$=1=9$ RON

RON SAFETY $D=V / C=$
 Save your shirts from singe marks - award winning design

AcTIVE

ANTENNA Improve reception of 1.5 MHz to 5MHz h.f. stations NOUCHIS \& CROSSES Technological realisation of this simple game RAISING THE PRESSURE Simple Switch Mode Voltage Conversion

THE No. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY \& COMPUTER PROJECTS

PLUS Techniques - Actually Doing It• Ingenuity Unlimited New Technology Update •Circuit Surgery • Net Work

GAS HOES Slandard domestic units, new and boxed, 3 bume
housohodd gas, brown. Bargain of just $£ 12.95$ rea BAR316
INFRA RED FILM 6 " square piece of noxable infra rod film that with only allow IR ingt through. Perfect for converting ordinary torches. lights, headingms eic to infra redoutput only using standard ligm bulbs Easily cat to shape. 8° square $\{15$ ref IRF2
HYOROGEN FUEL CELL PLANS Londs of information on hydrogen storage and production. Practical plans to butbo Hydrogen tuel con (OOOd workshop tecintes required) £8 sel ref FCP STIRLING ENGINE PLANS Interesting information peck covering all aspecte of Stiring engines, pictures of home made engines made from an aerosol can running on a candiel $\varepsilon 12$ rel STRR2 12V OPERATED SMOKE BOMBS Type 3 is a 12 v tinger and 3 smoke cannisters each cannister will fill a room in a very short space of tumel E14.99 rof SB3. Type 2 is 20 smaller cannisters (suitable for smmulared equipment fires etc) and 1 trigger module for $£ 29$ rel SB2 Type 1 is a 12 v trigger and 20 large cannisters e49 rot SB1
HI POWER ZENON VARIABLE STROBES Usefu 12 v PCB fitled with hif power strobe tube and control elecronics and speed control porentiometer Perted for interesting proyects atc $70 \times 55 \mathrm{~mm}$ 12 vac operation. $£ 6$ ta ref FLS1, pack of 10 £49 ref FLS2 NEW GEIGER COUNTERS IN STOCK Hand held Unit with LCD screen, autoraming, bow bettery alamm, audible 'cick' output New and guaranteed 129 rel GE1
RUSSIAN BORDER GUARD BINOCULARS E1799 Probabty the best binocuiars in the worlal ing for colour brochure. RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER. Exceptional coverage of 9 wave bands, (5 short, 1 LW . IFM, 1 MW intemal fernite and external tetescopic aenals, mains/ battery. EAS ref VEGA
NEW LASER POINTERS 4.5 mw .75 merre range, hand held unh nuns on two AA bationes (supplied) 670 nm . 229 ref DECA9
HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 pege book covers all aspects of spint production frome everyday matenats. Indudes construction details of simpte sitims etc. £12 ret MS3
NEW HIGH POWER MINI BUG Wat ange of up to 800 motres and a 3 days use from a PP3 this is our top selting bugl hess then 1^{-1} equare and a 10 m vore piciup range. $£ 28$ Ref $L O T 102$. BUILD YOU OWN WINDFARM FROM SCRAP N publication gives siep by step gunde to builling wind generatiors and propetlors Armed with this publication and a good local scrap yard could make you seff suficient in electnctyl E 12 rof LOT81
PC KEYBOARDS PS2 connector, top qually suntable for all 286 $386 / 486$ enc $£ 10$ rol PCKB. 10 for £65
NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT £29 range 1.5-5 mites. 5.000 hours on AA batienes, renamits into on car direction, left and night fums, start and stop information. Works with any good FM radio £29 ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brand new ltailan lock end batch assembly with both Yatelypellock (keys inc) and 12 operailed deadiock. $£ 10$ ref LOT99
-NEW HIGH POWER WRELESS VIDEO AND AUDIO BUG KIT $1 / 2$ MILE RANGE Transmins video and audio signeals rom a minature CCTV camera (included) to any standerd ferevision! Suppied with teloscopic aenal. £169
CCTV PAN AND TILT KITMororize your CCTV camera with this simple 12 vacc kin .2 hermentically seated OC hnear servo motors 5 mm threaded output 5 secs stop to stop, can be stopped any where. 10 mm travet, powartul. \& 12 rel LOT 125
CCTV CAMERA MODULES $48 \times 70 \times 29 \mathrm{~mm}$, 30 grams, 12 v 100 mA . auto etectronic shutter, 3.6 mm F2 tens, CCIR, 512×492

IR LAMP KIT Suhabte for the above camera, enabies the carmera to be used in total darknessi E 6 rof EF 138
UK SCANNING DIRECTORY As suppled to Police, MOD, M15 and GCHOICoverers evenitring from secrel govem mentiroquencies. eye in the sky, pnsons, mithary avation ecc $£ 18.50$ rel SCANB INFRA RED POWERBEAM Handheld battery powersd lamp, 4 inch refiector, gives out powertul pure infrered hight perifect for CCTV use, nightaghts ecc. £29 rel PB1.
SUPER WIDEBAND RADAR DETECTOR Delects both redar and laser, XK and KA bands, speed cameras, and all known spoed deloction sysems. 360 degroe coverape, front \& earwaveguides

. 1 "x2. $7^{\prime \times 4} 4.6^{-}$fits on sun visor or dash $£ 149$ ref

CHIEFTANTANK DOUBLELASERS 9 WATT+3 WATT+LASER OPTICS

Coutd be edapted for laser histener, tong range communicstions erc Doubte beam units designed to fit ithe gun bafro of a tank each unit has two semi conductor issers and modor dnve unts for ahignement. 7 mie range, no circuit diagrams due to MOD, now phose £50,0007 us? £199. Each unt has two galium Arsenide njection lasers, 1×9 watt,
 alsc contain an ebectronic recoiver to detect reflected signals from largers. \& 199 for one. Rot LOTA.
NEW LOW PRICED COMPUTERWORKSHOP/HI-FI RCB UNITS Complete protection from faully equipment for everybodyl inline unt mis in standard IEC wad (extends 1 by 750 mm). fited in iess than 10 seconds, reselves buthon, $10 A$ rating. $E 6.98$ aech Fil LOTS. Ora peck of 10 ot E 49.90 rel LOT6. Hy you want a box of 100 you can have one for $£ 2501$
TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From Wond famous manulacturer these
 wayd buying TX and RX plus servos etc for now projects atc $£ 12$ each sold as seen ref LOT2.
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL $\varepsilon 9.95$ Cased with fyleads, designed to read standard crodit cardel complete with control evaronicas PCB and manual coverng everyming you couid want 10 know sbout whats hidden in that Wegnetc antp on your cand jusl $£ 9.95$ ree BAR3
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have colloted 140 business manuals that give you information on setting up different businesses, you peruse those an
vour bisure using the text odnor on your PC. Also induded is the centicate enabing youtoreproduce (nnd sell) the manuals as much as you hkel E 14 rof E.

HIGH POWER DC MOTORS, PERMANENT MAGNET 12-24v operation, probably about $1 / 4$ horme power, body measures $12-24 v$ operation, probabty about $1 / 4$ horre power, body measures
$100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shat with a machined fitit on $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output ahath with a machimed hat on it. F poing is simple using the twothreaded bots protuding from the front of the motor $4 \mathrm{~mm} \times 12 \mathrm{~mm})$. These motors are perfect for model engineenng etc they may even be sutable as a cydo motor? We expect high demand so "you would ike one orthink you may require one in the Rulure place your order today! E 22 el MOTA 10 pack 1855 ref MOTSB ELECTRONIC SPEED CONTROLLER KIT For the above motoris $£ 19$ rel MAG17. Save $£ 5$ if you buy them both togenher, 1 motor plus speed controter mp is £41, offer price £36 rel MOT5A RUSSIAN $900 X$ MA GNIFICA TION ZOOM MICROSCOPE meal con situetion, bull in mght, murror etc. Russian shnmptarml, group viewing screen, bots of accosssones $£ 29$ rel ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 RUSSIAN NIGHTSIGHTS Mode TZS4 with infre red Huminator,
 45 mm ions, 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA
batrerias roquired. 950 p woight $£ 199$ rel BAR61. 1 yoars warranty LIQUID CRYSTAL DISPLAYS Bargain prices, 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SMC2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1, 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian. Supert astronomice 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for further intormation. $20 \mathrm{~kg} .885 \times 800 \times 1650 \mathrm{~mm}$ rel TAL- $1, £ 249$ YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprenensve plans with lasds of infto on designing systems. panels. control obecronics erc $£ 7$ ref PVi

COLOUR CCTV VIDEO CAMERAS
BRAND NEW AND. CASED. FROM £99 Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, iv P-P, composite, $75 \mathrm{ohm}, 1 / 3 "$ CCD, 4 mm F2.8, $500 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+$ £89
YUASHA SEALED LEAD ACIDS FROM £2.50 12v 6.5 Ah ex equipment batteries to clear at just $£ 9.99$ for a pack of four! ref XX1
A MAGNET THAT LIFTS 33 KILO'SI Just in this week are these incredible magnets that lift 33 kilo's! Price is $£ 14.99$ ref MAG33
25 SQUARE FOOT SOLAR ENERGY BANK KIT $1006^{\prime \prime} \times 6^{\prime \prime}$ 6v Amorphous 100 mA penols. 100 diodes, connection detains etc to bulld a 25 square food solar con for just $£ 99$ rof EF 112 CONVERT YOUR TV INTO A VGA MONITOR FOR £25! Converts a colour TV imo a basic VGA screen. Complete with buith in psu, lead and sware. Ideat for laptops or a cheap upgrade. Supphed in kit form for home as semby. SALE PRICE £28 REF SA34
*15 WATT FM TRANSMITTER Alroedy assemblec but some RF knowedge win be usetul lor setting up. Preamp req'd, 4 stage $80-$ $108 \mathrm{mhz}, 12-18 \mathrm{vcc}$ c. can use ground plene, yagior dipote $£ 69$ rel 1021 -4 WATT FM TRANSMITTER KIT Small but powertiu FM ransmmer kin. 3 RF stages, mic \& audio proampinduded $£ 24$ rel 1028 YUASHA SEALED LEAD ACID BATTERIES 12v 15AH a £ 18 rel LOTB and betow spec $6 V$ 10AH at E 5 a pair
ELECTRIC CAR WINDOW DE-ICERS Complete with cable. plug otc SALE PRICE JUST £4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre load fillod with a agar plug. 12v 2watn, £12.90 REF AUG10P3 SOLAR POWER LAB SPECIAL You gel $26^{6 x} \mathrm{xb}^{\mathrm{g}} 6 \mathrm{v} 130 \mathrm{~mA}$ Cols, 4 LED' 8 , wre, buzzer, swich 41 'elay or motor, $£ 7.99$ REF SA27 SOLAR NICAD CHARGERS $4 \times$ AA size 59.99 rel 6 P476, $2 \times$
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN3 SQT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUR WITW ORDER PLUS 23.50 P P P PLUS VAT. 24 HOUR SERVICE $\mathbf{E 4 . 5 0}$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS 23.50 'phone orders: 01273203500 (ACCESS, VISA, SWTTCE, AMERICAN EXPRESS) FAX 01273323077
E-mail bull@pavilion.co.uk

Cuze £9.99 rel 6P477
GIANT HOT AIR BALLOON KIT Buide a 4.5 m crcumfrence sully functioning balloon, can be launched with home made bumer ote. Reusable (until you bose it) E 12.50 ref MA1
AIR RIFLES 22 As uned by the Chinese army for training puposes. so thera is a lot aboutt $£ 39.95$ Ref EF78. 500 pellats $£ 4.50$ rof EFBO. *NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT. Transmits both audio and vidoo signals from ether a video camera, video recorder. TV or Computer etc to any standard TV sot in a 500 m rangel (tune $T V$ to channel 31) 12v DC
op. Pnce is 665 REF: MAG15 $12 v$ psu is $\mathbb{E} 5$ extra REF: MAG5P2 - MINATURE RADIO TRANSCEIVERS A par of walkie talkes whin a range up to 2 km in open coumtry. Unts measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. $2 \times$ PP 3 req'd. $£ 37.00$ pr.REF: MAG30 *FM TRANSMITTER KIT housed in a standard working 13A acaptern the bug runs dirsccty of the mains solasts forever! why pay £7007 or pnca is $£ 18$ REF: EF82 (ki) Transmas 10 any FM radio. Buik and lested version now aveilable an £45 ref EXM 34
*FM BUG BUILT AND TESTED superior destgn to ktr. Suppliod to delective agencies, $9 \times$ battery req'd. £ 14 REF: MAG14
GAT AIR PISTOL PACK Complere with pistol, derts and periers £14.95 Rel EF828 extra petiets (500) E4.50 rol EF80.
HEAT PUMPS These are mans operated air to air unha that con mist of a aiuminnum prate (coofing sice) and a radiator (warming side) connecied together with a compre ssor. The plate P insonled into water will freezen Probably about $3-400$ watts so could prod uce 1 kwin ideal conditions. $£ 30$ rel HP
3 FOOT SOLAR PANEL Amorphous stikon. $3^{3} \times 1^{1}$ housod in an aluminium frame, 13 V 700 mA oupur. 555 rof MAG45
SOLARWIND REGULATOR Prevents battenes from over charging. On reaching capacity the reguiator diverts excess power into hest avolding damage. Max power is 60 wetts. $£ 27.99$ ref S/CA 11-/05 4×28 TELESCOPIC SIGHTS Suthabie for all air rithes, ground tenses, good figh gathering propertios. C 24.95 rol R/7.
NICAD CHARGERS AND BATTERIES Standard unversal mains operated charger, takes 4 betts +1 PP3, E 10 ref PO110. Nicads- AA size (4 pack) E4 ret 4P4A, C size (2 pack) E4 ref 4P73, D
sze (4 pack) E9 rot 9P12 stre (4 pack) E9 ret 9P12
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The now mutiband 2000 radar delecior can pravent even the most responsible of atvers from losing thear hcencel Adjustable audible alarm with 8 fasshing ieds gives instant waming of radar zones. Deiects X, K, and Ka bands, 3 mie range, "over the hilr around bends' and 'rear trap facilities. micro stze just $4.25^{\prime \prime} \times 5$ " $x 75$ Can pay tor nselt in just one dayl 1 E.99 ref EP3.
STEREO MICROSOPES BACK IN STOCK RUssian, 200x comptere wath lenses, hights. finers etc etc very comprehensive microscope thet would normally be around the $£ 700$ mark, our pnce juch SECOND GENERATION NIGHT SIGHTS FROM $£ 748$ RETRON Russian night sight, 1.8 x , infra red lamp, $10 \mathrm{~m}-\mathrm{im}$, standerd M42 iens, 1.1kg. E349 rof RET1
MAINS MOTORS 180 RPM $90 \times 70 \mathrm{~mm}$, $50 \times 5 \mathrm{~mm} 50 \times 5 \mathrm{~mm}$ output shant, start cap indurded. £22 rel MGM1

PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OURCHOICE, BARGAIN AT 8 PSU'S FOR £9.99 REF XX16

LOW COST CORDLESS MIC 500' range, 90 - 105mnz. 115 g . $193 \times 26 \times 39 \mathrm{~mm}$, 9 P PP3 battery required. $£ 17$ rof MAG15P1 JUMBO LED PACK 1510 mm bicolour leds, plus 5 glamt (55 mm) seven segment displays all on a pct $£ 8$ ret JUM1. Pack of 3055 mm seven seg dieplays on PCbs is $£ 19$ re! LEDA, pack of 50 £ 31 ref LED50 12VDC 40 MM FANS MADE BY PANAFLO. NEW.E4.REF FAN12

WIND GENERATORS 380 WATT
1.14 motre dive biades, carbon matrix blades, 3 year warranty, 12 vdc outpur, 24 v version avaluble, control eiberonics included, brushiess
 (30mph) 380 w . E499 ref AlR1

Check out ourWEB SITE
 full colour interactive 1997 catalogue

httpe://www.pavilion.co.uk/bull-electrical
FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
SURPLUS STOCK LINE 0802660335

USN 02623617
PROJECTS . . THEORY .. NEWS COMMENT . . . POPULAR FEATURES

VOL. 26 No. 9 SEPTEMBER 1997

EVERYDAY

PRACTICAL

ELECTRONICS
http://www.epemag.wimborne.co.uk
The No. 1 Magazine for Electronics Technology and Computer Projects

(c) Wimborne Publishing Ltd 1997. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS Is fully protected, and reproduction or Imitations in whole or in part are expressly forbidden.

Projects and Circuits

IRONING SAFETY DEVICE by Simon Todd
Clothes ironing need never again scorch domestic harmony: this award-winning motion monitor is a cinch to build and use!
PIC-NOUGHTS \& CROSSES GAME by Paul Hackett 602
Upgrade traditional combat to meet the 21 st Century - build our microcontrolled l.e.d. OXO machine!
SOLDERING IRON CONTROLLER by Bart Trepak 620
Here's a cool cure for a hot problem - though it's not for beginnersACTIVE RECEIVING ANTENNA by Adrian Knott G6KSN636
A low-cost masthead or stand-alone 1.5 MHz to 5 MHz tuned active antenna
MICROPOWER PIR DETECTOR - 3 by Andy Find 642Adding a magnetically-operated alarm disarm and reset switch to ourbattery-powered three-part integrated IR alarm system

INGENUITY UNLIMITED hosted by Alan Winstanley645
19 kHz Reference Source; Non-linear Amplifier; "Squeakie" Practical Joke
Series and Features
NEW TECHNOLOGY UPDATE by Ian Poole 600
The concept of a memory device whose logic state can be set by asingle electron has become reality
RAISING THE PRESSURE by Andy Find612Discussing techniques for boosting voltages using the RC4190switch-mode ic.
CIRCUIT SURGERY by Alan Winstanley616
Ian Bell of Hull University joins the Surgery and prescribes non-invasivetechniques for directionally counting bats!
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold626
Identifying transistors, integrated circuits and diodes
GREAT EXPERIMENTERS - A Short History - 5 by Steve Knight631like William Thomson typifies the extent of technological advancementNET WORK - THE INTERNET PAGE surfed by Alan Winstanley652
New Addition; Netiquette; More Junk; Hot Links
Regulars and Services
EDITORIAL595
INNOVATIONS - Barry Fox highlights technology's leading edge 608
Plus everyday news from the world of electronics
READOUT John Becker addresses general points arising 615, 628
SHOPTALK with David Barrington 625
The essential guide to component buying for EPE projects
PARTS GALLERY + ELECTRONIC CIRCUITS AND
COMPONENTS CD-ROM Special Offer to EPE readers 630
BACK ISSUES Did you miss these? 640
FAX ON DEMAND 641
Need a recent EPE article now? Dial our "instant" response service! 648
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 651
PCBs for EPE projects Plus EPE software
ELECTRONICS VIDEOS 653
Our range of educational videos656
Our October 97 Issue will be published on Friday, 595ADVERTISERS INDEX

$\begin{array}{c}\text { Surplus always } \\ \text { wanted for cash! }\end{array}$
TOW COST THE MOS'S -
SPI'S SE
SPECIAL BUY
AT 286'
4омь нD + змb Ram

Made in the USA to an industial specitication, the system was Made in the USA to an industrial specification, the system was
designed for lotal rehabulty. The compect case houses the motherboard. PSU and EGA video card with single $5 \%=1.2 \mathrm{Mb}$ floppy dask
drive 8 integral 40 Mb herd disk drive to the front. Real time ctock with battery backup is provided as standard. Supoled in ogod ussed Order is HIGRADE 286 ONLY $\mathbf{O P} \mathbf{2 9}$. OO

Optional Fitted extras: VGA graphics card $£\{9.00$

LOW COST 486DX-33 SYSTEM

 Fully featured with standard summ connectors 30 \& 72 pin. Supplied with keyboard, 4 Mb of RAM, SVGA monito outpur, 256k cache andintegral 120 Mb IDE drive with single 1.44 Mb 3.5° floppy disk orive. Fully tested and guaranteed. Fully expandable $\begin{array}{ll}\text { Many other optona avaiable - call for dotalle. } & \text { Only } \\ \text { M } \\ \text { M }\end{array}$ FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ " or $31 / 2$ " from only 18.95 !

Massive purchases of standard 53° and 33° drves enabies us to
presemt prime product at industry beating low prices! All units (uniess stated) are BRAND NEW or removed from ohen brand new equipment and are tully tested, aligned and shipped to you with a 90 day guarantee and operate from standard volages and are of stan
size. All are fim-PC competible (ii 31/" supported on your PC) $3 k^{\circ}$ Panasonic JU363/4 720 K or equivalent RFE 3k" Mitsublehi MF 355C.O. 1. Meo. Non lapton
 5\%' BRAND NEW Mitteublahl MF501B 360 K Table top case with integral PSU for HH $5 \mathrm{~s}^{\circ}$ Flopp or HD g $^{+\prime}$ Shugar 8518° doubt sided returtished \& tested Mitsubishi M2a94-63 8. ${ }^{\circ}$ double sided NEW Mittsubishi M2296-63-02U 8° DS simine NEW
 Dual 8^{-}cased drives with integral power supply 2 Mb

HARD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 $8^{\circ} 85$ Moyte

 drive winh indusiry standard Smo interiace, replaces Fulasu31% FUNI FK-309-28 20 mb MFM UF RFE
$33{ }^{\circ}$ CONNER CP 302420 mb IDE UF (or equiv) RFE $3 \%^{\circ}$ RODAME RO3057S 45 mb SCSI (O OqN.) AFE $3 y^{\prime \prime}$ WESTERN DIGITAL 850 mb IDE VF Brand Aow 5\%- MMISCRIBE 342520 mO MFM MF (Or equiv.) RFE 5\%. SEAGATE ST-238R 30 mb RLL IF Returb 5\%" CDC 94205-51 40mb HH MFM IF RFE tested
5\%- HP 9754 B 850 Mo SCSI RFE tested 5\%. HP 9754B 850 MO SCSI RFE tested HP C3010 2 Gbyte SCSI differentia/ RFE teste
FUITS SU M2322K 16010 SMD VF RFE Hard disc controllers for MFM. IDE, SCSI. R \amalg etc. from $£ 18.05$

THE AMAZING TELEBOX

Converta your colour monitor inlo a QUALTTY COLOUR TVI

 TV SOUND \& VIDEO TUNER cable companiele:

The TELEBOX is an attractive fully cased mains powered unih, contaning all electronics ready to ptug into a host of video monitors
made by makers such as COMMODORE, PHILIPS, TATUMG, AMSTRAD etc. The composie vopoo output will also plug directy into most video recorders, allowing recen recivivers: (TELEBOX MB) Push button contron mont hetoh panel allow reception of 8 fully tuneable 'off air UHF colour totevision channels. TELEBOX MB covers virtually all television frequencies VHF and UHF inctuding the HYPERBANO as used by most cmble TV operators. A composite video output is located on the rear penel lor direce connection to most makes of monilor or deatiop computer video sult an audio outpul are provided as standard.
TELEBOX ST for composite video input type monitors TELEBOX STL as ST but fitted with integral speaker For overseas PAL versions state 5.5 or 6 mHz sound spectication - For cabte ital 'For cable / hyperband reception Telebox MB should be oonnected
to a cabie type service. Shipping code on all Teleboxe's is (B)

DC POWER SUPPLIES

IC'S -TRANSISTORS - DIODES
OBSOLETE - SHORT SUPPLY - BULK

6,000,000 items EX STOCK

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see A. At this price - Don't miss it!!
 1024×768 ers noluding IBM PCI I CGA EGA VGA \& SVGA ARCF MEDES and APPLE Mary faetures Elched specification Fully guaranteed, supplied In EXCEL LENT me used condtion
Tiv in Swivi Bon E4.75 VGA calto for IBM PC incurted

Oniy £119 (日) Ordes as Extarnal cable for other typee of computers CALL

As New - Used on film set for 1 week only! $15^{\circ} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tift atc. Full 90 day guaranteo. 1145.00 (E)
Food SH condition - from E299. CALL for inic

Good SH condition - from $\mathbf{E 2 9 9}$. CALL for into
PHHLPS HCS35 (same styie as CMB833) attractively styled 14
colour monitor with hoth AGB and 1 tenderd composhe 15.625 colour monitor with both RGB and standerd compostre 15.625 the vios inputs via scart sockel and separate phono facks Will connect dired to Amp and Atad BBC computa siont video montloring / security apolications with direct connect to most colour cameras. High puality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully fesfed - guaranteed Only $£ 95$
PHILIPS HCS31 Ulira compact 9° colour video monilor with standard composht 15.625 Khz video input via SCART socket. Ideal
for all monitoring / security applications. High quality, ex-equipment tully tested a guaranteed (possible minor screen bums). In attrac tive square black plastic case measuring W $10^{\circ} \times \mathrm{H} 10^{\circ} \times 13 k^{\circ} \mathrm{O}$ KME $10^{\circ} 15 \mathrm{M} 10009$ high definition colour monitys $\mathbf{£ 7 9 . 0 0 (\mathrm { D }}$ Operates from any 15.625 khz sync RGB video ource. with RG
uch as Alari, Commodore Amiga, Acorn :
1° Good used condtion. Only £125 (E)

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Superbly made UK manutacture. PIL all solid state colour moniors, teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.in EXCELLENT little used condition with full 90 day guarantee.

SPECIAL INTERESTITEMS

miTS. \& FA3445ETKL 14° Industrial spec SVGA monitor

 2WW 10400 kW - 400 He 3 phee pown wources-ex stock 18M 8230 Type 1. Token ring bese unit driver IBM MAU Token ring distribution pand 8229-23-5050N AIM 501 Low distortion Oscillator 9 Hz to 330 khz . IEEE Trend DSA 274 Deta Anatyser with G703(2M) 64 Vo Marcont E310 Programmable 2 to 22 GHz sweep generatHP1650B Logic Analyesp HP16508 Logic Analyer
HP3781A Patiem generator \& HP3712A Enor Detector HP APOLLO AX700 system units
HP3081A Industrile workstation GIB PSU 0.7 V 160 watts HP6284 Reck mount variable o-20V Barcode swipe reader HP54121A DC 1022 GHz lour channel test set
HP7580A A1 8 pen HPGL high speed drum ploter HP7580A A1 8 pen HPGL high speed drum plotter
EG+G Brocketel 95035C Precision lock in amp Viow Eng. Mod 1200 computerised inspection system Ling Dynamics $2 \times W$ programmable vibration test system Kethloy 500 CV capactor / vohage analyser

Aecul ICRAO dual 40 channel voice recorder system Fiskere 45KVA 3 ph On Line UPS - New batts Dec. 1995 Mann Talty MTG15 Hioh speed line crieaning sysion Mann Tally MTGA5 High speed line printer 2ote $3220-05$ AO 4 pen HPGL fasi drum ploter Nikon HFX-11 (Ephiphol) exposure control Uni Mriorota VME Bus Boards \& Components List. SAE / CA | Trio $0-18$ vdc inas. metered 30 amp ben |
| :--- |
| Fulttou $M 301 R ~$ | Ufisu M30410 600 LPM orinter with network interlace Perkin Elrmer 2998 Infrared spectrophotometer

VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3.1 m Satelite Dish \rightarrow moum (For Voyer Androws LARGE 3.1 m Saleline Dish + moum (For Voveger) TAYLOR HOBSON Tallysurl amplitier / recorder System VIdeo 1152 PAL wavetorm morico
Test Lab-2 mir square qumelised acoustic lest cabmers
nwood 9601 PAL Vectorscope - NEW

19" RACK CABINETS
Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price! Top quainy 19° rack cabmets made in UK by
Optima Enclosures Lid Units teature designer, smoked acryic lockable front door.
full height lockable half louvered back doo and louvered removable side panels Full adpustable internal fixng struts, ready punche socket swithed mans distritution stup mak these racks some at the most versmitie we equire only two side penels to stand singly or in mulipte bays.

$$
\text { DPT Rack } 1 \text { Complete with removable side penels E335.00 亿G }
$$

\qquad $E 225.00$ (G
32U - High Quality - All steel RakCab ack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy access and all are lockable with
tive sencur 5 lever berrel locks. The front doo is constructed of doubte walled steel with onable status indicators to be seen through the oatures fully slotted reinforced veill the rach members to take the heaviest of $19^{\prime \prime}$ rec (extras available) are pre punched for standan y mounted to the bottom rear, provides $8 \times$ IEC pin Euro sockels and 1×13 amp 3 pin switched Ully louvered back door and double skinned top section of Intogrel lans to the sub plate etc. Other teatures include: fithed castors and floor levelers, prepunched utility penel al lower rear fo cable / cornector acoess efc. Supplied in excellent, slighty used

Sold at LESS than a third of makers prica !!
A superb buy at only $£ 195.00$

Over 1000 racks -1 1" $^{\prime 2} 22^{\prime \prime} \& 24^{4}$ wide

 Call win yourrequirements.TOUCH SCREEN SYSTEM
The ullimate in Touch Screen Technology' made by the experts. hat transtucent glass laminated penel meatsuring $29.5 \times 23.5 \mathrm{~cm}$ connected to an olectronic controlier PCB. The controlier produces astandard sariad RS232 or TTL outpur which continuously gives simple serial data containing positional X \& Y co-ordinates as io where a finger is touching the panal - as the linger moves, the data instanty changes. The $X 8 Y$ intormation is given at an lncredible ize II A host of mitimbte trencletion softrare cnablas direct con nection to a PC for a myriad of applications including: control pancomputer un-Irained erc etc. Imagine using your finger with pplifeations for this enause product ere onty avited oy you applications for thls smazing product are only imited by your and bata suppliad at an incredible price of only. $£ 145.00$ (B)

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Mamory Expension Board. Full length PC-XT and PC-AT compatible card with 2 Mbyties of memory on board and above) momory. Full dita and difiver disks suppliad. RFE Fully lesled and ouaranteed. Windows compatble. 259.95 (AI memory either 256 k or 512 k in 64 k steps. May also be used to fill
 SIMM SPECIALS
$\begin{array}{ll}\mathrm{MB} \times 9 \text { SMMM } 9 \text { chip } 120 \mathrm{~ns} \\ \mathrm{MB} \times 9 \text { SmaM } 3 \text { chip } 80 \mathrm{~ns} \mathrm{C1} 9.50 & \text { or } 70 \mathrm{~ns}\end{array}$

 216.50
822.95
823.75 FANS \& BLOWERS

EPSON DOA $1240 \times 40 \times 20 \mathrm{~mm} 12 \mathrm{VDC}$
PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm}$ 12V DC
MTSUBISH MMF-D8D1201 $60 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{vDC}$ MTSUBISHI MMF-0AC12OM 8008025 mm 12v DC $87.9510 / £ 65$
88.95
$10 / \Sigma 75$ TTSUBESH MMF-09B120H 92x922R25 mm 12v DC
 or 240 v f6.95. $80 \times 80 \times 38 \mathrm{~mm}$ - specily 110 or 240 y 55.95

Issue 13 of $\operatorname{Display~News~now~available~-~send~Iarge~SAE~-~PACKED~with~bargains!~}$

				$\begin{gathered} \text { ALL Z ENQUIRIES } \\ 1818794414 \\ \text { FAX } 01816791927 \end{gathered}$
- ELEETROTHE5				
\cdots c ush				

편ectionics Pinciples 4.0

 For Windows 3.1, '95 \& NT. If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the sofiware for you.

Enchonics Pincplas 4.9 now hos on ever more cormsehtirnive IGhpe of Ny Mmametie Exiciogete and depru lockes, Fiom curment fow andice ciculs tricuen smiching and thandzto ppention to paprime and ochee fites logic begra with simple gotas trough bunary, nexand octal number conwension, addifon and subtracllon to suoleari algurara. Phis. inicropracessor and microcomputer operation, registers, artinmetic and logle unit, ROM, RAM. Addressing modes and full instruction set which can bs simulated on tie screen. All version 3.0 topics are covered within this program
Currentily used in hundreds of UK and overseas schools \& colleges to suppon GCSE, A-level, BTEC, Cliy \& Guilds and university foundation courses. Also NVQ's and GNVQs where students are required to have an understanding of electronics principles.

Mathematics Principles 3.0
\$49.95*
Study or revise mathemarics in what we belleve is an interesting and enjoyable way. Nearty two hundied grachics presentations, to enable leaming by exploration, includ githe GCSE syllabus.

The popular Electronics Principles 3.0
£49.95*
Contains nearly 300 fully interactive anategue and dilgital topics. Electron current fiow, transistor operation and blasing. MOSFET enhancement and depletion modes. Frequency and tuned circults. Logic gates, counters and shift registers to binary arithmetic. To list fust a few of those available

- All Inputs \& outputs use electronics symbols.
- Hundreds of electronics formulae available for circuit investigation.
- Ideal for students and hobbyists who require a quick and easy way to get to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current levels or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.
A fully interactive 'extbook' on the screen. OHP slides and student handouts within minutes. Multi-user network version available.
h.C.L Parallel Impedance.

Calculations.
$R=\frac{50}{100}=.5=500 \mathrm{~mA}$
IC $=\frac{50}{3183099}=1570796=15708 \mathrm{~A}$
$\mathrm{L}=\frac{50}{157.0796}=.3183099=3183099 \mathrm{~mA}$
$1=\sqrt{.5+(1570796 \cdot 3183099)}=1.3486=1.34864$
$a=\tan ^{-1} \frac{1.570796 \cdot 3183099}{5}=68.2378$
$Z=\frac{100 \times 1570796 \times 31.83099}{\sqrt{157.07967 \times 31.83099+1007 \times(157.0796 \cdot 31.83099)}}=37.0755 \mathrm{R}$

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 28J. Tel/Fax: 01376514008. e-mail sales@eptsofi.demon.co.uk * UK \& EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return.

Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational sofiware.

SURVBILTANCE PROFASSIONAL QUALITY KITS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ulitra-miniature Room Transmitter
Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 500 m range...
£16.45
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 1000 m range.
£13.45
STX High-performance Room Transmitter
High performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, including mic. 6 V - 12 V operation. 1500 m range. $£ 15.45$ VT500 High-power Room Transmitter
Poweriul 250 mW output providing excellent range and performance
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V -12V operation. 3000 m range.
VXT Voice-Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9V operation. 1000 m range. $£ 19.45$ HVX400 Mains Powered Room Transmitter
Connects directly to 240 V A.C. supply for long-term monitoring.
Size $30 \mathrm{~mm} \times 35 \mathrm{~mm} .500 \mathrm{~m}$ range.
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...... £22.95
SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no battenes. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range......... $£ 23.95$ SCDM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9 \mathrm{~V}-12 \mathrm{~V}$ operation.
£22.95
ATR2 Micro-Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line

โ13.45

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radio Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way d.i.l. switches on both boards set your own unique security code. $T X$ size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits)....
§50.95
Individual Transmitter DLTX... $£ 19.95$
Individual Receiver OLRX....
£37.95
MBX-1 MI-Fi Micro Broadcaster
Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quallty to a nearby radio. Listen to your farvourite music anywhere around the house, garden, in the bath or In the garage and you don"t have to put up with the DJ's choice and boring waffle.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.
〔20.95

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit avalable. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$
Connects to line (anywhere) and switches on and off with phone use.
All conversation transmitted. Powered from line. 500 m range.
TLX 700 Micro-miniature Telephone Transmitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easter to assemble
than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range.
£13.45
STLX High-performance Telephone Transmitter
High periormance transmitter with buffered output stage providing excellent stabilty and performance. Connects to line (anywhere) and swiches on and off with phone use. All conversations transmitted. Powered from line
Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range.
£16.45
TKX900 Signalling/Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
£22.95
CD400 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source.
Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
CD600 Professional Bug Detector/Locator
Mutticolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmutters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legtumate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation............................. 550.95
QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
QLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
QSX180 Line Powered Crystal Controlled Phone Transmitter
As per QLX180 but draws power requirements from line. No batteries required. $\mathrm{Size} 32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
QRX 180 Crystal Controlled FM Receiver
For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section supplied as pre-built and aligned module ready to connect on board so no difficulty setting up. Output to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.
£60.95

A buildrup service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add $£ 2.00$ per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 01827714476.
OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Dept. EE

The Workshops, 95 Main Road, Baxterley, Near Atherstone, Warwickshire CV9 2LE

seetrax cae RANGER pCb design

 WITH COOPER \& CHYAN AUUTOROUTERRANGER2 + SPECCTRA £400.00
RANGER \& SPECCTRA NUTOROUTER Together giving the most cost effective PCB design system on the market TODAY ! SEETRAX'S ease of use combined with COOPER \& CHYAM'S renowned gridless autorouter, at an outstanding price.

R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber,
NC Drill, AutoCAD DXF
Demo Disk available at $£ 5.00$ +VAT

> RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAN SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Old Buriton Limeworks, Kiln Lane, Buriton, Petersfield, Hants, GU31 5SJ Call 01730260062 or Fax $01705599036 . \quad+$ VAT E P.P.

SQUIRES

MODEL AND CRAFT TOOLS

A comprehensive range of craft tools and equipment featured in a fully illustrated

100 page Mail Order Catalogue

1997 Issue

SAME DAY DESPATCH FREE POST \& PACKING

For your free copy of our catalogue write, telephone or fax to:

Squires, The Old Corn Store, Chessels Farm, Hoe Lane, Bognor Regis, West Sussex PO22 8NW
Tel/Fax: 01243587009
\qquad

TRANSMITTERS
NEW Fully comprehensive guide to building and using short/medium range radio transmitters and receivers. Includes detailed and practical information on all aspects of construction, from simple FM room transmitters to more sophisticated and powerful audio and data transceivers.

Manual includes:

- AM, FM and UHF Transmitters from micro power up to 3 Watts. Covers simple 'bugs' as well as circuits operating on 27 MHz and 418 MHz etc.
- TRACKING AND SICNALLING. How to build micro circuits for finding animals, cars etc.
- CRYSTAL CONTROLLED TRANSMITRERS. High stability circuits.
- RADIO PACER AND RADIO CONTROL. How to build coded radio keys, multi-channel remote controls, radio alarms etc.
- RECEIVER CIRCUITS. Wide range of receiver projects for building high security audio links and transceivers.
- EXTENSIVE assembly information. Includes
sections on construction, testing, mics, aerials, coils and miniaturisation.
Over 100 detailed PCB, strip-board and point to point designs. Manual comes with FREE micro transmitter PCB.

Interested in Electronic Engineering?

Leaving School?
 Unemployed and Job Seeking? Changing Career?
 Looking for Promotion?
 Resident outside of the United Kingdom?

If this is you, then one of the listed colleges may be able to help

Several sources have indicated that there is a national shortage of highly skilled Electronics and Telecommunications Engineers in Britain so if Electronics is an interest or hobby, why not make it your career?
A wide variety of training programmes are available covering many branches of electronics such as:

- Mobile Radio \& Radio Engineering
- Microprocessor Programming and Interfacing
- Optoelectronics
- Telecommunications Engineering
- Television \& Video Servicing
- Computer \& Office Equipment Servicing
- Electrical Engineering
- Electrical installations
- Electronic Engineering
- Marine Radar, Navigation \& Electronics
- Marine Radar \& GMDSS GOC

Training Programmes are available for:

School Leavers, Job Seekers, Employed, Employers, Overseas Employers and Students

Member Electronics Colleges are all over Britain

(1)Aberdeen College, Aberdeen, AE25 i 1 H. Bill Thow. Tel: (01224) 812000 Fax: 612001
2 BLackburn College, Blackburn, Be 2 1LM. Peter 8 mith. Tol: (01254) 292346 Fax: ©81755
3 Boupnemouth a Poole College of FE, Poole, BN14 OLS. John Gosiling Tel: (01202) 205654 Faxi 205313
4 Clty College Morwich, Morwich, MR2 2LJ. David Warner Tel: (01803) 773320 Fax: 773016
(3) Cliy of Liverpeol Communlty College, Liverpool L19 30月. David Jones. Tol: (0151) 2524749 Fax: 4271179
6 Ealling Tertiary College, London, W3 8UX. Denis Thomson Tol: (0181) 231 B332 Fax: 9e32725
7 Olasgow College of Mautical Studles, Olasgow, G5 9xe. John Mercus. Tol: (0141) 5652860 Fax: 5852599
8 Grimsby College, Grimsby, DN34 58Q. Hichard Summerfleld. Tol: (01472) 315540 Fax: 179924
3 Mull College, Mull, HU1 JDC. Steve Orett. Tol: (01482) $598004 / 329043$ Fam: 598733
(10) Jewel at Etk Valley College, Edhburgh, EM1 5 2PP. Derok Landells. Tol: (0131) 8577268 Faz: 8572276
(11) Lancaster a Morecambe Collees, Lancaster, LA1 2TY, Gary WIIkinson. Tal: (01524) 65215 Fix: 8
12 London Electronics Colloge, London, Sws asw. M.D. Spakilng. Tel: (0171) 3731721 Fax: 2448733
(1) Matthew Solton College, Ilrmingham, ES 7DB. Clive MIII. Tel: (0121) 4484545 Fax: 4463105
14 Nowbury Colloge, Newbury, RG14 1PQ. Martin Rlce. Tel: (01835) 37000 Fax: 41812
15 Fymouth College of FE, Pyyouth, PL1 sQe. Mr D J Turner. Tol: (01752) 3653领 Faz: 385349
16 South Tyneslde Colloge, South Shiolds, NE34 6ET. David Johnson. Tel: (0191) 4273500 Fax; 4273535
(1) Southampton institute, southampton, $\mathbf{S 0 1 4} \mathbf{0 Y M}$, Roger Forater. Tel: (01703) 319333 Fax: 334441
(18) Stoke on Trent College, Burslem, STE 1dd. Ken Burgess. Tol: (01782) 20 208 Fax: 603103
(19) Tresham Institute (Northants) of F A ME, Corby, WM17 1QA. John Dixon. Tel: (01536) $413307 / 402252$ Fax: 402252

To find out exactly what the college of your choice can offer, please telephone directly or use the no obligation Enquiry Coupon below for a brochure.

ENQU1RY OOUPON

Please send details of your electronics courses to:
Name
Address

Post code

Send this coupon to any of the colleges listed for the latest details of courses and programmes available. School leavers under 18 years of age are recommended to conlact the nearest college to their home address.

Tel No. and area code
Fax number and area code
Age (if under 18)
Preferred type of course?

MAIL ORDER ONLY - CALLERS BY APPOINTMENT

- Efficient quartz controlled microcontrolier pulse generation - Full kit with headphones \& all hardware

KIT 847.

.f63.95

DIGITAL LCD THERMOSTAT

A versatile thermostat using a thermistor probe and having an l.c.d. display. MIN/MAX memories, - 10 to 110 degrees Celsius, or can be set to lower switching temperatures allow close control or alternatively allow a wide 'dead band' to be set which can result in substantial energy savings when used with domestic hot water systems. Ideal for greenhouse ventilation of heating control, aquaria, home brewing, etc. Mains powered, 10A SPCO Relay output. Punched and printed case
KIT 841
$£ 29.95$
PORTABLE ULTRASONIC

PEsT SCARER

A powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency out any special setting up
KIT 842. £22.56

DIGITAL CAPACITANCE

METER

A really professional looking project. Kit is supplied with a punched and printed front panel, case, p.c.b. and all components. Quartz con trolled accuracy of 1%. Large clear 5 -digit display and high speed operation. Ideal for beginners as the $\mu F, n F$ and pF ranges give clear un capacitors from a lew of up to thousands of FF KIT 493. \qquad £39.95

SUPER ACOUSTIC PROBE

Our very popular project - now with ready built probe assembly and diecast box. Picks up vibrafrom engines, watches, and soeech through walls can be heard clearly. Useful for mechanics, in. strument engineers and nosey parkers! A very useful piece of kit.
KIT 865
£29.95

DOLBY PRO-LOGIC DECODER

D DCLEY SURROUND

Brings full Genuine PRO-L
Sound to you at a fantastic price. The circuit meets all -DOLBY specifications, with "Stereo". "3-Stereo" and "Surround" selections. Featured in EPE APRIL '96
Full kit with case and transformer. Kit Ref; 869 £124.99
Short Form KIT. Kit Ref: $858 \mathbf{£ 9 9 . 0 0}$ -DOLBY and ite double-D symbol are trademarks

MICRO PEsT SCARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets pesis away from newly sown areas. play areas, etc. Uses power source from 9 to 24 volts.

- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867
LAVE UNIT
KIT + SLAVE UNIT
Plug-in power supply $£ 4.99$
£19.99

WINDICATOR

A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit $£ 5.99$ extra.
KIT 856.
£28.00

\star TENS UNIT

dual output tens unit

As featured in March '97 issue.
Magenta have prepared a FULL KIT for this excellent new project. All components, PCB, hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.
KIT 866.... Full kit including lour electrodes $£ 32.90$

1000 V \& 500 V INSULATION
TESTER
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848.
E32.95
MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.
Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer, Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment. KIT 845.
.f64.95

ULTRASONIC PEST SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

- EFFICIENT 100 V

TRANSDUCER OUTPUT UP TO 4 METRES

- COMPLETELY INAUDIBLE RANGE

TO HUMANS LOW CURRENT DRAIN
KIT 812.
£14.81

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE $20 \mathrm{kHz}-140 \mathrm{kHz}$ NEW DESIGN WITH 40 kHz MIC.
A new circuit using a "full bridge" audio amplifier i.c., internal speaker, and headphone/tape socket. The latest sensitive transducer, and 'double balanced mixer' give a stable, high peformance superheterodyne design.
KIT 861
£24.99
ALSO AVAILABLE Built \& Tested£39.99
E.E. TREASURE HUNTER

PI. METAL DETECTOR MKI
Magenta's highly developed 8 acclaimed design. Quartz crystal contrailed circuit MOSFET coil drive. D.C. coupled Full kit includes

PCB, handle, case 6 case b

KIT INC. HEADPHONES

- EfFICIENT CMOS DESIGN
- POWERFUL COIL DRIVE
- detects ferrous and NON-FERROUS METAL - GOLD, SILVER, COPPER ETC
- 190 mm SEARCH COIL
- No 'GROUND EFFECT'

KIT 815.
.£45.95

DC Motor/Gearboxes

Our Popular and Versatile DC motor'Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4.5 V Multi ratio gearbox gives wide range of speeds.
LARGE TYPE - MGL £6.95
SMALL - MGS - £4. 77
Stepping Motors
MD38...Mini 48 step... 88.65
MD35...Std 48 step... 12.98
MD200... 200 step... $\$ 16.80$
MD24...Large 200 step... 222.95

SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE!

INCLUDES 1-PIC16C84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD \& INSTRUCTIONS

Kit $857 £ 12.99$

Power Supply $£ 3.99$
EXTRA CHIPS:
PIC 16C84£7.36

Based on the design in February '96 EPE article, Magenta have made a proper PCB and kit for this project. PCB has 'reset' switch, Program switch, 5 V regulator and test L.E.D.s. There are also extra connection points for access to all A and B port pins.

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16C84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 16-CHARACTER 2-LINE LCD DISPLAY

Kit 860 £17.99

Power Supply $£ 3.99$
FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE $\times 16$-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
\star Chip is pre-programmed with demo display \star

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
- SEND FOR DETAILED INFORMATION - A
SUPERB PRODUCT AT AN
Kit $862 \mathbf{£ 2 9 . 9 9}$

UNBEATABLE LOW PRICE.

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB. PIC 16C84 WITH DEMO PROGRAM, SOFTWARE DISK. instructions AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED. ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor -up to 24 V and 1 A . Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

Power Supply $£ 3.99$

PIC16C84 MAINS POWER 4-CHANNEL

 CONTROLLER \& LIGHT CHASER- WITH PROGRAMMED 16C84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING -

Now features full 10 CHASE PATTERNS

- OPTO ISOLATED
- 4×3 KEYPAD CONTROL
- SPEED CONTROL POT.
- HARD FIRED TRIACS
- 4 CHANNELS @5 AMPS
it can be followed easily. 4-channel chaser software on DISK and pre-programmed PIC16C84 chip. Easily re-programmed for your own applications. Software source code is fully 'commented' so that OTHER APPLICATIONS

PIC16C5X

IN CIRCUIT EMULATOR - WITH ON-LINE MONITOR. The easiest way to get started. Allows single display registers and driving the I/O pins. Software and hardware can be developed and tested together. Programs 16C54, 5, 6, \& 7 chips. Full featured software runs under DOS at high speed. * WITH OPERATING PROGRAMMING, AND CROSS ASSEMBLER SOFTWARE

RUNS WITH

SERIAL
PC LEADS 9-WAY £6.00 25.WAY $£ 7.00$

- FULL 8MHz 68000 16-BIT DATA BUS - EXPANDABLE - PIT OPTION 68230
- FULL MANUAL PLUS DATA - SUPER LOW PRICE: KIT 601 \qquad . $£ 69.95$ EXTRAS: 9-way P.C. lead $£ 6.99$ 25 -way P.C. lead $£ 6.99$ Case - black bottom, clear lid - $\mathbf{£ 5 . 9 9}$ PSU $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V} £ 12.99$

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teeach-In 7. All parts are supplied by Magenta. Teach-In 7 is $£ 3.95$ from us or EPE Full Mini Lab Kit - £119.95 - Power supply extra - £22.55 Full Micro Lab Kit - £155.95 Built Micro Lab - £189.95

DEVELOPMENT AND TRAINING KIT

- USED WORLDWIDE IN SCHOOLS COLLEGES \& UNIVERSITIES
- DOUBLE EUROCARD, 2 SERIAL PORTS
- NOW WITH EXPANDED RAM \& ROM
- FULL FEATURED MONITOR \& LINE ASSEMBLER IN ROM
- CROSS-ASSEMBLER AND COMMS SOFTWARE DISK

Tel: 01283565435 Fax: 01283546932 E-mail: Magenta_Electronics@compuserve.com

EVERYDAY

PRACTICAL
ELECTRONICS

VOL. 26 No. 9 SEPTEMBER '97

Editorial Offices:

EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
ALLEN HOUSE, EAST BOROUGH. WIMBORNE
DORSET BH21 PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692 . Due to the cost we cannot reply to orders or queries by Fax.
E-mail: editorial (a epemag.wimborne.co.uk
Web Site: http://www.epemag.wimborne.co.uk
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX CO 13 OJS
Phone/Fax: (01255) 850596

BURNING IDEA

It just shows what can be achieved with a good idea and a basic understanding of logic and timers. Nothing complicated, no "new" circuit developments, just a novel application of some straightforward building blocks. Yet the design was judged to be the most commercially viable in a national competition. Ism talking about the Iron Safety Device featured in this issue.
Start with a problem - no-one wants their favourite shirts burned by a distracted "iron operator" - then comes the hard bit - decide how it can be overcome. In this case that meant sensing when the iron was stationary in a horizontal position for a few seconds. Finally, sort out how some sensors and a little electronics can be applied to provide a neat and simple solution.
Sounds easy and, like all great ideas, in retrospect it is. You may soon see such devices built into commercial irons but, in the meantime, we are pleased to present the Iron Safety Device project from Simon Todd, a pupil at Bolton School. Simon, no doubt encouraged by our contributor and his teacher Chris Walker. designed and refined the project and won honours for himself and the school in two competitions: the Young Electronics Designer Awards (sponsored. by Texas Instruments and Mercury Communications in association with the Institution of Electrical Engineers) and the National Duracell Schools Competition. The project netted a total of $£ 3,250$ in YEDA prize money for Simon and Bolton School. We also hope to publish another YEDA prizewinning project in a future issue.

SUBS UP

Ism sorry to say that our subscription price will increase to $£ 26$ (UK) from 1 st September. Whilst this will give a saving of $£ 5.80$ on cover price, and therefore makes a subscription a worthwhile investment - no missed issues, no tramping to the newsagents in the rain. etc. - you can still achieve a saving of $£ 7.80$ if you are quick.
Send or 'phone us with your subscription order before 1st September and you can have a years supply of issues for just $£ 24$. At that price you are getting nearly three issues free of charge. If you want to subscribe for two or more years you can also do that - just multiply up the yearly price - to give an even greater saving over a period of time. Don't delay, do it today.

SUBSCRIPTIONS - Prices go up on

 September 1, 1997.Annual subscriptions for delivery direct to any address in the UK: £24 (£26 after Sept.1). Overseas: $£ 30$ ($£ 32$ after Sept.1) standard air service ($£ 47.50$ ($£ 49.50$ after Sept.1) express airmail). Cheques or bank drafts (in £ ster-

ling only) payable to Everyday Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East Borough, Nimborne, Dorset BH21 1PF. Tel: 01202881749. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.

Payment in f sterling only please. Visa and MasterCard accepted, minimum credit card order $£ 5$. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller:
PETER SHERIDAN. Wimborne (01202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accomponied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data, or answer queries, on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the intereats of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

Constructional Project

IRONING
 SAFETY DEVICE

SIMON TODD

Keep the peace in your household with this prize winning, low-cost, easy-to-build safety device.

THE first clothes iron was developed in the late 15th century and it consisted of a heavy cast-iron brick with a moulded handle and a smooth base. This raw and crude tool has been a godsend for inventors across the globe who have for centuries been modernising and building upon the device to make it into the electric iron which we take for granted so much in modern everyday life.

Have you ever had to throw away an expensive shirt/blouse or any other valuable item of clothing simply because it has been burned or singed by a hot iron? Or possibly, you have opened your drawer one morning to find a hole "the size of Cape Canaveral" glaring back at you from your favourite T-shirt? (To help keep the peace in the Todd household we decline 10 commit to print Simon's comments about his mother's ironing skills! -Ed)
Then this simple, cheap and easy to construct little gadget is for you.

HOT PROBLEM . . .

An iron is an essential yet extremely dangerous item of household equipment. Many people think that ironing requires very little mental power and concentration.
This is most certainly not the case. One would usually classify a solid object with

30 per cent of the surface area averaging at $250^{\circ} \mathrm{C}$ a dangerous object to have around the home, but to make matters worse it is often left balancing precariously on the edge of the ironing board with the wire trailing across the floor just waiting for someone to trip over it.

There are already many inventions on the market which are designed to make the iron a better and safer utensil. These include. rotating safety flexes, safety cut-off devices. limescale filters and even cordless models.

However, the majority of them are designed for personal safety and/or to make the process of ironing easier. None of the gadgets actually protect the clothing from the immense heat of the iron.

Unfortunately, ironing always has been and always will be a boring and tedious chore. When ironing. a person's mind often begins to wander in an aimless quest to seek out some form of entertainment. This often takes the form of a television or radio or in some cases an argument or conversation, all of which are considerably more interesting than the task in hand.

It is not surprising, therefore, that accidents can easily happen. A person need only be distracted for a few seconds and an item of clothing may be ruined. Any longer and a fire may result.

People can also be distracted in many ways other than the aforementioned. For example: the telephone may ring: the doorbell may ring: something may occur in the kitchen which requires immediate attention (eg. a pan may boil over); or an accident or problem involving children or pets may suddenly occur and require urgent assistance.
Taking all this into consideration it is not surprising that accidents happen when an iron serving a family of four can pass over about 50 km of fabric in one year.

. . . COOL SOLUTION

The solution to the problem is to develop a device which detects whether the iron is in contact with the same part of the material for more than about five seconds, and this project does just that.
The Iron Safety Device is an extremely simple, cheap and easy to construct project which will trigger an alarm if the following two criteria are detected simultaneously:
a) If the iron is horizontal. (A mercury switch is used as the sensor)
b) If the iron does not move for more than five seconds. (A vibration detector is used as the sensor.)

HOW IT WORKS

A block diagram for the Ironing Safety Device is shown in Fig. 1. When the iron is placed in a horizontal position (i.e. on top of the ironing board) the mercury tilt switch contacts are bridged (closed)

Abstract

AWARD WINNING DESIGN The Iron Safety Device was developed as part of a G.C.S.E technology project at Bolton School (Lancs) and helped Simon to win a Scholarship and $£ 500$ for his school. It was entered in the National Duracell Schools Competition and was chosen as one of the top five winners.

Simon also entered it in the 1997 Young Electronic Designer Awards where it came first in the Intermediate ($15-17$ years) Category, winning him a YEDA trophy, $£ 750$ and a cordless telephone from Mercury Com. It also scooped the Texas Instruments prize for the most commercially viable project, winning $£ 2,500$ for Simon's school.

All this for a project costing well under £20. An imaginative example of "electronics in action" - well done Simon.

which thus activates the timing device. Immediately, a five second "count-down" begins at the end of which an alarm is activated.

However, the timer is constantly being reset by the vibration detector which pulses open and closed when the iron is in motion - ironing clothes. If the iron stops moving and the mercury switch is still closed (i.e. the iron is still in a horizontal position) then the five second "countdown" will finish and the alarm will be triggered. This will alert the user to the problem. Once the alarm is triggered it can only be reset by placing the iron in a vertical position.

CIRCUIT DESCRIPTION

The full circuit diagram for the Iron Safety Device is shown in Fig. 2. Slide switch SI will provide power to the circuit and will override any other switches. This allows the user to turn the device off when not in use.

The mercury tilt switch S 2 is located in series with Sl in the +12 V rail so that when the device is switched on, the circuit itself is only activated when the iron is placed in a horizontal position. When ironing begins the mercury switch S2 will fall closed and the circuit will be activated.
continue to do so as long as the iron is in motion.

If the iron is left stationary, in the horizontal position, the vibration switch will not be activated. Capacitor Cl will thus continue to charge until the voltage at pin 1 of ICl rises to a level recognised as a logic I (high) by the OR-gate - approximately 6 V (half the supply voltage) for a CMOS gate. At this point the output of the OR-gate (pin 3) will go high, sounding the alarm WD1

Resistor R2 feeds back the logic high output from the gate to the other input (pin 2). This high input makes sure that the output stays high even if the other input

Fig. 1. Block digram for the Iron Safety Device.

Fig.2. Complete circuit diagram for the Iron Safety Device.

Full size customised case and brass/p.c.b. battery holder.

When this occurs, the resistor R1 allows a small current to flow into the capacitor Cl. This resistor-capacitor $(R C)$ combination acts as a timing device.

As capacitor Cl begins to charge, the voltage al the input to the OR-gate (pin1 of IC1) slowly increases. The time taken for the voltage across capacitor Cl to rise from 0 V to 63 per cent of the supply voltage is called the "time constant". It is calculated by the formula: $\mathrm{T}=\mathrm{RI} \times \mathrm{CI}$.

For this circuit the $R C$ combination is as follows:

$$
\begin{aligned}
& \mathbf{R}=3 \mathrm{M} 9 \quad \mathrm{C}=1 \mu \mathrm{~F} \\
& \text { therefore: } T=3900000 \times 0.000001 \\
& T=3.9 \text { seconds }
\end{aligned}
$$

Using this formulae you can alter the time delay of the device simply by altering the value of the capacitor or the resistor.

Note that the actual time delay will be less than the actual value of T as most CMOS chips switch at half the supply voltage, as opposed to the 63% associated with the $R C$ calibration.

VIbrATION DETECTOR

The vibration detector "switch'" $\$ 3$ is located so that it short-circuits capacitor Cl and will thus discharge this capacitor when triggered. This means that the vibration switch S 3 will reset the timer and will
drops low again i.e. the output is "latched" on.

Therefore, once the alarm sounds, moving the iron will have no effect. The iron must be placed in a verfical position so that the mercury switch SI will. fall open, thus breaking the circuit. Capacitor C2 ensures that the latch always resets when power is applied to the circuit.

CONSTRUCTION

The Ironing Safety Device is built on a miniature printed circuit board (p.c.b.) measuring just $38 \mathrm{~mm} \times 30 \mathrm{~mm}$. The component layout, wiring, and full size copper foil master pattern are shown in Fig. 3. This p.c.b. is available from the EPC PCB Service, code 167.

The hole labelled Z on the p.c.b. master must be about 1 mm diameter, so that it can accommodate the shaft of the vibration switch - see later and Fig. 4.

With so few components on the board, construction is very easy and should only take a couple of hours to complete. To prevent any possible damage to the i.c., resulting from prolonged exposure to the hot tip of the soldering iron, a 14-pin i.c. socket should be fitted to the p.c.b. The socket will also allow you to replace the i.c. should it become damaged for whatever reason. Next, fit the two
resistors, followed by the two capacitors they are polarised and must be fitted the correct way around.

TRIP SWITCHES

The two sensor switches, S2 and S3, should be installed next. Begin with the mercury tilt switch S2. The mercury switch must be attached to the p.c.b. in a manner which allows its angle to be adjusted (see under Setting-Up).

This can be accomplished by soldering the "tilt" sensor (S 2) on two short insulated wire leads which project up from the p.c.b. Cut the two legs of the mercury switch about 5 mm down from where they leave the casing and solder a 30 mm length of insulated solid-core wire to each leg. Solder the other ends of each wire into the appropriate hole on the p.c.b.

Referring to Fig. 4, you must now attach the vibration switch S3 to the p.c.b. Start by securing the shaft of the switch to the p.c.b. at the hole labelled Z, leaving the casing projecting up about 5 mm from the board.
Next cut a length of wire about 50 mm in length. Strip about 5 mm off one end and about 20 mm off the other. Wrap the longer length of exposed wire round into a loop and then solder the shorter end into the appropriate hole on the p.c.b.
If done correctly, the wire loop will just sit on top of the casing of the vibration switch. Secure the loop to the casing with excess solder. (The casing may require heating with the tip of the soldering iron for a few seconds before the solder will flow.) Solder two lengths of insulated wire (about $50 / 80 \mathrm{~mm}$ each) to the power On/Off slide switch S1 and solder them to the p.c.b.

The recommended buzzer (WDI) is a miniature low profile piezoelectric device.
chosen because of its compact size. In the prototype, the buzzer is not actually mounted on the p.c.b. however, but connected to it with two short lengths of insulated wire.

Observe polarity when connecting the buzzer. It should be noted that the circuit will only reliably drive miniature, low current buzzers such as the one specified.

BATTERY POWER

Any battery can be used which is rated between 5 V and 12 V . The one used in the model is the MN21 12 V type (otherwise labelled G23A). These are fairly cheap and frequently used in car alarm key-fob remote controls. Such a battery should give about 50 hours of continuous use, assuming the alarm is not triggered.

Unfortunately, at the time of going to press, there is no battery clip for this small 12 V battery available on the market. There

Fig.4. Soldering the vibration switch to the p.c.b.

Fig.3. Printed circuit board component layout (twice size), interwiring and full size copper foil master pattern.
will certainly be one released in the near future, but until then one must make do with other means of connecting the battery to the circuit.

There are several ways of doing this. For example:
a) Solder the wires directly to the terminals of the battery (avoid if possible).
b) Secure the wires to the terminals using insulation tape.
c) Place a blob of solder on the end of a wire and crush it before it solidifies using a flat surface. This should make the solder into a flat disk. Two of these disks can be secured to the terminals of the battery using an elastic band.
d) Make a holder from brass and a piece of p.c.b. as shown in the photographs.

CASE

The Iron Safety Device could be encased in any small plastic box. Many suitable types can be purchased from suppliers. The photographs show a customised, vacuum-formed, plastic case which measures just $60 \mathrm{~mm} \times 75 \mathrm{~mm}$.

There is little doubt that a customised case presents a far better finished project than a plain square black box. Most schools seem to have the facility to produce vacuum-formed cases.

There are a wide variety of containers available on the market of all different shapes and sizes. However, if you wish to purchase a vacuum formed container such as the one shown in the photographs - see Shoptalk page for details. The case will not be filed or drilled and it will not include any screws or graphics.

SETTING-UP

There are no strict rules on how to set up the Iron Safety Device as it depends on how you intend to mount it on the iron. However, it should be mounted on a cool part on the side of the iron with the component side of the p.c.b. facing away from the iron. Adhesive pads could be used to attach the unit to the iron or you could use self-adhesive Velcro strips, which will allow for easy removal of the case from the iron.

Once the p.c.b. is mounted inside the case, and a suitable location is found on the iron, it will be necessary to doublecheck that the mercury switch S 2 is open when the iron is in the vertical position and closed when it is horizontal. Some trial and error will be needed here.

Stand the p.c.b. on the side which will be parallel to the base of the iron. Mark this side A. Decide which side will be facing towards the front of the iron. Mark this side B.

Adjust the angle of the mercury switch S2 so that the switch is closed when side A is facing DOWN and open when side B is facing UP. Aim for the mercury switch to changeover between 30 degrees and 60 degrees. This does not necessarily mean that the casing should be angled at 45 degrees - experimentation is needed as the switching properties vary from one manufacturer to another.

When the time comes to attach the device to the iron ensure that side A is facing down towards the sole-plate of the iron and that side B is facing towards the nose of the iron. The iron is now ready for action.

Dual Channel High Speed

- 100, 50 or $20 \mathrm{MS} / \mathrm{s}$ sampling.
- 50, 25 or 10 MHz spectrum analysis.
- Advanced trigger modes - capture intermittent one-off events.
∇ Less than half the cost of a comparable benchtop scope

$$
\begin{array}{ll}
\text { ADC 200-100 } & £ 549.00 \\
\text { ADC 200-50 } & £ 499.00 \\
\text { ADC 200-20 } & £ 359.00
\end{array}
$$

Supplied with cables and power supply.

ADC-100

Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate $100 \mathrm{kS} / \mathrm{s}$ and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use
ADC-100
with PicoScope soltware
£199.00
with PicoScope \& PicoLog software $\mathbf{£ 2 1 9 . 0 0}$

ADC-40142

Single Channel - low cost

- $20 \mathrm{kS} / \mathrm{s}$ sampling.
- 10 kHz spectrum analysis.
$\nabla \pm 5 \mathrm{~V}$ input range.
ADC-40 8 bit resolution $£ 59.00$
ADC-42 12 bit resolution $£ 85.00$

Call for free demo disk or download our web site: http://www. picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@picotech.co.uk

New Technology

Iv 1993 Hitachi hit the headlines when they announced their revolutionary research into single electron devices. It is claimed that these devices, which might include memories and switches that operate as a result of the movement of single electrons, will have a far reaching impact into the electronics scene as we know it today.
Initial research only included the basic concepts, and was undertaken for Hitachi at the Cavendish Laboratories in Cambridge. Since the initial announcement. work on the concept has progressed considerably. News has emerged of a number of devices which have been fabricated in the progress towards the single electron devices themselves.

Not only are Hitachi undertaking development along these lines. Other companies are also looking into this type of technology. This shows the importance people are placing on the idea.

Original Developments

At the time of the original announcements the devices that had been manufactured demonstrated the basic effect. but had many limitations. An early demonstration device was built in "delta doped" gallium arsenide. This consisted of a 20 nm thin layer of GaAs doped with silicon to create a two dimensional plane in which the electrons could travel.

The cell was then contained between two multiple tunnel junctions where the gallium arsenide becomes very narrow. The transfer rate of electrons could then be tuned by applying a negative voltage to the side of the narrowing electron channel in the junction.

With suitable control of the bias voltage it was expected that a single electron could be controlled. The major problem when this was announced was that the device only operated at very low temperatures of around (). $1^{\circ} \mathrm{K}$.

Transistors

The next stage in the development was to fabricate switches in the form of transistors. The first devices were announced a year after the initial announcement.

A structure was used where the presence of one electron on a small island of conducting material was used to control the tlow of other electrons. This structure, similar to that in Fig. I with two transistors was used to demonstrate a NOR function.

In this cell there were two islands acting as transistors. When both islands contained an electron the cell gave a "high" output voltage. If either island was not blockaded the cell output was "low" i.e. at ground potential. This gave the classic NOR function.

Again the temperature of this device was a problem. as it only operated at a temperature of just under $2^{\circ} \mathrm{K}$.

Higher Temperatures

Naturally it was vitally important to improve the temperature of operation and one of the keys in improving the temperature performance was to reduce the size of the structure. Accordingly, a 2 nm diameter island was produced. This in itself was no mean achievement and was claimed as a world record.

Along with a number of other developments to reduce the capacitance. the operational temperature was raised to $77^{\circ} \mathrm{K}$. To achieve room temperature operation it was stated at that time that the dots or islands would have to be five times smaller. This could have slowed development if other ways of overcoming the problem had not been found.

The other development of importance announced at the same time was that the record had been set using silicon. Previously these single electron effects had only been seen in gallium arsenide.

MOS Transistors

In recent months further developments in single electron technology have been announced. Researchers at the University of Minnesota. Minneapolis have announced a single electron MOS menory which can operate at room temperature. In addition to this they have also claimed a number of other firsts.

Previous single electron devices needed unconventional structures, and this resulted in a large variation in device dimensions and performance. Also, these previous devices required several isolated nanocrystals and a polysilicon channel. This new

Fig.1. Principle of a single electron transistor.
device is said to be the first with a very narrow crystalline silicon channel and a nano-scale polysilicon flcating gate.

The fabrication of the new device requires a number of processes. First a silicon on insulator (s.o.i.) substrate is taken. Then using electron beam lithography and reactive ion etching 35 nm thick silicon channels are fabricated. These have a maximum width of 120 nm but only 25 nm in the middle as shown in Fig. 2.

With this complete. square polysilicon tloating gates or "dots" are deposited onto a small area of native oxide using electron beam lithography and reactive ion etching.
The size of the channel is around 11 nm which is almost the same as the gate. A layer of oxide about 18 nm thick is then grown onto this structure, and this also has the effect of reducing the size of the dot to about 9 nm .

A final layer of oxide is deposited using a process called plasma enhanced vapour deposition. and then the control gate is deposited over this. As the gate is just over $3 \mu \mathrm{~m}$ wide. it completely covers the polysilicon dot, as shown in the diagram.
The connections are made to the various electrodes on the device for testing. This was performed at room temperature and gave very encouraging results. With a single electron stored in the floating gate a shift of over 50 mV was seen on the output.

Future

Obviously there is considerably more work to be undertaken into these devices before they are to be commercially viable. Currently only test devices are being made and there are still many hurdles to be overcome in their development.
However, when these have been surmounted it is estimated that this technology is likely to be able to increase storage levels in memories by quantum leaps.

"attractive to those seeking a less fraught introduction to pcb cad"
 Electronics World Dec 96

For over 5 years. Quickroute has been a solution for those seeking easy to use Schematic \& PCB design software. Users from all walks of life have found Quickroute's simple approach a refreshing alternative.
"probably the most intuitive of the integrated schematic-draning and antoronter products" Electronics World Dec 96

For example, because Quickroute integrates both schematic \& PCB design into one package. you only have to learn how to use one set of tools!
"The draning facilits is logical. sequemialls. organised and really user-friendh. Educational Computing \& Technology Oct Nor 96

Furthermore, with schematic capture available at the touch of a button. there is no need to mess with net-lists or files.

We haven't forgotten value for money either.
"extremety good value for money for such a comprehensise package' Practical Wireless Juk 96

Quickroute 3.6 Designer costs just £149 and includes "one click" schematic capture to turn your circuit into a PCB rats-nest, auto-routing. design checking and support for drill \& B.O.M files. For those seeking more power. we have Quickroute PRO+ together with a range of plug in modules and extended libraries. Phone us now or fill in the coupon for a free demonstration pack.

Tel 01614760202 Fax 01614760505 WWW http://www.quickroute.co.uk EMail info@quicksys.demon.co.uk

*FREE Demonstration Pack *FREE Technical Support *FULL Printed Documentation *Windows 3.1/95/NT Compatible

PIC:NOUGHTS \& CROSSES GAME

PAUL HACKETT

Help make paper obsolete - let electrons save the forests and put colour into your game!

Noughts and crosses is known by all. and often played by young children. requiring only a pencil and paper to play. As technology advances, our aim is to move towards a paperless society, but in reality we seem to consume more paper than ever. This electronic version of the Noughts and Crosses game is a step towards that vision, using red and green light emitting diodes (l.e.d.s).

The game is laid out as a 3×3 matrix. as in normal Noughts and Crosses, with a pushswitch/key and tri-colour l.e.d. in each cell. As each key is pressed, its corresponding l.e.d. is illuminated as either red or green. alternating for each newly pressed key.

In the event that three l.e.d.s illuminated with the same colour form a straight line, the line flashes to indicate a win. after which all key presses in the matrix are ignored.

A tenth pushswitch is provided as a Reset to extinguish all l.e.d.s, ready for a new game.

In order to conserve power and extend battery life, the game goes into standby mode. extinguishing all l.e.d.s, after 20 seconds of non-use.

The project shows how to make the most out of a minimal number of $1 / O$ lines, by sharing them, to scan both the pushswitch input matrix and multiplex the tri-colour l.e.d. output matrix. It also demonstrates how interrupts are used to make these tasks perform in the background, transparent to the main program. thus keeping the main program simple.

MICROCONTROLLER

The game was designed around the PICI6C84 EEPROM (electrically erasable programmable read only memory) microcontroller from Microchip, though a PICl6C6l could be used instead. The reason for choosing the PIC16C84 rather than one of the cheaper versions of the PIC family, such as the PIC16C61. was that
re-programming could be performed immediately.

The windowed EPROM versions tend to be more expensive and require a UV eraser for reprogramming, which can leave you hanging around for ten minutes! The OTP (one time programmable) versions, although very inexpensive, cannot be erased once programmed.

Because the PIC16C84 (and PIC 16C61) has only 13 I/O (input/output) lines, this project makes use of multiplexing to drive the 18 l.e.d.s and read the nine pushswitches required for the game. It can be seen from the circuit diagram in Fig.I. in which ICI is the microcontroller, that this is achieved by using only nine of the I/O lines, leaving four spare!

Because clock timing on the game is not critical, the $R C$ (resistor-capacitor) oscillator configuration of the approximately microcontroller was opted for in \quad 25mA. Because order to
save the cost of a crystal. The oscillation frequency is set to approximately 620 kHz by resistor R17 and capacitor C2. This frequency will vary between different units due to component tolerances.

DISPLAY

The game's display consists of a 3×3 matrix of tri-colour common cathode l.e.d.s, with the cathodes (k) connected in columns and the anodes (two per l.e.d.) connected in rows. Transistors TR7 to TR9 act as switches to drive to the columns of the matrix and are controlled by ICI 's port lines RA0 to RA2.

Resistors R7 to R9 set the base currents for TR7 to TR9 respectively, and are of sufficiently low value to ensure that the transistors remain fully saturated for maximum collector currents - all red and green l.e.d.s in the columns illuminated.

The rows of the matrix are controlled by ICI's port lines RB() to RB5. with transistors TRI to TR6 acting as emitter followers. Resistors R1
to R6 are used to set 25 mA . Because
the display is multiplexed.

this current could be set at a higher level to increase the intensity of the l.e.d.s. if preferred, albeit at the cost of increased battery power consumption.

In order to illuminate a given l.e.d., a logic I must be present on the appropriate Port B output to drive the row. Likewise, a logic I must be present on the appropriate Port A output to drive the column.

For example, to illuminate l.e.d. D5 Green, both RB3 and RAI must be set to logic 1. Other l.e.d.s in the same column can be either illuminated or extinguished depending on the logic states set for the remaining Port B outputs.

If, at any time, only one of the three Port A outputs, RA0 to RA2, is at logic I and the data on Port B corresponds to the column being driven, by sequencing the logic 1 through each of the Port A outputs. and at each step changing the data on Port B , the display is multiplexed, as illustrated in Fig. 2.

If multiplexing is performed at a sufficiently high frequency, in this case about 250 Hz , the resulting flicker produced is not apparent under normal conditions. (It might become apparent, though, if the game is moved around quickly, by shaking it from side to side. for example.)

In order to simplify the main program. display multiplexing is done under interrupt control, in the background. Because of this. Ports A and B are not written to from the main program. Instead, three variables, COL1. COL2 and COL3. are used to temporarily store the l.e.d. data between interrupt calls (see Fig.3).

Therefore, to illuminate l.e.d. D5 Green. for example, bit 3 in variable COL2 would need to be set high (logic 1), this value then being output to the relevant port line at the appropriate interrupt call.

Although not used for the game, it should be noted that yellow can be obtained by driving both the red and green diodes at the same time.

KEYPAD

The game's keypad consists of nine normally open push-to-make switches. Sl 10 S9. which are connected to Port B in a 3×3 matrix. Each switch is located directly below the l.e.d. to which it belongs -S1 to D1, S2 to D2, and so on.

Resistors R10. R12 and R14 act as pull-ups to define the non-pressed key state (logic 1) on RB0 to RB2 when they are configured as inputs. Resistors R1I. R13 and R15 are necessary to limit the current flowing from Port B I/O pins when they are all configured as outputs (during display scan) and one of the switches is pressed.

Just as the display is multiplexed, so too the keypad is scanned, but at a time when the display is not being driven ($\mathrm{RA} 0=$ RAI $=$ RA2 $=0$), see Fig. 4 .

Keypad scanning is performed by strobing each of Port B outputs RB3 to RB5 in turn with a logic 0 , and then reading the state of Port B inputs RB0 to RB2 to check if a switch in the strobed column is pressed. If a switch is pressed, the corresponding Port B input will be read as logic 0 . If the switch is not pressed, a logic 1 will be read.

If switch S 8 is pressed, for example. when output RB4 is at logic 0, input RB2 will read as logic 0.

Fig.2. Display scan multiplexing.

Fig.3. Display store variables

$\frac{\mathrm{BIT}}{\mathrm{COL} .1}$	7		5	4	3	2	1	0
	NOT USED		D7		D4		D1	
	0	0	G	R	G	R	G	R
COL. 2	NOT USED		D8		D5		D2	
	0	0	G	A	G	R	G	R
COL. 3	NOT USED		D9		D6		D3	
	0	0	G	A	G	R	G	R

Fig.4. Keypad scanning.

The keypad scanning is also performed in the background as part of the display multiplexing, and hence is transparent 10 the main program.

Data about the pressed switch (S1 to S9) is passed to the main program through the variable KEY_VAL. with a flag to indicate its validity (switch bounce elimination is performed by the program).

Switch S10 is the reset to the microcontroller and is used to initialise the game.

POWER SUPPLY

The game is powered from four AA size (1.5 V) celk serially connected as a 6 V battery. With the voltage drop across diode D10 being approximately 0.7 V . the game typically runs from a 5.3 V supply. Diode Dl0 is included to protect the game from damage should the battery pack be connected the wrong way.

No power switch is provided on the game since its power consumption in standby mode is typically tens of microamps. You could install a switch if you preferred.

SOFTWARE HIGHLIGHTS

For a thorough understanding of the software, one should refer to the source code, which is fully commented. Details of how to obtain the source code and preprogrammed microcontrollers are given in Shoptalk.

Flow charts for some of the main features are shown in Fig.5a to Fig.5d.

In order to multiplex the display and scan the keypad in the background. the RTCC (real time clock counter) line in the microcontroller is configured to produce interrupts at approximately 1 ms intervals. The period between these interrupts is determined by both the RTCC prescaler and the value loaded into the RTCC register during the interrupt service routine, see Fig. 6 and assembly code routine in Listing 1.

An essential requirement for any interrupt service routine is that data in registers, such as WREG and STATUS, that is used by both the main program and intermpt service routine, is restored to the

Fig.5a. Initialisation and main program.

Fig.5b. Interrupt service routine.

Fig.5c. Using software timers in main program.

Fig.5d. Software timer subroutine (only one timer shown).

RTCC_INIT	equ	179	; RTCC initialisation value
Int_Serv			Interrupt service routine

pre-interrupt value on exiting the routine. This, of course, does not apply to registers used for passing data between the interrupt service routine and main program software timers for example.

If this precaution is not taken, corruption of data and program control in the main program can occur. The first three and last four instructions of the interrupt service routine show how this is achieved in this application. It should be noted that the instructions chosen for performing the storing and restoration action do not affect the STATUS register.

The subroutine SW Timer, which is called from the routine in Listing 1 , provides a total of five software timers for use in the main program. One of the timers is used for controlling the flash rate when a winning line is detected, another for powering down the game after a 20 second delay.

The timers are 8 -bit variables whose contents, when non-zero, are decremented each time the subroutine is called (see Fig.5d). Since the subroutine is called once every millisecond, time intervals can easily be measured in the main program (see Fig.5c).

It should be noted that not all timers are decremented every millisecond. Two of the timers are decremented every 10 milliseconds, and one every 100 milliseconds this is how the longer time delays are achieved.

In essence, the subroutine Disp_Scan is a "state machine", with four states. Three of the states are for driving the display and the fourth for reading the keypad matrix. Each time the subroutine is called, the state is changed, and at the same time the data applied to Ports A and B is modified accordingly (see Fig.2).

MAIN PROGRAM

The main program contains two key modules, Key Action and Win Test (see Fig.5a). Key Action determines what happens when a key is pressed. Firstly, it checks to see if the l.e.d. is illuminated for the key pressed, and if not, illuminates the l.e.d. either red or green, depending on the status of the colour flag.

Each time a new l.e.d. is illuminated, the colour flag is toggled, thus alternating the colour for each valid key press.

WINNING DETECTION

Detection of a winning line is performed by the Win Test routine. In this routine, a series of simple logical tests are performed on the three column variables, COLI, COL2 and COL3. The tests are carried out in order of the columns, then the rows, and finally the diagonals.
On finding a winning line, the appropriate bits in the column mask variables, COLI_MSK, COL2_MSK and COL3_MSK, are set to indicate the win. These variables are then used to flash the winning line(s).

If a winning line is present in a column. the column variable will be equal to either 21 (Red win) or 42 (Green win). By testing for both numbers in each column variable, the presence of a winning line can be determined.

The following code shows the test for 21 in column 1:

> ; NOTE $x=$ red $; 0=$ green
; first test the columns
MOVF COL1,w
XORLW 00010101B;
$\begin{array}{lll}\text { BTFSC } \\ \text { CALL } & \bar{R}^{2} & \text { WIN_1 ; test for } x \text { ?? }\end{array}$

Fig.6. Internal RTCC interrupt timing.

If column I contains the value 21 , the subroutine R_WIN_1 is called:

R_WIN_1 BSF COL1_MSK,bit0 BSF COL1-MSK,bit2 BSF COL1_MSK,bit4 RETURN
Testing of the rows is slightly more complicated, but not much. Firstly, a logical AND of the column variables is performed and the result stored in a temporary location. Then, each bit of the result is tested for the presence of a logic 1 which indicates a winning row. the row and colour being determined by the bit tested:

! \ldots then the rows ...	
MOVF	COL1,w
ANDWF	COL2,w
ANDWF	COL3,w
MOVWF	COL_TST
BTFSC	COL TST,bito
CALL	R_WIN4

Checking of the diagonals is performed by testing the relevant bits which form a diagonal in each of the column variables. If all three bits of a tested diagonal are at logic 1 then the diagonal is a winning line. the direction and colour of the diagonal being determined by the bits tested.

BTFS	the diagonals COL1 biro
GOTO	R WIN8 TST
BTFSS	CŌL2,bit2
GOTO	R_WIN8_TST
BTFSS	CŌL3, bil4
GOTO	R WIN8 TST
CALL	$\mathrm{R}^{-} \mathrm{WIN}^{-}$

Finally, the column mask variables are checked to see if any are non-zero, which would indicate a win. If a win is detected, the program enters a loop, which flashes the winning line. The flashing of the l.e.d.s is achieved by performing an ex-clusive-OR on the column variables with the column mask variables, COLI with COL1_MSK, and so on.

Between each set of exclusive-OR operations there is a delay of 250 milliseconds. This delay determines the flash rate:

Toggle		
MOVF	COL1_MSK,w ;	
XORWF		
MOVF	COL2 MSK.w	
XORWF	COL2, ${ }^{\text {, }}$	
MOVF	COL3_MSK, w	
XORWF	COL3, ${ }_{\text {¢ }}$; loggle
		winning
		line/lines
MOVLW MOVWF	25 TIMER4	
		; load Timer
		4 with
		250 ms
Tog_Wait		
MOVFBTFSS	TIMER4, ${ }^{\text {d }}$	
	${ }^{2}$	
GOTO	Tog_Wait	; wait for
		250 ms
GOTO	Toggle	
		; repeat
		continuous
		loop

CONSTRUCTION

For those with limited experience constructing and testing electronic circuits. the purchase of the printed circuit board (p.c.b.) is highly recommended. Although it adds to the overall component cost of the project, the time saved in construction and the expectation of the game working first time is certainly worth the extra money. The p.c.b. is available from the $E P E P C B$

Service, code 165 and component layout details are shown in Fig. 7.

Complete assembly of the p.c.b. should take no more than an hour. providing you have the right tools and all the components to hand. Since the electronics of the game is fairly minimal, the p.c.b. is a single-sided design. This keeps the cost of its manufacture to a minimum (no plated through holes) and provides those who
wish, the option to make their own. The single-sided design. though. does require the use of zero ohm links (link wires!) but these have been kept to a minimum in the design process.

Unlike other components, the links do not appear on the schematic diagram and have no reference names on the p.c.b. Instead. they are indicated by straight lines running between holes. Thinnish-gauge

Fig.7. Printed circuit board component layout and full size underside copper foil master for the PIC Noughts \& Crosses Game.

Layout of components on the completed p.c.b.

tinned copper wire should be used for the links - the off-cuts from the resistors will be suitable if long enough.

It is recommend that the PIC microcontroller is fitted last since it is a static sensitive device. Also, normal anti-static precautions should be taken at the time of fitting. The PIC should be fitted into a socket on the p.c.b.: do not solder it.

The sequence in which the other components are fitted is not important. However, the suggested method is: link wires, resistors, d.i.l. socket, switches, transistors, diode, capacitors, l.e.d.s.

When fitting the switches, it is important to make sure they are pushed fully home before soldering. This guarantees that the stems are all vertical and of the same height.

On the issue of height. the transistors should be pushed into the board as far as possible. If they are not. they may cause problems when trying to mount the assembled p.c.b. into its enclosure.

The mounting of the l.e.d.s will depend on how the game is to be housed, since they may need to be spaced off the board slightly. If the housing is not available at this stage of assembly, it would be wise to leave sufficient length on the leads of the l.e.d.s to allow for later repositioning.

When fitting the l.e.d.s, attention should be paid to the flat edge on both the l.e.d. and the layout in Fig.7. The tri-colour l.e.d.s (unlike "normal" l.e.d.s) will work fitted either way, but should all be fitted the same way in order for the game to operate as intended.

TESTING

Before connecting power to the board. it should be thoroughly inspected for shorts and poorly soldered component joints. At the same time. it is worth checking that the correct component values have been fitted in the right places.

Following on from the inspection and any necessary rework, the next step is to apply power. The game has been designed to run from four AA-size 1.5 V cells, housed in a suitable holder. as specified in the components list.

The game should never be connected to a 9 V battery. Doing so would cause the supply on the microcontroller to exceed its maximum rating of 7.5 V , and this may cause permanent damage!

Once the battery holder has been connected to the p.c.b., the Reset switch (S10) should be pressed to ensure correct initialization of the microcontroller. If there are no problems, then pressing the matrix keys should cause the l.e.d.s to illuminate as intended. If not, the notes in Table 1 should be followed to help trace and rectify the problem:

Other problems that are not listed may be encountered. If so, the symptoms, along with the schematic, should be used to help
determine the cause of them. It is important that a logical step-by-step approach is taken if the problems are to be resolved quickly. The chances are, though, that it will work first time.

CASING

As with all electronic constructional projects, the casing tends to be the difficult part. Whether you buy a suitable enclosure or make your own, the time taken to package the electronics will quite often exceed the assembly time of the p.c.b.

This is certainly true for this project. The more time that is spent during this stage of assembly, the better the finished product will hopefully look. The prototype enclosure, shown on the first page of this article, is home made. Basically, a wooden box with a metal plate on top, plus a few holes for the switches, l.e.d.s, and p.c.b. mounting points.

If cost is a concern, then this is by far the cheapest option for producing the game's enclosure.

Whatever your choice of casing, though (and an all-plastic casing would be fine), the accuracy of the hole drilling is fairly critical. It is suggested that you photocopy the life-size p.c.b. track pattern and use that as a drilling template, temporarily taped to the lid of the case.

GENERAL USAGE

Once the game has been tested and suitably packaged. the coffee table is possible its ideal location! It is sure to be a great hit with children, and adults, too, for that matter. Have fun!

SOFTWARE SOURCING

Pre-programmed PIC16C84 and PICI6C61 microcontrollers are being made available by the author for those readers who do not have the facilities to program these chips - see Shoptalk page.

Readers who wish to program their own PICs can obtain the software either on disk from the EPE editorial office or download it from our Web site (there is a nominal charge for the former, but the latter is free) - see Shoptalk page for details. The Web site files are in sub-directory PICNOUGHTS.

Innovations

DEEPER DENSITY VIDEO RECORDING

 Eagle, the new digital video cartridge, has a 26 gigabyte

 Eagle, the new digital video cartridge, has a 26 gigabyte capacity and seven hours playing time. capacity and seven hours playing time. Barry Fox has the latest information

 Barry Fox has the latest information}

HOT on the heels of high density Digital Video Discs, Philips of the Netherlands will soon join with US computer companies Exabyte and Verbatim to launch a radically new, very high density digital tape recording system.

The system, called DigaMax, builds on the technology currently used by PC owners to back-up data from their hard discs onto industry standard QIC and Travan tape cartridges. But whereas these tapes have a capacity of only around one Gigabyte, the new cartridges, to be called Eagles, will store 13 Gigabytes, equivalent to twenty CD-ROMs. With compression, which reduces the storage space needed for reperitive data like spaces between text, Eagle's capacity doubles to 26 Gigabyres. The same cartridge can hold seven hours of high quality digital video, equivalent to five feature length movies on the new Digital Video Disc format.

As a bonus to consumers, the new Eagle drives will play back old QIC and Travan cartridges.

The high capacity of the new Eagle cartridges is thanks partly to work previously done by Philips for its ill-fated Digital Compact Cassette system, partly to JVC for the hi-fi sound system used with VHS and partly to completely new tape positioning and speed control techniques. The three companies wanted to avoid using the helical scan recording techniques normally used for video, because the rotary heads inflate the price.

In readiness for an official launch at the PC Expo exhibition in New York late in June, Exabyte prepared publicity material which reveals that DigaMax is seen as a direct competitor for D-VHS, JVC's new digital VHS video system. The technical specification for DigaMax was "driven primarily by digital video applications". Demonstrations given in Eindhoven recently proved that the sysrem can play digital video with the same quality as DVD.
"DVD is still years away from low-cost, high capacity writable media, which eliminates it from broadcast recording or PC data storage", says the joint venture's publicity pitch. "D-VHS is being touted as the next-generation video recording technology, but its high price, large size and complex user interface
are definite drawbacks in consumer electronic equipment . . . D-VHS suffers from the same limitations as analogue VHS, questionable reliability and an unfriendly user interface".

UNIVERSAL RECORDER

So "enter the universal tape recorder" which "will replace existing analogue VHS recorders, providing higher fidelity playback, lower cost and friendlier interfaces".

The new cartridge, which is similar in size to a thick floppy disc, contains 1000 feet (300 merres) of 8 mm video tape. The tape is treated before sale by magnerically "embossing" it with a low frequency guide signal which is recorded deep in the tape's magnetic coating. Like the VHS hi-fi system, which records video and stereo sound at different depths in the same tape coating, DigaMax records the digital data over the guide signal and nearer the surface. The surface data can be read, erased and re-recorded without affecting the low frequency guide signal recorded below it.
The guide signal is read by servo control electronics in the Eagle drive and used to keep the recording and playback heads aligned with the tape. Alignment
accuracy of one micrometre, one fiftieth the width of a human hair, is vital because the data is recorded on the tape in very narrow, parallel tracks.

The data tracks are spread across the tape width, much like the parallel tracks used by the DCC audio system previously developed by Philips. The DigaMax recording heads are made like microchips, using a modification of the process used to manufacture DCC heads. The DigaMax heads simultaneously record eight parallel tracks as the tape runs.

When the tape has reached the end of its run, it reverses and the heads are mechanically stepped a small distance across the tape to record another eight tracks running in the opposite direction. At the end of this run, the tape reverses again and the heads step again. This happens 24 times to lay down a total of 192 parallel tracks, in groups of eight which follow a serpentine path 24 times along the tape length and back again.

RAPID SEARCHING

The Eagle drive can search out a selected passage of recording very quickly because the tape only needs to shuttle backwards or forwards by a short distance after the heads have stepped

MINI DRILLING

THE new P3 precision cordless tool from Minicraft is compact, versatile and seems ideal for all those small DIY and hobby tasks. The tool has plenty of power and torque to drill in wood, plastic, ceramics, glass and light metals, and to cut, polish, grind and engrave as well.

Its features include: 3 \times NiMH 3.6V DC power; 9500 r.p.m. no-load speed;
 usage time approx. 35 minutes; keyless, 0.4 mm to 3.2 mm chuck; fan-cooled motor; twin ball-bearing drive shaft; 25 accessories; sturdy carrying case; overnight plug-in charger. It fits the Minicraft drill stand MB540.

For more information, plus a free catalogue and list of stockists, call Minicraft on 07000646427238.
across the tape to the correct one of its 24 positions.

The international standard for MPEG-2 video recording was designed to make the best possible use of storage capacity by continually varying the recorded data rate to suit the picture content. More bits per second are recorded when there is motion in the pictures, than when images are static. With DVD, the disc speed remains constant while large and expensive memory chips temporarily buffor the data as it streams at different rates. DigaMax saves on memory costs by continually changing the tape speed to record data at anything between four and

16 megabits/second. Philips is making the Eagle drives which Exabyte will start selling in September for under $\$ 500$. Blank tapes from Verbatim will cost around $\$ 20$.

Philips recognises the issues of piracy raised by a $\$ 500$ tape recorder which can make perfect copies of five DVDs on a blank tape which costs less than a single pressed disc. The company is already working on an image watermarking system which will let the Hollywood studios bury a tell-tale identification code in any data stream which leaves a DVD player. This will not stop people making copies but it will enable the copyright owner to prove the source of a copied tape.

High-speed Modem Muddle Looms Barry Fox outlines the problem

PC USERS will soon be able to buy a new generation of modem which works at near ISDN data speeds on ordinary analogue phone lines but early adopters risk being left with an obsolete product. Rival research teams have developed different and incompatible technologies. Instead of waiting for the International Telecommunications Union to finish its work on setting a single standard, the rivals are selling their proprietary solutions in the hope of creating a de facto market standard before the official process is finished.
An ISDN line is designed to connect direct to a PC and carry a 64 kilobit/second stream of digital pulses. But they are very expensive; BT charges $£ 400$ to install an ISDN line and over $£ 100$ a quarter on rental. An ordinary analogue line, designed for speech, can only carry computer pulses if they are first converted into rapidly changing warble tones, like those heard from a fax machine. Background noise on the network limits the rate at which warble changes can be reliably detected, and this limits data speed to around 33.6 kilobits/second.

Much of the noise comes from the equipment used by telephone companies to convert analogue speech into digital code for travel down their long distance digital lines. This equipment works to a coarse 8 -bit standard. Many large companies now bypass these coarse converters and connect their digital equipment direct to digital phone lines.

The signal still has to go through one converter, to change digital signals to analogue, before they travel the last leg of copper wire into a subscriber's home. But this digital-to-analogue converter adds very little noise.

FASTER INTERNETTING

The new modems take advantage of the fact that direct connection of digital equipment to digital lines makes the signal reaching the subscriber much cleaner. In theory it should be possible to send 64 kilobits/second downstream into the subscriber's home, but in practice 56 kilobits/second is the safe limit. With one of the new modems, a PC can use an ordinary analogue phone line to suck files from the Internet at near ISDN speeds but at a fraction of the cost.

The PC cannot send files back up the line at such a high speed, because the user's analogue line must still connect to the telephone network through a coarse and noisy analogue-to-digital converter. But most people want to receive large files from the Internet, not send them.

Lucent Technologies (which spun off from US phone giant AT\&T and its Bell Labs) developed a proprietary system called V.flex2. Rockwell worked on the very similar K56Plus system. Last November the two companies pooled resources to promote a single system, now known as K56Flex. Leading modem maker Hayes has now backed K56Flex. So have Compaq, Hewlett Packard and Toshiba.

Hayes' main competitor, US Robotics, has developed a rival system, known as X2. Texas Instruments has backed X2 and is making chipsets.

The main difference is that whereas USR provides a return path of 33.6 Kbps , Lucent, Rockwell and Hayes claim 45 Kbps . This, and other coding differences, stops the systems working with each other.

PROVIDING THE MATCH

PC users can only use their new modems if their Internet Service Provider has installed matching equipment. It is impractical for ISPs to meet both standards. An ITU committee is now considering the rival proposals. But USR is not waiting. The company is now advertising modems which can be modified to work in X2 mode and cost only around $£ 200$.

In what it describes as a "bold move", Hayes has now said that anyone who buys a Hayes modem before May, will get a free upgrade to $56 / 45 \mathrm{~K}$ working. Anyone with an older modem, even a competitor's, can pay a trade-in price of between $£ 99$ and $£ 149$ for an upgrade or replacement.

Both groups say they hope that what they sell will be upgradeable to whatever standard the ITU finally agrees. But until the ITU decides, there can be no solid guarantee that consumers will not be left holding a non-standard modem.

MICROCHIP have announced the release of the 1997 Technical Library CD-ROM, a complete selection of technical documentation on their PIC microcontrollers and allied products.
The CD-ROM contains an extensive collection of microcontroller product specifications, applications notes, development systems and software support for embedded control applications, programming specifications and more.
All documents are readable in Adobe Acrobat Portable Document Format (.pdf) and run under Adobe Acrobat Reader 3.0 (included free on the disk).

The user-friendly features in the CD-ROM are: applications note source codes, development systems demonstration software, cross reference to all CD-ROM documents, World Wide Web access from the main menu. In addition, Microchip's Home Page (http://www.microchip.com) hyperlinks users to the latest information on related products, third-party tools and services, and literature updates.
The CD-ROM is available through any authorised Microchip distributor worldwide.
Microchip's UK headquarters are: Arizona Microchip Technology Ltd., Unit 6, The Courtyard, Meadowbank, Furlong Road, Bourne End, Bucks SL8 5AJ. Tel: 01628 851077. Fax: 01628850259. Web: as above.

Tektronix Signs Maplin

TEKTRONIX, the leading manufacturer of electronic test and measurement instruments (their 'scopes are widely regarded as being the Roll-Royce in this market) have announced a distribution agreement with Maplin.

Maplin will distribute a range of Tektronix portable instruments, including digital oscilloscopes and digital multimeters. They will be sold throughour Maplin's 43 UK shops and in the three Mondo superstores. They will also be featured in Maplin's catalogue.

Said Trevor Smith, UK Distribution Manager for Tektronix: "It will give our marketing efforts a big boost in the hobbyist and semi-professional market, where Maplin is the market leader."

Simon Peers, Product Group Manager at Maplin is equally enthusiastic: "Tektronix products offer unprecedented value for money by combining professional quality and performance with attractive prices."

ORGAN MUSIC

FOR 40 years the Electronic Organ Constructors Society (EOCS) has been the mouthpiece and earpiece of those who delight in building electronic organs. Some of us on EPE have been aware of them for at least 30 years; probably longer!

Older readers will probably recall them from the days when music projects made up a hefty chunk of several electronics magazine's constructional armory, including $E E$ and PE before we both combined forces to become EPE. Remember such classics as Alan Douglas's Electronic Organ and Doug Shaw's Minisonic Synthesiser?

Consequently, it's good to receive confirmation of their continued existence, and indeed of their continued thriving. How good, too, to see that Alan Douglas is still associated with them. This confirmation has come to us through the arrival of their latest Electronic Organ Magazine, number 162. It's the first we have seen for a long time.

The magazine's new editor (pro-tem), Don Bray, tells us that the aims of the EOCS are the same as they always have been - to serve as a mutual forum for anyone interested in electronic organs and their construction.

If such is your interest, give Don Bray a call on 01323

Organ built by EOCS member Wilfred A. Sawyer.
894909, or write to him at 34 Etherron Way, Seaford, Sussex BN25 3QB. He also has a fax: 01323 492234. Tell him that EPE told you abour EOCS!

Pooling DVD Patents

Barry Fox reports

Philips, Pioneer and Sony have pooled all their patents on Digital Video Disc. The move follows the breakdown of negotiations between all ten members of the DVD Consortium on pooling all DVD patents and providing manufacturers with a one-stop licence shop. The three-company pool will charge a royalty of 3.5 per cent on the player, and five US cents per disc.

Even the Philips/Pioneer/Sony pool is not complete. DVA, Discovision Associates, owns a whole folio of patents on all aspects of optical recording which last into the next century. Although Pioneer owns DVA, DVA will issue its own licences separately.

So any manufacturer wanting to make DVD players must negotiate with the Philips/Pioneer/Sony pool, with DVA, with the seven other companies in the DVD Consortium, with a US company called MPEG LA which administers the patents on MPEG compression, and then with whatever other companies claim to hold key patents on other aspects of optical recording which are vital to the DVD system.

FREE AMATEUR RADIO LICENCES

AMATEUR Radio Licences became free to all users under the age of 21 from 1 July 1997. Welcoming the move by the Radiocommunications Agency, Technology Minister John Battle said: "The Agency has taken this step to encourage more people into amateur radio. Radio, in its many forms, has made a massive impact this century on all aspects of our life. We should do all we can to help young people develop an interest in one of the key technological areas for the next century."
For further information contact Radiocommunications Agency on 01712110158.

RADIO RALLY

THE 3rd Northampron Radio Rally and Car Boot Sale takes place on Saturday 6 Sept. '97 at the Heart of the Shires Shopping Village Showground, on the A5 just two miles north of Weedon. There is a bring and buy sale as well. For more details, Tel: 01604 32478.

A YEN FOR THE OLD

APPARENTLY the Japanese are well into collecting ancient British audio equipment. According to the Financial Times, woofer and tweeter fans now pay more than $£ 3500$ for Fifties-style amplifiers with valves.
Dorset-based electronics specialist Stuart Perry is one of those who are exporting the equipment to Japan, though his company Beam-Echo.

Amazing, isn't it, yesterday's obsolescence yet again becoming today's collectables. Throw nothing away and you'll make a fortune!

POOLING PCB COSTS

BETA Layout Ltd. has established Ireland's first p.c.b. pooling service. The aim is to offer customers a cost-effective solution to their prototyping needs.
Several designs are placed together on a multi-panel and the set-up and tooling costs are shared by the participating designers. Standard delivery time is 15 working days, although a fast turn-round sevice of five to seven days is also offered.
For more information, contact Beta Layout Ltd., 6 College Grove, Ennis, Co. Clare, Ireland. Tel: 353(0)6566500. Fax: 353(0)6566514. Web: http://www.pcb-pool.com.

NEW SHAREWARE CD ROM

PDSL, the Public Domain and Shareware Library tell us that their new Scientific and Technical Library CD ROM is a library of hard to find scientific, technical and specialist working programs. The 639 megabytes of data contains 1,476 applications, the largest selection to be found anywhere on the marker, say PDSL.
This CD ROM is intended for the technical and scientific user who does not want to wade through thousands of games or other unrelated software while looking for the scientific software needed.

The disc contains virtually all available technical scientific shareware programs for DOS and Windows. It also gives vast amounts of specialist source code and utilities. It comes with HTML indices to make topic searching easier for you and there is a function description for every program.

We know from personal experience that some excellent software is available inexpensively (free in some cases) from PDSL. This CD ROM costs £21 and appears to be well worth obtaining.

PDSL have also released a new CD ROM in the Libris Brittania series, version 6. It contains over 1800 Public Domain and Free-ware programs requiring no fee for personal use, many including source code. Priced at $£ 10$, this is a great way to obtain fee-free programs.

For further information, contact PDSL, Dept EPE, Winscombe House, Beacon Road, Crowborough, E.Sussex, TN6 1UL. Tel: 01892 663298. Fax: 01892667473.

DESIGN
INTERNATIONAL

The complete, powerful schematic and PCB layout tools for Windows.

This is really easy!

Compatibility from the 田Start

- Cut and Paste into other Windows applications such as Microsoft Word. Makes it easy to such as Microsoft Word.

(2) Create the artwork for the PCB with WinBoard...

- Quickly route boards on up to 16 layers.

WinDraft

- Choose from over 10,000 parts in WinDraft's complete library of components.
- All the utilities you need are included in the package from an Electrical Rules Checker to netlist output to printing and plotting outputs.

WINBOARD

- Use SMD or through-hole components - or mix them for maximum flexibility.
- Unique pad-stack editor can create pads of virtually any size or shape.
- Rotate components in 0.01° increments.

Create a Gerber photoplot, NC Drill, pick and place, and other manufacturing outputs!
(4) Expand the program capacity at any time!

Tel 01819261161

PCB Layout
Easily create designs up to 200 pins.
Compatible with industry standard formats. Expand the capacity at any time.
IVEX Products are also available from all Good high street electronics shop's, Call 01819261161 for your closest retailer.

The \quadThe PC Solution, aa High Road Leyton	
a PCLondon, E15 2BP.	
O/utio	Fax 01819261160

http://www.thepcsol.demon.co.uk email info@thepcsol.demon.co.uk
All trademarks acknowledged. E\&OE

RAIING THE PRESSURE

ANDY FLIND

The RC4190 switch-mode device is ideal for boosting supply voltages.

THERE: are often occasions where a circuit designer needs a voltage greater than that available from the supply. Two typical examples are in battery powered circuits and digital equipment where the only supply available may be 5 V . but a 12 V rail is needed for an analogue addition.
The common methods of increasing voltage are capacitor and diode "charge pumps". "Hying capacitor" integrated devices, such as the Siliconix SI766() or the Maxim MAX665, and switch-mode DC-DC converters. The capacitor-based circuits are simple to design but limited performance makes them suitable only where a few milliamps of current are needed.
Switch-mode power supplies are more versatile but their design is sometimes considered to be something of a black art. Recently, the introduction of "simple" dedicated switch-mode i.c.s has improved this situation.

SWITCH-MDDE PRINCIPLE

The principle of the switch-mode stepup converter is shown in Fig.I. Switch SI opens and closes repeatedly. When it is closed, the supply voltage appears across inductor LI and a current builds up in it, storing energy in the process as a surrounding magnetic flux.

Fig.1. Principle of switch-mode step-up circuit.

Fig.2. Internal structure of the RC4190 switch-mode i.c., together with pin function information.

When SI opens, this flux collapses. causing the current to continue to flow through L1 and diode D1 into capacitor Cl. As most readers will know, an inductor can produce a high voltage to sustain current flow during flux collapse. so. by repeatedly closing and opening SI, a voltage much higher than supply $\mathrm{V}_{\text {in }}$ may be generated across Cl .

In practice, the switch is usually a transistor, and feedback is normally provided to control the output voltage io a value chosen by the designer. This often works by reducing the "on" time of the switch during each oscillator cycle so that the total energy stored in the coil is equal to the energy required from the output.

RC4190 SWITCH.MDDE DEVICE

The Raytheon RC+19() switch-mode i.c. works in this way, and is particularly suitable for battery-powered circuits as it has a quiescent current of less than 0.5 mA . A simplified block diagram of the internal structure of this i.c. is shown in Fig.2. together with the pin connections for the 8 -pin d.i.p. (dual-in-line package) version.

Although the RC4190 can be used for voltage reduction (step-down). the step-up application will probably be of interest to most potential users. The basic circuit for this, together with practical component values, is shown in Fig. 3 .
In Fig.3, capacitor C2 sets the oscillator frequency, resistor R1 supplies a "bias" current for the internal voltage reference in the i.c., and resistors R2 and R3 provide feedback to the internal comparator to set the output voltage.

Fig.3. Basic circuit diagram for the step-up voltage application using the RC4190 switch-mode i.c.

Selection of component values can be tricky, especially for capacitor C2 and inductor L1 as both influence input and output voltages and the output current. There is also a maximum current rating of 375 mA for the internal switch transistor, which should not be exceeded.
The procedure suggested by the manufacturer's data sheet involves selecting an operating frequency and then calculating the corresponding inductance, but this usually turns out to be a value unavailable "off-the-shelf". The calculations are also fairly complex, so a more simple method is called for.

COMPONENT CALCULATION

The author has devised two methods for selecting component values for this and similar switch-mode devices. The first is simple and can be carried out quickly with a calculator. A couple of design factors are ignored so the results are not precise, but they should suffice for most designs.
The second method involves use of a spreadsheet. Many readers will have computers and will therefore be familiar with such software, and the sheet shown in Table 1 is compact and simple to enter, in fact it was developed on the tiny screen of a Psion Series 3a.
The simple method begins with selection of input and output voltages and output current. These calculations should always be made for "worst-case" conditions, that is, for the lowest expected input voltage and highest required output current. With a 9 V battery the lowest input might be 6 V , after which the battery would normally be replaced.
The output power required from the inductor can then be calculated. As some of the output comes directly from the supply, the amount that must be supplied by the inductor can be calculated as:

$$
P_{\text {in }}=\left(V_{\text {out }}-V_{\text {in }}+V_{\text {diode }}\right) \times I_{\text {out }}
$$

where $V_{\text {out }}$ is the output voltage, $V_{\text {in }}$ is the supply voltage, and $\mathrm{V}_{\text {diode }}$ is the forward voltage drop across diode D1, typically about 0.6 V .
It follows that (disregarding losses) the input power to the inductor is equivalent to this, so the average input current is given by:

$$
I_{\text {in }}=\frac{\left(V_{\text {out }}-V_{\text {in }}+V_{\text {diode }}\right) \times I_{\text {out }}}{V_{\text {in }}}
$$

In worst-case conditions, the "switch" should be on for about half of each oscillator cycle. As the inductor current builds up in a linear fashion, the average current is about quarter of the maximum value, so the peak inductor (and switch) current can be calculated from:

$$
I_{\max }=\frac{\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {in }}+\mathrm{V}_{\text {diode }}\right) \times \mathrm{I}_{\text {out }} \times 4}{\mathrm{~V}_{\text {in }}}
$$

If $\mathrm{I}_{\text {out }}$ is entered in milliamps, $\mathrm{I}_{\text {max }}$ will also be in milliamps. Its value should be checked against the 375 mA maximum allowed for the switch. If it is greater, an external power device will be required; this will be covered later.
Values of frequency and inductance are now required that will result in this value of current being reached. It should be noted that higher output requires less inductance and/or a lower operating frequency, so that more current can build up in the inductor.
It might be thought that half the frequency, which would result in half the pulses of twice the current, would result in the same overall output. However, the power is proportional to the square of the current, so it would actually be doubled.
For any two particular values of $\mathrm{I}_{\text {max }}$ and $V_{\text {in }}$ there are various possible combinations of frequency and inductance, but their product, $f \times L$, will always be the same. If this is called K, then it can be calculated as:

$$
K=\frac{\mathrm{V}_{\text {in }}}{\left(2 \times \mathrm{I}_{\text {max }}\right)}
$$

K can then be divided by a frequency to find the corresponding inductance, or by an inductance to find the frequency. To further simplify this process, $\mathrm{I}_{\text {max }}$ can be entered in mA and the formula multiplied by 10^{6} as follows:

$$
K=\frac{\mathrm{V}_{\text {in }} \times 10^{6}}{\left(2 \times \mathrm{I}_{\text {max }}\right)}
$$

The values of L and f can then be entered or read directly in kHz and $\mu \mathrm{H}$.

Possible operating frequencies range between 1 kHz and 75 kHz , but for efficiency practical circuits will probably run between 10 kHz and 50 kHz . To recap on the complete process:

1. Choose values for the lowest expected supply voltage V_{in}, the highest required output current $\mathrm{I}_{\text {out }}$, and required output voltage $\mathrm{V}_{\text {out }}$.
2. Calculate maximum inductor current from:

$$
I_{\max }=\frac{\left(V_{\text {out }}-V_{\text {in }}+0.6\right) \times I_{\text {out }} \times 4}{V_{\text {in }}}
$$

Check this does not exceed the switch limit of 375 mA , or use an external device for switching.

3. Calculate a constant K from:

$$
K=\frac{V_{\text {in }} \times 10^{6}}{\left(2 \times I_{\max }\right)}
$$

then use this for selecting operating frequency or inductance, using K / L or K / f (where $\mathrm{I}_{\text {max }}$ is in mA, L is in $\mu \mathrm{H}, f$ is in kHz).
4. Calculate values for the remaining components as follows:

Capacitor C 2 is given by $2400 / f$

where f is in kHz and C 2 is in pF (i.e. 20 kHz requires $2400 / 20=120 \mathrm{pF}$).

Resistor R1 should supply a bias current of about $5 \mu \mathrm{~A}$ into pin 6 , which has a potential of 1.2 V . Its value is therefore:

$$
R 1=\frac{\left(V_{\text {in }}-1.2\right)}{5 \times 10^{-6}}
$$

The feedback divider resistors R2 and R3 should have a standing current of $50 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$. Since pin 7 normally has a potential of 1.31 V , this means that R3 should be 18 k or 22 k . R2 can then be calculated from:

$$
\mathbf{R} 2=\left(\frac{\mathrm{V}_{\text {out }} \times \mathrm{R} 3}{1.31}\right)-\mathrm{R} 3
$$

Decoupling capacitor C3 will usually be between $10 \mu \mathrm{~F}$ and $470 \mu \mathrm{~F}$, a value of $100 \mu \mathrm{~F}$ will be more than adequate in most designs. Capacitor C1 will usually be somewhere between $100 \mu \mathrm{~F}$ and $470 \mu \mathrm{~F}$, again it is a decoupler and its value is not critical.

INDUCTOR AND DIODE CONSIDERATIONS

Most of the components are non-critical with regard to type but, for efficient operation, inductor L1 and diode D1 must be suitable for this application. Good inductor performance is especially vital.

The two main sources of loss here are through winding resistance and leakage of magnetic flux. A simple rule-of-thumb is that the inductor should consist of thick wire on a large chunk of ferrite!

Table 1: Spreadsheet layout. (Columns D and F are set to display no decimal places.)

	A	B	C	D	E	F
1	V in	<enter value>				
2	Freq (kHz)	<enter value>	1 max (mA)	=811*1E03	C1 (pF)	$=2400 / B 2$
3	$L(u H)$	<enter value>			R1 (k)	$=(\mathrm{B} 1-1.2) / 5 \mathrm{E}-03$
4	Vout	<enter value>	1 out (mA)	=813*1E03/(B4-81+B5)	R2 (k)	= B4*F5/1.31-F5
5	\checkmark diode	<enter value>			R3 (k)	<enter value>
6	\checkmark switch	<enter value>				
7	t-off (US)	<enter value>				
8						
9						
10	t-on	=1/B2/2000+B7*1E-06	(seconds)			
11	1 max	=(B1-B6)*B10/B3/1E-06	(amps)			
12	Joules	=B3*5E-07*B11^2				
13	Watts	=B2*B12*1E03				

Tiny wire-ended 1 mH chokes (recommended by one supplier for use with the RC4190) should be avoided as they are very inefficient. However, for small currents, tiny ferrite bobbin-type inductors work surprisingly well.

Some coils tried by the author and found satisfactory include the "low current radial lead" r.f. chokes from Electromail, the higher current versions (part numbers 228 517 to 228-545) giving much better performance than the low-current ones.
Maplin's 1 mH "general purpose axial lead inductor", UM13P, works well in designs needing this value. These and most other component suppliers list larger bobbins and toroids which should give even better performance where space is not at a premium. Most circuits will need a value of inductance between $100 \mu \mathrm{H}$ and 1 mH .

Diode D1 must be a Schottky or similar fast-recovery type, such as the 1 N5822 or the UF4004. The slow reverse recovery of the standard 1 N 4000 types makes them totally unsuitable for this application.

IGNORED FACTORS

For simplicity, this calculation method ignores two factors that should really be included. One is the saturation voltage of the switch, quoted as about 0.5 V , though for small currents it will be less.

The other is the switch "tum-off time", stated to be about $5 \mu \mathrm{~s}$. This effectively increases each "on" period which raises the switch current. The effect increases with frequency and can be quite substantial, but modifying the frequency/inductance formula to include it resulted in considerable complexity.
If a spreadsheet is used, these factors can be included and also made easily adjustable so that calculations may be made for other switch-mode i.c.s.

EPREADSHEET

 METHOD

 METHOD}The layout and formulae for a simple spreadsheet used by the author is shown in Table 1. This works as shown on the Microsofi Works sheet, and also on the Psion Series 3a and MC400 providing the " Λ " (raise to a power) in cell B12 is altered to "* *"'. Minor modifications may be required for other sheets.
Input values are placed in cells B1 to B7 and F5 (R3). Typical inputs and resulting outputs are shown in Table 2, which can be used to check that the formulae have been entered correctly.
The sheet works by calculating input wattage, assuming this will be the output
wattage, and calculating the maximum output current for the given output voltage. The peak switch current $I_{\text {max }}$ is displayed along with values for R1 (use next lower preferred value), R2 and C1.
In practice, different values of frequency and inductance are tried until the required output current is obtained, whilst keeping an eye on $\mathrm{I}_{\text {max }}$, then the component values can be tried in a practical circuit.

The output in most circuits tested was found to be about 20 per cent lower than the calculated value, probably due to efficiency losses, so allowance should be made for this.

EXTERNAL DEVICES

There are two cases where an external switching device is needed with this i.c.

The first is where $\mathrm{I}_{\text {max }}$ will be exceeded. If this is the case, ignore it in the calculations and use an external power device which can handle the increased current.

A useful altemative is to use a CMOS i.c. for inversion and provision of active drive to a power MOSFET output device. Although a trifle expensive, the low drive power, high speed and good reverse breakdown characteristics of MOSFETs make them better for this application than bipolar types.
The IRF740 and IRF840 have both been found to give good results, others may be even better. When choosing one, look for a low "on"' resistance. Various devices can be used for the inversion.

CMOS BUFFERING

For the smallest size, an ICM7555 (CMOS) timer can be used as shown in Fig.4, where it acts as an efficient inverter/driver with a useful Schmitt action. Note the use of a "pull-up" resistor R2, needed because the switch transistor in the RC4190 cannot source current.
Several of the 4000B series CMOS i.c.s can be used, so long as the arrangement

Fig.4. Circuit diagram for producing a 24 V step-up using a CMOS 7555 timer and a power MOSFET.

The second is where the required output voltage is greater than about 30 V . This is the collector breakdown voltage of the internal switch transistor, but, with suitable external switching, it is easy to reach 80 V or even a 100 V at a few milliamps.

Pin 4 cannot directly drive an external switch since most suitable devices invert the phase of the drive, requiring the addition of phase inversion to correct this. Transistors can be used for inversion and output, but the values of associated resistors have to be low to ensure rapid switching and this raises current consumption.

Table 2: Typical inputs and resulting outputs spreadsheet.

V in	65.5	I max (mA)	223	$C 1(\mathrm{pF})$	68
Freq (kHz)	470			$R 1(\mathrm{k})$	960
$\mathrm{~L}(\mathrm{uH})$	12	1 out (mA)	63	$R 2(\mathrm{k})$	180
V out	0.6			$R 3(\mathrm{k})$	22
V diode	0.5				
V switch	5				
t-off (uS)					
t-on	$1.90845 E-05$	(seconds)			
I max	0.223329338	(amps)			
Joules	$1.17209 \mathrm{E}-05$				
Watts	0.416090472				

used inverts the signal. Connecting the outputs of several gates together gives increased drive power for the capacitance of the power MOSFET gate.
One version using a 4070B quad ex-clusive-OR gate is shown in Fig.5. The internal structure and pinout details for the 4070B are given in Fig.6.
Gate IC2a is connected as a non-inverting buffer, driving the remaining inverting gates in parallel. This circuit is capable of supplying 80 V at 10 mA with an efficiency of about 80 per cent. The inductor used by the author was a tiny ferrite bobbin. The gates can be connected in any order, as convenient.

Whilst the value of 1.3 megohms (1 M 3) for resistor R3 is a standard value, it could also be made up using $1 \mathrm{M} \Omega$ and $330 \mathrm{k} \Omega$ resistors in series.

FINALLY

An optional battery monitoring facility is provided in the RC4190. If the voltage at pin 1 drops below 1.31V, pin 8 will become active and sink current up to about a milliamp. The input to pin 1 can be a simple potential divider and the output can be used for various purposes, an l.e.d. warning circuit being one obvious application.
It is hoped that these design methods will simplify calculations and enable less

Fig.5. Circuit diagram for producing a 80V step-up by adding a 4070B quad exclusive-OR gate and power MOSFET.
experienced designers to begin using this switch-mode device and similar ones in designs of their own.

The micropower RC4190 is just one of several "simple" switch-mode devices available. There are a number of others

Fig.6. Internal structure and pinout details for the 4070B XOR i.c.
in small wire-ended packages capable of higher powers and voltages, and in some cases the oscillator frequency is intemally fixed so their circuits are even simpler. These calculation methods should work just as well for these types.

John Becker addresses some of the general points readers have ralsed. Have you anything Interesting to say? Drop us a linel

NZ PICS THE NET

Dear EPE.

Your Net Work page really makes EPE a versatile magazine and takes hobby electronics to new heights. Living in New Zealand meant that in the past I had to obtain free software from $E P E$ at reasonable expense using the postal service. Now it's literally moments away and at a fraction of the price.

I have become very interested in the PIC micros made popular by $E P E$ and have constructed Derren Crome's Simple PICI6C84 Programmer of Feb '96. What I feel will also really help beginners in the microcontroller field are some very simple and short leaming examples that take readers step by step through leaming how to write programs for the PIC. Would it be possible to publish a PIC Programming Tutorial?

Glen Nordin. New Zealand, via the Net
Our Web site is being accessed from around the globe and many readers (including those who only learned about us via the Web itself) are benefitting from our software FTP facility.

You will be pleased to know that I am in the middle of writing a detailed step-by-step tutorial on how to program PICs. Lots of readers have made this request. It is to be published as a series of practical articles - more details soon!
of course, it will physically fit in the space available.
However, never use a component that has a voltage rating lower than that specified unless you are sure that the replacement has a rating that is at least one and half times that of the potential across which it will be placed. Some power supply components need to have even greater "head-room'

The type of situation that might arise is that the designer of a project may have used an electrolyic capacitor of say $1 \mu F 6.3 V$ in a circuit run at 5V. This value may have been the only one available to him from his supplier. Another supplier may only have $l \mu F$ 16 V devices: another might have ihem at 6.3 V . We nearly always quote the component voltage ratings supplied to us by authors.

Both the 63 V and 16 V devices are perfectly acceptable for a circuit powered at 5V (unless voltage boosting is being employed somewhere along the route that the capacitor will be placed). The 6.3 V capacitor might be OK. depending on where it's placed, but it should not be subjected to the 5 V power line voltage if there is any possibility that surges or faults might take this voltage higher.

HISTORICAL SHORTS

Dear EPE.

I add my hearty endorsement to the correspondence praising simpler, shorter projects. However, perhaps P. Price, the original correspondent on the subject, has missed the salient point. which is that 25 years ago we could choose between buying Evervday Electronics as light, simple, entertaining. hobbyist reading. and/or we could buy Practical Electronics for more meaty stuff. Naturally, the merger of $E E$ [and] PE into the one publication $E P E$ removed customer choice and the editorial policy eased out the $E E$ style content.

In our business, we constantly meet cus tomers whose knowledge of electronics is not matched by their interest, who do not have, or want, web addresses and whose ambitions do not include building some digital gizmo for which it is necessary to purchase a specially programmed chip! These people seem mostly to have tried EPE, found it to be pitched at too high a level and stopped taking it.

CPD, Stowmarket, Suffolk
All of us at EPE were greatly involved with PE and EE and intimately know their histories and philosophies. The sad fact is that "market forces" ultimately caused the merger into the single title (with a few chunks of interesting "history" in between). In the hey-day of hobbyist electronics a situation existed that was somewhat different to that prevailing now:

Following the pre-war establishment of Practical Wireless and its continued post war success, PE was introduced in '64, and subsequently EE in '71: three sisters parented by IPC Magazines, each meeting the needs and capabilities of hordes of readers in a market craving for technology, and electronics in particular.

During the mid '70s (and explaining it in very simplistic terms). two major situations began to emerge: the introduction of computers and a change in public altitude lowards technology Both factors drew people's interests away from electronics and the market declined. This situa tion was not aided by the recurrent recessions when magazine readership in general began 10 decline with the increase in people's uncertainty about job security and the need to economise.

By " 86 all three sister magazines had become separate entities under different owners. The market continued to decline, and then in '92 PE was taken over by EE. to become EPE. (Did you know that we also acquired ownership of the title Electronics Monthly - formerly Hobby Electronics - some years ago?) The readership of both titles had be catered for. hence the editorial policy which exists now. But we recognise that the balance between readers at both the PE and EE ends of the spectrum needs reluning from time to time.

We believe that we can. and do. provide all readers with a magazine that meets their needs in terms of project simplicities/complexities education, interest. new's etc. Such series as Teach-In. Build Your Own Projects, Circuit Surgery and Ingenuity Unlimited are extremely popular at one end of the spectrum. At the other end we know too, in various ways from p.c.b. sales to letters received, that the more complex projects are welcomed. and we have been very gratified with the enormous interest shown in all the PIC projects.

Nonetheless, we do "sound-out" what readers think and take action accordingly. We had enormous feedback from our survey of las year and it has proved beneficial. The correspondence currently being received about the subject is also of great interest to us.

The electronics hobbvist market has stabi lised and we are the leading publication cater ing to it. Although the national attitude toward science and technology seems to be one that is less prepared to enquire into the subjects than it used to be, at last Government(s) appear to be recognising that public awareness and participation in them should be encouraged.

Those of you involved in electronics, at whatever level. are a privileged group: electronics in its various forms has become the driving force behind society; you are the ones who are intent on making your own contribution to it. Good luck to all of you, we shall do our

CIRCUIT sURGERY

ALAN WINSTANLEY

This month, our team of surgeons helps a Bat Group to keep a count on some furry, flying mice! We describe methods of detecting direction of movement - a tricky problem!

AS EXPLAINED a month or two ago, Circuil Surgery is attempting to ina wider variety of queries which are now coming our way from all levels. We're grateful to the staff at the Department of Electronic Engineering at the University of Hull for volunteering to join in the fun and lend a hand: we promise an ever-wider field of interest, and something we hope which will appeal to everyone.

You may find that the material we include is more in the form of outline suggestions or "pointers" rather than fully-sorted circuits. At times, it simply isn't feasible to produce a completely debugged, 100 per cent functional circuit "to order'" but we certainly hope that readers will be inspired to experiment for themselves and refine some ideas, using some of the data and information suggested here in Circuil Surgery.

Holy Bat Counters!

One deceptively-simple sounding problem which requires a lot of electronic ingenuity is that of directionally-sensitive counting - using an electronic circuit to count an event which occurs in one direction, but not the other. This problem could apply to, say, a "people counter" used across the doorway of a night-club, to check the actual number of customers within the club at any one time. Perhaps a football club would find this useful, too, in an attempt to gauge the total attendance at a match. Or, which way is that robot arm moving?

Here's an interesting query from Dave Williams of Kidsgrove, Stoke-on-Trent.

I work for the Staffordshire Bat Group, and I'm working on a lwin-beam counter which I would like to use to count bats into and out of a roost.

My suggestion consists of two counters and two infra-red beams which are mounted side-by-side, separated by 20 to 30 mm . They are placed across the exil and the distance between the light-emitting diode emitters and the photodiode receivers will vary from 20 to 75 mm .

I am having difficulty oblaining $I R$ l.e.d.s with a narrow enough beam to
allow the photodiodes to receive their signal only from the appropriate l.e.d. The other more serious problem is the logic circuit needed to advance the counter depending on whether the bat is entering or leaving the roost. Both beams will be broken on every occasion but only the "first" beam each time should be used to pulse the appropriate counter.

I'm having great problems finding a circuit to accomplish this. I'd be very grateful for any help.

Ian Bell, of the Department of Electronic Engineering, University of Hull, suggests a possible solution to this batty headache! (Bats, for the benefit of overseas readers, are a highly protected species in the UK, with four-figure penalties being imposed for unauthorised interference with a bat colony.)

The problem here is that the beams from the l.e.d.s are not narrow enough to be focused onto only one of the detectors. This could obviously be solved optically if a narrow-angle beam can be obtained, but this will make the mechanical arrangement of the l.e.d.s much more critical.

Fig. 1. Out-of-phase drive signals for two infra-red emitters.

An electronic signal is possible if the two signals from the l.e.d.s can be distinguished at the sensors. A couple of approaches spring to mind: we could switch the l.e.d.s. so that only one device is on at a time using two out-of-phase clocks (see Fig. 1).
The signal can then be passed to the receiver so that the sensor signal is only "used" when the corresponding l.e.d. is being driven. The pulsing of the l.e.d.s must be fast enough so that they are switched on
and off a number of times, in the fastest time taken for a bat to fly through the beams. Logic placed after the sensors can then determine which beam is being broken, and provide a stable (i.e. non-pulsed) indication of the state of each sensor. A block diagram of this is shown in Fig. 2a.

The two infra-red emitters are toggled alternately using a flip-flop (F/FI) and a separate "sync" is sent to the receiver side. This is used to synchronise the decoding of the two signals and provide a "detected" output.

In the circuit idea of Fig. 2 b , on the negative going edge of the clock signal, F/FI toggles state and selects one of the emitters. The appropriate sensor is then sampled by the next positive clock edge by using either F/F2 or F/F3.

The timing diagram of Fig. 3 shows what happens when beam number one is broken part way through the example. Note that when IR Beam 1 is broken, both sensors ($\mathrm{S} 1, \mathrm{~S} 2$) receive the L 2 signal but the sampling clocks Cl and C 2 look at the sensor signals at different times, so that the detected outputs D1 and D2 are correct.

There is some delay from the beam being broken, to detection being indicated. This is not important if the clock period is much faster than the transit time of the bat flying through the beam.

Another possible solution could be to pulse the l.e.d.s at different frequencies and use filters in the sensor circuits to isolate the signal from the appropriate l.e.d. (Fig. 4). The filters could be a narrow pass band which would amplify signals resulting from the appropriate l.e.d., and reject signals from the other. Two advantages of this approach are that the sensors would be less sensitive to changes in ambient light, and also no wiring is required between the emitter/transmitter and sensor/receiver parts of the system.

Direction Finder

The second part of the overall problem concerns the determination of the direction in which the bat is flying through the infra-red beams, and counting correctly as a result. I'm assuming that the physical set-up
is such that the bat breaks both beams when it's half-way in or out of the roost, as this makes direction sensing easier.

Consider the digital signals obtained when a bat enters (Fig. 5a) and exits (Fig. 5b). You'll see that the signal pair from the detectors (D1/D2) goes through two different sequences: 0010 ll 0100 on entering the roost, and 0001111000 when leaving.

We could build a fool-proof circuit to detect these complete sequences, but there's altogether a much simpler - if not quite so fool-proof - technique. Take one of the signals as a reference, say D1. Now check the logic level of D2 when DI changes from 0 to I . It is logic 0 when the bat enters and logic 1 when it leaves. It is possible to use a positive edgetriggered D-type flip-flop, with the clock
wired to D1 and the D input to D2, to indicate the direction, by generating a logic 0 or 1 at its Q output. See Fig. 6 - it suddenly becomes very easy when you compare the D1/D2 waveforms with those shown in Fig. 5.
Having obtained the ""direction'" information, we also need a signal to say "count". We can use the edge of DI to clock a counter, as long as we delay it by

Fig.2a. Block diagram to detect direction of bat flight.

Fig.4. Alternative frequency-sensitive discrimination system.

Fig.2b. Suggested oulline circuit for direction/detection system.

Fig.3. Timing diagram for suggested direction-sensitive detector. When IR Beam 1 is broken, both sensors (S1, S2) receive the L2 signal.

Fig.5. Direction signal outputs generated when a bat breaks each beam when entering or leaving the roost.

Fig.6. Direction signal logic waveforms (see also Fig.5).

Fig. 7a. Introducing a time delay with a series of inverters, to ensure the up/down signal occurs before the count.

Fig.8. Quadrature signal depends on the direction of rotation of movement detected.
a period longer than the flip-flop takes to store the "direction" value.

A somewhat unofficial way of doing this is to place several inverters in series. to take deliberate advantage of their propagation delays, as shown in Fig. 7a. If you would like to have separate "in" and "out"' counters then the "direction" logic signal can be connected to the counter's enable inputs, Fig. 7b.

As I said, the circuit is simple but not fool-proof! If a clever bat sat and popped its head in and out at the entrance, breaking a beam, the counter would advance but no bat would have entered the roost. We're safe provided that we assume that bats don't behave like that, though it may be undesirable in other directional counting applications.

False counting may also occur if the string of inverters is still not sufficient to slow down the DI signal, especially if a particularly slow flip-flop is encountered. Another potential headache is that any glitches on the detect signals will get counted.

Robo-Bats

All of these problems can be overcome by a suitable integrated circuit, and indeed the Hewlett Packard HCTL-2000 is a CMOS device which is specially made for this type of application.

Now, you'll be wondering why on earth HP make a chip which counts bats! They don't, but in actual fact the directional counting problem is a common one which occurs in a number of industrial situations, such as monitoring the position of a robot arm.

Consider the signals which would result when several bats entered or exited from the roost, one after the other (Fig. 8). These are two square waves phaseshifted by $+90^{\circ}$ or -90°. depending on the direction. This is known as a quadrature signal and it can be utilised to
monitor the movement of a mechanica part. e.g. a robotic arm or an optical shaft encoder.

For example, consider a rotating joint on a robot arm. If we fit an alternating reflective/non-reflective pattern on the fixed part and a couple of opto-sensors on the moving part. so that the opto-sensors are separated by half the width of the pattern sections, we will obtain a quadrature signal when the arm moves.

This is most easily understood by looking at diagram Fig. 9. Each time the outputs from the sensors changes, the direction of movement can be determined by looking at the ""direction" of change and the state of the other sensor.

The HCTL-2000 does this and increments or decrements a 12-bit up-down counter. If the maximum speed of the mechanical part is known, then the minimum pulse width of valid signals on the inputs can be calculated. The HCTL2000 also contains a simple Schmitt-trigger digital filter which rejects pulses that are too short to be valid inputs.

The pinouts for the chip are given in Fig. 10. The two sensor inputs from the quadra-ture-encoded source are presented to Channel A (pin 7) and Channel B (pin 6) which are Schmitt-trigger inputs. Sampling is controlled by a clock signal at pin 2.

Based on the "history" of the binary signals compared with their present state, the device outputs a count and direction signal to its own internal position counter.

Fig.9. Sensing the direction of rotation of a rotating mechanism, e.g. a robot arm.

Fig. 10. Pinout details for the HCTL2000 interface i.c.

The pins D()-D7 are TTL-compatible tristate outputs which form an 8 -bit wide output that can be used to count with.
It's beyond the scope of this column to show application circuits but for those who are interested and would like to experiment further, the data sheets and device are available from Farnell Components (Tel. 0113263 6311, Order Code 407-471. price $£ 14.83$ excl. V.A.T.)
Thanks for a very interesting question. Ian Bell. University of Hull.
We're back down to earth next month.

CIRCUIT THERAPY

Circuit Surgery is your column. If you have any queries or comments, please write to: Alan Winstanley, Circuit Surgery, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset, BH21 1PF, United Kingdom. E-mail alan@epemag.demon.co.uk. A personal reply cannot always be guaranteed but we will try to publish representative answers in this column.

TRIED \& TRUSTED STRAIGHT FROM GERMANY

CONTOUR?

MUITILAYER?

$x+\frac{x}{x}=$ $+2$

Eurocard + Soldermask + Position print

t a y 0 U it o College Grove

getred

pcbpool@betalayout.ie http://www.pcb-pool.com

Ennis - Co. Clare

My adress/Fax number

IMFO:
++353 (0) 6566500 FAX 66514

German Omice
Beta LAYOUT Gmb Beta LAYOUT Gmb
PCB-Brokerace PCB-Brokerac
FeldstroBe 2 65326 Aarbergen

SOLDERING
 IRON CONTROLLER

BART TREPAK

Here's a coal cure for a hot problem, though it's not for beginners.

THE soldering iron is perhaps the most indispensable piece of equipment that any electronics enthusiast possesses. Without it, even the simplest of circuits would be impossible to build or repair.
The basic instrument consists of an insulated heating element, usually rated at between 15 W and 25 W , which heats a copper bit that is shaped to allow maximum contact with a component lead or printed circuit board track to enable solder to be melted. An insulated handle with a mains cable terminated in a 3 -pin mains plug completes the assembly. What more could one want?

BASIC PROBLEMS

This simple tool is, of course, quite adequate even for the serious hobbyist. But, as with most basic designs, it has limitations which only become apparent when the device is used. First, there is the question of what to do with the iron when it is on but not actually in use. A hot soldering iron is not something which you can safely leave lying around on the kitchen table or even a workbench.
Then there is the problem of preventing the iron overheating when it is in this stand-by condition. When it is in use, and even if it is not actually melting solder, the iron bit is continually loosing heat, though this is being replaced by the heating element. When called upon to heat up a component lead or printed circuit track, heat is lost faster. This must be rapidly replaced by the element if the temperature of the iron is not to fall below the melting point of solder.
To prevent large fluctuations in temperature, the bit is made as massive as is realistic for the component size to be soldered, but this means that a power ful heater is required to ensure that the iron does not take an inordinately long time to heat up when first switched on. With temperature controlled irons, the power fed to the element is controlled to combat heat fluctuations, but with ordinary irons it means that the iron will run rather hot when left in a standby condition.
This is not such a problem as far as the element or the safety of the instrument is concerned, because these are designed to withstand any temperature which the
element is likely to reach. But too high a temperature can result in poor solder joints because the flux in the solder is burned off before it can do its job.

It can also seriously reduce the life of the soldering bit and with iron plated bits now almost universally fitted in place of the plain copper ones, this can be both annoying and expensive.

FORGETFULNESS

Perhaps the most infuriating feature of the basic soldering iron is the absence of an indicator lamp to show that the unit is on. Many people, no doubt, share the author's experience of returning to the work bench after a period of some hours, or sometimes even a weekend, to find the soldering iron has been left on for all that time.

At a consumption of 25 W , this is not exactly something which will cause anyone to wind up in the bankruptcy court, but it is still a waste of energy and can do nothing for the environment. especially if added to all the other items of equipment which are sometimes left on needlessly.

As well as this, it is also often discovered that the bit has been ruined and a replacement has to be ordered which results in a few more days delay before the iron can be used.

Most seriously, an unattended soldering iron is a potential fire hazard as it could come into contact with papers on a cluttered bench or be knocked over by a pet or even a child.

Many of these limitations are rectified in the more advanced models and some even have a microprocessor to not only control the temperature to within a fraction of a degree of that selected, but to display it as well.
Unless the iron is to be used "professionally", it is unlikely that the associated price tag of such instruments can be justified by the hobbyist who may only use the soldering iron occasionally and would probably feel that the money would be better spent on a better multimeter, or even on components.

IRON STAND

The first problem is easily solved by purchasing a stand which is designed to hold the iron safely when not in use. These are available at reasonable prices from most component stockists.

They usually consist of a sturdy base (the higher the price, the sturdier the base) and a metal spiral into which the hot iron is inserted. The manufacturers claim that they are also designed to prevent the iron from overheating. To a certain extent they probably do, but they seem to have little effect on the frequency with which bits need to be changed, especially if the iron is sometimes accidentally left on overnight.

SIMPLE SAVER

This problem of overheating was initially solved by the author using a very simple circuit which, in terms of aggravation and money saved against cost, he considers to be probably his top scoring circuit of all time.

Consisting of a rectifier diode and a microswitch, it can be built for less than the price of a new soldering iron bit and since building the unit some three years ago, the author has not had to replace a bit once.

The basic set-up shown in Fig. I consists of the microswitch and rectifier diode in parallel, and connected in series with the soldering iron element. Using a soldering iron with a hook attached enables it to be hung on an arm which operated the microswitch in such a way that when the iron is in use, the rectifier is shorted out, allowing full power to reach the element.

After a soldering operation, when the iron is replaced on the arm its weight causes the microswitch to open, re-introducing the rectifier into the circuit and effectively halving the power to the element, which therefore runs cooler. There appears to be no noticeable delay in the bit reaching a working temperature when the iron is removed, although it does take slightly longer to heat up initially.

WHAT A SAVE!

Unfortunately, this design would win no prizes from the Health and Safety Executive, as the author can readily attest: on one occasion, he absent mindedly replaced the iron on its arm after completing a tricky soldering operation but missed the hook.

Fig. 1. The author's original bit-saver idea.
"Lightning fast reactions". as he puts it, "saved" him (he thinks that's the right word!) because he managed to catch the iron before it fell to the floor and burned a hole in the carpet - by gripping firmly on the hot element!

This experience forced a re-examination of the above arrangement and, while about it, the design of a circuit to overcome the other major problem with many soldering irons, namely, that of accidentally leaving them on for extended periods.

BACK TO THE DRAWING BOARD

It was decided to replace the arm and hook arrangement and make use of the recommended stand for the iron, but no position could be found to ensure that a microswitch would operate reliably when the iron was replaced.

A magnet/reed switch arrangement was also considered, using a small magnet mounted on the iron and a reed switch on the stand, but this was also discounted for much the same reasons.

Luckily, however, soldering iron manufacturers go to great lengths to ensure that the soldering bit and, indeed, the sheath which houses the element, are well earthed. This enabled a purely electronic solution to be found to this problem as illustrated in Fig. 2.
where a separation of perhaps even up to a few centimetres will suffice.

Because this circuit is connected directly to the mains, great care must be taken to ensure that the current resulting from touching the input is limited to a harmless value, and this is done by the total resistance of the RI chain.

The resistor chain limits the current to about $20 \mu \mathrm{~A}$ and consists of three resistors for safety, since the breakdown voltage of "normal" quarter watt (0.25 W) resistors is usually 250 V d.c. A chain of just two resistors would appear to provide adequate voltage protection against the mains a.c. supply, but the failure of one of these resistors could cause a dangerous voltage to appear on the spiral.

As an extra safety measure in the final circuit, one of these resistors is connected "off the board" directly to the spiral. This ensures that even if the other end of the resistor were to be connected to the wrong point in the circuit by mistake, the spiral would still be safe to touch although the circuit would obviously not work.

To convert the voltage across resistor R3 to a steady d.c. level for further processing. capacitor Cl is fitted as shown. The voltage at the emitter of TRI will therefore rise to almost the d.c. supply voltage when the soldering iron is in its stand. It will fall to zero as the capacitor discharges via R3 when the iron is removed.

Fig. 2. The basis of a more sophisticated bit-saver.

THE SOLUTION

As shown in Fig. 2, a resistor chain (R1) is connected between the spiral spring of the soldering iron stand and the base (b) of transistor TRI. Through resistor R2, the emitter (e) of TRI and resistor R3, there is a current path to the common negative d.c. line (Mains Neutral).

The circuit is powered from a d.c. supply, the positive terminal of which is also connected to the mains Live terminal. In this condition, TRI will be cut off and the voltage appearing across R 3 will be zero.

If, though, an earthed object (notably the soldering iron) is brought into close (inductive) proximity to R2, then, because TRI's emhitter is at 230 V a.c. with respect to this, the transistor will turn on each time that the emitter goes negative. This condition occurs during the negative mains half cycle and results in a voltage appearing across R3 during this time.

By changing the value of resistor R 2 , the sensitivity of the circuit may be adjusted from minimum, where the transistor will just turn on when the soldering iron touches the metal spiral, to maximum

CONTROL BLOCK

With a stand-by/in-use signal now available for the status of the iron. the rest of the circuit can be designed as shown in the simplified block diagram of Fig. 3. The rectifier diode in the original circuit of Fig. I has been replaced by a triac which allows full or half power to be switched to the element. This is achieved by triggering the triac either continuously, or only during alternate mains half cycles, or, indeed, switching it off altogether.

The heart of the system is a digital timer which is reset and held in this state each time the soldering iron is removed from its stand. In this condition, the output of the timer is high so that the AND gate is enabled and the triac will be triggered whenever the output of the half-wave/fullwave switch is high.

The output status of this stage depends in turn on the polarity of the mains signal and the output of the soldering iron detector. The switch status will be high if the output of the detector is high. It will alternate between low and high when the detector output is low (OR function).

Fig. 3. Block diagram of the final Soldering Iron Controller.

The triac, therefore, will be switched on continuously (full power) when the iron is removed from its stand. When it is replaced, the triac will be switched on only during the positive mains halfcycle.

FUNCTIONAL CIRCUIT

The circuit to perform the functions in the block diagram is shown in Fig. 4. The various blocks can be easily identified, bearing in mind that due to logic considerations, both the OR and the AND functions are implemented using NOR gates.

The timer is built around a CMOS 4060 oscillator/divider whose outputs (Q4. Q8 and Q14) are low when the chip is reset. This means that, initially, point D is also low due to the action of diodes D1 and D2 and resistor R10.

Simultaneously, gates IC1a and IClc are both enabled. In this state. ICla and ICIc can be considered simply as logic inverters, with the output status of ICle (pin 3) depending solely on the output of IClb (pin 10).

Assuming that the iron is in use, and is therefore removed from the stand, transistor TRI will be turned off. Thus, the
logic level at its emitter will be low, causing IC la output (pin 4) to be high. resetting the timer and preventing it from counting.

The steady high logic level on input pin 8 of 1 Cl 1 b will also cause the output of this gate to remain low and the output of ICle to be high so that the triac will be switched on continuously and supply full power to the element.

When the soldering iron is replaced in its stand, the output of ICla will go low, enabling the timer. The output of IC1b will now be determined by the logic level at its other input (pin 9) which will be switching

Fig. 4. Complete circuit diagram for the Soldering Iron Controller.

Fig. 5. Printed circuit board component layout and full size copper foil master track pattern.
high and low due to the mains signal fed to it via resistors R11 and R12.

In this situation, since the output of IClb will be low only during the positive mains half-cycle, the triac can only be triggered during this period. Thus it will supply only half power to the element, causing it to run cooler and so extending the life of the bit.

RESET CONTROL

When the reset input on IC2 (pin 12) goes low, as it will each time the soldering iron is replaced, the chip counts up at a frequency determined by the values of resistor R 7 and capacitor C 2 , until eventually (assuming no further reset occurs) output Q14 will go high.

Since point D will still remain low (pulled down by IC2's outputs Q4 and Q8 via diodes D2 and D1) the buzzer WD1. which is connected with its positive terminal to output Q14 via point E, will receive the correct polarity signal and sound a warning

Counting will continue, however, and assuming no reset occurs due to the iron being removed from its stand or the reset button being pressed, outputs Q8 and Q4 will also both go high about twenty seconds later.

Light emitting diode (l.e.d.) D6 will be switched off in this condition and point D will also go high (pulled up by output Q14 via resistor R10) causing pin 11 of IC2 to go high via diode D3, so stopping the oscillator and preventing further counting. but not resetting the counter.

With point D now high, the output of IClc will be permanently low, ensuring that the triac remains switched off. Gate ICla will also now be inhibited with its output (pin 4) low, ensuring that the counter cannot be reset by removing the iron from its stand, thus preventing your cat from re-activating the circuit by knocking the stand over!

Once this stage is reached, the only way of switching the iron on again is to press the Reset switch, SI.

POWER INDICATOR

It will be noticed that while counting is in progress, IC2 output Q4 (and indeed Q8) will be switching repeatedly between logic low and logic high, causing l.e.d. D6 to switch on and off at about 1 Hz .

Whenever the counter is reset (due to the iron being in use and at full power), output Q4 will be low and the l.e.d. will be on continuously. The l.e.d. therefore functions as a power indicator, being at full brightness for full power, flashing for half power, and off when the triac is off.

COMPONENTS

Resistors

R1 to R3, R8	4 M 7 (4 off) See	
R4, R5	$1 \mathrm{M}(2 \mathrm{off})$	
R6, R16	$1 \mathrm{k}(2 \mathrm{off})$	TALK
R7	470 k	

R9, R10, R13 10k (3 off) Page
R11, R12 220k (2 off)
R14 470』
R15 1k 0.5W 5\%
All 0.25W 5\% carbon film, except R15.

Capacitors

C1, C2 100 n polyester (2 off)
C3 $\quad 220 \mu$ elect. axial, 16 V
C4 220n non-polarised, mains rated (500 V a.c. class X or Y)

Semiconductors

D1 to D4 1N4148 signal diode (4 off) D5 \quad VV7 400 mW Zener diode D6 red l.e.d
TR1, TR1 2N3903 npn transistor (2 off)
IC1 4001 quad NOR gate
IC2 4060 14-stage oscillator/ counter
CSR1 TIC206D triac. 3A 400V

Miscellaneous

FS1 fuseholder, panel mounting, plus 3A fuse
S1 plastic push-to-make mains rated switch
TB1 3-way terminal block, mains rated
WD1 piezo buzzer, active
Printed circuit board, available from the EPE PCB Service, code 157; robust plastic case (see text); 14-pin i.c. socket; 16-pin i.c. Socket; 13A mains socket, chassis mounting; connecting wire; cable; nuts and bolts; solder, etc

The 4.7 V d.c. supply for the circuit is obtained by a low power "capacitive dropper" and Zener diode arrangement. This comprises capacitor C4, resistor R15. Zener diode D5, together with rectifier diode D4 plus smoothing capacitor C3. Since triacs are more sensitive to negative trigger currents, a "negative supply" is thus provided.

CONSTRUCTION

SINCE THIS CIRCUIT IS OPERATED AT MAINS VOLTAGE, IT IS POTENTIALLY HAZARDOUS AND ITS CONSTRUCTION SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS INEXPERIENCED IN WORKING WITH MAINS POWERED EQUIPMENT

Details of the printed circuit board (p.c.b.) are shown in Fig. 5. This board is available from the EPE PCB Service, code 157.

Most of the components used are not critical and only two deserve special mention. The first is the "mains dropper" capacitor, C4, which should be rated for mains operation (i.e. 500 V a.c. Class X or Y). The other components "see" only a low voltage except. of course, the triac CSR1, which should also be rated at 400 V minimum

Note that the pin configurations/outlines of transistors TRI and TR2 are correct as shown in Fig. 5 for the 2N3903. If you are using substitute transistors, they may have different pinouts.

Because of the rather crude "mains detector" formed by resistors R11, R12 and gate IClb , the square wave at the output of the latter (pin 10) the "half power" mode is not symmetrical and the positive cycle is slightly longer than the negative.
This has the effect of switching the triac gate current off shortly after the beginning of the negative mains half-cycle, rather than before it. Normally, this is not a problem because, due to the low power of the load (15 W or 25 W), the latching current is not achieved before the gate current is terminated. So, although the triac may be triggered at the beginning of the negative half-cycle. it quickly switches off again and is therefore on only during the positive half cycle.

Fig. 6. Internal layout and wiring of the components within the box. This layout differs from that of the prototype as seen in the photos. It is not to scale.

To ensure correct operation, especially if a higher power soldering iron is used. a triac with a high latching current is preferable but, in any case, loads of more than 60 W should not be used. The switchoff function should not be affected by this, irrespective of which type of triac is used.

For correct operation of the warning circuit, the buzzer WDI should be a low power piezo type with built in oscillator and capable of being driven directly from the output of a CMOS i.c. These are normally rated at 12 V but will work quite happily down to 3 V or so. Note that electro-mechanical types are not suitable.

Assemble the components on the p.c.b. in assending order of size, ensuring their correct positioning and polarities where appropriate. Take the usual handling precautions with the CMOS chips, ICI and IC2, discharging static electricity from your body before touching them. Use i.c. sockets with them.

Once the assembly of the printed circuit board has been completed, an insulated lead about ten centimetres long should be made up with a 4M7 resistor (R1) soldered to one end as shown in Fig. 6.

The resistor (and the solder joint) should be insulated, which is best done with a short piece of heat shrink sleeving, as shown, and the lead soldered to the printed circuit board.

A robust contact between the spiral of the soldering iron stand and resistor RI is not necessary, so a crocodile clip is recommended as the easiest method of connection.

HOUSING IMPORTANCE

A most important aspect is to ensure that the housing of the finished unit will be safe. From this point of view, the author felt that a robust plastic box should be used. He does not recommend a metal box since, although it would be earthed, it might cause problems in the setting up or operation of the circuit.

The circuit was built into the box with the soldering iron stand secured to the top (see Fig. 7) by means of two small nylon nuts and bolts (this avoids any metal parts being exposed on the outside of the plastic box) and the insulated lead passed through a hole in the top of the box.

The size of case should be chosen to allow adequate space for the stand to be mounted on it. and for the p.c.b. and panel mounted items to fit easily without danger of them being too close.

The printed circuit board should be securely fixed to the box using nylon nuts and bolts or p.c.b. stand-offs. "off-board" components switch S1 and I.e.d. D6 were mounted at convenient points on the box after suitable holes had been drilled.
Note that many soldering iron stands have a space for a sponge which is used to clean the soldering iron tip during use. Take care not to drill any mounting holes in this area as the sponge is normally kept damp and making holes here would allow water to seep into the box.
The circuit board and all other "live" components should be mounted in such a way that it is impossible to touch any part of them when they are inside the box. It is also particularly important to ensure that the two resistors R2 and R3 are connected in series inside the case, with resistor RI fully insulated and connected directly to the soldering iron stand spiral.

WIRING UP

On ne account should any point on the circuit be connected to earth as this would cause the instant destruction of most of the components on the board and severely damage the p.c.b.

As shown in the wiring diagram a 13A panel-mounting mains socket is mounted in the side of the box to enable the soldering

Fig. 7. Showing how a soldering iron stand can be fitted to the case.
iron to be plugged into the unit, rather than wired directly to it. The fuseholder should be mounted in the case as shown. Its fuse should be rated at 2 A . The mains cable should be terminated in a 3 -pin fused (3A) plug.

It is imperative to get the mains polarity (i.e. live and neutral) correct. Failure to observe this will not damage the circuit but it will prevent the detector from operating correctly.
The buzzer was mounted inside the box by means of double-sided adhesive tape.

TESTING

NOTE THAT DANGEROUS MAINS VOLTAGES EXIST ON THE PRINTED CIRCUIT BOARD. DO NOT TOUCH ANY PART OF THE BOARD OR OTHER COMPONENTS WHEN THEY ARE CONNECTED TO THE MAINS SUPPLY. SWITCH OFF AND
DISCONNECT FROM THE SUPPLY BEFORE ATTEMPTING ANY SOLDERING OF COMPONENTS ON THE BOARD.

When assembly has been completed. check your wiring thoroughly and ensure in particular that the resistors R1, R2 and R3 are in place and have the correct values. Because the operational safety of the unit depends on these resistors, it is advisable to check their values using a multimeter in case the colour code has been misread and lower values fitted inadvertently.

Once all checks have been made, the unit is ready for testing. At this stage, a small table lamp would probably be better to use

as a temporary load instead of the soldering iron. It will then be immediately obvious if the triac is switching on or not.

Note that fluorescent lamps or those containing a transformer should not be used for this test.

The lamp should be plugged into the socket on the unit and the unit switched on at the mains. For correct operation, a 15 W or 25 W bulb (similar to the soldering iron rating) should be fitted. The lamp should light at full brightness and the l.e.d. stay on without flashing.

Next, the soldering iron should be plugged into a nearby mains socket (which need not be switched on) and inserted into the stand. The l.e.d. should begin to flash and the tamp dim slightly. A slight flicker may be observed, showing that the lamp is being switched on only during altemate mains half cycles.
If the lamp remains in the dimmed condition when the iron is removed from the stand, the value of resistor R4 should be reduced. If the lamp remains at full brightness. check that the circuit is connected to the mains with the correct polarity (i.e. live to the circuit positive rail) and that the triac has not been shorted out.

Remember to unplug the unit from the mains before soldering or adjusting any components.

Ensuring that the unit will switch off if it has not been used for a certain period is more difficult, unless you are prepared to wait for the fifteen minutes or so. One way around this would be to temporarily connect a $4 k 7$ resistor in parallel with resistor R 7 to make the counter run faster.

If this is done, the total time before switching off will be about 18 seconds. but the l.e.d. should still be observed to flicker and the buzzer heard, although, of course. all timings will be much shorter than with the correct value of R 7 .

If all is well, the lamp can be replaced by your soldering iron and you can look forward to long service from it.

Happy soldering!

SHOP A TALK with David Barrington

Ironing Safety Device

Just a few minor points need some clarification for constructors about to undertake the Ironing Safety Device project. Although there are only a few components on the small printed circuit board, it is most important that extra care be taken when mounting the mercury filled tilt switch on the p.c.b. They may be hermetically sealed inside a metal "can", but the lead entry point can be a weak spot and mercury is a highly dangerous substance - so take care.

Both the miniature mercury tilt and vibration switches should be available from your usual local supplier. Some may be slightly different in appearance, but there is no reason why they should not work in this circuit.

If problems do arise finding suitable switches, the ones used in the model came from Maplin, codes FE11M (Tilt Sw.) and UK57M (Vibration Sw.). Regarding the tilt switch, for a slightly cheaper outlay the above company also list a "non-mercury" version (code DP50E) which may be worth considering.

The recommended waming sounder is a miniature low-profile piezoelectric type, chosen for its physical size and low operating current capability. (It should be noted that this circuit will only drive low-current buzzers.) These miniature low-profile piezo devices should be readily available from most of our components advertisers, and the one used in the model came from Maplin, code KU57M.

There are a wide vaniety of small cases/boxes, of all shapes and sizes, on the market that could be used to take the p.c.b. and it will finally come down to individual choice. However, if any reader wishes to purchase a vacuum formed case, as depicted in the article (minus screws, graphics and finishing off), one can be obtained from Bollon School for the sum of $£ 5$ inclusive. Overseas readers add $£ 2$ for post and packing.

All cheques. P.O.s or money orders should be made payable to Bolton School Boys Division. Address all orders to: S. Todd, Bolton School Boys Division, Chorley New Road, Bolton, Lancs, BL1 4PA.
The small, approx. $38 \mathrm{~mm} \times 30 \mathrm{~mm}$, printed circuit board is available from the EPE PCB Service, code 167 (see page 651).

PIC-Noughts \& Crosses Game

Nearty all the components speciilied for the PIC-Noughts \& Crosses Game are RS types and were purchased through Electromail (\$01536 204555), their mail order outtet. The Siemens LU5351-JM 60 mA (20 mA typical) tricolour, common cathode, l.e.d.s came from them, quote code 578-294.

The miniature p.c.b. mounting, push-to-make, switches used in the model are manufactured by Alps and were obtained from ElectroSpeed (오 01703 644555), quote part code $63-61432 \mathrm{~K}$. Some of our advertisers stock a similar
switch which is listed as being a p.c.b. mounting "click-effect" type, but check that they will fit on the circuit board before making a purchase.
For those readers who do not have their own facilities to program PIC chips, a ready-programmed PIC16C84-04/P (114 each) and/or PIC16C61-04/P ($£ 11$ each) can be purchased from PH Research, 32-34 School Lane, Swavey, Cambridge, CB4 5RL. (太心 01954 200411). Email: paul@ph-research.prestel.co.uk). Make cheques payable to PH Research (allow 28 days for delivery).

The Noughts \& Crosses printed circuit board is available from the EPE PCB Service, code 165.

Soldering Iron Controller

It is most important that only a new Class X or Class Y non-polarised capacitor, rated at 500 V a.c. or greater, be used for C 4 in the Soldering Iron Controller circuit. This type of capacitor is usually of metallised polypropylene construction and should be stocked by most of our component advertisers.

Due to the presence of dangerous mains voltages within this unit, it is not a project for beginners to tackle.

The remaining components for the Controller appear to be standard parts and should not cause any purchasing problems. The printed circuit board is available from the EPE PCB Service, code 157.

Active Receiving Antenna

Only the inductor and varicap diode could cause problems when putting together parts for the Active Receiving Antenna. The "telescopic" whip aerial should be carried by quite a few of our components advertisers, such as Cirkit, Bull Electrical, Maplin and J\&N Factors.

You have a choice regarding the varicap diodes, Cirkit list a dual and a triple version of the required varicaps for the same price. The dual (KV1236) version stock code is 12-12365 and the triple (KV1235) is 12-12355. They also stock the Toko (B)KANK3333R inductor, code 35-33330.
The small double-sided printed circuit board is available from the EPE PCB Service, code 140.

Micropower PIR Detector - Alarm Disarm/Reset Switch

The miniature 18 mm glass-encapsulated reed switch for the Alarm Disarm/Reset Switch module was obtained from Maplin, code CL38R. They also stock a range of small magnets and choice will depend on final installation.
Of course, you do not have to use a reed switch, a pushbutton, keyoperated or even a keypad switch will do the job. The problem is hiding them out of sight. The printed circuit board is available from the EPE PCB Service, code 166.

Incidentally, if you intend experimenting with the circuits contained in the Raising the Pressure feature, the Raytheon RC4190N switch-mode i.c. is currently stocked by Maplin, code UR15R.

Techniques ACTUALY © © -by Robert Penfold

N The previous Actually Doing it article (July '97) we considered passive components and their methods of value marking. This month we progress to semiconductors, which do not have values, but are instead identified by type numbers. The circuit designer selects devices which have suitable parameters, and provided you use the specified components, the project is more or less guaranteed to function correctly.
"Old hands" often use substitute semiconductors and usually get away with it, but this is definitely not to be recommended for beginners. Initially you should avoid any unnecessary complications, and should definitely not tempt fate by using components that may or may not perform adequately.

Numbers Game

Beginners sometimes enquire whether or not semiconductor type numbers tell you anything about the components. In most cases they are not purely arbitrary, and do tell you something about the components, but not very much.

For example, with a European type number such as BC549, the " B " indicates that it is a silicon device, and the " C " shows that it is a low power transistor intended for audio applications. The " 549 " is simply a serial number, and I think I am correct in saying that devices are numbered from 100 upwards.

With the American and Japanese systems the first digit of the type number is one less than the number of leadout wires that the component has. Devices having $2 \mathrm{~N}^{* * *}$ and 2S*** type numbers therefore have three leadout wires, and are mostly transistors. $1 \mathrm{~N}^{* * *}$ series devices have two leads, and are mostly rectifiers and diodes.

In general, any information of this kind is of limited value, and simply tells you what you know already. It is best to concentrate on obtaining components having the right type numbers, and do not worry too much about any coded information contained within these numbers.

The type numbers of integrated circuits are mostly those chosen by the manufacturers, and apart from the name of the manufacturer they do not necessarily tell you anything of significance anyway. The same is
true of some transistors, such as the Texas Instruments TIP*** series of power devices.

Over the years many letters have been received from readers who have obtained components which have markings other than the type number. The usual worry is that there are several versions of the components and that they might not have the right one.

It is a point that has been made several times in the past, but worth making again. A large percentage of electronic components are marked with manufacturers logos, batch numbers, the date of manufacture in some form of cryptic code, and characters that seem to be purely random.

Semiconductors often seem to carry more than their fair share of these markings. Presumably the additional characters mean something to someone somewhere, but as far as the home constructor is concerned they are purely extraneous and should be ignored.

Making the Grade

With some devices there is more than one version available, and the different versions are usually identified by different suffix letters on the type numbers. Transistors are sometimes graded into gain groups, and have the suffix letter " A ", " B ", or " C ". These correspond to low, middle and high gain groups respectively.

If a components list specifies a certain gain group, then you should certainly try to obtain a component which has the appropriate suffix letter. If no gain group is specified, the design should work using a device from any gain group, or one that is not graded and does not have a suffix letter.

Integrated circuit (i.c.) type numbers often include a suffix letter which denotes the type of encapsulation used. In the past some integrated circuits were readily available with two or even three different encapsulations, but these days there is usually only one version available through normal retail outlets.
However, with the increasing use of surface mount devices you do need to ensure that you do not accidentally order one of these when you require a device having ordinary printed circuit pins. Surface mount devices are much smaller than their
conventional counterparts, and are designed to be soldered directly onto the copper side of the circuit board.

Physically, the two types are totally incompatible. Most component catalogues now have surface mount components in a separate section in order to reduce the risk of ordering the wrong type.

There are some integrated circuits where a suffix letter or letters indicate electrical rather than physical differences between different versions of the same device. CMOS logic devices having 4000 series type numbers usually have a " $B E$ " suffix which indicates that they are modern devices that have slightly superior specifications to the original " $A E$ " components. You are unlikely to encounter the " $A E$ " components now as they have not been manufactured for many years, but it is worth noting that they cannot be guaranteed to operate in place of "BE" types.

Fig.1. Common method of indicating polarity of diodes and small rectifiers.

Some CMOS devices have a UBE suffix, and these are "unbuffered" devices. Few of these devices are available to amateur users, and the only one you are likely to encounter in a components list is the 4007UBE. It is important to use the UBE version where appropriate, but this is the only version that you are likely to encounter in components catalogues.

One Way Only

The most simple type of semiconductor device is the Diode, and this is a two-terminal component. The basic function of a diode is to enable a current to flow in one direction, but to block a flow in the opposite direction. Incidentally, diodes for operation at relatively high currents (about one amp or more) are called rectifiers.

The two terminals of a rectifier or diode are called the cathode and anode, but these names are often abbreviated to " k " and " a " respectively. Also, on some circuit diagrams and component layouts the cathode and anode are often indicated by "+" and "-" signs respectively. When building projects that use rectifiers or diodes it is clearly necessary to get them connected around the right
way. In fact, there can be disastrous consequences if you should accidentally get one of these components connected the wrong way round! The polarity of diodes and small rectifiers is usually indicated via a white band at the cathode (k) end of each component, as shown in Fig. 1.

At one time there were plenty of diodes on sale which had several bands marked around their bodies, and these indicated the type number using a sort of simplified resistor colour coding. These now seem to be much less common, but there are still a few of them in circulation. If you should come across any multi-band diodes, one of the end bands should be much thicker than the others and this is the one which indicates the cathode end of the component.

In practice this is sometimes less than obvious, and you may need to look very carefully to find the wider band. This method of marking is

Fig.2. Common methods of indicating the polarity of larger rectifiers.
most common on 1N4148 diodes, and with these the band at one end is yellow, and the band at the other end is grey. The yellow band is the one at the cathode end of the component.

Many of the higher current rectifiers look just like outsize low power types, but some have a totally different type of encapsulation. Probably the most common form of encapsulation for high power rectifiers is the type which has a narrowing of the body at the cathode end. This type is shown together with three others in Fig.2.

Getting high current rectifiers connected round the wrong way is likely to result in major damage to the circuit and could even be dangerous. Therefore, never connect a component of this type unless you are absolutely certain that you know the correct orientation.

Beginners would be well advised to avoid any projects that use large rectifiers, or involve the use of high currents. There are plenty of interesting and safe projects to choose from, so there is no need to opt for a project that involves any risk.

Cracking Up

Most diodes and rectifiers are physically quite tough, and are no
more vulnerable to damage than most other components. However, some diodes have glass encapsulations which render them far less durable than other two lead components such as resistors and capacitors.

It is mainly the older devices such as the OA90 and OA91 that fall into this category. Components such as these should obviously be treated with greater care than normal, and it is advisable to take great care when bending the leadout wires close to the glass encapsulation. It will usually be necessary to form the leadout wires in this way so that the diode can be fitted onto the circuit board, but any lack of care can easily result in bits of the glass casing breaking off.

Do not use the obvious approach of holding the case of the diode and then pushing or pulling the leads into shape. Use tweezers, small longnosed pliers or your fingernails to hold one of the leadout wires next to the body of the component, and then bend the wire to shape. Then repeat the process for the other leadout wire.

Heated Exchange

All semiconductors are relatively easily damaged by heat, and extra care must be taken when soldering them to a circuit board. It is advisable to use i.c. holders for integrated circuits, so that they are simply plugged into place. It is the holder that is soldered to the circuit board, and it is the holder that gets hot.

Germanium diodes are more vulnerable to heat damage than silicon semiconductors, and even more care must be taken when connecting these. The ultra-safe approach is to use a heatshunt, which is basically just a small piece of metal that clips onto the leadout wire close to the body of the diode. The heatshunt absorbs most of the heat that flows up the lead when it is soldered into place, and prevents the diode from overheating.

It is not too difficult to improvise a heatshunt using a crocodile clip or a pair of tweezers, but a heatshunt is not essential. Modern germanium diodes should not be damaged provided the soldered joints are completed quickly.

Light Work

Light emitting diodes (I.e.d.s) are used in a fair percentage of projects, and it is important to realise that these are true diodes. Unlike filament bulbs, they will only work if they are connected the right way round. If they are connected with the wrong polarity they block any significant current flow, and fail to light up.

The two standard methods of indicating I.e.d. polarity are
to have the cathode (k) lead shorter than the anode (a) lead, and to have the case or body of the component flattened slightly next to the cathode lead. Most I.e.d.s have at least one of these, but a few types lack either form of polarity indication. Having been caught out on more than one occasion by l.e.d.s which did not have the expected polarity, it is wise to always check l.e.d.s prior to connecting them into circuit.
Virtually all multimeters have a diode checking facility, and this will usually show the polarity of I.e.d.s. However, some digital multimeters cannot be used to determine l.e.d. polarity as they use a test voltage that is too low to switch on a l.e.d.

L.E.D. Tester

A very basic tester of the type outlined in Fig. 3 is all that is needed to perform this task. A three volt battery (e.g. two HP7 size cells in a plastic battery holder) is connected to the l.e.d. with one polarity, and then the other. When the l.e.d. switches on, the cathode (k) lead is the one connected to the negative battery terminal.
The resistor limits the current flow to a safe level, and it must not be omitted. Connecting an l.e.d. straight across a power source results in a heavy current flow and the almost instant destruction of the l.e.d.

This test circuit will operate using a 9 V battery, but the value of the resistor should then be increased to 1 k (one kilohm). Using a nine volt supply will result in the reverse breakdown voltage of the l.e.d. being exceeded when it is connected with the wrong polarity, but the series resistor will prevent it from coming to any harm.

Fig.3. Simple test setup to determine the polarity of an l.e.d.

READOUT

John Becker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line!

RUFFLED FEATHERS?

Dear EPE
I fancy that John Becker may have ruffled a tew feathers in South Africa with his comments in Readoul June '97 (Pin Board Wizard). Your Tech Ed was, it seems to me, rather dismissive of your SA correspondent Freddie Clifford with regard to pinboard construction.

Whilst there is no disputing the merit of a p.c.b. for reproducing a completed design which is fixed for all time, the need also arises for a base which. while capable of carrying a permanent layout, can be used for development work and is capable of accepting modifications.
A pinboard scores by placing all components. and wiring on one side of the board. Circuit checking is easy and every pin provides a handy test point. With a little experience it is possible to draw a circuit diagram in such a way that it can serve as a component layout and wiring guide. Such a diagram is simply laid over the baseboard. Pins are driven in at each connecting point. Wiring up follows the diagram which remains there for future reference. The layout is virtually self-checking and easy to fault find on.
There are still people who want to develop their own circuitry and construct it at minimum cost. Mr Clifford and I belong to this group. We know that, clumsy though they may be, pinboards work.

George Short. Brighton
Curiously. George. although I must continue to deny the suitability of pinboards (of the type referred to by Freddie Clifford) for published EPE projects. I do acmally find use for a moreelectronic version of ihem.

As part of my workshop group of essential tools. I have the largest sirip of 0.1 inch matrix Stripboard that RS could supply. and which is now a couple of decades old. On it 1 inounted numerous di.i.l. sockets of various pin counts. made hundreds of appropriate track cuts and inserted an equivalent quantity of $/ \mathrm{mm}$ doublesided terminal pins, one for each i.c. socket pin.

The immediate result of this arduous task was RWSI (reperitive wrist-strain injury) and blisters! However, the pains have proved to have been worth it - that pinbourd still finds use in any situation where I want to check out the logic of a complex circuit before commialing it to a p.c.b. lavout. or if I need a sub-circuil temporarily connected to an existing p.c.h. At times. the terin bird's nest is thoroughl! inadequate to describe the wiring and component positionings that sometimes build up on the board!

Also, whilst I have never used bross: pins or sinilar in boards for purely electronic circuil building. they have been found useful when making up lengthy and complex wiring harnesses.

There is. I agree. a place for temporary as semblies (who can deny the merits of a good bodge?!). Nonetheless, one of our roles al EPE is to try to educate people in the right way of doing ihings. The wrong way may be perfectly acceptable in some situations. but our public image must be that which people con trust as being correctly informaive. If asked privately, though, I might well comment oboult the merits of learning the rule hook, and then discurding it and doing your own thing!

That's where a column like Readout comes in handy. it can highlight mutters that would be inappropriate elsewhere in EPE - such as the fact that chipboard-pinboards are used by some people as " legitimate consiructional Iechnology!

However, there is one consiructional technique related to pinbourels that we are aboult to publish, and that is wire-wrapping. It will be
discussed in the forthcoming new Teach-In '98 series (late '97).
George, dear Readers. is a long-time conrriburor and friend of EPE. albeir under a nom-de-plume (a feathered friend. perhaps:"). Nice to hear from you George.

TEACHER TEACH-IN

Dear EPE.
I am an avid reader of $E P E$ (having bought it religiously every month for more years than I care to remember). I am always interested to buy it in order to keep up with current trends and developments, as well as identifying suitable projects for my pupils to build and investigate at Queen Elizabeth’s High School in Gainsborough, Lincs.

My reasons for writing are two-fold: Firstly, 1 note with interest comments made by yourself and some of your readers regarding the complexity of projects. As Head of Technology in a school where pupils are very able and interested in electronics. I can fully appreciate both sides of the argunent. The interests of the A Level student and the pupif coming to us from Primary school need to be catered for.

However. I know that many of my pupils would be attracted to EPE if you were to run a series of projects similar to the GCSE Teacher Project articles written for Practical Electronics by Tim Pike during 1987/88.

I do not suggest the clock should be "wound back". but I do feel that there is a real need for similar articles to be produced which begin with the basics. but then move on to encompass many of the new developments and components introduced in the last ten years. Technology is now a compulsory subject in all Secondary schools and many pupils are opting to follow Electronics courses, but they are often "tumed off" the essential research of their project by the very steep leaming curve which all electronic publications seem to portray.
Secondly. your various articles on PICs are very stimulating for my A Level students and I have this year bought a "PICSTART" development system for the department. I am often asked by students for circuit ideas for "running message" displays but I usually discourage them. saying that such ideas are too involved for their A Level projects. Could EPE come up with such a project, using multi-segment l.e.d. displays:
W. Shaw. Gainstorough. Lincs

Tiin Pike's Teacher Project series in PE was indeed well received. We at EPE are. of course. presently running a range of "simple" projects which are suitable for GCSE students. of which IR Renote Control Repeater ($J u / y$). Regulated PSU (Aug), Quiz Monitor (OcI) and Case Alarm (Now) oremill be examples. It is recognised that they ure not written from the basic wiewpoint that you sugges. but we shall. though, actively pursue vour idea in due course: as we shall your suggestion for the Message Display. You are not alone with such requesss!
$J B$

GHOSTLY SHORTS

Dear EPE

1 feel that EPE could do with more simple articles. particularly from the constructional point of view. Hobby electronics is there for enjoyment, and enjoyment can often be best achieved by one evening's soldering on a simple yet interesting circuit.
Ingenuity Unlimited every now and then has an outstanding idea. Why not get someone to ghost-write articles around these ideas?

Rev. Thomas Scarborough. South Africa

Reverend. I feel honoured that you should write 10 me instead of my inveleraie problemsolving friend Alan W. which / know' is what vol oflen do!
Yes. there are good ideas which come through that column and the wonder is that more inventive readers do not seem to be using then as the basis for their own more detailed projects. Perhaps it's becouse many inventors like to develop their own brain-waves rather than someone else's.

Whilst. from time to time, we do suggest ideas to our regular authors. by and large we prefer to let their creative imagination come into play withour promping from us.
However. if readers do develop IU ideas further, they are welcome to offer them to us for possible more-fornal publicalion.

JB

ANOTHER TASM!

Dear EPE.
I had an interesting E-mail from a man trying to compile the PIC-Tock project PIC code (Sept 96). He said he was using TASM but it wouldn't compile. I tried it and it worked fine, so I sent him the PIC16C84 table file. Still wouldn't compile. Eventually, the mystery was solved when he sent in a screen shot showing his command options. It tumed out he was using Borland Turbo Assembler, also called TASM! I sent him your TASM on disk and it worked.

Gareth (Anon), via the Net.
Astonishing! We had no idea that there was another TASM around. Ours originated from the Public Domain Shareware Library (PDSL) and for which a Send program was written and appended by Derren Crome for our use. We are extremety grateful to you. Gareth. for this information. Readers beware. only our version of TASM will work with our TASM-wrillen PIC prograns:'
If you would like to know more abou the PDSL. and they have masses of shareware soffware you should know about, ask them for their catalogue: PDSL, Dept EPE. Winscombe House. Beacon Road. Crowborough, Sussex TN6 IUL. Tel: 01892663298

Incidentally. you may freely copy and distribute anong vour friends any of the programs on our PiC disk. If you want to use them commercially, though, you need to get written permission from us first.

EMULATING LENNARD

Dear EPE.

I design electronic units for handicapped use for a sheltered workshop and handicapped college. I use a lot of PICs in my designs and I have just tried a real-time emulator from Lennard Research in Newcastle. Mr Lennard was very helpful and knowledgeable. and it was pleasant to deal with the designer of the product. The emulator works excellently and cost just f149.95. I think it would make an excellent hobbyist and educational unit.

Stephen Alsop, via the Net
We knows from other sources aboul the helpfulness of our respected advertiser Lennard Research. We have a review of some of their products coming up soon. The unit referred to by Stephen is "TRICE". the PIC Real-Time In-Circuit Emulator. Lennard Rerearch can be contacted at Tel: 0191 273 2233. Fax: 0191226 0876. Web: hup://ww'lennardresearch.demon.co.uk, JB

SCHOOL SHORTS

Dear EPE.
I am Head of Electronics at Tonbridge School, Kent, where I teach the subject to A Level. I take EPE at the school, and very much value the contribution that it makes to the enrichment of the subject at Tonbridge and the enthusing of my students. Finding projects for the most eager students is never easy; a ready supply of interesting ideas is always most welcome!
David L. Faithfull. BTech, MSC. CEng, MIEE
Thank you.

"Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an 'on' word and 'off' word giving you up to 99% speaker dependant recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word, upload and download of word lists.
Automatic gain control on microphone jack
input. Runs off $9-12$ volt dc supply via Hi38A

$$
2.1 \mathrm{~mm} \text { plug }
$$

Pic Programmer:
H137A £25 Programs PIC 16C71, PIC 16C84 and the new 8 pin PIC 12C508 and PIC 12C509. Connects to parallel port. Kit K137A £24 PC compatible software F.O.C. when supplied with programmer.

Components - PIC,
12C508/JW 113.50, 12C50804/P £2.30 12C509/JW £15, 12C509-04/P £2.70, 16C71/ JW £25, 16C71-04/P £6.99, 16C84-04/P $£ 6$.

We also have available a full range of PC I/O cards and accessories. Call for details.

ALL Prices INCL.USIVE of vat and delivery (UK) Only) Same day despatch
151. The Exchange Building. Mount Stuart Square, Cardiff. CF1 6EB Tel (01222) 458417 Fax (01222) 625797 http:Iwww.vsltec.demon.co.uk.

PIC TEACHIVG AKD DEVELGPMENTPACKAGE
This tned and rested teaching package is the best on the market. It will enable you to quickly leam how to program and build PIC Microcontroller circuits. The system includes a 16 C84 programmer + ZIF socket, a 16 C84 IC. a developmen board +ZIF socket and a 115 page easy to follow instruction hook and software Price $£ 65+£ 3 \mathrm{p}+\mathrm{p}$.
PIC $12 \mathrm{C} 508 £ 1.50,16 \mathrm{C} 54 £ 2.85,16 \mathrm{C} 54 \mathrm{JW} £ 12.95,16 \mathrm{C} 55 £ 285$, 16 C 55 JW £12.95, 16C71 £3.95, 16 C 71 JW £14.45, 16C84 £4.50, 17 C 43 £8.35. 17C43JW £21.50, PIC Development PCB $£ 3.50$ + many other components.
Book 'Build and Understand PIC Microcontroller Circuits' 115 pages+sofiware £16.00.

Further details and price list
Advance Electronics
Station Street
Rainhill
Merseyside
L35 0LP
FAX or ≈ 01514265446

Printed Circuits in Minutes Direct from LaserPrint!

PRESS-N-PEEL 5 sheets $£ 12.50$ 10 sheets $£ 25$ ETCHING SUPPLIES Plus VAT \& Postoge
18 STAPLETON ROAD • PETERBOROUGH PE2 6TD TEL: 01733233043 FAX: 01733231096

THE PARTS GALLERY

 $+$ ELECTRONIC CIRCUITS AND COMPONENTSby MIKE TOOLEY Brooklands College of Further and Higher Education

FREE

5MB DEMO

from our Web sit

Many students have a good understanding of electronic theory, but still have difficulty in recognising the vast number of different types and makes of electronic components. The Parts Gallery has been designed to help overcome this problem; it will enable students to recognise common electronic components and their corresponding symbols in circuit diagrams.

This CD-ROM also incorporates component and symbol quizzes so that students can test their knowledge.

* Over 150 component and circuit photographs * 100's of electronic symbols
* Self-test component and symbol quizzes

PRICES PLUS VAT (UK postage FREE)	Normal Price	Discount Price (with valid coupon)
CD-ROM with		(26.10
HOBBYIST/STUDENT LICENCE	$£ 29$	
INSTITUTIONAL LICENCE	$£ 89$	
(Schools/HE/FE/Industry)		
INSTITUTIONAL 10 USER	$£ 169$	$£ 152.10$

ORDERING: UK and EU readers ADD VAT at 17.5\% to your order (UK postage FREE). Overseas airmail postage add $£ 5$. All payments in $£$ sterling only (send cheque or money order drawn on a UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address.
Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ltd., publishers of EPE, Tel: 01202881749 . Fax: 841692
Due to the cost we cannot reply to overseas orders or queries by Fax.
1.14

E-Mail: editorial@epemag.wimborne.co.uk

Electronic Circuits and Components provides a sound introduction to the principles and application of the most common types of electronic components and how they are used to form complete circuits. Sections on the disc include: fundamental electronic theory. active components, passive components, analogue circuits and digital circuits.
\star Virtual laboratories, \star Full audio commentary.
\star Over 20 links to pre-designed Electronics
Workbench circuits
All text shown on each page is also spoken. Suitable for hobbyists, trainees and students. Covers Design and Technology: Key Stage 4 Electronics GCSE, Key Stage 3 Science, GNVQ Electronics Key Stage 4. Intermediate BTEC Electronics.
Minimum system requirements: PC with $486 / 25 \mathrm{MHz}$, VGA +256 colours, CD-ROM drive, 8 MB RAM, 8 MB hard disk space. Windows 3.1, DOS 3.1, mouse, sound card.

CUT OUT AND SEND WITH YOUR ORDER

10% off

EPE OFFER

If you cut out and send this coupon with your order and post it before Aug 31st 1997. (Copies not accepted - orders posted after Aug. 31st charged at full price

THE GREAT EXPERIMENTER
 A short history - Part Five

STEVE KNIGHT

Even in the latter part of the Great Experimental Age, many more names were added to the list of those whose researches helped shape modern technology.

THE LATTER years of the nineteenth century and the early decades of the twentieth probably saw the demise of the great individual experimenters. With today's huge impersonal research conglomerates, the work of the lone physicist or natural philosopher, as the people we have met so far in this series called themselves, is over.

The years following the endeavours of people like Ohm, Ampere and Faraday did, however, go out with a bang with a number of famous men extending the basic discoveries to new and higher levels; men like William Thomson, Heinrich Hertz, James Clerk Maxwell, Helmholtz, Rutherford, Fleming, Lodge and Marconi, to name just a few of the more well known.

Perhaps, for the purpose of illustrating some of the work of this illustrious parade, it is best to take the work of one of them and build around his achievements. This man is William Thomson (who was later to be Lord Kelvin) for his work influenced. and was influenced by, many of these other physicists. Thus he provides us with a central connecting thread, bringing together the outstanding characters of the period over the decades when our modern industrial world was created.

WILLIAM THOMSON

Like Faraday, the number and importance of William Thomson's contributions to original research are truly outstanding. Unlike Faraday, however, Thomson was a brilliant mathematician and most of his output, bound up as it was upon the arguments derived from mathematics, made him what we might call an "applied" physicist, as opposed to Faraday's "practical" approach.

Further, whereas Faraday was an enthusiastic and popular lecturer. Thomson apparently had little of a natural lecturer
about him, being too deeply steeped in the theoretical and abstract problems of his researches to put over his views in a manner attractive to those whose abilities were lesser than his own.

William was born in 1824, the second son of James Thomson who was Professor of Mathematics at the Royal Institute in Belfast. He was part of a large family of four sons and three daughters, and the upbringing of these depended for most of their childhood and adolescent years upon their father, their mother having died whilst they were all relatively young.
James made a great success of this stem job, combining affection and discipline in

William Thomson, Lord Kelvin (18241907)
those proportions which eventually brought all of his four sons to distinction in their respective spheres of industry.

In I832, the family left Belfast for Glasgow where James had obtained the post of Professor of Mathematics at the University: and it was in Glasgow that William did the work which. in one form or another, lasted until his death in 1907 .
In 1840 the professor went to Germany with his two eldest sons for a holiday tour. His main concern was for the boys to study the language, but while they were there, William came into possession of the book that had been the inspiration for Georg Ohm in his electrical researches some twenty years earlier: The Analytical Theory of Heat by the Frenchman. Jean Baptiste Fourier.

William was particularly attracted by the rigorous mathematical methods that Fourier employed in the book, and the story goes that at that time he leamed a great deal more about the analysis of heat than he did about the German language. The book certainly made a great impression on William, for much of his later career shows the way in which his scientific approach was continually influenced by Fourier's methods.

In October 1841. William became a student at St Peter's College in Cambridge. He became second Wrangler in the Mathematical Tripos, and after completing his examinations in the early part of 1845 , went to London where he made the acquaintance of Michael Faraday. Later, he went on to Paris to study physics under the tutelage of the famous Henri Regnault who was a member of the French Academy of Sciences.

In all this time, William's father had been ambitious for his son's advancement into an academic career, and the opportunity came when, in 1846, the then Professor of Natural Philosophy at Glasgow University died. It would be quite unfair and almost certainly untrue to suggest that William's father pulled strings in his son's favour with the University faculty, but on the llth of September of that year, the Faculty met and unanimously appointed William to the vacant professorship. From this point onwards, William at the age of twenty-two embarked on a professional career which was to last for the next sixty-odd years and bring him worldwide recognition.

EARLY ELECTRICAL RESEARCH

Although Thomson in his lifetime covered a vast range of scientific disciplines, our concem here is with his researches into those subjects which have an electrical flavour. These led all the way to the submarine cable, the telegraph and the theoretical statements upon which Marconi based his famous invention. radio.
As the academic year at Glasgow University in those days covered only some six months of the year. Thomson found plenty of time for research. Initially, he looked into the problems of electrostatics, particularly to support Coulomb in his well-known laws of electric attraction against a challenge from another experimentalist who, at that time, had a high reputation among his colleagues, and whose views could not therefore be readily ignored.

The upshot of the controversy was that Thomson developed a new approach to this class of problem which enabled him to vindicate Coulomb's original calculations.
With this success, William went on to derive methods of determining an "absolute" or universal standard magnitude for the ampere and the volt. which up to then had not been established in any particular form. We have seen how Faraday and others had investigated the attractive force between two plates or surfaces when a potential difference existed between them, and how the introduction of a dielectric modified this force.

William now applied his mathematical strength to determine the value of this attraction in terms of the applied voltage, the distance between the plates and their surface area. If under any given conditions there corresponds a definite force for a given potential difference, then by measuring this force, the corresponding voltage difference can at once be found.

Here, then, was a mechanical means of measuring an electrical parameter, a method we use to this day; for instance, the ampere is defined by the attractive force between two parallel conductors carrying equal currents.

ELECTROMETER

What William now did was to devise an apparatus to tum his theory into a practical form. A device which he called the "attracted disc electrometer" (and we now call an electrostatic voltmeter) was one of two arrangements he set up, the other being the "quadrant electrometer".

Thomson justified his insistence on having a knowledge of absolute values a number of times in his career, declaring on one occasion: "I often say that when you can measure what you are speaking about. and express it in numbers, you know something about it: but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind: it may be the beginning of knowledge but you have scarcely, in your thoughts, advanced to the stage of Science, whatever the matter may be".

Wise words, indeed, for though some scientists (quite justifiably) may deny that they should deal only with theories and ideas that are strictly and rigorously measurable, no one can deny the necessity and importance of an accurately measurable basis for scientific study and advancement.

Thomson's attracted disc electrometer had, in its basic form, two parallel plates: the lower of these was charged up to the voltage it was desired to measure, and the upper plate (which was connected to earth and therefore at zero potential) was attracted towards the lower with a force which could be directly measured by springs and counterweights such that they just balanced the electric field force between the plates.

This arrangement was not a good one from the point of view of a practical instrument. but the quadrant electrometer overcame this problem by an arrangement of a number of interleaving plates which produced a rotation, and a basic example of Thomson's instrument is shown in Fig.la.

A light rigid aluminium vane is attached to a spindle and positioned partially within a hollow metal quadrant or between two interconnected fixed vanes. When the vane and quadrant are oppositely charged by the applied potential difference which is to be measured, the moving vane is attracted further into the fixed quadrant and the instrument spindle, together with attached pointer, is caused to rotate.

In his original design. Thomson used a torsion fibre as the spindle: this acted as a restoring agent and the vane continued to move until the counter force provided by the fibre just balanced the attractive force acting between the plates. The position of the pointer or, what is the same thing, the twist of the fibre. was then a measure of the applied voltage.
The general principle of the quadrant electrometer is shown in Fig.1b. The sensitivity of the device can be increased by

Kelvin's absolute attracted disc electrometer.

Fig.1. Principle of Thomson's quadrant electrometer.
increasing the number of fixed and moving vanes, but in its basic form it is not suitable for measuring very small potentials.

Thomson, and others, later made many modifications of the original instrument. including mirror systems. and these led to the development of both ammeters and voltmeters which have survived to the present day.

WIRELESS TELEGRAPHY

There was one other important piece of work amongst Thonson's earlier researches in electricity; although he was unconscious of its later applications, this was the base pioneering work which led to wireless telegraphy.

In 1847, the German physicist. Hermann von Helmholtz. known for his work on the generation of electric current within the galvanic battery, drew attention to some curious behaviour in connection with the discharge of the Leyden jar.

A contemporary of Helmholtz. Professor Riess. had wound a coil of wire around a steel rod and had passed the discharge current from a Leyden jar through the coil. Riess naturally expected to find that the rod had become magnetized as a result. but what he did not expect to find was that through a trial run of the same experiment. and with the direction of connection the same in all cases. the rod sometimes exhibited a north-seeking pole at one end and at other times at the opposite end.
Now Ampere had shown that the polarity of an electromagnet depended upon the direction of the current through the solenoid and that the poles would only reverse if this direction changed. This suggested that the discharge current from the Leyden jar was not just one-directional hut could be bidirectional so that the polarity of the steel core was a matter of chance.

Helmholtz. with the intuitive approach that men of his calibre displayed, suggested that the effect could be explained by the assumption that the jar discharge was actually an oscillaing current. which changed direction a number of times during the period over which the discharge took place.
Taking up this suggestion, Thomson delivered a paper to the Glasgow Philosophical Society in 1853 entitled The Oscillating Discharge of the Levden Jar, not only proving mathematically that such oscillations existed. but also giving a

Hermann Helmholtz (1821-1894).
formula for the rate (or the frequency) at which they took place.

What was actually taking place was the discharge of a capacitor (the jar) through an inductance (the solenoid). The capacitor stores energy in an electric field, and on being connected to a solenoid (see Fig.2a) begins to discharge; the electric field energy decreases and is transferred to the magnetic field that appears around the solenoid because the current is increasing there (Fig.2b).
outcome over the following decades of the nineteenth century would have surprised him. For looking into the problem further. James Clerk Maxwell showed that if the oscillations were rapid enough (that is, of a sufficiently high frequency). much of the energy stored in the jar could be radiated in the form of electromagnetic waves. Hertz. following on from this, not only produced such waves but devised a method of detecting them. The practical applications made by Marconi and Fleming later on established wireless telegraphy.

LAND AND OCEAN TELEGRAPHY

Much of Thomson's later work had a strongly nautical flavour: principally, this work involved the development of the marine compass and the establishment of a trans-Atlantic cable link to the United States.

We turn for a moment to two other experimenters of the time who were concerning themselves with the problems of telegraphy, Charles Wheatstone and William Cooke, though perhaps we ought to include the name of the American. Samuel Morse, for many allied contributions to the subject.

We have already looked at the rescarches of Ampere in Part 2 of this series and seen how the French experimenter had made suggestions for an electrical communications system; though his proposed method had itself been of no practical

Fig.2. Showing four stages in the first half-cycle of the oscillations created in an LC circuit.

At some instant after the connection is made, the electric field will have disappeared and its energy will have been transferred entirely to the magnetic field. The solenoid current is now at a maximum, but although the capacitor charge q is zero. the current is not zero at this time. The solenoid current continues to transport positive charges (in the conventional sense) from the top plate of the capacitor to the bottom plate, as Fig.2c shows, so that energy now flows from the solenoid field back to the capacitor, where the electric field builds up again but with opposite sign.

Eventually, the energy will have been transferred completely back to the capacitor, as in Fig.2d. The situation is now similar to the initial one, except for the signs of the charge on the capacitor plates; hence one-half cycle of the oscillation is completed, and the action then repeats to provide the following half.

In a real life situation, the oscillation cannot go on indefinitely because of the inevitable circuit resistance which absorbs the electrical energy and produces heat.

Our knowledge of all this comes from the work of William Thomson and the ultimate
value, nevertheless, the idea had sowed the seeds of the five-needle instrument which was developed and patented in 18.37 by Wheatstone and Cooke.

The principle of this device was essentially a feasible redesign of the twenty-six wire system envisaged by Ampere. compressed into a five-wire system which then had practical applications. The principle is illustrated in Fig. 3 which shows the panel of the Wheatstone-Cooke design.

Here the letters of the alphabet (neglecting the least used) were arranged at the crossing points of a lattice; across the centre of the lattice were five equally spaced needles which. on receipt of the appropriate signal, could deflect either to the left or to the right and direct the eye along one of the diagonals of the pattern.

Where two such deflections crossed, the letter then being transmitted was observed. For example. if the first needle deflected to the right and the fourth needle deflected to the left, the required letter was B, and so on.

The method may sound a bit primitive to us today, but remember the period was the 1830 s , and if you care to look around at the contemporary scene of the art, you
will find many instances of such a technique disguised under "cross-bar". "matrix" and " multiplexing" technologies, being used in telephone. calculator and computer routing systens.

Can you suggest, by way of a short mental exercise for a bit of variety, any ways in which the "missing" letters might have been indicated, and what about numbers? Can you think of a simple way of coding each of the letters in binary input signals?

Mental designing apart, Wheatstone and Cooke's electric telegraph provided commercial telegraphic undertakings by the end of 1840 in both England and America: and by 1850 improvenments had been so generally perfected that land telegraphy was spread over hundreds of route miles.
At about the same time. Thomas Russell Crampton, an English engineer, successfully laid the first cross-channel submarine cable between Dover and Calais, to be followed soon afterwards by similar short lines connecting England with Ireland and then Holland. As an aside, it might be of interest that Wheatstone invented the concertina in 1827 !

LONG LINE PROBLEMS

In the 1850s, the natural ambition of all telegraph engineers was that of establishing communication links over very long distances, particularly across the Atlantic. An apparently insurmountable problem. however. appeared to be in the way of such enterprises: this problem had manifested itself in the first instance over the relatively shor lines like the Dover to Calais connection. and the effect it would have on the Atlantic line seemed to rule out such a cable link as a possibility.
It had been noticed that the signals transmitted along the marine cables were very "sluggish" or "retarded" when compared with the clear signals received by overland routes. In May 1855. Willian Thomson. who had looked into the problem, communicated to the Royal Society a paper entitled On the Theorv of

Fig.3. The five-needle telegraph of Cooke and Wheatstone.
the Electric Telegraph, in which he gave the reasons for the observed retardation effect on long cables, along with an important scientific law governing the behaviour.

What Thomson said was that a cable was. in effect, an "elongated" Leyden jar (or capacitor) of very large capacity, the copper wires acting as one of the plates, the salt water as the other plate, and the insulation of the cable (which was gutta-percha in those days) as the dielectric. Also, the wire itself had an inductance which was distributed, like the capacitance, throughout the length of the cable.

The line can therefore be viewed as a perfectly uniform network made up of elemental sections, each section having resistance, inductance and capacitance, yet so uniformly distributed throughout the length of the cable that at no point is there a discontinuity in the form of a "lumped" component. Neglecting the resistance (which is not wholly the guilty party here), the line therefore behaves as a low-pass filter as shown in Fig. 4.

Much of this was pointed out by Thomson who, however, was without suitable amplifying equipment; because of this and the resultant weakness of signals at the receiving end of long lines, he devoted his time to the invention of the mirror galvanometer which was very sensitive to small current changes.

These instruments can be found in most college laboratories. In them, the magnet at the centre of the coil in an ordinary galvanometer is attached to a vertically suspended small plane (or spherical) mirror which. of course, swings with the magnet whenever a current is passed through the coil. A spot of light from a focussed lamp is reflected from this mirror on to a distance scale, and with a large spacing between the mirror and the scale, a very small deflection on the part of the mirror will cause a very large change in the position of the spot along the scale.

Fig.4. A cable can be represented as a low-pass filter which delays the propagation of a signal.

When a signal, assumed for simplicity to be a battery, is connected to one end of the line, the following sequence of events, said Thomson, occurs:

1. A current will begin to flow through L1 into Cl
2. Cl will charge up and a voltage will develop across it
3. This voltage will send a current through L2 into C2
4. C2 will charge in turn, and the process will repeat
Since an inductance will not allow a current to rise instantaneously and a capacitance will not allow a voltage to rise instantaneously, the battery voltage will only move along the cable at a definite speed which may be far below the often accepted (quite erroneously) speed of light. In this way, any signal on the line is retarded or delayed.

In his paper, Thomson showed mathematically that the slowing of the signal was a function of the capacitance, the inductance and (as a consequence) the frequency of the signal. There were also undesirable phase shifts between the frequency components of the signals since different frequencies were propagated at different speeds. The lines not only attenuated but distorted; as most telephone engineers will know (if they have done their City $\&$ Guilds examinations properly!) that by inductive loading and getting the relative proportions of L, C. and R per unit line length correct, the distortionless line is possible, and by the addition of amplifiers, the attenuation is overcome.

ATLANTIC CABLES

The first Atlantic cable was laid in 1858 by the newly formed Atlantic Telegraph Company, of which Thomson was a director. (The same year that the first lighthouse. the Foreland in Kent. was equipped with electrically powered arc lights. Ed.) Over a period of a few weeks more than 700 messages were successfully transmitted over the line, but the cable then failed and it was decided to replace it with a second length rather than to attempt to recover and repair the first.

A cable ship, the Great Eastern was designed to carry the whole required length of new cable and to have the necessary freedom of movement which was essential to the successful laying operation. In 1866 , after two attempts, not only was the cable successfully laid but the earlier line was investigated and put back into operation. As the engineer in charge of the work. Thomson was knighted and on his return to Scotland was given the freedom of the city of Glasgow.

Not very long after this, Thomson designed what was known as the Siphon recorder in which the message was written as a series of coded marks on a strip of paper tape drawn under the non-contacting pen by an electric motor. This replaced the mirror galvanometer as a receiving device and was the forerunner of the ticker-tape machine which was in general use up to and beyond the Second World War.

Thomson was a man who successfully combined pure and applied science and, unlike some of the other experimenters we have discussed, he had a great mathematical

Kelvin's mirror galvanometer.

ability. Of the many contributions he made to science we have no space to cover them all in this short survey of his life.

Reference must, of course, be made to his work on the marine compass and his sounding machine for measuring the depth of the ocean. There is also the furnishing of lighthouses with distinguishing distinctive lights and his invention of a tide predictor, together with work on wave motion in general and the design of many electrical instruments. His home in Glasgow was the first to be lit by electricity.

LORD KELVIN

In England. apart from the many honours bestowed an him by the international scientific community, further recognition came in 1892 when Queen Victoria conferred upon him a peerage. He took the title of Baron Kelvin of Netherall. this name being taken from the Kelvin river which flowed beside the new university buildings in Glasgow.

He is, perhaps, best remembered today on the subject of thermometry. In 1848 he proposed the scale of absolute temperature, where $0^{\circ} \mathrm{C}$ corresponds to $273^{\circ} \mathrm{A}$ (absolute) or $273^{\circ} \mathrm{K}$ (Kelvin). This scale is the definitive temperature range for scientific investigation.

Lord Kelvin resigned his professorship at Glasgow in 1899, having completed half a century of outstanding scientific research. He died eight years later at the age of 83 and is buried in Westminster Abbey next to the grave of that other great scientific genius, Isaac Newton.

TO CONCLUDE

This, then, concludes our all too brief survey of some of the great experimenters; the list is far from complete. Hopefully, the series of articles may perhaps have stimulated you to "mess around in electronics" a bit more than you do.

There aren't going to be any earth-shaking discoveries, but experimentation, even if you blow up a few components in the process, is the way to learn and enjoy this fascinating hobby.

As the Chinese proverb tells us: "When you are hungry, it is no use painting a picture of a loat of bread".

[^0]
£1 BARGAIN PACKS

If you would like to receive the other four £1 lists and a lot of other lists, request these when you order or send SAE.
TEST PRODS FOR MULTMMETERS with $4 m \pi n$ sockets. Good length very flexible lead. Ref: D86.
80 OHM PM SPEAKERS, size $8^{-1} \times 4^{\circ}$, pack of two. These may be lightly rusty and that is why they are so cheap but are electrically OK, Ret: D102.
PAXOLIN PANELS, size $8^{\circ} \times 6^{6}$, approximately ' $1 \mathbf{z}^{\prime \prime}$ thick, pack of two, Ref: D103.
13A SOCKET, virtually unbreakatio, ideal lor trailing lead. Ret: D95.
PIEZO BUZZER with slectronic sounder circuit, 3 V 10 gV
D.C. D.C. operated, Rel: D76.

DITTO but without intemal electronics, pack of two. Rel: D75.
LUMMNOUS ROCKER SWITCH, approximalely 30 mm sq , pack of two, Ref: D64.
ROTARY SWITCH, 9-pole 6 -way, small size and 's" spindle, peck of mo, Ref: D54
FERATITE AODS, 7 with coils for Long and Medium waves, pack of two, Ref: D52.
DITTO but without the coits, pack of three, Ref: D52.
MAINS DP ROTARY SWITCH with $1 / 4{ }^{4}$ control spincle. pack of live, Rel: D49.
ELECTROLYTIC CAP, $800 \mu \mathrm{~F}$ at 6.4 V , pack of 20 . Ret: Du8.
ELECTROLYTIC CAP, $1000 \mu \mathrm{~F}+100 \mu \mathrm{~F} 12 \mathrm{~V}$, pack of 10. Ret: D47

MIN RELAY with 5 V coill, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times$ 1 mm , has two sets of changeover contacts, Rel: D42. MANS SUPPRESSOR CAPS $0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ A.C., pack of 10, Rel: 1050.
TELESCOPPC AERIAL, chrome plated, extendable and folds over for improved F.M. reception, Ret: 1051.
MES LAMP HOLDERS, slide on to $1 / 4^{\circ}$ tag. pack of 10 . Rel: 1054.
PAXOLIN TUBMG, ${ }^{3}$, 0^{6} intemal diameter, pack of two. 12'lenghts, Rel: 1056.
ULTRA THNN DRALLS, 0.4 mm , peck of 10, Rel: 1042
HALL EFFECT DEVICES, mounted on smay heatisink, pack of two, Ret: 1022
12V POLARISED RELAY, two changeover contacts, Ref: 1032.

PAXOLIN PANEL, $12 \times 12^{\prime \prime}$ ' 1 " thick, Ret: 1033.
MWM POTTED TRANSFORMER, only $1.5 \mathrm{VA} 15 \mathrm{~V}-\mathrm{OV}-15 \mathrm{~V}$ or 30 V , Ref: 964
ELECTROLYTIC CAP, $32 \mu \mathrm{~F}$ at 350 V and $50 \mu \mathrm{~F}$ section at 25 V . in atuminium can for upright mounting. pack of two. Ref: 995.
PRE-SET POTS, one megohm, pack of five, Ret: 998. WHTE PPOUECT BOX with rocker switch in top left hand WHTE PRONECT BOX with rocker swich in top left-hand
side. size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted, Ref: 1006 . side. size $78 m m \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted, Ref: 1006 .
$6 V$ SOLENOID, good strong pull but quite small, pack of 6V SOLENOID,
two, Rel: 1012.
FIGURE-8 MANS FLEX, also makes good speaker lead, 15m, Ret: 1014.
HMGH CURRENT RELAY, 24 V A.C. or 12 V D.C., three HIGH CURRENT RELAY, 24 V
changeover contacte, Ret: 1016.
Changeover contacti, Ret: 1016 .
LOUDSPEAKER, 8 Ohm $5 \mathrm{~W}, 3.7$ round, Rel: 962.
LOUDPEAKEA, 8 Ohm $5 W$, 3.7 round, Rel: 962 .
NEON PLOT LGMTS, oblong for fromt parnel mounting.
NEON PILOT LIGHTS, oblong for fromt panel mounting.
with intemal resistor for normal mains operation, pack of four, Pel: 970 .
3.5imi JACK PLuas, pack of 10, Ref: 975.
3.5U, JACK PLUCS, pack of 10, Ref: 975 .
PSU, mains operated, wo outputs, one 9.5 V at 550 mA Psu, mains operated, two outpurts, on
and the other 15 V at 150 ma , Rel: 988 .
ANOTHER PSU, mains operated, output 15 V A.C. at 320 mA , Ret 969
PHOTOCELLS, zilicon chip type, pack of four, Rel: 939.
LOUDSPEAKER, ${ }^{5} 4$ Ohm 5W rating, Rel: 946.
LOUDSPEAKER, $7 \times 5^{\circ} 40 \mathrm{hm} 5 \mathrm{~W}$, het: 949 .
LOUDSPEAKER, 4^{4} circular 6 Omm 3 W , pack of 2 , Rel:
FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching pair. Rel: 901.
 and 100 H F. Aet: 905 .
CAR SOCKET PLUG with P.C.B. compartment, Ref: 917. FOUR-CORE FLEX suitable ior telephone extensions, 10m, Ref: 918 .
, hect CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ math removable SOLENOYOS, 12 V to 24 V , will pueh or puil, pack of two, Rel: 877.
21 M MANS LEAD, 3 -core with instrument pleg moulded on, Rel: 879 .
TELESCOPIC AERIAL, chnome plated, extendable, pack ol tro, Rel: 884
inchophone, dynamic with normal body for hand holding. Rel: 885.
CROCODILE CLIPS, superior quality fiex, can be atReched withour soldering, ilve each rod and black, Rol:
BATTEAY CONNECTOR FOR PP3, superior quality, pack BATTEAY CON
of four, Ref: 887 .
LGHTWEIGHT STEREO HEADPHONES, ReI: 899.
PRESETS, 470 Ohm and 220 kilohm, mounted on single panol, pack of 10, Ref: 849.
THERMOSTAT for ovens with $1 / 4^{4}$ spincle to take control knob, Ref: 857.
12V-OV-12V 10w mans transformer, Ref: 811
18V-OV-18V 10W MAMS TRANSFORMER, Rof: 813
AIR-SPACED TRIMMER CAPS, 2DF 10 200F, pack o
TWO. Ret: 818 .
AMPLFIER, 9 V or 12 V operated Mullard 1153, Rat: 823.
2 GRCUIT MicRoSWICHES LARGE SIZE MICFOSWITCHES, prock ol 4, Red: 825.
pack of two, Rel: 826 . PUSHSWITH with whine dolly, through panel mounting by hexagonal nut, Ret: 829 . POWTER KNOB for spincle which is just under $1 / 4{ }^{4}$, like most thermostats, pack of lour, Ref: 833.

TOROIDAL MAINS TRANSFORMERS

All with $220 / 240 \mathrm{~V}$ primary winding. $0-6 \mathrm{~V}+0-6 \mathrm{~V}$ at 50 VA would give you 6 V at 8 A or 12 V at 4 A , price $£ 5$, Order Ref: 5 PG1. $0-30 \mathrm{~V}+0.30 \mathrm{~V}$ at 120VA would give you 30 V at
 4 A or 60 V at 2 A , price $\varepsilon 8$,
Order Rel: 8PG2. 0-110V $+0-110 \mathrm{~V}$ at 120VA would give you 110 V at just over 8 A or 220 V at $1 / 2 \mathrm{~A}$, price £8, Order Ref: 8PG3. 0-35V $+0-35 \mathrm{~V}$ at 150 VA would give you 35 V at 4 A or 70 V at 2A. Price ع8. Oder Ref: 8PG9. 0-35V $+0-35 \mathrm{~V}$ at 220 VA would give you 35 V at $61 / 2 \mathrm{~A}$ or 70 V at $31 / 4 \mathrm{~A}$, price £9, Order Ref: 9PG4. $0.110 \mathrm{~V}+0$ 110 V at 220 VA would give you 110 V at 2A or 220 V at 1A, price £10, Order Ref: 10PG5. 0-45V $+0-45 \mathrm{~V}$ at 500 VA would give you 45 V at 11 A or 90 V at $51 / 2 \mathrm{~A}$, price £20, Order Rel: 20PG7, 0-110 $+0-110 \mathrm{~V}$ at 500 VA would give you 110 V at 5 A or 220 V at nearly 3A, price £25, Order Ref: 25PG7.

TWO MORE TOROIDAL TRANSFORMERS,

Order Ref: 4P100 is 120W and will give you 27 V at 4.5 A or 54 V at 2.5 A , price £4. An interesting thing about this transformer is that it is very easy to add turns, 4 turns will give you 1A.
Order Ref: 1.5 P 47 is 25 W and will give you 24 V at 1 A or 48 V at $\cdot 5 \mathrm{~A}$, price $£ 1.50$.
SUPER WOOFERS. A $10^{\prime \prime} 40 \mathrm{hm}$ with a power rating or 250W music and normal 150W. Has a very heavy magnet and is beautifully made and finished by Challenger. Normal selling price for this is $\mathbf{\Sigma 5 5}+$ VAT, you can buy at $£ 29$ including VAT and carriage, Order Rel: 29P7. The second one is a $8^{\prime \prime} 40 \mathrm{hm}, 200 \mathrm{~W}$ music, 100 W normal. Again by Challenger, price $£ 18$,
Order Ref: 18P9. Deduct 10\% from these prices if you order in pairs or can collect. These are all brand new in maker's
packing.

VENNER 75A TIME SWITCH. This is a top class instrument, costs probably around $£ 60$ new. Ex-electricity board but taken out of service because they changed to solar control. These have 2 on/off per 24 hours, price ع8 each, Order Ref: 8P66.
12V MOTOR. $1 / 10$ hp with $11 / 4^{\prime \prime}$ spindle extending from each end. Motor body diameter is $3^{\prime \prime}$ and body length $5^{\prime \prime}$. Price $\mathbf{8 8}$, Order Ref: 8P65.
SOLDERING IRON. Super mains powered with long life ceramic element, heavy duty 40W for the extra special job. Complete with plated wire stand and 245 mm lead, $£ 3$, Order Ref: 3P221.
DIGITAL THERMOMETER. Suitable for outdoors or indoors, has an extra wide temperature range $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, complete with heavy duty battery which should last several years. Its sensor can be outside but with the read out inside, E4, Order Ref: 4P104.
MINI AM/FM TUNING CAPACITOR. Only $1^{\prime \prime}$ square but has a good length of $1 / 4^{\prime \prime}$ diameter spindle, with 4 variablo preset caps for fine tuning. Price £1, Order Rel: D202.
ANOTHER $7^{* \prime}$ FERRITE ROD AERIAL. This is an extra special $1 / 2^{\prime \prime}$ diameter with long and medium wave coils. Price $£ 1$ each, Order Ref: D203.
12V RECHARGEABLE BATTERY. The Yuasa 2.3AH; whose regular price is $£ 15$, you can buy for $£ 3.50$ and with the normal 12 month guarantee. We understand these batteries have never really been used but have simply been installed as a reserve. Order Ref: 3.5P14, or 10 for $£ 30$, VAT and carriage paid.
CHARGER FOR YUASA BATTERIES (the 12 V one which we are selling for $£ 3.50$). This battery charger plugs into a 13A socket, charges at approximately $1 / 2 \mathrm{~A}$ so it would charge the battery overnight. Complete with croc clips, ready to go, £5. Order Ref: 5P269.

DYNAMIC MHCROPHONE. 600 ohm , plas tic body with black mesh head, on/off switch, good length lead and terminated with audio plug, £2, Order Ref: 2P220.

TELEPHONE EXTENSION LEAD, flat plug one end, socket the other, 12M, £2,Order Ref: 2P338.
FIGURE-8 FLEX, mains voltage, $50 \mathrm{~m}, \boldsymbol{\varepsilon}$, Order Ref: 2P345.
INFRA-RED RECEIVER, as fitted TV receiver. £2, Order Ref: 2P304.
2A MAINS FILTER AND PEAK SUPPRESSOR, £2, Order Ref: 2P315.
$45 A$ DP 250 V SWITCH on $6 \times 3^{\prime \prime}$ gold plate, $\varepsilon 2$, Order Ref: 2P316.
LOCTITE METAL ADHESIVE, tube and some accessories, £2, Order Ref: 2P215.
35 mm PANORAMIC CAMERA. Has super wide lens, ideal for holiday viewing, is focus free and has an extra bright and clear view finder. Brand new and guaranteed, individually boxed, $£ 6.50$, Order Ref: 6.5P2.
OV-20V D.C. PANEL METER. This is a nice size. 65 mm sq. It is ideal if you are making a vollage variable ins1rument or battery charger. Price E3, Order Ref: 3P188.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away it desirable. Price $£ 5.00$, Order Ref: 5P267.
12V 2A TRANSFORMER, £2, Order Rel: 2P337.
12V-OV-12V TRANSFORMER, 35VA, £2.50, Order Ref: 2.5P13.
HIGH RESOLUTION MONITOR, 9^{*} by Philips. in metal frame for easy mounting. Brand new. offered at less than the price of the tube alone, \&15, Order Rel: 15P1.
$15 \mathrm{~W} 8^{\prime \prime} 8$ OHM SPEAKER AND $3^{\prime \prime}$ TWEETER. Amsirad, made for their high quality music centre, $£ 4$ per pair, Order Ref: 4P57.
INSULATION TESTER WITH MULTIMETER. Internally generates vollages which enables you to read insulation directly in Megohms. The muttimeter has four ranges: A.C./D.C. vots; 3 ranges milliamps; 3 ranges resistance and 5 amp range. Ex-British Telecom, tested and guaranteed OK, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P4.
We have some of the above testers not working on all ranges, should be repairable, we supply diagram, £30, Order Ref: 3P176.
LCD $31 / 2$ DIGIT PANEL METER. This is a multirange voltmeter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet. Special snip price of £12, Order Ref: 12P19.
MINI BLOW HEATER, 1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, £5, Order Ref: 5P23.
MEDICINE CUPBOARD ALARM. Or it could be used to wam when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery, £3. Order Ref: 3P155.
DON'T LET IT OVERFLOW! Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, £3. Order Ref: 3P156.

TERMS

Send cash, PO, cheque or quote credit card number

- orders under $£ 25$ add $£ 3$ service charge.

ACTVE rEEEVING antenna

Although the actual power level developed by the whip is much less than a resonant half-wave dipole, the actual signal-to-noise ratio will be much the same and possibly better. This is because the natural and man-made noise levels on lower h.f. bands are very high, and secondly the antenna can be placed as far away as possible from known sources of interference.

Tuning the whip to resonance is also desirable since any non linearities in the amplifier stage will tend to cause cross modulation. If the whip is brought to resonance then it will respond best to the wanted (and often much weaker) amateur station and tend to reject the more powerful commercial traffic on adjacent frequencies. If the system is tuned then indifferent receivers with a poor image response and a tendency to overload will show a remarkable improvement.

The design featured here is ideal for enthusiasts who simply do not have the space to erect a long wire or dipole type antenna but offers a comparable performance. It is compatible with any communications or broadcast receiver but is especially well suited to the Direct Conversion Topband and 80 m Receiver featured in the October ' 96 issue of $E P E$.

CIRCUIT DESCRIPTION

The full circuit diagram for the Tuned Active Receiving Antenna is shown in Fig. 1. The "whip aerial". which is I to 1.5 metres in length, is connected to the "hot end" of a tuned circuit formed by r.f./antenna coil Ll and two back-toback varicap diodes VDI, VD2. These "varicaps" are biased by a variable voltage (one to nine volts) fed remotely to the unit via resistors RI, R2, R3 and capacitors CI. C2.

This network maintains the Q of the tuned circuit and also filters out any hum and noise picked up en-route. The tuning voltage can either be derived from a potentiometer or if used in conjunction with the DCRx (Direct Conversion Receiver) it can be extracted from the pre-selector line.

The tuned circuit feeds the gate (g) of TR1, a field effect transistor (f.e.t.) in
common source mode which has a very high input impedance and a moderately low output impedance (around one kilohm in this case). The amplified r.f. is developed across resistor R4. Resistor R5 biases f.e.t. TRI and the source (s) is bypassed at r.f. by capacitor C3.
The output at the drain (d) of TRI feeds the emitter follower transistor TR2. This stage has a voltage gain of just less than one but a high current gain such that the output impedance is lowered to a few ohms. Feed to 50 ohm coaxial cable is taken from the emitter of TR2 via R7 and C5, resistive matching and d.c. blocking respectively.

POWER SUPPLY

A 12 V supply is fed to the amplifier via resistor R 8 and capacitor C 4 . another line noise filter. Obviously, the unit either needs a remote 12V PSU (Power Supply Unit) or can be powered from the regulated line of the DCR.

The Active Antenna only draws a few milliamperes and so a power supply based around a 78 LI 2 voltage regulator should be more than adequate.

CONSTRUCTION

The Active Receiving Antenna is built on a small double-sided printed circuit board (p.c.b.) and the topside component layout and full size copper track master pattern are shown in Fig. 2. This board is available from the EPE P(CB Service, code 140.

Note the topside (not shown) copper surface acts as a "ground plane" for screening and the component entry holes should be cleared (except for ()V pins) using a large twist drill to lightly countersink the holes. removing some copper to "isolate" the hole. Do not countersink too deeply, this could fracture the board.)

Start construction by inserting and soldering the six solder pins around the periphery of the board. Next solder in position the resistors, capacitors, semiconductors and finally inductor coil/transformer LI.

Although the board only has a few components. some of these are quite fragile. especially LI. It is very casy to break the very fine wires leading to the connection pins unless care is exercised.

The KV1235 is a triple varicap diode in a single package. It is necessary to literally saw the device into three (be careful) individual components. A couple of strokes with a junior hacksaw in the two notches should be sufficient and enable the device to be snapped into three " segments"

TESTING

Commence testing the unit by first checking the underside copper tracks of the board thoroughly for solder splashes and "dry" joints. Check that all components are positioned correctly on the board (see Fig. 2) and also that they are the right way round. The semiconductors are polarity conscious as is the electrolytic capacitor C2.

If all is well. connect a multimeter switched to the two kilohm ($2 k$) range across the supply lines. A reading of

Component layout on the completed p.c.b. Note the isolating holes for components.

Fig. 2. Printed circuit board component layout and full size underside copper foil master pattern. The topside copper foil layer is not shown for clarity. The OV connections should be soldered to both sides of the p.c.b.

around 1.5 kilohmis should be noted. If the reading is very low then you probably have a short or a defective component. Check the circuit again thoroughly.

COMPONEVIS

Resistors

R1	1 M	See
R2. R3	$22 k(2$ off $)$	
R4	$1 k$	TALK
R5	220Ω	
R6	$330 \Omega 2$	Page
R7, R8	$47 \Omega 2$ (2 off $)$	

All $0.6 \mathrm{~W} 1 \%$ metal film
Capacitors

C1, C4	47 n mylar film (2 off)
C2	1μ radial elect. 16 V
C3	10 n mylar
C5	22 n mylar

Semiconductors

VQ1, VD2 KV1235 triple a.m. tuning varicap diode - see text TR1 2N3819 n-channel field effect transistor ZTX300 non silicon transistor

Miscellaneous

L1 Toko KANK3333R inductor Printed circuit board available from the EPE PCB Service, code 140; plastic or metal box, size $100 \mathrm{~mm} \times 76 \mathrm{~mm} \times$ 41 mm approx.; telescopic "whip" aerial, size approx. 1 m to 1.5 m when extended; BNC chassis socket; 5-pin DIN chassis socket; equal lengths 500 hm coaxial cable and 3 -core low voltage cable; multistrand connecting wire. solder etc.

OPTIONAL ATTENUATOR

Resistors

R1 to R3 75!) (3 off)
R4, R6 68! (2 off)
R5 2201:
All $0.6 \mathrm{~W} 1 \%$ metal film

Miscellaneous

S1, S2 d.p.d.t. loggle switch (2 off) Small metal box, size to suit; coaxia socket (2 off); length of 50 ohm coaxial cable; multistrand connecting wire, solder etc.

Approx Cost
cufdance Onty
819
exclucling Attenuator

If all is well connect a I2V supply to the unit. Some typical test voltages are given in Table 1 .

Table 1: Circuit Test Voltages

TR1 Gate (g)	0 V
TR1 Drain (d)	7.1 V
TR1 Source (s)	0.5 V
TR2 Base (b)	7.1 V
TR2 Collector (c)	11.0 V
TR2 Emitter (e)	6.5 V

As a check that the varicap diodes are inserted the correct way round, apply 12 V to the tuning rail and check with a high impedance multimeter that the voltage at the varicap end of resistor RI is around 9 V (this will vary with the impedance of the multimeter). If one or both varicaps are inserted incorrectly then this voltage will be nearer to one volt.

ALIGNMENT

When performing alignment it is necessary to have the telescopic whip aerial fully extended and positioned away from other objects. Be careful not to touch the whip antenna because you will add extra capacitance to the system and totally detune it.
Make sure that a proper trimming tool is used to adjust aerial coil LI. A screwdriver is NOT suitable as detuning will occur. it is also quite likely that the very brittle ferrite core, within LI, will be cracked resulting in LI requiring replacement!

Depending on whether you are using the unit with the DCRx ($\mathrm{Oct}{ }^{`} 96$) or not affects the alignment procedure.

With the DCRx

Now adjust the receiver Preselect control for maximum level of tone or noise depending on the signal source. Disconnect the signal generator (or wire) and connect up the Active Antenna. Adjust the ferrite "slug" within the coil former of LI for maximum received noise.

Stand-Alone

The alignment procedure for using as a "stand-alone" unit, for use with a communications receiver is very straightforward and is as follows:

With the tuning voltage set to one volt simply adjust the slug of Ll for maximum noise or " S " meter reading on a receiver tuned to 1.5 MHz .

INSTALLATION

The unit should, preferably, be mounted outdoors in order to gain the hest signal-to-interference ratio. The board thus needs to be totally waterproofed. Melted candle wax poured over the board provides a very effective solution to this problem.

For alignment using the DCRx. connect a signal generator set to 1.9 MHz or. alternatively, connect a piece of wire (about 20 to 30 feet) to the antenna socket. Set the receiver to topband. adjust and tune the receiver to the signal generator frequency or adjust the Tuning potentiometer

Fig. 3. Interwiring connection details for linking to DCRx. power supply unit or connection to Attenuator unit.

> The completed Tuned Active Receiving Antenna showing telescopic aerial, supply DIN socket and signal output BNC socket.

Antenna internal layout. Solder the short lead to the telescopic aerial before (due to heat) bonding to box.

Fig. 4. Circuit diagram for the optional Attenuator unit.

Reliability of the unit should be very high and so this approach can be quite successful. If a repair does become necessary it is possible (but messy) to remove the wax without subjecting the board to further damage by heating the unit until the wax just starts to melt and then scraping it away.

If the unit is mounted on a metallic mast or pole then this should be connected to "Earth" at the aerial end (see Fig. 3). Beware of contact oxidisation problems with aluminium.

ATTENUATOR

A circuit diagram for an optional Attenuator is given in Fig. 4. After going to all the trouble of amplifying and matching the signal, why attenuate it you may ask?

Well a receiver only has so much "dynamic range" that is to say its ability to handle weak signals in the presence of much stronger ones on adjacent frequencies. An attenuator lets you adjust the "dynamic window" to suit prevailing conditions and can be of enormous benefit. A switched unit offering $6 \mathrm{~dB}, 12 \mathrm{~dB}$ and 18 dB of attenuation and a nominal input and output impedance of 50 ohms is shown here.

Only six resistors, two double-pole, double-throw toggle switches and a suitable box with input and output connectors are required. For optimum performance the box should be metal. although plastic can be used with only marginal degradation.

EnviraMan
 Temperature / Humidity Logger \& Alarm System

EnviroMon has many applications in food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.

- Monitors up to 30 channels of temperature over a 400 m . distance
V-55 to $100^{\circ} \mathrm{C}$ temperature range (typical accuracy $\pm 0.2^{\circ} \mathrm{C}$).
∇ Data can be downloaded to PC.

Envira Mas

Starter Kit from £393.00
3 temperature Sensors on 5 m lead, 3 channel Converter, Enviromon Logger, cables \& fittings. Expandable at any time for around $\mathbf{\Sigma 5 0 / \text { Channe }}$

TC-08

8 channel Thermocouple to PC Converter
Simple to use thermocouple to PC interface.
∇ Connects to serial port no power supply required.
V Supplied with PicoLog data logging software.
∇ Resolution $0.1^{\circ} \mathrm{C}$.
TC-08 $£ 199.00$
Supplied with serial cable and adaptor. Calibration certificate $£ 25.00$.
Thermocouple probes available.

TH-03 3 channel

Thermistor to PC Converter

∇ Connects to serial poit -
no power supply required.

- PicoLog data logging software.
$\nabla-55$ to $105^{\circ} \mathrm{C}$ temperature range
V Resolution $0.01^{\circ} \mathrm{C}$.

TH-03

$£ 79.00$
Supplied with serial cable and adaptor. Thermistor sensors available.

リCall for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@picotech.co.uk

The Summer '97 Edition brings you:

Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.
WIN! a $15^{\prime \prime}$ CTX SVGA Monitor in our easy to enter competition.

- 100's of new products including; Books, Connectors, Entertainment, Test Equipment, Security, Speakers, Satellite Equipment and Tools.
- A full range of Aver Multimedia products for PC and Mac.
£25 worth discount vouchers.
- 232 Page main Catalogue, plus 40 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.
- Get your copy today!

Cirkit Distribution Ltd
Park Lane • Broxbourne • Hertfordshire - EN10 7NQ Tel: 01992448899 . Fax: 01992471314 Email: mailorder@cirkit.co.uk

BACK ISSUES
We can supply back issues of EPE by post, many issues from the past five years are available. An index for the last five years is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

MARCHISG

PROJECTS - Mind Machine Mk III Part 1 High Current Stabilized Power Supply MultiPurpose Mini Amplifier Infra-Zapper PICElectric Meter - 2.
FEATURES - Teach-In '96 Part 5 - Ingenuity Unlimited Flight PAL Trainer Review.
FREE Headphones (UK copies only).

PROJECTS Bat-Band Converter Event Counter - Mind Machine Mk III Part 2 Programmer Hearing Tester.
FEATURES - Teach-In '96 Part 6 - Circuit Surgery \oplus Thermionic Valves Part 1.

Way ge midi Analyse Mind Machi

PROJECTS - Midi Analyser - Mind Machine Mk III Part 3 - Tape Controller Versatile PIf Detector Alarm - Countdown Timer - Bat Band Converter B.F.O.
FEATURES - Teach-In '96 Part 7 - Ingenuity Unlimited Thermionic Valves Part 2 - The C.R.T.

PROJECTS - Sarah's Light - Ultra-Fast Frequency Generator and Counter Part 1 V VU Display and Alarm - Pulstar - Home Telephone Link.
FEATURES - Teach-In '96 Part 8 - More Scope for Good Measurements Part 1 Circuit Surgery - Miniscope Review.

PROJECTS - Advanced NiCad Chargers - Single-Station Radio 4 Tuner - Games Compendium Twin-Beam Infra-Red Alarm Ulira-Fast Frequency Generator and Counter - 2. FEATURES Teach-In '96 Part 9 - More Scope for Good Measurements Part 2 Circuit Surgery The Internet Ingenuity Unlimited.

PROJECTS - Component Analyser - Garden Mole-Ester Mono "Cordless" Headphones Bike-Speedo Mobile Miser
FEATURES - Teach-In '96 Part 10 - Circuit Surgery Ingenuity Unlimited Spies, Lies and Electronics EPT 3.0 Review.

Sjil 96

PROJECTS Analogue Delay and Flanger Simple Exposure Timer PIC-Tock Pendulum Clock - Draught Detector Power Check. FEATURES Circuit Surgery - Ingenuity Unlimited - Net Work - The Internet MAX038 Waveform Generator:

[^1]
[NOVES

PROJECTS - D.C.-to-D.C. Converters Centra Heating Controller - EPE Elysian Theremin Part 1 Tuneable Scratch Filter.
FEATURES - Build Your Own Projects, Part 1 - Ingenuity Unlimited Circuit Surgery - Net Work Interface.

DEC'EC

PROJECTS - Vari-Colour Christmas Tree Lights - PIC Digital/Analogue Tachometer Stereo Cassette Recorder - EPE Elysian Theremin, Part 2
features - Build Your Own Projects, Part 2 - Interface - Circuit Surgery - Ingenuity Unlimited Net Work - Internet News.

JAN"Gy
PROJECTS - Earth Resistivity Meter, Part 1 Psycho Rat Theremin MIDI/CV Interface, Part 1 Mains-Failure Warning.
FEATURES - Ingenuity Unlimited Build Your Own Projects, Part 3 - Circuit Surgery Interface Net Work - Internet News PCS32 Storage 'Scope Interface Review.
PROJJECTS - Pacific Waves - How To Use Intelligent L.C.D.s, Part 1 PsiCom Experimental Controller Earth Resistivity Meter, Part 2 Theremin MIDI/CV Interface, Part 2. FEATURES Ingenuity Unlimited Build Your Own Projects, Part 4 - Circuit Surgery Interface Net Work - Internet News.
MAITBS PROJECTS - Simple Dual-Output TENS Unit - Video Negative Viewer - Tri-Colour NiCad Checker How To Use Intelligent L.C.D.s - $2-$ Oil Check Reminder.
FEATURES © Interface - Ingenuity Unlimited Build Your Own Projects, Part 5 Digital TV The Reality Circuit Surgery - Net Work.

URG=NT?
 NEED AN ARTICLE TODAY? TRY OUR FAX ON DEMAND SERMOE - see opposite for details

PROJECTS - 418 MHz Remote Control System - Midi Matrix - Puppy Puddle Probe PIC-Agoras Wheelie Meter - 1
FEATURES Interface - Ingenuity Unlimited Digital TV and MPEG2 EDWin NC Software Review Circuit Surgery © Net Work

PROJECTS - 2 Metre F.M. Receiver - EPE PIC. A.Tuner Alarm Operated Car Window Winder - Quasi-Bell Door Alert PIC-Agoras Wheelie Meter-2.
FEATURES - Ingenuity Unlimited - Circuit Surgery - Techniques - Actually Doing It Great Experimenters - 1 - Type 7660 Voltage Converters - ADC200 Storage Oscilloscope Interface Review - Net Work.

PROJECTS - PIC Digilogue Clock Child Minder Protection Zone - Pyrotechnic Controller Narrow Range Thermometer.
FEATURES - Great Experimenters - 2 - Circuit Surgery Interface Reactobot and Virtual Reality Ingenuity Unlimited Net Work

PROJECTS - Micro PEsT Scarer - Karaoke Echo Unit - Infra-Red Remote Repeater Computer Dual User Interface - Micropower PIR Detector - 1
FEATURES O Ingenuity Unlimited Techniques - Actually Doing it - Circuit Surgery Great Experimenters - 3 Electronics Workbench V5.0 Review Net Work.
PRUCSED - Variable Bench Power Supply - PIC-olo Music Maker - Universal Input Amplifier Micropower PIR Detector - 2 . FEATURES - Interface - Ingenuity Unlimited - Colossus Recreated - Circuit Surgery MExpress - Basic for Engineers Review Great Experimenters - $4-$ Net Work.

BACK ISSUES ONLY £2.75 each inc. UK p\&p.

Overseas prices $£ 3.35$ each surface mail, $£ 4.35$ each airmail.
We can also supply issues from earlier years: 1990 (except Jan., March, Oct. and Dec.), 1991 (except May, June, Aug. Sept. and Nov.), 1992 (except April and Dec.), 1993 (except Jan., Feb., March, April and May), 1994 (except April, May, Sept. and Nov.), 1992 (except April and Jec.), (except Jan., May, June, Sept., Nov. and Dec.), 1996 (except Feb., July, Aug.)
June and Nove note we are not able to supply copies (or 'stats of articles) of Practical Electronics prior to the merger of the two Please note we are not able to
magazines in November 1992.
Whagaze we do not have an issue a photostat of any one article or one part of a series can be provided at the same price.
$T-$ ORDER FORM - BACKISSUES - PHOTOSTATS - INDEXES

\square
\squareSend back issues dated
\square Send photostats of (article title and issue date)

$1 \square$Send copies of last five years indexes ($£ 2.75$ for five inc. p\&p - Overseas $£ 3.35$ surface, $£ 4.35$ airmail)

Name
Address

\squareI enclose cheque/P.O./bank draft to the value of $£$.
\square Please charge my Visa/Mastercard $£$.
Card No. ... Card Expiry Date
Note: Minimum order for credit cards £5. Please supply name and address of cardholder if different from that shown above.
SEND TO: Everyday Practical Electronics, Allen House, East Borough. Wimborne, Dorset BH21 1PF.
SENO TO: Everyday Practical Eloctronics, Alen house, East Borough. Wverseas queries or orders by
Tel: 01202 881749. Fax: 01202841692 . (Due to the cost we cannot reply to o
Payments must be in f sterling - cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order.
Send a copy of this form, or order by letter if you do not wish to cut your issue.

WHY WAIT? We Give You The Fax! Projects and Series From Past Issues of EPE
AVAILABLE INSTANTLY! 24 HOURS A DAY!

HAVE you ever wanted to get hold of a past project or part of a Teach-In series fast? EPE ON FAX is a service aimed at providing you with the article you need, on-demand, seven days a week, 365 days a year, 24 hours a day.

All the projects and major series from the the April '95 issue onwards have been stored on computer and linked to a sophisticated selection system that uses the latest voice and Fax technology. You can select the article you require from a menu and have it downloaded to any UK Fax machine on demand.
The service will be constantly updated with new material as each issue is published, thus providing a live, instantly available, resource.

HOW TO USE EPE ON FAX

- From your tone telephone or Fax machine call (0991 (0)2 225, making sure that your handset is switched to "tone". You will then hear a series of messages, which will help to guide you through the system.
- For a copy of the index. which contains the article numbers and the number of pages of each article, press " 1 " when prompted.
- To obtain a particular article, press " 2 " when prompted and, when requested, enter the article number you want from the keypad on your phone or Fax machine. The system will then confirm your selection.
- When you have selected the document that you require, you will then be prompted to enter the phone number of the Fax machine you want the article or index sent to, including the dialing code, finishing with the $\#$ key; the system will then confirm the phone number. Ring off and the Fax will automatically be sent to the given number.

HOW MUCH WILL IT COST?

EPE ON FAX service is a higher rate premium line phone service. Calls cost $£ 1.50$ a minute. First time use should cost no more than $£ 3$ per index or article. Subsequent use should only be $£ 1.50$ per article.
NOTE. Articles over six pages long are split in two; requiring two calls.

> FURTHER INFORMATION
> If you would like further information about how this project was put together, ring Starcomm Limited on (0113) $29406(0)$.

TRY IT NOW! CALL 0991002225

Building on our experience with the Experimental Electronic Pipe Descaler back in August '93 (one of our most popular projects) we are now pleased to present an improved PIC. based design. These water treatment devices have, over the past few years, proved their effectiveness and this easy to build unit cuts the cost of a commercial design dramatically and has audio and visual monitoring. It will, over a period of time, reduce the level of scale build-up in kettles, boilers, shower heads and around taps efc. By keeping scale to a minimum it should eventually save you money.

RECHARGEABLE HANDLAMP

This article describes how to convert a battery-operated handlamp to a sealed lead/acid rechargeable design. Where the lamp is used more than occasionally, the conversion will be worthwhile and will soon pay for itself in terms of the savings made. By using a sealed lead/acid battery the problems encountered with NiCads are overcome.

REMOTE CONTROL FINDER

If you misplace your TV, Video, Satellite or Audio remote control it can be very frustrating. This little circuit will provide the means to find it. Just whistle and your remote control handset will bleep back at you, telling you exactly where it is!.

MURPHY'S LAW

The all too common outcome of a seemingly predictable chain of events is catastrophe. The more you attempt to avoid it, the worse it appears to get. Thus has Murphy's Law been recognised. We surmise that the Murphy Syndrome occurs too frequently to be pure chance, though reason counsels otherwise. Is Murphy's Law a satanic malevolence, an unseen and fiendish conspiracy to create chaos? Or is this interpretation of adverse phenomena irrational and more properly explained in the simple innocence of probability theory?

Though lighthearted, this article expects to challenge current beliefs. In this respect, readers are forewarned that it is written and structured so as to be convincing. Readers who believe they discern disingenuity, non-sequiturs and syllogisms are invited to rebut - if appropriate.

EVERYDAY

PRACTICAL

$$
\begin{aligned}
& \text { E ECB P } \\
& \text { DON'T MISS THIS ISSUE } \\
& \text { OCTOBAR ISSUE ON SALE } \\
& \text { FRIDAY, SEPIEMBER } 5
\end{aligned}
$$

MICROPOWER P/R

 DETECTOR
ANDY FLIND

Magnetically-Dperated, "secret" Alarm Disarm and Reset Switch, with delay-on feature.

TH1s: problems of disarming and reset ting a burglar alarm system were mentioned briefly in the Control System project described last month. The pulsecounting circuit provided by this, for use with a PIR sensor covering external areas, gives a brief delay before the alarm siren is activated.

If the user is able to disarm the system before this delay ends it will be possible to enter the property without setting off the alarm. However, access to the disarm switch will probably need to be from outside as the time taken to unlock and enter is likely to be more than sufficient to activate the alarm.

DELAY SWITCH

This raises some difficulties. The first is simply the provision of a waterproof and inconspicuous switch. A reed switch can be used as it may be operated with a small magnet through a window or even a wooden shed wall, but if the magnet has to be left in place observant thieves may figure out how the switch operates and bring their own magnets!

A better method is to use a circuit with a "toggle" action, so that a brief and inconspicuous "touch" with the magnet turns it on and off. but this will need an indicator to show that it has operated and whether the system has been disarmed or reset. The Alarm Disarm/Reset Switch circuit of this project has a toggle action and uses an l.e.d. which gives a brief tlash as the system is reset and a slightly longer one to indicate when it becomes disarmed. Like the other two projects of this series it uses virtually no supply current at all in the quiescent state, so it is ideally suited for use in battery operated systems.

An extra facility required when resetting an alarm system is a delay that will give the user time to leave the area and let the

PIR sensor settle to the "ready" state. A delay is built into this project. and can be easily adjusted to the user"s prelerence by altering the value of a single resistor.

HOW IT WORKS

The circuit is based around a simple toggle switch built with two CMOS inverters as shown in a simplified form in Fig. I. If it is assumed that the input to the gate Gl is negative, its output will be positive, thereby causing the output of gate G2 to be negative. Fedback is taken from the output of G_{2} through resistor R 1 to the input of Gl so that this state will be maintained indefinitely.

Fig.1. Circuit diagram for demonstrating the principle of the electronic toggle switch.

Meanwhile. capacitor (1 is charged to the positive supply voltage through resistor R2. If the switch SI is now chosed. this positive charge will override the negative input from R1 and the circuit will change state, with the output from G_{2} becoming positive.

If the swith is held closed, sufficient positive current from R1 will flow through it into C1 to prevent discharge of this capacitor through R2 into Gl's output. which is now negative. so the new state is maintained. When Sl is released Cl is discharged by R2 so that the next operattion of the switch will cause the circuit to change back to the original state.
The swith therefore togyles the output between positive and negative, and since it operates immediately when pressed but cannot operate again until released for sufficient time to allow Cl to charge or discharges the problem of contact bounce is eliminated.

CIRCUIT DESCRIPTION

The lull circuit diagram for the Alarm Disarni/Reset Switch is shown in Fig.2. In this IC Ia and ICId, wo of the four NANI) gates in a CMOS 401113. are used as inverters to buik the toggle-action switch.

The outputs of both gates are coupled through time constants, capacitor C2 with resistor R.3 and C3 with R4, into the two inputs of gate ICIb. Each time the switch toggles one of these inputs goes negative briefly. causing the output of ICIb to supply a positive drive pulse to the l.e.d. D!.

Capacitor (2 has a higher value than C3 so that when the output of ICId goes negatice the l.e.d. thash is longer than that given when the output of ICla goes negative. This is the "Disarmed" state, with a positive output from inverter ICIc, which holds the $4(6) 6(13$ counter-oscillator IC2 in it.s "Reset" condition.

Whilst this reset input is present the ossillator of IC2 camot operate and all its outputs are negative. The negative output from the tinal output, pin 3. is inverted and buffered hy IC.3e and IC3d to give a positive output signat for disarming the Control hoard (last month).

DELAYED ACTION

When the switch is toggled back into the alarm Reset state, the output of ICld goes positive so the output of ICIC goes negative and the internal oscillator of $I C 2$
begins operating. The oscillator connections of IC2 are pins 9,10 and II, and the output from pin 10 is usually connected through a resistor directly to the junction of R6 and C4. In this circuit it first passes through the exclusive-OR gate IC3a.

Whilst pin 3 of IC2 is negative the signal from pin 10 passes unaltered to resistor R7. When the count reaches the value where pin 3 goes positive, IC3a inverts the signal from pin 10 so the oscillator stops. This causes the output from pin 3 to remains positive until the switch is toggled again to reset it, and this positive output is inverted and buffered by IC3c and IC3d to give the negative output condition to reset the alarm.

This circuit action provides a delay between the circuit being switched to the alarm Reset state and the negative "reset" output actually appearing. The length of the delay is set by the values of capacitor C4 and resistor R7, those shown giving a time of about twenty seconds. If R7 is increased to 56 k (kilohms) the delay will increase to about fifty seconds.

CONSTRUCTION

The components for the Alarm Disarm/ Reset Switch are all mounted on a small printed circuit board and the component layout and full size copper foil master are shown in Fig.3. This board is available from the EPE PCB Service code 166 .

Construction is straightforward though the compact nature of the board calls for careful assembly and soldering. D.I.L. sockets should be used for the three i.c.s as they reduce the amount of handling and the consequent risk of damage by static electricity or heat during soldering. They also make testing and trouble shooting much easier.

COMPONEVIS

μ PIR Disarm/Reset Switch

Resistors

Resistors
R1 47 k
R2, R3, R4, R6 1 M (4 off)
R5 3 k 3
R7 $\quad 22 \mathrm{k}$
All 0.6 W
1\% metal film

All $0.6 \mathrm{~W} \mathrm{1} \mathrm{\%}$ metal film

Capacitors

Capacitors	
C1, C2	470 n resin-dipped ceramic (2 off)
$\mathrm{C} 3, \mathrm{C} 5$	100 n resin-dipped ceramic (2 off)
$\mathrm{C4}$	47 n resin-dipped ceramic
C 6	470μ radial elec. 16 V

See
TALK
Page
$470 n$ resin-dipped ceramic (2 off)
C4 47 n resin-dipped ceramic

Semiconductors

D1 3 mm , low-current, I.e.d. red
IC1 4011 BCMOS quad NAND gate
IC2 4060B CMOS 14-stage ripple counter with internal oscillator
IC3 4070B CMOS quad Exclusive-OR gate

Miscellaneous

S1 miniature reed switch, with magnet (see text) Printed circuit board, available from EPE PCB Service, code 166; 14-pin d.i.l. socket (2 off); 16 -pin d.i.l. socket; multistrand connecting wire; solder pins (3 off); solder etc.

Fig.2. Complete circuit diagram for the Alarm Disarm/Reset Switch. The supply voltage can be from 6 V to 15 V d.c.

Fig.3. Printed circuit board component layout and full size underside copper foil master pattern.

The switch used for SI doesn't have to be a reed type. although in the majority of applications this will probably be the preferred type. A miniature one having a length of less than about 18 mm can be placed directly on the board if required. If this is done, extreme care should be taken when bending the leads to avoid cracking the glass body.

Any other type of switch with a momen-tary-make action can also be used, such as a pushbutton, a key-operated switch or even an electronic keypad if its output is suitably interfaced. The l.e.d. can be soldered directly to the board or situated elsewhere and wired to it.

TESTING

The action of the "toggle switch" based on ICI can be tested independently before insertion of IC2 and IC3. The power supply to the circuit is intended to be about 12 V .

Fig.4. Linking the three modules together to form an integrated alarm system. The three boards are shown in the photograph above.
taken from the Control board described last month. but any supply between 6 V and 15 V can be used.

Shorting the connections for SI should cause the l.e.d. to tlash and the difference between long and shon flashes should be readily visible, with the output of ICIC, pin 10, being positive following a long tlash.

Since the delay timer uses IC2 and IC3, both must be inserted in order to test this part of the circuit. Following a long flash of
the l.e.d. DI the output from IC.3c and IC3d should go positive immediately and remain there. After a shor flash, it should remain positive for the period set by the value of resistor $R 7$ before going negative.

During the timing period the oscillator will be running so a squarewave signal will be present on pins 9 and 10 of IC2. Most meters will give an apparent reading of about half the supply voltage if connected to these, indicating operation of the oscillator.

IN USE

Connection to the Control project circuit board (last month) is shown in Fig. 4. though it is possible that this little circuit will find many uses in other systems and applications. Constructors will no doubt be able to think of many ingenious methods of installation.

Depending on the type of reed switch and strength of magnet used the reliable operating range can be over 20 mm , so operation through a window pane is no problem. It can also be operated through the wooden walls of many sheds, perhaps with an inconspicuous mark (a knot?) to show the owner where to touch with the magnet.

One simple suggestion is to disguise the board by placing it in a matchbox to be left on a window sill. The l.e.d. should be visible of course, to contirm the "Disarm" and "Reset" action, but a 3 mm l.e.d. can be very inconspicuous.

A tinal suggestion which may be useful is to assemble all three parts of this series together with an alarm siren as a self-contained portable unit. This could be placed and armed anywhere, in a vehicle, a tent, a garden, or anywhere else where there is a need for imniediate protection from intrusion or theft.

UFO LANDING?

Air Force denies stories of UFO crash

Vory and surveillance photos from our Special Correspondent alles Marineris (MPI) - A spokesthing for Mars Air Force denounced as false rumours that an alien space craft has crashed in the desert, outside of Ares Vallis. Appearing at a press conference. General Rgrmrmy The Lesser stated that "the object was, in fact, a harmless high-altitude weather balloon. not an alien space craft".
The story broke when a major stationed at nearby
 Ares Vallis Air Force Base contacted the Valles Marineris Daily Record with a story about a strange balloon shaped object which allegedly came down in the nearby desent. "bouncing" several times. before coming to a stop. "deflating in a sudden explosion of alien gases".

Minutes later. General Rermimy The Lesser contacted the Daily Record telepathically to contritdict the earlier report.

General Rgrmmy The Lesser stated that hysterical stories of a detachable vehicle roaming across the Martian desett were blatant fiction. provoked by incidences involving swamp gas. But the general public has been slow to accept the Air Force"s explanation of recent events, preferring to speculate on the "other-worldly" nature of the crash debris. Conspiracy theorists have condemned Rgmmemy's statements as evidence of "an obvious government cover-up". pointing out that Mars has no swamps.

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible.
Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. They could earn you some real cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE

- 50MSPS Dual Channel Storage

Oscilloscope • 25 MHz Spectrum Analyser - Multimeter - Frequency Meter - Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours.

Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners up.

19kHz Reference Source - \mathbb{N} ame That Tone

WHEN constructing certain types of test or measurement gear, it can be difficult to ascertain its accuracy without the help of a precision reference source. The circuit of Fig. I was constructed to help with setting up a frequency meter. and it provides a 19 kHz TTL-compatible signal which is derived from an FM stereo pilot tone.

A pilot tone is transmitted with a tolerance of $2 \mathrm{~Hz}(0.0105 \%), 20 \mathrm{~dB}$ below peak audio level (at a reference of 400 Hz); de-emphasis in the receiver $(50 \mu \mathrm{~s})$ reduces this by 15 dB . The pilot tone should be present at the Headphone socket of a mono radio as the manufacturer would have no reason to remove it!

Resistor RI, capacitor Cl and inductor coil L1 form a bandpass filter tuned to 19 kHz . L1 is a low-cost $4.700 \mu \mathrm{H}$ choke: the circuit "Q" measured 6.7 resulting in the output being 10 dB down at 15 kHz and 23 kHz . thereby filtering out the $\mathrm{A}+\mathrm{B}$ and $\mathrm{A} \cdot \mathrm{B}$ signals. The
insertion loss is 15 dB , and as it is. Cl needs no trimming.
The op.amp ICI is configured as a noninverting amplifier running from a single supply rail. The gain is set at 29 dB . IC2 is an LM567 phase-locked loop (tone) decoder i.c. with filter capacitors C 6 and C 8 being selected empirically for best results.
The light-emitting diode DI will illuminate when the i.c. is locked into the incoming 19 kHz signal. The VCO (voltage controlled oscillator) output of IC2 (pin 5) is then equal to 19 kHz and this is buffered by emitter follower TRI. TR2 level-shifts this to a TTL-compatible 5 V signal.

Sensitivity is -45 dBu at 19 kHz at the point where IC2 just locks. Assuming that the radio used is set to give OdBu at the headphone socket - a reasonable listening volume - and that the pilot tone is then -35 dBu . there will thus be 10 dB in hand. These levels were chosen so that the radio volume control
does not have to be set deafeningly high if the headphone jack is pulled out before reducing the volume.

As regards accuracy, when measured with a 10 -second gate period, the spread in pilot tone frequency from ten different stations was only 0.8 Hz , so it would appear that the tolerance could be as good as 0.002% which is very satisfactory for setting up home-made gear.
Setting up involves tuning a radio to a strong FM stereo signal: slowly adjust VRI until the l.e.d. lights and continue to adjust until, with the radio's volume control as low as possible, the l.e.d. lights within 0.5 s of connecting the radio. The circuit was built in a metal box due to its sensitivity. Four different radios were successfully used with the prototype.
B. J. Taylor,

Rickmansworth, Herts.

Fig. 1. Full circuit diagram for a 19 kHz Reference Source. Coil $L 1$ is from the Siemens $B 78108 S$ series of miniature r.f. chokes and is currently listed by Cirkit, code 35-71475 and Electrovalue, code B78108S1475J.

Non-Linear Amplifier - Famtastic Furad

Conventional amplifier circuits are all linear: their outputs are directly proportional to the inputs. Conventional fuzz-box circuits all require amplification. The non-linear amplitier of Fig. 2 differs in both of these respects.

The circuit comprises a small-signal pnp transistor TRI connected as an inverting amplifier, with a voltage gain of about 100 . This drives IC1, a 555 connected - unusually - as a Schmitt trigger. This is achieved by tying the trigger and threshold comparator inputs together in order to provide hysteresis.
Pin 3 of the 555 drives a $p n p$ power transistor, TR2, via a cur-rent-limiting resistor R3, which is selected to provide 200 mA drive current. TR2 drives the loudspeaker directly, and since the rise and fall times are only a few microseconds. during the transition time power is dissipated by the transistor only for a very shont period. At other times, the dissipation is virtually nil: either the voltage

Fig.2. Circuit diagram for a Non-Linear Amplifier (Fuzz). Note the "reversed" supply rail voltages.
across the device is high but the current is zero, or the voltage across it is near zero and the current is high (negligible dissipation).

If the switching rate is kept fairly low, the safe operating area of TR2 changes from its familiar hyperbolic curve to a rectangle. This allows considerable output power to be
delivered with only a single outpu device and a small heatsink.
When delivering a square wave, the total output power is $V^{2} / 2 \mathrm{R}$, but half of this can be shown with Fourier analysis to be d.c., the actual signal being V2/4R. When driving a speaker, the d.c. component must be taken into account - use a speaker much larger than the ratings suggest.

The prototype was built into a small enclosure and provided 18 watts of signal into 2 ohms when powered from an external 12 V supply. The heatsink measured only $45 \mathrm{~mm} \times 40 \mathrm{~mm} \times 16 \mathrm{~mm}$. By utilising a large number of high voltage power transistors in a parallel Darlington configuration, the author is constructing a 5 kW version (!), at a nominal cost. Experimenting with different inputs. the author found that music by the electronic group Kraftwerk emerged curiously unaffected!

Nick Sheldon,
Norwich.

"Squeakie" Practical Joke - Drives Follks Bats!

ADESIGN for an alternative type of bug the annoying type - is shown in Fig. 3 This little circuit has caused endless hours of amusement amongst friends and family. It emits a periodic "squeak" by combining two oscillators built around an LM 393 dual comparator i.c.

A slow-running oscillator is built around ICla. Resistors R2 and R3 set an upper threshold of about 2.5 V and RI slowly charges capacitor C1. Resistor R5 pulls TR1 base (b) to the +3 V rail and switches it off.

When C 1 reaches 2.5 V. R 5 is pulled low by IC1a and switches TRI on. discharging the capacitor to a lower threshold voltage of about 0.6 V , as set by R2 and R4. R1 sets the "off" period, and with the value shown produces a delay of about 90 seconds between squeaks. This can be varied if desired.

The audio oscillator based around ICIb operates on a similar principle, but the threshold is varied by the voltage from Cl's discharge via TR1 and R6, which produces the pitch change of the "squeak" (high to low). Resistors R9 and R10 set the frequency of operation. R7 sets the amount of pitch shift in the squeak whilst $R 6$ sets the duration and rate of change of the squeak. Transistor TR2 drives loudspeaker LSI directly.

The circuit uses just two AA size batteries to produce a 3 V rail at 3.5 mA . A set of batteries will last for about three weeks of continuous squeaking. Battery life can be extended by substituting an inductor and piezoelectric sounder for LSI and increasing resistor R10 to about 100k. in which case a 3 V lithium battery can be used and the construction miniaturised.
(Note, the transistors used are standard general-purpose small-signal which can be substituted with many alternatives. Readers should take especial care with the reversedstyle of transistors specified - check the connection data closely - A.W.)

Here are my Top Ten locations to "bug" people with Squeakie: Underneath an associate's desk In a shoe in a bedroom

Fig.3. Circuit diagram for Squeakie, the Practical Joke!
cupboard Underneath a regularly moved chair In the pocket of a Lab. Technician's white coat Stuck to the underside of a public bar On top of a light fitting in an examination hall Underneath the driver's seat of a new R-registered car (dangerous) Inside the liner of a kitchen
bin - Inside an ornamental pot or vase Stuck to the back of a book in a book shelf.
Also, multiple Squeak placement can have devastating results when they each have a different time constant and pitch!

Adam Fullerion,
Salisbury, Wilts.

INGENUITY UNLIMITED

BE INTERACTIVE

IU is your forum where you can offer other readers the benefit of your Ingenuity.
Share those ideas and earn some cash and a prize!

DIFFERENTIAL THERMOSTAT KIT Perricitor hearrecovery. sotw sytums, boter enticuency ec Two sensors wil operete a rely pco $£ 29$ rol LOT93

PC POWER SUPPLIES

PACK OF 8 FOR $£ 9.95$
Thats rightl 8 power supplies for $£ 995^{\prime}$ These are all fan cooled (usually 12 v) our choice of specs etc. and are sold as seen. But worth 14 for the fans atonel ref $\times \times 17$
MANS POWER SAVER UK mede plug in unit fited inseconds cen reduce your energy consumpton by 15% Worka wilh frages,
 LOT71 pact of 10 E6e rel LOT72
DC TO DC CONVERTERS
DRM58 mput 10-40vac outpul 5 v a4 $£ 15$ DRM128 mput 17 -a ovede cutput 12v BA £18 DRM158 inpur 20-sovac output 15 V 8A $£ 18$ DRM 248 mput $29-40 \mathrm{odc}$ output $24 \mathrm{v} 8 \mathrm{AA} £ 12$ DRS 123 mput 17 -4ovde
output $12 \mathrm{v} 3 \mathrm{~A} £ 10$ DRS 153 input $20-40 \mathrm{volc}$ outpur $15 \mathrm{v} 3 \mathrm{~A} £ 20$

HITACHILM228X LCD SCREENS $270 \times 150 \mathrm{~mm}$ stendard 12 way connector 640×200 dote tec spec sheek. E15 asch ref LM2 HOME DECK CLEARANCE These ums must be deored remds, an infta red remote qwerty woyboand and recelver astandard UHF modultor a etanderd $1200 / 55$ BT approwed modem and loeds of cmps, capectors. drodes reastors of all for jusi $£ 10$ rol BAR33 PORTABLE X RAY MACHINE PLANS Elsy to corrituct plan on ample and cheap way to buld a home X-riy mechinel Eflective device X-ray seeted assembles an be used for expenmentir purposes Not a toy of for munersl ε EVset Ret F $X P 1$
TELEKINETIC ENHANCER PLANS Myetrly and maze your friends by creating mation with no known apperent meens or cause Uses no elecincal or mechanical connectons no speciel gemmelts yel produces positvo motion and effecr Excetient for science propects mwgic showi perty dernonstritions or senous neseenc
\& 4iger Rof FTTKE1
ELECTRONIC HYPNOSIS PLANS 8 DATA This deta
showe several ways to put subpects under your controd Inclucied is a iul volume reference tasd and several construction plans that when uted centously M is for use as entertenment al partes etc only by those expensenced in th use $£ 15 / \mathrm{sel}$ Ref $F / E H$?
GRAVITY GENERATOR PLANS This unique plan GRAVITY GENERATOR PLANS This unique pian
domonstrites a simple electncal prenomena then produces en antrdomonstrutes a somple efincic phenomona mock spectship out of gravity effect You can actualy buld a smet mock spaceship out d siover mater FIGRA1
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750.000 volts of discharge, expenment whith extreordinary HV effects 'Ples ma in aper St Elmo's fire. Corone, excetient science project or converseton proce $£ 5 /$ set Rol F/BTC1nG5
COPPER VAPOUR LASER PLANS Produces 100 mw of veble green light High conerency and spectral quatity sumiarto Arpon
 NEGEV in lernel £10/3ot Ref F/CVLI
VOICE SCRAMBLER PLANS MEnature solid stete symem tums apeech sound into indecxpherable nose thet camot be undenstood whitout ascond mitcrung una U ont
PULSED TV JOKER PLANS Lrtio hand hedd device uflilises putso technmques then will complently diarupt TV pecture and sound works on FM too' DISCRETION ADVISED ह\&/met Ref FTTJ5
BODYHEAT TELESCOPE PLANS Highty drectional tong renge device uses recent tectinatogy to detect the preeence of itime bodees, werm and hol spots. heet walaks etc Intended for securny law enforcement, research and developinent. Acc Exoplint secuity device or very interesting scrence propect $\Sigma 8 /$ wel Rel F/BHT1
BURNING, CUTTING CO2 LASER PLANS Proyect an inverwa beem of hem capable of burting end melting matenals over 8 consuderable distance This lesers one of the mow efficert corverting 10% input power mot useful output Not only is this device a worthorse in widing. cuttong and heef proceseeng matenels but it is elso a likely candidette as an ellective directed energy beam weapon agantst masilies arcrift ground-to-ground, etc Partche beems may very wel utwe a laver of the type to blets achannelin the atmosphere for a hagh enargy stream of neutrons or other parbites the device is easly applicibtse to buinting and etching wood, arting. plastes texties etc §12/mot Ref F/C7
DYMAMO FLABHLGHT Imeressing concspt, no ofetenes needed just squeeze the ingger for instern light apperently even works under witerm en emergency athough we heven't tned yer' E 89 ral SC152 ULTRASONIC BLASTER PLANS Labomtery source of senc shock waves Blow hotes in meta produce 'cold sream aromuxe shock waves Btow hotes in mete produce colv stem samux uquides Meny cloanng
etc f6/ser Ref F/ULBI

Water pump sootors, wains powered, 165 i 75 mm , 5 mm shafl. is ea ref MMI Peck of 3 for 112 ref MMII.

ANTI DOG FORCE FIELD PLANS Highy effectve cran produces time vande pulees of scooustal enirgy thet dogs cannot tolorte $58 / \mathrm{sel}$ Ref F OOOG2
LASER BOUNCE LIS TENER SYSTEM PLANS Alow you to hear sounds from a prempes wehoul ganing access $£ 12 /$ sel Ref F LLIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheid has large trunsducer and bettory capscity whe extems comtross £6/Bot Rof F/PSP4
INFINITY TRANSMITTER PLANS Towphone tine graboen room monnor The unimeto in homelofice secunty and satey's simple to usel Cell your home ar offoe phone push a secrer tone on your telt phone to sccess ether A) On premaes sound and voces or B) Exating comversacion with break-in canabitiy for emergency messeges E 7 Rof FTTELEGRAB
BUG DETECTOR PLANS Is that someone getung the goods on you? Esay to conatrud device locates any hoditen aource of redio onergy' Snitis out and finds bugs and other sources of bothersome imeflerence Detects tow high and UHF frequencies £5tset Red FI BD1
ELECTROMAGNETIC GUN PLANS Projectes metw objed - consuterabie detance-requres edull supervition E 5 rel F/EML2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI $55 /$ sel R of FIEMA
PARABOLIC DISH MICROPHONE PLANS LIsten to distam sounds and vorces open mndows sound sources in hard to get or hostep promees Uses smeletite technotogy to gather distam sounds and focus them to our uilre sensitive efactronce Plane nbo show an opsocial wretess tik eystem §Bisel rel F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Opernes on \&-12vdc many possibie expenments £10 Ref FAMVM7। TCL4
MEGA LED DISPLAYS PCB fited with 5 soven seoment displirys oach marwing $55 \times 38 \mathrm{~mm} £ 5$ LeD
MOD TRANSMITTING VALVES $\$ 180$ E $£ 80$ rof LOT112 SWITCHED MODE PSU'S 244 wat. $+532 \mathrm{~A},+128 \mathrm{~A},-502 \mathrm{~A}$ 1202 A There is atso an opsenal 33 V 25 A ral avelation $120 / 240 \mathrm{~V}$ P Cand. 175 m 907145 mm IEC initl Sutate for PC use (8 ddrve connifitors 1 mbosard) \& 15 ref LOT 135

VIDEO PROCESSOR UNITS?/6V 10AH BATTS/24V 8A TX Not too sure whe the functoon of these unts is but they cortenly mate good strippers' Mesures $390 \times 320 \times 120 \mathrm{~mm}$ on the tromt are controls for scan speed, scan detay scan mate loseds of connectrons on the riser Inside 2 a 6 V 10 AH sesed lead scid beth pct s and 8 A ?

MINI FM TRANSMITTER KIT Very high gain proemp suppued comphto wan FET etactet macrophone Designed to cover 88-108 Mnz but easliy changed to cover 83-130 Mhz Works with a common iv (PP3) batery 02 W RF E9 Red 1001
3-30V POWER SUPPLY KIT Vanabe sabinzed power supply for teb use Short carcut protected, sulamid for protesonal or amatour use 24v 3A transformsr is needod to complete the 朝 £14 Ref 1007 1 WATT FM TRANSMITTER KIT Supphed whic phazo electinc mice B-30voc A1 25-30y you wal get nearty 2 watlal $£ 15$ ref 1009 FMUAM SCANNER KIT Wol not quito you have to tum the knob your sell but you wal hetr things onthes radio thet you would not hear on an ordinary redio (even TV) Covers $50-160 \mathrm{mhz}$ on both AM and FM Bufl in 5 welt amptier inc speaker $£ 18$ ref 1013
3 CHANNEL SOUND TO LIGHT KIT Wrewse system mane operaled seprerme sensurvity sdjusiment for each channel 1200 w
BULL ELECTRICAL
2SO PORTLAND ROAD, \#OVE, SUSEEX.
HN3 SOT (THTABL MSHED SS YEARS
 WITI ORALR FLIScuspap RUTVVAT. 24 Hotzis stivice use PLESVAT.
ovautaiominisicoar rexis
 'phone orders : 01273203500 Fax $0177328 e n$
E-anail bull@pavilion.co.uk
 home

for less than 15

By using our phone bor you ger everything you noed to convert any standerd tidephione ith conbox tetephene You smply open the box plug your tebephane into a connector in wde and then plug the counbox wioed into your telephone socket, it's that ampla! There are one or two caxches however
Catch one is then the lock and henges my be damegedoroken thes doesn't restly mamer beca use you could replece the hinges essily and change the lock of you couid refin the from panelonto a box of your own chooing
Catch two w thet the three counsicts eccapt $£ 1,50 \mathrm{p}$ and $10 \mathrm{p}^{\prime} \mathrm{s}$ this is free excupt the the 10 pitat is for the odder 10 p pucce so you woud need to give a small prece of plestc acrose the bottom of the stot on the inside to reduce the hote scea Full programmunginetructionte me induded wh every combox Bargen pnoe $£ 499$ rof CBT 1
4 WATT FM TRANSMITTER KIT Smaf but powertul FM tranmater, 3RF steges, micropione and audio preamp moluded £24 Ref 1028
STROBE LIGHT KIT Adjustable from $1-60 \mathrm{hz}$ (a lot fastor than conventonel strobes) Mans operated £17Ref 1037
COMBINATION LOCK KIT 9 key programmble complete weh koyped wil swech 2A mans ov oc operamion $£ 13$ rel 1114
PHONE BUG DETECTOR KIT This device wil wam you " somebody is eavesdroppeng on your line Ee rel 1130
ROBOT VOICE KIT Interesting arcurt than destorts your vocel eduustable enswer the phidne wath adifierent worce' 12 vac C9 rel 1131 TELEPHONE BUG KIT Smen bug powered by the 'phone ine starts tranamating as moon as the phone is procked upl £12 Ref 1135 12 V FLOURESCENT LAMP DRIVER KIT Logt up 4 foot tubee from your car nemery gy 2 a transformer also requred $\Sigma 8$ rof 1068
VOX SWITCH KIT Sound activened swtch teoal for maiong bugging tope recorders efc edjustable sansitivty $£ 10$ rol 1073
SOUND EFFECTS GENERATOR KIT Produce sounds ranging from bwa creps to srens Complefe with spe=ker, edd sound effects to your projects for just E9 rel 1045
15 WATT FM TRANSMITTER (BUILT) 4 stege high power proamp required $12-18 \mathrm{vdc}$, can use ground plane. yagior open dipeto £69 rof 1021
HUMIDITY METER KIT Builds mto a procastion LCD numidiy metor 9 ic dewign pct led deplay and al components netuded $£ 29$ PC TIMER KIT Four channel output controtled by your PC wit swich high currert ma ns wh helays (supplied) Sormare tupphod so you can program the chennete 10 do wha you wan whenever you wan unmur symom conng Invo wht win 100 Nreo E24 99
NICKEL PLATING KIT Profestondelectropieng ke the wh transtorm rusting parts into showpiecse in 3 hours' Win pite omo seen iton bronze gunmetel copper weod suver soldared or brazed Bents Ku inctudes encugnt 10 plete 1000 sq inches You will elso noed $-12 v$ supply a comtener and 212 v ight bulbe $£ 45$ ref NIK30
Minature adjusta ble timere, 4 pole clo output 3 A 240 v , HY1230S 12vDC adjustable from $0-30$ secs. $£ 499$ HY1260M, 12vDC adjustable from $0-60$ mins. £ 99 HY2405S. 240v adjustable from 0.5 secs $\mathbb{E} 49$ HY24060m 240v adjustable from 0-60 mins $£ 6.99$ BUGGING TAPE RECORDER Smel vorce sctraxed recorder. Lses mucro cassette complete wth heestphones E28 98 rel MAR2OP1 POWER SUPPLY fuly cesed with mans and o/p leads 17 V DC 900 mA output Bergin pnot $£ 599$ rol MAGBP9
COMPOSITE VIDEO KIT. Converts compode video into sepe rate H aync V sync and woeo 12v DC £1200 REF: MAGAP2. VENUS FLY TRAP KIT Grow your own canmorous plent whth th: smplatin $£ 3$ rof EF 34
8"X12" AMORPHOUS SOLAR PANEL 12 V 155 k 310 mm 130 mA Barden pnce juse $\AA 598$ ea REF MAGAP 12
FIBRE OPTIC CABLE BUMPER PACK 10 motres for $£ 499$ rel MAG5P 13 ndes for oxpenmenters' 30 m for $£ 1298$ rel MAG13P1 ELECTRONIC ACCUPUNCTURE KIT Buide into an esectronc vermon instosd of netalel good to expentrient whth $£ 9$ rel 7 P30 SHOCKING COIL KIT Butld this the bertery opereled device int all sorts of thenge also gets worms out of the groundl 99 red 7P38 HIGH POWER CATAPULTS Henged am brace for statility tempered steol yotho super strengit lemox power bends Departure
 200 matres' Es 99 rof R/9
COMPAQ POWER SUPPLIES WITH 12 V DC FANS EX equepmem pau's some ok some nor bur worth if for the fan alone probebly asout 300 wer PC Unit whth IEC mput $£ 350$ esch ref CD1 9-0-9V 4A TRANSFORMERS chase.s mount $£ 7$ ret LOT 19A FRESNEL PERSPEX SCREENS $11^{\prime \prime} \times 11^{\prime \prime} \times 316^{\prime \prime}$ as used in overhead projectors etc New £19 ref FRESN

MEGA LED DIS PLAYS Build your sell a clact or something wheh these mega 7 eg dreplays 55 mm high. 38 mm vedte 5 on a pco for pus £499 ref LOT16 or a bumper pack of 50 diaplays for just $£ 29$ rof LOT 17
SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operition 0-200vdc 1A £2 50
SMT 20000/3 3-24vdc operesion 28-280vac 3A \&4 50

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK
FOR CASH
SURPLLS STOCK LINE 0802660335

D
 IRECT

 Circuifs and

 Circuifs and Desilgn

 Desilgn}

B
O

K
S
E R V

ICE

PRACTICAL ELECTRONIC FILTERS
Owen Brahop
This book deals with the subject in a non-mathematica way. It reviews the main types of filter, explaining simple terms how each type works and how it is used. The book also presents a dozen filter-based projects with applications in and around the home or in the con structor's workshop. These include a number of aodio electronic organ.
Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with

circuit diagrams and worked examples.
 88 pages $\mathbf{E 4 . 9 9}$

ELECTRONIC ALARM CIRCUITS MANUAL
R. M. Marston

One hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating prin
ciple of each one is explained in concise but comprehen sive terms, and brief construction notes are given where
necessary.
Aimed at the practical design engineer, technician and experimenter, as well as the electronics student and amateur.
124 pages [OrdercodeNETI £13.95
DIGITAL GATES AND FLIP-FLOPS
Ian R. SInclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital thoroughly and from the beginning.
Topics such as Boolean algebra and Karnaugh mapping are explaned, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple ounters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are ing practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic.

50 SIMPLE LED CIRCUITS
R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most inexpensive and reely available cludes circuits for the 707 common anode display. 64 pages [Order cornBP42] $\mathbf{E 2 . 9 9}$

BOOK 250 more l.e.d. circuits.
50 pages
[Order code BPG7]
CIRCUIT SOURCE BOOK
A. Penfold

Written to help you create and experiment with your own electronic designs by combining and using the various standard "building block" circuits provided. Where ap plicable, advice on how to alter the circuit parameters is
given.
The circuits covered in this book are mainly concerned
with circuits covered in this book are mainly concerned amplifiers (op.amp and bipolar transistors); audio power amplifiers; d.c. amplifiers; highpass, lowpass, bandpass and notch fitters; tone controls; voltage controlled amplifiers and fiters; triggers and voltage comparators; gates and electronic switching; bargraphs; mixers; phase shifters, current mirrors, hold circuits, etc
Over 150 circuits are provided, which it is hoped will be useful to all those involved in circuit design and applica 182 pages [Order code Bpazi] £4.99

HOW TO USE OPAMPS

E. A. Parr

This book has been written as a designer's guide cover ing many operational amplifiers, serving both as a source book of circuits and a reference book for design calculetions. The approach has been made as non-mathematical as possible
160 pages

Order code Eipg $£ 3.99$
Order code Briga $£ 3.99$

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.
FOR ANOTHER SELECTION OF BOOKS SEE THE NEXT
TWO MONTH'S ISSUES
Note our UK postage costs just $£ 1.50$ no matter how many books you order!

SUMMER '97 OFFER 10% off al
Posted before Sept. 30 '97

A BEGINNER'S GUIDE TO TTL DIGITAL ICS

R. A. Penfold

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates,
oscillators, timers, flip/lops, dividers, and decoder circuits. Some practical circuits are used to illustrate the use

BOOK 2
The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics
192 pages
Temporarily out
192 pages Temporarily out of print
A BEGINNER'S GUIDE TO MODERN ELECTRONIC

COMPONENTS

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to explain the differences between components of the same basic type (e.g. carbon, carbont wire-welal for a given application can be selected. A wide range of com a given application can be selected. A wide range of com components that are used a great deal in projects for the | home constructor. 170 pages |
| :--- |
| OHrder code BP2 |

ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS
Owen Bishop
This book describes over 60 modular elecironic circuits
This book describes over 60 modular electronic circuits how they work, how to bulld them, and how to use them. of different electronic systems, both analogue and digi-

tal. To show the reader how to begin building systems from modules, a selection of over 25 electronic systems are described in detail, covering such widely differing ap (including a simple radio receiver), games and remote	control.
200 pages [OrdercodeBP265	
3.95	

PRACTICAL ELECTRONIC DESIGN DATA
Owen Bishop
This book is a comprehensive ready-reference manual fo electronics enthusiasts of all levels, be they hobbyists, students or protessionals. A helptul major section covers
the main kinds of component. including surface-mounted devices. For each sort, it lists the most useful and readily devices. For each son, it lists the most usetul and readil characteristics, pin-outs and other essential information.
Basic electronic units are defined, backed up by a com pendium of the most otten required formulae, fully explained. There are five more extensive sections devoted to circuit design, covering analogue, digital, radio, display and power supply circuits. Over 150 practical circuit dia 328 pages \quad Order code BP'sida

PRACTICAL ELECTRONICS CALCULATIONS AND
FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., FI.E.E., FI.E.R.E., F.B.I.M

Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practica bias - tedious and higher mathematics have been avoided where possible and many tables have been included.

The book is divided into six basic sections: Units and Constants, Direct-Current Circuits, Passive Components Measurements.

Computing

WINDOWS 95 EXPLAINED

P. R. M. Oliver and N. Kantaris
if you would like to get up and running, as soon as posIf you would like 10 get up and running, as soon as pos
sible, with the new Windows 95 operating system, then this is the book for you.
The book was written with the non-expen, busy person in mind. It explains the hardware that you need in order to run Windows 95 successfully, and how 10 install and op timize your system's resources. It presents an overview of the Windows 95 environment.
Later chapters cover how to work with programs folders and documents; how to control Windows 95 and use the many accessories that come with it; how to us how to communicate with the rest of the electronic world 170 pages [Order coda BP400] E5.95 INTERFACING PCs AND COMPATIBLES
R. A. Penfold

Once vou know how, PC interfacing is less involved than interfacing many eight-bit machines, which have tended to use some unusual interfacing methods.

This book gives you: A detailed description of the lines present on the PC expansion bus. A detailed discussion o the physical characteristics of PC expansion cards. The be fitted. A discussion of address decoding techniques Practical address decoder circuits. Simple TTL 8 -bit inpu and output ports. Details of using the 8255 parallel inter face adaptor. Digital to analogue converter circuits. In fact everything you need to know in order to produce success fulpC add-ons. Grdercodegmak 80 pages [Ordercodebiki2 $£ 3.95$

EASY PC INTERFACING
 \section*{R. A. Penfold}

Although the internal expansion slots of a PC provide full access to the computer's buses, and are suitable for use add-ons, making your own expansion cards requires a far amount of expertise and equipment. The built-in ports provide what is often a much easier and hassle-free way of interfacing your own circuits to a PC. In particlar, a PC printer port plus a small amount of external hardware "games" port is less useful for general interfacing pur-
poses. but it can be useful in some applications.
This book provides a number of useful PC add-on This book provides a number of usetul PC add-on Analogue to digital converter; Digital- 0 -Analogue Con verter; Voltage and current measurement circuits; Resis tance meter; Capacitance meter; Temperature measure ment interface; Biofeedback monitor; Constant voltage model train controlier; Pulsed model train controllers: Position sensor (optical, Hall effect, etc.); Stepper moto interface; Relay and LED drivers; Triac mains switching
179 pages [Ordercode BP385 54.9
HOW TO EXPAND, MODERNISE AND REPAIR PCs
AND COMPATIBLÉS (Revised Edition)
R. A. Penfold

Not only are PC and compatible computers very ex pandable, but before long most users actually wish to ake advantage of that expandabinty and SC upgrading can be a bit confusing, but this book provides advice and guidance on the popular forms of internal PC ex pansion, and should help to make things reasonably traightforward and painless. Little knowledge of com puting is assumed. The only assumption is that you can perate a standard PC of some kind (PC, PC XT, PC AT or an 80386 based PC)
The subjects covered include: PC overview; Memory upgrades; Adding a hard disk drive; Adding a floppy disk drive; Display adaptors and monitors: Fitting
maths co-processor: Keyboards; Port: Mice and digitisers: Maintenance (including preventative main enance) and Repairs, and the increasingly popular subject of di.y. PCs
156 pages 55.99
THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., FI.E.E., FI.E.R.E.,
F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering解 by looking in depth at the most equencty use for all ew and potential micro users.

Testing, Theory, Data amd Reference

ELECTRONICS MADE SIMPLE

Assuming
Assuming no prior knowledge, Electronics Made Simple presents an outline of modern electronics with an emon details of circuit diagrams and calculations. It is ideal or students on a range of courses in electronics includ. ing GCSE, C\&G and GNVO, and for students of other subjects who will be using electronic instruments and methods.
Contents: waves and pulses, passive components, active components and ICs, linear circuits, block and circuit diagrams, how radio works, disc and tape recording, elernents of TV and radar, digital signals, gating and calculators and computers, miscellaneous systems. Page 199 (large format) [Order codeNiNets] $£ 12.99$

TRANSISTOR DATA TABLES

Hans-Günther Steidle

The tables in this book contain information about the package shape, pin connections and basic electrical data or each of the many thousands of transistors listed. The data includes maximum reverse voltage, forward current and power dissipation, current gain and forward transad. mittance and A book of
and the of this size is of necessity restricted in its scope. described in the sort of detail that maybe found in some larger and considerably more expensive data books. However, the list of manufacturers' addresses will make it easier for the prospective user to obtain further informa. ion, if necessary
Lists over 8,000 different fransistors, including f.e.t.s.
200 pages
[Order codelBP401]
$\mathbf{5 5 . 9 5}$

ELECTRONIC TEST EQUIPMENT HANDBOOK

Steve Money
instrument are explainadion of the various types of test of mathematical analysis. The book covers analogue and digital meters, bridges, oscilloscopes, signal generators, counters, timers and frequency measurement. The practiEal uses of the instruments are also examined.
Everything from Oscillators, through R, C \& L measurements (and much morel to Wavetorm Generators and esting Zeners
206 pages

Order code PCIGs
$£ 8.95$

gETTING THE MOST FROM YOUR MULTIMETER

R. A. Penfold

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relate meris and the hmitations of the two types. In hescribed including tests for component checking are ors, capacitors and diador Circuit testing is coveresisChapter 3 with subjects such as voltage, current and con inuity checks being discussed.
In the main little or no
perience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects.
$\mathbf{9 6}$ pages
OOrder code Bi239 MORE ADVANCED USES OF THE MULTIMETER R. A. Penfold

This book is primarily 3P239, (see below-up to hould also be of value to anyone who already understands the basics of voltage testing and imple component testing. By using the techniques you can test and analyse the performance of a range of components with ust a multimeter (plus a very few inexpensive components in some cases). Some useful quick check
methods are also covered.
While a multimeter is supremely versatile, it does have is limitations. The simple add-ons described in Chapter 84 pages

Order code BP265
2.95

NEWNES ELECTRONICS TOOLKIT

Geoff Phillips
The author has used his 30 vears experience in industry to draw together the basic information that is constantly demanded. Facts, formulae, data and charts are presented to help the engineer when designing, developing, evaluat ing, fault finding and repairing electronic circuits. The esur is his handy workmate volume: a memory aid electronics engineers sudents and technicians. Have you ever wished for a conciselians.
sive guide to electronics concepts and rules of thumb? Have you ever been unable to source a component, or choose between two alternatives for a particular applica fion? How much time do you spend searching for basic facts or manufacturer's specifications? This book is the answer, it covers resistors, capacitors, inductors, semicon telephones, etectronics in lighting, thermal consideration, telephones, elecroics ilighting, thermal
158 pages [Order codenszu E12.95

GUIDE
 A. Michaels
 Helps the reader to find possible substitutes for a popula

tors. Also shows material type, polarity, manufacturer and 320 pages [Ordercodelibst $\quad £ 3.95$ A REFERENCE GUIDE TO PRACTICAL
ELECTRONICS TERMS
E. A. Wison C.G.I.A., C.Eng., FI.E.E., FI. Mg
betr are increasing wurfous us on all sides and their numbers are increasing without mercy. Ours is the problem
therefore in keeping up with this relentless expansion. Un fortunately we cannot know it all and most of us do not wish to afford the cost of large reference books which explain many concepts in fair detail Here is an answer, an inexpen sive reference guide which explains briefly tbut we hope well) many of the underiving electronics features of practical devices, most of which, to a certan extent, control our lives. practical electronics ecms in han just a dictionary of getting down to fundamentals Accordingly the ermber lerms may be limited but the explanations of the which are included are designed to leave the reader more competent and satisfied - and this is without the use of complicated mathematics
For those who also wish to get right down to the root of the matter, there is a second volume entitled A Reference Guide to Basic Electronics Terms (BP286), each of the books referring to its companion as necessary
A reference guide for practically everybody

A reference guide for practucally everybody concerned
432 pages [OrdercodeBP237 5.95
BASIC ELECTRONICS TERMS
472 pages \quad Order codesiegers 5.95
PRACTICAL ELECTRONIC FAULT FINDING AND TROUBLESHOOTING
a lips, hints, and rules of thumb, all of which will equip the reader to tackle any job. You may be an engineer or tech nician in search of information and guidance, a college
student. a hobbyist building a project from a magazıne, or simply a keen self-taught amateur who is interested electronic fault finding but finds books on the subject too mathematical or specialized
The book covers: Basics - Voltage, current and resis tance; Capacitance, inductance and impedance; Diode and transistors; Op-amps and negative feedback; Fau finding - Analogue fault finding, Digital fault finding logic: Microprocessor action; V/O control, CRT control Dynamic RAM Fautt finding digital systems, Dual trace 274 pages oscillos replacement. Temporarily out of prin

AN INTRODUCTION TO LIGHT IN ELECTRONICS

F. A. Wilson

This book is not for the expert but nether is it for the completely uninitiated. It is assumed the reader has som basic knowledge of electronics. After dealing with sub Nature of Light such thing as Emitters Dicles and The Displays are discussed. Chapter 7 details four differen types of Lasers before concluding with a chapter on Fibre Optics.
161 pages
Lorder code BP359
84.95

UNDERSTANDING DIGITAL TECHNOLOGY
This book examines what digital technology has to offer and then considers its arithmetic and how it can be ar ranged for making decisions in so many processes. It then looks at the part digital has to play in the ever expanding Information Technology, especially in modern transmis sion systems and television. It avoids getting deeply in volved in mathematics
Logic, Conversions between Analogue and Digital Struc Logic, Conversions between Analogue and Digital Struc some of the concepts more fully and a glossary of term 183 pages IOrdercodegryiza £4.95
Project Building

ELECTRONIC PROJECTS FOR EXPERIMENTERS

R. A. Penfold

Many electronic hobbyists who have been pursuing their nobby for a number of years seem to suffer from the dreaded "seen it all before" syndrome. This book is fairly other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured here have practical applications, but they are all worth a try for their interest value alone
The subjects covered include:- Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scrambler/descrambler, Bat detector, Bat style echo locaElectronic breeze detector Class D power amplifier Stran gauge amplifier, Super hearing aid. 38 pages [Order code EP377
$£ 4.95$

PRACTICAL FIBRE-OPTIC PRO.JECTS

R. A. Penfol

White fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics enthusiast exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in most cases they also represent a practical approach to the probiem. This book provides a number of tried and tested circuits for projects that utilize fibre-optic cables.
The projects include:- Simple audio links, F.M. audio link PW.M. audio links, Simple d.c. links, PW.M. d.c. link P.W.M motor speed Contro, RS23C data links, MIDI link, Loop All h.PM. meter
available, nome of them require the constructor to take out 132 pages \quad IOrder coderspzy

ELECTRONIC PROJECT BUILDING FOR BEGINNERS

A. A. Penfold

This book is for complete begınners to electronic projec building. It provides a complete introduction to the practical side of this fascinating hobby, including
Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc: advice on buying the right tools for the job; soldering; making cluding stripboard, custom printed circuit boards, plain matrix boards, surface mount boards and wire.wrapping: inishing off, and adding panel labels; getting "problem" projects to work, including simple methods of fault-finding In fact everything you need to know in order to gel started in this absorbing and creative hobby.
135 pages
OOrder codeBP3g2

45 SIMPLE ELECTRONIC TERMINAL BLOCK PROJECTS
R. Bebbington

Contains 45 easy-to-build electronic projects that can be constructed, by an absolute beginner, on terminal blocks using only a screwdriver and other simple hand tools. No Most of the proje
Most of the projects can be simply screwed together and readily unscrewed if desired to make new curcuits a theoretical circuit diagram is atso included with each project to help broaden the constructor's knowledge
The projects included in this book cover a wide range of interests under the chapter headings: Connections and Components, Sound and Music, Entertainment, Security 163 pages \quad Orrder code BP3y3

30 SIMPLE IC TERMINAL BLOCK PROJECTS

R. Bebbington
117 pages E4.99

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S
R. A. Penfold

Deais with the simple methods of copying printed cir cuit board designs from magazines and books and cover graphic methods and designing your own p.c.b.s.
80 pages
Order codebiki

SPECIAL OFFER

If you order is posted before September 30th 1997 you can deduct 10% from the total amount. Note orders posted after September 30th will be returned if the full amount has not been included

DIRECT BOOK SERVICE ORDERING DETAILS

Please state the title and order code clearly print your name and address and add the re quired postage to the total order.
Our postage price is the same no matter how many books you order, just add $£ 1.50$ to your total order for postage and packing loverseas readers add $£ 3$ for countries in the EU, or add $£ 6$ for all countries outside the EU, surface mail postage) and send a PO, cheque, international money order (\mathbb{E} sterling only) made payable to Direct Book Service o credit card details (including card expiry date) Visa or Mastercard - minimum credit card order is 55 - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL MERLEY, WIMBORNE, DORSET BH21 1RW (mail order only)
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery Overseas readers allow extra time for pos
Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.
For a further selection of books see the next two month's issues.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD.
Tel $01202881749 \quad$ Fax 01202841692
We cannot answer queries or conlirm orders etc., by fax
E-mail: editorial@epemag.wimborne.co.uk

RADIOMETRIX TRANSMITTERS, RECEIVERS \& TRANSCEIVERS AT LOW PRICES !

3V, 5V \& 9V TXM Data Transmitter Modules!

SULRX-418-A or F Receiver

Special Offer Only £29.99 per pair World Leading BIM Transceiver @ 84.95 per pair !

World leading in price, performance and size the BIM high speed transceiver has already found a home around the World in many wire free products form computer networks, hand held terminals to EPOS Available on 418 and 433.92 MHz
-5V Operation, PIC Compatible *

- Exclusive RS232 Version $79.95{ }^{*}$
- Packet Controlier Board 79.95*
- Evaluation Kit + 2 BIM's 149.95*
- Sold Separately From 1-1000 pcs Transmitters

Transmitiors
TXM-418A 0.25mW .. 10
ТХМ-433- 0.25 mW ... 1275
T×M-M18-F 025 mW
TXM-433-5 025 mW 12.75
ТХМ-403-A 0.25mW ... 1275
TXM-173-4669 1 mW ..
TXM-173-4689 10mW. . 24
89

Radio - Tech Limited, Overbridge House, Weald Hall Lane, Thornwood Common, Epping, Essex CM16 6NB
Sales $+44(0) 1992576107$ Fax +44 (0) 1992561994
htp://Www.radio-fech. co.uk e-mail: sales@radrec demon.co.uk

BTEC approved
TUTOR supported

$\varliminf_{N A T I} \prod_{N A}$
 COLLEGEOF
 TECHNOLOGY

DISTANCE LEARNING COURSES in:

Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

- Courses to suit begInners and those wishing to update their knowledge and practical skills
- Courses are delivered to the student as self-contained kits
- No travelling or college attendance is required
\square Learning is at your own pace
For information contact: NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928 Recetvert
SILPX-418-A .. 2248 $\begin{array}{ll}\text { SILRX-418-A... } 2205 \\ \text { RXM-418-A } & 28 \\ \text { O }\end{array}$ $\begin{array}{ll}\text { RXM-418-A } & 28 \\ \text { SURX-433-A } & 2295\end{array}$ SHRX $403-A$. 2248 SLRRX-43-A. 2240
RXM-03-A ... 22.48 $R X M-403-A . . .22 .48$
SUR $22-418-F . ~$
22 SILRX-433-F. 2245 SLRX-43-F.
RXM-173-60... 3162 RXM-184-60... 31.62 Credit Card Payments darwery by DHLL UPS of Ar Expross Avairoto AM 94

Established 1990

Product deta
FaX back
01279832289

Comemation LOCX Versotile olectronce lock
comprising men circut 6 siper ete keyped for
 remote
LONT
I \square

0 to soveral besic circuitas 3005 -
SMEED CONTMOUER for any common DC motor up to 100 FA . Putae width modutarion gives max
inum worque it all speodis. $5-15 \mathrm{VDC}$. $3087-\mathrm{kT}$
E17.50
3V/1.5V TO SV BATTERY CONVERTER ReDlec.
oxpersive gV berteries with economic 1.5V bar. tenes IC besod circuit steps up 1 or
tories to give $\mathrm{SV} / 18 \mathrm{~mA}$ 3035-kT fa
 and single ctup AMM radio $1 K$ Fs $\%$ stames of provied sounos 4 sommetwble sounds -

 SG1 8450
SHO
aUOVO TO LCAT MODULATOA Controb intensity of ons or more lights in response to en Mudio
input. Sefo, modern opto-coupter design. Mains
 component to mate emers for a fow zeconds or ut
 yyyyyyyyyyyyy sounds h circuin dretects sour valusbles. Alerm Plece in cash box *tc. $3008-\mathrm{kT} \$ 4.50$ fire in book with hes $2 \times 36 \mathrm{~mm}$ prearo elements bull imo their own rewonem cociv. Use Enen alarm
 LEO COUNTE 3 digit bunic ovent counter cir. dobounce circut on 2 nd. Cemcadi 2 or 3 ktis fo
 ${ }^{6}$ wave shaper circuit guan opapes anp oscillotor
 Locic mose tert CMOS 6 TTL errcutas

 slows down 6 drops inta amp. Educutionsi's tunl

PEITER JUNCTION HEAT PuMP Boil a treare
water instuntlyl U for reoulted cooting of witer instuntlyl Use for regulited cooling of Hosesink required 3006 - KT E18 50 W XENON TUEE RLASHER Transformer circuit

 3047-kT E.zs

MUIT SEOUENCE LED RASHER samo es 3062. 1 KT above but you hove 7 patterns to choce liom
$3037-\mathrm{KT}$ \&4.80 LED DCE CI
LED OCE CLasice vitro to electronct \& circurt
 ter functoon to $3003-\mathrm{kT}$ above but two dice. Good
 vertios. Unes my PC perallel porn. All herdware. sotware 6 documbentition negded to beern 8 tean
 dinstion. Press switch when green sogmem of ED liotios to clemb the semerway-mine 8 stern

\qquad Easy to build 8 quarannead to
transmi 500 metres lover 1000 m possible wht tramsmit 500 motres lover 10
 Our bost seling 'bug'. Super senemive, high power 1000 m range (Up 102 mies with ivV supply 6
better seriali). OV operation $45 \times 19 \mathrm{~mm}$. $30 / 8$ RT Es.en

MPTX - Hich Power Room Tr mnsmitter

TIX - Voloe Activiced Tranemistor Powathl 2 gake vocie sctivekyit tranemmer. range. Low ranotoy currern - conserve bevter

TWI - Tadephone Pucording hitertuce Connect botwen phone hne 6 cheseties recorde Autornetic-lily swachse on tipe when phone is 40.32 mm .3033 KT. ES.
TRVS - Tepp Recorder Vor Swhach

wheche minumare to phone Tre Trenmernter ABPa,
Two Stution Intervom/Herd Whod Bug from the recsevning unit to the remiow bug' unit ov from the recoving unit to the remote bua' unic ov
3021 -KT. E11.75 Pick-up coil 6 Tetephonse Amplivion Kh

 XIEACTOR

THE EXPERTS IN RARE \&

 UNUSUAL INFORMATION! Full deamb of all X.FACTOR MBLKATKONS can be for reports and plons as E5.00 PLUS normel Pes? SUFEREAR LSTENWG OEVICE Complowe plems tobuid your own perrbolic dian microptiona. diempa yoicse and sounds trouph open windows and oven will Made from resdily aveldable perter Rood IELOM TEuphow Bug mlats buid vou own microbeste

foct fled - roon wey woit you move nhout them. Thie frit of lock porting tecch you more mout locks and the omes the pricing hen momy bocks we heve seen th tione AODBES.50
 Comote conitol unit $3072-k T$
TELE

 MOOUE USES TDAFOOQ clas
 17W WHOCE AMMMFR SOW of brute power ©
12 VOC into AW 12 VOC into
3091.1 KT
27.05
STEREO WU METER shows peek music power using 2 rows of 10 LEOU doreen yellow, red moving ber displey. $0-30 \mathrm{db}$. 3000 IT Ela conforl unn to switch onbourd reloy onvoft 3058 KT RO.50
PC DATA ACOUSMON UNTI Eneblea your PC
to monito 6 control extemnal Events of devices
 ThC PCT1 SOUM SEFVO MOTOH DFive Indo-
 or 8 lesd motore. 3 run modee. 3100 kT t17. 5 . LASER MONTER KIT 5 mW Hitroct 670 mm rod KTacr chode.
UITHASONIC MOVEMENT DETECTOA Xus
controllad ocilllor, detector itruit है controllad oceillutor, detector ditcuit s adge mounted transducers on
75 in
Adiurtably PC8 47 m

 entev/circuits $9 \mathrm{VDC}, 3049 . \mathrm{KT}$ 612.85 plue AUDIO - EDUCATIONAL - LASEA • SECURITY - TEST GEAR • BOOKS 6 more Our high qualiy propect lots we suppled whth components, fibre glass PCB's \& compredensuve

 wortung divs but plasse allow 28 dins for deivery Frices include VAT at 17.5%.
Ousar Electronios UnIt 14 Sunnningdelo BISHOP'S STORTFORD Herts CM23 2PA
Web site: http://ourworld.compuserve.com/homepages/QuaserElectronic

Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749; Fax 01202841692 (NOTE, we cannot reply to orders or queries by Fax); E-mail: editorial@epemag.wimborne.co.uk. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in E sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back lssues page for details.
Please check price and avallabillty in the latest issue.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
Analogue Frequency Meter FEB'96	957	£6.70
Vari-Speed Dice (Teach-In '96)	974	£5.69
Mains Signalling Unit - 2 12 V Capacitive PSU	975	£6.07
Control/Display	$977 / 978$ (pr)	$\varepsilon 9.90$
Multi-Purpose Mini Amplifier MAR96	976	£6.12
*PIC-Electric - Sensor/PSU - Control/Display	$977 / 978$ (pr)	$\underline{8.90}$
High Current Stabilised Power Supply	979	£6.62
Mind Machine Mk III - Sound and Lights	980	£7.39
Infra-Zapper Transmitter/Receiver (Teach-In '96)	981/982 (pr)	£8.01
Mind Machine Mk III - Programmer APR96	983	$\underline{7.36}$
Bat Band Converter/B.F.O.	$984 \mathrm{a} / \mathrm{b}$	£5.80
Hearing Tester	985	£6.87
Event Counter (Teach-In '96)	986	£8.39
B.F.O. and Bat Band Converter MAY96	984a/b	$£ 5.80$
Versatile PIR Detector Alarm	988	£6.76
Mind machine Mk III - Tape Controller	989	£6.70
Midi Analyser	992	£6.74
Countdown Timer (Teach-In '96)	993	£9.44
Sarah's Light JUNE 96	996	£7.17
Home Telephone Link	997 (pr)	$£ 10.72$
- PulStar	998	£6.60
VU Display and Alarm	999	£7.02
Ultra-Fast Frequency Generator and Counter - Oscillator/L.C.D. Driver JULY 96 \square		
Timed NiCad Charger	$\begin{aligned} & 94 / 995(\mathrm{pr}) \\ & \end{aligned}$	¢12.72
Single-Station Radio 4 Tuner	101	£7.02
Twin-Beam Infra-Red Alarm -		
Transmitter/Receiver	$102 / 103(\mathrm{pr})$	£10.50
- Games Compendium	104	£6.09
Mono "Cordless" Headphones AUG 96 - Transmitter/Receiver		
Component Aralyser (double-sided p.t.h.)	105	£12.18
Garden Mole-Ester	106	£6.07
Mobile Miser	107	£6.36
Bike Speedo	108	£6.61
- PIC-Tock Pendulum Clock SEPT96	109	£6.31
Power Check	110	$£ 6.42$
Analogue Delay/Flanger	111	£7.95
Draught Detector	112	£6.22
Simple Exposure Timer	113	£6.63
Video Fade-to-White OCT'96	114	£6.98
Direct Conversion 80m Receiver	116	£7.52
Vehicle Alert	117	£6.55
10 MHz Function Generator		26.5
- Main Board	118	£7.33
- PSU	119	£5.39
Tuneable Scratch Filter NOV'96	115	£7.83
Central Heating Controller	120	¢7.85
D.C. to D.C. Converters		
- Negative Supply Generator	122	£5.96
- Step-Down Regulator	123	£6.01
- Step-Up Regulator	124	£6.12
EPE Elysian Theremin (double-sided p.t.h.) DEC'96	121	
* PIC Digital/Analogue Tachometer	127	£7.23
Stereo Cassette Recorder		
Playback/PSU	128	¢7.94
Record/Erase	129	$\underline{9} .04$
* Earth Resistivity Meter JAN97		
Current Gen. - AmpiRect.	131/132 (pr)	£12.70
Theremin MIDI/CV Interiace (double-sided p.t.h.)	130 (set)	$£ 40.00$
Mains Failure Warning	126	£6.77

PROJECT TITLE	Order Code	Cost
Theremin MIDI/CV Interface FEB'97 (double-sided p.t.h.) Pacific Waves PsiCom Experimental Controller	$\begin{aligned} & 130 \text { (set) } \\ & 136 \\ & 137 \end{aligned}$	$\begin{array}{r} £ 40.00 \\ £ 9.00 \\ £ 6.78 \end{array}$
Oil Check Reminder MART97 Video Negative Viewer Tri-Colour NiCad Checker Dual-Output TENS Unit (plus Free TENS info.)	$\begin{aligned} & 125 \\ & 135 \\ & 138 \\ & 139 \end{aligned}$	$\begin{aligned} & £ 7.16 \\ & £ 6.75 \\ & £ 6.45 \\ & £ 7.20 \end{aligned}$
	$\begin{aligned} & 141 \\ & 142 \\ & 143 \\ & 145 \\ & 147 \\ & 148 \end{aligned}$	$\begin{aligned} & £ 6.90 \\ & £ 5.36 \\ & £ 6.04 \\ & £ 6.10 \\ & £ 5.42 \\ & £ 5.91 \end{aligned}$
Quasi-Bell Door Alert MAY'97 2M F.M. Receiver *PIC-A-Tuner Window Closer - Trigger - Closer	$\begin{array}{r} 133 \\ 144 \\ 149 \\ 150 \\ 151 \\ \hline \end{array}$	$\begin{aligned} & £ 6.59 \\ & £ 7.69 \\ & £ 7.83 \\ & £ 4.91 \\ & £ 4.47 \end{aligned}$
Child Minder Protection Zone JUN97 - Transmitter - Receiver Pyrotechnic Controller \#PIC Digilogue Clock Narrow Range Thermometer	$\begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 158 \\ \hline \end{array}$	$\begin{aligned} & £ 6.58 \\ & £ 6.42 \\ & £ 6.93 \\ & £ 7.39 \\ & £ 6.37 \end{aligned}$
Micropower PIR Detector - 1 Inira-Red Remote Control Repeater (Multi-project P.C.B.) Karaoke Echo Unit - Echo Board - Mixer Board Computer Dual User Interface *PEsT Scarer	$\begin{aligned} & \hline 152 \\ & \\ & 932 \\ & 159 \\ & 160 \\ & 161 \\ & 162 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 6.69 \\ & \\ & £ 3.00 \\ & £ 6.40 \\ & £ 6.75 \\ & £ 6.70 \\ & £ 6.60 \end{aligned}$
Variable Bench Power Supply Universal Input Amplifier Micropower PIR Detector - 2 Controller * PIC-olo Music Maker	$\begin{aligned} & \hline 932 \\ & 146 \\ & 163 \\ & 164 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 3.00 \\ & £ 6.55 \\ & £ 6.72 \\ & £ 7.02 \end{aligned}$
Active Receiving Antenna SEPT"97 Soldering Iron Controller \#PIC Noughts \& Crosses Game Micropower PIR Detector - 3 Alarm Disarm/Reset Switch Ironing Safely Device	$\begin{aligned} & 140 \\ & 157 \\ & 165 \\ & \\ & 166 \\ & 167 \\ & \hline \end{aligned}$	$\begin{aligned} & £ 6.59 \\ & £ 6.63 \\ & £ 7.82 \\ & £ 5.72 \\ & £ 5.12 \end{aligned}$

EPE SOFTWARE

Software programs for the EPE projects marked above with an asterisk (*) are available altogether on a single 3.5 inch PC-compatible disk, or as needed via our Internet site. The same disk also contains the following additional software: Simple PIC16C84 Programmer (Feb '96). The disk (order as "PIC-disk") is available from the EPE PCB Service at $£ 2.75$ (UK) to cover our admin costs (the software itself is free). Overseas $£ 3.35$ surface mail, $£ 4.35$ airmail. Alternatively, the files can be downloaded free from our Internet FTP site: $\mathrm{ftp}: / / \mathrm{ftp}$.epemag.wimborne.co.uk.

SURFING THE INTERNET NET WORK

THIS is our monthly column specially written for readers having access to the Internet - perhaps through your firm or hool/college. or with a personal dial-up account used at home. Net Work is all about helping you to get the most out of your time on-line, keeping you posted with any updates to our web pages (http://www.epemag.wimborne.co.uk) and our own FTP site (ftp://ftp.epemag.wimborne.co.uk), and bringing you any topical chat. This month's PIC Noughts \& Crosses software is at sub-directory/pub/PICS/PICnoughts.

The on-line version of Net Work provides a very large selection of links which we hope will interest fellow electronics fans remember that we are always keen to share any interesting web and FTP URL's (Uniform Resource Locator) with our readers - let us know your favourites and you'll receive a mention on our web site. Don't forget to look out for the Net Work A-Z Index of all the URL's we've linked to so far - all you need to do is point and click!

New Addition

A new addition to our FTP site is a document Guidance Notes for Newcomers to Usenet or "Newsgroups". It gives a detailed insight into the philosophy of Usenet (Unix User Network) and how to behave properly. Newsgroups - there are 25,000 or more of them - are meeting places in cyberspace where you can exchange views and information on a particular topic. It's a great place to discuss computing and programming issues, for instance, but you can select from a massive variety of hobbies, recreations, scientific and technical areas. It was felt that this guidance document would be worth uploading to our FTP site. at ../pub/docs/usenet.txt (42K).
Each newsgroup is usually dedicated to one particular discipline or subject. from the most fundamental or mundane. right up to the highest technical levels. Using some newsreader software, or even your web browser, you can "post an article" into the newsgroup which will be circulated electronically to everyone else who "subscribes" to the same newsgroup.

They, in turn. might post a "follow-up" response, which you"ll receive next time you connect to the Internet. Thus, it is possible that a contentious subject will result in a long "thread" developing, with dozens or more replies arising. Sometimes, there may be no response at all, occasionally the thread will have grown into 100 follow-ups or more.

Netiquette

Usenet is an amazing example of self-regulation on a global community scale. It is unfair on everyone else to stray very far from the "charter" of the Newsgroup - the very reason for its existence - by posting something which is completely "off topic". If you create "noise" by posting something which is irrelevant to a particular newsgroup, then if you're lucky it will merely be ignored, but otherwise you can expect to attract "flames" - abusive postings from others which vary in intensity from polite reminders to total thermo-nuclear meltdown!

It's also against the established rules of "netiquette" to post binary files to any group which exists for discussion only (e.g. the sci.electronics.* groups). The difference is that many newsgroups are simply open-standard "chat" facilitators in which text messages are posted - a very economical form of global communication.

Occasionally though, some users decide to post binary files such as .zip files of demo software, or .gif or .jpg image files, because it is simple to convert such computer images and programs, by UUencoding them - whereby data can be translated into plain ASCII, as used in E-mail or news posting. Thus, binary computer files can be transmitted as (incomprehensible) text.

Sometimes, folks genuinely think they are doing us all a favour by sharing e.g. demo software with us in a newsgroup. but they're not: each file can take 100 K or more, and in the worst cases they reduce a subscriber's newsfeed to a crawl. It is a waste of
bandwidth which costs everyone time, money and general aggravation. There are however many groups in which you should expect to receive binary postings - alt.binaries.schematics.electronic for example (yes, in that notorious part of Usenet . . .).

If you'd like to try your hand at news, take a tip: it's much better to subscribe to the newsgroup for a week or two and simply read it, in order to get an idea of the Havour and level, before trying to post something yourself. Be warned that Usenet is extremely addictive, but if you read the usenet.txt file from our FTP site, you're sure to have a happy time chatting with like-minded people from all around the planet! I have made many friends this way around the world.

More Junk

More on junk E-mail, following on from last month's column: it continues to dribble through. two or three mails every time I connect. I eventually found a free name removal filter to which I subscribed on-line, but it still has not eliminated junk yet! I’ll report how effective it really is. next month.

Hot Links

To save you time, the following sites are all "enabled" on our on-line Nel Work page. First, more information on "name removal" to combat unsolicited mail is stashed away at the |American] Internet E-mail Marketing Council at http://www.iemmc.org. For a search engine to check what's what on Usenet posts - see the essential http://dejanews.com. (For a test, use it to tind my recipe for Lemon Meringue!) Then move on to the Bebop Site - http://shl.ro.com/~bebopbb, a book and multimedia computer educational package (the Behoputer) which I shall be reviewing separately. If you enjoyed the excellent book Bebop to the Boolean Boogie you'll be delirious about this follow-up book and CD ROM, just out.
Those into GPS (Glohal Positioning System) navigational devices really must see the informative site http://www.vancouver-webpages.com/peter/ where there is a massive variety of GPS links, FAQ's and software galore - even a yacht race scoring program!

The UK and Europe now have their own versions of a few popular web sites: starting with two essential search engines, the trendy and ubiquitous Yahoo! at http://www.yahoo.co.uk and my preferred, and more powerful Alta Vista at http://www.altavista.telia.com. Likewise, UK Apple Macintosh users will appreciate http://www.alwaysapple.com which has some UK search engines.
A listing service for robotics and electronics sites called Electron-Surf is under heavy construction at http://www.electronics2000.com. On a more scientific basis, the American site http://www.scicentral.com has been created for scientists and engineers as a gateway to some 50,000 sites in over 120 scientific disciplines. They plan to include chat rooms and news in the future.

Meantime, over in Belgium, Rudi Logghe suggests his new updated electronics pages at http://club.innet.be/~year2138/ electro.htm and Peter Johnson recommends his site where he's posted links to some 100 circuit schematics which are freely available on the web: http://www.web-span.com/pjohnson/ schematics.htm.

Elsewhere, a 30 day trial shareware program MMLogic Multimedia Logic System, a PC simulator for logic, can be fetched from http://www.softronix.com. If you're interested in power electronics, check Frank Greenhalgh's Power Corner at http://www.fgl.com/poweri.htm, complete with background ragtime music!

I'm always delighted to hear from you - E-mail me at alan@epemag.demon.co.uk. See you next month for more Net Work!

VIDEOS ON ELECTRONICS

A range of videos (selected by EPE editorial staff) designed to provide instruction on electronics theory Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine studu Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes originate from VCR Educational Products Co. an American supplier. (All videos are to the UK PAL standard on VHS tapes,)

BASICS

VT201 to VT206 is a basic electronics course and is desigmed to be used as complete series, If required.
VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits. Ohms law. how to use the digital multimeter and much more. Order Code VT201 VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202 VT203 57 minutes. Part Three: Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oacillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscil. lator circuits.

Order Code VT206

524004 each

 inc. VAT \& postageOrder 8 or more get one extra FREE Order 16 get two extra FREE

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT 102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation. Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc. Order Code VT302 VT303 54 minutes. Digital Three; Regiters and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to com. municate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices. Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306

Full name:
\qquad
Post code:
Telephone No
Signature:
\qquad I enclose cheque/PO payable to WIMBORNE PUBLISHING LTD
Please charge my Visa/Mastercard:
Card expiry date
Card No:
Please send video order codes: \qquad

Address:

\qquad

ORDERNG: Price includes
 postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send $£ 34.95$ per tape. All payments in $£$ sterling only (send cheque or money order drawn on a UK bank).

Send your order to:
Direct Book Service, 33 Gravel Hill,
Merley. Wimborne, Dorset BH21 1RW (Mail Order Only)
Drect Book Service is a division of Wimborne
Publishing Ltd.
Tei: 01202881749 Fax: 01202841692
Videos are normally sent within seven days of receipt of order.

E22

Everyday Practical Electronics reaches nearly twice as many UK readers as any other independent monthly hobby olectronics magazine, our audited sales figures prove it. We have been the leading independent munthly magazine in this market for the last twelve years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Holland Wood House, Church Lane, Great Holland, Essex CO13 OJS. Phone/Fax (01255) 850596.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

> LIGHT ENOINEERING
> SERVICES (PRECISION)
> Machining, sheet metalwork, instrument/toolmaking efc - most engineering processes in most materials. One offs, parts, prototypes, panets, mods, jigs, repairs, anything - no job too small - trade or private - for quick friendly service contact Richard:

> Tel/Fax: 01954260804

BTEC ELECTRONICS

TECHNICIAN TRAINING
GNVQ ADVANCED ENGINEERING (ELECTRONIC) - PART-TIME HND ELECTRONICS - FULL-TIME B.Eng FOUNDATION - FULL-TIME Next course commences
Monday 15th September 1997 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-373 8721

BRAND NEW SNCLAM SPECTRUM
2X MICRODRIVES PARTS
2X MICRODRNES 1 15, NTERFACE ONE CZO.
CARTRIDGES 10 FOR 15,50 FOR CARTAIDGES 10 FOR E15, 50 FOA ESO. a BOAROS 5. 6 67, POPULATEO WTTH IS ROMS, EZO: UNPPULATED, E12; MICRODRIVES C10 EACH. TOP GBOTTOM CASES $£ 15$.
THE P.C., MAC and OL's "Litto Friond" ThC Lix e10-PC. Lim ess-0. Live 12 CAMBRIDGE ZEB A NOTEBOOK COMPUTER AVAMME ACAM ED. RECONDTTIONED ESO
OMY Y THCK AKM BATS. 20 HOUAS WORK. LCD SCREEN 72 Cra, B LINE, 32 RAMM EXTRA RAMS EPROMS, Pin O SERLAL PART, ROM HAS
BEC BASIC. WIPROCESSOA, SPREAOSHEET, OATA BASE, MP/EXPORT TO PC ACO, V52 TEAMINAL. WM. RICHARDSON \& CO. PHONEFAX 01494871319 6 RAVENSMEAD CHALFONT ST PETER, POSTE5. AUCKSS SLS ONE

THE BRITISH AMATEUR ELECTRONICS CLUB

 exists to help electronicsenthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:

Mivi do R Devies, 70 Ach Roed, Culdington, Mertruleth, Chechive CWI 2PB.

Parallel Port Manuals
Usc of a PC Printer Port
for Control \& Data Acyusition

- Temperature Meavirement - AD and DVA - Motor Control
- Signal Conditioning - Precision Timing - VO Expansion - Infrared and Radio Remote Control - And much more! It's casy to get sturted
All dowe throext the Parallel Port on your PC Uning C in a DOS Enviromment
For more Info... and to Order see:
http:///vnw, acceas,digex, net// pha
Volume 1-\$12 Volume 2-\$17 "Special" Volumes 1 \& 2-\$25 Peter H Anderson phame
915 Holland Road Fax:001 410836.526 Bel Air, MD 21014 USA
Prionity Shipoing - Westem Europe \$8 Pocitic $\$ 9$ Choct / M.O. Accepted (us \$ OnM Crech Card / Foreign Cumency Orden- See weo Poo

http://kitrus.com

is the new wabeite for DIY Elactronics. Over 130 kits. Mary links to other electronics sitis. Cick on autoresponders to ge Catalogue, KY Prices and CCO Camera prices by retum Email Order Kits, on-ine using our secure credit cand faciliy. Our butert 2 hise fil directy onto the parallel port of a PC. They are contaned in en RS232. Axtended O-shol platic case Kit12 dista loger samples over a $0-2 \mathrm{~V}$ or $0-20 \mathrm{~V}$ range at intervals of
onehour to one 100 S . KM 113 drves 2 unipoter rippoer motors Comprehensive soltwers confrols each motor. Four exteme inputs ato scosptad to control motors. Downiosd sotiware for both khe fre fom our wobety and exenine

DIY ELECTRONICS
PO Box e8458, ShAM SHUI PO, HONG KONG Fax 852-2720 0255. Email: peter@kitsrus.com

> REESET ELECTRONICS
> Bespoke Electronic and PCB Design
> Prototypes and Quantities
> PIC \& ISD Speech Systems Specialist
> For Free Advice and Further Information:
> Contact: Ed Rees, BSc., CEng., MIEE
> Tel. Maidenhead 0162828146
> Email: reeset@iec.org.uk

PLEASE MENTION
EVERYDAY PRACTICAL ELECTRONICS
WHEN REPLYING TO ADVERTISEMENTS

LAST CHANCE TO SAVE OVER 27 Subscribe Now

Everyday Practical Electronics Annual subscription rates UK £24.00.
Overseas $£ 30.00$ standard air service, £47.50 express airmail.
Rates must go up on Sept. 1st, subscribe now for a great saving.

Send your name and address with \& sterling cheque, bank draft or credit card number and card expiry date to:

Everyday Practical Electronics Allen House, East Borough,

Wimborne,
Dorset BH21 1PF
Y品
Tel: 01202881749
Fax: 01202841692
Web Ste: http:/www.epenag.wimborne.co.uk
E-mail: editorial@epemag.wimborne.co.uk

Miscellaneous

PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8GR, or phone Brighton 883871, fax 01273706670.
VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice/lists please ring, Geoff Davies (Radio), Tel. 01788574774. PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production. Artwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX, or phone/fax 01232738897.
CLEAR-OUT SALE of components, equipment and kits accumulated over 15 years, $£ 120$. Dower Road, Sutton Coldfield. Phone 01213081685.
G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics, 70 Oxford Road, Clacton, COIS 3TE.
SALE: MURPHY RADIOS, FM/LW/MW, £7.95; 100 watt amplifiers, 240 V , cased, plus controls, $£ 19.00$. K.I.A., I Regent Road, Ilkley. Freeby: 30 components and catalogue, s.a.e.
AMPLIFIER CHASSIS, 88.99, 30+30 watt, controls $\mathrm{T}+\mathrm{B}+\mathrm{V}, 7$ push switches + stereo preamplifier + leads, 15 V AC, new, + directions. K.I.A., 1 Regent Road, Ilkley, LS29 9EA.

FOR SALE AS GOING CONCERN: Established Mail Order Electronic Component Company, large customer base, easily run, help given if needed. Reply to: Box No. 100, c/o Everyday Practical Electronics, Holland Wood House, Church Lane, Great Holland, Essex COI3 OJS.

DOMESTIC CCTV AGENTS WANTED
 See \& Hear Who's Outside on Your Own TV Screen

Domestic CCTV is a security camera that links into your own TV set, creating a security channel to monitor your property, effectively and cheaply.
Established manufacturer selling into the wholesale and retail markets, requires commission only agents to service existing accounts and set up new business. 6 out of 10 people who see our products buy them which is why we wish to expand our coverage.

Please reply with CV to:
Boundary Marketing 14 Thorngrove Road, Wilmslow SK9 1DD

TECHNICAL INFORMATION SERVICES 3
76 Church St, Larkhall, Lanarks, ML9 1 HE Tel: 01698 883334/884585 Fax: 01698884825 PHONE NOW FOR YOUR FREE QUOTE
We have the World's Largest Collection of

SERVICE MANUALS

Why not join Europe's fastest growing "Information Library Service"
Buy ANY Service Manual for $£ 10.00$ and return any manual no longer needed for a $\mathcal{E 5 . 0 0}$ credit CALL WRITE NOW FOR FURTHER DETAILS
Initial joining fee of $\mathbf{\Sigma 6 5}$: Thereafter $\mathbf{\Sigma 2 0}$ Yearly Join Now: Get your first Manual FREE!

SERVICE MANUALS \& Technical Books

Available for most equipment, any make, age or model Technical Book and Manual Compilations now on CD-ROM MAURITRON TECHNICAL SERVICES (EPE 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY Tel:- 01844-351694. Fax:- 01844352554 Email:- sales@mauritron.co.uk Web site at:- http://www.mauritron.co.uk Please forward your latest catalogue for which I enclose 2×1 st Class Stamps. or $£ 4.11$ for the complete Service Manuals Index on PC Disc plus catalogue.
NAME \qquad
ADDRESS \qquad
POSTCODE
Photocopy tus coupon if you do not wish so sut the magarne

\backslash Veronica ${ }^{\text {and }}$-108MHz FM TRANSMITTERS

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the UK. Also very stable VFO transmitter kits.
Prices from under £10 and a 'Ready Built' service is available.
Contact us for a free brochure including prices and more detailed information.

Abstract

VISA 18 Victoria St., Queensbury, BRADFORD, BD13 1AR Tel 01274816200 Email veronica@legend.co.uk Website: http://www.legend.co.uk/~veronica/

31b mixed component pack. Jumbo component pack. 250 off mixed capacitors. 250 off i.c. sockets... 1000 off mixed ceramic caps. 20 off mixed crystals/fitters. 25 off mixed relays.
100 off phono plugs. 10 off mixed displays 50 off d.i.l. switches. 30 off mixed heatsinks Brand mixed switches
 51/4" $1031 / 2 "$ floppy drive
converter leads.........

84.95
£10
$\underline{4.95}$

£1.50 each, 10 for £12 220V 1500 r.p.m. geared motor
£6 each, 10 for $£ 50$ 7 V-12V d.c. motor, $4 / 6000$ r.p.m. $700 \mathrm{~mA}-1450 \mathrm{~mA}$. $\mathcal{4}$ each, 10 for E 30 12 V d.c. motor, 13,000 r.p.m. $180 \mathrm{~mA}11$ each, 10 for $£ 8$

6 V d.c. motor, 1,200 r.p.m. 600 mA 9 V d.c. motor, 13,000 p.p.m. 460 mA \&1 each. 10 for $£ 8$
10.5 V d.c. motor, 9,000 r.p.m.,
$220 \mathrm{~mA} £ 1$ each, 10 for $£ 8$
S.M. P.S.U., mains input, +5.2 V 6 A ,
$+24 \mathrm{~V} 0.5 \mathrm{~A},+24 \mathrm{~V} 5.5 \mathrm{~A}$ outputs . 56 each

OUANTITY OISCOUNTS AVAILABLE We PLEASE RING.
We also buy all forms of elecironic Lists to below address.

Dept EE COMPELEC
14 Constable Road.
St. Ives. Huntingdon Cambs PE17 6EO

75:150mA IN4 148-3p: 800 ta 1N4006-3p; 4003A
 -7p. 100/1A bondoe - 28p; 40011A in 4004 - 40
 wat - 12
mets to simm. $3 \mathrm{~mm}-29,5 \mathrm{~mm}$ - $3 \mathrm{p} ; 5 \mathrm{~mm}$ Tncolour \& Bioctour - 22y Red lashing L.E.D.'s require 9V-12V
Ahp: I2V min driw. 3 juw chuck - 814.75 connacts -12 Merots - 3 fo poie mak 0.1 Stiplourd $212^{\circ} \times 1^{\circ} 9$ rows 25 holes - 26 p deck pupe 2.5 \& 3.5m-16p; Sockut Pand Mig $2.583 .5 m-11 \mathrm{p}$ 741 op Anp-24p; 555 Timer - 2Sp; 555L Low
Power - 30 ; 555 Power - 74p: 358 Dual Op. Amp $=22 \mathrm{p}$.

44 Chapelifeld Way, Rotherham. Souin Yorkshire S61 $2 T 1$
Tel Fax: 01142468049

DREMEL X-ACTO MINICRAFT

COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios,
Clocks, Briefcases etc. Transmitting
Cameras with Receivers (Wireless).
Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS

Please phone 01812030161 for free catalogue. Fax 01812015359
New DTI approved Video Transmitters and Receivers (Wireless)

SHERWOOD ELECTRONICS
 FREE COMPONENTS

Buy $10 \times £ 1$ Special Packs and choose another one FREE

Millions of quality components at lowest ever prices!

Plus anything from bankruptcy - theft recovery

- frustrated orders - over production etc.

NO VAT to add on.
Send 45 p stamped self addressed label or envelope for clearance lists.

Brian J Reed 6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ

Tel: 0181-393 9055 Mail order UK only.

Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few thousand of an item is available. (Payment is returned if sold out. I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wait!

N. R. BARDWELL LTD (EPE)

ADVERTISERS INDEX

```
ADVANCE ELECTRONICS
A L ELECTRONICS
N R BARDWELL
BETA LAYOUT629
.656
```

```BETA LAYOUTBK ELECTRONICSBOUNDARY MARKE TINGBRIANJ REED
BRIANJ REED
BULL ELECTRICAL
CIRKIT DISTRIBUTION
COOKE INTERNATIONAL
CR SUPPLY CO
DISPLAY ELECTRONICS
ELECTROMAIL
EPT EDUCATIONAL SOFTWARE
ESA ELECTRONIC COMPONENTS
GREENWELD ELECTRONICS
hUll COLLEGE
JCG ELECTRONICS
J\&N FACTORS
JPG ELECTRONICS
MAGENTA ELECTRONICS
MAPLIN ELECTRONICS
MAURITRON
NATIONAL COLLEGE OF TECHNOLOGY
PICO TECHNOLOGY
PRESS.N-PEEL
QUMARELECTRONICS
QUICKROUTE SYSTEMS
RADIO-TECH
SEETRAX CAE
SHERWOOD ELECTRONICS
SQUIRES
SUMA DESIGNS
TECHNICAL INFORMATION SERVICES
TECHNOLOGY EDUCATION INDEX
VENTURA HOBEY
VISIBLE SOUND
MDVERTISEMENT MANAGER: PETER J MEW
ADVERTISEMENT OFFFCES:
EVERYDAY PRACTICAL ELECTRONICS. ADVERTISEMENTS. HOLLAND WOOD HOUSE CHURCH LANE. GREAT HOLLAND. ESSEX CO13 OJS
Phone'Fax (01255) 850596
For Editorial address and phone numbers see page 595
```

[^2]

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS：－MXF200（100W＋100W）MXF400（200W＋200W） MXF600（300W＋300W）MXF900（450W＋450W）
FEATURES POWER RATINGS R．M．S．INTO 4 OHMS，BOTH CHANNELS DRIVEN

 USEDTHE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC．

PRICES：－MXF200 £175．00 MXF400 £233．85 MXF600 £329．00 MXF900 £449．15 SPECIALIST CARRIER DEL．©I2．50 EACH

OMP XO3 STERIEO 3－WAY ACTIVE CROSS－OVEA

Advanced 3 ．Way Stereo Active Cross－Over，housed in a 19 ＂$\times 1 \mathrm{U}$ case．Each channel has three level controls：
bast mid lop．The removalue front lascia allows access to the programmable Dill switches to adiust the
 on each bass channel．Nominal 775 mV inputoulput．Fully compatible with o MP rack amplitier and modules Price $5117.44+\mathbf{5 5 . 0 0}$ P\＆P
THERIO DSCO KOXIR SDU3400SE＊ECHO \＆SOUND EFFECTS＊
STEREO DISCO MIXER with 2×7 band STEREO DISCO MIXER with 2×7 band L \＆R graphic equalisers whi bar graph
LED Vu meters．MANY OUTSTANOING
EEATUAS LED XU meters．MANY OUTSTANDING speed control，DJ Mic with talk－over
switch， 6 Channels
with individual faders plus cross fade，Cue Headphon Monitor， 8 tollowing inputs：－ 3 turntsbles（mag）， 3 mics， 5 Line for CO，Tape，Video etc．

Price 144.99 ＋\＆5．00 P\＆P

Join the Piezo revotution！The low dynamic mass（no voice coil）of a Piezo tweeter produces an improved
transient response with a lower distortion level than ordinary dynamic ter these units can be added to existing speaker syslems of up to 100 walts（more if two are put in series FREE EXPLANATORY LEAFLETS ARE SUPPLIEO WITH EACH TWEETER．
 TYPE＇A＇（KSN1036A） $3^{\prime \prime}$ round with protective wire mesh．Ideal bookshelf and medium sized Hi－Fi apeakers．Price $\mathbf{\Sigma 4 . 9 0}$－50p P\＆P． TYPE＇B＇（KSN1005A） $31 / 2 "$ super horn lor general purpose speakers， disco and P．A．systems etc．Price $£ 5.99+50 p$ P $\&$ P．
TYPE＇C＇（KSN1016A） $2 \times 15^{\prime \prime}$ wide TYPE＇C＇（KSN1016A） $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Mi－Fi sys－ tems and quality discos etc．Price $£ 6.99-50$ p P\＆P．
TYPE＇D^{\prime}（KSN1025A） $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn． TYPE＇D＇（KSN1025A） $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn．Upper frequency
response retained extending down to mid－range（ 2 KHz ）Suitable for high response retained extending down to mid－range（ 2 KHz ）．Suitable for high
 TYPE＇E＇（KSN103BA） 3 th $_{4}$ horn tweeter with attractive silver finish trim． Suitable for Mi－Fi monitor systems etc．Price E5．99－50p P\＆P． LEVEL CONTROL Combines，on a recessed mounting plate，level control and cabinet input jack socket． $85 \times 85 \mathrm{~mm}$ ．Price $\mathbf{8 4 . 1 0 - 5 0 p \text { P\＆P．}}$

WFITMAT GASEDTOUDSPEMERE

THAEE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS
150 WATTS $(75,75)$ Stereo，150W 150 WATTS ${ }^{\text {（7 }}$ 250 WATTS（ 125 Bridged Mono 125）Stereo， 250 W 400 WATTS ${ }^{2} 200$
Bridged Mono

125）Stereo， 250 w
200）Stereo，400w
ALL POWERS INTO 4 OHMS
Features：
＊Stereo，bridgable mono t Choice of
high \＆low level inguts high \＆low level inputs $\$$ \＆ R level
conirols $\#$ Remote on－off $\$$ Speaker \＆ controls $\begin{gathered}\text { Remote } \\ \text { thermal orotection．}\end{gathered}$
$\begin{array}{rl}\text { PRICES：} \\ \text { 150W } £ 49.99 & 250 W \text { C99．99 } \\ \text { 400W } £ 109.95 \text { PAP } £ 2.00 \text { EAC }\end{array}$

POSTAL CHARGES PER ORDER E1．OO MINMUMM．OFFICIAL
ORDERS FROMGCHOOLS，COLEGES，GOVMIMUNES PLC＝ETC．
PRICES INCLSIVE OF， INCLUSIVE OF V．A．T．SALES，COUNTER．VIS

 quality，re reliability and perrormance at a realisitic price．Four

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP／MF 100 Mos－Fet Output power 110 watts R．M．S．into 4 ohms，frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB ．Damping Factor 300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．typical 0.002% ，Input Sensitivity 500 mv ，S．N．R -110 dB ．Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE E40．85－E3．50 P\＆P
OMP／MF 200 Mos－Fet Output power 200 watts R．M．S．Into 40 hms ，trequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB ，Damping Factor 300，Slew Rate $50 \mathrm{~V} / \mathrm{LS}$ ， T．H．D．Iypical 0.001% ，Input Sensitivity 500 mV ，S．N．R． -110 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$ ．
PRICE E64．35－E4．00 P\＆P
OMP／MF 300 Mos－Fet Output power 300 watts R．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB ，Damping Factor 300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ ． T．H．D．typical 0.001% ，Inpul Sensitivity 500 mV ，S．N．R． -110 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$ ． PRICE CB1．75－©5．00 P\＆P

OMP／MF 450 Mos－Fet Output power 450 watts R．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$
 －3dB，Damping Factor 300 ，Slew Rate $75 \mathrm{~V} / \mathrm{LS}$ ，
T．H．D．typical 0.001% ，Input Sensitivity 500 mV ，S．N．R． T．H．D．Iypical 0.001% ，Input Sensitivity 500 mV ，S．N．R．
-110 dB, Fan Cooled，D．C．Loudspeaker Protection， 2 -110 d ，Fan Cooled，D．C．Loudspeaker Protection．
Second Anti－Thump Delay．Size $385 \times 210 \times 105 \mathrm{~mm}$ ． PRICE £ 132.85 －E5．00 P\＆P
OMP／MF 1000 Mos－Fet Oulput power 1000 walls R．M．S．into 2 ohms， 725 watts R．M．S．into 4 ohms， frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ ． 3 dB ，Damping Factor 300 ，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ ，T．M．D．typical 0.002% ，Input Sensitivity 500 mV ，S．N．R．-110 dB, Fan Cooled，D．C．Loudspeaker Protection， 2 Second Anti－Thump Delay．Size $422 \times 300 \times 125 \mathrm{~mm}$ ．
PRICE E259．00－E12．00 P\＆P
note：mos－fet modules are available in two versions

LOUDSFEAKKBRE LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREQUENCY BULLETS AND HORNS，LARGE（A4）S．A．E． （60p STAMPED）FOR COMPLETE LIST．

McKenzie and Fane Loudspeakers are also available．

GWINITMCE－INSTRUMENTS，P．A．，DISCO，ETC

ALL EMINENCE UNITS B OHMS IMPEDANCE
8100 WATT R．M．S．ME8－1 OO GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO．
10 ，FREQ． 72 Hz ，FREO．RESP．TO 4KHz，SENS 97 dB ．PRICE £32．71 E2．00 PEP RES．FREQ． 71 Hz ，FREO．RESP．TO 7 KHZ SENS 10 200 WATT R．M．S．ME10－200 GUITAR KEYB＇D PRICE £33．74－E2．50PAP RES．FREQ． 65 Hz ，FREO RESP TO 35 KHz ，SENS 9 D，DISCO，VOCAL．EXCELLENT HIGH POWER MID． 12100 WATT R．M．S．ME12－100LE GEN PNRPOSE．PRICE £43．47－E2．50 PE RES．FREQ． 49 Hz ．FREO．RESP．TO 6 KHz ，SENS 100 D ． 12100 WATT R．M．S．ME12－100，TENS 100dB．WIDE RESPONSE PRE £35．64－E3．50 PEP MONITOR．RES．FREO 42 Hz ，FREO．RESP TO WIN CONE）WIDE RESPONSE，P．A．．VOCAL，STAGE 12＇ 200 WATT R．M．S．ME12－200 GEN．PURPOSE，GUITAR DISCO VOCAICE E36．67 E3．50 PE RES，FREQ． 58 Hz ，FREQ．RESP．TO 6 KHz ．SENS 98 dB ． 12300 WATT R．M．S ME1 2－300GP HIGH POWER BASS，LEAD GUITAR，KEYBOARD，DISCO ETC RES．FREO． 47 Hz ，FREO．RESP．TO SKHz，SENS 103 dB ．PRICE E70．19 ．E3．50 PA 15 ＂ 200 WATT R．M．S．ME $15-200$ GEN．PURPOSE BASS，INCLUDING BASS GUITAR．
RES．FREO． 46 Hz ．FREO．RESP TO 5 KHz ．SENS 99 dB RES．FREQ． 46 Hz ，FREQ．RESP．TO 5 KHz ，SENS 99 dB ． PRICE 50.72
RES．FREO． 39 Hz ，FREO．RESP TO $3 K$ H．PENS 103 dB ．INCLUDING BASS GUITAR．

IARBENDERS：HI－FI，STUDIO，IN－CAR，GTC

ALL EARBENDER UNITS B OHMS（E ECAPE E日8－50 \＆E日10－50 which are dual
 BASS，SINGLE CONE，HIGH COMP LIANCE，ROLLED SURROUND 850 watt EBB－50 DUAL IMPEDENCE．TAPPED $4 / B$ OHM BASS．HI－FI．

 850 Watt EBB－50 DUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS，HI－FI，IN－CARRES．FREQ． 40 Hz ．FREQ．RESP．TO 7 KHz SENS 97 dB ． RES．FREO． 40 Hz ，FREQ．RESP．TO TKHz SENS 97 IGB． 10 OW RES．FREQ． 40 Hz ，FREQ．RESP．TO 5 KHz ，SENS， 99 dB ． 10 100WATT EB10－100 BASS，HI－FI，STUDIO．
RES．FREO． 35 Hz ，FREO．RESP．TO 3 KHz ，SENS 96 dB ．
12 100WATT EB12－100 BASS．STUDIO，HI－FI，EXCELLENT DISCO RES．FREQ． 26 Hz ，FREO．RESP．TO 3 KHz ，SENS 93 dB ．
FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURROUND
5＇\＆©OWATT EB5－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC．
RES．FREQ．63Hz，FREO．RESP．TO 20KHz．SENS 920 A ．
RES．FREQ． 63 Hz ，FREQ．RESP．TO 20 KHz ．SENS 920 B ．
RES．FREQ． 38 Hz, FREO．RESP．TO 20KHz，SENS 94 dB ． B 6 OWATT EBB－6OTC（TWIN CONE）HI－FI．MIL 94 dB ． RES，FREQ， 40 Hz ，FREO．RESP．TO 18KHz，SENS 89dBRAY DISCO ETC．PRICE \＆10．99－1．50P\＆P 10° GOWATT EB1O－60TC（TWIN CONE）HI FI MULTI RES．FREQ． 35 Hz ．FREO．RESP．TO 12KHz，SENS 98 dB ．

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER \＆O－1OBMHz，VARICAP CONTROLLED PROFESSIONAL UP TO 3 MILES SIZE $38 \times 123 \mathrm{~mm}$
PRICE $\mathbb{C 1 4 . 8 5 - C 1 . 0 0 ~ P \& ~}$
EW MICRO TRANSMITTER $100-108 \mathrm{MHz}$ ，VARICAP TUNED，COMPLETE WITH VERY SENS FET MIC RANGE $100-300 \mathrm{~m}$ SIZE 56 a 46 mm SUPPLY gV GATTERY

PRICE $£ 8.80$－ $\mathbf{E 1 . 0 0}$ PEP
E．K．ELIOCTRONICS
UNITS 1 E SOMET WAY，SOUTHENO－DN－SEA，

More

than

18,000 top quality products bound

for the

enthusiast

BRITAIN'S BEST-SELLING ELECTRONICS CATALOGUE

Available from 1st September 1997

The 'must have' tool for DIY enthusiasts, hobbyists and students, amateurs and professionals in the world of electronics.

- Over 25 years experience
- 42 stores nationwide
- Same day despatch
- Order 24 hours a day
- Free technical support on 01702556001
- Free delivery on orders over £30.00
- Over £50 worth of discount vouchers

Order now on 01702554000

Available at: WH Smith, John Menzies or your local Maplin Store.

[^3]
[^0]: ACKNOWLEDGEMENT
 The illustrations used in this article
 have been kindly supplied by
 The Science Museum, London

[^1]: 0CTMES
 PROJECTS Video Fade-To-White Direct Conversion Topband and 80 m Receiver Vehicle Alert - 10 MHz Function Generator. FEATURES - Introduction to Satellite Television Ingenuity Unlimited Circuit Surgery Net Work - The Internet.

[^2]:

 price shown on the cover, and that it thall not be lent, rewold. hired

[^3]: (Add 50p for P\&P). Orders autside the UK please send $£ 8.45$ or 21 IRCs for Airmail in Europe ar surface mail outside Europe. Send $£ 16.00$ or 37 IRCs for Airmoil outside Europe to:
 Maplin MPS, PO Box 777 Rayleigh, Essex, England SS6 8LU.
 When ordering please quote priority Code MA023.

