$\exists 1 /=i /(0)^{\prime}$ 858 MAY 1992

I'S A KNOCKOUT GAMES COMPENDIUM

GAMCORDER HEADPHONE AMP

EXPERIMENTAL WEICHING SCALヨ

SPECIAL SUPPLEMENT MAKNE rous OWN PGBrs
 Plus

CIRCUIT SURGERY, ACTUALLY DOING ITi FOR YOUR ENTERTAINMENT ETC:

AMSTRAD PORTABLE PC'S FROM 5149 (PPC1512SO). £179 (PPC15120D). £179 (PPC1640SD). £209 (PPC1640DD). MODEMS £30 EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 10hm impedance and consisting of $61 / 2^{\prime \prime}$ wooter $2^{\prime \prime}$ mid range and 1" tweeter. Ideal to work with the amplifier described above. Price per pair $£ 30.00$ Order ref 30P7R.
2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spare for a microwave oven etc. 250 v AC input. MICROWAVE CONTROL
MICROWAVE CONTROL PANEL. Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay Ideal for all sorts of precision timer applications etc. Now only $£ 4.00$ rel 4P151.
FBRE OP TIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre lengit $£ 7.00$ ref 7 P29R
12V SOLAR CELL. 200 mA output ideal for trickle
charging etc. 300 mm square. Our price $£ 15.00 \mathrm{r}$
PASSIVE INFRA-RED MOTION SENSOR Complete with daylight sensor, adjusta ble lights on timer (8 secs -15 mins), 50 range with a 90 plete with wall brackets, bult holders etc. Brand plete with wall brackets, bulb holders etc. Brand
 new and
$19 P^{2}$
Pack of two PAR 38 bulbs for above Unit $£ 12.00$ ref $12 P 43$ R VIDEO SENDER UNIT. Transmit both zudio and video signals from either a video camera, video recorder or computer to any
standard TV set within a 100 ' range! (tune TV to a spare channel). standard TV set within a 100 range! (tune TV to a spare channel).
12v DC op. $£ 15.00$ ret 15P39R Suitable mains adaptor ES.00 ret 12v DC
5 P 191 R
FM TRANSMITER housed in a standard
adapter (bug is mains driven). £26. 00 ref 26P2R MINATURE RADIO TRANSCEIVERS A. MINATURE RADIO TRANSCEIVERS A pair of Hid walkie talkies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $£ 30.00$ ef 30P12R
FM CORDLESS MICROPHONE. Small hand held unit with a 500^{\prime} range 12 transmit power levels reqs PP3 battery. Tuneable to any FM receiver. Our price £15 ref 15P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shon bands, FM, AM and LW DXMocalswitch, tuning 'eye' mains or battery. Complete with shoulder strap and mains lead
NOW ONLY 19.0011 REF 19P14R NOW ONLY 19.001 I REF 19P14R.
CAR STEREO AND FM RADIOLOw cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db . wow and flutter less than $\mathbf{3 5 \%}$. Neg earth. $\$ 19.00$ ref $19 P 30$
COST WALIKIE TALKIES.Par LOW COST WALIKIE TALKIES.Pair of battery opa pair ref BP 50R
7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt power amp! 20-21KHZ 4-8R 12-14vDC negative earth. Cased. £25 ref 25P14R. NHCAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ rel 4P44R. $2 \times$ C's $£ 4.00$ ref 4P73R, $4 \times$ D's $£ 9.00$ ref 9P12R, $1 \times$ PP3 £6.00 ref 6P35R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition $£ 20.00$ ref
${ }^{\text {COPSBLR }}$ CABL TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ret 3P104R. Bumper pack of 1,000 tes $£ 14.00$ ref 14P6R

1892 CATALOGUE AVAILABLE NOW
IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A 6 " $X 9^{\prime \prime}$ SAE FOR A FREE COPY.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated geiget counter. £39.00 rel 39P1R FM BUG KIT.New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ ref 5P158R FM BUG Bult and tested superior 9 voperation $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS. These convert composite video into separate H sync. V sync and video. 12v DC. $£ 8.00$ ref $8 P 39 R$.
SINCLAIR C5 MOTORS $12 v 29 A$ (tull load) 3300 mm $5 \times 4^{" 1 / 4}$ SINCLAIR C5 MOTORS 12 v 29 A (full load) 3300 pm 6"x4" $1 / 4^{\text {" }}$ OPP shaft. New. $£ 20.00$ ref 20P22R.
As above but with fitted 4 to 1 inline reduction box (800 pmm) and toothed nylón belt drive $\operatorname{cog} £ 40.00$ ret 40P8R.
SINCLAIR C5 WHEELS 13^{5} or 16° dia including ireaded tyre and inner tube. Wheels are black, spoked one piece poly carbonate. 13" wheel E6.00 ref 6P20R, $16^{\prime \prime}$ wheel $£ 6.00$ ref 6P21R
ELECTRONIC SPEED CONTROL KITtor c5 motor. PCB and all components to build a speed controller ($0-95 \%$ of speed). Uses pulse width modulation. £17.00 ref 17P3R.
SOI AR POWERED NICAD CHARGER.Charges 4 6P3R.
12 VOLT BRUSHLESS FAN4 $1 / 2^{\prime \prime}$ square brand new ideal for boat, car, caravan etc. $£ 5.00$ ret 5P206.
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Includes mains adapter, teads and book but suitable for oth
£15.00 ref 15P43R
VIDEO TAPES. Three hour superior quality tapes made under VIDEO TAPES. Three hour superior quakity tapes made under
Hicence from the famous JVC company. Pack of 5 tapes New low hicence from the famou
price EB .00 ref BP161
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC $\$ 40.00$ REF 40P10R. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. 12 TO 220V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a larger transformerit will handie 80 watts. Basic kit $£ 12.00$ ref 12P 17R. Larger transformer $£ 12.00$ ref 12P41R. VERO EASI WIRE PROTOTYPING SYSTEMIdeal tor designing projects on etc. Complete with tools, wire HIGH RESOL UTION 12" AMBER HIGH RESOLUTION 12 AMBER MONITOR12v 1.5A Hercu les compatible (TTL input) new and cased £22.00 ref 22P2R

VGA PAPER WHTE MONO monitors now and cased 240 V AC . £59.00 ref 59P4R
25 WATT STEREO AMPLIFIERc. STK043. With the addilion of a handful of components you can build a 25 watt amplifier. £4.00 ref 4P69R (Circuit dia included)
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIF YING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827R. ALARM TRANSMITTERS. No data avaliable but nicely made ALARM TRANSMITTERS. No data avaliable but nicely made
complex radio transmiters $9 v$ operation. $£ 4.00$ each ref 4 P81R. complex radio transmiters 9 V operation. E4. 12 V 19 A TRANSFORMER. Ex equipment but othervise ok. Our 12V 19 A TR
price £20.00
price $£ 20.00$
GX4000 COMPUTERS. Customer returned games machines GX4000 COMPUTERS. Customer returned games machines ULTRASONIC ALARM SYSTEM
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a delector that plugs into a 13A socket in the area to protect. The receiver plugs into a 13A socket anywhere else on the same supply. Ideal for protecting garages, sheds etc. Complete system £25.00 ref B2SP1 additional detectors $£ 11.00$ ref 811 P1
IBM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ ref IBM
SP612
5P612
IBM A
$15 P 612$
386 MOTHER BOARDS. Customer returned units without a cpu fited. £22.00 ret A22P1
BSB SATELLITE SYSTEMS
BRAND NEW
REMOTE CONTROL
E49.00 REF F49P1

286 MOTHER BOARDS. Brand new butcustomer returns 50 may need attention. Complete with technical manual $£ 20.00$ ref A20P2
286 MOTHER BOARDS. Brand new and tested complete with 286 MOTHER BOARDS. Brand new
UNIVERSAL BATTERY CHAR GER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, mains operated. £6.00 ret 6P36R.
IN CAR POWER SUPPLY, Plugs into digar socket and gives $3.4 .5,6,7.5,9$, and $12 v$ outputs at 800 mA . Complete with universal spider plug. E5.00 ref SP167R.
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal film. £5.00 ref 5P170R.

MIRACOM WS4000 MODEMS

V21/23

AT COMAND SET

AUTODIAL/AUTOANSWER

FULL SOFTWARE CONTROL

tone and pulse dialling

£29

IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallet.

 £5.00 ref SP186RCOPPER CLAD STRIP BOARD $17^{\prime \prime} \times 4^{\prime \prime}$ of . 1 " pitch "vero" board. £4.00 a sheet ref 4 P62R or 2 sheets for $£ 7.00$ ref 7P22R STRIP BOARD CUTINNG TOOLE2.00 ref 2P352R. 50 METRES OF MAINS CABLE $£ 3.002$ core black precut in convenient 2 lengths. Idesl for repairs and propects. ref 3p91R
4 CORE SCREENED AUDIO CABLE 24 METRES 22.00 Precut into convenient 1.2 m lengths. Ref 2P365R TWEETERS $21 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smart metal plate for easy fixing $£ 2$. 00 ret 2P 366 h
easy fixing $£ 2$ 20 ret 2 P 366 R
COMPUTER MICE Originally made for Future PC's but can be adapted for other machines. Swiss made $£ 8.00$ ref 8P57R. Atari ST conversion kit $£ 2.00$ rol 2P362R
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Built in tweeter 4 ohm $£ 5.00$ ref 5P205R
WINDUP SOLAA POWERED RADIOI FMAM radio takes rechargeable batteries complete with hand charger and solar panel
14P200R 14P200R

PC STYLE POWER SUPPLY Made by AZIEC 110 v or 240 v input. +5@15A,+12@5A.-12@.5A,.5@.3A. Fully cased with fan. on/off switch, IEC inlet and standard PC flyleads. £15.00 ref F15P4 ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels. $£ 16.00$ ref 16P200 ALARM PANELS 2 zone cased keypad entry, entry exit time delay

BULL ELECTRICAL
250 POATMAN BOAD HOVE SUSSEX BN3 fot TELEPHONE 0273.203500 MAIL ORDER TERMS CASH PO OH CHEGUE WITH ORDER PLUSE3. OD FOST TLUS VAT. pleast allow 1 Io pars for otivery

NEXI DAY DELUVERY Es:OO
fAX 027323077
otc. $£ 18.00$ rel 18P200
MODEMS FOR THREE POUNDSH
Fully cased UK modems designed for dial up sy stem (PSTN) no dataC
or info but only $E 3.00$ ref 3P145R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only
£300 ref 3P146R
£3.00 rof 3P146R
BARGAIN STRIPPERS
Computer keyboards. Loads of switches and components excellemt value at $£ 1.00$ ref CD40
DATA RECORDERS
Customer returned mains battery units built in mic ideal for Compuner
or general purpose audio use. Pree is $£ 4.00$ ref 4 P100R
SPECTRUM JOYSTICK INTERFACE
Plugs into 48 K Specirum to provide a standard Atari type joystick port. Our price £4,00 ref 4P101R
ATARI JOYSTICKS
Ok for use with the above interface, our price $£ 4.00$ ref 4P102R
BENCH POWER SUPPLIES
Superbly made fully cased (metal) giving 12 v at 2 A plus a 6 V supply. Fused and shont circuit protected. For sale at less than the cost of the casel Our price is $£ 4.00$ ref 4 P 103 R
SPEAKER WIRE
Brown twin core insulated cable 100 feet for £2.00 REF 2P79R
MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powertull and
quite. Our price $£ 1.00$ rel CD41R
DISC DRIVES
Customer retumed units mixed capacities (up to 1.44M) We have not soned these so you just get the next one on the shell. Price is only £7.00 rel 7PiR (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
Brand new units
PROJECT BOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ black ABS with screw on lid. $£ 1.00$ ref CD43R SCART TO SCART LEADS
Bargain price leads at 2 for $£ 3.00$ ref 3P147R
SCART TO D TYPE LEADS
CART TO O TYPE LEADS
Standard Scart on one end, Hi density D type on the other, Pack of OZONE FRIENDL Y LATEX
OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ bottle of hquid nubber set $\sin 2$ hours. Ideal for mounting PCB's
ixing wires etc. $£ 2.00$ each ref 2 P 379 R
QUICK SHOTS
Standard Atari compatible hand controller (same as joysticks) our
price is 2 for $\mathbb{\sum 2 . 0 0 \text { ref 2P380R }}$
IIEWDATA SYSTEMS
Brand new units made by TANDATA complete with 1200/75 builh in modem infra red remote controlled awerty keyboard BT appproved Prestel compatible, Centronics printer port RGB colour and composto output (warks with ordinary television) complete with power supply and fully cased. Our price is only $£ 20.00$ ref 20P1R AC STEPDOWN CONVERTOR
C ased units that convent 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price £200 ret 2P381R
SPECTRUM + 2 LGHT GUN PACK
complete with sotware and instructions $£ 8.00$ ref 8 P58R/2
CURLY CABLE
Extends from $8^{\prime \prime}$ to 6 feetID connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joysticks onty $£ 2.00$ ret 2P382R
BUGGING TAPE RECORDER
Small hand held cassetre reconders that only operate when there is sound then turn off 6 seconds after so you could leave it in a room all
day and just record any thing that was said. Price is $£ 20.00$ ref 20 P3R IEC MAINS LEADS
Complete with $13 A$ plug our price is only $£ 3.00$ for TWO: ref $3 P_{148 R}$ NEW SOLAR ENERGY KIT
Contains 8 solar cells, motor, tools, fan etc plus educational booklet
Ideal for the budding enthusiast! Price is $£ 12.00$ ref 12P2R
286 AT PC
286 MOTHER BOARD WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP-
PLY £139 REF 139P1 (no ifo cards or drives included) Some
metel work req'd phone for detalls.
35MM CAMERAS Customer returned units with buntt in flash and 28 mm lens 2 for $\mathbf{8 8 . 0 0}$ ref 8P200
STEAM ENGINE Standard Mamod 1332
engine com
ref 30P 200
TALKING CLOCK
LCD display, alarm, battery operate
Clock will announce the time at th
push of a button and when the
alarm is due. The alarm is switchab
from voice to a cock crowingIE14 10 14P200R
HANDHELD TONE DIALLERS
HANDHELD TON
Small units that are designed to hoid over the mouth piece of a telephone to send MF dialing tones. Ideal for the remote control of
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartridge and sotware 10 times faster than tape machines works with any Cormmodore 64 setup. The orginal price for these was $£ 49.00$ but we can offer them to you at only $£ 25.00!$ Ref 25P 1R
ATARI 2600 GAMES COMPUTER Brand new with joystick and 32 game cartidge (plugs into TV) $£ 29.00$ ref F29P1 also some with 1 game at $£ 19.00$ ref F19P2.
BEER PUMPS Mains operated with thid detector and electronic timer standard connections. Ex equipment. $£ 18.00$ re1 F18P1 90 WATT MAINS MOTORS Ex equipment but ok (as fitted to above pump) Good general pupose unit $£ 9.00$ ref F9p1 HI FI SPEAKER BARGAIN Originally made for TV sets they consist of a $4^{\prime \prime} 10$ watt 4 R speaker and a $2^{\prime \prime} 140$ R iweeter. If you want two of each plus 2 of our crossovers you can have the bot for $£ 5.00$ ref F5P2.
VIDEO TAPES E180 FFTY TAPES FOR $£ 70.00$ REF F70P1 360K $51 / 4$ "Brand new drives white front. $£ 20.00$ Ref F20P1

IN SUSSEX? CALL IN AND SEE US!

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

VOL. 21 No. 5 MAY 1992

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

ISSN 02623617

PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES . .

© Wimborne Publishing Ltd 1992. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbldden.

Projects

EXPERIMENTAL WEIGHING SCALE by Chris Walker	266
Application of the strain gauge we introduced last month.	
CAMCORDER HEADPHONE AMPLIFIER	

SeriesINFORMATION TECHNOLOGY AND THE NATIONALCURRICULUM by T. R. de Vaux-Balbirnie274
Part Seven: Analogue and Digital ConversionCIRCUIT SURGERY by Mike Tooley286
New clinic for constructors - your problems solved
ACTUALLY DOING IT by Robert Penfold 306
Getting your projects going
INTERFACE by Robert Penfold 312
PC languages; Port Control
AMATEUR RADIO by Tony Smith G4FAI324Beacon Expansion; Canadian Merger; GQRP Novices; AmateurRadio in Lithuania; Appeal for Help; German Calls United
Features
EDITORIAL 265
SHOPTALK with David Barrington 288
Component buying for EE projects
SUBSCRIPTION SPECIAL OFFER 298
The first subs offer for many years - don't miss it!
FOR YOUR ENTERTAINMENT by Barry Fox 308
Cellphone Capacity; Charges; Virus Trap
EVERYDAY READOUT309
The best feature in the mag - its written by you! Our new letters page EVERYDAY NEWS 310
What's happening in the world of electronics319
Selected technical books, EE books and all Babani books by mail order322A special PCB SALE (while stocks last)
SPECIALSUPPLEMENT
MAKING YOUR OWN PCBs by Alan Winstanley 289
A guide to p.c.b.s and how to start making your own328
2×220 watt MOSFET AMPLIFIER A top-of-the-range performer that
will satisfy the will satisfy the
most
demanding audio enthusiast. If
you're looking
for an amplifier
subwoofer, your
SUbWOofer, the
SPARKOMATIC sophisticated MOS-FET technology dramatically sophisticated MOS-FET technology dramatically
extends frequency response, separate input extends frequency response, separate input
sensitivity controls, built-in protection circuiry for overheat and short circuit with I.e.d. indication, output power: 2×220 watt maximum and 2×110 watt at 0.1% THD, Bridged 440 watt mono maximum and 220 watt mono at 0.5% THD.
£167.50 plus £3.50 p\&p

100 watt $\times 4$ CLASS A AMPLIFIER

 FOR CARSDelivers 4×100 watt into 4 woofers or with the aid of its built in active cross over delivers 200 watt of Bass via sub-woofer output and 2×100 watt, full range into 2 speakers; thus giving you all the power you require to make even traffic lams a positive pleasure. SPECIFICATION $4 \times$ 100 W (4Ω), $2 \times 200 \mathrm{~W}$ Bridged, THD $.08 \%$, S/N RATIO: 790 db , RESPONSE $10 \mathrm{~Hz}-50 \mathrm{kHz}$, LOW PASS FILTER SWITCHED 75 Hz 150 Hz , INPUT 4 \times PHONO $100-3$ Volts, INPUT $\times 4$ HIGH LEVEL $20 \mathrm{k} \Omega$, SIZE $240 \mathrm{~mm} \times 50 \mathrm{~mm} \times 400 \mathrm{~mm}$.
£118.50 postage $£ 4.50$

75 watt $\times 2$ CLASS A AMPLIFIER FOR CARS

Small but powerful, high efficiency amplifier, suitable for a number of hidden mounting locations. Easy connection through phono and high level input capability. SPECIFICATION 2×75 watt $4 \Omega, 1 \times 150$ watt Bridged, THD 0,190, S/N RATIO: 785 dB , RESPONSE $20 \mathrm{~Hz}-30 \mathrm{kHz}$. INPUTS; $2 \times$ PHONO 100 mV - 3 VOLT $2 \times \mathrm{HIGH}$ LEVEL $2 \times 20 \mathrm{k} \Omega$. SIZE $240 \mathrm{~mm} \times 50 \mathrm{~mm} \times 140 \mathrm{~mm}$. $\mathbf{£} \mathbf{3 9 . 9 5}$ postage $£ 3.50$

11 BAND COMPONENT GRAPHIC EQUALIZER FOR CARS

This neat unit connects between the line output of your car stereo and your power amplifiers so that you are able to adjust the sound as in a studio compensating for soft furnishing and sound reflections from glass, also it has a subwoofer output to drive a separate amplifier for that extra deep bass sound. FEATURES: 2 channel inputs 4 channel outputs via phono sockets, CD inputs 4 channel outputs via phono socke. SPECIFICATION RANGE $20 \mathrm{~Hz}-60 \mathrm{kHz}$ THD 0.05%, S/N RATIO 85 dB . EQ FREQUENCIES $60 \mathrm{~Hz}, 120 \mathrm{~Hz}$, $250 \mathrm{~Hz}, 380 \mathrm{~Hz}, 500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}, 4 \mathrm{kHz}$, $8 \mathrm{kHz}, 16 \mathrm{kHz}$ (boost cut of $\pm 12 \mathrm{~dB}$) SIZE 178 mm $\times 25 \mathrm{~mm} \times 140 \mathrm{~mm}$.
$\mathfrak{£} \mathbf{3 2 . 7 0}$ postage $£ 1.80$

EMINENCE 4S PROFESSIONAL USA MADEIN CAR CHASSIS
 SPEAKERS

All units are fitted with big magents "Nomex" Voice coils NOT ALUMINIUM, "Nomex" is very light and can stand extremely high temperatures, this mixture makes for high efficiency and long lasting quality of sound.
V6 $6 \frac{1}{2}{ }^{\prime \prime}$ 200W Max V6 8" 300W Max V10 10" 400 W Max V12 12" 400W Max 1212 " 400 W Max Range $33 \mathrm{~Hz}-4 \mathrm{kHz}$ £ 44.45 BOSS 15" 800W Max Range 35 Hz -3kHz £45.95 $\begin{array}{ll}\text { BOSS 15" } 800 \mathrm{~W} \text { Max } & \text { Range } 35 \mathrm{~Hz}-4 \mathrm{kHz} \text { f } 79.90 \\ \text { KING 18" } 1200 \mathrm{~W} \text { Max } & \text { Range } 20 \mathrm{~Hz}-1 \mathrm{kHz}\end{array}$ KING $18{ }^{\prime \prime} 1200 \mathrm{~W}$ Max Range $20 \mathrm{~Hz}-1 \mathrm{kHz}$ P.O.A. Postage $£ 3.85$ per speaker.

Build your own Bazooka sub woofer tube to suit Eminence car speakers. 10 mm thick fibre supplied with grille and clamp terminals finished in black with
vinyl.
Eminence U10, Size $270 \mathrm{~mm} \times 700 \mathrm{~mm}$
£25.95 £3.50 p\&p
Eminence U12 Size $320 \mathrm{~mm} \times 710 \mathrm{~mm}$
£29.95 £3.50 p\&p

MAIL ORDER BARGAIN PACKS

$\begin{array}{ll}\text { No. } & \text { Qty. par pack } \\ \text { MO20 } & 1 \quad \text { 30W dome tweeter by Eagle/Japan Made }\end{array}$ $\begin{array}{ll}\text { MO20 } & 1 \\ \text { Mize } 90 \mathrm{~mm} \times 66 \mathrm{~mm} \\ \text { SOW Hifi tweeter made for Jamo UK size }\end{array}$ MO22 2 30 watt 8 ohm Hifi chassis speakers. Made for Hitachi UK midi systems, size 125 mm sq. with large 70 mm magnet
MO23 2 Pod Car Speakers. Moulded $£ 9.00+£ 2.00$ psip plastic with 15 watt. Moulded in black fitted
$£ 4.95+£ 2.50 \mathrm{p} 8 \mathrm{p}$
MO24 2 Audax JBL 40-100watt dome tweeters. High performance 10 mm Ferrofluid cooled horn loaded unit for load distortion and high output. Supplied with ist order crossover, spec. 40 watts at $3 \mathrm{kHz}, 100$ 16.5 mm . Ideal for car use $£ 7.50+£ 1 \mathrm{p}$ ip

MO25 $233000 \mu \mathrm{~F} 10 \mathrm{~V}$ d.c. can type computer $33000 \mu \mathrm{~F}$
grade quality electrolytic UK mad.
$£$ grade quality electrolytic
$680 \mu \mathrm{~F} ~ 100 \mathrm{~V}$ d.c. can type electrolytic size $45 \mathrm{~mm} \times 25 \mathrm{~mm}$
$2200 \mu \mathrm{~F} 25 \mathrm{~V}$ d.c. can type electrolytic size $\begin{array}{lll}\text { M027 } & 3 & 2200 \mu \mathrm{~F} 25 \mathrm{~V} \text { d.c. can type electrolytic } \\ \mathrm{MO} 28 & 1 & 45 \mathrm{~mm} \times 25 \mathrm{~mm} \\ 15000 \mu \mathrm{~F} 40 \mathrm{~V} & \text { d.c. can type } 23 \mathrm{~A}\end{array}$ $\begin{array}{lll}\mathrm{MO} 28 & 15000 \mu \mathrm{~F} \text { } 40 \mathrm{~V} \text { d.c. can typ } \\ & \text { electrolytic size } 113 \mathrm{~mm} \times 50 \mathrm{~mm}\end{array}$
MO29 $133000 \mu \mathrm{~F} 16 \mathrm{~V} 27 \mathrm{~A}$ can type electrolytic M030 20 Assorted Variable trimmers
MO31 4 Tuning capacitors 2 -gang dielectric
MO32 2 Ype + 10k wirewound precision
potentiometer
MO33 8 Rotary potentiometers
MO34 5 100k multiturn Varicap type tuning potentiometer with knob size $45 \mathrm{~mm} \times 5 \mathrm{~mm}$
MO35 200 Carbon resistors
$\begin{array}{lll}\text { MO36 } & 2 & \text { Large VU meters. Japan Made } \\ \text { M037 } & 1 & \text { Large Tuning meter } 125 \mu \mathrm{~A}-0-125 \mu \mathrm{~A} \text { size }\end{array}$ MO38 $155 \mathrm{~mm} \times 47 \mathrm{~mm}$ 280 A f.s.d., size 80 mm Dual VU meter $42 \mathrm{~mm} \times 15 \mathrm{~mm}$
$\begin{array}{llll}\text { MO39 } & 5 & \text { Coaxial Aerial Plugs, all metal type } & \text { £1 }\end{array}$ $\begin{array}{lll}\text { MO39 } & 5 & \text { Coaxial Aerial Plugs, all metal type } \\ \text { MO40 } & 6 & \text { Fuseholders, chassis mounting for } 20 \mathrm{~mm}\end{array}$ size fuses
MO41 4 Fuseholders, in-line type for 20 mm size MO42 $20 \begin{aligned} & \text { fuses } \\ & 5 \text { Pin } \\ & \text { M04 }\end{aligned}$
MO42 205 Pin Din 180° chassis mount sockets
MO43
MO43 6 Double phono sockets
MO44 $5 \quad 6.35 \mathrm{~mm}$ ($1 / /^{\prime \prime}$) Stereo Jack sockets
$\begin{array}{lll}\text { MO45 } & 4 & 6.35\left(1 /^{\prime \prime}\right) \text { Mono Jack Plugs } \\ \text { M046 } & 12 & \text { Coex }\end{array}$
$\begin{array}{lll}\text { MO46 } & 12 & \text { Coax Sockets chassis mount } \\ \text { MO47 } & 2 & \text { Case handles plated U-shape, size } 97 \mathrm{~mm}\end{array}$ $\times 50 \mathrm{~mm}$
MO48 30 Mixed control transport mechanism, beltdrive, top loading, six piano key operation with knobs, stereo record/replay evase heads, heavy fly-wheel $£ 5.50+£ 2.65$ p\&
MO50 1 Hifi stereo pre-amp. module. Input for CD Tuner record player with diagram. Made by Mullard
M051 2 AM/FM tuner head modules: Made by Mullard \quad I.F. modules'. Made by Mullerd
$\begin{array}{lll}\text { MO52 } & 3 & \text { AM I.F. modules'. Made by Mullard } \\ \text { MO53 } & 1 & \text { FM stereo decoder module with diagram. }\end{array}$ Made by Mullard module with diagram. boxed, untested but complete. Made by 25 V d.c. 150 mA Mains adaptor in neat plastic box, size $80 \mathrm{~mm} \times 55 \mathrm{~mm} \times$ $6 \mathrm{~V}-0 \mathrm{~V}-6 \mathrm{~V} 4 \mathrm{VA}$ p.c.b. mount mains transformer 240 V input, size $42 \mathrm{~mm} \times 33 \mathrm{~mm} \times$ 35 mm . UK Made
$\begin{array}{lll}\text { MO57 } & 25 & 4 \text { Volt miniature wire-ended bulbs } \\ \text { MO58 } & 2\end{array}$ M058 2 Mono cassette tape heads. Japan
MO59 2 Sonotone stereo cartidge with 78 and LP Styl. Japan Mado
$\begin{array}{llll}\text { MO60 } & 8 & \text { Bridge recticrs amp 24Volt } \\ \text { MO61 } & 10 & \text { OC44 } \\ \text { transistors. Remove }\end{array}$ top and it becomes a photo electric cell (ORP12)
M062 30 Low signal transistors non and pnp
M063 614 watt output transistors. Three complimentary pairs in TO66 case (replace ment for AD161 + 162)
MO65 5 Motor Speed Control i.c.
MO66 1 Digital DVM Meter i.c. Made by Plessey, with diagram
7 -Segment 0.3 in I.e.d. display (red)
$\begin{array}{lll}\text { MO67 } & 4 & \text { 7.Segment 0.3in l.e.d. display (red) } \\ \text { M068 } & 1 & \text { Tape Deck i.C., with record replay switc }\end{array}$
MO68 1 Tape Deck i.C., with record replay
MO69 2 Ferrite Rod. High grade with LW
MW colls, size $140 \mathrm{~mm} \times 10 \mathrm{~mm}$, Moving coil dynamic, handheld, ball returns (no warrantee)
M071 1 LCD Digital Multimeter. Ross Electronics customers returns (no warrantee)
£3.90 +90 pps
e. A BIT OF
MO72 1 WW II EX WD headphone, A BIT OF NOSTALGIA, low impedance
MO73 1 Koss Stereo Headphones on ear. Lightweight design, vari-fitting ear-cups with contour cushions, 36 in . cord. 3.5 mm +6.35 mm Jack plug adaptor
M074 2 Tone dialling keypad, use service $\mathrm{E1} \mathrm{p}$ \& require DTMF tone signals for a rotary require DTMF tone signals for a rotary
dial pulse phone, size $90 \mathrm{~mm} \times 55 \mathrm{~mm}$ $12 \mathrm{~mm} \quad £ 11.00+70 \mathrm{p}$ p\&p
$\begin{array}{ll}\text { No. } & \text { Oty, per pack } \\ \text { M075 } & 100 \text { yard roll of single screened quick }\end{array}$ splice cable, good quality British Made $\quad £ 4.50+£ 2 \mathrm{p} \& \mathrm{p}$ M076 1100 yard 3 -core 3 amp cable, coded brown, blue and green/yellow
M078 1 TV Aerial Amplifier housed in neat plastic box, coax input and output sock ets. Mains operated. Double the outpu signal of your aerial $£ 6.50+£ 1.50$ p $8 p$
M079 1 Rechargeable fluorescent lantern, twin $9 W$ switchable tubes, flashing beacon and search lamp. Burn-in lead acid bat light output of 60w lamp Size $24 \mathrm{~mm} x$ $8 \mathrm{~mm} \times 17 \mathrm{~cm}$, weight 1.6 kg
MO80 2 Solar Powered Wooden Kits. Easy to build aeroplane, with revolving propeller, and an old time gramophone with music chip. Supplied with glue, solar cells, electronics and pre-cut palar cels.
$212.00+£ 1.50 p \& p$ Bump and Go Space Ship Kit with motor, wheels, p.c.b. wire and diagram. An ideal introduction for youngsters into the world of electronics and mechanics; goes all the way to the moon on two A
M082 1 Filofax Personal Organiser Filofax Personal Organiser
Radio/Calculator. This neat little unit Radio/Calculator. This neat little unit listen to AM Radio with earphone or use it as a solar powered 8 -digit calculator Punched with six holes to fit all personal organisers. UK Made under $1 / 2$ price

$\mathbf{8 8 . 9 5}+\mathbf{C 1} \mathrm{p} 8 \mathrm{p}$

M083 1 Video Sender. With this handy unit you can transmit output of your home video, wideo camcorder or satelite equipment over the air to a receiving television within a range of 100 ft . Simply connecu the video and audio output of your equipment into this unit, and a $10-13.8 \mathrm{~V}$ d.c. power supply-extra $£ 3.75$

MO84 1 Multiband radio. Listen to air traffic con $p \& p$ Multiband radio. Listen to air traffic con-
trol, aircraft, radar, public utilities VHF
$54-176 \mathrm{MHz}+\mathrm{CB}_{1} 1-80$ with built in squelch control $£ 17.95+£ 2$ peip
MO85 2 AM, FM. LW Ross Pushbutton Radio. With this neat unit you can easily tune in to five pre-set stations of your choice without fiddling or fuss, runs off six C-cell batteries or 240 V mains. Output 400 mW , volume and tone control. Size $230 \mathrm{~mm} \times 150 \mathrm{~mm} \times 65 \mathrm{~mm}$
MO86 (As above) $\quad \mathbf{£ 2 3 . 0 0 + \mathbf { £ 3 . 6 5 } p \& p}$
M087 Amplifier Kit $30+30$ Wath An easy ${ }^{2}$ \& build amplifier with a good easy to tion. All components mount specica p.c.b. cunched p.c.b. punched and back-printed lok ease, case ready dilled fals and knobs inputs for: CD/AUX tape 1. ape II: tuner inputs for. CD/A and MC phono
Controls: bass:
mode and powe; volume; balance mode and power switch. Featured
project in Everyday Eloctronics, April 1989 issue; reprint with kit
$£ 40.00+£ 3.65 p \& p$
All items prefixed with MO number MAIL ORDER only or can only be collected by prior appointment from address below. Where p\&p not stated please add $£ 3.65$ per order for postage and carton charge.

SRBP Copper Clad Printed Circuit Board. Size $410 \mathrm{~mm} \times 360 \mathrm{~mm} \times 2 \mathrm{~mm} \quad £ 3.65+75 \mathrm{p} \& \mathrm{p}$

VHF RADIOTRANSMITTERS

100 mW mini bug. Built on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band. 9 V d.c.
$\mathbf{£ 5 . 7 5}+\mathbf{£ 0 . 9 0} \mathbf{p p}$ 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. 12-24V d.c.
$\mathbf{£ 8 . 5 0}+\mathbf{£ 0 . 7 0} \mathbf{p p}$
25 Watt Transmitter kit. Fully tuneable over the FM band. Kit comprises double sided pcb diagrams and all components, including heat sink. Supply voltage $12-18 \mathrm{~V}$ d.c.
Transmitters listed on this page are not licensable in the UK.

Please add 2.2% to all our prices due to the increase of the VAT rate to 17.5%.

RADIO AND TV COMPONENTS ACTON LTD 376 EDGWARE ROAD LONDON W2 1EB
 Phone 0717233462 Fax 0717233467

VEHICLE WATCHDOG

This unit is not a burglar alarm but merely a visual deterent. It is totally independent of the vehicle electrics and automatic in use. Its own internal battery will last over a year. It could just save you from a load of hass le!

Based on a solid state c.c.d. delay line - what has become known as a bucket brigade device this unit will find itself in great demand with all forms of "performers". It offers good performance for a reasonable price.

SWITCH-MODE POWER SUPPLY

To many people switch-mode p.s.u.s are items of mystery, we unravel the technology and show you how to build a simple 5V to 15 V at 5A unit using a couple of chips and some discrete semiconductors. The system is capable of being modified for those who like a starting point from which to experiment.

PLUS

News and views, Information Technology, more on Making Your Own P.C.B.s etc. etc.

The CATALOGUE

120 pages, A4. Expertly presented and Illustrated. Easily referred to. Packed with valuable information.

The cOMPONENTS

As wide a choice as you could wish - semiconductors, surface mounting, opto-electronics, Rs \& Cs, etc. Top

quality; fairly priced.
 The SUPPLIERS

Siemens, Boss, Cliff, Omeg, Lorlin, R.S., Uniross, etc. -

to our top quality standards.
 The SERVICE

Prompt, personal, with customer satisfaction guaranteed. Access/Visa facilities.

Electrol/alue

28(A) St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone - 0784433603 Fax-0784 435216

MMC

THE NAME IN INNOVATIVE COMMUNICATIONS PRODUCTS

STOP NUISANCE CALLS PROTECT YOURSELF AGAINST UNWANTED TELEPHONE CALLS DL20
 TELEPHONE CALL FILTER-MONITOR-ANSAPHONE

* Call-Screen: Displays the number of incoming calls before the telephone is answered.
* Call-filter: No more unwanted calls.
- Call-Counter: Check number of calls on return.
- Call-Register: Stores 40 incoming call numbers and the time of the call.
- Call-Monitor: Listen to any nolse in your home/office by a secret code when calling.
Normal time display.
Memory back-up during power cut. Can connect both tone or pulse telephone systems.
- 20 phone number memories can be
 stored and recalled.
- OGM: To record a personalised outgoing message.

NORTHERN MARKETING CONCEPTS

 24 HOUR ORDER HOTLINE Tel: (09442) 8887

Also suppliers of -
SCANNERS - TELEPHONE RECORDERS - COMPUTER AIDED SURVEILLANCE SOFTWARE
Please note that certain equipment may need approval before connection or use.

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

Analogue Electronics Digital Electronics
Fibre/Optoelectronics
Programmable Logic Controllers
Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audlo cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

electronize electronic kits

MICRO-PRESSURE CAR ALARM

* Unique air pressure sensing system. \& Operates on all doors and tallgate - no switches needed. \& Automatically armed 40 seconds after leaving vehicie.
* 10 second entry delay with audible warning. (0.5 second available.) \& Sounds horn or siren intermittently for 30 seconds - then re-arms. Easy fitting - only 3 wires to connect - no holes to drill. * Controlled by ignition swith, hidden switch or coded remote control.
(The optional siren and coded remote control are supplied separately.)
MICRO-PRESSURE ALARM Parts kIt £15.95 Assembled $£ 22.35$
120dB PIEZO SIREN
VOLT DPOP CAR ALARM
* Volt drop sensing using existing courtesy light switches.
* All the features of the Micro-pressure alarm except sensing system,

VOLT DROP CAR ALARM Parts kit $£ 14.90$
NEW CODEDIR REMOTE CONTROL

* Adds remote control to our Micro-pressure or Volt Drop alarms. \# High security, customer selected. 24 bit code, 59,046 combinations. Ant-scanning system. \& Key-ring transmitter with long life minature alkaline battery. High power infra-red emitter with range up to 5 metres. Low protile dash top receiver/decoder. Flashing high intensity red L.E.D. warns oft intruders. Green LE.D. shows alarm is oft.

CODE TRANSMITTER Parts klt £13.95 Assembled $£ 17.95$ CODE RECEIVER Partskit £21.35 Assembled $£ 26.55$
MICRO-PRESSURE TRIGGER
\star Adds Micro-pressure sensing to any volt drop alarm system.
MICRO-PRESSURE TRIGGER Parts kIt $£ 10.95$ Assembled $£ 14.95$
EXTENDED CDI EL ECTRONIC IGNITION

* Unique Total Energy Discharge system gives super power spark.
\& Adds electronic performance to contact breaker systems.
EXTENDED CDI IGNITION Parts kit £22.75 Assembled £28.45
NEW RADIO CONTAOL MODEL SPEED CONTROL
\& Standard radio control input - no servo required. \& Smooth forward/reverse speed control. Runs any motor up to 10 amp . continuous current. 35 amp . short term stall rating. Low loss Power MOSFET switching. \& Neutral \& span adjustment. Oprional voltage regulator for single battery operation.(Type 43VR)

Type 43 X (2 to 24 v motors) parts kit $£ 17.75$ Assembled $£ 25.95$
Type 43 VA (7 to 24 v motors) \quad parts kit $\& 19.45$ Assembled $£ 27.95$
All the above include cable, connectors and clear easy to follow instructions. All kits Include case, PCB, everything down to the last washer, even solder. Prices are mall order discount, fully inclusive and apply to U.K. and Europe Telephone orders accepted wilh VISA or ACCESS payment.
Ask for detalled brochures or order direct (please quote ref. EE4) from

ELECTHONIZE DESGGN

Tel. 0213085877
2 Hillside Road, Four Oaks, Sutton Coldfield, 874400

PROGRAMMABLE DIGITAL LOCK

- Easily changed combination via the keypad $\star 4$-digit sequence with over 38000 combinations * Error detection triggers alarm and locks out keyboard after preset number of incorrect entries
- Latched (toggle) or momentary output will drive relay or electric door latch
- Provision for standby battery
* 5-15V DC supply ($120 \mu \mathrm{~A}$ standby)
* Piezo alarm and keyboard supplied
- Size: $15 \times 50 \times 70 \mathrm{~mm}$ Keyboard - $10 \times 50 \times 65 \mathrm{~mm}$
- łdeal for garages, cars, burglars alarms or
even your front door
XK131 Lock Kht
c22.50

Optional Parts
High Quality Lock Mechaniem
12 V Relay with 10 A contacts Strbilleed mains ad aptor oV Rechargeable bettery

REMOTE CONTROLLED

 LIGHT DIMMER* Controts up to 300 W of lighting (not fluorescent) - Touch control on front plate
* Toroidal interlerence suppression choke \star Front plate included, fits shallowest wall box * Requires XK135 transmitter

XK135 IR Tranamitter
XK138 TOUCMDIMAMER
XK138 TOUCHDI MMER
control function
$E 13.25$

TEMPERATURE

CONTROLLER

* Mains powered with LED indicator
- Controls up to 3 KW if a heatsink is fitted
* Maintains set temperature to within 0.5 deg.C
* Uses burst fire technique wlth zero switching to
reduce interterence
* Temperature range up to 60 deg . C with
components supplied
- Size: $50 \times 40 \times 25 \mathrm{~mm}$

XK140

SUPER-SENSITIVE

 MICROBUG

- High Quality Audio
- Only $45 \times 25 \times 15 \mathrm{~mm}$, including built-in mis. - $88-100 \mathrm{MHz}$ Varicap tuned (FM radio) ■ Range approx. 300 m
* Range approx. 300 m
\star
- 9 V (PP3) battery required
- Ideal for baby alarm, surveiliance XK128
67.25

ALL TK KITS CONTAIN

* Circuit diagrams and description
- FULL ASSEMBLYINSTRUCTIONS WITH COMPONENT IDENTIFICATION AND
SOLDERING GUIDE
* HIGH QUALITY FIBREGLASS PCB
* HIGH QUALITY COMPONENTS

VERSATILE REMOTE

 CONTROL SYSTEM

* Intra Red
- Controls up to 16 pieces of equipment or 16 functions
- $12-24 \mathrm{~V}$ DC or 240 V AC operation
* Mains supply included
- Range: approx. 18 metres
- Range: approx. 18 metres
- Circuits included
- Transmitter requires a PPz ov battery and
- Transmitter requires a PP3 9 V battery and
keyboard
keyboard
- Pertect for controlling lights, TV, radio, audio curtains, heating, garage doors, locks, etc.
MK12 IR Recelver 21.95
MK 18 High Power IR Transmitter MK9 4-WayKeyboard
WK1016-Way Koyboord
601133 Black transmitter Box
Wize: $118 \times 66 \times 33 \mathrm{~mm}$ artment.

DISCO LIGHTING KITS
A range of disco lighting klis ideal for incorporating into your lightshow with all the following common features.

- Mains powered
* Outputs 300 W/channel - can be uprated to 1 KW by mounting the isolated tab triacs on a heatsink
* Mimic LEDs included
* Buill-in opto-isolated 'beat response' audio input stage overrides manual control
* Zero crossing detector to minimise interterence with your audio system
* Cases or frontpanel hardware not supplied
\star Ideal for discos, displays, advertis ing, shop windows, etc.

XK139 Single Direction 4-Way Chaser

* Incorporates all the above features
* Manual speed control
* Ideal as a simple rope light controller
* Size: $70 \times 65 \times 25 \mathrm{~mm}$

XK1414-Way Chaser
$\star 32$ different displays

* 8 programmes of four sequence selected by a switch
- Displays one sequence continuously or alternates between 2 or 4 sequences
* Suitable for inductive loads
- Manual speed control
- 2 controls for display frequency
* Pertect for rope lights, pin spots etc.
- Size: $85 \times 110 \times 35 \mathrm{~mm}$

DL8000K 8-Channel Sequencer
$\star 80$ eyecatching sequences - flashing, chase
left, chase right, build up, etc.

- Sequence selected by two switches
- Manual speed control

Size: $130 \times 85 \times 35 \mathrm{~mm}$
846.95

ORDERING INFORMATION: Prices IMCLUDE VAT but please add $£ 1.25$ P\&P (UK). Overseas Customers: divide total order by $\mathbf{1 . 1 7 5}$ then add P\&P: Europe $£ 3.50$, else where $£ 10$ Send POICheque/VISA/MASTERCARD No. with order. Local Authority and educatlon orders welcome. Ottice Hours: Mon-Fri. $9.30 \mathrm{am}-5 \mathrm{pm}$. Shop Hours: Tues.-Thurs. $10 \mathrm{am}-5 \mathrm{pm}$.
Sat. $10 \mathrm{am}-1 \mathrm{pm}$. 08 I-567 89|0 24 HOURS

$\sqrt{40}$

VERSATILE BBC INTERFACE

A comprehensive interface which allows the BBC Model B computer to be connected safely to a wide range of input and output devices. Two leads connect the interface to the User port and Printer port. Up to 16 outputs (all via single pole change-over relay contacts) and 8 inputs. All inputs are fully protected. LED indication is provided on all lines. Requires an independent 12 V supply
Full Kit Ref: 844
£51.95

STEPPING MOTOR DRIVER/INTERFACE

EE Jan '92

A single board, stand alone, stepping motor driver with built-in oscillator for variable low speed, high speed, and acceleration control. Suitable for all Magenta's four-phase unipolar motors and most others - up to 35V and 1.5A per phase. Half step, Full step and Wave-drive modes switch selectable. LED mimic display and connector for computer port.
Kit includes MD35 motor

Kit Ref: 843

$£ 29.95$
Or Built
$£ 44.95$

Supplying Electronics for Education, Robotics, Music, Computing and much, much more CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

All prices include VAT at 17.5\% Shop open 9-5 Mon.-Fri.
 Add E2 p\&p to welcome all orders

HAMEG HM 203-7 OSCILLOSCOPE High quality reliable instrument made in W. Germany. Outstanding periormance. Full two year parts and labour warranty. $20 \mathrm{MHz}-2$ channels 1 mV sensitivity. Easy to operate and high periormance
(Cheques must be cleared) $\{338+£ 59.15$ VAT
Next day Delivery $£ 10.00$

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4 \cdot 5$ Volt mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
Small Unit Type MGS
Speed range 3 -2200 rpm. Siz
ع4. 65
Large Unit Type MGL
$\$ 4.65$
Speed range $2-1150 \mathrm{rpm}$. Size: $57 \times 43 \times 29 \mathrm{~mm}$

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques. ID36 Permanent Magnet Motor $\$ 16.86$ 48 steps per rev
MD200 Hybrid Motor
$£ 17.10$
200 steps per rev
MD35 $1 / a$ Permament Magnet Motor 48 steps per rev. £12.98
MD38 Permanent Magnet Motor $£ 9.15$ 48 steps per rev.

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS SEPARATE REPRINTS ALSO AVAILABLE PRICE 8Op EACH INCLUSIVE P\&P. KITS INCLUDE CASES, PCB'S HAROWARE ANO ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT ORILLED OR LABELS SUPPLIED UNLESS STATED.

Ref		Price	Ref		Price
844	VERSATILE BBC INTERFACE Mar 92	C51.95	700	ACTIVE I/R BURGLAR ALARM Mar 87	¢40.74
843	STEPPING MOTOR DRIVER/INTERFACE Jan 92	£29.95	584	SPECTRUM SPEECH SYNTH (no case) Feb 87	¢23.90
	or built	¢44.95	581	VIDEO GUARD Feb 87	¢9.59
842	PORTABLE ULTRASONIC PEsT SCARER. Aug'91	¢22.56	569	CAR ALARM Dec 86	£14.24
841	DIGITAL LCO THERMOSTAT May 91		561	LIGHT RIDER LAPEL BAOGE Oct 86	¢11.65
841	with punched and printed case	£29.95	560	LIGHT RIDER DISCO VERSION Oct 86	¢22.41
840	DIGITAL COMBINATION LOCK Mar 91		559	LIGHT RIDER 16 LED VERSION Oct 86	f15.58
	with drilled case	¢19.86	556	INFRA-RED BEAM ALARM Sep 86	¢32.39
839	ANALOGIC TEST FOnRE Jan 91	f13.23	544	TILT ALARM July 86	¢8.94
838	MICROCONTROLLER LIGHT SEQUENCER		542	PERSONAL RADIO Jume 86	$¢ 13.17$
	Dec 90. With dritled and labelled case	¢57.17	528	PA AMPLIFIER May 86	£30.60
835	SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial	¢17.16	523	STEREO REVERB Apr 86	£30.21
834	QUICK CAP TESTER Feb 90	¢10.39	513	BBC MIDIINTERFACE Mar 86	¢31.93
833	EE 4 CHANNEL LIGHT CHASER Jan 90	C32.13	512	MAINS TESTER \& FUSE FINDER Mar 86	¢10.07
815	EE TREASURE HUNTER Aug 89 Full K	t $¢ 45.95$	497	MUSICAL DOOR BELL Jan 86	¢21.41
814	BAT DETECTOR June 89	¢21.44	$\begin{aligned} & 493 \\ & 481 \end{aligned}$	DIGITAL CAPACITANCE METER Dec 85 SOLDERING IRON CONTROLLER OCt 85	$\begin{array}{r} \text { C49.95 } \\ \mathbf{C 6 . 2 5} \end{array}$
812	ULTRASONIC PET SCARER May 89	14.81	464	STEPPER MOTOR INTERFACE FOR THE BBC	
800	SPECTRUM EPROM PROGRAMMER Dec 88	¢30.60		COMPUTER less case Aug 85	C9.60
796	SEASHELL SYNTHESISER Nov 88	C28.55		1035 STEPPER MOTOR EXTRA OPTIONAL POWER SUPPLYPA	¢9.15 $\mathbf{5 5 . 8 6}$
790	EPROM ERASER Oct 88	¢28.51			$\begin{aligned} & 55.86 \\ & c 7.08 \end{aligned}$
769	VARIABLE 25V-2A BENCH POWER SUPPLY Feb 88	C56.82	455	ELECTRONIC DOORBELL June 85	c7.08 $\mathbf{c 8 . 6 3}$
744	VIOEO CONTROLLER Oct 87	¢33.29	444	INSULATION TESTER Apr 85	C22.37
740	ACOUSTIC PROBE Nov 87	¢20.01	392	BBC MICRO AUDIO STORAGE SCOPE	
739	ACCENTED BEAT METRONOME NOV 87	E23.94			
734	AUTOMATIC PORCH LIGHT Oct 87	C19.62			
730	BURST-FIRE MAINS CONTROLLER Sep 87	¢15.50		CONTROLLER Oct 84	
728	PERSONAL STEREO AMP Sep 87	f16.34		VARICAP AM RADIO May 84	¢27.02
724	SUPER SOUND ADAPTOR Aug 87	¢43.86	337	BIOLOGICAL AMPLIFIER Jan 8	
722	FERMOSTAT July 87	¢13.88	3		c6.49
719	BUCCANEER 1.B. METAL DETECTOR July 87	¢ 30.22		EGG TIMER June 82	¢ 6.85
718	3.BANO 1.6.30MHz RAOtO Aug 87	¢ 30.30	8	IN SITU TRANSISTOR TESTER June 78	¢10.76
715	MINI DISCO LIGHTS June 87	£14.39	6	WIERD SOUND EFFECTS GEN Mar 78	E8. 94
707	EQUALIZER (IONISER) May 87	¢17.75	101	ELECTRONIC DICE Mar 77	¢7.15

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURE WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. ideal for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Componeni pack includes an S-DEC breadboard and all the components for the series.
Adventures with Electronics
Component Pack (less book)
$\begin{array}{r} \\ 52.75 \\ \hline\end{array}$

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series - an enjoyable introduction to electronics. Full of very clear full colour plctures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full and adurts. colour pages cover all aspects - soldering - fau
finding - components (identification and how finding - components (identification and how
they work). Also full details of how to build 6 they work). Also full details of how to build 6
projects - burglar alarm, radio, games, etc. projects - burglar alarm, radio, games, etc. Requires soldering - 4 pages clearly show you how. The components supplied in our pack. The allows all the projects to be built and kept. The book is available separately
Fun with Electronics Book
Component pack (less book)
£2.95
30 SOLDERLESS BREADBOARD PROJECTS
A book of projects by R. A. Penfold covering a wide range of interests. All projects are built on a Verobloc
breadboard. Full layout drawings and component
oreadooardi Fuli layout drawings and component
identification diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The component pack allows all projects in the book to be built one at a time. Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch. sound activated switch, molsture detector, MW Radio Fuzz unit, etc.
30 Solderless Breadboard Projects (Book 1)
Component Pack
$£ 2.95$
£27.74

INSULATION TESTER

EE APRIL 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular.
KIT REF 444
£22.37

3 BAND
 SHORT WAVE RADIO

EE AUG 87

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.

KIT REF 718

£30.30

PORTABLE ULTRASONIC PEsTSCARER

EE AUG '91

A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all components, PCB, transducer and case. KIT REF 842

EE EQUALISER

EE MAY '87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB.
KIT REF 707

- 117.75

LIGHT RIDERS

EE OCT '86
Three projects under one title - all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling ourr 500 watts.
KIT REF 559 CHASER LIGHT
£15.58
KIT REF 560 DISCO LIGHTS
¢ 22.41
KIT REF 561 LAPEL BADGE
$£ 11.65$

PET SCARER

EE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor) KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION LOCK

EE MAR '91

Digital combination lock with a 12 key keypad. 4 digit code operates 250 V - 16 A SPCO relay. A special anti- tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output, etc.). Aricle describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case.

KIT REF 840
£19.86

ACOUSTIC PROBE

EE NOV '87
A very popular project which picks up vibrations b means of a ccntact probe and passes them on to a pair of headphones or an
 amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EEDEC'90
A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available. 1000 watts per channel, zero volt switching, inductive load capability. Opto-isolated for total safety. Many other features. Complete kit includes case, PCBs, all components and hardware.
KIT REF 838

EPROM ERASER

4 CHANNEL
 LIGHT CHASER
 EE Jan '90

A 1000W per channel chaser with zero volt switching, hard drive, inductive load capability. mic sound sensor and sophisticated "beat detector. Chase steps to music or auto when quiet. Variable speed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channels. P552 output. Ideal for rope lights, pin spots, disco and display lighting.
KIT REF 833
£32.13

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

EE TREASURE HUNTER

EE AUG '89
A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground " effect". Can be used with search-head underwater.

Easy to use and build, kit
includes search-head, handle, case, PCB and all parts as shown.
KIT REF 815
Including headphones
€45.95

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit Covers Long and medium Wave bands. built in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F filter. Simple alignment and tuning without special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.
£17.16
KIT REF 835

CALLIN - OPEN: MON-FRI 8.30-5.00 SAT 10.00-5.00

EVERYDAY

VOL. 21 No. 5

Advertisement Offices:

EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO130JS.
Phone/Fax: (0255) 850596

HORSE POWER

While looking for some data on a past project recently I came across the following snippet of information courtesy of Barry Fox from For Your Entertainment in 1982. Barry was reporting on Philips museum of science and technology in Eindhoven.
"One of the most popular exhibits is a bicycle with a dynamo in the back wheel that provides just enough power for a TV set and camera focused on the bicycle. To produce a picture of yourself on the TV screen you have to pedal hard enough to produce 75 watts.
You'd be surprised how hard it is. It's a useful reminder of how much energy we take for granted at the turn of a switch.
A human being can develop around 75 watts which is around one tenth of a horse power. In practice a horse delivers only around one half of this amount of energy over a prolonged period. But it eats food that we won't touch.
So to power a modern house we'd need around 100 human beings pedalling a giant dynamo treadmill, or around 20 horses in the garden tethered to an enormous geared system driving a dynamo. And think of all the hay you'd have to give them every day."
You could also grow a lot of roses on the by-product! As Barry said it is a useful reminder of how much energy we take for granted.

ENERGY

The area of alternative energy is one we will be investigating over the summer months - although we will probably not consider true horse power!
Much work is being done on such things as solar, tidal, geothermal, biomass and wind power and we will take a look at what is going on and where it might lead or, in some cases, the resultant generators. In the meantime our Strain Gauges article looks at the effects of energy in the form of force and how it can be measured with electronic circuitry, you can even build yourself an inexpensive Experimental Weighing Scale with a wide range of applications from ordinary weighing scales to an electronic torque wrench or engine torque calculator, etc. depending on your imagination and innovation.

SUBSCRIPTIONS
 Annual subscriptions for delivery direct to any address in the UK: $£ 18.50$. Overseas: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in £ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum credit card order $£ 5$.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.80$ ($£ 2.30$ overseas surface mail) inclusive of postage and packing per copy - E sterling only please, Visa and Access (MasterCard) accepted, minimum credit card order f5. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH Tel: 0202 881749. In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June. Oct, \& Dec. 88, Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editor: MIKE KENWARD
Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:

Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country: overseas readers should check local laws.

EXPERIMENTAL wEIGHING SCALE

CHRIS WALKER PART 2

It could tell you your weight, or let youknow when you are under stress and at breaking point!

LAST month we tackled the theory and discussed how strain gauges can be attached to the surface of a material, and used to calculate the size of a force which is applied to the material. The article also described some techniques which are used for incorporating the gauges into electronic systems.
Following on from this, we now look at the practical aspects of using strain gauges in the construction of an Experimental Weighing Scale.

LOAD CELL

The force-to-voltage converter, or Load Cell, used in this design is shown in Fig.l. It consists of a strip of flexible material to which two strain gauges are attached as shown. The strip is then clamped to a bench or similar support and the load to be measured is hung from the free end.

As the strip bends, the top strain gauge (G1) is stretched whilst the bottom one (G2) is compressed. The gauges are wired into a Wheatstone bridge to provide an output voltage which rises as the load is increased. The bridge output is then amplified and can be displayed on a calibrated voltmeter (see later).
This cantilever type of Load Cell is very sensitive to small weights hung on its end. The prototype scale can reliably detect loads less than one gram. The output voltage is roughly linear with respect to load, provided the strip is not deflected too far.

The choice of material and the dimensions of the strip are quite important. The prototype uses aluminium which is 3 mm thick, 16 mm wide and 300 mm long. This was obtained as an off-cut from a school technology department.
The deflection for a given load depends on the length and thickness of the strip. For measuring heavier loads, use a shorter and/or thicker strip or one made from a material with a higher Young modulus (see last month), e.g. steel. Conversely, for greater sensitivity use a long thin strip made from a material with low Young modulus.
As a rough guide, the free end of the prototype aluminium strip drops through a
distance of about 20 mm when a 500 g load is applied.
Experimenters who wish to try out other materials should consider their long term properties when assessing suitability. Some polymer plastics tend to "creep" when a load is applied (i.e. they continue to flex even if the load is kept constant) and these are obviously unsuitable.

Fig. 1. Experimental "cantilever" type Load Cell set up.
Also unsuitable would be materials which twist or warp over a period of time. Some types of wood may fall into this category.

DIFFERENTIAL AMPLIFIER

The complete circuit diagram of the Experimental Weighing Scale is shown in Fig.2. The principles behind this design were discussed last month but some specific points will now be highlighted.
The Wheatstone bridge is formed by resistors R1, R2 and strain gauges G1, G2. The bridge is supplied with a stable 5 V from voltage regulator IC3.

It is very unlikely, even when closetolerance components are used, that the bridge will be perfectly balanced when constructed and, therefore, preset variable resistor VRI may need to be included in parallel with one of the resistors R1 or R2 to zero the bridge output when the loadcell is experiencing no strain. This preset should be a high stability, multiturn device such as a "cermet" trimmer.

The bridge output is fed to a crosscoupled differential amplifier. This amplifier is formed from three op-amps, $\mathrm{ICla}_{\mathrm{a}}, \mathrm{IClb}$ and ICIc and resistors R3 to R9.
The overall gain of this amplifier is the product of the input gain from sections ICla and IClb , and the differential gain due to IClc . As a reminder from last month:

$$
\begin{aligned}
& \text { Input Gain }=1+\frac{2 \times R 3}{R 4} \\
& \text { Differential Gain }=\frac{\mathrm{R} 8}{\mathrm{R} 6}
\end{aligned}
$$

Overal gain =
Input Gain \times Differential Gain
Using the values given, the overall gain is set at about 900 . Please feel free to experiment with the gain by adjusting the appropriate resistor values.

The amplifier chosen is an instrument grade type OP-470GP. Whilst rather expensive, it has an excellent common-mode rejection ratio of 120 dB which is important in this application. Cheaper amplifiers do not perform very impressively.
All the amplifiers are powered by a splitrail power supply of +9 V and -9 V from batteries B1 and B2. A double-pole switch SI is required to switch the circuit on and off.

DFFSET CONTAOL

Voltage regulator IC4 provides a stable -5 V which, along with the +5 V from IC3 is used to provide an adjustable offset voltage at the wiper of potentiometer VR2 Op-amp IC2, wired as a voltage-follower, buffers the output from this potentiometer which can be varied over the range of about -250 mV to +250 mV with the component values specified.
This offset voltage is then "mixed" with the output from the differential amplifier by op-amp IC1d and resistors R10 to R13. The main purpose of the variable offset voltage is to zero the final amplifier output at pin 14 of ICI under no-load conditions, although coarse zeroing will need to be achieved by trimming the bridge balancing preset VRI as described earlier.

By employing a multiturn potentiometer for VR2, it will allow the user to fine-zero the output and its use can, of course, extend to a-"tare" control, allowing the output to be zeroed even when a small load (e.g. a scale pan) is hung on the Load Cell.

COMPONENTS

Resistors	
R1, R2	1 k (2 off)
R3, R5	680 k (2 off)
R4	5 k 6
R6, R7	2 k 7 (2 off)
R8 to R13	10 k (6 off)
R14, R15	47 k (2 off)

See SHOP TALK
 Page

All 0.6W 1% high stability metal film
Potentiometers

VR1	1 M multiturn cermet preset
VR2	- (see text)
$5 k$ (or $4 k 7)$ multiturn	

Capacitors

C1, C3 1μ axial elect. 100 V (2 off)
C2, C4 220 n polyester (2 off)
Semiconductors

IC1	OP-470GP quad op-amp
IC2	741 op.amp
IC3	$78 L 05+5 \mathrm{~V}$ voltage
	regulator
IC4	$79 L 05-5 \mathrm{~V}$ voltage
	regulator

Miscellaneous

G1, G2	foil strain gauge (see Shoptalk) (2 off)
B1, B2	PP3 9V battery (2 off)
S1	double-pole on/off switch

Printed circuit board available from EE PCB Service, code EE792; PP3 battery clips (2 off); knob for VR2; 4 -way screw terminal block; suitablysized case; 8-pin d.i.l. socket; 14-pin d.i.l. socket; terminal pins; screened cable; materials for load-cell and gauge application (see text).

Fig. 2. Complete circuit diagram for the Experimental Weighing Scale. Preset VR1 may be needed to balance or "zero" the bridge.

CAUGE

MOUNTING

Having obtained a suitable strip of material from which to construct the Load Cell, the two strain gauges must be attached on each side of the strip about halfway along its length.

Preparation of the "cantilever" type Load Cell is shown in the sequence of photographs. These outline the process of surface preparation and gauge application and it is recommended that the basic sequence is followed to ensure repeatable results.

Many of the problems which arise when

Photo 3 - Cleaning the surlace with weak detergent and a "cofton bud".

Photo 6 - Rubbling down the gauge with a finger wrapped In a Ilssue.
using strain gauges are due to bad adhesion between the gauge and its host surface. The first photograph (Photo.l) illustrates the basic equipment that will be required.

If you decide to use a metal strip, start by abrading the surface over the area of installation with very fine 1000 -grit silicon carbide wet/dry paper, used with plenty of water (Photo.2).

Occasionally wipe the surface dry with a clean tissue, but continue to abrade until the surface is free from scratches. Prepare both sides of the strip in this way before mounting either gauge.

Next, remove grease from the surface with a solvent cleaning fluid (e.g. one containing 1,1,1 trichloroethane). Wipe the fluid off with a clean tissue before it evaporates or it will leave behind deposits. Continue to apply and wipe until the tissue is stain-free.

Finally, clean the surface with a very

Pholo 4 - Use a small art brush to apply a thin layer of actlvator Ilquid.

Photo 7 - Carefully peel back the Sellotape to reveal the strain gauge.
weak detergent solution applied with a "cotton bud" and wiped dry with a clean tissue (Photo.3). This final cleaning should take place immediately prior to gauge application. Be careful not to contaminate the cleaned area with finger grease.

Do not handle the strain gauge, but pick it up off a clean surface with a piece of Sellotape stuck to its upper side (the side to which the leads are attached). Position one end of the tape on the prepared strip so that when the tape is laid flat the gauge is correctly positioned along the length of the material with its sides parallel to the edges of the strip. Fold the tape back to expose the rear of the gauge.

ADHESIVE

At this stage, there is a choice of two types of adhesive. Cyanoacrylate (used along with an activator) is popular because it is a very low viscosity adhesive which

Photo 2 (above) - Using a wet/dry paper dlsc to abrade the metal strip.

Photo 1 (left) - Line up of materials required to prepare the cantllever to receive the straln gauges.

Photo 6 - Applying a small dab of adhesive to the metal surface.

Flg. 8 - The gauge leads soldered to the sell-adhesive terminator pad.
ensures that only a very thin layer exists between the gauge and the surface. It also has an extremely fast curing time.

From experience, however, the author prefers to use a fast-setting epoxy-resin which has the advantage of giving one time to think before the darned stuff sets! The drawback with epoxy-resin is that it must be used very sparingly otherwise you end up with too much adhesive under the gauge and this causes problems of adhesive flexing and creep.

If you are using cyanoacrylate, a thin layer of activator liquid is applied over the rear of the gauge as shown in Photo.4, and then allowed to dry. A small amount of adhesive is then applied a few millimetres from the edge of the gauge (Photo.5).
Within three seconds of adhesive application, the tape/gauge combination must be swept down onto the surface of the strip using firm pressure from your finger,
wrapped in a tissue (Photo.6). Further thumb pressure should be applied across the gauge for about two minutes.
Using quick-set epoxy-resin makes the whole process a little more sedate. Thoroughly mix the adhesive and hardener and spread a very thin layer over the back of the gauge. The Sellotape/gauge combination is then swept down as above, using finger pressure to exclude air from the adhesive. Clamp the assembly for about half an hour using a sheet of cardboard between the clamp and gauge to ensure an even pressure.
Once the adhesive has set, carefully peel back the tape at a low angle (Photo.7) to expose the (hopefully) stuck strain gauge. Cut down the leads and solder them to the self-adhesive lead terminator (Photo.8).
Repeat the procedure for the second gauge on the opposite side of the strip. Preliminary wet abrading should already have been carried out to avoid damage to the first strain gauge.
If the gauges are likely to become dirty or are prone to damage during use, then they can be protected with a "blob" of silicone rubber compound (the flexible substance used to seal around baths and wash-basins) applied over the area of the gauge.

BRIDGE

CONSTRUCTION

The Wheatstone bridge circuit is constructed in close proximity to the strain gauges. Fasten a four-way terminal block to the flexible strip using a double-sided sticky pad and wire in resistors R1 and R2, as shown in Fig.3. Connections to
each strain gauge lead terminator are made using short lengths of insulated wire.
A length of multicored screened cable is used to link the bridge to the amplifier circuit so that noise pickup is kept to a minimum. The screen connects to 0 V as shown and a least three cores are required to make the remaining connections.

AMPLIFIER BOARD

The amplifier is designed to be constructed on a singlesided printed circuit board (p.c.b.). This board is available from the EE PCB Service, code E792.
The full size foil pattern and component layout of the amplifier board is shown in Fig.4. Construction is very straightforward and should not present any problems to most experimenters.
For reasons of stability, all resistors should be metal film types with a one per cent tolerance. The off-board connections to the Offset control VR2 should be kept reasonably short to reduce noise.
The output voltage from the prototype multi-cored screened cable.

Fig. 3. Using a 4-way terminal block (TB1) to make up the Wheatstone bridge. This is connected to the p.c.b. using
is displayed on a digital multimeter set to the 2 V range. A load of 500 g on the end of the aluminium strip produces an output voltage of about 490 mV . Calibration of the system is described later.

If desired, the amplifier p.c.b. batteries, on/off switch and offset control can all be housed inside a small metal or plastic case. Connections to the Load Cell and output voltmeter can be made via a terminal block or a plug/socket arrangement.

Fig. 5. Typical calibration graph. This is produced by hanging a series of known masses on the Load Cell and recording the output voltage in each case

SETTINE UP

Commence the setting up and testing by connecting the Load Cell and a voltmeter to the p.c.b. Attach the batteries and switch the circuit on.
With the Load Cell clamped to the bench but no load applied, set the Offset control VR2 to its half-way position and note the output voltage. If the output is
between -250 mV and +250 mV , it can be zeroed using VR2.
If the output voltage is outside this range then the bridge will require balancing using preset VRI. This preset will need to be connected directly to the Wheatstone bridge terminal block in parallel with either resistor R1 or R2, trial and error will determine which one.

Adjust this multiturn preset until the amplifier output is about 0 V .

It is quite possible, of course, to trim the gain of the amplifier circuit so that a Ig load produces, for instance, a 1 mV output. Then, assuming that the output increases linearly with load, the size of the load (in grams) can be read directly from the digital display.

An easier and more reliable method for calibration is to produce a calibration graph such as the one shown in Fig.5. This is easily made by hanging a series of known masses on the Load Cell and recording the output voltage in each case. The size of any other mass can then be found by reading off the output voltage from the graph. The graph will also give an indication of the linearity (or lack of it) of the amplified output.

A further possibility is to use a moving-coil voltmeter (say with IV or 2 V full scale deflection), remove the printed scale and calibrate your own scale using a set of known masses.

BE ERAVE

An electronic torque wrench would make an interesting project, or how about a device to measure the force in a caravan tow-bar? By measuring the reaction force in an engine mount you can calculate the torque that the engine is producing.

Use your imagination ...!

LIGHTING CONTROLLER KITS

For the serious Mobile Disco
SwITCHABLE 3-A CHANNEL CONTROLLEA
with Beatchase and Speed Controls
PCB + Components Kit .. $\mathbf{£ 2 1 . 0 0}$
Hardware Kit
multichase 4 CMANMEL
CONTROLLER
with Beatchase, Speed and ChaseSelect Controls.
PCB + Components Kit£26.00
Hardware Kit
$f 13.00$
COMPUTEA CMASE 4 CMANNEL CONTROLLEA
A Controller designed to achieve very good results from many types of lighting display. Perfect for pinspots, super on screens, can even revitalize spotlamp boxes. Fast tracking autolevel audio input and choice of sound modes ensure accurate and varied interpretation of music.
PCB + Components Kit $\mathbf{£ 3 5 . 0 0}$
Hardware Kit
\&15.00

DISCO CONSOLE KITS

A new Disco Console with CLI2 varispeed turntables and magnetic cartridges. Incorporating sloping centre mounting mixer with Tape and CD inputs, crossfade between
turntables, mic channel with tone controłs and autofade, headphone and l.e.d. monitors.
Black vynide case with pre cut motor boards is deep enough to house most power amp modules if required. Separate
panel for input \& output sockets mounted at side.

MAGNUM CONSOLE KIT

turntable............
cartridges and case)
MAGNUM CONSOLE BUILT Q TESTED
MAGNUM MIXEA KIT.
(including front panel, PCB \& components and input/output panel)

TEST EQUIPMENT KITS

LED DISPLAY OSCILLOSCOPE
with 9×9 grid of high efficiency
LEDs with trigger/freerun,
brightness, sensitivity, position and
timebase. $\quad \mathbf{1} 19.95$
Postage \& Packing 50p
$\mathbf{f 9 9 . 0 0 - P \& P}$
£4.00

WAVEFOAM GENERATOR

with sine, triangle and square
wave output. Range, frequency and amplitude.

MAGNUM LOUDSPEAKERS

Compact high output speakers for P.A. and Disco use.
MRGNUM 100.
£165 pair
$12^{\prime \prime}-100$ Watt R.M.S. bass driver and
$7^{\prime \prime} \times 3^{\prime \prime}$ wide dispersion horn in black vynide cabinets with bass port.; Side mounted carrying handle.
Size $540 \mathrm{~mm} \times 380 \mathrm{~mm} \times 300 \mathrm{~mm}$

MAGNUM 200

... $\mathbf{E 2 3 5}$ pair
$15^{\prime \prime}-200$ Watt R.M.S. bass driver and $7^{\prime \prime} \times 3^{\prime \prime}$
Horn. This larger cabinet and speaker combination provides improved bass response. Size $635 \mathrm{~mm} \times 460 \mathrm{~mm} \times 330 \mathrm{~mm}$

GREAT SOUND
GREAT VALUE
rder

(Size $1020 \mathrm{~mm} \times 370 \mathrm{~mm} \times 180 \mathrm{~mm}$ with lid)

VAAISPEED CLI2 TURNTABLE.	£42.00-P\&P £2.00
MRGNETIC CARTAIDGE	E7.00) P\&P
12 VOLT CONSOLE LAMP	E3.50 50p each

FAST FRIENDLY SERVICE

ALL PRICES INCLUDE VAT

98 School Street, Wolverhampton. West Midlands WV3 ONR.
Tel: (0902) 23275

SURUBIITANCP PROFPKSSIDNAL CDJAJTYY KTIS

 No. 1 for KitsWhether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX UItra-miniature Room Transmitter
Smallest room transmitter kit in the word! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic.
$3-12 \mathrm{~V}$ operation. 500 m range...
MTX MIcro-minlature Room Iransmitier
Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. 3-12V operation. 1000 m range..................... $£ 13.45$

STX Migh-performance Room Iransmitter

Hi performance transmitter with a buffered output stage for greater stability and range
Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range.
... $£ 15.45$

VT500 Migh-power Room Transmitter

Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range...
. 16.45
VXT Volce Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensiltivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$
IVX400 Mains Powered Room Transmitter
Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range .
£19.45
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.............. $£ 22.95$ scix Subcarrior Tolephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range........... $£ 23.95$

SCOM Subcarrier Decoder Unit for SCAX

Connects to receiver earphone socket and provides decoded audio output to
headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9-12 \mathrm{~V}$ operation. \qquad . 222.95

ATR Miero SIzs Telaphone RecordIng Interiace

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line.

$\star \star \star$ Specials $\star \star \star$

mitherinx madlo Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF Iransmitter with digital encoder and receiver unit with decoder and relay output, momentary or altemate, 8 -way dil switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both $9 V$ operation. Range up to 200 m .
Complete System (2 kits)
.$£ 50.95$
Individual Transmitter DLTX
850.95

Individual Recetver DLRX.
. 237.95
mex-1 w-FI Mlere Broadeaster
$=$
Not technically a surveillance device but a great idea! Connects to the headphone output of your $\mathrm{Hi}-\mathrm{Fi}$, tape or CD and transmits Hi - Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
$£ 20.95$

UTLX UItra-miniature Telephone Transmitter
Smaliest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$? Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from Inne. 500 m range.

TUX700 Micro-miniature Telephone Transmitter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range
. 13.45
STLX High-periormance Teiephone Transmifter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$.
1500 m range
£16.45

TKXS00 Signalling/Tracking Transmitter

Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation..
£22.95

CD400 Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation..
.$£ 30.95$

cogeb Professional Bug Detector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation ..
£50.95

arxi80 Crystal Controllod hoom Transmitter

Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX180 kit (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm . 9 V operation. 1000 m range .
. 840.95

QuX180 Crystal Cointrolled Telephone Transmitter

As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...
. 40.95

asx 180 Line Powered Crystal Controlled Phone Transmitter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
£35.95

aRX180 Crystal Controlled FM Recelver

For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-buitt and aligned module ready to connect on board so no difticulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.
. $£ 60.95$

A build-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
OUR LATESt CATALOGUE CONTAINING MANY MORE MEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Constructional Project

CAMCORDER HEADPHONE

AMPLIFIER CHRIS BROWN

An easy to build stereo pocket amplifier that enables inexpensive headphones to be used with a camcorder or other equipment.

CIFCUIT

The circuit (Fig. 1) consists of two volume controls (each a 17 mm pot.), two input capacitors, two output capacitors, a Zobel network on each output, plus a supply decoupling capacitor. Apart from the volume controls, everything else fits easily onto a small piece of stripboard.

MANY people now own camcorders and most of these have headphone outputs to monitor sound - to make sure you've not got a problem with the wind (!), or that every word is being recorded clearly. Yet few people actually use this facility - or so the journals always tell us! Could this be because of the need for high impedance, (high cost?) 'phones?

My own model requires a 1 k impedance, yet all the headphones I've seen are in the $80 h m s$ to 320 ohms range. The camera is also stereo. Obviously, some sort of impedance matching is required, with two outputs, and low battery consumption.

A quick look through the various component suppliers catalogues revealed the TDA 2822 i.c. This can supply one watt per channel with a nine volt supply, all housed in an eight pin d.i.l. package. It only requires eleven other components, so everything can be crammed into a small case. At the time a small (17 mm dia), pot, had just become available so construction began in earnest.

Fig. 1. Complete circuit diagram of the Camcorder Headphone Amplifier. The text refers to S1/SK1.

With such a circuit, where virtually everything is enclosed in one i.c., there is very little that can be said about circuit function. The TDA2822 can operate from a 1.8 V to 15 V supply and will give 20 mW into 32 ohm headphones with 3 V and 1 W into 80 hm headphones, or speakers, with a 9 V supply. The input impedance of the circuit is approximately 32 k , and set is by the volume controls (47 k) and the i.c. input impedance (100 k). The use of two volume controls avoids the need for a dual pot plus a balance control.

CONTROLS

The two volume controls sit side by side in the top of the small case with the input cable entering the top of the case slightly off centre. To make construction easier, the pots were wired in "antiphase", (see diagram). This means that to reduce volume, the controls both rotate towards the centre of the case, rather than both turning clockwise/anticlock wise as is the norm.
To save on space, an on/off switch was omitted, instead, a special $1 /$ inch jack socket was used which features a pair of switch contacts as well as the normal audio contacts. This means that as soon as the

Fig. 2. Stripboard layout and wiring for the Camcorder Headphone Amplifier. Fig. 3 shows S1/SK1 wiring.
headphone jack is removed, the amp. is switched off.

CONSTRUCTION

Providing you've mastered the art of using a fine tipped soldering iron, you should have few problems building this unit. Commence construction by making the track breaks in the underside of the stripboard as shown in Fig. 2. Then fit the resistors and capacitors in the positions indicated.
The i.c. should be fitted using an 8 -pin d.i.l. i.c. holder - make sure the i.c. is fitted the correct way around, this also applies to all the electrolytic capacitors. Finally wire up the jack socket/switch as shown in Fig.

3, and the volume controls and input lead using screened "stereo" lead.

IN USE

To use the unit, simply plug in your headphones to turn it on and set the volume controls as required; remember the higher the volume the shorter the battery life! The unit can easily be used with other equipment where a headphone output might need amplification.
This unit is also a boon to people with a hearing impediment (like myself) as the volume can be raised to suit the individual. In practice the controls are rarely set above $1 / 4$ turn as the headphone output is so close to the ears.

EE38286

Basic layout of the amplifier:

Fig. 3. Wiring of SK1/S2.

INFORMATION TECHNOLOGY AND THE NATIONAL CURRICULUM

T. R. de VAUX BALBIRNIE

look at the motor control circuit shown in Fig. 1. Note that the NOT gate is made by connecting together the two inputs of a NAND as explained in Part 6 last month. R2 is a light-dependent resistor (l.d.r.) this component was introduced in Part 5.

The I.d.r. is a device which responds electrically to changes in light intensity. If we connect this component in series with fixed resistor, R1, we find that the voltage appearing between points A and B will fall as the light level rises (it is not appropriate here to explain why this happens in terms of resistance values, potential dividers and so on - anyone interested in this type of detail should consult a textbook). It is important to note, however, that we always refer to a voltage appearing between two places. Unless we say otherwise, one of these is always the negative supply line (point B), so we often refer loosely to the voltage at the other point - Point A - this being the input to the NOT gate.
When the LDR is brightly illuminated, the voltage applied to the NOT gate input will be quite low. With the type of gate being used (called a C-Mos gate), it "thinks" that any voltage below approximately one-

Fig. 1. Motor Control circuit.

THIS is the seventh in a 12-part series concerning Information Technology, Microelectronics, Analogue and Digital systems and related matters in the Science National Curriculum. Since this work is applicable to older children we shall now use the word "student" instead of "chrild"!
This month we shall look at logic gates and their use in control circuits. We shall then consider the differences between analogue and digital signals and instruments.

CONTROL TECHNOLOGY

Many processes in life involve control of a system. As an example we may think of a washing machine. Here, we give the machine the correct information (about the type of material to be washed, whether full or economy load, etc.) then allow it to control the washing of the clothes. This will use such things as solenoid valves to turn on the water, sensors to switch them off when the water reaches the correct level, a pump to empty the machine, thermostats and heaters to produce hot water at the right temperature, a motor and circuits to make the drum rotate in alternate directions and to increase the speed for spin drying at the end.

The system will be under the overall control of a time switch to provide the correct times and order of operations. In addition, there will be ancillary devices such as one to prevent the door from being opened while there is still water inside! The system could be controlled by microelectronic circuits but many washing machines still use the old well-known technology of mechanical switches and relays.

LOGIC CONTROL

To illustrate how a single logic gate - a NOT gate may be used for a very simple control purposes, let us

EE36366
half supply voltage (4.5 V) is Logic 0 . This means that while the light level remains bright, the input is interpreted at Logic 0 and the output of the gate will be Logic I -9 V - since it is a NOT gate and inverts the input.

The small output current supplied by the gate output is amplified by transistor, TRI, and this operates the relay coil, RLA. The contacts (RLAI) now close so allowing current from cell, BI, to flow through motor, M1.

At a certain lower light intensity the voltage at the NOT gate input will rise above one-half that of supply battery, B2, and the gate will interpret this as Logic 1 . The output then suddenly switches state from Logic I to Logic 0, the relay contacts part and the motor switches off. Diode DI removes the high-voltage pulse which appears when this happens and which could otherwise damage certain components.

This type of circuit could be used to control the process in a furniture factory where a motor moves a sheet of wood along a conveyor belt. While this is happening, a beam of light shines across the conveyor belt onto the 1.d.r. This allows the motor to run. When the wood reaches a certain position, it "cuts" the light beam and I.d.r. receives less light. The motor then stops and the wood stays in position while it is sawn or drilled by other machines.

It would be a fairly simple matter for students to design a model of this system and use it to move a small piece of wood into position then stop. Parts could be used from a suitable mechanics kit.

BUILDING THE CIRCUIT

The motor control circuit may be built using a modular electronics kit or by using the Plugblock layout shown in Fig. 2 (the use of a Plugblock was described in Part 5). If you decide to do it this way, you will need the following components in addition to the Plugblock itself and some pieces of connecting wire. If you have been following the series you will find that the starred components are already part of your kit so check before ordering.
*4011BE NAND gate
*ORP12 light-dependent resistor
*ZTX300 transistor
*1N4001 diode
*Reed relay (possibly from a modular kit)
*PP3 battery and connector
*10k resistor
*3k3 resistor
*1.5V cell and holder
Miniature motor (1.5 V operation).
Of course, the output device could be a bulb or buzzer instead of a motor. On the whole, though, a motor is more fun. A thermistor would make an alternative input device. This would make the circuit respond to temperature changes instead of light levels.
It should become clear that logic gates make a very versatile way of designing other similar control circuits and the students should use their imagination freely.

ANALOGUE AND DIGITAL SIGNALS

In Part 1 (November, 1991 issue) we looked at some early methods of longdistance communication. These are often of a digital nature - for example, beacons and bonfires. If you have been following this series, the concept of a digital signal should be clear. This is one which is either on or off - it has no states in between.

A beacon is either on or off - it is a two-state device. It could just convey one simple message such as "the invasion has begun!" This is an optical signal (that is, it is made to be seen) but now we are more concerned with electrical signals. Optical signals do have their place in modern telecommunications systems but this will be explained next time.

The Morse Code is an exampie of a digital code - an electrical current is turned on and off according to some agreed plan to represent the letters of the alphabet, punctuation marks, numbers, etc. At the distant end, the current pulses can operate a buzzer or flash a lamp and this is interpreted by an operator. The message is then accurately conveyed.

Digital signals should be compared with analogue ones. Whereas a digital signal has only two states, an analogue one varies through an infinite number of states. A traditional thermometer is an analogue device - the mercury rising smoothly along the capillary tube. Speaking into a telephone provides an analogue signal - it gives a complex electrical copy of all the variations in the human voice.

A traditional record and record player are also analogue by nature. The sound is converted into a wavy groove on the surface of the record. When the pick-up needle runs in the groove, a complex electrical signal is produced which varies smoothly to form a copy of the original sound. The advantage of an analogue signal is that, in theory, it conveys all the information in the original. The disadvantage is that it rarely does so because it is so easily altered as we shall see presently.

THE REAL WORLD

The real world is full of analogue information. Our eyes respond to smooth variations in light intensity (brightness) which occur around us. Our ears respond to smooth changes of sound in a similar way. Our sense of touch responds to smooth changes of pressure applied to our skin. However, if we convert changes such as these into analogue electrical signals and send them over a long distance that is, if we use them for communication they tend to change i.e. distortion is introduced and false information is picked up on the way - this could take the form of noise and interference. Even so, communication using analogue signals is widely used - radio and TV broadcasts work by sending radio waves which contain the information of the analogue signal and we know this works well in practice.

The technology to do it is also fairly
simple. However, we also know that longdistance radio signals can become so distorted that they become difficult to interpret.
The public not only want long-distance communication to be cheap, instant and easy to use - they also demand highquality. Once, speaking to someone in Australia by telephone could prove difficult on account of the increasing distortion introduced on its long journey. Today the sound is of a much higher quality and readily intelligible. This is because digital techniques are used.

ANALOGUE TO DIGITAL

For communication, the "real" world of analogue signals may, with advantage, be turned into digital electrical signals, sent on their way then converted back to analogue ones when they arrive at the other end. We find that by using digital techniques, the signal is transferred almost perfectly. Nicam sound for TV broadcasts is a digital system and produces sound of excellent quality.

To pay for the great benefits to be gained by doing this, we need to use complex technology to perform the conversions and the means of doing it have only been developed relatively recently. One disadvantage of digital processing is that, in theory, the signal cannot faithfully follow every change in the analogue one - it cannot produce a perfect copy. On the other hand, an analogue one is likely to be much worse!

ANALOGUE AND DIGITAL EXPERIMENT

This experiment shows in a very simple way, the difference between an analogue and a digital signal. In addition to the items which you will probably already have in your kit, you will need a wirewound potentiometer of value 20 or 25 ohms and 1 watt rating minimum. These are sometimes available as loudspeaker volume controls. Alternatively, you could use a "rheostat" from a modular electricity kit.

Fig. 3. Practical layout for the analogue circuit.

Fig. 4. Analogue (a) and digital (b) circuits.

With a basic potentiometer, you will need to connect short wires to the centre and either of the outer tag connections. This is best done by soldering but you could twist the wires tightly into position or use small crocodile clips (see Fig. 3).

Build the pair of circuits shown in Fig. 4. In (a) the signal is analogue. This is because the potentiometer, VRI, can vary the current and hence the brightness of the bulb, LPI, smoothly from virtually off to full brightness. In Fig. 4(b) the signal is digital - this is because it can only be on (switch pressed) or off (switch released). The practical layout for the analogue circuit is shown in Fig. 3. The digital one is straightforward.
Next month we shall look at some analogue information transmission systems using both electrical and optical signals.

ANALOGUE AND DIGITAL INSTRUMENTS

An analogue instrument is one which gives a smooth output or display - it can take up any value like the traditional thermometer mentioned earlier. A ruler is an analogue instrument - it will measure a length to any degree of accuracy depending on how well your eyes can read the scale. A traditional clock is analogue - the pointers move smoothly around the face. By contrast, a digital instrument has a display which rises and falls in steps such as a digital clock.
Gather together a variety of analogue and digital instruments and allow the students to use and compare them. Any of the following would be useful: a mercury and a digital thermometer, a traditional and a digital balance (to weigh things), an analogue and a digital clock or watch, a traditional voltmeter and a digital one.
When students are given a choice of instruments, they almost always choose the digital one. When asked why they do this, they often say that the digital one is "more modern" or "more accurate". Digital instruments certainly give an impression of accuracy but this may be an illusion. For example, a digital thermometer
may read 32.4 degrees C and it is attractive to think that this is measuring temperature with an accuracy of 0.1 degrees. However, this is not necessarily so - it may be a badly calibrated thermometer. It could be that a laboratory mercury thermometer reading 34 degrees C is more accurate even though it can only be read to an accuracy of one degree.

Digital is not always best! It is not the fact that an instrument is digital or analogue which determines its accuracy it is the quality of the device, the care taken in calibration and the technology used in making it.

Usually, digital instruments are easier to read and, perhaps, more robust. Sometimes, a digital instrument is more accurate when new but the accuracy drifts as time goes by. On the whole, a digital instrument is more expensive than the corresponding analogue one.

Last month, we discussed logic gates. The inputs and output of these may have only one of two states - Logic 0 or Logic 1. They are therefore digital devices. When something is off we call it Logic 0 and when it is on we call it Logic 1. For students knowing some binary arithmetic, these two numbers will be familiar. For those who do not, it will be necessary to look at the binary system before proceeding.

A BIT ABOUT BINARY

We presume that we humans normally count in tens (the decimal system), not because it is particularly easy but because we happen to have ten fingers. We sometimes call a number a "digit" and, of course, this word means "finger" as well. Presumably, had man been a species with 4 fingers on each hand we would have counted in eights (the octal system) and this would seem just as easy once we got used to it.

In the decimal system, the number 247
means 7 units +4 tens +2 hundreds. However, the number 247 in the octal system means 7 units +4 eights +2 sixtyfours (8×8 's) which is 167 . In the decimal system, then, the number 167 in octal would mean 2471

Suppose there was a race of people with only one finger on each hand. They would, probably, count in twos. When they wrote a number down (despite the difficulty of holding a pencil), the right hand column would represent units, the next one to the left would be twos, the next one fours (2×2) and so on. Clearly, no digits apart from 0's and 1's would exist. This is called the binary system. Here is an example of a binary number:

1	0	1	1	0	1
This means:					
$32^{\prime} \mathrm{s}$	$16^{\prime} \mathrm{s}$	$8^{\prime} \mathrm{s}$	$4^{\prime} \mathrm{s}$	$2^{\prime} \mathrm{s}$	$1^{\prime} \mathrm{s}$
1	0	1	1	0	1

and the decimal equivalent is:

$$
32+8+4+1=45
$$

Any number can be written in binary form and all arithemtic could be done his way. Suppose you wished to tell a distant friend that your birthday was on the 23 rd of the month. You could do it by flashing a torch 23 times or, more efficiently, like this (a flash means a I and a gap means a 0).

FLASH GAP FLASH FALSH FLASH

 Means: 1 In decimal: $16+4+2+1=23$. Unfortunately, in the binary system, although the number of digits used is small (that is, two), the price we have to pay is that even fairly short decimal numbers are very long binary ones. Look at the following binary number:256's 128's 64's 32's 16's 8's 4's 2's 1's
$\begin{array}{lllllllll}1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$
This means $256+64+32+16+4$ $+2=374$ (decimal). Here we have used nine binary digits to represent just three digits in the decimal system. It turns out, then, that the binary system is clumsy for

Fig. 5. Sampling the height of an analogue wave.

Fig. 6. Binary sending circuit.
humans to use but, as we shall see, very good for machines. By the way, a single binary digit, a 0 or a 1 , is called a "bit" (BInary digit).

CONVERSION

Binary numbers are very easy to send in the form of electrical signals because only two states are needed - on and off. Suppose we could convert an analogue signal such as that obtained from a microphone into digital one. This would involve "looking at" the analogue wave and "sampling" its height repeatedly. Fig. 5 shows a waveform with voltage (height) plotted against time. In this example, only 15 heights are specified (remember, there can be a height of 0). The total time is one second.
Suppose we sampled the height every 0.1 second and so, in effect, cut the wave into strips. 'We could then write down the height of each strip in binary using 4 bit binary numbers ranging from 0000 to 1110. The string of binary digits could then turn an electrical signal on (for a 1) and off (for a 0). This process is called analogue to digital (A-D) conversion and the reading of the height of the wave for each sample, quantization.
The opposite effect happens at the other end and the original wave is re-created. Of course, these conversions are done electronically at great speed but the principle may be illustrated manually as described below.

ANALOGUE TO DIGITAL SIMULATION

For this simulation, students are divided into two groups. The idea is for the first group to send the shape of a wave to the other group using only binary numbers. In effect, the first group performs an analogue-to-digital conversion and the second group, a digital-to-analogue one. Two identical pieces of graph paper - one for each group - are issued. It is more fun if the groups are in different rooms so that they cannot hear or see one another.

The first group draws a simple wave on the paper perhaps similar to the one shown in Fig. 5. For convenience, a maximum height of $12-15$ squares should be used since every height may then be expressed as a 4 -bit binary number (15 decimal $=1111$ in binary). It is not necessary to make a proper time scale - "squares" will do.

Fig. 7a. Master wave and the representative binary numbers.

Fig. 7b. Copy waveform made up from "received" binary numbers.

For each horizontal square of the paper, a vertical line is draw up to the wave and the height read off to the nearest square. These numbers are converted into binary form and written down. For example, if the height is 10 squares, this will be written:

If the height is one square this will be written:

$$
\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}
$$ and so on.

Using a switch and battery in a simple series circuit with a bulb at the other end, these sets of digits are sent to the other group. The circuit shown in Fig. 4 b would be suitable for this. Because the O's are difficult to read - that is, the times during which the bulb is off rather than on, the experiment works better if a changeover switch is used. One position lights a red bulb which represents 1 and the other position operates a green bulb to represent a 0 (see Fig. 6).

The second group writes down the groups of 4 -bit binary numbers, and re-converts them into their decimal values. Vertical lines are then drawn for each horizontal square of the height
calculated. The tops are then joined together smoothly using a pencil. A typical "master" wave is shown Fig. 7a with the "copy" in Fig. 7b.

ACCURACY

The above experiment shows that a signal, however complicated, could be sent using just on and off states. However, the students will notice very quickly that this cannot be done precisely. For high accuracy, the sampling must be done as frequently as possible or some changes in the wave between samples may be missed.

On the other hand, the faster the sampling rate, the more difficult it is to do, so a compromise has to be reached. Also, there will be errors in quantization since the nearest whole number is used for height. The height of the wave at any point will therefore not necessarily match the original unless an enormous number of possible heights are specified and this is what is done in practice. Modern electronic circuits can perform these conversions million of times per second.

You may well wonder whether working digitally is really worth the trouble. Why
not simply send the analogue signal itself in the form of smooth changes of current along the wire? The reason is that, even taking into account the limitations of the digital conversions, the end results are far superior to those using purely analogue techniques. This is because in a string of on/off states is it difficult for a 1 to change into a 0 and vice-versa. Thus, the data stream remains intact from beginning to end. This advantage has led to the Digital Revolution

DIGITAL 'PHONES

The telephone network of the United Kingdom is rapidly becoming digital. This means that the analogue signals produced by the voice are converted into digital ones (A-D conversion) and sent over the trunk network to any other part of the U.K. There, the signal undergoes DA conversion and is sent to the called party's telephone earpiece.

Anyone who makes regular long-distance calls will know that the quality of the message is now very high thanks to digital techniques. .Digital signals lend themselves equally well to being sent by other means - by radio, perhaps in conjunction with satellites. Using optical fibres is another possibility. This method is now widely used and has numerous advantages over the traditional method of using electrical signals in copper wire. More will be said about this in next month's article on information transmission systems.

ANALOGUE TO DIGITAL CONVERSION

A computer with an analogue to digital converter - for example a BBC computer - can be used to change a smoothly varying voltage into a number. The BBC computer has four such analogue to digital (A-D) converters referred to the ADVAL Channels. In the following experiment, only one channel is needed. The computer samples the voltage applied to the channel input every 10 ms (100 times per second) and assigns to it a number ranging from 0 to 65520 .

The action of the A-D converter can be shown using a light-dependent resistor (l.d.r.) in the circuit shown in Fig. 8. The socket to use is labelled ANALOGUE IN (see Fig. 9). Only the pins relevant to this experiment are labelled with their function. The computer itself provides a reference voltage between pins $11(+)$ and $8(0 \mathrm{~V})$ - this is used as the power supply. The analogue input is applied between pin 15 and pin 8.

Obtain a plug (a D-Series 15 pin plug) to fit the socket (these are readily available from a mail-order supplier) and wire it up as shown. Build the circuit using 3 sections of 3A screw terminal block as shown and connect it to the computer (the computer must be switched off when you do this). Switch on, type in the following program then type RUN this program divides the rather large and clumsy number obtained from the A-D converter direct by 3300 and gives the whole number part only - this provides a

Fig. 8. L.D.R. circuit connected to a BBC Micro.

Fig. 9. Plug connections for Fig. 8.
number ranging from 0 to 20 approximately - it then prints it and updates it every half-second. This provides a convenient display on the screen.

10 beg in = TIME
20 REPEAT UNTIL, TIME $=$ begin $+50$

30 PRINT INT(ADVAL1/3300)

40 GOTO 10

By shading the LDR with the hand, the smooth changes in light intensity are converted into numbers - i.e. analogue to digital conversion has taken place. The computer works in binary then the binary number is converted into a decimal one for displaying on the screen.

THE COMPACT DISC

The digital revolution is well illustrated by the advent of the Compact Disc. Traditional records are analogue by nature. However, by digitising the sound, the stream of 0 's and 1 's may be turned into a spiral of pits/no pits on the surface of the compact disc using a high-power laser. A pit could mean 1 and the lack of a pit, 0 . The wave is sampled 44,100 times per second and this in practice is fast enough to provide a near-perfect copy of the original sound. A very large number of possible heights is specified to minimise quantization error.
To play the disc, a low-power laser - a bright light source - is focused using a lens to produce a sharp beam which is reflected from the parts on the disc surface where
there is no pit. Special circuits keep the laser on course as it "reads" the binary data. This information is picked up by a detector and fed to a digital to analogue converter.

Note that there is no contact with the surface of the disc which cannot, therefore, wear out. Sophisticated error-correction circuits ensure that any mis-reading of the digits is smoothed over. After amplifying the resulting signal and feeding it to a loudspeaker, the original sound is re-created.

The surface of a traditional record is easily damaged and the information stored in the groove altered due to the effects of dirt, etc. Also, the needle wears the groove and causes increasingly distorted sound but none of these things happen with a compact disc. It is interesting to look at the surface of a traditional record under a microscope. Using a magnification of $100 \times$, the surface will reveal dirt, scratches and hairs which degrade the sound.

Unfortunately, the digital information on a compact disc is too small to be seen using a low-power microscope. Note that compact discs are not limited to holding sound information. Pictures may be digitised and stored on them and also information which is already in digital form - i.e. bulk computer memory storage. Note, however, that in the latter application the compact disc is a "read only" device. That is, information may be retrieved but cannot be changed by the user.

DIGITAL TAPE

Professional tape recorders for the music industry (and very soon domestic ones) use digital techniques. The sound is digitised and stored on the magnetic tape in a series of magnetic dots. Anyone who has copied a cassette on a twin cassette analogue machine will know that the music loses quality with each generation the signal becomes increasingly distorted and the tape "hiss" worsens. Digital tape recorders eliminate these defects since a 1 will always copy to give a 1 and similarly for a 0 . Digital tape recorders will become commonplace in the home in the future.

In television production, pictures are often digitised. While in this form, they may be processed by a computer using the rules of arithmetic. This can lead to all types of visual effects hitherto difficult or possible to do only using painstaking animation techniques. For example, the picture may be made to appear rolled up, re-arranged, cut into squares, etc. Television producers make much use of this type of effect today.

MYSTERY GATE

The truth table for last month's mystery gate is:

A	B	Q
0	0	0
0	1	1
1	0	1
1	1	0

This is similar to an OR gate but when the inputs are both 1 , the output is 0 . It is called an Exclusive OR (EX-OR) gate.

suiplus sioci

1000's of components, all brand new, available at ridiculous prices.
Cash, Cheque or PO to Soundunit Ltd., 6a Sun Street, Hitchin, Herts SG5 1 AE
Want more details? - Phone 0462 420249. Fax 0462420305
All prices include VAT at $\mathbf{1 7 . 5 \%}$. Min order £1. Orders £1 to £19.99-please add $£ 1 \mathbf{p}+\mathrm{p}$. Orders over $\mathbf{£} 20 p+p$ free.

SEMICONDUCTORS $\star \star \star$

DIGITAL

\leq	HCT
06	02, 04, 08, 10, 27
157	32, 74, 86, 107, 138, 147, 368
373, 374	$\begin{aligned} & 157,158,161,245,393,251,259,4017,4040 \\ & 14,125,139,153,244,373,374,393 \\ & 240,356,390 \end{aligned}$
625	574,597
	595

OTHER	
	$10 p$
CD4016	$20 p$
MC14024	$25 p$
SN7404, SN7407, HC4051, HEF4051	$30 p$
74S240, HEF4067	$35 p$
	$40 p$
	$\mathrm{f1.00}$

COMPONENT PACKS - \&1 GACH PACK

CONNECTOAS
XLR Audio In-Line (4 PIN F. 3 PIN M. 3 PIN F.)
Oty per pock
3 Pin XLR Audio Chassis Male
1/in. Stereo Jack Plugs. High Quality
Jack Socket Mono or Stereo PCB/Chassis Mount, 1/ain
BNC RF Connector Chassis Mount
8 PIN DIN Socket PCB Mount
Mains Inlet with Filter (EEC)

IC SOCKETS

8 PIN IC Sockets, Turned PIN
14 PIN IC Sockets, Turned PIN
24/32/40 PIN IC Sockets, Turned PIN
64 PIN IC Sockets, Turned PIN

PCB CONNECTOAS

32 Way 0.1 in. Pitch Single Sided Edge Connector, Panduit 40 PIN IDC header (Robinson Nugent)
50 Way IDC Plug
2/3/4 PIN Molex Header with Friction Lock
5/6 PIN Molex Header with Friction Lock
9 PIN Molex Header with Friction Lock

3 M 359 SERIES BOXED DIL IDC HEADERS

10/16 PIN
26/34/50 PIN
Cable Assemblies to Match Above
CAPACITORS - Specify Value Except Ceramics
Ceramic Disk $1 \mathrm{pF}-4700 \mathrm{pF}$ assorted
DIP Poly + Metal Poly $10 n, 22 n, 47 n, 68 n$
DIP Poly + Metal Poly 220n, 470n,
Tant Bead 470n, $1 \mu \mathrm{~F}$
Electrolytic $1 \mu \mathrm{~F}, 2 \mu 2,4 \mu 5,10 \mu \mathrm{~F}$
Electrolytic $1000 \mu \mathrm{~F} 16 \mathrm{~V}, 2200 \mu \mathrm{~F} 25 \mathrm{~V}, 2200 \mu \mathrm{~F} 40 \mathrm{~V}$

RESISTOAS

5\% 1/2W Carbon Film 10R-8Meg assorted
1\% $1 / 2$ W Carbon Film 10R-8Meg assorted
Networks 8-14 PIN 47R-10k assorted
Submin Skeleton Pre-Sets $4 \mathrm{k} 7,100 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 2 \mathrm{M} 2$, - specify
Audio Pots 16 mm Egan 4 mm shaft 100k, 1 Meg-Specify
Phillips Potpac 10k, 100k - Specify

ODD ITEMS

Switchmode PSU-
outputs $=+5 \mathrm{~V} 8 \mathrm{~A},+12 \mathrm{~V} 2.5 \mathrm{~A},+15 \mathrm{~V} 1 \mathrm{~A},-15 \mathrm{~V} 1 \mathrm{~A}$
£15
9 in . Monochrome monitor - uncased £15 each or $£ 50$ for 4 Safeblock (mains)
High Density 3.5 inch Sony Floppy Drives
Papst cooling fan 12V DC 3in. model 8312
Populated PCB's -100 's of components dig/analog/pots etc.
Torroidal TX 0-120, 0-1 20, 15-0-15 500mA $+0-8 \mathrm{~V} 1 \mathrm{~A}$

MISC ELECTRICAL + HARDUARE

Chassis Mount Fuse Holder
Fuse $20 \times 5 \mathrm{~mm}$ Quick Blow 0.25A, 1A, 2A, 4A
4 mm Collet Knob + Grey Cap Lined
1/inn. Flanged Knob
Rotary Incrementor Control
4 Way Switches On/Off 8 PIN DIL
Transistor SONY 2SK152 FET
Crystal 16 meg, 48 meg
Assorted Switches
Transistor TIP29
Quality Battery Holders Bulgin 4xAA Cells In-Line
2M Mains Leads Molded 6A 3PIN EEC Plug
5 PIN DIN $-2 \times 3.5 \mathrm{~mm}$ Jack Plugs Lead

USED EOUIPMENT

Scope TRIO 20 meg CS1 566A Dual
£ 80
Scope CROTECH 15 meg 3030
£50
Scope IWATSU 40 meg 555705 Dual
E200
Scope HAMEG 20 meg HM203-5
Gang EPROM Programmer STAG PP16A
Module AM16 +24 for Stag
f150
Module AM16T288 for Stag
Thandar TG101 Function Generator £50
Thandar TM451 meter
Altai Data Recorders
Monitor + Keyboard Volkep-Craig VC4404

YAMAHA YM2203 + YM3014 Three Voice FM Chipser (includes implemenatation data)
£12

Constructional Project

$I T S A$ кпоскоит

ROY BEBBINGTON

A novelty electronic box-of-tricks to make your garden fete or party go with aswing.

TinIs project, entitled It's A Knockout, is a compendium of games to give your event a new look with electronic dice, an on-the-button precedence indicator and automatic scoring for a number of popular games.
Although most of the suggested games can be played using the display on the Knockout Box, separate large-scale, easy-to-make electronic displays can be added so that everybody knows what's going on and can join in the fun.
Suggestions for a number of games are given, but readers will no doubt think of many others that can be adapted. Here are a few to set the ball rolling:

(0) Mifor M Duck:

A game of skill. Hit a duck with a soft ball and another lights up. If you're not out for a duck, you could score up to nine hits.

Cais (a)Mne Mines:
A steady hand as you run the ring around the cat may save a few of his nine lives.

Wheel of Misfortume

Spin the big wheel to see what question you have the misfortune to answer.

Buofs Exes:
Get the targets in your sights and fire the light gun. Going for targets alternately calls for greater skill. Your score is automatically recorded.

Buried Treesure:

Roam around a floor map of Treasure Island with a handheld detector. "X" marks the spot on your copy of the map.

Gef nuy Row:

A flashing light display stops suddenly to reveal a letter. Fingers on the button, answer the question, and "get any row" of three letters to win.
Plus: electronic dice and precedence indicator switches for quiz games and assessing contestants, reaction.

MAINCIRCUIT DESCRIPTION

The circuit diagram of the Knockout Box is shown in Fig. 1. The heart of the unit is IC2, the 4017 decade counter/divider, controlled by either IC3a, IC3b, a free-running pulse generator or $\mathbf{I C l}$, a triggered monostable multivibrator.

Raising funds at a local charity show.

A solid-state alarm sounds each time the monostable is triggered.

The decade outputs of the counter/divider IC2 are numbered 0 to 9 alongside ten l.e.d.s used for scoring and for random, or anticipated, number selection purposes. Ten transistor (TRI-TR10) open-collector outputs are provided for connection to larger external displays using $12 \mathrm{~V}, 60 \mathrm{~mA}$ m.e.s. bulbs. An external display is necessary for some games, in which case B1 should be 12 V .
In the Free-Run mode, the l.e.d. display, and external display if connected, can be limited to six to provide a Dice facility for many other games. The sequential flashing speed can be varied by the Speed control to give a random, or skilfully anticipated choice, when the Freeze button is pressed.

PRECEDENCE SWITCH

The other half of the 4001 (IC3c, IC3d) forms a switch precedence indicator circuit for two external switch/indicator circuits, each controlled by a player. This type of circuit is familiar in many TV quiz shows. The first player to press a push button sounds the buzzer WDI and takes precedence in answering a question. This is indicated by an l.e.d. adjacent to the player's pushbutton. While this remains activated, the opponent's pushbutton is ineffective. If release-to-break pushbuttons are used, the first contestant to press must continue to hold down the button to prevent takeover by the opponent.
The l.e.d.s are normally off as the input to each inverter (IC3c, IC3d) are held "high" by the bias resistors R5 and R6. The outputs of both inverters are therefore "low" and neither l.e.d. is supplied with current.
If one of the "contestant" pushbuttons is operated it takes an inverter input low. Consequently, the inverter l.e.d. will light. Pressing the other pushbutton merely keeps the circuit in its present state. The operation of a contestant pushbutton also sounds the buzzer by taking IC2 pin 2 low via DII or D12.

TAIGGEAMODE

With the switch S1 in the Trigger position the decade counter IC2 is controlled by the monostable multivibrator ICI. Pin 2 is normally held high by resistor R4 strapped to the positive rail.

When pin 2 of ICl is connected to the 0 V rail momentarily (SK3 trigger contacts closed), pin 3 goes high for a time depending on the values of capacitor Cl and resistor RI and then returns to 0 V . This short positive pulse activates the solidstate buzzer WDI and triggers the decade counter IC2. Each clock input on IC2 pin 14 is counted by advancing the numbered i.e.d. display on the outputs. The two trigger contacts (XI and 0V) on SK3 provide the external connection to the trigger source for each of the games.
At the end of a count, the counter can be returned to zero by pressing the Reset switch S2. The reset input (IC2, pin 15) is normally held low via resistor R3 to prevent reset. Note that the count will return to zero after nine counts (six counts if Dice is selected) to start the next sequence.
In the "DICE" mode, the high on output IC2 pin 5 is switched to provide a reset after the sixth l.e.d. is displayed. Resistor

R7 reduces the load on this output pin to ensure that the reset (IC2, pin 15) goes sufficiently high. Similarly, diode D13 blocks this circuit when the RESET button is pressed, as otherwise it could shunt the reset circuit in the "DICE" mode. The trigger facility is usefully employed in several games. For example, in the "Out for a Duck" game, SK3 is connected to ten "make" contacts in parallel. The "Wheel of Misfortune" and "Buried Treasure" games, use magnetic reed switches to provide the trigger source.
In the "Bull's Eyes" game, two lightdependent resistors serve as triggers. The use of two bull's eyes makes the game more skilful as contestants have to take aim again between shots.

FFEE-FUNMDDE

When the Free-Run position of S1 is selected, counter IC2 is controlled by the low-frequency pulse generator formed by
the two inverters IC3a, IC3b forming an astable multivibrator. The Speed control potentiometer, VR1, varies the frequency from 1 Hz to about 100 Hz . These pulses are fed to the clock input (pin 14) of the counter to switch the outputs high in turn to flash sequentially the ten I.e.d.s, or six of them if Dice is selected.
The sequence can be temporarily stopped at any time by pressing the Freeze pushbutton S5, which take the chip enable (IC2, pin 13) to the positive rail. This lights one of the numbered I.e.d.s. At faster speeds, selection is pseudo-random, but for some games an element of skill can be introduced by slowing down the speed.
If an external display unit is fitted, it can duplicate the internal display for a wider viewing audience, locate targets in some games and provide special displays for others. For example, in "Out for a Duck", the ten external display lamps are used to indicate the selected target in turn.

Fig. 1. Complete circuit diagram for the It's A Knockout controller box.

The buzzer and board mounted on rear of front panel.

In the "Get any Row" game the external lamp display indicates the position in a row and the letter category for the question.

CONSTRUCTION

The control or Knockout circuit is constructed on a piece of 0.1 in . matrix stripboard, size 16 strips $\times 50$ holes. The circuit board component layout and details of breaks required in the underside copper tracks is shown in Fig. 2.
Remember that CMOS devices can be damaged by high voltage static charges even though they are equipped with internal protective diodes. Therefore the use of i.c. holders is recommended. It is also advisable to leave the i.c.s in their protective foam until the circuit is constructed, checked and ready for use.
The circuit board is housed in a plastic project bo $195 \mathrm{~mm} \times 110 \mathrm{~mm} \times 60 \mathrm{~mm}$. The front panel layout is shown in Fig. 3. A cut-out of $125 \mathrm{~mm} \times 8 \mathrm{~mm}$ is provided to view the display l.e.d.s DI-D10 which are mounted on the stripboard. A strip of thin perspex provides a satisfactory cover plate for the cut-out. The two long mounting screws for the cover plate can also serve to

EXTERNAL CIFCUITS

OUTFORA DUCK

Playing Procedure

Out For A Duck can be an individual game or a team game. Contestants stand several metres away from a panel depicting a riverside scene.
At switch-on, an illuminated duck appears. When this is hit with a soft ball it disappears and another duck is illuminated. The ducks are numbered 0 to 9 . The target duck resets to " 0 " after " 9 " has been hit or if the Reset button is pressed.
If contestants have say, one or two throws each, then the team aggregate will be registered if the score is not reset after each contestant. Note that if more than 9 is scored then the next his registered (0) will count as 10 and so on. The buzzer sounds momentarily when a hit occurs.

Construction

The target is made from a plywood or hardboard panel about $180 \mathrm{~cm} \times 15 \mathrm{~cm}$. There are ten duck cut-outs in the panel (see Fig. 4), each of which is covered by a hinged perspex flap which serves two purposes: it actuates the trigger switch when struck, and allows the duck shape to be seen when the target is illuminated.
The construction is fairly simple: 1 . Cut out ten duck shapes (10 cm $x 6 \mathrm{~cm}$) from panel. 2. Cut ten rectangles of $1 / 8$ th perspex $(12 \mathrm{~cm} \times$ 8 cm). 3. Fix perspex covers over front of duck cut-outs, hinged at top by adhesive tape. 4. Mount ten "make" contacts to operate when a window is struck by a soft ball. 5 . Mount ten 12 V 60 mA m.e.s. bulbs, one at rear of each duck cut-out. 6. Screen the lamps from each other by boxing in at the rear by thick card or plywood. 7. Paint a number (0 to 9) on each perspex cover (left to right) to indicate score. 8. Paint riverside scene on white sheet or paper fastened over front of panel.
Switch positions: Trigger Decade Reset (to start count).
hold the stripboard in place after the control interconnections have been made.

TESTING

After checking the circuit wiring, fit the i.c.s, correctly orientated, and the battery. Free-Run Circuit
Switch to Free-Run and Decade. With the power switch to ON , all l.e.d.s of the display should flash sequentially at a repetition rate of about one sequence per second upwards depending on the setting of the Speed control (the time constant of C2, VR1 determines the flashing speed).

Press the Freeze button several times and note the display stops on a random number.
Switch to Dice and note that the display is now limited to six l.e.d.s., which at fast speeds gives a dice-like random selection in conjunction with the Freeze bution.

Trigger Circuit

Switch to Trigger and Decade and note that the display is frozen on one l.e.d. Press Reset to zero the display.
Short-circuit the Trigger Input contacts repeatedly to step the display sequentially. Note that the solid-state buzzer sounds momentarily at each trigger.

5. Paint a number, 0 to 9 , on front of each perspex cover to indicate score.

6. Paint fiverside picture on sheet of paper and fasten over front of boarc.

Al switch on, only the "O" target duck is seen.
When a duck is hit, the next one Is illuminated.

Fig. 4. The Out For A Duck circuit and assembly details.

Fig. 5. Assembly details of the Cat O'Nine Lives.

Playing Procedure

The Cat o'Nine Lives is an update of the well-known game that has tested the steadiness of hand of millions of fete and partygoers ever since the invention of the electric bell - running a ring around a wire frame without touching it. In this case, a stiff copper wire frame is in the shape of a cat with nine lives.
Again, this can be an individual or team effort. If nerves are steady and the loop is not too small, the scores can be accumulative for the team instead of resetting for each player.

Construction

A small copper loop is connected by an insulated wire to one contact of SK3. An insulated wire from the copper frame is connected to the other contact of Sk3. Each touch of the frame by the loop means a life lost, sounded by a solid-state buzzer and indicated on the numbered display. If necessary, an external display can be arranged on the wooden base to give a wider indication of the state of the game.
Switch Positions: Free-Run Decade Reset (to start count)
Sockets SK3 (SK2 if external display required).

ERONT MEW

REARVEW

Fig. 6. Assembly and wiring to the Wheel of Misfortune display.

Playing Procedure

The wheel of Misfortune is a team quiz game where subject and questions are decided by two successive spins of the wheel. Select Trigger and Dice.
As each contestant spins the wheel the display lamps flash in sequence, gradually slowing down as the wheel slows down to indicate one of six subject categories, for instance, Sport, Nature, Television, Music, History, Pot Luck. The Quiz Master now selects the appropriate list of ten questions

for the subject selected, then switches to DECADE and the contestant has another spin of the wheel (external display now covered or disconnected) to determine from the internal display what number of question has to be answered.
Contestants with good memories can benefit when a repeat question comes up. Normally there are 60 different questions, ten per subject, but the questions can be changed for subsequent games. Failure to answer correctly results in the question being given to the other team who can then take the point.
This game could be played without the wheel circuit/external display by selecting Free-Run and using the Freeze button. However, the spinning of the wheel adds to the fun and the tension as the lights slow down to decide the category of subject.

Construction

The wheel of plastic or plywood must be mounted on a heavy wooden base to prevent movement when spun. The six display lamps (0 to 5) are mounted on a front panel in the base alongside the categories, and wired as shown in Fig. 6.
Before fixing the magnet permanently to the wheel, ensure that it operates the reed switch. Reposition if necessary before final fixing with glue or tape.
Switch Positions: Trigger Dice and Decade.
Sockets: SK2 (+12V, 0 to 5) SK 3.

(Q)ULGLS S SV/らS

Playing Procedure

The Bull's Eyes game can also be an individual or team event. The object of the game is to score as many "bull's eyes" as possible with a prescribed number of pulls of the trigger of the light-gun or torch.
The benefit of two targets is that the contestant has to re-aim after each hit, which requires greater skill. Using a light-dependent resistor (l.d.r.) as bull's eye and a spotlight torch, the trigger circuit was sensitive over a range of ten metres.

Construction

The two paralieled light-dependent resistors should be mounted on a panel and located as centres or "pupils" of two painted eyes, see Fig. 7. The two insulated leads are connected to the Trigger Input, SK 3.
As an extra to the Knockout Box display, an external display, split between the two targets, could be used to indicate the scoring on the target itself.
Switch Positions: Trigger Decade.
Socket: SK3 (SK2 if external display used).

BURIED TREASURE

Playing Procedure

Buried Treasure is an individual or team game. Each contestant roams around a cardboard island searching for treasure with a detector and a hand-map on which " X " marks the spot or spots.
The idea is to locate as much treasure as possible in a given time. Each time treasure is located, the Knockout circuit buzzes and advances the count by one.
If the treasure hunters are only allowed to visit the island one by one they will not have the advantage of seeing where the previous contestant(s) were searching for the treasure. Scorers must take care that the each treasure point is only recorded once by a contestant (i.e. no repeat runs over the same magnet).

Construction

The construction of a large cardboard floor map can be as elaborate as time or skill permits, see Fig. 8. The small bar magnets that represent the treasure can be easily inserted into corrugated cardboard at various points without being visible.
The locations of the hidden treasure can be indicated by the traditional X on a small hand-map, grid references or more mysterious instructions for the contestants. As a finishing touch, the hand-map could be in the from of a scroll tied with ribbon.
The treasure detector head contains a reed relay switch that is connected to SK3, the Trigger Input. The Island magnets activate the detector head reed switch as it "sweeps" across the floor map.
Switch Positions: Trigger Decade. Socket: SK3.

Reed switch recessed Reed switch rece
in wooden base
an opponent's symbol with his or her own. The first player to "GET ANY ROW" is the winner.
To introduce an element of skill, the Speed control can be set slower and the contestants operate the Freeze button in turn.

(Connect to SK2)

PRECEDENCE
SWITCHES

Construction

The display panel must be sufficiently large for viewing by the intended audience. A shallow box, or drawer, divided into ten light-tight compartments is suitable to house the lamps.

The front windows can be cut from thin perspex or translucent plastic material. Paint or glue the letters on to these windows. The team symbols can be hung from small hooks above the windows.
The 12 V 60 mA m.e.s. lamps are connected as shown in Fig. 9. The order of connection to SK2 $0-9$ is not important, but the common connection of the lamps must go to +12 V .

Switch Selection: Free-Run Decade Freeze.

Sockets: SK1 SK3.

Fig. 7. Wiring to the two LDR "eves" of the Bull's Eyes display. If ambient light causes premature triggering, insert a $5 k$ potentiometer (wiper and one outer tag) at points "X".

Regular Clinic

CIRCUIT SURGERY

 MIKE TOOLEY B.A,
Abstract

Welcome to Circuit Surgery, our regular clinic for readers' problems. In this month's Surgery we shall be taking a look at a novel use for the ubiquitous LM380. We also have details of a circuit modification for the popular EE Telesound which can be used to add baby monitoring facilities to your TV. For good measure, we take a brief look at the problem of replacing obsolete TTL devices with their modern counterparts.

Linear scale resistance measurement

Last month's resistance range extender seems to have aroused interest amongst a number of readers, several of whom have pointed out that the scale calibration is far from linear. Fortunately, a linear resistance scale can be realised quite easily by means of a simple constant current source (see Fig.1).

The unknown resistor is connected into the collector circuit and the meter (switched to the 10 V d.c. range) is used to measure the voltage drop developed across the resistor. As an example, assume that the constant current source (the collector of the transistor) is generating a current of 1 mA . A resistor, R_{x}, of 5 k connected into the collector circuit will produce a voltage drop given by: $\mathrm{V}=\mathrm{I} \times \mathrm{R}=1 \mathrm{~mA} \times 5 \mathrm{k}=5 \mathrm{~V}$.

Hence a 1 mA constant current source will result in a linear ohms scale of 0 to 10 k when the meter is switched to the 10 V d.c. range. Alternatively, a $100 \mu \mathrm{~A}$ constant current source will give resistance readings over the range 0 to 100 k .

Fig. 1 Basic principle of the linear scale ohmmeter.

The complete circuit of a dual-range linear scale ohmmeter (for use with a conventional multimeter connected to the 10 V d.c. range) is shown in Fig.2. S1 is used to select the desired resistance range (either 10 k or 100 k fullscale) and the the constant voltage (approximately 1.2 V) required at the base of the transistor is derived from two forward-biased silicon diodes, D1 and D2.

In order to calibrate the instrument, accurate 10 k and 100 k resistors are required. These are connected in turn to the unknown resistor terminals during which VR1 and VR2 are respectively adjusted to produce a full-scale reading of 10 V on the meter with S1 in the $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ positions respectively.

Fig. 2 Complete circuit of the linear scale ohmmeter.

Baby monitor based on the E E Telesound

The EE Telesound (January 1992) provides a novel method of amplifying the output of a portable cassette player. With the addition of a simple audio pre-amplifier, the same arrangement can be used to provide remote "baby listening" facilites using an ordinary TV. Furthermore, with the aid of a simple aerial splitter and a standard remote controller, it is possible to switch from your favourite TV programme in order to eavesdrop on the nursery without even leaving the comfort of one's armchair!

The additional circuitry required to provide a "baby listening" facility is shown in Fig. 3. TR1 and TR2 form a two stage high-gain audio amplifier with adjustable voltage gain (by means of VR1). The input signal is derived from a miniature loudspeaker (of between 40 and 80 ohms) which is mounted at a strategic position within the nursery and connected to the amplifier by means of a length of miniature screened audio cable. Alternatively, where the distance is not excessive, a flat twin cable can be used. This arrangement will be somewhat more prone to induced hum and noise, however this should not be too problematic bearing in mind the relatively low impedance of the signal source.
The connecting arrangement which will permit instant changeover from broadcast TV channels to the Telesound baby monitor is shown in Fig. 4. The splitter is a conventional 75 ohm u.h.f. TV signal combiner (available from most TV and video dealers). In use, the amplifier gain should be adjusted (by means of VR1) to produce a signal which is free from extraneous noise but loud enough to match that of a conventional TV audio signal. This will avoid having to make adjustments to the

EE36326

Fig. 3 Additional pre-amplifer for use with the EE Telesound in order to provide "baby listening" facilities.

Fig. 4 Method of connecting the EE Telesound to provide switching between TV programmes and baby listening.
receiver's volume control when switching from a broadcast signal to the Telesound. In any event, a little experimentation will be needed in order to establish the optimum setting for VR1.

Yet another use for the LM380

Mr King from Andover has sent me a very succinct query concerning a power supply problem:
"I have a 12 V d.c. supply rated at 1 A but need an additional supply of -5 V at around 100 mA . How can I do it?".
Fortunately the solution to Mr King's problem is quite simple and only requires an LM 380 , a 79 L 05 regulator and a few other readily available components (see Fig.5). ICl LM380 operates as a self-contained power oscillator which provides a 10 V square wave output at approximately 4 kHz . This is then fed to a rectifier arrangement (D1 and D2) and the resulting unregulated d.c. (approximately-8V) is fed to a conventional plastic threeterminal i.c. voltage regulator (IC2).
This is quite an unusual application
for the ubiquitous LM380 but it does show how useful this particular device can bel.

Logical choice

Alan Lamb writes from Penge to ask if I can explain the major differences between the bewildering range of logic chips which is currently available. Alan writes:
"I need a 74S04 chip to replace a device which has failed in a printer interface. On taking a look in the Maplin catalogue, I find that they do not stock this device but do have several other chips with nearly identical type numbers. Would any of these work?"

Well, Alan, the device in question is one of the " 74 -series" of logic devices. The " S " identifies it as a Schottky device which offers improved switching characteristics when compared with "standard" 74 -series devices.

In fact, standard 74 -series devices are rarely used these days. Most manufacturers prefer to use pin and function compatible 74 LS (low-power Schottky) and 74ALS (advanced low-power Schottky devices).

Both of these chips offer improved performance when compared with their original counterparts.
It would thus be fairly safe to replace your 74S04 device with either a 74LS04 or a 74ALS04. Since Maplin stock the former variety (Order Code, YF04E) this would seem to be an appropriate choice! To put the record straight, the following table summarises some of the differences between the 7404, 74S04, and 74LS04:

Device			
Characteristic	7404	$74 \mathrm{SO4}$	74LS04
Supply voltage Supply current	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$
(typ)	12 mA	24 mA	2.4 mA
Low state output current (max)	16 mA	20 mA	8 mA
Propagation delay: low-to-high (typ) high-to-low (typ)	12 ns	3ns	9 ns

From the above table it should be noted that the 74 S 04 offers a significantly lower value of propagation delay than its standard and LS counterparts. In the case of Alan's printer interface this is not likely to be a problem as the interface will be operating at a relatively low speed.
The only possible area which may cause problems results from the reduced value of output current which the 74LS04 can source when compared with a 74 S 04 device (8 mA as against 20 mA). With a modern printer (and using a relatively short length of printer cable) this should not pose a problem

Fig. 5 Complete -5V 100 mA power supply based on an LM380.
(currents of only a few mA will be present in the data lines).
If Alan's printer is a vintage machine or he is using a very long screened printer cable (which may exhibit appreciable capacitance) there may still be problems. If this is the case, it may be essential to hunt down a genuine 74 S 04 device or fit an external parallel printer line driver (such as the Accodata Line Extender). This device comprises an external transmitter (plugged into the computer's parallel port) and a receiver
(connected to the printer). The system is not particularly cheap but it can cope with data rates of up to 48,000 bits per second and cable runs of up to 350 metres and thus should satisfy even the most demanding of parallel interface requirements!
Next month: In next month's Surgery we shall be describing a simple method of measuring unknown capacitors. We also have details of a simple low-battery indicator circuit which can be incorporated into any item
of battery operated equipment in order to provide warning of impending battery failure. In the meantime, if you have any comments or suggestions for inclusion in Circuit Surgery, please drop me a line at: Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey, K T13 8TT. Please note that I cannot undertake to reply to individual queries from readers however I will do my best to answer all questions from readers through the medium of this column

Experimental Weighing Scale

Running through the components required to construct the Experimental Weighing Scale, several items could possibly cause local sourcing problems and call for further comment.

As outlined in the article, the OP-470GP op.amp (IC1) is an instrument grade i.c. with a good common-mode rejection ratio (120 dB) and should be used in this project. This 14 -pin device is currently listed by Maplin (0702 554161) code UL06G, Electromail (0536 204555) code 647-277 and Farnell (- 0532-636311) code OP-470GP.

The foil strain gauges were purchased from Electromail and are the 5 mm aluminium version, code 632-180. These do not appear to be available from any other source and two are used in the model.

We thought that there would be no problem locating a multiturn "rotary" type potentiometer, but we were wrong.
The only ones we have been able to find are 10 -turn wirewound versions from the same company that supplies the strain gauges. The author's version is a 5 k type rated at 1.5 W , enclosed in a nickel-plated brass case and costs over £13; but the plastics (phenolic) cased 3 W version (code 173-401) at just $£ 3.98$ seems a better buy for this application.
The original cleaning solvents and adhesive gel used to prepare the aluminium "cantilever" load bridge are no longer listed; anyway, at over $£ 12$ they were far too expensive. Quite a few of our advertisers now list "environment friendly" degreasing cleaners (such as Electrolube products) and cyanoacrylate adhesive (Superglue) at just over $£ 1$ to $£ 2$ each.

The single-sided printed circuit board for the Weighing Scale is available from the $E E$ PCB Service, code EE792 (see page 323).

Camcorder Headphone Amplifier

 The TDA2822 1W stereo amplifier i.c. used in the Camcorder Headphone Amplifier is a popular device and should be stocked by most good component suppliers. This i.c. will operate from 15 V down to 1.8 V supply, at 3 V will give 20 mW into 32 ohms and at 9 V will give 1 W into 8 ohm , just right for low cost, low impedance headphones.The jack socket, with switch contacts, used in the model is the type with the contact tags on the end of the body. The one used in the prototype is the Maplin d.p.d.t. 6.3 mm stereo socket, code BW80B.

Due to the small size of the case, when purchasing the potentiometers indicate that
they must be the miniature 17 mm diameter (or less) rotary carbon type. Also, be sure to specify that you want "LOG" law controls.

It should be noted that all the electrolytic capacitors used in this project are miniature radial types, i.e. both leads at one end.

12V Drill Charger/PSU

It is most important to use only high current carrying wires were specified in the 12 V Drill Charger/PSU. The standard power-in plug (code HH625) and the switched socket (Code FT97F) used in the model were obtained from Maplin.
The case was also purchased from the same source and is from their Free-Standing PSU Box range. The "ventilated" version is required and is coded Y U32K.
To keep costs to readers to a minimum, the two small printed circuit boards for this project have been combined into a single board which readers are asked to separate. This board is available from the EE PCB Service, code EE793 (see page 323).

It's A Knockout

All the discrete or electronics components needed to complete the construction of the It's A Knockout game(s) are standard "over the counter" items and readily available from our advertisers. However, the layout and assembly hardware materials for the additional large external displays is left to individual choice. The hardware materials should be found at most DIY shops or stores.

On the prototype model, double-pole slide switches were used for S1, S3 and S4 as they were to hand and are shown in the wiring diagram. Only one set of contacts should be used or, as suggested in the "comp list", you can use single-pole changeover toggle switches.

The pushbutton switches S2 and S5 are the press-to-make type and the "non-locking" or release to brake version must be ordered.

Fridge Warning

The circuit board mounting relay called for in the Fridge Warning project is from Maplin's micro miniature range. The one used is the 6 V 80 ohm coil version, code FM89W. Other relays can, of course, be used provided they have indentical electrical characteristics and will fit on the board.

Most components advertisers appear to carry good selections of panel meters and can usually suggest a suitable large scale type. If readers experience any supply difficulties, the $50 \mu \mathrm{~A}$ moving coil meter used in the model has an internal resistance of 4300 ohms and is from the Maplin 100 mm (4 in.) range, code RX54J.

Bead thermistors are now stocked fairly widely and should not cause any sourcing problem. The one used is rated 47 K at $25^{\circ} \mathrm{C}$ and may be colour coded as follows: yellow, violet, orange and silver.

The plug and socket used for connecting the remote thermistor to the main circuit is a standard 2.1 mm Power- 1 n type.

PLEASE TAKE NOTE

Programmable Timer (Feb. '92)
Page 101, Fig. 4. The annotations for resistor R2 and capacitor C3 have been transposed. Resistor R2 should be at the top right corner.

Mutuhonics DATA BOOK

This book explains the concepts, principles and techniques which have everyday relevance in the world of electronics. The information is presented in a succinct and easy to understand format. The book is not a treatise on electronics theory; it is a text which deals with putting principles into practice and represents a fund of practical knowledge which has been accumulated over more than thirty years.

The book has been written by Mike Tooley for practising (and aspiring) electronic technicians and engineers involved with the design, manufacture, testing and maintenance of electronic equipment. It will undoubtedly also have a broad appeal to specialists in other disciplines (such as avionics and information technology) who need to be aware of basic electronic principles and practice. The book assumes very little previous knowledge and will also meet the needs of the hobbyist and student. In short, anyone involved with the application of electronics will find this book invaluable.
SEE DIRECT BOOK SERVICE PAGES FOR ORDERING DETAILS.

- Special Supplement

MAKING YOUR OWN P.C.B.s

It's easy if you have the right chemistry

Abstract

This supplement looks at p.c.b.s in general and at their various forms, it then goes on to investigate p.c.b. fabrication techniques a vailable to the hobbyist. Follow up parts will cover Ultra-Violet Processing Techniques and Originating Your Own Artwork. We will also publish a couple of back-up projects - an Artwork Light-box and a U.V. Exposure Timer - to help

Introducing the P.C.B.

Although new types of components or integrated circuits occasionally appear in a project, one thing which will never change is the requirement to connect all the parts together one way or another to form a complete circuit!
As component manufacturing and design technology evolves, so new techniques are adopted to accommodate them. Often, great strides in the industry result from aeronautical or military requirements, with spin-offs into the consumer market which can be of benefit to everyone - especially the electronics constructor!

Whilst modern electronic components are much smaller and more efficient than their forbears, miniaturisation can bring with it the headache of physically connecting the device to the outside word. For example, a standard dual-in-line integrated circuit is actually much larger than the sliver of silicon it contains: the bulk of the package is necessitated by the relatively large size of the terminals and pins which are linked to the chip inside, to enable the i.c. to be connected to the rest of the external circuit.

Early circuits using thermionic valves were relatively simple - albeit operating at lethal voltages! The connections to the various component parts were often effected using insulated panels bearing "turret tags", to which components were soldered and hooked up to valves and other parts with spaghetti-like masses of wire. Each component panel was hand-made.

With the advent of semiconductor junction devices - especially the "transfer resistor" (transistor) - and then the integrated circuit (i.c.), the demand grew for a method of interconnecting ever smaller, more efficient components with a view to reliably mass-producing electronic circuit boards. Gone were the days of wiring up Paxolin panels using hot poker soldering irons, enter the pick-and-place machine and wave-solder bath!

Circuit Boards

There are several techniques available to enable circuit boards to be fabricated by the electronics constructor, and they all have their own advantages as well as drawbacks. This series will deal with the methods used to produce printed circuit boards (p.c.b.s) - showing you how to prepare the initial "artwork" as well as actually
making the p.c.b. itself. We will be looking at: components; basic p.c.b. fabrication; and the more advanced ultra-violet process, too.

Regular readers of Everyday Electronics will be familiar with stripboard or "Veroboard" as a method of circuit assembly. This product is very frequently used to assemble circuits, either for prototype work or as the finalised version, and it has many features to commend it.

In particular:-

Stripboard does not require any involved fabrication methods It's readily available off the shelf, in various sizes and types.
It lends itself admirably to experimentation work, since the circuit can be modified and components can be added later, as required.
It's ideal as a construction medium for simpler circuits.
But stripboard does have irs disadvantages:-
Complex circuits require interconnecting jumper wires, making assembly slow and rather a chore. It's possible to miss a link, or to connect to the wrong locations.
It's quite easy to accidentally short adjacent copper strips with wisps of solder. Conversely, when making copper breaks in the conductors, it's easy to overlook an incomplete break, so that the strip is still joined.
The product itself is not particularly strong, and is not really recommended for heavier components such as p.c.b. mounted mains transformers. Stripboard is not preferred if the circuit has to operate under arduous conditions.
With the advent of microprocessor technology especially, the basic stripboard has gained several "big brothers" which have been specially adapted to the digital/computer field. For instance, plug-in boards which are compatible with various makes of PC are available, permitting experimental boards to be prototyped and either soldered in the traditional way or wire-wrapped.

Clean Job

Printed circuit boards are much more widely used as a method of hobbyist's circuit construction than they used to be (even with simple circuits where stripboard might ordinarily have sufficed) thanks

Fig. 1. Single-sided printed circult board where the copper tracks are all on one side of the board. The components are soldered to the copper pads to form a complete circuft.

Fig. 2. Double-sided p.c.b. where some copper tracks are placed on the surface of the board, and are connected to the main track pattern underneath by using through-pins.
partly to the availability of computer-aided design (CAD) packages which enable designers to draft the necessary artwork on a PC and print it out directly. Additionally, the speciality chemicals and processing techniques required have been refined to make the job somewhat cleaner and easier than before.

Certainly from the constructor's point of view, a p.c.b. removes a lot of the aggravation of having to follow diagrams and interlink many copper strips, which is a boon when building a complex circuit. A p.c.b. is virtually fool-proof, and using them helps to ensure that the circuit should work first time. Your project will also be much more professional-looking.

One further advantage of a p.c.b. is that in practice it is generally fabricated on glass-reinforced plastic, which is virtually unbreakable: it is infinitely more durable than Paxolin-type stripboard.

No Redundancy

This does not mean that stripboard is redundant - far from it! The product is still used a great deal in the initial stages of prototyping. A new circuir may well initially be created on a plug-in breadboard and may then be transferred to stripboard for trials at an intermediate stage. Only when the circuit of the stripboard version is finalised might the p.c.b. be designed.

In fact experienced designers might build the circuit on stripboard or wire-wrap it as they go along, eliminating the breadboard stage altogether. But it's never wise to produce a p.c.b. for anything but the simplest circuits unless you have fully prototyped it beforehand. Failure to fully sort out the "bugs" in a circuit prior to committing to a printed circuit board version can result in the board bearing some lashed-together modifications, or being scrapped altogether in extreme cases. It happens though, even in professionally-manufactured equipment!
Also of course, there are still plenty of opportunities to assemble circuits on stripboard, as a quick check through the Everyday Electronics project pages will prove.

The disadvantages of printed circuits include the fact that the design of complex p.c.b. layours can be quite involved; there is no simple way round this unless you have a CAD package on a PC, and even they might not be perfect. Anybody can design a circuit layout onto stripboard, however, using nothing more advanced than some graph or ruled paper and a pencil. The actual design of a p.c.b. is of course not something the reader needs to worry about when constructing an Everyday Electronics project - all the work has been done by the designer.

Making Out

In making your own printed circuit boards, you will also have to contend with some special equipment and the various chemicals used to produce the board, and this can involve the use of potentially hazardous processes. The techniques are perfectly safe provided that the chemicals are used sensibly and common-sense safety precautions are taken.
Some electronics "purists" might also say that using a p.c.b. instead of stripboard is a form of cheating; it takes away half the fun of
building a project yourself and getting it up and running. Assembling a complex circuit on stripboard is fine if you relish the potential challenge of all that double-checking and fault finding! There is actually a lot of satisfaction to be derived from making the printed circuit board yourself.
In general, a p.c.b. will vastly reduce for the constructor the chore of any component interwiring, and will help to ensure that you can get your project up and running with the minimum of delay and troubleshooting. You'll also get professional-looking results into the bargain.
If a designer has specified that a printed circuit board is to be used for assembly, then the constructor has the choice of purchasing readyprepared p.c.b.'s from the EE PCB Service, or they can set about making the board for themselves. This series will hopefully dispel some of the mysteries of do-it-yourself p.c.b. production, for those who have not contemplated this aspect of project building before.

Basic Concept

The basic concept of a simple p.c.b. is described in Fig. 1, which shows part of a typical printed circuit board.

All components are mounted on one side of the board and their leadouts pass through holes in the p.c.b. to the underside. A speciallydesigned network of cooper tracks - more about this later - links the components together underneath as required, with each component being soldered to a copper connecting "pad" around each leadout. With copper tracks on one side of the board only, this style is known as a "single-sided" p.c.b., and is the most common type used by hobbyists.

This type is quite adequate for even fairly complex circuits, but there are occasions when the circuit itself might be so complicated that the designer cannot fit the copper track pattern into the size of p.c.b. that he has to work with. Of course, one way round this is to simply design and build the circuit onto a much larger single-sided board, thereby giving himself more room to fit all the tracks in, but this can be very wasteful (and expensive).

Double Top

A simple remedy for this problem is shown in Fig. 2. By moving some of the copper track pattern to the less-crowded component side of the p.c.b., it is easy to save quite a lot of space compared with a normal single-sided board. The top-side copper tracks are connected through to the main copper track pattern underneath by soldering in "through pins" on both sides of the p.c.b., though on professional equipment these through-holes are not soldered but during the production process are filled with a conductive deposit to create a "platedthrough hole" or P.T.H.
Because copper tracks exist on both sides of the board, this type of p.c.b. is known as a "double-sided" board; components themselves might also be fitted on both sides of the board (not a method adopted by EE), sometimes using their leadouts as the through-pin if the circuit design will allow.
You will occasionally see double-sided boards appearing in projects, but they can be rather tricky to make with basic p.c.b. production

A typical surfoce-mounted copocitor chip. greatly enlorged.

Flg. 3. Illustrating the principles of Surface Mount Technology. Very complex circuits can now be buift using SM integrated clrcuits which occupy a very small board. The small sizes of the parts require some soldering skill
equipment. In particular, it is vital that the copper foil patterns on each side perfectly align with each other where through-holes are located. Any "registration" errors (misalignment) will mean that the connections between the top and underside conductors cannot be made properly, and at worst the board might have to be scrapped.

A selection of components specially made for mounting on printed circuit boards.

A double-sided p.c.b. combining many dual-in-line (d.f.1.) and four surface-mounted (SM) devices. This is the main board of a Victor Personal Computer.

On The Surface

A relative newcomer to the hobby scene - although extensively used in industry - is Surface Mount Technology (SMT). This technique involves the use of miniaturised components (often called "chips", even though they may be simply resistors, for example, and not integrated circuits) which do not have normal lead-outs as such but have specially formed terminations.

Most low-power components including resistors, capacitors, many integrated circuits, even light-emitting diodes and switches, are now available in a surface-mount style. The p.c.b. is designed "upside down", so to speak, with the copper foil pattern on the upper side of the board.

A solder paste is deposited onto the copper pads and then the tiny SM component chips are temporarily bonded to the board such that they rest across their designated locations on the solder pads. They are then all soldered en-masse (in an infra red oven, for example) where the solder deposit reflows to make all the connections.
Needless to say, this process involves a host of miniature tools, handling equipment and specialist chemical processes, but basic tools and adhesives - not to mention the components themselves are now available on the retail market to enable surface-mounted circuits to be constructed at home, and undoubtedly SMT projects will become more popular in the coming years.
They are only of use to experienced constructors because of the high degree of soldering skills required when soldering the boards by hand. De-soldering and troubleshooting them is another story!

Advantages of SMT boards include their extreme compactness and generally very high reliability, plus the fact that the component chips do not require holes to be drilled through the board to accept them since the parts are connected together on the surface of the board, as shown in Fig. 3.
In case readers find this a little overwhelming, the author points out that he has in his possession a Japanese radio/cassette player which is some thirteen years old. It is made almost entirely with surface-mount components. You may draw your own conclusions!

(Left) Typical single-sided printed circuit board - note the p.c.b.-mounted battery holder. (Right) A double-sided p.c.b. the copper tracks on the upper side and the through-pins can clearly be seen.

(Below) A surface-mounted p.c.b. - note the flat-pack SM integrated circuits and the tiny capacitor and resistor "chips". (Above) A commerclal 4-level multi-layer p.c.b. prior to fiting with components. The darker tracks which can fust be seen are actually within the board itself.

Multi-Storey

There are many instances of modern commercial equipment where even a double-sided printed circuit board might not be compact enough. Mobile equipment and portable computers, for instance, do not have a great deal of space inside to accommodate the electronics, and a clever technique that designers now use to save space is to use a "multi-layered" p.c.b., see Fig. 4.
These marvels of miniaturisation are strictly the domain of professional manufacturers with CAD/CAM equipment (computer-aided design/manufacture) - for now, anyway! They consist of several layers of printed circuit boards bonded together with total accuracy. Not only are there copper tracks on the top and underside of the complere board, but actually inside it as well! An 8 -level board (or more) is not unusual, and plated-through holes will interconnect different levels of the sandwich just like a normal double-sided board.
By using a combination of surface-mount technology and multilayered boards, the complexity and performance of a small board can be staggering.

Back to Earth

Back to Earth! Having looked at the state of the art of printed circuit boards, let us consider various components which are specially made for mounting on a "normal" (single/double sided) p.c.b., before moving on to describe the process of making your own printed circuit boards.

All resistors, capacitors, transistors and other devices which can be used on stripboard can be accommodated by a p.c.b. of course. Most smaller capacitors are designed for p.c.b. soldering anyway, and radial-lead electrolytics are specifically designed as a space-saver by having both leads at one end, permitting vertical fixing on a p.c.b.

However, a p.c.b. lends itself to carrying other parts which you might otherwise have mounted on the chassis of the cabinet or box which houses the project. By putting all the parts onto a single p.c.b., you will also reduce, or in some cases eliminate altogether, the need to interwire between the component board and any external parts such as relays, switches, fuses, transformers etc.

Mains power supply sections especially will benefit from being mounted on the same board as the circuit they drive. Mains transformers and fuseholders are readily available for p.c.b. mounting, and you are then saved the task of hooking up all the mains-powered section with interconnecting wire. This results in a much safer and more reliable assembly - it might let you employ a smaller housing, also.

Right Connection

Connectors too are available in many types including printed circuit board mounting styles. Their use will once again save the constructor the chore of having to wire up between chassis-mounted connectors and the component board, and the p.c.b. is firted into the project box such that external plugs can be inserted directly through cut-outs in the box into their respective sockets on the board.
This does however require the constructor to accurately fabricate the housing so that when the board is finally in place, any p.c.b. mounted sockets will align with suitable apertures made in the box to enable connectors to be inserted.
Also available are various types of p.c.b. interconnector, which permit ribbon cables or multi-cored wires to be employed as a means of linking one circuit board to another. Often an IDC (Insulation Displacement Connector) cable will be specially made for the job, as they are suitable for mass production and are generally very reliable, being solderless. These do appear occasionally in projects.

Screw terminal blocks are commonly available in a p.c.b.-mount style, and these should be used whenever any mains wires or heavy load-carrying wires are to be connected to the circuit board. Many screw-terminal systems have the ability to interlock with a dovetail device, to enable the constructor to assemble much longer, multi-way terminals as required.

Often, individual wires (especially low current interconnections) are soldered directly to the p.c.b. which is perfectly adequate, but more elaborate boards may use multi-way crimp terminal blocks for terminating them. A "pin header" is soldered to the p.c.b. and various external wire connections are brought to the board through a matching socket assembly; this then enables the constructor to rapidly plug in or disconnect the board if desired.
The connectors often have a vibration-proof latch and also a polarising feature so that they will only fit one way round - there is no danger of accidentally reversing them. Multi-way plugs and sockers are of special use in commercial equipment where a faulty board can quickly be changed by a service engineer.
Unfortunately a special hand tool is generally required for the crimp connections, and they can actually be unreliable because the crimp itself can be too tight, eventually causing the wire conductor to

Fig. 4. A multi-layer printed circutt board, comprising of several double-sided boards bonded precisely together. Plated-through holes connect both sides of the layers as necessary.
fracture in service. The author has seen several failures in "professional" equipment due to this.

Other special connectors available include the popular "D" types with which computer users will be familair, and additionally the entire p.c.b. itself can be terminated in an edge-card pattern to enable it to be plugged into a matching socket mounted elsewhere. Again, computer users will be aware of "short" and "long" expansion sockets available on a PC motherboard, which permit extra boards (e.g. memory expansion or graphics boards) to be plugged in.
Finally, potentiometers are readily available with p.c.b.-mounting tags and it is common to design a board with a number of potentiometers mounted along one side. The threaded bushes of the pots. are then utilised to mount the board against the front panel of the project, so that the board does not require any other mounting hardware.

Fabrication

So having decided to build a project which utilises a printed circuit board, how can you make your own? There are essentially two methods available to the home constructor: a "direct etch" method and also a more advanced "phoro-sensitive" system which employs ultra-violet light sensitive chemistry.

The basic process of fabricating a board starts with a "blank" board which initially is fully covered on one side with copper foil. We then coat the copper foil with the desired copper-track pattern (which will form the conducting tracks interconnecting the components) using a corrosion-proof "resist" ink. The uncoated area which remains represents unwanted copper foil which must be removed.
Removing this copper area is achieved simply by submerging the entire board into a highly corrosive chemical. This etches away all of the copper foil excepr the etch-resistant areas of the copper track pattern.

After etching, the resist coating is removed, leaving the required copper track layout. Finally, holes of suitable diameter (generally between 0.8 mm and 1.3 mm or so) are drilled as required to accommodate the lead-outs of the components which will afterwards be soldered onto the board.
The etchant most commonly used is Ferric Chloride and this is widely a vailable from electronics suppliers. It is generally supplied in the form of crystals or granules which are added to water to produce the required solution. It is extremely corrosive and must be treated with respect, but is safe when used with common-sense precautions.

Direct Etching

The "direct etching" method of producing printed circuit boards is the simplest, and involves applying etch-resist directly onto the copper foil, the board is then processed to leave the required copper track on the foil.

This technique is fine for simpler one-off circuits, but it has the major disadvantage that all the etch-resist pattern must be removed from the board after etching has taken place - therefore the etchresist is destroyed. If you want to make another board - perhaps you made a mistake or you want to incorporate a slight modification to the design - you have to lay down the etch resist all over again, a nightmare with complex circuits! The ultra-violet method to be described in detail next month allows you to retain the original artwork so that boards can be repeated or modified later on as required.

The basic steps for producing a single-sided board by the "direct etch" merhod are as follows. Firstly, a board of the required dimensions is cut from a plain copper-clad board. Generally 1.6 mm thick uncoated (i.e. bare copper) board is used, with a copper density of 1oz. per square foot, and this should be suitable for the vast majority of projects, see Fig. 5.

The board is normally made from G.R.P. (fibreglass) which is extremely strong and virtually unbreakable. Paxolin may also occasionally appear, but this is extremely brittle and far inferior to fibreglass board.
The edges of the cut board are filed until smooth, to remove any copper burrs or rough edges; it is also not a bad habit to file off any sharp corners. Note that the dust produced by filing or cutting glassreinforced plastic should not be inhaled and it is sensible to wear a nose-and-mouth dust mask as a precaution. The dust might also irritate sensitive skin.
Having cut the board to size, the next step is to clean the copper foil thoroughly. Special rubberised abrasive blocks are available for this purpose and they are simply used like a small sanding block to remove any oxidation or other deposits which might interfere with the etching process. Other methods of cleaning up include the use of houschold scouring powder or a specially-made fibreglass brush. After thoroughly cleaning the foil, it is best not to touch the copper because acidic deposits and fingerprints left by the skin can tarnish the board again.

Layout

At this point the etch-resist pattern is now applied to the copper foil. The designer will show the required copper foil layout and this has to be transferred to your plain board. Each constructor may tend to have his own favourite way of doing this, and there are no hard and fast rules in this respect.
The principal requirement is that all the copper pads must be correctly distanced to accommodate the components. Although the actual distance between the components themselves may not be too critical, certain dimensions definitely are, such as the centres
Materials reqired for preparing your own printed circuit boards ready for etching: Alfac transfers, scalpel, burnishing tool, Dalo Etch Resist Pen, cleaner block, copper-clad boards.

Copper-clad board, cut to size, being cleaned with an abrastve cleaning block.
for radial-lead (vertically-mounted) electrolytic capacitor leads, integrated circuit pins or perhaps other p.c.b.-mounted gear like connectors or relays.
One way to start with the etch-resist is to use a piece of tracing paper to copy from the designer's artwork layout (copper foil master pattern) and mark the centres of all the copper pads (to which components will be soldered). These centres are then transferred over to the copper foil of your p.c.b. using say an automatic centre punch (not on Paxolin) or a scriber to physically mark them through the tracing paper onto the copper.

Transfers

The next requirement is to lay down etch resist transfers on the positions marked for the copper pad centres, and this is best effected with special etch-resistant transfers which are very similar in operation to the familiar "rub down" dry transfer lettering. Various different diameters are available and it is wise to use larger-diameter pads for heavier components or parts which have to carry high currents.
This will have been considered by the designer and the constructor simply rubs down the transfer circles of the appropriate diameter with a round-pointed implement onto the centres marked on the copper earlier, using the published artwork as a guide.
The author recommends the use of "Alfac" dry transfer etch-resistant symbols and these are available in various sizes and styles from electronic component suppliers. Probably the most useful circle pads

Adding Alfac etch-resist transfers to the copper foll with the burnishing tool.

Fig. Fig. 6. Etch-resistant transfers are applled to the clean copper foll, in the desired layout of the copper track pattern. This is the "direct etch" and simplest method, of producing a p.c.b.
to buy are the Alfac EC910 (2.4 mm diameter) and EC912 (3.6 mm diameter), the former being a general purpose size.

Also available as transfers are a range of dual-in-line pads for integrated circuits (Alfac No. 994, for example). They allow you to accurately position all the pads of the i.c. preventing any misalignment. Some transfers have "through tracks" (e.g. Alfac No. 997) which simplify the task of having to route any tracks in between neighbouring i.c. pads. Transistor pads in TO-5/TO-18 "triangular" formation can also be put down in this way (Alfac EC961).

On Line

Continue putting down the etch-resist by adding the lines which interconnect the pads, following the artwork carefully, see Fig. 6.

Fig. 7. Pitfalls when applying etch restst transfers to a p.c.b. The same problems can arise when preparing artwork for use with the ultra-violet method, described fully next month.

Again, special dry transfers are used in the form of straight lines, with various widths available. Generally, 0.8 mm and 1.00 mm widths are adequate for general use, with 0.4 mm employed for fine work: wider 2.5 mm lines might be used for conductors carrying heavier currents (say up to 5 A or so) or which are at mains voltages.
Wider lines results in wider copper conductors which are able to carry more current, another aspect which the designer will have taken into account. Simply follow the artwork given.
The application of the dry transfer lines may require a little practice and you will probably develop your own technique. The author uses a scalpel to physically cut the etch-resist lines on the transfer sheet to the desired length, and the required portion of the line is then rubbed down onto the board with a burnishing spatula.
Doubtless you will have to apply several different lengths to copy the route of the tracks as per the artwork; it is a simple matter to cut the etch-resist to length, but when laying down a length to join onto the end of another strip - to form a bend in the route, for example it is imperative that the lines butt up to each other properly, otherwise the result may be a break in the conductor when the board is etched, see Fig. 7.
It is also important to ensure that the transfers are not damaged when being applied, as any flaws (e.g. cracks in the transfer) will permit the etchant to eat away the copper at that point, perhaps resulting in weak points or complete breaks in the conductor.

Pen and Ink

An alternative to using transfers is to employ a special pen (e.g. the Dalo Etch-Resist pen) which contains etch-resistant ink so that the required pattern is simply drawn onto the copper to join up the pads as per the artwork. The flow of ink is controlled by pressing down the point to open the valve, releasing more ink.
These pens are fine for simpler circuits or quick one-offs but it is sometimes difficult to obtain consistent results. The etching process will reproduce any flaws in the etch resist ink which in extreme cases results in breaks in the copper conductor. Dry transfers give much sharper results and though it is worthwhile experimenting with such a pen, the author confines their use to manually "touching up" any etch-resist flaws prior to etching the board.

Etching Materials

Having laid down the desired etch-resist pattern onto the copper foil, the next stage involves the etching away of the remaining copper foil with, generally, Ferric Chloride solution.

You will require the following basic materials to etch your circuit board safely:-

Two plastic trays with pouring lips, of the type used by photographers for developing prints.
A pair of plastic tongs, again a vailable from photographic suppliers, or plastic tweezers.
Two plastic spoons or scoops (one for handling raw etchant, another for stirring the solution).
Ferric Chloride Etchant - available from electronics suppliers in the form of granules, crystals, or ready made solution.
Disposable polythene gloves or gauntlets, and a pair of safety goggles (not glasses) to protect eyesight from splashes.
Glass or plastic bottles with plastic screw caps, for storing etchant, and a plastic funnel.

Handle With Care

As every chemistry student will know, the correct way to prepare a solution is to slowly add the chemical to water, and NOT the other way round - otherwise any intense chemical reaction which ensues would cause concentrated Ferric Chloride to be thrown out.

Etching should be carried out in a well ventilated place on say a garage workbench or perhaps a work surface covered with plenty of new spaper. Unless you have bought readymixed etchant, prepare the etchant solution as follows:

Wearing safety goggles and gauntlets, pour a quantity of warm water into one of the trays, and fill the other tray with cold water. The latter try will be used for rinsing boards.

Using a plastic scoop, place a little Ferric Chloride at a time into the warm water, stirring gently and mixing the crystals throughout the water. The reaction is exothermic, generating some heat as the crystals dissolve into the water - hence only add a small scoopful at a time to prevent any excessive "local" heating.
Continue to add the Ferric Chloride until the required strength is obtained, stirring continuously. As a guide, use two or three parts (by weight) warm water to one part Ferric Chloride. Hence a maximum strength solution would consist of 500 grammes of Ferric Chloride and one litre of water. A weaker solution will only result in longer etching times.

Storage

Having made the etchant solution, you should always observe the following storage and handling precautions:-

The product is of course highly corrosive - keep away from any metal surfaces (e.g. taps or kitchen fittings). The (invisible) fumes emitted are corrosive also, over a long period of time.
Store etchant in airtight glass or plastic vessels only. CLEARLY MARK THE CONTAINER WITH A WARNING LABEL ("Corrosive, Irritant."). Keep locked away from children!
Anhydrous (dry) Ferric Chloride crystals and pellets, being deliquescent, have the ability to draw moisture from the atmosphere and turn itself into a corrosive solution! Hence, never store even dry product in a metal container because it will corrode through.
Ferric Chloride must be KEPT OFF THE SKIN and away from

Materials for etching printed ctrcuit boards: plastic trays, Ferric Chloride crystals, plastlc tongs, goggles and disposable gloves.

The etched board is rinsed with clean water and then the Alfac tranfers can be removed with the cleaner block.
the EYES. It is extremely irritant, and stains the skin (and almost everything else, for that matter) a yellow/brown colour which can be hard to remove.
In case of spillage, wash down with plenty of water as soon as possible. If any etchant is ever splashed into eyes, rinse with copious amounts of water immediately (use that cold water tray!) and seek medical attention if any irritation persists.

Etching

Still wearing goggles and gloves, to etch the printed circuit board, use plastic tongs or tweezers to place it gently into the solution, copper side up. The copper areas of the board will turn salmon-pink as the etchant attacks it, and to speed the process occasionally agitate the board gently to wash a way copper particles.

The speed of the etching also depends on the temperature of the solution, but will take approximately 10 minutes or so with fresh etchant.

When all the unwanted copper foil has been etched away, remove the p.c.b. and place it into the clean water tray for rinsing. The etchant can be stored in a suitable vessel for future use, rinsing the etchant tray and any utensils with clean water.
The etchant does have a finite life and with use you will notice that the erching period does lengthen. When it takes more than say 20-25 minutes or so, it is time to dispose of the solution, and this can be done by diluting it considerably and pouring down an open outside drain, accompanied by running water. Never pour neat product away without watering it down extensively.

Cleaning Up

Having successfully etched the board, see Fig. 8, the next stage is to

Removing the p.c.b. from the etching solution. Gloves and goggles are sensible precautions.

Drilling the board with a low-voltage mint drill; note the mains adaptor.

Fig. 8. The board, with etch-resist transfers applled, is placed into a corrosive liqułd (Ferric Chloride) which removes all the copper except that protected by the resist. Notice the layer of copper foll has disappeared from the cross-sectional wlew (compare against (Fig. 6).

Etch-resist is scrubbed oft, revealing copper foil layout

Fig. 9. After etching is completed, the resistant transfers are removed to expose the copper tracks underneath. Holes are drilled with a mini-drill to accommodate component leads and the completed p.c.b. can be protected with a coat of spray-on lacquer.
remove the etch-resist transfers in order to expose the copper track pattern underneath (compare Fig. 8 with Fig. 9). Do this by rubbing the board with the abrasive cleaning block.

Remove any etch-resist ink with acetone (e.g. nail varnish remover) on a cotton wool swab. Solvents can also be used instead of the abrasive block to clean off the transfers.

The Right Drill

The final step to making your printed circuit board is to drill out the copper islands or pads to permit the components to be fitted, see Fig. 9. The following table summarises the generally-used diameters of holes required for particular components:-

DRILLING DIAMETER

0.8 mm
1.0 mm
1.3 mm general discrete components including smaller resistors, capacitors, transistors, i.c. pins/sockets, miniature trimmer resistors etc. larger electrolytic capacitors, trimmer resistors and potentiometers, flying leads, bridge rectifiers etc. larger trimmer resistors, p.c.b. mounting transformers, fuseholders, screw terminal blocks, large rectifiers (1N5401 etc.), power transistors etc.
As you will see, the diameters are rather small and it is difficult to drill such fine holes accurately with a handheld "gearwheel" drill and impossible with a standard electric drill!

Miní Drill

Special miniature low-voltage drills are available which have various sizes of collet available which fit into the miniature chuck to hold these twist drills. The drills require an adaptor to operate from the mains because battery operation is not feasible. Often a variable-speed adaptor is used (see the author's Drill Control Unit, EE August 1985 for instance).

It will be found that glassfibre board is very demanding indeed on normal "high speed" twist drill bits, and high-speed tungsten tipped or diamond tipped twist drills are preferable as these offer much longer life.

A miniature drill stand is often available as an accessory to improve accuracy, but these are not strictly necessary. Perfectly good results are obtainable by using a handheld drill with the p.c.b. resting on a block of wood.

Use the central hole in the copper pad to act as a starting point for the twist drill and drill through the board taking about two to three seconds. Check that you have not missed any pads as there is nothing more irritating than discovering an undrilled pad, halfway through soldering the board!

Finally, don't forget to drill holes of appropriate diameter to accept the p.c.b. mounting hardware, if any, after which your printed circuit board is complete and ready for soldering.

Etching Kit

The reader may by now have reckoned that etching your own printed circuit boards in an open tray could be fraught with potential problems, although the system is certainly safe enough provided that due care is taken.

One excellent alternative which has been available for many years is the unique Seno GS sealed system for etching printed circuit boards, which is available from several suppliers. Although it is more expensive than mixing your own etchant in an open tray, it is strongly recommended by the author because there is no direct contact with etchant and no etching trays are required. It permits safe storage of the hazardous etchant (in an expanded polystyrene
box) for an indefinite period and it also contains a neutraliser to render the spent solution harmless, ready for disposal.

The Seno GS system is ideal, therefore, for etching your own boards at home. The basic system is shown in Fig. 10 and consists of a heavy-gauge polythene tube, heat-sealed at one end. The system originally contains dry Ferric Chloride granules at the bottom of the bag, to which 250 ml . of water is added. Special slide-in seals are applied to the polythene in the middle and at the open end, and the etchant solution is retained in the "bottom half" of the tube when not in use, being safely and conveniently sealed in.

The one disadvantage with this product is that larger boards cannot be accommodated by the polythene tube, and the maximum size board is about $200 \mathrm{~mm} \times 130 \mathrm{~mm}$.

In The Bag

The prepared p.c.b. is placed in the top half of the bag, in between the two slide-in seals. The middle seal is then removed to release the etchant into the rest of the tube and over the p.c.b., which is then etched - there is adequate etchant to process some $1600 \mathrm{~cm}^{2}$ of board.

After etching has been completed, the etchant is drained to the bottom of the bag and it is then safely crimped in again by replacing the middle slide-in seal. The end seal is then opened to gain access to the board, and clean water can be poured in to rinse the board before removal from the tube. The p.c.b. is then cleaned and drilled as normal.

One way to increase the etching speed is to warm the polythene tube with a hair drier (!) to increase the temperature of the etchant. Some other tips: It is essential that the board does not have any sharp corners or burrs which could puncture the polythene, and it is a good idea to place the tube on several sheets of newspaper to act as a cushion. Also, to avoid the polythene from being unduly weakened with use (leading to leakage), apply the slide-in seals at differing positions from time to time instead of using exactly the same place.

The unique Seno GS sealed system for etching boards. The neutrallser powder is added to the exhausted Ferfic Chlortde and the bag can then be safely thrown away.

The sealed bag, containing etchant sealed in by clamp A.

2

Clamp B is removed and the prepared board is placed into the empty section.

3

Clamp B is replaced to seal the end of the tube. Seal A is then removed, to release etchant over the board. Clamp B prevents etchant from escaping.

After etching (15 minutes), the etchant is moved to the bottom of the tube whilst the p.c.b. is retained near the top. ClampA is replaced to seal in the eichant once more. B is removed, to gain access to the etched board. Clean water can be poured in to rinse it before it is removed.

With use the Ferric Chloride solution will eventually become laden with iron, slowing down the etching time and when the etchant has finally been exhausted, a neutralising powder (supplied) is added to the solution which is eventually transformed into a solid mass for safe disposal.

Tinning

One further process which the more advanced constructor may wish to use is to "tin" the etched printed circuit board. Commercial boards may be roller-tinned in a bath of molten solder but it is possible to tin a home-made board with a chemical deposition. This lays down a silver-coloured coating onto the copper of the etched p.c.b., which prevents the tracks from oxidising, and also makes the job of soldering quicker and easier.

Several rather expensive compounds exist for the job, including crystals which dissolve into water and others which require the addition of hydrochloric acid hardly the sort of materials you would use at home!

A tin-plating system is, happily, available to complement the Seno GS system described above and this works in the same way as the Ferric Chloride etchant.

Be Sensitive

Having described the basic method of etching a printed circuit board, next month we will be looking in detail at the more advanced processing techniques which utilise ultra-violet light-sensitive chemicals and which offer high-quality results, with the added bonus of letting you retain an artwork "master" so you can make or modify subsequent boards.

PCB \& SCHEMATIC CAD	digital simulation	analogue simulation	SMITH CHART CAD
EASY-PC $\quad 198$	PULSAR £195	ANALYSER III £195	Z-МАТСН II £195
- Doesign Singio nidad, Doubio - Ono sortwaro paocke for for - Standard ortur includos - Awerd Mnilitg EASY-PP io World-Wide. 	- At last! A full featured Dightal Circuk Simu - Pubsar alliows you to test you logic desions whthout the oogic dosigns whitour the equipment. - Catch glitichos down to a plco-second per woek! Includes 4000 Series CMOS and 74LS Lbraries. - Runs on PC/XT/AT/286/386/ 486 with EGA of VGA Hard disk recommended. -74HC / HCT Lubrarios optional at $£ 48.00$ each.	- NEW Powertul A AALYSER III has nuil graphical outpur. - Handios R's, L'EC', Bispoler, Tapped and Unlappod Trnatormer, and Microstrip Trnatormeras and Microatr ip Unes. - Plote Inpur and Output Gpoudancesa, - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PCTT/T/286/386/486 wih EGA or VGA displeye. - Very fats computation.	Z-MATCH II takes the drudgery out of RF matching problems end includes many more features than the - Provides quick accurate solutions fo many matching problems using transmission probiems using iransmi Supplled whponents etc.eic. - Supplied whth comprehenslve many worked examples. - Runs on PC/XT/AT/386/486, CGA, EGA,VGA. - Ideal for both education and induatry.
For full info' Phone, Fax or Write to:	Number One Systems Ltd. The Electronics CAD Specialists		Technical suppori free for lifel Programs not copy protected.

REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 048061778 (lines) Fax: 0480494042 International: $+44-480-61778$ Fax: +44 -480-494042
ACCESS, AMEX, MASTERCARD, VISA Welcome.
 with the following:

Your issue on your doormat every month before it appears on the newsagents shelves (Post Office willing!)
A saving against the cover price and no price increase for a year
Every issue guaranteed - no need to worry if the newsagent has run out of copies

13 issues for the price of 12 , if you use the coupon below before July 31, 1992

Respond before May 31st and we will send you a free copy of Electronics Projects Book 1, worth £2•45 (see Direct Book Service list for details). That's over $£ 4$'s worth of magazine and book absolutely free, if you hurry!

OFFER ENDS JULY $31^{\text {ST }} 1992$

Offer only applicable to cheque, bank draft or PO with order or Access (Mastercard)/Visa orders - all payments must be in £'s sterling and orders must be on the coupon below, or a copy of it.
PRESENT SUBSCRIBERS If you already have a subscription to EE and want to get the special offer just extend your present sub for another year and we will give you an extra copy free and send you Electronics Projects Book 1 free (if you respond before May 31st). Just fill in the coupon and mark RENEWAL in the bottom right hand box.
NOTE: No substitutions are allowed ONLY ELECTRONICS PROJECTS BOOK 1 can be supplied as part of this offer.
Post the coupon with your payment to: Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH Telephone 0202881749 Fax: 0202841692

EE SUBSCRIPTION SPECIAL OFFER

Offer ends July 31 st, 1992Please send me 13 issues of EE for the price of 12 .
\square I have responded before 31st May so please also send Electronics Projects Book 1 worth $£ 2.45$.
\square I enclose payment of $\mathfrak{£}$ (£18.50 UK; £23 export surface mail; $\$ 40.50$ export air mail)Please charge my Access (Mastercard)/Visa card

Name. Address

MARCO TRADING
 INCORPORATING EAST CORNWALI COMPONENTS ELECTRONIC COMPONENTS

 \& EOUIPMENT MAIL ORDERS © WHOLESALESEND ORDERS TO - DEPT EE5
MARCO TRADING
THE MALTINGS, HIGH STREET, WEM SHROPSHIRE SY4 5EN
Tel: (0939) 232763 Telex: 35565 Fax: (0939) 233800 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS

24HR ANSAPHONE

LATEST 1992

CATALOGUE

* Velleman Kit Catalogue
* Free pre-paid envelope \star Many new lines
\star Pages of spec
Free gifts
132 PAGES

VISIT our other branches SUPERTRONICS

 WALTONS WALTONS
Ter: 090222039 Tel:0902 22039
55A WORCESTEAST

Visit our shop in
WEM Tel 0939232763

IS NOW
$E 2.25$ ALL PRICES INCLUDE $171 / 2 \%$ vat

PIR COACH LAMP
A stylish coach lamp with built-in PIR detector which reacts to body heat, switching on the lamp whenever somebody is within the detection zone. A photo-detector built into the unlt prevents activation during daylight hours. The sensitivity (detection range) is adjustable from 4 m to 10 m . An additional override facility allows the unit to operate as a normal light. Power: $220 / 240 \mathrm{Vac} 50 \mathrm{~Hz}$ L130 ESN80003 Black L131 WSN80004 White

MAY SPECIAL OFFER

PIR COACH LIGHT SUPER QUALITY

ONLY £59.99 in black \& white

ANTEX IRONS	
C-15W IRON.	£8.37
CS-17WIRON.	£8.4
XS-25W IRON.	ع8. 59
XS-KIT 25 W .	£11.9
CS-Kit 17W.	11.8
C-KIT 15W.	£11.98
ll blts for irons £1	£3.24

CLOSED CIRCUIT TELEVISTON SYSTEM
SSED

FM TRANSMITTER Made In U.K.
 Very high qually Mini-Bug - ideak for babo baby alarm. etcill A very good range is mile, but it does depend on conditions. Simply remove cover - insert battery- OROER CODE SEC/FMBI
 PRICE: 89.99

TWIN FLUORESCENT LAMP-12V

LI32 PIER FLOODLIGHT
SPARE TUEE $£ 4.00$ (not included)

snsooo

SPAAE TUBE E 4.00 (not included) A high power security floodilght with built-in PIR detector which reacts to body heat, switching on the floodight whenever somebody is within the
detection detection zone. The PIR detector is adjustable for detection detector to prevent daylight operation. Power: 220/240V a.c. 50 Hz

EXTERNAL PASSIVE F600 NIGHT SECURITY SENSOR Passive infracred detector for electric sensor switches unlt on automatically at preset ambient light level. PI.R. detector switches external light on when body hea detected. Adjustable timed on period.
Detection Detection range.. 110° (lan shaped) $\times 12 \mathrm{~m}$
Defection zone
 - each value indlvidually packed $\begin{gathered}\text { Disc ceramlc } 50 \mathrm{~V} \text {....... } 125 \text { pieces } \\ \text { Zener Diodes Sea } \\ \text { Z...... } 55 \text { pieces } \\ £ 3.99\end{gathered}$ \%W pack 10 each value E12-10R to 1 M 610 pleces....... 55.10 Electrolytics caps. YW Wock 5 each value E12-10R to 1 M 305 piece Y/W pack Popular-10R to 10 M 1000 plieces.............
$1 / 2 \mathrm{~W}$ pack 10 each value E12-2R2 20 M 2730 pleces
 YW Dack Popular - 2R2 to 10 M 1000 pieces... 1W pack 5 each value $E 12-2$ R2 to 1 M 365 pleces
$2 W$ pack 5 each value $E 12-10 R$ to 2 M 2317 plece CD PLAYER GO60 (CDP 10)

ludes:	BA
* Optima Alarm Control Pa	ACID BATTE
- 2×1 Internal Passive l.ค.	12V 1.9Ah
\times Door Contacts	815.27
- Siren for bell box	215.27
100 mirs. cable and clips	EAD ACID
	GER
ONLYE130	19

$\star \star$ BELL BOXES $\star \star$
A very attractive external box made of Polypropylene. Supplie
complete with back plate. Available in Red, Yellow, Blue, White complete with back plate. Available in Red, Yellow,
Plattorm inside box for your lead acid back up battery. Plattorm inside box for your lead acid back up battery.
LED, requiring a PP3 battery (Not supplied).
BASIC FLASHING
SEC/RED

	FLASHING
$£ 6.99$	SEC/RS
SEC/YS	
$£ 6.99$	SEC/BS
$£ 6.99$	SEC/WS

$\begin{array}{lll}\text { SEC/YELLOW } & £ 6.99 & \text { SEC/YS } \\ \text { SEC/BLUE } & £ 6.99 & \text { SEC/BS } \\ \text { SEC/WHITE } & \text { E6.99 } & \text { SEC/WS }\end{array}$

LEAD ACID RECHARGEABLE BATTERIES
SEC/LA/1 12V 1.2 Amp E14.00
$\begin{array}{llll}\text { SEC/LA/2 } & 12 \mathrm{~V} & 1.9 \mathrm{Amp} & \mathrm{E} 18.00\end{array}$

- 3-beam semt-conductor laser - 3-beam seml-conducto
6-track programmable
- Repeat one -repeat Bil facility
- Builtin 3 disc * Built-in ${ }^{*}$ - Track search and index 200 System....Compact disc digital audio system
 Erray correction......
Sampling trequency. D/A conversion......
Fither................. Frequency response
Harmonk Halmontc
SIN ratio.
\qquad
\qquad
$-350 \times$
350.2 V acms 10 W

| Power |
| :--- | :--- |
| Dims |

coupling three pieces of audio, video
equipment with scart sockets.

Scart plug to 2 BNC plugs Scart plug to 4 phono plugs (video) and 2 Phono plugs (audio) and 2 phono plugs

ADDITIONAL KITS
radial.
Fuses T delay 20 mm .
£5.40 Pre-set pols. Hor....
£10.75 Pre-selpols. Vert
\&15.25
Polyester 100V.

$£ 69.99$

TO81B VIDEO LIGHT KIT
A seml professional video light kit comprising 100 W halogen lamp, remote 12 V dc 7 Ah sealed lead acld battery in carrying case with shoulder strap. 220/240V supply adaptor.
TOA1A
Spare bulb
$\$ 5.99$

T. R. de VAUX BALBIRNIE

Keep an eye on your fridge or freezer temperature

AT THE time of writing, fridge safety is in the news - a proposal that new ones should be fitted with a thermometer. This is because it is essential to maintain the cabinet temperature of a fridge at $5^{\circ} \mathrm{C}$ and a freezer at $-18^{\circ} \mathrm{C}$ maximum. Above these temperatures dangerous levels of bacteria can form quite rapidly.
The Fridge Warning circuit is a mainsoperated electronic thermometer giving a continuous read-out of temperature on a large pointer-on-scale meter. It also gives an audible warning should the temperature rise above a preset level. It has a back-up battery so that the audible warning section will continue to work in the event of mains failure.
A temperature read-out may also be obtained using the back-up battery by means of a pushbutton switch. The battery should last for at least a year if the device has not been required to sound a warning very often.
The main section of the circuit may be mounted any reasonable distance from the fridge - it could monitor in the kitchen the
temperature of a fridge or freezer situated in the garage, for example. It is, of course, necessary to have a mains socket close to the position of the main unit.
As described, the meter has a scale covering the range $-20^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$ which makes it suitable for both fridges and freezers. However, it would be a simple matter to narrow the scale - for example, $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ for a fridge or $-20^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ for a freezer.
You will need to borrow a glass mercury thermometer accurate to $1^{\circ} \mathrm{C}$ for setting-up purposes. This should read down to $-20^{\circ} \mathrm{C}$ if the device is to be used with a freezer. Many laboratory thermometers show a minimum of $-10^{\circ} \mathrm{C}$ but the scale may be extended by simple measurement and a temporary extension scale stuck into position.
Apart from the intended use, this circuit could have other applications - for monitoring the temperature inside a greenhouse, for example. By suitable adjustment, the circuit, as described, may be used to display temperatures in any range from $-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.

TEMPERATURE SENSOR

The temperature sensor itself consists of a thermistor probe placed inside the fridge or freezer. This plugs into the main unit using a "power-in" type socket. The interconnecting lead may be of any light-duty twin variety and of any reasonable length - the prototype was tested with wire up to 20 metres long.
The sensor wires must NOT interfere with proper operation of the fridge door seal. Warm air must not be allowed to enter the cabinet since this would lower the efficiency.
It would be a good idea to check how the sensor wires will be routed into the cabinet before proceeding with construction work. It often happens that pipework passing through to the inside has enough clearance to allow thin wires to be inserted alongside. If this is done, any sealing compound used for gap filling must be pressed back into position again.
The author found a plastic drain plug at the bottom of the cabinet. A hole was drilled in this just large enough to accommodate the wires and this proved to be an excellent way of doing the job.
Note that constructing the Fridge Warning involves making mains connections. Any

Fig. 1. Complete circuit diagram for the Fridge Warning. When the supply is switched on the normally open relay contact (n.o.) will be closed, as shown here.

reader who is unsure of being able to make a safe joh must consult a qualified electrician. In particular, the main section must be buits in an Earthed metal case. The unit is connected to the supply using a fused plug and must not be permanently connected to the mains.

CIACUIT

 DESCRIPTIONThe complete circuit for the Fridge Warning is shown in Fig.1. The circuit uses two identical low-power CMOS input op-amps, IC1 and IC2. IC1 is concerned with the lowtemperature audible warning and its action will be described later. IC2 operates the thermometer display,
Thermistor, R 4 , is the temperature sensor. This has a negative temperature coefficient that is, its resistance falls as the temperature rises.
Assume for the moment that the circuit is receiving. power with RLAI contacts closed in the "open on fail" position as shown. Thermistor R4 forms the lower section of a potential divider with the upper limb consisting of fixed resistor, R3, and preset potentiometer, VR2.
This divider arrangement is connected across the supply so, as the temperature rises, the voltage at IC2 pin 3 falls. This voltage will depend on the temperature of R4 and the adjustment of VR2.
By connecting the output of IC2 pin 6 to the inverting input, pin 2 , a voltage follower is formed. This means that the voltage applied to the non-inverting input, pin 3, is duplicated at the output, pin 6. Microammeter, ME1, together with fixed resistor, R6 and preset potentiometer VR3, form a type of voltmeter circuit which responds to this voltage.
Resistor R6 and preset potentiometer VR3 control the current passing through the meter MEI which then flows to preset VR4 sliding contact and hence to the negative supply line. VR4 has little effect on the current whatever the position of its sliding contact because it has a low resistance compared with R6, VR3 and the resistance of ME1 itself. In controlling the current flowing, VR3 sets the full-scale deflection (f.s.d.) of the meter for any given temperature.
The purpose of preset VR4 is to shift the meter zero. In the prototype unit this was $-20^{\circ} \mathrm{C}$ but is freely adjustable. At this temperature IC2 pin 6 will have a certain voltage output which would normally give a reading on ME1. VR4 is connected as a potentiometer across the supply and at the end of construction will be adjusted to provide an equal voltage to that at IC2 output at the temperature at which the meter is required to read zero. Both ends of MEI will now be at the same voltage and the meter will pass no current - that is, it will read zero. The meter is thus connected in a bridge arrangement.

AUDIBLE WAFNING

As well as operating the meter, the potential divider containing the thermistor applies the same voltage to ICl inverting input, pin 2, as was applied to IC2 pin 3. At the same time, a preset fixed voltage is applied to ICI non-inverting input, pin 3, by the potential divider action of preset VRI.
As ICl is connected as a comparator, if the non-inverting (pin 3) input voltage is greater than the inverting one the output, pin 6, will be high (positive supply voltage). In other cases it remains low.

Preset VRI will be adjusted at the end of construction so that the non-inverting input voltage is just less than the inverting one when the temperature sensed by thermistor R4 is just below the maximum safe level. When it rises above this, the voltage appearing across the thermistor falls and becomes less than that at the non-inverting input.
The op-amp ICI now switches on and current flows through current-limiting resistor R1 to transistor TR1 base. Audible warning device, WDI, in TR1 collector circuit now sounds. Resistor R2 applies a small amount of positive feedback to ICI non-inverting input and this results in a sharp switching action at the critical temperature.

POVNEF SUPPLY

With mains On/Off switch $\mathbf{S 3}$ on, the circuit receives power from the mains by a conventional power supply arrangement of step-down transformer, Tl , full-wave rectifier diodes, D2/D3, smoothing capacitor, C3 and fuse, FS1. This develops an output of 10 V d.c. approximately and is applied to the input of voitage regulator, IC3.
The regulator provides a steady nominal 5 V at the output which acts as a supply for IC2 and VR4. This is necessary because absolute voltage levels control the current flowing through ME1 and hence the accuracy of the temperature reading.
The regulator used in the prototype was an adjustable one - the exact voltage output is programmed by fixed resistors R7 and R8. This was found to provide better performance than a fixed 5 V regulator.
While a mains supply exists, relay RLA is energized because its coil is connected direct to the supply before stabilisation is applied. The relay's normally-open contact (n.o.), (Open On Fail), will therefore be closed and, providing switch $\$ 2$ (Display Temp) contacts are open, no current will flow from stand by battery, B1.
On mains failure, RLA coil fails to energize and the normally-closed (Close On Fail) contact (n.c.) "makes". Current now flows from the back-up battery, B1, through diode, D1, to the audible warning section centred on IC1. Thus, the low-temperature warning section continues to operate.
Note that ICl does not normally use a stabilised supply on mains failure. This is accept-
able since both op-amp inputs are derived from the same source and, as the battery ages, the voltage at each will fall in like manner. Switching will therefore occur at the same temperature whatever the supply voltage.
This method avoids the continuous quiescent current drain of the regulator and other parts of the circuit. During mains failure conditions IC2 (the meter section) is normally off since RLA1 "open on fail" contacts are open. This saves the back-up battery.
On mains failure, the back-up battery supplies $8 \mu \mathrm{~A}$ approximately and this may be regarded as negligible. When the alarm sounds, the current rises to 8 mA approximately and the internal battery can provide this for several hours if need be. The battery should be replaced as a matter of routine if it has sounded for a prolonged period and in any case, annually.
If during mains failure a temperature reading is required, pushbutton switch S2 (Display Temp) is operated. This directs current from BI, through D1 to the voltage regulator IC3 input. The relay coil energizes, RLA contacts "make" and the rest of the circuit operates as it would if the mains were connected.
Diode DI ensures that a reverse current cannot flow into battery $\mathbf{B 1}$ if, for example, switch $\mathbf{S} 2$ were pressed by accident while a mains supply existed.
Also current from the battery B1 cannot pass back into the transformer secondary windings since diodes D2 and D3 are reverse biased. While providing a temperature reading, the current requirement rises to approximately 80 mA so this should only be done briefly and not very often.
Diode D4 by-passes the high-voltage "spike" which occurs when the magnetic field in the relay coil collapses. This could otherwise cause failure of semiconductor components in the circuit.
Switch S! provides a battery check. When pressed, this connects ICI inverting input to the negative supply line - that is, to zero volts. This voltage will therefore be less than that at the non-inverting input whatever the temperature sensed by thermistor R4. ICl therefore switches on and warning buzzer WD1 sounds. This check should be carried out every so often.

The completed unit showing the large meter scale.

Fig. 2. Stripboard component layout and details of breaks required in the underside copper strips. The leadout details for the voltage regulator IC3 are shown on the right.

Note that an alkaline PP3 battery is specified for back-up purposes but this is only suitable for light-duty use. Where checks are made frequently or where the alarm may be required to sound for long periods, it would be better to use a larger type of 9 V battery. If this cannot be accommodated inside the case, an external battery could be used.
This project justifies a good quality moving coil meter - do not use a small scale
or cheap instrument. A meter having a four inch scale was used in the prototype unit and this can be clearly read at a distance.

CONSTAUCTION

Top and underside details of the Fridge Warning circuit panel are shown in Fig. 2. This uses a piece of 0.1 in . matrix striphoard, size 14 strips $x 47$ holes.
Drill the two mounting holes and make

colyely 5/15	Approx cost guidance anly
Resistors	Miscellaneous
R1, R6 4k7 (2 off)	T1 Miniature mains transformer:
R2 $\quad \underset{- \text { see text }}{\text { 47M or } 50 \mathrm{M}}$ (or 5 off 10M)	240 V primary and $9 \mathrm{~V}-0 \mathrm{~V}-9 \mathrm{~V}$ secondaries (or
R3 100k	twin 9 V secondaries):
R4 Miniature bead thermistor, resistance 47 k at $25^{\circ} \mathrm{C}$	100 mA rating S1, S2 Miniature push-to-make
-see text	switch (2 off)
$\begin{array}{ll}\text { R5 10M } \\ \text { R7 } & \end{array}$	S3 Mains rocker switch, with
R8 680 S	PL1/SK1 2.1 mm power-in plug and
All 0.25W 5\% metal film, except R4	matching chassis-mounting socket
Potentlometers Page	RLA Miniature relay with 6 V
Potentlometers VR1, VR2 1 Mmin . enclosed carb	80ohm coil and singlepole changeover contacts
preset (2 off)	FS1 20 mm chassis fuseholder
VR3 $\quad 47 \mathrm{kmin}$ preset enclosed carbon	and 1 A quick -blow fuse $50 \mu \mathrm{~A} 100 \mathrm{~mm}$ scale moving-
VR4 $\quad 1 \mathrm{kmin}$, enclosed carbon preset	coil meter - resistance 4300 ohms
	WD1 High power piezoelectric
Capacitors	buzzer, impedance 1 k .
	Operating frequency 3 kHz .
C2 100n disc ceramic	Aluminium case, size $152 \mathrm{~mm} x$ $102 \mathrm{~mm} \times 51 \mathrm{~mm}$. plastic case for
C3 2200ر radial elect., 16 V	thermistor, size $50 \mathrm{~mm} \times 37 \mathrm{~mm} \times 24 \mathrm{~mm}$;
Semiconductors	0.1 in . matrix stripboard, size 14 strips x
D1, D2,	47 holes; PP3 9V Alkaline battery and
D3, D4 1 N4001 50V 1 Arect. diode (40ff)	connector clip (see test); 3A 2-way screw terminal block (2 off); 2A fuse for
TR1 ZTX300 npn transistor	mains plug; single-strand connecting
IC1, IC2 ICL. 7611 low-power CMOS	wire; 3A mains wire; rubber grommet;
op.amp (2 off)	strain relief clamp; solder tag; solder etc. Glass mercury thermometer for
voltage regulator	calibration - see text

all track breaks and inter-strip links as indicated. Solder the on-board components into position taking care over the polarity of all four diodes and of electrolytic capacitors Cl and C3
The high value of R2 specified (47M Ω) can be constructed (near enough) using five $10 \mathrm{M} \Omega$ resistors connected in series. Alternatively, a single $47 \mathrm{M} \Omega$ or $50 \mathrm{M} \Omega$ resistor may be used but these are not always easily available. High value resistors are sometimes described in suppliers' catalogues as "high voltage" resistors and these would be suitable.
Complete construction of the circuit board by soldering 15 cm . pieces of lightduty stranded connecting wire to strips $J I$ and $K l$ on the left-hand side and to strips A47, E47, G47 and 147 along the right-hand side as indicated. Solder the positive wire of the battery connector to strip M47. Use of different coloured leads will help greatly in preventing wiring errors.
Connect WDI positive and negative wires to strips C and I respectively at the left-hand side. Adjust preset VR1 fully clockwise (as viewed from the edge of the circuit panel) and presets VR2, VR3 and VR4 to approximately mid-track position.

C4SE

Prepare the case by making the large circular hole needed for the meter. This is best done by marking its position then drilling a series of holes around the circumference These are then joined together using a small hacksaw blade and the edge filed smooth.
Drill the holes for meter mounting, switches, transformer, fuseholder, terminal block, power-in socket and for circuit panel fixing. Drill the two holes for WD1 mounting and a larger one between these for the sound to pass through. Drill a hole and fit the rubber grommet which will be used to prevent the metalwork from cutting the mains lead.
Mount all remaining components and complete the internal wiring as shown in Fig. 3, shortening any wires as necessary. If socket SK1 is of a type having one terminal
connected to the metalwork this should be the one connected to the solder tag. Note that this terminal is a meeting-point for several wires being connected to "earth"
The mains input lead should be made from a piece of 3-core mains-type wire of 3A rating minimum. This should be passed through the grommet noting that the earth wire (\mathbf{E}) is connected to the solder tag at one of the transformer fixings. Make certain this connection is sound and cannot dislodge in service. Attach a strain relief clamp so that the wire cannot be pulled free.
Similar mains wire should be used for connecting the illuminated rocker switch S3 to terminal block, TB1. If a type of mains switch other than that specified is used, it is essential to fit a separate neon indicator. Attach a mains plug to the free end of the mains wire and fit it with a 2 A fuse.
At this stage you need to check that the case fits together properly. Look out for short-circuits and trapped wires especially at the mains connections. Make any adjustments as necessary then dismantle it again before proceeding.

ADJUSTMENT AND TESTING

Safety Note: All adjustments are made using the back-up battery with the unit unplugged from the mains. When the unit is connected to the mains, the lid of the case must remain on.
You will need plenty of patience during the setting-up stage since the adjustments of the presets are to some extent interdependent. However, VR2 will probably be left with the sliding contact set to mid-track

Fig. 3. Interwiring from the circuit board to the case mounted components. Mains $3 A$ wire should be used for connecting the illuminated On/Off switch to the screw terminal block TB1. The completed unit, with cover removed, is shown in the photograph below. The thermistor is housed seperately in a small plastic box.

position unless a different temperature range is being measured.

In addition to the thermometer mentioned earlier, you will need a small drinking glass (100 cc approximately) half-filled with cooking oil. You will also need a small piece of bare connecting wire or a crocodile clip with which to short-circuit switch S2. This enables setting-up to be carried out without having to press the button.

Connect a new alkaline battery for the back-up supply. An old battery may fail to provide temperature readings which correspond accurately to those obtained under mains conditions. It would be a good idea to connect a larger 9 V battery to the circuit temporarily - this would save the back-up battery during prolonged testing.

Connect the thermistor to a short piece of light-duty two-core wire for the moment and solder the power-in plug to the other end. Plug this into the sensor socket SK1

Place the glass of cooking oil with the thermometer in it in the freezer and wait for the temperature to stabilize. It should fall to $-18^{\circ} \mathrm{C}$ or lower. Remove it and place the thermistor R4 in the oil so that it is fully submerged. Short circuit S2 terminals so that the meter gives a reading.

Stir the oil (which will now be very thick) gently with the thermometer. Assuming the oil is at $-18^{\circ} \mathrm{C}$, VR4 should be adjusted so that the meter reads $5 \mu \mathrm{~A}$ - this is to allow $-20^{\circ} \mathrm{C}$ to be added later.

Now wait as the oil rises in temperature stirring frequently and thoroughly. At $10^{\circ} \mathrm{C}$, adjust VR3 to provide full-scale deflection $(50 \mu \mathrm{~A})$. You will now have to re-check the zero and re-adjust VR4 if necessary then recheck the full-scale reading.

By a process of back-and-forth checks on the high and low points you will obtain the correct readings. If the pointer moves in reverse - that is, the reading rises as the temperature falls, the meter has been connected the wrong way round and the connections to its terminals should be reversed.

Now comes the job of filling in intermediate points on the scale. This cannot be done by simple measurement because the scale is non-linear - that is, equal steps on the scale do not correspond to equal temperature changes.

In the case of the prototype, this meant that each degree corresponded to $2 \mu \mathrm{~A}$ at the low end and $1 \mu \mathrm{~A}$ approximately at the high end. Calibration should be carried out at temperatures of $-15^{\circ} \mathrm{C},-10^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$, $+5^{\circ} \mathrm{C}$ and $+10^{\circ} \mathrm{C}$. The $-20^{\circ} \mathrm{C}$ point will be filled in by common sense at the end.
Start with the oil at freezer temperature again and submerge the thermistor and thermometer bulb in it. Keep stirring with the thermometer and watch the temperature continuously. When it reaches $-15^{\circ} \mathrm{C}$, note the reading on the scale. Do similarly as the temperature rises to the other calibration temperatures. This procedure should be modified for any other range of temperature required.

In tests on the prototype, temperatures up to $40^{\circ} \mathrm{C}$ could be accommodated but for such temperatures, VR2, will need to be adjusted fully clockwise (as viewed from the edge of the circuit panel). For measuring high temperatures, it may be an advantage to use a thermistor with a higher resistance $150 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ for example.

The unit should now be checked on mains operation. For this, the case must be fully assembled. If the battery was in good condition, the readings obtained under mains operation should agree closely with those obtained with the battery supply - to within $1^{\circ} \mathrm{C}$ in the case of the prototype unit.
To make the new meter scale, first remove the meter front cover - this just "snaps" off. Do this with care so that neither the pointer nor the meter movement is damaged in any way.

Now remove the two small fixings securing the old meter scale and, with extreme care, remove it completely. Be particularly careful to avoid bending the pointer.

Mark out a new scale on good quality paper using the old one as a template. For best results, use a fine drawing pen and dryprint lettering. You will be able to fill in the single degree markings and $-20^{\circ} \mathrm{C}$ by common sense.

White-out (Tippex typewriter correction fluid) the old scale lettering before sticking the new scale in place - this will prevent the original numbers showing through. When this has been done, re-attach the scale, again with great care.

AUDIBLE WARNING

Preset VRI should now be adjusted so that the warning buzzer operates at the correct temperature. It is suggested that for a fridge this should be $8^{\circ} \mathrm{C}$ approximately and for a freezer, $-15^{\circ} \mathrm{C}$. Setting the temperatures too close to the operating temperature will mean that the unit sounds unnecessarily - when the fridge door is opened, for example. VRI is adjusted clockwise (as viewed from the edge of the circuit panel) to raise the operating temperature.

The thermistor $\mathbf{R} 4$ now needs to be de-soldered from its temporary connecting wire and mounted in a small plastic box so that it will not be damaged when inside the fridge or freezer. The specified box is large enough to accommodate two sections of a 3A screw terminal block to which the connections are made (see Fig.4).

The box should be drilled with a matrix of holes to allow the free passage of air around the sensor so that the unit responds rapidly to changes in temperature. Apply

Fig. 4. Suggested method of mounting the thermistor inside a small box using a two-way terminal block.
strain relief to the connecting wire with a cable clamp inside the box.

Long wires between the main unit and the thermistor are sometimes prone to mains pick-up. This shows by the buzzer coming on with a warbling sound.

This is of no consequence but if it proves to be annoying it can be practically eliminated by connecting a 220 nF capacitor in parallel with the thermistor. The capacitor can be soldered inside the main unit but it is much easier to connect it to the terminal block inside the thermistor unit.

If failure of the fridge occurs so that the cabinet temperature rises to room temperature ($20^{\circ} \mathrm{C}$ approximately), this will exceed the full-scale reading of the meter. However, this will not cause damage. Note that it is normal for the case to become slightly warm during operation.

Please reserve/deliver a copy of Everyday Electronics for me each month

Signed.
Name and Address.
(BLOCK CAPITALS PLEASE)

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the opportunily to build the very best engineered hill equipment there Is, designed by the leaders in their field, using the best components that are available.
Every HART
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, giving you gui
hands-on experience of modern electronic techniques.
in short HART is your 'triend in the trade' giving you, as knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is 10 build your own equipment the
HART way. The FULL cost can be credited against your subsequent kit purchase.
Our list will give you fuller details of all our Audio Kits.
componenis and speciai otters
AUDIO DESIGN 80 WATI POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the ultimate hifi system. This kit is your way to get $£ K$ performance for a few tenths of the cost!. Featured on the front cover of 'Electronics Today International' this complete stereo power ampllier ofters world Class performance allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unit were enthusiastic:- The external view is that of a horoughly protessional prece of audio gear, neat elegan the internal appearance, which is redolent of quality, both in components and in layout. Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volume and balance controls. A new relay switched front end option also gives a tape input and output lacility so that lor use with tuners, tape and CD players, or indeed any other "Hat" inputs the power amplifier may be used on its own, without
the need for any external signal handling stages. 'Slave. the need for any external signal handling stages. Slave and "monobloc' versions without the passive input stage and power meter are also avaliable. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 stabilised, and the complete power supply, using a toroidal transformer, Is contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockels. All the circuitry is on professional grade printed circuit boards with roller tinned finish and green solder resist on the component ident side, the power amplifiers teature an advanced double sided layout for maximum pertormance. All wiring in this klt is pre-terminated, ready for Instant use!
RLH 11 Reprints of latest articles.
K 1100 CM HART Construction Manual.

COMPUTER CORNER

tively priced, High Ouality, computer systems. Due to our lon experience of importing we have the necessary contacts in the Far East to buy of very advantageous prices and can pass the fully formened and ready to use
 Fully fledged AT286 machine. cheap enough to use as the fastest wordprocessor in the west! Only a few years ago the AT-286 machine was the lastest standard office computer known. Now we can offer the superiast 16 MHz version 12 MMz) at such an incredibly low price that it can be used in any olfice or home. Not only that but ours comes ultrafast memory so that zero wait state
 Advanced leatures are:-

Full 1MB of memory (Ex
pandable to 4MB). 102
key UK keyboard, compact desktop case. $1,2 \mathrm{MB} 51 /$ " " High $^{\text {Hensty }}$ Density Disk Drive and interiace card Inter extra HART AT-286/16WP
14" FST Hercules monitor, Amber
14" Paper White Hercules Monitor. (Both have T/S
Base).
Trust Writer W/P Soltware uses Wordstar commana.......E86 40MB AT-286/16UG Mard Dlsk Computer
Specification as above but with 45 MB 25 ms hard disk, VGA Colsur Graphics Card with 512 K RAM, parallel printer port, 2 serial ports, 1 game port ${ }^{.1}{ }^{5523.50}$ -

Send or 'phone for your copy of our List (50p) of these and many omer Klis a Components. Enquiries from Overseas

 customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Alrmail11 Ordering Is easy. Just write, telephone or tax your requirements to sample the friendly and efficient HART
service. Payment by cheque cash or credit card. A telephoned or taxed order with your credft card number will get your order on its way to you THAT DAY

Please add part cost of carriage and insurance as follows:-INLAND Orders up to $£ 20-£ 1.50$
rs over £20-£3.50 Express
MANUFACTURERS OF QUALITY
AUDIO KITS AND COMPUTERS

Entry level 386 machine for demanding applications at moderate cost. Spec as our AT286/16WP with 1MB Dram
memory. Mini Tower case, 45 MB 25ms hard disk drive, VGA memory, Mini Tower case, 45 MB 25 ms hard disk drive, VGA
Colour Graphics Card with 256 K RAM 40 MB AT $-386 / 16 \mathrm{SXEL}$ is. HART 52 MB AT-386/20SX UG

Luxury version of the above with higher processor speed and amazing 9 millisecond access time hard disk. $2 M B$ SIMM RAM, Compact Tower Case, VGA 1024×768 card with 512 K AAM, upgradeable to 1 MB ol Video memory. 40MB AT-386/20SXUG.
OPTIONAL EXTRAS
 your personal number will
arte -
24 hr. SALES LINE
(0691) 652894

INSLEY HOOD 'SHUNT FEEDBACK' R,IIA.A. MOVING COIL MOVING MAGNET PICKUP

Modern. ultimate sound systems are evolving towards a buils-in RIAA preamplifier within the furntable unit, keeping noise pickup to a minimum. This new circuit by John Linsley Hood uses latest generation integrated circuits in the sonically preterred shunt teedback contlguration to glve an accurate and musical sound, with the ability to use both moving magne and moving cower comes rom MAPT instructlons and all the specially selected components fit ting directly on to the roller tinned fibreglass printed clrcuil board. Even the gold plated phono sockets mount directly on the board.
This Kit now comes with latest generation low-noise fron end IC and onboard power stabilisers for any DC input voltage between 9 v and 30 V .

ALPS PRECISION LOW-NOISE STEREO POTS.

To fulfil the need for higher quality controls we are now importing an exciting new range of precislon audio pots in values to cover most quality amplifier applications. All in 2 -gang stereo format, with 20 mm long 6 mm dia. Steel shatts. Now you can throw out those noisy ill-matched only used selectively in wh cory flomponis amplifiers. The improvement in track accuracy and match ing really is incredible glving better tonal balance between channels and rock solid Image stability. Motorised versions have 5v DC Drive motor.
2 -Gang 100 K Lin.
£8.86
2-Gang 10K, 50 K 8 100K Log
2-Gang 20 K Log MOTORISED
2-Gang 10K Special Balance, MOTORISED, zero
crosstalk and $<10 \%$ centre loss with near
Log/Antilog Tracks).

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do you tapes lack treble?. A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours. Fitting one of our high quality replacement heads could restore performance to better than new!. Standard inductances and mountings make itting easy on nearly all machines (Sony are special. see below) and our TC1 Test Cassette helps you set the primern spot on. As we are the actual importers you get prime parts at lower prices, compare our prices with other any Dolby system and are normally available ex stoc We also slock wial ane of special heats construction and indusurial users. HM120 Standard Mono R/P Head HC15 Standard Quality Stereo R/P Head
 £2.51 HC8O NEW RANGE High Beta Permalloy Stereo head Modern space saver design for easy fitting and lowe cost. Suitable for chrome metal and ferric tapes.
truly a unlversal replacement head tor everything from hi-fi decks to car players and at an incredible price too!...
HO551 4-Track RECORD 8 Play Permalloy Head tor auto-reverse car players or quadraphonic recording $£ 14.90$ H561 Hi Field Erase Head for METAL Tapes................ $£ 1.90$ H561 Hi Field Erase Head for METAL Tapes C3.49 Combination Head...
$\lessdot 47.90$

Many other SPECIAL cassette Heads in stock, see our LIST.

REEL TO REEL HEADS
999R 2/4 Record/Play 110 mH . Sults Stuar Tape
Circuits.. Suits Stuart..

TAPE RECORDER CARE PRODUCTS

purp
purpose test cassette. Sels tape azlmuth, VU level and tape speed...

AUDIO KIT PRICES are VAT INCLUSIVE. COMPUTER prices exclude vat
requirements, at NO extra cost!. Simply select the options you require. If replacing any them In the standard specification for that model then deduct the cost of the part not needed. SOFTWARE
MS-DOS 5 Latest Release. Full version. $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$.......... $£ 59$ MR DOS 6 MONITORS
SM1421 AM TU Hercules Mono with FST Tube and Stand, Amber... SM1421 PW TU As Above but Paper White Screen.......
SM1416A VGA Mono Monitor c/w tilt and swivel stand. Ami416A VGA Mono Monitor c/w tilt and swivel stand.

SM1485-00 Super VGA Multisync Colour Monitor, $288^{\prime \prime}$ dot pitch, 50 MHz Band width, up to 1024×768
K261 102 Key Enhanced UK Layout, Tactile Click, AT/XT Swithable with dual slope feet.(Standard Keyboard supplied with systems)
K108 Similar to above, single slope feet, Alps switches................................... KB6153A As above but with heavy metal base
${ }^{〔} \mathbf{5} 46$
AT Super I/O Card 2 x FDD, IxIDE, 2 Serial, 1 Parallel. 1 Game
 16 -Bit VGA Card, 256 K Trident 8900 VGA Cara, 512 K ... Trident 8900 VGA Card with 1 MD
DISK DRIVE
$5.25^{\prime \prime} 1.2 \mathrm{Mb}$ Floppy Disk Drive. 546.50
$-1+2$
Adapter to fit $3.5^{\prime \prime}$ drive in $5.25^{\prime \prime}$ slot, c/w power adapter 45 MB 25 ms Hard Disk Drive...................................... 52MB Quantum Hard Disk. Lightning Fast 9ms Access CASES
WE 611P Desktop Case, Flip Top. 200W PSU. 556.40 WE727P Mini Tower Case, 200W PSU...... 108MP Mini Tower Case, Compact Style. CT107 Midi Tower Case,...................
MOTHERBOARDS
AT-286/16 OK.RAM.
AT-386-16SX OK.RAM
AT-386-205x OK.RAM
ᄃ195

PLEASE NOTE THAT ALL ITEMS IN THIS
SECTION ARE PRICED EX VAT.

ACTUALSY
DOING ITY
by Fobert Pentord

THERE is a famous quotation from Benjamin Franklin which goes "But in this world nothing can be said to be certain except death and taxes". For the electronic project constructor there is a third certainty. and this is the occasional project that fails to work first time! If you are not very diligent at checking over new projects before switching them on, you may well find that the number of failures substantially outnumber the successes.

Fortunately, when a project fails to work first time the solution to the problem is often something very simple. When something goes wrong we would all like to think that it is someone else's fault, but I think it is true to say that most projects which fail to co-operate when you first switch them on have an error which is the fault of the constructor.

- When things go wrong you must try to be positive in your approach, and set about finding the mistake (or mistakes) you have made. Telling everyone that it is the fault of the project designer or publisher may be more fun, but it will not get the project working. If a thorough check of the wiring etc. fails to locate a problem, it might then be worthwhile contacting the publisher of the project to see if there is a known problem with the design in question.

CLASSIC MISTAKES

I will not try to give a complete course in project fault finding in this. article, which would definitely not be possible in an article of this size. On the other hand, there are some classic errors which we all make from time to time. Experienced project builders know the tell-tale signs, and can often rapidly locate the problem when a finished unit fails to perform. Here are some classic symptoms together with the usual causes.

BACK TO FRONT

A potentiometer control (such as a volume control) works "backwards"

There are three terminals on a potentiometer; the track terminals (the outer two) and the wiper terminal (the middle one). If you get the connections to the track terminals swapped over, the project will still work, but the control will work "backwards" (e.g. advancing a volume control will actually reduce the volume).

ERRATIC

A potentiometer gives erratic operation. For example, a volume control might work after a fashion, but with an odd control characteristic and distortion at low volume levels.
This is often indicative of the wiper
and one of the track terminals having been connected the wrong way round. In a volume control application this can provide control of the volume by loading down and virtually short circuiting the output of the preceding stage (hence the distortion!).

A control which uses a dual gang potentiometer works properly at mid settings, but goes completely haywire towards the ends of the adjustment range.

Over the years I have received quite a few readers' letters complaining about this type of thing. It is usually the result of getting the track connections to one gang of the potentiometer connected the wrong way round. At a middle setting this makes no difference. As the control is adjusted away from the mid-point the two gangs go further and further out of balance, and the circuit fails to work properly.

SWITCHED

A project works after a fashion, but (say) none of the ranges of a piece of test gear seems to give sensible results.

In days gone by rotary switches were awkward to use. It was very difficult to tell which wiper tags were grouped with each pole tag. These days it is much easier as the pole (or wiper) tags are normally marked " A ", " B ", " C ", etc., and the connecting tags are marked " 1 " to "12". With a six-way two-pole switch for example, tag " A " is grouped with tags " 1 " to " 6 ", and tag " B " is grouped with tags " 7 " to " 12 ".

Unfortunately, when wiring up these switches it is still very easy to make mistakes, because it is often difficult to see the tag markings. In particular, it is very easy to get all the connections to the outer ring of contacts shifted one tag away from their correct placement.

When wiring up these switches the normal method is to put in the connection to tag " 1 ". and then work your way through to tag " 12 ". If you accidentally make the first connection to the wrong tag, then the subsequent connections will all be wrong as well. There is then no option but to disconnect all the wires and reconnect them to the right tags.

Sometimes a project can seem to be totally inoperative when it is in fact fully operational. It is just that switch positions are the opposite way round to what you are expecting.

For instance, what you think is the npn setting of a transistor tester might actually be the pnp setting, and vice versa. You would then test transistors with the unit always set to the wrong mode, and it
would seem as though the unit was failing to work at all. With switches it is not a bad idea to check them with a continuity tester (see last month's issue) prior to installation, just to make sure that everything is as expected.

HOT AND BOTHERED

The smell of hot components. Most people who pursue project construction as a hobby soon develop a keen sense of smell which will soon detect any hot components

Except where something should be getting hot, such as a project which uses power semiconductors, always switch off at once when overheating components are discovered. The quicker you get to the on/off switch, the better the chances of the heated components surviving the experience.

When overheating occurs it is usually some of the semiconductors that become heated, and in most cases it is the integrated circuits that are the problem. Surprisingly perhaps, most semiconductors seem to be able to withstand quite high powers for short periods without sustaining damage. Provided you switch off the power before something gets seriously overheated, there may well be no damage to the components.

There are numerous possible causes of overheating, but checking the polarity of the battery or power supply unit is a good starting point. Many integrated circuits place a virtual short circuit on the supply lines if the polarity is reversed, and getting the supply round the wrong way will therefore produce a massive current flow. If just one integrated circuit gets hot, then it is probably fitted the wrong way round.

SOCKET

I am often asked why I (and many others) recommend using sockets for all d.i.l. integrated circuits, regardless of whether they are expensive or staticsensitive. The answer is a very simple one, and one that it is worth mentioning yet again.

It is very easy to inadvertently fit an integrated circuit the wrong way round. If it is fitted in a socket there is no difficulty in gently prising the device free and reinserting it with the correct orientation. Removing a d.i.I. integrated circuit that is soldered direct to a printed circuit board can be very difficult indeed.

Even if you have proper desoldering equipment it can be very difficult to remove integrated circuits which have 14 pins or more. It also pays to bear in mind that a fault could develop at some time, and that it might then be necessary to replace an integrated circuit. This is straightforward if it is in a holder, whereas you risk seriously damaging the circuit board and other components if it is not.
There are a couple of other points worth checking if overheating occurs. With a mains powered project check carefully that the rectifiers are connected the right way round. Getting the rectifiers round the wrong way reverses the polarity of the supply's output. Check for short circuits on the underside of the board caused by solder blobs or splashes. Pay particular attention to the pads of any integrated circuit that is getting heated.

HUM!

Clearly excessive mains "hum" from a mains powered audio project.

Switch off immediately if there is a large amount of "hum" on the output of a mains powered audio project. This often gives early warning of an overload on the power supply, with things about to heatup (literally).

Apart from making the checks on the integrated circuits, etc. that were mentioned previously, check the large smoothing capacitor in the power supply circuit. Possibly one of the connections to the capacitor is a "dry" joint, but more probably it will be connected with the wrong polarity. Be warned that a smoothing or supply decoupling capacitor connected the wrong way round can quickly overheat and burst open with considerable force.

LIGHTS OUT

One or more l.e.d.s fail to light up when they should.

These components have tended to be troublesome ever since they were first introduced. These days most l.e.d.s have the cathode (k) lead shorter than the anode (a) one. Also, there is usually a "flat" on the cathode side of the body. However, I have encountered l.e.d.s which do things the other way round, and there are some which, rather unhelpfully, seem to be completely symmetrical.

If a l.e.d. fails to work, the most likely explanation is that it is connected round the wrong way. Even if a check of the wiring suggests that an unco-operative l.e.d. is connected correctly, it might still be worthwhile trying the opposite method of connection. It is highly unlikely that getting the polarity of a l.e.d. wrong will do it any harm, so it is quite acceptable to adopt trial and error with these components.

SILENCE

Silence or just "hiss" type noise from an audio project.

When problems with a lack of signal occur with an audio project I usually investigate the plugs and sockets sooner rather than later. If the background "hiss" is present, it is likely that everything is all right on the output side of the circuit.

Getting the connections to an input socket wrong can short circuit the input of the project, giving little or no output. In some cases getting these connections swapped-over will result in a lot of "hum" and general noise (possibly including breakthrough of strong radio transmissions) on the output.

Cables with broken wires are not exactly a rarity. If possible check the input lead using a continuity tester. It is a good idea to check for short circuits between one lead and another, as well as checking for a lack of continuity through each lead.

If there is genuinely no output at all from an audio project, the output socket is the first thing to check. Where the output socket of a power amplifier is an insulated type, such as a twoway DIN loudspeaker socket, it does not matter which way round it is connected. This is not strictly true for a stereo amplifier, where you should ensure that both sockets are connected with the same "polarity" so that the phasing of the loudspeakers is the same.

If an output socket is a non-insulated type (i.e. one tag connects to the chassis of the project), getting the connections round the wrong way will short circuit the output. This is unlikely to do any
damage if the project is something like a signal processor which provides a low power output, but it could be disastrous with a project that has a power amplifier at the output.

With any project that provides significant output powers you really must be very careful when adding the output wiring, and should thoroughly check this part of the unit before switching on. Output leads are no more reliable than input cables, so check that the output lead is providing a proper signal path.

tOTAL FAILURE

A project does nothing at all. Here we really do mean absolutely nothing at all (e.g. not even a "click" from the loudspeaker or a brief flash from a l.e.d. at switch-on).

This could be due to a fault on the circuit board or in the wiring, but I would be inclined to investigate the battery and battery clip first. I frequently have problems with battery clips where one press-stud does not make proper contact with its counterpart on the battery. Some careful squeezing of the female connector in some pliers usually clears the problem, but a few combinations of battery and connector seem to have incompatibility problems. There is then no option but to change one or the other.

Some battery clips seem to be perfectly' all right when a lead has in fact come adrift from its press-stud. Pulling firmly on one lead and then the other should detach a lead that is not properly connected. You can cut most battery connectors open and repair them quite easily, but it is probably best to reserve this for emergency use. Fitting a replacement will give neater results with no risk of accidental short circuits.

Is the battery in a useable condition? If possible use a battery tester or multimeter to check that it is providing something close to the right voltage. Bear in mind that just because a battery just about manages to power one gadget, it will not necessarily be able to power your latest project.

Some circuits are very tolerant of low supply voltages, and they consume very low currents. These will work with batteries that are what would generally be considered "flat". Other circuits take large supply currents and shut-down if the battery voltage drops more than a few percent below its nominal potential. The old batteries from such devices will often
power other units quite happily for many hours. Always try to use reasonably fresh batteries in new projects.

On/off switches are not the most reliable of components. I stopped using slider switches many years ago due to the low quality of many of these components. They worked after a fashion, in that they would go properly into the "on" position if you managed to get the slider knob in just the right place

More recently I have experienced problems with a number of the smallest size of miniature toggle switch. Some of these switches only seem to work very intermittently, if at all.

Switches are easily checked using a continuity tester. With a mains powered project remember to unplug the unit from the mains before testing the switch.

The most classic of classic mistakes is to forget to switch on. It may sound ridiculous, but sooner or later everyone seems to somehow convince themselves that a project is switched on when the on/off switch is definitely in the "off" position!

STRIPBOARD

A stripboard based project fails to work

I used to build large numbers of projects on stripboard, and 1 have to admit that it was quite a long time before one of them worked first time. In most cases the problem was simply one or two accidental short circuits between adjacent copper strips due to some excess solder. A fair percentage of these solder blobs were so small as to be virtually undetectable visually. Even using an 8 X eye lupe did not always reveal the problem.

I found that a continuity tester was the best way of detecting the presence of short circuits. A sharp modelling knife was then used to score between the two offending strips if the solder blob was not visible.

FINALLY

As with most things in life, it is better to work on the basis of prevention is better than cure. I have to admit that I am not very meticulous about checking newly constructed projects prior to switch-on. On the other hand, where the mains supply or high powers are involved, I thoroughly check everything at least twice. Not to do so would be fool-hardy.

BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are - we hope!

Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH for $£ 5.95$ ($£ 6.95$ to European countries and £8.00 to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum order value f 5.

Binders are normally sent within seven days of receipt of your order but please allow up to 28 days for UK delivery - more overseas.

FOR YOUR ENTEERTIAINMMENT by Barry Fox

CELLPHONE CAPACITY

At the end of 1989 subscribers to both BT's Cellnet and Racal's Vodafone cellphone services were complaining about failed calls. Too many people were trying to use too few frequencies at the same time. Because all available frequencies have been allocated, the only answer is to re-use the same frequencies more efficiently, splitting existing cells into smaller cells, either by building extra transmitters or making the beam coverage of existing transmitters more directional.

Cellnet believes that the best way to measure system capacity is to compare the number of subscribers round the country with the number of channels created by frequency re-use. Cellnet's average at November 1989 was 35 subscribers per channel. After spending $£ 200$ million on modifying and adding transmitter sites (to a total of around nearly 800) Cellnet now claims just 17 customers per channel. But in this respect any cellular service is a victim of its own success, and temporarily benefits from a degree of failure. A few years ago Cellnet was earning a reputation for failed calls, which is one reason why Cellnet now has around a hundred thousand subscribers less than Vodafone.

There is currently a 20 percent "churn" of people who start using a cellphone because it is cheap and then discover how expensive it is to use. Cellphones that used to cost over $£ 2,000$ can now be had for a few hundred pounds or even free. This is because the service providers or "wholesalers" who sell the phones, also buy air time from the cellular networks and sell it on to the customer at a profit. Also both networks pay a connection bonus of between $£ 200$ and $£ 250$ to the service provider for every subscriber signed on.

CHARGES

Cellnet charges a one-off connection fee of $£ 50$ for every subscriber signed onto the network. The SP can charge the subscriber what he likes. Sometimes this is the flat $£ 50$, other times $£ 60$. The monthly connection fee is $£ 25$ a month, again the SP can charge what he likes. Some charge f30 a month.

Call rates at peak times are $33 p$ a minute inside the M25 ring, and 25p outside the ring. Off-peak all calls are 10 p a minute. Again the service providers can charge what they like; British Telecom's own subsidiary,

BTMC, charges $27 p$ and $35 p$. Also the subscriber can break up the minute in any way he wants, for instance so that a 61 second call is billed at two minutes.

Cellnet just gives the service provider a data tape, showing each subscriber's usage and the SP collects the money, usually with a 20 per cent or 25 per cent mark-up. This explains why so many firms are now selling cellphones so cheaply. It's the old, give away the razors and make money on the blades, ploy.

Vodafone does not set so much store on the customers-per-channel rule of thumb, arguing that what really matters is getting enough channels in the right place, for instance the M25 where people make calls from a iraffic jam.

Vodafone's current average however is around 22 per channel, with 1991 's investment f 130 million.

Vodafone also makes the interesting point that at the moment network capacity is not a problem for anyone. The recession has slowed subscriber growth, but the infrastructure has kept on growing, like a supertanker that takes miles to slow down. Vodafone reckons that at the moment system capacity is 25 per cent or 30 per cent above customer needs.

The big question for the future is how much further can the network expand, i.e. how small can the cells be split to accommodate more subscribers? Cellnet believes that its current network can cope with one million subscribers,

VIRUS TRAP

Most publishers, of books and magazines, now use an electronic editing system. They then send discs of edited copy to the printers. To save time on copy-keying, the publishers ask contributors to send in their text on floppy disc. The discs are then returned after use.

Recently things took a new and nasty turn. I got a call from a publisher (not the one responsible for this magazine) to whom I submit copy on disc. The whole company had been shut down by a computer virus which had got into its system.
"Be careful with the discs we have returned to you" warned the publisher "we think the virus got into our system from discs which the printers returned to us. They had been infected from discs sent by another magazine. One of those discs may have been yours. So it has been sent on to you".

So far viruses have infected a PC by waiting for the owner to switch on with a disc already in the floppy drive. The PC tries to boot up from the floppy and fails, displaying an error message like "not a system disc". By this time the virus program has run and transferred a copy of itself to the Paritition table of any hard disc in the PC. From then on the virus transfers itself to any floppy as soon as the PC reads its directory. On a preset date (like Michelangelo's birthday for the Michelangelo virus) the virus overwrites the hard disc with random data. The hard disc must then be re-formatted and all programs and data re-loaded from backups.

Any full disc "image" backup of the hard disc will also be infected. Only separate data file backups are safe.

The publisher warned that the virus he
had suffered worked in an even more sneaky way. Once the infected floppy was put into a computer, e.g. to delete old files and save new ones, it transferred to the hard disc. In theory, this should be impossible. In practice I would not want to rely on it.

Virus check programs exist, but there is no guarantee that they will check for a new virus which has been designed to fool a checker. Michelangelo can, for instance, get past Version 1 of Norton's Antivirus. Only Version 2 traps it. Who knows what the next virus will be and what tricks it can play.

So what can people do when they are returned used discs, other than destroy them? I reck on the following is a foolproof plan. Can anyone see any loopholes?

Every time a used disc is returned to me, I now re-format it. But I do not use my workhorse PC, which has a hard disk because I fear there may one day be a virus that can infect before it is wiped out by formatting. Instead I use a cheap portable PC that has only one floppy disc drive and no hard disk; its DOS operating system is permanently stored in ROM. I format the disc and then cold start (Cntrl;Alt;Del) or switch off to clear everything from RAM. So there is nowhere for the virus to hide, and the newly formatted disc is guaranteed clean. So I know I am safe to save to the disc and anyone who takes the disc knows it is safe to read.

If everyone went through this procedure, before exchanging discs, there could be no exchange of viruses - assuming of course that their own workhorse system is clean at the start.

Or am I missing something?
with possible further expansion to 1.5 million, still using only existing frequencies.

DIGITALEUROPEAN

The grand plan was originally that by the mid-90s both networks would be turning to the new all-digital GSM service for which frequencies in the 900 MHz band have already been allocated. This will be a pan-European service which allows subscribers to carry cellphones round Europe, making calls on the move with billing back home. GSM is also more efficient in frequency use. Although the first generation GSM cellphones will transmit and receive speech at $16 \mathrm{~Kb} / \mathrm{s}$ later models will work at half speed, $8 \mathrm{~Kb} / \mathrm{s}$. This makes the system up to six times more efficient in its frequency requirements than the existing analogue system.

But there are significant problems with GSM. Systems are now running in Germany and Finland, but only with test phones. Both Vodafone and Cellnet were committed to launching a commercial

GSM service by mid 1991, later revised to mid 1992. Vodafone has had service trials running in London since December 1991 but GSM receivers are still large and cost around $£ 2000$. Cellnet has now put its GSM service on hold until 1994. In chicken and egg fashion this gives no incentive to provide national cover, which in turn does nothing to create the volume sales of GSM cellphones which will drive down price, size and weight.

Vodafone is pushing harder on GSM than Cellnet, because the company plans to launch a service within a service. MCN, or Microcellular, cellphones will be small hand-portable, built to the GSM all-digital standard and operating on the GSM frequencies. They will work in very small cells, in city areas. So the handsets can transmit at low power, and thus use small batteries. The call tarriff will be lower than for the full Vodafone network, too. In this respect MCN rivals the PCN (Personal Communications Network) system which Mercury and others plan to launch in a year or so. PCN phones will be all-digital, using GSM technology, and rely on small
cells. On the face of things it is hard to see any future for PCN. On the face of things, too, Cellnet has missed a trick on MCN.

If GSM/MCN becomes a commercial success, there will be a risk of congestion on the GSM frequencies. Cellnet and Vodafone will then have to start taking blocks of frequencies away from their analogue service and using them for GSM/MCN digital. The long term theory is that both Cellnet and Vodafone will eventually have converted their full 20 MHz frequency allocation in the 900 MHz band to digital operation.

But all this starts to sound a lot like the long term theory of satellite television, with viewers switching from old PAL to new MAC and later High Defintion MAC. There is an equally good chance that viewers will still be watching PAL well into the next century, perhaps the improved widescreen version, PALPlus. The same thing could happen with cellphones, with the analogue systems still running long after the theorists had predicted a fullscale changeover to digital GSM.

REGULAR-RADIATION

Dear Ed.,

I have had Everyday Electronics now for a number of years and although I have now retired I still get it regularly and make up some of the circuits.

However, I am interested, and I think a number of your readers would be also be interested, in an article on a circuit to detect any radiation leakage from a microwave oven.

Over the past I cannot remember ever seeing an article for this application.
R. S. Cox Dudley
Your wish will hopefully be our command, we will ask one of our contributors to investigate and produce a suitable project. We should however warn you that it will be quite a few months before a design will be published.

AUDIO TELESCOPE

Dear Ed.,

I noticed with interest Mr Penfold's article for an Audio Telescope in the April issue of Everyday Electronics. This is an area of the electronics field which could be very useful to a person in my predicament.

I suffer from a severe loss of hearing in both ears, and as such find it difficult to take part in conversations, debates, etc, the commercial hearing aids available are mostly of little use as they simply pick up
the loudest noise in the vicinity which may not be in the immediate company.

I know from speaking to staff at the local hearing aid clinic that the proportion of people affected by this disability is as high as three out of five.

Do you think any of your contributors could come up with something to help us youngish hard of hearing persons to take part in normal conversations?
G. I. Smith Edinburgh
The Audio Telescope circuit can be used in this way, simply connect up a couple of extra microphones (repeat the circuit of C1, RI, MICl, C2) using twin core screened lead - positive, output and OV screen. Then place each microphone near to the people speaking, in this way you can concentrate on the speech near each microphone. Please let us know how you get on.

KIT IMPORTERS

Dear Sir,

Upon reading your magazine we notice that you have many advertisers selling electronic kits, plans etc.

We have been offered the opportunity to import and distribute a range of products that do not seem to be catered for in this country. These kits and plans include a very wide range of items, from neon driver systems, Tesla coils, plasma bolts, ultrasonic devices, magnetic cannons, etc.

Could you give us the benefit of your
experience as to whether this sort of thing has simply not reached us yet, or whether it is not available because nobody wants it?

Any comments you may have would be very helpful

Brian Cox
Torquay
Over 10 our readers, please let us know if these types of kits/plans would be of interest, we can then pass on the information.

WRONG ADDRESS

Dear Ed.,
As readers of the Interface article are to be encouraged to run some form of control program next month, it would be helpful if the address decoding described in the August '91 issue, page 512 were corrected to:

OUTPUT	ADDRESS	RANGE
0	300 h	307 h
1	308 h	30 Fh
2	310 h	317 h
3	318 h	31 Fh

There are four errors in the table, two of which could cause the wrong chip enables to be active for a given address, which might just throw beginners.

With beginners in mind, I have placed an advert in your magazine, offering to supply the necessary double sided p.c.b., or completed I/O card, allowing people to program the interfaces described by Mr Penfold in his series over the past few years, and hopefully in detail in the months to come. As many column inches have been used to describe the lack of suitable easily available hardware, I would appreciate a mention if Mr. Penfold considers it appropriate.

Richard Bartlett
 Coventry

Mr Bartlett is correct, and the address ranges are as stated in his letter (giving four blocks of eight addresses). Clearly a case of me not knowing my hex from my elbow! Apologies for the careless mistakes in this table. Robert Penfold.

EVERYDAY $\mathbb{N E W S}$

GO-ANYWHERE TELEPHONES

lan Graham reports on future developments in cellular telephones

The portable telephone has become one of the status symbols of the successful modern business person and an essential communications tool to countless companies. From tree surgeons to stock marketeers, the portable telephone enables them to keep in touch when they're on the move.
Until now, there has been little in the way of standardisation in oel. lular telephone technology. Take a British phone to Paris, Bonn, Sidney or New York and it probably won't work. But now, two new systems promise to end the portable phone's national exclusivity. One, called GSM (Groupe Special Mobile), will establish a single common cellular telephone standard throughout the sixteen European countries (see For Your Entertainment for more details - Ed).

World wide system

The second system is the subject of a much more ambitious project which aims to establish a world wide cellular telephone network. And as it doesn't depend on being within range of a ground-based transceiver at all, the same handset should work everywhere from the middle of the Gobi desert to the top of the Sears Tower in Chicago or from a remote village in India to, the developers claim, a space shuttle in orbit! The US manufacturer of the system, Motorola, plans to achieve such universal coverage with its Iridium system by using satellite relays instead of a ground based radio network.
In a conventional cellular system, the operational area is overlaid with a honeycomb of cells, each with its own radio relay station. A telephone anywhere inside the area communicates with the national telephone system through the nearest relay station. If the user walks or drives out of one cell, the call is automatically switched to the next cell. The Motorola system turns this mode of operation on its head. It is the cells created by the orbiting satellites that are constantly on the move.
Communications satellites are normally huge beasts the size of a small house and weighing anything from half a tonne up to 15 tonnes. Motorola plans to use "smart lightsats" weighing no more than 320 kilos. The size and weight are critical because satellites of this size could be launched, both by conventional rocket or space shuttle, but by the Pegasus air-launched rocket system. Pegasus and its payload are launched by being dropped from the wing of a converted B-52 bomber. The Pegasus rocket engine then fires and it soars into orbit. Pegasus has already been testflown into orbit. It made its first and entirely successful launch to orbit with two experimental satellites on-board in April 1990.

Pegasus Launcher

Ideally, to achieve the system goal of coverage of the whole Earth, a few satellites would be placed in high Earth orbit. But that

When placing a call on the Motorola Iridium System, the signal is transmitted from the caller's portable cellular phone directly to the nearest overhead satellite, which in turn sends the signal to an earth "gateway" station that verifies the caller as an authorised user. The call is then routed through the constellation of satellites to its destination anywhere on earth.
would put them out of reach of small handheld telephones: The orbits were therefore moved down to enable them to connect with handheld phones, but not so low that they would be pulled out of orbit by atmospheric drag. The orbits also had to be low enough to come within the Pegasus launcher's capabilities. The Iridium design team finally settled for an orbital height of 765 kilometres (413 nautical miles).

Lower Orbit

Lowering the orbits also meant that more satellites were needed. Motorola chose 77 as the ideal number. This gave the system its name, because 77 is the atomic number of the element Iridium. The swarm of 77 satellites will orbit from pole to pole in seven planes of 77 satellites each. Each satellite will generate 37 antenna beams, each beam corresponding to a single telephone cell. Each cell will be approximately 650 kilometres across. The satellites will not only communicate directly with individual telephones on Earth, but also with each other. Each satellite will link up with neighbouring satellites in its own and adjacent planes. The whole system will connect with Earth-based Public Switched Telephone Networks (PSTNs) through a series of gateways, 20 initially.
Iridium will enable any two points on Earth to be cornnected with a maximum line delay of only 150 milliseconds. This compares very favourably indeed with a telephone call made using satellites in the much higher geostationary orbit (36,000 kilometres). This introduces a delay of 270 mil liseconds between any two points within the one-third of the Earth that each satellite covers. pack is rated at $24 \mathrm{~V}, 4 \cdot 5 \mathrm{Ah}$. 3 hours). towards the end of May if everything goes to plan.

Zero Bike

The Zike recelved plenty of press coverage when it was launched by Sir Clive Sinclair at Cyclex in March, but most of the publicity gave little detail on the technical aspects of the new bicycle.
Production of the Zike represents a number of new solutions to the problems of efficiency, strength, weight and power. The frame is made from high tensile anodised aluminium alloy and Verton, a material which combines long fibre glass and nylon to form an immensely strong and tough structure, Verton was in vented and is made by ICI .
Power for the Zike is derived from a pack of nickel cadmium cells which can be recharged in an hour, these feed a lightweight (850 gms) motor through an electronic controller. The motor uses a newly developed magnet made, by a recent UK process breakthrough, from neodymium-iron-boron. The use of this material results in the lightweight motor which offers a high level of efficiency over a wide range of speeds and loads.
The controller is a newly developed switching type, on which Sinclair Research have filed for patents, it restricts the maximum starting current to the motor via an f.e.t. to 17 A and reduces this as the top speed is reached to around $5 A$, these currents are varied in different control settings. The circuit also provides regenerative braking recharging the battery from the motor when the Zike is being braked. The motor peak power is around 300 W in this circuit and the battery

Both battery and motor are housed inside the central bar of the frame. The controls provide three modes of operation selected by a switch on the handlebars; these modes give full motor power (battery life around 30 minutes), motor power plus light pedelling (battery life around $11 / 2$ hours) and rider power plus motor assistance (battery life between 2 and

The total weight of the bike is 11 kgs - around the weight of a normal "racing" style bicycle. Zike is being made by Tudor Webasto, better known for car sunroofs, and is priced at £499 including the recharger, VAT and post and packing. Mail order delivery of Zikes should start

PICO ADC-10

8-bit Analog to Digital Convertor for IBM PCs \& compatibles - $10-25 \mathrm{kHz}$ typical sampling speed

- 0-5 v input range

+ VAT
(including $\mathrm{p}+\mathrm{p}$)

- Plugs directly into parallel printer port
- Requires no external power or expansion slots - BNC input connector
- Supplied with software to use as a voltmeter \& oscilloscope, plus Turbo C and Pascal drivers

> Pico Technology Limited Broadway House, 149-151 St. Neots Road, Hardwick, Cumbridge CB3 7QJ Tel. 0954211716 Fax. 0954211880

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611
A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE

TM SERIES MULTIMETERS

D-MM Good Value!

The TM series of low cost meters, with $3^{1 / 2}$ digit LCDs, full overload protection, strong ABS case and packed with features. Supplied with test leads, battery and manual.

TM 5315	DC current (10A) continuity and diode test	56.05315	£19.99
TM 5365	Capacitance and frequency (200 kHz) ranges	56-05365	£36.50
TM 5375	Frequency range (20 MHz) and HFE test	56-05375	£36.95
TM 115	AC \& DC current (10A). HFE and continuity test	56-00115	£32.50
TM 135	Capacitance and temp. ranges (inc. probe)	56-00135	£45.95
TM 175	Frequency (15 MHz), capacitance ranges with		
	HFE. diode. continuity and LED test.	56.00175	£53.60
TM8020	$33 / 4$ digit display, frequency (4 MHz). capacitance		
	($40 \mu \mathrm{~F}$). $\mathrm{AC}+\mathrm{DC}$ current to 20 A	56-08020	£54.76
TM8030	$33 / 4$ digit display, frequency (4MHz), temperature		
	(inc. probe). $A C+D C$ current to 20A	56-18030	£59.96
7705	Capacitance meter, 1pF to 20,000uF	56-07705	¢39.82

\section*{BLACK STAR
 Top quality. UK made. frequency counters and generators.

 Jupiter $2010 \quad 2 \mathrm{MHz}$ function generator plus 20 MHz
 Orion PAL TV pattern generator
 $1410 \quad$ Video Monitor Tester
 Meteor $100 \quad 100 \mathrm{MHz}$ counter
 Meteor $600 \quad 600 \mathrm{MHz}$ counter
 Meteor $1000 \quad 1000 \mathrm{MHz}$ counter
 Apollo $100 \quad 100 \mathrm{MHz}$ counter/timer
 Nova $2400 \quad 2.4 \mathrm{GHz}$ counter
 Jupiter $500 \quad 500 \mathrm{kHz}$ function generator Jupiter $2000 \quad 2 \mathrm{MHz}$ function generator
 | $\mathbf{5 6 - 1 2 0 1 0}$ | $£ 233.00$ |
| :--- | :--- |
| $56-01600$ | $£ 269.00$ |
| $56-01410$ | $£ 527.00$ |
| 56.00100 | $£ 128.08$ |
| $56-00600$ | $£ 158.63$ |
| 56.01000 | $£ 209.15$ |
| $56-10100$ | $£ 381.88$ |
| $56-02000$ | $£ 351.33$ |
| $56-00500$ | $£ 129.25$ |
| $56-02001$ | $£ 175.05$ |}

HAMEG 'SCOPES

All Hameg scopes are supplied with two $\times 10$ probes. mains lead. manual and 2 year warranty.

HM203-7
HM203-7
HM205-3
HM604 Digital storage. 20MHz sampling
HM1005 Dual channel. 60 MHz Triple channel. 100 MHz

56-52037 $£ 397.15$ 56-52053 \quad 5716.75 56-56040 $£ 716.75$ 56-01005 $£ 930.60$

Full detalls of all the above are Included in our comprehensive catalogue, $£ 1.70$ (inc. P\&P).
All the above are currently in stock and available for immediate delivery. Standard P\&P £1.20, next day delivery £4.60.

Robert Penfold

THIS month we will consider some PC software topics. First I must apologise for the absence of the train controller program which was promised last month. Due to problems in reading the PC keyboard in the desired fashion, the completion of this program has been delayed. It should be ready for the next Interface article though.

PC Languages

In the past, most computer add-on enthusiasts simply settled for writing software in whatever language was supplied with their computer. This usually meant some form of BASIC. Machine code or assembly language routines could be added into BASIC programs when high operating speed was needed
It is still possible to adopt this approach with the current 16 and 32 bit computers such as the PCs, but there are now numerous other languages available for these computers. These each have their own sets of advantages and drawbacks, and some are better suited than others to the direct control of add-ons in the input/output map.

PD and shareware software is now big business, and there is probably more software of this type for the PCs than for any other computer. There are a substantial number of shareware and PD computer languages available for the PCs. You do not have to delve into this type of software for long before you realise that the quality varies greatly. Some of the languages supplied in this way are decidedly ropy, old fashioned, and difficult to use. At the other extreme, the best can approach the quality of commercial products.

FS Modula-2

FST Modula- 2 is one of the better efforts. It has an editor integrated with the compiler, a "make" program which automates the process of compiling and linking, a makefile generator for use with this, and a linker. There is even a simple execution profiler, to tell you which parts of your program are most used, and where, therefore, optimisation will be of most benefit Unfortunately, there is as yet no source code debugger.
Modula-2 was Niclaus Wirth's attempt to improve and extend his Pascal language. As the name suggests, it allows programs to be written in the form of separately-compilable modules. Compiled modules can be linked into many programs, thus allowing code reuse. A number of pre-compiled library modules are supplied with the compiler. There is also a form of multi-tasking, in that, within a program, several processes can run concurrently. The language version supported by this compiler is described in Programming in Modula-2, 3rd. edition, by Niclaus Wirth.

The compiler incorporates an in-line assembler. This accepts all 8086/8087 instructions, and is useful for such things as port addressing (not provided in the standard language) as well as for speeding up parts of programs. It is also possible to use "foreign" modules written in other languages in FST MODULA-2 programs. This is not necessarily easy, but it can be done.

Producing an EXE file with most languages is a two-stage process. The compiler compiles the source code into object files, and these are then linked into an executable file by a program called a linker. A problem with many shareware compilers is that they do not provide a linker. Microsoft's Link program used to be supplied with MS-DOS, but this is now rarely done. Fortunately, FST Modula-2 is supplied with its own linker

FST Modula-2 normally produces object files in its own format, with a .M2O file extension, but it is also capable of producing standard Intel format OBJ files. The supplied linker can handle both formats, so MS-LINK is not needed.
It is possible to use this compiler on a twin-loppy system with 512 K of memory, but, as always with languages, it is much better to have the full 640 K RAM. A hard disk is also virtually a necessity. All the stages of compiling and linking can be slow and tedious without it, and may need a lot of disk swapping.

Editor

The integrated editor can handle multiple files in multiple windows on screen, the number being limited only by the available memory. Cut and Paste between files is possible. One problem is that it is possible to load one file into two windows at the same time, but the editor is unaware of this and will regard them as two separate files. The compiler and "make" programs can be invoked directly from the editor.
If an error occurs during compiling it is flagged and the editor is invoked wher compilation is complete (or when more than 20 errors have occurred). You can then move quickly between the errors to correct them. Run-time errors are less well handled. You have to use a map file (a utility is provided to generate this) and the address provided by the run-time error handling code to find the line which caused the error. No kind of source code debugging (single stepping, tracing, variable monitoring) is provided.
Unusually for shareware, the documentation is good, but you need to read the DEF files of the library modules to find what they contain and how to use them. There is little instructional material, however, though there are a few example programs. A newcomer to Modula-2 would need a book or two to get started.

This is undoubtedly one of the best shareware languages, and is one that can be strongly recommended. Registration is US $\$ 49.00$, which is reasonable, but credit cards do not appear to be accepted, so bank charges would bump this up quite a bit. Registered users get an extra disk, which includes full source for the library modules.

Port Control

There is a potential problem when trying to use PC languages with your add-ons, and this is simply that not all PC languages give you direct access to the input/output map. It is possible in most cases though, and the simple programs shown here demonstrate direct port addressing. The ports used are those concerned with speaker control. These are used because they present little risk of doing damage, always a consideration in working directly with ports, and because they provide a tangible result without needing additional hardware.
The four programs presented here all do the same thing. They produce a series of descending notes from the computer speaker. Note that these programs are for IBM PCs and true compatibles. On othet machines the port addresses are likely to differ from those used here. The speaker is controlled by using two ports. Port 61 H is the control port. Toggling bits 0 and 1 of this port turns the speaker on and off. Port 42 H is a timer, which controls the pitch of the sound from the speaker.
Turning the speaker on consists of setting bits 0 and 1 of port 61 H without disturbing the setting of the other bits. This is a threestep process. Firstly, the current value of the port must be read into a variable or register, secondly, this value must be bitwise ORed with 00000011 binary (3 hex), and thirdly, this value must be written back to the port. This forms the first part of each program.
The central part of each program consists of two nested loops. The outer loop counts through values from 0 to 50 , setting these values to port 42 H . The higher the value written to this port, the lower the note produced, so this loop produces a series of descending tones. To produce ascending tones, you would just have to alter the loop to count down from 50 to 0 .
The inner loop is a crude delay loop. These programs were developed on a venerable Amstrad PC1512, largely for the benefit of its volume control! This is a slow machine by modern standards. To appreciate the full melodious charm of these programs, you may need to increase the number of times round the loop for faster machines.

The final part of the program turns the speaker off. This is essential. The sound will not stop at the end of the program if this
is not done. The method is similar to turning the speaker on, except that the value read from the port is this time ANDed with the one's complement of 00000011 binary. This is obtained with the NOT function in assembler, Pascal and Basic. C has a one's complement operator, the tilde.
The assembler listing is commented, but the others are not, as it should be pos-
sible to follow them from the description above. These programs were written using Microsoft languages. I used Quick Assembler, Quick C, Quick Pascal and the QBasic interpreter supplied with MS-DOS 5.0. The Basic listing should also be usable with Quick Basic. The Pascal listing should be usable with Turbo Pascal, as Quick Pascal follows this standard.

The C listing may be usable with other versions, as C tends to be well standardised now. Points to check are the syntax and variable types in the inp and outp functions, the header file needed to use them, and whether a pragma is required. The assembler listing should be usable with MASM and with other assemblers which follow this standard.

SOUND PROGRAMS

;SOUNDS.ASM in/out demo program .MODEL tiny .DATA		
control	EQU 61H	; Port to turn speaker on/off
pitch	EQU 42 H	; Timer port controlling pitch
on	EQU 00000011 b	; Bits 0 and 1 turn sound on
CODE STARTUP		
in	al, control	: get current setting
or	al,on	; to turn speaker on
out	control,al	; write value to port
mov	al,0	; start at a high pitch
beep:	out pitch,al	; send byte to timer
mov	cx, 5000	; crude delay loop
delay: loop delay icrude delay		
inc	al	; reduce the pitch
cmp	al,50	; arbitrary ending pitch
jne	beep	; loop for next pitch
in	al,control	; read value from port
and	al, NOT on	; to turn the speaker off
out	control,al	; write value to port
.EXIT ;generates exit code		
END		

-SOUNDS.BAS direct port access demo program
CONST control $=\& \mathrm{H}_{61}$
CONST pitch $=8 \mathrm{H} 42$
CONST turnon $=\& \mathrm{H}_{3}$
DEFINTA-Z
portval $=$ INP (control)
portval $=$ portval OR turnon
OUT control, portval
FOR note $=0$ TO 50
OUT pitch, note
FOR delay = 1 TO 1000
NEXT delay
NEXT note
portval $=$ INP (control)
portval $=$ portval AND NOT turnon
OUT control, portval
/* sounds.c \%
/" ports demo program */
\#include <CONIO.H >
\#define control 0x061u
\#define pitch 0x042u
\#define on $0 \times 03 \mathrm{u}$
void main()
\}
int portval;
int counter;
int note;
portval $=$ inp (control);
portval $\mid=$ on;
outp (control, portval);
for (note $=0 ;$ note $<50 ;$ note ++)
\{
outp (pitch, note);
for (counter $=0$; counter <1000; counter ++);
\}
portval $=\operatorname{inp}($ control $)$;
portval \& = ~on;
outp(control, portval);
)

program sounds;

\{Demonstrates direct port access. For QuickPascal 1.0 and
Turbo Pascal 5.0 and later (may work on other versions) \} const
control $=\$ 61$;
pitch $=\$ 42^{\prime}$;
on $=\$ 03$;
var
counter : integer;
note: integer;
portval : byte;
begin
portval : = Port[control];
portval : = portval OR on;
Port[control]:= portval;
for note : $=0$ to 50 do
begin
Port[pitch] : = note;
for counter: $=0$ to 1000 do \{nothing\};
end;
portval:= Port[control];
portval $:=$ portval AND NOT on;
Port[control]:= portval;

Constructional Project

CORDLESS DRILL CHARGER/PSU

MARK DANIELS

This unit allows cordless electric drills to be recharged from, or used with, a 12V d.c supply, e.g.a carbattery.

RECHARGEABLE cordless drills are extremely useful where no mains power is available. They do however suffer from one serious drawback - a fully charged battery will only give a few minutes drilling power.

With most of the professional models it is possible to remove the battery pack and fit a second fully charged one in its place in order to extend the working time. However, many of the DIY versions such as the popular Black and Decker SC522R have the battery pack built into the machine and exchanging the discharged pack for a fully charged one is not really possible.

OPERATION

The circuit described here is used to temporarily replace the existing mains charging unit and also to eliminate the built-in battery pack of the cordless tool. Operation of the unit is from any stable external 12 V d.c. source (e.g. car battery).

When the drill is in use with the unit connected power for the motor is drawn from the external power source and the voltage dropped to an average level suitable for the motor. Under these conditions no power is drawn from the internal battery pack by the drill.

The circuit also provides for recharging of the drill's battery pack from the car battery, at a trickle rate of around 50 mA . Although the charger is not a true constant current source and its output may vary somewhat in use it is sufficiently close to this for the present needs, when used with a battery pack not exceeding 7.2V (six cells).

The drill may be kept on constant charge from the car battery and ready for use any time and anywhere. It is especially useful for anyone whose car is kept some distance from the house or anywhere else an extension cable for mains powered tools is not practical.

SWITCHMODE

The complete circuit diagram for the Cordless Drill Charger/PSU is shown in Fig. 1. The circuit is best described in two separate parts - the "chopper circuit" and the "charging circuit" which is enclosed by dotted lines.

The chopper circuit, which could be likened to a very simple form of switchmode power supply (but without the output inductor), is based around a variable pulse width astable multivibrator, the heart of which is the 555 timer, ICI. The 555 in

its astable mode is normally set up to give an almost equal mark-space ratio, see Fig. 2a.

If, for simplicity, we connect a load resistor between the output pin (pin 3) of ICl and ground $(0 \mathrm{~V})$, when the output is switched on the load resistor will have a power in it of $V 2 / R$; where V is the voltage across the resistor in volts and R is its resistance in ohms. When the output is switched off V becomes zero and obviously V^{2} is also zero thus making the power in the resistor zero.

COMPONENTS

Resistors

Potentiometer

> VR1 $22 k$ sub-min preset, horizontal

Capacitors

C1	100 n polyester, 5 mm pitch
C2	100 n polyester, 5 mm pitch
C3	100μ radial elec. 25 V
C4	470μ radial elec. 16 V

Semiconductors

D1, D4.
D5 $\quad 1$ N4001 1 A rectifier (3 off)
D2, D3 1 N4148 signal diode (2 off)
TR1 ZTX750
TR2 2N3055
IC1 555 timer

Miscellaneous

FS1 10A 20 mm fuse and p.c.b. mounting fuseholder
PL1 $\quad 2.5 \mathrm{~mm}$ standard cable mounting Power Plug
SK1 $\quad 2.5 \mathrm{~mm}$ standard chassis mounting Power Socket
Case, size; $129.5 \mathrm{~mm} \times 91.5 \mathrm{~mm} \times$ 70 mm (Ventilated); TO3 heatsink $4 \cdot 2^{\circ} \mathrm{C} / \mathrm{W}$; wire (2 core $2.5 \mathrm{~mm}^{2}$ flex, 2 core $1.5 \mathrm{~mm}^{2}$ flex, single flex); insulated battery charger clips (2 off); p.c.b. pins (3 off); 0.110 in . crimp terminals (4 off); solder etc.

Printed circuit boards available from EE PCB Service, code EE793, Chopper and Charger boards.

Fig. 1. Circuit diagram of the Cordless Drill Charger/PSU.

Fig. 2 (below). Various mark to space ratios.

The average power dissipation in the load resistor will be $1 / 2 \times V^{2} / R$ if the mark-space ratio is equal. This is therefore equivalent to using a supply voltage of half the input voltage to the chopper.
A circuit of this type has the very significant advantages of low output impedance and low power loss, making it economical and cool running. Referring to Fig. 2 it may be seen that the markspace ratio does not have to be equal and we may achieve any desired output voltage between zero and the input voltage merely by altering the mark-space ratio. Fig. 2 b shows a high mark-space ratio which will give very close to the input voltage, while Fig. 2c shows a very low ratio giving an average output voltage of little more than 0 V .
Because no output inductor is used in this circuit, the pulses produced will have a peak voltage very close to the supply voltage and with the addition of a rectifier and a smoothing capacitor to the output it is possible to retrieve the input voltage at the output whatever the mark-space ratio, so long as only small currents are drawn (or a very large capacitor is used).

CIRCUIT DESCRIPTION

The circuit is based on a 555 which is configured to give any desired mark-space ratio, by use of "steering" diodes D2 and D3 in the RC timing network. By use of these diodes it is possible to use separate resistors of different values for the charge and discharge of the timing capacitor, Cl .
The mark-space ratio is equal to the ratio of (VR1 + R2) to R1. Preset VR1 is included to make the mark-space ratio adjustable in order that the average output voltage may be set to suit the tool being supplied.
The output of ICl at pin 3 drives the base of the pnp transistor TR1, which is configured as a common emitter amplifier stage having both current and voltage gain. Resistor R3 limits TR1 base current to a suitable level.
The collector of TR1 drives the base of the power transistor TR2, which is connected as an emitter follower stage, giving high current gain but only unity voltage gain. Diode D4 gives protection to TR2 against voltage spikes and back e.m.f. from the drill motor.
Diode D1 and fuse FS1 protect the circuit from incorrect supply polarity and overcurrent. Capacitors C2 and C3 are
used for decoupling and protect ICI from false triggering due to spikes.
Diode D5, resistor R4 and capacitor C4 are fitted inside the drill and provide a smooth, current regulated charging supply for the battery pack. D5 prevents the drill motor from taking power from the internal battery pack and also from discharging capacitor $\mathbf{C 4}$ which smooths the raw chopped d.c. supply to R4, the current limiting resistor. The switch on the charging socket automatically disconnects the internal battery from the motor when the plug is inserted.

DRILL MODIFICATIONS

Before constructing this project it would be as well to dismantle the cordless power tool to be modified in order to determine whether and where the bits will fit. If the SC522R is being modified, reference to Fig. 3 will show the necessary details, which may also be helpful in connection with other machines.
On this model it is necessary to turn the battery pack around to create the space for mounting the power socket and small charging p.c.b. This may be done by first disconnecting the four leads from the battery pack and lifting it out. Drop it back in place in the new position and mark where

the power inlet socket is to go using Fig. 3 as a guide.
Remove the battery pack and place it on one side. Drill the two mounting holes and the hole for the plug, but do not fit the socket at this stage.

Remove the two battery leads from the drill switch by inserting a needle into the wire connector and gently levering the wire gripper to one side (Fig. 4 shows the internal details of this part of the switch),

Fig. 3. Modification to the SC522R drill.
pulling the wire out. Fit two new longer wires to the switch by solder "tinning" the twisted strands and gently pushing the ends into the switch terminals which will automatically grip the wires.

CONSTRUCTION

The Cordless Drill Charger/PSU is built on two printed circuit boards (p.c.b.s), the smaller one being housed inside the drill handle. These boards are available from the EE PCB Service, code EE793 Chopper and Charger

Assemble the smaller p.c.b. first, as shown in Fig. 5, fitting diode D5 last. The use of solder pins is strongly recommended for ease of connection between the board and socket when fitted. Fit two M2 $\times 12$ screws through the two small holes drilled in the drill handle and drop the socket onto them, the p.c.b. is then fitted onto these two screws before the washers and nuts are fitted and tightened.
The p.c.b. may be fitted remote from the socket at any convenient point inside the drill if required. It may be necessary to trim the board to fit or even re-design it if space is limited.
Make the connections between the p.c.b. and socket using thin connecting wire as shown inset in Fig. 3. All other connections must be made using wire rated at a minimum of 10 A . Route all wiring neatly, following the layout diagram of Fig. 3, while taking care to ensure that it will not foul anything when the case is reassembled.

Connections to the battery pack may be made as originally using crimp terminals or by soldering to the tags on the batteries. Do NOT solder directly to the batteries as this may easily damage them.
The drill case may now be re-assembled and the drill checked for normal operation.

EE 53816

Fig. 4. SC552R switch connection.

CONVERTER/ CHARGER

All the components for the converter are mounted on a single-sided glass fibre printed circuit board, the component overlay and copper foil pattern for which are shown in Fig. 6.

Fit the three resistors, three capacitors and preset potentiometer to the board followed by the three diodes, TR1 and ICI. A socket should be used for ICl and will prevent the risk of heat damage to this i.c.

The fuseholder for FSI may now be fitted followed by the power transistor TR2 and its heatsink. No isolating kit is used here and the transistor is merely bolted to the heatsink and p.c.b. using a small quan-

tity of heatsink compound between the transistor and heatsink.
The use of M3 $\times 12$ panhead screws and nuts are recommended with M3 plain washers between the screw heads and p.c.b. Three solder pins are inserted in the board to take leads to the external connections. Solder pins are virtually essential in this application due to the very heavy connecting wires. Fit ICl into its socket and mount the p.c.b. in its ventilated case.
Twin $2.5 \mathrm{~mm}^{2}$ speaker cable is used for connecting the unit to the car battery via two large crocodile clips. Up to 5 metres of cable may be used. Anything longer than this may cause an unacceptable voltage drop due to cable resistance, unless thicker cable is used.
Between the converter unit and the plug
for the drill thinner $1.5 \mathrm{~mm}^{2}$ twin core cable is used and this run must be kept as short as possible, preferably no more than two metres. If the plug PLI can accommodate thicker flex then the length may, conceivably be extended. Secure the two cables so that they will not pull on the terminal pins when the unit is in use.

TESTING

Connect the converter unit to a car battery observing polarity and measure the output voltage at PLI. Adjusting preset VRI should cause some variation in the output voltage if an analogue meter is used. A digital meter may be confused by the switched d.c. and not give true readings.

Turn preset VRI fully anti-clockwise
and connect the converter to the cordless drill, which should run when switched on. Adjust VRI to give the normal operating speed of the drill, (or slightly higher if required). Perform a full operational test with the drill under load to ensure that the torque is adequate and that transistor TRI does not get too hot.

If the drill does not produce full torque a reduction in operating frequency will most likely cure this, which may be achieved by fitting a larger capacitor in place of C2. Up to about $1 \mu \mathrm{~F}$ should be perfectly all right. If TRI is getting too hot under load it may be necessary to fit a larger heatsink.

Once everything is working correctly the case may be assembled and labelled up, before putting the unit into full service. \square

Typefit 0202882299

A full Typesetting program for your computer for a fraction of the cost of other quality Typesetting programs. $£ 225$ plus VAT gives you over 200 fonts to choose from. Please telephone for more information

\&1 BARGAIN PACKS

In fact, cheaper than $£ 1$ because if you buy 10 you can choose one other and recelve it free.

5-13A SPURS provide a fused outlet to a ring main where Ni FIEX swiTcmes wh meon ondotl lights, saves leaving A-N FLEX SWITCMES with neon

2-6V 1A MAINS tranaformers upright mounting with fixing clamps. Order ret. 9.
$1-8 \% /{ }^{\prime \prime}$ SPEAKER CABINET ideal for extenslons, takes our speaker. Order ref. 11.
12-30 WATT REED SWITCHES, it's surprising what you can make with these-burglar alarms, secret switches, relay, etc. Order rel. 13
2-25 WATT LOUDSPEAKERS two unit crossovers. Order rel
2-NICAD CONSTANT CURRENT CHARGERS adapt to charge Imost any nicad batery, Order ret 30 .
2-hUMIOITY SWITCHES, as the air becomes damper the membrane stretches and operates a microswitch. Order ref.
-13A ROCKER SWITCH three tags so on/oth, or Change over ith centre off. Order ref. 42

1-24HR TIME SWITCH, ex-Electricity Board, automatically adjust for lengthening and shortening day. Original cost $£ 40$

1- MINI UNISELECT OR, one use is for an electric iligsaw puzzle, we give circuit diagram for this. One pulse into moto
moves switch through one pole. Order ret. 56
2-FLAT SOLENOIDS - you could make your multi-tester read
1-SUCK OR BLOW OPERATED PAESSURE SWITCH, or it can in water tanks. Order rel. 67 .
1-MAINS OPERATED MOTOAS with gearbox. Final speed 16
pm, 2 watr raled. Order ref. 91.
1-6V 750 mA POWER SUPPLY, nicely cased wilh mains input and 6 V output leads. Order ref. 103A.
2-STRIPPER BOAROS, each contalns a 400 V 2 A bridge ectifier and 14 other diodes and rectitiers as well as dozens condensers, etc. Order rel. 120.
10 m TWIN SCREENED FLEX with white pvc cover. Order ref
12.VERY FINE DRLLIS for $\rho C b$ boards etc. Normal cost about 0p each. Order ref. 128
2-PLASTIC Boxes approx in cube with square hole throug 5. MOTORS FOR MODEL AEROPLANES, spin to start so needs no switch. Order re1, 134
6-MICROPHONE INSERTS - magnetic 400 ohm also act as speakers. Order rel. 139.
4-REED RELAY KITS, you get 16 reed switches and 4 coil sets with notes on making clo relays and other gadgets. Order rel 146.

6-SAFETY COVER for 13A sockets - prevent those inquisitive little fingers from getting nasty shocks. Order ref. 149 6. Neon Indicators in panel mounting holders with lens. Order et. 180
1-IN FLEX SIMMERSTAT - keeps your soldering iron etc.

1. MAINS SOLENOID, very powerful as $1 /$ " $^{\prime \prime}$ pull or could push it modified. Order rel 199
10-KEYBOARD SWITCHES -made for computers but have many other applications. Order ret. 201.
1-ELECTRIC CLOCK, mains operated, put this in a box and you
4-12V ALARMS, makes a noise about as loud as a car horn. All brand new. Order rel. 221
2-6" X 4" SPEAKERS, 4 ohm made for Radiomobile so very

parallel to make a high wattage column. Order rel. 243.
2. PANOSTAT, controls output of boilling ring tromsimmer up to

0-LEADS with push-on $1 / 4$ tags - a must for hook ups - mains
connections etc. Order ret. 259.
2.OBLONG PUSH SWITCHES for bell or chimes, these can witch mains up to 5 amps so could be foot switch if fitted into pattress, Order rel. 263
1- MINI 1 WATT AMP for record player attached to unit that will $3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ deep-standard electrical. Order ret. 283.
SO-MIXED SILICON DIODES. Order ret. 293
1-6 DIGIT MAINS OPERATEO COUNTER, Cbinderd size but
1-IN-FLIGHT STEREO UNIT. Has 2 most us eful mini moving coil speakers. Ex BOAC. Order ref. 29 2-SV OPERATED REED RELAYS, one normally on, other normally closed. Order ref. 48.
2-PLUG IN RELAVS with 3 changeover contacts. Coll operated by 12 V DC or 24 V AC. Order ref. 50
1-CABINET LOCK with 2 keys. Order ref. 55
-DOLLS HOUSE SWITCHES or use them for any other low
1.MAGNETIC ERAKE for stopping a motor ge rolating loo 8. 66.
1.TIMER REMINDER. Set it for anything up to 60 minutes.

1-SHADED POLE MAINS MOTOR, t" stack so quite powerlul. Order ref. 85.
2-5" ALUMINIUM FAN BLAOES. Could be fitted to the above

BARGAIN
 AMSTRAD 25 W POWER SUPPLY UNIT. This has a rectified and

popular rating for it is 12 V at 2 A dc. This is a useful voliage for many projects and one non-electronic use is to power garden lighting halogen tamps. The untt is cased and has an internal fuse A really robust unit, price £6. Order Ref. 6P13B ARE YOU BUILDING A SPECIAL VOLTAGE SUPPLY? If so, and providing it's no more than a 10 VA unit. Then the Mullard 9003 unit
might be just what you need. This is a plastic encased unit with mains input lead into a double wound mains transformer, the low voltage winding of which is on separate sections and is easy 10 modity. The primary is fitted with an over-heat thermal switch to prevent burn out. The secondary is the one you can alter. Very easy to take off turns until you get to the voltage you require. This
can be anything from 3 V to 18 V . Contained within the 9003 are 4 can be anything from $3 V$ to 18 V . Contained within the 9003 are 4 voltage regulator if you need I. Price of the 9003 is $£ 2$. Order Ref. voltage
2P80B.
POP IN THE SEEDS AND STAND CLEARI - not quite but it's surprising what heat under seed boxes will do to the germination time. You don require a 1 or heat and you could make a warm bed for 6 seed boxes with our Rel. SP 109 walpre bill and you can almost see the seeds germinating The price of 5P109 is £5.
KEEP THE AIA MOVING - greenhouse experts say this will considerably reduce leat mould and other ptant problems. We have a real bargain offer, a double outlet extractor blower, powered by a central mains motor. This will extract or blow in
depending on which way you mount it. Regular price probably $£ 25$, depending on which way you mount it. Regular price probably
yours for $£ 10$. Order Ref. 10 P84B.
CLEAR THAT SMOKE - according to a 'Which' report, many
ionisers available trom chemists and similar heve such a po output that they are next to useless. Our ioniser kit. however, use mains transformers and is so powerful you can feel the ion output on the back of your hand and it will clear smoke in seconds. Complete, cased kit. price £6. Order Ref. 16P5.
DON'T LOSE YOUR LICENCE. Our electronic breathały ser gives clear and accurate measurement. Blow into it and the meter
records the maximum alcohol content of the exhaled breath Completely made up and operates from internal batteries or from car cigarette lighter socket. Price $£ 9.95$. Order Ref. 10P83B. MAINS RELAY. 4 -pole changeover, gold plated, 8 A contacts. Price £2. Order Ref 2 P144
WHITE CEILING SWITCH. Crabtree, 5A 2-way surface mounting, complete with cord and rassel. E1. Order Ref 528.
ELECTAICAL PROGRAMMER. Learn in your sleep, have radio playing and kettle boiling as you wake, or switch on lights to ward
off intruders, or have a warm house to come home to witho leaving the heating on all day. Will handle up to 25 A as well as being a clock. Beautiful unit, only $£ 2.50$. Order Rel 2P5/1. TELEPHONE BELLS. These will work off the standard mains,
through a transformer, reduced to 50 V . 2 for $\mathrm{£1}$. Order Ref 600 SUPER STRIPPER. Cassette drive unit, mounted on a metal chassis. Main items are: a high efficlency, battery-oper ated motor $1 / 2 \mathrm{~V}$ to 9 V , easy to reverse; a solenoid, 9 V operated cassette reco head and erase head; he avy brass tly wheel to give additional semiconductor, would operate a tape counter, All this for £1. Order Ref 803 B .
POWER CONTROL UNIT. Mounted on a heavy gauge metal panel are two 10A trip switches. a pilot light to indicate mains on, a contactor with two sets or contacts for heavy duty switching and two other sets of changeover contacts. This power unit was part o a 230 V computer power supply sysiem but all the parts are easily
removable and it is a really super stripper. Yours for $£ 5$. Order Re 5P180B.
AUDAX 8 INCH PTM SPEAKER. 5 walt loading 15 ohm coil, so four in parallet would be suitable for a 20 watt column. Only $£ 1$ each Order Ref 504.
POWER SUPPLY WITH EXTRAS outpu: 12V 1A, malns input is fused and filtered and 12 V output is voltage regulated, very well made on p.c.b., and also mounted on the board but easily remove are two $12 V$ relays and a Piezosounder. Made for expensiv
equipment but never installed, price $£ 3$. Order ref. 3P8OB. 12 VOLT 1.9 AMP-HOUR rechargeable battery by Jap YUASHA brand new, charged ready for use $£ 6.50$ each. Solar charger to house this and keep it ready $£ 29.50$.
100 WATT MAINS TRANSFORMERS all normal primaries: $20-0-20 \mathrm{~V} 21 / 2 \mathrm{~A}, 30 \mathrm{~V} 31 / 2 \mathrm{~A}, 40 \mathrm{~V} 21 / 2 \mathrm{~A}$ and 50 V 2 A secondaries al upright mounting, all $£ 4$ each, good quantities in stock. PHILIPS $9^{\prime \prime}$ HIGH RESOLUTION MONITOR black and white in metal frame for easy mounting, brand new stlll in makers packing.
offered at less than price of fube alone, only $£ 15$ plus $£ 5$ delliverygood discount for quantities.
18 CHARACTER 2 LINE DISPLAY screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm}$ Alpha-numeric LCD dot matrix module with integral micro-
 £70, 100 for $\mathbf{~} 500$
INSULATION TESTER WITH MULTIMETER internally generates voltages which enable you to read Insulation directly in megohms. milliamps, 3 ranges resistance and 5 amp range. These instruments are EX British Telecom, but in very good condition, tested and gntd. OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$ with leads, carrying case $£ 2.00$ extra.
BRUSHLESS D.C. 12 V FAN tiny, only 60 mm square, good air mover out caus ic ilererence 88.0
2MW LASER Hellum Neon by PHILIPS, full spec, £30, power supply for this in kit form with case is $£ 15.00$, or in larger case to house tube as wellit.
complete with laser tube $£ 69$ plus $£ 5$ insured delivery.
MAINS 230 V FAN best make "PAPST" $41 / 2$ " square, metal blades $£ 8$. SOLAR CHAR GER holds 4 AA nicads and recharges these in 8 hrs, in very neat plastic case 66 .
SOLAR CELLS with terminals for joining in series for higher volts or
parallel for extra current: $100 \mathrm{~mA} £ 1,400 \mathrm{~mA} £, 700 \mathrm{~mA} £ 2.75,1 \mathrm{~A} £ 3.50$ parallel for extra current $100 \mathrm{~mA} £ 1,400 \mathrm{~mA} £ 2,700 \mathrm{~mA} £ 2.75,1$ A $\mathfrak{l} .50$, AIR SPACED TRIMMER CAPS 2 -20pf ideal for precision tuning uh circuits 25p each, 10 for $£ 2.100$ for $£ 15$.
MINI MONO AMP on pCb size 4 " $\times 2$ " with front panel holding
volume control and with spare hole for switch or tone control volume control and 4 watt into 4 speaker using 12 V or 1 watrol using 9 V . Brand new and perfect only $£ 1$ each or 12 for $£ 10$. 5 RPM GOW MAINS DRIVEN MOTOR AND GEARBOX this has a $3^{\prime \prime}$ square mounting plate and is $4^{\prime \prime}$ deep. It is a shaded pole moto Price $£ 5$.
POWER SUPPLY UNITS mains in, dc out. based 4.5 V 100 mA regulated $£ 1,6 \mathrm{~V} 200 \mathrm{~mA}$ regulated $£ 1,6 \mathrm{~V} 700 \mathrm{~mA} £ 1,9 \mathrm{~V} 500 \mathrm{~mA} £ 2$. 12 V 2 A E6. 24V 200 mA E2
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and outpu plo . 5 R PPPY DRIVE 26 each
(
ATARI $64 \times$ X COMPUTER at 65 K this is quite powertul so suitable lor home or business, unused
£19.50. Handbook $£ 5$ extra

9 " CATHODE RAY TUBE Philips M24/306W, which is not only high resolution but is aiso X-ray and implosion protected, regular price unused.
80 WATT MAINS TRANSFORMERS two available in good quality. both with normal primaries and upright mouning, one 20 A it other 40V 2A only $£ 3$ each or 10 for $£ 27$ carriage paic. PRONECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / "^{\prime \prime}$ metal, sprayed grey,
louvred ends for ventilation otherwise undrilled made for GPO so best quality, only $£ 3$ each or 10 for $£ 27$.
 el each or 10 for $\mathrm{E9}$ plamt spray or would control air or gas into tanks etc, i1 each or 10 for $£ 9$.
HANG UP PHONE won't clutier up your desk or workbench, curren model, has pushbutton dialling, last number recall, internal alarm etc., Ex B.F. HIGH VOLTAGE CAPS if you use these ask for our $1-20 \mathrm{kV}$ Capac ilst. we
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detalled instructions, will make ideal presen for budding young electrician. Should be able lo assemble but you may have to help
Complete kit CB .95
500 V BRIDGE MEGGER developed for G.P.O. technicians the Ohmeter 188 is the modern equivalent of the bridge meggar. 9 V
battery operated it incorporates a 500 V generation for insulation testing and a null balance bridge for very accurate resistance measurement. Ex B.T. in quite good condition with data \&
tested. Yours for a faction of original cosl $£ 45+£ 5$ insured dellvery. EXPERIMENTING WITH VALVES don't spend a fortune on a mains transiormer we can supply o. .in standard of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3 A . price $£ 5$.
15 WATT 8 OHM $8^{\prime \prime}$ SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinue ULTRASONIC TRANSMITTERIRECEIVER with Piozo alaim, buit ULTo preformed ase is trisered by movement disturbing, buil Into preformed case, is trigpered by movement disturbing
reflected signal, intended for burglar alarm, car alarm, many extras, time delay, auto reset. secret oll device etc. A 40 instrument yours for $£ 10$.
MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle. door way, window, stair way, etc. etc. Complete with plezo shrieker, ready to use. Only £2 (PP3 battery not suppliod) STEREO HEADPHONE extra lightweight with plug $£ 2$ each or 10 pairs for I 1
8.T. TELEPHONE LEAD 3 m long with a B. T. flat plug ideal to make WATER PUMP very powerlul and with twin outlets, malns
operated, £10.
STUDIO 100 by Amstrad, the ultimate disco control panel, has four separately controlled and metered channels, twin cassettes, AM/FM radio, stereo audio amplifier, phone \& C. D. inputs, etc, etc regular price over $£ 400$ we have a lew still in maker's packing. brand new and guaranteed, yours for £99
ROTARY POSITION CONTROLLER for aerials, ventilators dampers, or applications requiring 180 degrees clockwise and motor drive ref AR30W3S regular price over $£ 70$ brand new, $£ 15$ each.
12 VOLT 8 AMP MAINS TRANSFORMER \&4.
110 WATT SWITCHMODE POWER SUPPLY 230 V mains operated, outputs of $38 \mathrm{~V} 21 / 3 \mathrm{~A}$ and 5 V 3 A . we have a lot and need the space so you hails Thansponme 10VA MAINS TRANSFORMERS all p.c.b. mounting, all $£ 1$ each, 10 order ref WA3, 18-0-18V not p.c.b. mounting but fully shrouded same price. Order ref WA4.
0-1mA FULL VISION PANEL METEA 23^{3} " square, scaled $0-100$ but scale easily removed for re-writing $£ 1$ each. 10 for $£ 9,100$ for $£ 75$. 5 AMP PANEL METER $80 \times 70 \mathrm{~mm}$ beautiful instruments 55 each. Order ref WAT
VU METER illuminate this from behind becomes on/oll indicator
ss well, $11 /$ " square 75 p each, 10 for $£ 6,100$ for $£ 50$. as well, $11 /{ }^{\prime \prime}$ " square $75 p$ each, 10 tor $£ 6,100$ for $£ 50$.
EDGE-WISE PANEL METER ideal when shorl of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in f.s.d., $500 \mu \mathrm{~A}$ i s.d.. scaled $0-5, \S 1$ VIERATINO REED FREOU
VIBRATING REED FREQUENCY PANEL METER 4 " square. $55-65 \mathrm{~Hz}$, only $£ 9$ each.
LOW PRICED FIELD TELEPHONES. EX-GPO models, not quite so the ringing is done by means and have the big advantage generator. This saves a lot ol batheries. These 'phones have the normal type of rotary dial built in and can still be connected into a normal B.T system. Tested ouaranteed in peod ordertorice a 29.50 each. Order ref 9P5

HANO GENERATORS as fitted in the above field telephones, this hand generator is a permanent magnet type and has an $A C$ output
of approximately 50 V depending on how quickly you wind it. If you want a higher voltage then simply connect the output to a transformer. We have lit a 60 watt bulb quite successfully. The DRY BATTERTES CAN EE RECHARGED but not with normal c. charger, it must be a periodic current reversal type. We can supply the kit, with data. £9. Order ret 9P10.
SUPER MULTI-METER Ex British Telecom, this is a 19 -range 20 K o.p.v. top grade instrument, covers AC \& DC voltages, current and resistance, very good condition, fully working and complete with
leads $£ 9.50$. Ieather carrying case $£ 2$ extra (batteries not included leads $£ 9.50$, leather ca
but readily avallable).

but readily available).

SOLAR ENERGY EDUCATIONAL KIT. An ideal present for electronics sludents. It shows how to make solar circuits and use solar power to work a radio, calculator, cassette player and to charge nicad batteries, The kit comprises 8 solar cells, one solar motor, fan blades to fit motor and metal trame to hold it to complete a free-standing electric fan. A really well written Instruction manual makes this a lovely little present Price CB. Order rel 8P42B.
WANT TO KNOW HOW FAST IT'S TURNING? Made by the famous Mairhead Company, we have DC tachometer generators which have an output voltage depending upon its speed. At 1000 rpm for Order ref 246 .
Prices include V.A.T. Send cheque/postal order or fing and quote credit card number, Add $£ 3$ post and packing. Orders over $£ 25$

M \& B ELECTRICAL SUPPLIES LTD
12 Boundary Road, Hove, Sussex BN3 4EH Telephone (0273) 430380 Fax (0273) 410142

SPECIALEVERYDAY ELECTRONICSBOOKS

ELECTRONICS TEACH-IN 88/89
INTRODUCING MICROPROCESSORS
Mike Tooley BA (published by Everyday Electronics)
A complete course that can lead successful readers to the
award of a City and Guilds Certificate in Introductory award of a City and Guilds Certificate in Introductory
Microprocessors $(726 / 303)$. The book contains everything you need to know including full details on registering for assessment, etc.
Sections cover Microcomputer Systems, Micro-processors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data chips. An excellent introduction to the subject even for those who do not wish to take the City and Guilds assessment.
80 pages (A4 size) fertibicotimitis 8: $£ 2.45$

ELECTRONIC PROJECTS BOOK 1
Published by Everydav Electronics in association with Magenta Electronics
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe Digital Capacitance Meter, Three Channel Sound to Light B8C 16 K sideways Ram, Simple Short Wave Radio, Insulaion Tester, Stepper Motor interface, Eprom Eraser, 200 MH Digital Frequency Meter, Infra Red Alarm EE Equaliser

Ioniser, Bat Detector. Acoustic Probe, Mainstester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights. Chaser Light), Musical Doorbell, Function Generator, In Alarm, Metal Detector BBC Midi Buccaneer Induction Balance Supply, Pet Scarer, Audio Signal Generator.

ELECTRONICS TEACH-IN No. 3 - EXPLORING ELECTRONICS (publ ished by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. The book does not contain tions and circuits to build and experiment with.
Exploring Electronics contains more than 25 useful Exploring Electronics contains more than 25 usefu is split into 28 easily digestible sections. $\quad \mathbf{E 2 . 4 5}$

ELECTRONICS TEACH-IN No. 4
INTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Michael J. Cockcroft
Although this book is primarily a City \& Guilds Introductory level course ($726 / 301$), approximately 80% of the informa
tion forms a very basic introduction to electronics in general it therefore provides an excellent introductory text for begin ners and a course and reference book for GCSE students. Full details on registering for C\&G assessment, details of assessment centres, components on the course in general are given.
The City \& Guilds infroduction to module 726/301 reads: A candidate who satisfactorily completes this module will have a competence to identify basic components and digital working circuits and logic units." This provides an excellen introduction to the book. 112 pages ($A 4$ size) [नाहास cinde तl4

ELECTRONICS TEACH-IN No. 5 GUIDE TO BUILDING ELECTRONIC PROJECTS

 Published by EVERYDAY ELECTRONICS Oue to the demand from students, teachers and hobbyists ve have put together a range of anticles from past issues of onstruction of electronic projects. onstruction of electronic projects.The book contains the complete Project Development for
Contents:
Contents: Features - First Steps in Project Building Getting your Projects Working; Guide to Printed Circui Boards: Choosing and Using Test Equipment - The Multimeter, The Oscilloscope, P.S.U.s, Logic Probes Digital Frequency Meters, Signal Generators, etc; Data - Circuit Symbols; Component Codes; Resistors; Identifying Components; Capacitors; Actually Doing It Understanding the Circuit Diagram, Component Codes Mounting circuit boards and controls, Understanding Capacitors; Projects - Lie Detector; Personal Stereo Effects Únit; UV Exposure Unit; Low-cost Capacitance Meter: Personal Radio 88 pages (A4 size)

EVERDAY ELECTRONICS DATA BOOK Mike Tooley BA
published by EE in assoclation with PC Publishing)
This book is an invaluable source of information of everyday relevance in the world of electronics. It contains not only sections which deal with the essenial range of practical electronic applications.
It is ideal for the hobbyist, student, technician and engineer. The information is presented in the form of a basic electronic recipe book with numerous examples showing how theory can be put into practice using a range of commonly available "industry standard" components and devices.
A must for everyone involved in electronicsi
256 pages Orler code DAr ${ }^{2}$ al
£8.95

DIRECT BOOK SER VICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full
ordering details are given on the last book page. For another selection of books see next month's issue

BOOK
 Steve Money

The principles of operation of the various types of test instrument are explained in simple terms with a minimum of mathematical analysis. The book covers analogue and digital meters, bridges, oscilloscopes, signal generators. counters, timers and frequency measurement.
Everything from Audio oscillators, through R, C \& L measurements (and a whole lot more) to Wavelorm Generators and testing Zeners. A truly comprehensive book for the hobbyist, student. technician and engineer.
206 pages
Order code 109

HOW TO TEST ALMOST EVERYTHING
 ELECTRONIC-2nd EDITION

Jack Darr and Delzon T. Horn make them with all kinds of test equipment, and how to interpret the results. New sections in this edition include more. (An American book.)

GETTING THE MOST FROM YOUR MULTIMETER

 R. A. PenfoldThis book is primarlly aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimaters, discussing the Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.
In the main little or no previous knowledge or experience s assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects
96 pages
Order codle [1p239
£2.95

MORE ADVANCED USES OF THE MULTIMETER

R. A. Penfold

This book is primarily intended as a follow-up to BP239, (see above), and should also be of value to anyone who imeady understands the basics of voltage testing and cribed in chaptert testing. By using the techniques des mance of a range of components with just a multimeter
(plus a very fow inexpensive components in some cases) Some useful quick check methods are also covered. While a multimeter is supremely versatile, it does have its limitations. The simple add-ons described in chapter 2 extended the capabilities of a multimeter to make it even more useful. The add-ons described include an active r.f probe, a high resistance probe, an a.c. sensitivity boosier
84 pages Order code BP265 $\mathbf{E 2 . 9 5}$

THE ILLUSTRATED DICTIONARY OF
ELECTRONICS - 4th EDITION
Rufus P. Turner and Stan Gibilisco
With more than 27,000 terms used in electronics today. this collection is THE most comprehensive dictionary available. Including all practical elecrronics and compute terms. it is as up-to-date as the latest advances in the field itselfi Tables and data on subjects most often consulted fo lables include English/metric and metric/English conables include English/merric and metric/English conFahrenheit/Celsius temperature conversion charts.
Setting this edition apart from other electronic dic tionaries is its emphasis on illustration. Featuring more than complete defintions, this fourth edition includes over 450 detailed drawings and dlagrams
All entries are listed in alphabetical order. Abbreviations and initials are listed in sequence with whole words. Al terms of more than one word are treated as one word. (An American book). Prder code ad900 648 pages
f23.95

LECTRONICS - A "MADE SIMPIE" BOOK

G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest o everyone studying electronics. The subject is simply exvery basic knowledge of electricity. $\begin{array}{lll}\text { very basic knowledge of electricity. } \\ 330 \text { pages } & \text { Order code Ne10 }\end{array}$

PRACTICAL ELECTRONICS CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I,E.R.E., F.B.I.M Bridges the gap between complicated technical theory, design but leave the experimenter unfulfilled. A strong
practical bias - tedious and highe mathematics have been avoided have been included. The book is divlded into six basic sections: Units and Constants, Direct-current Circuits, Passive Components, Alternating-current Circuits, Networks and Theorems, 256 pages Ortier conte Blp53 £3.95

PRACTICAL DIGITAL ELECTRONICS

 HANDBOOKMike Tooley (Published in association with Everyday Electronics)
The vast majority of modern electronic systems rely Peavily on the application of digital electronics, and the Practical Digital Electronics handbook aims to provide readers. With a practically based introduction to this
subject. The book wlll prove invaluable to anyone nvolved with the design, manulacture or servicing of digital circuitry, as well as to those wishing to update heir knowledge of modern digital devices and techiques. Contents: Introduction to integrated circuits asic logic gates; monostable and bistable devices timers; mlcroprocessors; memories; input and output devices; interfaces; microprocessor buses. Appendix 1: test equipment; regulated bench power supply; logic probe; logic pulser; versatile pulse generator; digital C tester; current tracer; audio logic tracer; RS-232C beakout box; versatile digital counter/frequency meter. Appendix 3: The oscilloscope. Appendix 4: Suggested reading. Appendix 5: Further study.
208 pages Ordercoce pC100
£6.95

ELECTRONICS-BUILD AND LEARN

R. A. Penfold

The first chapter gives full constructional details of a cir cuit demonstrator unit that is used in subsequent chapters introduce common electronic components - resistors, apacitors, transformers, diodes, transistors, thyristors, fets nd op amps. Later chapters go on to describe how thes multivibrators, bistables and logic circuits.
At every stage in the book there are practical tests and experiments that you can carry out on the demonstrato unit to investigate the points described and to help you understand the principles involved. You will soon be able o go on to more complex circuits and tackle fault finding ogically in other circuiss you build. 120 pages Ordeı code PC103
f5.95

AUDIO AND MUSIC

LOUDSPEAKERS FOR MUSICIANS
Vivian Capel
This book contains all that a working musician needs to know about loudspeakers; the different types, how they work, the most suitable for different instruments, for cabaret work, and for vocals. It gives tips on constructing cabinets, wiring up, when and where to use wadding, and when not to, what fittings are available, finlshing, how to ensure they travel well, how to connect multi-speaker arrays and much more.
Ten practical enclosure designs with plans and com ments are given in the last chapter, bui by the time you've 164 pages 1 Order codemp25itl 3.95

MAKE MONEY FROM HOME RECORDING
Cllve Brooks
Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn't it be nice to get some of it back? Well here's the book to show you how.
It's packed with money making ideas, any one of which will recoup the price of the book many times over. Whether you have a fully fledged recording studio at home, or jus a couple of stereo cassette recorders and a microphone you'll be able to put the ideas in this book into practice and 105 pages

IOTdercode cian £5.95

INTRODUCTION TO DIGITAL AUDIO

(Second Edition)

lan Sinclair
Digital recording methods have existed for many years and have become familiar to the professional recording engineer, but the compact disc ($C D$) was the first device to bring digital audio methods into the home. The next step is the appearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuits that are totally alien to the technician or keen The princioles and practices of digital audio owe little oo The principles and practices or digital audio owe littie or are much more comprehensible to today's computer engineer than the older generation of audio engineers.
This book is intended to bridge the gap of understand ing for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end product.
128 pages Order codepctoh £6.95

SYNTHESIZERS FOR MUSICIANS

R. A. Penfold
modern synthesizers are extremely complex, but they
understand. If you want to go beyond using the factory presets or the random poking of buttons, this is the book It covers the principles of modern synthesis - linear arithmetic as used by Roland, phase distortion (Casio). Yamaha's frequency modulation, and sampling - and then describes how the instruments are adjusted to produce various ty pes of sound - strings, brass, percussion, etc. The theoretical side of synthesis is treated in an easy to under to what you need to know to use your instrument effectively. 168 pages

AUDIO

F. A. Wilson, C. G.I. A., C.Eng., F.I.E.E., F.I.E.R.E.。
F.B.I.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are followed by a study of the mechanism of hearing and examination of the various sounds we hear. A look at room acoustics wlth a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio system - amplifiers, oscillators, disc and magnetic recording and electronic music
320 pages \quad Crabrcode Blpy 3.95

CIRCUITS AND DESIGN

REMOTE CONTROL HANDBOOK
Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of
systems, from the simplest to the most complex, to be systems, from the simplest to the most complex, to be The author has tried to ensure that, as far as possible, The circult modules in this book are compatible with one another. They can be linked together in many different configurations to produce remote control systems tailored to switch a table lamp on and off, or to operate an industrial robot, this book should provide the circuir you require.
226 pages
lorder code BPzua £3.95
COIL DESIGN AND CONSTRUCTION MANUAL
B. B. Babani
A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and Although this book is now rather old, with the exception of torroids and pulse transformers little has changed in coil design since it was written.
96 pages Grder code 160
£2.50

30 SOLDERLESS BREADBOARD PROJECTS -

BOOK 1
R. A. Penfold
Each project. which is designed to be built on a "Vero-

Each project. Which is designed to be built on a verobloc bread board, is presented in a similar fashion with a diagram, components list and notes on construction and use where necessary. Whenever possible, the components .used are common to several projects, hence with only a modest number of reasonably inexpensive components, it is possible to build in turn, every project shown. Recommended by BICC-Vero
160 pages \quad Order code BP10 il 2.95

BOOK 2 -
All projects use CMOS i.c.s. but the items on component
All projecis use CMOS i.c.s. but the items on component
identification etc., are not repeated from Book 1 .
identification etc, are not repeated from Book
160 pages \quad Order code 89113
f2. 25

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake circuit design and that the process relies on an understanding of advanced mathematics. Provlded one is not
true. a unique collection of practical working circuits to gether with supporting information so that circuits can be produced in the shorest possible time and without recourse to theoretical texts.

Furthermore, information has been included so that the circuits can readily be modified and extended by readers to meet their own individual needs. Related circuits have been grouped together and cross-referenced within the which circuits can be readily connected together to form more complex systems. As far as possible, a common range of supply voltages, signal levels and impedances has been adopted.
As a bonus, ten test gear projects have been included. These not only serve to illustrate the techniques described but also provide a range of test equipment which is useful in its own right.
277 pages
femporarily out of furmt

AUDIOIC CIRCUITS MANUAL

R. M. Marston

A vast range of audio and audio-assoclated i.c.s. are readily available for use by amateur and professional design engineers and technicians. This manual is a guide over 240 diagrams. It deals with lic.s. such as low frequency linear amplifiers, dual pre-amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators, and shows how to use these devices in circuits ranging

from simple signal conditioners and filters to com plex graphic equalizers, stereo amplifier systems, and 168 pages

HOW TO DESIGN ELECTRONIC PROJECTS

 R. A. PenfoldThe aim of this book is to help the reader to put together projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet your special requirements are also provided.
128 pages emporaraly out ol print

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES
R. N. Soar

Contains 50 interesting and useful circuits and applicausing one of the most simple and inexpensive of com. ponents - the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc.

Order code :O336
81.95

DESIGNING WITH LINEARICs

SAEEPRICE
G. C. Loveday A book that deals with the design of the vital area of
analog circuitry covering design with modern linear inanalog circuitry covering design with modern inear the reader to important design techniques, test strategies, layout, and protection and also includes a section on the use of a typical CAD tool. There are separate chapters that cover in depth the use of op-amps, comparators and timers each with detailed design examples and reader exercises. A final chapter brings all the previous work together in a number of complete design problems with ematical and is supported by many diagrams. 64 pages \quad Orcper code 8 MV 3 Special Price $\mathbf{E 5} .00$

TIMER/GENERATOR CIRCUITS MANUAL

R. M. Marston

This manual is concerned mainly with waveform generator techniques and circuits. Waveform generators are used somewhere or other in most types of electronic equipment, and thus form one of the most widely used classes of circuit. They may be designed to produce outputs with sine, square, triangle, ramp, pulse, staircase, or a variety of other forms. The generators may produce modulated or unmodulated ou
outputs may be of single or multiple form.
Waveform generator circuits may be built using iranWaveform generator circuits may be buif using iran-
sistors, op-amps, standard digital ICs , of dedicated waveform or "function" generator ICs.
The manual is divided into eleven chapters, and presents over 300 practical circuits, diagrams and tables. The subjects covered include: Basic principles; Sine wave generators; Square wave generators; Pulse generator circuits; "Timer IC" generator circuits; Triangle and sawtooth generators; Multi-waveform generation; Waveform synthesizeriCs; Special weveform generators; Phaselocked loop circuits; Miscellaneous " $555^{\prime \prime}$ circults.
267 pages

Oider code yla 8
£12.95

OPTOELECTRONICS CIRCUITS MANUAL

A. M. Marston

A useful single-volume guide to the optoelectronics device user. specifically aimed at the practical design the electronics student and amateur. It deals with the subject in an easy-to-read, down-to-earth, and nonmathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practica applications and over 200 circuits. Most of the i.c.s. and other devices used are inexpensive and readily available types, with universally recognised type numbers. 182 pages Order codeneld £12.95

POPULAR ELECTRONIC CIRCUITS - BOOK 1
POPULAR ELECTRONIC CIRCUITS - BOOK 2
R. A. Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing working projects from just a circuit diagram without the
aid of detailed construction information. Any special aid of detailed construction information. Any special setting-up procedures are described.

BOOK 1160 pages	Order code BP80	$£ 2.95$
BOOK 2160 pages	Order cade BP98	$\mathbf{E 2 . 9 5}$

CMOS CIRCUITS MANUAL
R. M. Marston
Written for the professional englneer, student or enWritten for the professional engineer, student or enteristics of these devices and includes over 200 circuits. evaluated by the author; all use inexpensive and interna-
$\begin{array}{lll}\text { tionally available devices. } \\ 187 \text { pages } & \text { Order code NFit } & \mathbf{~} 12.95\end{array}$
Note - our postage charge is the same for one book or one hundred booksl

PROJECT CONSTRUCTION

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s A. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers all aspects of simple p.c.b. construction including 80 pages Orkercorfe BPi21 E2.50

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building p projects

Order code 8 d 10
Oricicode $8 \mathbf{1 0} \quad \mathbf{1 0 . 5 0}$
magazines and books. Also includes examples in the form
of simple projects.
112 pages Order code 227 £1.95
TEST EQUIPMENT CONSTRUCTION
R. A. Penfold

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equip and inexpensive but extremely useful, pieces of test equip gether with wiring diagrams where appropriate, plus notes on construction and use.
The following designs are included:- AF Generator Capacitance Meter, Test Bench Amplifier, AF Frequency Meter, Audio Millivoltmeter, Analogue Probe, High Resis ance Voltmeter, CMOS Probe, Transistor Tester, TL Probe. The designs are suitable for both newcomers and oxper

Order code ele2hr 82.95

DATA AND COMIDONENTIDENTIFICATION

CHART OF RADIO, ELECTRONIC
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani B.Sc.(Eng.)

Illustrates the common, and many of the not-so-common. radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction manuals,
etc., in most countries throughout the world
Chant Order code Blill

INTER

 GUIDEHelps the reader to find possible substitutes for a popular selection of European. American and Japanese transistors. Also shows material type, polarity, manufacturer and use.
320 pages
Order code grore $£ 3.95$

RADIO, TV, SATELLITE

SETTING I.D. Poole

The aim of this book is to give guidance on the decisions which have to be made when sefting up any amateur radio or short wave listening statlon. Often the experience which is needed is learned by one's mistakes, however, this can be expensive. To help overcome this, guidance is given on many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting licence.
Topics covered include: The equipment that is needed; Setting up the shack; Which aerials to use; Methods of construction; Preparing for the licence
An essential addition to the library of all those taking 6 pages

BEGINNER'S GUIDE TO RADIO - 9 th EDITION
Gordon J. King
Radio signals, transmitters, receivers, antennas, components, valves and semiconductors, CB and amateur radio.
266 pages
Order codel 108
f6.95

AN INTRODUCTION TO RADIO DXING
R. A. Penfold

Anyone can switch on a short wave receiver and play with The controls until they pick up something, but 10 find a particular station, country or type of broadcast and to and knowledge. reader to do just that, which in essence is the fascinating hobby of radio DXing.
112 pages Ordercode BP9Y £1.95
EXPERIMENTAL ANTENNA TOPICS
H. C. Wright

Although nearly a century has passed since Marconi's first demonstration of radio communication, there is still research and experiment to be carried out in the field of ntenna design and behaviour.
measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this, devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc. These materials are, in general, cheap to obtain and easily
worked with simple tools, encouraging the trial-and-erro philosophy which leads to innovation and discovery.
Although primarily a practical book with text closely supported by diagrams, some formulae which can be used by straightforward substitution and some simple graphs have also been included.
72 pages \quad Ordercode EREIR 8.50

NEWNES SHORTWAVE LISTENING

 HANDBOOKJoe Pritchard G1 UOW
Part One covers the "science" side of the subject, going from a few simple electrical "first principles", through a brief treat ment or radio transmission methods to simple receivers. The emphasis is on practical receiver designs and how to build and modify them. with several circuits in the book.
Pan Two covers the use of sets, what can be heard the various bands, propagation, identification of stations, sources of information, OSLing of stations and listening to amateurs. Some computer techniques, such as com puter morse decoding and radio teletype decoding are also
224 pages OrdercodeNLIG \quad E14.95

COMPUTINE

SERVICING PERSONAL COM PUTERS

2nd EDITION
Mike Tooley BA
The revised and enlarged second edition contains a new chapter on the IBM PC. AT, TX and compatibles. It is essenial for anyone concerned with the maintenance of personal computer equipment or peripherals, whether professional service technician, student or enthusia
240 pages (Hard cover. Order come NEIG
240 pages (Hard cove Order coce NETS
£25

HOW TO EXPAND. MODERNISE AND REPAIR PCs

 AND COMPATIBLESR. A. Penfold

Not only are PC and compatible computers very expandable, but before long most users actually wish to take advantage of that expandability and start upgrading their PC systems. Some aspects of PC upgrading can be a bit confusing, but this book provides advice and guidance on the popular forms of internal PC expansion, and should help to make things reasonably straightforward and painless. Little knowledge of computing is assumed. The only assumption is that you can operate, a standard
kind (PC, PC XT, PCAT, or a 80386 based $P C$).

The subjects covered Include: PC overview, Memory upgrades; Adding a hard disk drive; Adding a floppy disk drive; Display adaptors and monitors; Fitting a maths co-processor; Keyboards; Pons; Mice and digitisers: Maintenance (including preventative maintenance) and Repairs, and the increasingly popular subject of d.i.y. PCs. 156 pages Order code Bratid

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL BMICRO
Written for readers wanting to learn more about programming and how to make best use of the incredibly powerful model B's versatile features. Most aspects of the BBC Micro are covered, the omissions being where little could usefully be added to the information provided by the manufacturer's own manual. 144 pages \quad Order code BPI39 81.95

AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J. W. Penfold
machine code is assumed. Topics covered are: assembly language and assemblers, the register set and memory. binary and hexadecimal numbering systems, addressing modes and the instruction set. and also mixing machine code with BASIC. Some simple programming examples are given for 6RIC.1/Atmos. Electron BBC and also the ORIC.1/Atmos. Electron. BBC and also the 112 pages $\quad \mathbf{E 2 . 9 5}$

The PRE-BASIC BOOK

F.A, Wilson, C.G.I.A., C.ENG., F.I.E.E.,
F.I.E.R.E., F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates on introducing the technique by looking in depth at the most frequ instructions. For all new and potential micro computer instructions. For all new and potential micro 192 pages Order coce BP146 £2.95

DIRECTBOOK SERVICE ORDERINE DETAILS

Please state the title and order code clearly. print your name and address and add the required postage to the total order.

Add 75 p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $\mathbf{£ 2 . 5 0}$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DI-

RECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.
Note - our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

BABANI BOOKS

We now supply all the books published by Bernard Babani (Publishing) Ltd. We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Everday Electronics (the books with a BP prefix to the order code are Babani books).
Many readers have asked us to also supply various other Babani books, which have a reputation for value for money. Our customers tell us they appreciate our speedy service and low postage charge and they
would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum (75p for UK p\&p no matter how many books you buy). We are pleased to be able to respond; with the aid of Michael Babani (M.D.) we are now able to meet all your requirements for their books. If it's Babani and in print we can supply it. Babani presently list over 180 different technical titles those not described in detail on the previous Direct Book Service pages or in next months issue are listed below

Code	Title	Pric	Code	Title	Price	Code	Title	Price
208	Practical Stereo \& Quadrophony Handbook	c0.76	BP137	BASIC \$ FORTRAN in Parallel	¢1.95	BP244	BBC BASIC86 on the Amstrad PC's and IBM	
214	Audio Enthusiast's Mandbook	c0.85	8P138	BASIC \& FORTH in Parallel	c1.95		Compatibles - Book 2: Graphics and Disk Files	¢3.95
219	Solid State Novelty Projects	¢0.85	BP143	An introduction to Programming the Atari		BP245	Digital Audio Projects	¢2.9
225	A Practical introduction to Digital ICs	E2.50		600/800XL	40.95	BP246	Musical Applications of the Atari ST:	¢5.95
BP28	Resistor Selection Handbook	c0. 60	BP144	Further Practical Electronics Calculations		BP247	More Advanced MIDI Projects	£2.95
BP37	50 Projects using Relays, SCRs and TRIAC*	¢2.95		8. Formulae	O.O.P.	BP249	More Advanced Test Equipment Construction	E3.6
BP39	50 (FET) Field Eftect Transistor Projects	C2.95	BP145	25 Simple Tropical and MW Band Aorials	c1.75	BP250	Programming in FORTRAN 77	E4.95
BP44	IC 555 Projects	¢2.95	BP148	Computer Terminology Explained	c1.95	BP251	Computer Hobbyists Hand book	E5.95
BP45	Projects in Opto-Electronics	¢1.95	BP149	A Conclse Introduction to the Languege		BP258	Learning to Program in C	¢4.95
BP48	Electronic Projects for Beginners	¢1.95		of BBC BASIC	C1.95	BP259	A Concise Introduction to UNIX	¢2.9
BP49	Popular Electronic Projects	c2. 50	BP153	An Introduction to Programming the		BP260	A Concise Introduction to OS/2	E2.9
BP56	Electronic Security Devices	¢2.50		Amstrad CPC 464 \& 664	¢2.50	BP261	A Concise Introduction to Lotus 1-2-3	
BP58	50 Circuits Using 7400 Series IC's	E2.50	BP154	An Introduction to MSX BASIC	E2.50		(Revised Edition)	E3. 96
BP62	The Simple Electronic Circuits \& Components (Elements of Electronics - Book 1)	c3.50	$\begin{aligned} & \text { BP156 } \\ & \text { BP157 } \end{aligned}$	An introduction to OL Machine Code How to Write 2X Spectrum \&i Spectrum +	¢2.50	BP26	A Concise introduction to Wordpertect (Ravised Edition)	f3.
BP63	Alternating Current Theory (Elements of			Games, Programs	c2.50	BP263	A Concise Introduction to dBA SE	E3.
	Electronics - Book 2)	¢3.50	BP158	Anintroduction to Programming the		BP264	A Concise Advanced User's Guide to	
EP64	Semiconductor Technology (Elements of	¢3.50	BP159	Commodore $16 \&$ Plus 4 How to Write Amstrad CPC464 Gamas	c2.50	BP269	MS-DOS An Introduction to Deskrop Publishing	£2.95
BP68	Choosing and Using Your HI-Fi	c1.65		Programs	¢2.50	BP270	A Concise Introduction to Symphony	¢3.9
BP69	Electronic Games	¢1.75	BP161	Into the QLArchive	¢2.50	BP272	Interfacing PC's \& Compatibles	¢3.9
BP74	Electronic Music Projects	£2.50	BP162	Counting on OL Abacus	c2.50	BP273	Practical Electronic Sensors	¢ 4.95
BP76	Power Supply Projects	¢2.50	BP171	Easy Add-on Projects for Amstrad CPC 464,		BP274	A Concise Introduction to SuperCal5	¢3.95
BP78	Practical Computer Experiments	c1.75		664. 6128 and MSX Computers	¢2.95	BP276	Short Wave Superhet Recaiver Constructio	£2.9
BP84	Digital IC Projects	c1.95	BP174	More Advanced Elactronic Music Projects	¢2.95	BP277	High Power Audio Amplifier Construction	¢3.9
BP86	An Introduction to B ASIC Programming		BP175	How to Write Word Game Programs for		BP279	A Concise Introduction to Excel	E3.95
	Techniques	¢1.95		the Amstrad CPC 464, 664 and 6128	¢2.95	BP280	Getting the Most From Your PC's Hard Disk	E3.9
BP90	Audio Projects	¢2.50	BP182	MIDI Projects	C2 95	BP283	A Concise Introduction to Smart Ware II	E4.9
BP94	Electronic Projects for Cars and Boats	C1.95	BP183	An Introduction to CPM	¢2.95	BP284	Programming in QuickBASIC	E4.9
BP95	Model Rallway Projects	C2.95	BP187	A Practical Reference Guide to Word		BP286	A Raference Guide to Basic Electronics Terms	f5.95
BP97	IC Projects for Beginners	¢1,95		Processing on the Amstrad PCW8256 and		BP288	A Concise Introduction to Windowa 3.0	£3.9
BP99	Mini-matrix Board Projects	£2.50		PCW8512	C5.95	BP291	A Concise Introduction to Ventura	¢3.9
BP108	Modern Op-amp Projects	c1.96	BP189	Using Your Amstrad CPC Disc Drives	¢2.96	BP292	Public Adress Loudspeaker Systems	¢3.9
BP109	The Art of Programming the $1 \mathrm{~K} \mathrm{Z} \times 81$	c1.95	BP190	More Advanced Electronic Security Projects	¢2.95	BP293	An Introduction to Radio Wave Propagation	E3.9
BP114	The Art of Programming the 16K 2×81	¢2.50	BP191	Simple Application of the Amstrad CPCs for		BP294	A Concise introduction to Microsoft Works	¢4
BP120	Audio Amplifier Fault-finding Chart	¢0.95		Writers	¢2.95	BP298	A Conciso introduction to the Mac Svatem	
BP122	Audio Amplifier Construction	¢2.95	BP192	More Advenced Power Supply Projects	£2.95		Finder	¢3.95
BP125	25 Simple Amateur Band Aerials	¢1.95	BP193	LOGO for Beginners	¢2.95	BP299	Practical Electronic Filters	¢4.9
BP1 26	BASIC \& PASCAL in Parallal	¢1.50	BP196	BASIC \& LOGO in Parallet	¢2.95	BP302	A Concise Users Guide to Lotus 1-2-3	
BP128	20 Programs for the 2X Spectrum \& 16K 2X81	£1.95	BP197	An introduction to the Amstrad PC's	¢5.95		Release 3.1	¢3.95
BP129	An Introduction to Programming the QRIC-1	£1.95	8P198	An Introduction to Antenna Theory	¢2.95	8P303	Understanding PC Software	¢4.95
BP132	25 Simple SW Broadcast B and Aerials	¢1.95	BP199	An introduction to BASIC-2 on the Amstrad PC's	C5.95	BP307	A Concise Introduction to QuarkXPress	E4.95
BP133	Anfintroduction to Programming the		BP230	A Concise Intraduction to GEM	¢2.95	BP312	An Introduction to Microwaves	E3.95
	Dragon 32	E1. 95	BP243	BBC BASIC86 on the Amstrad PC's and IBM		BP313	A Concise Imroduction to Sage	£3.95
BP136	25 Simple Indoor and Window Aarials	¢1.75		Compatibles - Book 1 : Language	¢3.95	BP314	A Concise Introduction to Quattro Pro	¢4

SEE PREVIOUS PAGE FOR FULL ORDERING DETAILS

PCB SERVICE
Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add E1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in $£$ sterling only).
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery overseas readers allow extra if ordered by surface mail. Please check price In the latest issue.
Boards can only be supplied on a payment with order basis

1 ! Al pobason me page reduced to $1 / 2$ PRICE

(Just send half the price shown, while stocks last.) PCBS ON OPPOSITE PAGE PRICES AS SHOWN

PROJECT TITLE		Orcer Code	Cost
200 MHz Digital Frequency Meter	NOV'86	548	$\overline{5} 5.14$
Automatic Car Alarm	DEC 86	550	¢3.00
Video Guard Alarm	FEB 87	556	¢3.80
Computer Buffer/Interface	MAR'87	560	¢3.32
Infra-Red Alarm: Sensor Head		561	¢4.19
Fridge Alarm	MAY 87	565	$¢ 3.00$
Mini Disco Light	JUNE 87	567	¢3.00
Fermostat	JULY'87	569	§3.34
Monomixer		571	¢4.75
Super Sound Adaptor Main Board	AUG'87	572	¢4.21
PSU Board		573	¢3.32
Noise Gate	SEP'87	577	¢4.41
Burst Fire Mains Controller		578	£3.31
BBC Sideways RAM/ROM	NOV' 87	585	$¢ 4.10$

PCB SERVICE

See opposite page for ordering details.

PROJECT TITLE		Order Code	Cost
Programmable Pocket Timer	JULY'89	648	$\bigcirc 3.82$
Electronic Spirit Level	AUG 89	649	£3.85
Distance Recorder		651	$£ 5.23$
Xenon Beacon Probe Pocket Treasure Finder Power Supplies: Fixed Voltage Variable Voltage	SEP'89	650	¢4.13
		653	£4.12
	SEP'89	654	£4.08
		655	£4.48
Music on Hold	OCT'89	646	£3.85
Power Supplies - 25 V 700 mA		656	f4.35
30 V 1 A		657	¢4.55
EE Seismograph - Control		658	£4.08
Detector		659	£4.22
Lego/Logo \& Spectrum		660	£6.49
Wash Pro	NOV 89	643	¢3.83
Biofeedback Monitor - Front End Processor		661	£4.52
		662	£4.56
Logo/Lego \& Spectrum Interface		664	$£ 5.60$
EEG Electrode Impedance Meter	DEC 89	665	£3.98
Biofeedback Signal Generator	JAN 90	666	14.08
Quick Cap Tester	FEB 90	668	$¢ 3.92$
Weather Stn: Anemom. - Freq./Volt Board		670	¢3.94
Optional Display		669	£3.73
Wind Direction		673/674	¢4.22
System Power Supply		675	¢3.59
Prophet In-Car loniser		676	¢3.18
Weather Stn: Display Driver Display and Sensor Fermostat Mk2 Superhet Broadcast Receiver/Tuner/Am		672 \& 678	$¢ 4.22$
		671	£4.47
		677	£4.28
		679/680	¢4.22
Stereo Noise Generator	APR 90	681	¢4.24
Digital Experimenter's Unit - Pulse	erator	682	¢4.46
	pply	683	¢3.66
Enlarger Timer		684	¢4.28
Weather Stn: Rainfall/Sunlight Display		685	¢4.27
Rainfall Sen and Sunlight Sen		686/687	¢4.16
Amstrad Speech Synthesiser	MAV 90	689	¢4.68
80 Metre Direct Conversion Radio IUN 90 Mains Appliance Remote Control Infra-Red Transmitter		691	[4.95
		692/693	$¢ 4.75$
Mains Appliance Remote Control JUL'90Encoder Board AEncoder Board B			
		694	¢6.61
		695	¢4.78
The Tester		696	¢4.15
Mains Appliance Remote Control AUG'90Mains ON/OFF Decoder(5 or more 697's ordered together $£ 3.25$ each)Simple Metronome			
		697	$¢ 4.55$
		698	¢3.94
Hand Tally: Main Bd and Display Bd SEP'goAlarm Bell Time-OutMains Appliance Remote ControlTemperature Controller (p.c.b. only)		699, 700	¢10.95
		701	¢4.10
		702	¢5.20
Ghost Waker OCT'90		703	¢4.32
Frequency Meter		704	¢5.25
Freq. Meter/Tachometer NOV' 90 EE Musketeer (TV/Video/Audio)		$\begin{aligned} & 705 \\ & 706 \end{aligned}$	$\begin{aligned} & £ 3.98 \\ & £ 5.78 \end{aligned}$
Colour Changing Christmas Lights Microcontroller Light Sequencer Versatile Bench Power Supply Unit Teach-In '91, Part 1 -L200 Module Dual Output Module LM723 Module		707	¢4.39
		708/709	¢10.90
		710	¢4.24
		711	¢3.93
		712	¢4.13
		713	¢4.21
Spatial Power Display Amstrad PCW Sound Generator Teach-In '91. Part 2-G.P. Transistor Amp Dual Op.Amp Module		714	$¢ 5.33$
		715	¢5.03
		717	£3.77
		718	¢3.83
Intercom (Teach-In '91 Project 2)	JAN 91	719	¢4.41
		720	£3.24
MARC Phone-In	FEB'91	721	£6.87
Teach-In'91 Part 3-TBA820M Amplifier High Quality Power Amp Bench Amplifier (Teach-In '91 Project 3)		723	£4.05
		724	¢4.93
		725	¢4.45
Gingernut 80m Receiver FEB 91 R.F. section (726), Voltage Regulator (727) Audio Amplifier (728)		$726 / 7 / 8$ all 3 together	$\begin{array}{r} £ 3.06 \\ \text { per board } \\ £ 8.16 \end{array}$

PROJECT TITLE	Order Code	Cost
Pocket Tone Dialler	729	£4.36
Battery To Mains Inverter	730	$£ 4.97$
Simple Basic Alarm	731	¢4.50
Car Code Lock (pair)	732a/b	£4.69
Teach-In '91 Part 4-Sinusoidal Oscillator	733	¢4.39
8038 Oscillator	734	£4.15
Waveform Generator (Teach-In '91 Project 4)	735	¢ 4.72
Humidity Tester APR'91	716	64.97
Model Train Controller (double-sided)	736	$£ 9.75$
Electronic Die (Teach-In '91 Project 5)	737	$£ 4.93$
Teach-In '91 Part 5-Digital Counter Module	738	£4.35
Modular Disco Lighting System Switched Power Output Module	739	$£ 5.91$
Digital LCD Thermostat-Control Board $£ 5$ for	740	¢4.05
-Power/Relay Board 55 for pair	741	£3.76
Pulse Generator (Teach-In '91 Project 6)	742	¢4.97
Teach-In '91 Part 6- Timer Module	743	¢4.62
Digilogue Car Tachometer JUN91	744	£5.63
Modular Disco Lights - Simple Chaser	745	£5.00
Sweeper Module	746	55.17
Automatic Light Control - PSU Board	747	£4.88
Logic Board	748	$£ 5.17$
Radio Receiver (Teach-In '91 Project 7)	749	£4.57
Teach-In'91 Part 7 - R.F. Amplifier Module	750	¢4.23
Modular Disco Lights - Masterlink JULY'91	752	16.36
Ultrasonic Proximity Meter Display Unit (753) \& Sensor Unit (754)	753/754	$£ 7.06$
Disco Lights (Teach-In 91 Project 8)		
PSU and Pre-amplifier	755	£4.54
Low. Mid, High Filter/Triac (set of 3 boards)	756	£11.00
Teach-In'91 Part 8-Solid State Switch Module	757	¢4.24
Mod. Disco Lights - Pattern Gen AUG'91	760	$£ 6.79$
Teach-In '91 Part 8-Light Sensitive Switch	761	£4.74
Opto-Link (Teach-In '91 Project 9) - Transmitter	762	$£ 4.85$
Receiver	763	£4.88
Portable PEsT Scarer	764	£3.77
Capacitance Meter SEP'91	751	£5.17
Modular Disco Lights - Dimmer Interface	765	¢8.17
Mod. Disco Lights OCT'91		
VU Sound Module (Double-sided)	767	£8.68
UV Exposure Unit	768	£4.63
PC-Scope Interface - Main Board	769	£6.95
Expansion Plug (Double-sided)	770	£5.96
Mod. Disco Lights NOV 91		
Superchaser (Double-sided)	771	£6.91
Supersweep (Double-sided)	772	¢8.26
Bicycle Alarm	773	£5.01
Darts Scorer	774	$¢ 7.90$
Knockerbox DEC'91	775	£5.35
Signal Generator - Main Board	776	¢7.46
PSU	777	£4.73
Mind Machine - Main Board	778	$£ 7.00$
Auto Nightlight	779	£5.03
Mind Machine - Programmer Board JAN'92	780	$¢ 7.39$
Transistor Checker	781	¢4.63
Stepping Motor Driver/Interface	782	£10.39
Micro-Sense Alarm	783	¢5.42
Telesound FEB'92	EE784	¢4.66
Programmable Timer	EE785	£4.63
Auto Garage Light MAR'92	786	£6.10
Versatile BBC Computer Interface	787	f11.59
Economy Seven Timer	788	¢5.20
Sonic Continuity Tester APR'92	789	£4.79
Telephone Ringer	790	$£ 5.46$
Digital Servo Interface	791	¢4.73
Experimental Weighing Scale MAY'92	792	¢5.17
12 V Drill Charger/PSU (both boards)	793	£5.31

REPORT/NG AMATEUR RADIO
 Tony Smith G4FAI

BEACON EXPANSION

The Northern California DX Foundation's Beacon net continues to provide useful information on propagation and reception conditions from around the world. Operating 24 hours a day on 14.100 MHz (20 metre band), nine stations located in New York, California, Hawaii, Japan, Israel, Finland, Madeira, South Africa and Argentina, transmit sequentially every 10 minutes at varying power levels reducing from 100 to 0.1 watts.

The signals consist of the callsign in Morse followed by four nine-second dashes each one-tenth of the power of the previous dash which, if heard, indicate not only that the band is open to that particular part of the world but the power level necessary to establish communication.

One beacon, W6WX/B in California, now transmits on two further bands. As soon as its 20 m transmission is completed the station automatically changes frequency to 21.150 MHz (15 m), repeats its signals and then changes again to $28.200 \mathrm{MHz}(10 \mathrm{~m})$. Each transmission lasts for 58 seconds with a two second interval between transmissions so rapid band-changing is necessary if it is desired to compare conditions on all three bands!

Unfortunately, in the last couple of years $W 6 W X / B$ has been stolen and the Japanese transmitter JA2IGY, located on top of an $8,000 \mathrm{ft}$ mountain, has also gone missing. Both have been replaced and, as a long term project, NCDXF plans to convert all the beacons to three band operation, thus adding to an already very useful service.

CANDIAN MERGER

Canada has two separate organisations representing the interests of radio amateurs, the Canadian Radio Relay League and the Canadian Amateur Radio Federation, and these have been discussing for some time a possible merger to create a new single body representing all Canadian amateurs.

Discussions are now at an advanced state and, subject to a favourable vote by members of CRRL and CARF, the new organisation, to be known as Radio Amateurs of/du Canada (RAC), will come into existence later this year.

G-QRP NOVICES

Dave Gosling, GONEZ, Novice Manager of the G-ORP Club has written to tell me about the support his club gives to the new novice licence which permits low power operation on limited frequencies, pending the acquisition of a full licence.

The club has over 4000 members, all using ORP (low power up to five watts), so it is well placed to encourage and help the new novices. Dave writes a regular novice column in the club's magazine Sprat and offers advice and help on antennas, learning
and using Morse, choosing and constructing appropriate projects, etc. He says "I am privileged to have so many active QRP experts at my disposal should I get into difficulty myself!'"

SWLs whose receivers cover the amateur bands might like to listen for the G-QRP novices on their adopted calling frequencies, 1960 and $28,360 \mathrm{kHz}$ (both CW and phone), and $3570,21,130$, 28,130 (CW only). Their callsigns begin with a " 2 " followed by E/W/M/J/U/I etc, designating which part of the UK they are located in. 2WOAAI, for instance is located in Wales, while 2EOAAO and 2E0ABA are in England

Dave says that a number of new Novices, including those mentioned, are now becoming active on CW (Morse), particularly on 3570, and are beginning to work Dx (long distance) stations on $21,100-21,130 \mathrm{kHz}$. He comments that the 5 w.p.m. Morse test necessary to obtain the h.f. version of the Novice licence is proving to be fairly easy and even those failing first time are happily trying again.

Incidentally, the G-ORP Club has SWL as well as licensed members and full details can be obtained by sending a C5 s.a.e. to Rev. George Dobbs G3RJV, St. Aidan's Vicarage, 498 Manchester Road, Rochdale, OL113HE.

AMATEUR RADIO IN LITHUANIA

An interesting account of the past and present problems of radio amateurs in Lithuania was posted recently on a European computer bulletin board by a Lithuanian amateur. It then found its way via amateur radio networks to another bulletin board in America where it was picked up by the W5Y/ Report from which I have extracted and summarised the following information.

The first known Lithuanian amateur wireless message was sent in 1918. Official licences were not issued until 1932, and there were 64 licensees in the country when amateur radio was stopped by the first Soviet occupation of 1940.

During WW2 and the first ten years of the second Soviet occupation the hobby continued to be banned and was then re-introduced, with around 200 licences on issue by the late sixties. It was, however, a long and tedious process getting a licence, even up to the end of perestroika.

Requests were secretly processed by the KGB, taking 6-12 months and, if a licence was granted, amateur conversations on the air were strictly limited to one's name, town, operating conditions and the weather. Giving one's address, phone number, or direct correspondence with a foreign amateur was strictly forbidden.

Contact with any foreigner was banned if the Lithuanian amateur's job involved modern technology or research. Any violation of this rule, even the fact of having an amateur licence,
could have a negative influence on an amateur's professional career.

APPEAL FOR HELP

Today's temporary amateur radio licensing rules are still based on those of the former Soviet Union with most of their shortcomings. There continues to be an absence of factory made amateur radio equipment and the Lithuanians are ten to twenty years behind modern technology. Some of today's advanced techniques are being used, but invariably the amateurs concerned build the equipment themselves, including computers.

As a result, most of Lithuania's activity is on CW (Morse) or SSB (phone), and contests, Dxing and award hunting in these modes are very popular. A few use RTTY (radio teletype), less than ten have SSTV (slow scan TV) and only a couple have packet capability.

The author concludes with an appeal for help from the west. "Many of our happy owners of $\mathbf{Z 8 0}$ machines tried to build relatively complicated modems on p.c. boards sent to us by ham friends. But it is impossible to get 7910 chips or 2.4576 MHz quartz crystals here! We are very accurate when copying any foreign circuit, but most of our modems rest on the workbench awaiting their components!
"Maybe some more experienced hams can come up with less complicated circuits for eastern Europe. It is better to show something than to give something sometimes

The second largest group of home-brewed computers are built around the 8080 processor chip."

GERMAN CALLS UNITED

The political changes in eastern Europe are affecting amateur radio in various ways. New callsigns are emerging reflecting the individual identities of countries previously part of the Soviet Union. Lithuania, for instance, which was UP in the USSR now has its pre-war prefix of LY.

However, the reverse has happened in Germany following re-unification. Previously there were two separate national radio organisations with representation on the International Amateur Radio Union, but last year the East German Radiosportverband (RSV) was dissolved and the West German Deutscher Amateur Radio Club (DARC) took over all its functions both national and international.

Former East German stations retained their old callsigns, in the prefix series Y2-Y9, but the ITU has now asked Germany to relinquish this series in 1992 for re-allocation to another country. By the end of this year, therefore, all German stations will be identified by callsigns within the original West German series of prefixes. DAA-DRZ.

TEST EQUIPMENT MAINTENANCE AND TECHNICAL CONSULTANCY

\square Service manuals
\square Spare parts
\square Comprehensive repair service including complete instrument refurbishment at highly competitive rates for radio amateurs
Distributors for:
WAUGH INSTRUMENTS
RAMTESTLTD
KRENZ ELECTRONICS
Hesing Technology ${ }^{[4]}$
41 Bushmead Road, Eaton Socon, St. Neots, Cambs PE19 3BT Telephone and Fax: (0480) 214488

Your Circuits Drawn

Using one of the best available CAD packages your circuit drawings can be converted into highly professional artwork. Send your drawing to Eagle Publications with a stamped addressed envelope for a free quotation. Very affordable rates and fast turn around.

[^0]THE CR SUPPLY CO
127 Chesterfield Rd.. Sheffield S8 ORN Tel: 0742557771

Return posting

SVSTEM DEGDDE 92

A highly profitable 'Earn from your hobby' 'Bolt On' or 'Start Your Own' business. Decoding Philips radio/cassettes as fitted by Vauxhall, Austin Rover, Peugeot, Renault, Volvo and others. 22DC series 570/670/680/751/752/755/846/864/954.
Due to demands on our Service Dept. and technical staff (approx 1000 units in 1991) we designed a non hardware dependant system enabling NON TECHNICAL STAFF to perform the decoding operation.
SYSTEM DECODE 92 requires:
NO technical knowledge
NO specialist equipment
NO soldering
NO spares/parts to buy
NO waiting for 'timeouts'
All you will need in addition to 'SYSTEM DECODE 92' is a 12 vdc power source and a few simple hand tools.
It's fast and easy, it snowballs and you start immediately to earn your share of the thousands to be made Decoding.
The demand is there. We also show you EXACTLY where and how to start the units rolling in, growing as required. Should you choose to expand your services, included also, are numerous fault reports, repair procedures, tips, data, suppliers etc. relating to the repair of these units.
All in all - a goldmine, and it pays for itself within the first 20 units. (Standard Charge $£ 15$ unit)

SYSTEM DECODE 92
 £295-(fully inclusive)

T.E.M.S., Dept. EE05, 36 Springvale, Gayton, Norfolk PE32 1QZ. (0553) 636618 Note: Only 200 System Decode 92 to be sold.
Sorry. Not available within a 45 mile radius of E. Dereham. Norfolk. Please allow for cheque/PO clearance

\star New MOSFET Amplifiers improved range of SMOS modules $30 \mathrm{~W}, 30+30 \mathrm{~W}, 60 \mathrm{~W}, 120 \mathrm{~W}$

$\star \mathbf{2 0}$ watt Class A Amplifier \star Low profile PCB Transformers

 a range of encapsulated transformers $4 \mathrm{VA}, 6 \mathrm{VA}, 10 \mathrm{VA}, 18 \mathrm{VA}, 24 \mathrm{VA}, 30 \mathrm{VA}$Write or phone for data and prices... which include details of standard range of toroidal transformers and audio modules.

No price increase for 1992
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104 (minimum 12 words)
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH. Tel; (0202) 881749
For rates and information on display advertisements (1sth page and larger spaces) please contact our Advertisement Manager, Peter Mew on 0255850596

MAURITRON TECHICAL PUBLICATIONS

The following is a selection from our vast range of Technical Manuals for the TV and Video Servicing Trade. Order some today.

Order Code

Title

MTP-5 Video Recorder Faults - Repair Guide Price
1.95 MTP-58 VHS Video Recorder Principles
MTP-34 TTL Integrated Circuils Databook
MTP-10 CMOS integrated Circuits Databook
VHCK Video Head CleanIng Kit
$\mathbf{\Sigma} 1.95$
$\mathbf{1} 1.95$
$\mathbf{~} 1.00$
$\begin{array}{ll}\text { VHCK } & \text { Video Head Cleaning Kit } \\ \text { MTP-9 } & \text { Power Supplies \& Voltage Regulators }\end{array}$
MTP-24 Transistor Equivalents and Testing Manual
MTP-8 Record Player Speed DIsc
$£ 4.50$
MTP-19 Telephone SDT Code Location Guide $£ 3.95$
SERVICE MANUALS. We can also supply Service manuals for most equipment. Audio, TV, Video, Test etc. etc. Please enquire.

All orders plus $£ 2.35$ post and packing
Hundreds of other Repair and Data Guides available from our Catalogue available FREE upon receipt of a stamped envelope and sent with all orders.

MAURITRON PUBLICATIONS (EE2)
 8 Cherry Tree Road Chinnor

Tel: (0844) 51694 Fax: (0844) 52554

AA (HP7) 500 mAH

AA 500 mAH solder tags
AA 700 mAH high capacity
C (HP11), 1.2AH
C 2AH with solder tags
D (HP2) 1.2AH
D 4 AH whth solder tags
PP 38.4 V 110 mAH
Sub C with solder tags 1.2AH
1/2 AA with solder tags
AAA (HP16) 180 mAH

1-99

 $\varepsilon 1.55 \quad$ ع0.95 + VAT §1.95 $\quad £ 1.20+$ VAT £2.20 $\quad £ 1.69+$ VAT $\begin{array}{lll} \\ \mathrm{E} .60 & £ .25+\text { VAT }\end{array}$ £2.60 $\quad £ 1.96+$ VAT \begin{tabular}{ll}
12.60 \& $\varepsilon 1.96+$ VAT

\hline $4.59+$ VAT

$£ 4.95$ \& $£ 3.59+$ VAT

\hline 4.95 \& $£ 3.85+$ VAT
\end{tabular} H $£ 2.50 \quad £ 1.70+$ VAT £1.55 $£ 1.17+$ VAT

£1.75- $£ 1.15+$ VAT

 276-278 Chatsworth Road, Chesterfield S40 2BH
 Access \& Visa orders tel: (0246) 211202
 Please add 95p postage \& packing per order

V. (a)		
OR SAL		
Scopes. Signał Generators, Power Supplies. Power Meters. DVM's, Oscillators, Attenuators, etc, Used Test Equipment We can now offer a copy service for workshop manuals for many Instruments. Please ask for delails		
Contact: Cooke International, Unit 4, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 OEB Open: Mon-Fri 9am-5pm or phone 0243545111 - Fax: 0243542457 Wide range of items available. Send SAE for lists		
Remote control kits, modules and components. Radio, infra-red, mains signalling and PC based for home automation, robotics etc. Datalogue containing circuits, plans and other useful information £2.50 (refundable against purchase) inc $p \& p$. Cheque/PO to:		
Nikam Electronics Ltd (Dept EE) West End Gardens, Fairford, Glos GL7 4JB Tel/Fax $0285 \mathbf{7 1 3 8 6 2}$ lor shortform lists. Mall order only		

VERY INTERESTING DESIGNS

FOR ALL REASONS AND SEASONS

Wide selection of extremely useful kits and ready-made products for home, workshop and outdoors, at reasonable prices.

BECKER SYSTEMS

Dept EE25, 8 Finucane Drive, Orpington
Kent BRS 4ED. Tel: 0689837821 (24 hrs)

Typefit

The Typesetting programme for all your Typesetting needs.
If you need typesetting for your Adverts, Brochures, etc. Typefit can help you. Please telephone 0202882299

NEW VHF MICROTRANSMITTER KIT Tuneable $80-135 \mathrm{MHz}$, 500 metre range, sensitive
electret microphone, high quality PCB. electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY $£ 5.96$
Assembed and ready to use $\mathrm{C9.95}$ post free. Access/Visa orders telephone 0214111821 . QUANTEK ELECTRONICS LTD Kits Dept. (EE), 3 Houldey Road. West Heath Birmingham B31 3HL SHOP NOW OPEN-CALLERS WELCOME

Special offers for unusual sizes only while stocks last. Please check availability before ordering.

F cell 7 AH $32 \times 87 \mathrm{~mm}$ with Hat top	$1-99$	$100-499$
	$£ 3.95$	$£ 2.80+$ VAT

$\$ 3.95 \quad \$ 2.80+\mathrm{VA}$ Cellular telephone 42 mm long $\times 16 \mathrm{~mm}$ dia Stick of 4171×16 dia with 150 mm
£1.45 $£ 0.95+$ VAT
Stick ol 4171×16 dia with 150 mm
$\begin{array}{ll}\text { cell battery } 94 \times 25 \mathrm{~mm} \\ 4.8 \mathrm{~V} & £ 5.95 \quad £ 4.00+\mathrm{VAT}\end{array}$ All 1 to 99 prices include VAT

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING

THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUP
AN EQUAL OPPORTUNITIES PROGRAMME O.N.C., O.N.D. and H.N.C

Next course commences Monday 27th April 1992
FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE

 (Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721THE BRITISH AMATEUR ELECTRONICS CLUB exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter. For detalls, write to the Chairman:

Mr H. F. Howard, 41 Thingwall Park Fishponds, Bristol BS16 2AJ
Space donated by Everyday Electronics

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV). "007" gear. Send $2 \times 22 p$ stamps for list. ACE(EE), 53 Woodland Way, Burntwood, Staffs.
G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COIS 3TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. Circuits, 38 Poynings Drive, Sussex BN3 8GR, or phone Brighton 720203.
EPROM programming, copying and updating from any device or software format. 10 day turnaround. Call/Fax: DTL 0491 681502/681944.
EVERYDAY ELECTRONICS August 1984 to July 1991 issues. Tel: 0616430921.
THE FIRST FIVE volumes of Everyday Electronics in binders. Excellent condition. Offers? (0225) 790057.

IT PAYS TO ADVERTISE WITH EVERYDAY ELECTRONICS

Your advert will reach twice as many UK readers than with any other Independent monthly hobby electronics magazine

B- $=$ qualfications

'NEC's courses are generally recognised as among the best in Open Learning' TheGuardian

- Electronics

- Telecommunications
- Microelectronics

For further information contact: Dept 702 National Extension Colle 18 Brooklands Avenue Cambridge CB2 2 HN Tel: (0223) 316644

N E C

Technical Information Services
76 Church street, larkiali, LAnArkshire, mlo hee Tel. (0698) 884585 Mon-Frl $8.30 \mathrm{am}-5.00 \mathrm{pm}$
Tel. (0698) 883334 Outwih business hours
Ax racillity overubblo all day on boit lines , Write now wilh an SAE for your
free quote free vouchers \& free catalogue

Romember, not only do we have Every service sheet ever produced, but wo also have

THE WORLDS LARGEST COLLECTION OF

 SERVICE MANUALS6 WE ARE SOLE SUPPLIERS OF VARIOUS FAULT-FINDING GUIDES REPAIR MANUALS I TECHNICAL MANUALS

CTV, Video, CD, H.Fh, Camconder, Satellies, Computers, Domesile Equip', mele OATA REFERENCE MANUAL "....essential for the serlous electriclen" FREE Updating and 10\% discount voucher only E5.95
Incorporates Unique Model identification and Chassts Data

S.O. 10 EREOOOV ELECTRONICS

LOW COST 418 MHz UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET
Incorporating the latest Surface Acoustic Wave technology, the system consists of a small "zero-power", UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and momentary output. Transmitter available either as tully assembled unit in tis own key-fob case which is fully MPT approved (codes set by cutting tracks) or in kit form with 8 -way OIL switch. Receiver also available in two kit orms, one which uses cut tracks to set code fover 13,000 codes avallable), the other uses an 8 -way DIL switch (256 codes).

Kit Sizes:	$\mathrm{T} \times 45 \times 30 \mathrm{~mm}$	Rx (both) $45 \times 55 \mathrm{~mm}$
Kit Supplies: $\mathrm{T} \times 3-15 \mathrm{~V}$	$\mathrm{R} \times$ (both) $9-15 \mathrm{~V}$	Range: Up to 100 m

Range: Up to 100 m
.125 .99 Individual Kit Transmitter: TXKT 155.99 Individual Kit Receiver (8-way DIL switch): RXOS £19.99 Inidlvdual Kit Receiver (Cut Tracks): RXCT
$1 \times$ TXKF $+1 \times$ RXCT:SYS 1 ¢18.99 $1 \times$ TXKT $+1 \times$ RXOS: SYS2 39.99

Quantity Discounts Available. Please allow 28 days for delivery Cheques/POs to:
BLB Electronics
341 Darwen Road, Bromley Cross, Bolton BL7 9BY

MAKE YOUR INTERESTS PAY!
Over the past 100 years more than 10 milllon students throughout the world have found it worth their whilel An ICs home-study course can help you get a better job, make more money and have more fun out of lifel ICs has over 100 years experience in home-study oace, when and where you want under the guldance of expert 'personal' tutors. Find out how we can help You. Post or phone today for Free Information on the course of your
cholce. frick one box only

Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

Metal detector boards with Data has tuner, mode, discriminate, headphone jack, on/off volume \& push button facilities	P.C. P.S.U. 50 watt $115-230 \mathrm{~V}$ input +5 V $4 \mathrm{~A}+12 \mathrm{~V} 2.5 \mathrm{~A}$ output with built in fan. IEC inlet + on off c9.95 ea STC P.S.U. 240 V input 5 V 6 A output
Dictaphone cassette, mech/record erase playback heads. 6V solenoid. motor, hall effect switch. £2.00 өa ${ }^{\circ}$	(convens to 12 V 3 A details available) \qquad 240 V input 5 V 10 A output (converts to
T.V./Printer stands Bic- Vero Casiwite Construction kit $£ 3.95$ ea	12V 5A no details) 600Ω line output transformers..... $\mathrm{E1} .25$ ea 240 V in $0-12 \mathrm{~V} 0.75 \mathrm{~A}$ out
construction kit $\Pi \mathrm{L} / \mathrm{CMOS}$ shor circuil snooper................ $4.955^{\circ}{ }^{\circ}$	
Dot matrix LCD 10×2 lines $63.75 \mathrm{a}^{\circ}$	Transformer + PCB gives $2 \times 7.5 \mathrm{~V} 32 \mathrm{VA}$
Dot matrix LCD 16×9 lines with Data c4.95*	with ski for 5 or 12 V regulator, will power floppy drive. \qquad £3.75 өа
20 characters $\times 2$ lines dot matrix LCD with data. C7.95*	Ultrasonic transducers (transmit + receive).-1.......................... $\mathbf{E 1 . 5 0 \text { paig }}$ 3 to 16 V Piezoelectric sounders..........50p
40 characters $\times 1$ line dot matrix LCD with data.. $\mathbf{E 1 5 . 0 0 ^ { \circ }}$	9VDC electromech anical sounder......50p. 24 V D electromechanical sounder....50p
2 digit 16 segment VF display with data. E2.9E es	2 A 250 V kevswitch 3 pensition key removatle in two positions...........E1.50
4 digit intelligent dot matrix display........ 56.00°	DIL switches PCB MT $3 / 4 / 6$ way......35p
17 segment V.F. display with driver board and data..................... 62.99 ea*	5V SPCO SIL reed relay....................40p.
8 digit liquid crystal display $\mathbf{E 1 . 7 5}$ ea	12 V 2 PCO or 4 PCO continental relay. 60 p
4 digit LCD with 7211 driver chip....... 53.50 ea	relay..95p ${ }^{\text {b }}$
Digital clock display..........................E2.50	3 to 12 V electro magnetic acoustic
11 key membrane keypad................. 51.50 ea*	transducer with data.............. $75 p^{\circ}$
Keyboard $392 \mathrm{~mm} \times 180 \mathrm{~m}$	21.10 MHz crystals 50 p ва.
keys on board + LCD $+{ }^{+}$	Bridges 25A 200V..................... £1.00*
74HCO5/80C49 easily removable........¢4.95	
19" 3 U sub rack enclosuresC8.95	
V stepper motor، 48 steps per	25 off mixed relays.......................55.95
$7.3{ }^{\circ}$ step angle........................ 53.95 es ${ }^{\circ}$	40 off mixed toggle switches...........c9.95
Stepper motor board with 2 slonted opto +2 mercury tilt switches........ $\mathbf{E 3 . 9 5}$ ea	50 off mixed switches, toggle, rocker. slide, micro ¢9.95
1000 mixed \% watl 1% resistors......... $\mathbf{C 4 . 9 5}$ 日a	$\begin{aligned} & \text { aniare axial chokes } \\ & 0.33,0.15,1,3 \end{aligned}$
250 electrolyic axial + radial capsC4.95 ea	50. ${ }^{\text {a }}$, 10 pea ., 100 for $£ 7.50^{\circ}$
200 off mixed polyester caps.................67.95*	
100 Mixed trimmer caps popular values.. ©4.95*	250off 16/22/24/40 way IC Skts.....E4.95
50 of MC 78M12CT Volt RegsE2.95*	(red/black/grey).........................e3.50 ${ }^{\circ}$
25 off asst. buzzers \& sounders....- [4.95*	QUANTITY DISCOUNTS AVAILABLE pleasering
Cable box UHF modulator/video preamp/transtormer/R's + C's/leads......66.95	
1000 off mixed Multilayer Ceramic Caps....................................... $\mathbf{C 7 . 9 5}$	ITEMS MARKED * WHICH ARE 5OP. SAE FOR BULK BUYING LIST
Solar cell modules 0.45 V 700 mAE2.95 ea*	T WITH ORDER TO:
B.B.C. Micro to disc drive lead............ $\mathbf{1 1 . 5 0}$	
Car Burglar alarm vibration auto entry/exit delay. C5.95 ${ }^{\text {日a }}$	14 Constable Road
Single zone alarm panel auto entry/exit delay housed in domestic light socket... C9.95 өв	St. Ives, Huntingdon, Cambs PE176EQ Tel/Fax: 0480300819

ADVERTISERS INDEX

N.R.BARDWELL.................-... 326	LECTRONICS......Cover (iv)
R. BARTLETT.......................... 313	MARAPET............................... 327
BK ELECTRONICSCover (iii)	MARCO TRADING 299
BLB ELECTRONICS.................. 327	MAURITRON PUBLICATIONS.... 326
BRIAN J. REED............................ 328	M\&B ELECT. SUPPLIES............... 318
BULL ELECTRICALCover (ii)	NATIONAL COLLEGE OF
CAMBRIDGE COMP. SCIENCE.... 313	TECHNOLOGY....................... 260
CIRKIT DISTRIBUTION............... 311	NATIONAL EXTENSION
COMPELEC 328	COLLEGE............................. 327
CRICKLEWOOD ELECTRONICS ... 317	NORTECH ELECTRONIC
CR SUPPLY COMPANY 325	NORTHERN MARKETING
EAGLE PUBLICATIONS............... 325	CONCEPTS........................... 260
ELECTRONIZE DESIGN............... 260	NUMBER ONE SYSTEMS............. 297
ESR ELECTRONIC COMP............. 264	OMNI ELECTRONICS................... 311
ELECTROVALUE....................... 260	PICO TECHNOLOGY.................. 311
HART ELECTRONIC KITS............ 305	RADIO \& TV COMPONENTS........ 258
HESİNG TECHNOLOGY............... 325	SHERWOOD ELECTRONICS........ 327
HIGH-Q-ELECTRONICS............... 328	SOUNDUNIT............................... 279
ICS... 327	SUMA DESIGNS........................ 271
JAYTEE ELECTRONIC	TECHNICAL INFO. SERVICES....... 327
SERVICES.....................325/327	TEMS...................................... 325
JPG ELECTRONICS.................. 326	TK ELECTRONICS....................... 261
MAGENTA ELECTRONICS....262/263	TYPESETTING BUREAU.............. 317

Millions of quality components at lowest ever prices!

 Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only. All inclusive prices NO post, or VAT etc to add on. Send 34 p stamped self addressed label or envelope for catalogue/clearance list.At least 2,100 offers to amaze you.

Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 081-393 9055 --

KITS SOEEUK DISTRBUTOR
 (2) $\left\lvert\, \begin{aligned} & E \\ & 0 \\ & u\end{aligned}\right.$ N 2 LIGHT COMPUTER

For 1992/3 Catalogue and Price list plus a list of your local stockists please send $£ 1$ or $£ 2.50$ overseas
 Tel: 0707263562 Fax: 0707276746

[^1] otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

- $/$ - POWERAMPLIFIER MODULES-TURNTAELEE-DIMMERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
 proot \star Latest Mos-Fets for stress free power delivery into virtually any load \& High slew rale \star Very low USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W $19^{\prime \prime} \times \mathrm{H}^{11 \mathbf{1}^{\prime \prime}}$ (2U)×D11"

PRICES:- MXF200 \& 175.00 MXF400 $£ 233.85$
MXF600 £329.00 MXF900 £449.15
SPECIALIST CARRIER DEL. E12.50 EACH 2
OMT VARISPESD TURNTAELE CHASSIS

* Manual arm * Steel chassis $\begin{gathered}\text { Electronic speed }\end{gathered}$ control 33 \& 45 R.P.M. * Vari pitch control * High torque servo driven DC motor * Transit screws * $12^{\prime \prime}$ die cast platter * Neon strobe * Caiibrated balance weight \star Removable head shell $\star 1 / 2$ cartridge fixings * Cue lever* $220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out template.

PRICE 861.30 + E3.70 P\&P
OPTIONALMAGNEIC CARTRIDGES STANTON AL500mkII GOLDRING G950 PRICEE18.95 + 50P P\&P PRICE E7.15 + 50P P\&P STEREO OTSCO MIX 3 R DJG500 \star WITH ECHO *
STEREO DISCO MIXER with 2×7 band L \&
R graphic equalisers with bar graph
LED
VU meters.
MANY OUTSTANDING FEATURES:- including Echo with repeat ${ }^{\circ}$ speed control, D.J. Mic with tone control speed conirol, Dithic with tone control individual taders plus cross fade, Cue Headphone Monitor. Useful combination of the following inputs:- 3 turntables (mag), 3 mics, 5 Line for $\mathbf{C D}$, Tape, Video etc.
Price \&134.99 + E5.00 P\&P

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 wat
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN1036A) 3 " round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price $\mathbf{£ 4 . 9 0}+\mathbf{5 0 p}$ P\&P. TYPE 'B' (KSN1005A) $31 / 2$ " super horn for general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50 \mathrm{p}$ P\& P.
TYPE ' C ' (KSN1016A) $2^{\prime \prime} \times 5^{\prime}$ " wide dispersion horn for quality Hi-Fi sys tems and quality discos etc. Price $£ 6.99+50 \mathrm{p}$ P\&
TYPE ' D ' (KSN1025A) 2 " $\times 6$ " wide dispersion horn. Upper trequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $\mathbf{C 9} 99+50 \mathrm{p}$ P\&P. TYPE 'E' (KSN1038A) 3^{344} " horn tweeter with attractive silver finish trim. Suitable for Hi -Fi monitor systems etc. Price $£ 5.99$ + $\mathbf{5 0 p}$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbb{£ 4 . 1 0}+\mathbf{5 0 p}$ P\&P.

OMP LINNET LOUDSPEAKEBS

THE VERY BESTIN QUALITY AND VALUE
Made especially to suil today's need tor compactness with high output
sound levels, tinished in hard wearing black vynide with protective corners, grille and carrying handle. Each unit incorporates a $12^{\prime \prime}$ driver plus high frequency horn for a lull frequency range of $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Both models are 8 Ohm Impedance. Size: $\mathrm{H} 20^{\prime \prime} \times \mathrm{W}^{\prime \prime} 5^{\prime \prime} \times \mathrm{D}^{2} 2^{\prime \prime}$

CHOICE OF TWO MODELS

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100WATTS (100 dB) PRICE $£ 163.50$ PER PAIR
OMP 12 -200WATTS (200dB) PRICE $£ 214.55$ PER PAIR

$$
\text { SPECIALIST CARRIER DEL. } \text { E12.50 PER PAIR }
$$

DN-CAR STEREO EOOSTER AMPS

PRICES: 150W E49.99 250W E99.99

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo, 150 W Bridged Mono 250 WATTS (12 Bridged Mono 400 WATTS $(200+200)$ Ste 400 w Brldged Mono Features:

* Stereo, bridgable mono * Choice of high \& low level inputs L \& R level controls \star Remote on-off \& Speaker \& INCLUSIVE OF V.A.T. SALES COUNTER. VISA
ACCESSACCEPTEDBY POST, DHONEORFAX.

OMP MOSFAT FOWER AWPLIFIERMODULES SUPPLIED READY BUILT AND TESTED. These modules now enjoy a world-wide reputatlon for quality. reliability and performance at a reallstic price. Four
models are available to evit line needs ol the professional and nobby market f.e. Industry, Leisure, Instrumental and Hi-Ft models are available to ailit he needs ol the profes sional and nobby market i.e. Industry, Le
etc. When comparing prices, NOTE that all models include toroldal power supply, integrai heal
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

Vu METER Compatible with our four amplifiers detailed above. A very accurate Visual display employing 11 L.E.D.s (7 green, 4 red) plus an additional on/oth moulded plastic case, with acrylic tinted front. Size $84 \times 27 \times 45 \mathrm{~mm}$.
PRICE \&8.70 + 50p P\&P
LOUDSFEAKER

Lafge selection of specialist loudspeakers AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (50p STAMPED) FOR COMPLETE LIST.
P- From McKenzie Prolessional Series
S. From McKenzie Studio Series

MCK =NZIE:- NSTRUMENTS, P.A., DISCO, ETC

ALL MCKENzIE UNITS 8 OHMS IMPEDANCE
8" 100 WATT ${ }^{[10}$ C8-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO.
RES. FREQ. 80 Hz , FREQ. RESP. TO 7 KMz , SENS 96 dB . 1O RES. FREO. 72Hz, FREQ. RESP. TO GKHz, SENS97dB. PRICE \&38.89 10" 200WATT S C $10-200 \mathrm{GP}$ GUITAR, KEYB'D, DISCO, EXCELLENT HIGH POWER MID.
RES. FREO. 69Hz, FREQ. RESP. TO 5 KHz , SENS 97 dB . 12" 100WATT PR12-100GP HIGH POWER GEN. PURPOSE, LEAD GUITAR, DISCO. RES. FREQ. 49Hz, FREQ. RESP. TO 7 KHz , SENS 98 dB . $12^{\prime \prime} 100 W A T T$ P C12-100TC (TWIN CONE) HIGH POWER, WIDE RESPO RES. FREQ 45 Hz , FREQ. RESP. TO 12 KHz , SENS 97 dB .
12" 200WATT S C 2 -200B HIGH POWER BASS, KEYBOARDS, DISCO, P. RES. FREQ. 45Hz, FREQ. RESP. TO $5 K H z$, SENS 99dB. $12^{\prime \prime} 300$ WATT S C12-300GP MIGH POWER BASS, L RES. FREQ. 49 Hz , FREQ. RESP. TO 7 KHz , SENS 100 dB . 15" 100WATT PC15-100BS BASS GUITAR, LOW FR
RES. FREQ. 40 Hz , FREQ. RESP. TO $5 K \mathrm{~Hz}$, SENS 98 dB . RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz , SENS 98dB. 15 " 200WATT PC1 5-200BS VERY HIGH POWER BASS RES. FREQ. 40 Hz , FREQ. RESP. TO 3 KHz , SENS 98 dB .
15 " 250 WATT . $\mathrm{C} 15-250 \mathrm{BS}$ VERY HIGHPOWER BA 15 250WATT C15-250BS VERY HIGH POWER BA
RES. FREQ. 39HZ, FREQ. RESP. TO 4 KHz , SENS 99 dB . RES. FREQ. 39Hz, FREQ. RESP. TO $4 K H z$, SENS 99dB.
$15^{\prime \prime} 400 W A T T$ Si C $15-400$ BS VERY HIGH POWER, RES. FREQ. 40 Hz , FREQ. RESP. TO 4 KMz , SENS 100 dB . $18^{\prime \prime} 500 \mathrm{WAT}$ 图C18-500BS EXTREMELY HIGH POW
RES. FREQ. 27 Hz . FREQ. RESP. TO 2 KHz , SENS. 98dB. EARBIENDEFS:- HIEFI, STUDIO, IN-CAB, ETC
ALL EARBENDER UNITS 8 OHMS (Except EB8-50 \& EB10-50 which are dua
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
850 watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR
RES. FREQ. 40 Hz , FREQ. RESP. TO 7KHz SENS 97 dB . RES. FREO 40 Hz , FREO RESP TO 5 KHz SENS 99 dB 10" $100 \mathrm{WATT} \mathrm{EB10-100} \mathrm{BASS}, \mathrm{HI-FI}, \mathrm{STUDIO}$.
RES. FREQ. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB .
12 " 100 WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO.
RES. FREQ. 26 Hz, FREQ. RESP. TO 3 KHz , SENS 93 dB .
AD GUITAR, KEYBO
QUENCY, P.A., DISCO

[^2]\qquad
\qquadFREQUENCLOW FREQUENNCY BASS.
PRICE 174
RICE 40.35NSE, P.A., VO +83.50 P\&PRICE C41.30 VOICE, DISCO.PAICE $1.39+$ §3.50 P\&PPRICE E71.91RICE E95.66 ETCPRICE
PRICEPRICE $59.05+$ ¢ 4.00 P9PRICE ع80.57 + £4.00 P\&P
PRICE $\subset 90.23+$ -

FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND $51 / 4 "$ 6OWATT EB5-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREQ. 63 Hz , FREQ. RESP. TO 20 KHz , SENS 92 dB .

PRAY DISCO ETC PRICE $6.90+\mathbf{~} 1.50$ P8P RES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . RES. FREQ. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89dB. RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS $98 d B$. PRICE ER PRICE E1 PRICE\&13.65 + £2.50 P\&P PRICE $\mathbf{~ C 3 0 . 3 9 ~}+\mathbf{E 3 . 5 0}$ P\&P PRICE E42.12 + ع3.50 P\&P

DiANSMIITER HOBBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER 8O-108MHZ, VARICAP CONTROLLED PROFESSIONAL ERFORMANCE, RANGE UP TO 3 MILES, SI2E $38 \times 123 \mathrm{~mm}$, SUPPLY 12 V @ $0.5 A M P$ PRICE $£ 14.85+$ C 1.00 P\& P
FII MICRO TRANSMITTER 100-30
VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$. SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY 9V BATTERY. PHOTO: aw FM TRANSMITTER E.K. EL=CTRONICS

UNITS 1 \& 5 COMET WAY, SOUTHENG-ON-SEA,

Let's talk waveforms...

...AND THE BEST IN OSCILLOSCOPES.

Our new range of precision laboratory oscilloscopes offer not only the best features, but also prices. From the sophisticated 20 MHz 7025 to the delayed sweep 40 MHz 7046 , advanced design and high quality combine to bring you features such as; $1 \mathrm{mV} / \mathrm{div}$ sensitivity, advanced 6 -inch CRT with percentage markers and internal graticule, eliminating parallax error and ensuring a highly accurate display. X-Y mode allows Lissajous patterns to be produced and phase shifts measured.

The 7025 has all the capabilities required of a general purpose oscilloscope and will accept signals from DC to at least 20 MHz with a high degree of accuracy. The 20 MHz 7026 incorporates a delayed sweep time base, which can be used to magnify a portion of the waveform, and makes accurate time interval measurements and the study of short duration events

possible. The sophisticated 40 MHz 7045 includes a 40 ns delay line to help show very short duration events in their entirety. A delayed sweep oscilloscope of advanced design and high quality is found in the shape of the 40 MHz delayed sweep 7046 , having an increased magnification along with a 40 MHz bandwidth and capable of displaying complex signals with precision and accuracy

Full details of our oscilloscopes and all other test equipment can be found in the 1992 Maplin catalogue, available from WHSMITH or Maplin shops nationwide $£ 2.75$ or by post £2.95. Mail Order to: P.O. Box 3, Rayleigh, Essex, SS6 8LR. Credit Card Hotline, 0702 554161. or visit your local store.

GL29G 困 20MHz scope 7025... £299.95. GL.30H H 20 MHz scope $7026 \ldots £ 349.95$. GL31J H 40 MHz scope 7045 ...£449.95 GL.33L 固 40 MHz scope 7046...£499.95 (illustrated).

[^3] Road, Westeliff. Plus new stores in COVENTRY and SOUTH LONDON opening soon. Ring 0702552911 for further details.

[^0]: Carbon Film resistors 1/4W 5\% E24 series 0.51 R to 10MO 100 off per value -75 p. even hundreds per value totalling 1000
 Metal Film resistors \%W 10R to 1 MO 5\% E12 series-2p. 1\% E24 series
 Mixed metal/carbon film resistors $1 / 2 W$ E2 4 series 1 RO to 10MO.
 1 watt mixed metal/Carbon Film 5\% E12 series 4 R7 to 10 Megohms
 Linear Carbon pre-sets 100 mW and 1 WW 100 R to 4 M 7 E6 series.
 Miniature polyster capacitors 250 V working for vertical mounting
 015 022 033 047, 068-4p 0.1-5p 0.120.15 0.22-6p 0.47-8p 0.68-8p 1.0-12p
 Mylar (polyester) capacitors 100 V working E12 series vertical mounting 1000 p to 8200 p- $3 p . .01$ to. $068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}-8 \mathrm{p}$
 Submin ceramic plate capacitors
 $2 \% 1.8$ pf to 47pf - 3p. $2 \% 56$ pf to 330pf - 4p. 10\% 390p-4700p.
 Disc/plate ceramics 50 V E12 series 1PO to 1000P, E6 Series 1500 P to 47000 P
 Polystyrene capacitors 63 V working E12 series long axial wires
 10 pf to 820 pf -4 p. 1000 pf to 10,000 pf -5 p. 12.000 pf
 741 Op Amp - 20p. 555 Timer
 cmos 4001 - 20p. 4011 - 22p. 4017
 ALUMINIUM ELECTROLYTICS (Mids/Volts)
 $1 / 50,2.2 / 50,4.7 / 50,10 / 25,10 / 50$
 $22 / 16,22 / 25,22 / 50,47 / 16,47 / 25,47 / 50$
 100/16, 100/25 7p; 100/50 12p; 100/100
 220/168p; 220/25, 220/50 10p; 470/16. 470/25
 1000/25 25p; 1000/35, 2200/25 35p; 4700/25 ...
 Submin, tantalum bead electrolyics (Mfds/Volts)
 $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
 $2.2 / 35,4.7 / 25,4.7 / 35,6.8 / 16150.10 / 16.22 / 6$
 33/10. $47 / 6,22 / 1630 \mathrm{p} ; 47 / 1035 \mathrm{p}: 47 / 1660 \mathrm{p}: 47 / 35$.
 VOLTAGEREGULATORS
 $1 \mathrm{~A}+$ or $-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}-55 \mathrm{p} .100 \mathrm{~mA} .5 .8,12,15, \mathrm{~V}+$ DIODES (piv/amps)
 75/25mA 1N41482p. 800/1A 1 N4006 41/2p. 400/3A 1 N5404 14p. 115/15mA OA9 100/1A 1 N4002 31/2p. 1000/1A 1N40075p. 60/1.5A S1M1 5p. 100/1 A bridge $400 / 1$ A $1 N 40044$ p. $1250 / 1$ A BY $12710 p .30 / 15 A$ OA 47
 Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8 p . 1 watt
 Battery snaps for PP3 - 6p for PP9.
 L.E.D.s 3 mm . \& 5 mm . Red, Green, Yellow - 10p. Grommets $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$ Red flashing L.E.D. 's require $9-12 \mathrm{~V}$ supply only
 20 mm fuses 100 mA to 5 A . O. blow 5 p . A/surge 100 . Holders, chassis, mounting High speed pc drill $0.8,1.0,1.3,1.5,2.0 \mathrm{~mm}-30 \mathrm{p}$. Machines $12 \% \mathrm{dc}$
 HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unit Glass reed switches with single pole make contacts - 8 p. Magnets
 $0.1^{\text {" Stripboard }} 21 / 2^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes - 25p. $34 \times 21 / 2^{\prime \prime} 24$ rows 37 holes Jack plugs $2.5 \& 3.5 \mathrm{~m}$
 Sockets Panel Mtg. $2.5 \& 3.5 \mathrm{~m}$
 TRANSISTORS BC1818/9-12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L, BC183, 183L BC184, 184 L. BC212, 212L-10p.
 BC327, 337, 337L - 12p. BC727, $737-12 p$. BD135/6/7/8/9-25p. BCY70 - 18p.
 BFY50/51/52 - 20p.
 BFX88-15p. 2N3055-50p, TIP31. 32-30p. TIP41, 42 - 40p, BU208A - £1.20, BF195, 197-12p lonisers with seven year guarantee, list price $\mathbb{£ 1 6 . 9 5}$

 All prices are inclusive of VAT. Postage 30 p (tree over £5). Lists Free.

[^1]: Published on approximately the first Friday of each month by Wimborne Publishing Lid., 6 Church Street. Wimborne, Dorset BH 21 IJH. Printed in England by Benham \& Co. Limited, Colchester. Essex. Distributed by Seymour, Windsor House. 1270 London Road, Norbury, London SW16 4DH. Sole Agents for Australia and New Zealand -Gordon \& Gotch (Asia) Lid., South Africa -Central News Agency Lid. Subseriptions INLAND £ 18.50 and OVERSEAS $£ 23$ ($£ 40.50$ airmail) payable to "Everyday Electronics" Subscription Department, 6 Church Street. Wimborne. Dorset BH2 I JH. EVERYDAY ELECTRONICS is sold subject to the following conditions, namely that it shall not. without the written consent of the Publishers first having been
 given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or

[^2]: \qquad

[^3]: All iterns subject to availability. Mandling charge $£ 1$. H. Indicates carriage charge of $£ 5.30$. All prices inclusive of VAT.
 Visit our stores at: BIRMINGHAM; Sutton New Road, Erdington. BRIGHTON; 65 London Road. BRISTOL; 302 Gloucester Road. CARDIFF; 29 City Road. CHATHAM; 2 Luton Road. GLASGOW; 264-266 Great Western Road. LEEDS; Carpet World Building, 3 Regent Street. LEICESTER; Office World Building, Burton Street. LONDON; $146-148$ Burnt Oak Broadway, Edgware. 120-122 King Street, Hammersmith. MANCHESTER; 8 Oxford Road. NEWCASTLE-UPON-TYNE; Unit 4, Allison Court, The Metro Centre, Gateshead. NOTTINGHAM; 86-88 Lower Parliament Street. READING; 129-131 Oxford Road. SHEFFIELD; 413 Langsett Road, Hillsborough. SOUTHAMPTON; 46-48 Bevois Valley Road. SOUTHENO-ON-SEA; 282-284 London

