

AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD). £179 (PPC1512DD). $£ 179$ (PPC1640SD). £209 (PPC1640DD). MODEMS $£ 30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100w each 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ woofer $2^{\prime \prime}$ mid range and 1 "tweeter. Ideal to work with the amplifier described above. Price per pair $£ 30.00$ Order ref 30P7R
2KV 500 WATT TRANSFORMERS Suitable for high vothage experiments or as a spare for a microwave oven etc. 250 vAC input Now only 54.00 ref 4P157
MICROWAVE CONTROL PANEL. Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay outputs one for power and one for pulsed power (programmabie) Ideal for all sorts of precision timer applications etc. Now only $£ 4.00$ ref 4 P151.
FIBRE OPTIC CABLE.Stranded optical fibres sheathed in black PVC. Five metre length $\mathbf{\Sigma} 7.00$ ref 7P29R
12V SOLAR CELL 200 mA ouput ideal for trickle
charging etc. 300 mm square. Our price $£ 15.00$ re
PASSIVE INFRA-RED MOTION SENSOR. Complete with daylight sensor, adjustabie lights on timer (8 secs -15 mins), 50 range with a 90 deg coverage. Manual overide facility. Com-
plete with wall brackets, bulb holders etc. Brand new and wall brackets, bulb holders etc. Brand
 19P29
Pack of two PAR38 bulbs for above unit $£ 12.00$ ref 12P43R VIDEO SENDER UNII Transmit both audio and video signals from either a video camera, video recorder or computer to any
standard TV set within a 100' rangel 'tune TV to a soare channel) standard TV set within a 100' range! (tune TV to a spare channel),
12v DC ©0. £15.00 ref 15P39R Suitable mains adaptor $£ 5.00$ re 5P191R
FM TRANSMITTER housed in a standard working 13A adapter (bug is mains driven). £26.00 ref 26P2R MINATURE RADIO TRANSCEIVERS A p wallie talkues with a range of up to 2 kilometres. Units measure 22
ref 30P12R
FM CORDLESS MICROP HONE.Small hand held unit with a 500 range! 2 transmit power levels reqs PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref 15P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shon R17
 or batery. Complete with shoulder strap and mains lead NOW ONLY 玉19.001! REF 19P14R.
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db wow and flu
ref $19 P 30$
LOW COST WALIKIE TALKIES. Pair of battery operated units with a range of about 200'. Our price $£ 8.00=$ 7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt power amp 20-21KHZ 4-8R 12-14VDC negative earth. Cased. £25 ref 25P14R, MICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ret 4P44R. $2 \times$ C's $£ 4.00$ ref 4P73R, $4 \times \mathrm{D}$'s $£ 9.00$ ref 9P12R, $1 \times \mathrm{PP} 3$ TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The uthimate equivalents book. Latest edition $£ 20.00$ ref 20P32R.
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref 3P104R. Bumper pack of 1,000 ties $£ 14.00$ ref 14P6R GOT A CARAVAN OR BOAT?

NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE 2,500 NEW LINES FREE WITH ORDER ON REQUEST OR SEND $£ 1.00$
GEIGER COUNTER KIT.C omplete with tube. PCB and all components to build a battery operated geiger counter. $£ 39.00$ ref 38P1R FM BUG KIT. New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ rel 5P158R
FM BUG Built and tested supenior 9 v operation $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS. These convert composite video into separate H sync, V sync and video. 12 vDC DC. $£ 8.00$ ref $8 P 39 R$.
SINCLAIR C5 MOTORS $12 v 29 A$ (full load) $3300 \mathrm{pm} 6^{\prime \prime} \times 4^{\prime \prime} 1 / 4^{\prime \prime}$ O/P shath. New. £20.00 ref 20P22R.
As above but with fitted 4 to 1 inline reduction box (B00mpm) and
toothed nylon bett drive $\operatorname{cog} £ 40.00$ ref $40 P 8$. toothed nylon belt drive cog 840.00 ref 40P8R.
SINCLAIR C5 WHEELS 13^{\prime} or $16^{\prime \prime}$ dia including treaded tyre and inner tube. Wheels are black, spoked one piece poly carbonate. 13^{-1} wheel $£ 6.00$ rif 6 P20R, $16^{\prime \prime}$ wheel $£ 6.00$ ref 6 P21R.
ELECTRONIC SPEED
ELECTRONIC SPEED CONTROL KITior c5 motor. PCB and all components to build speed controller (0.95% of speed). Uses pulse width modulation. $£ 17.00$ ref 17P3R
SOLAR POWERED NICAD CHARGER.Charges 4 AA nica
6P3R.
12 VOLT BRUSHLESS FAN4 1/2" square brand new ideal fo boat, car, caravan etc. $£ 5.00$ ret 5P206.
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Includes mains adapter, leads and book, E15.00 ref 15P43R
VIDEO TAPES. Three hour superior quality tapes made under licence from the famous JVC company. Pack of 5 tapes New low price ع8, 00 ref 8 PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC 840.00 REF 40P10R. MAINS POWER SUPPLY KIT 220.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE 875.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will hande up to about $15 w$ at 220 vbut with a larger transtormer it will handle 80 watts. Basic kit £12.00 ref 12P17R. Larger transformer £12.00 ref 12P41R. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with tools, wire and reusable board. New low bargain price only $\mathbf{E 2 . 0 0}$ ref 82P
HIGH RESOLUTION 12" AMBER MONITOR12v 1.5A Hercules compatible (TTL input) new and cased $£ 22.00$ ref 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 AC. £59.00 ref 59P4R
25 WATT STEREO AMPLIFERc. STK043. With the addition of a handful of components you can build a 25 watt amplifier, $£ 4.00$ ref 4P69R (Cirouit dia included)
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 1 £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} 51.00$ ref BD827R. ALARM TRANSMITTERS. No data avaliable but nicely made complex radio transmitters $9 v$ operation. £4.00 each ref 4P81R. 12V 19A TRANSFORMER. Ex equipment but otherwise ok. Our price $£ 20.00$
GX4000 COMPUTERS. Customer returned games machines complete with plug in game, coysticks and power supply. Retail price is almost $£ 100$. Ours is $£ 12.00$ ref B12P1
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a 13A socket in the area to protect. The receiver plugs into a 13A socket anywhere else on the same supply. Ideal for protecting garages, sheds etc. Complete system £25.00 ref B25P1 additional detectors \&11.00 ref B11P1 IBM XT KEYBOARDS. Brand new 86 key keyboards $\mathbf{\Sigma} 5.00$ ref 5P612
IBM AT KEYBOARDSErand new 86 key keyboards $£ 15.00$ ref 15 P6 12
386 MOTHER BOARDS. Customer returned units without a cpu fitted. ©2200 ret AZ2P1

BSB SATELLITE SYSTEMS brand new REMOTE CONTROL £49.00 REF F49P1

286 MOTHER BOARDS. Brand new but customer returns so may need attention. Complete with technical manual $£ 20.00$ ref A20P2 286 MOTHER BOARDS. Brand new and tested complete with technical manual. $£ 49.00$ ref A49P
UNIVERSAL BATTERY CHARGER.Takes AA's, C's. D's and PP3 nicads. Holds up to 5 batteries at once. Now and cased, mains operated. $£ 6.00$ ref 6 P36R
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3,4,5,6,7-5,9$, and $12 v$ outputs at 800 mA . Complete with universal spider plug. \&5.00 ref 5P167R.
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2%
metal film. $£ 5.00$ rei 5P170R
MIRACOM WS 4000 MODEMS
V21/23

AT COMAND SET

AUTODIAL/AUTOANSWER

 FULL SOFTWARE CONTROL tone and pulse dialling $£ 29$IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. โ500 ref 5P186R
COPPER CLAD STRIP BOARD $17^{4} \times 4^{n}$ of $.1^{\prime \prime}$ pitch "vero" board. £4,00 a sheet rel 4P62R or 2 sheets for $£ 7.00$ ref 7P22R. STRIP BOARD CUTTING TOOL $£ 2.00$ ref 2P352R. 50 METRES OF MAINS CABLE $£ 3.002$ core black precut in convenient 2 m lengths. Ideal for repairs and projects. ref 3 P91R
4 CORE SCREENED AUDIO CABLE 24 METRES 8200 Precut into convenient 1.2 m lengths. Ref 2P365R
Precut into convenient 1.2 m lengths. Ret 2P365R
TWEETERS $21 / 4^{" D}$ DIA 8 ohm mounted on a smart metal plate for easy fixing $£ 2.00$ rof 2P366R
easy fixing $£ 2.00$ ref 2 P 366 R
COMPUTER MICE Originally made for Future PC's but can be COMPUTER MICE Originally made for Future PC's but can be
adapted tor other machines. Swiss made $£ 8.00$ ref BP57Ru Atari ST adapted tor other machines. Swis
conversion kit $£ 2.00$ ret 2P362R.
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Buit in tweeter 4 ohm $\mathbf{5 5 . 0 0}$ ref 5P205R
WPINDUP SOLAR POWERED RADIOI FMVAM radio takes rechargeable batteries complete with hand charger and solar panet chargeable
14P200R

PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 V input. +5 @ $15 A,+12 @ 5 A,-12 @ .5 A,-5 @ .3 A$. Fully cased with fan, on/olf switch, IEC inlet and standard PC flyleads. £15.00 ref F15P4 ALARM PIR SENSORS Standard $12 v$ alarm type sensor will interface to mosi alarm penels. £16.00 ref 16P200
ALARM PANELS $2 z$ one cased keypad entry, entry exit time delay
BULL ELECTRICAL
250 PORT $4 N D R O A B H O U E S U S S E X$ BN3 SOT TE EPHONE 0273203500 MAIL ORDER TERMS CASM PO OR CHEOUE WITH OFDEA PLUSE3.DO POST PLUSVAT. BUEASE ALLOY\% \% 10 OAY F FOA DELVERY

UEXT OAY OELVERY SA:.00
FAX0273 23077

atc. $£ 18.00$ ref 18 P 200

MODEMS FOR THREE POUNDSII
Fully cased UK modems designed for dial up system (PSTN) no data TELEPHONE HANDSETS
TELEPHONE HANOSETS
Bargain pack of 10 b
£3.00 ref 3P146R
BARGAN STRIPPERS
Computer keyboards. Loads of switches and components excellent
value

DATA RECORDERS

Customer returned mains battery units buit in mic idealfor Computer or general purpose aucto use Price is $\$ 4.00$ ref 4 P100R
SPECTRUM JOYSTICK INTERFACE
Plugs into 48K Spectrum to provide a standard Atari type joystick port. Our price $£ 4.00$ ref 4P101R
ATARI JOYSTICKS
Ok for use with the above intern
BENCH POWER SUPPLES
Superbly made fully cased (metal)) giving $12 v$ at 2 A plus a 6 V supply. Fused and short circuit protected. For sale at less than the cost of the case! Our price is $£ 4.00$ ref 4P103R
SPEAKER WIRE
Brown twin core insulated cable 100 feet for $£ 2.00$ REF 2P79R
MAINS FANS MAINS FANS
Brand new $5^{4} \times 3^{-2}$ complete with mounting plate quite powertull and
quite. Our price $£ 1.00$ ref CD41R quite. Our price $£ 1.00$ ref CD41R
DISC DRIVES
Customer retumed units mixed capacities (up to 1.44M) We have not sorted these so you just get the next one on the shelf. Price is only $£ 7.00$ ref 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{n} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PRONECT BOX
PROJECT BOX
$51 / 2^{\prime \prime} \times 312^{\prime \prime} \times 1$ " black ABS with screw on lid. $£ 1.00$ ref CD43R
SCART TO SCART LEADS SCART TO SCART LEADS
Bargain price leads at 2 tor $£ 3.00$ Pef 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end. Hi density D type on the other. Pack of ton leads only $£ 7.00$ ref 7P2R
OZONE FRIENDLY LATEX
OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ bottle of liquid rubber sets in 2 hours. Idealfor mounting PCB's fixing wires etc. E2.00 each ref $2 P 379 R$
QUICK SHOTS
QUICK SHOTS
Standard Alari compatible hand controller (same as joysuicks) ou: price is 2 for $\mathbb{E 2} .00$ ref $2 P 380 \mathrm{R}$
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with $1200 / 75$ buik in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatible, Centronics printer port RGB colour and composite output (works with ordinary television) complete with power supply and fully cased. Our price is only $£ 20.00$ ref 20P1R AC STEPDOWN CONVERTOR
Cased units that conven 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{2}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price E2.00 ref 2P381R
SPECTRUM +2 LIGHT GUN PACK
complete with software and instructions $£ 8.00$ rel 8P58R/2
CURLY CABLE
Extends from $8^{\prime \prime}$ to 6 feet 1 D connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joy sticks only $£ 200$ ref 2P382R
BUGGING TAPE RECORDER
Small hand held cassette reconders that only poerate when there is sound then turn off 6 seconds after so you could leave it in a room all day and just record any thing that was said. Priceis $£ 20.00$ ref 20P3R IEC MAINS LEADS
Complete with 13A plug our price is only $£ 3.00$ for TWO! ref 3P1 48R NEW SOLAR ENER GY KIT
Contains 8 solar cells, motor, tools, fan etc plus educational booklet. Ideal for the budding enthusiast! Price is $£ 12.00$ ref 12P2R

286 AT PC

286 MOTHER BOARD WITH GAOK RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUPPLY £139 REF 139P1 (no i/o cards or drives included) Some
metal work req'd phone for detalls.
35MM CAMERAS Customer returned units with built in flash and
28 mm lens 2 for C 8.00 ref 8 P 200
STEAM ENGINE Standard Mamod 1332
engine complete with bolier piston etc £30
ref 30P200
TALKING CLOCK
LCD display, alarm, battery operat
Clock will announce the time at
push of a button and when the

alarm is due. The alarm is switchabie
HANDHELD TONE DIALLERS
Small units that are designed to hold over the mouth piece of a telephone to send MF dialing tones. Ideal for the remote control of answer machines. $£ 5.00$ ret 5P209R
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartridge and sotware 10 times faster than tape machines works with any Commodore 64 imes faster than tape machines works with any commodore 64
setup. The orginal price for these was $£ 49.00$ but we can offer them selup. The orginal price for these w
to you at only $£ 25.001$ Ref 25P1R
ATARI 2600 GAMES COMPUTER Brand now with joystick and 32 game cartridge (plugs into TV) $£ 29.00$ ref F29P1 also some with 1 game at $£ 19.00$ ref F19P2.
BEER PUMPS Mains operated with fluid detector and electronic timer standard connections. Ex equipment. £18.00 ref F18P1 90 WATT MANS MOTORS Ex equipment but ok (as fitted to above pump) Good general pupose unit $£ 9.00$ ref FgP1
HI P SPEAKER BARGAIN Originally made for TV sets they consist of a 4" 10 watt 4 R speaker and a 2" 140 R tweeter. If you want two of each plus 2 of our crossovers you can have the lot for $\$ 5.00$ ref F5P2.
VIDEO TAPES E180 FIFTY TAPES FOR £70.00 REF F70P1 360K 5 1/4"Brand new drives white front. czo.00 Ref F20P1

IN SUSSEX? CALL IN AND SEE US!

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

VOL. 21 No. 8 AUGUST 1992

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

ISSN 02623617

PROJECTS... THEORY . . NEWS . . .
COMMENT . . POPULAR FEATURES ...

© Wimborne Publishing Ltd 1992. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our September '92 /ssue will be published on Friday, 7 August 1992. See page 475 for details.

Projects

GAS ALARM by Robert Penfold 484
Detects gas, flammable vapours and smoke
DUAL METRONOME by R.M. Worthington 492
A conventional metronome plus a "tap in" beat setter
SOLAR POWERED LIGHTING UNIT
by T. R. de Vaux Balbirnie
"Free" lighting for your caravan, boat, shed etc
SUB-WOOFER by Paul Henderson 522
Add some real bass to your hifi setup
ARTWORK LIGHT BOX by Alan Winstanley 532
Ease the produciton of your own p.c.b.s with this simple unit
Series
CIRCUIT SURGERY by Mike Tooley 488
Our clinic for constructors - your problems solved
ACTUALLY DOING IT by Robert Penfold 500
Semiconductor leadout identification
ALTERNATIVE ENERGY-1 504
by T. R. de Vaux Balbirnie
The use of renewable energy sources
INFORMATION TECHNOLOGY AND THE NATIONAL
CURRICULUM by T. R. de Vaux-Balbirnie
CURRICULUM by T. R. de Vaux-Balbirnie
Part Ten: Computer Monitoring and Communications Systems
INTERFACE by Robert Penfold
528
Bar Code Generation
AMATEUR RADIO by Tony Smith G4FAI 540
Classes Re-Start; VHF Propagation; Tropo; Sporadic E; Aurora; Warm Shack in Russia

Features

EDITORIAL
 483

EVERYDAY READOUT 490
From you to us - your news and views
INSIDE THE MINI DISC by Ian Graham 498
We examine the next generation hifi medium
SHOPTALK with David Barrington 501
Component buying for EE projects
FOR YOUR ENTERTAINMENT by Barry Fox
502
Shock-Horror; On The Map; Sinister Aims; CDTV Disaster; Caddy Puzzle.
ELECTRONICS VIDEOS
Learn about your favourite subject with these videos
EVERYDAY NEWS 514
News from the world of electronics
DIRECT BOOK SERVICE 535
Selected technical books, EE books and all Babani books by mail order
PRINTED CIRCUIT BOARD SERVICE
538
A special PCB SALE (while stocks last) - boards for EE projects
ADVERTISER'S INDEX 544

SURUVIITANCD PIROFRSSICDNAL ODADATY KITS

 for KKts

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Uitra-miniature Room Transmitter
Smallest room transmitter kit in the word! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 500 m range...
.. 16.45
UTX MIcro-minlature Room Transmitter
Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range........................ 13.45
sTX MIIgh-pertormance Room Transmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$
VT500 High-power Room Transmitter
Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operatlon. 3000 m range...
...E16.45

VXT Volce Activatod Transmitter

Triggers only when sounds are detected. Very fow standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$ HVx400 Malins Powered Rioom Transmitter
Connects directly to 240 V AC sujply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500m range ...
. $£ 19.45$
SCRX Subcerrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range............. $£ 22.95$ SCLX Subcerrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires. SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm} .1000 \mathrm{~m}$ range........... $£ 23.95$

SCOM Subcarrior Decoder UnIt for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9-12 \mathrm{~V}$ operation.
$£ 22.95$

ATR2 MIcro SIze Telephone Recordlag interface

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line
£13.45

atrumux Roila Coutrel switch
Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or attemate, 8 -way dill switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits)
Individual Transmitter DLTX
Individual Receiver DLRX.
$£ 50.95$
£19.95
mix-1 H -FI Milcre Breadcaster
£ $£ 37.95$
Not technically a surveillance device but a great idea! Connects to the headphone output of your HI-Fi, tape or CD and transmits Hi-fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waflle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range .
$£ 20.95$

UTLX Ulira-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times .20 \mathrm{~mm}$! Connects to line (anywhere) and switches on and off with phone use.
All conversation transmitted. Powered from line. 500 m rango........................ $£ 15$ TLX700 Micro-miniature Telephone Transmilter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range \qquad ع13.45

STLX HIgh-performance Telephone Transmittor

High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range .
TKXXS00 SIgnallingTTracking Tramsmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for slgnalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation..
.$£ 22.95$

CDAOO Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation ...
£30.95

CD600 Prolessional Buy Dotector/Locator

Multicolour readout of slgnal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation. \qquad QTX180 Crystal Controlled hoom Iransmittor
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm . 9 V operation. 1000 m range...
.140 .95
QLX180 Crystal Colntrollod Telephone Jransmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range..
.$£ 40.95$

as $\times 180$ Line Powered Crystal Controllod Phone Transmitter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range $500 \mathrm{~m} .$.
...............
QRX180 Crystal Comfrollad FIM Receiver
For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-buitt and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.

A bulld-up service is avaliable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.

> OUR LATEST CATALOGUE CONTAINIMG MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Dept. EE

L.C.D.

 Ultrasonic Tape MeasureUp, down or sideways, distances of up to nine metres or 30 feet can be easily measured and displayed by this pocket-sized unit. Using twin ultrasonic transducers, a decoding counter and a 312 digit liquid crystal display, accuracies to within one decimal place are obtainable. An unusual feature is the foreground masking circuit which enables weak distant echoes to be more readily detected.

Washer Bottle Monitor

When the water runs out you are breaking the law!
A valuable accessory for the moforist. Warns when the washer fluid reservoir is nearly empty, allowing the motorist to economise in the meantime. Uses a special fluid level detector chip. Easy to build, and with full installation instructions.

Quick Test

Testing fuses and small components for continuity can be a fiddly business, involving chasing the component around the workbench with a pair of test-prods.

The Quicklest described in this article is a very simple to use piece of lest equipment that will perform continuity fests on various devices without the use of lest leads.

plus

ALTERNATIVE ENERGY: INFORMATION TECHNOLOGY: ACTUALLY DOING IT: AMATEUR RADIO: GIRCUIT SURGERY: BOOKS: VIDEOS: PCBS ETC. ETC.

Eyebyay RTBNTBS

SEPTEMBER ISSUE ON SALE FRIDAY 7TH AUGUST 1992

EASY-PC PCB and Circuit Diagram CAD

Forget using tapes and lightbox! Create your Circuit Boards using CAD - like the professionals.

- Runs dn PC/XT/AT etc. with Hercules, CGA, EGA or VGA display and many DOS emulations. - Design Schematics Single and Double sided and Multilayer boards including Surface Mount
- Standard output includes Dot Matrix / Laser / Inkjet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Extremely powerful. - Very easy to use. - Not copy protected.

EASY-PC

Technical support is free, for life!

Over 12,000 Installations in 70 Countries Worldwide!

For full info' please Write, Phone, or Fax!
Number One Systems Lta. The Electronics CAD Specialists.
REF: EVD, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 048061778 (7lines) Fax: 0480494042 ACCESS, AMEX, MASTERCARD and VISA Welcome.

COPZR SUMMER
 SnएNOW ON!! $3 C^{\circ}$

IF YOU MISSED LAST MONTH'S EE \& THE FREE 32 PAGE SALE CAT, RING/WRITE/FAX/CALL IN FOR YOUR FREE COPY NOW!!

Software

 Clearance 21103 Amstrad CPC464 Soft999 pack. 12 cassettes with an original retail price of $£ 108.40$. Mineral, Roland on the Ropes, Oh Mummy, Harrier Attack, Timeman One, Sultans Maze, Kanagrams, The Galactic Plague, Roland in the Caves, Fruit Machine. Caves, Fruit Madhine. Price: dU.ファ
TEKTRONIX MANUALS

Many scope, probe, and plug.in senvice manuals trom $£ 1$ 1- 25 each. E.9. 545 § 20 ; $517 A$ £15; 6010 £3; B,CA,D,H,L,M,W,Z olug-ins £10 each. RC815 UHF Rx/Tx £25. Aingtwrite Max for list of 661

TRANSFORMERS

27010 0-6, 0-6V each at 0.25A 3VA by
Louth, PC mitg. Pri $0-120,0-120$. Size $38.5 \times 32 \times 31 \mathrm{~mm}$ DP 3.39 Our Price $£ 1.50$ $100+0.85$

27011 0.6, 0-6V each at 0.5A 6VA chassis mntg. Pri $0-240$. Size $45 \times 41 \times 37 \mathrm{~mm}$, individually boxed. DP 3.95 Our Pire $£ 1.50$

27012 2TV 4A Chassis mntg Pri 0-240V Size $98 \times 83 \times 73 \mathrm{~mm}$. DP around 18.00 Our Price $\$ 9.00$

27013 40V 1.5A chassis mntg. Pri 0-240V Size $79 \times 65 \times 58 \mathrm{~mm}$. DP around 7.00 Our Price $\varepsilon 4.00 \quad 100+2.50$

27014 12V 1.5A PC or drop through mntg. Pri $0-240 \mathrm{~V}$ Size $57 \times 48 \times 52 \mathrm{~mm}$ DP around 6.00 Our Price $£ 3.50 \quad 100+2.00$

HEATSINK
25408 Heatsink $152 \times 50 \mathrm{~mm}$ with $4 \times$ TOS devices mounted on if: 2×7805 CK 5V 1.5A voltage regs (DP 2.00) and 2 £ BUY18S, a 200 V 15 A NPN transistor, in our cat at 2.30 . So the total value is 8.60 . Our Special Price

2.50
 UHF TUNER

22648 UHF TV tuner - at least, the front end. Fagor SUF743 has a co-ax socket intet into the screened case $65 \times 50 \times 20 \mathrm{~mm}$. Inside the PCB has some surlace mount bits BF966S, BF970 and BF199 transistors and a lew coils. Glveaway Price 2 for $£ 1.00$

WIDE CARRIAGE DOT MATRIX PRINTER

HYUNDAI
HDP920
ONLY
 3

BRAD NEW, RRLY GUARANTED! :432mm (TT) Cariage
"Drat (12x90dot \& NQ (2Ax180dot) *BOB4cps prith speed
Pitidiectional phteng

28986 N1615 12" fluorescent (4hr) emergency light, complete. White ABS base with Iranslucent cover, overall $400 \times 135 \times 110 \mathrm{~mm}$, Inside the moisture proof sealed case is a 12° 8 Watl fluorescent tube $\&$ LED indicator, the charger/oscillator PCB and $3 \times 4 A h$ ' D ' size Nicads by SAFT. These are currently being sold for over 590 . Standard mains input. Only C26.00
Z8907 N1613 $6^{\prime \prime}$ version of above $\$ 18.00$ 22585 12" 8W fluorescent tubes $\$ 1.00$ 225866° 4W fluorescent tubes $\mathbf{8 1 . 0 0}$ 28992 MES 1 lamp (4hr) emergency light Tough plastic case 180 mm dia $\times 105 \mathrm{~mm}$. Uses single 2.4 V 1 A MES lamp and $2 \times 4 \mathrm{Ah}$ ' D ' size Nicads, and has incorporated charger panel. £12.00

28993 N1642 MES 2 lamp (4hr) emergency light. Substantial steel case $373 \times 126 \times 105 \mathrm{~mm}$ with translucent cover conlaining Yuasa 6 V 8Ah rechargeable sealed lead acid battery and PCB with charger circuit. $£ 18.00$

EMERGENCY LIGHTING PARCEL 4Ah Ni-Cads

2008 3.6V 4 Ah 3
SAFT Only 87.50
27009 2.4V 4 Ah 2 cell D ' size nicad stack by SAFT Only $£ 5.00$

25371 Simplex rate-of-heat rise and $135^{\circ} \mathrm{F}$ detector, model 4255. A rise of more than $15^{\circ} \mathrm{F}$ per minute, or it temp reaches $135^{\circ} \mathrm{F}$ will close contacts. Supplied boxed with installation instructions. These normally sell for around 18.00. Our price $£ 10.00 \quad 100+5.50$

28988 Super high power siren. Standard 5° 5W 8ohm gold hom mounted on an ABS box (our V216) which contains the driver PCB. Can supply either single or swept tone and works from 6 -28V OC. $\mathbf{8} 8.00$

All 1 ofl and pack prices include VAT, aty prices do not. P\&P E2.50 per order ($£ 9$ next day) Min Credit Cand £12. Ofticial orders Hom Education welcome; min invoice charge £15. Payment is accepted by cheque, PO, cash (inc toreign currency banknotes), stocks -we are open from 9-5.30 Mon-Sat. Come and see us! vis Tel: (0703) 236363 visu Fax: (0703) 236307

STEREO AUTO-REVERSE CASSETTE MECHS

 25405 High quality heavy duty all metal construction stereo cassette player mechanism, probably intended for continuous background music. This is a lovely bit of kit starts playing as soon as a cassette is inserted. Has tast forward, rewind and eject keys. I's bi-directional, and the sensing cincuit automatically reverses the tape at the end. Has a Canon motor and works of 12 V DC. Great value at 84.95 .NEW POWER SUPPUES
25406 D High efficiency step down power regulator module by SGS. This is a GSR 400 type, as histod by Farnell at $£ 41.11$ each. Output is 7 V @ 4 A from a DC input of 10 46 V . Possible uses include battery charger, or put two together and use 24 V lorry battory to power car equipment. Our spectil price. met $£ 5.75$ each.
25409 Euracard size - $160 \times 100 \mathrm{~mm}$ by Protek. $115 / 230 \mathrm{~V}$ mput. Outputs: +5 V (1) 3A +12 V (1) 2 A : -12 V 0.25 A Price E .95

25410 Skynet boxed unit $200 \times 108 \mathrm{~mm}$ PCB with flying leads for inpul (115/230V) and outputs-5V@7A; 12V@3.5A;-12V@ 0.75 A \&14.95

25404 Stabilized power supply panel $140 \times 85 \mathrm{~mm}$. AC input is rectified and smoothed and is taken via a couplo of regulator transistors and a rolay to a 12 way

?
 SUPER SWITCH SENSATION!!

A nice parcel of ALPS high quality push switches from DPCO to $10 P \mathrm{PCO}$. Available individually, or a pack of 100 assonted + knobs to ft £7.95. Order Code K838. Full list af types on request - prices start at 2.2p!
DONT DELAY - ORDER TODAY

LEDs 3 mm or 5 mm red or green 6 p each. yellow 11 peach. High intensity red, green or yellow. 5 mm 30 peach Cable ties $\mathbf{1 p}$ each, $\mathbf{6 5 . 9 5}$ per $\mathbf{1 0 0 0 , ~} \mathbf{£ 4 9 . 5 0}$ per 10.000 . Steping motor 4 phase $12 \mathrm{~V} 7.5^{\circ}$ step 50 ohms. SAA1027 stepping motor driver chip................ 3.95 FM Transmitter kit. good quality sound...... 88.60 High quality photo resist copper clad epoxy Rechargeable Batteries Sub C with solder tags.......... 1/3AA with tags (Philips CTV). Standard charger, charges 4 AA cells in 5 hours or 4 Cs or Ds in 12-14 hours $+1 \times$ PP3 (1.2.3 or 4 cells may be charged at a time). High power charger, as above but charges the Cs and Ds in 5 hours, AAs, Cs and Ds must be charged in 2 s or 4 s . £10.95 Special offars-please check for availabitity Fcetls 32 dia $\times 87 \mathrm{~mm}$ Fcells $32 \mathrm{dia} \times 87 \mathrm{~mm}$ feell with solder tags. 1.2 V Stick of $4171 \mathrm{~mm} \times 16 \mathrm{~mm}$ dia., with red \& black leads 4.8 V 4 cell battery $94 \mathrm{~mm} \times 25 \mathrm{~mm}$ dia. ($1 / 2 \mathrm{C}$ cells) Computer grade capacitors with sciew ierminals. 38000 $\mathrm{f} 20 \mathrm{~V} £ 2.50$: $87000 \mathrm{p} 110 \mathrm{~V} \mathrm{C1.95:}$ $68000 \mu \mathrm{f} 15 \mathrm{~V}$ £2.95; 10000 f f 16 V £1.50 7 segment common anode led display. 12 mm . LM2931AT 5.0 low drop out 5 V 7812 and 791212 V i A regulators . $\mathbf{~} 20.00$ per 100 LM337k TO3 case variable regulator............1.60 BS250 P channel mosiet 45p. BC559 transistor 74LSO5 hex invertor.............. 10.00 per 100 SL952 UHF Limiting amplifier LC 16 surface mounting package with data sheet. £3.50 $\mathbf{1 . 9 5}$ AM27S02. 1.95 $100+$ c1. 25 each; 90 p $100+$ $10 \mathrm{p} 100+.6 \mathrm{p} 1000+$ TV Mains switch, 4 A double pole with momentry contacts for remote control, pack of $10 £ 3.95$ box of 60 E19.95 DC-DC convertor, Feliability model, V12P5, 12 V in 5 V 200 mA out. 300 V input to output, Isolation with data, $\mathbf{£ 4 . 9 5 \text { each or pack of } 1 0 - £ 3 9 . 5 0}$ Hour counter used 7 digit 240 V ac 50 Hz E1.45 	Resistor jumbo pack $25000.1 / 4$ and $1 / 2 \mathrm{~W}$ resistors our choice of values and size, will be mainly in boxes or rolls of 1000,2000 and 5000 of one type. f25.00 Qwerty keyboard. 58 key good quality switches. Owerty keyboatd with serial output. no data £5.00 (used). Polyester capacitors box type 22.5 mm lead pitch $1 \mu 1250 \mathrm{~V}$ dc 20 p each. $15 p 100+$. $10 p 1000+$ $2.2 \mu \mathrm{f} 250 \mathrm{~V}$ dc $30 \mathrm{p} \mathrm{each}, 20 \mathrm{p} 100+$. 15p $1000+$ $3.3 \mu f 100 \mathrm{dc} 30$ peach $15 \mathrm{p} 100+10 \mathrm{p} 1000+$ $1 \mu \mathrm{f} 50 \mathrm{~V}$ bipolar electrolytic axial leads. 15 p each. $7.5 p 1000+$ $0.22 \mu \mathrm{f} 250 \mathrm{v}$ polyester axal leads, 15 p each. $100+7.5 p$ each Philips 123 series solid aluminium axial leads. $33 \mu \mathrm{f} 10 \mathrm{~V}$ \& $2.2 \mu \mathrm{f} 40 \mathrm{~V} 40 \mathrm{p}$ each. $25 \mathrm{p} 100+$ Multilayer AVX cerami capacitors, all 5 mm pitch. 100 V 100 pf . 150 pt .220 pf . $10.000 \mathrm{pf}(10 \mathrm{~m}$) 10 p each, $5 p 100+$ 3.5p $1000+$ Welwyn W23 9W 120 chm 35p each. 20p $100+$ $680 \mathrm{ohm} 2 W$ metal film resistor, 4 p $100+$. 2p $1000+$ Solid carbon resistors, very low inductance, ideal for RF circulss. 27 ohm 2 W . 6Bohm $2 \mathrm{~W} 25 p$ each, 15 p each $100+$, we have a range of 0.25 W . $0.5 \mathrm{w}, 1 \mathrm{w}$ and 2 w solid carbon resisiors - please send SAE for list Intelegent 4 digit atphanumeric ($5 \times 7 \mathrm{dot} 0.145^{\prime \prime}$) red LED display, 12 pin 0.6 inch wide package, Siemens type DLR1414 £2.50 each, $\mathbf{E} 2.0030$ *, data sheets $£ 1.00$ AMD 27256 -3 Eproms $\mathbf{E 2} .00$ each, $\mathbf{E 1 . 2 5 1 0 0 +}$ DIP switch 3PCO 12 pin (ERG SDC-3-023) 60p each. 40 p $100+$ MODEMS V22/V22bis IBM PC internal full length card modem. BT approved, can be set to com 1 or 2 , 1200/2400 baud with sottware and manual, not Hayes compatable, made by Plessey. V 329600 baud and 4800 baud GEC Plessey telecom external modem, model 9632, Hayes compatable and BT approwed. with Buto call. auto answer. using V25, V25bis and Hayes AT protocols and V54 remote + local diagnostıcs. It does not work on slower speeds. V22/1200 baud etc and needs 1 internal dip switch to be switched on to select Hayes commands. It comes with a $100+$ page comprehensive $\mathrm{A4}$ size manual. An all together brilliant machine for only \qquad 233.83 All products advertised are new and unused unless otherwise stated. Wide range of CMOS TTL 74HC 74F Linear Transistors kits. rechargeable batteries. capacitors, tools etc. always in stock Please add 95p towards P\&P VAT included in all prices JPGELSCHRONICS 276-278 Chatsworth Road Chesterfield S40 2BH Access/Visa Orders: (0246) 211202 Callers weicome

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE OUR MUCH EXPANDED, BETTER

Metal detector boards with Data has tuner, mode discriminate, headphone jack, on/off volume \& push button facilities......................................e7 Dictaphone cassette, mech/record erase playback heads, 6 V solenoid, motor, hall
effect switch...
effect switch.

Pror stands.....

Bicc-Vero Easiwire
TTL/CMOS shon circuit snooper. Dot matrix LCD 10×2 lines. Oot matrix LCD 16×1 lines with Data.
40 characters $\times 1$ line dot matrix $L C D$ 40 characters
with data..
2 digit 16 segment VF display with data..
digit intelligent 17 segment V.F. display with driver board and data. 8 digit liquid crystal display. 4 digit LCD with 7211 driver chip... Digital clock display
11 key membrane keypad. Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$

74 HCO5
9* 3 U sub rack enclosures
12 V stepper motor, 48 steps per rev, 7.3° step angle
Stepper motor board with 2 sloteed opto +2 mercury tilt switches 1000 mixed $1 / 4$ watt 1% resistors. 250 electrolyic axial + radial caps. 200 off mixed polyester caps. 100 Mixed trimmer caps popular values. $\mathrm{f}^{4.95^{\circ}}$ 100 off Phono plugs 00 off Phono plugs
(red/black/grey).
50 Mixed terminal blocks 25 off asst. buzzers \& sounders.
Cable box UHF modulator/video preamp/transformer/R's + C's/leads..... ©6.95 1000 off mixed Multiayer Ceramic Caps...
Solar cell modules 0.45 V 700 mA $£ 2.95$ ea* B.B.C. Micro to disc drive lead....

Car Burglar alarm vibration auto entry/exit delay.
lay -.............
Single zone alarm panel auro
entry/exit delay housed in
domestic light socket...
...... 4.95°
£3.75 ea*
. 4.95°
$\mathrm{f} 15.00^{\circ}$
E2.95 ea"
2.95 ea
.
£2.99 ea
$f 1.75$ ea"
$f 3.50$ ea"
E2.50
f1.50 ea*
4.95 c8.95
£3.95 ea
¢3.95 ea*
£4.95 ea
4.95.95
. 4.95°
¢ 3.50°
£3.50
.
67.95
f1.50 ${ }^{\circ}$
55.95 ea
£9,95
P.C. P.S.U. 50 watt $115-230 \mathrm{~V}$ input +5 V $4 A+12 V 2.5 A$ output with built in fan. STC P.S.U. 240 V input 5V 6A..................... (converts to 12 V 3 A details available) 240 V input 5 V 10 A output (converts to 12V 5A no details).................. 5.95 ea 240 V in 0.12 V 0.75 A out

240 V in 0.12 V 0.75 A out

transformer......................£1.75
240 V in 0 -28V 62VA ous transformer. £2.75
Transformer + PCB gives $2 \times 7.5 \mathrm{~V} 32 \mathrm{VA}$
with skl for 5 or 12 V regulator, will power
floppy frive or 12 V regulator, will powe Ultrasonic transducers (transmit $+\mathbf{} \mathbf{~} 3.75$ ea receive).................................. 1.50 pair 3 to 16 V Piezoelectric sounders..........50p. 9 VDC electromechanical sounder.......50p. 2A 250 V keyswitch 3 position key removable in two positions........... $\mathbf{£ 1 . 5 0 \text { * }}$ DIL switches PCB MT 3/4/6 way...... 35 p $5 V$ SPCO SIL reed relay.
$5 \mathrm{~V} 2 \mathrm{PCO} O \mathrm{~L}$ miniature relay. 12 V 2 PCO or 4 PCO continental rela....60p. 12 V 10 APCB MT (to make contact)
3 to 12 V electro magnetic acoustic transducer with data.................... 2.4576/8.8329/21.10 M Hz crystals

Bridges 25A 200V 2A 100 V .
31 b Mixed components pack 25 off mixed relays.
le switches..
500 ea 50 off mixed switches, toggle, rocker, Miniature axial chokes $0.1,0.18,0.12$ D.33, 0.39, 0.15, 1, 3.3UH

250 off 16/22/24/40p ea., 100 for 87.50°. Crystal Oscillators $10 / 24 / 48 \mathrm{MHz}$... 4.95 . Spider Plug Leads..

75 p ва
QUANTITY DISCOUNTS AVAILABLE

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the opportunity to bulld the very best engineered hiff equlpment there is, designed by
the leaders in their fleld, using the best components that the leaders in
are available. are available.
Every HART
at a just a new equipment acquisition but a valuable investment in knowledge, giving you gulde hands-on experience of modern eiecironic techniques.
knowledgeable constructor, access to better equipment a lower prices than the man in the street
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your
subsequent kit purchase.
Our list will give you fuller details ol all our Audio Kits components and special offers.

AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K pertormance for a few tenths of the cosi!. Featured on the front cover of 'Electronics Today International' this complete stereo power amplifler ofters world Class pertormance allied to the famous Hart quality and ease of consiruc unit were enthusiastic:- The external view is that of a thoroughly professional piece of audio gear, neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is redolent of quality, both in components and in layout. Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volurne and balance controls. A new relay switched front end op tion also gives a tape input and output facility so that for use
with tuners, tape and CD players, or Indeed any other 'flat' with tuners, tape and CD players, or Indeed any other 'flat' the need for any external signal handling stages. 'Slave and 'monobloc' versions without the passive input stage and power meter are also avallable. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabitised, and the complete power supply, using a toroidal transtormer, is contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockets. All the circuitry is on prolessional grade printed circuit boards with roller tinned finish and green solder reslst on the component ident side, the power amplifiers performance. All wiring in this kit is pre-terminated, ready for instant use!.
RLH11 Reprints of latest articles.
K1100CM HART Construction Manu

COMPUTER CORNER

The following are a selectlon of our new range of VERY compeli-
Ively pricced, HIgh Quality, computer syslems. Due 10 our long Ilvely priced, High Quality, computer syslems. Due to our long experience or
Far East to buy at very advantageous prices and can pass the asvings on to you. All hard disc m
fully formatled and ready to use.
HART MODEL AT-286/16 WP COMPUTER
Fully fledged AT286 machine. cheap enough to use as the
fastest wordprocessor in the west! Only a tew years ago the AT-286 machine was the tastest standard office computer known. Now we can offer the superfast 16 MHz version (earlier ones were only 10 or 12 MHz) at such an incredibly low price that it can be used only that but ours comes with uliralast memory so that the machine can run in zero wait state
Advanced features are:-

Full 1MB of memory (Ex
pandable to 4 MB), 102
key UK keyboard, compact desktop case, 1.2MB $5 \%{ }^{*}$ High key UK keyboard, compact desktop case, $1.2 \mathrm{MB} 5 \%{ }^{\prime \prime}$ High
Density Disk Drive and interlace card for extra drive, Graphics/Printer Card, built in Hard Disk Interface
HART AT-286/16WP.................................. 277.25 14° FST Hercules monltor, Amber 14" Paper White Hercules Monitor. (Both have T/S Base)..
Trust Writer W/P Software uses Wordstar commands. $£ 19.50$ 40MB AT-286/16UG Hard Disk Computer Specilication as above but with 45 MB 25 ms hard disk. VGA Colour Graphics Card with 512 K RAM, parallel printer port, 2 serial ports. 1 game port.

$\frac{1}{n}$ers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surtace post, or 5 for Airmail. rdering is easy. Just write, telephone or fax your requirements to sample the triendly and efflcient HART get your order on its way to you THAT DAY
Please add part cost of carriage and insurance as follows:-INLAND Orders up to £20-£1.50 Orders over $£ 20-£ 3.50$ Express Courler, next working day. $£ 10$ (For silety all computer parts
areominaent br con th OVERSEAS- Please see the orderine intormation with our lists.

MANUFACTURERS OF QUALITY AUDIO KITS AND COMPUTERS

24 hr SALES LINE
(0691) 652894

HART 40MB AT-386/16SX EL

Entry level 386 machine for demanding applications a moderate cost. Spec as our AT286/16WP with 1MB Dram Colour Graphics Card with 256 K RAM
40 MB AT-386/16SX EL is.
HART 52MB AT-386/20SX UG

Luxury version of the above with higher processor speed and amazing 9 millisecond access time hard disk. 2MB SIMM RAM, Compact Tower Case, VGA 1024×768 card with 512 K RAM, upgradeable to 1 MB of Video memory. 40MB AT-386/20SX UG..
HART Computers OPTIONAL EXTRAS
o fit your personal
ouality replacement
CASSETTE HEADS

2
 $45-2$,

Do you tapes lack treble?. A worn head could be the problem. For top pertormance cassette recorder heads should be replaced every 1,500 hours. Fitting one of our high quality replacement heads could restore performance to better than new!. Standard inductances and mountings make litting easy on nearly all machines (Sony are special, see below) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actual importers you get prime parts at lower prices, compare our prices with other suppliers and see!. All our heads are suitable for use with ny Dolby system and are hormally avallable ex stock. We also stock a wide range of special heads for home construction and industrial users HM120 Standard Mono R/P Head........ HC66 High Quality Stereo R/P Head. Permalloy HS 16 Sendust Alloy Stereo Head.. £3.51
$£ 2.49$ S. HC80 NEW RANGE High Beta Permalloy Stereo head. Modern space saver design for easy fitting and lower cost. Suitable for chrome metal and ferric tapes, truly a universal replacement head for everything rom hi-fi decks to car players and at an incredibio HO551 4-Track RECORD \& Play Permalloy Head for auto-reverse car players or quadraphonlc recording H524 Standard Erase Head.. . 88.30 H561 Hi Field Erase Head for METAL Tapes...................... $£ 3.49$ HRP373 Downstream Monitor Stereo . 3.49
ombination Head
Many other SPECIAL casselte Heads in stock, see our LIST

REEL TO REEL HEADS

999 R $2 / 4$ Record/Play 110 mH . Suits Stuart Tape
Circuits........................... Universal Mount Suits Stuart.
To fulfil the need for higher quality controls we are now importing an exciting new range of precision audio pots in values to cover most quality amplifier applications. Alt in 2-gang stereo format, with 20 mm long 6 mm dia. stee carbon pots and replace with the real hi-fi components only used selectively in the very top llight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motorised version have 5 v DC Drive motor
-Gang 100K Lin
2-Gang 10K Special 100 K Log.
2-Gang 20K Log MOTORISED
2-Gang 10K Special Balance.
crosstalk and $<10 \%$ centre loss Log/Antilog Tracks)
. 88.67
.89 .40
.110 .71
. 10.71
£19.20

TAPE RECORDER CARE PRODUCTS
HART TC1 TEST CASSETTE Our lamous triple
leveł and tape speed..5.36
DEM1 Mains Powered Tape Head Demagnetize
prevents noise on playback due to residual
prevents noise on playback due io residual £4.48
equirements, at NO extra costl. Simply select the options you equire. If replacing any item in the standard specification for that model then deduct the cost of the
SOFTWARE
MS-DOS 5 Latest Release. Full version. 3.5" or $5.25^{\prime \prime}$........ 559 DR DOS 6
.267
Microsoft Windows Latest Version 3.1
MONITORS
SM1421 AM TU Hercules Mono with FST Tube and Stand,
SM1421 PW TU As Above but Paper White Screen..
.883
. 886
SM1416A VGA Mono Monitor c/w till and swivel stand.
Amber....................................
SM1485-00 Super VG A Multisync Colour Mo.............................. pitch 50 MHz Bandwidth up to 1024×768. $/ \mathrm{w}$ stand..... 2335

K261 102 Key Enhanced UK Layout. Tactile Click, AT/XT
Switchable with dual slope feet.(Standard Keyboard supplied with systems)...
K108 Similar to above, single slope teet. Alps switches.........36 KB6153A As above but with heavy metal bas
I/O and GRAPHIC CARDS
AT Super $1 / 0$ Card $2 \times$ FDD, IxIDE, 2 Serial, 1 Parallel, 1 Game Ports...21.20 ercules Mono Graphic \& Printer card................................E11.70
6-Bir VGA Card, 256 K...
Trident 8900 VGA Card with 1 Mb ...
25" 1 2MD Floppy Disk DISK DRIVES
.$\quad .49$
5.25"1.2Mb Floppy Disk Drive

Adapter to tit 3.5 "drive in $5.25^{\prime \prime}$ slot. c/w power adapter....... $£ 9$ 52M B Quantum Hard Disk. Lightning Fast 9ms Access
time...
WE 611P Desktop Case, Flip Top, 200W PSU..................... 556.40
WET27P Mini Tower Case, 200W PSU.. 884.70
108MP Mini Tower Case, Compact Style.
.589
CT107 Midi Tower Case...........
,
AT-286/16 OK.RAM....
$\begin{array}{r}\text { C195 } \\ \hline\end{array}$
AT-386-20SX OK.RAM
c245
PLEASE NOTE THAT ALL ITEMS IN THIS
SECTION ARE PRICED EX VAT.

MAGENTA 포불

VERSATILE BBC INTERFACE

A comprehensive interface which allows the BBC Model B computer to be connected safely to a wide range of input and output devices. Two leads connect the interface to the User port and Printer port. Up to 16 outputs (all via single pole change-over relay contacts) and 8 inputs. All inputs are fully protected. LED indication is provided on all lines. Requires an independent 12 V supply
Full Kit Ref: 844
£51.95

STEPPING MOTOR DRIVER/INTERFACE

EE Jan '92

A single board, stand alone, stepping motor driver with built-in oscillator for variable low speed, high speed, and acceleration control. Suitable for all Magenta's four-phase unipolar motors and most others - up to 35 V and 1.5 A per phase. Half step, Full step and Wave-drive modes switch selectable. LED mimic display and connector for computer port.
Kit includes MD35 motor
Kit Ref: 843
£29.95
Or Built
£44.95

Supplying Electronics for Education, Robotics, Music, Computing and much, much more CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

All prices include VAT at 17.5\%	
Shop open 9-5 Mon.-Fri.	Add £2
9-2 Salurday	p\&p to
Official orders welcome	all orders

HAMEG HM 203-7 OSCILLOSCOPE

High quality reliable instrument made in W. Germany. Outstanding performance. Full two year parts and labour warranty. $20 \mathrm{MHz}-2$ channels 1 mV sensitivity. Easy to operate and high performance
(Cheques must be cleared) $£ 338+£ 59.15$ VAT
Next day Delivery 510.00

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS. SEPARATE REPRINTS ALSO AVAILABLE PRICE 8Op EACH INCLUSIVE P\&P. KITS INCLUDE CASES. PCB'S HARDWARE AND ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT DRILLED OR LABELS SUPPLIED UNLESS STATED.
SUP
Ref
844 VERSATILE BBC INTERFACE Mar 92
843 STEPPING MOTOR DRIVER/INTERFACE Jan 92
or built
342 PORTABLE ULTRASONIC PEST SCARER, Aug 91

Price Ref
£51.95 700 ACTIVE I/R BURGLAR ALARM Mar 87
E29.95
584 SPECTRUM SPEECH SYNTH (no case) Feb
581 VIDEO GUARD Feb 87
569 CAR ALARM Dec 86
561 LIGHT RIDER LAPEL BADGE Oct 86 560 LIGHT RIDER DISCO VERSION Oct 86 559 LIGHT RIDER 16 LED VERSION Oct 86 556 INFRA-RED BEAM ALARM Sep 86
$\mathbf{£ 1 9 . 8 6}$ 513.23 DIGITAL COMBINATION LOCK Mar 91 with drilled case
839 ANALOGIC TEST PROBE Jan 91 (no case)
838 MICROCONTROLLER LIGHT SEQUENCER Dec 90 . With drilled and labell case
835 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90
315 EE TREASURE HUNTER Aug 89 Full 814 BAT DETECTOR June 89 Full Kit

312 ULTRASONIC PET SCARE R May 89
800 SPECTRUM EPROM PROG RAMMER Dec 88 796 SEASHELL SYNTHESISER Nov 88
790 EPROM ERASER Oc1 88
769 VARIABLE 25 V - 2 A BENCH POWER SUPPLY Feb 88
744 VIDEO CONTROLLER OCI 87
740 ACOUSTIC PROBE NOV 87
739 ACCENTED BEAT METRONOME NOV 87 734 AUTOMATIC PORCH LIG HT OCt 87 730 BURST-FIRE MAINS CONTROLLER Sep 87
728 PERSONAL STEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
719 BUCCANEERI.B. METAL DETECTOR July 87
718 3-BAND $1.6-30 \mathrm{MHz}$ RADIO Aug 87
715 MiNI DISCO LIGHTS June 87
707 EQUALIZER (IONISER) May 87

Price
C40.74
C23.90
69.59
£14.24
¢11.65
ع22.41
f15.58
C32.39
£8.94
£ 13.17
£30.60
C 30.21
£31.93
$£ 10.07$
C 21.41
C49.95
f6. 25
£9.60
$€ 9.15$
€.
$\mathbf{6} .86$
C7.08
f8. 63
¢22.37
£ 40.82
£6.31
f9.91
$£ 15.02$
$£ 27.59$
f6.49
f6.50
£7.85
$\varepsilon 10.76$
f8.94
c7.15

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4.5$ Volt mini motor Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
Small Unit Type MGS
£4.77
Speed range $3-2200 \mathrm{rpm}$. Siz
Large Unit Type MGL
$£ 5.58$
Speed range $2-1150 \mathrm{rpm}$. Size: $57 \times 43 \times 29 \mathrm{~mm}$

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques. ID36 Permanent Magnet Motor $£ 16.86$ 48 steps per rev
MD200 Hybrid Motor
$\$ 17.10$
200 steps per rev
MD35 $1 / 4$ Permament Magnet Motor 48 steps per rev.
£12.98
MD38 Permanent Magnet Motor £9.15
48 steps per rev.

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. ideal for beginners. No soldering, uses an S-DEC breadboard. GIves clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-DEC breadboard and all the components for the series.
Adventures with Electronics
Component Pack (less book)
$\mathbf{£ 6 . 2 5}$
$£ 22.83$

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series - an enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - fault finding - components (identification and how they work). Also full details of how to build 6 projects - burglar alarm, radio, games, etc. Requires soldering - 4 pages clearly show you how. The components supplied in our pack
allows all the projects to be built and kept. The book is available separately.
Fun with Electronics Book
Component pack (less book)
30 SOLDERLESS BREADBOARD PROJECTS A book of prolects by R. A. Penfold covering a wide range of interests. All projects are built on a Verobloc
breadboard. Full layout drawings and component
identification diagrams enabie the projects to be buill by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The
component pack allows all projects in the book to be built one at a time. Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch. sound activated switch, moisture detector, MW Radio, Fuzz unit, etc.
30 Solderless Breadboard Projects (Book 1) Component Pack

INSULATION TESTER

EE APRIL 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular.
£22.37 KIT REF 444

3BAND

SHORT WAVE RADIO

EE AUG 87

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.

KIT REF 718
£30.30

PORTABLE ULTRASONIC

 PEsTSCAREREE AUG '91
A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all components. PCB, transducer and case. KIT REF 842
£22.56

EE EQUALISER

EE MAY'87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB.
KIT REF 707
£17.75

LIGHT RIDERS

EE OCT '86
Three projects under one title-all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling oun 500 watts.
KIT REF 559 CHASER LIGHT
$£ 15.58$
KIT REF 560 DISCO LIGHTS
£22.41
KIT REF 561 LAPEL BADGE
£11.65

PET

 SCAREREE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor). KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION LOCK

EE MAR '91
Digital combination lock with a 12 key keypad. 4 digit code operates 250V-16A SPCO relay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security. Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output, etc.). Article describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case
KIT REF 840
119.86

ACOUSTIC PROBE

EE NOV '87 A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC '90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available. 1000 watts per channel, zero voh switching, inductive load capability. Opto-isolated for total safety. Many other features. Complete kit includes case, PCBs. all components and hardware.
£57.1
KIT REF 838

EE TREASURE

 HUNTEREE AUG '89 A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground "゙ャ effect". Can be used with search-head underwater.

EPROM ERASER

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90
At last, an easy to build SUPERHET A.M. radio kit. Covers Long and medium Wave bands. built in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.

KIT REF 835

INCORPORATING ELECTRONICS MONTHLY

Editorial Offices:
EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692. DX: Wimborne 45314.
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX C013 0JS
Phone/Fax: (0255) 850596

SOLAR ECLIPSE

As regular readers will know we tend to use some unusual illustrations on our front cover and, as you can see, this month is no exception. The illustration by Steven Hunt is of a solar eclipse, it is particularly relevant to this month's magazine because this issue contains the first part of our Alternative Energy series.
When you read the series you will quickly realise the importance of the sun in relation to all forms of energy except nuclear power. Man has only very recently managed to produce controlled nuclear fusion - the process which makes the sun work. Although this "clean" method of generating power probably has the greatest potential it is still in its infancy and we are possibly 50 years away from a fusion power station, the use of which might eventually eclipse the power the sun has provided.
We all tend to use power without very much thought about how it is generated and I guess few people are aware of all the methods now used around the world for power generation. Our series will give an overview and some hints on what might develop.

FREE LIGHT

Perhaps the above side heading is a little misleading, as we all know there is no such thing as a "free lunch", however our Solar Powered Lighting Unit will provide virtually free light once you have paid to build it. It does show in its own small way what can be achieved for a relatively small outlay.
On a larger scale the sun is being used in the U.S.A. to generate considerable amounts of power - but just one power station can contain up to 1.5 million mirrors to generate 150 MW of power - not quite an EE project! By the way, it takes a 20 man team 10 days just to clean all the mirrors.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $\mathbf{£ 1 8 . 5 0}$. Overseas: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum credit card order 55 .

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.80$ ($£ 2.30$ overseas surface mail) inclusive of postage and packing per copy - $£$ sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order $£ 5$. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street. Wimborne, Dorset BH21 1 JH Tel: 0202 881749. In the event of nonavailability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June, Oct, \& Dec. 88, Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $\mathbf{£ 5 . 9 5}$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs pubfished in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that certain items of radio transmitting and tellphone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country: overseas readers should check local laws.

GAS ALARM

ROBERT PENFOLD

Will detect the build-up of fuel gas plus many other types of inflammable gasses and vapours. It will also detect many types of smoke

Gas alarms are designed to detect inflammable gases and vapours before a dangerous concentration is reached. They are much used in boats and caravans, but can be utilized anywhere that is equipped with gas appliances, or where inflammable vapours could build up.
Most gas alarms, including this one, will detect all normal fuel gases, plus many other types of inflammable gas and vapour. This includes many types of smoke, and the unit will therefore operate as a fire alarm as well (but possibly less effectively than a purpose designed fire alarm). Although this device is designed to operate from the mains supply, it can be modified to operate from a 12 volt d.c. supply.

GAS SENSOR

Smoke detectors operate using a variety of methods, including simple optical methods of detection. In this case it is not just inflammable smoke that must be detected, but fuel gases as well. These are mostly transparent, and will not be detected using simple methods such as optical detectors. Detection of fuel gases requires special sensors using quite sophisticated techniques.
Gas detectors of this type are usually based on a heating element with a special coating. With some sensors the heating element oxidises due to a reaction with
oxygen in the air, and has a high resistance. However, in the presence of inflammable gases a process known as reduction takes place, which means that the oxygen is to some extent removed from the heating element, causing its resistance to decrease.
This type of sensor has been much used in gas detectors for the home constructor in the past, but this unit uses an alternative (and now more readily available) form of sensor. This type of gas sensor has the usual heating element, but it is made from fine platinum wire coated with oxides and a catalyst.
The element normally heats to approximately 350 degrees Centigrade, but if a suitable gas is present oxidisation takes place. This, together with the rise in temperature that occurs, results in a rise in resistance through the sensor.

SYSTEM
 OPERATION

The block diagram for the Gas Alarm project is shown in Fig. 1. The sensor is connected in a bridge circuit. One side of the bridge merely consists of a potential divider circuit which provides a "reference voltage" to one input of a voltage comparator circuit.

The other side of the bridge consists of another potential divider. This is formed by

Fig. 1. The Gas Detector block diagram. The compensation element is a sort of "dummy" sensor.

the two resistances provided by the Sensor and a Compensating Element. The latter is very similar to the sensor, having an identical platinum wire element. The coating is different though, and it will not respond to inflammable gasses. The point of having the compensation element is that over a period of time the resistance through the sensor might change slightly due to changes in the ambient temperature, humidity, etc.
Any changes of this type should affect both the sensor and the compensation element almost equally, giving no change in the output voltage from that side of the bridge. This helps to avoid false alarms.
The use of a bridge circuit also helps to avoid spurious operation of the unit. If there should be a slight change in the supply voltage (which there will inevitably be over a period of time), it will affect both sides of the bridge circuit, and will not cause a false alarm.
Normally the output voltage from the sensor arm of the bridge is higher than that from the reference voltage side. This is detected by the voltage comparator, and its output goes to a very low voltage. When the unit is activated the sensor's resistance increases, and the output voltage from that arm of the bridge circuit falls below the reference voltage. This is detected by the voltage comparator, and its output triggers to virtually the full supply voltage.
The output of the comparator operates an electronic switch, which turns on an audible alarm circuit when the unit is activated. The alarm signal is a frequency modulated tone which is smoothly swept up and down in frequency at a rate of a little over one cycle per second.
The basic audio signal is generated by a v.c.o. (voltage controiled oscillator). The operating frequency of this circuit is controlled by a voltage which is provided by a low frequency oscillator (I.f.o.). As the output voltage from the latter rises and falls, so does the pitch of the output from the v.c.o. This gives an effective alarm signal that is not easily overlooked.

CIFCUIT OPEFATION

The full circuit diagram of the Gas Detector, including the stabilised mains power supply, is shown in Fig. 2. The circuit requires a 12 V supply, and the current consumption is about 400 milliamps. This is predominantly the current consumed by the sensor and compensation element. The rest of the circuit consumes just a few milliamps.

The power supply is a conventional type having full-wave bridge rectification provided by diodes D1 to D4, and smoothing supplied by capacitor Cl . ICI provides a well regulated and smoothed 12 volt output.
The sensor and compensation element require a total supply voltage of only about $2 \cdot 2 \mathrm{~V}$. This is derived from the main 12 volt supply using a simple dropper circuit based on transistor TR1. This is just a potential divider circuit (resistors RI to R3) and an emitter follower buffer stage to provide the fairly high currents required by the sensor and compensation elements.

Transistor TRI is a power Darlington device which can comfortably accommodate the current and power levels involved here. Due to its very high gain it can operate properly from the low input current available from R1 to R3.
Preset potentiometer VR1 provides the reference voltage, and this is adjusted to give an output potential that is just below the level produced by the sensor circuit. IC2 is an operational amplifier which is connected to operate as a voltage comparator. Resistor R6 provides a small amount of hysteresis which helps to avoid "jitter" when the circuit is close to the trigger level. Transistor TR2 is the electronic switch, and this is an emitter follower buffer stage.
The v.c.o. is based on IC3, which is actually a "micro-power" CMOS phase locked loop (p.1.1.). In this case it is only the

It is over this frequency range that the "Siren" LSI offers peak efficiency. Note that LSI is a piezoelectric sounder and not a normal moving coil loudspeaker. A moving coil loudspeaker, even a high impedance type, is unsuitable for operation in this circuit.

LOW FRECUENCY OSCILLATロR

A low power 555 timer, IC4, acts as the I.f.o. The roughly squarewave output from pin 3 of IC4 is of no use in this case as it would simply switch the v.c.o. between two frequencies. This can give quite an effective alarm signal, but the two frequencies might happen to be ones where the Piezo-sounder is not very efficient.
Sweeping the v.c.o. frequency ensures that the sounder is driven at its frequencies of peak efficiency for at least part of the time, giving a loud alarm signal. The waveform across capacitor C6 is a sort of slightly rounded triangular shape, and this gives a good sweep effect. The signal across C6 is at a high impedance, but this does not matter as the control input of IC3 has an extremely high input impedance.

LOW VOLTAGE OPERATION

For operation on a 12 V supply the mains power supply components (T1, S1, D1-D4, C1-C3, FS1, and IC1) can all be omitted. The 12 V d.c. supplies in boats, caravans.

COMPONENIS

Resistors

Resistors		
R1	$2 k 2$	
R2	220	
R3	1 k	
R4, R5	$1 \mathrm{k5}$ (2 off)	
R6	$560 k$	
R7	$150 k$	
R8	$10 k$	
R9	1 M	

See
SHOP
TALK
Page

All 0.25W 5\% carbon film

Potentiometer

VR1 4 k 7 sub-min horizontal preset, lin.

Capacitors

C1	470μ radial elect., 25 V
$\mathrm{C} 2, \mathrm{C} 3$	100 n ceramic (2 off)
$\mathrm{C4} 4$	1μ radial elect., 63 V
$\mathrm{C5}$	10 n polyester
C 6	330 polyester

Semiconductors
D1-D4 1N4002 100V 1 A rect (40ff)
TR1 TIP121 non power Darlington
TR2 BC549 non silicon
IC1 $\mu \mathrm{A} 781212 \mathrm{~V} 1 \mathrm{~A}$ reg.
IC2 CA3140ECMOS op. amp
IC3 4046BE CMOS phase
IC4 locked loop
IC4 TLC555CP Iow power timer

Fig. 2. The complete circuit diagram for the Gas Alarm. The detector elements are mounted on the front panel (see photograph below) together with the warning siren.
v.c.o. section that is required. The phase comparators, stabiliser circuit, etc., are simply ignored
Resistor R7 and Capacitor C5 are the timing components. These have been chosen to give an operating frequency range that covers the middle audio range.
etc. are generally somewhat higher than their nominal 12 volt level, and often contain a lot of noise. It is therefore advisable to add a $100 \mu 16 \mathrm{~V}$ electrolytic capacitor across the supply rails.

Miscellaneous

LS1 Panel mounting piezo sounder

S1	Sounder
FS1	Rotary mains switch
FS	

$\begin{array}{ll}\text { S1 } & \text { Rotary mains switch } \\ \text { FS1 } & 20 \mathrm{~mm} 500 \mathrm{~mA} \text { quick-blow }\end{array}$ fuse
T1 12 V 500 mA secondary, mains primary
X1,X2 Matched pair of gas detector and compensator transducers

Printed circuit board, available from EE PCB Service, code EE800

Metal instrument case, size $230 \mathrm{~mm} \times$ $130 \mathrm{~mm} \times 65 \mathrm{~mm} ; 20 \mathrm{~mm}$ p.c. mounting fuse-clips; control knob; $18 \mathrm{~s} . w . g$. aluminium for heatsinks; 8-pin d.i.l. socket (2 off); 16-pin d.i.l. socket; mains lead and plug; solder tag; solder pins; connecting wire; solder; etc.

Also, a 500 milliamp fuse, a $2 \Omega 72 \mathrm{~W}$ resistor, and an s.p.s.t. on/off switch should be added in series with the positive supply lead.

CONSTRUCTION

Details of the printed circuit board component layout, full size copper foil master pattern and interwiring are shown in Fig. 3. This board is available from the $E E P C B$ Service, code EE800. Construction of the board is very straightforward as it is singlesided and free from link wires.

All the d.i.l. integrated circuits are CMOS types, although IC4 has built-in protection circuitry which renders the normal handling precautions unnecessary. Nevertheless, it is still recommend that holders should be used for all three d.i.l. integrated circuits.

IC4 can be any low power 555 timer (TLC555CP, ICM7555, etc.). An ordinary 555 timer might be satisfactory, but could give rather erratic results. A low power version seems to give more reliable results in this application. Note that IC4 has the opposite orientation to IC2 and IC3.
Fuse FS1 is mounted on the board via a pair of 20 millimetre fuse-clips. A 20 millimetre printed circuit mounting fuseholder should also be suitable, but might require a slightly different mounting hole arrangement.

HOT SPOT

Components IC1 and TRI have to dissipate about 1.5 W and 3.8 W respectively.

Fig. 4. Suitable heatsink designs for power Darlington transistor TR1 (top) and regulator IC1 (bottom). Dimensions in millimetres.

The completed circuit board showing the two heatsinks clamped to the semiconductors.

They can only do this with the aid of heatsinks. As the dissipation figures are not very high, there is no need for any large or elaborate heatsinks. The small ready made type for TO-220 and similar devices will suffice provided there is sufficient space on the board (some have bigger "footprints" than others).
Alternatively, "U" shaped heatsinks can be fabricated by the constructor from 18 s.w.g. or 16 s.w.g. aluminium. The thicker (16s.w.g.) grade is preferable for this type of thing, but 18 s.w.g. aluminium is much easier to work. Suitable heatsink designs are provided in Fig. 4 (the larger one is for TR1)
It is advisable to use a smear of heatsink compound or a substitute to ensure that there is a good thermal contact between each heat-tab and its heatsink. Note that these heatsinks represent about the minimum that will prevent TR1 and ICl from overheating. The heatsinks are bolted in place using M3 nuts and bolts, and it is a good idea to bolt the heatsink and transistor or integrated circuit to the board so that everything is securely held in place.

An alternative method of heatsinking is to mount TRI and ICI off-board, and to hard wire them to the board. They can then be mounted directly on the metal case, or on the case via a simple " L " shaped mounting bracket if preferred. This will provide them with a substantially more than adequate degree of heatsinking, but is a less neat solution.

If this method is adopted it is essential that transistor TRI should be fitted with an insulating kit. Otherwise the +12 volt supply carried by its heat-tab will short circuit to the case which is at the 0 V supply level. Use a continuity tester to make sure that the insulation is fully effective. The tab of ICl is at the 0 volt supply level, and therefore this device does not require an insulating kit.

C4SE

A metal instrument case about 220 millimetres or more wide and 65 millimetres or more high should comfortably accommodate all the parts. The front panel layout has (from left to right) switch $\mathbf{S 1}$, the Sensor, the Compensating Element, and Sounder LSI mounted in a neat line. A hole for the mains lead is drilled in the rear panel opposite S 1 , and this should be fitted with a grommet to protect the cable.
The sensor and the compensation element look much the same, but they have coloured dots so that you can tell which is which. The compensation element has a blue spot, while the sensor will probably have two or three spots of different colours.
There is no obvious means of panel mounting these two components, and matching panel holders do not seem to be available. Simply drill holes about three
millimetres in diameter to take their pin-type terminals, and then glue them on the panel using an epoxy adhesive. With this method you must make sure that none of the pins short circuit to the metal case.
The sounder LS 1 is easier to deal with if it is mounted on the front surface of the

MUST be earthed to the earth lead of the mains cable.
The small amount of point-to-point wiring is also included in Fig. 3, and this is all pretty simple. However, with any mains powered circuit you must take extra care to get everything right. Also, make sure that all the soldered joints are of good quality, and perfectly reliabie.

TESTINGANDUSE

To set up the Gas Alarm, start with preset VR1 and set it at a roughly the middle of its adjustment range. At switch-on the alarm generator may be activated, but do not worry if it is not. You should find that the alarm can be switched on and off by adjusting VRI in a clockwise and a counter-clockwise direction respectively. If adjustment of VRI does not have the desired effect, switch off immediately and recheck all the wiring.
Assuming that all is well, leave the unit for a few minutes to fully warm up and for

Layout of components inside the metal case. The mains transformer and switch connecting tags should be covered with insulating sleeving.
front panel. It then requires two small mounting holes for the fixing screws, and one to permit the flying leads to pass through to the interior of the case. Use LSI as a template when marking the positions of these holes on the panel.
The mounting holes in LSI are for very small screws (8 BA or similar). It might be better to carefully enlarge the holes slightly so that bigger mounting screws (6BA or similar) can be used.
The printed circuit board is mounted on the base panel of the case well towards the right hand side, leaving plenty of space for transformer T1 to its left. A solder tag is mounted on one of Tl's mounting bolts to provide an "earthing" point for the mains Earth lead. For safety reasons the case
the d.c. levels to stabilise. Preset VR1 is then backed-off just far enough in an anticlockwise direction to switch off the alarm. The unit is then ready for use.
The unit can be tested by subjecting it to a localised dose of inflammable gas or vapour. You should obviously take due care when doing this, but the gauze coverings on the sensor and compensation element should ensure that their heating elements cannot ignite the gas or vapour.
When the prototype was tested it even responded to fumes from a spirit based cleaning fluid, and to turpentine vapour. It will probably respond to just about anything inflammable in the atmosphere, and at concentrations below the level at which there is any risk of ignition.

Regular Clinic

CIRCUIT SURGERY

MIKE TOOLEY B.A, 7

Abstract

Welcome again to Circuit Surgery, our regular clinic for readers' problems. In this month's Surgery we shall be describing an improved low-battery warning indicator based on an operational amplifier. We also answer a query concerning the use of BNC coaxial connectors and illustrate the "definitive" method for terminating a standard "TV aerial connector". For good measure, we have also included a simple BASIC computer program which can be used to design astable and monostable 555 timer circuits.

Improved Battery Warning

A number of readers have sent in comments and suggestions concerning the lowbattery warning indicator which was described in the June Surgery. One of the principal disadvantages of this circuit is the lack of any pre-set adjustment to determine the threshold of voltage at which the unit illuminates the l.e.d.
Jim Forester, a regular EE reader, has suggested that an improved low-battery warning indicator could be based on the comparator arrangement shown Fig. 1. I have taken this idea to heart and the resulting circuit is shown in Fig. 2. This circuit provides a very much more definite switching action as the threshold voltage is reached and can provide useful indications for battery supply voltages of between 6 V and 15 V (by means of an appropriate setting on VR1)
A further possibility is shown in Fig. 3. This circuit uses a low-cost piezo-electric transducer to provide an audible (rather than visual) indication that the battery is about to fail. The additional transis-

Fig. 1. Basic principle of the improved low-battery indicator.
tor, TR1, provides the extra current drive (up to 100 mA) which may be required by certain larger transducers. Small p.c.b. mounted transducers, on the other hand, will normally require currents of no more than around 15 mA to 20 mA . In such cases, R4 and TR2 can both be omitted and the transducer can simply replace D2 and R3 in the circuit of Fig. 2.

Coaxial Connectors

Alan Brown writes from Wrexham to ask for some clarification concerning the selection of coaxial connectors for r.f. and test equipment. Alan writes:
"I have a number of items of test equipment which use BNC-type connectors. These all seem to be 50 ohm types but I understand that 75 ohm BNC connectors are also available. Does this rating actually matter and could you also tell me what advantages BNC connectors offer when compared with alternative types."

Well Alan, this is an interesting question which will require a fairly lengthy answer to really do justice to it! BNC connectors seem to have become universally fitted to

Fig. 2. Improved low-battery indicator with l.e.d. output NB: Values shown are for 6 V to 9 V operation. For 9 V to 15 V operation, $R 2=1 \mathrm{k}$ and $R 3=330$.
most items of "quality" test equipment Such equipment includes oscilloscopes, r.f. and pulse generators, wideband voltmeters, etc.
BNC connectors are designed to preserve a constant impedance (either 50 ohms or 75 ohms depending upon the series) within a system based on coaxial (screened) cables. The connectors are locked into place by means of a simple but effective bayonet locking action. BNC connectors are rated for operation at peak voltages of up to 500 V and at frequencies up to 4 GHz . This makes them ideal for wideband and r.f. applications at v.h.f. and u.h.f.
The 50 ohm BNC series is commonly used for general purpose test equipment, r.f. signal generators, and for the aerial connection to v.h.f. and u.h.f. transceivers. The 75 ohm series is invariably used with video equipment such as cameras, monitors and waveform generators.
The 50 ohm and 75 ohm series are identical save for one vitally important difference; the diameter of the terminating pins and their matching receptacles. The 50 ohm inner terminating pin is noticeably

Fig. 3. Improved low-battery indicator with audible output (NB: Values shown are for 6 V to 9 V operation. For 9 V to 15 V operation, $R 2=1 \mathrm{k}$).

larger in diameter than its 75 ohm counterpart and hence it is inadvisable to attempt to mate a 50 ohm plug with a 75 ohm socket!
Impedances (either 50 ohm or 75 ohm) are now generally marked on the outside of the body of individual BNC connectors. Alternatively, manufacturers ${ }^{\circ}$ part numbers are invariably different for 50 ohm and 75 ohm variants of each connector type.
In conclusion, BNC connectors are an excellent choice for test equipment on both mechanical and electrical grounds. For some applications they can, however, be a little expensive and it may be worth considering alternative connector types for less critical applications. Finally, it is worth making sure that you don't "mix and match" 50 ohm and 75 ohm types!

Low-cost Coaxial Connectors

Alan Brown's query concerning BNC connectors has prompted me to review my own use of a wide variety of different types of connector within my own workshop. After a quick tour of each item of equipment I discovered no less than nine different types of connector (including BNC, TNC, N-type, SMA, SMB, F-type and the good old "u.h.f."/PL-259 series). This awesome muddle is greatly aided by a variety of "inter-series" adapters (without which inter-connection of test gear would be virtually impossible!).

Some years ago as an impecunious student I searched for a readily available coaxial connector which could be fitted to virtually any item of equipment and which would not cost an "arm and a leg". After considering several common types, I settled on the "cheap and cheerful" coaxial "TV aerial connector". This offers reasonably good performance up to 300 MHz (with reduced performance to 900 MHz), can reliably handle r.m.s. power levels of up to 50 W , and costs very much less than any of the alternatives. Furthermore, despite the fact that this type of connector is designed for use with 75 ohm systems the consequence of mis-matching it with 50 ohm cables and terminations is usually quite negligible.
This type of connector was originated by Belling-Lee and is available from most high-street electrical and DIY stores as well as from all of the usual electronic catalogue suppliers. Provided they are of the all-metal soldered variety and are terminated correctly, they can be extremely reliable and mechanically durable

The connectors are suitable for a wide range of applications (not just r.f.). Indeed, I must confess to having used them as a low-cost alternative to BNC connectors on a number of occasions (including some test gear and audio equipment)
Unfortunately, few people seem to know how this common type of connector should be fitted and this often gives rise to problems. Indeed, I never cease to be
amazed at the peculiar attempts that people make at fitting them. To put the record straight, Fig. 4 shows the "definitive method" (note that the outer braid is trimmed, then fanned out and effectively trapped (without soldering) between collar/cable-grip and the inner plastic insulator. After tightening, the outer braid is firmly locked and solder should be carefully run into the centre pin before trimming the inner conductor.

The 555 Timer

Lawrence Inwood has written to point out a problem in our 1991 Teach-In. Regular readers will doubtless recall that this series was entitled Design Your Own Circuits and Part 6 was devoted to Timers. Lawrence writes:
"I find the 555 timer to be one of the most useful of all integrated circuit devices and have used it for everything from timing an egg to generating accurate pulse waveforms. I do find the maths a bit difficult to grasp and thus very much welcomed the two nomographs which were provided in the article.

Unfortunately I have not been able to make much sense of the astable nomograph - the values it suggests give rise to a $2: 1$ error in operating frequency. Can you help?"

Thanks for pointing this out, Lawrence. You have discovered a rather unfortunate error in the heading printed above the right hand column (the resistance axis) of Fig. 6.8. This should read: " ${ }^{\prime} \mathrm{R}=\mathrm{R} 1+\mathrm{R} 2^{\prime \prime}$ not " $\mathbf{R}=\mathrm{R} 1=\mathrm{R} 2$ ". Hopefully this will put the matter right and you can now use the nomograph with some confidence!

On a related matter, Andrew Jones (a teacher of GCSE Control Technology) has asked if I can suggest a computer program for designing timer circuits. Andrew writes:
"We have an 80386SX IBM compatible $P C$ in the classroom and this operates with MS-DOS Version 5. We don't yet have any programming languages but we understand that Microsoft QuickBASIC would do the job. Please suggest how we might go about this as my pupils need to use the PC for their projects (which involve the use of a 555 timer i.c.)."
Fortunately, this is an easy one! The following listing (written in Microsoft QuickBASIC) should do the job:

555 timer circuit designer

Initialise

ON ERROR GOTO warning SCREEN 0
COLOR 1, 2, 3
uls = STRING\$(31, CHR\$(205))

Display menu

main:

CLS

PRINT uls

PRINT " 555 TIMER I.C. CIRCUIT
DESIGNER'
PRINT ul\$;
PRINT " Select timer
configuration.."
PRINT " $[\mathrm{M}]=$ monostable mode"
PRINT" $[\mathrm{A}]=$ astable mode"
PRINT " $[\mathrm{Q}]=$ quit"
DO
r\$ = UCASES(INKEY\$)
LOOP UNTIL r\$ < > $\cdots \cdots$ AND
INSTR("MAQ", r\$)
IF r $\$=$ " Q " THEN CLS : END
PRINT ul\$
IFrs = "M" THEN GOSUB
monostable
IF r\$ = "A" THEN GOSUB astable LOOP
monostable:
PRINT " Monostable timer configuration.."
INPUT" Timing period (in ms)"; t
'Recommend a value for c
crec $=\mathbf{t} / 100$
crec $=\operatorname{INT}(1000$ * crec) $/ 1000$
PRINT ul\$
PRINT " Recommended value for the"
PRINT "' timing capacitor is";
PRINT USING "\#\#\#.\#\#\#"; crec;
PRINT" ${ }^{\prime \prime}$ F"
PRINT ul\$
$r=0$
WHILE $r>1 * 10^{3}$ OR $r<1$
INPUT" Capacitor value (uF)"; c
$r=t /\left(1.1^{*} \mathrm{c}\right)$
PRINT ul\$
PRINT" Timing resistor $=$ ";
PRINT USING "\#\#\#\#\#\#\#.\#"; r;
PRINT" kohm"
WEND
GOSUB waitkey
RETURN
astable:
PRINT " Astable timer configuration..."
INPUT" Capacitor value (UF)"; c
PRINT ul\$
PRINT " NB: High time MUST be
greater"
PRINT" than low time..."
PRINT ul\$
$t 1=0$
$t 2=1$
WHILE $\mathrm{t} 1<1.05^{*} \mathrm{t} 2$
INPUT " High output time (ms)"; t1
INPUT " Low output time (ms)"; t2 WEND
$\mathrm{r} 2=\mathrm{t} 2 /\left(.693^{\circ} \mathrm{c}\right)$
$\mathrm{r} 1=\mathrm{t} 1 /\left(.693^{\circ} \mathrm{c}\right)-\mathrm{r} 2$
$f=1.44 /\left(\left(r 1+\left(2^{*} r 2\right)\right)^{*} c\right)$
PRINT" R1 = ";

PRINT" kohm"
PRINT "R2 $=$ " ${ }^{\text {" }}$
PRINT USING "\#\#\#\#\#\#,\#"; r2;
PRINT " kohm"
PRINT"P.r.f. = ";
PRINT USING "\#\#\#.\#\#\#"; f;
PRINT" $k \mathrm{~Hz}^{\prime \prime}$
GOSUB waitkey
RETURN
Continued overleaf

LOOP UNTIL r < > ${ }^{\text {"... }}$

RETURN

warning:

PRINT uls
PRINT " An error has occured!"
GOSUB waitkey

RESUME main

The foregoing program can very easily be adapted for other dialects of the BASIC
language. Many readers will probably be more familiar with GWBASIC than QuickBASIC (supplied with the MS-DOS 5 package) and the program can be very easily modified by simply adding line numbers to the beginning of each statement and replacing the labels (main, monostable, astable, waitkey and warning) by line numbers followed by a REM statement.

Finally, if any reader would like a copy of the source code for the program together with a fully compiled (.EXE) version, just send a blank formatted disk (either $31 / 2 \mathrm{in}$. or $51 / \mathrm{in}$.) and a stamped addressed envelope to the address given at the end.

Next month: In next month's Surgery we
shall be attempting to unravel the mystery of the SCART connector. We also have some useful information concerning the selection of fuses for a variety of applications and include a novel circuit for testing inductors.
In the meantime, if you have any comments or suggestions for inclusion in Circuit Surgery, please drop me a line at: Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey, KT13 8TT. Please note that I cannot undertake to reply to individual queries from readers however I will do my best to answer all questions from readers through the medium of this column.

GET CONNECTED

Dear Ed.,

One of our junior members recently built the Low Cost Capacitance Meter described in the article by Steve Knight in your Sept 1991 issue. He wrote to me before starting on the project and I was able to supply him with a meter and most of the components he needed. Now I don't imagine your contributor, Steve Knight, uses such a simple piece of equipment to measure capacitance; he is after all an experienced technical writer, and probably has a very well equipped workshop. As I pointed out to our young member, you simply cannot connect most modern capacitors to a pair of terminals as fitted to the meter described.
A long time ago I built the Digital Capacitance Meter described by Mark Stuart in EE for December 1985. The illustration of this in EE showed a pair of crocodile clips for connection to the capacitor. I'm no great lover of crocodile clips, which have a tendency to come off at an awkward moment, but they are more practical than terminals, which are also much more expensive.
Just before Christmas I got a new digital multimeter which has capacitance ranges, and this has two four-way socket strips with 0.1 inch spacing, into which you can plug most of the modern small capacitors with short leads. When I built the EE Digital Capacitance Meter I fitted such a socket strip to it, with short crocodile clip leads in parallel, and this caters for all types of capacitor. I have had to make an adapter for my new digital capacitance meter in the form of a plug (made from a couple of ordinary pins through a strip of s.r.b.p.) with attached crocodile clip leads to provide the same facility.

As you know, I always look critically at projects to see where one cali cut costs, and I also look at them from the point of view of the user rather than the designer, who may overlook some of the practical problems of the constructor and user.

Before I took over the running of the B.A.E.C. I used to write for the Newsletter articles under the heading Notes from an Experimenter's Workshop, which you may have come across in the copies Cyril Bogod sent you. The idea was to pass on to beginners and others some of the practical experience gained over a lifetime of electronic experimenting; one doesn't get enough of this in any of the electronic magazines nowadays, although I know you publish articles by Robert Penfold entitled Actually Doing It. However, he builds most of his projects on breadboards, and 1 deduce from his writing (and I think he would probably agree) that his skills are stronger on the electronic than on the mechanical construction side. There is a lot of useful stuff in George Hylton's Down to Earth articles.

I can't help feeling that some project builders would benefit by spending less on components and more on tools, and take time to get experience in their use. But I recognise that finding workshop space in the average modern house can present problems - to put it mildly. One would hope that with the growing importance of technology as a school subject the number of people with the ability to design equipment and use tools would steadily increase.
I suppose one must recognise that ancient practitioners of the electronic art, like me, who were building projects long before
the p.c.b. and kit era, involving chassis bashing and other workshop skills, may feel that present day project builders find the hobby rather easier, but possibly less interesting and more expensive.
H. F. Howard Chairman, B.A.E.C.
The B.A.E.C. is a non-profit making club for everyone interested in electronics. We carry a small advertisement for the club (space donared by EE) in most issues, you can find this on the Classified Advertisement page.

COMPUTER MALFUNCTION

Dear Ed.,
In reply to J. Conners of Cambridge, Everyday Readout, July, and his problem with computer malfunction. Unless he lives close to a powerful radio or radar transmitter, an airport for example, or he has an industrial site next door, I would advice him to examine his home (or neighbours) environnment as almost all mains interference is generated in house so to speak.
Bearing in mind that the only items of electrical equipment which are not generators of interference are the tungsten filament light bulb, squirrel cage induction motors and static transformers, I would first of all check all my appliances for correct functioning and rectify faults or junk dicey looking items.
Thermostats, even those in good condition, are great voltage spike generators so on days he runs his computer he should send his wife home to mum to do the family ironing and switch off the immersion heater.
Portable mains filters are a good idea, three-pin plug-in types being available either in top of the range items such as supplied by Kleanpower of Oxon, or fourway filtered sockets such as are made by MK.
R. Whitaker Halifax

WRITEIN

> If you have a point to make or problem to air why not write to Everyday Readout at 6 Church Street, Wimborne, Dorset BH21 1JH

B
oardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have dlscovered that it provides an unparalleled price performance advantage over other PC- based systems.
BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys, mouse or dlrect keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

HIGHLIGHTS

Hardware:

- IBM PC, XT, AT or 100% compatible.
- MSDOS 3.x.
- 640K bytes system memory.
- HGA, CGA, MCGA, EGA or VGA display.
- Microsoft or compatible mouse recommended.

Capabilities

- Integrated PCB and schematic editor.
- 8 tracking layers, 2 sllk screen layers.
- Maximum board or schematic size - 17×17 inches.
- 2000 components per layout. Symbols can be moved, rotated, repeated and mirrored.
- User definable symbol and macro library facilities including a symbol library editor.
- Graphical library browse facllity.
- Design rule checking (DRC)- checks the clearances between items on the board.
- Real-time DRC display - when placing tracks you can see a continuous graphicai display of the design rules set.
- Placement grid - Separate visible and snap grid 7 placement grids in the range 2 thou to 0.1 inch.
- Auto via - vias are automatically placed when you swltch layers - layer pairs can be assigned by the user.
- Blocks - groups of tracks, pads, symbols and text can be block manipulated using repeat, move, rotate and mirroring commands. Connectivity can be maintalned if required.
- SMD - full surface mount components and facllities are catered for, including the use of the same SMD library symbols on both sides of the board.
- Circles - Arcs and circles up to the maximum board size can be drawn. These can be used to generate rounded track corners.
- Ground plane support - areas of copper can be fllled to provide a ground plane or large copper area. This will automatically flow around any existing tracks and pads respecting design rules.
Output drivers
- Dot matrix printer
- Compensated HP laser printer
- PostScript output.
- Penplotter drlver (HPGL or DMPL).
- Photoplot (Gerber) output.
- NC (ASCII Excellon) drlll output.

Produce clear, professional schematics for inclusion in your technical documentation.

PCB layout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

$£ 95$

Despite Its quallity and performance. BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured. Price excludes carriage and VAT.

Don't fake our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien Fax 0223277747

Constructional Project
 dual Metronome

RICHARD WORTHINGTON

An invaluable teaching aid.

Tap out that rythm with this novel timekeeper and hit the high spots! HIS PROJECT describes a new type
 A "pause" facility is also provided, using

Tof metronome, with features which should prove both useful and convenient.
Conventional designs allow a numerical value of "beats-per-minute" to be selected, and provide a clear, audible time signal that part remains the same in this design.
This circuit's principal feature, however, is that it's also activated by just tapping out the required beat (a piezo sensor detects the pressure pulse from each individual "tap"). Just two taps will define the desired speed, which the circuit measures and instantly "memorises". It then continues to beat time, out loud, at that same rate.
To name just a few examples, this new feature should prove very useful in such applications as:

A teaching aid.

- When practising difficult music at reduced, but constant speed.
- To pick up the speed of a piece of music from a recording - for guidance when practising that piece.
- To impose a constant speed while practising at, for example, sightreading.
a second piezo sensor - tap once to Pause. and once again for normal operation.

HOW IT WORKS

An outline of the circuit for the Dual Metronome is provided in the block diagram Fig. 1. The two pressure sensors no more than ordinary, unhoused, piezo elements - each trigger one voltage comparator, thereby controlling the two flip-flops. The first of the flip-flops activates the "Pause" facility; the second directs clock pulses to either one of two 8 -bit binary counters, through a 2 -way CMOS switch.

One counter acts as the basis for the memory of the circuit, storing a number in the range $0-255$ which corresponds to the measured time interval between the "taps". The second counter, together with the binary comparator, use this number when the circuit takes over beating time by itself.
The regular output pulses of the binary comparator briefly trigger the audio tone generator, provided that (a) the Pause facility is off, and (b) the circuit isn't still waiting for the second "tap". The audio tone generator can also be triggered by the "slow oscillator", to obtain a conventional metronome action controlled by potentiometer VR2.

CIFCUIT DESCRIDTION

The circuit diagram for the Dual Metronome is shown in two sections for convenience, split between Fig. 2 and Fig. 3. The main diagram, Fig. 2 shows half of the total number of i.c.s involved in the circuit. These include op-amps, flipflops, NAND gates and multiplexers. The memory circuit, illustrated in Fig. 3, makes up the rest of the i.c.s and consists of the counters and 4-bit comparators (IC5 to IC8).
To begin, $\mathrm{X} 1 / \mathrm{ICla} / \mathrm{IC} 2$ a detect the pressure of each tap, as mentioned earlier. The non-inverting input (pin 3) of op-amp ICIa is biased to half the supply voltage, and preset VR1 is adjusted so that the voltage change generated by tapping sensor X1 results in the op-amp changing state; i.e. it acts as a voltage comparator.
The JK flip-flop IC2a is configured as a T-(or toggle) flip-flop by connecting both the J and K inputs to battery positive. The outputs therefore change state with each incoming clock pulse (and similarly for $\mathrm{X} 3 / \mathrm{IClb} / \mathrm{IC} 2 \mathrm{~b}$, which is identical).
Since the SET inputs (pin 7 and pin 9) of both IC2a and IC2b are taken to battery negative (0 V), the RESET pulse - generated by C7/R20 at switch-on - ensures that the \bar{Q} output of each is initially high. Referring to IC2a, this means the Pause facility is switched off and 1.e.d. D2 remains unlit.
Turning now to IC2b, its output $\overline{\mathrm{Q}}$ is also high at switch-on and (due to the clock pulses applied to Input I of the memory -

Fig. 1. Block diagram for the Dual Metronome. The "conventional" metronome action is controlled by the slow oscillator.

see Fig. 3) Counter 1 is continuously incrementing $0 \rightarrow 255,0 \rightarrow 255 \ldots$; initially, the circuit is just silently counting time. Output Q is low, hence l.e.d. D3 (connected to inverter IC4b) is lit, and the output of CMOS switch IC 3 b is held low by a pulldown resistor R14.
(Note: to minimise numbers of i.c.s, the CMOS switches IC3a and IC3b are used like 2 -input AND gates - see Fig. 4a - and op-amp ICld is used as a simple inverter The CMOS switches are capable of passing current in both directions, and the chosen arrangement depends only on p.c.b. layout considerations).
Now, if piezo sensor X3 is tapped, flipflop IC2b changes state as expected. Clock pulses pass instead to Counter 2 (see Fig. 3), via Input 2 , and whatever value was on Counter 1 remains stored.

The third oscillator, "the conventional metronome circuit", uses one of the opamps of ICl (LM324). The design is standard, but with diode D1 and resistor R5 to decrease the charge time of capacitor Cl
The voltage across the capacitor Cl is compared with that across resistor R7, produced by the potential divider R7/R8. Rotary potentiometer VR2 sets the frequency of oscillation. The resulting waveform, with a much reduced mark-tospace ratio, is used to control IC4a via switch SI, producing short "bleeps" at a rate of 40-200 beats-per-minute.

MEMOFY AND RESET

The memory section circuit, Fig. 3, of the Metronome is quite straightforward. Each
of the counters consists of two CMOS 4 bit Binary up-counters, with output Q4 of the first (pin 6) connected to the enable input (pin 10) of the second to form an 8 -bit counter. The maximum reading is, therefore, binary 11111111 (decimal 255) The "clock" inputs (pins 1 and 9 of IC5 and IC8) are connected to ground (0 V) so the counters are triggered on the negativegoing transition.

The outputs of the counters are compared by two 4 -bit binary magnitude comparators. Each comparator has outputs corresponding to $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$, where A and B are binary numbers. However, the comparators are cascaded and just one overall output, $A=B$, is actually used.

The reset circuitry (see Fig. 2) consists of C3/R18/D4, C5/R17/D5 and C6/R19/D6. The first two of these are

Fig. 2. Main circuit diagram for the Dual Metronome. The rate of the conventional metronome is set by VR2.

Counter 2 now counts up from zero and, whenever the values on the two counters are equal, the overall output (IC7) of the "memory" goes high. The "control" input of CMOS switch IC3a consequently goes high via IC3b and, depending of the state of flip-fiop IC2a (i.e. the Pause facility), the audio tone generator IC4a sounds.
Counter 2 continues to increment, however, and the tone generator is switched off a fraction of a second later, just as Counter 2 is resetting to zero. The process repeats continually until, for example, the user taps sensor X3 once more, in order to set a new speed
The circuit uses a total of three square-wave oscillators. The clock generator, which runs at a few tens of Hertz, is provided by IC4c/R16/C4, while the audio tone generator consists of IC4a/C2/R10. These both employ a commonplace Schmitt trigger type oscillator. Oscillation occurs because of the hysteresis of the inputs to the NAND gates (IC4a and IC4c), while the frequency depends on the time constant of the resistor and capacitor networks.

Fig. 3. Circuit diagram for the "Memory" stage of the Metronome. See Fig. 2. for its location in the main circuit.
connected to the Q and $\overline{\mathrm{Q}}$ outputs (pin 15 and pin 14) of the flip-flop IC2b respectively; when one of the two outputs goes high, the associated $R C$ network produces a Reset pulse - duration $\bumpeq 70 \mathrm{mS}$ - while the capacitor of the other network discharges through a diode. The diodes D4-D6 prevent voltages significantly crossing the supply rails, also, the discharge time of capacitor C 6 has to be shortened. (Note - D5 and D6 may, generally, be omitted on account of the built-in CMOS input protection diodes.)
Counter 2 must also be reset the instant it's value exceeds that stored on Counter 1 . To permit this, the falling voltage at the output of the memory (when the condition $\mathrm{A}=\mathrm{B}$ is lost) generates a low pulse at one of the inputs of NAND gate IC4d. "Inverter" ICld, connected to the other input of the NAND gate, generates a 70 mS low pulse whenever output Q of flip-flop IC2b goes high.
The truth table for this combination is given in Fig. 4b. Thus, when either or both of the NAND gate's inputs go low, it's output goes high to clear Counter 2.
Finally, note that the point marked ' a ' sends the reset pulse to the flip-fiops at

Fig. 4a. Use of IC3a and IC3b as AND gates.
switch-on and ' b ' sets the threshold voltage for "inverter" ICld

CONSTRUCTION

The Dual Metronome is built on a single-sided printed circuit board (p.c.b.). The component layout and full size copper foil master pattern is shown in Fig.5. This board is available from the EE PCB Service, code EE801.
The overall dimensions are compact but, due to the scattered arrangement of the inputs on IC6 and IC7, the penalty is that a

Fig. 4b. Truth table for RESET logic circuit.
number of wire links are required and the orientation of the i.c.s varies. The short links can be made of uninsulated wire, but the three long ones are of plastic-coated or enamelled wire; the latter sort was used in the prototype unit. Note that two links pass beneath resistor R12, which is soldered in a vertical position.
Three very short links are also fitted to the track side of the p.c.b.; Fig. 6 gives full details. This is not the neatest method, but avoids the need for a double-sided circuit board.

Fig. 5. Printed circuit board component layout and full size copper foil master pattern. The circled letters ' Y ' are a single link wire.

Fig. 6. Details of the underside link wires. These should be insulated leads.

COMPONENTS

Resistors

R1, R2,
R16, R21,
R22
47k (5 off)
R3, R4,
R10, R12.
R13
220k (5 off)
R5, R9,
R14, R23.

R24

10k (5 off)
R6, R7, R8 100 k (3 off)
R11. R15 2k2 (2 off)
R17, R18,
R19 1 M (3 off)
R20 2 M 2
All $0.25 \mathrm{~W}, 5 \%$ carbon

Potentiometers

VR1, VR3 | 220 k min. enclosed |
| :---: |
| preset, horizontal |
| (2 off) |

VR2 VR2 470k rotary carbon, lin.

\section*{Capacitors
 | C 1 | $2 \mu 2$ polyester |
| :--- | :--- |
| C 2 | 4 n 7 Mylar |
 $4 n 7$ Mylar}

C 4 C 5 C $80 \mu 1$ ceramic (5 off)
C9 $\quad 10 \mu \mathrm{~F}$ radial elect. 16 V

Semiconductors

D1, D4 to D6 1N4148 silicon diode (4 off)
D2, D3 Red 5 mm l.e.d. (2 off)
IC1 LM324 quad op-amp
IC2 4027BE dual JK flip-flop
IC3 4053BE triple 2-channel multiplexer
IC4 4093BE quad NAND Schmitt trigger
IC5, IC8 4520BE dual binary
counter (2 off)
IC6, IC7 4585BE 4-bit magnitude comparator (2 off)

Miscellaneous

X1, X3 Unmounted piezoelectric transducer element. 27 mm dia. (2 off)
X2 Enclosed piezoelectric

S1,S2 Miniatures.p.d.t.toggle Miniature s.p.d.
switch (2 off)
9V PP3 battery
B1
Plastic case, size approx. $165 \mathrm{~mm} \times$ $102 \mathrm{~mm} \times 51 \mathrm{~mm} ; 14$-pin d.i.l. socket (2 off); 16-pin d.i.l. socket (6 off); multistrand connecting wire; 1 mm plastic sleeving; single-core plastic-coated or enamelled wire; double-sided adhesive pads; PP3 battery clip; plastic p.c.b. mounting blocks (4 off - see text); fixing screws (4 off); control knob, approx 35 mm dia. for VR2; offcut of stripboard, approx. 6 strips $\times 4$ holes;
l.e.d. clips (2 off); solder pins; solder.

Printed circuit board available from the EE PCB Service, code EE801.

The p.c.b. construction should be quite simple, with just a few points to note:

First, it's important that only the 4585B chip is used for IC6 and IC7. The functional equivalent, 4063 B , has a completely different pin-out.
All the usual anti-static precautions should be taken when handling IC2 to IC8
as they are CMOS types. The pins of new, i.c.s often need to be bent slightly inwards, to fit the i.c. sockets or the holes in the p.c.b.; use an "Earthed" metal surface, and try to avoid touching the pins while doing this.

Capacitor Cl needs to be a non-polarised type e.g., polyester, while C 4 (also $2 \mu 2$) was a tantalum bead capacitor in the prototype unit; remember that C 4 is polarity conscious. The remaining capacitors will, of course, need to be selected to fit the circuit board; for example the $0.1 \mu \mathrm{~F}$ capacitors are the miniature ceramic multilayer type, with lead spacing $5.08 \mathrm{~mm}(0.2 \mathrm{in}$.).

/NTERWIRING

Details of the interwiring between the p.c.b. and panel mounted components are given in Fig. 7. All the connections should be of multistrand wire, and the type of "hook-up" wire - $7 \times 0.2 \mathrm{~mm}$ dia. copper used in the prototype unit is ideal.

Fig. 7. Interwiring from the printed circuit board to all off-board components.

In Fig. 7, connections are shown leaving the p.c.b. in all four directions for clarity; in practice, however, all connections should pass across the same edge of the circuit board. This allows the board to be removed from its fixings and turned over for examination, without the need to unsolder connections.
The wiring-up process should not cause problems, despite the total of seventeen leads leaving the p.c.b. The wires run in groups of either two or three, and they should be twisted together or bound with cable ties to keep things tidy.
The use of p.c.b. solder pins (singlesided, 1 mm diameter) is strongly recommended, and the joints are insulated and strengthened by 1 mm plastic sleeving. The sleeving should be slid well back from the joints during soldering, since the p.v.c. begins to melt at a relatively low temperature, fusing to the insulation of the wire itself. All the wire/p.c.b. joints should be completed before starting to make the connections to the front panel mounted components.
First of all, the piezo transducers - the polarity of their connections is not significant but it is, obviously, important to match the correct transducer to each of the two l.e.d.s (i.e. D2 with X1, D3 with X3). Then, the l.e.d.s themselves must be connected the right way round; the cathode (k), indicated by a flattened side to the body of the device, and by the shorter lead, is wired directly to battery negative line in both instances.
The connections to front panel rotary potentiometer VR2 determine the direction of the scale for the Conventional Metronome circuit. The arrangement shown gives increasing "rate" with clockwise rotation of the control.
This leaves just the two s.p.d.t. toggle switches. When wiring up the function switch S1, make sure that connection "M" (see Fig. 7) goes to the central terminal of the switch. Check that none of the switch connections touch the circuit board; plastic sleeving can be used here also.

TRANSDUCERS

The piezoelectric transducer elements X1 and X3 are mounted on the "outside" front panel of the case, silvered side down, using
double-sided adhesive pads. This has advantages over just glueing the elements in place, since the adhesive pads help to absorb the impact of each tap, reducing the risk of physical damage.
Alternatively, the elements could be mounted inside the case, fixed to the underside of the front panel. In theory, they would still pick up the "shock-wave" from each tap, whilst being protected from accidental damage; however, the reliability of this method has not been tested.
Returning to the method actually used: The elements are generally supplied with leads attached, and it may be helpful to resolder the outer lead at 90 degrees to its original position. This allows both connections to pass neatly into the case through a hole hidden beneath the piezo element (see Fig. 8). Note that the elements would almost certainly be broken by an attempt to reposition them after they're stuck down.

The final piezo transducer, sounder X2, should be an enclosed type for maximum volume; the rigid attachment round the rim of the element produces a much higher sound output than if an unhoused element is used - despite the reduced size (approx. 20 mm diameter). The sounder is glued onto the side of the case, with a small hole drilled to take its two connections.

Since the leads of such piezo sounders are sometimes extremely thin, measures may be needed to reduce the risk of breakage. In the prototype unit the leads were joined to tougher multistrand wires via a piece of stripboard, about 6 strips by 4 holes, fixed to the floor of the case by a self-adhesive pad.

CIRCUIT BOARD

When all the p.c.b. components are in place, check for the usual problems, such as broken tracks, incorrectly fitted components, solder blobs etc. In particular, examine the places where tracks pass between i.c. pads to ensure there are no short circuits or open circuits. Lastly, recheck the orientation of the i.c.s and the polarised capacitors - especially if you don't have spares!
The completed circuit board will then need to be attached to the rear of the front panel. Space is provided on the p.c.b. for four fixing holes, but bolts are best avoided due to their effect on the external appearance of the unit. The solution used in the prototype was to securely glue four blocks of plastic (each approx. $18 \mathrm{~mm} \times 15 \mathrm{~mm}$ $x 10 \mathrm{~mm}$) in place on the panel, before mounting the p.c.b. on these using four self-tapping screws.

Fig. 8. Preperation of the piezoelectric sensors $\times 1, \times 3$ for attachment to the front panel.

Finally, the battery (9V PP3) is fixed to any convenient space near the p.c.b., using a double-sided adhesive pad or Blu-tack "putty". Recheck the polarity of the battery connections before applying power, or all eight of the i.c.s may meet an untimely death!

TESTING

Probably the simplest initial method of testing is just to briefly measure the completed circuit's overall supply current, with a 9 V power source connected. The current should not exceed 5 mA to 10 mA and, as a further check, only diode D3 out of the two indicator l.e.d.s should be illuminated at switch-on. A large supply current might suggest an error in the direction of fitting some i.c.s.

Adjustment of the presets VR1 and VR3 across their range and back should change the state of I.e.d.s D1 and D3 respectively. With function switch S1 set to Position 1, a regular time signal should also be heard. Leave the presets at about one-third of the way along their tracks for the moment.
Now, set switch S1 to Position 2 and tap the "Beat" sensor X3 once, to switch off l.e.d. D3 (if necessary). The memory will be holding any old number at present, so tap the beat sensor X3 twice to establish the musical speed of your choice; the circuit "memories" it, hopefully continuing to beat time at that rate. The presets may still need some adjustment to increase/decrease the sensitivity of triggering; further information on this is provided later, in the section "Setting Up"
If the main circuit seems dead, though the conventional metronome circuit works, the most probable causes would include: a missing wire link or interwiring error; a non-soldered joint; a diode connected back-to-front or a flaw on the p.c.b. If a buzzing noise is heard after tapping sensor X3, the cause is multiple triggering (Counter I stores the number zero, hence the circuit runs at it's maximum speed); readjust preset VR3.

HEARING A/D

Correct operation of counters IC5 and IC8 can be tested by connecting a crystal earpiece from the supply negative to each of the eight outputs (Pins $3,4,5,6,11$, $12,13,14$) in turn; the frequency of clicks should halve at each successive output. The state of the CMOS switch IC3c determines which one of the two counters - IC5 or IC8 -is active at any particular time, of course. Remember that the stored value on IC5 determines the maximum value reached by IC8.
The crystal earpiece can also be useful in checking whether Reset pulses are being produced; e.g. an earpiece connected to the output of "inverter" ICId, or to the Reset I terminal, should click every other time the "Beat" sensor X3 is tapped. Multiple triggering, due to over-sensitive setting of comparator ICl Ib , can also be detected.
A further useful technique is to connect a $47 \mu \mathrm{~F}$ electrolytic capacitor in parallel across capacitor C 4 , correct way around, using test leads. This slows down the clock pulse generator, IC4c, by a factor of about 20 and allows measurement of the changing logic levels using an ordinary analogue or even digital multimeter.

SETTING UP

The main adjustment required is to the presets VR1 and VR3, which are wired as potential dividers. Their output voltages
may be set on either side of the reference values provided by resistors R3/R4 and R12/R13, since the piezo sensors produce both a positive and negative voltage fluctation when pressure is momentarily applied.
The centres of the presets' tracks therefore give maximum sensitivity, and the extremes the minimum. As might be expected, triggering becomes unreliable close to the centre, and a lower sensitivity gives the best results.
A few other component values can also be fine-tuned if desired. The range of speeds from the conventional metronome circuit is determined by rotary potentiometers VR2, capacitor Cl and resistors R6-R8, working out at roughly 40200 beats-per-minute, though component tolerances will affect the exact figures. If this is a problem, it is of course the user's decision whether it's worth changing component values slightly, to obtain the complete standard musical range.

Returning to the main circuit, the maximum interval between beats (i.e. the slowest speed) depends on the clock frequency. The specified values for resistor R16 and capacitor C4 allow for very slow speeds - as low as $\simeq 6$ beats per minute. If these are not needed, and a greater resolution is required between the higher speeds, then reduce the value of R16 to, say, $43 \mathrm{k}, 39 \mathrm{k}, 33 \mathrm{k}$ or even less.
It should also be checked whether the metronome exactly follows the beat which is tapped out by the user. The accuracy depends mainly on the three RC networks which provide the memory-reset pulses each network adds the same small, constant delay (approximately 70 mS) to the interval between beats, during which time one of the two counters is reset to zero.
The manufacturing tolerances of the resistors and capacitors used (5 per cent and 20 per cent respectively, in the prototype unit), together with the different input threshold levels of IC4d (Schmitt trigger) and IC5 and ICId (ordinary inputs) may occasionally introduce detectable timing differences.
The simplest solution, if required, is to slightly increase or decrease the value of
resistor R19 as appropriate; connect a "spares-box" potentiometer or preset in parallel with, or in place of, this resistor. After careful adjustment for perfect behaviour, the potentiometer's measured resistance setting is used to obtain the best new value for R19.
The final step of setting up is to calibrate the Conventional Metronome circuit. The Speed control - potentiometer VR2 should first be fitted with a large control knob, thereby spreading out the scale. A control of 35 mm diameter, type 'K2', was used in the prototype unit.
The resulting scale isn't linear by any means, but nevertheless remains easy to use. The set of "preferred values" of musical speeds is also non-linear, the difference between the values increasing with the beat-rate; these effects go some way towards cancelling out in practice. Even with this scale, experiment showed that any speed from 40 to 200 beats-perminute can be set with a good level of accuracy.

IN USE

To finish off, a few points to help the use of the working unit:

1. Battery Condition - remember that the Beat indicator lamp (1.e.d. D3) always lights up when the circuit is first switched on. If it's weak or unlit, then the battery needs replacement.
2. Pause Facility - this is not available when the "conventional metronome" circuit is operating. In this case, to silence the time signal either switch off, or flip the function switch SI then activate the Pause facility.
3. Beat Indicator Light - remember, the "memorised" time signal only sounds when this light is off. If it's ON , this means the circuit is a waiting another tap.
4. Battery Life - the circuit has very modest power requirements and the battery should have a long life, provided the unit is switched off after use. Fortunately, the likelihood of forgetting is much reduced the circuit always has one or both its l.e.d.s lit up, on the occasions when it isn't making a noise, beating time.

INSIDE THE MINI DISC

IAN GRAHAM

A new type of personal stereo is due to hit the streets later this year. We take the Mini Disc apart and look at how it works.

0nCE upon a time record shops sold records, but now we can choose between vinyl discs, audio tape cassettes, compact discs and in many places VHS music videos. Although the CD has its detractors who criticise its clinically clean digital sound quality, it has nevertheless become by far the preferred music medium since its introduction in 1982. It dominates the market to such an extent that the days of the vinyl dise are now numbered.

Other music media are going digital too. Digital Audio Tape (DAT) is here already and the Digital Compact Cassette (DCC) will make its first appearance on the market this autumn. And Sony is to launch yet another audio format - the Mini Dise
Including the rapidly sinking vinyl disc, by the end of 1992 there will be six different audio formats - six different ways of getting the same piece of music off a tape or disc. In reality the music buyer won't stock each title in six different formats. Tapes and CDs dominate the market at the moment. The CD will probably continue to go from strength to strength, but DCC and
the Mini Disc will threaten the existing analogue tape cassette if the price is right. Price is important. DAT hasn't made any inroads into mainstream hi-fi because of its high price
Mini Disc and its player share a lot of technology with the CD , but it is not primarily intended to challenge the supremacy of the CD. Instead, it is aimed at the personal audio market. It is therefore a direct challenge to the tape cassette and the personal stereo.
Scheduled for introduction in late 1992, Sony claims that the Mini Disc will of fer the same digital sound quality, quick random access and durability of the CD, combined with shock resistant portability and recordability. In other words, the Mini Disc has been designed to behave like a recordable CD that is also packaged to resist knocks and jolts while the listener is on the move.

Vital Statistics

The disc itself is 64 millimetres ($21 / 2$ inch) across, almost half the size of a $C D$ $(120 \mathrm{~mm})$, and is housed in a protective

Prototype Sony Mini Disc player.
sleeve or "caddy". The disc and caddy together are roughly half the weight of the conventional analogue tape cassette.
The disc can store 74 minutes of music, virtually the same as a CD. Sony has achieved this by compressing the digital data onto the Mini Disc more efficiently than on a CD. Compact discs (and DAT) currently use a 16 -bit linear encoding system. The analogue musical signal is sampled roughly once every fiftieth of a millisecond. Or, to put it another way, the sampling frequency is 44.1 kilohertz. Each sample is given one of 65,536 numerical values. (65,536 is 2^{16}, hence " 16 -bit" linear encoding). So, 16 bits of data must be used for every 0.02 milliseconds of recording/playback time. Even if there is no signal present, the system carries on encoding or decoding at this rate.

Mini Disc Recording

The encoding system used by Sony's Mini DIsc, called ATRAC (Adaptive Transform Acoustic Coding) starts off with the same 16 -bit data, but it analyses the signal and only encodes the elements that will be audible to the human ear. It doesn't waste time encoding data for sound that the ear won't hear. It divides the digital data into 20 millisecond chunks. Each of these is then broken down into the various sine wave components that it is composed of and each of these is assessed for amplitude (loudness).
Now for the clever bit. The ATRAC system looks at the relationship between the frequency and amplitude of the components of each 20 millisecond chunk. It's programmed to discard anything that will be inaudible to the human ear, either because it isn't loud enough or because it's masked by other sounds. The remaining data is recorded on the disc along with the usual error correction data bits.
During playback, the whole process is reversed. The various components of the signal are recombined by the ATRAC decoder into the 20 millisecond chunks, which are then combined to form a continuous digital pulse-train representing the original music. This is processed by the 16-bit DAC (Digital to Analogue Converter) in the usual way to recreate the original music. Despite discarding so much of the digital data, Sony claims that there is no significant difference in the sound quality of the source and the recording.

Magnets and Lasers

So much for the electronics, but what is the physical process used to record new data on the disc? Sony calls it Mag-
neto-optical Overwrite (MO) technology. A magnetic head sits directly across from the laser source on the opposite side of the disc. The laser raises the temperature of a spot on the disc. This neutralises the magnetic polarity of the disc under the laser spot and effectively erases the signal that was recorded on it. As the disc spins, the temperature of the spot falls again and it takes on the polarity of the applied magnetic field. So, by feeding the magnetic head with the signal to be recorded, the track illuminated by the laser as the disc spins loses its previous recorded signal and takes on the new signal.
As Mini Disc was intended to be a highly portable medium, Sony went to great lengths to reduce its power consumption and prolong battery life. Conventional magnetic coatings used to make audio tape require a certain size of magnetic field to erase them. The field strengths needed range from 380 Oersteds for normal ferric tapes to 1.100 Oersteds for pure metal tape. The Mini Disc uses a magnetic layer composed of Terbium Ferrite Cobalt that will change polarity with a coercive force as low as 80 Oersteds. It also uses a new low power consumption magnetic head capable of reversing polarity every 100 nanoseconds - that's a ten millionth of a second.
Once a signal is recorded on the disc, it's played back by reading it off the disc using the same laser that helped to record it. This begs the question - how can a laser read anything on a magnetic surface? When light is reflected from any surface, it becomes polarised. The effect is used by polarising sunglasses to block the light polarised by bouncing off, say, a glass surface, and allow the rest of the unpolarised light from behind the glass to pass through the sunglasses. When the Mini Disc laser beam is reflected by the disc surface, its direction of polarisation depends on the magnetic polarity of the surface. So, as the laser tracks across the disc surface, its direction of polarisation flips to and fro in step with the signal recorded on the disc. Therefore, it's a relatively simple matter to convert this into an audio signal.
The system shares a lot of technology with conventional CD hardware. And it means that a Mini Disc player will be able

Prototype Sony Mini Disc recorder/player.

to play pre-recorded CD-type optical discs. The smaller disc size of the Mini Disc means that Mini Disc sized pre-recorded optical discs would have to be pressed specially for Mini Disc players. But their similarity means that existing CD pressing plants should be able to turn out prerecorded optical Mini Discs quite easily.

Performance

One of the practical problems that was addressed from day one was how the system could play high quality music while its user was on the move. Conventional optical pick-ups are knocked out of position very easily. Most manufacturers use an array of hardware devices - springs, buffers and servo mechanisms - to isolate the pick-up from shocks. Sony has taken a different approach. The pick-up can read data off the disc at 1.4 million bits per second, but the ATRAC decoder only needs 300,000 bits per second for real-time playback.
This difference in data rates is very useful if you know what to do with it.

Sony has used it to produce an electronic music store that can "paper over" any skips or jumps caused by sudden jolts. The pick-up sends data from a disc to a one megabyte memory chip. This is equivalent to about three seconds of music. The chip then feeds the ATRAC decoder. If the pick-up is knocked out of position, the chip can continue to feed the decoder and provide uninterrupted music for up to three seconds while the pick-up finds its place again. Then the chip fills up again. When the chip is full, the pick-up stops reading data off the disc until there is room for some more. The pick-up knows where it is and where it should be because address information is recorded on disc every 13 milliseconds. If the pick-up is jolted, it recognises that its at the wrong position and looks for the correct address before resuming playback.
The random access nature of Mini Disc means that any piece of music at any point on the disc can be found and played within one second. Try doing that with a tape cassette!

EVERYDAY ELECTRONICS BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are - we hope!

Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH for $£ 5.95$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please.

Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

ACTUALLY DOING ITV by Robert Penfold

THIS MONTH and in the next Actually Doing It article, we will consider the topic of semiconductor pinouts and leadouts. It is a subject that is rather more straightforward now than it was some years ago.

In the past you could order two transistors of the same type from different retailers, and find that you were supplied with two transistors that had totally different case styles. Worse still, you could sometimes end up with two components that looked the same, but which actually had different leadout configurations. There was usually a suffix letter at the end of the type number which indicated the leadout configuration in use, if you knew what to look for.

Integrated circuits (i.c.s) also caused problems, as some types were available in two or three different encapsulations. Again, there was usually a suffix letter tucked away somewhere at the end of the type number which showed the device's encapsulation type. Of course, it was obvious which particular type of case an integrated circuit had as soon as you examined it, but you had to be careful what you were ordering when buying components "blind" by mail order.

These days you are less likely to be troubled by semiconductors which have the wrong leadout configuration, a case of the wrong size or shape, too many pins, or whatever. It is not a possibility that can be totally discounted though. There are still a few traps for the unwary to stumble into.

Also, cheap surplus components are often "older than they used to be", and the semiconductors tend to be in obsolete and strange looking encapsulations. Some of these are actually quite usable if you know what you are doing, but for the beginner some are likely to be more trouble than they are worth.

DIODES AND RECTIFIERS

Diodes and rectifiers are much the same, the only difference being that rectifiers can handle high currents whereas diodes are only suitable for low power applications. These components have only two leadout wires, but they must be connected the right way round if they are to give the desired result. Fig. 1 shows the standard methods of polarity indication for most of the popular rectifiers and diodes.

The standard method for identifying the leadouts of diodes and rectifiers is to have a coloured band around one end of the body. This indicates the cathode (k or "active" +) end of the component.

A slightly different method is used for
some high current rectifiers. This is to have the cathode (k) end of the body thinner than the rest of the body.

Some diodes, rather unhelpfully, have a number of coloured bands, rather like those on a resistor. In fact, the bands do represent a number in something not too far removed from the standard resistor fashion, but this is the serial number in the component's 1 N ???? type number.
Each colour in the code represents a digit of the serial number, and this system operates in the same way as the first two digits of the standard resistor colour coding. You are most likely to encounter this system with the popular 1 N4148 silicon diodes. The 4148 serial number is coded as yellow - brown - yellow - grey.
If you look carefully at a diode of this type you should find that one band is much thicker than the others. This one indicates the cathode end of the component.
Unfortunately, with many of these multi-band diodes the thicker band is something less than obvious. In these cases it helps to remember that the first band in the code is the one nearest the cathode leadout wire.
A few diodes seem to be marked with two coloured bands. These are offset towards the cathode end of the component. In effect, there is the usual band to indicate the cathode leadout, plus an extra band which is probably of little practical importance.

ACID TEST

When you are unsure of the polarity of any rectifier or diode, remember that a

Fig. 1. Diode and rectifier polarity.
quick test using a multimeter set to a middle resistance range will soon determine its polarity.

Using a digital multimeter, there is a low resistance through a diode when the positive test prod is connected to the anode terminal, and the negative prod is connected to the cathode leadout. Swapping over the connections should give a high reading that will be off the scale with silicon diodes. If you do not get this high reading one way and low reading the other, then the diode or rectifier is faulty.

The same mathod of testing works with analogue multimeters, but they provide a test voltage of the opposite polarity. Thus a low reading should be obtained with the positive test lead connected to the cathode, and the negative prod connected to the anode. As before, reversing the connections should give an extremely high reading.

When using diodes there will probably be no major problem if you should get one or more of these components round the wrong way. The circuit will not work, but nothing is likely to be damaged as a result of the mistake.

Getting rectifiers round the wrong way is a different matter. This could produce a virtual short circuit on a mains transformer, or produce a supply having its output polarity reversed. Always be especially careful when dealing with high power circuits. If in doubt, always check the polarity of a rectifier before connecting it.

ON THE BRIDGE

Many mains powered projects use a bridge rectifier in the power supply. This is basically just a "ring" of four rectifiers which can either be made up from individual rectifiers, or bought as a single component with the rectifiers wired together internally.
The two leads which connect to the mains transformer are usually marked "A.C.", or with a wavy line (presumably intended to represent an a.c. waveform). The other two leads are marked " + " and " - "', and these provide the positive and negative d.c. outputs.
There used to be quite a range of rectifier case styles in use, including the aptly named "top hat" type, and stud mounting rectifiers which could be bolted directly onto heatsinks. While I hate to recommend that any working components should be thrown away, it is probably the best course of action if you should somehow happen to obtain some of these older rectifiers.

While they might be fine electrically, they are invariably far too large to fit into the component layouts of modern equipment. At best they might be suitable for emergency repairs, and for experimental purposes.

TRANSISTORS

Ordinary bipolar transistors are three lead devices. The three leads are called the "base", "collector", and "emitter", or just " b ", " c ", and " e " for short. Yoú might very occasionally encounter transistors having a fourth lead, called the "shield". This is something that is only found on some high frequency transistors, and it simply connects to the metal case of the transistor.
Often when using transistors it is merely a matter of following the component overlay. This should clearly show
exactly where each transistor goes on the board, and which way round it fits. Provided you follow the diagrams carefully, and avoid any accidentally crossedover leadout wires, there should be no difficulties.
Rather more care has to be exercised if you find yourself working from transistor leadout diagrams. The convention is for these to be base views (i.e. the device as viewed looking onto its leadout wires).
For power transistors the views are still base types, which means they are viewed looking onto the surface that fits against the heatsink. Note that this base view convention is the opposite to the one for integrated circuits (i.c.s), which are normally depicted in top views.
Transistor base views tend not to be too easy to work from when constructing projects, since you view transistors from above when fitting them onto a circuit board. If you have difficulty in mentally flipping-over base view diagrams, it is a good idea to sketch out top views and to then work from these.
In the past there have been different versions of the same transistor in common use. The silicon chip and the encapsulation were the same for each device; it was only the leadout configuration that was different.
A suffix letter on the type number indicated which leadout configuration a particular device actually had. The BC184L and BC 184 K were two transistors which sometimes caused problems, but these days the less popular " K " suffixed version

Fig. 2. F.e.t. base corrections.
seems to have disappeared from the component catalogues.
In fact, this practice now seems to have completely died out. There are some transistors which have an " A ", " B ", or " C " suffix, but this is concerned with gain grouping, and is nothing to do with different case or leadout styles.
There are still transistors which are available with a variety of leadout configurations and case styles, but they are sold under quite different type numbers. For example, the BC169, BC549 and BC109 are all basically the same device. This eliminates the possibility of any mix-ups over which leadout configuration a particular device happens to have.

EXCEPTION TO THE RULE

The only exceptions to this that I have encountered in recent times are certain

Jfet transistors. In particular, the popular BF244 and 2N3819 seem to be available in two different case styles. There seems to be no suffix letter or anything else in the type number to indicate which encapsulation one of the transistors actually has.

The base view for the original T092 cased version is shown in Fig. 2a, while Fig. 2 b shows the base view for the later TO106 cased devices. The three terminals of a field effect transistor (f.e.t.) are called the drain (d), gate (g), and source (s), which roughly correspond to the collector, base, and emitter of a bipolar transistor.

Jfets having both of these case types are currently in circulation, and there is no way of telling which type will be supplied to you. This is obviously rather unhelpful. On the other hand, the two encapsulations are quite different, and there is no risk of mistaking one for the other.

As a point of interest, when the 2N3819 was first introduced, some of the base diagrams that were published had the drain and source terminals swappedover. Devices that were connected in accordance with these incorrect diagrams often seemed to work perfectly well.

They were probably working somewhat below par, but nevertheless showed a degree of tolerance that you would not obtain from a bipolar transistor with their collector and emitter connections reversed. In fact germanium bipolar transistors are instantly destroyed by this sort of treatment.

with David Barrington

Solar Powered Lighting

The first question to be encountered when looking down the list of components required to build the Solar Powered Lighting Unit is: "where do I find the 305 mm (12in.) 305 mm (12 in .) solar cell panel?" The price of the solar panel seems to vary quite considerably and can be as much as $£ 23$ plus.

The answer is in two parts. The solar panel used in the prototype model was purchased from Bull Electrical (? 0273 203500), code 15P42R, and cost $£ 15$ plus VAT and $£ 3$ p\&p. The other alternative is to use two of the $305 \mathrm{~mm}(12 \mathrm{in}.) \times 152 \mathrm{~mm}$ (6 in.) panels from Robert Keys (GW41ED), Dept EE, 4 Glanmoor Crescent, Newport, Gwent, NP9 8AX. These panels ($£ 4.50$ each inclusive) are rated at 12 V nominal at 80 mA and joining two together should meet the requirements for this simple project - although they have not been tried "in-circuit"

The panel meters used in the prototype models were purchased from Marco Trading (0939 232763) codes Pan. 173 (100 mA) and Pan. $174(500 \mathrm{~mA})$. These $51 \mathrm{~mm} \times 45 \mathrm{~mm}$ panel meters are also stocked by Greenweld, Cirkit and Cricklewood.

The five-lead L200 adjustable voltage and current regulator called for in the Current Limited version is a fairly common device and carried by most good component stockists. Electrically, the device is claimed to be virtually indestructible, but if the leadout pins do need slight bending to fit on the circuit board extreme care must be exercised when carrying out this operation.

Sub-Woofer

Most of our component advertisers carry very good stocks of quality loudspeakers that could be used in the Sub-Woofer pioject, but, as mentioned in the article, the problem of matching two together could still prove troublesome. The latest excellent Cirkit Constructors Catalogue lists one bass speaker which they claim can be used in pairs.

To overcome the speaker matching problem the author is offering to supply matched pairs for the sum of £39.95 plus £3 for post, packing and insurance. For further details write to: Henderson Electronics, 1 The Market Lanes, Terminus Road, Littlehampton, West Sussex BN175BS.

The cabinet vent tube is a piece of plastic pipe bought from a DIY store. The loudspeaker grille cloth should be available from most of our component advertisers. The equalising circuit components are standard items and should be available from your local supplier.

Gas Alarm

The only item or items that are special to the Gas Alarm are the matched pair of "platinum", hot-wire, sensor and compensator transducers. These appear, after looking through our components catalogue library, to be only available from Maplin, code FM87U. Note that the compensator is marked with a blue spot, otherwise they are identical.

The power Darlington transistor and phase locked loop 4046BE i.c. are listed by most component suppliers, as is the low power CMOS timer TLC555CP or ICM7555. The Vinyl covered metal case also seems to be
readily available. Other cases can, of course, be used but they must be metal types.

The printed circuit board for the Gas Alarm is available from the EE PCB Service, code EE800 (see page 539).

Dual Metronome

The piezoelectric buzzer transducers called for in the Dual Metronome should be widely available and are stocked in several guises. They are widely known as type PB2720 piezo sounders and the "membrane" or uncased elements are stocked by most of our advertisers.

If you are unsure about your soldering skills, then attempting the tricky task of repositioning the connecting leads should be avoided. Instead, appropriate small holes can be drilled in the front panel to take the transducer leads.

It is important that only the 4585BE 4 -bit magnitude comparator be used in this circuit for IC6 and IC7. Some suppliers may offer the 4063BE instead; be warned, although functionally the same, it has a different pinout arrangement and would necessitate changing the p.c.b. layout.

The Dual Metronome printed circuit board is obtainable from the EE PCB Service, code EE801 (see page 539).

Artwork Light Box

There should not be any problems acquiring the materials and light fitting for the Artwork Light Box project.
The "box" materials, including the corner blocks, may be purchased from any of the DIY Superstores. The Thorn 2D lighting fitting (2D tube plus BC adaptor) and the 45 degree BC batten mounting light socket may be purchased from any large electrical shop. When ordering the 2 D fitting, quote part number: 2DA10/BC. Greenweld also stock these parts.
The opaque plastic screen could prove a problem and, if constructors cannot locate a local plastics stockist, it may, as an extreme measure, mean purchasing a clear sheet and resorting to "washing" one surface with scouring powder or pad to give the desired "Light diffuser" effect.

FOR YOUR ENTIERTAINMENT by Barry Fox

Shock-Horror

The press recently came up with a shock-horror item on GPS, the global positioning satellite system.

When the US Government gave the US military funds to put up a network of satellites to guide military missiles, like Cruise, it was on condition that the military would also make the system signals available for domestic use.

Each satellite continually generates a very accurate clock signal. The receiver picks up signals from four satellites simultaneously and compares their time codes. This gives it a very accurate fix on location, by longitude, latitude and altitude

Several years ago Sony sold a GPS receiver in Japan which was used by offshore oil drilling crews to get an accurate fix on their position. Many well-heeled yachtsmen now have GPS receivers to make navigation more accurate. Sony UK now sell the first, relatively low cost ($£ 1,000$) portable receiver.

On The Map

Car navigation systems, such as Philips' Carlin, are already under development. These will use GPS signals to control an on-board computer which reads digitised maps from a CD-ROM disc.
The main obstacle holding up the "public launch" is the cost of the maps. Organisations such as Ordnance Survey worry that once they have converted their maps into digital code and pressed the code onto a CD, the maps can be copied as easily as music from a CD.
One CD can store all the maps for a country, so the potential for piracy is enormous. Based on current map prices, a CD containing all maps for the UK would cost $£ 4.5$ million!

Sinister aims

The popular press has now latched onto the idea that someone could connect a portable GPS receiver to the auto pilot of a light aircraft, put a bomb on board and turn it into a Cruise missile. Doubtless this could be done and would make a nice plot for an action movie. But in reality, the weapon would be a very blunt instrument.
The signals transmitted by the GPS satellites come in two types, one intended for use by the military, the other for civilians. The military time codes give accuracy sufficient to guide a Cruise missile through the front door of the Kremlin. This was the technology used in the Gulf war. But these signals are
digitally encrypted and are not available for civilian use.
The civilian signals have an accuracy of at best 30 metres and more often 100 metres. So the bomb would have to be very powerful to destroy a chosen target.

There are, unfortunately, a lot easier, lower-tech, ways for a terrorist to do damage. Think for instance of the Channel tunnel. Cars will be loaded in bulk on a trailer and carried by train through the tunnel. Each car will have petrol in its tank. One incendiary device will turn the whole train into an enormous petrol bomb.

If authorities run security checks on each car before each journey, this would put hours on the journey and make the tunnel a commercial dead duck.

CDTV Disaster

As Philips starts its roll-out of CDI, with adverts and selected sales outlets in London and the South East, I wonder how long Commodore can go on pretending that its rival multimedia interactive CD format, CDTV, is a contender.

I also wonder whether Commodore's management in the US will ever be answerable to the company's shareholders for the CDTV marketing disaster. There must come a time when Commodore in the USA has to stop citing Europe as a successful market. CDTV has been such a fiasco, both in the USA and Europe, that Philips Iong ago stopped worrying that confusion between CDTV and CD-I might hurt CD-I sales.

Sadly, Commodore's shareholders may never know how some lone voices inside the company's UK subsidiary saw early on that the marketing pitch for CDTV was all wrong. Commodore's management has experience in the home computer and games market, but none in "brown goods" consumer electronics. And this has cost the company dearly.

More than a year after the "launch" of CDTV, it is still an invisible product with a non-existent profile. Dixons, who were supposed to stock CDTV standalone players, and demonstrate them, either keep CDTV hidden in a back room for the benefit of customers who ask, or stack them on a shelf like CD players. There is only one way to sell multimedia and interactive CD, of any format, and that is to let people get hands-on experience of what it can do.

As a quite separate issue, I happen to think that CDTV is technically a mess,
with bug-ridden hardware rushed onto the market along with mainly unappealing software.

Commodore's damage control plan was to re-launch CDTV, as a CD-ROM peripheral for the Amiga 500 using software ported from existing Amiga libraries. The launch date was given as May, but by early June there was still no further word from Commodore.

Caddy Puzzle

The most puzzling design feature of CDTV is that the program discs must be loaded into a CD-ROM caddy before they can be used in the CDTV player. Although CD-I players do not use caddies, Commodore's justification for caddy-loading is that data discs must be protected from handling.

Commodore has also advocated the use of CDTV players for playing music CDs.

It is clearly inconvenient to have to load discs, especially music discs, in caddies before playing them. To take a disc out if its jewel box, put it in a caddy, then later take the disc out of the caddy and put it back in the jewel box, clearly involves far more handling than just popping it into the loading tray of a music or CD-I player. If I were using CDTV, then I would surely want more than the one caddy that comes with the player.

As an experiment I went shopping for CDTV caddies. Dixons in Oxford Street (the Tottenham Court Road end) said they stocked CDTV players, although none were on show. They had no spare caddies, and seemed suprised that anyone should want more than the one that comes with the player. The staff showed no interest in ordering me some.

Instead they sent me a few doors down Oxford Street to the Virgin Megastore. On the way 1 tried Microbyte, a games software shop, who did not stock any CDTV material.

Virgin's games department sold CDTV discs, but no caddies for them. Try Tottenham Court Road, they said.

It is the kiss of death for a product when shops are happy to send potential customers somewhere else to buy it.

I tried some shops in Tottenham Court Road, including Lasky's, but no joy. Finally I found two caddies in the Silica Shop at $£ 7$ each (which I bought for use with a CD-ROM player).

Draw your own conclusions on the impact of CDTV's year on the market, and its chances of still being around in a year's time.

 ELECTRONIC COMPONENTS

OPTO DEVICES - LEDS DISPLAYS - COUPLERS INDICATORS - ETC

MAN66102 digit $0 \cdot 6^{\prime \prime}$ high com anode, amber

PLASTIC BEZEL
60 p each, 4 for $£ 2.00$
OPTO-ISOLATOR OP12252
50p each 10 for $£ 4.00$
SLOTTED OPTO
£1.00 each
LEDS - LEDS - LEDS
for 5 mm

SWITCHES - RELAYS DIL SKTS - BOXES

PROJECT BOXES A range of high quality boxes moulded in black high impact ABS, easily drilled or punched to produce a professinal looking end product

TYPE	WIDTH	LENGTH	HEIGHT	PRICE
T2	75	56	25	$£ 0.77$
T4	111	57	22	$£ 0.92$
MB1	79	61	40	$£ 1.35$
MB2	100	76	41	$£ 1.47$
MB3	118	98	45	$£ 1.71$
MB4	216	130	85	$£ 5.19$
MB5	150	100	60	$£ 2.35$
MB6	220	150	64	$£ 3.95$
MB7	177	120	83	$£ 3.42$
MB8	150	80	50	$£ 2.22$

ANOJECT BOX
SPECIAL OFFER - PROJECT BOX
As above boxes $50 \times 70 \times 25 \mathrm{~mm}$
As above boxes $50 \times 70 \times 25$
60 p each 10 for $£ 5.00$
KEY SWITCH
3 Position keyswitch
£2.35
MICRO SWITCH roller arm operation spdt 40p each MINIATURE TOGGLE SWITCHES

spdt
 60p each spdt 3 position c/off

MINIATURE PUSH TO MAKE SWITCH 50P EACH

5 mm rnd red/yellow/green/amber 10p each 12 for $£ 1.00$ any mix 5 mm rnd high brightness red/green 20 p each 6 for $£ 1.00$ any mix 5 mm rnd flashing red 60p each, yellow/green 70p each 5 mm rnd bi-colour \qquad 20p each, tri-colour 30p each Rectangular $6 \times 6 \times 2 \mathrm{~mm}$ red stackable

$$
\text { 10p each } 12 \text { for } £ 1.00
$$

Mounted in chrome metal bezel red/yellow/green
40 p each, 3 for $£ 1,10$ for $£ 3.00$ any mix Mounted in a black metal bezel red only

30 p each, 4 for $£ 1.00,10$ for $£ 2.00$ 20 ASSORTED FULL SPEC LEDS. Varlous shapes and colours $£ 1.00$

ALARM CONTROL UNIT

Single zone alarm control unit built into a domestic light switch box. Ideal for home, caravan, boat, garage, shed etc. Facilities: - Normally closed loop for pir sensors, door/window contacts etc.
Normally open loop for pressure mats. 12 volt dc for external use 24-hour loop for personal attack button 115 db
Visual indication that the system is operational.
Automatic entry/exit delay.
Automatic system reset.
Alarm output cmos logic level.
BELL BOX
£8.95

Alarm output cmos logic level.
A plastic bell box cover supplied with backplate. Red/yellow/white or blue £6.95 each

PRICE COMPLETE WITH FULL INSTRUCTIONS

 BELL/SIREN INTERFACE BOARD COMPLETE£8.95 BELLISIREN INTERFACE PCB ONLY
$£ 3.95$

PASSIVE INFRA-RED ALARM SENSORS

Ex installation sensors tested working.
Type 1. Measures $180 \times 112 \times 70 \mathrm{~mm}$ with walk test led, relay output
and tamper protection. 12 volt dc supply required $£ 8.50$ ea
Type 2. As above but a smaller unit $123 \times 62 \times 50 \mathrm{~mm} \quad £ 11.75$ ea

DOOR/WINDOW
CONTACTS
Surface or flush mounting,
white
JUNCTION BOX white 6 way

Please note: There may be variations in the slze of the above passive infra red sensors depending on stock at the time of ordering. But the unit will certainly be within the stated sizes.
DUAL TECH SENSOR Microwave and passive infra-red combined. Separate led indlcation for each function. Measures $120 \times 75 \times$ 50 mm . Relay output 12 volt dc tamper protection
£29.95 ea

BREADBOARDS - CAPACITORS -

SOLAR CELLS - HEATSHRINK - ETC
SOLAR CELL 2 volt 150 mA max, size $60 \times 100 \mathrm{~mm} \quad £ 1.35$ ea 5 for $£ 6$ HEATSHRINK SLEEVING 8 mm dia $\times 40 \mathrm{~mm}$ long 5 lengths for $£ 1.00$ BNC TO BNC LEAD $2 m$ long $£ 2.35$ BNC TO PL259 $2 m$ long $£ 2.35$ BNC SOCKETS 50 ohm single hole fixing 50 p ea 10 for MIN. BNC PLUGS AND SOCKETS 2 plugs and 2 sockets $£ 1.20$ PIEZO TRANSDUCER 5 assorted types
$\Sigma 1.00$

SEMICONDUCTORS - TRANSISTORS -
 ICS - DIODES - REGULATORS - ETC

2N3702

BC337
2N3904
TIP31B
TIP 3055
10p ea 12 for $£ 1.00$ VOLTAGE REGS
10p ea 12 for $£ 1.00$ 7812/7805/7912/7905
10p ea 12 for $\$ 1.00$
30p ea
90 p ea
ALL PRICES INCLUDE VAT
BC213L
2N3055H
2N3771
741 op-amp
555 timer ic LM324 quad op-amp 1N4007 diode 1N4001 diode IN4148 diode BZY88C12

10 p ea 12 for $£ 1.00$
60p ea
£1.20 ea
25p ea 5 for $£ 1.00$
30 p ea 4 for $£ 1.00$
30p ea 4 for $£ 1.00$
20 for $£ 1.00$
25 for $£ 1.00$
40 for $£ 1.00$
6p ea 10 for 50p Shropshire SY8 4NA

MERCURY TILT SWITCH

 £1.00 eachPIEZO VIBRATION SENSOR with data sheet $£ 1.00$ each BREADBOARD
$173 \times 65 \mathrm{~mm} 840 \mathrm{TP}$ £5. 25 each

TEXTOOL ZIF SOCKET
28 pin zero insertion socket $£ 5.95$ each SOLID STATE RELAY
Switch mains up to 7 amp 12 or 5 volf control voltage both types $£ 2.95$ ea

NI-CAD BATTERY PACK 12 volt 4 aH can be split into two 6 volt packs. High temperature fast charge type £27.95 CAPACITOR $10,000 \mathrm{mfd} 25$ volt with fixing clip 60p each CAPACITOR 470 mifd 400 volt $£ 1.50$ each 4 for $£ 5.00$ CAPACITOR Tantalum bead 10 mfd 10 volt 6p each 10 for 50p CAPACITOR 0.1 mfd 63 volt EPROMS 27C256-25 27C512-25. Once programmed but never used eprom. Mounted on a plastic carrier, can easily be removed from the carrier or used with a low insertion force socket.
27C256 £1.00 each 6 for $£ 5.00$
27C512 $£ 1.20$ each 5 for $£ 5.00$ Suitable low insertion force socket 28 pin 40 p ea 3 for $£ 1.00$

Dept EE, Mailtech PO Box 16 Ludlow

All prices include VAT. Tel: 058474475

Please add 75p carriage to all orders

Developments using renewable energy sources.

THIS is the first article in a short series about renewable energy - that is, sources of energy which are everlasting rather than those derived from the so-called fossil fuels which will eventually run out.

This month we shall take an overview of the topic and look in some detail at the direct use of solar power. In the following months we shall examine some particular examples of renewable energy which have the potential for large-scale exploitation in the U.K.

Wind power has particular importance already so some of next month's work will be devoted to this particular topic. The month after that will involve a trip to Denmark to examine at first hand the technology used in the design, construction and operation of modern wind turbines used to generate electricity.

THEGLOBAL PAOBLEM

At the moment, much of the world economy is based on the use of fossil fuels coal, oil and natural gas - to supply our energy needs. When we use these, perhaps in

Battersea Power Station showing the main turbine hall.
(Sinclair Stammers/Science Photo Library)
the form of petrol or diesel fuel for transport, or when coal is burnt for simple heating or to generate electricity we are actually using solar energy which was stored up long ago.

Coal is the remains of ancient forests - the trees grew using carbon dioxide from the air and water, together with the energy of the sun, for photosynthesis. Unfortunately, the use of fossil fuels carries with it problems of pollution and the release of carbon dioxide a greenhouse gas which causes global warming. We shall look at this in detail next month.

Another problem with the fossil fuels is that they will eventually run out. Estimates of when this will be vary due to the difficulty of estimating the yield of as-yet undiscovered reserves and also in predicting future demand. However, it is said that oil supplies may be exhausted in some 35 years, gas in 50 years and coal in 200-300 years. Although not a fossil fuel, uranium - the raw material used for nuclear power generation - is also a finite resource.

The fossil fuels will not, of course, run out overnight. The price of oil and gas will rise as they become scarce. This will put pressure on coal and the price of this - together with uranium - will also increase. Remaining reserves of the fossil fuels will become too valuable as raw materials for the chemical industry than to be used as fuels. It is vital, therefore, that we conserve energy and seek alternative sources to fill the energy gap and assure our power supplies in the 21 st century.

ELECTAICITY

Electricity is the most convenient form of energy since it is so easy to control. We have therefore come to depend on it. In Britain, most of our electricity is generated by burning coal (and sometimes oil or gas) in power stations. This boils water and raises steam which is then used to turn a turbine connected to a generator - a so-called turbogenerator (see photograph).

Everyone is responsible for using electricity both directly and indirectly so we are all responsible for burning coal and the other fossil fuels. We are not particularly efficient at doing this either. Only 30 per cent of the coal's energy ever finds its way to the power socket. Most of it is simply thrown away, uselessly, in the form of heat.
Serious interest is being shown in schemes combined heat and power - which utilize
this waste heat for central heating of private homes, office blocks, public buildings and the like. Unfortunately, the power stations are not necessarily close to the centres of population where the heat is most needed they are generally sited near the source of fuel.

THEALTERNATIVE VIEW

Presently, the sun pours ten thousand times more energy on to the earth than we actually use. This energy is non-polluting and will be available for millions of years to come. So why do we not make use of it on a day-to-day basis rather than in the form of stored-up energy in the fossil fuels?
This is indeed possible and there are two approaches. The first is to use the solar energy direct. However, large-scale schemes tend to involve very expensive technology and at the moment it seems that their use will be limited to local production of power - perhaps where other methods are difficult. The other possible way forward is to use solar power indirectly, using such natural phenomena as waves and wind. Here, the sun's energy has already been converted into a form more suited to exploitation using familiar and cheap technology.
Some such schemes are already off the ground, some have possible longer-term potential and some are fanciful long-shots. We shall be looking at a number of these over the coming months.

WINDPOWER

Wind power promises to provide a useful contribution to Europe's energy needs in the short term - perhaps up to 10 per cent in the next ten years or so. The technology is cheap, safe and well-established.
Wind power is really a convenient way of exploiting solar energy because it is the sun which causes the differences in temperature which makes the wind blow in the first place. We shall say no more about this aspect of Alternative Energy now since some of next month's article will be devoted to it in detail.

A SPOONFUL OF SUGAR

When we burn wood, we are again using indirect solar energy - that is, the sunlight absorbed by the green leaves over the previous few years while the trees grew. Since wood is a good fuel it may simply be used as a coal substitute. It is, however, rather dirty to burn. In some countries, this idea is taken a step further and crops are cultivated specially for their fuel rather than their food value. This is called biomass.

Sugar cane, a perennial grass, is a remarkable material which converts more solar energy than most other plants. Special strains have been cultivated which do even better than the old ones in this respect. In Brazil, sugar cane is grown and the sugar obtained fermented to an alcoholic brew. The liquor is then distilled to provide pure alcohol. This is a flammable liquid and a clean fuel which may be used directly to power cars or blended with a proportion of petrol for the same purpose.
It is quite possible to convert a petrol engine to burn alcohol instead. Brazil has to rely on expensive imported oil so using such alternatives saves quite a lot of money. One advantage of biomass is that there is no overall greenhouse effect. This is because the carbon dioxide released by burning the fuel matches the amount absorbed by photosynthesis as the plant grew - this will be used by the next crop and so on.
The only other product obtained by burning alcohol is water which, again, is simply the water which was absorbed during photosynthesis. The only overall effect, then, is simply to have used the sun's energy.
Using alcohol made in this way could provide a partial solution to a future world energy shortage. There is excess production capacity of sugar cane anyway since the demand for sugar has fallen over the years. Also, sugar beet has now become a major source of sugar - especially in Europe. Using alcohol as a fuel could mean that the cheap well-understood technology of the internal combustion engine could be utilized into the foreseeable future. Traditional forms of transport - including air travel could then continue to be used.

DIESEL TREE

On a similar theme, a tropical tree, copaifera multijuga produces an oil which is almost a diesel substitute. Research is going on at the moment in an effort to transfer the gene responsible for this process to a tree which can grow in cooler climates. This could rival other ways of
obtaining energy for heavy transport in the future.
Rotting plants produce methane gas. This is the same as natural gas obtained from the North Sea reserves and supplied to homes and industry. This method is, again, making use of the energy given by the sun to the plant during photosynthesis. On a small scale, decaying material is placed in a large vessel from which gas may be drawn as required. This is commonly used as cooking gas in some countries such as India and China.
Landfill gas is formed in this way and there are some schemes in the UK which use it to generate electricity. We shall be looking at these in a future article.

FALLING WATEA

Hydro-electric power (electrical energy gained from falling water) is yet a further indirect way of harnessing solar energy. Note that it was solar energy which evaporated the water to form water vapour which was carried to the high ground and eventually fell as rain (the water cycle). Flowing water may be used to turn special turbines and conventional generators. However, a considerable amount of flowing water and preferably a large height (head) through which it falls is needed to make this method commercially viable.
A really large hydroelectric scheme can generate $10,000 \mathrm{MW}$ - equivalent to the output of several large coal-fired power stations. Some countries, such as Canada, are fortunate in having immense quantities of falling water so it is not surprising that this country is a world leader in hydroelectric power technology.
Sweden produces half her electricity needs using hydroelectric schemes (the other half coming chiefly from nuclear energy) - very little coal is used for the purpose. Although scope is limited, the UK has some large-scale hydroelectric schemes - around 100 MW - in operation.
We see that one way or another, almost all the energy we use has come from the sun

- either stored up long ago or that which shone on to the earth more recently. However, when people talk about using solar power they usually mean the direct use of sun's energy and exploiting this poses more of a problem. There are two ways used at present. One is to use the heat energy as it is and the other to convert the heat and light energy - the solar radiation - into electricity.

Hoover Dam across the Colorado river, completed in 1936. It is 1,244 feet long and 726 feet high making it the highest dam in the USA. The hydroelectric power station has a generating capacity of $1,000 \mathrm{MW}$ from its 18 generators. The reservoir stores 30 mil fion acre-feet of water in Lake Mead which extends 115 miles up the river. (Lowell Georgia/Science Photo Library)

The West Burton coal-fired power station showing the cooling towers and the generator building. (John Howard/Science Photo Library)

Pipes leading to a hydro-electric power station at the Alcan aluminium works, Fort William, Scotland.
(Martin Bond/Science Photo Library)

FACTS
 AND FIGURES

The unit of energy is the joule (J) - named after James Joule (1818-1889) a Manchester brewer. The watt (W) - named after the British engineer, James Watt (1736-1819) is the rate of converting energy and is equal to one joule per second. To give some idea of the size of a joule - we would need about $40,000 \mathrm{~J}$ to boil the water needed to make a cup of tea.

The amount of solar energy which falls on the earth in one day is in the region of 10^{22} joules - that is, one followed by 22 zeros! This amounts to some 700 W per square metre although it varies with the latitude of the place, the time of day, the season of the year, the amount of cloud, the height above sea level and other factors. On a bright sunny day it will exceed 1 kW (1000 watts) per square metre.

Several things happen to this energy. Much of it (about 30 per cent) is simply reflected back into space. Some (about 20 per cent) falls on water, causes evaporation and brings about the water cycle mentioned earlier. A little is used by green plants to perform photosynthesis. This leaves nearly half the energy simply warming the ground.

DIRECT
 SOLARPOWER

Imagine a conventional coal-fired power station producing 1000 MW i.e. $1,000,000,000$ watts (a large power station). If the whole of the sun's energy could be collected and used, it would need about 1.5 million square metres of land area to produce the same power. This may be pictured as a square with sides rather more than 1 km in length.

It seems that by using a few tens of square kilometres of land area, we could obtain all the electricity needed for Britain! However, there are some flaws here. Firstly, the energy is only available during daylight hours and then only on relatively cloud-free days certainly not to be guaranteed in the UK. Also, no one has found a way of collecting all the energy - it would really need at least ten times the land area than theory sug. gests. This would not be a great problem but the cost of setting up the scheme would be prohibitive at the present time.

Fig. 1. Operation of a solar panel.

[EE37590

It would need cheaper technology coupled with rising prices elsewhere for this to prove commercially viable in the medium term. On the other hand, small-scale local schemes seem attractive - perhaps to provide electricity in remote places.
In hot countries it is possible to fry an egg on the pavement. Solar radiation causes significant heating of the surface on which it falls. Dark-coloured surfaces, particularly black ones, absorb the radiation much more effectively than light-coloured ones so these get hotter.
A solar panel is a simple type of passive solar energy collector which uses circulating water to carry the heat for some purpose perhaps for household hot water or for a swimming pool. The general principle is shown in Fig. 1. Water is pumped through tubing which is laid zig-zag fashion under a glass cover. The water becomes warm and gives its heat to other water in a heat-exchanger.

The tubing and other parts inside the panel are painted black to improve absorption of the sun's energy. The glass top
surface acts like a greenhouse, traps the sun's energy and improves the overall efficiency. It is necessary to use an electric pump to circulate the water through the panel and heat exchanger so, when calculating whether or not it is worthwhile to use the solar panel, it is essential to take into account the electrical power needed by the pump.
It is a useless exercise gathering less energy from the sun in terms of warm water than the pump uses! Microprocessor-based systems using temperature sensors may be used to switch on the pump only when it is advantageous to do so.
The solar panel will work fairly well even in Britain but, of course, it works much better in hot countries with more guaranteed sunshine. Under the best conditions, the water can emerge at 70 degrees C but it will not boil. More likely, especially in Britain, it will be made warm which, nevertheless, means that less fossil fuel or nuclear energy is needed to raise it to a useful temperature.
Solar panels are often seen on house roofs (see photograph) since here they can be

Solar panels (used for domestic water heating) incorporated into the roof of a house in South East London. (Martin Bond/Science Photo Library)

The parabolic reflector at Odeillo-Font-Romeau solar power station composed of 9,500 mirrors. The furnace is capable of generating 1 MW of thermal power. (Tony Craddock/Science Photo Library)

Mirrors of the Luz Solar Power Station seen in moonlight. The 1.5 million mirrors concentrate the sun's light onto narrow tubes containing synthetic oil. The oil is then fed to a heat exchanger where it boils water to provide steam for turbines, this installation can generate 150 MW of power.
(Roger Ressmever, Starlight/Science Photo Library)

Fig. 2. Early photovoltaic cells.
angled to face the sun. Since a solar panel cannot raise the water to boiling point, it cannot generate steam. This means that it cannot be used to produce electricity using the cheap and well-developed technology of the turbo-generator. This, in practice, means that solar panels are limited to relatively small schemes for producing warm water. Even so, their contribution is worthwhile.

SOLARFURNACE

A solar furnace, on the other hand is designed to raise steam. Here, enormous mirrors concentrate the solar radiation to a focus. This works in a similar way to a hand lens which can focus the sun's rays and set a piece of paper alight. A boiler is placed at the focus and the water circulating through it rapidly boils. This makes steam and operates a conventional turbo-generator.
Unfortunately, the mirror needs to be of gigantic proportions - about 7000 square metres for each megawatt of electricity produced - and this is very expensive to construct. To generate 1000 MW , would need a colossal mirror. Serious schemes using mirrors are used in Odeillo in the French Pyrenees (see photograph) and the United States where there is more-or-less guaranteed sunshine. At the focus of the rays, the temperature is sufficient to melt steel.

Of course, the solar furnace provides energy only during daytime. A further problem is that the sun appears to rise and set in the sky so there must be some means of tracking it and this involves even more expense. Due to high cost, large-scale use of solar furnaces for electricity generation is definitely a long-shot and it is difficult to see the method becoming economically viable in the future.

SOLARCELLS

A different approach is to use solar cells to convert the sun's energy directly into electricity without going through the steam stage. This uses a phenomenon called the photovoltaic effect. This was first observed by Antoine Becquerel in 1837 when sunlight shone on to one of his electrodes during an electrolysis experiment. The first "serious" devices, however, date from the 1870's and were based on the element selenium deposited on an iron base. More recently, a copper base coated with cuprous oxide copper (1) oxide - was used (see Fig. 2).

In both cells, a very thin and therefore transparent gold film made a window through which the light passed. This made the front connection to the working material. The gold film was in contact with a metal ring around the periphery of the device and this formed one of the output terminals. The other connection was made to the base material at the back of the cell.

These cells develop a voltage of around 0.4 V in bright light. However, they are very inefficient, converting only about one percent of the sun's energy striking the sensitive surface into electricity. They are sometimes used to measure light intensity (in, for example, some photographic exposure meters). Here, the cell output is connected to a microammeter with its scale calibrated in terms of light level instead of current.

Modern semiconductor devices are also photo-sensitive. Transistors and diodes are usually housed in opaque encapsulations to prevent light from entering. This prevents photovoltaic emission with possible unpredictable results when the device is built into a circuit. This effect may be demonstrated using an old OC71 germanium p.n.p. transistor. These are still available new from certain suppliers but are often to be found in junk boxes or in old equipment.

Such transistors are coated with black paint to prevent light from entering but this is easily scraped off to reveal the translucent encapsulation beneath. If this is done and the base wire (the centre one) is connected to the negative terminal of a $0-50 \mu \mathrm{~A}$ meter (a multitester set to its most sensitive d.c. current range) and either the collector or emitter wire touched on to the positive terminal, the photovoltaic effect may be observed. Thus, when sunlight falls on the transistor, a current of $10 \mu \mathrm{~A}$ or more is registered (see Fig. 3). The working part is the junction between p and n-type germanium.

MODEFN
 DEVICES

More recently, purpose-made solar cells based on crystalline silicon

Fig. 3. The photovoltaic effect. have been developed. These also consist of junctions formed between p and n-type material. It is beyond the scope of this article to explain p and n-type semiconductor materials in terms of atomic structure - any reader interested in this topic should refer to a standard electronics or physics text book.
To understand basic operation, it must be realized that light has a dual nature. Although usually thought of as waves it may also be regarded as consisting of small particles called photons. Photons have energy and when they

A solar powered calculator.

An experimental solar panel for battery charging.
strike the sensitive material they knock out electrons. When electrons are removed they leave regions of space deficient in electrons called holes. The electron-hole pairs can re-combine with electrons flowing in an external circuit back to the holes.
The greater the light intensity the more electron-hole pairs will be created and the greater will be the current. Unfortunately, electrons can re-combine with holes directly without going through an external circuit. Also, the electrical resistance of the material reduces the current and much of the energy is dissipated as waste heat.

Some of the radiation reflects from the surface without ever reaching the active region although making the surface black helps to minimize this effect. For this and other reasons, solar cells are not particularly efficient. Silicon solar cells can convert up to about 10 per cent of the energy striking them into electricity although a solar cell design based on gallium arsenide instead of silicon is said to produce 1 V per cell with an efficiency of 25 per cent.

SOLARCELL USE

At present, probably the best use for solar cells is for small scale production of electricity. Solar-powered calculators are now commonplace but a more ambitious use is to provide the electrical energy needed for a satellite. These need electrical power to operate the electronic equipment on board radio transmitters, receivers and so on. They can take advantage of the much more intense sunlight which exists in space.
At the earth's surface, much of the solar radiation has been absorbed by the atmosphere. In a satellite, a relatively small number of solar cells is therefore needed. In a typical installation, some 5000 cells are arranged on solar sails to provide a 30 V supply delivering about 100 W of power (see photograph in the Information Technology article).
One problem is that solar-powered equipment will only work when the light is strong enough. If necessary, this can be overcome by using the solar cells to charge a small battery which can then be drawn on when there is insufficient light - for-example, in a solarpowered watch.
Solar-powered cars - and even solar aircraft - have been developed as experimental prototypes. Other more down-to-earth uses for solar cells include emergency telephones, marine beacons, radio
transmitters and receivers for use in remote regions, computerised information-gathering equipment and battery-chargers.

Solar cells may be used to charge batteries by day and provide electric lighting by night in regions too remote from a conventional electricity supply. They are also used to drive water irrigation pumps - it is even possible to make solar-powered refrigerators!

CELL OUTPUT

A typical silicon solar cell provides a voltage of approximately 0.6 V at a current of 15 mA per square centimetre in bright sunlight. groups of cells can be connected in series to increase the voltage output (much in the same way as chemical cells are often connected in series for the same reason). They may also be connected in parallel to increase the current. A series parallel arrangement of solar cells is usually used to increase both the voltage and the current.

Single silicon solar cells and ready-made groups of cells (solar cell panels) may be bought quite cheaply and make an interesting basis for experiments in solar energy. For example, a typical small arrangement can produce an output of 12 V at 50 mA .
A more ambitious solar cell panel has a sensitive surface 30 cm (1 ft) square and can produce 12 V at 200 mA in bright sunlight (see photograph). This has a sensitive surface made from amorphous silicon coated thinly on a glass base. Although amorphous silicon is less efficient than the crystalline variety. It is much cheaper. Such a solar panel can operate various small pieces of electronic equipment direct or charge batteries so that the energy may be used later in a caravan or boat, for example.

SOLARCELL POWERCOSTS

Generating bulk electricity using solar cells, would be about ten times more expensive than by using conventional means at present prices. On the other hand, the cost of solar cells is coming down and the price of fossil fuels will rise in the medium term so this type of exercise - using land for "solar farming" - may possibly become attractive in the future.

In bright desert regions where the land is not much use for anything else, banks of solar cells could farm the sun's energy and provide large-scale electricity. It has been
estimated that 30,000 square kilometres of solar cells (an area of 100 miles square approximately) could provide the total electrical needs of the United States.
A fanciful idea is to place banks of solar cells in space to take advantage of the more powerful sunlight. The only problem would be getting the power down to earth where it is needed! Perhaps, the energy could be turned into microwaves and beamed down to receivers on the ground.

LATEST

DEVELDPMENTS

Now, after 20 years of research, Brian O'Regan and Michael Gratzel of the Institute of Physical Chemistry, Swiss Federal Institute of Technology in Lausanne Switzerland have developed a more advanced. type of solar cell. This has an efficiency close to that of a conventional amorphous silicon cell i.e. around 7 to 12 per cent depending on conditions. Its importance is its potentially low cost rather than its efficiency. This is because it uses cheap and relatively impure materials in its construction.
In this cell, the working semiconductor material is a very thin layer of high surface area polycrystalline titanium dioxide. On to this surface is coated a special dye. Energy-harvesting molecules having an "antenna" arrangement absorb the sun's energy and channel it to the semiconductor surface. Advantages are to be gained by separating the jobs of energy absorption and electricity production in this way.
It is interesting to note that the natural phenomenon of photosynthesis also uses a molecular antenna system to direct solar energy to the chlorophyll. In this respect the new type of cell imitates nature.
It would seem that the direct use of solar power for large-scale generation of electricity is too expensive. Perhaps a better way forward is to exploit natural processes wind, waves, biomass, etc. which already absorb the energy of the sun and put it into a more easily used form.

Next month: We shall examine in more detail the problems associated with using fossil fuels. We shall then look in some detail at wind energy as an example of existing alternative technology.

NEW VIDEOS ON ELECTRONICS

Everyday Electronics is pleased to announce the availability of a range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

The first three videos available are:

Electronics And You - Part 1: D.C. Series and parallel circuits and the use of a digital multimeter. Running time approx. 53 mins.
Order code VT201
£29.95 inc. VAT

Part 2: A.C. Coils, capacitors, transformers and other a.c. devices. Running time approx 71 mins.
Order code VT202
$£ 29.95$ inc. VAT

Part 3: Semiconductors. Basic semiconductor theory plus fifteen different semiconductor devices explained. Running time approx. 47 mins.
Order code VT203
£29.95 inc. VAT
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier.

To order see our Direct Book Service "Ordering Details" - the postage for tapes is the same as for our range of books and you can order tapes and books at the same time and pay only one lot of postage.
(All videos are to the UK PAL standard on UHS tapes)

Constructional Project SOLAR-POWERED LIGHTING UNIT

 T. R. de VAUX-BALBIRNIE
"Free"power for the garden shed, boat or caravan.

THIS solar power supply was designed to provide lighting in a remote garden shed without having to rely on throw-away batteries. This may be cheaper than laying on a mains supply and is much safer. Also, being a low-voltage system, it is suitable for use by children.

A simple version will work as a tricklecharger for a 12 V caravan or boat car-type battery. This will keep the battery in good condition during the out-of-season months and also allow limited use of the lights, water pump, etc. This may be found useful for the occasional visit to the caravan at night to recover odd items of crockery, the tin opener, etc.
The Solar-Powered Lighting Unit (Standard Version) will operate a small, inexpensive 12V 8 W fluorescent light by charging a 12 V nickel-cadmium battery pack during daylight hours. Tests carried out during late autumn on the prototype unit show that up to 20 minutes operation per day (depending on the available light) is available from an 8 -watt fluorescent light. This will be found sufficient for most purposes. Even during the winter, a useful operating time will be available.
Taking account of the cost of the solar panel itself and the nickel-cadmium cells, this may be considered an expensive way of obtaining energy in the short-term even though the energy itself is free. However, it scores highly in terms of convenience since, once fitted, the installation can be forgotten and will always be ready to operate at peak efficiency. Using throw-away batteries to provide a similar light output would prove prohibitively expensive.

USING SOLAR PANELS

The solar panel specified for the Solar-Powered Lighting Unit is $30 \mathrm{~cm}(\mathrm{lft})$ square and has a sensitive surface made from amorphous silicon. This provides a current output of 200 mA in bright sunshine. In moderately bright autumn and winter weather, an output of 10 mA to 20 mA may be expected and 100 mA is not uncommon.

These test figures were obtained with the solar panel placed behind a glass or plastic window since, in use, this will be necessary to protect it from the rain. To charge a caravan battery, the solar panel may be placed on a table near a south facing window using a wooden frame - or simply a pile of books - to point it slightly upwards to face the sun. Tests will need to be performed where windows are heavily tinted since these could reduce the efficiency.

The battery pack used in the prototype unit (standard version) consisted of ten AA size nickel-cadmium cells in a suitable holder. The maximum continuous charging current for these is 50 mA approximately.

Since in bright summer sunshine this figure could be exceeded by a factor of four, it is necessary to provide some cur-rent-limiting to prevent damage. During the winter, the output current is normally less than 50 mA so the limiting circuit will have little effect - it will simply reduce the charging current slightly - typically by 4 mA .
A Normal/Boost switch is provided on the unit so that, in summer, the limiting circuit may be bypassed and the extra current used to "quick-charge" the battery pack. It may also be used during winter to squeeze every available milliamp out of the system. In summer, this will need to be used with extreme care to prevent possible damage due to overcharging.

GREATER CAPACITY

Although most of the following description assumes that AA size cells are to be used as the supply, some readers will wish to use larger capacity batteries. This may be of no advantage during the winter because AA cells are sufficient to hold one day's worth of lighting energy (one hour maximum).
However, in situations where the light is not in daily use, it could be an advantage to allow the charge to accumulate over several days. Larger-capacity cells could then provide an extended period of occasional use. Note that AA cells having a slightly higher capacity -600 mAh rather than the more usual 500 mAh - are available from some suppliers. It may be worthwhile using these.
By using standard (1.2Ah) C-size cells, approximately one hour's light may be expected on a three-day cycle even in the autumn. With these cells, a higher limiting

The 30 cm solar panel plugged into the "Standard" prototype unit and sited behind a window.
current - nominally 140 mA - may be set to take advantage of the bright summer weather.
No current limit need be set when tricklecharging 12 V car-type batteries or the smaller lead-acid batteries now available. This simplifies the circuit required and details for this are given later.

مOWER-IN

To provide a 12 V supply, ten nickel-cadmium cells are needed. This is because this type of cell produces an output of only 1.2 V instead of 1.5 V for the conventional "throw-away" variety.
An AA size battery pack may be housed inside the main unit using the specified box (see photograph). For larger cells, a correspondingly larger box will be needed or the battery pack could, of course, be sited externally.
Plugs and sockets are used to make the external connections - a "powerin" type socket for the solar cell and a 3.5 mm jack socket for the light. This ensures that these items are connected to the correct socket.
An ammeter may be mounted on the front panel (as in the prototype unit) to indicate the charging current see photograph. This is useful for checking that the charge rate falls within specification and also to help in adjusting the mounting angle of the solar panel for best effect.
Costs could be saved by omitting the meter and connecting a multimeter to a pair of sockets on the unit instead. This would be used just for setting-up purposes then removed afterwards. When the multitester is not in use, a link wire would simply connect the sockets together to maintain continuity. It is possible to avoid the use of a meter altogether, but the charging current would need to be taken on trust and positioning the solar panel carried out by common sense!

LIGHTING-UP

Although a 12 V 8 W fluorescent light fitting is specified in the components list, it would be possible to increase the light out. put by using a 13W fitting. This would, of course, run down the battery pack in a correspondingly shorter time.
It may be appropriate to use the brighter lamp in some situations, especially where it is backed up by a high-capacity battery pack. However, in tests, the smaller 8 W lamp was found to be perfectly adequate
for garden sheds and similar places. It is not really satisfactory to use filament lights - for a reasonable light output, these would run the battery down too quickly.

CIFCUIT DESCRIPTION

For trickle charging lead/acid (car-type) batteries or nickel-cadmium cells which can accept a continuous charging current in excess of 200 mA (industrial type C- or D-size cells - 2 Ah and 4 Ah respectively) refer to the circuit diagram shown in Fig. 1 (Car Battery Trickle-Charger). Here, current flows from the solar panel through diode, D1, meter MEI and fuse FSI hence through the battery being charged. Diode DI prevents the battery from discharging back through the solar panel under dark conditions.

Fig. 1. Circuit diagram for the solar powered battery trickle-charger.
For charging nickel-cadmium batteries where a current limit needs to be set $(50 \mathrm{~mA}$ for AA size cells or 140 mA approximately for C- or D-size commercial type cells) refer to Fig. 2 circuit diagram. Here, the main component is ICl - an integrated circuit regulator.
Suppose the Normal/Boost switch, S1, is set to Normal for the moment. When bright light falls on solar panel, SP1, current is supplied to ICl input, pin 1. Although ICI is a sophisticated device providing on-chip regulation of voltage and current, in this application it is connected simply as a current limiter.

Fixed resistor, R1, connected between pin 5 and pin 2, sets the threshold current to the correct nominal level - 10 ohms for 50 mA (for AA cells) or 3.3 ohms for 140 mA (for commercial C-cells). If the current supplied by SPI lies below this threshold, the regulator has little effect (it simply reduces the output current a little).

Fig. 2. Circuit diagram for the "current limited" Solar-Powered Lighting Unit.

COMPONFVIS

SIMPLE VERSION
 (Trickle-Charger)

Semiconductor

D1 1 N4001 50V 1A rect. diode
Miscellaneous
SP1 $\quad 30 \mathrm{~cm}$ square amorphous silicon solar panel -output 12 V at 200 mA nominal
FS1 20 mm chassis fuseholder, with 1 A quick-blow fuse PL1/SK1 3.5 mm mono jack plug and matching chassis socket
PL2/SK2 2.1 mm "power-in" plug and matching chassis socket
ME1 250 mA or 500 mA f.s.d. moving-coil panel meter, face size $51 \mathrm{~mm} \times 45 \mathrm{~mm}$ approximately - see text
Plastic box, size $100 \mathrm{~mm} \times 75 \mathrm{~mm} \times$ 40 mm , - see text; stranded connecting wire; nuts, bolts and washers; solder etc.

Approx cost
guidance only

STANDARD VERSION
 (Current Limited)

See

SHOP TALK

Resistor

R1
10 ohms (for AA size cells) 3.3 ohms (for commercial C- and D-size cells - see text)
R2 $\quad 0.27$ or 0.2 ohms (4 or 5 off 1 ohm - see text)
All resistors $0.25 \mathrm{~W} 5 \%$ metal film

Capacitors

$\begin{array}{ll}\text { C1 } & 220 n \text { ceramic } \\ \text { C2 } & 100 n \text { ceramic }\end{array}$
Semiconductors
D1, D2 1 N 400150 V 1 A rectifier diodes (2 off)
IC1 L200CV adjustable voltage and current regulator in Pentawatt package

Miscellaneous

SP1 $\quad 30 \mathrm{~cm}$ square amorphous silicon solar panel-output 12 V at 200 mA nominal
B1 AA size nickel-cadmium cells (10 off) and holder - see text
S1 Miniature d.p.s.t. toggle or slide switch
FS1 20 mm chassis fuseholder, with 2A quick-blow fuse
PL1/SK1 3.5 mm mono jack plug and matching chassis socket
PL2/SK2 2.1 mm "power-in" plug and matching chassis socket
SK3/SK4 2 mm sockets - if required See text. (2 off)
ME1 $\quad 100 \mathrm{~mA}$ f.s.d. moving-coil panel meter, face size $51 \mathrm{~mm} \times 45 \mathrm{~mm}$ approximately - see text
LP1 12 V 8 W fluorescent light fitting
Stripboard 0.1 in matrix, size 10 strips $\times 18$ holes; plastic box, size $150 \mathrm{~mm} \times$ $90 \mathrm{~mm} \times 52 \mathrm{~mm}$ approx; battery connector for battery holder; stranded connecting wire; nuts, bolts and washers, solder etc.

Approx cost
guidance only'
exciluding Light \& Butls.s

When the input current rises above the threshold, a steady output current equal to the threshold is obtained from pin 2 with the excess energy being dissipated as heat. ICl is amply-rated and the power developed will never be great enough to warrant the use of a heatsink
The output current from ICl charges the battery pack, B1, with current flowing through diode, D2, milliammeter, ME1, (or external meter via 2 mm plugs and sockets) and fuse, FS1. Diode, D2, prevents the cells from discharging back into ICl when the solar panel is in dim light, during the night for example.

B00ST

When the Normal/Boost switch is set to Boost, two things happen. The switch pole of Sla disconnects the solar panel from ICl input, pin 1, and connects it instead to the output via diode DI. This allows the maximum current provided by the solar panel to flow to the battery pack.
Meanwhile, switch S1b pole shunts fixed resistor, $\mathbf{R} 2$, across the meter terminals. The value of this resistor is chosen to bypass three times the meter current through itself. In practice this means that resistor $R 2$ should have a value of one-third that of the meter. The meter scale is then effectively multiplied by four i.e. its full-scale deflection is 400 mA
Diode DI prevents the battery pack from discharging through the solar panel under dark conditions when switch S 1 is set to Boost. Capacitors, C1 and C2 are necessary to provide electrical stability to ICI.
A fluorescent light is much brighter for a given current input than a filament lamp. Note, however, that a fluorescent light designed for 12 V operation must be used. This already contains the necessary inverter which increases the low input voltage to that needed to operate the fluorescent tube. These lights are stocked by mail-order suppliers or may be obtained from camping and caravanning shops.
Holders for ten AA cells are available from some suppliers. Otherwise, use a

Front panel

 component layout for the Simple Trickle-Charger version. The solar cell panel plugs into the"power-in" socket on the left.
holder for six and a holder for four (or some other suitable combination) connected in series. This will also be necessary where cells other than AA size are used since holders for ten of any other type do not appear to be available.

CONSTRUCTION

If constructing the simple circuit (Car Battery Trickle-Charger - Fig. 1), i.e. having no current-limiting, this needs no circuit panel. The only active component is diode, D1, and this is suspended in the wiring.

Follow the wiring layout photograph/ diagram shown in Fig. 3, noting the polarity of the meter and of diode DI. The meter should have an f.s.d. (full-scale deflection) of 250 mA or 500 mA .

If constructing the standard version circuit, having current-limiting, refer to Fig. 4. First calculate the value needed for resis tor R2. The internal resistance of the specified type of meter is typically 0.6 to 0.8 ohms and will be found in the supplier's or manufacturer's data.

For a 0.6 ohm meter, R2 will need to have a value of 0.2 ohms and for a 0.8 ohm meter, R2 will need to be 0.27 ohms approximately. This value is not too critical since great accuracy is not required. In any case, there is a certain amount of contact resistance in the switch which can cause deviations.

Fig. 3. Component layout and interwiring for the Simple Trickle-Charger version.

It is possible to buy single resistors having these values but they will probably be of the bulky high-power type. A cheaper and more compact solution is to buy four (for 0.8 ohms internal resistance) or five (for 0.6 ohms internal resistance) one ohm resistors and connect them in parallel as shown. This will give values for 0.25 ohms and 0.2 ohms respectively.

For other meter resistances work accordingly. Fig. 4 shows four one ohm resistors in parallel on the circuit panel but there is space for a fifth one if required

STANDARD VERSION

Construction of the Standard Version of the Solar-Powered Lighting Unit is based on a circuit board made from a piece of 0.1 in. matrix stripboard, size 10 strips x 18 holes. Cut this to size and solder the link wire used to inter-connect ICl pin 3 and pin 4.

The standard version stripboard component layout is shown in Fig. 4. The regulator ICl comes in a rather curious 5-pin "Pentawatt' package. Bend its pins gently to conform with the stripboard matrix and, noting its orientation, insert them through the holes and solder the device into position using minimum heat from the soldering iron.

Follow with the other on-board components noting that diodes D1 and D2 must be connected the correct way round as indicated. Drill the two fixing holes and solder 8 cm pieces of light-duty stranded connecting wire to copper strips B, C, D, E and F along the left-handed side as shown.

C4SE

Prepare the box by making holes for switch SI, fuse FSI, sockets SKI (for solar panel connection) and SK2 (for the light), for circuit panel and battery holder mounting according to type (see photograph). Make holes for the multitester sockets if needed.

Make a large hole for the meter. This may be done by drilling a circle of small holes then joining them together using a small hacksaw blade. The hole need not be particularly neat since the edge will be covered over when the meter is in position.

Mount all components. Note that everything, apart from the battery pack, is mounted on the lid of the case. This keeps the wiring short and neat and imposes less strain on it.

Referring to Fig. 5, complete the interwiring shortening any wires as necessary. Note the polarity of the meter. If 2 mm

Front panel component layout of the Standard Version showing the "boost" switch position.

Select a suitable site for the solar panel. This must not be placed in the open but behind a window to protect it from the weather. Switch SI to "Boost" and adjust the direction of the panel for best overall effect. This may be revealed by checking the output current every so often. If no meter is used, then direct the solar panel by common sense.
Check operation of the Boost/Normal switch in the Normal position. Providing the light is bright enough, the meter should read the limit preset by resistor R1 approximately 50 mA or 140 mA as appropriate. Otherwise a reading will be given depending on the amount of light falling on the panel. Note that if using the unit to charge a caravan battery, any existing charger should first be disconnected.
During the summer, boost charging at 200 mA may be carried out on AA size cells

Fig. 4. Stripboard component layout and details of breaks required in the underside copper tracks.
sockets have been fitted for a multitester to be used, make up a short lead with matching plugs on the ends so that the sockets may be linked together when the meter is disconnected. Place the cells in their holder and connect them up. Insert the fuse into its holder.
Check that the lid fits - it may be necessary to bend the switch tags slightly to give sufficient clearance. This must be done with great care since it is very easy to crack the plastic body. It is best done by gripping the tag with fine-nose pliers close to the body then bending it with a second pair of pliers.

SETTING-UP ANDTESTING

Prepare the solar panel by fitting a suitable length of flexible 2 -core wire terminating in the 2.1 mm power-in plug. Do not try to remove the existing wires soldered to the solar cell output since damage could easily result. Instead, shorten these wires and make soldered and sleeved connections to the new lead. Tape the wire securely to the back of the panel to provide some strain relief. Prepare the light by attaching the 3.5 mm jack plug to the end of the wires taking care over the polarity.
In sunny summer conditions, testing the unit could result in overcharging the batteries - especially if AA size are used. This may be avoided by starting tests with the

Fig. 5. Component lavout and interwiring for the Standard Version. All components, except the battery holder, are mounted on the rear of the case lid.
batteries in a discharged state. Switch the light on to discharge them if necessary.
They may now be safely charged at up to 250 mA for two hours or so. With highercapacity cells, greater liberties may be taken. If a built-in meter has not been used, the multitester set to an appropriate d.c. current range should be connected to the 2 mm sockets observing the polarity.

Completed "standard" model rear of the case lid. The battery holder can just be seen located to one side of the case bottom half.

for two hours providing the cells are in a discharged state. In the winter, the switch may be set to Boost continuously providing the current remains below 50 mA . This will add a few milliamps to the charging current.
It only remains to label the switch and put the Solar-Powered Lighting Unit into service.

EVERYDAY

YOUNG ELECTRONIC DESIGNER AWARD

Abstract

THE winners of the 1992 Young Electronic Designer Award (YEDA) were announced recently at the Science Museum, where HRH The Duke of York made the presentations to successful finalists. The Young Electronic Designer Awards scheme is open to students in secondary schools, colleges and universities between the ages of 12 and 25 , and challenges young designers to invent and produce an electronic device that meets an everyday need.

Presenting the awards, the Duke of York said, "Of course, electronics has a special significance to me in my career with the Royal Navy. Our aircraft and ships depend very largely on electronics in instrumentation, as well as control and communications. I was therefore particularly interested to accept this engagement to see how schools and universities are applying today's technology."

SENIOR CATEGORY

(18-25 years inclusive)
1st - YEDA Trophy, $£ 1,000$ and course sponsorship: Jeff Crofts (22), Royal Naval Engineering College, Plymouth - The Midi Accompanist.
2nd - $£ 500$: Stefan Cook (23), Cheltenham \& Gloucester College of Higher Education - The Mouse Emulator.
3rd - £250: William James (19), Kings College, Taunton, Somerset - A fully controllable print and film driver.

INTERMEDIATE CATEGORY

(15.17 years inclusive)
1st - YEDA Trophy, £750: Mark Stewart (17), Cowes High School, Isle of Wight Beam music design to encourage movement in handicapped children.

2nd - $£ 200$: Marion Hore (18), Farnborough Sixth Form College, Hampshire - A water flow meter.
3rd - $£ 200$: Benjamin Brierton (17), Mortimer Wilson School, Derby - A bike alarm.

JUNIOR CATEGORY

(Under 15 years)
1st - YEDA Trophy, £500: David Issott (15) and Tom McEwan (14), Cheltenham College - A portable monitor to evaluate the presence of carbon monoxide.
2nd - $£ 250$: Lucy Boize (14) and Claire Guerlain (14), Woldingham School - An electronic digital destination display for a bus.
3rd - $£ 150$: Jonathan Pepper (15) and Nick Davies (14), Cheltenham College - An iron for the blind, partially sighted, elderly or handicapped.

SCHOOLS PRIZES

Joint winners of the Texas Instruments Award - $£ 2,500$ (divided) for the most commercially viable project:
Mark Stewart (17), Cowes High School, Isle of Wight - Beam music design to encourage movement in handicapped children.

BEAM MUSIC was designed for use with handicapped children, but can be used for various other applications.
Handicapped children respond well to music, and by breaking the light beams notes can be played. The computer can generate the notes intemally or altematively send them to a keyboard. This allows high quality sounds to be created and accompaniments to be added. Popular tunes can be played using this setup.
Beam Music is not limited to just music. It can be used with various computer games etc, the frame is used in a similar way to a joystick.

Jonathan Pepper (15) and Nick Davies (14), Cheltenham College - An iron for the blind, partially sighted, elderly or handicapped.
SAFE-N-EASY is a standard iron, modified in several ways to provide extra safety and to make it easier to use. Firstly, an auto-turnoff feature is included, so that the iron will tum itself off after 30 seconds if left flat, or 5 minutes if left upright.
Secondly, for ease of use, the iron sounds an audible warming as the water in the reservolr reaches the maximum level during the filling operation. A further alarm option alerts the user to the fact that the water in the reservoir requires replenishment.
A small internally mounted NiCad battery, which is recharged during normal use, provides power to the alarm circult.

Mercury 'Planet' Award - $£ 2,500$ for the most environmentally/socially aware technology.
David Issott (15) and Tom McEwan (14), Cheltenham College - A portable monitor to evaluate the presence of carbon monoxide.
The COSMOS detects different levels of carbon monoxide concentration. It gives an accurate reading and is very concerned with safety and warning if an area is unhealthy.
The sensor uses nine l.e.d.s, one each to wam when the batteries are low, when you can start taking readings that are valid, and seven to tell you the concentration of carbon monoxide in the immediate atmosphere.

HRH the Duke of York who presented the Young Electronic Designer Awards discusses Farnborough Sixth Form College student Marion Hore's project, a Water Flow Meter.

First place in the Intermediate Category of the Young Electronic Designer Awards went to Cowes High School student Mark Stewart (17) for his project, Beam Music.

NEW IMAGING TECHNIQUE

A NEW, safe technique for looking inside the body was demonstrated in London recently. The patient wears a belt which carries, on the inside, regularly-placed contacts which allow current $(5 \mathrm{~mA}$ at 50 kHz$)$ to flow into the skin. If the voltage is applied to one pair of contacts (1 and 2 in Fig. la) the pattern of current paths (dotted lines) is set up. If a sensitive voltmeter is placed at another pair (e.g. 3 and 4) a small voltage is picked up.
If the medium through which the current flows (in this case the body) is not electrically uniform but contains an insulating region such as an air pocket then the current paths are distorted (Fig. lb). For a constructive anomaly such as a blood clot the paths are distorted in a different way. Voltages picked up by detectors at contact pairs such as 4 and 5 are now slightly different.
In the system developed by Sheffield University and the Royal Hallamshire Hospital 16 contacts are used. The driving voltage is commuted so that it is applied successively to every

Fig. I. Electrical Impedance Tomography. (a) Current paths through uniform object. (b) Paths distorted by an insulating region.
pair of adjacent contacts (1 and 2,2 and 3,3 and 4 etc) and measurements are logged automatically for every non-driven pair in succession. After computing, these yield an image of the slice of the body which is encircled by the belt.

The first, rather simple system is being used to monitor the contents of the stomach. A conducting liquid (fruit juice) drunk by the patient produces an image showing how the stomach walls move as the liquid slowly passes through. In this way abnormal stomach contractions can be identified.
A "print out" in the form of a bar graph records changes in stomach volume and is useful for diagnosis. The Sheffield team (led by Professor of Medical Physics, Brian Brown) has now developed a real-time system which should enable doctors to study blood flow and breathing. The British Technology Group is doing the marketing.

The technique has two names, Applied Potential Tomography and (preferred) Electrical Impedance Tomography. Teams in many centres are working on it. From the medical point of view its attractions are safety, comfort, portability and low cost. A simple system should cost about $£ 15,000$ and a real-time system about twice this. Comparable alternatives like magnetic resonance scanners cost $£ 1$ million or more.

Present systems display the "slice" as a circle, not as the actual shape of the body. Ways of correcting this distortion (which could be important if the image is to be used to guide surgery) are being explored. So is a possible extension to brain scanning to pinpoint the foci of epileptic seizures.

Electrical Impedance Tomography is a perfectly general technique with applications far removed from medicine. One team is using it to examine core samples drilled out during oil exploration. It might also be adapted as a geological tool to examine underlying strata or by archaeologists to detect buried buildings.

The Sheffield system is essentially a detector of changing images. An alternative, under development at the Renssalear Polytechnic in the USA applies current simultaneously to all electrodes and generates a static image. (Successive static frames can of course be stored and played back in sequence to give a moving picture.)

High-Speed Mass-Storage Medium of the Future

The first Sharp Palmtops and Notebooks with "flash memories" are already on the market. These new storage media could soon make conventional disk drives and hard disks with their sensitive, slow reading mechanisms obsolete. According to Dataquest, Intel, the US semiconductor giant, has over 85 per cent of the market for these new mass-storage devices. Sharp sees a wide range of potential applications for this exciting new storage technology in their products. Both companies have recently signed an agreement calling for long-term cooperation in the development and production of flash memories.
Flash memories are highly integrated storage devices that are faster and less prone to failure than conventional drives. because they have no moving parts. First of all, they can be used as ROMs, which means that data remains intact without power. On the other hand, they can also be erased and rewritten, which makes them more like RAMs. However, they most resemble EEPROMs, electrically erasable readonly memories.
As the name implies, flash memories use a very fast, strong pulse of curent for erasing. Both operations, erasing and writing, take place within the system and not, as is the case of conventional EEPROMs, in separate accessory devices. In addition, flash memories are designed to handle up to several hundred thousand erase-rewrite cycles. Due to the high degree of integration and the low number of components required per information unit, a single tiny chip can combine a storage capacity of 1 Mbit with an access time of under 100 ns !

SIXTEEN BY NINE

The shape of things to come TV wise appears to be 16:9. Philips components are now producing a range of "Cineline $16: 9$ wide screen picture tubes" and $16: 9$ sets are now available. Wide screens represent a large piece of glass and well developed technology; like most forms of technology the c.r.t. is continually being improved.

The latest picture tubes from Philips have higher brightness, improved contrast and better colour, mainly due to the use of invar rather than iron for the shadowmask. This enables greater beam energies to be used producing higher brightness and allowing darker tinted glass which gives better contrast.

Shown here are three new 16:9 tubes, two of which (36 inch and 28 inch) are now available in Philips sets. The tubes are made by Philips Components at their factory in Aachen, Germany

INFORMATION TECHNOLOGY

 AND THE NATIONAL CURRICULUM T. R. de VAUX BALBIRNIETHIS is the tenth in a 12 -part series concerning Information Technology, communication systems and related matters in and around the Science National Curriculum.

This month we shall explore the use of IT devices in monitoring and controlling experiments. We shall follow with a look at the operation of modern communications devices in the transmission of large amounts of information including some economic and social implications.

COMPUTER MONITORING

Computer monitoring no longer involves the makeshift methods which were necessary only a few years ago. There is now available a wide range of devices to suit all types of experiments in science and technology. Electrical quantities such as current, voltage and charge may be monitored as well as non-electrical ones such as temperature, humidity, sound level, magnetic field strength, position, light intensity, pH and oxygen levels.
To monitor any of these, a sensor is
plugged into the host computer - often via a connecting box - and the software provided by the manufacturer loaded from disc. The computer samples the variable being measured at specific time intervals and processes it. It may then display the results in the form of tables and graphs. It can also operate a printer to give a permanent "hard" copy of the results. Data may be saved on disc and re-loaded at a future date. It may then be compared with new results.
The BBC computer is still widely used by schools for monitoring since it is well supported by software. Also, these computers are common in schools and colleges and will be for some time to come.

AT LOGGERHEADS

An extension to computer monitoring is data logging. Here, the sensor is plugged into a portable logging box which has its own memory. This may be carried anywhere - even where a mains supply is unavailable - because it is batterypowered. This could be particularly useful

The Unilab Simple Logger in use.
for biology experiments carried out in the field. The data logger may be left to gather information over an extended time period if necessary.
In the case of the Unilab "Simple Logger" (illustrated) samples may be taken at any time intervals between $200 \mu \mathrm{~S}$ and seven days. Afterwards, the logger is taken back to the laboratory and plugged into the computer. The data in the logger's memory is then unloaded and the results processed, displayed and printed as in "straight" computer monitoring.
It is best for this type of work to be addressed at various times during the course while doing topics in technology, chemistry, physics, biology, etc. It will then crop up naturally several times during the course of a year. It would not be altogether successful to have a "data logging day" unless, of course, the equipment has to be borrowed and was only available for a short time.
Computer data-gathering techniques are readily understood by students of a wide ability range. For the more able, much more work can be covered in a given time than by using traditional methods. Also, the results can be processed in various ways, some of which would involve a great deal of work otherwise. For the less able, results are obtained without the use of mathematics and this generates enthusiasm to continue where otherwise they would lose interest. Data loggers are ideal for students who find mathematics difficult since this method frees them to see the science in the experiment rather than being bogged down by the maths.

On the other hand, this can be the downfall of this method if it is not used sympathetically. Traditional skills are easily abandoned and this would be a big mistake Setting-up apparatus, using measuring instruments, gathering information, drawing tables and graphs, processing and evaluating the results are as important today as they have ever been. It is essential that new technology is used alongside traditional methods and not as a substitute for them.

MONITORING ILLUSTRATION

To illustrate computer monitoring and data logging, let us examine a typical package - the temperature module from the Philip Harris range. For simple monitoring a temperature sensor, connecting box, a BBC computer and the software supplied on disc are needed. For data logging, in addition to the computer and sensor, you need the special data logging box and a different piece of software.
For collecting data in the laboratory, the temperature sensor is first plugged into the connecting box and this, in turn, is plugged into the analogue input socket on the computer. The software is then loaded. The appropriate sensor is selected from the main menu. The temperature range to be covered is now chosen: $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C},-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ or any $10^{\circ} \mathrm{C}$ span between $10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.
It is also necessary to calibrate the sensor against a known temperature such as a beaker of water whose temperature has been measured using a mercury thermometer. The red function keys are programmed by the software to produce various results. For example, f3 saves data on disc, f4 loads data from disc, f5 re-scales the axes and so on.

COMPUTER CONTROL

The computer is a necessary part of modern control systems. Some knowledge of this is appropriate to various technology courses but could apply to some science topics too.
As with computer monitoring, there is now available a range of devices together with supporting software to control a system or experiment such as a robot arm, lathe or buggy. It could also operate a motor to stir a liquid at specified time intervals, switch on electrical appliances, control stage lighting or operate hydraulic or pneumatic systems. It could control gas valves to admit oxygen or carbon dioxide into a system during a biology experiment. The possibilities are endless.

LARGE-SCALE COMMUNICATION SYSTEMS

The invention of the electric telegraph in the early part of the 19th century revolutionised communication see Part 1 of this series (November, 1991 issue). It meant that a message could be sent hundreds of miles and a reply received within minutes. This was such a monumental advance that no one worried about its chief drawback - only one message at a time could be sent along the line. The early telephone suffered from the same disadvantage.
Today, we exchange enormous amounts of information with all parts of the world. Some of this sent by telephone (using copper wire, optical fibre or a combination of the two) - this includes private and business conversations, telex, fax (facsimile transmission) and binary

Fig. 1. The electromagnetic spectrum.
data being transferred between computers.

Some information is sent by radio using, perhaps, satellite links. This includes telephone conversations, radio and television broadcasts, use by emergency services, links with ships at sea and military communications.

All waves used for communication purposes are members of the wide family of electromagnetic waves. All members of this family have important properties in common. For example, they all travel at the same speed - 300,000 kilometres per second (186,000 miles per second in free space) - the so-called speed of light. Fig. 1 shows the entire electromagnetic spectrum and it will be noted that it covers a vast range of frequencies - that is, the number of waves per second expressed in $\mathrm{Hertz}(\mathrm{Hz})$.

The frequencies are indicated using a type of mathematical shorthand called standard form. This avoids writing a lot of zeros. Thus, $10^{3} \mathrm{~Hz}$ means 1000 Hz (that is, 1 followed by three zeros). By the same rule, $10^{14} \mathrm{~Hz}$ means 10 followed by 14 zeros! Note also that 1 kHz (kilohertz) $=1000 \mathrm{~Hz}, 1 \mathrm{MHz}($ megahertz $)=1000 \mathrm{kHz}$ and 1 GHz (gigahertz) $=1000 \mathrm{MHz}$.

At one end of the scale, very low frequency radio waves extend from 1 kHz or so and at the other end, gamma rays (emitted by radioactive materials) have frequencies of many millions of GHz . Note how the radio wave frequencies blend into infra-red which then become visible light. It is these waves which are used for communication purposes.

THE APPROPRIATE FREQUENCY

It is found that waves of different frequencies have subtle differences in their properties - this allows us to choose the best frequency for a particular job. Very low frequency (VLF) radio waves penetrate water reasonably well whereas the higher frequencies are absorbed very quickly. VLF waves are therefore used to communicate with submarines.

Fig. 2. Wavelength of a wave.
For much longer-range communication, waves of a low to medium frequency are used - so-called, short, medium and long waves. Note that the terms short, medium and long here refer to the wavelength (the size of one complete wave - see Fig. 2) rather than the frequency. We find that waves of short wavelength have a high frequency and vice-versa. Think of someone throwing pebbles. If many pebbles are thrown per second (high frequency) the space between them in flight (representing the wavelength) will be small. If fewer are thrown per second, the space between them will be larger.
Today, it is usual to refer to the frequency of a wave rather than its wavelength but this has not always been the case. For historical reasons, therefore, terms such as short (i.e. high-frequency) waves are still widely used and are often seen marked on the tuning dials of older radio receivers.

CHARGED LAYERS

Waves of a frequency less than about 30 MHz reflect from layers of charged particles (called the ionosphere) which exist some 80 to 500 km above the earth (see Fig. 3). If such waves are transmitted upwards at an angle, they tend to reflect back to earth some distance from the transmitter. They may then reflect from the earth back to the ionosphere and repeatedly "skip" several times before,

Fig. 3. Reflection of waves by ionised layers.
eventually, reaching their destination or become too weak to be intelligible.

Repeated reflection can give these radio waves a very large range when conditions are favourable. However, this is rather unreliable as it depends on the reflecting state of the ionosphere which, in turn, depends on the time of day, the 11 year sunspot cycle and other factors. Radio amateurs know how to exploit this. However, commercial systems demand reliable operation.

Long (low frequency) waves tend to spread out around the curvature of the earth so gain a large range this way. They can also pass round obstructions by diffraction making them ideal for communications in mountainous areas.

Very high frequencies (VHF) and even more so, ultra high frequencies (UHF) are close to visible light in the electromagnetic spectrum - they therefore have light-like properties. Such waves are used for regional radio and television broadcasts because they operate chiefly within line-of-sight of the transmitter. They are not picked up very well by receivers over the horizon or behind mountains. The transmitter service areas are therefore easily predicted and will not overlap with adjacent ones. The same frequencies may therefore be used for broadcasts in other areas without interference.

The highest frequency (shortest wavelength) radio waves are called microwaves. Apart from their use in cooking, they are used for radar (which includes monitoring the positions and speed of aircraft and ships, control of traffic lights, police speed detectors, etc.
Microwaves are very close to light in the electromagnetic spectrum, so in many respects, they behave like light. They reflect from certain objects very well rather than passing through them, being absorbed or going round them. This makes them ideal for the jobs just mentioned. Aerials used to transmit (and receive) microwaves are located in a dish reflector which projects them in a beam this is rather like the reflector in a torch or car headlight and serves to emphasise the light-like properties of these waves.

Depending on the frequency of the radio waves, they may reach their destination by direct line of sight, by following the curbature of the earth or by reflection from the ionosphere. Otherwise they may pass through the ionosphere and be lost in
space or they may be absorbed by an object in their path. The foregoing is a much simplified account. Anyone seriously interested in this vast topic - for example, if they wish to study for the radio amateur exam - should consult a textbook on the subject.

SEPARATION

It is found that information carried using one frequency of radio waves will remain separate from that using a different frequency. The receiver is simply "tuned" to the frequency required. This may suggest that any number of simultaneous signals may be sent by radio because there is an infinite number of frequencies available. This, however, is not the case.

Fig. 4. Sidebands generated around the spot frequency.
When carrying information there will be a spread of frequencies on each side of the nominal or "spot" frequency called sideband (see Fig. 4). It is essential to leave enough space so that there is no overlap of the sidebands of adjacent channels. Again, this is a large topic and has only been touched on here.
Infra-red waves and visible light have an important place in modern communications systems. This is because they may be passed along optical fibres and carry digital telephone and other information. They may be used in free space but only over short distances such as in a television remote control handset. Readers who have not been following this series should note that Part 8 (June, 1992 issue) gave certain information about optical communications systems.

COMMUNICATION SATELLITES

If you could throw a ball fast enough in a horizontal direction it would become a satellite - that is, it would go into orbit
around earth. This is because as it was falling to the ground, the ground would be falling away from it at the same rate due to the curvature of the earth. All the time gravity would be pulling the ball towards the centre of the earth so it would simply go round in a circular orbit. Remember "down" means towards the centre of the earth.

There would be several problems here. Firstly, the speed with which the ball would need to be thrown would be far too great for any normal apparatus to achieve (about 8 km - or 5 miles - per second). Secondly, there would be things in the way such as tall buildings, mountains, etc. Also, friction with the air would burn it up in a very short time.

A gun can fire a shell over the horizon but it eventually strikes the ground. Isaac Newton suggested that if a sufficiently powerful cannon could be built, it could be used to launch a satellite (see Fig. 5). In practice, a rocket is used. The orbit is made

Fig. 5. Newton suggested that a powerful cannon could launch a satellite.
very high to leave most of the air behind and avoid the problems with atmospheric friction mentioned earlier. It should be said that the earth's atmosphere, although much reduced, still exists even at these great heights and all satellites gradually spiral towards the earth and burn up as they enter the denser atmosphere. The first artificial satellite was the Soviet 83 kg Sputnik 1 launched on 4th October, 1957. This is believed to have stayed in orbit for almost 10 years.

ACTIVE SATELLITE SYSTEMS

It had been known for many years that satellites would be useful for communication purposes - long before the technical means of launching them was estab-

Artists impression of Intelsat 7 communications satellite.

lished. By using a satellite, microwaves can be sent up from a ground station whereupon the satellite can send them back to another ground station in some distant part of the world. Microwaves have a frequency too high to be reflected by the ionosphere so they pass through to the satellite.

The earliest satellites were passive they simply reflected the waves down to earth again and much of the energy spread out and was lost before it reached the ground station. This made communications rather unreliable. Modern satellites are active - that is, they receive the waves from the earth station, amplify the signal and re-transmit the information using a different frequency. Obviously, for this they need a power supply to operate the on-board electronic circuits which receive, process and re-transmit the signal. Moreover, these circuits need to work reliably for many years. The usual power supply consists of silicon solar cells which provide enough energy to operate the equipment and charge batteries while the satellite is in sunlight. Power is then drawn from the batteries when the satellite is on the dark side of the earth.

At the working height of the satellite, the sun's rays are very powerful since they have not been reduced by the earth's atmosphere. A relatively small number of solar cells is therefore sufficient. Early satellites used analogue techniques but today they work digitally - some relevant information was given in Part 8 of this series (June, 1992 issue). A digital signal perhaps derived from the voice or music can undergo more than one trip to a satellite - perhaps combined with transmission along copper wires and optical fibres - and hence reach any part of the world without loss of quality.

CATCHING THE WORM

The first satellites were placed in a low orbit where their period of rotation was
about 90 minutes. This meant that the aerial on the earth station had to "track" the satellite as it rose and set in the sky. This had to be done with great precision and was not always successful. The maximum continuous communication time was therefore 45 minutes followed by a delay of 45 minutes until the satellite appeared once again. In practice the communication channel was opened for a shorter time than this.

At such a low orbit, satellites soon spiralled back to the earth due to the considerable friction with the air. Today, satellites can be put into geostationary (synchronous) orbit.
Launching a synchronous satellite involves placing it at a height of $36,000 \mathrm{~km}$ above the earth's surface and giving it sufficient horizontal velocity. At this height, the satellite orbits the earth in 24 hours - the same time as it takes the earth to spin once on its axis. Thus, to an observer on the Earth, the satellite appears stationary. This technique has two advantages. Firstly, it means that the base station can point its aerial in a fixed direction (in fact, the satellite drifts in position to some extent but this is less of a problem). Secondly, communication can be guaranteed 24 hours a day.
The first commercial geostationary communications satellite was Early Bird launched on 6th April, 1965. Today, everyone is familiar with satellite dishes on private houses which enable commercial TV broadcasts to be received. It is even possible to set up temporary base stations so that television and radio reporters can send back news items via a satellite link instantly.
It is necessary to use waves having a frequency of more than 30 MHz for satellite communications since, otherwise, they would not penetrate the ionosphere and would be reflected back to earth instead. In practice, much higher frequencies - greater than 1 GHz are used.

Communication satellites generally use microwave frequencies above 4 GHz . Waves over about 100 GHz are absorbed by the atmosphere and are therefore unsuitable.

MAXIMUM USE

The cost of launching a satellite is considerable. It is necessary, therefore, that those who have provided the money get value from their investment. If a satellite could only send one piece of information at a time the cost of using it would need to be very high. However, if many pieces of information can be sent simultaneously, each may be carried cheaply. The system may then be of benefit to more people and still be commercially viable.

Imagine we wish to send telephone messages by satellite. The digital data from the national telephone network would arrive at the ground station. In one form of operation, a fixed-frequency carrier wave is used to send signals to the satellite using a parabolic dish reflector. The carrier wave is switched on (to represent a 1) and off (for a 0), according to the data being transmitted,

Instead of a continuous stream of information, the system pauses then sends a lot of data in a 2 ms burst (1 millisecond $=1 / 1000$ second). The next burst would be from another conversation and the next from yet another one and so on. Eventually it is time for a burst from the first one again. To guard against the bursts possibly overlapping there is a space of $1 \mu \mathrm{~S}$ (one millionth of a second) between them. In this way, several conversations may be interleaved with one another. This technique is called Time Division Multiple Access (TDMA).

TDMA can be combined with another technique called CME (channel multiplication). This relies on the fact that most of a given telephone conversation is actually silence. Not only is there silence while the reply is received, but there are natural gaps between words, hesitations, etc. These gaps can be made use of by filling them with data from other calls. A computer constantly checks the most efficient way of filling the spaces. It all happens so rapidly that no user is aware that he or she is sharing the equipment with other people.

It is relatively difficult keeping track of which piece of information is which and re-assemble it in the correct order but where time is money, it is certainly worthwhile. Once the information has been re-assembled, each user will think that he or she has sole use of the equipment - rather like the flat in a time-share holiday.

DELAY

One problem with sending information to and from a geostationary satellite is propagation delay. With the satellite at a height of some $36,000 \mathrm{~km}$, the waves will need to travel more than twice this distance to make a complete round trip. Since radio waves travel at the speed of light - i.e. 300 million metres $(300,000 \mathrm{~km})$ per second - the round trip
by satellite will take 0.25 seconds approximately. This may not sound much but where more than one satellite is involved the signal may take anywhere up to one second to reach its destination. Any reply will then take the same time to be received. This could involve two seconds between questions and answers. This is noticeable in conversations but is a nuisance rather than a great disadvantage.

Satellites are now used for many purposes such as for surveillance and scientific research. These gather information using on-board cameras, digitize it and relay it to an earth station where the data is processed. Surveillance "spy in the sky" satellites photograph the ground in considerable detail. Where weather conditions obstruct the view, infra-red cameras may be used to penetrate the haze. It would be possible to note any military build-up which could signal that a country was preparing for war.
Satellites have other uses too. They can survey the ground and provide information for crop growing, mining, archaeology and other activities. Military communication in the field can be carried out using back-pack satellite equipment. Weather satellites collect data and allow for much more accurate weather forecasting than was possible only a few years ago.
Satellite-based scientific equipment can gather data from distant parts of the universe and help scientists piece together some of its mysteries. Navigation satellites emit radio signals which can be received by ships and aircraft to enable them to pinpoint their position very accurately. Even on the ground, navigation satellites can be used to find the exact position to begin construction work. Moreover, this is now done with relatively small and inexpensive equipment.

SOCIAL AND ECONOMIC CONSIDERATIONS

We discussed in Part 8 of this series (June, 1992) the common features of an information transmission system. Whatever channel of communication is used, a modern system is so sophisticated
that the user is unaware of the means by which the information is carried. For example, we would be unaware if optical fibres were used or whether satellites were involved.
Speedy and efficient communication seems to make the world a smaller place. It has certainly spread understanding and tolerance between nations. It has made us more aware of the plight of others in distant countries - we see the effects of famine, war and disease on our TV screens almost as it happens. We see injustice and put pressure where required to do something about it. On a smaller scale, distant families can keep in touch relatively cheaply. With international trunk dialling, we can reach anyone with a telephone almost anywhere in the world - instantly.
Modern communications are changing our patterns of work. For example, people now find it much easier to work from home. Using a computer and telephone line with which to send information back and forth to the main computer, a printer, word-processing package, desk-top publishing, spreadsheet and, perhaps, com-puter-aided design (CAD) software and a fax machine it is quite easy to make a corner of a room in the house into a fully-operational office. All this equipment is now relatively inexpensive.

MOBILE BUSINESS

It is not unknown for people to run businesses from a car or van using a portable cellular telephone. One person can attend to all the duties which were once carried out by a whole team - typist, filing clerk, office junior etc. This, of course, could increase unemployment. On the other hand these activities should - in theory at least - reduce the number of cars travelling to and from the traditional place of employment in the city so reducing pollution, conserving energy, wasting less time travelling and reducing traffic congestion.
It allows freedom for a person to choose where to live rather than being under the constraint of the company for which he or she works. It is even possible to work from a foreign country and,
perhaps, enjoy the better climate there. It could also mean that people in the future will need leisure training to help in using the extra hours of freedom which our grandparents did not enjoy.

DIGITAL MONEY

Efficient communication of digital data means that money can be transferred almost instantly to most parts of the world. This has revolutionized banking. On a small scale, bank and building society cash dispensers are now commonplace in every town. We can even do our banking from home. By using a secret number (PIN) we can access our bank account over the telephone and check our balance, pay bills and transfer funds to other accounts instantly.

Building societies have been particularly quick to see the benefits which this new technology brings. One implication is that it is becoming less common for large sums of cash to be carried around. People are often paid electronically by transferring funds direct to their bank account. On the other hand computer crime is on the increase. Those with sufficient knowledge and skill, including that needed to extract secret codewords, can access accounts and withdraw funds fraudulently. The proliferation of plastic credit cards has also brought its own form of crime.

Efficient communications has made our lives less private. Without careful control and data protection laws we could have all manner of personal information banded about from one computer database to another. Even so, certain information may be legally passed on to third parties who can, in turn, send junk mail or inconvenience us with telephone calls about their products or services.

Using a personal computer, a modem and a telephone line, a hacker can break into computers and extract sensitive or personal information, change data or use it for illegal purposes. Note that such hacking is illegal and those found guilty face heavy penalties.

That's all for this month. Next time we will be chiefly concerned with problem solving and the effect of feedback in a control system.

A modern compúter the RM Nimbus PC-186 as used in many schools.

BARGAINS $=10$ New Ones This Month

SUPER MULTIMETER Ex British Telecom, this is a 19 -range 20k o.p.v. 10 p grade instrument, covers AC \& DC voltages, current and resistance, very good condition, fully working and complete with leads $£ 9.50$, leather car rying case $£ 2$ extra (batteries not included but readily available).
MULTI-CORE CABLES all with 8A 23OV cores so suitable for disco and other special lighting effects. With earthable woven screen and thick pvc outer. 3 core, 30p per metre, 16 core, 50p per metre, 18 core, 80p per metre, 25 core, $£ 1$ metre and 36 core, $£ 1.50$ per metre.
VARIAC an Infinitely variable unit gives any voltage from 0-230 a.c. a $1 / 2 \mathrm{~A}$. Obviously an invaluable plece of equipment which should be in every workshop and probably would be except that the usual price for

MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 watt into 4 ohm speaker using 12 V or 1 watt into 8 ohm using 9 V . Brand new and perfect, only \&1 each, Order Ref. 495
5RPM MAINS DRIVEN This is a shaded pole motor, £5, Order Ref. 5P54.
POWER SUPPLY UNIT malns in, dc out, cased 4.5 V 100 mA , $£ 1$, Order Ref $104,6 \mathrm{~V} 200 \mathrm{~mA} £ 1$, Order Ref. $103,6 \mathrm{~V} 700 \mathrm{~mA}$, $£ 1$, Order Ref. 103A, 9 V 500 mA , £2, Order Ref. 2P134, $24 \mathrm{~V} 200 \mathrm{~mA}, £ 2$, Order Ref. 2P4, 12V 2A, £6, Order Ref. 6P23.
AMSTRAD POWER UNIT 13.5V at 1.9A encased and with leads and output plug, normal mains input £6, Order Ref. 6P23.
AMSTRAD 3.5 FLOPPY DRIVE brand new and cased, 835, Order Ret.
this is $£ 35$ plus VAT. Now is your including VAT, Order Ref. 15P42B
ULTRA THIN DRILLS Actually 0.3 mm . To buy these regular costs a fortune. However, these are packed in half
and the price to you is $£ 1$ per pack, Order Ref. 7978 .
and the price to you is $£ 1$ per pack, Order Ref. 797 B ,
YOU CAN STAND ON IT? Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx. $10^{1} \mathbf{2}^{\prime \prime}$ " $41 / 2^{\prime \prime} \times 6^{\prime \prime}$ high. These are complete with snap closure lip and shoulder-length carrying strap. Taken from used equipment but in good condition, price £2. Order Ref. 2P283B BUILD YOUR OWN NIGHT LIGHT, battery charger or any other gadge that you want to enclose in a plastic case and be able to plug into a 13A socket. We have two cases, one $312^{\prime \prime \prime} \times 21_{1 " \prime}^{\prime \prime} \times 13^{\prime \prime}$ deep, E 1 each, Order Ref. 845 . The other one is $21^{\prime \prime} 2^{\prime \prime} \times 21 /^{\prime \prime} \times 14^{\prime \prime}$ deep, 2 for $£ 1$. Order Ref. 565 . SAFETY LEADS curly coll so they contract but don't hang down. Could easily save a child from being scalded. 2 core, 5 A , extends to $3 \mathrm{~m}, ~\{1$ Order Ref. 846,3 core, 13A, extends to 1 m , $£ 1$ each. Order Ref. 847, core, 13A, extends to $3 \mathrm{~m}, ~ £ 2$ each, Order Ref. $2 P 290$.
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regulated. Intended for high class equipment, this is mounted on a PCB and, also mounted on the board but easily removed, are 212 V relays and a Piezo sounder. £3, Order Ref. 3P80B 5V 2.5A POWER SUPPLY UNIT £5, Order Ref. 5P 186.
ULTRA SONIC TRANSDUCERS 2 metal cased units, one transmits, one receives. Built to operate around 40 kHz . Price $\mathbf{£ 1 . 5 0}$ the pair, Order Ref. 1.5P/4.

100W MAINS TRANSFORMERS normal primaries $20-0-20$ at 2.5 A . or 30 V at $3.5 \mathrm{~A}, £ 4$, Order Ref. 4 P 24.40 V at 2.5 A , £4, Order Ret 4 P 59 . 50 V at 2 A . $£ 4$, Order Ref. 4 P 60 .
PHILIPS $9^{\prime \prime}$ HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still in maker's packing, offered at less than price of tube alone, only $£ 15$ Order Ref. 15P1
16 CHARACTER 2-LINE DISPLAY screen sIze $85 \mathrm{~mm} \times$ 36 mm , Alpha-numeric LCD dot matrix module with integral micro processor made by Epson, their Ref. 16027AR, $\varepsilon 8$, Order Ref. 8P48
INSULATION TESTER WITH MULTIMETER internally gen erates voltages which enable you to read insulation

THIS MONTH'S SNIP

 A $£ 60$ UNIT FOR LESS THAN £10-switch mode power supply with outputs +12 V at $4 \mathrm{~A} .+5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 A$. Enclosed in plated steel case, brand new, offered at a special price of $£ 9.50$ untll July 31st, Order Ref. 9.5P1. 35 P4
LIMITED SUPPLY ITEMS

 are only described in our newsletter. Over 50 appear in our current issue. If you order something this month you will receive this and the next three issues posted to you free of charge.35P4.
ATARI 65XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only £19.50, Order Ref. 19.5P/5B.
BOW MAINS TRANSFORMER two available, good quality, both with normal primaries and upright mounting, one is 20 V 4 A , Order Ref. 3P106 the other 40 V 2A, Order Ref. 3P107, only £3 each.
PROJECT BOX size approx $8^{\prime \prime} \times 4^{\circ} \times 41^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled. so best quality, only $£ 3$ each, Order Ref. 3P74
12 V SOLENOID has good $1 / 2^{\prime \prime}$ pull or could push if modified, size approx $11 /{ }^{\prime \prime}$ long $\times 1^{\prime \prime}$ square, $£ 1$, Order Ref. 232.
WATER VALVE 230 V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc., £1 each, Order Ref. 370. 10W ISOLATION TRANSFORMER if you want to isolate some small plece of equipment from earth this may be what you are looking for. You can use it either with a tapped input or a tapped output. It's upright mounting and well insulated. Price £1, Order Ref. 821.
BT POWER SUPPLY UNIT output 9.5 V AC at 600 mA , in black plastic case with 13A plugs to go straight into socket and approximately 3 metres of twin output lead. Price $£ 1.50$, Order Ref. 1.5P7.
BUILDING YOUR OWN PSU, battery charger, night light, or any other gadget that you want to enclose in a plastic case and be able to piug into a 13A socket? We have two cases, one $3 \mathrm{~h} \times 2^{1 / 4} \times 13 \mathrm{~s} \mathrm{~m}^{\prime \prime}$ deep, $£ 1$ each, Order Ret. 845. The other one is $2 \frac{1}{2} \times 22_{4} \times 11_{4}$ " deep, 2 for $£ 1$, Order Rel. 565 . 500 V BRIDGE MEGGER developed for GPO technicians the Onmeter 18B is the modern equivalent of the bridge megger. 9 V battery operated, it incorporates a 500 V generator for insulation testing and a null balance bridge for very accurate resistance measurement. Ex B.T. in quite good condition with data \& tested. Yours for a fraction of original cost, $£ 45$, Order Ref. 45P2.
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3A. £5, Order Rel. 5P167.
15W 8 OHM $8^{\prime \prime}$ SPEAKER \& $3^{\prime \prime}$ ' TWEETER made for a disdirectly in megohms. The multimeter has four ranges. AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$, with leads, carrying case £2 extra, Order Ref. 7.5P/4.
BRUSHLESS DC 12V FAN tiny, only 60 mm square, good air mover but BRUSHLESS DC 12 V FAN tiny, only 60 mm
MAINS 230 V FAN best make "PAPST" $41 / 2$ " square, metal blades, $£ 8$, Order Ref. 8P8.
2MW LASER Helium neon by Philips, full spec. £30, Order Ref. 30P1. Power supply for this in kit form with case is $£ 15$, Order Ref. 15P16, or in larger case to house tube as well £18, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order Ref. 69P 1.
$1 / 3$ HP 12 V MOTOR - THE FAMOUS SINCLAIR C5 brand new, £15, Order Ref. 15P8.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very neat plastic case, $£ 6$, Order Ref. 6 P3 .
FERRITE AERIAL ROD $8^{\prime \prime}$ Long $\times \mathrm{m}^{\prime}{ }^{\prime \prime}$ "diameter, made by Mullard. Complete with 2 coil formers. 2 for §1, Order Ref. 832 B.
plete with 2 coil formers. 2 for $£ 1$, Order Ref. 8328.
AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circults, 4 for $£ 1$, Order Ref. 818 B.
FIELD TELEPHONES just right for building sites, rallies, horse shows, etc., just join two by twin wire and you have two way calling and talking and you can join into regular phone lines if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete with shoulder slung carrying case, $£ 9.50$, Order Ref. 9.5P/2.
MAINS ISOLATION TRANSFORMER stops you getting "to earth" shocks. 230 V in and 230 V out. 150watt upright mounting, $£ 7.50$, Order Ref. $7.5 \mathrm{P} / 5$ and a 250 W version is §10, Order Ref. 10 P79.

DIGITAL FREOUENCY METER. This is a hand-held instrument
with an LCD display allowing 8 digits of frequency to be read, has internal nicad batteries, and a power supply which will recharge the batteries. Ideal for field and service work as well as general and industrial applications. Has high and low BNC inputs and a plug-in antenna which enables remote tests. It covers a very wide range of frequencies: switch position ' A ' covers 10 Hz to 20 MHz and switch position 'B' covers 20 MHz to 1200 MHz . Price $£ 99$, but it compares very favourably with instruments selling at over $£ 500$ by our competitors. Order Ref. 99P2.
continued high quality music centre, gives real hi-fi, and only £4 per pair. Order Ref. 4P57.
FREE POWER! Can be yours if you use our solar cells - sturdily made modules with new system bubble magnifiers to concentrate the light and so eliminate the need for actual sunshine - they work just as well in bright light. Voltage output is . 45 - you join in series to get desired volt-age-and in parallel for more amps.
Module A gives 100 mA Price $£ 1$ Order Ref. BD631 $\begin{array}{lll}\text { Module A gives } 100 \mathrm{~mA} & \text { Price } £ 1 & \text { Order Ref. BD631 } \\ \text { Module } \mathbf{B} \text { gives } 400 \mathrm{~mA} & \text { Price } £ 2 & \text { Order Ref. 2P199 }\end{array}$ Module B gives 400 mA Price $£ 2 \quad$ Order Ref. 2 P199 $\begin{array}{lll}\text { Module D gives } 700 \mathrm{~mA} & \text { Price } £ 3 & \text { Order Ref. } 3 \text { P42 } \\ \text { Module E gives 1A } & \text { Price } £ 3.50 & \text { Order Ref. } 3.5 \mathrm{~S} 4\end{array}$ 3V SOLAR PANEL price £3, Order Ref. 3P998
3 GANG .0005 MFD TUNING CONDENSER with siow motion drive. Beautifully made by Jackson Brothers and current list price is probably around £20. Yours for £5, Order Ref. 5P 189.
STEREO HEADPHONES extra lightwelght with plug, $\mathbf{2}$ each, Order Ref. 2 P261.
bT TELEPHONE LEAD 3 m long and with B.T. flat plug ideal to make extension for phone, fax, etc. 2 for $£ 1$, Order Ref. 552.
WATER PUMP very powerful with twin outlets, an ideal shower controller, malns operated, $£ 10$, Order Ref. 10P74.
STUDIO 100 by Amstrad, the ultimate disco control panel, has four separately controlled and metered channels, twin cassettes, AM/FM separately controiled and metered chan inputs, etc., etc., regular price radio, stereo audio amplifier, phono \& CD inputs, etc., etc., regular price

JUST ARRIVED

3 core 15A flex. Price is 10 m for $£ 2.50$, Order Ref. 2.5P/3. You can have this in longer lengths, multiples of 10 m up to 100m. Also available: 3 Core 20A flex, 10 m for $£ 3$, Order Ref. 3P109 and 2 core 20A flex, 15m for $£ 3$,
order Ref. 3 P110.
over $£ 400$, we have a few still in maker's packing, brand
new and guaranteed, yours for $£ 99$, Order Ref. 99p 1. new and guaranteed, yours for 899 , Order Rer.
0-1MA FULL VISION PANEL METER $2 \xi_{4}$." Square, scaled 0-1MA FULL VISION PANEL METER $2 k_{2}$ square, scaled
$0-100$ but scale easily removed for re-writling, $£ 1$ each, $0-100$ but scal
Order Ref. 756 .
vU METER Illuminate this from behind becomes on/off indicator as well, $11 /{ }^{\prime \prime}$ square, 75p each. Order Rel. 366.
EDGE-WISE PANEL METER ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in led, $500 \mu \mathrm{~A}$ f.sdd, scaled 0-5, $£ 1$ each, Order Ref. 131.
PCB DRILLS 12 assorted sizes between .75 and 1.5 mm , $£ 1$ the lot, Order Ref. 128.

Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing Orders over f25 post free.

SUBWOOFER

PAUL HENDERSON

Anadd-on for your hifisetup which should provide a dramatic improvement in bass.

T'S A SAD fact that 90 per cent of existing speaker systems are incapable of delivering good solid bass. A recent look through a hi fi magazine's "Loudspeaker Reviews" showed only two models out of fifty tested had a -3 db point below 60 Hz . This state of affairs would not be tolerated in any other piece of audio equipment where a bare minimum response is required down to 20 Hz , -3 db .
Some audiophiles would point out that some organ music contains full power output at 16 Hz . This is not all, in addition there are mysterious bass transients, even speech contains explosive sounds which are actually at sub audio frequencies.

SACRED COW

The reasons for the shortcoming in the bass region are not hard to find. Speaker systems àre designed as basically mechanical devices which follow well known physical laws. The available materials dictate that domestically acceptable speakers must either be large or be subject to some form of equalisation to operate at low frequencies.
Unfortunately, the audio industry is
fragmented. There are loudspeaker manufacturers and amplifier manufacturers. The latter have to design their equipment for a flat frequency response. The former are confined by this fact. It is quite possible to build a speaker system with an extended low frequency response but this requires that the hi fi's most sacred cow, flat frequency response from amplifiers has to be sacrificed.

While the audio punters are satisfied with the existing state of affairs nothing is likely to change. However, the recent introduction of CD with it's vastly better low frequency response than either tape of disc is beginning to force a change. In the meantime what can be done to improve matters?

One solution is to use a separate speaker system to deliver the extra bass. Such a system can be designed without regard to mid-range reproduction and can thus be optimised for it's task. This doesn't need to cost an arm and a leg either, all that is required is good design. Before getting deeply embroiled in the nuts and bolts of this project it will be as well to consider some of the basic theory behind it.

VE/GHTY PROELEM

An often used and quite apt analogy to a loudspeaker is a weight suspended on a spring. If the weight is pulled downward it will oscillate at some low frequency dependent upon the stiffness of the spring and the size of the weight. In a loudspeaker the weight is the mass of the cone and the spring is the speaker surround. Both systems operate like a mechanical tuned circuit.
In free air the resonant frequency of a loudspeaker is often quite low. Some units even manage a free air resonance at 20 Hz or thereabouts. Unfortunately it is not possible to operate a loudspeaker without a cabinet, at least if you want to hear any bass at all.
This is because of the nature of sound itself. Sound is a pressure wave that travels through air at a velocity of about $343 \mathrm{~m} / \mathrm{sec}$. The easiest way to visualise this is to use another analogy.
If you tie a rope to a door handle and jerk it rapidly while holding it loosely you will see a wave travel along the rope. Note that the rope doesn't move itself very far but the wave can travel along at a fair rate.
If you take a loudspeaker and feed a bass signal into it you will not hear much. As the cone moves to and fro a bass sound wave is generated both from the front and the rear of the cone. As the dimensions of

Table 1:
Fig. 1. The system response curves.

EET7720
Bass Response of Enclosure, before top cut applied

Frequency $\mathbf{H z}$	Response $\boldsymbol{d} \boldsymbol{b}$	Max Spl $\boldsymbol{d b}$	Max Power watts(W)
20	-14.49	87.65	3
30	-1.71	100.43	15.6
40	-2.04	102.14	30
50	-1.51	102.14	30
60	-0.93	102.14	30
70	-0.52	102.14	30
80	-0.27	102.14	30
90	-0.12	102.14	30
100	-0.04	102.14	30
110	0.01	102.14	30
120	0.03	102.14	30
130	0.06	102.14	30
140	0.06	102.14	30
150	0.06	102.14	30
160	0.06	102.14	30
170	0.06	102.14	30
180	0.06	102.14	30
190	0.06	102.14	30
200	0.05	102.14	30

Computer predicted response for optimum system.
the speaker are small compared to the wavelength of the sound generated the front radiation cancels that from the rear. The result, no bass!

The solution is to mount the loudspeaker in a cabinet. If this is totally enclosed the back radiation is effectively contained. However, a price has to be paid for this.

Going back to our weight on a spring analogy the enclosed air effectively stiffens the spring raising the resonant frequency. This is important because the response of a speaker below the resonant frequency rolls off rapidly. Either one must enlarge the enclosure to unreasonable dimensions or find another way of obtaining bass.

GOOD REFLEXES

The Reflex Enclosure is one very useful solution. A duct is fitted into the cabinet and acts as a tuned acoustic circuit. Here the mass is the mass of air in the enclosure and the spring is the compliance of the alr in the enclosure.

One advantage of this is that the rear cone radiation is used to excite the resonance and is thus not wasted. Properly done the response of such an enclosure extends downwards into the deep bass range.

Until recently the correct design of such cabinets was a matter of hit and miss. However, since the work of Theille and Small on speaker system behaviour it is now possible to design speaker enclosures with a computer program from the comfort of one's chair.
This Sub-Woofer project described here has been designed with the help of one of these programs. The computer predicted bass response, before "top cut" being applied, is given in Table 1 and the system response curves shown in Fig. I. In practise a suitable design was evolved, built measured and then optimised.
The so called "sixth" order speaker system has been adopted, which uses electronic equalisation in conjunction with a "Reflex Enclosure" to obtain a low cut-off frequency. The design is -3 db down at 30 Hz , a full octave lower than most existing speaker enclosure systems. At the top end the response is rolled off with an internal filter to suit the speakers in use.

In a conventional 'speaker system a single driver (loudspeaker) is employed to cover the bass range. Here two identical 200 mm diameter speakers are used back-to-back in a push-pull arrangement. Using this technique the necessary cabinet size is halved while even harmonic distortion from the drivers is cancelled.

CIRCUIT DESCRIPTION

Regular readers will no doubt have noticed that I have a liking for the TLO series of j.f.e.t. input op. amp i.c.s. I make no apologies for this.
It is hard to find any devices with the same mix of good audio properties. High input impedance, low distortion, high slew rate, and which are still relatively cheap.
The "equalising" circuit for the SubWoofer is designed around two of these i.c.s (TLO72's) and is shown in Fig. 2. Input signals are taken from the right and left speaker outputs of your stereoamplifier, or alternatively directly from the speaker terminals. As the signals from these points in the circuit are of very low impedance this ensures no deleterious effects on the stereo image.
The audio input signals are passively mixed by feeding them through resistor R1 and R2 to the volume control VRI. At frequencies below 100 Hz there is no separation in phase between channels.
Some audio "experts" have argued that phase must be maintained to ultra low frequencies. However, I have yet to come across either a record or $C D$ which shows any difference either in level or phase below 100 Hz . Even if such information were presented to the ear it is doubtful whether we would be able to locate relative direction within a stereo sound field due to the long wavelengths involved.

SELECTIVE FEEDEACK

The mixed signal from the slider of VR1, the Volume Control, is fed into the bass boost filter ICla, one half of a TLO72 op.amp. As mentioned earlier the system requires bass boosting to operate correctly and this is provided by a second

COMPONENTS

Resistors

R1, R2	470 (2 off)	
R3	12k	
R4	560	
R5	330k	See
R6, R7.	15k (3 off)	SHOP
R9, R13.		
R14	1k (3 off)	Page
R10	36k	Page
R11	100	
R12	4k7	

Potentiometers

VR1 47 rotary carbon
VR2 22 k dual-gang rotary carbon

Capacitors

C1, C2,
C3, C4 100 n polyester, 100 V (4 off) C5, C8,
C9 100μ radial elect., 25 V (3 off)
C6, C7 4700 radial elect., 25 V (2 off)

Semiconductors

D1, D2 1N40071A 1000V rec. diode (2 off)
TR1 2N1711 npn medium power transistor
TR2, TR4 2N3442 npn 10A power transistor (2 off)
TR3 2N2905 pnp high speed
IC1, IC2 TLO 72 dual low-noise op.amp (2 off) REC1 W005 1.5A 50V bridge rectifier

Miscellaneous

LS1, LS2 Matched pair loudspeakers $200 \mathrm{~mm} 8 \Omega$ (see Shoptalk)
T1 Mains transformer, 48VA $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ secondary winding
Stripboard, $0 \cdot 1$ in. matrix size 16 strips x 34 holes; cabinet, see "cutting list"; 4 mm input socket (3 off); TO3 transistor mounting kit (2 off); plastic tube vent, 51 mm internal diameter and 232 mm long (drainpipe); heatsink 25 cm length of 2.5 cm " ${ }^{\text {" }}$ " section aluminium; control knob (2 off); recess component mounting dish; chipboard screws; 6BA screws and nuts; speaker lead; connecting wire; solder etc.

Approx cost guidance only

order filter. What this means is that unlike a simple $R C$ filter which provides an ultimate attenuation of $6 \mathrm{db} /$ octave we require $12 \mathrm{db} / o c t a v e$. This is accomplished by using an op. amp circuit with frequency selective feedback.

Resistors R3, R4, R5, R6 and capacitors C1, C2 are used to produce a standard Sallen and Key second order filter with the correct characteristics. R3 and R4 provide positive feedback to the junction of capacitors Cl and C 2 simulating an inductance which is tuned by C2 and damped by R5 plus R6. By varying the ratio of these passive components a whole range of filters can be produced. Unfortunately design details are beyond the scope of this present article.

From the output of this filter, pin 1, the signal is fed, via resistor R7, into a second Sallen and Key filter. This is built around IClb , the other half of the op.amp.
To maximise the circuit usage, we need to "roll-off' the top response to suit the particular speaker system we are using. Filter IClb sets the upper bass roll-off to suit the characteristics of the existing speaker system. As such the cut-off frequency has to be variable and this is achieved by the dual control VR2. With the component values shown the filter operates between $50 \mathrm{~Hz}-100 \mathrm{~Hz}$.

The output from the woofer system will now resemble a bandpass filter response accurately tailored to suit the existing speaker system. Finally to finish the description of the filter stage. resistors/capacitors R13/C8 and R14/C9 decouple the supply lines to provide power for ICl.

INTERNAL
 AMPLIFIER

The internal amplifier is quite conventional. Based on the "brains/brawn" configuration, the op.amp supplies the brains whilst the brawn is taken care of by a pair of 2 N 3442 power output transistors. IC2 is the other op.amp which provides all the required open loop voltage gain. It drives the output stage comprising transistors TR1, TR2 and TR3, TR4.
To prevent crossover distortion from rearing it's ugly head a small bias must be provided between the bases of TR1 and TR3. Crossover distortion is produced by the fact that in a conventional power amplifier, such as this, the output stage is operated with very little quiescent current.

Positive going signals are handled by TR1/TR2 and negative going signals by

TR3/TR4. If the current is reduced sufficiently lots of distortion can be generated as one pair of transistors switches off and the other switches on. This problem can be easily avoided by applying a little current through the output stage under no signal conditions.
The required small bias voltage is produced by the voltage drop across diodes D1/D2 and resistor R11. The circuit is completed to the -V line by resistor R12.
Transistors TR1 and TR2 are configured as a Darlington pair. Connected in this fashion the two devices act as a "single" high gain npn transistor.
Transistors TR3 and TR4 are used in a complementary feedback configuration. Again, connected in this way they appear as a single high gain pnp transistor.
Overall negative feedback is applied via resistors R10 and R9. Closed loop gain being determined by the ratio between these two resistors. Capacitor C5 is included in the loop to reduce the gain at d.c. to unity, thus allowing direct connection of the speakers to the output stage.

POWEA SUPRLY

Turning now to the power supply stage of the circuit diagram Fig. 2. This is very conventional. Mains voltage is stepped down by the mains transformer, T1
The resulting a.c. voltage is full-wave rectified by the bridge rectifier, REC 1 . The raw d.c. is then smoothed by capacitors C6 and C7. Lastly, the 0 V line is provided by the transformer centre tap.

BUILDING THE ENCLOSURE

Construction can be broken into two parts, the 'speaker enclosure and the electronics. Probably it's better to build the cabinet first.
The first essential in building successful speaker cabinets is to go to a reliable wood merchant to get the panels accurately cut. However, a few notes on this aspect of the design wouldn't go amiss. Firstly the volume of the box is $0.8 \mathrm{cu} . \mathrm{ft}$. As long as this volume is adhered to the box can have any appropriate dimensions.
The details and dimensions of our prototype design is shown in Fig. 3 and the project can be built to these instructions. As you can see from the Cutting List, a piece of 15 mm thick shelving board is used. This is entirely adequate for this application and has the advantage that it can be purchased in a variety of finishes.
The cabinet is glued and screwed to-
gether. Use $38 \mathrm{~mm}(11 / 2 \mathrm{in}$.) No. 8 countersunk chipboard screws for this job. Leave the front panel separate and fix the sides and rear panels together initially.
Having half assembled the cabinet it's as well to seal along the joins with Polyfiller or similar. Mix up some filler into a fairly stiff paste and work it in with your finger along the panel seams. Any excess can be wiped away with a damp cloth.

Once completed the front bafle can be marked out and cut as shown in Fig. 3. Also cut out the apertures for the vent and recess speaker terminal socket dish. Make a small hole near the speaker aperture to take the speaker interwiring.

SPEAKEF UNITS

In a project such as this it is necessary to ensure that the 'speaker units acquired for use will be suitable. For this reason, arrangements have been made with the designer to supply matched speaker units of the correct specification - see Shoptalk. If you have the facilities to test speakers yourself you can select a suitable pair. However, you may need to purchase several to get a good match.

The loudspeakers used in this project are 200 mm diameter pulp coned types, with a roll surround. They have been selected because of their large linear cone excursion and specific characteristics.
Technically there are three parameters of importance. They are: the free air resonant frequency, $Q_{\text {ts }}$ and $V_{\text {as }}$. Where $Q_{\text {Is }}$ is the " Q " of the fundamental resonance whilst $V_{\text {as }}$ is the volume of air whose compliance, the opposite of stiffness, is equal to that of the speaker surround.

To design a speaker system correctly it's imperative that these parameters are matched between the two loudspeakers used in the enclosure and that of the design values specified. One of the attractions of the speaker unit used is that these parameters are within a few percent of the nominal values. Nevertheless matching speakers together in pairs ensures that the design functions as intended.
A complicating factor is that the speaker parameters, measured straight out of the box are misleading. After a period of use the resonant frequency lowers as the cone suspension loosens.
Fortunately, the solution to this problem is quite simple. The speakers are taken from the box and put onto a rig which feeds large signals at low frequencies into them. After a few hours the suspension compliance reaches it's final value. The measured parameters are then stable for the life of the loudspeaker.
The nominal resonant frequency is 45 Hz . Matched pairs can be produced by using speakers whose resonant frequencies are equally spaced above and below this nominal value. For example a 46 Hz unit matched with a 44 Hz until will produce a system with the optimum response.

LOUDSPEAKER MOUNTING

Now the speakers can be mounted using four, 2BA 50 mm long screws and nuts. Note that the 'speakers are mounted face to face. Before mounting smooth the edges of the 'speaker mounting aperture with a file. The "drivers" (loudspeakers) must be tightened up on their mounting gaskets to ensure an airtight fit.

Wiring up the 'speakers comes next. Note that the external driver is connected in reverse phase to the internal driver or else there is no bass output from the combination. The use of twin figure-8 speaker flex or alternatively SA mains cable is all that is required here. Leave about a $610 \mathrm{~mm}(2 \mathrm{ft})$ length of lead from the internal speaker to ensure easy connection to the electronics stripboard panel.
As one of the drive units protrudes

CUTHING LST

MAIN CABINET

Panel A: 305 mm (12in.) \times 336 mm ($13^{1 / 4 i n}$.) - 2 off

Panel B: 305 mm (12 in .) \times 336 mm ($131 / \mathrm{in}$.) - 2 off

Panel C: 305 mm (12 in .) \times 273 mm ($10^{3} / 4 \mathrm{in}$.) - 2 off

All cut from a single length of veneered chipboard measuring 305 mm (12in.) wide $\times 244 \mathrm{~cm}$ (96in.) long $\times 15 \mathrm{~mm}$ ($5 / 8 \mathrm{in}$.) thick.

SKIRT

Panel D: 336 mm ($1311 / \mathrm{in}$.) \times 102 mm (4in.) \times $15 \mathrm{~mm}(5 / 8)-2$ off
Panel E: 305 mm (12in.) \times 102 mm (4 in.) \times 15 mm ($5 / 8 \mathrm{in}$.) - 2 off Length of Vynair speaker grille cloth to cover top of "skirt".

Fig. 4. Speaker surround, this is completely covered with grille cloth stretched over the top and sides.

Fig. 3. Dimensions and layout of the prototype enclosure.

above the enclosure, some readers might like to surround this with a "skirt" and cover it with some speaker grille cloth. This can be accomplished by making a surround to cover the 'speaker, with grille cloth stretched across for a more cosmetic appearance, see Fig. 4. This can be fastened to the main enclosure with 6 mm ($1 / 4 \mathrm{in}$.) dowels.

ECUALISER CIFCUIT BOAFD
Most of the electronic components are mounted on a piece of 0.1 in . matrix stripboard, size 16 strips by 34 holes. The component layout and details of breaks required in the underside copper tracks are shown in Fig. 5.

Fig. 6. Connections to the sockets, controls and off-board components. The metal casing of transistors TR2 and TR4 form the collector (c) connections and the usual insulating kit must be used when mounting them on the heatsink.

As long as the usual precautions are taken over the orientation of the transistors, capacitors and active components no problems should be experienced when making up the circuit board. In this regard special attention should be given to diodes D1 and D2.

Once you have completed the circuit board check and double-check for unwanted solder blobs and that the track breaks are complete and in the correct places. Connect flying leads to the board where indicated leaving these 305 mm (12 in .) long to facilitate easy interconnection.

Now mount the power transistors TR2 and TR4 on the specified heatsink. These must be insulated from the heatsink and each other in the normal manner using the washers and plastic bushes supplied. This can be checked with a multimeter switched to resistance. This should read an "open circuit".
INTERWIRING
At this stage the circuit board, mains transformer, heatsink and the two large supply smoothing capacitors C6, C7 should be mounted in the cabinet. The other components, potentiometers and input sockets are mounted on the terminal recess dish - see photographs. Now the interwiring can be commenced.

Terminate the flying leads from the circuit board at their respective destinations. Some interwiring between off-board components will also need to be made and these can be seen in Fig. 6.

Finally, temporarily connect two 100 ohm resistors in series with the secondary leads from the transformer. This will protect your circuit in the event of an undetected error. Check your work for errors. When you are satisfied that all is well the circuit can be tried out.

TESTING
Commence testing by gingerly switching on the power and standing back. You should be greeted with silence. If you get a loud hum or one or other of the two temporary resistors starts smoking you have a fault. Switch off immediately and rectify matters.

Assuming all is well, advance the Volume control VR1. Touching either of the input sockets SK1, SK2 should produce a buzz from the 'speakers. Now remove the two "protection" resistors, reconnect the transformer secondary leads and attach the front baffle to the rest of the cabinet, remembering to seal along the seams with filler.

The project is now complete.
INUSE
All that remains is to connect the SubWoofer to your system and adjust the relative output levels.

The Sub-Woofer is designed to be driven from the speaker outputs of your existing speaker system. This provides the input signal.

Similarly most amplifiers have a switched auxiliary mains socket on the rear panel. The Sub-Woofer can be powered directly from this socket or alternatively connected directly to the mains.
As with any speaker system the best room placement is best found by experience. Avoid corners as this will excite the resonant modes of your room.

EVERYDAY ELECTRONIBS

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of Everyday Electronics for me each month

Signed.

```
```

Name and Address.

```
```

```
```

Name and Address.

```
```


LOW COST 418 MHz UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET

 Incorporating the latest Surface Acoustic Wave technology, the system consists of a small "zero-power". UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and momentary output. Transmitter available either as fully assembled unit in its own keytob case which is tully MPT approved (codes set by cutting tracks) or in kit form with 8 -way DIL switch. Receiver also available in two ktt torms one which uses cut tracks to set code (over 13,000 codes available), the other uses an 8 -way OIL switch (256 codes).| Kit Sizes: | $T \times 45 \times 30 \mathrm{~mm}$ | $R \times$ (both) $45 \times 55 \mathrm{~mm}$ |
| :--- | :--- | :--- |
| Kit Supplies: $\mathrm{T} \times 3-15 \mathrm{~V}$ | $R \times($ both $) 9-15 \mathrm{~V}$ | Range: Up to 100 m | Approved Key-iob Transmitter: TXKF... Range: Up to 100 m

$〔 25.99$
$⿷ 15.99$
Individual Kit Receiver (8 -way DIL switch): RXOS Individual Kit Receiver (8 -way 01 I switch): :
Inidivdual Kit Receiver (Cut Tracks): AXCT . $1 \times$ TXKF $+1 \times$ RXCT: SYS 1. $1 \times$ TXKF + $1 \times$ RXCI:SYSI Quantity Discounts Available. Please allow 28 days. for delivery Cheques/POs to:

BLB Electronics

341 Darwen Road, Bromley Cross, Bolton BL7 9BY

SHERWOOD ELECTRONICS

9 Lower Birchwood, Somercotes, Derbyshire DE55 4NG $\star *$ SPECIAL OFFER $* * *$
Choose any 2 packs FREE with every 10 £1 packs purchased.

CAMBRIDGE COMPUTER SCIENCE LIMITTED
 LCo modules
$5.25^{\prime \prime}$ Disk Drives, 80 Tk, DSDD.
5.25° Disk Drives, 80 Tk, OSDD Used, No Wty.
TThe E15 500 drives are sold on a strictly "as IS" basis)
5.25 "Disks. DSDD, $48 t$ pi, boxes of 10 (free disk cieaner with 5 boxes) Digital multimeter, 14 ranges. inc leads $\&$ manual. Apricot Disk drive PSU SV wi.5A. 12 V w 2 A
Disk Drive Data lead BBC Micro to Disk Driversi................................

Z80A CPU CTITS PIO.
2712B EPROMS (Ex equipment)
256K DRAM (EX Equipment)
$1 \mathrm{MBit-10DRAM}$ (Ex Equipment)
 22 \& 24 pin dill low profrie IC sockets 0.4 . wide
 CIrcuit tester, finds faults in TIL \& CMOS loglc circuits. inc leads.
Metal project boxes drilled \& painted but unused $28 \times 32.5 \times 5 \mathrm{~cm}$... Used computer cards many useful componentstarge ones socketed) Floppy disk card (NEC FDC Chip) $£ 1.00$, Wini controller (WD HOC chip).
CPU card ($8088,280 \&$ EPROMS) Keyooards, full Qwerty, number pad and LCD.
Desktoo computer case with 200 W mains PSU (used).
Prices include postage Add 50 p iplus VATn
selow $£ 5.00$. All itemis new uni............................
Dept Ad.5 vai to all prices. Send an sak for our latest ist or for more info.
Tel: 0223424602,0831430496 or 0831430552 (mall order onty)

CONTROL PORT for PCs

This I/O Port follows the general approach of the "INTERFACING to PCs' series in this mag. BUT allows user's prototype control circuitry to be set up and run OUTSIDE the PC.
The double sided pcb fits into an I/O slot, and a ribbon cable terminating in a D-25 plug allows the control of projects with little risk to the PC. On board facilities include: 8 -bit A-D. 8 -bit D-A. 8 inputs, 8 latched outputs, 3 strobes and 1 |RQ.
Available as:
(a) Etched double sided board with full instructions for drilling/ assembly/testing using BASIC ..12.50.
(b) Complete I/O card with ribbon cable and BASIC test programs. (Built and tested)

All above prices include P\&P. Mail Order only from:

R. BARTLETT,

17. LIME TREE AVENUE, TILE HILL. COVENTRY CV4 9EY

CRICKLEWOOD ELECTRONICS LTD, 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET Tel: 0814520161

	CABLE \& WIRE	CAPACITORS	CONNECTORS 4.	
SEMI. CONDUCTORS	SPEAKERS	VIDEO HEADS		TOOLS \& BENCHWARE

SEND Now for the Chicklewoo component catalogue ONE OF THE BEST RANGES AVAILABLE

Name
Address

Robert Penfold

|N LAST month's Interface article we considered the subject of barcodes. We continue on the same topic this month, with some ideas for a do-it-yourself barcode system. For those who missed last month's article it has to be pointed out that hardware and software featured here is not intended to be compatible with commercial barcodes. This system enables you to print out and read back your own barcodes, and it is in no way compatible with any commercial barcode systems.

Code Writing

Clearly the first requirement of a barcode system is the ability to actually produce the barcodes. It would be possible to work out the codes and produce them using practically any computer drawing program, but this would be a slow and inconvenient way of handling things. What is needed is a program that can be fed with a decimal number, and which will then print out the corresponding barcode.

The program provided in the accompanying listing is for Microsoft QBasic or QuickBasic. It will print a barcode of any number which can be expressed in 8 binary bits, i.e. 0 to 255 . The printed barcode has 10 bars, a narrow start bar, the 8 digit bars, and a broad stop bar. In the 8 bit codes broad bars are used to represent 1 s , and Os are represented by narrow bars. The decimal number symbolised by the code is printed under the barcode.

The program is suitable for either 24 -pin or 9-pin Epson (or compatible) printers. Triple density is used for 24 -pin printers, and quad density for 9 -pin types. These high densities are necessary to ensure a reliably readable code of good contrast. For good results the printer should still be fitted with a reasonably fresh ribbon. The program defaults to the 24-pin settings, but this could be easily changed if required.

Basic Program

The width of the barcode (not including the start and stop bars) is set by two constants declared at the beginning of the program. TD.DOTS sets the width for 24 -pin printers, and QD.DOTS sets the width for 9 -pin printers. The value entered here is the number of dot positions which will be printed minus 1. The values given, 175 and 239 respectively, give a width of approximately 25 mm (not including stop and start bars, as mentioned above).

The 24 -pin printer actually prints at 180 dots per inch, but the value given has been rounded down from 179 to 175 , to give a number of positions (176) which
is exactly divisible by 8 . This is important. If you want to change the width of the barcode, you just need to alter these values. All other values are derived from them.
Normally, the barcode is printed with the least significant bit represented by the left-most bar. This is not normally of any great significance, as the barcode will be machine-read. In case it offends anyone, however, provision has been included to reverse the direction of printing so the MSB is the left-most.
The program is menu-driven. Selecting the options is simply a case of pressing the highlighted initial letters. The select printer option presents a submenu which is used in the same way. Swapping the MSB acts immediately. When you select the Enter value option, you have simply to enter the value to be printed and press return. Out of range values and nonsense input are trapped. The barcode is printed immediately, so you should be sure the printer is on line and ready to print before selecting this option.
With a little ingenuity it should be possible to adapt the program to suit individual needs. It could probably be modified to print longer barcodes having more bits, to print " x " number of each barcode, etc.

Hardware

As pointed out last month, the special high resolution sensors for use in barcode reader "pens" are very expensive, and there would seem to be no current source of supply for the home constructor anyway. My first attempts at reading barcodes used a passive sensor plus a fibre-optic cable. The cable was used as a simple means of giving a narrow angle of "view", and it seems to be possible to obtain quite good resolution in this way. The problem with the simple circuits I tried was a lack of sensitivity, and poor reliability (which probably stemmed from the poor sensitivity).
Better results were obtained using a reflective infra-red sensor. This consists basically of an infra-red l.e.d. and a photo-transistor mounted side-by-side, and "looking" in the same direction. If something fairly reflective is placed in front of and very close to the sensor, the infra-red light from the l.e.d. will be reflected back to the photo-transistor, and the latter will be switched on.

When choosing a photo-sensor of this type you are not exactly spoilt for choice. 1 mainly experimented with the OPB706B sold by Maplins, which would seem to be the same as the RS "miniature diffuse scan opto-switch sensor". There is also an

RS "standard" type which is somewhat larger. This seems to give quite good results despite its larger size, but as it is more expensive and less widely available, I opted to use the smaller device for the final system.

Resolution

Looking at one of these sensors you would probably not expect the resolution to be very high, but they can read barcodes accurately provided they are not printed out using very narrow lines or spaces. With the fine lines at about 1.5 millimetres and the smallest gap between lines no smaller than this, one of these low cost reflective sensors seems to work perfectly well.

By getting everything setup just right, and using an aperture to restrict the field of view, it would probably be possible to obtain much finer resolution. However, unless you really need to use more compact barcodes, it is much easier just to settle for the natural resolution of the sensor.

In order to get good results at the natural resolution of the sensor it is still necessary for things to be setup reasonably accurately. There are two main points to watch, one of which is that the sensor is perpendicular to the barcode, and not keeled over at an angle of significantly less than 90 degrees. The second point is that the distance between the sensor and the barcode is critical. It is best to experiment a little to find the distance that gives optimum results, but the ideal gap between the barcode and the sensor is only about one to two millimetres.

In order to get good results the sensor really needs to be recessed slightly into a pen type case, so that the reader can be operated by running it over the barcode, with the case actually rubbing the barcode. Simply waving the reader above the barcode will not provide good results using one of these simple sensors.

Next month we will conclude this look at barcodes with a barcode reader circuir and matching software.

102 Decimal
Example of the type of barcode generated.

DECLARE SUB printbar (bardats(), alls, nones, mode\%, first\%, last\% barwidth\%)
DECLARE SUB selectprinter (alls, nones, mode\%, printers, first\%, last\%, barwidth\%, bardats())
DECLARE SUB setscreen (printers, direcs)
DECLARE SUB setdat (bardat\$(), alls, nones, num\%, first\%, last\%. barwidth\%)

WIDTH LPRINT 255
'You can change the next two constants to change the width of the barcode.
'The values here give a width of 1 inch plus start and end bars.
'The value (CONST +1) should be exactly divisible by 1 ,
' and the ratio TD.DOTS/QD.DOTS should be approx. 3/4.
CONST TD.DOTS $=175$
CONST QD.DOTS $=239$
'set defaults for Epson 24-pin, triple density.
REDIM bardat\$(0 TO TD.DOTS)
mode\% = 39
alls $=$ STRING\$(3, CHRS(255))
nones = STRING\$(3, CHRS(0))
printer\$ = "Epson 24 - Triple density"
directions(1) $=$ "' as leftmost bar"
directions $(2)=$ " as rightmost bar"
first $\%=0$
last\% = TD.DOTS
barwidth\% = (TD.DOTS + 1) $\backslash 8$
SCREEN 0,1
CLS
setscreen printer\$, direction\$(1)
DO UNTIL UCASES(choice $\$$) = " Q "
choice§ = INKEYS
SELECT CASE UCASES(choice\$) CASE "S"

LOCATE 10, 6
COLOR 7.
PRINT "elect Printer"
selectprinter alls, none\$, mode\%, printer\$, first\%, last\%,
barwidth\%, bardats()
setscreen printer\$, direction\$(1)
CASE "E"
LOCATE 12, 6
COLOR 7
PRINT " n ter value and print barcode"
setdat bardat\$(), alls, nones, num\%, first\%, last\%,
barwidth\%
LPRINT CHR\$(27); ' 3 "'; CHRS(24); 'set line spacing
FOR lines $=1$ TO 4
printbar bardat\$(), alls, none\$, mode\%, first\%, last\%,
barwidth\%
NEXT lines
LPRINT CHRS(27); " 2 "; 'Reset printer line spacing LPRINT num\%
LPRINT 'Print line space
setscreen printer\$, direction\$(1)
CASE " M "
SWAP first \%, last \%
SWAP direction\$(1), direction\$(2)
setscreen printer\$, direction\$(1)
CASE "O"
LOCATE 16, 6
COLOR 7
PRINT "uit"
END SELECT
LOOP
END
SUB printbar (bardat\$(), all\$, nones, mode\%, first\%, last\%, barwidth\%)

IF last\% < first\% THEN
st $\%=-1$
limit\% = first\% + barwidth\% + 3 (barwidth\% ${ }^{\text {(}}$)
ELSE
$\mathbf{s t} \%=1$
limit\% = last\% + barwidth\% + 3" (barwidth\%\3)
END IF
LPRINT CHRS(27); CHRS(42); CHRS(mode\%); CHRS(limit\%
MOD 256); CHRS(limit\% 256);
FOR dat = 1 TO barwidth\% 3
LPRINT all\$;
NEXT dat
FOR dat = 1 TO barwidth \% \} 3
LPRINT none\$;
NEXT dat
FOR dat = first\% TO last\% STEP st\% LPRINT bardatS(dat);
NEXT dat
FOR dat = 1 TO barwidth\% 3
LPRINT nones;
NEXT dat
FOR dat = 1 TO barwidth\%

```
    LPRINT all$;
    NEXT dat
    LPRINT
END SUB
SUB selectprinter (alls, noneS, mode%, printer$, first%, last%,
barwidth%, bardat$())
```

LOCATE 18, 5: COLOR 2: PRINT " Epson 24 -pin, ";
COLOR 7: PRINT ' 'T'"; : COLOR 2: PRINT "riple density"
LOCATE 20, 5: PRINT "Epson 9-pin, ";
COLOR 7: PRINT "Q"; : COLOR 2: PRINT "uad density"

ERASE bardat\$
DO
choice $=$ INKEY\$
SELECT CASE UCASES(choice\$)
CASE " ${ }^{\prime}$ "'
mode\% = 39
printer\$ = "Epson $24-$ Triple density"
alls $=$ STRINGS(3, CHRS(255))
none\$ = STRING\$(3, CHRS(0))
REDIM bardats (0 TO TD.DOTS)
barwidth $\%=($ TD.DOTS +1$) \backslash 8$
IF first $\%$ > last\% THEN first $\%=$ TD.DOTS ELSE last $\%$
$=$ TD.DOTS
done $=-1$
CASE " Q^{\prime}
mode\% = 3
printers = "Epson 9-Quad density"
alls $=$ CHRS(255)
nones $=\operatorname{CHRS}(0)$
REDIM bardats (0 TO QD.DOTS)
barwidth $\%=($ QD.DOTS +1$) \backslash 8$
IF first $\%$ > last $\%$ THEN first $\%=$ QD.DOTS ELSE last $\%$
= QD.DOTS
done $=-1$
CASE CHRS(27)
EXIT SUB
END SELECT
LOOP UNTIL done
END SUB
SUB setdat (bardat\$(), alls, nones, num $\%$, first $\%$, last $\%$, barwidth $\%$) IF first\% > last\% THEN limit\% = first\% ELSE limit\% = last\%
getnumber:
LOCATE 18, 5
INPUT "Please enter a number $0-255$ inclusive: ${ }^{\prime \prime}$, nums
IF nums $=$ "'" THEN nums $=\cdot " \cdot$
IF (ASC(nums) < 48) OR (ASC(nums) > 57) THEN num $\%=256$
ELSE
num $\%=$ VAL(nums)
END IF
IF (num\% < 0) OR (num\% > 255) THEN LOCATE 20. 5
PRINT CHRS(7); "DO AS YOU ARE TOLDI" GOTO getnumber
END IF
FOR dotpos = 0 TO limit $\%$
IF num\% AND ($2 \wedge$ (dotpos \backslash barwidth\%)) THEN
IF dotpos MOD barwidth \% < (barwidth\% * $2 \backslash 3$) THEN bardats(dotpos) $=$ alls
ELSE
bardats(dotpos) $=$ nones
END IF
ELSE
IF dotpos MOD barwidth\% < (barwidth\%\3) THEN
bardats(dotpos) $=$ alls
ELSE
bardat\$(dotpos) $=$ nones
END IF
END IF
NEXT dotpos
LOCATE 18,5
PRINT SPACES(45)
LOCATE 20.5
PRINT SPACES(20)
END SUB
SUB setscreen (printer\$, direc\$)

> CLS
> COLOR 2: LOCATE 5, 10: PRINT "PPlease select:"
> LOCATE 10, 5: COLOR 7: PRINT "'S";
> COLOR 2: PRINT "elect Printer ("; printers; ")"
> LOCATE 12,5: COLOR 7: PRINT "E"';
> COLOR 2: PRINT "eenter value and print barcode"
> LOCATE 14,5: COLOR 7: PRINT "M";
> COLOR 2: PRINT "SB"; direcs
> LOCATE 16,5: COLOR 7: PRINT "Q";
> COLOR 2: PRINT "uit"

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELYHOOD . . . YOU NEED THE MODERN ELECTRONICS MANUAL

The Modern

 Amateur Electronic Manual
EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The essential reference Work

\author{

- Easy-to-use format
 - Clear and simple layout
 - Regular updates
 - Sturdy ring-binder
 - News of latest developments
 - Full components checklist
 - Extensive data tables
 - Detailed supply information
 - Ready-to-transfer PCBs
}
- Comprehensive subject range
- Accurate assembly instructions
- Concise repair procedures

If the fascinating and fastechahging world of electronics is your livelihood, your study subject or simply your passion, the new revised edition of THE MODERN
ELECTRONICS MANYAL is the reference work for you to have at your side.
The base manual contains information on the following subjects:
BASIC PRINCIPLES: symbols, components and their characteristics, passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, operational amplifiers, timers, physics for electronics.
CIRCUITS TO BUILD: construction techniques, radio, telephony, microcomputing, measuring instruments, vehicle electronics, security, audio, power supplies, electronic music (over 25 different projects).
REPAIRS AND MAINTENANCE: radio, television, audio/hi-fi, telephones.
DATA: diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors. The manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. OVER 1,000 pages, A4 format weighing over 3.5 kg .

Now - at last - the most comprehensive reference work ever produced at a price you can afford, the new revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

Over 1,000 pages of well-organised and clearly explained information is brought to you by an expert editorial team whose combined experience ensures the widest coverage.
 Regular supplements to this unique publication, each around 160 pages, mean that you will always be kept abreast of the latest developments from the UK, USA and Europe as they occur

ALL-IN-ONE AND EASY-TO-USE

A sturdy ring-binder allows you to use the manual on your workbench. The looseleaf format also means you can slot in the regular updates as they arrive -so all your information is there at a glance.

EXTENSIVE GLOSSARY

Should you come across a technical word, phrase or abbreviation you're not familiar with - simply turn to the glossary included in the manual and you'll find a comprehensive definition in plain English.

REGULAR UPIATES

Unlike a book or encyclopedia, the manual is a living work - continuously updated by new material. Recent or upcoming supplements include radio, superconductors, electric motors, basic electronic building blocks for beginners which can be joined together to construct elaborate circuits, filters, IBM PC and compatibles (including use of PC cards). Supplements are sent to you approximately every two months.

Each supplement contains approximately 160 pages - all for only $£ 23.50$ $+£ 2.50 \mathrm{p} \mathrm{\&} \mathrm{p}$. You can of course return any supplement which you feel is superfluous to your needs.

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and popular articles in our updating supplements. Our unique updating system is based on answers from readers request questionnaires. Through this service you are able to let us know exactly what information you require in your manual. You can also contact the editor directly in writing if you have a specific technical request or query relating to the manual.

ASSEMRLIMG ...

There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the manual describes clearly, with approprlate diagrams, how to assemble radios, loudspeakers, amplifiers, micro-computers and measuring instruments.

The new revised edition of The Modern Electronics Manual contains practical, easy-to-follow instructions for building and programming your own computer. It shows you how to make fun gadgets such as a remote control door opener and a digital rev. counter for your car. It also tells you how to construct useful devices like test gear, security and baby alarms - plus - many more popular devices.
Wimborne Publishing Lid., 6 Church St, Wimborne, Dorset BH21 1JH Tel: 0202881749 Fax: 0202841692

THE MODERN ELECTRONICS MANUAL

New Revised Edition of Baslc Work: Now contains over 1,000 pages of information.
Regular Updates: Approximately 160 -page supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($197 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent supplement).

! M = please send me on 10 days free approval THE MODERN ELECTRONICS
MANUAL. If I decide to keep the manual, I shall then pay only $£ 39.95$ plus 5.5 postage and packing at the end of the 10 days approval period. I shail also receive the appropriate Updating Supplements several times a year. These are billed separately and can be discontinued at any time.

FULL NAME

ORDER FORM

simply complete and return the order form to the following address

The Modern

Electronics Manual
Wimborne Publlshing Ltd 6 Church Street Whmborne Dorset BH21 1JH

OVERSEAS ORDERS: All overseas orders must be prepaid but are supplied under a money-back guarantee of satisfaction. If you are not entirely happy with the manual return it within a month for a refund of the purchase price you do have to pay the postagel. Add the following amounts to the price of the manual to cover postage.

EIRE EIO.50 (air mail only)
EUROPE (including C. 1.5 . $£ 21.00$ (air mail only)
$\left.\begin{array}{l}\text { MIDDLE EAST/FAR EAST/INDIA } \\ \text { AFRICA/SOUTHAFRICA }\end{array}\right\}$ £20 surfac SOUTH AMERICA $\} ⿷ 37$ air
REST OF THE WORLD $£ 25$ surface, $£ 31$ air
Note surface mail can take around 8 weeks to some parts of the world. Each manual weighs about 4.5 kg when packed.
All payments must be made in ε 's Sterling payable to Wimborne Publishing Ltod. We accept Mastercard (Access) and Visa credit cards.

ARTWORK LIGHTBOX

O- ALAN WINSTANLEY

Make light work of producing your own printed circuit boardmasters

THIS Light Box has been specially designed to be of help when originating and drafting p.c.b. (printed circuit board) artwork. It permits the constructor to view the artwork positive very clearly and he can also obtain a "see-through" view of any artwork (if it is drawn on standard translucent or transparent media), so that the designer sees both the component layout on top of the proposed artwork, plus an X-Ray view of the copper track "through" the board - see photographs.
This ability to see the copper track layout with the component layout superimposed on top can be of great assistance when drawing up artwork. It is rather like designing a transparent printed circuit board!

Light Box

The Artwork Light Box has a sloping front panel made from white acrylic plastic (e.g. 3 mm Perspex) and is illuminated from inside by a fluorescent

The completed artwork on the light box-the precision 0.1 in . matrix grid is also visible. This view is actually equivalent to seeing the copper track pattern "through" the board from the component side.
light. The cabinet itself is made from readily-available "Conti-Board" which has a white melamine finish. The white surface reflects light around the inside of the box and helps to diffuse it.

Rather than use miniature fluorescent tubes, which require control units, starters etc., a compact " 2 D "-type tube was employed on the prototype, making the light very simple to install, just like a normal light bulb. Because of the convoluted shape of the tube, this contributes to giving a relatively diffused light in the box, unlike short compact tubes (e.g. Osram types).

The tube clips onto an electronic adaptor which fits a standard BC socket. Unlike some compact fluorescent tubes, the 2D-type bulb can be replaced when it fails without having to change the whole unit, thus being cheaper to run.

It is claimed that the tube is good for some 8,000 hours, however, which is equivalent to three years usage at six hours per day. That's a lot of p.c.b. designing.

The artwork with the finalised component layout superimposed on it. This stage can be used for double-checking your copper track design for errors or omissions.

Constraction

The general sizes of the parts used, and a cutting list is shown in Fig. 1. It should be pointed out that the prototype was partly designed to fit a piece of Perspex which happened to be available.

It should be possible for readers to obtain Perspex or polycarbonate (perhaps offcuts) from either plastics suppliers or shop sign makers, see Yellow Pages. Clear plastic could be used, perhaps sandpapering it down to diffuse the light.
Standard Conti-Board is 15 mm (0.6 in .) thick and is readily available from all D.I.Y. stores. Buy a white finish 1800 mm length $\times 305 \mathrm{~mm}$ wide $(6 \mathrm{ft} . \times 1 \mathrm{ft}$. nominal) - the product is very cheap and a length can be bought for under $£ 4$.
The board can be cut to size with a handsaw or a medium-speed jigsaw. Special jigsaw blades are available to give a smooth cut and prevent the melamine coating from splintering away (e.g. Black \& Decker Ref. No 5194).
When making the two sloping end pieces, cut them out and clamp them firmly in a vice. Use a Surform, for example, to file the cut edges together till smooth - both ends will then be the same size.

The artwork is turned over and clearly labelled "Copper Track View Side" - this is your first sight of the actual copper foil pattern which will be etched into your p.c.b.!

Using the "light box" to draft a rough component layout diagram, referring to the circuit diagram and manufacturer's a'ata as required.

Preparing the "master" artwork using rub-down transfers and tape. The proposed copper track layout shows through the paper so that an X-ray view is seen

ARTWORK LIGHT BOX - CUTTING LIST

Approx cost

Base:

End Piece:
$345 \mathrm{~mm} \times 305 \mathrm{~mm}$ - Qty. 1 $195 \mathrm{~mm} \times 305 \mathrm{~mm} / 105 \mathrm{~mm}-$ Qty. 2

All above made from standard white Conti-Board 15 mm thick. Buy a length measuring 305 mm wide $\times 1800 \mathrm{~mm}$ approx (available from every DIY store, $£ 4$ approx.)
Conti Edging Strip, white

Rear Panel: $195 \mathrm{~mm} \times 315 \mathrm{~mm}-$ Qty. 1
Top Ledge: $105 \mathrm{~mm} \times 345 \mathrm{~mm}-$ Qty. 1
White Perspex (acrylic): 3 mm thick, $345 \mathrm{~mm} \times 282 \mathrm{~mm}$ Available from plastics stockists or shop sign makers (see Yellow Pages). A different size could be used if required, and the dimensions of the Conti-Board parts would then need amending.

Other Parts

Chipboard Corner joint blocks (e.g. Plasplugs) Oty. 8
No. $6 \times 19 \mathrm{~mm}(3 / \mathrm{inn}$.) countersunk chipboard screws - Oty. 38
Thorn 2D Fluorescent Light Fitting (2D Tube + BC Adaptor).
Part NO. 2DA10.BC
$45^{\circ} \mathrm{BC}$ batten mounting light socket
6A twin-core mains flex, as required
p-clip, screws, 3 A fused mains plug, etc

Fig. 1. Cutting details and dimensions for the Light Box. Dimensions can be altered as required, but if a $2 D$-tube is used the minimum depth of 305 mm must be adhered to.
Join like letters (A-to-A) together to realise the complete unit.

Fig. 2. (right). Three-quarter view without the Perspex front. The dotted area represents the location of the 45 degree batten bulb holder. The interior of the Light Box, with Perspex cover removed, the fluorescent 2D-type tube can be seen clearly in the photograph.

On The Block

The Conti-Board is joined together using right-angle plastic blocks which themselves are screwed to the board, Fig. 2 and Fig. 3. Preferably use only chipboard screws for this (see Parts List).

Start off screw holes by drilling a pilot hole or use a bradawl first before driving the screws home. In fact, if ever there was a job for a rechargeable screwdriver, this is it! If necessary, do not tighten the screws until you are happy with the joint fit and alignment - it is possible to juggle the joints to a limited extent to obtain a reasonable finish before tightening the joints together for good.

The dimensions are not critical, although the cabinet must have sufficient depth to accommodate the 2D fluorescent tube. The constructor must maintain at least the same depth as per the prototype - this is very important, or the tube will not fit.

The 2D fluorescent tube is connected via a sloping batten-mounted BC socket, with the result that the tube is parallel with the Perspex front panel. It is connected via twin-core 6A flex which passes through a hole in the rear panel, and the wire is secured with a suitable p-clip inside to prevent it from pulling out. Connect the other end to a plug with a 3A fuse.

Fig. 3. End view of the Light Box showing the rough positioning of the comer blocks and sloping front opaque screen.

Finishing Off

All cut edges can be finished off with iron-on edging. This is white melamine strip on a roll, with a hot-melt glue backing. A heat gun or an iron can be used to fix this down, and it can be trimmed with a knife afterwards as the strip becomes brittle after application.

After assembling all of the woodwork, plug the 2D light into the BC socket and check that it illuminates properly (it should start immediately, but will take a couple of minutes to reach full intensity). IT CANNOT BE USED ON ANY TYPE OF DIMMER CIRCUIT.
If the lamp operates, the final step is to screw on the perspex front panel using the same countersunk chipboard screws as before, having made countersunk recesses in the panel. Fit four adhesive cabinet feet at the bottom, and the Light Box is then ready to use.

Light Options

One option which readers may wish to explore is the use of normal filament light bulbs in place of the fluorescent tube; this will very substantially reduce construction costs.
There is no reason why this cannot be done, but it will be best to use two sloping $B C$ bulb holders, of the same type as used in the prototype. Employ two 15W Pygmy bulbs only, and this will give adequate illumination although, having used both systems, the author much prefers the fluorescent tube.
If using light bulbs, it might also be a good idea to allow a little ventilation through the box. Do this by reducing the height of the rear panel by say 13 mm ($1 / 2 \mathrm{in}$.), so that there is a gap along the top.

You will soon find your Light Box an indispensable aid when drafting both rough layout diagrams and master artwork for p.c.b. designs.

DIRECT воок SERVICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail onder direct to your door. Full ordering details are given on the last book page. For another selection of books see nextmonth'sissue.

EVERYDAY ELECTRONICS DATA BOOK
Mike Tooly BAA
(published by EE in association with PC Publlshing) This book is an invaluable source of information of everyday relevance in the world of electronics. It contains
not orily sections which deal with the essential theory of not orily sections which deal with the essential theory of
electronic circuits, but also deals with a wide range of electronic circuits, but also dea
practical electronic applications.
practical electronic applications.
It is ideal for the hobbyist. student, technician and engineer. The information is presented in the form of a basic gineer. The information is presented in the form of a basic how theory can be put into practice using a range of commonly available "industry standard" components and devices.
A must
A must for everyone involved in electronics!
256 pages Ordercode DAMM
$£ 8.95$

ELECTRONICS TEACH-IN No. 3-EXPLORING ELECTRONICS (published by Everyday Electronics) ELECTRONICS (published by Everyday Electronics)
Owen Bishop
Another EE value for money publication aimed at student Another EE value for money publication aimed at student ings of electronic components and circuits by involving the reader in experimenting with them. The book does not contain masses of theory or formulae but straightforward explanations and circuits to build and experiment with. Exploring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics and is split into 28 easily digestible section
£2.45

Special Everyday Electronics Books

ELECTRONICS TEACH-IN No. 4
INTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Michael J. Cockeroft
Although this book is primarily a City \& Guilds Introductory level course (726/301), approximately 80% of the in-
formation forms a very basic introduction to electronics in general, it therefore provides an excellent introductory text for beginner
students.
Full details on registering for C\&G assessment, details of
sluder Full details on registering for C\&G assessment, details of on the course in general are given. The City \& Guilds introduction
eads: "A candidate who satisfactorily completes this module will have a competence to identify basic components and digital integrated circuits and connect them together to form simple working circuits and logic units." This provides an excellent introduction to the book. £2.95
ELECTRONIC PROJECTS - BOOK 1
Published by Everyday Elecrronics in assoclation with Magenta Electronics
Contains twenty of the best projects from previous issues EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini to Light, BBC 16 K Sideways Ram, Simple Shor Wave Radio, Insulation Tester, Stepper Motor interface, Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm, EE Equaliser Ioniser, Bat Detector, Acoustic Probe, Mains Tester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Generator, Tilt Alarm, IOW Audio Amplifier, EE Buccaneer in-
 ble Bench Power Supply, Pet Scarer, Audio Signal Gen-
128 pages (A4 size) OrdercoderP1 £2.45

ELECTRONICS TEACH-IN No. 5 GUIDE NEW
TO BUILDING ELECTRONIC PROJECTS NES Published by EVERYDAY ELECTRONICS
Due to the demand from students, teachers and hobbyisis we have put together a range of articies from past issues of Everyday Electronics that will assist those involved with the construction of electronic projects.
The book contains the complete Project Devalopment for GCSE series

Contents: Features - First Steps in Project Building; Building with Vero; Project Development for GCSE; Getting your Project Working: Guide to Printed Circuit Boards; The Oscilloscope, P.S.U.s, Logic Probes, Digital Frequency Meters. Signal Generators, etc; Data - Circuit Syembols; Component Codes; Resistors; Identifying Components; Capacitors; Actually Doing it - Understanding the Circuit Diagram, Component Codes, Mounting circuit boards and controls, Understanding Capacitors; Projects - Lie Detector; Personal Stereo Amplifier; Digital Experimentsr's Unit; Quizmaster, Siren Effects Unit: UV Exposure Unit; Low-cost Capacitance Meter; Personal Radio.
88 pages (44 size) order codellis
£2.95
ELECTRONICS TEACH-IN 88/89-
INTRODUCINGMICROPROCESSORS
Mike Tooley BA (published by Everyday Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors ($726 / 303$). The book contains everything you need to know including full details on registering for assessment, etc. Starting with basic terminology, integrated circuits, logic families and numbering systems the toxt builds in stages, with revision and assessments The course is ipral for 80 pages (A4 size) Order code il. 8889 £2.45

Computers and Computing

COMPUTERS AND MUSIC - AN INTRODUCTION R. A. Penfold

Computers are playing an increasingly imponant part in the world of music, and the days when computerised music was strictly for the fanatical few are long gone
Computer-based music systems in the past have tended to be either horrendously expensive, very crude, or bothl These days, prices are much more modest and the potential of the equipment is much greater. Consequently a lot of musicians are being tempted into the unfamiliar territory of computer music systems.
If you are more used to the black and white keys of a synth keyboard than the OWERTY keyboard of a computer you may be understandably confused by the jargon and not, setting up and using a computer-based music making system is not as difficult as you might think
This book will help you learn the basics of computing, running applications programs, wiring up a MIDI sys tem and using the system to good effect, in fact jus about everything you need to know about hardware and the programs, with no previous knowledge of computing needed or assumed. This book will help you to choose the and equip you to exploit that system fully.

A CONCISE INTRODUCTION TO MS-DOS

N. Kantaris

This guide is written with the non-expert, busy person in mind and, as such, it has an underlying structure based on "what you need to know first, appears first". Nonetheless, the guide is also designed to be circular, which means tha you don't have to start at the beginning and go to the end The more experienced user can start from any section The guide covers versions 3.0, 3.1 and 3.2 of both PCDOS and MS-DOS as implemented by IBM and other the AMSTRAD PC's. It covers both floppy disc-based systems and hard disc-based systems. \quad £2.95

AN INTRODUCTION TO 280 MACHINE CODE
R. A. \& J. W. Penfold

Takes the reader through the basics of microprocesors and machine code programming with no previous nowledge of these being assumed. The $\mathbf{Z 8 0}$ is used in examples are given for $\mathbf{Z 8 0}$-based machines including the Sinclair ZX-81 and Spectrum. Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 and 6128.

ANINTRODU

R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing programs for 6800 based micros such as the Commodore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It Is not as difficult as one might think nd this book covers the fundamentals.
112 pages
Drder code BP184
£2.95
THE ART OF PROGRAMMING THE ZX SPECTRUM M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about teaching you the art of effective programming with your spectrum.

Order code BP119 $\quad \mathbf{E 2 . 5 0}$
A 280 WORKSHOPMANUAL
E. A. Parr, B.Sc., DC.Eng., M.I.E.E.

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such heed hardware details of a $\mathrm{Z80}$ based computer. 192 pages \quad Order code BP112
£ 3.95

NEWNES COMPUTER ENGINEER'S POCKETBOOK (Second Edition)
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, service engineer and all those interested In computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of "software engineers"". This data is presented in a succinct and rapidly accessible form so that the book can become part of an 205 pages (hard
205 pages (hard cover) Order code NEOT £10.95

UNDERSTANDING PC SPECIFICATIONS

R. A. Penfold

If you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, and are backed up by an enormous range of applications programs, hardware add-ons, etc. The main difficulty for the uninitiated is deciding on the specification that will of limited capabilities up to complex systems that can happily run applications that would have been considered beyond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is inade. quate to run your applications efficiently, or one which goes beyond your needs and consequently represents poor value for money.
This book explains PC specifications in detail, and the
subjects covered include the following subjects covered include the following: Differences between types of PC (XT, AT, 80386, etc); Maths co-processors; input devices (keyboards, Mice, and
digitisers); Memory, including both expanded (EMS) and digitisers); Memory, including both expanded (EMS) and extender formats and compatibility: Hard disk drives (inclüding interleave factors and access times); Display adaptors, including all standard PC types (CGA, Hercules, Super VGA, etc); Contains everything you need to know if you can't tell your EMS from your EGAl 104 pages \quad Ordercode 8P282 £3.95

Audio and Music

PRACTICAL MIDIHANDBOOK
 R. A. Penfold

The Musical Instrument Digital Interface (MIDI) is surrounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are
quite incomprehensible to the reader. quite incomprehensible to the reader
The Practical MIDI Handbook is
musicians, enthusiasts and technicians who want to musicians, enthusiasts and technicians who want to
exploit the vast capabilities of MIDI, but who have no previous knowledge of electronics or computing. The majority of the book is devoted to an explanation of what MiDI can do and how to exploit it to the full, with practical advice on connecting up a MIDI system and getting it to work, as well as deciphering the technical information in those equipment manuals.
128 pages IOruercole PCFII £6.95
PREAMPLIFIER AND FILTER CIRCUITS
R. A. Penfold
This book provides circuits and background information for a range of preamplifiers, plus tone controls, fiters, mixers, etc. The use of modern low noise opera-
tional amplifiers and a specialist high performance audio preamplifier i.c. results in circuits that have excellent performance, but which are still quite simple. All the circuits featured can be built at quite low cost (just a few pounds in most cases).
The preamplifier circuits featured include:- Microphone
preamplifiers (low impendance, high impedance preamplifiers (low impendance, high impedance, and

Component Identification

HOW TO IDENTIFY UNMARKEDICS

K. H. Recorr

Shows the reader how, with just a test-meter to go about recording the particular signature of an unmarked i.c. Which should enable the i.c. to then be identified with is a specially plotted chart produced by measuring the resistances between all terminal pairs of an i.c.
Chart
Oler code tip 01

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHAR

B, B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use throughout the world, for most radio and electronic components. Includes resistors, capacitors, transformers, field coils, fuses, ing the values of old components.
Chart Orller colle \&Py
E0.95

OLOUR CODES \& DATA CHART

crystal). Magnetic cantridge pick-up preamplifiers with crystal). Magnetic carridge pick-up preamplifiers with
R.I.A.A equalisation. Crystal/ceramic pick-up preampliffer Guitar pick-up preamplifier. Tape head preamplifier (for use with compact cassette systems
Other circuits include:- Audio limiter to prevent overloading of power amplifiers. Passive tone controls. Active tone controls. PA filters (highpass and lowpass). Scratch and balance controls
92 pages

MUSICAL APPLICATIONS OF THE ATARIST'S

R. A. Penfold

The Atari ST's are now firmly established as the computers to use for electronic music applications. The range and sophistication of these applications are much greater than most people may realise, but there are stifl a achieved This book will help you sor out the fact from the fallacy and to get the most musically from the ST's A wide selection of topics are covered, including the internal sound chip; MIDI; apolications programs such as sequencing and score writing, etc; simple but useful add-on projects and MIDI programming.
90 pages AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSUREDESIGN V. Capel

This book explores the various features, good points and snags of speaker designs. It examines the whys and wherefores so that the reader can understand the principles involved and so make an informed choice of design, or even design loudspeaker enclosures for him of
herself. Crossover units are also explained, the various types, how they woris, the distortions they produce and how to avoid them. Finally there is a step-by-step
description of the construction of the Kapellmeister loudspeaker enclosure.
148 pages $£ 2.95$ ACOUSTIC FEEDBACK - HOW
TO AVOID IT
Feedback is the bane of all public address systems Things can be done to reduce itpletely eliminated, many things can be done to reduce it to a level at which it is no
Much of the trouble is often the hall itself, not the equipment, but there is a simple and practical way of greatly improving acoustics. Some microphones are prone to feedback while others are not. Certain loudspeaker systems are much bemer than others, and the way the units are positioned can produce or reduc feedby. Alls se masters are fully explored as well as and notch filters.
The special requirements of live group cancents are considered, and also the related problem of instability that is sometimes encountered with large set-ups. We even take a look at some unsuccessful attempts to cure feedback so as to save readers wasted time and effort duplicating them.
Also included is the circuit and layout of an inexpensive but highly successful twin-notch fifter, and how to 92 pages
920.95 COMPUTERS AND MUSIC. See Computers section

Theory and Reference

ELCTRONIC HOBBYISTS HANDBOOK

R. A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthusiast is likely to need for the day-to-day pursuance of this fascinating hobby. Covers common component colour codes. Detalls the characteristics and pinouts of
many popular seimiconductor devices, including various types of logic ICs, operational amplifiers, transistors, types of logic ICs, operational amplifiers, transistors,
FETs, unijunctions, diodes, rectifiers SCRs, diacs, triacs, regulators and SMDs, etc. Illusirates many useful types of circuits, such as timers and oscillators, audio amplifiers and filters, as well as including a separate
section on power supplies. Also contains a multitude of section on power supplies. Also contains a multitude of

other useful data. 88 pages
 88 pages Order code BP233 £4.95

NEWNES ELECTRONICS POCKET BOOK
Newnes Electronics Pocket Book has been in print for over twenty yaars and has covered the development of electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and microprocessors. To keep up to date with the rapidly changing world of electronics. continuous revision has been
necessary. This new Fifth Edition lakes account of recent necessary. This new Fith Edition takes account of recent
changes and includes material suggested by readers of changes and includes material suggested by readers of previous editions. Now descriptions of op.amp. applicaalong with a totally new chapter on computing, plus olther revisions throughout.
315 pages (hard cover)
ont entelating, plus
$£ 10.95$

ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS

Owen Bishop

This book describes over 60 modular electronic circuits how they work, how to build them, and how to use them. The modules may be wired together to make huindreds of different electronic systems, both analogue and digital. To show the reader how to begin building systems from modcribed in detail, covering such widely diftering are des cribed in delail, covering such whely dimering applicacluding a simple radio receiver), games and remote con$\stackrel{4}{200}{ }_{2}$

Order code Bp2न6 $£ 3.95$

FROM ATOMS TO AMPERES
F. A. Wilson

Explains in crystal clear terms the absolute fundamentals behind electricity and electronics. Really helps you to discover and understand the subject, perhaps for the first time $\stackrel{\text { ever. }}{\text { Hav }}$ Have you ever: Wondered about the true link between electricity and magnetism? Felt you could never understand the work of Einstein, Newton, Boltzmann, Plancl like a litrle black ball? Got mixed up with e.m.f. and p.d Thought the idea of holes in semiconductors is a bit much? Then help is at hand with this inexpensive book, in as
simple a way as passible and without too much complex simple a way as possible and without too much complex mathematics and formulae.
244 pages Oider code Bontal $£ 3.50$ PRACTICAL DIGITAL ELECTRONICS HANDBOOK Mike Tooley (Publishad in association with Everydav Elactronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handoook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone involved with the design manufacture or servicing of digital circuiry, as well as to those wishing to update their knowledge of modern digital devices and techniques. Contents; Introduction to in tograted circuits: basic logic gates; monostable and bistable devices; timers; microprocessors; memories; input and out pur devices; intertaces; microprocessor buses. Appendix 1
Data. Appendix 2: Digital test gear projects; fools and text equipment; regulated bench power supply; logic pulser: equipment; regulated bench power supply; logic pulser audio loglc tracer; RS-232C breakout box; versatile digital counter/frequency meter. Appendix 3: The oscilloscope Appendix 4: Suggested reading. Appendix 5 : Further study.
208 pages
E6.95

ELECTRONICS - A "MADE SIMPLE" BOOK

 G. H. OIs enThis book provides excellent back ground reading for our Introducing Digital Electronics Teach-In Book and will be of interest to everyone studying electronics. The subject
is simply explained and well illustrated and the book assumes only a very basic knowledge of electricity.

Project Building

HOW TO WORKING

R. A. Penfold

We have all bult projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just thes problems by indicating how and where to start looking fo many of the c up projects.

Order code BPI10 £2.50
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S R. A. Penfold

Deals with the simple methods of copying printed circui oard designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages \quad Orcer code BP121
B2
 COMPONENT
The purpose of this book is to provide practical information o help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to explain the differences between components of the same basic type (e.g. carbon, carbon film, metal film, and wire-wound resistors) so that the right component for a given application can be selected. A wide range of comorms are that used areat in projects for the home constructor. ome constructor

BEGINNER'S GUIDE TO BUILDINGELECTRONIC PROJECTS
hows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also include examples in the form simple projects.

ELECTRONIC SCIENCE PROJECTS

OLECTRO
These projects range in complexity from a simple colou emperature meter to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating spring, and an oscilloscope with solid-state display. There are scientific measuring instruments such as a pH meter and an electro-cardiometer. All projects have a strong scientific flavour. The way they
144 pages
Temporarily out of print
ELECTRONICS SIMPLIFIED - CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M Especially written for those who wish to participate in the intricacies of electronics more through practical conages upwards from the day one can read intelligently and andle simple tools 80 pages

Order code BPg2
f1.75

Testing and Test Gear

RANSISTOR RADIO FAULT-FINDING CHART
C. E. Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the top of the hart will be found four rectangles containing brief des-
 en dead, sound low or distorted and background noises. ing the arrows, carries out the suggested checks in sequen

HOW TO USE OSCILLOSCOPES AND OTHER TEST EOUIPMENT
This book explains the basic function of an oscilloscope, ives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals with using an oscilloscope for fault finding on linear and ogic circuits. Plenty of example waveforms help to ilustrate the control functions and the effects of various ault conditions. The function and use of various other pieces of test equipment are also covered, including sig. nal generators, logic probes, logic pulsers, and crystal 104 pages
£ 3.50

Circuits and Design

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 1
PRACTIĆAL ELECTRONIC
BUILDING BLOCKS - BOOK 2
A. A. Penfold

These books are designed to aid electronic enthusiasts who like to experiment with circuits and produce their own projects, rather than simply following published project BOOK
squarewave, sawtooth, and pulse waveform generators squarewave, sawtooth, and pulse waveform generators stable circuits using i.c.s, the 555 and 7555 devices, etc. Miscellaneous-noise generators. rectifiers, comparators and triggers, etc.
BOOK 2 contains: Amplifiers - low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controller amplifiers. Filters - high-pass, low-pass, 6, 12, and 24 dB per octave types. Miscellaneous - i.c. power amplifiers,
mixers, voltage and current regulators, etc.
BOOK 1128 pages Temporarily out of print BOOK 2112 pages Order code BPT18 1.95

MODERN OPTO DEVICE PROJECTS

R. A. Penfold

In recent years, the range of opto devices available to the home constructor has expanded and changed radically. These devices now represent one of the more interesting areas of modern electronics for the hobbyist to experimen , all. This book provides a number of practical designs which utilize a range of modern opto-electrical devices, including such things as fibre optics, ultra bright l.e.d.s and passive IR detectors etc.
While many of these designs are not in the "dead simple" category, they should be within the capabilities electronics construction and some of the more simple designs are suitable for beginners.
104 pages
Oruer coce Eppl94 $£ 2.95$

ELECTRONIC ALARM CIRCUITS MANUAL

R. M. Marston

One hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms, and brief construction notes are given where necessary. Aimed at the practical design engineer, technician and experimenter, as well as the electronics student and mateuf.
124 pages
Order code NET1 £12.95

DIGITAL LOGIC GATES AND FLIP-FLOPS
Ian R. Sinclair This book, intended for enthusiasts, students and tech-
nicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops electronics by treating the topics of gat is and flip-fiops
thoroughly and from the beginning. This is not a constructor's book in the sense of presenting circuits to build and use, it is for the user who wants to design and troubleshoot digital circuitry with considerably more understanding of principles.
Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple No
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working
practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic. 200 pages Onclercode PC10G E8

ELECTRONIC CIRCUITS FOR THE COMPUTER

CONTROLOF ROBOTS

Robert Penfold
Robots and robotics offer one of the most interesting areas for the electronics hobbyist to experiment in. Today the mechanical side of robots is not 100 difficult, as there are robotics kit and a wide range of mechanical components available. The micro controller is not too much of a problem either, since the software need not be terribly complex and many inexpensive home computers are well
suited to the task. suited to the task. The main stumbling block for most would-be robot builders is the electronics to interface the computer to the motors, and the sensors which provide feedback from the robot to the computer. The purpose of this book is to
explain and provide some relatively simple electronic circuits which bridge this gap.
92 pages \quad Ordercodespri7] 2.95

ELECTRONIC POWER SUPPLY HANDBOOK

lan R. Sinclair
This book covers the often neglected topic of electronic power supplies. All types of supplies that are used for
electronics purposes are covered in detail, starting with cells electronics purposes are covered in detail, starting with cells
and batteries and extending by way of rectified supplies and and batteries and extending by way or rectified supplies and mode regulators, DC-DC converters and inverters.
The devices, their operating principles and typical circuits are all dealt with in detail. The action of rectifiers and the reservoir capacitor is emphasised, and the subject of stabilisation is covered. The book includes some useful formulae for assessing the likely hum level of a conven136 pages Order code PCJ
$£ 7.95$

Radio, TV, Satellite

AN INTRODUCTION TO AMATEUR RADIO
Amateur radio is a unique and fascinating hobby which has attracted thousands of people since it began at the turn of the century.
This book gives the newcomer a comprehensive and easy to understand guide through the subject so that the reader can gain the most from the hobby. It then remains an essential reference volume to be used time and again. Topics covered include the basic aspects of the hobby. such as operating procedures, jargon and setting up a
station. Technical topics covered include propagation, receivers, transmitters and aerials etc.
150 pages $\quad £ 3.50$

SIMPLE SHORT WAVE RECEIVER CONSTRUCTION

 R. A. PenfoldShort wave radio is a fascinating hobby, but one that seems to be regarded by many as an expensive pastime these days. In fact it is possible to pursue this hobby for a minimal monetary outlay if you are prepared to undertake a be built at low cost. Ali the sets are easy to construct full wiring diagrams etc. are provided, and they are suitable for complete beginners. The receivers only require simple aerials, and do not need any complex alignment or other difficult setting up procedures.
The topics covered in this book include: The broadcast bands and their characteristics; The amateur bands and their characteristics; The propagation of radio signals; Simple aerials; Making an earth connection; Short wave tion; Direct conversion receiver. tion; Direct conversion receiver.
Contains everything you need started in this absorbing hobby.
88 pages
Orcler code Ble2
£3.95

AN INTRODUCTION TO SATELLITE TELEVISION

 F. A. WilsonAs a definitive introduction to the subject this book is presented on two levels. For the absolute beginner or anyone thinking about purchasing or hiring a satellite IV system, the story is told can be in the main text.
For the professional engineer, electronics enthusiast.
student or others with technical backgrounds, there are numerous appendices backing up the main text with additional technical and scientific detail formulae, calculations, tables etc. There is also plenty for the DIY enthusiast with practical advice on choosing and installing the most problematic part of the system - the dish antenna. 104 pages
Order code BPigit
O5.95

AN INTRODUCTION TO AMATEUR

COMMUNICATIONS SATELLITES
A. Pickford

Communications and broadcast satellites are normally inaccessible 10 individuals unless they are actively involved in their technicalities by working for organisations such as British Telecom, the various space agencies or military bodies. even those who possess a satellite television receiver system do not participate in the technical aspects of these highly technological systems.
satellites in orbit around the world, traversing the satellites in orbit around the world, traversing the globe continuously and they can be tracked and their sig-
nals received with relatively inexpensive equipment. This equipment can be connected to a home computer such as the BBC Micro or IBM compatible PCs, for the decoding of received signals.
This book describes several currently available systems, their connection to an appropriate computer and how thex can be operated with suitabie software.
102 pages [Order code BPaty $\mathbf{3 . 9 5}$

AERIAL PROJECTS

R. A. Penfold

The subject of aerials is vast but in this book the author has considered practical aerial designs, including active, loop and ferrite aerials which give good performances and are relatively simple and inexpensive to build. The complex theory and mathematics of aerial design have been avoided.
Also included are constructional details of a number of aerial accessories including a pre-selector, attenuator, fil-
96 pages \quad Ordercode 8 P10.50

INTERNATIONAL RADIO STATIONS GUIDE

P. Shore

Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed to guide him or her around the ever more complex radio bands. This new edition has been completely revised and rewritten and incorporates much more information which is divided into the following sections: Listening to Short Wave Radio; Choosing a Short
Wave Radio Receiver. How to Use the IRSG; AbbreviaWave Rado Receiver; How to Use the Wag; Abbrevia-
tions; Country Codes; Worldwide Short Wave Radio Stations; Country Codes; Worldwide Short Wave Radio Sta-
tions; European, Middle Eastern and African Long Wave tions; European, Middle Eastern and Arican Long Wave
Radio Stations; European, Near and Middle Eastern and African Medium Wave Radio Stations; Canadian Medium Wave Radio Stations; USA Medium Wave Radio Stations; Broadcasts in English; Programmes for DXers and Short Wave Listeners; UK FM Radio Stations; Time Differences $\begin{array}{ll}\text { From GMT; Wavelength/Frequency Conversion. } \\ 226 \text { pages } & \text { Order code BP } 25.5\end{array}$

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book circuits and a reference book for design calculations The ap
sible.
160 pages

C 2.95
MICRO INTERFACING CIRCUITS - BOOK 1
MICRO INTERFACING CIRCUITS - BOOK 2
A. A. Penfold

Both books include practical circuits together with details of the circuit operation and useful background informap.c.b. layouts and other detailed constructional informa. tion are not included.
Book 1 is mainly concerned with getting signals in and out of the computer; Book 2 deals primarily with circuits or practical applications. BOOK 1112 pages BOOK 2112 pages
$\mathbf{£ 2 . 7 5}$
$\mathbf{£ 2 . 7 5}$

SENSORS AND TRANSDUCERS

Keith Brindley
There are a considerable number of transducers. Look through any electronic components catalogue and you'll ind a wide variety of types, and each type has many particular function. In many specifications, terms and pro cedures are referred to which might deter you from using one that is, in fact, the best for the job. Yet, opting to use transducer merely because it is easier to interface into the measuring system is not the answer. A greater knowledge of all types of transducers capable of doing the task is the deal, and only then can a totally 179 pages - in parder

50 SIMPLE LED CIRCUITS

Contains 50 Interesting and useful circuits and applica fons, covering many different branches of electronics using one of the most inexpensive and freely available components - the light-emitting diode (LED). Also in cludes circuits for the 707 common anode display.
64 pages
BOOK 250 more l.e.d. circuits Order code BP8\% £1.95

DIRECT
 BOOK SERVICE
 OPDEPING DETAILS

Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add 75 p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order, ($£$ sterling only) made payable to Direct Book Service or credit card details (including the card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, WIM BORNE, DORSET BH21 1RW (mail order only).
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.
Note - our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

Direct Book Service is a division of Wimborne Publishing Ltd

BABANI BOOKS

We now supply all the books published by Bernard Banani (Publishing) Ltd. We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Everyday Electronics (the books with a BP prefix to the order code are Babani books)
Many readers have asked us to also supply various other Babani books, which have a reputation for value for money. Our customers tell us they appreciate our speedy service and low postage charge and they
would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum (75p for UK p\&p no matter how many books you buy). We are pleased to be able to respond; with the aid of Michael Babani (M.D.) we are now able to meet all your requirements for their books. If it's Babani and in print we can supply it. Babani presently list over 180 different technical titles those not described in detail on the previous Direct Book Service pages or in next months issue are listed below

Code	Tite	Price	Code		Price	Co	Tit	Price
208	Practical Stereo \& Ouadrophony Handbook	5075	${ }^{\text {BPP138 }}$	BASIC \& FORTH in Par	£1.95	BP245	Digital Audio Proj	95
	Audio Enthusiast's Handbook	¢0.85	BP143	An Introduction to Programming the Atris		$8 \mathrm{BP246}$	Musical Applications of the Atari ST's	£5.95
219	Solid State Novelty Projects	£0.85		600/800XL	¢1.95	BP247	More Advanced Miol Projects	¢2.95
225	A Practical Introduction to Digital ICs	O.O.P.	BP144	Further Practical Electronics Calculations		BP249	More Advanced Test Equipment Construction	¢3.50
BP28	Resistor Selection Handbook	${ }^{10} 60$		\& Formulae	0.0.P.	$8{ }^{\text {PP250 }}$	Programming in FORTRAN 77	¢. 4.95
BP37	50 Projects using Relays. SCRs and TRIACs	£2.95	BP145	25 Simple Tropical and MW Band A	E1.75	BP251	Computer Hobbyists Handbook	¢5.95
BP39	50 (FET) Field Eftect Transistor Projects	E2.95	BP148	Computer Terminology Explaln	81.95	BP258	Learning to Program in C	¢4.95
BP44	IC 555 Projects	E2.95	BP149	A Concise Introduction to the Language		BP259	A Concise Introduction to UN	£2.95
8P45	Projects in Opto-Electronics	O.O.P.		of BBC Basic	£1.95	BP250	A Concise Introduction to $\mathrm{OS} / 2$	£2.95
BP48	Electronic Projects for Begin	$E 1.95$	BP153	An Introduction to Progra		BP261	A Concise Introduction to Lotus 1	
BP49	Popular Electronic Projectis	E2.50		Amstrad CPC 464 \& 654	¢2.50		(Revised Edition)	¢3.95
${ }^{\text {BP56 }}$	Electronic Security De	¢2.50		An introduction to MSX	E2.50	BP262	A Concise Introduction	
$8 P 58$ $8 P 62$	50 Circuirs Using 7400 Series IC's	¢2.50	${ }_{\text {BP156 }}{ }_{\text {BP157 }}$	An Introduction to OL Machine Code	£2.50		(Revised Edition)	${ }_{\text {¢ }} \times 3.95$
BP62	The Simple Electronic Circuits \& Components (Elements of Electronics - Book 1)	£3.50	BP157	How to Write $2 X$ Spectrum \& Spectrum + Games Programs	¢2.50	BP263 BP264	A Concise Introduction to dBASE A Concise Advanced User's Guide to MS-DOS	$\begin{aligned} & £ 3.95 \\ & £ 2.95 \end{aligned}$
BP63	Alternating Curient Theory (Elements of		BP158	An Introduction to Programming the		BP269	An Introduction to Desktop Publishing	£5.95
	Electronics - Book 2)	¢3.50		Commodore 16 \& Plu	£2.50	BP270	A Concise Introduction to Symphony	£3.95
BP64	Semiconductor Technology (Elements of		P159	How to Write Amstrad CPCA			Interlacing PC's 8 Compatibles	
	Electronics - Book 3)	¢ 6.50		Programs	£2.50	BP273	Practical Electronic Sensors	¢4.95
BP69	Chosing and Using	${ }_{\text {c1. }}$	${ }_{\text {BP1 } 162 ~}^{1}$	Counting on OLAbacus	£2.50	${ }_{8 P 276}$	Shor Wave Superhat Receiver Construction	E23.95 E.
BP74	Electronic Music Projects	E2.50	BP171	Easy Add-on Projectis for Amstrad CPC 464,		$8 P 277$	High Power Audio Amplifier Constructio	£3.96
BP76	Power Supply Projects	£2.50		664.6128 and MSX Computers	£2.95	BP279	A Concise Introduction to Exce	£3.95
BP78	Practical Compurer Exp	81.75	$8 \mathrm{BP174}$	More Advanced Electronic Music	. 95	$8 P 280$	Getting the Most From Your PC's Hard D	£3.95
8P84	Digital IC Projects	E1.95	BP175	How to Write Word Game Programs for		${ }_{8 P 283}$	A Concise Introduction 1	
	Techniques	£1.95		MIDI Projects	¢2.95	8 BP 286	A Reference Guide to Basic Electronics Terms	
	Audio Projects	E2.50	BP183	An Introducilon to CP	¢2.95	${ }^{8 P 288}$	A Concise Introduction to Windows 3.0	¢3.95
BP94	Electronic Projects for Cars and Boats	£1.95	BP187	A Practical Reference Guide to Word Processing		BP291	A Concise Introduction to Ventura	£3.95
BP95	Model Railway Projects	£2.95		on the Amstrad PCW8256 and PCW8	E5.95	BP292	Public Address Louds peaker Sy	£3.95
BP97	IC Projects for Beg	£1.95		Using Your Amstrad CPC Disc Drives		8P293	An Introduction to Radio Wave Propagation	¢3.95
${ }^{\text {BP999 }}$	Mini-matrix Board Proiects	¢2.50		More Advanced Electronic Security P	£2.95	$\begin{aligned} & 8 P 294 \\ & 8 P 298 \\ & 8 \end{aligned}$	A Concise Introduction to Microsoft Works	£4.95
	Modern Op-amp Proj	8.95		Simple				
${ }_{8 P 114}$		E1.95		Mriere Advanced Power Supply Profects	${ }_{\text {E2 } 2.95}^{\text {2 }}$		Practical Electronic Filters	${ }_{\text {¢ }}$
BP122	Audio Amplifier Construction	£2.95	BP193	LOGO fo	£2.95	BP302	A Concise Users Guide to Lotus 1-2-3	
BP125	25 Simple Amateur Band Aerii	E1.95	BP196	BASIC \& LOGO in Parallel	¢2.95		Release 3.1	
BP126	ASIC \& PASCAL in Para			An Introduction to the Amstrad PC's	¢5.95	BP303	Understanding PC Software	¢4.95
$8{ }^{\text {P1 } 128}$	20 Programs for the ZX Spectrum \& 16K ZX81	E1.95	BP198	An Introduction to Antenna	¢2.95	BP304	Projects for Radio Amateurs and S.W.L.s	¢3.95
8P129	Introduction to Programming the ORIC-1	E1.95	BP199	An Introduction to BASIC-2 2 on the Amstrad PC's	E5.95	8 BP 307	A Concise Introduction to QuarkXPress	¢4.95
P132	25 Simple SW Broadcast Band Aerials	£1.95	230	A Concise Introduction to GEM	¢2.95	8P309	Preamplifier and Filter Circuits	£3.95
33	on to Programming the		BP243	BBC BASIC86 on the Amstrad PC's and IBM		8P312		£3.95
	on 32			Compatibles-Book 1		BP313	A	¢3.95
${ }_{8 P 136}$	25 Simple Indoor and Window Aerials	E1.75	BP244	BBC BASIC86 on the A		${ }_{8}^{8 P 314}$	A Concise Introduction to $\mathrm{Q}^{\text {a }}$	¢4.95
P137	BASIC \& FORTRAN in Parallal	E1.95		Compatibles - Book 2: Graphics and Disk Flles	£3.95	BP318	A Consise User's Guide to MS-DOS 5	¢4.95

IF NO PRICE IS SHOWN THE BOOK IS OUT OF PRINT (O.O.P.)

SEE PREVIOUS PAGE FOR FULL ORDERING DETAILS

PCB SERVICE
 Printed circuit boards for certain EE constructional projects are available

 from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in $£$ sterling only).NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery-overseas readers allow extra if ordered by surface mail.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

E! An ocasommo page reduced to $1 / 2$ PRICE

PROJECT TITLE		Order Code	Cost
Video Guard Alarm	FEB.87	556	£3.80
Computer Buffer/Interface	MAR 87	560	£3.32
Fridge Alarm	MAY'87	565	£3.00
Mini Disco Light	JUNE'87	. 7	£3.00
Fermostat	JULY 87	9	£3.34
Monomixer		571	£4.75
Noise Gate	SEP'87	577	£4.41
BBC Sideways RAM/ROM	NOV'87	585	£4.10
Pseudo Echo Unit	DEC 87	586	£4.60
Game Timer	FEB'88	583	£3.55
SOS Alert	MAR ${ }^{\text {P }} 88$	595	£3.00
Pipe \& Cable Locator	APR 88	598	£3.00

PCB SERVICE

See opposite page for ordering details.

REPORTING AMMATEUR RADIO Tony Smith G4FAI

CLASSES RE-START

A press release received from Huntingdonshire College reminds me that September sees the annual re-commencement of evening classes for the Radio Amateur's examination throughout the UK. This is the traditional means of entry into the hobby as opposed to the recently introduced more informal training arrangements for the new Novice licence.

The classes normally last for one academic year and cover basic radio and electronics theory plus radio regulations relating to the amateur transmitting licence. The classes are sometimes linked with a local radio club which provides practical examples of radio operating and an introduction into the local amateur scene. Morse courses are also available nationwide but are usually separate from the RAE courses.

Full details of examinations and courses near you can be obtained from the Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE. For the benefit of readers near Huntingdon, the College course there starts on 16 th September from 1900 to 2100 hours, and is taught by Barry Street G3MSU. Ring him on 0480 52346, extension 159, for more information.

VHF PROPAGATION

To those who might be put off by the idea of learning Morse initially, I should mention that the radio amateur "B" licence for v.h.f. and u.h.f. operation does not require a Morse test and that a wide range of activities take place on these frequencies with most not requiring a knowledge of the code.

In my March column I described these activities. I also mentioned that although v.h.f. is conventionally considered to provide "line of sight" communications, "lift" conditions enable stations many hundreds of kilometres away to be heard and worked, often with modest equipment and antennas.
Even in flat conditions v.h.f. signals do, in fact, extend well beyond line of sight due to changes in the radio refractive index of the air relative to height. The densest air, with the highest refractive index, is that nearest the ground. The v.h.f. radio waves bend towards the area of highest refractive index, thus tending to follow the curvature of the earth and to increase the range of a transmitter.
The following simplified notes describe how radio amateurs take advantage of seasonal and other phenomena to make v.h.f. operation a most interesting, and at times quite exciting, area of activity.

TROPO

A major cause of lift conditions is tropospheric ducting, popularly known as "tropo", which occurs most frequently when atmospheric pressure is high or just beginning to fall. Warm air heated by the ground rises, leaving the air close to the ground cooler than the higher air. Cool air is denser than warm air and the refractive index near the ground becomes higher than normal resulting in increased refraction of radio signals on both the 144 MHz (two metre) and 430 MHz (70 cms u.h.f.) bands. Contacts in these circumstances can cover up to several hundred km.

The same effect arises when a mass of warm air meets a mass of cooled air in a cold front. The warm air rises over the cold air with a defined boundary between the two but this type of temperature inversion may only last a few hours compared with the high pressure lifts which can last for several days.

SPORADICE

Also known as Es, sporadic E normally affects signals between 28 and 80 MHz but in the summer months can extend rapidly up to 150 MHz , providing exciting conditions in the $50(6 \mathrm{~m}), 70(4 \mathrm{~m})$ and $144 \mathrm{MHz}(2 \mathrm{~m})$ v.h.f. bands, with contacts possible on occasions up to 2000 kilometres away. This phenomenon occurs when highly ionised clouds form in the E layer of the ionosphere and signals beamed at the cloud are reflected back to earth.

As the clouds are affected by air currents in the upper atmosphere, beam headings may have to be altered and the area to which signals are reflected may change. These "openings" may last anything from a few minutes to a few hours followed by a rapid fade out. Generally speaking, sporadic E occurs on two metres from May to July, with a longer summer season on the lower frequencies.

AURORA

Auroral propagation occurs when a solar flare releases energy from the sun and charged particles are carried to the earth by the solar wind. These ionise the E layer in the auroral zones around the poles and the aurora created act as reflecting layers for v.h.f. signals aimed at them. Apart from the radio effect, of course, this phenomena is sometimes visible in the UK as the Northern Lights or Aurora Borealis.

In the UK, amateurs aim their beams northwards to make contact with distant stations who are also beaming to the north. Those in northern locations have the greatest success but when there is a major aurora stations in the south of England, and in Europe as far south as Italy, can make exceptionally long distance contacts.

Auroral propagation follows a seasonal pattern, peaking around March and September, although it can occur at any time of the year. It offers the possibility of contacts with stations up to $2,000 \mathrm{~km}$ away but it does require some dedication and access to various early warning arrangements to take full advantage of this fascinating activity. Next month I will describe the even more specialised activities of moonbounce and meteor scatter to conclude this roundup of v.h.f. propagation.

WARM SHACK PREFERRED IN RUSSIA

In a recent letter to Morsum Magnificat, the Morse magazine, Andy Troubachov UA3PIP, a Russian amateur, explains why there are so many radio amateurs in the former Soviet Union still using CW (Morse code) often at professional speeds.
"For a long time" he says, "the USSR was a military state. Many special schools were opened where you could be trained (absolutely free) for any technical specialty, including radio operating and Morse code, in preparation for army service.
"All young men reaching 18 years of age had to serve in the army for two years and most of the future soldiers wanted to be radio operators as they much preferred to sit in a warm shack rather than crawl in the snow with a gun! That's why there are so many high-speed CW operators in Russia with rude habits picked up in the army! Nevertheless, many Russians are very skilful on the key.
"Very few amateurs here can speak English but they do want to work foreign stations. This is easy on CW where all you have to know is just a few codes."

The "rude habits" he mentions refer of course to radio operatingl He really means bad operating habits such as transmitting on a particular frequency without checking first to see if it is already in use.

In a later letter he mentions the awful quality of some Russian signals which cause interference to other stations on the bands. In the west we have often put up with this in the past, knowing that they did not always have access to decent amateur equipment or components.

This is the first time I have seen a reference to the problem from within the area, however, and interestingly the writer says to foreign stations experiencing such interference, "for goodness sake please tell the offender about it and long-suffering local hams working nearby will bless youl"' He even goes on to provide a few appropriate Russian phrases to be transmitted in such circumstances. How times have changed!

A. C. ELECTRONICS
 SURVEILLANCE?
 Easy-Build Kits or Built Units.

Microtransmitter, $15 \mathrm{~mm} \times 25 \mathrm{~mm}$, received on standard VHF radio; kit $£ 5.99$, built $£ 9.99$ (picks up whispers and transmits up to $1 / 2$ mile). Telephone transmitter, can be hidden in handset; kit $£ 5.99$, built £9.99. "Stinger" shock circuit, can run off 9 V battery, unpleasant shock, originally for electric fences etc; kit $£ 11.99$, built $£ 19.99$. Lots of locksmith tools, transmitters in calculators, plug-in adaptors, alternative technology plans, surveillance kits etc.

Send 4×1 st class loose stamps for list - Cheque/POs to.
A.C. ELECTRONICS. Dept. E.E.

53, WOODLAND WAY, BURNTWOOD, STAFFS WS7 8UP.
CREDIT CARD ORDERS: 0543676477 (24 hours) MAIL ORDER ONLY.
Devices not licenceable or BT approved.

Hesing Technology

Cromwell Chambers, 8 St . Johns Street, Huntingdon, Cambs. PE18 6DD

Tel: (0480) 433156 Fax: (0480) 214488

TEST EQUIPMENT
Supply
Maintenance
Commissioning

SYSTEM CONSULTANCY Replacement Parts Supply of Service \& Operators Manuals Components

Distributors for.
WAUGH INSTRUMENTS, RAMTEST LTD.. KRENZ ELECTRONICS, PANTHER

WE HAVE THE WIDEST CHOICE OF USED OSCILLOSCOPES IN THE COUNTRY

TEXTRONOL 24458 Far Chare 150 He,
 TEKTRONIXX 475 Dual Trace 200NH2 Delay Sweep
CuMERGERENERTEC 5218 Three Trace 200Min Dear
TEITROWNX 2225 Ow al Trace 50MHz Delay EEKIRONXX 465 Dual Trace 100 NHz Delay S wee
PHILIPS PM 3217 Ital Trace SoM Hz Delay
 With V4 852 N . MME 605 Dual Trace 60M Hz Delay Sweep. Cu ld OSS00 Dual Ir ace 20MH2 COULD OS 1 100 Dual Tr xe 30 Mint could 05250 DVal Ir ace 15 MH -
FARNEL DT12.50ual Trace 12 NH H.
HACH V209 Dual Trace 20MH2 UCIOC Operation

[^0]ordering. CARRIAGE all units $£ 18$ VAT to be added to total of goods and carriage.
STENYAT OFF READING VA
110 WYKEHAM ROAD, READING, BERKS RE 1 PL WA

VARIABLE VOLTAGE

 TRANSFORMERSINPUT 220/240V AC 50/60
OUTPUT $0-260 \mathrm{~V}$
0.5 KVA 25 amp max ($£ 39.54$ inc VAT)
£ 47.65
$(£ 51.29$ in VAT) £6.25
(£51.29 inc VAT) 2 KWA 10 amp max $\quad £ 54.00 \quad £ 7.80$ 3KVA 15 amp max $\quad £ 71.50 \quad$ ($\mathcal{5} 72.62 \mathrm{inc}$ VAT) 5KVA 25 amp max (£93.
f 26.50 (Plus Carriage)

Buy dive

 COMPREHENSIVE RANGE OFCOMO (190.240V Auto uanslee ether cased with American socket mains lead of Open frame type. Available for mmentian detwery.
VITA VIOLET BLACK LIGHT ULTRA VIOLET BLACK LIGHT
FLOURESCENT TUBES

 13 in 10 war $85.80+75 \mathrm{p}$ p\&p $12 \min 8$ watt $f 4.80+75 p p \&_{p}$
$\sin 6$ watt $f 3.96+50 p$ pRop
$\operatorname{Gin} 4$ watt $£ 3.96+50 p$ pR p
£ 14.10 inc VAT)
f 10.21 inc VAT)
$(9852$ inc $)$

For p\& for For

400 WATT UV LAMP

$$
\begin{aligned}
& \text { LIGHT MERCURY LAMP } \\
& \text { Available with BC O ES fitting. Price inc } \\
& \text { \& p } 8 \text { p and VAT E20.86 }
\end{aligned}
$$

12V D.C. BILGE PUMPS

$$
\begin{aligned}
& \text { Only f34.00 + E2.50 p\&p E } 42.89 \text { inc VAT) } \\
& 175 \text { WATs SEF BALLASTED BLACK } \\
& \text { LIGHT MERCURY LAMP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Available with BC o ES } \\
& \text { \& p } \$ \text { p and VAT } \mathrm{E} 20.86 \\
& \hline
\end{aligned}
$$

Buy direct from the importers
500 GPU 15 f head 3 amp $£ 1636$
1750 GPH 15 f head $9 \mathrm{amp} £ 27.41$
PRICES INCLUDE P\&P \& VAT
(Es. $24 . \mathrm{nc}$ VAT)
(55.24 inc VAT)

Build you own EPROM ERASURE K price of a made -up unit kit of pant fo rs a fraction of the 12 in 8 watt 2537 Angst Tube Ballast unit, pase of burin
leads, neon indicator, on/off switch, salary micteswich circuit $£ 14.00+£ 2.00$ p\&o p
SUPER MYich, saiery microswich and
(118.80 inc VAT) Designed for Disco, Theatrical use etc.
Approx 16 joules Adjustable speed $\mathbf{f 5 0 . 0 0 + \AA 3 . 0 0 \text { prop }}$
(62.28 inc VAT)

'BOFFINS SPECIAL UNIQUE OFFER

Surplus Precision Medical Unit internally in excel-
lent condition. Designed primarily to eject controllable amount of fluid from a medical syringe (latter not supplied). Contains the following removeable components: Dual Micro Processor Boards and
EPROMS. Escap Precision 12 V DC Motor with 3001 Gear Box and optical encoder coupled to a precision threaded drive mechanism. Mains supply
with $6 \& .5 \mathrm{Ni}$ Ni-Cad A.A. cells back-up. L.CD Digital readout 17 mm high with legends Audible warning.
quality components. Regret no Circuits available. Ridiculously low price: $£ 16.00+£ 4.00$ pep
($£ 23.50$ incl VAT). WIDE RANGE OF XENON FLASHTUBES Write/Phone your enquiries 12 V D.C Revers .C. GEARED MOTOR 12 V D.C Reversible precision-buil Motor Output
speeds no load approx. $12 \mathrm{~V}-26$ rpm; $9 \mathrm{~V}-20$ rom $6 \mathrm{~V}-12$ speeds no load approx. $12 \mathrm{~V}-26$ rpm; $9 \mathrm{~V}-20$ rom; $6 \mathrm{~V}-12$
nom. Will work at lower voltages and still retain a reasonable torque. Ideal for robotics etc. Size: L
40 mm . W. 29 mm H. 39 mm . Shaft: 3 mm die $\times 10 \mathrm{~mm}$ Ing. Price: $58.00+50$ p $\&$ (10.00 inc. VAT) $230 \mathrm{VAC}, 2.800 \mathrm{RPM}, 0.9$ amp. 130 mm diameter, im .
pellor outlet $63 \times 37 \mathrm{~mm}$, overall size 19551.20 15 mm . long Price $£ 17.50+E 2.50$ pap ($\mathbf{E 2 3 . 5 0 \mathrm { mc }}$
VAT) 7 amp tu 240V. AC. sink. Can be driven from T.T.L. or Computer output be
tween 3 -10V D.C. Size $24 \mathrm{~mm} \times 17 \mathrm{~mm} \times 1$ mm
Fix.
 ($\mathbf{C} 4.00 \mathrm{inc}$. VAT) GEARED MOTORS 71 RPM 201 b inch torque reversable 115 V AC in
put including capacitor and transformer for 240 V AC operation. Price inc VAT \& P\&TP £23.50.

> SOLID STATE ERT ONT $\begin{gathered}\text { Input } \\ \text { 230/240V AC, Output apery }\end{gathered}$
 Easily modified for $20 \mathrm{sec}, 30 \mathrm{sec}$ to continuous Designed for boiler prysition, Dozens of uses in the
 HEAVY DUTY MOTOR Crouzel $115 \mathrm{~V} / 230 \mathrm{~V}$ AC heavy duty PR PM motor. An org. Shat 6 mm diameter $x 20 \mathrm{~mm}$ long Price inc VAT

$$
\begin{aligned}
& \text { RHEOSTAT } \\
& 50 \mathrm{~W} 2 \mathrm{omm} 5 \text { amp ceramic power heostat price inc } \\
& \text { VAT \& } \mathrm{p} \text { \& } \mathrm{P} \text { E10.61 }
\end{aligned}
$$ VAT \& $p \& / \mathrm{P}$ E10.61 MICRO SWITCH Pyre 15 amp changeover lever microswitch, type S 17 NBS = NEW MANUF SURPLUS R\&T = RECONDITIONED AND TESTED

Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH. Tel: (0202) 881749
For rates and information on display advertisements ('sth page and larger spaces) please contact our Advertisement Manager, Peter Mew on 0255850596.

SERVICE MANUALS

Available for Most Equipment

TV, Video, Audio, Test etc
Any Age, Make or Model
Write or Phone for Quotation
MAURITRON (EE)

8 Cherry Tree Road
 Chinnor, Oxfordshire

Tel: (0844) 351694
Fax: (0844) 352554

N. R. BARDWELL LTD (EE)	
	Signal diodes 1N4148................................
	thier
	55 Timer lic
	Op Ampi.c.
	C106D1 400V6
	BFY51 Tra
	47
	MPSA
	Assti
	Minl
	Assid
	$43^{\prime \prime}$
	22N
	33NF
	Assto
	$44716 V$ Radia
	4 Cl 63V Aadial electrolytics
	10UF 18 V Aadial electroy ${ }^{\text {atics }}$
	22UF 25 V Radial
	33UF 16 V Ra
	UF Sov
	UF 50VRad
	OUF 10 V Ra
	220 UF 16 V Rad
	UF 10
	1000UF 10 V R
	Assid. IF
	Astd. RF
	Assid. dil sock
	Assorted sock
	1 inch Glass
	3W MBE
	Min SP/CO slid
	annetic
	Pellier effiect tieat
	watt Stereo
	mm Flashing
	mm Ulira brighti.e.d. red 300 MCD . rices Include VAT, postage
288 Abbeydale Road, Sheffield S7 1FL Phone (0742) 552886. Fax (0742) 500689	
RCS VARIABLE VOLTAGE D.C. BENCH POWER SUPPLY	
1 to 24 volis up to $\% / 2$ amp. 1 to 20 volts up to 1 amp . 1 to 16 volts up to $1 \frac{2}{2}$ amps d.c. Fully slabilised. Twin panel melers for instant voltage and current readings. Overiose protection	
Operatestrom	
insurance ${ }^{2} 4$	
NEW MODEL Up to 38 volis d.c. at 6 amps 10 amps peak. Fully variable Twin panal meters. Size $14 \% \times 11 \times 4 \times$ in. $\mathbf{c o s}$ inc VAT Cart 66 .	
RADIO COMPONENT SPECIALISTS	
337 WHITEHORSE ROAD, CROYDON SURREY, U.K. Tel: 081-684 1665	

NEW VHF MICROTRANSMITTER KIT
uneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive electret microphone, high quality PCB.
SPECIAL OFFER complete SPECIAL OFFER complete kit ONLY $£ 5.95$ ssembled and ready to use $£ 9.95$ post free Send 2×1 st ciass stamps lor Catalogue. Cheques/ $/$ P.o.s. payable QUANTEK ELECTRONICS LTD
Kits Dept. (EE), 3 Houldey Road, SHOP NOW OPEN - CALLERS WELCOME

Looking for a home study course, in the fundamentals of electronics? Whether you are a beginner, or an old hand requiring a refresher, the

DIRECT PERSONAL LEARNING

course, could be right for you. Contact: K. Sparrow
(Electronic Training Consultant) 11 Claydon Green, Whilchurch, Bristol, Avon BS14 ONG. Tel: 0275835669

THE BRITISH AMATEUR ELECTRONICS CLUB

 exists to hetp electronics enth usiasts by personal contact andthrough a quarterly Newsletter. For details, write to the Secretary Mr J. S. Hind, 7 Carlyle Road West Bridgford, Nottingham NG2 7NS Space donaled by Everyday Elecironics

va

Cooke International

FOR SALE

Scopes, Sig. Gens, PSU's, Power Meters. DVM's. Oscillators, Attenuators, etc
USED TEST EOUIPMENT
Open Mon-Fri 9am-5pm or Phone
Copy Service for Workshop Manuals available. Ask for

SATURDAYS ONLY
 OPEN OUR BARGAIN STORE $10 \mathrm{am}-4 \mathrm{pm}$ CASH ITEMS TO CLEAR. Tel 0243545111

Contact: Cooke International, Units $4 / 5$, Fordingbridge Site, Main Road, Barnham Bognor Regis, West Sussex PO22 0EB
Tel: 0243545111 Fax: 0243542457
Wide range of ltems avallable. Send SAE for lists

Miscellaneous

G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COIS 3TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro. 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203.
STUDY ELECTRONICS on the BBC Micro. An interactive approach to learning. Four program titles available "Introduction to Electronics Principles", 'Electronics Mathematics', 'Digital Techniques' and now 'Programming for Electronics". Programs include theory, examples, self test questions, formulae, charts and circuit diagrams. User inputs and calculated outputs, $£ 29.95$ each plus £2pp. Cheque or Postal Order to E.P.T. Educational Software, Pump House, Lockram Lane, Witham, Essex CM8 2BJ. Please state BBC 'B' or Master series and disc size.
SATELLITE CHANNEL REPORT. 32 pages documenting transponder video, audio and data on every satellite within your range worldwide, updated monthly. Available as single issue or by subscription. Call: DTL. 0491681502 . Fax: 0491 681944
MARCONI AM/FM sig-gen (valve TF995A/S) 1.5220 MHz , ext. modulation input (range approx. I mile as transmitter). Precision instrument, $£ 150$ including delivery. Tel 0254247510.
PROBLEMS with your project? Kit assembly, problem investigations, design work undertaken. Hourly rates or fixed prices available. Contact EDS, 205 London Road, Westcliff-on-Sea, Essex. Tel 0702464398

Fuselodge Ltd, Telephonelfax 267 Acton Lane
 081-994 Chiswick, London W4 5DD 6275

We stock a large range of Electronic components, semiconductors, switches, resistors capacitors, transformers, fans, cables, leads, boxes, tools, etc. Power supplies, test equip ment. Custom made S.M. power supplies

Mail order \& Credit Cards accepted

PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

SUPER FM MICROTRANSMITTERS

 HEAR ON ANY FM RADIO UUL INSTRUCTIONS BUILT-IN MICROPHONE LONGASED HIGHLY SENSITIVE ASY TO USE READY TO USE

ASY TO USE ON/OFF SWITCH E9.50 Post free GUARANTEED Mr B. Hicks, 24 Brewster Rd, Boston, Lincs PE21 0DY

This 2.5 cm space in Everyday Electronics Will ONLY cost you
 20 + VAT

 TECHNICIAN FULL-TIME TRAINING
SE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT
AN EQUAL OPPORTUNITIES PROGRAMME O.N.C., O.N.D. and H.N.C. Next course commences

FULL PROSPECTUS FROM
(Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721

SOLAR PANELS

Speclal orter 12 V nom ($20 \mathrm{~V} \mathrm{o} / \mathrm{c}$) 80 mA .12 x cludes P\&P Many phous siricon panel $£ 4.50$ in and other products.

Robert Keys, 4 Glanmor Crescent Newport Gwent NP9 8AX

Rechargeable Batteries:
Size AA Pack of 4 - $\mathbf{~} 4.25$
Size RX14 Pack of $2-£ 4.25$
Size HP2 Pack of $2-54.75$
Size HP2 Pack of $2-24.75$
Universal Charger to charge all the above batteries - $£ 5.75$
Nickel Cadmium 5 hour Battery Charger will charge: AAA, AA - $5 / 7$ hours PP3 size - $14 / 15$ hours (cat. no. NC500P) - $£ 6.00$
Rechargeable Torch inc. mains adaptor, also charges from car battery, plug
and lead included- $£ 9.50$
$300 \mathrm{M} / \mathrm{A}$ Power Supply, output voltage $3,4.5,6,7.5,9,12$. Plugs into
13 amp socket, suitable for calculators, small radios, etc. - $£ 3.75$
Mains Power Supply Unit DC output 300M/A regulated output, switchable for 3, 4.5, 6, 7.5, 9, 12V. - £6. 25
F.M. Microphone (cordless) transmits signal on 98 MHz F.M. inc. batt. £8.50
A.M. Pocket Radio with wrist strap, inc. batteries $-£ 3.50$

Telephone Ext. Leads: $3 \mathrm{~m}-£ 2.50,5 \mathrm{~m}-£ 2.80,10 \mathrm{~m}-£ 3.50$. 15 m $€ 4.00$
Telephone Double Adaptor to run two telephones from one socket - $£ 2.00$ Master Telephone Socket - $£ 3.00$ Slave/Secondary - $£ 2.00$ Baby Night Light Auto On/Off - $£ 4.75$

All above inclusive of postage and packing.

J.ROBINSON (ELECTRONICS)
 1 WORTHINGTON DRIVE, SALFORD, MANCHESTER M7 OJE
 Tel: 061-792 2299 Fax: 061-7922299

Technical Information Services

76 ChURCH STREET, LARKHALL, LANARKSHIRE, ML9 IHE Tel. (O698) 884585 Mon-Fri 8.30am - 5.00 pmm Tel. (0698) 883334 Outwith business hours
FAX facility avallable all day on both Ines
Write now will an SAE for vour Write now with an SAE for vour
FREE QUOTE FREE VOUCHERS \& FREE CATALOGUE
Remember, nol only do we have EVERY service sheet ever produced, bul we also have

THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS
\& WE ARE SOLE SUPPLIERS OF VARIOUS FAULT-FINDING GUIDES REPAIR MANUALS \& TECHNICAL MANUALS

DATA REFERENCE MANUAL "....essential for the serious electrician" FREE updating and a 10% discount voucher only Y5.95

COMPONENTS
Foı TV * Video
Audio * Computer
VIDEO BELT KITS

AMSTRAD VCP
FISHER
FVHPOOM $/ 4000 / 5200$

JVC
JVC SANYO HTC6500. SERVICE MAHUALS BINATONE $01 / 9771$
PHILLPS
KT4/K40 Chass Is
 SEMICONDUCTORS
 OTHERITEMS E0.49
 TOSHIBA STU2 Mannstranstor FIDELITY $14 \% 166^{2 / 20}$ General
 AMSTRAD VCRA500,4600 Pinch This is lus a a smail sample ol slock. Please send 3×18 stamps for our cataliogue or
request a tree coop with first order Order by Post or Phone. We accept payme Ordee by Post or P Pone. We accepp payment
by VISA. ACCESS. DELTA. SWTCH Cheque
or P.O. Post A Aacking is 1 . or P.O. P.
ado on.
add on.
All hems
Ainhems subiect to a vailuatirnc.
can change without notice.

WE CAN SUPPLY A VAST RANGE OF SPARES tor many maken of TV. Vidoo. Compurer \& Audio Equipment. WRITE
(Encl. so o. please) or PHONE
 COMPUTER SPARES

 STKA2000....

 $2 \times 8302(04)$
2×8401
ZX8ec. +2 ROM....

EPSON
C78010B0031 CPU.
> . 530.24 M881416-12 DRAM E18 8.06

Carbon Film resistors 1/4W 5\% E24 series 0.51 R to 10MO 100 off per value $-75 p$. even hundreds per value totalling 1000 Metal Film resistors $1 / 2 \mathrm{~W} 10$ R to 1 MO 5% E12 series - $2 p .1 \%$ E24 series Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E24 series 1 RO to 10 MO . 1 watt mixed metal/Carbon Film 5\% E12 series 4 R 7 to 10 Megohms Linear Carbon pre-sets 100 mW and $1 / 4 \mathrm{~W} 100 \mathrm{R}$ to 4 M 7 E6 series. Miniature polyster capacitors 250 V working for vertical mounting $.015, .022,033, .047, .068-4 p .0 .1-5 p .0 .12,0.15,0.22-6 p .0 .47-8 p .0 .68-8 p .1 .0-12 p$ Mylar (polyester) capacitors 100 V working E12 series vertical mounting
1000 to $8200 \mathrm{p}-3 \mathrm{p} .01$ to $068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12 .0 .15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V} .8 \mathrm{p}$ 1000 p to $8200 \mathrm{p}-3 \mathrm{p} .01$ to $.068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12 .0 .15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}-8 \mathrm{p}$ Sub 18 pf to $47 \mathrm{pf}-3 p .2 \% 56 \mathrm{pf}$ to 330 pf - $4 \mathrm{p} .10 \% 390 \mathrm{p}-4700 \mathrm{p}$. g . 2 series $2 \% 1.8 \mathrm{pf}$ to $47 \mathrm{pf}-3 \mathrm{p} .2 \% 56 \mathrm{pf}$ to 330pf - $4 \mathrm{p} .10 \% 390 \mathrm{p}-4700 \mathrm{p}$. Disc/plate ceramics 50 V E12 series 1 PO to 1000 P. E6 Series 1500P to 47000P 10 pf to 820 pf - 5 p . 1000 pf to 10.000 pf - 6 p . 12.000pf
741 Op Amp - 20p. 555 Timer
cmos 4001-20p. 4011 - 22p. 4017.
ALUMINIUM ELECTROLYTICS (Mfós/Volts)
1/50, 2.2/50, 4.7/50, 10/25, 10/50
22/16, 22/25, 22/50, 33/16, 47/16, 47/25, 47/50
100/16, 100/25 7p; 100/50 12p; 100/100
$220 / 168$ p; 220/25. 220/50 10p; 470/16. 470/2
$1000 / 2525$ p: $1000 / 35.2200 / 25$ 35p; 4700/25
1000/25 25p; $1000 / 35$, 2200/25 35p; $4700 / 25$
Submin, tantalum bead electrolyics (Mfds/Volts)
$0.1 / 35,0.22 / 35.0 .47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
$2.2 / 35,4.7 / 25,4.7 / 35,6.8 / 1615 p ; 10 / 16,22 / 6$. $33 / 10,47 / 6,22 / 16$ 30p; 47/1035p; 47/16 60p; 47/3 VOLTAGE MEGULATORS
$1 \mathrm{~A}+$ or $-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}-55 \mathrm{p} .100 \mathrm{~mA} .5 .8,12,15, \mathrm{~V}+\ldots30 \mathrm{p}$ DIODES (piv/amps)
75/25mA 1N4148 2p. 800/1A 1N4006 41/p. 400/3A 1N5404 14p. 115/15mA OA91 . 8p 100/1A 1 N 4002 31/2p. 1000/1A 1 N4007 5p. $60 / 1.5 A$ S1 M1 5p. 100/1A bridge 400/1A 1 N 4004 4p. 1250/1A BY 127 10p. 30/15A OA47
Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8p. 1 watt.
Battery snaps for PP3-6p for PP9
L.E.D. s 3 mm . \& 5 mm . Red, Green, Yellow - 10p. Grommers $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$.

Red liashing L.E.D. s require 9.12 V suppl
Mains indicator neons with 220 k resistor
20 mm fuses 100 mA to 5 A . O. blow $6 \mathrm{p} . \mathrm{A} /$ surge 10 p. Holders, chassis, mounting High speed pc drill $0.8,1.0,1.3,1.5 .2 .0 \mathrm{~mm}-30 \mathrm{p}$. Machines 12 V dc
HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs
AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unit.
Glass reed switches with single pole make contacts - 8p. Magnets
0.1 "Stripboard $21 / 2^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes - 25p. $3^{3} \times 21 /{ }^{\prime \prime} 24$ rows 37 holes

ADVERTISERS INDEX

A.C. ELECTRONICS................. 541	J. ROBINSON (ELEC).
N. R. BARDWELL.................... 542	LASER SCIENCE.................... 478
R. BARTLETT........................ 527	MAGENTA
BK ELECTRONICSCover (iii)	ELECTRONICS.............480/481
BLB ELECTRONICS................ 527	MAILTECH............................ 503
BRIAN J. REED...................... 544	MAPLIN ELECTRONICS Cover (iv)
BULL ELECTRICALCover (ii)	MARAPET............................ 543
CAMBRIDGE COMP.	MAURITRON......................... 542
SCIENCE........................... 527	M\&B ELECT. SUPPLIES.......... 521
CASTLE ENGINEERS.............. 476	MODERN ELECTRONICS
COMPELEC........................... 478	MANUAL....................530/531
CRICKLEWOOD	NUMBER ONE SYSTEMS....... 476
ELECTRONICS................... 527	OMNI ELECTRONICS............. 478
CR SUPPLY COMPANY........... 544	PICO TECHNOLOGY............... 476
ESR ELECTRONIC COMP........ 482	RACKZ PRODUCTS................ 543
GREENWELD ELECTRONICS.. 477	SERVICE TRADING CO........... 541
HART ELECTRONIC KITS......... 479	SHERWOOD ELECTRONICS... 527
HESING TECHNOLOGY.......... 541	STEWART OFREADING.......... 541
ICS..................................... 543	SUMA DESIGNS................... 474
JAYTEE ELECTRONIC	TECHNICALINFO. SERVICES. 543
SERVICES................ 541 \& 543	TSIEN................................... 491
JPG ELECTRONICS............... 478	TYPESETTING BUREAU.......... 544

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only.
All inclusive prices -
NO post, or VAT etc to add on.
Send 34 p stamped self addressed label or envelope for catalogue/clearance list.
At least 2,100 offers to amaze you.

Brian J Reed

6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 081-393 9055

Typefit

6 Church Street, Wimborne
Dorset BH211JH
Tel: (0202) 882299
Fax: (0202) 841692
Modem: (0202) 882270

The Typesetting Bureau Ltd

DX: 45314 Wimborne
PC page make-up software and typesetter output bureau
"For serious document production it knocks other DTP software into the proverbial cocked bat."

Those are the words of Jim Tyler, an independent journalist after reviewing Typefit for "Micro Computer Mart". His letter to us went on to say:
"I spent two years editing a magazine, I bave been inpolved in running a DTP bureau and I currently make my living writing classic car restoration manuals for a division of Reed Business International. I would choose Typefit for any of these roles."
No we did not pay him anything - he did not even get a free copy of our software (Typefit only costs $£ 225+$ VAT anyway). And just for the sceptics he is not a personal friend, relative or shareholder in the company.
His sentiments are backed up by our customers, some of which have changed from other well-known DTP packages costing much more - they tell us Typefit is more
versatile and provides them with use of a better range of quality typefaces (230 different fonts).
With Typefit you do your own Typesetting, proof and correct your work, we provide the expensive phototypesetter and fonts to give you top quality 2000 dot per inch bromide output.
Before investing in any other DTP package and especially before spending a small fortune on a specialist typesetting computer or other equipment, please investigate Typefit.

OMP MOS-FET POWER AMPLIFIGR MODULES SUPPLIED READY BUILT AND TESTED.
 drive circults to power a compatible Vu meter. All models are open and short circuit prool.
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mo5-Fet Output power 110 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE C40.85 + E3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE $64.35+$ E4.00 P\& P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, input Sen PRICE EB1.75 + $\mathbf{E 5} .00$ P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE $£ 132.85+$ E5.00 P\&P
NOTE, MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS STANDARD - INPUT SENS SOAEMV, BAND WIDTH 10OKHZ, PEC (PROFESSIOMAL EOUIPMENT COMPATIBLE)-INPUT SENS
TISMV, BAND WIDTH SOKHz ORDER STANDARD OR PEC.

Vu METER Compatible with our four amplifiers detalled above. A very accurate visual display employing 11 L.E.D.s (7 green, 4 red) plus an addititional on/oth odicator. Sophisticated logic control tor very tast rise and decay tlmes. Tough moulded plastic case, with acrylic tinted front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $£ 8.70+50 \mathrm{P}$ P\&P

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (50p STAMPED) FOR COMPLETE LIST.
P- From McK enzle Prolesslonal Series
S- From Mckenzie Studio Series

MCKENEIEF- NSTRUMENTS, P.A., DISCO, EIC

ALL MCKENZIE UNITS 8 OHMS IMPEDANCE

B" 100 WATT P CB-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO. RES. FREQ. 80 Hz , FREO. RESP. TO 7 KHz , SENS 96 dB . RES. FREQ. 72 Hz , FREO. RESP. TO 6 KHz , SENS 97 PBB . 10" 200 WATT S C $10-200 \mathrm{GP}$ GUITAR, KEYB ${ }^{\prime}$ D Dis 10 200WATT
RES. FREO. 69 Hz , FREO. RESP. TO SKHZ, SENS 97 ClB . RES' 100WATT F C12-100GP HIGH POWER GEN. PU RES.FREO. 49H2, FREO. RESP. TO 7KHz, SENS 98 dB . 12 100WATT P C12-100TC (TWIN CONE) HIGH PO RES. FREO 45Hz, FREQ. RESP. TO 12 KHz , SENS 97 dE . $2^{\prime \prime}$ 200WATTS C12-200B HIGH POWER BASS, KE PES. FREO. 45HZ, FREO. RESP. TO SKHZ, SENS 99dB. 12" 300WATTS C12-300GP HIGH POWER BASS, RES. FREQ. 49 Hz Z FREO. RESP. TO 7 KHz , SENS 100 dB . RES. FREO. 40 Hz . FREO. RESP. TO $5 K H z$, SENS 98 dB . RES. FREO. 40HZ, FREO. RESP. TO SKHz, SENS 98dB.
15 200WATH. FREO. 40 Hz , FREO. RESP. TO 3 KHz, SENS 98dB.
 RES. FREQ. 39 Hz , FREO. RESP. TO 4 KHz , SENS 99 dB . 5 400WATT S C15-400BS VERY HIGH POWER, L RES. FREO. 40 Hz, FREO. RESP. TO 4 KHz , SENS 100 dB . 18" 500WATT S C18-500BS EXTREMELY HIGH POW RES. FREO. 27Hz, FREQ. RESP. TO 2 KHz , SENS. 98 dB . \qquad
LL EARBENDER UNITS 8 OHMS (Exceol EB8-50 \& EBTO-50
ALL EARBENDER UNITS 8 OHMS (Ercep EB8-50 \& EBTO-50 Which are du
B" 5 Owatt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR

 RES. FREO. 40Hz, FREQ. RESP. TO SKHz, SENS. 99dB. O" 100WATT EB10-100 BASS, HI-FI, STUDIO.
RES. FREO. 3 HZz, FREQ. RESP. TO 3 KHz , SENS 96 dB .
12" 100WATT EB 12-100 BASS. STUDIO, HI-FI, EXCELLENT DISCO.
FULL RANGE TWIN CONE, HIGH COMPLIANCE, RO
$51,{ }^{\circ}$ 6OWATT EB5-60TC (TWIN CONE) HI-FI, MUITI-ARRAY SURROUND
RES. FREO. 63 Hz , FREO. RESP. TO 20 KHz , SENS 92 dB . 61/2" $\mathbf{6 O W A T T}$ EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC. RES. FREO. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . " GOWATT EB8-60TC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC. PRICE \&10.99 + 1.50 P\&P RES. FREO. 40 Hz , FREO. RESP. TO 18 KHz , SENS 89 dB . 10" 60 WATT EB10-60TC (TWIN CONE) HI-FI, MULTI ARRAY DISCO ETC RES. FREQ. 35 Hz , FREO. RESP. TO 12 KHz , SENS $98 d B$.

URANSMTITER HOBBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS

COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER 80 -108MHz, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES, SIZE $38 \times 123 \mathrm{~mm}$, SUPPLY 12 V @ 0.5AMP. PRICE C14.85 + $\mathbf{C 1 . 0 0}$ PAP
FW MICRO TRAMSMITTER $100-108 M H z$, VARICAP TUNED, COMPLETE WITH VERY SENS FET MIC, RANGE 100 -300m. SIIE 56146 mm . SUPPLY YV BATTEAY.

Over 700 product packed pages with hundreds of brand new products. On sale from September 4th, only $£ 2.95$

Available from all branches of WHSMITH and Maplin shops nationwide. Hundreds of new products at super low prices!

(Incorporating East Cornwall Components)

OUR FANTASTIC SUMMER OFFER $1 \times$ Desolder Stand $1 \times 200 \mathrm{~g}$ Solder ($60 / 4018 \mathrm{~g}$ or 22 g)
 WHEN YOU SPEND £15.00 YOU CAN
 BUY THESE TWO FOR ONLY £2.99

(Normally £5.35)
PLUS - PLUS - PLUS - PLUS - PLUS
Our latest 132-page catalogue (normally £2.00)
FREE upon request when you spend £10.00
(NO MINIMUM ORDER, ALL PRICES INC. VAT. P\&P £2.25)

ANOTHER ILLUMINATING OFFER

A very attractive twin tube fluorescent light complete with two 12 Volt 8 Watt fluorescent standard type \& size tubes. White plastic case with clear plastic ribbed diffuser and ON/OFF switch. The light is fitted with approx. 90 cms . of twin flex for connection to 12 V battery or other 12 V power supply. Cable is colour coded for polarity identification. These lights are ideal for Caravans, Boats, Vans, Camping etc etc.
Overall dimensions: $370 \times 65 \times 41 \mathrm{~mm}$

$1+$	$10+$	$50+$	$100+$
$£ 5-99$	$£ 5-50$	$£ 5-00$	$£ 4-75$

SINGLE 12Volt Fluorescent Light
Identical to the above unit but SINGLE tube fitting. ORDER CODE: OPTO/SFLl2
£5-50
£5-00
£4-50
£4-25

SPARE TUBES
Standard 12 V fluorescent tube suitable not only for our lights above but for most other makes. Tube length is approx: 300mm incl. pins.

Colour: White.	$1+$	$10+$	$50+$	$100+$
ORDER CODE: OPTO/TUBE	$£ 1-50$	£l-25	£l-00	$85 p$

PORTABLE 12V FLUORESCENT LIGHT - 12Volt

Free-standind or hanging (Hanging hook supplied), with approx. 5 Metres lead terminating in standard car type cigar plug. Ideal for use in Car, Boat, Caravan, Van, Camping etc. Sealed unit therefor completely weatherproof, they even float on water!! The fluorescent light is l2volt \& lowatts.
Overall dimensions: $430 \times 30 \mathrm{MM}$ dia.
ORDER CODE: OPTO/PEL12

$1+$	$10+$	$50+$	$100+$
$£ 5-99$	$£ 5-50$	$£ 5-00$	$£ 4-75$

WE ARE THE IMPORTERS OF THESE ITEMS. LARGER QTY. PRICES AVAIL.

- SUPER SOLDER SALE

High grade $60 / 40$ tin/lead alloy solder available in both $18 s w g$ \& 22swg, in a choice of reel sizes from 18 gms to 500 gms ($\frac{1}{2} \mathrm{Kg}$). Manufactured to BS219. Contains 5 cores of type 362 non-corrosive flux. Melting temperature is $188^{\circ} \mathrm{C}$. NOW JUST LOOK AT OUR AMAZING PRICES 18 swg (1.2 mm)

Reel Size 18 gms	Approx. Length 3 Metres	ORDER CODE SOLD/18/3Y	$1+$	$\begin{aligned} & 10+ \\ & 50 P \end{aligned}$	$\begin{aligned} & 100+ \\ & 40 P \end{aligned}$
18 gms	3 Metres	SOLD/			
200 gms	21 Metres	SOLD / 18/200	£2-25	£2-00	£1-60
$500 \mathrm{gms} \quad\left(\frac{1}{2} \mathrm{Kg}\right)$	52 Metres	SOLD/18/500	£4-75	£4-25	ع 3-50
$22 \mathrm{swg} \mathrm{(0.71mm)}$					
200 gms	62 Metres	SOLD / 22/200	£2-35	ع2-10	£1-75
$500 \mathrm{gms} \quad\left(\frac{1}{2} \mathrm{Kg}\right)$	153 Metres	SOLD / $22 / 500$	c4-79	£4-30	£3-60

Suitable for use with ANTEX and most other leading makes of soldering irons. The heavy base makes it very stable. Supplied complete with sponge
ORDER CODE: SOLD/814

WHOLESALE PRICES AND EX-STOCK NOW!!

EXTERNAL HALOGEN FLOODLIGHT \& P.I.R.

A high power security floodlight with built-in PIR detector which reacts to body heat switching on the floodlight whenever somebody approaches within the detection zone. The PIR is adjustable for horizontal and vertical angle and contains a photo detector to prevent daylight operation. Power: 220-240Vac.

* Choice of $200 \mathrm{~W}, 300 \mathrm{~W}$ or 500 W lamp.
* Adjustable range up to 15 Metres.
* Adjustable 'Time On' 9 secs to 10 mins.
* Twilight setting is adjustable.

If you don't state a lamp wattage preference 500watt will be sent.

SALE PRICE \&29-99 (Incl. Lamp)
 PROTECT YOUR HOME NOW!

SECURITY SYSTEMS

ORDER CODE - SEC/LGC4 E39-99

OPTIMA XM
Latest updated version of the leading $u k$ selling 'Optima' panel. Rubber keypad, fully selectable 4 digit customer code allows the system to be switched on or off, with the option of omitting zones, quick setting at night and performing simple tests.
very simple to install supplied complete with full fitting instructions etc. Ideal for either office or home. This panel is also available below as a complete Alarm Package saving even more money.
We have sold hundreds of this truly versatile alarm panel. Our number 1 seller

FEATURES

- Reyswitch operated security control unit
* Selectable part guard zone
* Selectable pa and tamper loops.
* Adjustable entry-exit timers.
* Integral 20 minute bell timer \& auto set
* Latching strobe output.
* Simple 4 terminal wiring to each zone

features

* Keypad operated
* 4 zones \& PA \& tamper
* Built in internal sounder
* User may omit any zone.
* Merrory recall for last alarm
* Programable timers including bell cut off.
* Ouick set feature.
* Intelligent auto reset and re-arm.

PROTECT YOUR HOME NOW!

OPTIMA PLUS
As per the Optima XM but also has two communicator outputs thus enabling connection to a British Telecom telephone line. Further technical information is available.

ORDER CODE SEC/OPT/PLUS E75-00
ORDER CODE: SEC/OPT/XM E49-00

We have sold hundreds of these Home Alarm Packages. They represent truly excellent value for money. It is becoming, sadly, a necessity to protect your home and office with a security system and most important of all, one that can be relied upon: OK, and now for the contents of your package:

* OPTIMA XM or LOGIC 4 Panel External Bell Box *iren for Bell Box
* 2 x Lynx Internal P.I.R.'s * $2 \times$ Sets Door Contacts loomts Cable \& Clips

SEC/PACK/OPT \&130-00

* Should you require extra P.I.R.'s for your installation they are available : ORDER CODE: SEC/LYNX

WE ARE PLEASED TO INTRODUCE A NEW RANGE OF UK DESIGNED KITS. ALL THESE KITS REQUIRE THE USE OF A SOLDERING IRON. ALL CONTAIN FULL ASSEMBLY INSTRUCTIONS AND ALL PCB'S HAVE COMPONENT LOCATION'S MARKED.
THE GOLDEN RULE FOR KIT ASSEMBLY IS SIMPLE..... READ THE INSTRUCTIONS 'BEFORE' YOU START..!!!!!!
TWIN ALTERNATE LED FLASHING UNIT
Two LED's of different colours which flashalternately at a fully adjustable rate operatingon an operating voltage from $3 v$ up to 15 Volts, atapprox 25 mA depending on voltage
Ideal for battery use using either $A A, C, D$ orPP3's. Very simple to construct making it idealfor beginners.
Applications: Burglar deterrent. modelconstruction, name badge, sign, jewellery etc.ORDER CODE: COM/KIT/O1
£5-9 9FM MINI-TRANSMITTERA super, very small mini-bug, ideal for baby alarmetc!!! Simply runs off a $A A$. 5 V battery, which wehave had lasting a week or more! Whilst range is difficult to quote because it depends on sitingconditions and the quality of the receiver, we have achieved over half a mile.Simple to construct.ORDER CODE: COM/KIT/003₹7-50(AVAILABLE READY BUILT-SEE BELOW)ATTENTION: SCHOOLS \& EDUCATIONAL ESTABLISHMENTS DISCOUNT AVAILABLE ON 10 KITS OR MORE.
ATTENTION: RETAILERS.... WHOLESALE PRICES AVAILABLE WITH YOIJR OWN NAME HEADER CARD.. CONTACT US NOW!

FM MINI TRANSMITTER - Made in OK - COMDER
Very high quality Mini-bug, ideal for baby alarms etc!!

These units are well tried and tested. They may be the best on the market!
Range is difficult to quote because it depends on conditions, but we have acheived almost $\frac{1}{2}$ a mile.

Simply remove cover, insert AA battery (not included) - and you're ready to go.
Reception can be obtained on any fM radio. Adjustable frequency.
One AA battery can last 5 days continuous! Frequency range....................95-110MHz FM Power................................ AA 1.5 V Battery Dimensions........................ $72 \times 46 \times 22 \mathrm{~mm}$ ORDER CODE: SEC/FMB1 $\& 9^{-9} 9$ \& 7^{-50}

C.C.T.V.

C.C.T.V. CAMERA - (USED)

A steel cased, closed-circuit monochrome $T V$ camera. Ideal for internal or outside (using the weatherproof housing) security and for industrial surveillance.
All camera's are supplied with lens fitted - normally 16 MM
These units ace secondhand the style and overall design may change to the illustration shown. All camera's are thoroughly tested before despatch and should give very long trouble free service. Never mount the camera facing a window or bright light as this wilburn the camera tube. Voltage generally 240 V , if lower we will supply a suitable PSU

SEC/CAMERA/USED

PRICE: £120-00

C.C.T.V. MONITOR - (USED)

Steel cased, good quality black \& white monitors. Depending on availability we can offer sizes from $9^{\prime \prime}$ up to 17". State your preferced size and we will send nearest size available.
Voltage: 240 V
SEC/MON/USED
PRICE:
870-00
C.C.T.V. CAMERA BRACKET - (NEW)

Quality, British made mounting bracket to suit not only our camera's
 but any standard CCTV camera.
White, plastic coated steel with standard in " $^{2}-20$ mount. Locking swivel allows camera to be adjusted and fixed in any position:
SEC/CB

$$
\text { PRICE: } £ 7-75
$$

SPECIAL OFFER
bUY TAE COMPLETE PACRAGE ABOVE i.e. $1 \times$. Camera, $i x$ monitor,

1 x Bracket
and pay only ------£ 185-00
(Extra Cars. E10-00)

BATTERIES \& POWER SUPPLIES

RECBARGEABLE BATTERIES - NI-CADS At time of printing our Ni -Cads are Hitachi with the exception of the PP3. Should the Hitachi be unavailable we will supply a suitable alternative brand.
We guarantee our batteries may be charges 1000 times!

Type Volt Ah Order Code lt lot

AAA	1.2 V	180 mAh	BAT/AAA	$£ 1-50$	$£ 1-30$
AA	1.2 V	500 mAh	BAT/AA	95 p	85 p
C	1.2 V	1.2 Ah	BAT/C	$£ 1-95$	$£ 1-80$
C	1.2 V	2.0 Ah	BAT/CI	$£ 3-40$	$£ 3-20$
D	1.2 V	1.2 Ah	BAT/D	$£ 2-00$	$£ 1-85$
D	1.2 V	4.0 Ah	BAT/DI	$£ 4-75$	$£ 4-50$
PP3	9 V	110 mAh	BAT/PP3	$£ 3-90$	$£ 3-75$

P001
£19-99
Regulated power supply for use with CB rigs, auto equipment. High stability circuity with high surge current capability. Overioad protection. Manufactured according to the requirements of the Electrical Safety Regulations for domestic use.

Input voltage..
Output voltage
Output current
Stability.
Stability
Ripple.
Conne

A set of very high quality 'scope probes.
Switched xl \& xl 0
Supplied in neat storage pack \& full instructions.
TEST/BS110
PRICE - E15-50

White in colour, free-standing unit with LED 'charging' indicators. A built in tester is provided for 1.5 V batteries. Power: 240 Vac
Dims: $180 \times 85 \times 50 \mathrm{~mm} 1+10+$ BAT/CHARGE/UNIB E4-99 £4-75

NI-CAD BATTERY CHARGER

Capable of charging all the above sizes i.e.

```
4 X AAA, AA, C or D sizes
2 X PP3
```

Howlett Packard -100 MHz
SUPER SCOPE SALE-

HP- 1740 100MHZ DUAL TRACE
DELAY SWEEP 350

HP-1744A 100 MHZ DUAL TRACE
delay sweep \& storage..... £399

Supplied with full Operating Instructions \& Mains leads.
Although secondhand,
fully tested before despatch.
If we obtain service manuals they will also be supplied with the scopes Free of Charge.
REMEMBER: OUR PRICES INCLUDE VAT

PROFESSIONAL - METEX DIGITAL MULTIMETERS

ALL OUR METEX METERS ARE SUPPLIED COMPLETE WITH: PP3 Battery, CARRYING CASE, SHROUDED TEST LEADS AND COMPLETE INSTRUCTION MANUAL. All METEX multimeters are built and tested to IEC348

DESOLDER TOOL High quality, fitted with Teflon micro nozzle. LENGTH: 190mm Dia: 20mm

PRICE: £2-99
SPARE NOZZLES
95p each

- Suitable for wood, giass, plastics and craftwork $240 \mathrm{~V} / 40 \mathrm{~W}$ Soldering Ironi various soldering tlos and stand
£14-99

WHOLESALE PRICES ARE AVAILABLE

4-WAY
EXTENSION
3 MTRLEAD
13 A PLUG
£5-9 9

SALE PRICE £5-99 Y057
helping hands
iop quality "Miode in Japan" version with glass 2.5" dia. magnifier in steel frame. imagnification $\times 2.5$).

SALE PRICE
£19-99

MOBILE UHF/VBF/FM ANTENNA WITH BUILT IN AMPLIFIER A mesh dish antenna designed primarily for use with caravans, homes, mobile hones, commercial vehicles etc. The dish can be rotated left or right to pick up the best signal which can then be boosted using the bullt in amplifier and gain control. The amplifier may also be used to boost the signal from an external aerial. The integral LED's indicate which aerial is in use. Supplied complete with mains adaptor enabling aerial to be used on 240 Vac .
GAIN.
20dBVHE, 30dBVIF
GAIN CONTROL \qquad
MAX. OUTPUT LEVEL. 100 dBuV
POWER . 12 or 24 Vdc or 240 Vac DIMENSIONS. $230 \times 110 \times 340 \mathrm{~mm}(a p p r o x$. SUPPLIED COMPLETE WITH ADAPTOR EOR 24OVaC USE!!!!

LIST PRICE E49-60 SALE PRICE \&39-50

G21 1

WIRELESS MICROPHONE

A 3-channel 2 -pant wireless miciophone system designed for use with video cameras. The tieclip mic has a remote belt clip Iransmitter with on/off switch. The receiver has a hot shoe for mounting on the video camera. The system allows greater mobility wilh a microphone than can be achieved with the camcorder mic.

SAVE £10-00

COMPONENT PACK SALE

Due to popular demand we are pleased to introduce our new range of component packs. Only new unused components are used. Many of the components are to the highest specifications not normally available to the hobby market. The range is being introduced at SALE PRICES so hurry hurry, and take advantage of the low prises before they go up after the sale.
We are currently working on more packs, these will be introduced later this year. "Watch this Space"!

KNOB PACK

A pack containing an assortment of knobs, both rotary and slider. Some push On and some are screw fixing
Total Pack Qty: 50 Assorted
ORDER CODE: PACK/018
SALE PRICE: £4-50

SEVEN SEGMENT DISPLAY PACK

A most useful pack of assorted displays, may contain Red, Green, Single digit, double digit large \& small. A very mixed pack.
Total Pack Qty: 20 Assorted
ORDER CODE: PACK/019
SALE PRICE: £3-00

[^1]
ZBNER DIODE PACK

A good selection of assorted voltages, from 3.0 v to 180 v and wattages 250 mW to 5 Watt .

Total Pack Qty: 100 Assorted
ORDER CODE: PACK/O24
SALE PRICE: £2-75

VOLTAGE REGULATOR PACK

A most useful pack containing a good selection of assorted fixed and maybe variable regulators. Both tve and -ve, from 100 mA to 5A. Plastic and metal. Excellent value foe money.
Total Pack Qty: 25 Assorted.
ORDER CODE: PACK/025
SALB PRICE: $£ 5-00$

PLUG TOP MAINS FUSE PACK

A pack of assorted $1^{\prime \prime}$ mains fuses. Anything from $3 A$ to $13 A$. Super value for money.
Total Pack Qty: 40 assorted
ORDER CODE: PACK/O29
SALE PRICE: £4-25

```
Slider pot Pack
A pack or metal and plastic mono and stereo
sliders, log and Lin.
Values may range from 250 ohms to 1Meg
Total Pack Qty: 25pcs
ORDER CODE: PACK/030
SALE PRICE: £2-50
```


tUBULAR CERAMIC PACK

A good mixture of capacitors, anything from 1 pF up to $10,000 \mathrm{pf}$. Radial leads ideal for PCB mounting.
Total Pack Qty: 100 pcs
ORDER CODE: PACK/031
SALE PRICE: £1-50

[^2]
BLECTROLYTIC PACK

A good assortment of both axial \& radial capacitors. Some radial's are already pre-cropped for PCB mounting. These packs contain a good selection of voltages from 10 V to 1000 V and values anything from $1.0 u F$ to $1000 u F$. This pack is excellent value for money.
Total Pack Qty: 100 Assorted
ORDER CODE: PACK/021 SALE PRICE: $£ 2$-50

DISC CERAMIC PACK

A super selection of assorted values and voltages. Many popular values are included. Voltages, anything from 5 to 1 KV , Values, anything from 1.0 pF to 0.1 uF .
Great value for money.
Total Pack Qty: 100 assorted
ORDER CODE: PACK/022
SALE PRICE: $£ 1-50$

```
POLYSTYRENE PACK
A very useful range of assorted values and
voltages of polystyrene capacitors. Many
preferred values included.
Values range from 10pF to 0.01uF, and voltagea up
to 400V.
Total Pack Qty: 100 assorted
ORDER CODE: PACK/O23
SALE PRICE: \(£ 1-50\)
```


GRIDGE RECTIFIER PACK

A very mixed pack, excellent value for money. May contain voltages from 50 to 1000 v and $u p$ to 10 Amps.
Total Pack Qty: 25 pcs
ORDER CODE: PACK/026
SALE PRICE: $£ 5-50$

CABLE TIE PACK

A mixed pack of assorted length cable ties and maybe black ones.
Total Pack Qty: 100pcs
ORDER CODE: PACK/027
SALE PRICE: £2-00

heatshrink pack

A super pack, very high quality heatshrink sleeving. Much of it is British made.
A very good assortment of both colours and sizes. Total Pack Qty: 10 Lengths approx $12^{\prime \prime}$ in length. ORDER CODE: PACK/028

SALE PRICE: £1-25

- ALL PRICES INCLUDE VAT

500 V SINGLE LAYER-CERAMIC PACK
A useful assorted pack of these very high quality capacitors. Very small, $8-16 \mathrm{~mm}$ dia. Normal price over 50 p eachl Super value.
Total Pack Qty: 50 pcs
ORDER CODE: PACK/032
SALE PRICE: $£ 2-00$

Calculator pack

A mixed pack of calculators! Hand held, mains desk type, printers, non-printers, cased, uncased, damaged cases, bits missing! You name it - this pack has itl Lots of useful bits. Sold by weight. Total Pack Weight: 10 Kg

ORDER CODE: PACK/034
SALE PRICE: £5-00

```
PRE-SET PACK
A mixed pack of various pre-sets. Miniature,
standard, 0.1W, 0.25W, vertical, horizontal.
Assorted values from 100R to lMeg.
Total Pack Qty: 100 pcs
ORDER CODE: PACK/001
SALE PRICE: £3-00
```

TANTALUM BEAD CABACITOB DACK
A random selection of tantalum bead capaciloris of assorted voltages and values. Many popular values.
Total Pack Qty: 50 pcs
ORDER CODE: PACK/005
SALE PRICE: £2-50

POTENTIOMETER PACK

A mixed pack of pots single, dual, slider convergance - in fact almost every kind of pot Assorted values ranging from 10 R to 1 Meg .
These really are super value
Total Pack Qty: 100 Assorted
ORDER CODE: PACK/002
SALE PRICE: $£ 4-50$

```
VOLTAGE DEPENDANT RESISTOR PACK
A good mix of different types of V.D.R's
50-500V Super Value
Total Pack Qty: 50 Assorted
ORDER CODE: PACK/OO3
    SALE PRICE: {4-00
```


WIREWOUND RESISTOR PACK

A very mixed pack of assorted wirewound resistors. Mixed wattages and values, many popular values. A really good value pack

Total Pack Qty: 100 assorted
ORDER CODE: PACK/004
SALE PRICE: $£ 2-50$

DIL SOCKET PACK
A good assortment of varlous IC sockets which may range from 8 pin to 64 pinl
Generally low profile. May also include gold plated, turned pin, wirewrap etc.
Total Pack Qty: 100 pcs
ORDER CODE: PACK/009
SALE PRICE: $£ 8-00$

SUPADRIV. Self Tapping Pack HARDWARE

A super pack of a mixture of No4 X and No6 X 1. All Pan head hardened steel type $A B$ bright zinc.
Total Pack Qty: 100 assorted ORDER CODE: PACK/010

SALE PRICE: £1-00

MIXED SELF-TAPPING SCREW PACK HARDWARE

A good mixture of various self-tapping screws of assorted types, lengths etc. All top quality. Length's 5-10mm
Total Pack Qty: 200 assorted
ORDER CODE: PACK/011
SALE PRICE: £1-50

```
PRE-SET PACK 0.25W
A super selection of 0.25W Pre-sets mainly
Piher enclosed, AB etc.
Both vertical & horizontal and many popular
values. Values may range from l00R to lOMeg!
Total Pack Qty: 100 pcs Assorted
ÓRDER CODE: PACK/016 SALE PRICE: &2-50
```

[^3]
TRANSISTOR PACK

A mixed pack of various transistors. many popular types including:
AC169, BC107, BC125, BC147, BC148, BC158, BC182A, BC237, BC328, BC558, BCY72, 2N290;A, TIP126 TIP141, TIS90, 2N2222A, etc etc
Over $\{17-00$ value at current catalogue prices! ! Total Pack Qty: 100 pcs

ORDER CODE: PACK/006
SALE PRICE: $14-99$

```
INTEGRATED CIRCUIT PACK
A super value pack containing all types of I.C's
many popular types included.
All are new and full spec
Total Pack Qty: }100\mathrm{ pcs
ORDER CODE: PACK/007
SALE PRICE: £5-00
```


TRIMMER PACK

A useful kit containing a selection of 'ceramic' trimmers
Values include: 2-7pF, 4-15pF, 6-25pF, 8-30pF Working voltage: 250 Vac
Total Pack Qty: 50 Assorted
ORDER CODE: PACK/008
SALE PRICE: £2-99

M5 \& M6 Pack

A mixed pack of steel screws, a mixture of Pan Head Supadriv and Allen type. Length's 20-30mm All super quality and a real bargaín!
Total Pack Qty: 50 Assorted
ORDER CODE: PACK/012
SALE PRICE: £1-00

```
M4 M1xed Pack
A mixed pack of small M4 bolts - various lengths
and types, pan, cross etc
All the highest quality. Length's 5-20mm
Total Pack Qty: 100 Assorted
ORDER CODE: PACK/O13
SALE PRICE: £1-50
```

```
MIXED HARDWARE JUMBO PACK
A super Jumbo pack containing all types of bolts,
screws, washers. All malnly small types and high
quality. Also nuts etc. Length's 10-45mm
This pack is really super value for money.
We are selling this pack by weight: lKg.
This is up to 1000 pcs depending on sizes.
Pack Size: lKg
ORDER CODE: PACK/014
```

SALE PRICE: £2-50

FUSE PACK

A super pack containing an assortment of fuses which could include 20 mm 32 mm 1 ", fast blow, slow blow, in fact any type of fuse. Man popular sizes and values
Total Pack Qty: 100 pcs
ORDER CODE: PACK/015
SALE PRICE: $£ 2-50$

WE HAVE NOW BEEN OFFICIALLY APPOINTED SOLE U.K. MAIL ORDER \& RETAIL SUPPLIER.

EDDYSTONE DIECAST BOXES - Manufactured in the U.K. by Eddystone Radio - need no introduction. Respected worldwide as the highest quality aluminium diecast enclosure available - until now only available to the professional buyers.

We have been appointed sole mail order and retail supplier of this range of boxes to the hobbyist market.

Aluminium diecast boxes with close fitting lids secured by four or six countersunk screws depending on the size of the box.

Supplied complete with screws.

| ORDER CODE | EXTERNAL | DIEMSNIONS | MM | (APPROX.) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | A | B | C | D |
| BOX/11451P | 52 | 38 | 31 | 4 |
| BOX/27969P | 92 | 38 | 27 | 4 |
| BOX/27134PSL | 111 | 60 | 31 | 4 |
| BOX/29830PSL | 120 | 95 | 34 | 4 |
| BOX/26908PSL | 120 | 95 | 53 | 4 |
| BOX/26357P | 188 | 120 | 78 | 4 |

ABS MULTIPURPOSE BOXES - STANDARD

A range of professional quality boxes, offering a high quality finish at a very realistic price.

Moulded in high impact $A B S$ to give maximum strength, they are easily punched or drilled to produce a professional looking end-product.

Printed circuit board slots are provided on this range except for MB6.

All the lids are retained by 4 or 6BA countersunk posidrive screws into brass inserts.

Colour available: Black.

INTERNAL DTMENSIONS

A | mm |
| :---: |
| B |

76	58	35	BOX/MB1	£1.25	£1.18
95	71	35	BOX/MB2	£1.35	£1.26
115	95	37	BOX/MB3	£1.58	£1.50
145	95	55	BOX/MB5	£2.20	£2.05
165	119	75	BOX/MB7	£3.20	£3.05
207122	77	BOX/MB4	£4.96	£4.80	
213142	57	BOX/MB6	£3.78	£3.63	
174	117	80	BOX/MB7	$£ 3.20$	$£ 2.95$
147	77	47	BOX/MB8	£2.15	£1.99

Dimensions B.4.1/2"x.4.2.3/8"xW.2.1/4"
Colour available: Black
ORDER CODE
BOX/PSU-2

ABS MULTIPURPOSE BOXES - MINIATURE

Colour available: Black

INTERNAL WALL PRICE
DIMENSIONS THICKNESS ORDER CODE 1* 10 +

72	46	22	1.5	BOX/T3	75p	$67 p$
107	53	18	2.0	BOX/T4	90p	82p

PANEL METERS

Good quality range of panel meters. Plastic with moving coil. Dims: $45 \times 51 \times 34 \mathrm{~mm}$ Deep. Cut Out: 38 mm Dia.

PRICE: $£ 5$-95

RSGB 1991/92 CALL BOOK

(LESS THAN HALF PRICE) SUPER SALE

The Official RSGB Call Book \& Information directory. This publication is a must for anybody interested in Amateur Radio. 430 PAGES! Lists all UK \& EIRE Call Signs and is packed with information including:
Abbreviations, Awards, Band Plans, Beacons, Clubs, Contests, EMC, Licensing Info., Locators, Morse info., News, Packet nodes, Propagation , QSL, Planning permission, RAE, Raynet, Repeaters, RSGB info., Safety, Satellites, Special Event Stations Etc etc.
CURRFNT PRICE: £6-75!!
DIM S: 200 X 270 Mm

SALE PRICE £2-99

LEATIER-GRAIN P.V.C. COVERED MLUMINIUM A very attractive range of British Made aluminium boxes covered with a leather-grainPVC. These boxes will add that finishing touch to any DIY or professional circuit.

BOXES THIESE BOXES ARE EXTREMEI.Y GOOD VALUE FOR MONEY.
WIDIH DEPIII HEIGIT ORDER CODE PRICE WIDTII DEPTH HIEIGIT ORDER CDDE PRICE MILLLMETIES

19" RACK CASES

7 Piece construction with 3nm aluminium front panel. Top \& bottom covers are
cemovable for easy access. Supplied in kit form for easy drilling etc.
PANEL DRMENSIONLS CASE DIMENSIONS ORDER OOOE PRICE
WIDIH HEIGHT WLDIH DEPTH HEIGFT inches

INCHES						INCIES			
19.0	1.75	16.75	6.0	1.375	BOX/UlO6	$£ 15.30$			
19.0	1.75	16.75	9.0	1.375	BOX/U109	$£ 17.00$			
19.0	1.75	16.75	12.0	1.375	BOX/U112	$£ 18.90$			
19.0	3.5	16.75	6.0	3.125	BOX/U2O6	$£ 18.50$			
19.0	3.5	16.75	9.0	3.125	BOX/U2O9	$£ 20.80$			
19.0	3.5	16.75	12.0	3.125	BOX/U212	$£ 23.00$			
19.0	5.25	16.75	6.0	4.875	BOX/U306	$£ 24.30$			
19.0	5.25	16.75	9.0	4.875	BOX/U309	$£ 26.85$			
19.0	5.25	16.75	12.0	4.875	BOX/U312	$£ 29.35$			
19.0	7.0	16.75	6.0	6.625	BOX/U406	$£ 28.20$			
19.0	7.0	16.75	9.0	6.625	BOX/U409	$£ 32.20$			
19.0	7.0	16.75	12.0	6.625	BOX/U412	$£ 35.20$			

COMPONENT KIT SALE

Resistor Rit - 0.25 W (5 off)

A pack containing 305 resistors. Values as listed below. Each value individually packed and each bag marked with the values enclosed. contents: 5 off each value:
10R, 12R, 15R, 18R, 22R. 27R, 33R, 39R, 47R, 56R, 68R, 82R, 100R, 120R, 150R, 180R, 220R, 270R, 330R, 470R, 560R, 680R, 820R, 1K, 1K2 $1 \mathrm{~K} 5^{\circ}, 1 \mathrm{~K} 8,2 \mathrm{~K} 2,2 \mathrm{~K} 7,3 \mathrm{~K} 3,3 \mathrm{~K} 9,4 \mathrm{K7}, 5 \mathrm{~K} 6,6 \mathrm{~K} 8$, 8K2, 10K, 12K, 15K, 18K, 22K, 27K, 33K, 39K, 47K, 56K, 68K, 82K, 100K, 120K, 150K, 180K, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K, 1 M .
Order Code:
KIT/RES/25/5

SALE PRICE £2-99

Resistor Kit -0.25 W (10 off)

A pack containing 610 resistors. Values as listed below. Each value individually packed and each bag marked with the value enclosed.

Contents: 10 off each value:
10R, 12R, 15R, 18R, 22R, 27R, 39R, 47R, 56R, 68R, 82R, 100R, 120R, 150R, 180R, 220R, 270R, 330R, 390R, 470R, 560R, 680R, 820R, 1K, 1K2, 1K5, 1K8, 2K2, 2K7, 3K3, 3K9, 4K7, 5K6, 6K8, 8K2, 10K, 12K, 15K, 18K, 22K, 27K, 33K, 39K, $47 \mathrm{~K}, 56 \mathrm{~K}, 68 \mathrm{~K}, ~ 82 \mathrm{~K}, ~ 100 \mathrm{~K}, ~ 120 \mathrm{~K}, ~ 150 \mathrm{~K}, ~ 180 \mathrm{~K}$, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K, 1M.

Order Code:
KIT/RES/25/10

SALE PRICE £4-00

Resistor Kit - 0.25W POPULAR
A pack containing a total of 1,000 of $1,000 \frac{1}{4} \mathrm{~W}$
5 \% carbon film resistors ranging in value from 10R to 10 M .
In this pack we have included larger quantities of the more popular values.
Each value individually packed.
Contents:
No. Value no. value no. value
$10 \times 10 \mathrm{R} 10 \times 82 \mathrm{R} 10 \times 390 \mathrm{R}$
$10 \times 12 R \quad 20 \times 100 R 30 \times 470 R$
$10 \times 18 R \quad 10 \times 120 R 20 \times 5$ 560R
$10 \times 22 R \quad 10 \times 150 R 20 \times 680 R$
$10 \times 33 R$ $10 \times 180 R 10 \times 820 R$
$20 \times 47 R \quad 20 \times 220 R 40 \times 1 K$
$10 \times 56 R$
$10 \times 68 R$
$10 \times 1 \mathrm{~K} 8$
$25 \times 2 K 2$
$20 \times 2 K 7$
$20 \times 2 K 7$
$15 \times 3 \mathrm{~K} 9$
$25 \times 3 \mathrm{K7}$
$20 \times 5 K 6$
$15 \times 6 \mathrm{~K} 8$
$15 \times 180 \mathrm{~K}$
$20 \times 220 \mathrm{~K}$
$15 \times 270 \mathrm{~K}$
$15 \times 330 K$
$10 \times 390 K$
$20 \times 470 K$
$10 \times 560 \mathrm{~K}$
$10 \times 680 \mathrm{~K}$
Order Code
KIT/RES/25/POP

Resistor Rit - 0.5 POPULAR

A pack containing a total of $1,000 \quad \frac{1}{2} W 58$ carbon film resistors ranging in value from 2R2 to 10 M .
In this pack we have included larger quantities of the more popular values. Each value individually packed.
Contents:

No.	VALUE	No.		UE	NO.		UE
$5 x$	$\times 2 \mathrm{R} 2$	10	x	12R	10		120R
	$\times 2 R 7$	10	x	18R	10	x	150R
5	x 3R3	10	x	22R	10	x	180R
5	x 3R9	10	x	33R	20	x	220R
	$\times 4 \mathrm{R} 7$	20	x	47R	20	x	270R
5	x 5R6	10	x	56R	20	x	330R
5	x 6R8	10	x	68R	10	x	390R
5	x 8R2	10	x	82R	30	x	470R
10	$\times 10 R$	20	x	100R	20	x	560R
	$\times 680 R$	10	X	3K9	20	x	22K
	$\times 820 \mathrm{R}$	25	X	4K7	10	x	27K
40	$\times 1 \mathrm{~K}$	20	x	5K6	20	x	33K
10	x 1K2	10	\times	$6 \mathrm{K8}$	10	x	39K
	$\times 1 \mathrm{k} 5$	10	x	8K2	30	x	47K
10	x 1K8	30	x	10K	20	x	56K
	x 2 K 2	15	x	12K	10	x	68K
	x 2 K 7	15	x	15K	10	x	82K
	x 3 K 3	30	x	18K	30	x	100K
	x 120k	10	x	680K			
10	x 150k	5	x	820K			
10	x 180k	20	x	1 M			
	x 220K	10	x	2 M 2			
	x 270K	5	x	3M3			p
	x 330K	10	x	4M7			
	x 390K	5	x	6M8			- 0
	x 470K	20	x	10M			-
	x 560K						
	der Code:			1+		5	
KIT/RES/5/POP			810.75				. 75

Resistor Kit - 0.5W (5 off)
A pack containing 365 resistors. Values as listed below. Each value individually packed and each bag marked with the value enclosed.

Contents: 5 off each value:
2K2, 2R7, 3R9, 4R7, 5R6, 6R8, 8R2, 10R, 12R, 15R, 18R, 22R, 27R, 33R, 39R, 47R, 56R, 68R, 82R, $100 \mathrm{R}, 120 \mathrm{R}, 150 \mathrm{R}, 180 \mathrm{R}, 220 \mathrm{R}, 270 \mathrm{R}, 330 \mathrm{R}$, 390R, 470R, 560R, 680R, 820R, 1K, 1K2, 1K5, $1 \mathrm{~K} 8,2 \mathrm{~K} 2,2 \mathrm{~K} 7,3 \mathrm{~K} 3,3 \mathrm{~K} 9,4 \mathrm{~K} 7,5 \mathrm{~K} 6,6 \mathrm{~K} 8,8 \mathrm{~K} 2$, 10K, 12K, 15K, 18K, 22K, 27K, 33K, 39K, 47K, 56K, 68K, 82K, 100K, 120K, 150K, 180K, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K, 1M, 1M2, 1M8, 2M2.
$\begin{array}{llll}\text { Oder Code: } & 1+ & 5+ & \text { \& 4-50 } \\ \text { RIT/RES } / 5 / 5 & \text { f5 } & \text { 5 }\end{array}$
Resistor Kit - 0.5W (10 Off)
A pack containing 730 Resistors. Values as listed below. Each value individually packed and each bag marked with the value enclosed.
Contents: 10 off each value:
2R2, 2R7, 3R3, 3R9, 4R7, 5R6, 6R8, 8R2, 10R, 12R, 15R, 18R, 22R, 27R, 33R, 39R, 47R, 56R, 68R, 82R, 100R, 120R, 150R, 180R, 220R, 270R, 330R, 390R, 470R, 560R, 680R, 820R, 1K, 1K2, 1K5, 1K8, 2K2, 2K7, 3K3, 3K9, 4K7, 5K6, 6K8, $8 \mathrm{~K} 2,10 \mathrm{~K}, 12 \mathrm{~K}, 15 \mathrm{~K}, 18 \mathrm{~K}, 22 \mathrm{~K}, 27 \mathrm{~K}, 33 \mathrm{~K}, 39 \mathrm{~K}$, $47 \mathrm{~K}, 56 \mathrm{~K}, 68 \mathrm{~K}, ~ 82 \mathrm{~K}, ~ 100 \mathrm{~K}, 120 \mathrm{~K}, 150 \mathrm{~K}, 180 \mathrm{~K}$, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K, 1M, 1M2, 1M5, 1M8, 2M2.

Order Code:

$$
1+
$$

KIT/RES/5/10 Se.75 E7 75 E7-00

COMPONENT KIT SALE

Resistor Rit - IW (5 off)

A pack containing 3651 W resistors. Values as listed below. Each value individually packed and each bag marked with the value enclosed.

Contents: 5 off each value:
1OR, 12R, 15R, 18R, 22R, 27R, 33R, 39R, 47R, 56R, 68R, 82R, 100R, 120R, 150R, 180R, 220R, 270R, 330R, 390R, 470R, 560R, 680R, 820R, 1K, lK2, 1K5, 1K8, 2K2, 2K7, 3K3, 3K9, 4K7, 5K6, $6 \mathrm{~K} 8,8 \mathrm{~K} 2,10 \mathrm{~K}, ~ 12 \mathrm{~K}, ~ 15 \mathrm{~K}, ~ 22 \mathrm{~K}, ~ 27 \mathrm{~K}, ~ 33 \mathrm{~K}, ~ 39 \mathrm{~K}$, 47K, 56K, 82K, 100K, 120K, 150K, 180K, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K, 1M, 1M2, 1M5, 1M8, 2M2, 2M7, 3M3, 3M9, 4N7, 5M6, 6M8, 8M2, 10M.

Order Code:
$1+$
KIT/RES/1/5

SALE PRICE E13-00

Ceramic Rit - 50V - Over $£ 9.70$ worth at catalogue prices -
A pack containing 12550 V disc and plate ceramics - ranging in value from lpF to $10 n \mathrm{~F}$ (0.01mE).

Each value individually packed and each bag markes with the value enclosed.

Contents: 5 off each value:
$1, \mathrm{OpF}, 1.8 \mathrm{pF}, ~ 2.7 \mathrm{pF}, 3.3 \mathrm{pF}, 4.7 \mathrm{pF}, 5.6 \mathrm{pF}$, $6.8 \mathrm{pF}, 8.2 \mathrm{pF}, 10 \mathrm{pF}, 12 \mathrm{pF}, 22 \mathrm{pF}, 27 \mathrm{pF}, 47 \mathrm{pF}$, $68 \mathrm{pF}, 82 \mathrm{pF}, 100 \mathrm{pF}, 150 \mathrm{pF}, 180 \mathrm{pF}, 270 \mathrm{pF}, 470 \mathrm{pF}$, $560 \mathrm{pF}, 1000 \mathrm{pF}, 2200 \mathrm{pF}, 4700 \mathrm{pF}, 10 \mathrm{NF}$.

Order Code:	$1+$	$5+$	
RIT/CER/50V	$3+99$	$\xi 3.50$	\& $3-00$

Electrolytic Rit - Radial - Over £11.00 worth at calalogue prices -
A pack containing 100 miniature radial lead electrolytic capacitors. 12 different values. Each value individually packed.
Contents:

No. VALUE	VOLTAGE NO.		VALUE	VOLTAGE	
10	1 mF	63 V	15	10 mF	25 V
10	2.2 mF	63 V	10	22 mF	25 V
10	4.7 mF	63 V	10	47 mF	25 V
15	100 mF	16 V	5	1000 mF	16 V
5	220 mF	16 V	2	100 mF	25 V
5	470 mF	16 V	3	2200 mF	16 V
Oder CODe		$1+$	$5+$		
KIT/ELECT/RAD	$£ 8.50$	$£ 7.50$			

SALE PRICE £7-00

Fuse Rit - 20mm Quick Blow
A pack containing 80 Quick-Blow 20 mm . Fuses.
Each value individually packed.
Contents:

No. Value	NO.	value	NO.	value
$5 \times 100 \mathrm{~mA}$	10	$x \quad 500 \pi \mathrm{~A}$	$\begin{aligned} & 10 \times 3.15 A \\ & 5 \times 5 A \\ & 5 \times 6.3 A \end{aligned}$	
$5 \times 250 \mathrm{~mA}$	20	$\times 1 \mathrm{~A}$		
$5 \times 315 \mathrm{~mA}$	5	$\times 1.6 A$		
	10	$\times 2 \mathrm{~A}$		
Order Code:		1+	5+	f3-50
KIT/FUSE/QB2		84-75	E4. 25	

Fuse Kit - 20mm Anti-Surge
A pack containing 80 Anti-Surge 20 mm Euses.
Each value individually packed.
Contents:

A pack containing a total of 120 miniature horizontal mounting pre-set potentiometers. A total of 13 different values. Each value individually packed.
Contents:

A pack containing a total of 120 miniature vertical mounting pre-set potentioneters. A total of 13 different values. Each value individually packed.
Contents:

No. Value	No.	value	NO.	VALUE
$5 \times 100 \mathrm{R}$	5	$\times 2 \mathrm{~K} 2$	$10 \times$	47K
$5 \times 220 \mathrm{R}$	15	$\times 4 \mathrm{~K} 7$	$20 \times$	100K
$5 \times 470 R$	20	x. 10K	$5 \times$	220K
$15 \times 1 \mathrm{~K}$	5	x 22K	$5 \times$	470K
	5	$\times 1 \mathrm{M}$		
Order Code:		1+	$5+$	
KIT/POT/VERT		E 2.75	87.23	

Zener Diode Rit - $400 \mathrm{M} / \mathrm{W}$
A pack containing 55 zener diodes. $400 \mathrm{~m} / \mathrm{w}$. Ranging from 3 V 6 to 30 V . Each value individually packed and each bag marked with the value enclosed.
Contents: 5 off each value:
$3 \mathrm{~V} 3,4 \mathrm{~V} 7,7 \mathrm{~V} 5,8 \mathrm{~V} 2,11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}$, $20 \mathrm{~V}, 24 \mathrm{~V}$.

Order Code:	$1+$	$5+$	E 3-00
KIT/ZEN/400	£3		

Polyester Capacitor Kit

ITT PMT type loov miniature or similar. Pack contains 110 capacitors. Each value individually packed and each bag marked with the value.
Contents: 10 off each value:
O.OluF, 0.015uF, 0.022uF, 0.033uF, 0.047uF,
0.068uF, O.1uF, $0.15 u F, 0.22 u F, 0.33 u F$,
0.47 uF .

Order Code:
kit/Poly Price £ 5.00 £4-00

KIT SALE

500V Ceramic Kit
Very high quality, single layer type.
These capacitors are normally very expensive and there not available to the hobbyist.
We priced this kit up at current trade prices, the price manufacturers pay, and it was over £60.00:1: You really cannot afford to miss this super offer.
Physical sizes: 3.3 pF to 3 N 3 8mm Dia.
$4.7 n \mathrm{n}$ tolon lomm Dia.
20 nF to 220 N 16 mm Dia.
Each Kit contains 5 off each value. Total Quantity 125 pcs.
Values: 3.3pF, 3.9pF. 10pF, 15pF, 22pF, 27 pF , $33 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}, 82 \mathrm{pF}, 100 \mathrm{pF}, 120 \mathrm{pF}$, $180 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 680 \mathrm{pF}, 1 \mathrm{~N} 2,1 \mathrm{~N} 5,3 \mathrm{~N} 3$, $4 N 7,8 N 2,10 n \mathrm{~F}, 20 \mathrm{nF}, 47 \mathrm{nF}, 220 \mathrm{nF}$.
Onder Code: SO/HVKIT
Price: $\mathbf{\varepsilon 6 . 0 0}$

CABLE KITS SPECIAL OFPERS
A choice of two packs of British Made equipment wire. 10/0.1mm and $7 / 0.2 \mathrm{~mm}$.
We also offer this cable in loomtr.reels. See below.
10/0. 1 mm Pack
Día. approx $1.05 m m$. Max voltage RMS 1000 V . Nominal current is 0.5 Amps.

Each pack contains 10 Metres of each of the following colours: RED, BLACK, BLUE, BROWN, GREEN.
A total pack of 50 metres.
Order Code: SO/CBL/Pl Price:E1.50
(Price per 100 mtr reel is $£ 1.95$)

7/0. 2 mm Pack

Dia. approx. 1.2mmi. Max voltage looovolts RMS. Nominal curcent 1.4Amps.

Each pack contains 10 Metre of each of the following colours: RED, BLUE, GREEN, WHITE, GREEN/YELLON.
A total pack of 60 metres.
Order Code: SO/CBL/P2 Price: $£ 1.80$
(Price per 100 Metre Reel is $£ 2.00$)

SWITCB MODE PSU Astec AC-9355
65 WATTS

Super quality, ex-equipment but ALL tested guaranteed.
Input: 240 Vac
OUTPUT:
$V 1+5 V$ e $6 A$ V2... $12 V$ @ $1.5 A$
$\mathrm{v} 2+12 \mathrm{~V}$ \& 1.5 A
$\mathrm{V} 3+12 \mathrm{~V}$ \& 2.1A
V4 -12V © $0.25 A$
DIMS: $195 \times 10.5 \mathrm{MM}$
ORDER CODE: SO/ASTEC/9355
SALE PRICE: £15-00 each
BUTANE GAS SOLDERING IRON
Uses ordinary butane 'cigarette lighter gas. Internal tank holds sufficient gas for one hours use. Ideal for: field service engineers, motor mechanics etc. supplied with 2.4 mm soldering tip as standard.

Order Code:
SOLD/GIO6 \& 14-50

PARCEL TAPE SALE

(BUFF VINYL SEALING TAPE)

(YE8, IT'S 8ELFADHE8IVEI)
Known by many titles, we simply call it brown parcel tape! It's the tape we have used for several years. It's the highest quality - not to be confused with the cheap \& cheerful tape that's around.
We have just taken delivery of over 5,000 reels and although we use a lot we can spare a few rolls!!!
PLEASE REMEMBER: OUR PRICES INCLUDE VAT!!
Standard Length: 66 Metres. Standard width: 50 mm
Colour: Buff (Brown)
$1+\quad 10+$
$100+$
48 P
HURRY HURRY, WE SOLD 200 ROLLS BEFORE WE HAD FINISHED UNLOADING OUR VAN!!

HOBB'Y KITS

A range of Economy Electronic Kits. Eor hobbyists, schools etc. Each kit contains electronic components, which must be soldered to the P.C.B. provided. The modules are ready made units and most have connections brought out to screw terminals.
Many of the $k i t s$ and modules require the purchase of additional items.

Car Light Warning (BOOL)
This circuit will attract your attention by producing a noisy 'Honk' signal should you turn off the car ignition but leave the lights on, and therefore should save you the problem of a drained battery. Works off the car battery, 6-12v.

KIT/BOO1
ع7. 50

Electrifying Apparatus (B007)
...generates a weak adjustable high tension of appros 80-300V out of $3-6 V($ Max 9V). May be used by anglers to catch worms. Maximum curcent 50-250 MA.

RIT/B007
£8. 35
Fog Hom 5W(B015)
...generates a deep, noisy sound similar to the fog-horns of ships. Operating voltage $4.5-12 \mathrm{~V}$ wattage:Max $5 w$ depending on the voltage. For $8 \approx$-loudspeakers.

KIT/BO15
$\varepsilon 5.99$

Test Oscillator (B018)
This is a close range test only transmitter, which can be tuned between 88 and 108 MHZ and used to service radio receivers by using the unmodulated carrier. this Kit must not be used to transmit over any distance.

| KIT/B018 | £6.85 |
| :--- | :--- | :--- |
| Lighting Console | $(6 \quad$ WAY $),(B 022)$ |

£9. 95
KIT/B105

Light Barrier 12v (B045)

A light barrier Kit which uses an LDR(Light Dependant Resistor) to trigger the relay on. Can be used to switch on an alarm, open a door or as a twilight switch etc. A light source is required which shines onto the LDR of the kit, if this light source is intercupted the relay will pull on. Max. celay curcent is 5A. Requires a 12 V supply.
KIT/BO45 E9.75

Thermo Switch (BO48)

Turns the relay on of off at a pre fixed temperature This instrument may be used as a thermostat, as an ice warning system, etc. Operating voltage: 12 V . Temperatur range: approx -30 to +150 C . Relay switching capacity: 5A
KIT/BO48
€9. 85

Siren Warship (B052)
'Decks clear for action' warship siren. Creates a short swelling up sound (uiiit...uiiit...) in short intervals. Wattage $3-15 \mathrm{~W}$. depending on the operating voltage. For 6-12V. Loudspeaker impedance: 8Ω

$$
\text { KIT/B052 } £ 12.50
$$

Infra-Red Light Barrier (B062)

Light barcier with invisible infratred light beam. Complete kit with transmitter and receiver. Range over 6M. Operating voltage: transmitter 9-12V receiver 12V. Relay contact: 3A switching capacity. Ideal for waraing systems.

RIT/B062

ع19.75

Parabolic Microphone (BO85)

Highly sensitive microphone. If mounted into a semi-circular reflector (eg half of a plastic ball), noise and voices in a distance of several hundred metres may be recorded Ideal for animal observance, for detectives etc. For headphone connection 80. Requires 9 V supply.

KIT/B085 E10.35

Acupuncture Electronic (B136)

Electronical Acupuncture has an effect on many sicknesses. This kit operates in accordance with the electconical acupunctuce - method. An illustrated description for the treatment is enclosed. 3-12V

- migraine,headaches caused by overstcaining.
- stimulation of the blood circulation.
- neuralgia
- stcained shoulders
- muscle pain like inflamed muscles and soreness
- backaches (lumbago)
- leg and arm neuralgia
- cheumatically caused articular pain
- acticular pain as arthritis or sprain.

KIT/B136

E9. 85
LEI) VU Meter (30LEDs) (B160)
A thicty LED voltage display which uses the new U 1096B chip making it possible to construct an LED control display with 30 LEDS. The circuit can be connected dicectly to the loudspeaker output of an amplifier. A trimming pot allows exact setting within the required range. The display can also be used as a voltimeter etc.

KIT/B160

E19. 25
LED Lightband (B173)
A decorative lighting band of approx.1.5m with 14 light emitting diodes, which light up alternately to give the appearance of movement. Ideal for decorations parties, carnivals at Requices 18 V power supply.

> KIT/B173 E9.45

Filter Electronic (8176)
This highly effective anti-interference device has to be connected into the mains lead of you computer,telefax, video or TV set. The kit is overvoltage protected. Max load: 750W 110-250V AC

$\mathrm{KIT} / \mathrm{Bl} 176 \mathrm{El3.25}$

Dog Barking Electronice(B155)
Generates a dog backing sound. Suitable for use with 8^{n} speaker. Operating voltage $9-12 \mathrm{~V}$. The barking is stored on a special speech-synthesizer 1 C .

KIT/b155
ع19.50

Ultrasonic Dog Whistle (B179)
The ultrasonic dog whistle emits high powered ultrasonic sounds which are widely audible for dogs, but mostly undetectable by the human ear. The output frequency is through a special piezo lodspeaker and is adjustable between 8000 and $25,000 \mathrm{~Hz}$. Requires a 9 V battery.

KIT/B179
E7. 50

Speed Control 12-24V (B180)

Suitable for the operation of miniature drilling machines which have DC motors. A rectifier is fitted in the kit and only requires a transformer of $12-24 \mathrm{~V}$ secondacy depending on the required voltage. Suitable for use up to 3 A curcent input.

KIT/B180
E6. 45

Alanm Motorbike (MO73)

This waterproof and shakeproof module will automatically switch on a horn or siren if the motorbike is moved, can also be used to protect other objects from theft. Additional items reguired:power supply (bike battery),SPST switch,horn or siren. Max current 1A.

KIT/MO73 E4.50
Ion Generator (B137)
Regenerates negatively loaded air particles (aic-ions) and helps to produce a healthy climate which can reduce troubled sleep.aggressi veness, headac hes and weather related dispasitions etc. Input $6-18 \mathrm{~V}$ DC. Output $2-7 \mathrm{kV}$. Current limit protection<200 A.

KIT/B137 E9.95
Lie Detector (BO87)
This lie detector will monitor changes of the skins resistance due to sweating caused by lies and fear etc., which is then indicated by an LED. Requires 4.5 V
KIT/B087 E5.95

MW Testing Transmitter (B144)
A close range test only oscillator which can be used as an unmodulated carrier to test radio receivers in the MW band. This kit must not be used to tcansmit over any distance.

KIT/B144
84.99

KITS

Combination Digital Lock B(063)
After keying-in a 4-digit number, the relay switches on. The code is independantly programmable and can be easily modified. Relay contact: 3 A, lxchange over. For 6 V application: keyless door-lock, to switch on equipment (radio, TV-set etc.) which is not to be used by other people, for safe doors etc.

KIT/B063
£22. 75

Car Antenna Anplifier (B068)
This amplifier is connected between the antenna and the radio, using co-axial cable 60-750. Gain max: 22 dB . Frequency range:0.5-150 MHZ (Approx).
$\mathbf{K I T} /$ BO68 $\quad € 5.99$

Spy Stethosogpe (B069)

z
animals etc.

KIT/B069

120.50

Accoustic Water Detector (BO7O)

...raises a loud alarm signal on contact with water. This instrument signals broken water pipes, overflowing washing machines and bath tubs, etc. The sensor can be connected by a longer cable of up to 100 m . Power supply: 9 V battery.

Microphone pre-Amp (8090)
The impedance load can be adapted for each microphone from 40 to 100 kO . Input voltage $2-40 \mathrm{mV}$. Output max. 1.8V. Adjustable gain. Frequency: approx. $20-40000 \mathrm{~Hz}$. Operating voltage: 6-20v.approx.1mA

RIT/B090
e6. 95

Interval Switch (Universal) (B098)

Pre-Arp Universal Mono (B073)
Frequency range $10 \mathrm{~Hz}-150 \mathrm{kHz}$. 2-step pre-amplifier for 9-30V, output: $200 \mathrm{mV}-2 \mathrm{~V}$. Application: pre-amplifier for high-power amplifier,'headphones-amplifi er', etc.

KIT/B073

£4. 85

Diode Receiver MW and SW (B076)
'Detector-receiver' for Middle-wave or short wave, approx $2-9 \mathrm{MHz}$. This radio operates on the same principle as the very first radio receivers. It does not require an operating voltage. This kit is educational for beginners.

KLT/B076
$£ 10.75$

Mesmeric Instcument (B078)
This magnetic field instrument operates on the same principle as curative instruments offered on the medical market. Alternating currents of magnetic fields are said to have a soothing effect on various kinds of sicknesses.

KIT/B078

E9. 25
Battery charger, Ni-Cad (Universal) (B079)
Automatic accu-charger for accumulators of $1.2-15 \mathrm{~V}$. The charging curcent will autonatically adjust, to remain constant as the battery charges. Has a selection of seven settings. 5-600mA. Additional requirement: 1 transformer. Output capacity: 18-20V.0.6 A.

KIT/B079

E9. 25

Bre-Amp Universal Stereo (Bl42)
2-step stereo universal pre-amplifer for operating voltages between 9-30v operating voltage.
Input: 2 - 20 mV . output: $200 \mathrm{mV}-2$
V:application pre-Amplifier
for high-power
amplifier, 'Headphones-ampli
fier',etc.
KIT/B142 E8.45
Robot Voice (B. 107)
This kit modulates the human voice with an adjustable frequency to produce robot like sounds. This sound then requires amplification i.e. by an amplifer or a tape recorder. Requires 9-12V supply.

KIT/B107 £9.60

12V ACCESSORIES

QUARTZ HALOGEN SPOTITGHT Hand held spotlight with a 55watt bulb, producing more than 250,000 candle power, directed by a concave, electro plated reflector Supplied complete with hanging loop and 3.6 m colled lead with cigar plug fitted.
POWER.
................l2vdc 55w DIMENSIONS. . $125 \times 125 \times 140 \mathrm{~mm}$ (Approx)

ORDER CODE: OPTO/QHS
£5-75

ORDER CDDE: CAR/JL
4 FOR £ 10-00

SPECIAL OFFERS

PHOTO-TRANSISTOR Siemens TYpe: SFH309-5 Case: Tl (3mm)
Sensitivity: $1.0-2.0$ @ $0.5 \mathrm{~mW} / \mathrm{cm}^{2}$
Half Angle: 32°
Peak Response: 900nm
Response: 10 tr(US)

Short lead is connector.
Lead pitch: 2.54
We have large gty's in stock.

Internationally approved heavy duty PCB mounting relay in industry standard dimensions with 1 form C contact rated at 8 Amps.
Mounted on 0.l" grid.
Switching voltage: 380 vac max.
8 A 250 Vac Dims: $28 \times 25 \times 11 \mathrm{~mm}$
Nominal V DC: 12 V 270 ohm
$\begin{array}{cccccc}\text { ORDER CODE: } & 1+ & 10+ & 100+ & 1000+ \\ \text { SO/602 } & \varepsilon 1-00 & 90 p & 65 p & 55 p\end{array}$
(We still have approx 3,000 in stock!)
EPROM LABELS $16.5 \mathrm{~mm} \times 5.08 \mathrm{~mm}$
OK INDUSTRIES TYPE CODE: $1 / 100 \mathrm{~A} / 10$
A dual purpose label designed for use on Eproms or similar devices where the chip requires protection from the effects of light. These labels are also handy for marking devices or junction identification. Supplied on roll sheets which have pin-feed holes along the edge thus allowing them to be printed on a computer printer.
Total qty. per full rel: 3350 Labels (Approx)

	QTY				PRICE
ORDER CODE: SO/600	60 Labels	50 p			
(Full reel)	180 Labels	$£ 1-40$			
	3350 Labels	$£ 22-50$			

IEC LEAD - CURLY
6 A 240 Vac Right Angle IEC plug fitted to 3core 0.75 mm black curly cable. Stretches to approx. 2.5metres.
$\stackrel{1+}{\text { ع1-00 }}$
$10+$
ORDER CODE: SO/604
ع1-00
90p

Terminal junction box for powering d.c. accessories. Gives three pairs of pillar screw terminals, colour coded Red \& Black. 90 cm lead with cigar plug fitted.
Current......3A max. Dims: $84 \times 55 \times 32 \mathrm{~mm}$

ORDER CODE: SO/158	$1+$	$10+$
PRICE	£1-50	£1-25

TOROIDAL TRANSFORMER Made in UK
Manufacturer: St Ives Windings.
PRIMARY: 0-120V
SECONDARIES: 9 v at 4Amps $15-0-15 v$ at 500 mA
Dims: 75 mm Dia 38 mm Thick
Original price in tens $£ 24$ each
ORDER CODE: SO/26B PRICE: £9-99

8 TEREOSOCKET SALE

$6.35 \mathrm{~mm}\left(4^{\prime \prime}\right)$ Stereo chassis socket Metal mounting nut. Unswitched ORDER CODE: SO/661

	$1+$	$10+$
PRICE:	$30 p$	$26 p$

ANGLE SCREWDRIVER

USAG 340 Each end has flat blade 13 mm tip.
Very high quality, marked Vanadium USAG Extra
2×13.
ORDER CODE: SO/650
PRICE: $11-00$ each

COMmUNICATIONS INTERFACE PCB - Processor Board Sorry, no further info. but board populated with several 6800, 6116, 2764, series chips (All plug-in).
Phono sockets, resistors, caps, etc etc.
Board Size: $465 \mathrm{~mm} \times 195 \mathrm{~mm}$
ORDER CODE: SO/652
PRICE: £5-00

IEC SOCKET - Snap Fit

10A 250 V
A snap rit IEC socket providing a quick and easy
installation option for IEC connector.
Chassis male
Marked with all the
approvals.
Panel Cut Out: $27 \times 19.5 \mathrm{~mm}$
ORDER CODE: SO/653
PRICE: 50p

ORDER CODE	$1+$	10	100
SO/MAX	$85 p$	$75 p$	$60 p$
SO/SKC	$65 p$	$55 p$	$40 p$

TANT BEAD SUPER SALE

We have just purchased over 150,000 tantalum bead capacitors and can offer very attractive prices while stocks last.

Value/voltage	$1+$	10 *	100 *	1000
1.0uF/35V	10 p	8 p	5p	3 p
$2.2 u F / 16 v$	11 p	9p	6p	4 p
4.7uF/35v	16 p	12p	9 p	7 p
$10 \mathrm{uF} / 16 \mathrm{~V}$	20 p	15p	10 p	8p
10uF/35v	24 p	18 p	13 p	10 p
Lead Spacing	A	x Le	ngth	

```
TElefunken - Selection guide Transistors & Diodes.
38 pages, packed with full specifications, drawings, pin-outs and cross-references.
Contents: BA204-2N4036
A super booklet rull of useful data.
Dims: \(270 \mathrm{~mm} \times 210 \mathrm{~mm}\)
ORDER CODE: SO/654 PRICE: £1-00
```


ANGLE SCREWDRIVER

USAG 341. Ideal where space is restricted. Two tips set at 90° to the shaft and heads for cross slot screws. Manufactured from Chrome vanadium steel, hardened, tempered and chrome plated for corrosion protection.
Blade Length: $6^{\prime \prime}(150 \mathrm{~mm})$
One End: Cross Slot No. 3
Other end: Cross Slot NO. 4
ORDER CODE: SO/655
PRICE: $11-25$

REDPOINT HEATSINK
Type: $4 W-4$
$1.2^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{H}=32 \mathrm{~mm} \quad \mathrm{~W}=130 \mathrm{~mm} \quad \mathrm{D}=100 \mathrm{~mm}$
Pre-drilled to take $2 \times$ T03 devices.
List price $\{6-04$ plus VAT! These really are top quality. Only a limited quality available
ORDER CODE: SO/260A
PTICE: $\quad 22-50$

```
HEATSINK Type: SW50-4
High performance heatsink, designed for plastic power transistors, including T0-220, TO-3P, TO126 etc. Fitted with solderable pins and may be vertically mounted.
Pre-drilled, Black anodised body
Length: 50 mm Width: 34.5 mm Depth: 12.5 mm
Thermal Rating: \(8.6^{\circ} \mathrm{C} / \mathrm{W}\) (Current Price 98 p !)
ORDER CODE: SO/260
PRICE: 55p
```


AUDIO CASSETTES
 AUDIO CASSETTES
 Used once and bulk erased. ALl FULLY GUARANTEED Over the last 12 months we have sold over 55,000 of these tapes and demand is still growing. At time of printing we have two makes avallable. MAXELL UDI-90 \& SKC GX90 Ferro Position Both tapes are supplied complete with Inlay cards.
 Both tapes are 90 Minutes

FARNELL SWITCB MODE PSU - 240Watts G Series Model: Gl2 20A
They seem unused but no promises. Copy of manual available with orders upon request. These units are in the curent Farnell catalogue at over $£ 395$ each!
INPUT: 115-120/240vac
OUTPUT: 8 to 12.6 V (Adjustable) 20 Amps
Dims: $88 \times 160 \times 194$
SALE PRICE: £150-00 each

PAPST FAN - TYPE 6124 (172×55 mm) 206CfM Aluminium fan, impeller of fibreglass reinforced plastic. Electronically commutated dc motor. Counterclockwise rotation viewed from rotor, air output over struts! 1 OK? (Supplied with FREE guard) All brand new, still boxed, very high quality. List price is over $£ 85-00$ each!!!

ORDER CODE: SO/256A SALE PRICE: E10-00 each any gty.
ERM FAN - TYpe W2G075-AE21
Bomm X 80mm (Depth 38mm)
Super quality, latest model. Run at 12 Vdc . (will run on voltage between 8 v and 16 vdc .)
2.6Watts, $3450 u / m i n$. Made in Germany.

All aluminium construction. Trade price over $£ 30$ each! ORDER CODE: SO/257 SALE PRICE: E7-50 ea

RAYCEEM MINIATURE CO-AX
75 ohm Type: 7528A1317-9(100)
Conmercial quality. Stranded 7/0.127mm 28awg. Dia. 2.6 m

Colour: WHITE Reel Length: l00mtrs
Current trade price: $£ 92$ per reel!!
ORDER CODE: SO/446 65p/mtr £45 per 100 mtr reel

LeC FILTER PLUGS - Belling Lee
Operating Voltage: 240Vac. Line Frequency: $0-400 \mathrm{~Hz}$. Inductance: 3 mH per line. Trade Price $89-50$ each!
Two ratings available: 2 Amp and 6 Amp.
2A Order Code: SO/262 SALE PRICE: E3-50 each 6A Order Code: SO/262A SALE PRICE: E3-50 each

DIL SWITCH - 10 Way - Low Profile Alco Type: ADF10
Very high quality. 0.1" pitch. Black with white switches. Length: 27 mm . DIL package. 20 pin At time of printing we have over 20,000 pes in stock. 15 pcs per tube.

	1.	15*	$90+$	0 +
ORDER CODE : SO/608	5p	45p	39	30p

SIEMENS FILTER 0.33uF
Type: B84150-A-A110
Stud mounting, 4 solder tags.
$0.33 \mathrm{uF}(\mathrm{Xl})+2 \mathrm{X} 2500 \mathrm{pF}(\mathrm{y})+680 \mathrm{~K}+2 \times 1.8 \mathrm{mH}$ $250 \mathrm{Vac} 10 \mathrm{Amp} 50 / 60 \mathrm{~Hz}$
Dims: $65 \mathrm{~mm} \times 35 \mathrm{~mm}($ Dia)
ORDER CODE: SO/SIE/Allo SALE PRICE: El-50
SIEMENS FILTER 0.47 uF
Type: B84150-A-All5
Stud mounting, 4 solder tags.
$0.47 \mathrm{uF}(\mathrm{XI})+2 \mathrm{X} \mathrm{5000pF}(\mathrm{y})+680 \mathrm{~K}+2 \mathrm{X} 1 \mathrm{mH}$
$250 \mathrm{Vac} 10 \mathrm{~A} 50 / 60 \mathrm{~Hz}$
DIMS: 75 mm X $35 \mathrm{~mm}(D i a)$
ORDER CODE: SO/SIE/All5 SALE PRICE: El-50

SIMILAR TO ABOVEKEYBOARD
REYBOARD - Clare BRAND NEW
Uncased Brand new keyboards manufactured by Clare General Instrument Corp.
Alphanumeric - seperate numeric keypad.
io7 keys with a buzzer and several IC's on the rear:
1×8528, $1 \times 2516 \mathrm{JL}-45,1 \times \operatorname{ET} \mathrm{E} 035 \mathrm{~N}-6,1 \times$ 6 Mhz Crystal etc etc. Plus various resistors \& capacitors.
Overall dims: $480 \times 160 \mathrm{~mm}$.
ORDER CODE: SO/472 SALE PRICE: E4-50 each

ALLIBERT TRAYS

P.C.B. STORAGE TRAYS - Made by ALLIBERT General purpose, high quality trays. Ideal for many uses: PCB storage, component storage, desk in/out trays, seed trays etc. Very very strong \& stackable. Current price in KEYS catalogue: E3-50 ea plus vat
Dims: $300 \times 395 \mathrm{~mm}$ Depth: 75 mm
ORDER CODE: SO/TRAY El-50 $\begin{array}{llll}1+ & 10+ & 100+ \\ \text { El-25 } & \text { El-00 }\end{array}$

SHUGART 8"

 DRIVE

DISK DRIVE - 8" BRAND NEW
 Shugart Model: 801
Brand new, 240 Vac drives still in original packaging. These really are a bargaln!

ORDER CODE: SO/DRIVE SALE PRICE: £15-00

SECURITY KEYSWITCH

 6 A 240 Vac 2 tag SPST Fixing hole: 19.2 mm Dimensions: $40 \times 20 \mathrm{~mm}$ dia.

 ORDER CODE: SO/605 E1-50 El-25 El-00

Keyswich Cover.
Strong plastic cover providing protection against the weather in external applications. $\begin{array}{lrl}\text { Colour: Grey } & \mathbf{1 +} & 10+ \\ & 25 p & 20 p\end{array}$

PHILIPS CCTV CO-AX LEADS

BRAND NEW - Leads, lomtr long.
Co-Ax plug to Right Angle Co-Ax plug.
(Moulded Plugs)
Colour: GREY 1+ 10+
ORDER CODE $=$ SO/350 E1-75 E1-50

RESISTOR KIT - 1000pcs
Assorted values, including values that we
have overstocks on. A minimum of 10 different values.
Absolute Bargain
1000 Resistors. All 0.25W Carbon 5\%
ORDER CODE: SOAl93
Price: El-99

IEC MAINS LEADS

IEC LEAD 250 V 10A Right Angle Made By Belden
This may be the highest quality lead available. Fully screened cable, moulded IEC socket one end with USA plug on the other.
To use in UK, simply cut off the USA plug and wire up a standard 13A plug.
At time of printing we have over 12,000 of these leads and therefore able to offer very attractive quantity prices.
Markings on cable: 18-3 Type SJT E-3462
LL-7874 Shielded GFi

Colour: BLACK	$1+$	$10+$	$100+$
Cength: 2 Mts			
ORDER CODE: SO/307	£1-00	$85 p$	$60 p$

SIEMENS

Ideal for Radio, Computer etc which require an electrical noise free supply. Each filter is constructed using toroidal chokes and a combination of safety $X 2$ and Y capacitors configured in a delta formation.
Very high quality, Brand New never been used. These really are a bargain.
ORDER CODE: SO/SIE/10A \quad £7-50 \quad £7-00

SCOTCH DATA CARTRIDGE TYPE DC300A 3 M Standard length, all brand new and in original sealed packs. These really are a bargain. Length: 450 ft (137.2 mtrs) $1600 \mathrm{bpi} / 3200 \mathrm{ftpi}$ ORDER CODE: SO/436

SALE PRICE: E10-00! !
MEMOGUARD LITHIUM MEMORY RETENTION BATTERY
Saft Type: 40LH220

* DIL Package
* Hermetically sealed
* 10 year operating life.
* voltade, 3 V

Dimenstionste $28^{\prime} \times 25 \times 8 \mathrm{~mm}$
Normal trade price is e2-75 plus vati!
$\begin{array}{ccc} & \begin{array}{l}1+ \\ \text { ORDER CODE: } \\ \text { SO/437 }\end{array} \underset{\text { El-50 }}{10+} \\ \text { El-25 }\end{array}$

JUST ARRIVED! Limited quantity.... Burry hurry... FARNELL SWITCR MODE PSU - 240Watts G Series Glem 20Ansed, but no promises. These are in the current Farnell Electronics catalogue at over £395 each!!
INPUT: $115-120 / 240 \mathrm{Vac}$ OUTPUT: 8 to 12.6 V 20A Dims: $88 \times 160 \times 194$

ORDER CODE: SO/432
SALE PRICE: E150-00 each!!!!!!
bulgin fused test probes Red \& Black
Made in UK, very high quality. robust moulded plastic, complete with a lif ly fuse fitted.
Length: 144 mm Sold as a pair
Normal price is more than $£ 4-00$ per pair:
$\begin{array}{llll}\text { ORDER CODE: SO/139 (per pair) El-20 } & \text { El-00 }\end{array}$
COMPUTER LEAD
A 7 pin DIN plug to $1 \times 2.5 \mathrm{~mm}$ Jack plug (yellow) $1 \times 3.5 \mathrm{~mm}$ Jack Plug (Red $1 \times 3.5 \mathrm{~mm}$ Jack plug (Black)
Lead length: Approx 2 metres.
$\begin{array}{lcc} \\ \text { ORDR CODE: } & 1+ & 10+ \\ \text { SO/l94 } & \text { El-50 } & \text { El-25 }\end{array}$
SPEARER GRILL - Chrome - $\mathbf{1 2}^{\text {n }}$
Very attractive chrome speaker grill with black rubber surround.
Robust construction made from l.1mm thick steel. Grill pitch: 11 x 11 mm approx. $1+\quad 4+$ ORDER CODE: SO/026 £3-00 £2-50
EPSON - Intelligent Printer Interface Boards. Type: 8148
Suits Epson printer models: EX-800, EX-1000, LQ-2500 and SQ-2500 (Maybe others)
Integral 8 kB buffer and self-test which can be used to provide either $R S-232 \mathrm{C}$ or current loop capability.

Currently being sold in trade cats. at over $£ 80$!
ORDER CODE: SO/EPSOM
SALE PRICE: £25-00
EPROM SPECIAL - 27 C 256
Brand new, 250ns. Limited quantity, approx 800 pcs. First come first etc

$1+$	$10+$
£3-00	£2-50

Manufactured by Commodore Business Machines (CBM) ltd. These power supplies are ideal for running radio's, cassette recorders, calculators etc etc. They fit the UK shaver adaptor (See our Electrical section). We have substantial quantities of these items and can offer attractive discounts for bulk buyers.

TYPE: EOB -DC

Input: $220 / 240 \mathrm{~V}$			Input: $220 / 240 \mathrm{~V}$		
Output: Plug:	4.5	200 mA	Out	6V	200 mA
	2.5	ck	Plu	3.5	Jack
SO/POW/EOB			SO/POW/MM3		
$1+$	10+	100+	1+	$10+$	100+
70p	60p	50p	95p	90p	75p

TYPE: E09-DC	
Input:	220/240V
Output :	: 6 V @ 400 mA
Plug:	3.5 mm Jack
SO/POW/EO9	
$1+$	$10+100+$
c1-20	£1-10 90p

5\}" Computer Disks - 3M
Type: 744 D-O SS DD
Single sided double density soft sector.
Limited qty, only a few hundred boxes. First come first served!
ORDER CODE: SO/636 PRICE: $\{2-00$ per box of 10

MODEM LEAD

25 Way ' D' Plug connected to a BT 4 way plug. Length: Approx. 3 Metres.
ORDER CODE: SO/637
PRICE: 8 3-50

Adjustable Feet for Tube Fitting

High quality feet for fitting to most makes of 25 mm square tube. Each pack contains
$4 \times$ Threaded Feet. $4 \times$ Metal Cap. $4 \times$ Tightening Nut.Current Trade price is $£ 4-70$ plus VAT per pack 1 Remember, all our prices include VAT.
ORDER CODE: SO/638
PRICE: $\{3-00$ per pack

Centronics plug - male - 50 way
Amphenol Type: 226 B-50-U

50 Way plug (without strain relief) Very high quality. Only a couple of hundred avallable. ORDER CODE: SO/639 1 +

ᄃ1-10
$10+$
$\& 1-00$

0.1uF 63V 5\% Metallised Polyester Capacitor				
Very small capacitors, ideal where space is restricted. Overall width is only 7.5 mm . Lead pitch is 5 mm . We have a substanial quantity of these capacitors so if you use large quantities contact us now.				
ORDER CODE: SO/640	1 *	$10+$	100 *	1000 +
	5p	4 p	3.5p	2.5p

ITT- PLASTIC 25 WAY ' D' Cover with Jackscrews ITT-CANNON Type: DC77762-25

Maybe the highest quality on the market at a very low price. Current Trade Price is £1-16 plus VAT! Complete with integral Jackscrews and cable grip. Colour: BLACK 1* 10 +
ORDER CODE: SO/641
70 p
65 p

WIREWOUND POT 1 Watt $2 K 5$

AB Type: Λ BW1
Super quality,
Current price over £2-50 each
ORDER CODE: SO/642

Multi-channel Photodarlington Optocoupler Siemens Type: ILD32 8 pin DIL
2 input opto-coupler with darlington output
This device can be used to replace $4 N 32$'s or 4N33's in applications calling for several singlechannel couplers on a board.
Continuous Forward Current. 80 mA
Peak Reverse Voltage.
Photodarlington Sensor (Load Circuit)
Power Dissipation e 25° C Ambient............... 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}2 .0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector (Load) Current....................... 125 mA
Collector-Emitter Breakdown Voltage (BVceo).... 30 V Emitter-collector Breakdown Voltage (BVeco).....5V 8 pin Dil package.
$\begin{array}{rlr}\text { ORDER CODE: SO/643 } & 1+ & 10+ \\ & \text { PRICE: } 45 p & 40 p\end{array}$

INFRA-RED EMITTERS Type: OP161SLA

 T1 (3mm) Package.Gallium arsenide infrared emitting diodes moulded in clear plastic, mini-axial package. The lensing effect of the package allows a radiation half angle of 8° measured from the optical axis to the half power point. Lead spacing is 0.100 " (2.54 mm) to allow mounting in standard sockete
Continuous Forward Current.
.50 mA
Peak Forward Current (pulse width=iusec 300pps).
.3.0A
Reverse Voltage. .2 .0 V
Power Dissipation...
100 mW
At time of printing we have several thousand pcs of this item if you require large quantity's

| | $1+$ | $10+$ | 100 + |
| :--- | :--- | :--- | :--- | :--- |
| ORDER CODE: $50 / 644$ | $45 p$ | $40 p$ | $25 p$ |

PAIR - INFRA-RED EMITTER \& DETECTOR T1 (3mm) Package.

No info on these pairs but we are fairly sure that the emitters are OP161SLA as detalled above with matching detector. But no promises!
Each pair is in a small holder
ORDER CODE: S0/645
PRICE: $11-00$ per pair
$0.01 u F$ 2000V Wima Type FKP-1
Tol: 5\%
WIdth: 30 mm Height: 20 mm Depth: 11 mm
Lead Pitch: 27.5 mm
ORDER CODE: SO/646
PRICE: 50p each

2200uF 63V Electrolytic
PCB/Stud Fixing
Dimensions: Dia. 35 mm Height. 50 mm (Excluding thread)
Supplied complete with fixing nut and washer
ORDER CODE: SO/647 $1+10$ +
PRICE: 50p 45p

2200uF 100V PCB Electrolytic
Mindaturized versions ensures a saving of space in compact power supply design.. PCB snap-in terminals on a 10 mm pitch for direcr mounting into 2 mm dia. holes. Super quality, super price! ORDER CODE: SO/310
PRICE: $11-50$ each

We may purchase your excess stock: Contact us now

MONITOR EXTENSION LEAD

15 Way ' D' Male to 15 Way ' D ' Male
Length: Approx 9.5Metres
ORDER CODE: SO/611
PRICE: 2 2-99

COMPUTER LEAD

Amphenol 15 way D plug fitted to approx 1 metre of 13 way cable terminating in a 24 way $0.15^{\prime \prime}$ pitch double sided edge connector. (Edge connector type: TRW 50 24A-30) Edge connector can simply be cut off if not required.

ORDER CODE: SO/617
PRICE: $11-50$

MOULDED 13A PLUG \& LEAD

A non-rewireable standard VOLEX 13A plug fused with 3A fuse, moulded to a 2 Metre length of 3 core 0.5 mm cable. The free cable end has stripped conductors ready for riting to your equipment.
COLOUR: BLACK
ORDER CODE: SO/612 PRICB: $£ 2-00 \quad \underset{\sim}{10+75}$

Line Cord. Plug to Plug. BT standard cord set used when modifying existing equipment. Plugs each end are 4 way. LENGTH: 3 Metres 1* 10* 100* SO/613 PRICE: $\quad 11-25 \quad$ \&1-00 88p

A non-rewireable IEC socket moulded to a 2 M length of 3 core 0.75 mm cable terminating with a USA plug. For UK use simply cut off USA plug and fit UK 13A plug. Rating: 10 A e 115 V . 6 A e 250 V . Colour: GREY

ORDER CODE:	SO/614	$1+$	$10+$	$25+$
PRICE:	$£ 1-50$	$£ 1-25$	$£ 1-10$	

COMPUTER MODEM LEAD

RS232 - RS232 25 way ' D^{\prime} plug to 25 way 'D' plug.
9 pins connected.
Snap-fit covers allowing you to open and re-wire the pin configuration if required.
Length: 1.5 Metres (Approx)
ORDER CODE: SO/615
PRICE: $12-75$

IEC MAINS LEAD - Right Angle - Belling Lee 6A 250 V

S0/818
A non-rewireable right angle socket moulded to approx. 2 metres of 3 core 0.75 mm cable terminating in prepared ends ready for wiring to your equipment.
Length: 2 Metres PRICE: $11-00$ each
COLOUR: BLACK

COMPUTER LEAD

A 25 way 'D' plug fitted to approx. 1 metre of overall screened 9 way round cable with a metal 8 way DIN plug on the other end.
ORDER CODE: SO/619
PRICE: £1-00 each

COMPUTER CURLY LEAD

A 15 way 'D' plug fitted to approx. 1 metre of black 4 core curly lead with prepared ends on the other end.
Lead stretches to approx. 3-1 metres.
ORDER CODE: SO/620
PRICE: $11-00$ each

CAPACITOR SALE

2200uF 35Volt Ideal for power supplies. Super quality, made by Matsushita (Panasonic) in Japan. Only available while stocke last. RADIAL LEAD
Dims: Length 30 mm , Dia. 16 mm . Lead length approx. 30 mm .

ORDER CODE:	SO/621	PRICE:	50 p	$10 *$
		$45 p$	$35 p$	

L293B SGS Bridge Driver 16 pin DIL

Only a few hundred available at this once only price. 25 pcs to a tube.
ORDER CODE: SO/622 £1-50 £1-25 £1-00

EEPROM SALE (Yes EEPROM!)
General EEPROM characteristics include a minimum of 10,000 read/write cycles and data retention of 10 years.
NMC9346N National Semiconductor (Fairchild)
1K-Bit $1 K(64 \quad X \quad 16)$ Serial NMOS EEPROM-byte
erasable. 8 pin DIL. $V c c=5 V \pm 10 \%$
Normal trade price is $\{1-67$ ea plus VATT!
$1+10+100+$
$\begin{array}{llll}\text { ORDER CODE: SO/623 } & £ 1-00 & 90 p & 75 p\end{array}$

GOULD SWITCH MODE POWER SUPPLY 24V 1.4Amp Type: MMg24-1. 4
No promises but most seem to be unused. Very high quality and now limited quantity left. Curent list price is over $E 200$ each.
INPUT: $110 \mathrm{~V}-120 \mathrm{~V}$ OUTPUT: 24 V 1.4 Amps 220v-240V
Dimensions: $160 \times 35 \times 85 \mathrm{~mm}$

Reduced from $890-00$
ORDER CODE: SO/487 SPECIAL PRICE: £45-00

WEIR SWITCH MODE POWER SUPPLY 50Watts MODEL: SMM 50/12 A24
Again, no promises but all these units seem unused. Still in original packaging.
Complete with full spec. sheet \& circuit diagram.!!
(Available seperately send El plus SAE)
INPUT: 98-132V OUTPUT: OPl: 5V
OP2: +12V
OP3: -12V
OP4: +24V
(Fully cased)
Op4: +24V
These units just arrived and regret we have no current ratings yet.
Dimensions: $200 \times 150 \times 60 \mathrm{~mm}$
ORDER CODE: SO/WEIR/SMM
PRICE: E17-50
GREENDALE Switch Mode Type 19A-BOE-M137-TG 53 Watts

A partially cased unit made to commercial standard. Very high quality.
Dimensions: $195 \times 125 \times 60 \mathrm{~mm}$ Outputs are on flying leads.

INPOT: 120-240Vac	OUTPUT:	+5v	e	3A
		+12V	e	1 A
		-12V	e	1A
		+24V	e	0.5A

ORDER CODE: SO/434
PRICE: E12-50

WEIR - 120ve 60Hz

200Watts
Another custom built switch mode power supply manufactured by Weir UK. Again, made to the highest standard. Originally made for use in the USA hence the l20V input, however we know you have the technology to make use of these units:l!: so in return, a bargain price. Units are fitted with a 4 way molex plug - no extra charge. These units are fully cased.
INPUT: l20V OUTPUT:
$\begin{array}{lr}\text { v1 } & +5 v \text { e } 4 \mathrm{~A} \\ \text { v2 } & -5 v \\ \text { v3 } & +16 \mathrm{v} \\ \mathrm{v} & 0.5 \mathrm{~A} \\ \text { v } & -16 \mathrm{~A}\end{array}$ $\begin{array}{lll}V 3 & +16 V & 0.4 A \\ v 4 & -16 V & 3.4 A\end{array}$
The original cost of these units was over E200-00.

ORDER CODE: SO/WEIR/2 PRICE: E12-50
ASTEC Switch Mode Power Supply llowatts
Model: BM-41001
once again, a commercial standard PSU. All brand new, just received another delivery, (Sorry higher price) but they still represent a REAL bargain. To date we have sold nearly 700 units!!
INPUT: $115-240 \mathrm{Vac} \quad$ OUTPUT: $\mathrm{Vl}+5 \mathrm{~V}$ e 3 A
Dimensions: $415 \times 120 \mathrm{~mm}$
ORDER CODE: SO/ASTEC/BM4
PRICE: E12-00

Mostly still in sealed boxes. Unused and complete with full manual. This unit is still in production. Catalogue price over £200-00:1
Input: 240 Vac
OUTPUT: 8-12.6V 5Amps
Dims: $88 \times 60 \times 165 \mathrm{~mm}$

ORDER CODE: SO/431
PRICE: E55-00
(Reduced from our Special price of 885-00:!

CCTV MONITOR BOARD
Weir Type: M5009/1
custom built board by Weir UK. Board seems complete. has EHT unit fitted etc. All boards seem brand new. These really are a bargain DIMS: $200 \times 160 \mathrm{~mm}$
ORDER CODE: SO/435
PRICE: E5-00
BRANDENBURG Power Supply
Type: 776AF
15 KV e 500 uA
500 vdc out
very high voltage, variable from 8.5 Kv - 16 Kv Made for REM \& CRT application. 10 pins.
SORRY, NO INFO! Hence low price. Current model over £250 each!
ORDER CODE: SO/433
PRICE: E35-00
TRANSFORMER - LOOVA
High quality at a very affordable price. Only a 100 left, over 500 sold!
PRIMARY: 0-120v 0-120v
Secondary: $0-24 v, 28 v, 32 v$ $36 \mathrm{v}, 100 \mathrm{VA}$
GREENDALE

[^4]

SPECIAL OFFERS

SERIAL PRINTER CABLE

RS232 Ribbon cable. 25 way ' D ' plug to 25 way ' D' plug.
Length: Approx. 1.8Metres.
ORDER CODE: SO/616
PRICE: £3-50

SUFLEX - Lacing Cord Type R88w

These cords are specifically designed for the lecing of cable forms. The core of nylon braid ensures high tensile strength with small extensibility, and yet has sufficient elasticity under low loads to make a neat cable form. The outer PVC acts as a cushion preventing the cord from cutting the cable insulation.
Colour: Black Reel Length: 500 Metres O.D. 1.1 mm Working Load: 6.8 Kg

Current Trade Price: $\{13-11$ per reel plus VAT!
ORDER CODE: SO/624
PRICE: $\{6-50$ per reel

MULLARD TRIMMER CAPACITOR

Mullard type: 808 series. $2-40 \mathrm{pF} 250 \mathrm{~V}$
Super quality at a very special price while stocks last!
Mullard Code: 808-11409. Value: 2-40pF 250Vac
Distributor price is 24 pea VAT on 100^{\prime} sil

| ORDER CODE: $50 / 626$ | $1+$ | 10% | $100+$ |
| :---: | :---: | :---: | :---: | :---: |
| PRICE: | $25 p$ | $23 p$ | $20 p$ |

MAIMS SUPPRESSION CAPACITOR ISKRA 0.1uF $250 \mathrm{Vac} \times 2$

A radial lead boxed metallised polypropylene mains suppression capacitor. Approved to VDE0565 Class 2. Epoxy resin encapsulated in flam retardent plastic case. Iskra Type: KNB1532 Dims: W 18 mm . H 7 mm . D 13 mm Pitch: 15 mm Tolerance: $\pm 20 \%$

ORDER CODE: $: ~ S O / 627$	$1 *$	10	100	
	PRICE:	$20 p$	$18 p$	$15 p$

AVO PANEL METERS TyPE T60/2481

Marked 50-0-50uA
Internal Resistance 400 ohm.
Dims: $70 \times 60 \mathrm{~mm}$ (Approx)
Zero adjustment on front of meter.
As you would expect from AVO, made to the highest quality. Limited qty. avallable.

ORDER CODE: SO/628
PRICE: $£ 6-50$

WANTED WANTED \quad WANTED
We buy new surplus electronic components and
equipment. Simply send your samples/list to our
Head orfice, attention The Managing Director.

TOROIDAL TRANSFORMER SOVA
Avel-Lindberg Ltd UK. Type: $40 / 4556$

Input: $120 \mathrm{~V}-240 \mathrm{~V}$
OUTPUT: $0-9 v 0-15 v$ Max. 25VA per winding.
A PCB mounting transformer with twin primary and twin secondary windings fitted with a wound screen for safety and electrostatic screening. The transformer is encapsulated in a rugged thermoplastic case. This provides protection against mechanical damage and enables secure PCB fixing via a threaded bush moulded into the centre of the case.
Dia: 95 mm Height: 40 mm . Mounting bush 2 X M4 Weight: 893 gms . The current dist. price is around £25-00 each. ALL ARE BRAND NEW STILL BOXED ETC. These really are a bargain. Hurry, only a couple of hundred available.

ORDER CODE: SO/629
PRICE: 1 12-50

Maybe the highest quality on the market at a very low price! Current Trade price is £1-05 plus VAT Complete with integrel Jackscrews and cable grip. Colour: BLACK
ORDER CODE: SO/630
60 p
55p

Stud mounting capacitors suitable for motor start/run and other simllar applications. Connections via double 6.35 mm tabs. Manufactured to BS5267.
Curent list price is over $£ 6$ each plus VAT
15 uF 440 V DIMS: $115 \mathrm{~mm} \times 45 \mathrm{~mm}$ Dia.
20uF 440 V DIMS: $135 \mathrm{~mm} \times 45 \mathrm{~mm}$ Dia
15uF 440 V ORDER CODE: SO/631 PRICE: $\{3-50$ each 20uF 440 V ORDER CODE: SO/632 PRICE: $44-00$ each
STC 47,000uF 40 V Electrolytic
Tag end STC capacitor.
Date Code: 8512
Dims: $115 \times 65 \mathrm{~mm}$
List price is over $£ 8-50$ ea plus VAT.
ORDER CODE: SO/633
PRICE: $£ 3-50$
8 pin DIN to o pin DIN Lead
All pins connected (Mirror Image) Plugs are
Metal. Cable Colour is Black.
Cable 1s overall screened.
Length: Approx 1.5 Metre
ORDER CODE: SO/634

BULGIN Panel Mounting AA Battery Holder
Takes 3 A Batteries (Bulgin Type: B13/1)

Panel mounting battery holder. Flush fitting bayonet cap with coin slot for tightening. Mounting is from rear of panel, fixing by screws through front flange
ORDER CODE: SO/635

MARCO TRADING 1992 SUMmER SALE ORDER FORM INCORPORATING 'EAST CORNWALL COMPONENTS'

The Maltings, High Street, WEM, Shrewsbury, SY4 5EN. TEL: 0939-232763(3 lines) 0939-232689(2 lines)
FAX: 0939-233800

DESCRIPTION

DATE:

MY ORDERIS OVER E10 PLEASESEND MYFREE CATALOGUE \square

We have a 11 mited stock of Yuasa Sealed Lead Acid batteries which when checked at random found are not accepting a rull charge. On the few that we have found to be like this we have found with patience, most eventually came up to full specification.
However, time is money as they say and so we are selling off these batteries at a very reduced price. We are selling these batteries with NO WARRANTY WHATSOEVER and therefore it is a case of taking a chancel
NO RETURNS WILL BB ACCEPTBD!
The normal price of these batteries is approx. £16-95 each.

YUASA CODE: NP10-6
Dims: $101 \times 151 \times 50 \mathrm{~mm}$
Terminals: Spade Type
Weight:
2. 2 Kg

6 V 10 Ah

VIDEO/TV LEADS

A set of quality leads, originally manufactured for Granada.
5 pin DIN Plug to Phono Plug
BNC plug to Phono Plug.
Length: 2 Metres
ORDER CODE: SO/212
PRICE: 11-25

VIDEO/TV Lead

Another set of quality leads
BNC plug to Phono Plug
5 pin DIN plug to Phono Plug
ORDER CODB: SO/213
PRICB: 1 1-25

SHARP RADIO CASSETTB - Model QT-FIOE
A super radio cassette Recorder offeredat a fraction of the normal price.
Although some are refurbished they are all guaranted by us for 3 months from date of purchase. In the unlikely, event of any problem we would repair or exchange at our discretion. Features include:

- Auto Stop
- Battery Operated (5 X AA) NOT Included
- Recording from Radio using Built-In Mic. is posesible.
- Recording external sound is of course possible
- Earphone socket is fitted.
- FM Range: $87.6 \mathrm{MHz}-108 \mathrm{MHz}$
- AM Range: $526.5 \mathrm{KHz}-1606.5 \mathrm{KHz}$
- Some are complete with carrying case.

Limited quantity are avallable!
ORDER CODE: SO/658
PRICE: $12-50$

B.T. MODEM UNIT

Brand new, still in sealed manufacturers packs Sorry, no info but we have listed the major components on the 2 sandwich style boards.
Plug In: $1 \times$ C875 1H-11 Intel. 40 pin
$3 \times$ P8051AH-0121 Intel 40 pin
Soldered: $3 \times$ LM348 1×74 ALS 74 N
1 X ULN2033A, 1 X ULN2002A, 1 X LF 353 $1 \mathrm{XAD7528JN}, 1 \mathrm{XAD7574KN}$
Assorted relays. BT Sockets, crystals switches.
Both boards are the same size: $160 \times 100 \times 55 \mathrm{~mm}$ These really are made to the highest spec.
(Free prize to anyone who can supply original circuit infol)

ORDER CODE: SO/485
PRICB: $\{5-00$ each

COODY BAGS

Contains a random selection of very assorted components including:
Resistors, Capacitors, Connectors, IC's, Diodes, Potentiometers, etc etc.
Sold by weight. Each bag weighs over 1 Kg .
ORDER CODE: SO/660
PRICE: 1 1-99

COMMODORE (CBM) Charger/Power Supply
A good quality power supply offering the
electronics hobbyist/enthusiast the opportunity to purchase a quality unit that is fairly simple to alter the specfcation of, at a very attractive price. Plenty of room in the case to add zener's, voltage regulators etc.
Input: 220V-240V (Switcheable)
Output: $7.2 \mathrm{Vdc} e 225 \mathrm{~mA}$
$7.0 \mathrm{Vac} e 45 \mathrm{~mA}$
DIMS: $100 \times 55 \times 60 \mathrm{~mm}$
Mains Lead: Approx. 400 mm
Output Lead: Approx 2.25 Metres. Fitted with a moulded plug (Non-standard)
Several thousand of these units at time of printing.
ORDER CODE: SO/659 1* 10* 100 *

stop car THEFT NOW!

PROTECT YOUR CAR FOR ONLY £15-00!!

MADE IN UK

COMDEK ATI - CAR ANII-THEFT UNIT

A brand new design, 100% designed in the Uk. A very clever device giving 100% peace of mind to the car owner and causing 100% frustration to the would be car thief: This unit may be used alongside an existing alarm or simply on its own.

Most alarms require the owner to activate them when you exit the vehicle, which can easily be overlooked or simply forgotten. The ATl circuit overcomes this by activating the moment the ignition is switched on or the vehicle is 'Hot Wired' making it impossible to forget. From the moment the ignition is first switched on the ATl circuit starts timing. When the engine has started the unit must be de-activated otherwise after a pre-set time the engine will simply cut out.
The method of de-activating the unit is set by the installer. We recommend either wiring up to one or more switches i.e. rear window de-mist, interior light, wipers etc. but you may of course wire it to a concealed switch. Therefore until the chosen switch/switches are 'switched' on/off, the ATl will NOT de-activate and the engine will stop after the pre-set time:
Every ATI is pre-set at approx. 21 seconds but this time may be shortened or lengthened to suit your requirements up to 130 seconds. This time governs how far your vehicle will travel before the engine cuts out.
Any car thief will then be faced with the problem of the engine cutting out and refusing to re-start. Simple. The thief will not wish to attempt to 'repair' the vehicle.
We also supply a red LED, which when installed in the car, remains lit all the time acting as a detercent to any would be car thief.

Supplied in Kit form, full instructions etc. supplied.
1+
$10+$
ORDER CODE: CAR/CAMDEK /KIT
PRICE:
£15-00
£12-00
NOW AVAILABLE READY BUILT \& TESTED
〔24-99

EAST CORNWALL COMPONENTS

THE MALTINGS, HIGH ST. WEM, SHREWSBURY, SY4 5EN

TEL: 0939232763 TEL: 0939232689
FAX: 0939233800

[^0]: This is a VERY SMALL SAMPLE OF STOCK. SAE or telephone for lists. Please check availability before

[^1]: 0.5W Resistor Pack

 A good assortment of good quality 0.5 W Carbon Film resistors mainly 5 \% tolerance. Many preferred values included. A super buy
 Total Pack Qty: 1000 assorted
 ORDER CODE: PACK/O20
 SALE PRICE: £2-00

[^2]: TUNCSTEN DRILL BIT PACK
 A mixed pack of metric solid tungsten carbide drill bits suitable for drilling glass fibre based pcb's and general hobby use.
 Original price was $\{4-20$ each bitil
 Mixed sizes, anything from 0.4 mm up to 3.0 mm .
 Total Pack Qty: 10 pcs
 ORDER CODE: PACK/033
 SALE PRICE: $£ 3-50$

[^3]: POLYESTER PACK
 A good assortment of various polyester capacitors. Both Radial and Axial styles, values ranging from $0.01 u F$ up to $2.2 u F$ and voltages from 63 v to anything up to 1000 V ! This pack is very good value for money.
 Total Pack Qty: 100 Assorted
 ORDER CODE: PACK/017 SALE PRICE: £2-50

[^4]:

