the tilt switch listed by Maplin, code DP50. This should cost just over $£ 1$

The Receiver should not cause anywhere near as much concern as the only surface mount device here is the 36864 MHz crystal. This is listed by Farnell, code 699-822.

However, the only source we have found for the extruded aluminium case is from the CCN range stocked by Maplin (http://www.maplin.co.uk), code YN50E (CCN80). Just in case you have trouble finding the MAX202 RS232 line driver chip, this can also be ordered from the above, code VQ46A

The Receiver module carries the model designation LJ-RX418AS and was also obtained from Maplin, code NV09K. Again, try Radio-Tech for alternative price

This only leaves us with the easy bit, the Trans/Rec PIC chips, software and printed circuit boards.

Those readers unable to program their own PICs can purchase ready-programmed PIC16C71s for the Transmitter and Receiver from Magenta Electronics (8) 01283565435 or http://www.magenta2000.co.uk) for the inclusive price of $£ 5.90$ each (overseas add $£ 1$ for p\&p). There are two versions of the Transmitter software; one for the Tilt sensor, and one for the Temperature sensor. Please indicate version(s) required when ordering pre-programmed transmitter PICs

Software for the Wireless Monitoring System is available on a 3.5 in . PC-compatible disk from the $E P E P C B$ Service, see page 140. There is a nominal admin charge of $£ 2.75$ each (UK), the actual software is Free. For overseas readers, the charge is $£ 3.35$ surface mail and $£ 4.35$ air mail. If you are an Internet user, it can be downloaded Free from our FTP site: ttp://ftp.epemag.wimborne.co.uk/pub/PICS/wireless.

The transmitter printed circuit boards are supplied as a pair, one for a.m. and one for the f.m. adaptor (next month), codes 219 and 219 a . The receiver boards are also supplied as a pair, again one for a.m. and one for the f.m. adaptor, codes 220 and 220a respectively. See the EPE PCB Service page 140 for price details.

PIC MIDI Sustain Pedal

Apart from a ready-programmed PIC, if you are not into "blowing your own", then the rest of the parts required to knock together the PIC MIDI Sustain Pedal should be shelf items.

The neat looking footpedal depicted in the article came from Maplin (http:Iwww.maplin.co.uk), code DU99H. It must be a simple push-to-make, release-to-break type and not one that toggles state each time it is operated. The MIDI lead also came from the same company, code YZ26D.

For those readers who do not have the facilities or time to program their own PIC chips, a pre-programmed PIC16C54-XTP microcontroller is available from Magenta Electronics (吕 01283 565435 or http://www.magenta2000.co.uk) for the all inclusive sum of $£ 5.90$ (overseas add $£ 1$ for $\mathrm{p} \& \mathrm{p}$). (We understand they will be supplying the 84 version.)
If you do intend to do your own programming, the software listing is available from the Editorial Offices on a 3.5 in . PC-compatible disk, see EPE PCB Service page 140. There is a nominal admin charge of $£ 2.75$ each (UK), the actual software is Free. For overseas readers the charge is £3.35 surface mail and £4.35 airmail. If you are an Internet user, it can be downloaded Free from our FTP site ftp://ftp.epemag.wimborne.co.uk/pub/PICS/MID|pedal.

PhizzyB - 8-bit Switch and Interrupt Modules

Although component sourcing should not be a problem, you will certainly need lots of patience when you transform this month's PhizzyB circuits into working projects.

Selection of the "keypad" switches is the most important factor to consider when putting parts together for the 8 -bit Switch and Interrupt circuits. These must be 4 -pin $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ p.c.b. mounting types, with each contact connected to two pins (parallel) for easy mounting. This arrangement is used to "bridge" tracks on the p.c.b

Be careful, some "tactile" switches seem OK but dimensions may vary slightly. The ones used in our modules were ordered from Farnell (\% 01132636311 or http://www.farnell.com), code 176-433. Switch caps if required, 262-419.

Kynar solid-core hook-up wire is used extensively in "wirewrapping" applications in industry and should be available from most of our component advertisers. A small reel should only set you back just over $£ 2$. The semiconductor devices should also be widely stocked.

Experience of purchasing the headers and multi-way cable should have been gained when sourcing previous parts. If you have not already purchased the 4 -section p.c.b. this is available from the EPE PCB Service, code 216 (see page 140).

Light Alarm

There is not a lot of room inside the case of the Light Alarm when all the components have been installed, so the selection of a "sub-miniature" type for the power on/off switch does make a difference. The threaded-fixing one in the model was purchased from Maplin, code FF77J. They also supplied the handheld case, with battery compartment and contacts, (code KC954D) and the 3 V to 24 V d.c. (5 mA at 12 V) low-profile, p.c.b. mounting buzzer, code KU58N.

If you ask for the light dependent resistor simply by quoting "one ORP12 please", most advertisers should recognise it and come up with the device or a suitable equivalent that will function in this circuit.

The small printed circuit board is available from the EPE PCB Service, code 218.

READOUT

WIN A DIGITAL MULTIMETER

The DMT-1010 is a $31 / 2$ digit pocketsized I.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors.

Every month we will give a DMT-1010 Digital Multimeter to the author of the best Readout letter.

John Becker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line!

- LETTER OF THE MONTH *

ARROWS

Dear EPE,
Having what I consider to be a strong "mechanical bent", I fell into the same hole that a lot of "rank amateurs" fall into when understanding arrows on semiconductor schematics (diodes and transistors) versus electron flow. Some have suggested changing the convention, but I feel there is a better way.
When teaching somebody new about current flow, never mention that years ago they got it wrong, it is not important in the beginning. Electrons flow from negative to positive, likepoles repel, and so on.

When it comes to understanding circuit theory and symbols, refer to the arrow as being a pointer to the cathode on a semiconductor in the same way a diode is banded at the cathode end. After that it falls into place faster. Don't mention the arrow as a flow indicator but rather as a pointer on a symbol and you don't get confusion.

My second point is about PLCs. I read with interest the discussions on them over the last few years and understand that they (as a subject) would not fit into your magazine format.

They are, however, one of the first hands-on contacts that fitters, plumbers and electricians have with electronic control systems and certainly were responsible for getting me involved in this rewarding and educating field (I don't miss stamp collecting).

Surely a solution would be to build one as a project using a PIC or similar. Say eight I/O with an I2C capability, relay-capable outputs and D-to-A facilities. Future add-on projects could be high speed counters, digital readout etc.

As well as being a great training aid and the next step in PIC multi-function applications. it would be ready to be put into burglar alarms. pulse counters and flow meters, level controllers, and so on.

A few screw terminals and it would be a useful module or building block, as well as filling the desire of some readers to understand modern PLC control systems.
Top mag, highly educational and I get a lot of pleasure from it every month

Carl S. Wilde. Acacia Ridge, Queensland, Australia

Certainly, I absolutely agree that historical references to currentlelectron flow are immaterial to understanding electronics. Personally, I don't care which way either flow, as long they do so somewhere and are predictable. My own early entry into electronics (many decades ago) was aided by simply thinking that in a circuit diagram "electricity/power" was required across the top and bottom, and that "signals" flowed from lefi to right.
The arron's, where they existed (the rectifier swmbol nas the only one I recall that used an arrow - the modern diode symbol), simply told me that a "one-was" street existed and that. as with traffic, "electricity" and "signals" must follow in the direction the arrows pointed. Concepts of "anode" and "cathode" were utterly alien to me for a long time - it was the arrow
that maltered. Indeed, the rectifier symbol used + and - notations where we now use " k " and " a " (cathode and anode).
There was (and still is), of course, the anomaly that some symbols use arrows that have nothing to do with electrical flow direction. They merely indicate that the value of the component is variable - as with potentiometers and tuning capacitors, for example.
I find it interesting to recall my understanding of the valves I played around with in the early '60s. My concept was of signals flowing left to right into the grid of the valve, up the tube and out the top and to the right again. There was no thought of anything flowing down through the tube, but there were no arrows on valves to indicate flow of anything.

Nowadays. we are given at least some guidance on flow of "something" by the arrows on diodes and transistors. Again it is the symbol that is important to the basic understanding rather than the names given to the various points of contact at the symbol. Names are only a convenience used to allow easier communication of common meaning between people. They don't necessarily affect the mental image of a situation when looking at a symbol. Indeed, it can be argued that symbols should never include names, the symbol itself containing all the information required to understand its meaning
Hence a symbol that includes wording for its meaning to be understood is, surety, a bad or inadequate symbol (it is accepted that some i.c.s are too complex for their function to be adequately symbolised). For instance, I hate the British Standards (BS) symbols for logic gates identical rectangles with additional "wording". within them ($1, \&, \geqslant 1$), to denote their function! lt must have been a commiltee of mathematicians that invented them rather than a team of working electronics engineers (you've heard the rumour that the camel is a horse invented by committee, haven't you?). Does anyone know the origin of the BS symbols?
The American (MIL/ANSI) system of logic gate symbols (as used in EPE) is far more informative of meaning at a glance. We have the same attitude towards resistor symbols - zigzags rather than rectangles (even though rectangles are simpler to draw on a CAD package).
Mind you, one could take this argument to extremes and propose that we should all use Chinese for written communication - symbols that originate in the portraval of individual concepts rather than using (as most other languages (lo) groupings of symbols (alphamumerics) that represent the spoken interpretation of concepts - a double translation in effect. However, memorising all the symbols must be a problem (although the Chinese obviously manage it). and what about typewriter/computer keyboards? A major difficulty! (Views from readers of oriental origin invited!)
On your other point, PLC's (programmable logic controllers), we still feel that instruction in these is beyond our "charter'. However, again views are inviled.

BT ON-LINE - HOW?

Dear EPE,

At an average cost per month of $£ 10$ to get on-line, my Scottish Ancestry baulked and my Old Age Pension went into decline, so I was surprised when included with my telephone bill (7 Sept) were brief details of BT Click.
I telephoned the freefone number but the young lady didn't know what this was and suggested I ring back in about a fortnight (?). Which I did. The second young lady didn't know anything either. The comment about the freefone number fell on stony ground.
I gave it a couple of days and phoned again. The third young lady was a bit more helpful and took all my details and said someone would call back. Thirteen days later I was phoned back and the caller spent almost ten minutes trying to answer my simple questions like "Will it run on Windows 3.11?" and "How much will it cost?"'. He promised to send CD-ROM or a Floppy Disk - he didn't know which.

Nothing had arrived by 26 Oct so 1 wrote to London BT HQ which brought not even an acknowledgment. Then I saw Sunday Times quarter page advert with a different freefone number. Telephoned Monday morning. The man said I had got the wrong number.
I shouldn't have said all those things about incompetence etc. etc, but the line went dead. Then a brief ringing tone and I then spoke more or less rationally to another young man who said it needed 16 MB of RAM (which it doesn't), but said he would send a CD-ROM.
Two months after my first enquiry (at 75 you're not sure how many more months there are still to enjoy) the CD-ROM arrived. Made all the connections, wires trailing across the floors, and opened up the disk. A little window appeared with the message "This programme needs a '486' or Pentium'

I've only just upgraded to 386, for goodness sake. I'm afraid the doubtful delights of the In ternet and digital highway are not for me.

Peter McBeath,
Morpeth, Northumberland
This reminds me of the sort of corporate competence on which our renowned columnist Barry Fox so often commems! Ironically, we are all so used to receiving (and probably furning down) all-foo-frequent tele-sales offers for double-glazing. kitchens and so on. we probably assume that tele-marketing is an effective way of doing business.
Naturally, then. when it is we who actually want to initiate a tele-purchase, we expect io achiere what we want without difficulty. How frustrating that. in this instance. it's the line operators themselve's who effectively furned you down through apparently not knowing their own product.

AIR THEM!

Whatever your views on electronics and allied subjects, air them in public, either through
Readout or our Chat Zone via www.epemag.wimborne.co.uk

BOARDER LINE

Dear EPE,

What are the minimum recommended track widths and separations to use when designing p.c.b.s, with relation to voltage and current?

Also, what are the recommended u.v. exposure times for photo-sensitive boards (I exposed two $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ single-sided boards separately for four minutes. One board etched OK but the other had about 1 cm of copper left on either side.

Are there any books you can recommend on these subjects?

Stuart Pearson, via the Net

Our On-line Editor, Alan, received these queries and replied direct to Stuart as follows (I'll add a few words in a moment):

Assuming loz (about 35 microns I think) copper and assuming $15^{\circ} \mathrm{C}$ above ambient is acceptable and the board won't burst into flames (!), then a track width of 8 mm relates to 30 amps absolute maximum. You can reduce the track width pro-rata from this, and guesstimate/adjust for heavier gauge copper foils.

The recommended track separation with relation to voltage is:
Up to $50 \mathrm{~V} \quad 0.5 \mathrm{~mm}$
51 V to $100 \mathrm{~V} \quad 0.7 \mathrm{~mm}$
101 V to $170 \mathrm{~V} \quad 1.0 \mathrm{~mm}$

251 V to $500 \mathrm{~V} \quad 3.0 \mathrm{~mm}$
Over 500 V - dodgy!
Exposure time depends a lot on different brands of u.v. etch-resist lacquer. I usually go for 15 to 20 minutes for pre-coated boards. Seldom have I found over-exposure to cause damage unless the board has very fine tracks. As I expect you know, it is impossible to re-expose for a further period. so I tend to be generous with the u.v. time.
You need to do some dummy test strips to see how the boards react to different exposures, because it also depends on how "fresh" your u.v. tubes are, how close they are to the copper, etc.
If you spray on the lacquer yourself by aerosol. it's very much harder to get consistent results in the u.v. stage. This is because the coating is not uniform thickness. I buy pre-coated boards for this reason.
Book-wisc, there's a bit of info (but not much) in the Art of Electronics (Horowitz and Hill). It should be good enough to get you off the ground (as it were).
You might also care to read my series of Build Your Own Projects (Nov '96 to Mar `97) - it includes a lot about making p.c.b.s and project assembly. (See our Back Issues page.)

Alan Winstanley
And. of course, Robert Penfold's book How to Design and Make Your Own P.C.B.s is also a worthy source of info (BPI2I, available through our Direct Book Service).
Alan's experience with exposure is interesting! Having had many vears professional p.c.h manufacturing experience, my own is somewhat different. I still use the u.v. equipment I bought over 20 vears ago and (amazingly) it still has the same u.v. ubes that it came with. They appear to be just as brilliant as they were then since exposure times are still around the same period for given materials. The u.v. unit's exposure area measures about 21 inches by 12 inches $63 \mathrm{~cm} \times$ 30 cm) and has six 15 wall tubes, at a distance (estimataed) of about 2 inches (5 cm) below the image glass. The unit has a foam-padded ctipdown lid to ensure adequate pressure between the board and its image master.

These days I huy my photo-resist boards from three sources. Mega Electronics of Soffron Walden. RS Components and Farnell Components (depending on what I else I need to order). Mega. by the way, specialise in printed circuil making equipment and materials, with a strong emphasis on supplying to educational establishments.

Typically. Mega and RS materials require an exposure time of two and half minutes with celluloid (photograph film) images created via a
plate camera. Images on translucent drafting film using a 24-pin dot matrix printer and a computer require about four minutes 15 seconds. Farnell's materials used with the same image types are typically just under twice as long.

Development is in a solution made from pure caustic soda crystals (bought from a chemist as I00 per cent pure) diluted 25 gms to one litre of water. Ideally. I prefer the temperature to be at the "photographic room-temperature" of $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$, at which the development time is two minutes.
It is important in the development process that the solution is agitated by gently rocking it backwards and forwards in the tray. Don't be too vigorous. though. As you do so, the unrequired etch-resist will be seen to float way from the board. At the end of the two minutes, the copper should be nice and clear in the non-track regions, leaving a good clean-edged image (usually darkblue) of the tracks themselves.
Now wash the board in luke-warm water to remove the caustic soda solution. It's recommended that you should use rubber household gloves while handling the caustic soda-although I don't bother just for the few seconds my hands are in contact with it, giving them a thorough wash in running water after completion (some people might be umusually sensitive, however).

The board can then be etched in the usual way (for this l do use gloves - usually - of the heavy-duty nearly elbow-length type). Avoid contact with the track image until after etching is complete. The etch-resist, although fairly hard, can be damaged if rubbed, the effect of which may not be apparent until after etching, when overetched (and possibly absent) tracks might be seen!

An important point to note is that the caustic soda solution should not be too weak, which will result in an unclean image - tracks surrounded by speckled areas where the developing is incomplete. A similar effect can occur if the exposure time is too short.

In fact, provided the solution is mixed up to the recommended strength, this should not normally become a problem for a long time. I make two litres a time and, as a calculated guess, probably develop around two square metres of board a year. Following development, I return the solution to its bottle, which is made of dark-brown glass. It is stored (well-stoppered and well-labelled!) in a cuphoard in the workroom, and there's probably a year to 18 months between renewals. The usual sign that it's reaching exhaustion is when development times begin to extend to three minutes at $20^{\circ} \mathrm{C}$. This is normalty preceded by sediment appearing at the bottom of the bottle.

Contrary to Alan's experience, I do find that over-exposing the image in the $u v$. unit is problematic. However dense the image, and however good the contact is between the board and the translucent/transparent master, the u.v. light tends to seep in around the edge of the track images. Normally (correct exposure time) this is not apparent on the final result. However, if exposure is too long the effect becomes noticeable as imprecise edges to the tracks. In extreme cases, thin tracks those between i.c. pads. for example typically 10 to 15 thout) can cease to exist. It is essential, of course, that you ensure the image and board are in perfect contact. and remain well sandwiched together throughoul the exposure period

Readers having less-powerfitl u.v. units will find that their exposure times will be longer than mine, and it could be that an apparent tolerance to overexposure does exist - although the ratio of tolerance inay sill be abou the same relative to the optimum exposure period.

1 re-iterale Alan's alvice about doing tests for optimum u.v. exposure times. This should be done for each new batch of photo-sensitised bourd, from whatever source. All you need to do is use a few small cur-o)fs, cexposing them and a selected area of the image required for different periods and developing each after exposure. Timings to within the nearest 15 seconds are normally satisfactory.

Erposure tests should also be done if you
change the material on which the master image is printed, i.e. from one batch of drafting film to another. It should also be done if you suspect that the density of the master image itself is different to normal (a printer ribbon getting a bit thin, perhaps - I keep one ribbon solely for p.c.b. image making).
It is also worth noting that photo-sensitised boards have a shelf-life (use before date). I have variously found this to be quoted between six months and a year from date of purchase.
Incidentally, I have heard of people suspending u.v. bulbs over the imagelp.c.b.glass sandwich. I dread to think about what inconsistencies this must generate. For a start, it is believed that many so-called u.v. bulbs are little more than ordinary tungsten bulbs with a u.v. filter coating and so the exposure times must be horrendously long. Further more, the evenness of illumination must be nearly non-existent, being brighter at the centre of the illumination, falling off rapidly at the edges, a situation aggravated by the closeness at which the bulbs are to the sandwich. Such bulbs should be confined to discos!
Like Alan, I would not even consider precoating boards myself - instinctively feeling that I could never achieve consistency with them. Would any readers care to offer comments on their experience with this method?
Finally, remember that there are three key words when it comes to good p.c.b, imaging Time, Temperature and Ingredients. Relate them consistently and you too will achieve good results (my wife says this is also the requirement for cooking, so why can't her husband cook?)!

SLASHED PIC SITE

Dear EPE.

I have just noticed that in my letter published in Readoul of Aug '98, my web site mentioned is incorrectly printed - a dot has been printed instead of slash. The correct address is http://members.aol.com/LearnPIC,

John Morton, via the Net
Sorry John! Readers, John has set up his site for PIC users, especially beginners. It was originally set up to supplement his book PIC Beginners Guide published in May '98 by But-terworth-Heinemann, although it is completely general in scope and does not rely in any way on knowledge of the book

HIGH LANGUAGE

Dear EPE,
I note with interest the letter (Dec '98) regarding the use of higher level languages for programmes used in computer type projects. It would be nice to see some projects using C , for example. However, there may be difficulties.

The standard C compilers, such as Borland C V5 and Microsoft Visual C. do not allow I/O ports to be accessed directly as in the older Turbo C and MS C V5.0. They have been designed for the 32-bit operating systems of Win 98 and NT and as such you cannot specify an actual I/O port as an address.

The means of accessing I/O ports is via Windows programming techniques and treating ports as files. The programmes would be very complicated for many non-professionals and I feel would be beyond the scope of your magazine.
The depth of coverage you provide is excellent and I would not like to see the content diluted for the sake of fashion in the IT world

Ken Brown, Ireland, via the Net
Thanks. useful comments - but alarming. Whilst I have not used a '98 inachine I do write in machine code for the 95 , accessing ports directly through register addresses. Am I to understand that '98 doe's not allow this? That woutd make' many of my programs unworkable in a machine having '98 installed. which would be a great shame since most will run on any machine from an 8086 upwords to a Pentum (with '95 installed).
More feedlack on this requested, please!

CIRCUIT sURGERY

 ALAN WINGTANLEY
Abstract

This month our electronic agony uncle, armed with Dremel in hand, dissects an electret microphone capsule to see what makes it tick. We also follow up on relay contact ratings and make a heartfelt plea on behalf of a Singapore reader in need of some non-corrosive etchant!

Electret "Mics."

My thanks and greetings to regular reader Mike Howell of Westville, South Africa who writes:

Firstly, congralulations on your excellent Circuit Surgery columns - my only complaint is that EPE can't give you more space!

Can you help with a question on the correct use of electret microphones? An old constructional project called the Acoustic Probe by Andv Flind (EE Nov 1987) is a personal favourite, but having searched through my Back Issues all the way back to 1977. I can't seem to find any information on electrets.

The Acoustic Probe used a crystal microphone in its design which I hope to substitute the microphone for an electret type. It was so good that I made up a second board, this time using a fibreglass parabola for listening to bird and animal noises out here in the Bush! (The acoustic probe is also invaluable when looking for lost cats!)

PS - In circuit diagrams, what on earth is meant by $V_{c c}, V_{d d}, V_{x x}$ etc.?

The Acoustic Probe is one of those memorable constructional projects which lives on and on, and I'm pleased to say that it is still available today in kit form from Magenta Electronics (www.magenta2000.co.uk). The project is a form of electronic stethoscope which can be used to listen to ticking watches, or diagnose engine faults. (Readers, please note that we cannot supply Back Issues dating back so far but Magenta do include a reprint of all the constructional details with each kit.)

Andy is well known to regular readers for producing some fascinating designs, including our Mind Machines and TENS Units. The Acoustic Probe design used a crystal microphone insert which was hooked to a junction f.e.t.. see the circuit extract in Fig. 1.

The microphone was actually incorporated into a special probe assembly which could be touched onto the object to be monitored (e.g. near the crankshaft of an engine block, or onto the bearings of a motor) and an amplifier then reproduced the audio signal over a pair of headphones.
A crystal microphone is a high impedance sound transducer which generates a tiny electric signal in response to the sound waves that impinge on the crystal insert. This is as a result of the piezoelectric effect (many say pee-ay-tzo, others, including myself, say peet-zo-electric.) The piezoelectric effect is used in some cigarette or barbecue lighters in which a tiny crystal is struck and the resulting electrical impulse is used to create a spark.
Since the crystal has a very high impedance - several megohms - then it is necessary to ensure that the impedance of the following stage is high enough so it will not load the signal. In this design the circuit used a 2 N 3819 junction f.e.t. as the first stage to match the input impedance.
In the circuit extract of Fig. 1, the f.e.t. (field effect transistor) TRI is biased as a source follower which tracks the signal on its gate (g) terminal. The resulting a.c. signal is fed to an i.c. amplifier which drives the headphones. The main point is that the crystal microphone generates a signal itself and requires no biasing.

Fig. 1. Crystal amplifier circuit of the Acoustic Probe.

Micro Surgery

As for how an electret microphone works, well it did not take too long to find out by applying a little "circuit surgery'", which involved slicing one open with a Dremel

Some readers will know that the electret is also known as an electret "condenser" microphone. Younger readers won't be aware that condenser is actually the old-fashioned word for capacitor, which yields a clue as to the operation of an electret capsule.
The result of examining the internal components of a typical electret condenser microphone insert is shown in Fig.2. I sacrificed a type EU6 electret microphone ordered from ElectroValue Ltd.

A little bit of reverse engineering on the resulting debris revealed that there were two electronic components inside. Firstly a transistor which was marked only as "K596" - I couldn't find this in my data library but some detective work on the Internet (on the Motorola web site: http://mot2.mot-sps.com/ppd/html/ smsignalxref.html) indicates this is probably a KSK596, for which Motorola suggest a 2 N 5484 as an alternative

A further check on the National Semiconductor web site (www.natsemi.com) on this latter number gave a general description of an " n-channel r.f. amplifier designed primarily for electronic switching applications such as low on-resistance analogue switching" - which instantly identifies the device as a MOSFET transistor (as I would expect).

The electret microphone also incorporated a single one-eighth watt discrete resistor, which didn't quite withstand the onslaught of my Dremel. It is soldered onto the tiny p.c.b. which forms the underside solder contacts of the microphone. So where is this "capacitor" in this condenser microphone - where does the audio signal come from?

Mind the Gap

The answer is soon revealed by separating the microphone into its individual parts, see Fig.2. A wafer-thin metal disc forms a diaphragm which vibrates when struck by sound waves. A plastic ring underneath acts as a separator and an insulator. Underneath that insulator is a second steel disc which is tack-welded directly to the gate terminal wire of the MOSFET transistor.
A gap is therefore created in the centre of the plastic ring: in other words, an airspaced capacitor is formed. So the encapsulated air acts as the capacitor dielectric and the two metal discs act as capacitor "plates". Mystery solved, Mike!
Sound waves enter the module through a hole on top of the capsule, which means the microphone is omni-directional in nature - its sound response does not depend on the direction in which it is pointed. (A unidirectional microphone is more sensitive to sound in one direction.) The sound pressure waves cause the metal diaphragm to compress the airspace underneath, creating a variation in the tiny capacitance (a few picofarads I would guess) which is relative to the sound pressure and frequency.

Fig.2. Exploded view of an electret "condenser" microphone. (A plastic internal moulding is not shown.)

This "capacitor"' has an extremely high impedance or capacitive reactance, hence the need for a built-in MOSFET transistor immediately behind the resonating chamber to act as a buffer. The internal resistor biases the transistor.

Finally, the whole assembly is crimped into an aluminium can. I noted that there are 2-pin and 3-pin microphones available, but the only real difference is the screening arrangement for the capsule.

One difference between the electret and a crystal microphone is, of course, that the electret's built-in MOSFET requires an external supply voltage. Typically a 1.5 V cell can be used but roughly 5 V is suggested along with a resistor.

Fig.3. Circuit for a simple microphone stage using an electret condenser capsule.

We are not talking hifi and there is no rocket-science involved here. You could try a configuration such as that shown in Fig. 3. You will need to experiment, but don't be afraid of the device - there is very little to them as you can see!

Textbook Voltage

To answer your second question on the subject of voltage designations used in diagrams and data sheets; historically the terminology $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BB}}$ etc. relates to the biasing arrangements of bipolar transistors. They are terms which are taken for granted and I can understand the puzzlement: textbooks often introduce expressions such as " $+V_{C C}$ " out of nowhere.

A voltage V_{CC} is that which biases the collector(s) of a transistor circuit, and $V_{E E}$ biases the emitter(s). $V_{B B}$ would be the base bias voltage. The term " $+\mathrm{V}_{\mathrm{CC}}$ " has fallen into common use to denote the positive supply rail in a bipolar transistor circuit, and V_{EE} the 0 V or negative rail
The same nomenclature can be used to designate the voltages between two terminals of a transistor. You will see these used a lot in manufacturer's transistor data sheets or in catalogues. Look especially for:
$\mathrm{V}_{\mathrm{CEO}}$ - the maximum permissible collector-emitter voltage with the base "open"
$\mathrm{V}_{\mathrm{CBO}}$ - the maximum voltage allowed between collector and base
$V_{\text {EBO }}$ - the maximum emitter-base voltage.

As examples, the BC548 is rated at $V_{\text {CEO }} 30 \mathrm{~V}$. $\mathrm{V}_{\text {CbO }} 30 \mathrm{~V}$ and $\mathrm{V}_{\text {Ebo }} 5 \mathrm{~V}$ Notice that the $\mathrm{V}_{\text {EBO }}$ specification is often very low in comparison - usually just a few volts - and is one to keep an eye on when designing circuits.
The same kind of designation is used in the field of digital integrated circuits.
V_{DD} and V_{SS} describe MOS digital circuit supply voltages. In fact engineers use the terms with reference to the individual transistors within the chip.

For example, in last month's issue I described the internal circuitry of a typical 4017 Johnson Counter chip. Obviously, I didn't resolve right down to the individual transistors fabricated in the die.

Since MOSFET transistors are used internally, the 4017 pinout data shows V_{DD} and V_{SS} for the power supplies pins this time they relate to the drain voltages ($+\mathrm{V}_{\mathrm{DD}}$, the positive supply rail) and the MOSFET source voltages (V_{SS} or 0 V rail) for the "transistor" circuit within. I hope this clears up any confusion.

Relays - More Contacts

In the December 98 issue I gave a comprehensive low-down on the meaning of relay specifications. I'm grateful to John Rastall who followed up on my piece about relay contact ratings:

You wrote that you weren't too sure why minimum switching current was sometimes specified, though you guessed it was about overcoming contact resistance. Well, you're right - almost!

Most good relay contacts are silverplated to improve their performance. Higher-spec. relays have gold-plated contacts instead. However, silver does oxidise, albeit slowly, so they tarnish over time. This acts as an insulator and introduces a resistance.

A relay producer has two ways of overcoming this - either design the moving contact so it wipes across the surface of the fixed contact with every operation (thereby self-cleaning the contacts - but only with regular use) or, ensure that the current broken by the contacts when they open is large enough to generate a small arc. This will burn off any deposits. Hence the minimurn switching capacity you see in some catalogues.

Thanks for sending the extra information, John.

PCB Facilities in Singapore

I receive E-mail from all over the world and the following item comes from Nelson $N g$ in Singapore, who writes with a heartfelt plea:

I have been an electronics hobbvist for over two vears. however, I have been unable to find any etching solutions for the development of printed circuit boards here in Singapore. The main reason is that. because of high population densities, Singapore has a considerable number of high-rise flats, and drainage is through copper piping

Many vears ago, when Ferric Chloride was freely arailable, some hobbyists lended to abuse it by pouring the used solution down the drains . . . vou can guess the rest. Under the Corrosive Substance Act the sale of this compound was banned to individuals, and factories must be licenced to purchase it.

Therefore, the only way to develop printed circuit boards is to use commercial developers and pay quite a price for it, so we hobbyists are restricted to stripboard (Veroboard, tripad, wire-nrapping. point-
to-point soldering and so on). Is there any way to develop low-volume, say one or two, printed circuit boards at a time? Moreover, is there an alternative to Ferric Chloride which could be legally available.

What a fascinating insight into the problems faced by our international readership. On the topic of p.c.b. production, I often recount the story told by the late Alan Sproxton of Home Radio (Components), a former Surrey-based distributor who used to write for Everyday Electronics many years ago.

In mixing some Ferric Chloride solution, he once wrote, he tipped a whole jar of Ferric Chloride compound into a shallow tray full of water. The heat generated by the exothermic reaction caused the compound to melt a hole in the tray, which was made of plastic ... (However he was correct to add the compound to the water. and not the other way round.)

Etchants can be extremely unpleasant to use and must always be treated with respect. The subject of the disposal of used etchant is an equally difficult one to handle responsibly.

In the Bag

Unfortunately, corrosive agents are a necessary part of p.c.b. production. For hobby use I always recommend the Seno GS Etch-in-a-Bag system which is available from several advertisers.

This uses a (nearly) scaled system whereby the etchant is retained in a heavy-gauge polythene bag and is released over the board using a simple system of removable seals. When the etchant is
exhausted, a neutraliser powder (supplied) can be added and the whole lot thrown in the domestic refuse. I find it is the best product for etching boards at home.

If Ferric Chloride has been banned in your country, one alternative etchant is sodium persulphate, e.g. as produced for "Press'n'Peel" (Maplin MC49D). The product is designed to address the special problems of the electronics industry, including uniformity of etching and lack of staining (it says here). It is classified as an oxidising agent. Check your local regulations to see if such a compound would be permissible.

Buy the Net

It is possible to produce printed circuit boards "by Internet"" - i.e. by E-mailing the design files to manufacturers, they will turn them round and send back the finished thing. (A gentleman can buy a made-to-measure suit the same way: a tailor in Yorkshire, UK modems the measurements through to the maker in Belgium and the suit is then delivered from mainland Europe by air freight!)

Elizabeth Nolan of Beta Layout in Ireland (www.pcb-pool.com) offered to help you with one-off printed circuit boards. They operate on a prototype p.c.b. "pooling" principle where set-up costs are amortised amongst a number of designers. thus bringing down the traditionally high tooling, set-up, and film costs which would otherwisc be charged for a one-off prototype.

This is an excellent way of reducing start-up costs but unfortunately the typical figures 1 received won't appeal
to the hobbyist: a prototype p.c.b. from scratch (e.g. a standard Eurocard $160 \mathrm{~mm} \times 100 \mathrm{~mm}$) weighed in at roughly $£ 49$, although that did include all origination and set-up costs. Mr. Ng commented that such a cost is approximately 10 per cent of an average monthly salary in Singapore!

Commercial users might bear this system in mind though, check for more details from Beta Layout's web site. Meantime if any readers anywhere can produce a solution to this thorny problem I will gladly pass ideas on.

CIRCUIT THERAPY

Circuit Surgery is your column. If you have any queries or comments, please write to. Alan Winstanley, Circuit Surgery, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset. BH21 1PF, United Kingdom. E-mail alan@epemag.demon.co.uk. Please indicate if your query is not for publication. A personal reply cannot always be guaranteed but we will try to publish representative answers
in this column.

ENTER THE CHAT ZONE

The EPE Chat Zone on our web site is now open as a way for readers to exchange information, views, hints and tips in virtually real time.
http://www.epemag.wimborne.co.uk wwwboard

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STIWART OF READING THERES ALWAYS SCOPE FOR IMPROVEMENT!

EPE BOOKS

ELECTRONICS TEACH-IN 88/89
INTRODUCING MICROPROCESSORS
Mike Tooley B.A. (published by Everyday Practical
Electronics)
Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in introductory you need to know including fuil details on registering for assessment, etc
Sections cover Microcomputer Systems, Microprocessors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data Pages covering popular microprocessors
And excellent introduction to the subject even for those who do not wish to take the City and Guilds assessment.
80 pages
IOrder code ilfig89
TEACH-IN No. 7. plus FREE SOFTWARE
ANALOGUE AND DIGITAL ELECTRONICS COURSE
(published by Everyday Practical Electronics) Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE This highly acclaimed EPE Teach-in series, which included the construction and use of the Mini Lab and Micro Lab test and development units, has been put together in book form. Additionally, EPT Educational Software have developed a GCSE Electronics Software program to compliment the course and a FREE DISK covering the first two parts of the course is included with the book.
An interesting and thorough tutorial series aimed speciTicaly at the novice or complete beginner in electronics. GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles.
If you are taking electronics or technology at school or college, this book is for you. If you just want to learn the basics of electronics or technology you must make sure you see it. Teach-/n No. 7 will be invaluable if you are considering a career in electronics or even if you are already training in one. The Mini Lab and demonstration and development circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab microprocessor add-on system will appeal to higher level students and those develop-
ing microprocessor projects.
160 pages
Order code Ti7
O3.95

ELECTRONIC PROJECTS BOOK 1
(published by Everyday Practical Electronics in association with Magenta Electronics) Contains twenty projects from previous issues of $E E$ are: Seashell Sea Synthesizer sF. Treasure projects Minı Strobe Digital Capacitance ME Treasure Hunter, Sound to Light, BBC 16K sideways RAM. Simple Shor Wave Radio, Insulation Tester, Stepper Motor Interface Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm, EE Equaliser, Ioniser. Bat Detector, Acoustic Probe, Mainstester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light, Musical Doorbel Function Generator, Tilt Alarm, 10W Audio Amplifier, EE interface, Variable Bench Power Supply, Pet Scarer $\begin{array}{lll}\text { Audio Signal Generator. } \\ 128 \text { pages Order codeEP1 } & \mathbf{E 2 . 4 5}\end{array}$

PROJECT CONSTRUCTION

PRACTICAL REMOTE CONTROL PROJECTS
Owen Bishop
Provides a wealth of circuits and circuit modules for use in remote control systems of all kinds; ultrasonic, infrared, optical fibre, cable and radio. There are instructions for building fourteen novel and practical remote control projects. But this is not all, as each of these projects provides a model for bullding dozens of other related circuits by simply modifying parts of the design slightl
suit your own requirements. This book tells you how. suit your own requirements. This book tells you how. remote control system, the use of a microcontroller in remote control, as exemplified by the BASIC Stamp, and the application of ready-made type-approved 418 MHz radio transmitter and receiver modules to remote control 160 pages

Order code BP413
$£ 5.99$

RACTICAL ELECTRONIC MODEL RAILWAY

PROJECTS

The aim of this book is to provide the model railway enthusiast with a number of useful but reasonably simple projects that are easily constructed from readily available components. Stripboard layouts and wiring diagrams are provided for each project The projects covered include: constant voltage controller; pulsed controller; pushbutton puised controner; pulsed controller with simulated inertia, sound effect two-tone horn sound effect; automatic two tone horn effect; automatic chuffer
The final chapter covers the increasingly popular subject of using a computer to control a model railway layout. including circuits for computer-based controllers and signalling systems.

Order code BPS84
f4.99

A PRACTICAL INTRODUCTION TO SURFACE
 MOUNT DEVICES

Bill Mooney
This book takes you from the simplest possible starting point to a high level of competence in handworking with lechnology is also introduced, so giving a feeling for its depth and fascination
Subjects such as p.c.b. design, chip control, soldering echniques and specialist tools for SM are fully explained and developed as the book progress
Whilst the book is mainly intended as an introduction, it
is also an invaluable reference book, and the browser
should find it engrossing.
120 pages
Order code BP411

FAULT-FINDING ELECTRONIC PROJECTS

A. A. Penfold

Starting with mechanical faults such as dry joints short-circuits etc, coverage includes linear circuits, using a meter to make volage checks, signat tracing lechniques and fault finding on logic circuits. The final chapter cover ways of testing a wide range of electronic components Such as resistors, capacitors, operational amplifiers diodes, transistors, SCRs and triac The construction and use of
Signal Tracer, a Logic Probe a Tristate Contınuity Tester a Signal Tracer, a Logic Probe and a CMOS Tester are also 136 pages Order code BP3S1 E4.99

TEST EQUIPMENT CONSTRUCTION
 R. A. Penfold

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces o test equipment. Stripboard layouts are provided for propriate, plus notes on construction and use.
The following designs are included.
AF Generator, Capacitance Meter, Test Bench Amplifier AF Frequency Meter, Audio Mullivoltmeter, Analogue Probe, High Resistance Voltmeter, CMOS Probe, Transis tor Tester, TLL Probe.
The designs are suitable for both newcomers and more experienced hobbyists
104 pages \quad Order code BP248 3.99
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S
R. A. Penfold

Deals with the simple methods of copying printed circuir all aspects of simple p.c.b construction including covers graphic methods and designing your own p.c.b.s torcer cadBP121 E3.99
AUDIO AMPLIFIER CONSTRUCTION
R. A. Penfold

The purpose of this book is to provide the reader with a wide range of preamplifier and power amplifier designs that will, it is hoped, cover most normal requirements. and RIAA types a circuits include low noise microphone preamplifier and a tape head preamplifier, a guitar amplifier designs rangious tone controls. The power to 100 W MOSFET types and also include a 12 volt bridge amplifier capable of giving up to 18 W output.

All the circuits are relatively easy to construct using the p.c.b. or stripboard designs given. Where necessary any setting-up or test gear is required in order to successfully complete the project 100 pages

Temporarily out of print

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.

FOR A FURTHER SELECTION
OF BOOKS SEE THE NEXT TWO ISSUES OF EPE.

Note our UK postage costs just $£ 1.50$ no matter how many books you order!

RADIO / TV VIDEO

ELECTRONIC PROJECTS FOR VIDEO
ENTHUSIASTS
R. A. Penfold

This book provides a number of practical designs for video accessories that will help you get the best results from your camcorder and VCR. All the projects use inexpensive components that are readily available, and provided, including stripboard layouts and wiring diagrams. Where appropriate, simple setting up procedures are described in detail; no test equipment is needed.
The projects covered in this book include: Four channel audio mixer, Four channel stereo mıxer, Dynamic noise limiter (DNL), Automatic audio fader, Video faders, Video $\begin{array}{ll}\text { wipers, video crispener, Mains power supply unit. } \\ 109 \text { pages } & \text { Order code gogst }\end{array}$
SETTING UP AN AMATEUR RADIO STATION
The aim of this book is to give guidance on the decisions which have to be made when setting up any amateur radio or short wave listening station. Often the experience which is needed is learned by one's mistakes, however, this can be expensive. To help overcome this, guidance is given on many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting icence.
Topics covered include: The equipment that is heeded; Setting up the shack; Which aerials to use, Methods of construction; Preparing for the licence
their first steps in amateur radio.
Order code Brkorl
86.95

EXPERIMENTAL ANTENNA TOPICS

H. C. Wright

Although nearly a century has passed since Marconi's first demonstration or radio communication, there is still reearch and experiment to be carried out in the field of antenna design and behaviour
The aim of the experimenter will be to make a with relatively fragile, short-life apparatus. Because of this devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc. These materials are, in general, cheap to obtain and easily worked with simple tools, encouraging the trial-and-error philosophy which leads to innovation and discovery.
Although primarily a practical book with text closely supported by siraightforward substitution and some simple sed by siraightiorward substitution and some simple 72 pages \quad Order code Broz8 $\mathbf{E 3 . 5 0}$ 25 SIMPLE INDOOR AND WINDOW AERIALS
E. M. Noll

Many people live in flats and apartments or other types of accommodation where outdoor aerials are prohibited, or a lack of garden space etc. prevents aerials from being erected. This does not mean you have to forgo shortwave along the skirting board of a room can produce acceptble results. However with some additional effort and ex perimentation one may well be able to improve perior mance further.
This concise book tells the story, and shows the reader how to construct and use 25 indoor and window aerials that he author has proven to be sure performers.
Much information is also given on shortwave bands, aerial directivity,
50 pages

Crder code BP136

TWO EXCITING NEW BOOKS

Specially imported by EPE

Bebop To The Boolean Boogie

By Clive (call me Max) Maxfield ORDER CODE BEB1 £24.95

An Unconventional Guide to Electronics Fundamentals, Components and Processes

The Foreword by Pete Waddell, Editor, Printed Circuit Design, reads: "Personaliy, I think that the title of this tome alone (hmmm, a movie?) should provide some input as to what you can expect. But, for those who require a bit more: be forewarned, dear reader, you will probably learn far more than you could hope to expect from Bebop to the Boolean Boogie, just because of the unique approach Max has to technical material. The author will guide you from
 the basics through a minefield of potentially boring theoretical mish-mash, to a Nirvana of understanding. You will not suffer that fate familiar to every reader: re-reading paragraphs over and over wondering wha in the world the author was trying to say. For a limey, Max shoots amazingly well and from the hip, but in a way that will keep you interested and amused. If you are not vigilant, you may not only learn something, but you may even enjoy the process. The only further advice I can give is to "expect the unexpected'."
This book gives the "big picture" of digital electronics. This indepth, highly readable, up-to-the-minute guide shows you how electronic devices work and how they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean Algebra and Karnaugh Maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbo!).

Hundreds of carefully drawn illustrations clearly show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. A great reference for your own shelf, and also an ideal gift for a friend or family member who wants to understand what it is you do all day.
By importing these books ourselves we have managed to make them available in the UK at an exceptional price.

Bebop Bytes Back

By Clive "Max" Maxfield and Alvin Brown
 ORDER CODE BEB2 $£ 29.95$

An Unconventional Guide To Computers

Plus FREE CD-ROM which includes: Fully Functional Internet-Ready Virtual Computer with Interactive Labs The Foreword by Lee Felsenstein reads:

1. The more time you spend with this book and its accompanying CD-ROM, the more you'll get out of it. Skimming through it won't take you where you want to go. Paying serious attention, on the other hand, will teach you more about computers than you can imagine. (You might also see a few beautiful sunrises.)
2. The labs work on two levels: on and under the surface. When you're performing the labs
you'll need to look for patterns that build up from individual events.
3. When you're done, you won't look any different. You won't get a trophy or a certificate to hang on your wall. You'll have some knowledge, and some skill, and you'll be ready to find more knowledge and develop more skill. Much of this will be recognisable only to someone who has the same knowledge and skill.

This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza

Bebop BYTES Back
An Unconventional Guide to Computers of information about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design . . . and you'll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the accompanying CD-ROM (for Windows 95 machines only) contains a virtual microcomputer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers.

If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this one!

[^0]Circuits include: High impedance mic preamp, Low impedance mic preamp, Crystal mic preamp, Guitar and GP reampiner, Scratch and rumble fiter, RIAA preamplifier controls, Loudness filter Loudnes, Cons Simple ghi equaliser, Basic audio mixer Small (300 mW) audio powe amp. 6 watt audio power amp, 20/32 watt power amp and poly, Dynamic noise limite
A must for audio enthusiasts with more sense than

MAKING MUSIC WITH DIGITAL AUDIO

lan Waugh
ans practical and clearly-writen book, lan Waugh explains anets of the subject from digital audio basics to putting Using the minimum of technical language, the book explains exactly what you need to know about: Sound and digital resolutions, Consumer sound cards and dedicated digita audio cards.
On a practical level you will learn about: sample edit ing MIDI and ditracking, digital FX processing, integrat to DAT and direct to CD, digital audio and Multimedia. of the most is for every musician who wants to be a part invention of the gramophone. It's affordable, it's flexible uture of music making 256 pages

Order cade PCil4

CIRCUITS AND DESIGN

AN INTRODUCTION TO PIC MICROCONTROLLERS

Robert Penfold

Designing your own PIC based projects may seem a daunting task, but it is really not too difficult providing you processors have preus experience of electronics. The prill reasonably simple and straightforward to use. This book hould contain everything you need to know.
Topics covered include: the PIC register set; numbering systems; bitwise operations and rotation; the PIC instruction set; using interrupts; using the analogue to digital converter; lock circuits; using the real time clock counter (RTCC); 166 pages

Drder code BP394
f5.99

PRACTICAL OSCILLATOR CIRCUITS

A. Flind

Extensive coverage is given to circuits using capacitors and resistors to control frequency. Designs using CMOS, timer ic.s and op.amps are all described in detail, with a special chapter on "waveform generator" i.c.s. Reliable "white" and pink" noise generator circuits are also included.
Various circuits using inductors and capacitors are ation. Some of these are amazingly simple but gentill very useful signal sources. Custal oscillators have
ircuits shown are have their own chapter. Many of the simplicity and reliability, and offer several i.c.s for quencies. Finally, complete constructional details are 133 pages audio sinewave generator.
Order code EP393 £4.99

PRACTICAL ELECTRONIC CONTROL PROJECTS
Owen Bishop
Explains efectronic control theory in simple, nonmathematical terms and is illustrated by 30 practical designs suitable for the student or hobbyist to build nd how to use sensors as input to the control system, elays and motors.
Computer based control is explained by practical examples that can be run on a PC. For stand-alone systems, the projects use microcontrollers, such as the inexpensive and easy-to-use Stamp BASIC and demonstrate as many aspects as possible of the rogramming language and techniques. 198 pages

Order code EP377

PRACTICAL ELECTRONICS HANDBOOK

Fourth Edition. Ian Sinclair
Contains afl of the everyday information that anyone working in electronics will need.
provides a practical and comprehensive collection of circuits, rules of thumb and design data for profes sional engineers, students and enthusaists, and theredevelopment of a range of basic circuits.

Contents: Passive components, Active discret components, Discrete component circuits, Sensing components, Linear I.C.s, Digital I.C.s, Microprocessor and microprocessor systems, Transferring digital data electronics. Hardware components Computer aids i Standard metric wire table, Bibliography, The HEX scale, Index. 440 pages \quad Order codenj211 £44.99

COIL DESIGN AND CONSTRUCTIONAL MANUAL

8. B. Baban

A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and trans calculations necessary are given and explained in detail Although this book is now twenty years old with the exception of toroids and pulse transformers little has | changed in coil design since it was written. |
| :--- |
| 6 pages |

OPTOELECTRONICS CIRCUITS MANUAL

R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as the in an easy-to-read, down-to-earth, and non-mathematical in an easy-to-read, down-to-earth, and non-mathematica ciples and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the i.c.s and other devices used are inexpensive and readily available types, with universally
182 pages

Order code NE14
£14.99

OPERATIONAL AMPLIFIER USER'S HANDBOOK

R. A. Penfold

The first part of this book covers standard operational amplifer based "building blocks" (integrator, precision ectifier, function generator, amplifiers, etc), and con io give ways in which modern devices can be used part describes a number of practical one. The second modern operational amplifiers, such as high slew-rate ultra low noise, and low input offset devices. The projects include: Low noise tape preamplifier, low noise RIAA oreamplifier, audio power amplifiers, d.c. power controllers, opto-isolator audio link, audio millivolt meter, emperature monitor, low distortion audio signal gener| 120 pages |
| :--- |
| $\begin{array}{l}\text { ator, simple video fader, and many more. } \\ \text { Order code :P335 }\end{array}$ |

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Penfold

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design since to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous "real world" applications.
The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and thes, and their advantages in : CMOS logic i.c. characterislics, and their advantages in practical circuit design; osciland binary counters; decade counters and display drivers The emphasis is on a practical treatment of the subject and all the circuits are based on "real" CMOS devices A number of the circuits demonstrate the use of CMOS logic $\begin{array}{ll}\text { c.s in practical applications. } \\ 119 \text { pages } & \text { Order code BP833 }\end{array}$

AUDIO AND MUSIC

NTRODUCTION TO DIGITAL AUDIO

Second Edition
Digital recording methods have existed for many years and have become famifiar to the professional recording engineer, but the compact disc (CD) was the first device to bring audio methods into the home. The next step is the ppearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuits that are totally alien to the technician or keen amateu who has previously worked with audio circuits. The printo the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers.
This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and
methods are explained, but the mathematical background and theory is avoided, other than to state the end product

ROJECTS FOR THE ELECTRIC GUITAR

. Chatwin
保 explains how the electronic functions of the instrument ork together, and includes information on the various lete circuit dansducers that can be fitted. There are complete circuit diagrams for the major types of instrument, witching circuits. These wiring modications and pickup witching circuits. Thes Along with the elecris
Along with the electric guitar, sections are also inspecialised piezoelectric pickups is explained and there are detailed instructions on how to make your own contact and bridge transducers. The projects range from simple preamps and tone boosters, to complete active 92 pages equaliser units. $£ 4.95$

MIDI SURVIVAL GUIDE
Vic Lennard
ic Lennard
Survival Guide a beginner or a seasoned pro, the MIDI heory, just practical advice on starting mp, setting and ending up with a working MIDI system.
Over 40 cabling diagrams. Connect synths, sound modules, sequencers, drum machines and multitracks. How to budget and buy secondhand. Using switch, hru and merger boxes. Transfer songs between inferent seque MID impleme best out of General MIDI Understand MID implementation chartsi No MID 104 page

Temporarily out of print

PRACTICAL ELECTRONIC MUSICAL
EFFECTS UNITS
R. A. Penfold

This book provides practical circuits for a number of electronic musical effects units. All can be built at relatively low cost, and use standard, readily available com ponents. The projects covered include: Waa-Waa Units; Distortion Units; Phaser; Guitar Envelope Shaper; and Treble, Boosters; Graphic Equaliser; Parametric Equaliser. The projects cover a range of complexities, but most are well within the capabilities of the average electronics hobbyist. None of them require the use of lest equipment and several are suitable for near 102 pages

Order cade Dplab
£4.95

LOUDSPEAKERS FOR MUSICIANS

Vivan Capel
This book contains all that a working musician needs to know about loudspeakers; the different types, how the work, the most suitable for different instruments, for cabaret work, and for vocals. It gives tips on construct ing cabinets, wiring up, when and where to use wad ding, and when not to, what fittings are available, finish ing, how to ensure they travel well, how to connec
multi-speaker arrays and much more. multi-speaker arrays and much more.
ments are given in the last chapter but by and com you've read that far you should be able to design you own!
164 pages

£4.99

PCB SERVICE
Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749; Fax 01202841692 (NOTE, we cannot reply to orders or queries by Fax); E-mail: orders@epemag.wimbome.co.uk. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in \& sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back Issues page for details.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
(FIC-Tock Pendulum Clock SEPTP6	109	$£ 6.31$
Power Check	110	£6.42
Analogue Delay/Flanger	111	£7.95
Draught Detector	112	£6.22
Simple Exposure Timer	113	£6.63
Video Fade-to-White OCT'96	114	$£ 6.98$
Direct Conversion 80m Receiver	116	£7.52
Vehicle Alert	117	£6.55
10MHz Function Generator-Main Board	118	£7.33
-PSU	119	£5.39
Tuneable Scratch Filter NOV'96	115	97.83
Central Heating Controller	120	$£ 7.85$
D.C. to D.C. Converters - Negative Supply Generator	122	£5.96
- Step-Down Regulator	123	£6.01
- Step-Up Regulator	124	£6.12
*PIC Digital/Analogue tachometer DEC'98	127	¢7. 23
Stereo Cassette Recorder		
Playback/PSU	128	$£ 7.94$
Record/Erase	129	£9.04
Earth Resistivity Meter JAN97		
Current Gen. - Amp/Rect.	131/132 (pr)	£12.70
Theremin MIDI/CV Interface (double-sided p.t.h.)	130 (set)	£40.00
Mains Failure Warning	126	$£ 6.77$
Pacific Waves FEEY'97	136	$£ 9.00$
PsiCom Experimental Controller	137	$£ 6.78$
Oil Check Reminder MAR'97	125	£7.16
Video Negative Viewer	135	$£ 6.75$
Tri-Colour NiCad Checker	138	$£ 6.45$
Dual-Output TENS Unit (plus Free TENS info.)	139	$£ 7.20$
- PC-Agoras - Wheelie Meter APRIL'97	141	£6.90
418MHz Remote Control - Transmitter	142	£5.36
- Receiver	143	£6.04
Puppy Puddle Probe	145	£6.10
MIDI Matrix - PSU	147	55.42
- Interface	148	£5.91
Quasi-Bell Door Alert MAYi97	133	$£ 6.59$
2M F.M. Receiver	144	$£ 7.69$
*PIC-A-Tuner	149	£7.83
Window Closer - Trigger	150 151	£4.91
ChidMinder Protection Zone JUN97		
- Transmitter	153	
- Receiver	154	£6.42
Pyrotechnic Controller	155	$£ 6.93$
* PIC Digilogue Clock	156	$£ 7.39$
Narrow Range Thermometer	158	£6.37
Micropower PIR Detector - 1 JULY'97	152	£6.69
Infra-Red Remote Control Repeater (Multi-project P.C.B.)	932	£3.00
Karaoke Echo Unit - Echo Board	159	£6.40
- Mixer Board	160	$£ 6.75$
Ccmputer Dual User Interface	161	$£ 670$
*F'EsT Scarer	162	£6.60
Variable Bench Power Supply AUG'97	932	£3.00
Universal Input Amplifier	146	£6.55
Micropower PIR Detector - 2 Controller	163	£6.72
* PIC-OLO	164	£7.02
Active Receiving Antenna SEPT'g7	140	โ6.59
Soldering Iron Controller	157	£6.63
* PIC Noughts \& Crosses Game	165	£7.82
Alarm Disarm/Reset Swith	166	$£ 5.72$
Ironing Safety Device	167	£5.12
Remote Control Finder OCr97	168	£6.32
Rechargeable Handlamp	169	$£ 6.23$
* PIC Water Descaler	170	£6.90
- EPE Time Machine NOV'97	171	£8.34
Auto-Dim Bedlight	172	£6.63
Portable 12V PSU/Charger	173	£6.61
Car Immobiliser DEC'97	175	$\underline{57.00}$
Safe and Sound (Security Bleeper)	179	£7.32
Surface Thermometer JANY8	174	¢7.64
Disco Lights Flasher	178	£8.30
Waa-Waa Pedal (Multi-project PCB) FEE'98	932	£3.00
* Virtual Scope - Digital Board	176	£14.49
Analogue Board (per board)	177	£734
* Water Wizard	180	£7.69
MES8interer Tutorial MAR 98	188	£7.68
The Handy Thing (Double-Sided)	183	£6.58
Lighting-Up Reminder	184	$£ 5.90$
* Audio System Remote Controller - PSU	185	£7. 05
Main Board		£8.29

PROJECT TITLE	Order Code	Cost
Simple Metal Detector APR'98 (Multi-project PCB)	932	$£ 3.00$
Single or Dual-Tracking Power Supply	187	£7.90
*RC-Meter	188	£7.66
Security Auto-Light MAY'98	189	£8.10
Stereo Tone Control plus 20W Stereo Amplifier		
Tone Control	190	$£ 7.78$
20W Amplifier	191	£8.58
- Dice Lott	192	£8.05
EPE Mood Changer JUNE'98	193	$£ 7.75$
* AT89C2051/1051 Programmer		
Main Board	194	£8.50
Test Board	195	£8.69
* Reaction Timer Software only	-	-
*P1C16x84 Toolkit JULY'98	196	$£ 6.96$
* Greenhouse Computer		
Control Board	197	£9.08
PSU Board	198	£8.10
Float Charger AUG98	199	£6.59
Lightbulb Saver	202	£3.00
Personal Stereo Amplifier SEPT 98	932	£3.00
-Greenhouse Radio Link	200	£8.32
- PIC Altimeter	201	£8.15
Voice Processor OCT'98	203	$£ 7.18$
*Digiserv R/C Expander	204	$£ 7.69$
IR Remote Control		
Transmitter	205	£3.00
Receiver	206	£3.50
*PIC Tape Measure NOV'98	207	£6.82
Electronic Thermostat		
T-Stat	208	$£ 4.00$
Phizzy		£14.95
A-PCB B-CD-ROM C-Prog. Microcontroller	Bee (A)(B)(C)	each
15-Way IR Remote Control		
Switch Matrix	211	£3.00
15-Way Rec/Decoder	212	£4.00
Damp Stat DEC'98	209	£4.50
Handheld Function Generator	213	£4.00
* Fading Christmas Lights	215	£5.16
PhizzyB I/O Board (4-section)	216	£3.95
Twinkle Twinkle Reaction Game JAN'9	210	£7.55
* EPE Mind PICkier	214	£6.30
PhizzyB I/O Board (4-section)	216	£3.95
Alternative Courtesy Light Controller	217	£6.72
Light Alarm FEB'99	218	£6.78
*Wireless Monitoring System - Transmitter	219+a	$£ 9.92$
Receiver	$220+a$	£8.56
* PIC MIDI Sustain Pedal Software only	-	-

EPE SOFWARI

Software programs for EPE projects marked with an asterisk are available on 3.5 inch PC-compatible disks or free from our Internet site. Three disks are available: PIC Tutorial (Mar-May '98 issues); PIC Disk 1 (all other software Apr '95-Dec '98 issues); EPE Disk 2 (Jan ' 99 issue to current cover date). The disks are obtainable from the EPE PCB Service at $£ 2.75$ each (UK) to cover our admin costs (the software itself is free). Overseas (each): £3.35 surface mail, £4.35 each airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

> EPE PRINTED CIRCUIT BOARD SERVICE

Order Code Project Quantity Price
\qquad
\qquad
\qquad

Everyday

Practical Electronics

Access (MasterCard) or Visa No. Minimum order for credit cards £5

Signature...Card Exp. Date
Please supply name and address of cardholder if different from the address shown
NOTE: You can order p.c.b.s via our Internet site on a secure server: http://www.epemag.wimborne.co.uk

SURFING THE INTERNET NET WORK

ALAN WINGTANLEY

NET WORK is our monthly column specially written for readers having access to the Internet, whether at home, work, school or college. The column is designed to keep you posted with latest Internet developments here at EPE and to offer practical hints, tips and pointers in the ever more complex world of Internet connectivity.
The arrival of the Internet means that the EPE reader can, for example, obtain technical data about integrated circuits, or find out about device substitutions with barely a second thought - once you know where to look, you can have manufacturer's data or technical information delivered to your desktop in minutes. Since there has always been a long-running argument about the cost and availability of manufacturers' data books, the arrival of the worldwide web resolves them all at a stroke.
As an example, my Circuit Surgery column this month includes a typical example of how the Internet was used routinely to obtain some information about a mysterious transistor which as you'll read, was contained in an electret microphone. Whilst that example is quite a trivial one, it nevertheless demonstrates neatly that with just a little detective work, an experienced user can use the Internet to quickly find a solution to a particular problem at very little cost.

Freeserve Rising Fast

While AOL and Demon Internet fight it out to see who can rightly advertise the claim of being the largest service provider in the UK, last month I asked readers for feedback concerning Freeserve, the new ISP marketed by High Street retailer Dixons which is completely free, apart from local rate phone calls. Freeserve is clearly having a significant impact in the home dial-up market. Behind the scenes it is operated by Planet On-Line (http://theplanet.net), which itself is owned by Energis (www.energis.co.uk), who provide some of the routing for others including Demon Internet (now owned by Scottish Telecom). Interesting times are therefore ahead, and the dial-up sector may well have to re-align itself to cope with Dixons' new upstart, perhaps by rising above it to offer added value services designed for the more discerning power user, which is what Demon Internet would argue forms the core of their dial-up business anyway.
I received a number of very positive replies from readers about Freeserve, and one or two critical ones, but the consensus is clearly that it is free so don't knock it (I wasn't). However, I would again say that beginners should be aware of the high support costs at $£ 1$ a minute and there are a number of reported cases where browsers, newsgroup or dial-up networking settings were "taken over" by Freeserve.
It takes experience to understand the impact of any changes made to a stable setup, and more experience still to unravel them, so I would repeat that newcomers to the Internet ought to tread carefully before signing up. Alternatives such as AOL or CompuServe cost only a few pounds a month and make a good starting point, with proven software that generally works flawlessly and will get you moving.
On the other hand, anyone reasonably confident about Windows computing is likely to find a Freeserve connection very tempting, if not as a main connection then certainly to back-up an existing one. Freeserve is expanding all the time, and already includes POP3 mail and free web space with more services being slated for the future. All you have to do to retain your account is use it at least every 30 days. The take-up of Freeserve has been guesstimated at over 400,000 customers, but there was no indication of the churn rate, and given that users are at liberty to create more than one account (say, for isolated use or test purposes) and then let them expire, I would expect the fall-out rate to be high once the initial start-up feeding frenzy begins to filter through.

The general feeling voiced in some of the Freeserve newsgroups as well as the Turnpike newsgroup demon.internet.support.turnpike (Turmpike at www.turnpike.com is a useful dial-up access and mail software package suitable for the majority of UK-based ISPs - and it runs with Freeserve) is that its users welcome and appreciate the free service, and only a minority have had subsequent problems when they tried to de-install it. There are minor grumbles about connectivity and routing but I saw nothing particularly worrying.

Give it a Whirl

Yesterday, I tried Freeserve. However, I heeded the advice of some other users who commented that the free Dixons CD can be troublesome, so I avoided that altogether and signed up online without the need to install any special browser or even to use MSIE 4.0. The web site www.tarrcity.demon.co.uk/tp/add0091.htm gives all the practical details of how to set up an initial Dial-Up Networking (DUN) "connectoid" to enable a temporary connection to be configured to the Freeserve registration server, to avoid the possibility of wrecking an existing setup (Internet Explorer 4.0 settings in particular). The web site contains tips and data that might help an experienced user avoid some pitfalls.
Having quickly configured a temporary DUN session, I dialled up the Freeserve secure server and completed the formalities in about five minutes. The online registration process involved reading through a long raft of totally indigestible Terms and Conditions with which I finally lost patience, then I also skipped through an impertinent questionnaire and selected a suitable hostname of "nwin" - hence I became the proud owner of the moniker al@nwin.freeserve.co.uk. I seem to remember that's how "epemag" was born when I opened the very first EPE E-mail account.
To be fair, the Freeserve on-line registration warns that it will change your Internet settings, and there is an option to cancel. It is at this point that the experienced user will probably say "no thanks" though others may decide to go with it. There were no further problems and a welcome E-mail from Freeserve was immediately delivered to my newly created mailhox. I now have a free backup connection which works, but it is still too soon to pass judgment on Freeserve. I must say that I have experienced several line drops after dialling in (which doubles the cost of the call), though I have not had any problems with stability or speed.

At that rate, the consumer really can't go wrong, provided that they are duly aware of the possibility of the installation messing around with their settings should they desire to remove it. Freeserve will undoubtedly cost other ISPs some lost dial-up business, though a professional user will probably not wish to be seen to be making do with a "free" address.

More to Come

In the coming months, I will be discussing more Internet services and applications which may help the EPE reader to get more out of the Internet. For example, I'll be looking at free web pagers that deliver messages to your desktop when you're on-line, various real-time "chat" and messaging services, and examining in-depth what is probably the world's most popular software download at the moment - ICQ, which is a real hoot to play with. According to site statistics. 600,000 people a week agree.

As usual, I have placed some ready-made links for you to click on, in the NeI Work page of the EPE web site. I welcome suggestions by E-mail to alan@epemag.demon.co.uk. My Home Page is http://homepages.tcp.co.uk/~alanwin which was recently updated. See the amazing photos of my $70 \mathrm{~m} . \mathrm{ph}$. drive down the main runway of my local airport in a Barracuda Fire Tender, courtesy of Humberside International Airport! See you next month.

PRACTICAL

ELECTRONIBS
Everyday Practical Electronics reaches twice as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last fourteen years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

ELEGTRONIG KITS

- $88-108 \mathrm{MHz}$ FM transmitters from under $£ 5$
- Many educational and hobby electronic kits covering all technical abilities, from beginners' circuits to MCU/MPU designs
- Low cost PCB services and equipment
- Send 4×1 st class stamps for catalogue

DTE MICROSYSTEMS, 112 SHOBNALL ROAD
BURTON -ON-TRENT, STAFFS DE14 2BB PHONE or FAX: 01283542229 http://www.btinternet.com/~dtemicrosystems

BRAND NEW SINCLAIR SPECTRUM

 $\boldsymbol{6}$ QL PARTSZX MICRODRIVES £15, INTERFACE ONE E20 CARTRIDGES 10 FOR $£ 15,50$ FOR $£ 50$. OL BOARDS 5, 6 67. POPULATED WITH ROMS, £30; UNPOPULATED, £12; MICRODRIVES $£ 10$ EACH. TOP \& BOTTOM CASES $£ 15$,
MEMBRANES $£ 15$.

THE P.C., MAC and OL's "Little Friend" MAC LINK $£ 10$ - P.C. LINK $£ 25$ - OL LINK $£ 12$

CAMBRIDGE 288 A4 NOTEBOOK COMPUTER AVAILABLE AGAIN £99, NLY RECONDITIONED $\mathbf{f 6 0}$ ONL SCREEN, $4 \times$ AA BATTS. 20 HOURS WORK. LCD SCREEN, 72 Crs, 6 LINES, 32 K RAM, EXTRA RAMS \& EPROMS, 9 pin D SERIAL PORT, ROM HAS BASE, IMP/EXPORT TO PC efc, V52 TERMINAL. W.N. RICHARDSON \& CO. W.N. RICHARDSON \& CO
PHONE/FAX 01494871319 6 RAVENSMEAD, CHALFONT ST PETER,

BTEC ELECTRONICS
 TECHNICIAN TRAINING

GNVQ ADVANCED ENGINEERING (ELECTRONIC) - PART-TIME HND ELECTRONICS - FULL-TIME B.Eng FOUNDATION - FULL-TIME Next course commences Monday 1st February 1999 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-373 8721

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. M. P. Moses, 5 Park View, Cwmaman, Aberdare CF44 6PP
Space donated by Everyday Practical Electronics

Miscellaneous

STEREO FM TRANSMITTER

Crystal controlled transmit trequency and pilot tone. Excellent quality sound. low power transmitter which is ideal for 'around the house use. Send your favourite music to any FM radio. No frequency dritt! High quality professionally made p.c.b $3 \times 2 \mathrm{in}$. Kit $\mathbf{£ 2 5}$ inc. p\&p. Send s.a.e for details or see web site. http://homepages.enterprise.net/ngough/tx.htm N. J. Gough, 20 Earlsfield, Bransion, Lincoln, LN4 1NP

VALVE ENTHUSIASTS: Capacitors and other parts in stoch. For free advice/lists please ring. Geoff Davies (Radio), Tel. 01788574774.
EX-EQUIPMENT BARGAINS! Power supplies. adjustable 30 V d.c., 3 A . regulated. $£ 5$: amplifier module, $\quad 20 \mathrm{~W}+20 \mathrm{~W}+\mathrm{p} . \mathrm{s} . \mathrm{u}$. and controls. $£ 8$. K.I.A., 1 Regent Road. Ilkley LS29 9EA.

HUNDREDS OF UNUSUAL ITEMS CHEAP! Send $£ 1$ coin for interesting samples and list. Grimsby Electronics. Lambert Road. Grimsby
PROTOTYPE PRINTED CIRCLITBOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro. 38 Poynings Drive. Hove. Sussex BN3 8GR. or phone Brighton 883871, fax 01273 7) 6670.

PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production. Artwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar, Unit 5. East Belfast Enterprise Park. 308 Albertbridge Road. Belfast, BT5 4GX. or phone/fax 01232738897.
G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics. 52 Sevem Road, Clacton, CO15 3RB.
NEW AND USED COMPUTERS, spares, etc. at keenest prices. e.g.: 386 min 2 MB RAM. 20MB HDD, desktop case, keyboard and cables. 12 in . VGA mono monitor, $£ 55$ 486 DX33 min. 8MB RAM, 120MB HDD desk top case, keyboard and cables, 14 in . VGA colour monitor, £165. Many other systems available. Whatever you need, Phone/Fax 0181 8533374 for prices.

YOUR ADVERTISEMENT IN THIS SPACE FOR ONLY $£ 20+$ VAT

MORE READERS NEXT MONTH

Don't miss out (see page 83 for details)

EPE NET ADDRESSES

EPE FTP site: ftp://ftp.epemag.wimborne.co.uk
Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:
PIC-project source code files: /pub/PICS
PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!
$E P E$ text files: /pub/docs
Basic Soldering Guide: solder.txt
EPE TENS Unit user advice: tens.doc and tens.txt Ingenuity Unlimited submission guidance: ing_unlt.txt New readers and subscribers info: epe_info.txt Newsgroups or Usenet users advice: usenet.txt Ni-Cad discussion: nicadfaq.zip and nicad2.zip UK Sources FAQ: uksource.zip
Writing for EPE advice: write4us.txt

On-line readers! Try the new EPE Chat Zone - a virtually real-time internet "discussion board" in a simple to use web-based forum!
http://www.epemag.wimborne.co.uk/wwwboard Or buy EPE Online: www.epemag.com

Ensure you set your FTP software to ASCII transfer when fetching text files, or they may be unreadable.
Note that any file which ends in .zip needs unzipping before use. Unzip utilities can be downloaded from :
http://www.winzip.com or http://www.pkware.com

Professional $88-108 \mathrm{MHz}$ FM Broadcasting Kits
All Our kits lnclucte
Detaifacinsinuctons with Schematics High Quality Screen Printed PCBs High Quality Screen Printe
High Quality Components Qur Prontict Range incluces
Transmiters from 005 fio 35 W FM Stereo Coders
Audlo Compressor Limiters Antennas
RF Power Amps
Our Kits Are Also Available
Fully Assembled And Tested

WF DELIVFR WORI D WADF AMO
 Contact Us Now For A Free Brochure Tel 01274883434 Fax 01274428665 emanl infoeveronica.co.uk Unit 5/6 1A S andode Alben Ra Queensbury BRADFORD BD 3 +AA

FML ELECTRONICS

NEW YEAR'S SALE
10\% OFF ALL OUR LIST PRICES DURING JANUARY 1999 , , SEND A STAMPED ADDRESSED ENVELOPE FOR LISTS

NEW PRODUCTS MOW IN STOCK:
HT128 HOLTEK IA ENCODEA

HT128 HOLLEK II ENCODER TRANSUITEA
HT12D HOT TEK INFRA-RED DECOOM CHIP
WORE SPECAAL ET PACKS - COMPARE OUR PAICES $72.54 M$ PLUG, PLASTIC MONO
$625 M M$ LINE SOCKETS, PLASTIC 62.5MM LINE SOCKETS. PL ASTC MONO
$122.5 M M$ META CHASSIS SOCKETS. MONO 1035 SMM PLUGS, PLASTIC MONO 33.5 MM PLUGS, METAL MONO
43.5WN LINE SOCXETS, PLASTIC 5.WMN LINE SOXXES, PAASTIC HONO
5 WUN JICK LUG, PASIC MONO 3 11/4N INLLINE SOCKETS. PLASTIC MONO
21/4IN CLASSIS SOCKETS SITHED $21 / 4$ IN CHASSIS SOCKETS, SWITCHEO NONC
6 PHONO PLUGS, PLASTC, REDBLACKMMIX 2 PHONO LINE SOCKETS, META 4 SINGLE PHOHO CHASSIS SOCKETS, PAX
3 TWIN PHONO CHSSIS SOCKETS PM 3 TWIN PHONO CHASSIS SOCKETS, PAX
2 OUAD PHONO CHASSIS SOCKETS PAX 62.PIN DIN PLUGS, PUASTIC 42-PIN DIN LINE SOCKETS, PLASTIC
82 PPIN DIN CHASSIS SOCKETS. PLASTIC 82 2-PIN DIN CHASSIS SOCKETS. PLASTIC
43 PIN DIN PLUGS PIASTIC. 3 3PN ON LINE SOCKETS 180\%. PLASTIC 35 PN N IN CHASSIS SOCKETS 24
37 PPN OFN PLUGS, PLASTC

1490
1490

REN EPE KITS HOW AVALLBLE: PEAE SEND SUE FOR FUPTD
 PLEASE SEND SAE FOA FUATHEP

KIT 5012 AIT. COURTESY LJGHT CONTPO SMECIFYNG KIT SORO TWINKLE TWINKLE REACTON GAME KIT 9037 VOLUME COMPRESSOR KIT 8867 HANDHHELDRISIMCTIONGGEMERATOR IT 8888 PHIZZVB 10 BOARD GENEHATOR KIT Bgon Damp STAT ELECTRONIC THERMOSTAT DEC OO KIT 3638 MAINS SOCKET TESTEA KIT 3649 PEASONA STEREO AMPLIFEE KIT 8652 PIC ALTMETEA
KIT 856 L LGHTBUIB SAVER KIT 8574 FLOAT CHAPGER KIT 3603 PC TRANSISTOR TESTEA TOO SALE DDES NOT APP Y TO ADVERT SBARGAIM VAILABLE P PL EASE SENOLARGE SAE EON FA COIPONENT LSSTS. RENTAL. THADE, GOVT ANO EOUCATIONLL ORDEES WEEOOME. CHEQUES ORP POS WITH ORDEA PIEASE TO. FML ELECTRONICS, FREEPOST MEA3627

Service Manuals

Available for most equipment, from the earliest Valve Wireless to the latest Vide Recorder, Television, Computer Monitor, 1 st Equipment, Satellite, all Audio Amateur Radio, etc., etc. If you need a Service Manual give us a call or check our the full stock list now on our web site. Originals or Photostats supplied as available. For your FREE catalogue of Technical Books and repair guides
PLUS full Floppy Disc Index of manuals available send $4 \times$ first class stamps.

MAURITRON TECHNICAL SERVICES

8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY Tel: 01844-351694. Fax: 01844-352554.

E-mail: enquiries@mauritron.co.uk
Web site at: http://www.mauritron.co.uk/mauritron/

Cheat on toner

Refill your empty Doesn't disturb the inner workings of your cartidge. HP LaserJet 4/4M/4M Plus/5/5M/5N Refill bottle.... $£ 12.99$ ex VAT) HP LaserJet 5L/6L/3100 Refill Bottle £8.95 (ex VAT HP LaserJet4L/4P Series Refill Bottle HP LaserJet 5P/6P Refill Bottle. £9.95 (ex VAT) HP LaserJet 4000 Series Refill Bottle $\Sigma 11.49$ (ex VAT Many more lasers and copiers covered FREE catalogud 08003769922
Free FAX 08003769955 (24 hrs) - http://www.refillioner.com

High precision scopes, without the high cost SNO_{2}

pico
ADC.-212

Most digital scopes today are capable of achieving only 8 bit resolution. Pico Technology's new PC-based oscilloscopes represent a quantum improvement in digital scope technololgy. The ADC-212 offers 12 bit resolution. while its big brother, the ADC-216, is capable of 16 bit resolution. The scopes offer all the advantages associated with PC based test \& measurement. such as large colour display and a familiar Windows interface. Also, being Pico Technology products, the high performance is not matched by a high price tag

AOC-212 / 216 - dual channel high resolution
Features
Low cost

- 90 dB spectrum analyser
- 12 and 16 bit resolution
∇ Up to 1250 ksps
\checkmark Large buffer memory
Applications

ADe-212......£299
Audio testing and analysis

- Mains harmonics testing ∇ Power supply design - Analog telephony \checkmark Vibration and noise measurements
roducts supplied with software. Call for a free demo disk or visit our web site

Tel: 01954-211716 Fax: 01954-211880
post@picotech.co.uk , www.picotech.com

COVERT VDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receivers (Wireless).

Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS

Please phone 01812030161 for free catalogue. Fax 01812015359
New DTI approved Video Transmitters and Receivers (Wireless)

Moser	
(tan	

Millions of quality components at lowest ever prices!

Plus anything from bankruptcy - theft recovery

- frustrated orders - over production etc.

Send 45 p stamped self addressed label or envelope for clearance lists.

Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 07775945386 Mail order UK only.
Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few thousand of an tem is available. (Payment is returned it sold out. I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wait!

ADVERTISERS INDEX

A.L. ELECTRONICS. 144
ASA MICROS 100
A.S.A. 108
N. R. BARDWELL 144
B.K. ELECTRONICS Cover (iii)
BRIAN J. REED 144
BULL ELECTRICAL. Cover (ii)
COMPELEC 108
COOKE INTERNATIONAL 143
CROWNHILL ASSOCIATES 93
DANNELL ELECTRONICS 77
DISPLAY ELECTRONICS 74
EPT EDUCATIONAL SOFTWARE 90
ESR ELECTRONIC COMPONENTS 82
FML ELECTRONICS 143
GREENWELD 77
ICS 143
J\&N FACTORS 78
JPG ELECTRONICS 144
LABCENTER ELECTRONICS. 110
MAGENTA ELECTRONICS 80/81
MAPLIN ELECTRONICS. Cover (iv)
MAURITRON 143
NATIONAL COLLEGE OF TECH 76
PICO TECHNOLOGY 79/143
QUASAR ELECTRONICS 125
QUICKROUTE SYSTEMS 89
RADIO-TECH 76
SEETRAX CAE 93
SERVICE TRADING 125
SHERWOOD ELECTRONICS 76
SQUIRES 76
STEWART OF READING 136
SUMA DESIGNS 117
TECHNOLOGY EDUCATION INDEX 125
THE TONER WAREHOUSE UK 143
VANN DRAPER ELECTRONICS 100
VERONICA KITS. 143

ADVERTISEMENT MANAGER: PETER J MEW

ADVERTISEMENT OFFICES
EVERYDAY PRACTICAL ELECTRONICS. ADVERTISEMENTS MILL LODGE, MILL LANE, THORPE-LE-SOKEN, ESSEX CO16 OED.
Phone/Fax: (01255) 861161
For Editorial address and phone numbers see page 83.

POWER AMPLIFIER MODULES-LOUDSPEAKERS-MIXERS \#PRICES INCLUDE V.A.T.*PROMPT DELIVERIES 19 INCH STEREO AMPLIFIERS-ACTIVE CROSSIOVERS

THE RENOWED MXF SERIES OF POWER AMPLIFIERS

FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 ($450 \mathrm{~W}+450 \mathrm{~W}$)
all POWER RATINGS ARE R.M.S. INTO 4 OHMS, WITH BOTH CHANNELS DRIVEN FEATURES: * independent power supplies with two toroidal transformers * Twin LE.O. Vu Meters *Level controls * Illuminated on/off switch * Jack/XLR inputs * Speakon outputs \& Standard 775 mV inputs * Open and short circuit proof \star Latest Mos-Fets for stress free power delivery into virtually any
load $*$ High slew rate $*$ Very low distortion $\#$ Aluminium cases $*$ MXF600 \& MXF900 tan cooled with DC. loudspeaker and thermal protection.
USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC

$$
\text { MXF200 W19" D11" H3 }{ }^{\frac{1}{2}} \text { " (2U) }
$$

SIZES:- MXF400 W $19^{\prime \prime}$ D12" H5 ${ }^{\frac{1_{4}^{\prime \prime \prime}}{\prime \prime}(3 U)}$ MXF600 W19" D13" H5 ${ }^{\frac{1}{4}}{ }^{\prime \prime}$ (3U) MXF900 W19" D14 $\frac{3}{4}$ " H5 $\frac{1_{4}^{\prime \prime}}{}$ (3U) PRICES:- MXF200 £175.00 MXF400 £233.85
 MXF600 £329.00 MXF900 £449.15

SPECIALIST CARRIER DEL. $£ 12.50$ EACH
OWP XO3-S STEREO 3-WAY ACTIVE CROSS-OVER SWITCHABLE 2-WAY

BASS \times MID TOP BASS/MID \times TOP bASS MID/TOP CONFIGURED 3 WAY 2 WAY BASS/MID COMBINED 2 WAY MID/TOP COMBINED FEATURES:
Advanced 3 -Way Stereo Active Cross-Over (switchable two way), housed in a $19^{\circ} \times 10$ case. Each channe has three level controls: Bass, Mid \& Top. The removable tront fascia allows access to the programmable DiL switches to adjust the cross-over trequency: Bass-Mid $125 / 250 / 500 \mathrm{~Hz}$, Mid-Top $1.8 / 3 / 5 \mathrm{~Hz}$, all at 24 ab per octave. The $2 / 3$ way selector switches are also accessed by removing the lfont fascia Each stereo channe can be configured separately. Bass Invert Switches are incorporated on each channel. Nominal 775mv inputzoutput. Fully compatible with OMP Rack Amplifier and Modules.

PRICE:- £117.44 + £5.00 P\&P
SOUNDLAB CD.J1700 GD PLAYER
VARIA:LESPEED

The new CDJ1700 now offers a tough build quality boasting an all new shockproot transport mechanism, frame accura1e cueing and wide range pitch control. Th CDJ1700 looks after the CD's while the operator looks after the sound
FEATURES:
$* 19 \cdot \times 2$ U RACK MOUNTING $\approx F U L L Y$ VARIABLE PITCHCONTROLPLUS/MINUS $16 \% *$ PITCH BLENO * 3 BEAM LASER PICKUP * 1 BIT $8 \times$ OVERSAMPLING OAC *CUE AND LOOP FACILITY *TRACK SKIP WITH FF/REV \star OIGITAL AND ANALOGUE OUTPUTS *CONTINUOUS/SINGLE TRACK PLAY *CLEAR BACKLIT MULTIFUNC TION OISPLAY *10 TRACK PROGRAM PLAY *TRACK ELAPSED. TRACK
REMAINING ANO DISG REMAINING TME OISPLAYS SPECIFICATION: Fral
SPECIFICATION:
Frea response $20 \mathrm{~Hz}-20 \mathrm{KHz} \mathrm{S} / \mathrm{N}$ ratio... $>80 \mathrm{~dB}$ THD $<009 \%$ (KHz) Channel separation. $>80 \mathrm{~dB}(1 \mathrm{KHz})$ Max output voltage 2 Vrms Power. $220-240 \mathrm{Vac}$
D 250 mm Weight 4.18 Kg . PRICE:- $\mathbf{\Sigma 2 2 5 . 0 0}+\mathbf{£ 5 . 0 0} \mathbf{P \& P}$

STEREO DISCO MIXER VPX-7700

[ECHO © SOUND EFFECTS 4 STEREO INPUT CHANNELS - DJ MIC INPUT CHANNELS 2×7 BAND GRAPHIC EQUALISERS HEADPHONE MONITOR WITH PFL ASSIGNABLE CROSSFADE
STEREO DISCO MIXER WITH:- $\approx 2 \times 7$ GRAPHIC EQUALISERS $\star 2$ MONO MIC INPUTS *DJ MIC WITH FADER, TALKOVER AND VOICE CHANGER * 4 STEREO CHANNELS WITH INDIVIDUAL FADERS AND ASSIGNABLE CROSSFADE *CHANNELS SWITCHABLE, TURNTABLE (MAG CARTRIDGE), CD, LINE, TAPE, ETC. *ECHO WITH BALANCE, REPEAT AND DELAY *HEADPHONE MONITOR WITH PREFADE LISTEN *CHOICE OF 6 SOUND EFFECTS *STEREO MONO SWITCH $\star 2 \times$ LED VUMETERS \star MASTER FADER *OUTPUT 775 mV *SIZE:- 482X240X115mm *POWER:- 230 V AC 50/60Hz. PRICE:- £169.00 + £5.00 P\&P SOUNDLAB MINI STROBE $\begin{aligned} & \text { * IDEAL FOR USE IN DISCO'S / RAVES. } \\ & \text { \& EUCATIONAL EXPERIMENTS ETC. }\end{aligned}$ A top quality mini strobe with high light intensity for its size and variable flash rate adjustment. Housed in a silver/black steel case with adjustabie mounting bracket. * Flash Rate:- Adjustable from zero to ten flashes per second \star Mains Powered complete with plugged lead $\star 230 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ \star Size:- 125 X B4 $\times 52 \mathrm{~mm}$ PRICE:- $\mathbf{£ 1 9 . 9 9} \mathbf{+} \mathbf{£ 2 . 2 0} \mathbf{P \& P}$

ibl
FLIGHTCASED b) LOUDSPEAKERS A new range of quality loudspeakers, designed to take and directivity horns, extruded aluminium corner protection and steel ball corners, complimented with heavy duty black covering. The enclosures are fitted as standard with top hats for optional loudspeaker stands. The FC15-300 incorporates a large 16×6 inch horn. All cabinets are fitted with the latest Speakon connectors for your convenience and safety Five models to choose from.
 PLEASE NOTE:- POWER RATINGS QUOTED ARE IN WATTS R.M.S. FO EACH INDIVIDUAL CABINET.
ALL ENCLOSURES ARE 8 OHM $\sqrt{\square} \quad \begin{aligned} & 15=15 \text { inch speaker } \\ & 12=12 \text { inch speaker }\end{aligned}$
 ithl FC15-300 WATTS Freq Range $35 \mathrm{~Hz}-20 \mathrm{KHz}$, Sens 101 dB , Size H 695 W502 $\mathbf{D 4 1 5 \mathrm { mm }}$ ibl FC 12-300 WATTS Freq Range $45 \mathrm{~Hz}-20 \mathrm{KHz}$, Sens 96 dB , Size: 6600 W 405 D 300 mm bl FC12-200 WATTS Freq Range $40 \mathrm{~Hz}-20 \mathrm{KHz}$, Sens 97 dB Size:- $£ 249.00$ per pair PRICE:- $£ 199.00$ per pair ibl FC12-100 WATTS Freq Range $45 \mathrm{~Hz}-20 \mathrm{KHz}$, Sens 100 dB , Size H546 W 38000000 mm ibl WM12-200 WATTS Freq Range $40 \mathrm{~Hz}-20 \mathrm{KHz}$, Sens 97 dB , Size 4418 W 600 per pair SPECIALIST CARRIER DEL- $£ 1250$ PRICE:- £ 125.00 EACH (12.50 per pair, Wedge Moniror $£ 7.00$ each
ibl IN-CAR AUDIO BASS BOX 10/100
INGREDIBLE VALUE

The new ibl In-Car Audio Bass Box has been designed with a sloping front to reduce internal standing waves. The bass box incorporates a 10 inch 4 ohm loudspeaker with a genuine 100 watts R.M.S. output resulting in powerful and accurate bass reproduction
FEATURES:- * Cabinet manufactured from MDF and sprayed in a durable black shiny HAMMERITE finish. * Fitted with a 10 inch loudspeaker with rolled rubber edge and coated cone assembly * The top of the cabinet incorporates gold plated connection terminals. SPECIFICATION:- 100 Watts R.M.S. 200 Watts Peak (Music). Ported reflex, critically tuned. Size:- H405 W455 D305mm.
PRICE:- $\mathbf{2 7 9 . 0 0}+\mathbf{~} 6.00$ P\&P
OMP MOS-FET POTWER AMPLIFIER MODULES SUPPLIED READY These modules now enjoy a worid-wide reputation ior quality, reliability and performance al a reahstic price. Four models are available to suit the needs of the prolessional and hobby market ie. Industry, Leis ure, instrumental and Hi.Fi etc When comparing prices. NOTE that all models include torondal power supply. integral heat sink. glass fibre THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS
 OMP/MF 100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{US}$, T.H.D typical 0.002%, Input Sensitivity 500 mV , S.N.R. 110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.

PRICE: $£ 42.85$ + £4.00 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{US}$, T. H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110dB Size $300 \times 155 \times 100 \mathrm{~mm}$

PRICE:- £66.35 + £4.00 P\&P

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S. N.R. - 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$

PRICE:- 883.75 + £5.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.MS into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. 10 dB , Fan Cooled, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE:- $£ 135.85+£ 6.00$ PAP
OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ 3dB, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$

PRICE:- $£ 261.00+£ 12.00$ PAP
NOTE: MOS-FET MODULES ARE AVALLABLE IN TWO VERSION
STANCARD - INPUT SENS 500 OV BAND WIDTH STANDARD - INPUT SENS 500 mV , BAND WIDTH 100 KHz . Oh PEC (PROFESSIONAL EQUIPMENT COMPAIIBLE). INPUT SENS
775 mV BAND WIDTH 50 KHz ORDER STANDARD OR PEC

B.K. ELECTRONICS

UNIT 1 COMET WAY, SOUTHEND-ON-SEA ESSEX, SS2 6TR.
TEL.: 01702527572 FAX.: 01702-420248
Web:- http://www.bkelec.com E-mail:- Salesebkelec.com

Order your catalogue now on 01702554000 or visit and collect from one of our 48 stores nationwide. You can also purchase your catalogue from your local Maplin store, WH Smith and John Menzies.

CATALOMU5

- Over 1,000 new produts
- Includes over $\mathbf{8 5 0}$ worth of discount vouchers
- Order code CA18

UBLECD

- Includes Filzz datashect CDriom
- Fries Mcaliee antiovirus software
- Frise 30 day Demon Internet trial
- Order code c0,02

the
 Key

better selection and service

Telephone 01702554000 with your enquiry

ISSN 02623617
PROJECTS . . THEORY . . NEWS COMMENT . . . POPULAR FEATURES .

VOL. 28 No. 2 FEBRUARY 1999

EVERYDAY

 PRACTICALThe No. 1 Magazine for Electronics Technology and Computer Projects

Next Month ETI readers join us - see page 83

[^1]
Projects and Circuits

PIC MIDI SUSTAIN PEDAL by Robert Penfold
Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit
LIGHT ALARM by Gavin Cheeseman
Looking for undercover protection? Try this simple light-activated alarm!
WIRELESS MONITORING SYSTEM - $\mathbf{1}$ by James Humpris
Low cost radio-linked short-range data logging is now readily and simply available
INGENUITY UNLIMITED hosted by Alan Winstanley
Zener Diode Tester; Microcontroller Interface for A.C. Monitoring; Reverse Polarity Indicator; A.F. Sweep Signal Generator
PhizzyB COMPUTERS - 4 by Clive 'Max" Maxfield, Alvin Brown and Alan Winstanley
Constructing and testing the 8 -switch Polling and Latching modules

Series and Features

TECHNIQUES - ACTUALLY DOING IT by Robert Penfold 98
Getting it working when it doesn't!
SCOLAR POWER by Terry de Vaux-Balbirnie B.Sc.
Schools are switching on to a new Government solar power initiative
PhizzyB COMPUTERS - 4 by Clive 'Max' Maxfield and Alvin Brown120

Examining the merits of Polling and Latching techniques
NEW TECHNOLOGY UPDATE by lan Poole
MESFETS, PHEMTs and HBTs, examining the latest r.f. semiconductor techniques for cellular phones
CIRCUIT SURGERY by Alan Winstanley
Electret "Mics"; Textbook Voltage; Relays - More Contacts; P.C.B. Facilities in Singapore

NET WORK - THE INTERNET PAGE surfed by Alan Winstanley Freeserve Rising Fast; Give it a Whirl; More to Come

Regulars and Services

EDITORIAL

BACK ISSUES Did you miss these? 88
INNOVATIONS - Barry Fox highlights technology's leading edge 91
Plus everyday news from the world of electronics
ELECTRONICS VIDEOS Our range of educational videos 101
SPECIAL OFFER Save $£ 100$ on an $80 \mathrm{~W}+80 \mathrm{~W}$ Hi-fi Stereo Amp 109
CD-ROMS FOR ELECTRONICS 118Parts Gallery + Electronic Circuits and Components; Digital Electronics;plus PICtutor, plus Modular Circuit Design
SHOPTALK with David Barrington 131
The essential guide to component buying for EPE projects
READOUT John Becker addresses general points arising 132
DIRECT BOOK SERVICE 137
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 140
PCBs for EPE projects - some at "knockdown" prices! Plus EPE software ADVERTISERS INDEX 144
Our March '99 issue will be published on Friday, 5 Readers Services - Editorial and Advertisement Departments 83

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BUL
 $6,000,000$ Items EX STOCK
 VIDEO MONITOR SPECIALS

One of the highest specification monitors you will ever see At this price - Don't miss it!

 LENT Hus Lsed concion.
 VGA cabli for IBM PC Included.
Extemal cables for other types of compuers CALL
As New - Ex Demo 17" 0.28 SVGA Mitsubishl Diamond Pro monftors Full multisync atc. Full 90 day guarantee. $£ 325.00$ (E) Just in = Microvtec $20^{\text { }}$ VGA (800×600 res.) colour montiors. Good SH condition - from £299-CALL for Info
 colour monitor with both RGB and standard composite 15.625
Khz video inputs via SCART socket and separate phono facks. Khz video inputs via SCART socket and separate phono jacks.
Integral audio power amp and speaker for all audlo visual uses. Integral audio power amp and speaker for all audlo visual uses.
Will connect direct to Amiga and Atarl BBC computers. Ideal for ail Will connect direct to Amiga and Atarl BBC computers. ldeal for all
video monitoring / securtty applications with direct connection to most colour cameras. High quality with many features such as used condition - fully tested-guaranteed Only E 99
(E)
Dimensions: W14" $\times H 12 \%^{-} \times 151 / 2^{\prime}$ D.
PHILPS HCS31 Ultra compact 9^{n} colour video monitor with standord composte monitoring / socurity applications. High quality ex equipment for all monitoring / security applications. High quality, ex-equipment 240 VAC mains powered. Only $£ 79.00$ (D)

11". Good used condition. Only $£ 125$ (E)
HARD DISK DRIVES

(2." CONNER CP3024 20 mb MDE IF RFE (or equiv.) RFE

. CONNER CP3044 $40 \mathrm{mbIDEL} / \mathrm{F}$ (or equiv.) RFE

- WESTER 40 S Prodrive 42 mb SCSI I/F, New RFE MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE - HP 9754850 MD SCSI RFE tested 270 RFE tested NEC D2246 85 Mb SMD interace. Now
FUJTISU M2322K 160 Mb SMO I/F RFE tested
FUNTSU M2392
Many other dirives in stock - Shilpping on all drives is co

20" $22^{\prime \prime}$ and 26" AV SPECIALS complete with composite video \& optional sound input. Attractiv

20"...ع135 DC POWER SUPPLIES
Virtually every type of power
10,00ply you cin

LOW COST PC'S

Always over 1000 PC's from stock
call or seares and accessories

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

MITS. \&FA3445ETKL $14^{" 1}$ industrial spec SVGA monito 1 kW to 400 kW . 400 Ht 3 phase power sourcee - ax stock
IBM 8230 Type 1, Token ring base unit driver IBM 8230 Ty
£245
عPOA Wayne Kerr RA200 Audio frequency response enalyser IBM $53 F 5501$ Token Ring ICS 20 port libe modules
IBM MAU TTken ring distribution panel $18223-23-5050 \mathrm{~N}$ Intel SBC 486/125CO8 Enhanced Multibus (MS
Zeta $3220-05$ A0 4 pen HPGL fast drum plotters Zeta $3220-05$ AO 4 pen HPGL fast drum plotiers
NIkon HFX-11 (Ephiphot) exposure control unit Motorola VME Bus Boards \& Components List. SAE / Trio $0-18$ vdc linear, metered 30 amp be
Fulitsu M3041R 600 LPM band printer Fulitsu M3041R 600 LPM band printer
Fujlitsu M30410 600 LPM printer with
Parkin Elmer 299B Intrared spectronhtwork interface
Perkin Eimer 597 Intrared spectroohotometer
VG Electronles 1035 TELETEXT Decoding Margin Meter Ughtesand 60 output high spoc 2u rack mount Video VOA
Sekonic SD 150 H 18 channel digita/ Hybrid chat recorder Sokonic SD $150 H 18$ channel digitat I Hybrid chant record Taylor Hobson Talysurf amplifier / recorder
ADC SB200 Carbon dioxide gas delector / monitor ADC SB200 Carbon dioxide gas delector / m
System VIde0 1152 PAL wavetorm monitor
ANRITSU 96544 Optical DC-2.5G/h waveform monitor ANRISU MS 900111 1 0.6-1.7 iM optical spectrum analy ANRITSU ML93A optical power meter
ANRITSU Fibre optic chracateristic test set
VISION ENGINEERING TS3 Dymascopic microscope RaS FTDZ Dual sourd unit
RaS SBUF-E1 Vision modulator
WILTRON $6630 \mathrm{~B} 12.4 / 20 \mathrm{GHz}$
WILTRON 6630 B 12.4/20GHz RF sweep generator TEK 2445150 MHz 4 trace oscilloscope
TEK 2465300 Mhz 300 MHz oscilloscope rack moun TEK 1502 Portable TDR (time domain reflectometer)
PHILIPS PW173010 XRAY generator with accessories
CLAUDE LYONS $12 A 240 \mathrm{~V}$ single phase auto. volt. reg

19" RACK CABINETS Superb quality 6 foot $40 U$ Virtually New, Ultra Smart Less than Half Price!

Top quality ${ }^{19}$ reck cabinets made in UK by

 Optima Enclogures Lid. Units featuredesigner, smoked acrylic lockable front door, full height lockable hatf louvered back doo adjustable internal fixing struts, ready punched or any configuration of equipment mounting
plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versatl/a we have ever sold. Racks may be stacked side by side and therefor require only two side panels to stand singly or in multiple bays
Overall dimensions are: $7742^{\circ} \mathrm{H} \times 32 \%^{\prime} \mathrm{O} \times 22^{\prime \prime} \mathrm{W}$. Order as: OPT Rack 1 Complate with removable side panels. $£ 345.00$ (G) OPT Rack 2 Rack, Less side panels £245.00 (G)
$19^{\prime \prime} 22^{\prime \prime}$ \& $24^{\prime \prime}$ wide 3 to 46 U high. Available from stock !!.

32U - High Quality - All steel RakCab

 Made by Eurocraft Enclosures Ltd to the highest possible spec side foatures all steal construction with removable hinged for easy acces five eecure 5 lever barrel locks. The front door $\%$ is constructeddesigner styl enable status in panel, ye
member
equipment. The two movable vertical fixing rack 'cage nuts'. A maina distributlon panel standard pin Euro sockets and
utillity socket.

$$
\begin{aligned}
& \text { utility socket. Overall ventilation is provided } \\
& \text { fully louvered back door and double skinned top s }
\end{aligned}
$$

with top and side louvres. The top panel may be removed for fitting castors and floor to the sub plate etc. Other features include: fitted cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions

A superb buy at only $£ 245.00$ (G)

 $42 U$ version of the above only $£ 345-$ CALL
BATTERY SCOOP - 50\% off !!

the most amaxing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Lid, type SBS15

 rechargeable batteries. Made by Hawker Energy Lid, type SBS15featuring pure lead plates which offer a far superior sheff \& guaranteed 15 year service life. Fully BT \& BS6290 approved. Supplied BRAND NEW and boxed. Dimensions 200 , mat oach 1 Our Price $£ 35$ each (c) or 4 for $£ 99$ (D) RELAYS - 200,000 FROM STOCK Save Ex£e's by choosing your next relay from our Maaslve Hermetlcally Sealed, Contactora, Time Delay, Reed, Mercury Wotted, Solld State, Printed circult Mounting, CALL US WITH YOUR NEEDS. Meny obsolete types from atock. Save Exer's
LOW COST RAM \& CPU'S

```
and PC-AT compatible card with 2 Mbytes of memory on board.
```

Cand is ulty selectable for Expanded or Extended (286 processo
Fully tested and guaranteed. Windows compatible. $E 59.95$
Half length 8 blt memory upgrade cards for PC AT XT expands
memory either 256 k or 512 k in 64 k steps. May also be used to fill
Ordar as: XT RAM UG. $256 \mathbf{k}$. £34.95 or $512 \mathrm{k} £ 39.95$

 SIMM SPECIALS
 1 MBx 9 SIMM 9 chip 120 ns s 50 Only $\begin{aligned} & \text { Ons } 8.50 \\ & \text { 711.95 }\end{aligned}$
MB $x 9$ SIMM 9 chip 80 ns $£ 10.50$
4 MB 70 ns 72 pin SIMM with parity Only $£ 35.00$FUL RANGE OF CO-PFOCESSOR'S EX STOCK - CAL FOR EM:MOTOROLA 25 Mhz 68040 (XC68040RC25M) CPU'S $£ 59.00$
shipping charges for RAM / CPU upgrades is code B
SOFTWARE SPECIALS
NT4 WorkStation, complete- OEM packaged.
Specia Price ONL Y £99.00
Microson - Windows for workgroups 3.17 \& DOSon $31 / 2$ disks with licence \& concise documentation. $\mathrm{E}^{2} 39.95$00 S 5.0 on $31 / 2^{\prime}$ disks with concise books chw QBasic. $\mathbf{~} 14.95$Wordperfect 6 for DOS supplied on $31 / 2^{\prime}$ disks with manual $£ 24.95$shipping charges for software is code B

DISTEL on the web II - Over 16,000,000 Items from stock - www.distel.co.uk

NEXT MONTH

Abstract

Next month we will be joined by the readers of ETI. We have just purchased ETI (Electronics Today International) from Nexus Special Interests Ltd, and will merge the magazine into EPE from the March 99 issue. This will mean you will be getting an even better magazine and, with the strength of an increased readership, we will be able to continue to bring you the widest range of projects, features, news and products to buy.

Watch out for the familiar Everyday Practical Electronics logo on the news-stands - from next month you will also see the ETI logo on the cover, as shown below. See the Editorial page for more details.

TIME AND DATE GENERATOR

With the availability of cheap video cameras, more and more people are adding surveillance cameras to the exterior and interior of their homes. Cameras connected to a video recorder will record all sorts of amusing and sometimes nefarious activities, and usually it is useful to know the precise time that these events occurred. The generator inserts a steady and easily readable time and/or date caption onto any composite video signal. The time and date information is displayed at the bottom of the screen.

Although originally intended for adding time and date information to security cameras, it is equally useful for adding time and date to home videos for those who have not got this capability built into their video camera. This design is based on a PIC16C84 which performs the real time clock function and display character generation. The main features of the unit are: Adds time or date or both to a composite video signal (NTSC, PAL and SECAM video signals) - Selectable character height of 5,10, 15 or 20 lines \cdot Inverse or normal video display - Day and month display are swappable for those who prefer the American standard - Leap year correction - Year 2000 compliant.

AUTO CUPBOARD LIGHT

Commercial battery-operated cupboard lights are widely available in D / Y stores and by mail order from electronic component suppliers. These lamps are useful as a simple means of lighting up a cupboard or other dark area. They are also handy for garden sheds and other places where no mains supply exists.

The one drawback is that if they are left on, the batteries are exhausted with monotonous (and expensive) regularity. This simple project provides automatic timed control of the light.

SMT SMOKE ABSORBER

When working with tiny surface mount devices (SMDs) the constructor is drawn closer to the circuit in order to get a clear view of the soldering operation. Close working with SMDs therefore involves a much higher risk of solder fumes being inhaled and potential bronchial problems. The smoke absorber is very compact and can be placed close to any circuit during population. It will remove the solder fumes from the immediate area.

The smoke absorber is automatically triggered by the heat from the soldering iron and it switches off after about half a minute unless re-triggered. Very useful for all hobbyist soldering operations.

PLUS • PHIZZYB-5, WIRELESS MONITORING-2 AND ALL THE REGULARS

NO ONE DOES IT BETTER

EVERYDAY PRACTICAL

ELEETRONICS

DON'T MISS AN ISSUE - PLACE YOUR ORDER NOW!
Demand is bound to be high

SHERWOOD ELECTRONICS

FREE COMPONENTS

Buy $10 \times £ 1$ Special Packs and choose another one FREE

SP1	$15 \times 5 \mathrm{~mm}$ Red Leds	SP132	$2 \times$ TL082 Op.amps
SP2	$12 \times 5 \mathrm{~mm}$ Green Leds	SP133	20×1 N4004 diodes
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds	SP134	15×1 N4007 diodes
SP6	$15 \times$ Red Leds	SP136	$3 \times \mathrm{BFY} 50$ transistors
SP7	$12 \times$ Green Leds	SP137	$4 \times$ W005 $\dagger .5$ A bridge rectifiers
SP10	$100 \times 1 \mathrm{~N} 4148$ diodes	SP138	$20 \times 2.2 / 63 \mathrm{~V}$ radial elect. caps.
SP11	$30 \times 1 \mathrm{~N} 4001$ diodes	SP140	$3 \times$ W04 1.5A bridge rectiflers
SP12	30×1 4002 diodes	SP142	$2 \times$ Cmos 4017
SP18	$20 \times$ BC182 transistors	SP143	5 Pairs min. crocodile clips
SP20	$20 \times$ BC184 transistors		(Red \& Black)
SP21	$20 \times$ BC212 transistors	SP144	$3 \times$ TIP31A transistors
SP23	$20 \times$ BC549 transistors	SP145	$6 \times 2 \mathrm{XX300}$ transistors
SP24	$4 \times$ Cmos 4001	SP146	$10 \times 2 N 3704$ transistors
SP25	4×555 timers	SP147	$5 \times$ Stripboard 9 strips $\times 25$ holes
SP26	4×741 Op.amps	SP151	$4 \times 8 \mathrm{~mm}$ Red Leds
SP28	$4 \times$ Cmos 4011	SP152	$4 \times 8 \mathrm{~mm}$ Green Leds
SP29	$4 \times$ Cmos 4013	SP153	$4 \times 8 \mathrm{~mm}$ Yellow Leds
SP31	$4 \times$ Cmos 4071	SP154	$15 \times \mathrm{BC} 548$ transistors
SP36	$25 \times 10 / 25 \mathrm{~V}$ radial elect. caps	SP156	$3 \times$ Stripboard, 14 strips \times
SP37	$15 \times 100 / 35 \mathrm{~V}$ radial elect. caps.		27 holes
SP39	$10 \times 470 / 16 \mathrm{~V}$ radial elect caps.	SP160	$10 \times 2 N 3904$ transistors
SP 40	$15 \times \mathrm{BC} 237$ transistors	SP161	10×2 N3906 transistors
SP41	$20 \times$ Mixed transistors	SP165	$2 \times$ LF351 Op.amps
SP42	$200 \times$ Mixed 0-25W C.F. resistors	SP167	$6 \times$ BC107 transistors
SP47	$5 \times \mathrm{Min}$. PB switches	SP168	$6 \times \mathrm{BC} 108$ transistors
SP102	20×8-pin DIL sockets	SP175	$20 \times 1 / 63 \mathrm{~V}$ radial elect. caps.
SP103	15×14-pin DIL sockets	SP177	$10 \times 1 \mathrm{~A} 20 \mathrm{~mm}$ quick blow
SP104	15×16-pin DIL sockets		fuses
SP 105	$5 \times 74 \mathrm{LS} 00$	SP182	$20 \times 4.7 / 63 \mathrm{~V}$ radial elect. caps.
SP109	$15 \times$ BC557 transistors	SP183	$20 \times$ BC547 transistors
SP111	$15 \times$ Assorted polyester caps	SP187	$15 \times$ BC239 transistors
SP112	$4 \times$ Cmos 4093	SP191	$3 \times$ Cmos 4023
SP115	$3 \times 10 \mathrm{~mm}$ Red Leds	SP192	$3 \times$ Cmos 4066
SP116	$3 \times 10 \mathrm{~mm}$ Green Leds	SP193	$20 \times \mathrm{BC} 213$ transistors
SP118	$2 \times$ Cmos 4047	SP194	$10 \times$ OA90 diodes
SP120	$3 \times 74 \mathrm{LS} 93$	SP195	$3 \times 10 \mathrm{~mm}$ Yellow Leds
SP124	$20 \times$ Assorted ceramic disc caps	SP197	6×20 pin DIL sockets
SP130	$100 \times$ Mixed 0.5W C.F. resistors	SP198	5×24 pin DLL sockets
SP131	$2 \times$ TL071 Op.amps		
	RESISTOR PACKS - C.Film	1999 Catalogue £1 inc. P\&P or FREE with first order.	
RP3	5 each value - total $3650.25 \mathrm{~W} \quad £ 2.80$		
RP7	10 each value - total 7300.25 W ¢4.00		Orders to:
RP10	1000 popular values $0.25 \mathrm{~W} \quad £ 5.80$		Orders to:
RP_{4}	5 each value-lotal $3650.5 \mathrm{~W} \quad £ 3.75$		arwood Electronics,
RP8	10 each value-total $7300.5 \mathrm{~W} \quad £ 6.35$		famson St, Mansfield,
RP11	1000 popular values $0.5 \mathrm{~W} \quad \mathrm{E} 8.10$		Notts. NG19 6TD.

SQUIRES

MODEL AND CRAFT TOOLS

A comprehensive range of Miniature Hand and Power Tools and now an extensive range of Electronic Components featured in a fully illustrated
336-page Mail Order Catalogue 1999 Issue SAME DAY DESPATCH FREE POST \& PACKING

For your free copy of our catalogue write, telephone or fax to:

Squires, 100 London Road, Bognor Regis, West Sussex PO21 1DD
Tel: 01243842424
Fax: 01243842525

Free Additional Transmitter with every order !

Otder the FM TXXM-418-A/F and SILRX-418-A/F palr (as shown above) for only $£ 25.00+V A T$ and get an additional transmitter free! P \& P E 1.50

Please call tor a free catatogue, wall chant or a competitive volume quotation on an any hadiometrix Lid module, Simply fust e-mali safes@radtec.demon,co.uk. alternatively Fax or Telophone quoting ref: EPE-RMI

Your official Radiometrix Distributor

11
 CNATIOTNAL
 COLLEGEOF
 TECHNOLOGY
 DISTANCE
 LEARNING COURSES in:

Analogue and Digital Electronics Circuits, Fibres \& Opto-Electronics Electronic Testing \& Fault Diagnosis Programmable Logic Controllers Mechanics and Mechanisms GCSE and BTEC Mathematics

Courses to suit beginners and those wishing to update their knowledge and practical skills Courses are delivered as self-contained kits No travelling or college attendance Learning is at your own pace Courses may have BTEC Certification and Tutoring

For information contact
NCT Lid., P.O. Box 11
Wendover, Bucks HP22 6XA
Telephone 01296 624270; Fax 01296625299
Web: http://www.nct.Itd.uk

SDATA-NET
 The Encyclopaedia of Electronic Circuits

Whether you are an Amateur or an Engineer, this encyclopaedia is an incredible mine of information and will help you to save hundreds of hours of search.

The 10 CD-ROM set contains complete datasheets on over $\mathbf{1 8 0 . 0 0 0}$ circuits from 61 manufacturers which represents more than 300.000 pages of technical information in PDF format.

The search engine helps you to find the datasheet of a specific circuit in seconds, compare several circuits at the same time and print or export the data.

539 (inc. VAT and UK Postager, please send your order to

Dannell Electronics Ltd

Unit 15, Enterprise Court
Lakes Road • Braintree • Essex CM7 3QS Phone : 01376550262 • Fax : 01376550019 email : datanet@dannell.co.uk

Data-Net runs with Windows® 3.1/95/NT3.51 and NT 4.0
 10 CDs, 180.000 circuits, 300.000 pages of info. for $£ 39$ Only (inc. vat and UK postage)

Cheques \& Postal Orders should be made payable to Dannell Electronics Ltd. Visa, Master/Eurocard orders are accepted. Please give card number and expiry date. For orders from within EU, please add $£ 5.50$ for airmail postage. For foreign orders, we use the VAT portion of the price for airmall postage and packing.

E1 BARGAIN PACKS - List 1

1,000 items appear in our Bargain Packs List request one of these when you next order

2 LITHIUM COIN CELLS, 3 b p.c.b. mounting, Order Ref

 107$2 \times 5$ A BRIDGE RECTIFIERS with heatsink couplers for 12 V charger, Order Ret 1070
$1 \times 12 \mathrm{~V}$ STEPPER MOTOR, 7.5 degrees. Order Ref 910.
1×10 PACK SCREWDRIVERS. Order Rel 909
$2 \times$ AMP PULL CORD CEILING SWITCHES, brown Order Ref: 921
$5 \times$ REELS INSULATION TAPE. Order Ref 911
$2 \times$ CORD GRIP SWITCH LAMP HOLDERS. Order Ref 913.
$1 \times$ DC VOLTAGE REDUCER, 12V-6V. Order Ref: 916. LIGHTWEIGHT STEREO HEADPHONES, moving coil so superior sound. Order Ref. 896
2×25 W CROSSOVERS for 40 hm loudspeakers. Order Rel: 22.
$2 \times$ Nicad CONSTANT CURRENT CHARGERS, easily adaptable to charge almost any NiCad Battery. Order Ret: 30.
18V-0-18V 10VA mains transformer. Order Ref: 813 $2 \times$ WHITE PLASTIC BOXES with lids, approx. 3 in. cube Lid has square hole through the centre so these are ideal for light-operated switch. Order Ref: 132
$2 \times$ REED RELAY KITS, you get 8 reed switches and 2 coil sets. Order Ref: 148
12V-0-12V 6VA mains transformer, p.c.o mounting Order Rel 938
$1 \times$ BIG-PULL SOLENOID, mains operated, has $1 / 2 \mathrm{in}$ pull. Order Ref: 871
$1 \times$ BIG-PUSH SOLENOID, mans operated, has $1 / 2 \mathrm{in}$ push. Order Ret: 872
$1 \times$ MINI MONO AMP. $3 W$ into 4 ohm speaker or $1 W$ into 8 ohm. Order Ret: 495
$1 \times$ MINI STEREO 1 W AMP. Order Rel: 870.
15V DC 150mA P.S.U., nicely cased. Order Ref: 942
$1 \times \mathbb{I N}$-FLIGHT STEREO UNIT is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC pasengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ PANEL METER. Full vision face 70 mm square. Scaled 0-100. Order Ref: 756
$2 \times$ LITHIUM BATTERIES. 2.5 V penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ TELEPHONE LEADS. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552
$1 \times 12 \mathrm{~V}$ SOLENOID. Has good $1 / 2 \mathrm{in}$. pull or could push if modifled. Order Ref: 232
$3 \times$ IN-FLEX SWITCHES. With neon on/off lights, saves leaving things switched on. Order Ref:
2×6 V 1 A MAINS TRANSFORMERS. Upright mounting
with fixing clamps. Order Ret: 9 .
$\mathbf{1 \times H U M I D I T Y}$ SWITCHES. As the air becomes damper the membrane stretches and operates a microswitch Order Ret: 32
$4 \times 13 A$ ROCKER SWITCH. Three tags so on/off, or changeover with centre off. Order Ref: 42.
$1 \times$ SUCK OR BLOW-OPERATED PRESSURE SWITCH Or it can be operated by any low pressure variation, such as water level in tanks. Order Ref: 67.
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ POWER SUPPLY. Nicely cased with mains input and 6 V output lead. Order Ref: 103 A
$2 \times$ STRIPPER BOARDS. Each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of capacitors, etc. Order Ref: 120
12 VERY FINE DRILLS. For p.c.b. boards etc. Normal cost about 80p each. Order Rel: 128
$5 \times$ MOTORS FOR MODEL AEROPLANES. Spin to start so needs no switch. Order Ref: 134
$6 \times$ MICROPHONE INSERTS. Magnetic 400 ohm , aiso act as speakers. Order Ref: 139.
$6 \times$ NEON INDICATORS. In panel mounting holders with lens. Order Ref: 180
$1 \times$ IN-FLEX SIMMERSTAT. Keeps your soldering iron etc. always at the ready. Order Ref: 196
$1 \times$ ELECTRIC CLOCK. Mains operated. Put this in a box and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ ALARMS. Makes a noise about as loud as a car horn, All brand new. Order Ref: 221.
$2 \times(6 \mathrm{in} . \times 4 \mathrm{in}$.) SPEAKERS. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Rel: 243
$1 \times$ PANOSTAT. Controls output of boiling ring from simmer up to boil. Order Ret: 252
$2 \times$ OBLONG PUSHSWITCHES. For bell or chimes, these can switch mains up to 5A so could be footswitch if fitted in pattress. Order Ref: 263.
$50 \times$ MIXED SILICON DIODES. Order Ref: 293
1×6 DIGIT MAINS OPERATED COUNTER. Standard size but counts in even numbers. Order Ref: 28 .
$2 \times 6 \mathrm{~V}$ OPERATED REED RELAYS. One nor 2×6 V OPERATED REED RELAYS. One normally on, other normally closed. Order Ret: 48 .
$1 \times$ CABINET LOCK. With two keys. Order Ref: 55
$61 / 28 \Omega 5$ WATT SPEAKER. Order Ref: 824
$1 \times$ SHADED POLE MAINS MOTOR. ${ }^{3 / 4 i n}$. stack, so quite powerful. Order Ref: 85
$1 \times$ CASE, $3^{1 / 2} \times 2^{1 / 4} \times 1^{3 / 4}$ with 13 A socket pins. Order Ref: 845
$2 \times$ CASES. $2^{1 / 2} \times 2^{1 / 4} \times 1^{3 / 4}$ with 13 A pins. Order Ref: 565.
$4 \times$ LUMINOUS ROCKER SWITCHES. 10A mains. Order Ref: 793

BATTERY MOTOR WITH GEARBOX. Will operate on any DC voltage between 6 V and 24 V , price $£ 3$ Order Ref: 3P108. A speed controller is available for this, $£ 12$ in kit form or $£ 20$ made up, but if you intend to operate it from the mains, then our power supply 2P3 will give you 3 speeds and will also reverse. Price of power supply is $£ 2$
A MUCH LARGER PROJECT BOX. Size $216 \mathrm{~mm} \times$ $130 \mathrm{~mm} \times 85 \mathrm{~mm}$ with lid and 4 screws. This is an ABS box which normally retails at around £6. All brand new, price £2.50. Order Ref: 2.5 P 28.
BT TELEPHONE EXTENSION WIRE. This is proper heavy duty cable for running around the skirting heavy duty cable for running around the skirting
board when you want to make a permanent extenboard when you want to make a permanent exten-
sion. Four cores properly colour coded, 25 m length sion. Four cores properly
only £1. Order Ref: 1067
only £1. Order Ref: 1067.
LARGE TYPE MICROSWITCH. With 2 in . lever,
changeover contacts rated at 15 A at $250 \mathrm{~V}, 2$ for $£ 1$ Order Ref: 1/21R7.
MINI MICROSWITCH. Only approximately 15 mm long with a 20 mm lever which could quite easily be removed, changeover contacts rated at $5 A$ AC, $50 p$ each. Order Ref: 1/21R8
FLEX PROTECTORS. Rubber, 30 mm long, 8 mm diameter with a 12 mm shoulder. Ideal for protecting flex passing through a metal panel, 5 for $£ 1$. Order Ref: 1/21R10.
10K POT. With double-pole mains on/off switch good length of $1 / 4 i$ in. spindle and hex fixing nut, 50 p good length of $1 / 1 \mathrm{in}$. Spind
each. Order Ref: $1 / 22$ R6 each. Order Ref: $1 / 22$ R6.
DITTO but $5 K$. Order Ref:
DITTO but 5 K . Order Ref: $1 / \dagger 1$ R24
BALANCE ASSEMBLY KITS. Japanese made when assembled ideal for chemical experiments complete with tweezers and 6 weights 0.5 to 5 grams. Price £2. Order Ref: 2P444
SUPER CROMPTON PARKINSON MAINS MOTOR. Reaily well made, totally enclosed by ventilated framework. Size approximately 4 in diameter, 4 in . high and with 2 in , of a ${ }^{3 / 81 / n}$. spindle. Speed is 750rpm, hp is not quoted but we estimate this to be around $1 / 6 \mathrm{hp}$. Price $£ 10$. Order Ref: this to
10 P 149.
EQUIPMENT COOLING BLOWER. Near enough 5 in . square and $1 / 2 / 2 \mathrm{in}$. thick but a really good air 5 in . Square and $11 / 2 \mathrm{in}$. thick but a really good air
mover. Mains operated, price $£ 4$. Order Ref: 715 L . mover. Mains operated, price £4. Order Ref: 715L. OVEN THERMOSTAT with knob calibrated so you can set it to cut out at any temperature up to $600^{\circ} \mathrm{F}$, £3. Order Ref: 3P229
DOORBELL PSU. This has A.C. voltage output so is ideal for operating most doorbells. The unit is totally enclosed so perfectly safe and it plugs into a 13A socket. Price only E1. Order Ref: 1/30R1

THIS MONTH'S TWO FOR ONE OFFER IS THE POWER SUPPLY

Made by Astec, outputs are 12 V at 4 A and 5 V at 15 A . This PSU can be modified with a few extra components and would then give 12 V at 10A d.c. We give the details. The price is still $£ 9.50$ but you get two instead of one.
Offer ends 31st December. Order Ref: 9.5P4.
GEAR WHEELS. Set of 5 , quite small, shouid enable you to get a variety of speeds, mounted in a metal case but easy to remove and use separately. Price £1 the set. Order Ref: D409.
ULTRASONIC MOVEMENT DETECTOR. Nicely cased, free standing, has internal alarm which can be silenced. Also has connections for external speaker or light. Price £ 10 . Order Ref: 10P154.
CYCLE LAMP BARGAIN. You can have 1006 V 0.5 A MES butbs for just $£ 2.50$ or 1,000 for $£ 20$. They are beautifully made, slightly larger than the standard are beautifully made, slightly larger than the standard
6.3 V pilot bulb so they would be ideal for making 6.3 V pilot bulb so they would be ideal for making
displays for night lights and similar applications. 50 displays for night lights and similar applications. 50
joined in series can be connected to the mains and joined in series can be connected to the mains and
would make a very attractive window display. 100 for £2.50. Order Ref: 2.5P29.
$12 \mathrm{~V} \times 12 \mathrm{~V}$ RELAY. Miniature, clear platic enclosed, has one set changeover contacts, one set that breaks contact and 3 sets that make contact. Price £1 each. Order Ref: GR30
COMPONENT MOUNTING PANEL. Heavy Paxolin, size approximately $10 \mathrm{in} . \times 2 \mathrm{in}$. with 32 pairs of brass pillars for soldering or binding on components, $£ 1$. Order Ref: 1/7RC26
AIR-SPACED TUNING CAPACITOR. Twin 100 pF with trimmers, extra small. Fixed from the front by 3 screws, £2 each. Order Ref: 1/7RC29
PEA LAMPS. Very tiny, only 4 mm , but 14 V at 0.04 A , wire-ended, 25p each. Order Ref: $1 / 7$ RC28
HIGH AMP THYRISTOR. Normal two contacts from the top and heavy threaded fixing underneath. We don't know the amperage of this but think it to be at least 25A. Price 50p each. Order Ref: $1 / 7$ RC43.
THREE LEVEL PRESSURE SWITCH. All 3 are Iow pressures and the switch could be blow-operated. With a suitable tubing these switches could control the level of liquid, etc., price $£ 1$. Order Ref: 67
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a Xenon tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price £5. Order Ref: 5P267.

MEDICINE CUPBOARD ALARM. Or it could be used to warn when any cupboard door is opened used to warn when any cupboard door is opened.
The light shining on the unit makes the bell ring. The light shining on the unit makes the bell ring.
Completely built and neatly cased, requires only a
battery, £3. Order Ref 3P155.

battery, £3. Order Ref 3P155.

WATER LEVEL ALARM. Be it bath, sink, cellar sump or any other thing that could flood. This device will tell you when the water has risen to the prese level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, £3. Order Ref: 3P 156.
BIKE RADIO. In fact, it's more than a radio, it's an alarm and a spotlight. The radio is battery operated, of course, and needs 3 AA cells. Only one band but this is the FM band so will receive Radio 1 and 2 Comes complete with handlebar fixing clips. Price $£ 4$ Comes complete
Order Ref: 4P72.
EMERGENCY LIGHTING UNIT with perspex cover Contains internal rechargeable batteries and its own charger to operate an internal fluorescent tube. Stays on for 3 hours should mains fail. Price $£ 15$. Order Ref: 15P32.
PHILIPS 9in. MONITOR. Not cased, but it is in a frame for rack mounting. It is high resolution and was made to work with the IBM 'One per disk' computer Price £ 15 . Order Ref: 15P1
METAL CASE FOR 9in. MONITOR. Supplied as a flat pack, price £12. Order Ref: 12P3.
TELEPHONE EXTENSION LEAD. Nicely made and BT approved. Has the plug into BT socket one end and the telephone socket the other end, total length and the telephone socket t
INSULATION TESTER WITH MULTIMETER. Inter INSULATION TESTER WITH MULTIMETER. Inter-
nally generates voltages which enable you to read nally generates voltages which enable you to read
insulation directly in megohms. The multimeter has insulation directly in megohms. The multimeter has
four ranges, $A C / D C$ volts, 3 ranges $D C$ milliamps, four ranges, $A C / D C$ volts, 3 ranges $D C$ milliamps, 3 ranges resistance and 5 amp range. Ex-British Telecom but in very good condition, tested and guaranteed, probably cost at least $£ 50$ each, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ref: 7.5P4
REPAIRABLE METERS. We have some of the above testers but faulty, not working on all ranges, should be repairable, we supply diagram, £3. Order Ref: 3P 176.
PIANO ON KEY CHAIN. Although it is quite small, only 20 mm long, it will play any tune. instructions with it tell you which keys to press for 'Happy Birthday' 'Twinkle Twinkle Little Star', 'Jingle Bells' and 'Lon don Bridge'. It is also a light, it has a little lamp which can be operated by the end switch. Battery operated (not included), price £1.50. Order Ref: 1.5P39.
12V RECHARGEABLE YUASA BATTERY. Sealed so usable in any position - suit golf trolley, lawn mower, portable lights, etc., etc., only $£ 3.50$. Order Ref 3.5P11
CHARGER FOR YUASA BATTERY. This battery charger plugs into a 13A socket, charges at approximately $1 / 2 A$ so it would charge this battery overnight. Complete with croc clips, ready to go, $£ 5$. Order Ref: 5P269.
8 mm PROJECTORS. With
zoom lens, brand new and perfect, complete with one reel and handbook. Regular price over $£ 100$, yours for £39. Order Ref: 39P1

Ditto but with sound as well
and a mike, $£ 49$. Order Ref:
49P 1 . The zoom lens alone
SOLDERING IRON Supe is worth more.
life ceramic element, heavy tra special job. Complete with plated wire stand and 245 mm lead, £3. Order Ref: 3P221
DYNAMIC MICROPHONE. 500 ohm, plastic body with black mesh head, on/off switch, good length lead and terminated with audio plug, £2. Order Ref: 2P220.

$1 / 10$ th HORSEPOWER 12 V MOTOR. Made by Smiths, the body length of this is approximately 3 in ., the diameter 3 in . and the spindle $5 / 16 \mathrm{in}$. diameter. Quite a powerful little motor which revs at 2000 rpm . Price 26 . Order Ref: 6P47.
MINI BLOW HEATER. 1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, price $£ 5$. Order Ref: 5P23.

TERMS

Send cash, PO, cheque or quote credit card number - orders under $£ 25$ add $£ 3.50$ service charge

Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH17 5PA Telephone: 01444881965

The Alternative Oscilloscope

Pico Technology provides an alternative to costly, bulky and complicated oscilloscopes. The ADC range of virtual instrumentation enables your PC to perform as an oscilloscope, spectrum analyser and digital multimeter.
∇ Upto $100 \mathrm{MS} / \mathrm{s}$ sampling and 50 MHz spectrum analysis
∇ A fraction of the price of comparable benchtop DSOs
∇ Simple Windows based user interface

The practical alternative The simple alternative Connection to a PC gives virtual instruments the edge over traditional
 down elusive
intermittent intermittent
faults easy. Combining several instruments into one small unit means it is lighter and m or e portable. When used with a notebook computer, field engineers can carry a complete electronics lab in their PC

Virtual instruments eradicate th
need for bewildering arrays of switches and dials associated
with traditional 'benchtop' scopes. The units are supplied with PicoScope for Windows software.
Controlled using the standard Windows interface, the software is easy to use with full on line help. Installation is easy and no configuration is required; simply plug into the parallel port and it is ready to go. We provide a two year guarantee and free technical support via phone, fax or E-mail.

Cull Seeing is understanding Call for a FRER demm disk or sisil aur web site.

The low cost alternative The Pico range of PC based oscilloscopes work with your PC - anything from a dustbin-ready 8086 to the latest pentium. The PicoScope software utilises your monitor to display data. This gives you a larger, clearer display than any scope, at a fraction of the price. The savings don't stop there: All those expensive upgrades needed for traditional oscilloscopes: such as FFT maths, disk drives and printers are already built into your computer. The PC has made computing affordable, now Pico has made test equipment affordable too. Seeing is understanding

[^2]

The complete monitoring system

Temperature! !The Enuira Man system, from Pico Technology is one of the most versatile and cost effective monitoring systems on the market today. It can measure temperatures from -55 to $300^{\circ} \mathrm{C}$, check light and humidity levels or record the position of a switched system. Its applications are endless; from food storage \& preparation to energy management.

At the core of the system is the logger, which stores up to 15,000 readings and displays them from each sensor in turn. Reports can be printed on a standalone printer or data sent to a PC for long term storage and graphical analysis using the powerful supplied software, EnviroMon for Windows.

The EnviroMon system records data 24 hours a day, 365 days a year, even if the mains power fails. Should a parameter goes out of range, it alerts you with various alarms or a telephone message.

EmuiraWan Starter kit £395 + vat

Call for full product range and FREE demo disk or visit our web site.

Pico Technology Limited, Broadway House,
149-151 St. Neots Rd, Hardwick, Cambridge, CB3 7QJ UK Tel: 01954-211716 Fax: 01954-211880
E-mail: post@picotech.co.uk http:www.picotech.com

The best things come in small packages

Oscilloscopes are becoming smaller and lighter: Now Pico Technology brings you the latest development, the osziFOX hand held scope.
Despite its small size, its performance can match that of a service oscilloscope. With sampling rates of up to 20 MSs , even signals in microprocessor circuits can be measured. The osziFOX is ideal for taking measurements in digital circuits, telephone installations. hobby electronics, production line tests and on-the-spot measuring.It provides the ultimate in portability and flexibility.
As with the rest of the Pico Technology range, the PC link gives the osziFOX the edge: the ability to print and save waveforms is just one example.
Complete price $£ 98.11$ including VAT + P\&P (UK), cables and software included.

Tel: 01954-211716 Fax: 01954-211880

 E-mail: post@picotech.co.ukVisit our web site: www.picotech.com Pico Technology Limited, Broadway House, 149-151 St Neots Rd_Hardwick Cambridee_CB3 70,

MAIL ORDER ONLY © CALLERS BY APPOINTMENT

- Efficient quartz controlled microcontroller pulse generation. - Full kit with headphones \& all hardware

PORTABLE ULTRASONIC

PEsT SCARER

A powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET outpu drives a special sealed transducer with in tense pulses via a special tuned transformer Sweeping frequency output is designed to give maximum output without any special setting up.
KIT 842
£22.56

SUPER ACOUSTIC PROBE

Our very popular project - now with ready built probe assembly and diecast box. Picks up vibrations amplifies, and drives headphones. Sounds from engines, watches, and speech through walls can be heard clearly. Useful for mechanics, instrument engineers and nosey parkers! A very useful piece of kit.
KIT 865
£29.95

DC Motor/Gearboxes
Our Popular and Versatile DC motor/Gearbox sets. Ideal for Models, Robots Buggies etc. 1.5 to 4.5 V Multi ratio gearbox
 gives wide range of speeds.
LARGE TYPE - MGL £6.95
SMALL - MGS - 14.77

Stepping Motors

MD38...Mini 48 step... 88.65 MD35...Std 48 step...£9. 99 MD200... 200 step... 12.99 MD24...Large 200 step...£22.95

PIC PIPE DESCALER

- SIMPLE TO BUILD
high POWER OUTPUT - SWEPT - AUDIO \& VISUAL MONITORING An affordable circuit which sweeps I the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave.
Kit includes case, P.C.B, coupling
coil and ali components.
High coil current ensures maximum effect. L.E.D. monitor

MICRO PEsT SCARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets/ pests away from newly sown areas play areas, etc. Uses power source from 9 to 24 volts.

- RANDOM PULSES

- HIGH POWER

- dUAL OPTION

KIT 867 \qquad
KIT + SLAVE UNIT.

WINDICATOR

 head. Mains power unit $£ 5.99$ extraKIT 856.

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

KIT 868f22.95 POWER UNIT.........£3.99

A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing

DUAL OUTPUT TENS UNIT

As featured in March '97 issue.
Set of Magenta have prepared a FUIL KIT for this electrodes excellent new project. All components, PCB $\mathbf{E 6 . 5 0}^{2}$ hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.
KIT $866 \ldots$. Full kit including four electrodes $£ 32.90$

.$£ 28.00$

Plug-in power supply $£ 4.99$
. 19.99
. 132.50

E.E. TREASURE HUNTER P.I. METAL DETECTOR

 MKIMagenta's highly developed \& acclaimed design. Quartz crystal controlled circuit MOSFET coil drive D.C. coupled amplification. Full kit includes

PCB, handle. PCB, ha
case $\&$ case \&
search coil.

- KIT INC. HEADPHONES
- EFFICIENT CMOS DESIGN - powerful coil DRIVE
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848.
£32.95

SUPER BAT DETECTOR

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE $20 \mathrm{kHz}-140 \mathrm{kHz}$

 NEW DESIGN WITH 40 kHz MIC. A new circuit using a 'full bridge' audio amplifier i.c., internal speaker, and headphone/tape socket. The and 'double balanced mixer, give a stable, high peformance superheterodyne design. KIT 861£24.99
ALSO AVALLABLE Built \ddagger Tested ...f39.99

DOORCHIME

IDEAL

BEGINNERS
PROJECT
Uses SAB0600 chip to produce natural sounding 3-note chime. Adjustable pitch - so that two can be used for front and back doors.
Kit includes P.C.B., all parts and instructions. No case or battery
KIT 869. \qquad
.£5.99 KIT 812

TRANSDUCER OUTPUT UP TO 4 METRES

- COMPLETELY INAUDIBLE RANGE

TO HUMANS

- LOW CURRENT DRAIN

SIMPLE PIC PROGRAMMER

REDIBLE LOW PRICE!	Kit 857 £12.99
INCLUDES 1-PIC 16 C84 CHIP	Power Sup
CONNECTOR PROFESSION	EX
CONNECTOR, PROFESSIONAL PC BOARD \& INSTRUCTIONS	PIC 16C84£4.84
Based on the design in February '96 EPE article, Magenta have made a proper PCB and kit for this project. PCB has 'reset' switch, Program switch, 5V regulator and test L.E.D.s. There are also extra connection points for access to all A and B port pins.	

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16C84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 24-CHARACTER 2-LINE LCD DISPLAY

Kit $860 £ 19.99$

Power Supply $£ 3.99$ FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE $\times 24$-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
\star Chip is pre-programmed with demo display \star

PIC16C84 MAINS POWER 4-CHANNEL

 CONTROLLER \& LIGHT CHASER- WITH PROGRAMMED 16C84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING

Now features full 10 CHASE PATTERNS 4-channel chaser software on DISK and pre-programmed

- OPTO ISOLATED
- 4×3 KEYPAD CONTROL
- SPEED CONTROL POT.
- HARD FIRED TRIACS
- 4 CHANNELS @5 AMPS

PIC16C84 chip. Easily re-programmed for your own applications.
Software source code is fully 'commented' so that it can be followed easily.
Kit 855 £39.95
LOTS OF OTHER APPLICATIONS

68000 DEVELOPMENT AND

- USED WORLDWIDE IN SCHOOLS \& COLLEGES
- FULL FEATURED MONITOR, LINE ASSEMBLER \&
CROSS ASSEMBLER DISK
- NOW WITH EXPANDED

RAM \& ROM

- FULL 8 MHz 68000 16-BIT DATA BUS
- FULL MANUAL, DATA COMMS \& SOFTWARE DISK
- 2 SERIAL PORTS \& EXPANDABLE I/O
 - KIT 601 $£ 69.95$
\qquad

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts
are supplied by Magenta.
Teach-ln 7 is $£ 3.95$ from us or EPE
Full Mini Lab Kit - £119.95
Power supply extra - $£ 22.55$ Full Micro Lab Kit - $£ 155.95$ Built Micro Lab - £189.95

EPE PIC Tutorial

At Last! A Real, Practical, Hands-On Series 3-Part Series - Starting March '98

- Learn Programming from scratch
- Uses Re-Programmable PIC16C84 Chip
- Start by lighting an I.e.d. and work up through over 30 tutorials to Sound Generation, Data Display, and a Security System
- PIC TUTOR Board has Input Switches, Output I.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16C84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 £27.95, Built \& Tested £42.95 Optional: Power Supply - $£ 3.99$, ZIF Socket - $£ 9.99$
LCD Display - With Software and Connection details£7.99 LED Display - Including Software.
.£6.99

PIC TOOLKIT

- PROGRAMS PIC16C84 and 16F84
- ACCEPTS TASM AND MPASM CODE

Full kit includes PIC16C84 chip, top quality p.c.b. printed with component layout, turned pin PIC socket, all components and software* *Needs QBASIC or QUICKBASIC
KIT $871 \ldots £ 13.99$. Built and tested $£ 21.99$

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP • HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
- SEND FOR DETAILED

INFORMATION - A
SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

Kit $862 \mathbf{£ 2 9 . 9 9}$
Power Supply $£ 3.99$
DISASSEMBLER SOFTWARE
£11.75

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB,
PIC16C84 WITH DEMO PROGRAM, SOFTWARE DISK, INSTRUCTIONS AND MOTOR.

Kit $863 \mathbf{£ 1 8 . 9 9}$

FULL SOURCE CODE SUPPLIED.
ALSO USE FOR DRIVING OTHER
POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1 A . Kit includes all components and 48 step motor. Chip is to $24 V$ and $1 A$. Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, fom write your own, and re-program
the same chip! Circuit accepts inputs from switches etc and drives motor in the same chip! Circuit accepts inputs from switches etc and drives motor in
response. Also runs standard demo sequence from memory.
MAGENTA
All pricesinclude VAT. Add $£ 3.00$ pEp. Next Day $£ 6.99$

Tel: 01283565435 Fax: 01283546932 E-mail: Magenta_Electronics@compuserve.com

Seo Noxt/Last Months Ad. for
COMPO/NET ACCESSORIES

80 E0

 4000 Seri

EVERYDAY

PRACTICAL
ELECTRONICS

Editorial Offices
EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1 PF
DORSET BH21 1PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692 . Due to the cost we cannot reply to overseas orders or queries by Fax.
E-mail: editorial@epemag.wimborne.co.uk
Web Site: http://www.epemag.wimborne.co.uk
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone. Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS
MILL LODGE, MILL LANE
THORPE-LE-SOKEN, ESSEX CO 16 OED
Phone/Fax: (01255) 861161

ELONGATED LOGO

With the merger of Everyday Electronics and Practical Electronics back in November 1992 we have been saddled with the cumbersome title of Everyday Practical Electronics. Whilst it was $E E$ that bought out $P E$, the $P E$ title had a longer history and many loyal readers, so we wanted to keep both names. Over the years there have been a number of editorial discussions on whether or not we should change it to something rather less of a mouthful - it doesn't roll off the tongue, does it? We have never actually reached a decision on this so things were simply left alone. However, I guess we are about to be forced into making a move quite soon.
Why? Because we have just purchased Electronics Today International (ETI) and from next month we will be merging that into EPE. For at least a few months you will be seeing both the EPE and ETI logos on our front cover, and elsewhere through the magazine, but it will clearly be silly to call ourselves "Everyday Practical Electronics and Electronics Today International', or even EPETI so perhaps we could go for some shorter combinedion - your suggestions would be of interest.
Personally, I favour dropping back to just the initials of EPE, perhaps with the word International underneath - maybe we could use a dynamic new logo like the one for $E P E$ Online - see page 129. Or perhaps we should become EPEI, or PEI, or EEI or even EPEI the list goes on.

CHANGE BUT NO CHANGE

One thing all this does mean is that your copy of EPE will not change dramatically - you will still find all the regular news, features, projects, theory and help that we bring you each month; although you will probably notice a couple of small changes to titles of things like our Innovations pages or Techniques, just to make sure those readers coming to us from $E T I$ feel at home. We also hope to add to our range of advertisers so that there will be a greater selection of things to buy in each issue. In fact all that will happen is that EPE will become an even stronger magazine with the ability to bring you even better projects and features.
We will, of course. go on packing every page full of information and bringing you the widest range of full constructional projects plus news. features, theory, etc. and not forgetting all our regulars like IU, Circuit Surgery. Techniques, Readout, News and Network.
Make sure you don't miss out on your copy. We suggest you place an order now as demand is bound to be very high. Details of the content of the March issue can be found on page 75. Don't worry, we won't be putting up the price of your magazine.

AVAILABILTY

Copies of EPE are available on subscription anywhere in the world (see right), from all UK newsagents (distributed by Seymour) and from the following UK electronic component retailers: Maplin - all stores throughout the UK (and in S. Africa); Greenweld Electronics; Omni Electronics. EPE can also be purchased from retail magazine outlets around the world. An on-line version can be purchased from www.epemag.com

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 26.50$. Overseas: $£ 32.50$ standard air service, $£ 50$ express airmail. Cheques or bank drafts (in $£$ sterling only) payable to Everyday Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202881749 . Fax: 01202841692 . E-mail: subs@epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.
Payment in \mathbf{E} sterling only please. Visa and MasterCard accepted, minimum credit card order $£ 5$. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our web site. Overseas customers - your credit card will be charged by the card provider in your local currency at the existing exchange rate.

Editor: MIKE KENWARD
Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
On-Line Editor: ALAN WINSTANLEY
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller:
PETER SHERIDAN, Wimborne (01202) 882299

READERS' ENQUIRIES

E-mail: techdept@epemag.wimborne.co.uk We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accomponied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to overseas queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk).
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS

E-mail: adverts@epemag.wimborne.co.uk Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interest of readers by ensuring as far as practicable that advertisements are bona fire, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE
 EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

PIC MIDI SUSTAN PEDAL

ROBERT PENFOLD

Take your PIC from sustain to glissando effect with this low-cost MIDI pedal.

1N THE pre-MIDI era it was common for synthesisers, electronic pianos, etc. to have a socket for a pedal-operated switch. The footswitch normally functioned as a sustain pedal, with the last note or notes played being held on for as long as the pedal was operated.

This is similar to, but not quite the same as the sustain pedal of a piano. A few instruments had sockets for other types of pedal, or could switch the single pedal input to a different function.

VERSATILE PIC

In the post MIDI era this type of input is virtually extinct, and functions such as sustain and swell pedals are handled via the MIDI input. This offers great versatility, and in many ways is a step forward, but it brings a major drawback in that simple switches are no longer sufficient. In order to add even simple pedal functions such as sustain and portamento it is necessary to have some fairly complex and expensive electronics to produce the proper signals to drive a MIDI input.
This problem has now been mitigated to a large extent by the availability of inexpensive microcontrollers such as the PIC range of processors. A MIDI Sustain Pedal was described in the May 1995 issue of $E P E$, and this used a UART plus 10 other integrated circuits.
The PIC based design featured here can be switched to operate as either a Sustain Pedal or a Portamento type, and uses no integrated circuits other than the PIC microcontroller itself. Unlike its predecessor, this unit uses so few components that it is suitable for those having limited experience at electronic project construction, including complete beginners.

MIDI BASICS

MIDI (Musical Instruments Digital Interface) is a form of serial signal, and it is in many ways similar to the ordinary RS232C system used in computing and other applications. It is different to the RS232C system in several respects though, and one of these is the nature of the signals generated.

The RS232C system uses voltages of about plus and minus 12 V to represent the two logic levels, whereas MIDI utilizes a current loop system. A switching transistor at the output of a sending device is switched off to represent logic 1, and turned on to represent logic 0 . MIDI uses normal eight-bit bytes. and each byte is sent one bit at a time.

TIMING

The use of standard baud rates is the main aid to accurate synchronisation. MIDI operates at 31250 baud, which simply means that a continuous stream of signals would be sent at a rate of 31250 bits per second. This rate may seem to be an odd choice, but it is easily implemented using standard $1 \mathrm{MHz}, 2 \mathrm{MHz}$, and 4 MHz crystals in the clock oscillator (1 MHz divided by $32=31250 \mathrm{~Hz}$).

There is another aid to accurate synchronisation in the form of additional bits sent with each byte of data. The most important of these is the Start bit.
Under standby conditions the output

Fig. 1. Example waveform diagram for a MIDI byte.

With this serial approach to exchanging signals it is essential that the transmitting and sending devices remain accurately synchronised. Otherwise the receiving device will be reading bit 5 when the transmitting device is actually sending bit 4 or 6 !
transistor is switched off, but to indicate the start of a byte it is switched on for a duration that is equal to the length of one data bit $(31.25 \mathrm{~ms})$. This indicates to the receiving device that it must read in the first data bit about $46.87 \mu \mathrm{~s}$ later, which is about half way through the first data bit.

The other data bits are then read in at $31 \cdot 25 \mu \mathrm{~s}$ intervals. The least significant bit is sent first, working through to the most significant bit.

Finally, the Stop bit is sent, but this is really just placing a small gap between the end of one byte and the beginning of the next. This gives the receiving device time to digest one byte of data before the next is commenced. This general scheme of things is demonstrated by the example waveform of Fig. 1.

GETTING THE MESSAGE

Normal MIDI messages are coded into one, two, or three bytes, and in this case we are using control change messages that have three bytes. The first byte is the Status byte, and this has to be considered as two nibbles, which have separate functions.
The four most significant bits indicate the type of message that is being sent. In this case the message is a control change type, and this has the binary code 1011 .

The least significant nibble carries the channel number, and is from 0000 (channel 1) to 1111 (channel 16). In an application of this type the channel used is not usually of any significance, and the convention is for channel 1 to be used.

The second byte carries the control number, and indicates which control must be altered. MIDI status bytes always have the most significant bit set at 1 . while data bytes have this bit set to 0 . This means that data bytes can only contain values from 0 to 127 (decimal).

Most of the available control numbers have been assigned to specific controls or to special functions. Here we are controlling the sustain and portamento functions, which are respectively control numbers 64 and 63.

The third byte carries the new setting for the control, and under the old scheme of things it could only be 0 (off) or 127 (on). The current system is more easy-going, with values from 0 to 63 switching a control off, and values from 64 to 127 switching it on.

As there is a large amount of MIDI equipment still in use that predates the current MIDI specification, it is essential to use values of 127 to switch on a control and 0 to turn it off.

In order to give the desired effect the PIC MIDI Sustain Pedal must generate a three byte message to switch on the Sustain or Portamento function, and a slightly different message when the pedal is released in order to switch it off again. The three byte message required to switch ON the sustain effect (top), and the slightly different message needed to switch it OFF is shown in Fig.2. The only difference is that the final byte is 127 in the first message, and 0 in the second.
receiving device. This opto-isolation helps to avoid problems with earth loops, and also reduces problems with digital noise finding its way into the audio stages of MIDI instruments.

The screen of the connecting cable connects to pin 2 of SK2, and it is therefore earthed to the 0 V supply of the Pedal Unit. However, it is not connected to anything at the receiving unit, and there is no direct electrical connection between the Pedal Unit and the MIDI device that it controls. Resistors R4 and R5 provide current limiting d.c. points that, together with a resistor in the receiving device, set the l.e.d. current at approximately the required figure of 5 mA .

Fig.2. MIDI sustain ON (top) and sustain OFF (bottom) messages.

CIRCUIT OPERATION

The circuit diagram for the PIC MIDI Sustain Pedal is shown in Fig. 3. The circuit is based on a PIC16C54 microcontroller, ICI, and in order to guarantee the accurate timing required in this application a crystal controlled clock circuit, formed by capacitors C2, C3 and crystal XI , is used. A 4 MHz clock frequency is the maximum that the $16 \mathrm{C} 54-\mathrm{XT} / \mathrm{P}$ can handle, but is more than adequate to give good timing accuracy.

Only two lines of port B are used, and these monitor switches S1 and S2. S1 is the Pedal footswitch and it is monitored by RB0, at IC1 pin 6. Line RB1, at IC1 pin 7, monitors S2, which is the Mode switch.

The output signal is generated on RA0 (ICl pin 17), which drives the common emitter switching transistor TRI. This transistor drives the internal l.e.d. in an opto-isolator at the input of the

A supply potential of about 4 V to 5 V is required, and a 4.5 V battery pack is probably the most practical power source. Even though a relatively high clock frequency of 4 MHz is used, the current consumption of the circuit is typically just under 2 mA , which should give around 1000 to 2000 hours of operation from each AA-cell battery pack.

SOFTWARE

As with many PIC based projects, the hardware is ridiculously simple because the software is doing most of the work. Only a brief operating description follows, but the software is available from the Editorial Office on a 3.5 in. disk, see $P C B$ Service page. If you have access to the Internet it can be downloaded free. See Shoptalk page for details of obtaining a ready-programmed PIC16C54-XT/P microcontroller.

Fig.3. Full circuit diagram for the PIC MIDI Sustain Pedal.

MAIN LOOP

The main program loop monitors Pedal switch SI. and calls a series of three subroutines when Sl is pressed. These subroutines each generate one byte of the message that switches on the appropriate control. There is a slight complication here, because the control number used in the message must be 63 or 64 (Portamento or Sustain), depending on the setting of Mode switch S2.

The simple solution is to include both subroutines in the main loop, but with each one preceded by a bit test instruction that results in the subroutine being skipped if switch S 2 is at the wrong setting. This results in a control number of 63 being used if S 2 is open or a control number of 64 being used it it is closed.

Once the three subroutines have been called and the "control on" message has been sent. switch SI is monitored again. There is no need for a delay here to provide contact de-bouncing. because this is effectively provided by the millisecond or so that it takes to send the first MIDI message.

CONTROL OFF

When S1 is released, the main loop calls three subroutines that generate the "control off" message. This operates in exactly the same manner as before, but a different subroutine is used for the third byte.

This generates a data byte containing a value of 0 rather than 127, so that the control is switched off instead of being switched on. The program then loops back to the beginning and monitors SI again.

The subroutines generate the serial bytes using the same basic process. A bit set or bit clear instruction is used to set RA0 high or low. as required, and a simple delay loop then provides a suitable delay before the next bit is generated. This process is repeated ten times. once for each bit (eight data bits plus start and stop bits).

Although it is a rather long-winded way of handling things, this method does make it easy for the experimenter to change the value of any bit in any byte. It is merely necessary to change the appropriate BSF message to a BCF type, or vice versa.

CONSTRUCTION

Details of the stripboard component layout and the hard wiring are provided in Fig.4. The underside view of the board showing the required breaks in the copper strips also appears in this diagram. The board measures 24 holes by 20 copper strips.

With very few components and link wires to deal with. construction of the board is quite simple. However bear in mind that the PIC microcontroller is a CMOS device, and that it therefore requires the usual anti-static handling precautions. It must be fitted in a d.i.l. socket and not soldered directly into the board.

Do not plug it into its socket until the unit is complete in all other respects, and try to handle the pins as little as possible when plugging it into the holder. The

Layout of components on the completed stripboard. Make sure you include the four very small link wires.

PIC chip should be stored in its antistatic packing and kept well away from any potential sources of static electricity. Crystal XI must be a miniature wireended type if it is to fit easily into this layout.

ASSEMBLY

This unit can take one of two general forms. The obvious approach is to build it as a sort of pseudo effects pedal, complete with a built-in foot-operated switch on the top panel.

Fig.4. Stripboard topside component layout, interwiring to off-board components and underside view of the copper tracks showing locations of breaks required in the strips.

COMPONENIS

Resistors
R1, R2
2k2 (2 off)
R3
4k7
R4, R5
220Ω (2 off)
All $0 \cdot 25 \mathrm{~W} 5 \%$ carbon film
\section*{See

TALK

Page}
\section*{Capacitors}
C1 1μ radial elect. 50 V
C2, C3 22p ceramic plate (2 off)
\section*{Semiconductors}
TR1 BC549 npn silicon
transistor
IC1 PIC16C54-XT/P
pre-programmed
microcontroller (see text)

Miscellaneous

S1
foot-operated or pushbutton switch; push-to-make, release-to-break (see text)
S2, S3 s.p.s.t. min toggle switch (2 off)
SK1
standard mono jack socket, with matching plug (see text)
SK2 5-way 180° panel mounting DIN socket
B1 $\quad 4.5 \mathrm{~V}$ battery pack ($3 \times$ AA size cells in holder)
$\mathrm{X} 1 \quad 4 \mathrm{MHz}$ miniature wire-ended crystal
Metal case, type and size to choice (see text); 0.1 inch matrix stripboard, measuring 24 holes by 20 strips; 18 pin d.i.I. socket; battery connector (PP3 type); MIDI lead; multistrand connecting wire; solder pins; solder, etc.

Approx Cost Guidance Only
 814
 excl. case, pedal switch \& batts.

If you take this route it is essential to use a suitably strong case. A die-cast aluminium box is a popular choice for this type of thing, and cases of this type are very tough indeed.

A simple folded aluminium box should be strong enough though, and represents a much cheaper alternative. Most plastic cases are not well suited to this application.

FOOTSWITCH

The switch used for S1 must be a fairly tough component having a large button that can be easily operated by foot. A small pushbutton switch of the "cheap and cheerful" variety would be very difficult to operate and would probably not stand up to the rough treatment likely to occur in this application. It must be a simple push-tomake, release-to-break type, and not one that toggles state each time it is operated.

The popular alternative approach, and the one used for the prototype, is to build the unit as a conventional project, and to use a separate "custom" pedal switch for S1. Switches of this type are usually fitted with a lead about one metre long terminated in a standard jack plug.

Therefore, if this method is used, a standard jack socket is fitted to the case and connected in place of S 1 , as shown in Fig. 4. Again, the switch used for S1 must have a simple push/release action, and not some form of successive operation.

Positioning of the circuit board inside the prototype metal instrument case and wiring to the front panel mounted switches and "pedal" jack socket. The MIDI 5 -way DIN connector is mounted on the rear panel.

IN USE

Using a crystal controlled clock avoids the need for any setting up. Provided socket SK2 is a 5 -way (180 degree) DIN socket connected in the manner shown in Fig.4, the unit can be connected to the synthesiser or other MIDI instrument using a standard MIDI lead.

This has so-called straight connection, with pin 2 on one plug connecting to pin 2 on the other, pin 4 connecting to pin 4 , and pin 5 connecting to pin 5 . Note that some 5 -way DIN audio leads have cross coupling of the pins, and that they are unsuitable for use with MIDI equipment.

It is probably best to start with the Sustain effect (S 2 open), as this one is implemented by most MIDI instruments. Notes should hold on indefinitely with Sl pressed, but the MIDI instrument will only respond
properly if it is set up correctly. Where appropriate, the MIDI interface must be enabled, and the instrument must either be set to receive on channel 1 or set to Omni mode so that it will respond to messages on any channel.

With the unit switched to the Portamento mode (S1 closed) the instrument will "glide" from one note to the next giving a glissando effect, rather than jumping in pitch from one note to the next. Unfortunately, this control is not implemented on many instruments.

A check of the MIDI implementation charts for your instruments will show which particular control numbers are implemented. There is obviously no point in building this project unless at least one of your instruments responds to control number 63 or 64 .

Completed PIC MIDI Sustain Pedal with a typical pedal type footswitch plugged into the front panel jack socket.

EVERYDAY

We can supply back issues of $E P E$ by post, most issues from the past five years are available. An index for the last five years is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

[SEPT'97

PROJECTS - PIC-Noughts \& Crosses Game Ironing Safety Device - Active Receiving Antenna - Soldering Iron Controller Micropower PIR Detector-3.
FEATURES - Ingenuity Unlimited Raising the Pressure - RC4190 Switch-Mode I.C. - Circuit Surgery - Techniques - Actually Doing it Great Experimenters - 5 Net Work.

OCT'97

PROJECTS © PIC Water Descaler Remote Control Finder Multi-Station Quiz Monitor Rechargeable Handlamp.
FEATURES - Ingenuity Unlimited - It's Probably Murphy's Law - Interface - Circuit Surgery Kanda PIC Explorer Review - Network

NOV'97

PROJECTS - Portable 12V PSU/Charger Case Alarm Auto-Dim Bedlight - EPE Time Machine.
FEATURES - Satellite Celebration Ingenuity Unlimited TEACH-IN '98 - An Introduction to Digital Electronics-1 Techniques - Actually Doing It Circuit Surgery Net Work - Free Greenweld Catalogue.
DEC'97
PROJECTS - Safe and Sound - Security Bleeper - Active Microphone - Car Immobiliser Mini Organ.
FEATURES - TEACH-IN '98 - An Introduction to Digital Electronics-2 Circuit Surgery Unterface - B^{2} Spice Review Ingenuity nologies-1 Net Work - The Internet Free Giant Data Chart - Formulae.

JAN'98

PROJECTS - Disco Lights Flasher - Simple M.W. Radio EPE Virtual Scope-1 Surface Thermometer
FEATURES O TEACH-IN '98 - An Introduction to Digital Electronics-3 - Circuit Surgery Ingenuity Unlimited - Alternative and Future Technologies-2 © Net Work - The Internet -Free-Giant PIC Data Chart.
FEB'98
PROJECTS - Water Wizard - Kissometer Waa-Waa Effects Pedal - EPE Virtual Scope - 2 . FEATURES TEACH-IN '98-4 Ingenuity Unlimited - Techniques-Actually Doing It e Circuit Surgery - Net Work - The Internet - Chip Special - HT7630 PIR Controller.

MAR 98 Photostats Only
PROJECTS - Lighting-Up Reminder - The Handy Thing - Switch-Activated Burglar Alarm Audio System Remote Controller.
FEATURES - TEACH-IN '98-5 - Ingenuity Unlimited - Interface - Stripboard Magic Review - Circuit Surgery - Net Work - EPE PIC Tutorial Supplement 1
APRIL" '98
PROJECTS - Simple Metal Detector - Single or Dual Tracking Power Supply Experimental Piezo-Cable Projects - Distributed Microphone Vibration Alarm - RC-Meter.
FEATURES - Ingenuity Unlimited - Patent Your Invention - TEACH-IN '98-6- Circuit Surgery - Net Work - Techniques - Actually Doing It $-E P E$ PIC Tutorial Supplement 2

MAY' 98

PROJECTS - Dice Lott © Security Auto-Light - Stereo Tone Control plus 20W Stereo Amplifier - Improved Infra-Red Remote Repeater.
FEATURES TEACH-IN'98-7- Net Work EPE PIC Tutorial Supplement 3

JUNE 98

PROJECTS - EPE Mood Changer - Simple SW Receiver Atmel AT89C2051/1051 Programmer Reaction Timer.
FEATURES 8051-based EEPROM Microcontrollers TEACH-IN '98 An introduction to Digital Electronics - 8 - Circuit Surgery - Techniques - Actually Doing It Ingenuity Unlimited

JULY'98

PROJECTS PIC16x84 Toolkit Noise Cancelling Unit Low Battery Indicator Greenhouse Computer - 1
FEATURES Using the L200CV Voltage Regulator - TEACH-IN '98 - 9 - Ingenuity Unlimited Circuit Surgery - Net Work.

AUG '98

PROJECTS Lightbulb Saver Float Charger - PC Transistor Tester - Greenhouse Computer - 2 Time Machine Update.
FEATURES TEACH-IN '98-10. Circuit Surgery - Techniques - Actually Doing It Ingenuity Unlimited - New Technology Update - Net Work IVEX PCB Cad Review.

SEPT '98

PROJECTS - Mains Socket Tester - Personal Stereo Amplifier - Greenhouse Radio Link PIC Altimeter
FEATURES - TEACH-IN '98 - 11 - Ingenuity Unlimited Circuit Surgery - Interface - Net Work Crocodile Clips Review.

Hititronics

OCT' 98

PROJECTS Voice Processor - Digiserv R/C Channel Expander Reliable Infra-Red Remote Control - PC Capacitance Meter.
FEATURES Easy PCB Making Using LM335 and LM35 Temperature Sensors - Circuit Surgery - Ingenuity Unlimited - Net Work Electronics Principles 5.0 Review.

NOV '98

PROJECTS PIC Tape Measure T-Stat Electronic Thermostat - 1 - PhizzyB Computers - 1 15-way Infra-Red Remote Control. FEATURES - Circuit Surgery - Ingenuity Unlimited - New Technology Update - Net Work - The Internet Easy PC for Windows 95 Review - FREE EPE CD-ROM No. 1

DEC'98

PROJECTS EPE Mind PICkler-1 Fading Christmas Lights Handheld Function Generator Damp Stat Electronic Thermostat PhizzyB Computers-2.
FEATURES - PhizzyB Computers-2 Understanding Computers Circuit Surgery Ingenuity Unlimited Interface - Net Work The Internet - 1998 Index - FREE 48-page Understanding Passive Components booklet.

JAN'99

PROJECTS - Alternative Courtesy Light Controller - Twinkle Twinkle Reaction Game Volume Compressor - PhizzyB Computers-3 EPE Mind PICkier-2
FEATURES New Technology Update - From Russia With Love Circuit Surgery - PhizzyB Computers-3 Net Work.

back ISSUES ONLY $£ 2.75$ each inc. UK pqp

Overseas prices $£ 3.35$ each surface mail, $£ 4.35$ each airmail.
We can also supply issues from earlier years: 1990 (except Jan,, March., April, Oct. and Dec.), 1991 lexcept May, June, Aug., Sept. and Nov.), 1992 (except April and Dec.), 1993 (except Jan. to May and Dec.), 1994 (except April, May, June and Nov.), 1995 (except Jan., March. May, June, July, Aug., Sept., Nov. and Dec.), 1996 (except Feb, Aprii, May, July, Aug., Nov.), 1997.
Please note we are not able to supply copies (or 'stats of articles) of Practical Electronics prior to the merger of the two magazines in November 1992.
Where we do not have an issue a photostat of any one article or one part of a series can be provided at the same price.

ORDER FORM - BACK ISSUES - PHOTOSTATS - INDEXESSend back issues dated		
$\square \square$ Send photostats of (article title and issue date)		
\square Send copies of last five years indexes ($£ 2.75$ for five inc. p\&p - Overseas $£ 3.35$ surface, $£ 4.35$ airmail) Name \qquad		
I Address		
I		
I \square l enclose cheque/P.O./bank draft to the		
I Card No. .. Card Expiry Date		
Note: Minimum order for credit cards $£ 5$. Please supply name and address of cardholder if different from that shown above, SEND TO: Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF Tel: 01202 881749. Fax: 01202841692 . (Due to the cost we cannot reply to overseas queries or		
Tel: 01202 881749. Fax: 01202841692 . (Due to the cost we cannot reply to overseas queries or orders by Fax.) E-mail:orders@epemag.wimborne.co.uk Payments must be in $£$ sterling - cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order. Send a copy of this form, or order by luk bank. No mant suppled		

THE QUICKROUTE

Simulation Circuit Capture PCB Autorouting CADCAM

Imagine an electronics design system that lets you draw schematics onto the screen and then simulate them at the touch of a button. Now imagine pressing another button and seeing the schematic replaced with a PCB rats-nest. Pressing another button starts the autorouter, and finally you can click on File then Save As to create a complete set of CADCAM files.

Too easy? We hope so. Quickroute has always been designed first and foremost to be easy to use. That's why simulation, circuit capture, PCB autorouting and CADCAM support are all integrated into one package, So that you only have to learn one package.

But it doesn't end there. We have included a wide range of features in Quickroute to help you work effectively. For example our Gerber import facility lets you check your CADCAM files before sending them to your manufacturer.

We have also introduced a major new PLUGIN module called the SymbolWizard that actually creates custom symbol designs for you. Simply select a template, specify pad and spacing properties and SymbolWizard creates the schematic and PCB symbols for you!

If you would like to find out more about Quickroute, why not call us on FREEphone 080073128 24, or visit our web site on www.quickroute.co.uk. Prices start at under $£ 100$ including UK P\&P and VAT for a complete system.

"modern, powerful and easy to use"

Elektor Electronics 97

FREEThone
08007312824
$\operatorname{Int}+441614760202$ Fax 01614760505 Web www.quickroute.co.uk

30 DAY MONEY BACK GUARANTEE

Copyright (c) 1998 Quickroute Systems Ltd Regent House Heaton Lane Stockport SK4 1BS UK

Electronics, Electrical \& Mathematics Pincipies V6

If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics and maths then this is the software for you.

"Electronics Principles is a well thought out and comprehensive program that is also easy to install and stable in operation. It can be wholeheartedly recommended."
Robert Penfold. Everyday Practical Electronics magazine. October 1998.
And now upgraded to V6 a 32-bit package for Windows '95, '98 \& NT. It's bigger, faster and better.

Additions include:- Circuit theorems, Norton, Thevenin's \& Superposition...Magnetism \& Electromagnetism...Motors, Generators \& Transformers.. Three phase systems....More on complex numbers..... A beginners introduction to PIC's.... Statistics... PLUS: all the Electronics Toolbox routines, along with an Illustrated Components, Tools \& Equipment Dictionary. A total of over 900 main menu selections.

Windows 3.1, 3.11 users please enqulre.

Complete Package still only $£ 99.95^{*}$

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008.sales@eptsoft.demon.co.uk http://www.eptsoft.demon.co.uk *UK and EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return.
Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

CLOSING THE NET

Barry Fox reports that media moguls now have their eyes on the Net.

RUPERT Murdoch now wants to create his own, closed, Internet. The media magnate's satellite broadcast company BSkyB is working with British Telecom, the Midland Bank and Matsushita (Panasonic) to offer an all-electronic trading infrastructure called Open which uses proprietary technology to deny users open access to the Internet.
The joint venture, British Interactive Broadcasting, is heavily subsidising the cost of digital satellite receivers which have been designed to let viewers progress seamlessly from watching movies and sport to purchasing goods and services from firms which will pay BIB a commission of up to 20 per cent.

Retail chains including Woolworths, Iceland and Great Universal Stores have already pledged to offer home shopping on BIB's Open service, the Midland Bank will provide on-line banking and Ford, Unilever and Coca Cola will inject their adverts. There will also be a games site. After trials starting late this year, Open will ramp up to a full consumer launch in the third quarter of 1999.

Subsidies from BIB currently halve the cost of Sky's digital satellite settop boxes, to under $£ 200$. Sky's fitters install the necessary dishes free. The viewer only has to agree to let the fitter connect the receiver to a phone line. The fitter will even lay extension phone wires free if necessary. Over 100,000 people have signed up since Sky launched its digital TV service on 1 October '98.

The moment the receiver box is connected, its internal 28.8 kilobits second modem automatically dials BIB's central computer to register the box's serial number. The modem then dials out to report when the box owner watches pay-per-view movies or sports events. Even if no PPV charges are incurred, the modem dials out intermittently to confirm it is still connected. If the viewer unplugs the phone, Sky can send signals over the air which stop the receiver working and then claim back the subsidy.
The box has on-board memory which stores the electronic programme guide software developed by US company OpenTV to tell viewers what TV programmes are available. As BIB's Open rolls out, Sky will transmit a series of software upgrades by satellite which automatically download to convert all receivers in the country into interactive terminals.

The upgraded software will allow E-mail for personal messages and targeted mailshots, but it cannot access the Internet and display HTMI pages. Instead, the satellite will continuously deliver information at a rate of $68 \mathrm{Mbit} / \mathrm{s}$. The viewer browses this, going on line only when a transaction is carried out or a game played.

The infra-red eye on the satellite receiver, currently used with a remote control to switch TV channels, can interface with a keyboard. "It's like a shopping mall", says BIB's Chief Executive James Ackerman "Businesses will lease space. It will be much cheaper for them than running a shop".

Ackerman hopes to reach 14 million shoppers within five years, with data capacity from the satellite trebling to cater for up to ten virtual shops, half a dozen information providers, a games site and financial services. BIB is planning online gambling.
If viewers use their TVs to access the Open service, instead of paying a Service Provider to connect to the open Interner by PC, BSkyB and BIB can build and control a new electronic marketplace. But since BIB was formed in May 1997, Dixons has launched Freeserve which offers open access to the entire Internet at no charge, in return for a personal shopping profile of the user.

NEW FLASH PICS

We have been expecting it for some time, and now Microchip have sent it information on the introduction of two new 8-bit flash microcontrollers.

What is significant about the PIC16F876 and PIC16F877 is that they are, in effect, greater-capacity versions of the renowned PIC16F84 (and PIC16C84) devices. These, as so many of you are aware, can be re-programmed again and again without the need for u.v. erasure (in other words, they can be regarded as EEPROM devices). This makes them ideal microcontrollers to use for project development.

These new RISC-based flash devices are also the first to use Microchip's innovative Migratable Memory technology, which provides socket and software compatibility among all equivalent ROM, OTP and flash memory controllers.

The PIC16F876 and PIC16F877 feature $8 \mathrm{~K} \times 14$ bits of Enhanced Flash program memory, 256 bytes of EEPROM data memory, and operate between 2 V and 5.5 V . Additionally (and importantly) they include integral 5 - to 8 channel 10 -bit A/D converters, RS485-type UART, and up to 5MIPS performance at 20 MHz .

We shall be investigating these new and long-awaited devices a.s.a.p. There are more due to be introduced as well. We intend to upgrade our PIC16x84 programmer to cater for these PICs - watch our pages!

For more information contact Arizona Microchip Technology Ltd, Microchip House, 505 Eskdale Road, Winnersh Triangle, Wokingham, Berks RG41 5TU. Tel: 0118921 5858. Fax:0118 9215835 . Web: http://www.microchip.com.

E.O.C.S. PICS UP

READING through the Electronic Organ Constructors Society (E.O.C.S.) latest magazine (Nov '98), we were pleased to see that they too are interested in PIC microcontrollers. Indeed, it appears to have been our PIC Tutorial series (Mar-May '98) that has helped to get them involved.

Honorary Secretary Don Bray, we are told through the magazine's pages, held the South Coast Branch meeting at his home in October. Amongst other things of importance to such a society, he also demonstrated PIC Tut and its board to the gathered members.

The report continues, "Don explained how useful and interesting he found the course and some of the things he hoped to do with suitably programmed chips in his instrument. Most people (but not
everyone present) seemed to recognise and feel able to share his enthusiasm".

Qualified praise it may be (not everyone?!), but it's still praise! Good luck to you all at the E.O.C.S. with your endeavours - perhaps with this latest mention of you from us (bribed, of course, by your mention of PIC Tut!) some more of our readers might care to join you.

Anyone with an interest in electronic organs and such things is encouraged to join this active society. It has branches around the country - and has had for decades.

More details from Don Bray, 34 Etherton Way, Seaford, Sussex BN25 3QB (tel: 01323 894909) - tell him EPE told you to ask!

SQUIRES TOOL CAT

SQUIRES' 1999 model and craft tools catalogue has landed on the News Desk with a thump! It must be the biggest yet - over 330 A4 pages of all the tools that any hobbyist who loves making things by hand would love to own and use. And, let's face it, all of us who find enormous pleasure in making something always want as many tools around as funds permit (indeed, many of us delight in owning tools just for the sake of it - one day, we think, we'll need them!).

So, Squires's cat really ought to be on your workroom bookshelf - there's so much in it (too much to itemise but we doubt if you'll spot many omissions) to tempt you. It's all well illustrated, priced and indexed

Squires also exhibit around Britain at various craft exhibitions and fairs - we'll be surprised if you haven't already met them if you enjoy such outings.

For more information, contact Squires Model \& Craft Tools, Dept EPE, 100 London Road, Bognor Regis, PO21 1DD. Tel: 01243 842424. Fax: 01243842525.

CROSSPAD

CIT, Computerised Information Technology Ltd, have sent us information on CrossPad which, with its revolutionary handwriting recognition software, is "an innovative product at its best"

This sleek and lightweight machine is just slightly bigger than an A4 pad. It can save around 50 pages of your handwritten notes, transport them to your PC, convert them all to ASCII text. As a PC file you can search, store, save, re-organise, cut and paste, E-mail and fax all your notes in handwritten form or ASCII text.

CrossPad is compatible with virtually all Windows 95 applications.

For more information, contact Computerised Information Technology Ltd., Dept EPE, 20 Potters Lane, Kiln Farm, Milton Keynes, Bucks MK11 3HF. Tel: 01908 260082. Fax: 01908 260084. E-mail: info@cituk.com.

BANNING JUNK

AT last - the Government has issued draft regulations designed to grant consumers protection against unwanted direct marketing "junk" faxes and phone calls.
The proposals will give consumers the power to refuse all unsolicited direct marketing calls, by opting out and registering with a centralised list of subscribers who don't want to receive these calls.

Interestingly, to quote the press release from the DTI, "the Government reserves the right to amend the Regulations ... this could include introducing an opt-in approach, under which such calls would only be allowed to be made to consumers who had agreed to receive such calls".

What is also needed (somehow) is better protection against junk E-mails that pester those of us on the Net - including material that some people may find offensive, and possibly illegal in Britain.

MASSIVE TEST GEAR RANGE

IF you are looking for a much wider range of test gear than stocked by many suppliers, the latest Test and Measuring catalogue from PID (Professional Instru ment Distributors) could well have what you want.

Over 600 test and measurement instruments are detailed, covering what seems to be every conceivable aspect of electronics. The 56 -page full-colour catalogue is free to anyone who asks it's a pity, though, that it does not give prices for the items illustrated. The PID covers the UK for sales, calibration, repairs and hire.

For more information contact PID, Dept EPE, 3 Brackenley Court, Embsay, North Yorks BD23 6PX. Tel: 01756 799737.

Crownhill Associates Limited

PIC12C508/509 DEVELOPMENT SYSTEM
This integrated development environment offers a
unique software development tool for the PIC 12C508/509. The package consists of 508509 In-Circuit Emulator, Programmer, EdICE a fully integrated Assembler with trace functions \& ICE508 tracer/disassembler.
The development system is supplied with MPASM assembler/disassembler and 10 projects, including circuit diagrams and unprotected source code. Projects cover subjects from simple sound effect generator through to an accurate Digital Volt Meter, Smoke Alarm, Stop Watch, LCD display driver, Keypad encoder and more Price $£ 59.95+7.50 \mathrm{P} \& P+V A T$

NEW! PIC PROGRAMMER KIT

Programs the Popular PIC 16C84, 16F84 and 24xx series serial memory devices Connects to the serial port of a PC and requires No EXTERNAL power supply. The kit includes instructions for assembly, circuit diagram and component layout. This handy little programmer is easy to build, taking no more than 30 mins. to assemble and test. The Professional quality PCB is aid efficient assembly-plated is supplied with driver software to printing to DOS on a 286 PC upwards and under Windows 95 on 486 or Pentium and a Disk full of interesting projects, tips and data sheels for PIC devices, including FREE Assembler and Simulator (requires 9 pin D-type to 9 -pin D-type cable to connect to serial port of PC). CABLE £5 INC. VAT AND DELIVERY. COMPLETE KIT just £15.00 including Delivery and VAT (UK Only). Or READY BUILT £20.00 INCLUDING Delivery and VAT (UK ONLY)

1998 Microchip CD ROM
 - Packed with information

- All current data sheets
- Programs and Diagrams
- Application notes
£10 inc. VAT P\&P (in UK)

AMAZING LOW PRICES
PIC 84 \& MEMORY

PIC BASIC COMPILER Write PIC Programs in BASIC - E - and longer programs than BASIC interpreters - I2CIN and 12COUT instructions to access extemal serial EEPROMs and other I2C devices

- More user variables
- Peek and Poke instructions to access any PIC - Serial speeds to 9600 baud
- In-ine assembier and Call support
- Supports all most popular PICs, PIC16C55x, 6x 7x $8 x, 92 x$ and PIC 14000 micros - Use with any PIC programmer

Write your PIC programs in BASIC! The PicBasic Compiler converts BASIC programs into hex or binary files that can be programmed directly into a PIC microcontroller. The easy-to-use BASIC language makes PIC programming avallable to everyone with its English-like instruction set.
Supplied with Universal PIC CHIP Programmer, popular PIC micros. Complete with programming toolkr - Editor, Assembler \& Programming software

PIC BASIC PRO

The PicBasic Pro Compiler allows BASIC Stamp II commands, using pins on PORTA. C, D. E. as well as PORTB, and the capability of using more RAM and A list of the new eatures and commands appear below. - Real If ... Then ... Else ...Endi

- Herarchical expression handling
- InterrupIs in Basic and assembler
- Bull-in LCD support
- Msinco 3.56 Mhz to 20 Mhz
- More variable space (processor dependent)
- All Assembly routine for
and can be modified to suit your needs
Supplied with sample programs including circuit diagrams PIC BASIC without programmer or PIC84
 PIC BASIC PRO whth programmer and PIC16F84 $£ 198.00+5.00$ P\&P+VAT http:/www.crownhill.co.uk/picbasic

The Old Bakery, New Barns Road, Ely, Cambs Tel: 01353666709 Fax: 01353666710
email: sales@crownhill.co.uk http://www.crownhill.co.uk

L/GHT ALARM

GAVIN CHEESEMAN

A take it with you, low-cost, pocket-sized, light-activated alarm

QUITE often, situations arise where it is useful to have a simple alarm that can be placed with personal items to alert the owner if they are being tampered with. There are many ways of producing such a device, each with its inherent advantages and disadvantages.

In this article, we look at a circuit that is triggered by the presence of light. Although relatively simple in concept, the unit has a wide variety of uses ranging from indicating when a cupboard or drawer has been opened to operating as a simple luggage alarm.

CIRCUIT DETAILS

The full circuit diagram for the Light Alarm is shown in Fig.I. It will be seen that the circuit is based around the 40106 hex Schmitt inverter, ICl. Power to the circuit is controlled by switch SI with capacitors C2 and C6 acting as supply de-coupling.

Darlington transistor TR1, combined with capacitor C1, diode D1 and resistor

R1, effectively provide a delay period after switch-on, in which the circuit is unaffected by the ambient light level. This acts as a kind of exit delay to allow you a short time after switching on before the alarm is triggered and can be useful when placing the unit in a cupboard, drawer etc.
The circuit is temporarily prevented from triggering by holding ICla pin 1 high for the duration of the switch-on delay. Initially, when switch S1 is first closed, the voltage across capacitor Cl is negligible and enough current flows through the base (b) of TR1 to ensure that it is switched on.

As capacitor Cl begins to charge the voltage drop developed increases until a point is reached where current ceases to flow in the base of TR1. At this point TR1 turns off and the voltage at ICl pin 1 then becomes a function of the potential divider comprising R3, VR1 and R4, a light dependent resistor (l.d.r.) as discussed later.
A Darlington transistor has been chosen for TR1 because it requires only a very small base current to switch on. Diode D1
is included to ensure that capacitor Cl is discharged at power down.

LIGHT WORK

The circuit makes use of a light dependent resistor, R4, to detect the ambient light level. This is connected in series with preset potentiometer VR1 (wired as a variable resistor) and resistor R3, forming a potential divider. The combined effect of the resistance of each element in the divider chain determines the input voltage to ICla at pin 1 .

The 1.d.r. (R4) has a high resistance in the dark but this falls drastically when the device is exposed to light. As a result, the voltage at ICla pin 1 is heavily dependent on the ambient light level, increasing in darkness and falling notably in bright light. The luminance level at which the input voltage to ICla reaches the switching threshold can be varied by adjusting preset VRI.

In a dark environment, where the voltage at ICla pin 1 is above the switching threshold, the output on ICla pin 2 sits in a logic low state. In this condition the alarm output is disabled.
If the voltage at pin 1 of ICla falls below the switching threshold (due to light falling on the sensor), this results in a logic

Fig.1. Complete circuit diagram for the Light Alarm. Including link LK1 maintains the full timeout period.
high at pin 2. Under this condition, D2 is forward biassed, pulling IC1b pin 3 high. As a result. pin 4 of 1Clb switches to logic low and this initially applies a logic low condition to ICIc pin 5, via capacitor C4.

This causes the output at ICIc pin 6 to switch to logic high. At this point capacitor C4 starts to charge via resistor R7, resulting in an increasing voltage level at ICIc pin 5. When this voltage reaches the switching threshold, the output at pin 6 switches back to a logic low state.

If a wire link (LK1) is fitted, the output from IClc pin 6 is connected back to pin 3 via diode D3. This has the effect of maintaining a high output at pin 6 until the timeout is complete even if the trigger event is only momentary. If the link is not fitted the output will switch high only for the period that light is falling on I.d.r. R4.

In both cases, when IClc pin 6 switches to a high condition this turns on transistor TR2 activating buzzer WD1. Resistor R8 limits the transistor base current. Capacitor C5 helps to reduce any high frequency noise coupled onto the supply from the buzzer.

ON THE LOW SIDE

The remaining parts of the circuit serve to provide a low battery indication. The function of this part of the circuit is based on the fact that when correctly biassed, Zenor diode D5 maintains a relatively constant voltage drop independent of supply voltage.

At normal supply voltages the output at ICld pin 8 is low inhibiting the low frequency oscillator formed by ICle and
associated components. As the supply voltage drops due to the battery running down, the required switching threshold voltage at the input to ICld (pin 9) also drops but remains approximately the same percentage of the supply voltage.

However, because the voltage across D5 remains almost constant, the voltage at ICld pin 9 drops faster than the i.c.s switching threshold as the supply voltage drops. Eventually, a point is reached where the input voltage falls below the threshold and at this point ICld pin 8 switches high. In this condition the oscillator formed by ICle, capacitor C7 and resistor R10 becomes operational.

The output from the oscillator is fed to capacitor C8, resistor R11 and IClf which effectively narrow the pulse width reducing the average current consumption of this section of the circuit when active. The output at ICIf pin 12 is fed to the base (b) of transistor TR2 via diode D7 and resistor R 8 .

When the low battery condition is active, the buzzer is powered up for the duration of each pulse producing a repetitive beeping sound. At normal supply voltages the output at ICIf pin 12 is low and therefore does not affect the operation of the rest of the circuit.

Circuit timings and thresholds have
 does not affect the usability of the circuit. As a result, no attempt has been made to regulate the supply voltage and standard tolerance capacitors have been used.

CONSTRUCTION

All the components for the Light Alarm, except the On/Off switch and battery, are mounted on a single, small printed circuit board (p.c.b.). The component layout and full-size copper foil master are shown in Fig.2. This board is available from the EPE PCB Service, code 218.

Referring to the component layout in Fig.2, start construction with the low profile components, such as the resistors and diodes, working up to the larger parts.

Fig.2. Light Alarm printed circuit board component layout, full-size copper foil master and wiring to the battery connector and On/Off slide switch.

It is recommended that an i.c. socket is used for ICl to prevent any possibility of heat damage to the i.c. during soldering. Do not insert the i.c. into its socket at this stage.

Take care that all polarised components are inserted with the correct polarity. The notch on the i.c. and socket should correspond with that on the component layout.

The polarity of the electrolytic capacitors are marked on the layout diagram with a positive (+) symbol, whereas most capacitors are now marked with a negative (-) symbol on their component body. Therefore, when inserting the capacitors into the p.c.b., ensure that the lead adjacent to the negative symbol on the component is positioned in the hole furthest from the plus symbol on the overlay.

Transistors and diodes should be inserted on the board such that the shape of the component body corresponds with that on the component layout. The cathodes (k) of the diodes are indicated by a band at one end of the component. The polarity of the specified buzzer WDI is clearly marked adjacent to its pins and the positive connection is marked with a plus symbol in the component layout diagram Fig. 2.

ASSEMBLY

It is necessary to wire the battery terminals and On/Off switch S 1 to the p.c.b. Ordinary hook-up wire can be used for these connections. It is recommended that you use p.c.b. solder pins to connect these leads to the board, see Fig.2. These should be inserted into the appropriate holes in the p.c.b. from the track side, and pressed into position using only a minimum amount of pressure.

When soldering the p.c.b. take care that you do not create any unwanted dry joints or solder short circuits across copper tracks/pads. Once all components are in place, and before you plug ICl into its socket, it is best to double check your work to avoid later problems.

TESTING

It is probably best to test the Light Alarm before it is finally installed into its case. There is nothing worse than spending time tidying everything up only to find that when you test the unit some rework is required on the p.c.b. and you have to start all over again.

Snap the battery into its connector, taking care to observe the correct polarity. The circuit is designed to operate from a 9 V PP3 type battery. The unit may also be powered from a bench supply set to 9 V for testing purposes if this is more convenient. If you use a bench power supply, it is recommended that the output current is limited to less than 100 mA , just in case there is a fault on the circuit board.

If you have a multimeter, it may be useful to temporarily connect this in series with the positive (+V) supply lead, set to measure d.c. current. Set switch S1 to the On position.

The current consumption should momentarily peak and then slowly drop as capacitors in the circuit charge. The current should settle at around 0.2 mA when buzzer WD1 is silent. If the current reading exceeds 10 mA at any time after
the initial switch on pulse, switch off and re-check the board for short circuits or incorrectly fitted components.

SETTING UP

Set preset VR1 to about the central position of its track using an appropriate screwdriver or trimming tool. Initially, ensure that the p.c.b. is positioned such that the I.d.r. is exposed to bright light.

Assuming all is well, when power is first applied to the circuit, there should be no sound from the buzzer. After a few seconds, the switch-on delay should be complete and at this stage, if sufficient light is falling on the l.d.r., the buzzer should emit a continuous piercing tone. The buzzer should continue to operate for a few seconds until the circuit times out.

When the buzzer has stopped sounding, momentarily place your hand over the l.d.r. so as to obscure the light. When you remove your hand the buzzer should once again sound until the timeout period is complete.

Circuit board bolted into the lower half of the case.

If the link wire (LK1) is fitted, the buzzer should sound for the whole timeout period even if the l.d.r. is only exposed to light for a short period. If the link is not fitted, the sound should only continue as long as the l.d.r. is exposed to light. There is no reason why an off-board switch cannot be connected in place of the link if you prefer the operating mode to be selectable.

Adjusting preset VRI changes the sensitivity of the circuit to light. Different settings should result in the circuit triggering at different light levels.

If you are using a variable power supply you can test the operation of the low battery indication by reducing the supply voltage. To carry out this test, either cover the l.d.r. before switching on or wait until the timeout is complete and the circuit is silent.

If everything is working correctly, as you reduce the supply voltage you should reach a point where the buzzer starts to emit repetitive beeps. This is the low battery indication and typically comes into operation at supply voltages below approximately 4 V .

FINAL ASSEMBLY

Having completed the testing and setting up of the completed circuit board, it is time to install it into its case. The recommended case measures only $103 \mathrm{~mm} \times 62 \mathrm{~mm} \times 23 \mathrm{~mm}$. This case is convenient for small projects like the Light Alarm as it also has a built in battery compartment and an optional belt clip, which may be fitted if required.

It is necessary to drill several holes in the case for the p.c.b. fixings and for switch S 1 . The p.c.b. can be temporarily dropped into the case to provide a template for the board mounting holes. Countersink the holes for the p.c.b. and switch mounting screws so that the screw heads are level with the case when fully inserted. The case material is relatively thin so make sure that you do not over-drill the countersinks.

Holes are also required in the case immediately above the light dependent resistor (R4) and the buzzer WD1 so that these components are unobstructed. It is essential

The light "window" and sound exit holes should align with the I.d.r. and warning buzzer when the case is closed up.
to the operation of the circuit that sufficient light can fall on the l.d.r. The approximate positioning of these holes may be seen in the photographs of the finished Alarm.

Switch S1 is mounted in a convenient position on the side of the case such that it lines up with any legend on the front panel label. The switch is mounted in the front half of the case without the detachable battery cover and is fixed in position using two M2 countersink head screws, see photographs. The mounting holes of the specified switch are threaded, so there is no need to use nuts.

The p.c.b. is installed into the lower half of the case, the part with the battery cover. It should be mounted on M3 spacers and is held in place using M3 countersink head screws and M3 nuts. Do not forget to fit the shakeproof washers, as these help to prevent the screws from becoming loose due to vibration etc.

Before fitting the two halves of the case together, it is necessary to route the wires
to the battery terminals through the gap at one end of the battery compartment. When the wires are routed correctly, the case sections should fit together with ease and there should be no excessive gaps.

The two halves of the case are held together using the two screws supplied. To fit these it is necessary to remove the battery cover to expose the two fixing holes. Insert and tighten the screws until the two halves of the case are held firmly together. Do not apply excessive force as this will tend to strip the thread cut into the plastic pillar by the screw.

The battery area is intended to accept a PP3 battery. There are slight differences in size between different makes of PP3 battery and you may find some types are a fairly tight fit. However, if you have problems, do not try to force the battery cover into position as this may damage the battery or case.

A front panel label may be made up from some thin card and attached to the front of the case using a suitable adhesive. Carefully align the label with switch S1 and the edges of the case. It will, of course, be necessary to cut two holes in the label corresponding with the position of the holes drilled in the case for the l.d.r. and warning buzzer.

IN USE

The Light Alarm lends itself to a variety of different uses. A typical application would be to indicate unauthorised access to cupboards or drawers. Alternatively, the alarm could be used to give warning that your briefcase has been opened.

Of course, the alarm will only work in any application if sufficient light falls on the l.d.r. sensor when the alarm is required to trigger. The unit is not generally suitable for use as a building intruder alarm as it has limited sound output level and is relatively easily disabled.

In some cases the Light Alarm may be arranged to trigger if an item is removed. You may be able to place the object that you are trying to protect on top of or over the alarm such that significant levels of light are prevented from falling on the l.d.r. sensor. If the item is removed, light falls on the sensor and the alarm sounds.

Depending on the light level where the alarm is being used it will be necessary to adjust the setting of preset VR1 to provide the most appropriate response. A small hole can be drilled in the side of the case ad-

Wiring between the two halves of the completed Alarm case. The p.c.b. is situated in the section which takes the battery cover. Note the siting of the On/Off slide switch on the side of the case.
jacent to the preset potentiometer to cater for this. The setting should be such that in the dark condition, the alarm is not triggered and in the light condition the unit is triggered reliably.

Positioning is also important. You need to make sure that the $1 . \mathrm{d} . \mathrm{r}$. is reliably exposed to light under the conditions where it is intended that the alarm should be triggered. For example, if the unit is used in a drawer, sufficient light must fall on the sensor when the drawer is open. It is obviously no good placing the alarm under piles of paperwork, because the chances are it will just not work

TIMEOUT

Whether or not you decide to fit the link wire will depend on your application. If you are using the alarm to warn of unauthorised access, you will probably want the unit to continue to sound for its timeout period or until switched off. Therefore, in this case link LKI will need to be fitted. However, if you are using the alarm as an audible reminder that, for example, a darkroom door is open, then link LK1 should be omitted.

If you are unhappy with the alarm timeout period, this can be changed by adjusting the value of C4 and/or R7. Alternatively, if you wish you can disable the alarm timeout entirely by fitting a link in place of C 4 .

IN CONSIDERATION

The Light Alarm is intended to operate at normal room temperature. Extremes of temperature may affect the operation of the alarm and should therefore be avoided.

In particular, circuit timings will be altered and the operation of ICl may become unpredictable. Some CMOS devices can be notoriously unreliable at low temperatures Similarly, avoid damp locations.

The light alarm is a simple project but can give surprisingly good performance when properly used. We have covered the basic applications but there are probably plenty more.

Some readers may like to experiment with a different sounder in place of WDI to give more output or provide a different sound. This should be possible so long as you do not exceed the maximum current and power ratings for transistor TR2.

SUBSCRIPTION ORDER FORM
Annual subscription rates (1999): UK £26.50.
Overseas $£ 32.50$ (surface mail) $\mathbf{£ 5 0}$ (airmail)
To: Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF Tel: 01202881749 Fax: 01202841692

Signature.

Card Ex. Date
Please supply name and address of cardholder if different from the subscription address shown below. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Name
\qquad
\qquad

Techniques ACTUALLY DOING TTE
 by Robert Penfold

IT is some time since we last considlered the vexed topic of what to do when your newly constructed project fails to work. Fears of the finished gadget failing to work seems to put off many would-be project builders, but it is probably fair to say that this excuse is rather less justified than it once was, and the percentage of failures is quite low these days.
Methods of construction have improved, as have many of the components. The amount of pre-publication checking for both books and articles containing electronic projects has increased over the years, and this has greatly reduced the likelihood of you being "led up the garden path"! This produces a situation where projects are actually far more complex than they used to be, but the chances of problems arising are much less.

Important Decisions

Things are still far from foolproof, but like any creative skill, electronic project construction would not be a worthwhile hobby if it posed no challenge. For beginners the most important advice is to choose projects that are within their capabilities.
Select projects that are reasonably straightforward both mechanically and electrically. Initially you will not have a detailed understanding of how projects work, but build projects where you at least understand exactly what they are supposed to do. In the past it was not unusual to receive letters from readers experiencing difficulties with projects that they clearly did not understand properly.
Fortunately, letters from readers who are "out of their depth" are relatively rare these days. Possibly readers are heeding our advice to choose something that is easy to use and understand, such as a simple car or household project, and not something like a piece of highly advanced test equipment that is only fully understood by the designer and his mother!

Perhaps people are just more down to earth these days. In any event, you can save yourself a great deal of hassle by avoiding the temptation to start with grandiose projects that are totally unsuitable for beginners.
Only construct projects that are battery oowered, and therefore safe. The mains supply is potentially lethal, as are any projects that connect to it. Mains
power projects are only suitable for those with a fair amount of experience at project construction.
The two main construction methods for circuit boards are stripboard and custom printed circuit boards (p.c.b.s). Both types of board are actually quite easy to use, but custom p.c.b.s represent the more foolproof method.
Stripboard is drilled with a regular matrix of holes, and in most projects less than 10 per cent of these are actually used. A custom printed circuit board, as its name suggests, is specifically designed for a particular circuit and has just one hole per leadout wire or pin. This greatly reduces the risk of making a mistake in the first place, and any mistakes that are made will usually become apparent before the circuit board is completed.

Bridge Too Far

If a newly constructed project is clearly failing to operate properly it is not a good idea to leave it switched on. This could result in damage to some of the components, and expensive semiconductors are particularly vulnerable.
If there is an obvious problem with a project switch it off at once and recheck the component layout, wiring, etc. Experience suggests that the vast majority of problems are due to short-
circuits between copper tracks on the underside of the circuit board.
There have been problems with accidental short-circuits on printed circuit boards for as long as there have been p.c.b.s, but modern designs tend to be relatively small and intricate. This greatly exacerbates the problem, making it difficult to complete anything but the most simple of boards without producing at least one or two "solder-bridges".
These bridges will usually be spotted while you are constructing the board, and in most cases can be "wiped" away with the bit of the soldering iron. Where there is a large amount of excess solder it is better to use a proper desoldering tool.

Clean Sweep

Some of these short-circuits are caused by minute trails of solder that are very difficult to see with the naked eye. They may actually be hidden under excess flux, and the underside of the board will have to be cleaned in order to bring them to light. There are cleaning fluids designed specifically for cleaning printed circuit boards, but a vigorous brushing with an old toothbrush seems to do the job very well.
Even if you have very keen eyesight some form of magnifier now has to be considered part of the standard toolkit for electronic project construction. Even a simple magnifying glass will make it easier to spot any solder trails, but the ideal tool for the job is an $8 x$ or $10 \times$ loupe (also known as a lupe) of the type sold for viewing photographic slides and negatives.
With the board thoroughly cleaned, a thorough visual inspection using a powerful magnifier should soon reveal the cause of any short-circuits. This type of shortcircuit is now so common that routinely cleaning boards, checking them for problems prior to testing rather than switching on and hoping for the best, is considered a must.

Solder bridges are most likely to occur where joints are tightly packed, especially around d.i.l. integrated circuits. The larger solder blob is a type that should be instantly spotted and rectified. The smaller one at the bottom left-hand corner of the cluster is less obvious, but should soon be spotted when giving the board a careful inspection with an "eyeglass".

Heat Of The Moment

Most beginners at electronic project construction have no previous experience of electrical soldering. Unfortunately, there is not enough space available here for a fully detailed description of soldering techniques, but this is certainly a skill that you must master before undertaking your first project. (If you are an Internet user, why not visit our web site at: http://www.epemag.wimborne.co.uk /solderfaq.htm for the low-down on the art of soldering.)
There are soldering kits available that include an iron, a matching stand, some solder, and a detailed instruction leaflet. These are ideal for beginners, and mostly seem to offer exceilent value for money.
Soldering is not particularly difficult, but being realistic about things, you will need a certain amount of practice before becoming really proficient at it. It is worthwhile buying some stripboard and some cheap components such as resistors, and practising your soldering by fitting the components on to the board.

You will have to sacrifice a pound or two on wasted board and components, but you will learn a great deal from the exercise. A small initial outlay of time and money here can save a great deal of frustration when you start project construction in earnest.

When inspecting the underside of the board, examine the soldered joints for any abnormalities. You may be using too little solder, possibly resulting in some joints where the wire and copper pad are covered in solder but are not actually connected.
Beginners tend to make the joints rather slowly which can lead to problems with so-called "dry" joints. A joint of this type looks quite normal at a glance, but the solder does not produce a reliable electrical contact.

With modern solder and components this type of thing is now very rare. However, if a joint has an irregular appearance and the solder has a crazed finish rather than a shiny surface it would probably be worthwhile removing the old solder and re-doing the joint.

With the exception of semiconductors, modern components are reasonably heat resistant. However, if you take too long to complete joints it is still possible that damage will occur. If a component shows any physical signs of heat damage, such as a darkening in colour or if it has become slightly misshapen, replace it with a new one.

Semiconductors are mostly mounted in holders, but transistors and diodes are often soldered direct to the board. Extra care needs to be taken when fitting these in place.

It is a matter of "practice makes perfect", and you can save yourself a lot of problems by learning to solder quickly and neatly before dealing with any semiconductors.

Under Suspicion

If there are no signs of any problems on the underside of the board, or if after
correcting any that are found the project still fails to work, go back and check the component layout again. First check that every component is in the right place, and that you have not accidentally swapped over two resistors.
The components that are most likely to cause problems are those that must be fitted the right way round. This mainly means semiconductors and electrolytic

The polarity of polarised components is clearly marked on the components themselves, and should be marked unambiguously on component layout diagrams. Note the band on the diode designating the cathode (k) end.
capacitors. Layout diagrams and the shape or markings of components normally make the correct orientation quite clear, so there are few excuses for getting it wrong.
There is a potential cause of confusion with some d.i.l. integrated circuits that lack the usual dot and notch at the pin one end of the body. It seems to be increasingly common to have a white band across this end of the component instead.

Do not be fooled by moulding marks at the other end of the body that can look a bit like the standard notch. These marks are usually larger and less deep than the proper notch, but there should be the dot and (or) band as well, making the correct orientation unambiguous.

Hit List

Here are a few general points to try when checking a project that appears to be all right, but stubbornly refuses to work.

- Are the di.i.l. integrated circuits fitted in their holders correctly? A pin can sometimes buckle inwards or outwards so that it does not make electrical contact with the holder.

This is not always obvious from a visual inspection, particularly if the pin has buckled inwards. Remove the integrated circuits, check that the pins are all straight, and then refit them. Buckled pins can usually be straightened by pressing them against a small screwdriver blade with a fingernail.

- Give the components a firm pull. This will often bring to light any "dry" joints, soldered joints you have missed altogether, or any broken components that have detached leadout wires.
- If an le.d. (light-emitting diode) fails to work it is probably connected the wrong way round. The cathode (k) lead of a standard panel I.e.d. is usually indicated by having that lead shorter than the other lead, and the cathode side of the body is often flattened slightly. This method is something less than universal though, and with some of the "fancy" I.e.d.s currently on sale there is no obvious way of determining their polarity.

This leaves little option but the "suck
it and see" approach. Connecting an I.e.d. round the wrong way is unlikely to damage it incidentally. Its reverse breakdown voltage may be exceeded, but the series resistor or other current limiting circuit will prevent any damage.
Is the project actually switched on? It is just a matter of time before you make the classic mistake of forgetting to switch on or overlooking that all-important component - the battery.

Battery connectors are notoriously unreliable. Try pressing the clip hard onto the battery to see if it makes the project burst into life. Slightly compressing the female connectors with pliers will usually get loose clips to operate reliably. Battery holders for AA and similar cells are also something less than completely reliable.

Make sure that the terminals of the batteries and the holder are clean, removing any corrosion with light use of fine sandpaper. An inexpensive test meter is useful for checking that the battery voltage is getting through to the circuit board.

Testing Time

A multimeter is also useful for making continuity checks on switches, which may not operate in the way you think they do. Is "on" really "on", and "off" actually "off"? Often a project seems to be working irrationaily, but it is just that one or more of the switches do not function as expected, giving automatic operation when you expect the project to work in manual mode, or something of this nature.
A multimeter can also be used to check cables for short-circuits or broken leads, and to check that plugs and sockets connect together properly. It is an essential piece of test gear that newcomers should buy sooner rather than later.
Modern components are very reliable, and duds are few and far between. It helps to bear in mind that if you get everything connected together properly your projects will work. On the other hand, they will never work if you do not "take the plunge" and actually build them.

[^0]: AMPLIFIERS
 John Linsley Hood
 the milestonst work yet, describing audio amplifiers since the earliest days to the latest systems. Including classic amos with valves at their heart and exciting new designs using the latest components, this book is the complete world guide to audio amp

 Contents: Active components; Valves or vacuum tubes, Solid-state devices; Passive components; Inductors and隹隹 perated power amplifiers: Solid state voltage amplifiers: arly solid-state audio amplifiers. Contemporary power molifier designs: Preamplifiers: Power supolies (PSUs)

 ## AUDIO AMPLIFIER PROJECTS

 NEW
 A wide range of useful audio amplifier projects, each project eatures a circuit diagram, an explanation of the circuit peral don a stripboard layout diagram. All construccomponents, and none of the designs requires the use he projects are designed for straightforward assembly on simple circuit boards.

[^1]: (c) Wimborne Publishing Ltd 1999. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

[^2]: Fax: (0)1954211880 Tel: (0)1954211716
 E:mail:post@picotech.co.uk http:www.picotech.com Broadway House 149-151 St Neots Road Hardwick Cambridge CB3 7QJ UK

