

Ramp Generator High quality, versatile test equipment
Automatic
Curtain Winder With add-on remote control

Windicator Inexpensive l.e.d. readout Anemometer

H.V.Capacitor Reformer For refurbishing valve equipment

The No. 1 Indepen
Magazine For
Electronics Techiolốcy
$\&$ Computer Projects

ENERGY BANK KIT $1006^{\prime \prime} \times 6^{\prime \prime}$ 6V 100mA panels, 100 diodes, connection details etc. $£ 69.95$ ref EF112 CGTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video out ut is $1 v p-P$ (75 ohm). Works direcyy Into a scart or video input on a tv or video. IR sensitive. $£ 79.95$ ret EF13 IR LAMP KIr Sultable for the above camera
to be used in toral darkness! $\mathrm{E5} 59$ ref EF 138 . PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, includes wordprocessor, report witer, windowing, networkable up to 10 stations, multiple cash books etc. 200 page comprehensive manuai. 90 days free technical support (0345-326009 try before you buy!) Current retail price is $£ 129$, ours just $£ 29$ ref EF 134 SAVE £100III
MINIMICRO FANS 12V 1.5° sq just $£ 3.99$ each. Rel EF 199. C TTOH PRINTERS $80 \mathrm{col}, 9$ in matrix. serial/parallel, NLQ/draft. 3 mth warranty, good condition, £49 ref EF133
MICROSOFT TRACKBALL AND MOUSE Combined unit with 4 buttons and trackball, PS2 type connector. Complete with storage bracket Our price just $£ 11.99$ ref EF201. REUSEABLE HEAT PACKS. Ideal for fishermen, outdoor enthusiasts elderly or infim, waming food, drinks etc, defrosting
plpes etc. reuseable up to 10 times, lasts for up to 8 hours per go, plpes etc. reuseable up to 10 times, lasts for up to 8 hours per go,
2,000 , 1,44M B 3.5" DSC DRNES Returnsfromatop PC manufactuer 1.44 MB 3.6 D
so they may need attention. bargan price $£ 8.50$ ea ref EF 203 . 1.2MB6.26" DISC DRNES Again returns somay need attention, bargain price is $£ 8.50$ ref EF204. (1 of each 1.2+1.44 $£ 14.99$ refef205 A4 DTP MON ITORS Brand new, 300 DPI. Complete with diagram but no interface detaiks.(so you will have to work it out!) Bargain at just £7.99 eachll!! Ref EF186 OPD MONITORS 9° mono monitor, fully cased complete with raster board, switched mode psuetc. CGATTLLinput (15 way D). IEC mains. $£ 15.99$ ref DEC23. Pnce including kitto convert to composite monitor for CCTV use etc is $£ 21.53$ ref DEC24
12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard IEC socket) and 2 m lead with plug. $100-240 \mathrm{~V}$ IP. $£ 8.99$ rel EF200. PC CONTROLLED 4 CHANNEL TMER Control (onvof times etc) up to 4 items (8A 240v each) with this kit. Complete with Software, relays, PCB etc. £25.99 Ref 95/26
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fuctuations and cuts. New and boxed, UK made Provides up to 5 mins running tme in the event of complete power failure to allow you
correcty. SALE PRICE just $£ 119.00$.
RACAL MODEM BONANZAI 1 Racal MPS1223 $1200 / 75$ modem, telephone lead, mains lead, manual and comms software, the cheapest way onto the netl all this for just $£ 13$ ref DEC13 HOW LOW ARE YOUR FLOPPIES? $3.5^{\circ}(1.44)$ unbranded. We have sold $100,000+$ so ok! Pack of $50 £ 24.99$ ref DEC 16 6 mw LASER POINTER. Supplied in kit form, complete with power adjuster, $1-5 \mathrm{mw}$, and beam divergence adjuster. Runs on 2
AAA batteries. Produces thin red beam ideal for levels, gun sights, expenments etc. Cheapest in the UK! just $£ 39.95$ ref DEC49 SHOP WOBBLERS!Small assemblies designed to take D size batteries and 'wobble' signs about in shops! £3.99 Ref SEP4P2 RADIO PAG ERSBrand new. UK made pocket pagers clearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Rel SEP5. BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete whith electrodes and full Instructions. TENS is used for the relief of pain etc in up to 70% of sufferers. Drug free pain relief, safe and easy to
conjunction with analgesics etc. £49 Ref TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (like wyse 50 ,) 2xRS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard setup menus (18 menu's). £29 REF NOV4.
OMRON TEMPERATURE CONTROLLERS (E5C2).Brand new controllers. adjustable from 0 deg C to +100 deg C using output ,3A 240 v op contacts. Perfect for exactly controlling a temperature, Normal trade $£ 50+$, ours $£ 15$. Ref E5C2.
ELECTRIC MOTOR BONANZA! $110 \times 60 \mathrm{~mm}$ Brand new precision, cap start (or spin to start), vitually silent and features a predision, cap start (or spin to start), vitualy slient and features a
moving outer case that acts as a fly wheel. Because of their unusual moving outer case that acts as a lly whee. Because of their unade fan
design we think that 2 of these in a tube with somemate design we think that 2 of these in a tube with some homemade fan
blades could form the basis for a wind turnel etc. Clearance price is blades could form the basis for a wind tunnel etc. Clearance price is
just£4.99 FOR APAIR! (note-these will have to be wired in series for 240 V operation Ref NOV1
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$. Similar to the above motor but more suitable for mounting vertically (ie turntable etc). Again you will have to wire 2 in senes for 240 v use. Bargain price is just E4.99 FOR A PAIR!! Ref NOV3.
OMRON ELECTRONIC INTERVAL TMERS.

NEW LOW PRICES TO CLEARI

Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12 VDC adjustable from $0-30$ secs. $£ 4.99$ HY1210M, 12vDC adjustable from 0-10 mins $£ 4.99$ HY1260M, 12vDC adjustable from $0-60$ mins $£ 4.99$ HY2460M, 24vAC adjustable from $0-60$ mins $£ 2.99$ HY241S, 24VAC adjustable from $0-1$ secs. $£ 2.99$ HY2460S, 24vAC adjustable from $0-60$ secs, $£ 2.99$ HY243H, 24VAC adjustable from 0-3 hours $£ 2.99$ HY2401S, 240 V adjustable from $0-1$ secs $£ 4.99$ HY2405S, 240V adjustable from $0-5$ secs $£ 4.99$ HY24060m, 240 N adjustable from $0-60$ mins. $£ 6.99$ PC PAL VGA TO TV CONVERTER Converts a colour TVInto a basic VGA screen. Complete with built in psu, lead and $s /$ ware £49.95. Ideal for laptops or a cheap upgrade. We als
in kit form for home assembly at £34.95 ref EF54
lied) and EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodlights, builtin charger and auto switch. Fully cased. 6v 8AH
lead acid req'd. (secondhand) E4 ref MAG4P
GUIDED MISSILE WIRE
GUIDED MISSILE WIRE. 4.200 metre reel of ultra thin 4 core insulated cable, 28ibs breaking strain, less than 1 mm thick! Ideal
alams, intercoms, fishing, dolls house's etc E14.99 ref MAG15P5 ASTEC SWITCHED MODE PSU BM4 1012 Gives +5 (2) 3.75A. +12@1.5A, -12@.4A. 230/110, cased, BM41012 £5.99 ref AUG6P3 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12 v 2watt. £9.99 ea ref AUG 10 P 3 FLOPPY DISCS DSDD Top quality 5.25° discs, these have been FLOPPY DISC DSDD Top quality 5.25 discs, these have ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied, $60-100$ flashes a min. $£ 9.99$ ref APR10P5 24v AC 96WATT Cased power supply. New. £13.99 ref APR14 MILTARY SPEC GEIGER COUNTERS Unused anstraightfrom Her majesty's forces. $£ 50$ ref MAG 50P 3 .
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a built in lamp at dusk. Complete with sealed lead acid battery etc.E19.99 ref MAR2OP1.
ALARM VERSION Of above unit comes with built in alarm and pir to deter intruders. Good value at just $£ 24.99$ ref MAR25P4.
CARETAKER VOLUHETRIC Alam, will cover the whole of the ground floor against forcred entry. Indudes mains power supply and integral battery backup. Pow erfut internal sounder, will take external bell if req'd. Retail $£ 150+$, ours? $£ 49.99$ rel MAR50P1
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 dips. Ideal'phone extns etc. $£ 7.99$ ref MAR8P3.
MICRODRNE STRIPPERS Small cased tape dives ideal for stripping, lots of useful goodies including a smart case, and lots of components. $£ 2$ each ref JUN2P3. Box of 10 just $£ 9.99$ ref EF207. SOLAR POWER LAB SPECLAL You get TWO 6 " $\times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just E5.99 REF: MAG6P8
BUGGING TAPE RECORDER Small voice activated recorder, uses microcassette complete with headphones. £28.99 refMAR29P1. ULTRAMINIBUGMIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ madebyAKG, 5 - 12 velectret condenser. Cost $£ 12$ ea, Ours? Just four for $£ 9.99$ REF MAG 10 P2.
RGBICG AJEGA/TTL COLOUR MON ITORS 12° in good RGBICGAJEGA/TTL COLOUR MONITORS 12° in good
condition. Back anodised metal case. $£ 79$ each REF JUN79 ANSWER PHONES Returns with 2 fautts, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200 's $£ 18$ ea REF MAG18P1. PSU E5 ref MAG5P12.
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{~V}$ © $5 \mathrm{~A},-5 \mathrm{Ve}$. 5 A . +12V@2A.-12vQ. 5 A
\&6.99 REF MAG7P1
PLUG IN PSU 9V 200mA DC E2.99 each REF MAG3P9
PLUG IN ACORN PSU $19 v$ AC 14w, E2.99 REF MAG3P 10
POWER SUPPLY fully cased with mains and ofp leads 17 V
900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU +5v © 4.4A. on/off sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ E 7 REF MAG7P2
9v DC POWER SUPPLY Standard plug in type 150 ma 9 DC with lead and DC power plug. price for two is $£ 2.99$ ref AUG3P4.
AA NICAD PACK encapsulated pack of 8 AA nlcad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P 11
(tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P11
13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG10P3
13.8V 1.9A pSu cased with leads. Just $£ 9.99$ REF MAG10P3
PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally made for mi spec satellite equipment but perfect for all sorts of remote control projects. Our cearance price is just $£ 2$ REF: MAG2
200 WATT INVERTER Converts 10-15v DC into either 110 v or 240v AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$. complete with heavy duty power lead, cigar plug. AC outet socket.Auto overoad shutdown, power lead, cigar plug. AC outet socket.Auto overoad shutdown,
auto short circuit shut down, auto input over yoltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control, unit shuts down If overheated and sounds audible alarm. Fused reversed polanity protected. Output frequency within 2%, voltage within 10\%. A well built unit at an keen price Just $£ 64.99$ refAUG65. UNNERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPUTER COMMUNICATIONS PACK
COMPUTER COMM UNICATIONS PACK Klt contains 100 m of 6 core cabie, 100 cable clips, 2 line dnvers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PC's over a long distance. Complete kit $£ 8.99$.
ELECTRIC MOTOR KIT Comprehensive educationa! kit includes all you need to build an electnc motor, £9.99 ret MAR10P4. VIEWDATA SYSTEMS made by Phillips, complete with intemal 120075 modem, keyboard, psu etc RGB and composite outputs. menu driven, autodialler etc. E18 each Ref EF88.
BOOMERANG High tech, patented poly propylene, 34 cm wing span. Get out and get some exercise for E4.99 rel EF83
AIR RIFLES . 22 As used by the Chinese army for training puposes, S8 the re is a lot aboutt $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80
PLUG IN POWER SUPPLYS Plugs in to 13A socket with output lead three types available, $9 v d \mathrm{dc} 150 \mathrm{~mA}$ £2 ref EF58, 9 vdc 200 mA £2.50 ref EF59, 6.5 vac 500 mA E3 ref EF61
VIDEO SENDER UNTT. Transmits both audio and video signals fromeither a video camera, video recorder, TV or Computeretc to any
standard TV set in a 100 ' rangel (tune TV to a spare channel) 12vDC :SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

BULL ELECTRICAL

MAIL. ORDER THRMS © AH, ヶO OH ClHOL: WIH ORDER PLISE3 fOSt Pults lats.

TLL: 01273203500
IA 10.0127332307
op. Price is $£ 15$ REF: MAG15 12 v psu is $£ 5$ extra REF: MAG5P2 *FM CORDLESS MICROPHONE Small hand held unit with a
500 ' rangel 21 ransmit power levels. Reqs PP 3 v battery. Tuneable 500 ' rangel 2 transmit power levels. Reqs PP3 9v b
to any FM receiver. Price is E 15 REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200, Ideal for garden use or as an educational loy. Price is $£ 8$ a pair REF: MAG 8P1 $2 \times$ PP3 req d.
*MINATURE RADIO TRANSCENERS A pair of walkie talkies witha range up to 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. induding cases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 COMPOSITE VIDEO KIT. Converts composite video into sepaate H sync, V sync, and video. 12 V DC. £8.00 REF: MAG8P2. rate H sync, V sync, and video, $12 \mathrm{VCD}, £ 8.00$ REF: MAG8p2.
LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entife mechanical printer assemblies including pnnthead, stepper motors etc etc in fact everything bar the case and electronics, a good stnpper! £5 REF: MAG5P3 or 2 for £8 REF: MAG8P3
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with flyleads, switch, fan etc. 200 w at £20 REF: MAG20P3 ($265 \times 155 \times 125 \mathrm{~mm}$).
GYROSCOP EAbout $3^{\prime \prime}$ high and an exceilenteducational toy for all ages! Price with instruction booklet E 6 Ref EF15
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ dive connectors 1 mother board connector. 150watt, 12 v fan, iec let and onfoff swltoh. $£ 12$ Ref EF6
VENUS FLY TRAP KIT Grow your own carnivorous plant with this simple kit £3 ref EF34
PC POWER SUPPLIES (returns) These are $140 \times 150 \times 90 \mathrm{~mm}$. O ps are $+12,-12,+5$ and -5 v . Built in 12 v fan. These are returns so they may well need repairing! $£ 3.50$ each rel EF42
FM TRANSMITTER KIT housed in a standard working 13A adapter!! the bug runs directly off the mains so lasts forever! why pay £700? or price is $£ 15$ REF: EF62 Transmits to any FM radio. (this is nkit form with full instructions.)
FM BUG KIT New design with PCB embedded coil for extra stablity. Works to any FM radio. 9 V battery req'd. £5 REF: MAG5P5 FM BUG BUILT AND TESTED supenor design to kit Supplied detective agencies, $9 v$ battery rec'd. £14 REF: MAG14
TALKING COINBOX STRIPPER originally made to retail at $£ 79$ each, these units are designed to convert an ordinary phone into a payphone. The units have the looks missing and sometimes broken hinges. How ever they can be adapted for their onginal use or used for something else?? Pncels just E3 REF: MAG3P1
TOP QUA LITY SPEAKERS Made for HI FI televisions these are 10 watt 4R Jap made 4" round with large shlelded magnets. Good quality. $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS 2" diameter good quality tweeter 140R (ok with the above speaker) 2 for £2 REF: MAG2P5 or 4 fo $£ 3$ REF: MAG 3 P4 AT KEYBOARDS Made by Apricot these quality keyboards need justa small: mod to run on any AT, they work perfectry but you will have to put up with 1 or 2 foreign keycaps! Price E6 REF: MAG6P3
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very omprehensive manuall 52° only
GAS HOBS Brand new made by Optomus, basic three burner suttable for small flat etc bargain pnce just £29.95 ref EF73
GAT AIR PISTOL PACK Complete with pistol. darts and pellets 12.95 Ref EF82 extra pellets (500) £4.50 ref EF80.

DOS PACK Microsoftversion 6 with manual $£ 9.993 .5^{\circ}$ ref EF209 WIN DOWS 3.1 3.5" with manual £24.99 ref EF210.
NOVELL NTEWARE LTE (network s/ware) $£ 24.99$ ref EF211 PIR DETECTOR Made by famous UK alarm manufacturer these re hi spec, long range internal units. 12 v operation. Slight marks on ase and unboxed (although brand new) £8 REF: MAG8PS
MOBILECARPHON E£ 5.99 Well aimostl complete in carphone excluding the box of electronics normally hidden under seat. Can be made toilluminate with 12 v also has builtin light sensor sodisplay only illuminates when dark. Totally convinding! REF: MAG6P6
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain prce just $£ 5,99$ ea REF MAG6P $\dagger 2$.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ef MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P HEATSINKS (\ddagger nned) TO220, designed to mountvertically on a pCb $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P11
STROBE LIGHT KIT Adjustable from 1 hz night up to 60 hz ! (electronic asssembly kit with full instructions) $£ 16$ ref EF28 ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause rain! $£ 3$ a pair Ref EF29 AMSTRAD GX4000 gam
seen. Just $£ 2.99$ ref EF 186.

NEW HIGH POWER LASERS

15 mW . Hellum neon, 3 switchable wave lengths . $63 \mathrm{um}, 1.15 \mathrm{um}, 3.39 \mathrm{um}$
(2 of them are infrared) $500: 1$ polanzer built in so good for hologra-
phy. Supplied complete with mains power supply. $790 \times 65 \mathrm{~mm}$. Use with EXTREME CAUTION AND QUALIFIED GUIDANCE.
WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE $£ 59$
A Hand held personal Gamma and X Ray detec tor. This unit contains two Geiger Tubes, has a digif LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high from 30 K eV to over 1.2 M eV and a measuring from 30 keV to over 1.2 M eV and a measuring
range of $5-9999$ UR $/ \mathrm{h}$ or $10-99990 \mathrm{Nr} / \mathrm{h}$. ref NOV 88

```
ISSN 02623617
PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . . PORULAR FEATURES . .
```

VOL 24 No. 7 JULY 1995

EVERYDAY
With PRAGTICAL
ELECTRONIES
INCORPORATING ELECTRONICS MONTHLY

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

[^0]
WINDICATOR by Alan Winstanley 518
Join the rotary club and let Aeolus fill your metered cups
CURTAIN WINDER by Max Horsey528
Simple home automation controller improves security
Simple home automation controller improves security
RAMP GENERATOR by Neil Johnson BEng(Hons) AMIEE 546
Sophisticated test equipment for the serious constructor's workshop
HIGH VOLTAGE CAPACITOR REFORMER by Paul Stenning 554
Revitalising electrolytics extends their usefulness beyond antiquity
EPE HiFi VALVE AMPLIFIER - 2 by Jake Rothman 560
Concluding the hybrid design that retains that unique "valve sound"
Series
INGENUITY UNLIMITED by Enthusiastic Readers 536
The circuit show-case for readers' designs
INTERFACE by Robert Penfold 552
Temperature measuring interface for the PC
BRIDGE RECTIFICATION ENHANCED by Plamen Petkov 566
Alternative techniques for deriving multi-voltage supply lines
AMATEUR RADIO by Tony Smith G4FA576Transalantic Success; Summer Broa
Features
EDITORIAL 517
OHM SWEET HOME by Max Fidling 523Max and Piddles find auto cat-flaps an attractive idea!INNOVATIONS524
Everyday news from the world of electronics
NEW TECHNOLOGY UPDATE 526
Deep ultra-violet light improves chip structure definitions
SHOPTALK with David Barrington 538
Component buying for EPE projects
BOOK REVIEWS
Personal views on selected books 538
FOX REPORT by Barry Fox 540FBI software fingerprints CD-ROM to assert photographic copyright
BACKISSUESDid you miss these?545
ELECTRONICS VIDEOS 558Our range of educational videosDIRECT BOOK SERVICE571
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 575
PCBs for EPE projectsADVERTISERS INDEX580
Readers Service Editorial and Advertisoment Departments 517

PC SCOOP
COMPLETE COLOUR SYSTEM ONLY $£ 99.00$

40 Mb HD + 3Mb Ram

Mace in the USA 10 an industrial specificallon, the systim was designed To finar relability. The compact case houses the mother-
 with battery backup is provided as standard. Supplied in good used
condition complete with enhanced keyboard, $640 k+2 \mathrm{MD}$ RAM, OOS 4.01 and 90 DAY Full Guarantee. Reacy to Run,
Order as HIGRADE 286 ONL
ON

Optlonal Fitted extras: VGA graphics card $1.4 \mathrm{Mb} 3 \%_{2}$ floppy disk drive (instead of 1.2 Mb) NE2000 Ethernet (thick, thin or twisted) network card	$\begin{aligned} & \text { ع29.00 } \\ & \text { E24.95 } \\ & \text { ع49.00 } \end{aligned}$

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ from £22.95-31/2" from £24.95
Massive purchases of standard $51 / /^{\prime \prime}$ and 312° drives enables us to
present prime product at industry beating low prices! All units (unless ment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible (if $3 / 2$ supported on you

3/2 Mitsublshi MF $355 \mathrm{C}-\mathrm{C}$. 1.4 Meg . Laptops only
Non laptop
5% "Teac FD-55GFR 1.2 Meg
5% " BRAND NEW Mitsublshil

- Data cable included in price.

Shugart 800/801 8" SS refurbished \& tested Shugart 8518° double sided refurbished \& tested Mltsublsh M2894-63 $8^{\prime \prime}$ double sided NEW
Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed in

HARD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 8" 85 Mbyte of hard disk storage! Full industry standerd SMD Interface. Ulira
hi speed data transfer and access time, replaces Fuitsu equivalent model. complete with manual. Only

C24.95(B) f $36.95(\mathrm{~B})$ £29.95 £22.95 (B)

£195.00(E

£250.00 E £275.00
E285.00
E ase with
£499.00(F
$31 / 2^{4}$ FUJI FK-309-26 20 mb MFM I/F RFE
$31 h^{2} .^{2}$ CONNER CP 302420 mb IDE IVF (or equiv) RFE
312^{\prime} CONNER CP 304440 mb IDE I/F (or equiv.) RFE
$3 \mathrm{~h}^{\prime}$. RODIME RO3057S 45 mb SCSI I/F (Mac \& Acorn

8° FUJTTSU M 2322 K 160 Mb SMD I/F RFE tested

THE AMAZING TELEBOX

 TV SOUND \& VIDEO TUNER!

The TELEBOX consists of an attractive hully cased mains powered unit, containing all elecironics ready to plug into a host of video moni
tors made by makers such as MICROVITEC, ATARI SANYO
 composite video output wiil also plug dire anty into most video
recorfors allowing reception of $T V$ chanals not normally receivable on most televisison roceivers" (TELEBOX MB). Push button controls on tor tolevision channeis. TELEBOX MB covers virtually all telev used by most cable TV operators. A composite video oulput is located on the rear panel for direct connection to most makes o
monitor or desktop video systems. For complete compatibility - eve monitor or desktop video systems. For complete compatibility - even
for monitors without sound -an integral 4 watt audio amplifier and TELEBOX ST tor
TELEBOX ST for composite video input type
TELEBOX
STL as
ST but with integral speake

$$
\begin{aligned}
& \text { TELEBOX STL as ST but with integral speaker } \\
& \text { TELEBOX MB Multiband VHF-UHF-Cable-Hyp }
\end{aligned}
$$

For overseas PAL versions state 5.5 or 6 mhz sound specification -For cable / hyperband reception Telebox MB should be connected

FANS \& BLOWERS

MTSUBISHI MMF-D6D12DL $60 \times 25 \mathrm{~mm} 12 \mathrm{VDC} £ 4.9510 / £ 42$ MITSUBISHI MMF-09B12DH $92 \times 25 \mathrm{~mm} 12 \mathrm{VC}$ PANCAKE $12-3.592 \times 18 \mathrm{~mm} 12 \mathrm{VDC} \quad \mathrm{E} 7.9510 / \mathrm{E} 69$ EX-EQUIP $120 \times 38 \mathrm{~mm}$ AC tans - tested specity 110 or $240 \mathrm{~V} £ 6.95$
EX-EQUIP $80 \times 38 \mathrm{~mm}$ AC fans - tested specity 110 or $240 \mathrm{v} £ 5.95$ VERO rack mount $1 \mathrm{U} \times 19^{+}$fan tray specity 110 or 240 V E45.95 (B)
IMHOF B26 1900 rack mnt $3 U \times 19$ Blower $110 / 240 \mathrm{~V}$ NEW E 79.95

IC's -TRANSISTORS - DIODES

5,000,000 items EX STOCK

, min
 Issue 13 of Display News now

Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Pricel Top quality 19
Optrack cabinets made in UK by designer, smoked acrylic lockable front door,
full height lockable half louvered back and removable side panels. Fully adjustable internal fixing struts, ready punched for any ready mounted integral 12 way switched mains distribution strip make these
racks some of the most versatl|e we have ver sold. Racks may be stacked side by slde and therefore require only two side panels to stand singly or in bays
Overall dimensions are: $771_{2}^{*} \mathrm{H} \times 3212^{*} \mathrm{D} \times 22^{*}$
OPT Pack 1 C OPT Rack 2 Rack, Less side panels
£225.00 (G)
32U - High Quality - All steel cabinet
Made by Eurocraft Enclosures Lid to the highest possible spec,
rack features all steel construction with removable side, front and back eoors. Front and back doors ive secure 5 lever barrel locks. The front doo
s constructed of double walled steel with a designer styie' smoked a crylic tront panel to panel, yet remain unobtrusive. Internally the rack eatures full siotted reinforced ventical fixing mem-
bers to take the heaviest of $19{ }^{" 1}$ rack equipment. The two movable vertical fixing struts cage nuts'. A mains ofistributlon panel internal ly mounted to the bottom rear, provides 8 IEC 3
pin Euro sockets and $1 \times 13 \mathrm{amp} 3$ pin switched ulily louvered back door and dotion is provided
with too and side louvres. The top sanel may be section of Integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for
cable / connector access etc. Supplied in excellent, slightly used cable / connector access etc. Supplied in excellent, slightly used

Sold at LESS than a third of makers price !! A superb buy at only $£ 195.00$ (G)

Over 1000 racks in all sizes $19^{\prime \prime} 22^{\prime \prime} \& 24$
 Call with your requirements.
 TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts

 a flat translucent sold at a price below cost i! System consists o connected to a PCB with on board sophisticated electronics. From the board comes a standard serlal RS232 or TTL output. The output continuously gives simple serial data containing positional $X \& Y$ Yco-ordinates as to where a finger is touching the panel - as the fin-co-ordinates as to where a finger is touching the panel- as the fin. ger moves, the data instantly changes. The X \& Y information is
given at an Incredible matrlx resolution of 1024×1024 positions over the screen size III So, no position, however small fails detection. A host of avaliable translation software enables direct connection to a PC for a myriad of applications, including: control pan-
els, pointing devices, POS systems, controlers for the disabled or Is, pointing devices, POS systems, controlers for the disabled or computer un-trained etc etc Imagine using your finger in 'Windows'
instead of a mouse !! (a driver is indeed available!) The appllcetlons for this amazing product are only IImited by your ImaginalonI/ Supplied as a complete system including Controller; Power Supply and Data at an incredible price of only:
RFE. Full Software Support Avaliabie - Fulty Guarantead
$£ 145.00$

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT
and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and driver disk supplied. In good used condition fully tested and guaranteed.
Windows compatible. Order as: ABOVE CARD
Half length s bit
E9emory Half length 8 bit memory upgrade cards for PC AT XT expands
memory either 256 k or 512 k in 64 k steps. May also be used to fill memory either 256 k or 5 K 年 in . Complete with data SIMM OFEFRS

$1 \mathrm{MB} \times 9$ SIMM 9 chip $\frac{\text { limm of }}{120 \mathrm{~ns} \text { only }}$

$\begin{array}{lll}1 \mathrm{MB} \times 9 \text { SIMM } 3 \text { chlp } 80 \mathrm{~ns} & £ 23.50 & 70 \mathrm{~ns} \\ 1 \mathrm{MB} & \mathrm{SIMM} 9 \mathrm{chip} 80 \mathrm{~ns} & \text { E22.50 } \\ 70 \mathrm{~ns}\end{array}$
4 MB 70 ns 72 pin SIMM module only
SPECLAL NTEL 486 -DX 33 CPU

NO BREAK UNINTERRUPTIBLE PSU'S

 EMERSON ACCUCARD UPS, brand new 8 Bit half length PC compatible card for all IBM XT/AT compatibles. Card provides DC ply failure. The Accusaver software provided uses only 6 k of base memory to the hard disk in the event of loss of power. When power is returned the machine is returned to the exact status when thepower falled I! The unit features full self dlagnostics on boot and is supplied brand new, with full, easy fitting instructions and manual.
Normally $£ 189.00$ NOW! $£ 69.00$ or 2 for $£ 120$ (9)
 Anicersitios and Local Authories - minimum acoiout VAT to TOTAL order amount Minmum order fio. Bona Fide acooum orders acoepled form Government, Schooks.
 Stancard Conditions of Saie and unless stated guaranteed for 90 days. Al guarantees on a return to base basis. Al rights reserved to change prices / specifications withou prior
notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks etc adknowledged © Display Electronics 1996 . \& O E 4/5

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dept EE. 32 Biggin Way Upper Norwood Into on 1000's Duabase V21,v22 v22 BIS
01816791888

ALL EP ENQUIRIES
01816794414
FAX 01816791927

PERSONAL PRACTICE AMPLIFIER

Keep the family cordial while you strive for chords harmonial - this inexpensive.stereo unit can combine your guitar's output with two backing-tracks, e.g. rhythm generator plus taped melody track, feeding the mixed signal into powerful 8 -ohm stereo headphones.

MICROCONTROLLED 3-DIGIT TIMER

From racing games and TV turn-off to parking meters and chairman's speeches, this PIC-Microcontrolled design can time them all. Includes pushbutton switches, 3-digit display, buzzer and relay.

STATIC

Static electricity is a problem becoming increasingly important in electronics. Understand what it is, how it occurs, and how you can guard against it. Essential knowledge for anyone involved in modern electronics.

SOLAR SEEKER

Self-powered motorised solar panel follows the sun to recharge NiCad batteries more efficiently throughout the day. Do your bit for the environment!

\star Plus all the regular features.

With PRACTICAL

ELEGBiAGBR

SURIVBIM ANCE PRODESSYIDNAL MDAIATY KITK

N
 1

 forWhether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitte
Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 500 m range
£16.45

MTX MIcro-minlature Room Transmitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range \qquad .$£ 13.45$

STX High-performance Room Transmitter

Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $\mathbf{£ 1 5 . 4 5}$
VT500 High-power Room Transmitter
Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} x$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range..
£16.45
VXT Volee Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$

HVX400 Mains Powered Room Transultter

Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range
£19.45

SCRXX Subcarrier Scrambled Room Transmitter

Scrambled outpul from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
. 222.95 SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires.SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range........... $£ 23.95$

SCDM Subcarrier Docoder Unit for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9-12 \mathrm{~V}$ operation.

E22.95
ATR2 Micro Size Telophone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from tine
£13.45

$\star \star \star$ Specials $\star \star \star$

arxpuax Rado control Switch

Remote control anything around your home or garden, outside llghts, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way dil switches an both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both 9 V operation. Range up to 200 m
Complete System (2 kits)
$£ 50.95$
Indlividual Transmitter DLTX
£19.95
Individual Receiver DLRX
. $£ 37.95$
mX-1 w-FI Mlero Broadcaster
Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your tavourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
£20.95

UTLX Ulitra-miniature Telephone Transmilter

Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$
Connects to line (anywhere) and switches on and off with phone use.
All conversation transmitted. Powered from line. 500 m range
£15.95

TLX700 Micro-minlature Telephone Transmitter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. Al conversations transmitted. Powered from line. 1000 m range
.$£ 13.45$

STLX High-performance Tolephone Transmitter

High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range.
naliling/racking Transmitter
roxsoo signalingy/Tracking Transmitter Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation
£22.95

CO400 Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
$£ 30.95$

CD600 Professlonal Bug Detector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation \qquad $£ 50.95$ QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range
QLX180 Crystal Controlled Telephone Transmitter As per QTX180 but connects to telephone line to monitor both sides of conversattions. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
. 40.95

asx180 Line Powered Crystal Controlled Phone Transmifter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
...............
$£ 35.95$
QRX180 Crystal Controlled FM Recoiver
For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation 560.95

A bulld-up service is avallable on all our klts if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
oUr latest catalogue containing many more mew SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

SUMA DESIGNS

Tel/Fax:
01827714476

ELECTRONICS PRINCIPLES 2.0

\star Insulators, Conductors, Resistance \star D.C. Circuits

\star Capacitance and Inductance \star A.C. Series Circuits

\star A.C. Parallel Circuits \star Reactance and Impedance
\star A.C. and D.C. Power \star Frequency and Tuned Circuits
\star Using Numbers \star Complex Numbers, Phase Angles
\star P.N. Junction Diode \star Bi-polar and MOSFET Transistors
\star Operational Amplifiers \star Logic Gates \star Digital Number Systems
\star Combinational Logic \star Flip Flops \star Counters and Shift Registers
\star Memory \star Microcomputer operation
Electronics Principles 2.0 is a major revision of the successful original version currently used by electronics hobbyists, schools, colleges, and for training within industry throughout the UK and overseas. A fully interactive electronics program where the user selects from over 200 analogue and digital topics. Circuit diagrams, wave forms, phase angles, voltages and currents or logic states are shown, drawn to scale, in full colour. Formulae are given demonstrating all the calculation steps, exactly as in a textbook, using your input values.

An 'on screen' electronics package including circuit theory to enable a learning through doing approach to encourage experimentation. For the young student, mature hobbyist or the engineer that just needs to keep up-to-date in an easy and enjoyable way.

Having reviewed a dozen, or more, educational software packages designed to "teach" electronics, I was more than a little sceptical when I first heard about Electronics Principles: there seemed to be little that could be done that has not been done elsewhere. When I started to use the package my views changed. Indeed, I was so impressed with it that I quickly came to the conclusion that readers should have an opportunity to try the package out for themselves! - MIKE TOOLEY B.A. Dean of Faculty of Technology, Brooklands Technical College.

Complete package Only $£ 49.95$

ELECTRONICS PC TOOLBOX VERSION 2.0

An extended and improved version of the popular Toolbox software. Presents commonly used formulae in a way that makes calculations easier thus encouraging experimentation in circuit design.

Covers D.C. Calculations from Ohm's Law to Loading a Potential Divider; Further D.C. Calculations from Power Ratio Decibels to Kirchhoff's Laws; A.C. Calculations from Average Peak Current to Filters and Admittance; Capacitance Calculations from Values to RC Time Constants; Inductance Calculations from Values to Selectivity; Binary Calculations from Addition to 2's Complement; Numbers and Phase Angles from Addition to Polar to Rectangular; Operational Amplifiers from Inverting Op,Amp to Op.Amp Differentiator.

Only $£ 19.95$

GCSE ELECTRONICS VERSION 2.0

Designed to complement the EPE Teach-In No. 7 publication, which contains a complete electronics course aimed at GCSE and A Level students, this software can also be used as a stand alone learning package for everyone interested in electronics. From simple d.c. current flow and Ohm's Law it covers the whole GCSE syllabus including a.c., semiconductors, op.amps, digital electronics, radio and fibre optic communications, digital numbering systems and goes on to look at microprocessor c.p.u.s, 6502 addressing modes and instruction sets. It even produces a program listing, which can be saved or retrieved from hard disk, when any of the instructions from the listed instruction set are input, thus allowing the user to monitor the registers for each of the addressing modes.

The original version is now widely used in schools and colleges throughout the UK.

An interactive, user friendly medium which assists learning in an enjoyable and interesting way.

Only $£ 39.95$

For more information call us on 01376514008

GCSE MATHS

A series of programs covering all the major topics required by the school syllabus. Designed to be user friendly enabling you to study or revise in what we believe is an interesting and enjoyable way. There are nearly one hundred and fifty menu driven screens with interactive graphics, enabling a "learning through doing" approach to encourage experimentation. Now being used in many schools throughout the UK.

Only $£ 49.95$

These programs require a PC (or fully compatible system) running DOS or Windows with an 80286 or better processor and VGA (ideally colour) graphics. In addition you must have 4 Mb of hard disk space, a high density (1.44 Mb) floppy drive and at least 640 K of RAM. We also recommend the use of a mouse. Site licences are available - please enquire.

Available from

EPT Educational Software, Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel: 01376514008.
Add $£ 2$ per order for UK post and packing. Make cheques payable to EPT Educational Software.
Visa and Mastercard orders accepted - please give card number, expiry date and cardholders address if different from the delivery address.
OVERSEAS ORDERS: Add $£ 2.50$ postage for countries in the E.E.C. Overseas readers, outside the E.E.C. countries add $£ 3.50$ for airmail postage.

the new

CRICKLEWOOD Electronics Very Interesting CATALOGUE
 ASTRONOMICAL RANGE AT DOWN TO EARTH PRICES

- TRANSISTORS+ICs+SEMICONDUCTORS
- RESISTORS+CAPACITORS+INDUCTORS
- SURVEILLANCE+SECRECY+SECURITY
- PLUGS+SOCKETS+LEADS+CONNECTS
- TV \& VIDEO SPARES (inc Video Heads)
- HIFI+DISCO+HIFI GADGETS+SPEAKERS
- AUDIOPHILE COMPONENTS (inc Capacitors)
- IN CAR AUDIO+SPEAKERS (inc Bass tubes)
- COMPUTER ACCESSORIES+BOARDS
- TOOLS+TEST EQUIPMENT+BENCHWARE \& much much much more (over 10,000 lines) SEND TODAY FOR THE VERY INTERESTING CATALOGUE Pay by PO, Cheque, Credit Card or tape Coins to Paper Please send mecopies of the 1995 Cricklewood Catalogue. I enclose $£ 2.50$ per copy (UK \& Europe). $£ 5.00$ overseas Name. Address.
\qquad
Please Charge my Credit Card.no
Expiry Date Tel no London NW2 sETrile

SUPER VALVE RITS

SUFMTHLANCE

High quiliy dactrons waverilence kits that give excelient performance. Room transmitiens are mppied wren
etr miniature
3V TRAMSMITTER
Easy to ouidd \& puraremin to ransmina 500 matras -Over 1000 m possubte with mphe

WRTX miniature gV room transmitier Our bost solling bug.' 1000 m range -2 mies possible
with 18 V supply a bettior $45 \times 19 \mathrm{~mm}$. WUT 1018. $\mathrm{C5} .95$
HPTX HIGH POWER
Righ portormance, 2 stape
Hen
 swith on PCE. Size $70 \times 15 \mathrm{~mm}$. KUT 1032 EB. 95

VTX VOICE ACTIVATED ROOM TRANSMITTER Activales: only when sounds are detected Low slandiby
Curtent conserves battery power. Adjuzintio sensitvity \& tumbof cascy. 6 V operation Sizo $63 \times 38 \mathrm{~mm}$ Powertul 2 stage transmitter. 1000 m romget. KIT 1028. Et.95
mitx miniature
TELEPHONE TRANSMITER
Atraches anymure to phone line
Trensmiss only whion phone ls usedt Uses phone fine as 280nd 8 pows
1014.84 .95
tri telephone recording interface Connects between phone line and cassette nocorder
Aulomaticuly swiches on tape when phone is used Recoras ali conversations Powered trom kne. Size $48 \times 32 \mathrm{~mm}$ WT 1033. $\mathbf{6 8 . 2 5}$
TRUS TAPE RECORDER VOX SWITCH Vory sensitiva, voice activated sumich a automaticaly lums
on cassette recorder whon sounds are dotected Adiustable sensitivity and fum-or deundsy size datected 115×1 mmm ncluding sensitive electrat mic KIT 1013 , 7 . 95

MUSCELCAN:OUS

LCO TEMPERATURE METER BASIC MULTIMETER Cosigned around the popular 7108 iC that conteins versatito 3i dign LCD meter oine componenis co vei the Dasic melar to read Tamperature in Cenven Bremaboard ares allows you to extend croin to build your own vol amp, resisisinct or extendedrange lemperatur LOOLC PROBE Use for foult finding \& lesting of dipme circuits Swith for ailher THL or CMOS This modem de sign using a PUT inciudes detection circuil for vory tast
pulses. Gives visual (3 LEO's) \& Sufio (pazo burzer) cosponso KIT 1024. C0.95

COMBINATION LOCK Fully workng 9 key combination bock Keypad is separate from mann arcurt Lock resels

supplind 912 V operation. KT 1029 . $\mathrm{E10.95}$

AUDIO LASER TEST GEAR FIBRE-OPTIC SECURITY TIMERS GAMES Our range of HIGH QUALITY project kits come complete with all cormponents, top quality fibre glase PCB's comprenengwe instruitions. Send x Ist class stainps for our latest catalogue cont aining over 100

QUASAR ELEGTRONIGS

(Dept. EPE) Unit iA Sumingdale BISHOP'S STORTFORO Hertordshire CM232PA

Electronic Designs Right First Time?

Schematic Design and Capture

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using PULSAR, ANALYSER III and Z-MATCH our simulation and design programs.

Digital and Analogue Simulation

Modify the configuration and change component values until the required performance is achieved.

PCB Design

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic. And with LAYAN the Parasitic effects of the PCB can be included in the Analogue Simulation

Affordable Electronics CAD

EASY-PC: Entry level PCB and Sch. CAD.	$\$ 195.00$	$£ 98.00$
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	$\$ 375.00$	$£ 195.00$
PULSAR: Digital Circuit Simulator 1500 gate capacity.	$\$ 196.00$	$£ 98.00$
ANALYSER III: Linear Analogue Circuit Simulator ~ 130 node capability	$\$ 195.00$	$£ 98.00$
LAYAN: New Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations.	$\$ 950.00$	$£ 495.00$
Z-MATCH for Windows: Windows based Smith-Chart program for RF Engineers.	$\$ 475.00$	$£ 245.00$
FILTECH: Active and Passive Filter Design	$\$ 275.00$	$£ 145.00$
We operate a no penalty upgrade pollcy. Technical support is FREE FOR LIFE. Speclal prices for Education	US $\$$ prices include Post and Packing	Sterling Prices exclude P\&P and VAT.

Number One Systems

Ref EVD, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK For Full Information Please Write, Phone or Fax. Tel: +44 (0) 1480461778 Fax: +44(0) 1480494042

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM

Programs 24, 28, 32 pin EPROMS, EE-PROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable tò cover virtually any programmable part including serial E², PALS, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN

Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT

UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd.
Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 OBX UK TEL. 01666825146 FAX. 01666825141

GERMANY 089/4602071; NORWAY 0702-17890; ITALY 0292103554 FRANCE (1)69.41.28.01; IRELAND 1-2800395; SWEDEN 08-590-32185; Also from ELECTROSPEED UK

SUMMER 1995 CATALOGUE
 $\$ 1.95$

The Summer '95 edition has $\mathbf{2 8 0}$ pages packed with over 4000 products and now with news and features including a full construction project.

The computer section is greatly increased with new ranges of equipment and accessories for PCs including:
Mother boards, CPUs and SIMMs CD ROM drives and hard drives Sound cards, I/O cards, disc drive cards and video cards Mice, trackerballs and joysticks Power supplies and cases

- Feature project for an EPROM emulator
- New 20 MHz 'scope from Leader, training systems from Flight and an extended range of mobile phone batteries and accessories from Uniross
Latest addition from Velleman kits including a video digitiser card
- 280 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and suppliers
Available at most large newsagents, from 13th April, or directly from Cirkit
Send for your copy today!

Park Lane - Broxbourne - Hertfordshire EN10 7NQ Telephone: 01992448899 - Fax: 01992471314

21 BARGAIN PACKS

You get another FREE if you order 10 of the same number
$1 \times 12 \mathrm{~V}$ Stepper Motor. 7.5 degree. Order Ref: 910 1×10 pack Screwdrivers. Order Ref: 909
2×5 amp Pull-Cord Ceiling Switches. Brown. Orde Ref: 921.
$5 \times$ Reels insulation Tape. Order Ref: 91
$2 \times 14 \mathrm{~mm}$ Bull-races. Order Ref: 912
$2 \times$ Cord Grip Switch Lamp Holders. Order Ref: 913
$1 \times$ DC Voltage Reducer 12 V - 6 V . Order Ref: 916
1×10 amp 40 V Bridge Rectifier. Order Ref: 889
Lightwelght Stereo Headphones. Moving coil so superior sound. Order Ret: 896.
$2 \times 25 W$ Crossovers. For 4ohm loudspeakers. Order Ret: 22
$2 \times$ NiCad Constant Current Chargers. Easily Ref: 30
18V-0V-18V 10VA mains transformer. Order Ref: 813
$2 \times$ White Plastlc Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are deal for llght-operated switch. Order Ref: 132.
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148
12V-oV-12V 6A mains transformer, p.c.b. mounting Order Ref: 938.
$1 \times$ Big Pull Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ pull, Order Ref: 871.
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872.
$1 \times$ Min! Mono Amp.
1 x MIni Stereo 1W Amp. Order Ref:870
15V DC 150 mA p.s.u., nicely cased. Order Ref:942.
1 x In-Filght Stereo Unit is a stereo amp. Has two mos useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision face 70 mm square Scaled 0-100. Order Ref: 756.
$2 \times$ Lithium Batterles. 2.5 V penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for phone extensions, fax, etc. Order Ref: 552
$1 \times 12 \mathrm{~V}$ Solenold. Has good $1 / 2^{\prime \prime}$ pull or could push if modifled. Order Ref: 232
$\mathbf{x} \ln$-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref:
2×6 V 1A Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$5 \times 13 A$ Rocker Switch. Three tags so on/off, or hangeover with centre off. Order Ref: 42
Minl Cassette Motor, 9V. Order Ref: 944
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref. 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased wlth mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400V 2A bridge ectifier and 14 other diodes and rectifiers as well as dozens of capacitors, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cost bout 80p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
6 x Microphone Inserts. Magnetic 400 ohm, also act s speakers. Order Ref: 139
$6 \times$ Neon Indlcators. In panel mounting holders with ens. Order Ref: 180.
x In-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Ref:196.
$1 \times$ Malns Solenold. Very Powerful, $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199
1x Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be jolned in parallel to make a high wattage column. Order Ref: 243
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boii. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be footswitch if fitted in pattress. Order Ref; 263.
$50 \times$ Mixed Silicon Dlodes. Order Ref: 293.
1×6 Diglt Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55
$61 / 2^{\prime \prime} 8 \Omega 5$ Watt Speaker. Order Ret: 824
$1 \times$ Shaded-Pole Mains Motor. ${ }^{4}{ }^{*}$ " stack, so quite powerful. Order Rel: 85.
an Blades. Could be fitted to the above motor. Order Ref: 86
$1 \times$ Case, $31 / 2^{\prime \prime} \times 21 / /^{\prime \prime} \times 1 \frac{3}{4} "^{\prime \prime}$ with $13 A$ socket pins. $4 \times$ Luminous Rocker Swliches. 10A mains. Order Ref: 793.
4 x Different Standard V3 Microswitches. Order Ref: 340 .
$4 \times$ Different Sub Min Microswliches. Order Ref: 313

BARGAINS GALORE

BARGAINS GALORE
British Teiecom Multimter. It is a $20,000 \mathrm{OPV}$ with a full vision scale, nicely cased, measuring approximately $6^{\prime \prime} \times$
$4^{\prime \prime} \times 24^{\prime \prime}$ deep. Has six D.C. volt ranges up to 250 V five $4^{\prime \prime} \times 21_{" 1}$ deep. Has six D. C. volt ranges up to 250 V , five A.C. ranges up to 1000 , five D.C. current ranges up to 1A and three resistance ranges, one low resistance, one medium and the other up to one Megohm. All ranges are with leads ce.50, Order Ret: 8.5P3. Carrying case with handle available and space for smali tools, $\mathbb{E 2}$ extra. Intra Red Controller. Made for Thorn TV sets but suitable for other control purposes. Fully built and ready to operate, real bargain, £21, Order Ref: 2P304.
Hall Elfect. Give positive or negative puises when magnet passes over it. Mounted on small PCB, 2 for $£ 1$, Order Ref: 1032. Digital Multi-Tester. 30 range, model no. 3800 , normal price $£ 40$, our price $£ 25$, Order Ret: 25P14. Brand new and
guaranteed.
Water Pump with splndie for operation by portable drill, 55 Order Ret: 5P240
Mains Klaxon Type Alarm. Very loud output but adjustable Completely encased, shelf or wall mounting, $\mathbf{C 5}$, Order Ref: 5P226.
Speed Controller for 12 V DC Motors. Suitable for motors with horse powers up to one third and drawing currents up to 30A. Gives very good control of speed. Uses MOS FETS and is based on a well tried clrcuit which appeared in the Model Engineer some lime ago. The complete kit wli Figure-8 Flex. Figure- 8 flat wite pve lead
$-4 \mathrm{sq} . \mathrm{mm}$ cores. Ideal for speaker extensions and with circuits. Also adequately insulated for mains lighting 50 m coil, $£ 2$. Order Ret: 2 P345, 12 m coll, £1. Order Ref: 1014. Friedland Underdome Befl. Their ref: 792, a loud ringer but very neat, 3 diameter, complete with wall fixing screws £5. Order Ref: 5P232.

Fiashing Beacon. Ideal as a warning light, the fire
alarm, etc. Zenon tube produces intense pulse of alarm, etc. Zenon tube produces intense pulse of with mounting base. Price $£ 7.50$, Order Ref: 7.5 P 13 .
12V 10A Switch Mode Power Suppiy. For only E 9.50 and a little blt of work because you have to convert our 135 W instructions. Simply order PSU Ref: 9.5P2 and request modification details, price still $£ 9.50$
Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery, £3. Order Ref: 3P155.
Don't Let it Overflowl Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a uselul range. Neatly cased for wall mounting
Very Powertul Malns Motor. With extra long ($21 / 2$ ") shatts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded-pole motors are not reversible, £3. Order Ref: 3P157.
45A Double-Pole Mains Swltch. Mounted on a $6^{\prime \prime} \times 31 /{ }^{\prime \prime}$ aluminium plate, beautifully finished in gold, with pilo light. Top quality, made by MEM, £2. Order Ref: 2P316. Lamp Dimmer. Suitable for up to 250 W , on standard plate so fits directly in place of existing switch. Coloured red Order Ref: 2P380.

This is a mLCD $31 / 2$ Dight Panel Meter

Thils is a multi-range voltmeter/ammeter using the volts and amps. Supplied with full data shees eachial snip price of $£ 12$. Order Rel: 12P19.
$12 \mathrm{~V} / 24 \mathrm{~V}$ DC Solenoid. The construction of this is such tha it will push or pull. With 24 V this is terrifically powerful but is still quite good at 12V, $£ 1$. Order Ret: 877.
lead has a flat end, $\mathbf{£ 2}$. Order Ref: 2P338
$20 \mathrm{~W} 5^{\prime \prime} 4$ Ohm Speaker. Mounted on baffle with front grille 83, Order Ret: 3P145. Matching 4 ohm 20W tweeter on separate baffle, $£ 1.50$. Order Rel: 1.5 Pg .
Telephone Extension WIre, 4 -core correctly colour coded intended for permanent extensions, 25 m coil, $£ 2$, Orde Ref: 2P339
High Power Swltch Mode PSU, Normal mains input, three completely enclosed in plated steel case Brand at $1 / 3 \mathrm{~A}$ special offer price of $£ 9.50$, Order Ref: 9.5 P 1
Philips 9" High Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered at less than price of tube alone, only $£ 15$. Order Ref: 15P1.
of 100 , 1 , Prom Rets for insulation through panel. Packe Malns Trandermel.
Mains Transformer 6V-0V-6V 6VA, ©1, Order Ref: 330. Ceramic Wave Change \mathbf{S}
spindle, $£ 1$, Order Ref: 303
Luminous Rocker Switches. Packet of 3, £1, Order Ref: 373 Cased Mains Power Supply with leads, ideal to operate doorbell, $£ 1$, Order Rel; 102 .
High Current A.C. Malns Relay. This has a 230V coll and hangeover swich raled at ISA with CB clear plastlc cover, £1, Order Ref: 965 .
costs a fortune. However, these are packed in half dogular and the price to you is $£ 1$ per pack. Order Ref: 797 B
You Can Stand On Itt Made to house GPO telephone equip
ment, this box is extremely tough and would be ideal for keeping your small tools in. Internal size approx. $101 / 2$ $\times 41 / 2^{\prime \prime} \times 6^{\prime \prime}$ high. Complete with carrying strap, price £2
Order Ret: 2 P283B. Order Rel: 2P283B.
mits, one receives. Buil wo metal cased units, one trans mits, one receives. Built to operate around 40 kHz . Price 1.50 the pair. Order Ret: 1.5P/4.
and the 12 V DC output is voltage regulated and filtered high class equipment, this is mounted on a PCB and for mounted on the board, but easily removed, are two 12 V relays and Piezo sounder, £3. Order Ref: 3PBOB. Malns 230V Fan. Best make "PAPST", $4 \frac{1}{2}$ " square, meta

2MW Laser. Mellum neon by Phillps, full spec. $£ 30$. Order Ref: 30P1. Power supply for this In kit form with case is $£ 15$. Order Ret: 15P 16, or in larger case to house tube as well £18, Order Ref: 18P2. The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Ref: 69P1.
Solar Chargear. Holds 4 AA
Solar Charger. Holds 4AA NiCads and recharges these in eight hours, in Very neat plastic case E_{6}. Order Ret: 6P3 Complete with two coils, 2 for £1, Order, Ref: 832P. Alr-Spaced Trimmer Caps. 2-20pF, ideal for precision tuning UHF circults, 4 for £1, Order Ref: 818 B .
Modem Amstrad FM240. AS new condition but customer return, so you may need to fault lind, £6, Order Rel: 6P34. Amstrad Power Unif. 13.5V at 1.9A or 12 V at 2A encased and with leads and output plug, normal mains input, $\mathbf{~} 6$. Order Ref: 6P23
with normal primarles and uprlght mounting quality, both with normal primarles and upright mounting, one is 20 V
4 A , Order Ret: 3 P106, the other 40 V 2 A . Order Ret: 3 P 107 only 53 each.
Prolect Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 4 \frac{1}{\prime \prime}$ metal, sprayed grey louvred ends for ventilation otherwise undrilled. Made for GPO so best quality, only £3 each. Order Ref: 3P74.
Sinilinel Component Board. Amongst hundreds of other parts, this has 15 ICs , all plug-in so do not need desoldering. Cost well over $£ 100$, yours for $\mathrm{C4}$. Order Ref: 4P67 Sincialr 9V 2.1A Power Supply. Made to operate the 138K Originaly listed 2 , cased with input and output leads. only $£ 3$ Order Ret 3 P151 15W $80 \mathrm{~nm}^{\prime \prime}$ Ref
tinued high quallity music centreeter. Made for a discon£4 per pair. Order Ref: 4P57
Water Pump. Very powerful, mains operated, $\mathbf{5 1 0}$. Order Ret: 10P74.
0-1mA Full Vision Panel Meter. $2^{3 / 4}$ " square, scaled 0-100 but scale easily removed for re-writing, $£ 1$, each. Order Amstrad
Amstrad Keyboard Model KB5. This is a most comprehen sive keyboard, having over 100 keys including, of course packing. ©5. Order Ref. 5P202
Unusual Solenold. Solenoid
gised to puil In and hold the core, this is a disa where the appliance is left on for most of the time. We now have magnetic solenoids which hold the core until a voltage is applied to release it. £2. Order Ref: 2P327.
Malns Filter. Resin impregnated, nicely cased, p.c.b mounting, £2, Order Ref: 2 P315.
ldeal if you Panel meter. This is a nice size 65 mm sq . It is oattery charger. Price £3, Order Ret: 3P188 instrument o Another $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ Transtormer is a 50 V
for dropping through the chassis or as it is fitted pllars it can be mounted above the chassls. Also should you want a 12 V 4 A transformer then this one should be quite suitable, you use just one half of the secondary. Price £3.50, Order Ret: 3.5P
for their him Spelity and $3^{\prime \prime}$ Tweeter. Amstrad, made for their high quality music centre, $£ 4$ per pair, Order
Ret. 4P57.
Insulation Tester with Multimter. Internally generates voltmegohms. The muitimou to read insulation directly in ranges milliamps, 3 ranges resistance and 5 amp range These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost a least $£ 50$, yours for only $£ 7.50$ with leads, carrying case $£$ extra, Order Ref: 7.5P4
we Have Some of the above testers but sllightly faulty, no working on all ranges, should
Clock Module. $2^{* \prime}$ LCD display, requires 1.5 V battery, goes back to zero when switched off so ideal for timing operations, $£ 2$, Order Ref: 2P307.
Fleld Telephones. Ex-GPO, reconditioned, Just join together with almost any length twin wire, £15 each, Order Ref: 15P62.
Heavy Duty Time Switch (Smiths). Will switch on up to 100A, ex-electricty board, reconditioned, 510 , Order Ret 10P14
Lead Lamp. Ideal for motorists, normal handgrip and hainging hook, takes 60W bulb protected by glass cove £4. Order Ret: 4P31.
lery extely cased, is reasonably loud and can be coupled Clock Module. ${ }^{\prime \prime}$,
back to zero when switched off so ides 1.5 V battery, goes thons. 22 Order Ret 2 P307 Quartz Clock Mechan 307
modern of perlod, made up ready to work, 83 . Order Ref 3P111.
12V-6V Reducer. Plugs into car socket to work radio, etc £2, Order Ret: 2P318.
Prices include VAT. Send chequefpostal order or ring and quote credit card number. Add £3 post and packing.
Orders over $£ 25$ post free.

> M \& B ELECTRICAL SUPPLIES LTD
> Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH17 5PA
> Telephone: 01444881965 (Also fax but phone first)
> Callers to 12 Boundary Road

Pico Releases PC

 PotentialPico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Call for your Guide on 'Virtual Instrumentation'.

New from Pico TC-08 Thermocouple to PC Converter

 8 channel Thermocouple Amplifier- Connects to your serial port - no power supply required.
- Supplied with PicoLog datalogging software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs (B,E,J,K,R,S and T types)
- Resolution and accuracy dependant on thermocouple type. For type K the resolution is better than $0.1^{\circ} \mathrm{C}$ and accurate to $\pm 0.1^{\circ} \mathrm{C}$ over $-270^{\circ} \mathrm{C}$ to $+1300^{\circ} \mathrm{C}$.

TC-08 £ 199

complete with PicoLog, software drivers and connecting cable. A range of thermocouple probes is available.

SAA-16 Logic Analyser

Pocket sized 16 channel Logic Analyser

AOC-100 Virtual Instrument Dual Channel 12 bit resolution

- Digital Storage Scope - Spectrum Analyser - Frequency Meter - Chart Recorder - Data Logger - Voltmeter

The ADC-100 offers both a high sampling rate (100 kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to a wide variety of signals. ADC-100 with PicoScope $£ 199$ with PicoScope \& PicoLog £209

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port. ADC-10 with PicoScope $£ 49$

Carriage UK free, Overseas $£ 9$ Oscilloscope Probes ($x 1, \times 10$) $£ 10$
PicoScope \& PicoLog $£ 59$
VIST Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ
Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

SHOP OPEN 9-5 MON-FRI. CLOSED SAT .-- OFFICIAL ORDERS WELCOME

---EPEMIC̄ROCOONTRŌLERT
P.I. TREASURE HUNTER

The latest MAGENTA DESIGN - highly
stable \& sensitive - with $\mu \mathrm{C}$ control
I of all timing functions and advanced II
I pulse separation techniques.

- New circuit design 1994
- High stability drift cancelling
- Easy to build \& use
- No ground effect, works in seawater

WINDICATOR
A novel wind speed indicator with LED read-out. Kit comes complete with sensor cups, and weatherproof sensing head. Mainspower unit $£ 5.99$ extra.

KIT 856

\qquad
BAT DETECTOR
An excellent circult which reduces ultrasound frequencies between 20 and 100 kHz
to the normal (human) audible range to the normal (human) audible range. Operating rather like a radio receiver the circuit allows the listner to tune-in to the ultrasonic frequencles of interest. Listening to Bats is fascinating, and it is possible to identify various different types using this project.
Other uses have been found in industry for vibration monitoring etc. KIT 814.
f21.44

1000 V \& 500V INSULATION

TESTER
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848......................£32.95

MOSFET MkII VARIABLE BENCH
 POWER SUPPLY 0-25V 2•5A.

Based on our Mkl design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.
KIT 845. \qquad £64.95

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

- EFFICIENT 100 V

TRANSDUCER OUTPUT*

- COMPLETELY INAUDIBLE TO HUMANS
KIT Ref. 812.
\qquad RANGE
- LOW CURRENT DRAIN
'COMSTEP' P.C. COMPUTER STEPPING

MOTOR INTERFACE

An exciting project supplied with two 200 step motors, interface board, and eas An exciting project s.
to use P.C. software.
to use P.C. software.
Allows independent control of both motors - speed, direction, number of steps, and half/full step mode. Connects to computer parallel port. Requires 12 V 1 A D.C. supply and printer lead.

KIT 846 (with 2 motors)

TO 4 METRES to thousands of $\mu \mathrm{F}$
KIT 493 \qquad £39.95
ACOUSTIC PROBE
A very popular project which picks up vibrations by
means of a contact probe and passes them on to a pair of headphones or an amplifier. Sounds from engines, watches, and speech travelling through walls can be amplified and heard clearly. Useful or mechanics, instrument engineers, and nosey parkers.
KIT 740. \qquad £19.98
$\mathrm{£67.00}$ (Printer lead $£ 5.00$)

SPACEWRITER
I An innovact. Wave and exciting It Pre air and your message appears.
I Programmable to hold any message I up to 16 digits long. Comes pre-loade I PCB, all components \& tube + instructions for message loading KIT 849 . f16.99

12 V EPROM ERASER

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400 mA). Used extensively for mobile work - up. dating equipment in the field etc. Also in educato ionat situations where mains supplies are not al
KIT 790
£28.51
MOSFET 25V 2.5 A
POWER SUPPLY
High performance design has made this one of our classic kits. Two panel meters indicate Volts and Amps. Variable from 0.25 Volts and current limit put stage. Toroidal mains transformer, out-
KIT 769.
£56.82

INSULATION TESTER

A reliable and neat electronic tester which checks insulation resistance of wiring and appliances etc.
at
500
Volts. The and safe to operate in is battery powered, simple 100 Megohms can be read easily. A very popular college project.
KIT 444.
£22.37
DIGITAL COMBINATION LOCK Digital lock with 12 key keypad. Entering a four digit code operates a 250 V 16 A relay. A special anti-tamper circuit permits the relay board to be mounted remotely. deal car immobialumlnium keypad.
KIT 840
f19.86
E.E. TREASURE HUNTER P.I. METAL DETECTOR

MKI

Magenta's highly developed \&
acclaimed design. Quartz crystal controlled circuit MOSFET coil drive D.C. coupled amplification. Full kit includes PCB, handle, case \&
search coil.

- DETECTS FERROUS AND

NON-FERROUS METAL - GOLD,
SILVER, COPPER ETC.

- 190 mm SEARCH COIL
- NO 'GROUND EFFECT'

KIT 815
5...........................
f45.95

HAMEG HM303 30 MHz

DUALTRACE OSCILLOSCOPE \& COMPONENT CHECKER Western Europe's best selling oscilloscope now improved.
It now features 30 MHz bandwidth, triggering to 100 MHz
and $2 \mathrm{mv} /$ div sensitivity and $2 \mathrm{mV} /$ div sensitivity
Sharp bright display on $8 \times 10 \mathrm{~cm}$ screen with internal graticule. Special component tester built in - allows capacitors, resistors, transistors, diode, and many othe components to be checked at a glance,
AS with its predecessor, the QUALITY OF THIS INSTRU-
MENT IS OUTSTANDING, is is suported warranty covering parts and labour. If you are buying an oscilloscope, this is the one. It costs a fraction more than some others, but it is far far superior. Supplied with test probes, mains lead, and manual.
$\mathrm{£} 392.00+£ 68.60$ VAT Includes free
(Cheques must becleared) Next-day delivery

EDUCATIONAL BOOKS \& PACKS

ADVENTURES WITH ELECTRONICS
The classic book by Tom Duncan used throughout schools. Very well illustrated, ideal first book for age 10 on. No soldering. Uses an S.DEC breadboard. Book \& Components £28.95, Book only $£ 7.25$
FUN WITH ELECTRONICS
An Usborne book, wonderfully illustrated in colour. Component pack allows 6 projects to be built and kept. Solhelp. Book \& Components $£ 20.88$, Book only $£ 2.95$
30 SOLDERLESS BREADBOARD PROJECTS A more advanced book to follow the others. No soldering. Circuits cover a wide range of interests
Book \& Components $£ 30.69$, Baok only $£ 2.95$

DC MOTOR/GEARBOXES

PICs are being used more and more because they allow complicated jobs to be done with a single chip. All the work is done by programming. One PIC replaces a board full of ICs. Saving time, space, power, and MONEY.

RUNS WITH ANY PC POWER SUPPLY (12 V at 200 mA) £8.99

PCLEADS 9-WAY $£ 6.00$ 25-WAY $£ 7.00$

PIC PROJECT - LIGHT CONTROLLER DEVELOPMENT SYSTEM

A real-world application for a PIC microchip. This project can be made to do just what you chose if you write your own software. OR works as a 4-Channel hard fired - zero volt switching - Light Chaser. Kit includes programmed PIC, software disk and all components (less case). Kit 855.

HOW DO I START WITH PICs?

STEP 1 - Buy the PIC-DATS
Development \& Training System
STEP 2 - Follow May \& June '95 EPE
Series - showing how to program for practical applications
STEP 3 - Start writing and testing your own programs

Motors and Controllers

A range of kits and components for motion control and computer interfacing. Ideal for Design and Technical projects, and a whole range of up to the minute 'Home Automation' applications.

Power Booster for Comstep Adds to Comstep and allows With MD24 motors up to 4 Amps to be Motors driven. Two boosters drive iwo motors from a single Comstep. Uses standard Comstep software.
Kit 850.
$£ 39.95$

PC Communications Protocol

 for ComstepAn interface board adding four switched inputs to the Comstep + All the code to develop your applications. Files in C. BASIC, FORTRAN \& ASSEMBLER + demo.
Kit 851.

PC Joystick Interface for Comstep

Software for operating Comstep from a standard PC Joystick. Allows two Axis control, with acceleration, speed, and X-Y position control Stores co-ordinates
Kit 852.
£28.95
Stand-Alone Stepping motor Driver/Interface
A Stand alone interface giving full control in all modes. Pushbutton operation with adjustable acceleration and speed. Ideal for demo and setting up. Then connect to computer port for full control.
Kit 843.
$£ 39.95$

Versatile Stepping motor Interface

A Magenta design, gives Half and Full-Wave drive. Up to 1 Amp and 24 Volts. CMOS inputs - Drive from logic or computer port. Needs power supply.
Kit 816.
$£ 9.82$

DC Motor/Gearboxes Our Popular and Versatile DC motor/Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4.5 V Multi ratio gearbox gives wide range of speeds.

LARGE TYPE - MGL 55.95
SMALL - MGS - $\mathbf{E} 4.77$

Stepping Motors

MD38...Mini 48 step...£8.65 MD35...Std 48 step...£12.98 MD200... 200 step... $£ 16.80$ MD24...Large 200 step...£22.95

More Information:

All listed items come with data and instructions. For more information, including reprints of the appropriate magazine articles, send an SAE + £1.00 per kit - or phone and use Mastercard/Visa etc.

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta. Teach-In 7 is $£ 3.95$ from us or EPE Full Mini Lab Kit - £119.95-Power supply extra - £22.55 Full Micro Lab Kit - $£ 155.95$ Built Micro Lab - $£ 189.95$

Tel: 01283565435 Fax: 01283546932

EyERYDAY With PRACTICAL
ELECTRONICS
INCORPORATING ELECTRONICS MONTHLY

VOL. 24 No. 7

Editorial Offices:
EVERYDAY with PRACTICAL ELECTRONICS EDITORIAL ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1 PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692. DX: Wimborne 45314
Due to the cost we cannot reply to orders or queries by Fax.
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY with PRACTICAL ELECTRONICS
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX C013 OJS
Phone/Fax: (01255) 850596

DIVERSITY

One of the things which makes electronics such an interesting subject is the diversity of possible applications. Take this issue for instance; we have a very simple circuit with a rather unusual application - the Windicator and a fairly complex circuit for a sophisticated piece of test gear - the Ramp Generator.
The fascinating thing is that just about every hobbyist at any level of ability can find something to suit them and it's not always the simple items that interest only the beginners. The Windicator is quite simple to build but I guess there will be plenty of experienced hobbyists or professionals who will find it a worthwhile project - myself included.

There is one "simple" unit in this issue which is definitely not for the beginner - the H.V. Capacitor Reformer. This unit outputs a high d.c. voltage and needs to be treated with due respect. Items of this type, and that includes the EPE HiFi Valve Amplifier, can kill and should not even be considered as projects unless you are sure you know what you are doing. A similar message must go with any mains powered project, 230 V a.c. is dangerous so don't build a mains powered project, or experiment with circuits like those in our feature Bridge Rectification Enhanced until you have the necessary experience and always have a healthy respect for electricity.

PLANNING

The chart we use to plan what will go into each issue of EPE has a dozen different project headings ranging from "Photographic" through "Test Gear", "Audio", "Car", etc., to "Features" and "PCs." The section with the most article titles in is often "Miscellaneous" where various items like the Windicator or next month's Solar Seeker get listed. So, even with all those categories, many projects defy a straightforward listing - it just goes to show how diverse the range is.

SUBSCRIPTIONS

Annual Subscriptions for delivery direct to any address in the UK: $£ 24$. Overseas: $£ 30$ ($£ 47.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday with Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East

Borough, Wimborne, Dorset BH21 1PF Tel: 01202881749 . Subscriptions start with the next available issue. We accept Access (MasterCard) or Visa.

BINDERS

Binders to hold one volume (12 issues) are now available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.

Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order $£ 5$. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller
DEREK NEW, Wimborne (01 202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERY DAY with PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

EQUIPMENT
We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws

WINDICATOR

ALAN WINSTANLEY

LED to the bar for a good measure gets you simply blowing in the wind!

0NE of the more entertaining and interesting requests which came the author's way recently was an appeal for a wind speed indicator which had to be reasonably accurate but above all, simple to build. Quite a tall order! A good deal of experimenting has resulted in this simple design - a project nicknamed the "Windicator" - which the designer hopes will fit the bill precisely. Having shown the design to many ordinary non-electronics folk, they have been quite fascinated to see this simple project in action, so it's sure to have a wide appeal and will be especially useful for its educational and interest value.
You will probably have seen a wind speed measuring device - an anemometer in use at one time or anfother, perhaps at an airport or a weather station. Those rotating cups whizzing round at a fair lick are propelled by gusts of wind from any direction and the rotating shaft drives a transducer to generate an electronic signal. This data has to be decoded ultimately to produce an intelligible measure of wind speed, which requires precision measuring equipment.
This Windicator design is not at all intended to be a precision device although the unit has been calibrated to give a surprisingly effective display of prevailing wind speeds. It is guaranteed to provide many hours of interest and entertainment for all ages, being simple and fun to build and you don't need a personal computer to use it!
Of great importance to mariners, the Beaufort Scale is a measure of wind speed. Named after the Royal Navy Admiral Francis Beaufort (1774-1857), it was accepted in the late 1800s and was further adjusted in the 1920s to its present scale. A scale of zero is classed as Calm whilst at the other extreme, a reading of 12 signifies Hurricane Force, something very rarely witnessed in the United Kingdom, mercifully!
The basic relationship between wind velocities and the effects that varying levels of wind have on the environment is shown later in Table 1.

WINDICATOR CONSIDERATIONS

Having given the project some thought, it soon became apparent that the major problem likely to be encountered by constructors would be mechanical rather than electronic in nature. The idea of using rotating cups to detect velocity from any direction seemed the best approach, but
implied that a rotating shaft assembly would need to be used somewhere along the line, perhaps being guided in bearings to ensure smooth running.
It is certainly possible to purchase all the required materials - ball-bearing races and round bar in plastic - from several specialist engineering or modelmaker's sources but having priced up such a design, it was not in the least cost-effective and parts would not be readily available to most readers. Also the success of the finished unit would ultimately rely on one's ability to construct the rotating cup assembly to quite a high degree of workmanship and accuracy.

SIMPLYCYCLING

A more economical and simple design was therefore called for. The final design is straightforward and does not require any complicated bearings or shafts, so that almost anybody can construct it. At the heart of the design is a good quality d.c. electric motor, used as a form of a wind-powered dynamo. As every schoolboy knows, when the shaft of an electric motor is rotated, this induces a voltage in the motor windings which can be used to power a load - just like a bicycle dynamo
The use of the specified motor will give very effective results, but most importantly of all, it means that no bearings or drive shafts are necessary since the motor takes care of all these aspects, which vastly simplifies the construction

An anemometer assembly can be made from four ordinary plastic measuring scoops, and these are used to spin the motor shaft directly. It is simple but highly effective. (Visions of ping-pong balls, cut in half, also sprang to mind but were quickly eliminated.)

WINDY CIRCUIT

The circuit diagram for the Windicator is shown in Fig. 1. Component M1 is a quality 6 V d.c. electric motor. This is used as a wind-powered dynamo, which has a rotating cup assembly fitted directly to its drive shaft.
Tests during the early days of development showed that the output is relatively linear - although not perfectly so it is considered more than adequate in this application to produce an acceptable display. If the specified motor is used readers will be able to build this design and use the calibrations copied from the prototype, so absolutely no calibration is needed (later, you are shown how to test the circuit by comparing it against a car speedometer)

GODD MOTOR

Earlier prototypes used a simple cheap d.c. model motor but the output characteristic was very poor - generating only about 100 mV at high wind speeds - and this necessitated further buffering and amplification. The arrival of a much better quality d.c. motor dispensed with the need for any initial amplification, since the d.c. output of the specified motor is so good that this can be used directly with very little

Fig. 1. Complete circuit diagram for the Windicator. See text regarding inset figure on the left
further processing. The final circuit was a simplified version of earlier attempts, and works extremely effectively.
The output voltage generated by the motor is proportional to the prevailing wind speed. A motor voltage of up to 6 V d.c. or more (as measured) is produced with varying levels of wind velocity. The back e.m.f. generated by the motor is shunted by rectifier D1 and noise spikes are filtered by capacitor Cl .

Diode D2 is a germanium diode which has a 0.2 V forward voltage drop (unlike a silicon type which is typically 0.6 V). Again, the motor output voltage proved so high in use that the voltage drop across the diode had no particularly significant effect on the results. Resistor R1 and capacitor C 2 form a pump in which C 2 is progressively charged up by the voltage generated by the motor. Diode D2 prevents the capacitor (a tantalum type) from discharging anywhere except into resistors R2/R3.
The only drawback with the use of diode D 2 is that motor voltages lower than 0.2 V cannot cause C 2 to charge, since the diode's forward voltage has to be over-

come. In practical terms, this means that the minimum wind speed which the Windicator displays is approximately 10 miles per hour. It was thought there was little point in trying to make the circuit more sensitive in an effort to detect speeds under 10 m.p.h., though.
The result is that the potential across C2 rises when the motor rotates and decays again when the motor halts. The time constant here is quite low - well under half a second, so the circuit is quite responsive to changes in wind speed. Resistors R2/R3 actually form a voltage divider, with values selected for the motor, which steps down the generated voltage. Trials showed that the output voltage across R3 equated to an average of 200 mV at a speed of $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., all the way up to roughly 1.5 V at $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

BARGRAPH DRIVER

This varying d.c. voltage is directly coupled to IC1, an LM 3914 N bargraph driver. The Windicator display is in the form of a multi-coloured array of ten light-emitting diodes, representing average wind speeds from 10 to $75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. This popular i.c. will power ten l.e.d.s directly, using just one external resistor (R4) to set the current levels flowing through them. The i.c. has an input buffer amplifier which is quite robust - protected for inputs $\pm 35 \mathrm{~V}$ d.c - and so absolutely no further signal processing is needed in this very simple application.
The LM3914N offers an internal precision 1.25 V reference at its pin 7 , and this is connected across a series of ten comparators within the device. Pin 6 represents the "top end" of the comparator chain which is connected to the 1.25 V reference. the "bottom" of the chain is pin 4 which is connected to 0 V .
For each 125 mV rise ($1.25 \mathrm{~V} / 10$) in input voltage at pin 5 , an internal comparator will switch on, causing the relevant output pin to go low. The outputs (pins 1 plus 10 to 18 , noting their order) are normally high and only when they go low do they sink current and enable the respective l.e.d.

SELECTABLE DISPLAY

Another useful feature of which the Windicator takes advantage is the ability to produce either a bargraph or "moving dot" display. If ICl pin 9 is left open circuit, only one led will be on at a time. By linking it to the positive rail using TB2 (see later), a bargraph display will be produced. Capacitor $\mathbf{C} 2$ helps ensure that the display does not flicker too much.
To improve the display, the l.e.d.s on the prototype were colour-coded. The first three (D3 to D5) are green to indicate "normal" (up to 20 m.p.h.); D6 to D9 are yellow (up to roughly 55 m.p.h.) whilst the last three indicators, D10 to D12, are red (up to $75 \mathrm{~m} . \mathrm{p} . \mathrm{h} . / \mathrm{let}$'s get out of here!).
At this point readers should be made aware that the calibrations shown on the prototype (see photographs) are the result of comparing various prototypes against a car speedometer when driving around deserted country lanes in calm weather. This was thought the most realistic and practicable way of simulating various speeds, since wind tunnels are a bit hard to come by. The calibrations are the averages taken from several test runs and are as

Fig. 2. Component layout and full size copper foil track master for the Windicator printed circuit board.
accurate as possible. The prototype was fitted to a car and the 1.e.d. display was calibrated against the Speedo across the entire range of velocities shown. Naturally, a co-pilot was employed to jot down the readings, and speed limits were strictly adhered to!
The results which readers will obtain depend on their choice of motor. If you follow the details of the prototype as closely as possible and use the specified components then there is no need to have to calibrate your own unit as the scale shown on the prototype unit should prove perfectly adequate.
Finally, rather than build a separate mains power supply, the prototype Windicator uses an ordinary cheap 6 V d.c. mains adaptor to run from the mains continuously. This is connected via the jack socket SK1. Capacitor C4 helps decouple the power supply, although the LM3914N is none too fussy about the quality of the d.c. rail. Correct polarity of the power supply is absolutely essential of course, or the bargraph chip will be permanently damaged. The supply voltage level is not critical and between 6 V and 12 V should be fine.
The unit could run directly from a 6 V d.c. battery pack but then a continuous display will not be feasible (the Windicator may draw over 100 mA maximum in bargraph mode) unless you use a set of NiCad rechargeable cells. As shown in the inset diagram of Fig. 1, a series pushswitch is the best option if using a battery, as is selecting "moving dot" mode (TB2 open circuit) to economise on battery life.

CONSTRUCTION

Assembly is very straightforward. The circuit is built onto a small printed circuit board (p.c.b.) size $61 \mathrm{~mm} \times 51 \mathrm{~mm}$ avail able from the EPE PCB Service, Code No. 947. The Windicator was housed in an economical sloping-front case size $161 \mathrm{~mm} \times 96 \mathrm{~mm} \times 39 / 57 \mathrm{~mm}$, which had an l.e.d.s are connected.
aluminium front panel. There is plenty of room in the specified case to house the p.c.b., remembering that a power supply may be brought in from an external mains adaptor. Alternatively, the case will also house a battery (four \times AA size) should you wish to run it from batteries.
Start by using the empty p.c.b. as a drilling template for the two 3 mm diameter mounting holes, which need drilling through the base of the enclosure. Continue construction by assembling the p.c.b. in accordance with Fig. 3.
First of all, solder in an 18-pin dual-inline (d.i.1.) i.c. socket to hold IC1, and continue with the rest of the discrete components, observing polarities for the tantalum and electrolytic capacitors.
The diodes require special mention: the polarisation of silicon rectifier D1 should be readily identifiable but the germanium glass diode D2 may be tricky to sort out. Look very closely at the glass body and there should be a band marked around the cathode end - this was extremely faint on the prototype. The germanium diode is also quite delicate: do not bend the leads too closely to the glass body and take care to solder it quickly into position without overheating it.
A two-way screw terminal block (TB1) was used to provide the connections for the twin-core motor wire (see motor details later). The bar/dot mode selector link (TB2) was a s.i.l. (single-in-line) header with push-on link. You might choose to hard-wire this with a link (bargraph display mode), or just use two short lengths of tinned copper wire - twist them together to produce a bargraph.

Lastly, fit ICl into place. The chip is a bipolar type and does not need any particular anti-static handling precautions. As always, one end of the i.c. is identified by a notch or a dimple next to pin 1 (or both). It must go in the right way round or it will be damaged on power-up.

The flying leads for the ten 1.e.d. cathodes (k) were formed with a short length of 10 -way ribbon cable which was soldered directly to the board, and all other flying leads are made with standard hook-up wire. For added interest, the l.e.d. display was multi-coloured, as

Interior view of the Windicator assembled electronic components. Note how the

Fig. 3. Interwiring details for the Windicator.

COMPONEVTS

Resistors		See
R1	22 k	SUOP
R2	150 k	RALK
R3	56 k	1 k
R4	TAL	
All $0.25 \mathrm{~W} 5 \%$ carbon film	Page	

Capacitor

C1, C3	100nF polyester (2 off)
C 2	$2 \mu 2$ tantalum bead 16 V
C 4	$100 \mu \mathrm{~min}$. axial elect. 16 V

Semiconductors

D1 1 N4148 silicon diode OA91 germanium diode D3 to D5 green l.e.d. (3 off) D6 to D9 yellow l.e.d. (4 off) D10 to
 D12 red l.e.d. (3 off)
 iC1 LM3914N bargraph driver

Miscellaneous

M1 d.c. electric motor Matsushita MHN-5RG4E (see Shoptalk)
TB1 2-way p.c.b. terminal block
TB2 2-pin s.i.l. header with jumper (see text)
TB3 2-way electrical terminal block
SK1 $\quad 3.5 \mathrm{~mm}$ jack socket
Printed circuit board, available from the EPE PCB Service, code 947; sloping plastic housing, size 161 mm $\times 96 \mathrm{~mm} \times 39 \mathrm{~mm} / 57 \mathrm{~mm}$; M3 p.c.b. mounting hardware; 18 -pin d.i.l. socket; motor mounting hardware and plastic enclosure 35 mm dia. $\times 50 \mathrm{~mm}$; plastic scoops, 15 ml capacity approx. (4 off); plastic V-pulley 30 mm dia. with grub screw hub; 6 V to 12 V d.c. 300 mA unregulated mains adaptor; materials for mast; twin core zip wire, to suit; hook up wire, glue, grommet, solder etc
mentioned earlier. The author chose 2.5 mm diameter "flat top" types, for which a series of 2.5 mm diameter holes were drilled in a line through the front panel.
A keen, sharp twist drill is needed for this method though, and it's essential to centre-punch the drilling spot beforehand, to prevent the drill from wandering about.

After drilling the holes, they can be de-burred with a larger diameter twist drill or a special tool, before the display is marked with the calibrations shown in the photographs. Ordinary rub down lettering is used to number the display, followed by a coat or two of protective spray-on lacquer

On the prototype, the l.e.d.s were pushed through from behind, as a form of "invisible fixing". Small blobs of hot melt glue were also applied as an extra measure to secure them but the overall display is quite strong and appealing to look at. Needing no mounting clips, it's also cheap.

INTERWIRING

The interwiring is very straightforward and is depicted in Fig. 3. The l.e.d. anodes (a) can all be hard-wired together simply by bending their lead-outs carefully to make contact with those of their neighbours, then they can be soldered. The display is "in effect a common anode arrangement and one separate wire connects the anode "rail" to the p.c.b.
It shouldn't be necessary to use any insulation as the hard-wired assembly should be relatively rigid and safe from short-circuits. The main point is of course to correctly orientate the l.e.d.s!
If in doubt, look through the translucent package: the "Cup" (reflector) is usually the Cathode. (One yellow 1.e.d. resolutely refused to work in an early prototype - the 1.e.d. had been moulded with the identification "flat" next to the anode!) Then solder the 10 -way ribbon cable from the p.c.b. to the appropriate l.e.d. cathodes (k).
The case is finished off with a 0.25 inch diameter hole for the jack socket SK1 (if used), and a suitable hole to accept the connecting lead from the motor, for which a grommet should also be used.

Fig. 4. Mechanical assembly of the wind cups and motor.

At this stage, the display can be quickly tested without using the motor. Link TB2 to select "bar" mode. Then ensuring that the power supply is of the correct polarity, apply a d.c. voltage (6 V to 12 V) to the power supply inlet. The light-emitting diodes will all illuminate when the LM3914N input pin 5, or even D2 cathode, is temporarily hooked up to the positive supply rail using a jumper lead. If some glow but not others, you've probably reversed the l.e.d. connections somewhere With the main unit complete, attention turns to the anemometer section.

MOTOR-HEAD

The high output d.c. electric motor tested and approved by the author (see Shoptalk page) measures 30 mm diameter $\times 25 \mathrm{~mm}$ deep, with a 1.5 mm diameter, 5 mm long drive shaft. It is smooth running and generates a usefully high voltage. Fig. 4 summarises the assembly details for the prototype motor and wind-cup unit. A round plastic container with screw-on lid was used as a housing; you could perhaps improvise with a large Aspirin container or something slightly larger than a 35 mm film container, to protect the motor from the elements.
Carefully drill the end of the container with three holes as shown - one 6 mm diameter for the shaft along with two 3 mm clearance fixing holes. The motor body can be secured end-on using two M3 $\times 6 \mathrm{~mm}$ screws. Do not overtighten them or the plastic housing will eventually crack. A little light lubricant (the author used a Teflon-based cycle lube) applied near the shaft is likely to repel water and improve the smooth running.
The anemometer cups were formed from four 15 ml plastic measuring scoops, with the "handles" slightly shortened. These were affixed to a plastic pulley (30 mm diameter) using plenty of hot-melt glue (which is virtually the only way to glue certain plastics such as nylon or polythene

The principle ingredients for the aneometer.
together). Ensure that the cups all face the right way round - see photos - and try to ensure they are all level in relation to the pulley, to avoid "wobble"
The overall diameter of the cup as sembly was about 120 mm diameter on the prototype. Also, the pulley must have a grub-screw type fixing so that it can be screwed onto the motor shaft. Although the length of the motor shaft is minimal, it proved adequate enough to produce a very secure assembly. Obviously you can test to see how the motor assembly runs by applying a d.c. voltage.
A two-way terminal block (TB3) terminates the motor leads, this also fits within the round plastic housing. At this point, it's necessary to determine the polarity of the motor output, given that this depends on which way round the motor has been wired and which direction the cups will move when they spin in the

Table 1. Measuring Wind Force

Beaufort Number	Wind Description	Environmental Indicators	Wind Speed (m.p.h.)
0	Caim	Smoke rises vertically	<1
1	Light air	Rising smoke deflected	$1-3$
2	Light Breeze	Leaves rustle; wind felt on face	$4-7$
3	Gentle Breeze	Leaves and twigs move	$8-12$
4	Moderate Breeze	Litter, dust, small twigs move	$13-18$
5	Fresh Breeze	Small leafy trees sway	$19-24$
6	Strong Breeze	Overhead wires whistle; large branches move	$25-31$
7	Moderate Gale	Whole trees sway	$32-38$
8	Fresh Gale	Twigs break off trees	
9	Strong Gale	Chimney pots and roof tiles dislodged	$47-54$
10	Whole Gale	Trees uprooted. Major structural damage	$59-46$
11	Storm	Serious structural and environmental damage	$64-75$
12	Hurricane	Catastrophic damage to the environment	$75+$

wind. Save work: A quick practical test is simply to hook up a voltmeter and test the output when you blow on the (concave) scoops, then identify the polarity of the connecting wire.
You may wish to try the Windicator display by temporarily hooking up the motor to the p.c.b. (observe polarity). Blowing hard on the anemometer unit should cause probably four or five l.e.d.s to illuminate in bargraph mode; also try the dot mode. It will test your lung capacity if nothing else!

Lastly, ordinary cheap twin-core "zip" wire is all that's needed to hook up the motor once it has been sited in its rest ing place, and this wire could easily be 25 metres long or more. The connecting lead passes through a hole in the base of the housing, to the main Windicator unit.

The completed prototype motor assembly was fitted to a length of aluminium angle with a small L-shaped bracket screwed into the removable lid of the plastic housing, with insulation tape sealing the lid before the finished device was finally secured at the rear of the author's house. The unit shown in the photographs has been subjected to the most atrocious weather conditions (typical British weather, in fact!) over many months and is still operating perfectly.

SITE SEEING

The final location of the motor head is quite important and may be the subject of trial and error. Fortunately, a convenient balcony was available at Chez Nous and the motor was fixed to the railings, much to the intrigue of the neighbours. Earlier efforts produced poor results, and this was attributed to the house actually sheltering the anemometer from prevailing winds in certain directions. An open aspect away from walls and buildings, is a must
It is probably a good idea to experiment with the finished project for a week or two, running it on a temporary basis before committing yourself to installing it permanently. The largest difficulty facing readers is the practicality of running a cable through into the house, or wherever the Windicator is to be used.
In the author's case, it was very easy to pass the twin-core wire through a wooden window frame, but others may not be so lucky (that's uPVC wind ows for you). Consider running the wire through door or
window frames, TV aerial inlet holes, air bricks, ventilator outlets, or up through the eaves. The twin-core cable is then screwed to TBl on the p.c.b. and the main unit can be closed up. Then, unless you have the powers of Thor, you have to wait for a windy day!
The finished prototype Windicator will generally. illuminate the $10 \mathrm{~m} . \mathrm{ph}$. and $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. l.e.d.s when slight breezes are detected, and so far up to six 1.e.d.s (45 m.p.h. gusts) have glowed during rough weather, with the colour-coded display proving invaluable. The display also gives an idea of wind patterns, responding well to gusts before settling down again. So, the Windicator will give you an at-a-glance idea of how the wind's blowing - but its responsiveness is very much determined by the positioning of the motor unit and you might need to experiment with this to get the best out of the design.
If you use an alternative high-output motor, or want to calibrate your own constructed unit, then one practical way is to compare the Windicator against a car speedometer. A calm day and deserted roads are essential; a sun-roof and an assistant would be handy too! Power the unit from a fresh 6 V to 9 V battery pack (to avoid supply voltage droop

when all l.e.d.s. are on), or from a cigar lighter adapter. Starting at $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., note the l.e.d. numbers (1 to 10) which illuminate as the car gradually increases speed towards a maximum of say $60-70$ m.p.h.; perhaps make half a dozen test runs or more, and then take the average of all readings and calibrate your l.e.d. display accordingly.
The Windicator should last many years, with perhaps the odd squirt of light

ohm Sweet ohm Max Fidling
 Eager to tackle this latest challenge, I'd

Cat Flapping

Rummaging around in the workshop the other day, I happened across a piece of white painted plywood propped up beside the bench, roughly two feet square and painted gloss white. It was no coincidence that there was a square hole of exactly the same dimensions in the kitchen door.
Although I'm an avid "Do-It-Yourself" fanatic, one thing I don't need, so I keep fooling myself, is exercise of any form. I'd much rather spend my spare hours beavering away in the workshop, constructing my latest brainchild or building a magazine project which might have caught my eye. Hence the eventual need to ensure that Piddles, my feline fun-filled assistant, was totally self sufficient so he could travel hither and thither unimpeded.

You see, I was forever having to open and close the kitchen door to allow Piddles back in after his daily round of mousing. By a perverse scheme of association behaviour the moggie had learned that if he sat by the door and whined loudly enough at a particularly nerve-shattering frequency, I would eventually tire of this racket and ouvre la porte for said cat, who would thien march through the door triumphantly, making a bee-line for his bow!
Such behaviour, he had learned, was remarkably effective if I happened to be in the middle of soldering up a board in the nearby workshop, well within earshot of his cringe-worthy din. It was no good, this shenanigans kept interrupting top priority domestic electronic research! Something would have to be done. But what?
Cycling to my local DIY store next day, I spotted a cat flap for sale. Perfect! This would stop the pesky puss from pestering me, and I could then solder on in peace!
soon marked out a square of suitable dimensions, using a felt-tip pen to outline where the cat flap would go on the back door. The thick black lines marked the route for me to tackle with the electric jigsaw.
As I started to slice through the woodwork, I had a brainstorm. Why not customise the cat flap so that Piddles could come and go as he pleased, but otherwise the flap would remain firmly shut? A plan formed, as I pondered the practicalities of another electronic labour-saving idea.

Reed on . . .

I propped up the resultant square of wood against the bench in the workshop, and started to root around for inspiration. Recently I had taken an old speaker to pieces and thus I had acquired a nifty magnet
Stripped of the voice coil, it seemed to have pretty awesome pulling abilities. Now if I used this to operate a reed switch, and the reed switch drove a simple solenoid circuit, and the solenoid acted as a lock on the cat flap, we would be in business!
Thus was my reasoning as I returned to the scene of the crime and finished screwing the cat flap into place. The next week was spent in a futile effort to get Piddles accustomed to nosing his way through the cat flap - not one of my better moments.

In between times I developed a simple circuit which would respond munificently to the magnet. A surplus solenoid had been discovered on a shelf and I pressed it into service. Waving the rather large and powerful magnet near it, like Merlin casting a spell, the solenoid clicked over like a good'un, for a predetermined period derived from a 555 timer, before springing back into place.
lubricant helping to maintain performance. As the author has found, the most enjoyable aspect is probably when everyone asks, "What's that, then?" as they see the Windicator in full swing!

Just for good measure 1 added an l.e.d. and this blinked brightly whenever the solenoid was timing. If only it could speak, I mused, it would probably say "Quick, Moggie, Move It Or Else!" or words to that effect. Sadly, voice synthesis was beyond my abilities.

The cat flap then acquired some electronics which I don't think the manufacturers had quite anticipated when they designed it. D-Day came when at last I'd perfected the circuit and it was time for a trial run.
Piddles had just finished his breakfast and was feeling pretty content with life, i.e. he wouldn't know what had hit him until it was too late, I calculated. I'd fitted the magnet to a spare collar which I swiftly whisked around him, and then opened the kitchen door and encouraged him out with a gentle nudge or two.
Looking a bit like one of those Army-trained Dolphins carrying a homing beacon, I expected the magnetic moggie to trigger the timer and spring through the cat flap Mark Two any second now, accompanied by a flashing lie.d. and throbbing solenoid! Nothing happened, though, except that I heard a metallic "CLANG!" from outdoors.
Hmmm, not what I expected... Peering out, there was the moggie all right, the magnet on his collar pinning him firmly to the steel dustbin!

Innovations $=$ Everyday News from the world of electronics

LASER CUTS THROUGH SURGERY
 New laser cuts cleaner, improves healing and encourages new bone growth - by Hazel Cavendish

THE merging of physics with electronics has resulted in an exciting advance in laser technology at Manchester University, where the development of a remarkable new laser holds the promise of enhanced surgical achievements.
A team headed by Terry King, professor of physics at the University, has developed a laser called the Erbium-YAG which can cut through bone with an exactitude of positional accuracy as yet unachieved by conventional surgical saws. Research has proved that the new laser gives a cleaner cut and causes less secondary damage than other lasers with which it was compared.
The crystal heart of the ErbiumYAG laser is made from the chemical element erbium mixed with yttrium, aluminium and gallium and grown as a high purity garnet of very clear optical quality. This acts as the laser medium by absorbing light and emitting laser radiation.
Originally, researchers believed that healing was slowed down by laser surgery, but experiments in Manchester have shown that the new laser can actually promote faster healing.
Of great value to the surgeon is the potential for more precision in delicate brain surgery, and the repair of facial injuries caused by motor accidents. In surgery, particularly to the facial bones, the accurate positioning of bones is often achieved by fixing mini-bone plates. Laser techniques enable the surgeon to drill accurate

The Erbium- YAG laser which could increase the sophistica. tion of keyhole surgery.
holes which enhance the stability of plates and screws.

FEARS DISPROVED

Surgeons had feared that in brain surgery, laser-cutting into the skull might damage the brain, but the new laser appears to disprove these fears. Professor Tony Freemont at the University explained that, since the new laser beam stops when it hits water, and as the brain is surrounded by water, damage to tissue is prevented.
"The greatest energy wavelength of the Erbium-YAG is concentrated in a very narrow band of 2.94 micrometres, which happens to be the peak energy absorption point for water", he explained.
In an experiment on anaesthetized rats, in which the laser was compared with a conventional water-cooled electric drill system, the laser was operated in free-running, fixed Q mode and produced macro-pulses of 250 microseconds duration. Each macro-pulse consisted of a series of micro-pulses with a duration of a few microseconds.

ARTICULATION

Operations will also be greatly aided by the mobility and reduced size of the laser. Its articulated arm is connected to a handpiece the size of a pen. Professor Freemont explained that the articulated arm was developed to enable a surgeon to direct the laser in areas of the body where it was particularly difficult to reach.
"There are two ways of delivering the laser: one by the articulated arm, which has a series of mirrors which bounce the beam round corners, and the other by use of a fibre-optic system. Unfortunately, the Erbium-YAG can only be directed down certain types of fibreoptic cable, such as Zirconium-

The business end of the articulated arm for the Erbium- YAG laser.
fluoride, which tends to break if it is repeatedly bent.
"The mirror system is better, except that energy is lost because there is a certain amount of light absorption by the mirror." Even so, the beam can be concentrated in a very localised fashion with less than 100 micrometres of damage. This is an important consideration when work ing in a constricted environment, such as in neuro-surgery.

PAIN RELIEF

- Professor Freemont also commented: "Elderly people can experience pain due to the over-growth of bone causing compression of nerve roots. These outgrowths could be removed by the new laser as it can cut into bone to a clearly defined depth with such precision that it would neither damage the nerve nor cause more than minimal tissue damage."

In experiments with rats, the team also made the surprising discovery that they were able to stimulate the growth of new bone by using the laser. "That really is a discovery for Tomorrow's World", said Professor Freemont. "It has given us the signal that we may be able to stimulate bone marrow and turn it into new bone.
The new technology was unveiled at the Institute of Physics Annual Congress held at Telford this Spring.

YOUNG ELECTRONIC DESIGNER AWARDS

WENTY-one finalists, aged from 14 to 25 , gathered at the home of
scientific achievement at the Science Museum in London to display
their electronics based projects and to hear if they had been successful in their efforts to carry off the prize of 1995 Young Electronic Designer Award.
Co-sponsored this year by Texas Instruments and Mercury Communications, this annual competition has been running since 1985 and is open to all students, between the ages of 12 and 25, in secondary schools, colleges and universities. The competition aims to encourage and challenge young designers to invent and produce a novel electronic device that meets everyday needs.

Under the patronage of His Royal Highness The Duke of York, the competition is governed by The YEDA Trust, a registered charity. The Duke of York makes his own personal award to the contestant who he considers as "having the most innovative idea in the competition."

This year, the "Duke of York's Award for Creative Technology" was presented to Richard Earthrowl (16), of Ravens Wood School, Bromley for his "Sava-Siren" distress beacon for hikers, bikers, skiers and pot-holers. Richard received a crystal bowl trophy (held for one year) and, for his school, a TI Travel Mate notebook computer.
It was the view of the judges that Martin Johnstone (17), from Kingussie High School, Highland, should receive the Texas Instrument Prize of $£ 2,500$ for, in their opinion, the most commercially viable product. Martin's entry was the "MJ Switch" a device for indicating the turning and braking of a vehicle while carrying bicycles on the rear.

The judges could not decide on an outright winner for the Mercury Planet Award of $£ 2.500$, for the most socially or environmentally helpful project, so they made a "joint first" award to Sarah Preston (16) from Blyth Ridley High School for her "Poor Circulation Monitor", and to Steven Maher (17) of Cheltenham College for his "Asepsimeter", a digital expiratory-flow meter.

The use of ultrasonics won Lars Blackmore (14), Sevenoaks School, the first prize of $£ 500$ in the Junior category for his low-cost reversing and obstacle indicator for cars.

All finalists were presented with certificates and TI calculators, and their schools or colleges each received Mercury compatible telephones.

AWARD WINNERS

The Duke of York's Award for Creative Technology:
Richard Earthrowl (16) - Ravens Wood School, Bromley, Kent "Sava-Siren" - a distress beacon for hikers, bikers, skiers and pot holers
The Texas instruments Prize $(£ 2,500)$ for the most commercially viable project: Martin Johnstone (17) - Kingussie High School, Highland
The "MJ Switch
The Mercury 'Planet' Ward $(\mathbf{~} 2,500)$ for the most soclally or environmentally aware project:

Sarah Preston (16) - Blyth Ridley High School, Blyth, Northumberland - "PCM" - Poor Circulation Monitor

Steven Maher (17) - Cheltenham College, Cheltenham
"Asepsimeter" - an improved electronic digital peak expiratory flow-meter

Senior Category (18-25 years inclusive)

1st ($£ 1,000$) Martin Foley (22) - Brunel University, Egham, Surrey "Freeboard" - a multi-access computer keyboard emulator for disabled PC users
2nd (£500) Christopher Kirkham (24) - Brunel University, Egham, Surrey
"Nautilus" - a sailboat race starting aid for race officials
3rd (£250) Alison Chappell (24) - Brunel University, Egham, Surrey A card operated street condom vending machine
Intermediate Category (15-17 years inclusive)
1st ($£ 750$) Steven Maher (17) - Cheltenham College, Cheltenham "Asepsimeter" - an improved electronic digital peak expiratory flow-meter
2nd ($£ 400) \quad$ David Wilson (16) - Merchiston Castle School, Edinburgh "RAPP" - Remotely Activated Power Points
Joint 3rd (£200) Mark Edgerton (16)-Colston's Collegiate School, Bristol, Avon
"Peak-Charge" - a new design NiCad battery charger Timothy Munn (16) - Sandown High School, Sandown, Isle of Wight
A foghorn operation system for small boats
Junior Category (under 15 years)
1st ($\mathbf{2 5 0 0}$) Lars Blackmore (14) - Sevenoaks School, Sevenoaks, Kent A low-cost reversing indicator for cars using ultrasound Ross Adams (14) - Coleraine Boys' School, Coleraine, Northern Ireland
A device which deters able-bodied drivers parking in spaces allocated for disabled drivers
3rd (£150) Colm Miskelly (14) - St Mac Nissis College, Carnlough. Northern Ireland
"Velcrouse" - an electronic board game based on house building

The 1995 Young Electronic Designer Award category winners (from left to right): Martin Foley, Sarah Preston, Steven Maher, Richard Earthrowl, Lars Blackmore and Martin Johnstone.

Ravens Wood School student Richard Earthrowl who won The Duke of York's Award for Creative Technology is seen here receiving his prize from His Royal Highness.

Martin Foley of Brunel University winner of the Senior Category with his keyboard emulator for the seriously disabled.

New Technology Upiate with photolithography techniques of producing and manufacturing i.c.s for the future.

Photolithography is one of the key processes in i.c. manufacture. It enables the complicated shapes and patterns generated by the designers to be transferred to the silicon or other semiconductor surface. In turn this allows the individual components to be fabricated on the i.c. by the other processes used in the manufacturing cycle
It is possible to produce feature sizes of less than one micron, and very small levels of defects in the photographic processes.

Basic Process

The basic idea of the process is quite simple. First the patterns which need to be transferred to the i.c. surface are generated by the designers. Today this will obviously be accomplished by computers, but in the early days of i.c.s, the shapes were produced manually.
Once the required shapes have been produced they are reduced in size many times and also repeated so that many i.c.s can be produced from the same wafer. This stage requires the use of very high grade photographic equipment, costing very large sums of money. The resultant "mask" is then ready for use in manufacture.
During manufacture of the i.c. a silicon oxide layer (or other semiconductor oxide layer) is first built up onto the substrate. Once this has been completed the substrate is covered with a very thin layer of a light sensitive material called photoresist.
To ensure a thin but even layer of the resist, the wafer is spun at a high speed and some resist is dropped onto the centre of the wafer. The centrifugal force pushes the resist out from the centre, covering the whole of the wafer in a uniform even layer.

Good Exposure

When the resist has hardened the next stage is for it to be exposed. A glass photographic mask containing the required pattern is brought into contact with the wafer. Light is then made to shine onto the wafer through the mask so that areas of the photoresist are exposed to the light as shown in Fig. 1.
Having exposed the photoresist, it is developed to remove the relevant areas of resist. With some resists the exposed areas are removed during developing whereas with others the non-exposed areas are removed
The next stage in the process can be to etch away the areas of exposed silicon oxide to expose the basic silicon underneath. A variety of etches can be used, but it must not etch the photoresist of the silicon to any degree. When this has been completed, areas

Fig. 1. Stages used in photolithograptiy: (a) silicon oxide layer grown on to wafer, (b) photoresist added, (c) mask positioned, (d) photoresist exposed, (e) photoresist developed, (f) oxide etched and photoresist removed.
of silicon are then exposed for diffusion of n-type or p-type impurities.

This series of process outlines has to be repeated a number of times to build up the required areas to make an i.c.. Often as many as twenty stages or more are required to complete the circuit.

Limitations

However, there are a number of limitations to the process. One of the major ones is the size of the features which can be produced. Today sizes of just less than a micron can be produced. To achieve this special collimators are required for the light used in the photolithographic stages. The quality of the mask also needs to be exceedingly high.
Unfortunately, the ultimate definition is limited by the wavelength of the light which is used. It is for this reason that ultraviolet light is normally used because it has a shorter wavelength than visible light.
With the ever increasing demand for more complicated and smaller i.c.s, sizes need to become even smaller. This puts the pressure on researchers to devise methods of improving the processes.

Deep UV Light

One of the methods of improving the definition attainable is to shorten the wavelength of the light used even further and use what is called "deep ultra-violet light". Using this approach it is expected that feature sizes of $0 \cdot 1$ micron can be achieved, although much work still remains to be done.
To be able to work with deep ultraviolet light a number of modifications need to be made to existing processes First, it is necessary to develop a new range of photoresist materials. Currently there are a number of materials which respond to ultra-violet light beyond that normally used. However those for the projected wavelength are still being developed.

New optical arrangements are also needed. The collimators used for ordinary ultra-violet light use a series of lenses. With deep ultra-violet light lenses do not work.
As a result specially fabricated mirrors are needed. These have to be finished to an exceedingly high degree of accuracy. It is necessary for the surfaces to be accurate to within $5 \AA$ Ångstoms ($5 \AA$); five hundred-millionths of a centimetre.

Fortunately some work has already been performed into making mirrors of this nature. This came out of the "Star Wars" or Strategic Defense Initiative inaugurated by President Reagan in the 1980s.

As the i.c.s manufactured with this process are likely to be much more complicated, there are going to be more manufacturing stages which also multiplies the wafer alignment problems. To help overcome this alignment problem a special frictionless mount is being developed. This involves the use of magnetic levitation techniques which will give full freedom of movement whilst still retaining complete control of the position.

Into The Next Century

As a result timescales well into the next century have been set for the final completion of the work, and the availability of a usable system for mass manufacture of small feature i.c.s.
In fact, the first prototype system is expected to be working by 1998. This will only be experimental, and used for making limited numbers of circuits for evaluation.
After this the correct semiconductor technology to use has to be selected and experiments performed. This work is likely to take a number of years and it is not expected that volume production will commence until about 2006

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Capture

Schematio Capture Design Tool

- Direct netlist link to BoardMaker2
- Fomard annotation with part values
- Gull undo/reco facility (50 operations)
- Singe-sheet, multi-paced and hierarchical designs
- Smooth scroling
- ntelligent wires (automatic junctions)
- Jynamic connectivity nformation
- Autornatc on-line annotation
- integrated on-the-fly library editor
- Sonlext sensitive editing
- Extensive component-based power control
- Back arnotation from BoardMaker2

BoardMeker

BoardMakert - Entry hevel

- PCB and scrematc draftng
- Easy and in:uitive to use
- Surface mount ard meric süppor
- 90, 45 and curred track comers
- Ground plane Til
- Copper highight and clearance cheosking

BoardMaker2 Advanced ievel

- All the eatures of BoardNiaker
- Full netilist suppote BoardCeapture, OrCad, Schema, Tange, CadSiar
- Full Design Rile Crecring both mechanical and electical
- Top down modfication from the schematic
- Comporent rerumber with tack annotation
- Report jenerator Database ASCII, BOM
- Thernal power plane support with full DRC

Board Router
 Gridless re-entrant autcrouter

- Simultaneous meti-layer rouing
- SMD and analogie suppot

E200

- Full interrupt, resime pan and zoom whte routing
Output drivers - Included as standard
- Printers - 9824 pin Dot matrix HPLaserjet and Postscript
- Penplotiers - HP Graphtes \& Houston
- Photoolotters . All Gerber 3×00 and 4×00
- Excellon NC Dril and Annotated drill drawings (BH2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 6UT

Tel 01354695959
Fax 01354695957
E-mail Sales@tsien.demon.co.uk

tsien

Constructional Project

AUTOMATIC CURTAIN

 WINDER
MAX HORSEY

> Automatically opens and closes curtains at dawn and dusk at preset light levels. Can be added to almost any existing "corded" system. A single-button Infra-Red Remote Control is also included (next month] which will enable disabled people to control the system.

> The Remote Control produces a coded infra-red signal which makes it ideal for additional applications, such as alarm systems, door openers, light controllers etc.

MANY readers will have seen the advertisements on TV featuring automatic curtain winders. They are particularly valuable during holiday periods, since open curtains at night and closed curtains during the day are sure indicators that the occupants are away from home.
The curtains winding system to be described here can be added to any existing corded system, providing it runs freely; there is no need to purchase expensive curtain tracks, as required for some commercially available systems.

AUTOMAT/C CONTAOL

The trigger for opening/closing of the curtains is the level of "daylight". A timing system was considered, but it is surprising how quickly the point at which the curtains should be closed or opened changes during Autumn and Spring. A daylight triggered system also allows for overcast or sunny weather.
Both the opening point and the closing point can be independently set, and a Schmitt trigger circuit ensures that the

The Automatic Curtain Winder System showing the Control Unit, Motor housing and the Infra-Red Remote Control hand-set (next month).

curtains will not react to slight changes of daylight caused by passing clouds. Full manual override is included, and the curtains stop automatically at the ends of their travel without the need for awkward sensing switches.

REMOTE
 CONTRDL

Systems which are available in the shops make much of being able to operate the curtains by remote control. An Infra-Red Remote Control Transmitter and Receiver system will be described in Part Two (next month), and this will allow the curtains to be opened/closed or stopped in any position by means of a single pushbutton switch.
To sum up, the system includes the following:

1. Uses an l.d.r. (light dependent resistor), fixed to the inside of a window to detect the level of light outside. At dusk and dawn the curtains will close/open. The motor will switch off at the end of the travel.
2. Although there is provision for stop switches to detect when the curtains are fully open or fully closed, the circuit also features an automatic "current sense" stop system so that stop switches are unnecessary.
3. Manual override is provided which will: (a) Stop the curtains in any position (b) Close or open from any position.
4. The circuit is powered by means of a 12 V 1 A regulated mains adaptor.
5. Provision for adding a Remote Control Unit, (featured next month).
6. The circuit can be easily interfaced to any controlling system, such as computer control.

LIGHT SENSOR AND SENSOR PROCESSING MODULE

The system block diagram is shown in Fig. 1. An l.d.r. is used for sensing the daylight; it is inexpensive and very sensitive, and its sluggish performance (compared with a photo diode) is of no consequence when dealing with changing daylight.

This is followed by a 741 op.amp comparator, complete with Schmitt trigger action to avoid hesitation at the changeover points between day and night. In fact, two 741 comparators are used, one for sensing the falling degree of light in the evening, the other for the morning. This enables completely independent control of the open/close points.

The circuit diagram showing the input sensor and amplifier section appears in Fig. 2. Employing two l.d.r.s (one for each comparator) would be inconvenient and cumbersome and so both comparators are connected to the same l.d.r. circuit. Of course, one comparator is inverting, and the other non-inverting.

Fig. 2. Circuit diagram for the light level input sensior and amplifier section. The use of two comparators (741s) enables independent control of the curtain open/close points.

Fig. 1. System block diagram for the Automatic Curtain Winder.

Resistor R1 prevents damage caused by excessive current if the l.d.r. is exposed to bright sunlight (making its resistance very low), and if preset VR1 is set to a low resistance. The variable resistor VRI provides overall control of both open/close points.

The voltage at the junction between the I.d.r. R2 and VR1 rises as the level of daylight increases. This voltage is used to control the non-inverting input of ICl and the inverting input of IC2.

These i.c.s are connected as comparators In other words they compare the voltages at their inverting (pin 2) and non-inverting (pin 3) inputs. Note that in this instance the + and - signs indicate non-inverting and inverting respectively, not positive and negative.

CURTAINS OPEN CIRCUIT

The preset potentiometer VR2 (wired as a variable resistor) together with resistor R4 forms a potential divider which sets the point at which ICl reacts to the changing level of light. The output (pin 6) from IC1 switches to positive when the amount of daylight increases sufficiently to make the voltage at pin 3 (IC1) rise above the voltage at pin 2 which is set by VR2. The change of

voltage at pin 6 triggers the logic circuit, as described later.
Feedback resistor R7 together with R3 cause the circuit to act as a Schmitt trigger. This makes the i.c. less sensitive to changes in light level, and less prone to trigger the curtains due to passing clouds etc. The ratio of R7 to R3 sets the degree of hysteresis - or in this context, and in plain English, the degree of insensitivity.

CURTA/NS CLOSE

There is a similar circuit around IC2 except that the output switches to positive when the light level falls beyond a point set by preset VR3. The use of a completely separate circuit to detect the falling level of light enables considerable flexibility in setting the points at which the curtains are set to open and close.

LOGIC PROCESSOR

Since pushbutton operation is required in addition to daylight control and possibly, remote control, the maximum flexibility is achieved by means of a bistable circuit. That is, a circuit which can be "set" by means of a single pulse, and "reset" by means of a pulse at a separate point.
A double R-S bistable circuit, comprised of four NOR gates, with pins 1 to 6 forming one bistable, and pins 8 to 13 the other is shown in Fig. 3. When the "Open" switch S 2 is pressed, pin 1 is forced to logic 1 (positive), and this causes the output pin 4 to switch and latch at logic 1.

Pressing the "Stop" switch S1 causes pin 6 to switch to logic 1, and this resets the bistable, with output pin 4 returning to 0 V .
A similar arrangement surrounds the second bistable, with the "Close" switch S3 making pin 8 switch to logic 1, and causing the bistable to latch with output pin 11 positive, until the "Stop" switch Sl is pressed.

DA YLIGHT CONTROL

Since the processor latches in the appropriate state until a reset pulse is received there is no need to hold down any controlling switch. In fact, a switch which remained on would prevent the bistable resetting. So the processor needs a positive pulse rather than a constant logic 1. Such pulses are easily obtained by briefly pressing a push-to-make switch.

However, the daylight sensor of the input module is likely to remain at logic 1 throughout the day, and likewise the darkness sensor will remain at logic I throughout the night. We need a circuit which will convert this steady state into a short pulse at the moment when the logic level changes from 0 to logic 1 .

A series capacitor achieves this; hence the output from the daylight rising sensing circuit (ICl) is connected to the bistable via capacitor C 2 . The daylight falling circuit (IC2) is connected to the other bistable in a similar manner via C3.
This method of connection provides considerable flexibility in the control of the Logic Processor. It is possible to use the manual control switches to override the daylight control circuit at any time, but at the appropriate time the daylight control circuit will automatically resume control of the curtains. A Remote Control Receiver (next month) can also be added without affecting the existing controls, and any other interface idea is possible, such as opening the bedroom curtains automatically at a signal from the alarm clock!

MANUAL STOP

The "Manual Stop" button S1 is wired to both bistables, the diodes D5 and D4 preventing accidental resetting. It is possible to use curtain rail stop switches, although the current sensing stop system described later is a better alternative.
If curtain rail stop switches are used, they must be connected individually to each bistable as shown in the final circuit diagram, since one or other will be held closed when the curtains are fully open or fully closed. Clearly we could not allow both bistables to be locked into a "eset" state.
The two curtain rail stop switches could be connected, via a coupling capacitor, to provide a pulse; however, if the curtains were fully open when the "Open" button

Fig. 3. Dual RS-bistable Logic Processing circuit and Manual switching arrangement.
was pressed, they would try to open further, resulting in damage to the motor etc. The same danger would exist in the fully closed position.

CURRENT SENSING
 AUTO-STOP

Using the "current sensing" method of detecting when the curtains are at the end of their travel is mechanically much simpler than using curtain rail switches, and is strongly recommended. It also has the advantage that if the curtains meet an obstacle or become tangled the motor will automatically cut out before causing damage.

When a motor runs at its normal speed the current used is much smaller than if the motor is forced to slow down. If a resistor of about 10 ohms is connected in series with the motor (see Fig. 4), the voltage across it will depend upon the current flowing.

A 10 ohm resistor will have little effect on the speed of the motor (although this will depend upon the type of motor employed experiment if necessary), but the rise in voltage across the resistor caused by the

Fig. 4. Basic current sensing or motor stalling circuit diagram.
motor being forced to slow down is sufficient to trigger an op.amp comparator. The output from the op.amp can in turn be used to reset the bistables.
The basic circuit diagram for the "current sensing" arrangement is shown in Fig. 4. The potentiometer (a small preset on the p.c.b.) is used to set the voltage at which the output from the op.amp changes state. The rise in voltage at pin 3 (non-inverting input) caused by the motor stalling, results in the output from the op.amp switching to logic 1 .

The completed "Controller" showing the Open, Stop and Close manual switches.

Note the addition of a capacitor C needed to smooth out fluctuations in the voltage across the resistor as the motor spins.
In trials, this system worked so well that curtain rail switches were not used, although provision for both stopping methods has been made on the p.c.b. Note however that the value of the resistor may need to be modified according to the type of motor used and if the behaviour of the system is different under load (i.e. when driving the curtains) than when on the workbench.
The motor used in the prototype (details later) worked well with a series resistor of value 8.2 ohms . Also an f.e.t. input op.amp such as CA3140E offers better results than a 741.

MOTOR CONTROL

The motor control circuit is shown in Fig. 5 (the main circuit diagram) and has two inputs, via resistors R21 and R22. When a positive signal is applied to R21 transistor TR4 is turned on, and causes TR5 to switch off and TR6 to switch on.
Assuming that TR3 is turned off, the voltage at " B " will be positive, and hence TR7 will be on, and TR8 off. With power transistors TR6 and TR7 both on, current will flow from the positive rail, through TR7, to the motor, and to 0 V via TR6 (and R27).
A similar sequence of events will occur if a positive signal is applied to R22, except that TR5 and TR8 will switch on, resulting in the motor rotating in the opposite direction. When the inputs at resistors R21 and R22 are both at around $0 \mathrm{~V}, \mathrm{TR} 3$ and TR4 will both be turned off, and all four power transistors will switch off, hence stopping the motor.
If a positive signal were to be applied to R21 and R22 at the same time, all four power transistors would turn on and a short circuit would occur. The diodes D8 and D9 should ensure that both outputs (i.e. from pin 4 and pin 11 of IC4) can never be positive at the same time, making this situation impossible.
Indicator D16 is a bi-colour I.e.d. which glows red when the current flows in one direction, and green when the current is reversed. Two separate l.e.d.s could be employed if preferred. Capacitor C11 suppresses voltage spikes produced by the motor, and the four diodes D12 to D15 remove voltage spikes which may damage the transistors.
Current from the motor reversing circuit must pass through resistor R27 on its way to 0 V . If the motor stalls, the voltage across R27 will rise and this rise in voltage is fed through R25 to trigger the "current sense stop circuit" built around IC3.
When the voltage at the non-inverting input (pin 3) of IC3 rises above the voltage determined by the setting of preset VR4, the output pin 6 switches from $0 V$ to positive. This causes an effect similar to pressing S1, the Stop switch. Diode D3 prevents current flowing back to pin 6 , if $S 1$ is pressed whilst pin 6 is at 0 V .
Capacitor Cl delays the stopping action a little, to allow the motor to start up initially. Once the motor has stopped, pin 6 switches back to about 0 V .
Note that capacitor Cl determines the speed with which the circuit reacts to the stalling motor; the circuit must be sensitive enough to detect the fully wound curtains, but not be so sensitive that the motor cannot be started initially. Fine control is provided by preset VR4.

Fig. 5. Complete circuit diagram for the Automatic Curtain Winder.

In practice VR4 controls the ease with which the curtains are brought to rest. Since opening requires more force than closing, and the force required increases as the curtains open, VR4 actually controls how far the curtains are pulled open.

FINAL CIRCUIT

How the modules described slot together to form the complete circuit diagram for the Automatic Curtain Winder is shown in Fig. 5. Most of the components have already been described, but certain additions have been made to assist the reliability of the system
Capacitors C4 and C6 remove any interference which may be picked up if long wires are used to link switches S4 and S5the optional switches which may be fixed to the curtain track if this method of stopping the curtains is preferred to the automatic "current sense" system already described.
It is helpful, particularly when adjusting the variable resistors (presets) to know whether the circuit is in "day" or "night" mode. Hence, l.e.d. indicators (D1, D2) are driven from pin 6 of IC1 and IC2. The output of a 741 op.amp will not drive a normal l.e.d. directly, and so transistors (TR1 and TR2) are used to increase the available current.
When the output from ICl is positive, the voltage at the bases of TR1 is sufficient the switch on TRI and hence DI. When the output from a 741 switches to "low" the voltage is unfortunately too high to switch off a transistor. The task of resistors R9 and R10 is to reduce the voltage at the base of TR1 so that it can be switched off when required. A similar arrangement applies for IC2 and TR2

POWER CUTS

Since the circuit is likely to be left unattended for long periods some provision must be made in the event of a power failure, to prevent the bistables assuming a random state when power is restored. At "power up" capacitor C5 supplies a
positive pulse via diode D6 to force both bistables into their reset state. D7 is necessary to allow the capacitor to discharge properly when power is removed.
The Logic Processor could be linked directly to the motor control circuit. However, instead of using a single base resistor for TR4, two 4.7 kilohms resistors in series (R19 and R21) are employed, together with a capacitor C10 and diode D10. Transistor TR3 is given similar treatment.

The reason for this additional circuitry is to prevent rapid reversal of the motor if say, the Close button is pressed immediately after pressing Stop whilst the curtains are opening, and visa-versa. The capacitor delays the rate at which its associated transistor can turn on, but the diode causes the capacitor to be rapidly discharged when the associated logic output switches to logic 0 . The result is that the current through the motor can be rapidly stopped, but there is a short delay before the motor can be turned on again.

THERMAL FUSE

The circuit is likely to be left on and unattended for long periods. A 500 mA thermal fuse was therefore included on the p.c.b. to cover any eventuality e.g. curtains becoming tangled, current sense stop system failing, major short circuit etc. This particular fuse resets when it cools down, and is in addition to a standard 1A fuse which may be fitted in the case of the unit
It is assumed that the system will be powered by a 12 V 1 A regulated supply. Even so, there are likely to be voltage fluctuations throughout the circuit, and overall decoupling is provided by capacitors C7 and C8.

CONSTRUCTION

Details of the Curtain Winder printed circuit board (p.c.b.) component layout and full size underside copper foil master pattern are provided in Fig. 6. This board is available from the EPE PCB Service, code 946.

Begin work by inserting the i.c. sockets, followed by the smaller components, checking that the diodes are fitted with their bands. facing the correct way. The resistors and small $0 \cdot 1 \mu \mathrm{~F} \quad(100 \mathrm{nF})$ capacitors can be fitted either way round, but the electrolytic capacitors and transistors must be the way shown. The negative end of the electrolytic capacitor is normally indicated by arrows and a shorter lead.

Fit terminal pins for the external connections. When soldering leads to the terminal pins the simplest and most reliable method is to place a little solder on each pin, then strip and tin (i.e. coat with a little solder) the end of each connecting lead, finally trimming with cutters so that only about a millimetre or two bare tinned lead are exposed. Now place the exposed end against the terminal pin whilst applying the soldering iron.
Decide at this stage if the project is to be housed in its case (described later) before the final test, so that all the external connections can be made; alternatively make temporary connections to the terminal pins to enable testing.

Finally, insert the i.c.s into their sockets, taking special care with IC3 and IC4 (since they are static sensitive) to "earth" your fingers (by touching an earthed metal object) before removing them from their protective package or foam. Ensure that all the i.c.s are fitted with their notches as indicated in Fig. 6.
Heatsinks were not found to be necessary in the prototype; however if a much larger motor is used, check that the power transistor tabs do not become excessively hot (they are allowed to feel too hot for comfort but should not be hot enough to cause a serious burn!).

TEST/NE

The circuit is best tested by connecting it to a regulated and current limited 12 V supply. A maximum of 100 mA is ideal, assuming that the motor is NOT connected.

The Curtain Winder p.c.b. mounted in the control unit.

The use of a regulated 12 V 100 mA supply will ensure that no damage can be done to the circuit, regardless of mistakes. If such a supply is not available, take extra care, and switch off immediately if any component becomes excessively hot.
Set preset VR4 (bottom left on p.c.b.) fully anti-clockwise to cancel the auto stop. Set the other presets to about midway Switch on. It is likely that the Open I.e.d DI will light.
Twist preset VR1 fully clockwise. You should find that D1 switches off and D2 switches on. Carefully adjust VR1 until it is possible to make the l.e.d.s change over by shading or unshading the l.d.r., R2. Failure at this stage should be investigated before proceeding.

Assuming all is well check the behaviour of the bi-colour l.e.d. D16. It will probably be on, and could be red or green. Try pressing SI (Manual Stop), D16 should turn off.

Shade the I.d.r. to make D16 switch on again. Keep shading the l.d.r. whilst pressing SI again so that D16 is again turned off. Now unshade the I.d.r. This should cause D16 to change colour. The colour of D16 indicates the direction of the motor.
Try the manual switches S2 and S3 to check that D16 can be controlled as expected. Remember to press S1 to switch off D16 after each test. If SI is held on the circuit cannot be triggered.
If you intend using curtain rail stop switches the inputs for switches S4 and S5 could be tested by touching them briefly to positive supply. Note that S4 will only cancel D16 if the circuit is in "opening" mode, and S5 will only cancel D16 if the circuit is in "closing" mode. Keeping input S5 positive (as it will be when the curtains are fully open) will still allow the circuit to enter its closing mode, and vice versa.

FINE TUNING

Presets VR2 and VR3 allow precise and independent control over when the curtains open or close. For example, it is possible to set the curtains to close at an early (bright) point in the evening, but open at an early (dim) point in the morning or vice versa.
This flexibility may be observed by adjusting presets VR2 and VR3 and noting that it is possible at the changeover point to make l.e.d. D1 switch off before D2 switches on, or make DI switch on after D2 switches off. Remember that D16 will not change colour unless you first trigger the Manual Stop switch SI.

Fig. 7. Positioning the printed circuit board "off-centre" allows space for the l.e.d.s, switches and sockets.

FAULT FINDING

If the circuit fails to work as expected, check the board carefully for bridged pads (i.e. adjacent pads accidentally joined by solder) and dry joints which are caused by applying insufficient heat. Check also that the correct components are fitted, and have been inserted the correct way round.
Once the visual checks are complete, use a voltmeter to check each stage of the circuit. Connect the negative lead of the voltmeter to 0 V on the p.c.b. Use the positive lead of the voltmeter to check the output voltage from each module in turn to narrow the fault to a particular area. If necessary read the descriptions about each module to check that your readings are correct.
When using a voltmeter around a CMOS i.c. (IC4) be aware that the voltmeter may affect the readings, and may cause the circuit to latch or unlatch. This can be very frustrating, but if readings are taken at the outputs of the gates rather than the inputs the problem should be reduced. It will be very difficult to check the pulse arriving via capacitors C 2 or C 3 .
If the voltage from pin 6 of the op.amps is changing correctly, press and hold S2 and check that pin 1 of IC4 becomes positive. Likewise, holding down S 3 should make pin 8 positive.

The motor reverse circuit can be tested by disconnecting the side of resistor R22 which joins R20, and touching the disconnected side of R22 to positive. This should make the motor turn. Disconnect R22 from positive, and try the same method with R21.
Failure of the motor reverse module may well be due to a mix up between the pnp and $n p n$ transistors. Check their codes carefully, and check that all the transistors are fitted the correct way round.

CASE DETA/LS

The p.c.b. may be housed in a plastic PX3 type case, size $109.5 \mathrm{~mm} \times 179.5 \mathrm{~mm}$ 60 mm (internal), as shown in Fig. 7. However, it is best to decide at this stage if the Remote Control p.c.b. (next month) is to be housed in the same case, since this affects the drilling requirements.
The p.c.b. is mounted off-centre to allow space for the l.e.d.s, switches and sockets. Begin by drilling holes for the three pushswitches, three l.e.d.s, and sockets. The l.d.r., power supply, and motor supply may be linked via plugs and sockets to promote easy installation.
The p.c.b. may be mounted using selfadhesive p.c.b. supports. Note again that the Remote Control p.c.b. affects the arrangement and will eventually be fitted below the Curtain Winder p.c.b. so that the winder presets may be easily adjusted.

CHOOSIVG THE MOTOR

Clearly the motor is a key component in this project and will probably cost as much as the rest of the system put together. Remember that if you are using the current sense stop system, resistor R27 will remove several volts and should be rated at 3 W minimum. In the prototype a 6 V motor was chosen rather than a more obvious 12 V type.
A good quality motor will use a conservative amount of current. The prototype used less than 100 mA when under no load, peaking at 500 mA . just before being switched of by the current sense circuit.
The specified motor used in the prototype model was a 60 r.p.m. 6 V type, complete with gearbox (see Shoptalk). Its most useful feature is an output shaft compatible with Meccano shafts - ideal for those with low mechanical competence like the author!

Fig. 8. The motor drive-shaft assembly and housing. The motor is bolted outside the case and the motor spindle linked to the winding shaft using Mecanno parts.

TESTING THE MOTOR

Assuming that the circuit works, and the bi-colour l.e.d. D16 functions properly, the motor may be connected. If you have been using a regulated 100 mA supply, connect instead a supply capable of delivering 12 V with enough current to drive the motor (say 1A). Repeat the previous tests, checking that the motor starts, stops and reverses when it should.
It will be difficult - probably impossible to test the current sense stop circuit. Wait until the motor is driving the curtains, or substitute another non-geared motor which can be easily stopped.
If you think the motor current sense circuit is not working, check the voltage at pin 3 of IC3. There should be a noticeable voltage rise when the motor is forced to stall, and this should cause the voltage at pin 6 to switch from below 2 V to around 10 V . The voltage at pin 2 of IC3 should change from 0 V to 12 V as preset VR4 is turned.

MECHAN/CS

The motor discussed earlier, and used in the prototype closed the curtains in about 10 seconds, creating the effect of cinema screen curtains. Higher speed operation would demand a more powerful - and current hungry - motor.
Very heavy curtains might require slower operation. However, much depends upon the efficiency of the curtain tracks. The curtains have to run smoothly, with as little friction as possible. Clearly the tracks must be corded, and if cords are already fitted and run smoothly - there is little more to do at this end.
The shaft of the motor was identical in diameter to Meccano axle rods, and a short Meccano coupling was used to extend the motor shaft as shown in Fig. 8. The shaft runs quite slowly and unless the curtains are very heavy, more couplers may be employed to create a fatter shaft.
This is, however, a very expensive way of making the shaft thicker and cruder methods may be preferred. For example, the cords could be cut longer than required and the surplus used to wind round the shaft. The motor shaft in the prototype tended to slip inside the coupling, and it is well worth filing a flat area to enable the coupling screw to grip the shaft tightly.

The curtain drive motor is bolted onto one end of a ABS plastic case, with the
curtain cord drive-shaft housed inside the case (see photographs). The case specified is a type PX2 and has external dimensions of $54.5 \mathrm{~mm} \times 104.5 \times 42 \mathrm{~mm}$. The case appeared to be made to measure, the Meccano couplers and motor fitting perfectly.
Begin by drilling the holes required noting that the motor already has holes suitable for small nuts and bolts. The motor shaft appears to require quite a small hole, but a much larger one is needed to allow the motor to be bolted properly against the case.
Drill a smaller hole opposite the motor shaft to locate the Meccano shaft. Two holes are required for the winding cords, and one or two mounting holes to allow the case to be mounted on the window sill or wall.
Having mounted the motor assembly, pull the curtains fully open, then cut the "pull to close" cord so that it can be wrapped around the shaft two or three times before being tied to the bush wheel. The motor may now be switched on to wind the curtains fully closed. Stop the motor manually at this stage.
Now attach the "pull to open" cord in the same manner, slackening the shaft retaining screw if necessary to twist the
coupler until both cords are tight. Press the Open switch to wind the curtains open, then press Stop.
Close and open the curtains several times, then re-tighten the cords if necessary. Some slackness when the motor first starts to wind is acceptable providing the cord cannot become tangled.

AUTO-STOP ALIGNMENT

To set up the auto-stop position, turn VR4 (in the corner of the p.c.b.) almost fully clockwise, and check that the motor has difficulty in driving the curtains. If the motor does not readily switch off, check for faults (see the guide above) before proceeding.
If all is well adjust VR4 anti-clockwise until the curtains will wind fully, but stop when fully wound. Now make fine adjustments to VR4 to set how far you wish the curtains to be opened.

LIGHT SENSOR

The light dependent resistor R2 should be positioned using glue or tape to fasten its wires so that the body of the I.d.r. is against the inside of a window. Try to select a position away from direct sunlight and hidden from car headlights and spotlights.

REMDTE
 CONTAOL

This circuit can be easily interfaced to other control circuits, the nature of the logic is to allow independent operation from a variety of sources. For example, when switch $\mathbf{S} 2$ is pressed a pulse is applied to pin 1 of IC4 and the curtains open. A positive pulse from any other source will achieve the same result. The same applies to S1 and S3.
The Remote Control Unit, described next month, applies pulses at these points, and includes a logic control circuit to convert a single command into the sequence: Open, Stop, Close, Stop etc. This logic control circuit can be extracted if single command operation is required from any other source.
Next Month: Drive your curtains with an Infra-Red Remote Control.

The motor coupling and bush wheels bolted on the curtain drive-shaft.

Our regular round-up of readers' own circuits. We pay between $£ 10-£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description showing all relevant component values. Please draw all circuit schematics as clearly as possible.
Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset, BH21 1PF. They could earn you some real cash!

Morse Tone Decoder Driver

- unscramble dots amd dashes

THE circuit diagram depicted in Fig. 1 uses a decoder i.c. to act as an interface between an audible Morse code signal and an external logic circuit or relay, so that the user can start to decode Morse code heard on a radio receiver. It was decided from the start that the unit would have its own built-in microphone for ease of use and to avoid having to make connections to the circuit board within the radio receiver. Hence, this circuit is completely self-contained and enables you to synchronise a logic circuit or relay with the audio Morse code.

Circuit

In the circuit diagram Fig. $1, \mathrm{MICl}$ is an electret microphone which feeds the selected audio tones to a simple transistor amplifier based around TR1 and associated components. Resistor R1, R2 and capacitor Cl provide a supply for the electret microphone. Potentiometer VRI is a Sensitivity control and the signal is coupled to ICl input (pin 3), via capacitor C5.

The NE567 i.c. is a tone decoder phaselocked loop device which drives a load whenever a particular signal frequency is present at its input for a given length of time. Resistor R6, potentiometer VR2 and capacitor C 8 set the operating frequency of the NE567 internal oscillator.

With the values shown, the circuit has a frequency range of 850 Hz to 1340 Hz . Within this range, the circuit will "lock" and cause the l.e.d. Dl connected at the output, to illuminate. Capacitors C6 and C7 are the output and loop filter components which were chosen to give optimum results over a wide range of Morse transmission speeds.

As quite a lot of Morse is transmitted in continuous wave (CW) it will be necessary to use the receiver's BFO to hear the Morse tones. Set the BFO to produce an audio tone of about 1 kHz , then position the microphone next to the loudspeaker and adjust VR1 and VR2 until the "signal" l.e.d. flashes. in unison with the Morse tones.

Fig. 1. Circuit diagram for the Morse Tone Decoder Driver.

Fig. 2a. C,ircuit diagram for a simple logic interface.

Add-on Circuits

The output of the decoder is available at point " X ". A simple logic interface is given in Fig. 2a which generates a Logic 1 when a Morse tone is detected. The relay driver also shown in Fig. 2b could be adapted to drive ticker-tape or solenoid marking

Fig. 2b. Add-on circuit diagram for driving a relay.
devices, provided that the Morse speed is not too high.

A +5 V supply is necessary for correct operation and a standard 7805 regulator can be used to provide this from higher d.c. voltages.

Neil Dobson,
Chopwell, Newcastle-upon-Tyne.

Metal Detector

- strilke if lucky

When tuned correctly, the Metal Detector illustrated in Fig. 3 will detect an old Victorian Penny at a depth of 10 cm , although for practical purposes 5 cm may be more realistic. It will detect large objects at 25 cm and more. It is extremely simple and cheap to build and has minimal ground effect.
The metal detector is based on the BFO (Beat Frequency Oscillator) principle and incorporates two high frequency oscillators both running at approximately 300 kHz . In Fig. 3, ICla and IC1b oscillate at a fixed frequency whilst IClc is a variable frequency oscillator whose frequency is highly dependent on the inductance of coil L1. The outputs of both oscillators are mixed through ICld, producing an audible beat frequency.

Two coils were tested, one of 50 turns of 33s.w.g. enamelled copper wire 22 cms in diameter, the other of 40 turns of 30 s.w.g. 24 cms in diameter. It was found that the winding technique for the coils was not critical. Although the circuit is stable in operation, ceramic capacitors were found to introduce instability and are therefore not suitable. Polyester types may be best.

Fig. 3. Circuit diagram for the low cost Metal Detector.

The output is connected between ICld pin 11 and the 0 V rail, and may drive a set of headphones, a crystal earpiece or an amplifier. If an unclear note is heard, experiment with the values of the capacitors Cl to C 3 .
In order to tune the Metal Detector, adjust potentiometer VRI to a zero beat setting (i.e. silent output) between the loudest frequency peaks. Then tune a little either way to find a low tone. A 10 ohm poten-
tiometer in series with VR1 may simplify adjustment.
In use, a change of tone will indicate the presence of metal. With a smaller coil, this Metal Detector may also be used as a pipe or cable locator. It draws less than 10 mA current from a 9V PP3 battery.

Rev. Thomas Scarborough,
Cape Town, South Africa.

Infra-Red Repeater

- TMP (VCR Rrom ofous

My CIRCUIT diagram shown in Fig. 4 is an Infra-Red Repeater Unit which allows equipment such as VCRs or satellite receivers etc. to be controlled from more than one room. All the work is done by IC1, a Sharp ISIU60 integrated circuit (from Electromail, Stock Code 577897). This three-terminal device detects the 40 kHz signals emitted by infra-red remote controllers, and provides a clean demodulated signal.

In the absence of any infra-red signal the output of ICl is high. This drives transistor TR1 on which resets IC2, a 555 astable oscillator. When infra-red pulses are received, IC2 will oscillate at 40 kHz or so.
The timer i.c. drives transistor TR2, which drives the two light-emitting diodes D1 and D2. D1 acts as a "pilot" indicator and illuminates to confirm that infra-red pulses are being received.
The infra-red diode D2 is placed in the same room as the equipment to be controlled, and placed as close as possible (I suggest within one metre) to the item of equipment. It can be connected to the

Fig. 4. Circuit diagram for the Infra-Red Repeater.

Repeater circuit with twin-core wire of suitable length.
I found that sometimes it was better to replace the 18 kilohm resistor with a 22 kilohm preset and adjust this for the most
reliable operation. The supply rail to the circuit is best regulated at 5 V . A cheap 7805 voltage regulator i.c. could be used, which will not need a heatsink.

Mark Skeete, London, E10.

```
DON'T MISS THESE INGENIOUS CIRCUITS - ORDER YOUR COPY NOW!
```

Everyday With PRACTICAL ELEPTRONIPS
INCORPORATING ELECTRONICS MONTHLY

```
NEWSAGENTS ORDER FORM
Please reserve/deliver a copy of Everyday with
Practical Electronics for me each month.
Everyday with Practical Electronics is published on the first Friday of each month and distributed by Seymour.
Make sure of your copy of EPE each month - cut out or photostat this form, fill it in and hand it to your newsagent.
```


BEBOP TO THE BOOLEAN BOOGIE

Author Clive Maxfield
Size $\quad 471$ pages $256 \times 220 \mathrm{~mm}$
Price
Publisher HighText Publications Inc. ISBN 1-878707-22-1

"An Unconventional Guide to Electronics Fundamentals, Components and Processes." Clive (call me "Max") Maxfield

0PEN many text books on electronics and they commence with the same very dry theory of the physics pertaining to the electron, gradually becoming even more desiccated. Just out in the UK, Bebop is an American text book which is very different, not least because of Max's dry (British) sense of humour - starting with a series of wry footnotes which brought forth many a chuckle! Off to a flying start, then, this book is not a circuit cook-book per se but a thoroughly researched and highly readable reference on general electronics principles, prevailing techniques and future technologies.

Max has fired a well-aimed scatter-gun at electronics basics, progressing into digital techniques, logic systems, Boolean algebra of course, memories, programmable integrated circuits and more complex digital chips, dealing with the manufacturing methods of current-technology devices as well. A good proportion of Bebop then considers printed circuit board technology, sprinkled liberally with well presented illustrations of commendable clarity. This will appeal to those becoming involved with p.c.b. CAD systems for the first time, for instance, since the technology behind various board fabrication methods is discussed in some depth.

The author analyses cutting edge technology including superconductors, protein switches and nano-technology - not just in passing, either, but again in a well researched, interesting and authoritative manner that's bang up to date. Still the humour keeps coming but it isn't over-done and doesn't detract from a highly informative and buoyant style.

It's hard to pigeon-hole Bebop because it covers many disciplines such that there's something for anyone involved in any
way in electronics, whether as a mild interest or as a serious technician. Supported by a glossary, various appendices and a thorough and comprehensive index, I think the book is an excellent and invaluable resource for anyone who's ever held a soldering iron and wants to know what makes current electronics technology tick, and where it's going in the future.

The price seems a bit steep though, at $£ 30.99$ which might put it out of reach of those who would probably benefit from Bebop most of all. An excellent buy otherwise, and uniquely enjoyable. If you're not hooked after reading it you probably never will be.
A.W.

THE MODEM REFERENCE (Third Edition)

Author
Price $\quad £ 32.25$ including VAT (due to floppy disk).
Size $\quad 815$ pages $235 \times 185 \mathrm{~mm}$
Publisher Brady Publishing ISBN 1-56686-027-X

Telecommunications technology is bounding ahead, leaving even this latest Edition of The Modem Reference a bit out of breath. Little if any mention of increasingly demanded 28.8 K bps (V.34) technology or currently popular 14.4 K (V.32bis) standards, this book is nonetheless a good introduction to modem technology and communications by computer. Aimed at both the beginner or professional modem user, it de-mystifies much of the jargon which anyone setting up and using a modem will undoubtedly encounter sooner or later - probably sooner!

Of American bias, there is still more than enough data to enable the UK reader to tackle his new modem with a lot more confidence, though you'll probably still need your modem instruction book to sort out any actual initialisation problems - at least you'll understand what much of the Hayes AT Command Set ąctually means and what's really going on, so that you can ftp and email with more confidence. Quite a proportion is given over to American on-line services and is less relevant here.

Let down by scrappy bitmap thumbnail graphics at times but includes a floppy disk with several useful utilities and Windows Terminal front ends. Generally worth having.
A.W.

Automatic Curtain Winder

Clearly, the motor is a key component in the Automatic Curtain Winder and will probably cost as much as the rest of the system put together. In the prototype a 6 V motor was chosen rather than a more obvious 12 V type.

The specified, motor used in the model, is an RS type and was purchased through Electromail (01536 204555), code 336-337. This is a 60 r.p.m. 6 V type, complete with gearbox.

If you are unable to obtain the Meccano parts locally, they are available, mail order, from MW Models, Dept EPE, 4 Greys Road, Henley, Oxon. Tel: 01491572436.

The printed circuit board is available from the EPE PCB Service, code 946. Remember, if you are using the "current sense" stop system, resistor R27 should be rated at 3 W minimum.

Windicator

The author of the Windicator project overcame the problem of the need for special mechanical parts by using a d.c. motor as a sensor. The specified d.c motor, made by Matsushita (MHN-5RG4E), is supplied by Magenta Electronics and is similar to a cassette-player motor.

A motor different from the one specified could be used but it must be a good quality, high output type. However, the output may
not be linear and you will then, of course, need to calibrate the design yourself - not so easyl

We understand that a full kit of parts for the Windicator is available from Magenta. The kit (code 856) comes complete with sensor motor and sensor cups, but excludes any twin-core "zip" wire. The cost of the kit is $£ 28$ and the motor is available separately for the sum of $f 4.80$. A post and packing charge of $£ 3$ per order must also be added to the cost. Magenta Electronics, Dept EPE, 135 Hunter Street, Burton-on-Trent, Staffs, DE14 2ST.

The small Windicator printed circuit board is available from the EPE.PCB Service, code 947.

Ramp Generator

Some of the items called up for the Ramp Generator need to be specially purchased if the constructor is to adhere to the published design. Other componehts may be used but they may not fit on the p.c.b.s and may not produce such good results.

Most of the components used in this design are RS components and were purchased through Electromail (is 01536 204555). Particular parts which shouid be as specified are as follows: potentiometers, codes 173-631 and 18.7-220; crystal oscillator module $(16.384 \mathrm{MHz})$, code 658 845; AD7845 12-bit DAC, code 263-295;
mains transformer, code 208-945 and the $22,000 \mu \mathrm{~F}$ electrolytic, code 127-486.

The printed circuit boards for this project are available as a pair from the EPE PCB Service, code $944 / 5$. The choice of case has been left to the individual as the one used adds $£ 52.28$ to the cost!

HV Capacitor Reformer

The majority of components for the HV Capacitor Reformer should be readily available from your local supplier. The high voltage electrolytic (C1) maybe a little more difficult to come by, but a few phone calls to advertisers should soon provide the answer.
The small printed circuit board is available from the EPE PCB Service, code 943.
EPE HiFi Valve Amplifier
It is most important that constructors undertaking the EPE HiFi Valve Amplifier adhere to the correct ratings of the resistors listed in the components box. Brimistors are now considered obsolete technology and are not now generally available. However, Brian J. Reed (4 0181393 9055) can, we understand, supply them at a surplus price.

Due to their weight, the mains and valve output transformers are best ordered/purchased from your nearest Maplin shop to save on the postage costs. Suppliers for the rest of the components were covered in last month's Shoptalk.

Note: If the amplifier is used to feed 4 ohm loudspeakers the valves will over-dissipate and their working life will be shortened. The output transformer is designed to drive 8 ohm speakers.

The Phase-splitter p.c.b. (last month) is available from the EPE PCB Service, code 941.

25964 Audix HM230S/Tact UDM 100 professional dynamic mic with on/off switch and cardioid characteristics. 5 m lead with XLR socket fitted mic end. Impressive spec! 600R impedance. Supplied with clip and adaptor. individually boxed. List price $£ 44.06$
LCD dot matrix modules all with HD44780 controller (and HD44100 on larger displays)

Code PartNo. Size Cha Ht Price $\begin{array}{llllll}25482 & 1620 & 16 \times 2 & 5 \times 7 & 4.3 & 3.00\end{array}$ $\begin{array}{llllll}\mathbf{2 5 4 8 3} & 1621 & 16 \times 2 & 5 \times 7 & 4.3 & 3.00\end{array}$ $\begin{array}{llllll}25485 & 4021 & 40 \times 2 & 5 \times 7 & 5.2 & 5.00\end{array}$ A data sheet is included in the price
$\mathbf{Z 2 8 4 2}$ Application notes. A 16 page booklet is available: Price £2.00

L141 PIR COACH LAMP

Polycarbonate bodied coach detector. The detector is fully adjustable for angle and has on time adjustment. photo-cell prevents davight peather to IP23 Maximum bulb size 60W R.R.P. £22.95

sule price $\$ 12.95$

AERIAL EXTENSION LEAD

T104BA 10 m co-axial aerial extension lead on Reel contains a built-in TV/radio splitter. Stocks -

Sule price $\$ 2.50$

HIGH VOLTAGE

 CAPACITORS

SAM POWER SUPPLY

SUPER MOTOR OFFER

29275 An excellent opportunity purchase a high quality 45 watt multispeed nains (250 V ac) motor at well below 98 mm dia. it has a 10 mm spindle with flat 44 mm long. There are four taps giving the following speeds: $1300 \quad 1030 \quad 900$ o 650 RPM. offering a maximum torque of $1.4 \mathrm{~kg} / \mathrm{cm}$ A 1.5 uF 500 V running capacitor s suppolied. Weight 2.1 kg .

> ouv PRRICE $:\{2.95$

12V AND MAINS FANS

23855 Smallest fan we've seenl $42 \times 42 \mathrm{~mm}$ by just 10 mm thick. Made by Nitev. model TA150DC. Rated 12V DC O11AONLY £2.00

X6015 Papst (mostly) 612L 60x60×25mm 12V DC (6.15V) 0.7 W fans. List is f:27.47

ONLY £2.00
Z5730 Exequip $120 \times 120 \times 38 \mathrm{~mm}$. 230V ac. mostly by Papst. Good clean condition

ONLY £3.95

SPECIAL OFFER ON

SCART LEADS

CSL20 Al pins connected 1.5 m
long $£ 200$ each. $100+£ 1.25 .250+$ long $£ 2$
£ 1.00

TRANSFORMERS

25874 Great value on this 60 watt mains rransformer, suitable for PCB mounting or 2 A and 16 V 2 A There are also two low current windings - 5 V 50 mA and 38 V 50 mA Overall size $64 \times 53 \times 65 \mathrm{~mm}$
Only $\mathbf{£ 2 . 5 0}$ or a box of $\mathbf{2 0}$ for just $£ 35.00$

Phone Nos: SALES 01703236363 Technical 325999 Accounts 231003 Fax (All depts) 236307 FaxOnDemand 236315* To obtain latest lists, info etc just dial 01703236315 from any fax and follow instructions. Single prices in this advert include VAT; Quantity prices don't. P\&'P £3 per order (9.50 next day). Min credit card \&12. Official
CREENWIED
 invoice charge $£ 15$, payment accepted by
cheque, PO, cash, book tokens, Switch, Access, Visa, Connect. Cur stores (over 10,000 sq i) have enormous stocks. We are

27D Park Road Southampton SO15 3UQ

AND MODULATOR

29111 Never heard of the SAM Coupe computer? Well, the holding company SAMCO went bust. and now someone is trying to resurrect it - but the liquidators were anxious to turn piles of stock into cash so we purchased all remaining stocks of the Astec made PSUs and can offer them at an amazing pricel Inside the $170 \times 150 \times 70 \mathrm{~mm}$ grey and black vented case is linear power supply (240 V ac in: 5 V 2 A \& 12 V O.1A out). PLUS a UM 1286 UHF colour IV and sound modulator. There are three leads: 2.2 m phono to a co-ax. 2 m mains and 1.9 m output lead fitted with a 6 pin DIN plug.

LAMPHOLDERS

Z5960 Superb quality ES spotight lampholder in mushroom by Erco. that can be twisted to any angle. complete with universal bracket for screwing to wall or attaching to lighting bar Ideal for shop or showroom. Max 60W 63 mm dia $25+£ 2.00$

GRAPHICS CARD

$\times 6047$ VGA/CGA 8 bit video card for PC computers. Comes with 1 Mb memory, enabling 256 colours 9 pin D plug and skt Uses HD6348P8. List price $\mathbf{8 5 5 . 0 0 1}$

SPEAKER CABLE

$C D-R O M N S$

USDOO7 The uttimate sound collection consisting of the best sound players, sound effects. voices. music chps and orignal music scores. Moore mods, 100 vocs 2000 mid and 1000 wavs Push your sound card to the limit!

Ef19.95

USD005 World of Pimups. More than 2000 high quality hot pictures of the sexiest and most beautiful women of the worid. Tools for converting. editing and wate!!

519.95

Adult sofiware also available on request (on a separate list to over 18 s only)

PLAGIARISING FOX

Several times when travelling abroad I have read my own articles, reprinted in far off lands, without permission and without any extra payment. Often British newspapers and glossy mags will take the gut core of an article, and re-use it without cash or crëdit. One British paper even had the cheek to refer a reader's enquiry to me.

On one glorious occasion an Indian newspaper got itself sued for stealing an article l'd written. I didn't sue. Neither did the British magazine from which it had been stolen. Someone mentioned in the stolen article sued, claiming that they had been libelled by the words the paper had stolen!

It is easy to recognise plagiarism of words. The issue then becomes one of whether it is copyright theft to steal the substance of an article and dress it up with different words. In most cases the plagiarist has a free run.

PICTURE PIRACY

Now consider the case of a photographer or picture library that puts pictures on a CD-ROM as digital code and sends the disc out to someone who is paying to publish them once. Or perhaps the pictures go down a phone line to a publisher in a far off land. The same issues arise when a movie maker sends digitally coded films down a line to a subscriber who has paid for one viewing or one use.

In each case there is nothing to stop the person who has paid for one use, copying the code, re-using it or selling it to someone else.

With a feature movie, and famous stars, it is easy to prove that someone has pirated the material. Arnie looks like Arnie, whatever the pictorial context. But scenic movie material is much harder to identify, especially if the pirate has cut out a few sequences and grafted them into a different context, to save on location shoot expenses. Proving piracy of a still photograph is even harder. The pirate can crop and change the size and shape of the picture.

As more and more picture material is distributed as digital code, this problem can only get worse.

FBI INTERVENES

One solution may be a system called FBI, developed by a British company, MOR of Sutton in Surrey. Fingerprinted Bitmapped Identification buries a digitally encoded fingerprint inside any photographic image when it is stored in a computer or on a CD-ROM. The fingerprint is a string of letters, for instance someone's name or password, and there is no visible effect on the picture (except for black and white monochrome images, if they are very much enlarged).

The FBI software scans the image to bury the fingerprint and then at a later
date scans it to recognise the fingerprint. If the image has been manipulated the fingerprint shows breaks in the text string. The fingerprint also shows breaks if the image has been cropped.

FBI withstands conversion from one computer file format to another. It also survives copying any number of times.

If an A-4 picture of a tiger is converted into a 30 megabyte image file, and the file fingerprinted, then even taking the eye out of the tiger will still show up on print analysis.

VIDEO VALIDATION

Early demonstrations of the software (at a seminar on CD-ROM piracy held in London recently) show that FBI works. Full trials begin this summer. Especially interesting is the claim that the same technique can be used to insert fingerprints into moving video material. It can also be used to fingerprint material sent down telephone lines, e.g. on the Internet.

Once inserted, the fingerprint cannot be stripped out, or masked, without damaging the picture. So if copyright owners mark their images, they can subsequently prove the true origin. This could help photo libraries which would like to distribute digital images by disc or line to magazines round the world, but fear their pictures will then be manipulated to disguise origin and avoid payment of copyright fees.

I enclose payment of $\mathbf{£}$............. (cheque/PO in $£$ sterling only),

Signature.
Card Ex. Date
Please supply name and address of cardholder if different from the subscription address shown below. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Name
Address

MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digítal \& Mixed Circuits

 Electronics Workbench ${ }^{*}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.
Design and Verify Circuits... Fast!

 Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if scenarios and fine tune your designs painlessly

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real world analogg and digital models are included free with Electronics Workbench. And, if you need more, an addlitional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.
Electronics Workbench ${ }^{\text {TM }}$
The electronic's lab in a computer ${ }^{\text {тм }}$

Order Now! Just £199* 44-(0)1203-233-216 R9 Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210

E-mail: rme@cityscape.co.uk

Shipping charges UK $£ 5.99$. All prices are plus VaT All trade marks are the property of their respective owners Electronics Workbench is a trademark of Interactive Image Technologies Ltd.. Toronto, Canada.

- 30 Day money-back guarantee

WHETHER ELECTRONICS IS YOUR HOBEY OR YOUR LIVELIHOOD . . .
 YOU NEED THE MODERN ELECTRONICS MANUAL and the ELECTRONICS SERVICE MANUAL

THE MODERN ELECTRONICS MANUAL

EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The essential reference work

- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- Regular Supplements
- News of developments
- Sturdy ring-binder
- Projects to build
- Detailed assembly instructions
- Ready-to-transfer PCBs
- Full components checklists
- Extensive data tables
- Detailed supply information
- Professionally written

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:
BASIC PRINCIPLES: Symbols, components and their characteristics, active and passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, analogue electronics, physics for electronics.
CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc.

REPAIRS AND MAINTENANCE: Basic circuit operation for radio, television, audio/hi-fi, telephones, computers.
ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.
The Manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Revised Edition of Baslc Work: Now contains over 1,000 pages of information.
Regular Supplements: Approximately 160-page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Prlce of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent Supplement free).

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge).

ELECTRONICS SERVICE MANUAL

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT:

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid. UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Logic Gates, Computers, Microprocessors, Valves and Manufacturers' Data, etc.
PRACTICAL SKILLS: Learn how to Identify Electronic Components, Avoid Static Hazards, Assemble a Toolkit, Set Up a Workshop, Carry Out Soldering and Wiring, Remove and Replace Components.
TEST EQUIPMENT: How to Choose and Use Test Equipment, and Get the Most out of your Multimeter and Oscilloscope, etc.
SERVICING TECHNIQUES: The regular Supplements will include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.
TECHNICAL NOTES: Commencing with the IBM PC, PC-XT, PC-AT, this section and the regular Supplements will deal with a very wide range of specific types of equipment.
REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements will include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc

The essential work for servicing and repairing.

- Easy-to-use format
- Clear and simple layout
- Regular Supplements
- Sturdy ring binder
- Vital safety precautions
- Troubleshooting techniques
- Fundamental principles
- Active and passive components
- Choosing and using test equipment
- Professionally written
- Servicing techniques
- Reference data

ELECTRONICS SERVICE MANUAL

TOTALLY NEW Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA.
Regular Supplements: Approximately 160-page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$).
Prlce of the Baslc Work: $£ 39.95+£ 5.50$ p\&p.

> ORDER BOTH MANUALS TOGETHER AND SAVE OVER \&15!
> A mass of of well-organised and clearly explained information is brought to you by expert editorial teams whose combined experience ensure the widest coverage Regular Supplements to these unique publications, each around 160 pages, keep you abreast of the latest technology

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these Manuals are living works - continuously extended with new material. Supplements are sent to you approximately every two to three months. Each Supplement contains around 160 pages - all for only $£ 23.50+$
£2.50 p\&p. You can of course return any Supplement (within ten days) which you feel is superfluous to your needs.

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and popular, up to date, features
in our Supplements. Our unique system is based on readers requests for new information. Through this service you are able to let us know exactly what information you require in your Manuals. You can also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals

The schematic drawing module of CADPAK, ISIS Illustrator, enables you to create circuit diagrams like the ones in the magazines.

- Runs under Windows 3.1 making full use of Windows features such as on-line help.
- Full control of appearance including line widths, fill styles, fonts, colours.
- Automatic wire routing \& dot placement.
- Fully automatic annotator.
- Complete with device and comprehensive package libraries for both through hole and SMT parts.
- Advanced route editing allows deletion or modification of any section of track.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gerber viewer.
- Exports diagrams to other applications via the clipboard.
- CADPAK is also available for DOS.

CADPAK FOR WINDOWS £ 149
CADPAK FOR DOS
PROPAK has all of the features in CADPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionality for all but the most demanding applications.

PROPAK's schematic drawing editor ISIS ILLUSTRATOR+ includes even more features than ISIS ILLUSTRATOR. PROPAK's 32-bit PCB design tool, ARES for Windows, is our most powerful and easy to use yet.

- Multi-sheet and hierarchical designs.
- Netlist link between modules guarentees consistency between schematic and PCB.
- Netlists are also compatible with SPICE-AGE and most other electronics CAD packages.
- Generates a full bill of materials.
- ASCII data import facility.
- Electrical rules and connectivity checkers.
- Ratsnest display with automatic update during placement and routing.
- Multi-strategy autorouter gives high completion rates.
- Power plane generator creates ground planes with ease.
- PROPAK is also available for DOS.

PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS £ 395

Call or fax us today for a demo pack. Please state whether you would like a DOS or Windows pack.

Prices exclude postage ($£ 5$ for UK) and VAT. ISIS ILLUSTRATOR and ARES for Windows are also available separately. All manufacturers trademarks acknowledged.

eyerybay

With PRACTICAL

ELEBTRONICS

BACK ISSUES
We can supply back issues of EPE by post, most issues from the past five years are available. An index for each year is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

HEB. 94

PROJECTS - Whistle Controlled Light Switch - Reviving the Valve Sound (rebuilding the Quad II power amp) Introduction to Microcontrollers - Timeout Battery To Mains Inverter and Uninterruptable Power Supply, Part 3 - Multi-Purpose Audio System, Part 5 .
FEATURES - Calculation Corner, Part 2 Safety First, Part 3 - European International Audio \& Video Fair.

HARCHYg4

PROJECTS • Smart-Key Immobiliser Audio/R.F. Monitor - CCD TV Camera, Part 1 - Visual Doorbell - Three-Phase Generator. FEATURES - Safety First, Part 4 - Calculation Corner, Part 3 - Free Wall Chart - Electronics Formulae 1

APRIE Y4 Photestats Dolly (see below PROJECTS - MOSFET Variable Bench Power Supply EPE Soundac PC sound output board - CCD TV Camera, Part 2/Frame Grab - Impulse Clock Master Unit • Telephone Ring Detector.
FEATURES - Best of British, Part 1 Calculation Corner, Part 4 - Electronics Workbench Review - Free Wall Chart Electronics Formulae 2.

WIAY 94

PROJECTS - Simple TENS Unit (transcutaneous pain relief) Capacitance/Inductance Meter - L.E.D. Matrix Message Display, Part 1 - Stereo Noise Gate Dual Stepping Motor Driver for PCs.
FEATURES - Calculation Comer, Part 5 Best of British, Part 2.

TUNE 94
PROJECTS - Microcontroller P.I. Treasure Hunter - Digital Water Meter - Microprocessor Smart Switch - Advanced TENS Unit (transcutaneous pain relief) - L.E.D. Matrix Message Display, Part 2.
FEATURES - Best of British, Part 3 - Calculation Corner, Part 6.

TULY M4

PROJECTS • Voxbox Voice Recording Board - Simple NiCad Charger - Watering Wizard (automatic garden watering) - Pocket Print Timer - Stereo HiFi Controller, Part 1
FEATURES - Best of British, Part 4 - Calculation Corner, Part 7.

AUG. 94

PROJECTS - Experimental Noise Cancelling Unit - Dancing Fountains, Part 1 - ChargedUp (PC battery tip) - 6802 Development Board - TV Camera Update - Stereo HiFi Controlier, Part 2.
FEATURES - Calculation Eorner, Part 8 Best of British, Part 5 - l'll Be Seeing You (multimedia communications)

SEPY. 94

PROJECTS - Protector Plus Car Alarm Greenhouse Watering System - Experimental Seismograph, Part 1 - Three-Channel Lamp Controller • Dancing Fountains, Part 2.
FEATURES - Calculation Corner, Part 9 The Invisible Force (magnetic force).

DCT. 94

PROJECTS • Digilogue Clock Visual/Audio Guitar Tuner - Hobby Power Supply - Audio Auxiplexer - Experimental Seismograph, Part 2.
FEATURES - Electronics from the Ground Up, Part 1 with Free PC Software \bullet Calculation Corner, Part 10.
NOV. 94 Photostats Only (see below) PROJECTS - $1000 \mathrm{~V} / 500 \mathrm{~V}$ Insulation Tester - Video Modules, Part 1 (Simple Fader, Improved Fader, Video Enhancer) - Active Guitar Tone Control - Power Controller • TV Off-er. FEATURES - Electronics from the Ground Up, Part $2 \bullet$ Consumer Electronics Show.

PROJECTS - Spacewriter Wand - EPE Fruit Machine - Universal Digital Code Lock - Video Modules, Part 2 (Horizontal Wiper, Vertical Wiper, Audio Mixer) - Rodent Repeller.
FEATURES - Electronics from the Ground Up, Part 3 - Embedded Controllers • Index for Volume 23

volum. 915

PROJECTS - Magnetic Field D̄etector Moving Display Metronome - Model Railway Track Cleaner - Beating the Christmas Lights EPE Fruit Machine, Part 2 Video Modules, EPE Fruit Machine, Part 2 Video Modules,
Part 3 (Dynamic Noise Limiter, System Mains Power Supply).
FEATURES - Electronics from the Ground Up, Part 4 - Electromagnetic Compatibility • Checking Transistors.

FEb. 95
PROJECTS - 12V 35W PA Amplifier -Foot-Operated Drill Controller - The Ultimate Screen Saver - MIDI Pedal Board - Model Railway Signals.
FEATURES - Electronics from the Ground Up, Part 5 - Transformerless Power Supplies Quickroute 3.0 Review.

MARCH'95
PROJECTS - Multi-Purpose Thermostat Name of the Game-1 Counterspell - Sound Activated Switch - Audio Amplifier - Light Beam Communicator.
FEATURES - Electronics from the Ground Up, Part 6 - Understanding PIC Microcontrollers - Visio Graphics Software Review. FREE Multi-Project PCB with this issue.
APRIL 95
PROJECTS - National Lottery Predictor - Auto-Battery Charger - Light-Activated Switch - Switch On/Off Timer - Continuity Tester - Name of the Game- 2 Counterspin.
FEATURES Electronics from the Ground Up, Part 7 - Circuit Surgery - The Hard Cell (Mobile Telephones)

MAY E5

PROJECTS - PIC-DATS-1 (PIC Development and Training System) - R.F. Signal Generator - 1 - M|DI Pedal - Club Vote Totaliser - Name of the Game-3, On Your Marks and G ames Timer.
FEATURES - Electronics from the Ground Up, Part 8 - Las Vegas Show Report.

TUNE 95

PROJECTS - PIC-DATS-2 (PIC controlled 4-Channel Light Chaser) - EPE HiFi Valve Amplifier - 1 - R.F. Signal Generator - 2 - AA to PP3 Converter - Name of the Game - 4 Star-Struck!, Six-Shot Light Zapper, Wander Wands.
FEATURES - Electronics from the Ground Up, Part 9 - Smart Cards

BACK ISSUES ONLY $£ 2.50$ each inc. UK p\&p.
 Overseas prices $£ 3.10$ each surface mail, $£ 4.10$ each airmail

We can also supply the following issues from earlier years: 1989 (except March, June and Nov), 1990 (except March), 1991 (except Aug., Sept. and Nov.), 1992 (except April and Dec.), 1993 (except Jan., Feb. and March), 1994 (except April and Nov.). Please note we are not able to supply copies (or 'stats of articles) of Practical Electronics prior to the merger of the two magazines in November 1992.
Where we do not have an issue a photostat of any one anticle or one part of a series can be provided at the same price.
 Send back issues dated Send photostats of (article title and issue date) Send copies of last five years indexes ($£ 2.50$ for five inc. $p \& p$ - Overseas $£ 3.10$ surface, $£ 4.10$ airmail)
Name
Address
\square I enclose cheque/P.O./bank draft to the value of f.
I Please charge my Visa/Mastercard f .
Card No.
Card Expiry Date
Note: Minimum order for credit cards 5 . Please supply name and address of cardholder if different from that shown above SEND TO: Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202881749 . Fax: 01202841692 .

M7/95

RAMP GENERATOR

NEIL JOHNSON BEng(Hons) AMIEE $\overline{\underline{\underline{\underline{~}}}}$ Part $1 \equiv$

A professional quality ramp generator aimed at the intermediate to advanced constructor.

THIS Ramp Generator project evolved from a need to expand and improve the author's range of test equipment with a versatile unit which could be used for a wide range of tasks. Some suggestions as to what the Ramp Generator can be used for are covered later; just to whet your appetite: oscilloscope calibrator, plotter timebase, curve tracer, spectrum analyser, etc.

DVERVIEW

Let us begin by looking at the system block diagram, shown in Fig. 1. The heart of the Ramp Generator is a precision master crystal oscillator module whose output is 16.384 MHz , within $\pm 0.01 \%$; this level of precision is easily attainable from off-the-shelf crystal modules.
The next stage is a presettable divider. This divides the master frequency $(16.384 \mathrm{MHz})$ by four to get 4.096 MHz , and then sixteen further division stages of one, two, five and their decades to produce the clock signal for the rest of the Ramp Generator.
The Gate and Trigger block, together with External Trigger Input and Output, provides the main ramp controls. The main function of this block is to gate the clock signal to the next stage. Control functions include glitch-free pause and single sweep triggering - both requiring devious circuit design!

The 12-bit counter and digital-toanalogue converter (DAC) are responsible for converting the stream of digital pulses into a smooth ramping analogue waveform. The gated clock signal increments, or decrements, the counter, with the resulting 12 -bit binary value being converted to an analogue voltage by the

Fig. 1. System block diagram for the Ramp Generator.

DAC. Being 12 -bit there are 4096 steps for one complete cycle, so the required clock frequency for a ramp of 1 ms duration is 4.096 MHz .

Following the DAC are the Level, Offset and Output Buffering circuits. The summing junction is an op.amp, combining a proportion of the converter output signal with a variable constant.d.c. offset voltage. The buffer amplifier provides plenty of signal for the ramp generator to drive a standard 50 ohm load

Finally, running the whole show is the Power Supply Unit (PSU), transforming 240 V a.c. to clean, regulated +5 V and $\pm 15 \mathrm{~V}$ d.c.

CIRCUIT DESCRIPTION

Having taken a broad look at the Ramp Generator let's take a deeper look inside those blocks.

The Ramp Generator circuits are split into four main sections: Clock and Divider, Gate/Trigger and Counter, Converter and Buffer, and PSU.
The circuit diagram for the Clock and Divider is shown in Fig. 2. It follows a clockwise path starting at the top left with 1C32, a readily-available crystal oscillator module. It is worth noting here the merits of these modules: they offer crystal controlled TTL-compatible clock signals in a sealed metal package with a standard 14 pin d.i.l. layout.

Fig. 2. Circuit diagram for the Clock and Divider sub-section of the Ramp Generator.

Some of you may be thinking "Cheat" but consider: this module saves board space, around twenty holes, several other components and considerable design time, compared to building a crystal oscillator from individual components. Surely a better engineering solution?
The output of IC32 is divided by IClb and ICla down to 4.096 MHz , the first clock frequency. This feeds the start of the main divider chain, IC2 to IC9a, to provide the other 15 clock frequencies listed in Table 1.
Frequency selection is made by the 8 input multiplexers IC10 and IC11. These

TABLE 1

Clock Frequency	Ramp Period
$4 \cdot 096 \mathrm{MHz}$	1 ms
$2 \cdot 048 \mathrm{MHz}$	2 ms
$819 \cdot 2 \mathrm{kHz}$	5 ms
$409 \cdot 6 \mathrm{kHz}$	10 ms
$204 \cdot 8 \mathrm{kHz}$	20 ms
81.92 kHz	50 ms
40.96 kHz	100 ms
20.48 kHz	200 ms
$8 \cdot 192 \mathrm{kHz}$	500 ms
$4 \cdot 096 \mathrm{kHz}$	1 s
$2 \cdot 048 \mathrm{kHz}$	2 s
$819 \cdot 2 \mathrm{~Hz}$	5 s
$409 \cdot 6 \mathrm{~Hz}$	10 s
$204 \cdot 8 \mathrm{~Hz}$	20 s
$81 \cdot 92 \mathrm{~Hz}$	50 s
$40 \cdot 96 \mathrm{~Hz}$	100 s

are controlled by hexadecimal switch S1 via inverter IC12a, with IC10 selecting the first eight frequencies and IC11 the remainder. This double-selection system rotary switch and multiplexers - may seem a bit extravagant (instead of a simple rotary switch alone) but it has at least two advantages: IC10 and IC11 can be placed on the circuit board where appropriate, and, more importantly, critical signals are kept to relatively short circuit paths, well away from the front panel.
The outputs of the two multiplexers are combined by OR gate IC13c before sending on to the next stage.

GATE/TRIGGER AND COUNTER

Looking at the Gate/Trigger and Counter circuit diagram in Fig. 3, the clock signal first passes through AND gate IC19b, the Pause gate. This gate is controlled by switch S2, flip-flop IC9b and friends. A $\mathrm{J}-\mathrm{K}$ flip-flop is used here for three reasons: being clocked from the input to the gate prevents any spurious runt pulses getting through; it provides a simple debounce circuit for switch S2 at no extra cost; and offers an extra output pin to operate an indicator circuit, based around transistor TR1 and I.e.d. D1.
The second AND gate, IC19a, is the main control gate. It is operated by the trigger circuitry, or can be held permanently open by switch S5 - with S5 open, IC19d pin 13 is pulled low through
resistor R10 and, via inverter IC12b, resulting in IC19a pin 1 being set high.
The trigger circuitry is based around an SR flip-flop (AND gates IC15b and IC15c). In the reset state, ICl9d pin 12 is set high and, together with switch S 5 being closed, opens the clock gate and clears the counters (more on this later). The reset input is connected to the output of a rising-edge detector based on inverters IC14a, IC14b, IC14c and NAND gate ICl5d.
This edge detector works on the finite propagation delay of the inverters, as shown by the timing diagram in Fig. 4. The input to the detector is a combination of the Reset push-switch S3 and the output of the zero-detector (yet to be described).
Setting the flip-flop is a bit more complicated. This time a falling-edge detector is used, consisting of inverters IC14d, IC14e, IC14f and OR gate IC13d. The two trigger inputs, manual and external, are combined by AND gate IC19c. The manual trigger, switch S4, is properly debounced by inverters IC12d, IC12e, and resistor R16, in order to avoid any spurious triggering, especially on the faster sweep times. The External Trigger Input is derived from a later part in the circuit.
Next along is the 12 -bit counter, made up of three 4 -bit counters in series - IC20, IC21 and IC22. Direction of count - up or down - is controlled by switch S6, the Ramp Mode control. For optimum performance the counters are operated synchronously from the common clock signal, to ensure that all 12 data bits

Fig. 3. Gate/Trigger and Counter circuit diagram details.
change at the same time. The three counters are linked together by NAND gates IC17c and IC17d.

Resetting all the counters to zero is accomplished with the Parallel Load function, loading a value of zero into all three counters at the same time. The 12 -bit output of the complete counter passes on to a zero detector, based on NOR gates IC16a, ICl6b, OR gate ICI3a, NAND gate ICI7b; and AND gates IC18a and IC18d. This circuit detects when all the counter outputs are zeroes, setting its own output, at IC18d
pin 11, high during this condition.
The "zero" signal is used for three purposes: to reset the trigger flip-flop via the path commencing with OR gate ICl 3 b ; to operate the Sweeping l.e.d. D2 via inverter IC12c and transistor TR2; and to provide the control signal for the External Trigger Output stage, accessed via inverter ICI7a and connector PL1.

Moving on to the next circuit section we jump via the 20 -way IDC connector PLI to the analogue circuit, whose details are shown in Fig. 5.

CONVERTERAND BLFFER

The first port of call in Fig. 5, is the DAC. This takes the 12 -bit digital data and converts it into an analogue output voltage, which can be calculated from the following equation:

Vout $=-V_{\text {ref }} \times D / 4096$
where $\mathrm{V}_{\text {out }}=$ output voltage
$V_{\text {ref }}=$ reference voltage
$D=$ digital input code, 0 to 4095

Fig. 5. Circuit diagram for the Analogue portion of the Ramp Generator.

The reference voltage is provided by a precision +5 V reference device, IC24. Potentiometer VR1, the Level control, feeds a portion of the converter's output signal to the inverting input, pin 2 , of the summing amplifier based around op.amp IC25. A further signal to this input is provided by VR2, the Offset control. Resistors R20 and R21 set the maximum and minimum settings, while capacitors C26 and C27 filter out any unwanted noise. The Offset Null adjustment preset VR5 is provided should you decide not to include VR2.

The last stage of the main signal path is the output buffer. This is built around op.amp IC26, National Semiconductor's LM6181. This device is able to directly drive a 50 ohm terminated load up to 10 V peak without complaining, with a bandwidth extending up to 100 MHz . The buffered ramp waveform then reaches the outside world via connector SK2.
The External Trigger Output signal from the zero detector is buffered by IC27, all four AND gate sections being wired in parallel. The buffer output is

$t_{\text {PD }}=$ Propagation delay of inverter

Fig. 4. Rising edge detector timing diagram.
protected from short circuits by resistor R28 and is brought to the front panel via socket SK 1 .
The External Trigger Input circuit based around comparator IC28 is accessed via socket SK3, resistor R32 and diode D3. Zener diode D4 is the input limiter which starts to work above 5 V and handles input voltages up to 30 V - exceed this and resistor R32 will turn into a little black'n'crispy ex-resistor!

POWER SUPPLY UNIT

The Power Supply is a fairly simple transformer-rectifier-regulator linear unit. Its circuit diagram is shown in Fig. 6. Transformer T 1 reduces the mains voltage down to about 30 V a.c., rectified by bridge rectifier RECl to produce $\pm 20 \mathrm{~V}$ d.c. This is smoothed by capacitors C39 and C40 before being regulated at +15 V , -15 V and +5 V by IC 29 , IC30 and IC31, respectively. The positive supply smoothing capacitor, C39, has a larger capacity than C40 to provide smooth current for both +15 V and +5 V regulators. Poweron indication is provided byl.e.d. D5.
Supply decoupling is performed at a local level to each chip. Details are given in the respective circuit diagrams. In all cases the decoupling capacitors are physically located as close to the devices as possible

COMPONFVIS

Resistors

R1 to R4, R7, R8, R12; R13, R32

1k (9 off)
R5, R6, R10, R11, R15
R9, R14
R16, R28
R17 to R19
R21, R23, R24, R31 10k (5 off)
R22 33k
R25, R26 820 (2 off)
R27 47
R29, R30, R33, R34 1k5 (4 off)
All $0.5 \mathrm{~W} 5 \%$ carbon/metal film
Potentiometers

Semiconductors

D1	l.e.d. 5 mm yellow plus clip
D2	I.e.d. 5 mm green plus clip
D3	1 N4148 signal diode
D4	BZX79C4V7 4V7 Zener diode 500 mW
D5	l.e.d. 5 mm red plus clip
TR1, TR2	BC109 npm transistor (2 off)
IC1, IC3, IC6, IC9	74LS73 dual J-K flip-flop (4 off)
IC2, IC4, IC5, IC7,	
IC9	$74 \mathrm{LS90}$ decade counter (5 off)
IC10, IC11	74LS151 8-input multiplexer (2 off)
IC12, IC14	74LS04 hex inverter (2 off)
IC13	74 LS 32 quad 2 -input OR
IC15, IC17	74LS00 quad 2 -input NAND (2 off)
IC16	74LS260 dual 5 -input NOR
IC18, IC19	$74 \mathrm{LS08}$ quad 2 -input AND (2 off)
IC20 to IC22	74LS191 binary up/down counter (3 off)
IC23	AD7845 12 -bit digital to analogue converter
IC24	REF-02 +5 V precision voltage reference
IC25	AD711 single high speed op.amp
1 C 26	LM6181 single 100 kHz op.amp
IC27	74 HCT08 quad 2 -input AND
1 C 28	LM311 voltage comparator op amp
IC29	$7815+15 \mathrm{~V} 1$ A regulator
1 C 30	7915 -15V 1 A regulator
1C31	$7805+5 \mathrm{~V} 1 \mathrm{~A}$ regulator
IC32	16.384 MHz crystal oscillator module
REC1	W005 50V 1 A bridge rectifier

Miscellaneous

S1
hexdecimal rotary switch, with mounting bracket 2-pole changeover interlocking push-switch (5 off)
S2 to S6
s.p.s.t. 4A mains-rated latching push-switch, with mounting bracket
PL1, PL2
SK1 to SK3
SK4
T1 d.i.l. header plug and socket 20-way (2 off each) panel mounting BNC socket (3 off) panel mounting mains input connector mains transformer, $2 \times 15 \mathrm{~V} 1 \mathrm{~A}$ secondary windings, p.c.b. mounting
Printed circuit boards available from the EPE PCB Service, codes 944 (logic), 945 (analogue); 6-switch latching assembly bracket for S2 to S6; knob for S1 to S7 (7 off); knob for VR1, VR2 (2 off); s.p. push-make switch (optional -see text); 8-pin d.i,l. socket (4 off); 14-pin d.i.l. socket (18 off); 16 -pin d.i.I. socket (5 off); 20-pin d.i.I. socket; mica hardware for IC29 to IC31 (3 sets) plus silicone heatsink grease; panel mounting clips for I.e.d.s. (3 off); 20-way IDC connector socket (2 off); 20 -way IDC ribbon cable (15 cm minimum); metal case $290 \mathrm{~mm} \times 150 \mathrm{~mm} \times 260 \mathrm{~mm}$ ($\mathrm{L} \times \mathrm{H} \times \mathrm{W}$) type RS 581-082; aluminium sheet $2 \mathrm{~mm} \times 74 \mathrm{~mm} \times 30 \mathrm{~mm}$; cable; connecting wire; solder, etc.

Fig. 6. Power supply circuit diagram.

SAFETY ADVICE

Before discussing construction it is worth mentioning a couple of important points. As the Ramp Generator has its own built-in mains PSU, part of the construction process will involve mains wiring. ONLY ATTEMPT MAINS WIRING IF YOU KNOW WHAT YOU ARE DOING. IF YOU ARE UNSURE, GET THE UNIT CHECKED BY AN ELECTRICIAN BEFORE PLUGGING IT INTO THE MAINS.
You will also need access to workshop facilities for drilling the front and rear panels and making a bracket for the two panel potentiometers. If you are using someone else's workshop, or a workshop at work, school, college, etc., ask for permission first and never work alone - if there is an accident you may need to rely on someone else to help you.

BDARDS DETA/LS

The printed circuit board (p.c.b.) for the Ramp Generator Logic circuit is a double-sided board with plated-through-holes (PTH). The Analogue board is single-sided p.c.b. These boards are available from the EPE PCB Service, as a pair, code 944/945.

However, the full-size copper foil track layouts for the boards are too large to publish. Full-size photocopies of the layouts, though, and full size legend details for the recommended case, can be obtained FREE from the Editorial Office address.

Readers who use the ready-made Logic board, which is PTH, do not need to use additional through-board link pins. Readers making their own board, though, will need to insert and solder link pins at the points where tracks are taken from one side of the board to the other. There are 78 of these points. With non-PTH boards, it is essential that component leads are soldered on both sides of the board in order to link tracks where appropriate. The use of turned-pin di.i.l i.c. sockets in this application is vital.
Next Month: Construction of the Logic and Analogue boards, case details and final testing.

As the PRO but also includes *Advanced Schematic Capture (Busses, Power rails,etc) *Larger Schematic \& PCB Designs *Gerber file IMPORT for File Exchange *Extended libraries (CMOS,SMT,etc) *SPICE Export *SpiceAge DDE link.
*Prices exc/ude P+P and V.A.T. VISA/MasterCard Accepted *Network versions available.
POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

INTER FACE Robert Penfold

USING a personal computer as the basis for a weather monitoring system is quite fashionable amongst electronics and computer enthusiasts. It is possible to undertake most of the normal types of monitoring using a PC plus some home constructed sensors. In some cases the fully computerised method could be regarded as doing things the hard way. With something like rainfall measurement for example, using the traditional method of measurement and typing the data into the computer's data base is likely to be the simplest and most accurate method.
Measurements such as temperature and wind speed, where frequent readings are required and accurate electronic sensing is reasonably simple, are a different matter. The all-electronic method is a more attractive proposition. Temperature measurement using an LM35 sensor and an analogue-to-digital converter based on the ZN 448 E is quite easy, and has been covered in previous articles. For the amateur meteorologist the only problem is in obtaining a suitable temperature range for his or her purposes.

Scaling

The LM35CZ covers a range of 0 to 100 degrees Celcius, and the LM35DZ covers -40 to +110 degrees Celcius. Both devices have three terminals and a standard TO92 style plastic encapsulation. Leadout details are shown in Fig. 1 (which is a base view).
For both devices the output voltage is a straightforward $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, with no offset voltage to contend with. On the face of it, this matches up very well with the 10 millivolt resolution of the ZN 448 E .

Fig. 1. Pinouts for the LM35CZ/DZ.
In practice this is not really the case, because the maximum output voltage of the LM35DZ is only $1 \cdot 1$ volts, which compares with a full scale value of 2.55 volts for the ZN448E. Directly interfacing these two devices does not even give full seven bit resolution. In the current context, temperatures of more than about 40 degrees are of no interest. Even with the rather erratic weather we get in the UK these days, it seems unlikely that a temperature
of $40^{\circ} \mathrm{C}$ (104 degrees Fahrenheit) will be reached in the near future.

Amplifying the output from the LM35 gives a more restricted temperature coverage, but also provides much better resolution. Amplifying the output voltage by a factor of five gives a voltage change of $50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. When fed to the input of a ZN 448 E this gives a temperature range of 0 to $51^{\circ} \mathrm{C}$, and a resolution of 0.2 degrees Centigrade. This compares to a resolution of $1^{\circ} \mathrm{C}$ if no amplification is used.

Temperature
 Interface

The circuit for a simple temperature interface that covers a range of 0 to $51^{\circ} \mathrm{C}$ is shown in Fig. 2. Dual balanced 12 V supplies were used to power the prototype, but dual 5 V supplies should just about suffice. IC1 is the temperature sensor. 1 used an LM35DZ, but over this range of temperatures the LM35CZ should work just as well.
The output from

IC1 feeds into a non-inverting mode amplifier based on IC2. The closed loop voltage gain of the amplifier is set by resistors R1, R2, and preset VR1. The latter is adjusted to give a voltage gain of five times.
In practice, VR1 is given the correct setting by first subjecting the sensor to a temperature which is equal to about half to one hundred percent of the full scale value (i.e. about 20 to 51 degrees). In most cases the room temperature will be about 20 to 25 degrees Celcius, and this will suffice. An accurate thermometer is used to accurately measure the room temperature, and then VR1 is adjusted for the appropriate reading.

This interface can be used with the PC Analogue Input Port described in the April 1995 issue of EPE (Fig. 2 on page 317). Resistors R2, R3, R4, and VR1 are omitted from the analogue port, and the output of the temperature interface connects direct to pin 6 of IC1. The interface should work equally well with other analogue inputs that are based on a ZN 448 E series converter, or the earlier ZN427E, provided the output of the interface can be connected direct to the input pin of the converter chip.

Negative Thoughts

There is an obvious drawback to this temperature interface in that it does not handle negative temperatures. Even in the mild part of the UK where I live, the night-time air temperature occasionally dips below zero. Using an LM35DZ sensor it is possible to measure temperatures that go well below zero. However, negative temperatures produce negative output voltages from the LM35DZ, and the ZN488E cannot handle these.

Fig. 2. A temperature interface which covers a range of O to 51 degrees Celcius.

The solution to the problem is to provide a positive offset voltage to the output signal of the LM35DZ, so that negative output voltages are brought within the input voltage range of the ZN448E. Fig. 3 shows the circuit for a modified version of the temperature interface that can provide this offset voltage.
This is basically the same as before, with IC2 being used to amplify the output of IC1 by a factor of five. The difference is that the lower end of R2 is not connected to the 0 volt rail, but is instead connected to the output of a variable voltage source. This uses VR2 and R4 to provide the variable voltage, and IC3 to act as a buffer stage so that R2 is fed from a low impedance source. This prevents the offset circuit from significantly affecting the closed loop voltage gain of IC2.

IC3 provides a small negative output voltage. The voltages at IC2's inputs are maintained at the same potential by the standard negative feedback action. With the lower end of R2 taken negative, the output of IC2 has to go more positive in order to maintain this balance. The positive offset at the output of IC2 is equal to the voltage set on VR1 multiplied by the closed loop voltage gain of IC2. For example, a negative potential of

Fig. 3. An interface circuit which covers the range $-11^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
100 mV from VR2 will produce a positive offset of 500 mV at the output of IC2.
The circuit can handle a wide range of offset voltages, but an offset of 110 mV at IC2's output is a good choice. An output potential of -110 mV from the sensor then gives zero volts at the output of IC2. This provides a temperature range of $-11^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. In colder parts of the country it might be better to use an offset of 160 mV , which would give a temperature range of $-16^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Precision operational amplifiers are specified for IC2 and IC3, but as large voltage gains are not involved, most 741C compatible operational amplifiers will give good results in this circuit. The supply regulation is probably a more important factor, particularly the negative supply as this is used to provide the offset voltage. The circuit should work with dual 5 V supplies if the value of R1 is reduced to 100 k , and R4 is reduced to 39k. Ideally, VR1 and VR2 should both be multi-turn "trimpots".

Adjustment

Start with VRI at a roughly middle setting, and then subject the sensor to a low and accurately known temperature. This can be zero degrees provided by some iced water. Note though, that the sensor's leadouts must be electrically insulated from the water, or the sensor must be held so that the leadout wires are just clear of the liquid. VR2 is then adjusted for a reading of zero.
Next the sensor is subjected to a higher and accurately known temperature. This can simply be the room temperature. Give the sensor plenty of time to adjust to the change in temperature. Then adjust VRI for the correct reading. This whole process is repeated a few times until no further adjustment is required.

Software

The following GW BASIC or Q BASIC program reads the temperature sensor and prints the temperature on the screen:

10 REM GW BASIC TEMPERATURE PROGRAM
20 CLS
30 OUT \& $337 \mathrm{~A}, 1$
40 OUT \& $337 \mathrm{~A}, 0$
$50 \mathrm{X}=\mathrm{INP}(\& \mathrm{H} 379)$ AND 120
$60 \mathrm{X}=\mathrm{X} / 8$
70 OUT \&H37A, 4
$80 \mathrm{Y}=\mathrm{INP}(\& \mathrm{H} 379)$ AND 120
$90 Y=Y^{*} 2$
$100 Z=X+Y$
$110 Z=Z / 5$
$120 \mathrm{Z}=\mathrm{Z}-11$
130 PRINT Z " Degrees C."
140 FOR DELAY = 1 TO 20000
150 NEXT DELAY
100 A $\$=$ INKEY $\$$
170 IF LEN $($ A $\$)=1$ THEN END
180 CLS
190 GOTO 30
It is assumed that the temperature interface is used in conjunction with the printer port analogue interface circuit mentioned previously. Lines 30 to 100 read the port and place the returned value in variable Z. If the interface is used with a different analogue input port, these lines must be changed to suit the particular port used.
Line 110 divides the returned value by five, and line 120 then deducts 11 from this value. The 0 to 255 range of values from the converter is thus converted to the required range of -11 to +40 . If a temperature range of -16 to +35 degrees is required, 16 must be deducted at line 120. The temperature is printed on the screen at line 130, and after a delay the program is looped back to line 30 where another reading is taken. Lines 160 and 170 enable the program to be broken out of the loop and halted by pressing any character key.
This program can also be used with the temperature interface of Fig. 2, but line 120 should be omitted. The software will then cover the same 0 to 51 degree range as the hardware.

RING BINDERS FOR EPE

This ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place (see photo).

The binders are finished in hard wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.
The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add $£ 1$ postage for each binder after the initial $£ 3.50$ postage charge, (for overseas readers the postage is $£ 6.00$ each to everywhere except Australia and Papua New Guinea which costs $£ 10.50$ each).
Send your payment in £'s sterling cheque or PO (Overseas readers send £ sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202881749 . Fax: 01202841692 (We cannot reply to overseas queries or confirm orders by fax due to the high costs).
We also accept credit card payments. Mastercard (Access) or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholders address (if different to the delivery address).

Constructional Project

hich voltage CAPACITOR REFORMER

PAUL STENNING

In the name of economy and antiquity, revitalise the capacitors of ancient radio sets.

WHEN not designing magazine projects, the author enjoys repairing and restoring valve radios. Often these sets will previously have been stored for a few years in somebody's loft. Electrolytic capacitors within sets of this age are prone to deterioration if they are not used for some time. This normally results in low capacitance and high leakage current. It is not unknown for one of these components to explode if a set is powered up after being left unused for years.

The easy approach could be taken and all the electrolytics replaced by modern components. However, from an antiquecollector's point of view, this would be regarded as cheating. The correct way to go about antique restoration is to use as many of the original parts as possible. Additionally, even if antiquity is not a relevant factor, high voltage electrolytics are not cheap, so restoring the capacitors rather than replacing them has obvious cost benefits.

Be warned, though, that this capacitor reformer is intended to be used in a workshop situation, by persons who know what they are doing. Those who are familiar with working on valve equipment should be used to dealing with high voltages, and should therefore able to treat this unit with due respect.
This project is definitely not suitable for beginners.

DESIGNCONCEPT

This High Voltage Capacitor Reformer is designed for use with electrolytic capacitors rated at 350 V d.c. or greater. It is possible, though, for components rated at lower voltages $(275 \mathrm{~V}$ or greater) to be handled with the addition of an external resistor or Zener diode, as described later.

The unit applies a high d.c. voltage (340 V) via a current limiting resistor to the elderly capacitor. This causes the chemical composition of the component to reform - thereby gradually restoring normal operation. The limited current prevents the component from getting too hot (minimising the risk of explosion or leakage), and allows the reforming to take place gradually. A small meter shows the actual voltage across the capacitor being

reformed, thereby indicating its state of health.
The time taken to reform a capacitor depends on its initial state. In most cases an hour or two will be sufficient, but some components will need to be left connected to the unit overnight. If a capacitor is not reformed within about ten hours, it never will be.

Obviously the unit is not guaranteed to work in every case. Of ten capacitors reformed so far using the prototype, nine were successful. The tenth remained almost short-circuit, and would probably have exploded if the radio set had been powered up. Even though the unit didn't fix the tenth capacitor, it did prevent a most horrible mess!

Fig. 1. Circuit diagram for the heart of the HV Capacitor Reformer.

CIRCUIT
 OPERATION

The circuit diagram for the heart of the Capacitor Reformer is shown in Fig.I. Diode Dl acts as a half-wave rectifier allowing capacitor Cl to charge to the mains peak voltage ($240 \mathrm{~V} \times 1 \cdot 414=340 \mathrm{~V}$ d.c.) with no load present. On load, there will be some ripple present as the current drawn increases, but this seems to help the reforming operation.

Resistor R1 limits the surge current at switch-on, when Cl is in a discharged condition. A wirewound resistor is used because carbon and metal film resistors are prone to failure when subjected to surges (as the author found out the hard way!).
A discharge path for Cl and the capacitor being reformed when the unit is switched off is provided by resistor R2. It should be rated at 0.5 W or greater, and must be capable of operating at 350 V d.c.
Resistors R3 and R4 limit the current through the capacitor being reformed. Switch Sl allows them to be connected either in series or parallel, giving a resistance of either 20 kilohms or 5 kilohms. These resistors should be rated at a minimum of 4 W . They will get quite hot in the early stages of reforming when they have to drop a higher voltage.
The unit should be switched to the $20 k$ setting initially, and then switched over to $5 k$ once the voltage has risen to about 80 per cent of maximum. As the voltage across the capacitor rises, so the voltage across the resistors reduces, as does the current through them. The $5 k$ setting is intended to compensate for this. The use of a constant current circuit in this application did not seem justified.
Meter M1 indicates the voltage across the capacitor being reformed. It is a small $100 \mu \mathrm{~A}$ edge meter, resistor RS and preset VR1 being arranged to give a full scale reading at about 350 V . Alternatively, the normal workshop multimeter could be used instead of an integral meter.
The voltage across the reforming capacitor gives a fair indication of its state of health, since it will rise as the leakage current drops. The resistor values can be changed if a different integral meter is used. Suggested values for other common meter movements are given in Table 1.

Table 1. Scaling component values for						
different meters.			(R5 \quad VRI	Meter Current	2 M 7	1 M
:---	:---	:---				
(F.S.D.)	1 M 2	470 k				
$100 \mu \mathrm{~A}$	20 k	220 k				
$200 \mu \mathrm{~A}$ or $250 \mu \mathrm{~A}$	100 k					
$500 \mu \mathrm{~A}$	270 k	1 mA				

SAFETY
 INTERFACE

With his own unit, the author chose not to isolate the circuit from the mains since he felt that it inherently produces dangerous high voltages. It is strongly recommended, however, that the circuit should be connected to the mains via the circuit shown in Fig. 2.
The circuit of Fig. 2 provides isolation from the mains by transformer T1. This has a $1: 1$ winding, so a 240 V a.c. input will result in a 240 V a.c. output. Since the current drawn by the reformer circuit is only small, a 25 VA transformer, delivering a maximum of about 100 mA , will probably suffice. (A small transformer may buzz

Fig. 3. Component layout and wiring diagram for the HV Capacitor Reformer complete with safety interface. The p.c.b. copper foil track master is shown full size.
when the unit is loaded, due to the half-wave rectification).

If an isolation transformer is not used, the mains neutral must go to the circuit's negative (N) power rail as shown on Fig. 1.

It is also strongly recommended that an RCCB (Residual Current Circuit Breaker) device is also used between the mains supply and the unit.

CONSTRUCTION

Take great care with the construction of this unit. Mistakes on mains powered equipment can be potentially lethal.
The components of the main part of the unit are mounted on a small single-sided p.c.b. (printed circuit board), whose constructional and wiring details are shown in Fig.3. This board is available from the EPE PCB Service, code 943.

Stripboard is not a suitable substitute for the recommended p.c.b. since the gaps between the tracks on stripboard are too close to withstand high voltages.

Resistors R3 and R4 will get warm in use, and should be mounted about 4 mm above the p.c.b. Drill out a hole below preset VR1 so that it can be adjusted from below the board. Switch Sl should be raised above the board by soldering short lengths of thick tinned copper wire to its pins. Do not solder this until you have positioned the board in the case.

BOXING UP

The prototype was fitted in a small diecast box. Such boxes are cheap and durable, making them ideal for this type of application. A plastic case should not be

Fig. 2. Safety interface circuit diagram.
used because of the heat generated by resistors R3 and R4, and because it cannot be earthed. The required dimensions of the box will depend upon the size of the transformer selected. (The photograph of the interior of the author's prototype unit excludes a transformer.)
A rectangular hole is required at one end of the box lid for the meter. This may be cut by drilling a series of holes then breaking out the centre part and filing the edges smooth. Diecast aluminum is very easy to work with. The task can be done just using a simple hand drill and a small flat file. A vice or similar can be used to hold thé case in position and make the job easier.
The p.c.b. is mounted in the box via the bush of switch SI. Once the switch is mounted, move the board by bending the switch wires so that the edges are at least 3 mm from the case. Now solder the switch wires to the board and check that this holds the board fairly firmly.
Two 4 mm sockets are used for the output connectors. These should be fitted towards the bottom of the box so that they do not foul on the meter. A hole at the other end is used for the mains input - again make sure this does not foul on anything. Use a cable clamp to prevent damage to the cable and to secure it in position. Drill a small hole near the mains input, and screw a solder tag to it for Earthing purposes.
Mark the positions of the toggle switch with " 20 k " and " 5 k " in the appropriate places. It is advisable to also mark the unit with "DANGER HIGH VOLTAGE" or something similar, in case it finds its way into the hands of someone who doesn't know what it is.
You will also need to make up two short test leads (about 300 mm long) with 4 mm plugs on one end and small insulated crocodile clips on the other end. To avoid polarity confusion, use red wire and connectors for one and black for the other.

TESTING

Screw the case together. Set a multimeter on its lowest resistance range and check for a direct connection between the mains plug Earth pin and the case.
Now switch to the highest resistance range and measure between the earth pin of the plug and the following points: mains plug live, mains plug neutral, positive output terminal, and negative output terminal. In all cases the meter should read open circuit.
Remove the case lid again. Set the multimeter to a suitable resistance range, and connect it between the positive end of capacitor Cl and the positive output terminal. Switch Sl between its two positions to produce readings of 20 k and 5 k . Check that the case markings are the right way round!
Set VRI to the mid-way position. Set the multimeter to a high d.c. voltage range and connect it to the output terminals. Connect the unit to the mains via an RCCB as previously recommended, and switch on. The multimeter should read about 340 V d.c. (depending on the actual value of the mains voltage), and meter M1 should indicate somewhere near full scale.
Adjust VR1 to give exactly full scale on meter M1. Ideally, you should switch the unit off and wait for capacitor C1 to discharge before making any adjustments. BE EXTREMELY CAREFUL if you (inadvisably!) choose to adjust VRI with an insulated tool when the mains power supply is switched on.

Disconnect the multimeter. Switch the unit to $20 k$ and momentarily short circuit the output. The meter should read zero, and return immediately to full scale when the short circuit is removed. Switch the unit off, and the meter reading should slowly drop to zero. This should take about 15 seconds.
For the next test connect a 22 k resistor, rated at 4 W or greater, across the output. switch the unit to $20 k$ and switch on. Assuming the meter is scaled zero to ten, it should read about four or five. Switch to $5 k$ and the reading should rise to about eight.
If the unit has passed the above tests, then it is working satisfactorily. This level of testing may seem excessive for a simple circuit, but with high voltages it's better to be safe than sorry.

INUSE

Regardless of what the previous owner of an old set may have told you about its condition, ideally its capacitors should be removed and tested one at a time.

Make sure the capacitor is rated at 350 V or higher. Connect the unit to the capacitor, making sure you have the polarity correct. If there is more than one capacitor in a single can, each should be tested individually. You will need to use a capacitor mounting clip, a metal Terry clip, Jubilee clip or something similar, to connect the unit to the case of the capacitor if this is the only negative terminal. Place the capacitor on an insulated surface, and do not allow it to come into contact with anything, including the case of the Reformer.
Set switch S1 to $20 k$ and switch on the unit. DO NOT TOUCH THE CAPACITOR OR OUTPUT LEADS WHEN THE UNIT IS SWITCHED ON. Observe the reading on the unit's meter. If the capacitor is good, the reading will steadily climb to full scale within about 30 seconds or so.
If the capacitor is not so healthy the meter will show a lower reading and climb very slowly. Check the reading about every 15 minutes. It should be a bit higher each time you look. If the reading is below about four, SWITCH OFF and feel the temperature of the capacitor. If it is warm, leave the unit switched off to let the capacitor cool down before continuing.
Once the reading has reached about seven or eight, switch $\mathrm{S} \mid$ to $5 k$. The reading
will probably go up a bit immediately, and should then continue to rise slowly. With luck the unit should read full scale after a couple of hours, but leave it for up to about ten hours before giving up.

If the reading rises to about nine or higher and then stops, the capacitor may still be usable as long as it is not the main h.t. smoothing component (connected directly to the cathode of the rectifier valve). In this case, re-install the capacitor in its original piece of equipment, and feel its temperature after the equipment has been powered up for about 10 or 15 minutes. If it is significantly warmer than the chassis, it should not be used further.

When the capacitor has been reformed, switch the unit off at the mains and wait for the capacitor to discharge and the meter to read zero. This could take a minute or more, depending on the value of the capacitor.

ALTERNATIVE TECHNIQUES

To reform a 275 V capacitor, connect a 22 k 4 W resistor in parallel with it. With switch SI on the $20 k$ setting, the meter will only read up to four or five. When this value is reached, switch to the $5 k$ setting. The maximum reading will now be eight. If a more elegant method is preferred, make up a chained series of Zener diodes that total about 260 V to 270 V (e.g. a 120 V Zener in series with a 150 V one). Connect this in place of the resistor.

A quick check can be made on the main h.t. capacitors in a set without going through the hassle of removing them first. With the set disconnected from the mains, connect the Reformer unit between the h.t. rail (cathode of rectifier valve) and chassis, switch SI to $20 k$ and switch on. If the circuit diagram for the set is available, check for potential divider circuits across the supply rails - these will affect the readings and may be worth disconnecting.
Switch S1 to the $5 k$ setting once the reading is above about eight. If the unit's meter reads above nine on the $5 k$ setting within about ten minutes, it can be assumed that the capacitors are reasonably OK. If not, they will have to be removed and reformed individually.

If you have a dud capacitor that cannot be reformed, don't throw it away. The tidy (and "antique value") solution is to fit it back onto the chassis so that it looks

right, but don't connect it. Fit a modern electrolytic tidily below the chassis, and no-one will ever know! If you're really enthusiastic you could dig out the innards of the old capacitor and fit the modern replacement inside the can - if you have this much patience!

UNKNOWN SET TESTS

When initially testing an unknown receiver, it is often advised that the set should be powered from a lower than normal mains voltage via a variac (variable auto-transformer). This is intended to give a lower voltage h.t. supply which is also at a higher impedance due to the valve heaters being underun. This will also show up leaky capacitors and many other problems without causing additional damage.
For those who do not have access to a variac (they are fairly expensive), the HV Capacitor Reformer will enable similar tests to be carried out. The unit is simply connected across the main h.t. smoothing capacitor (with the receiver disconnected from the mains) as described previously
Any leaky low-value non-polarised decoupling capacitors (and other capacitors which have a high voltage across them in use) will show up after a few minutes by the wax bubbling at one end. If any resistors are getting warm, the reason should be investigated. In the majority of receivers there are no potential dividers or other resistive circuits across the h.t. supply, so the h.t. rail should reach about 350 V . If anything is dragging this down, it should be investigated (remember that at this time valves have no power across their heaters and therefore will not be drawing current from the h.t. supply).

Measure the voltage at the grid of the output valve, relative to the chassis. If this is at all positive, the grid coupling capacitor is leaky and should be replaced. Also check the voltage at the anode of the output valve. If this is not at the full h.t. level (about 350 V) the output transformer primary may be open circuit. If you have the service sheet for the receiver you can carry out a number of similar checks all before the mains supply has been applied.

SAFETY ADVICE

To reiterate and expand on the warnings given earlier:
This unit produces potentially lethal voltages. Even though a mains isolating transformer is recommended, the unit should still be regarded as being connected directly to the a.c. mains. Do not touch the output leads or anything connected to them
while the unit is switched on. Wait for the meter to read zero after switching off. Keep this unit out of the reach of children, pets and anyone who does not appreciate the danger.

When working on live equipment, always keep one hand in your pocket or behind your back - this will reduce the chances of current passing through your heart if you accidentally touch something electrically live

The use of an RCCB (Residual Current Circuit Breaker) should be regarded as a "must", but is no substitule for safe working practices. A large capacitor can give a fatal shock without the circuit breaker responding.

Never work on live equipment alone always make sure there is someone present who knows how to administer the appropriate first aid.

Electricity can kill - TAKE CARE.

PCB Designer

 overseas orders. wanted.

Looking for the price?
It's just $£ 49.00$ all inclusive! ...no VAT...no postage.. ...no additional charges for

Dealers and distributors

\checkmark Print out to any Windows supported printer.
\checkmark Toolbar for rapid access to commonly used components.
Helpful prompts on screen as you work.
Pad, track \& IC sizes fully customisable.
No charges for technical support.
\checkmark Snap-to grid sizes $0.1^{\prime \prime}, 0.05^{\prime \prime} 0.025^{\prime \prime}$ and unrestricted.
\checkmark SMT pads and other pad shapes.
\checkmark Prints at the resolution of your printer - much
higher than the screen shot shown here
Internet 00.7 , 1 and
A working demo is available via anonymous FTP from
A working demo is available via anonymous FTP from
ftp.demon.co.uk as /pub/ibmpc/windows'pcbdemo/pcbdemo.zip e-mail enquiries can be addressed to orders@niche.demon.co.uk

VIDEOS ON ELECTRONICS

A range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

VT201 to VT206 is a basic electronics course and is designed to be

 used as a complete series, if required.VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201 VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202 VT203 57 minutes. Part Three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203 VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply.

Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc.

Order Code VT205
VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206
By the time yod have completed VT206 you have completed the basic electronics course and should have a good understanding of the operation of basic circuit elements.

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/vigo heads then from the heads back to the output.

Order Code VT102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from * VCR Educational Products Co, an American supplier. (All videos are to the UK PAL standard on VHS tapes)

Now for the digital series of six videos. This series is designed to provide a good grounding in computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc.

Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in todays digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-toanalogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of todays memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305
VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306
By now you should have a good understanding of computer technology and what makes computers work. This series is also invaluable to the computer technician to understand the basics and thus aid troubleshooting.

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT401
VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver. Order Code VT402 VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding. VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers.

Order Code VT501

ORDERING: Add $£ 1.50 \mathrm{p} \& p$ per order for UK orders. OVERSEAS ORDERS: Add $£ 3$ postage for countries in the EEC. Overseas orders outside the EEC countries add $£ 3$ per tape airmail postage (or $£ 6$ per order surface mail postage). All payments in £ sterling only (send cheque or money order drawn on a UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address. Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is, designed by the leaders in their field, using the best components that are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge. giving you guided hands-on experience of modern electronic techniques.
In short HART is your 'friend in the trade' giving you, as a knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.
Our list will give you full details of all our Audio Kits, components and special offers.

INTRODUCING
 The Hart "Chiara

Single-Ended Class "A" Headphone Amplifier.
Most modern high fidelity amplifiers either do not have a headphone output facility, or this may not be up to the highest standard.
The new Hart "Chiara" has been introduced as an add-on unit to remedy this situation, and will provide two ultra high quality headphone outlets. This is the first unit in our 2000 Range of modules to be introduced through the year. Housed in the neat, black finished, Hart Minibox it features the wide frequency response, low-distortion and "musicality" that one associates with designs from the renowned John Linsley Hood.
Both outputs will drive any standard high quality headphones with an impedance greater than 30 ohms and the unit is ideal for use with the Sennheiser range. A signal link-through makes it easy to incorporate into your system and two extra outputs, one at output level and one adjusted by the Volume control are available on the back panel. The high level output also makes a very useful long-line driver where remote mounted power amplifiers are used. Power requirements are very simple and can be provided by either of our new "Andante" power supplies. Use the K3565 to drive the "Chiara" on its own, K3550 if driving other modules as well. Volume and Balance controls are provided and as befits any unit with serious aspirations to quality these are the ultra high quality Alps "Blue Velvet" components.
Very easily built, even by beginners, since all components fit directly on the single printed circuit board and there is no conventional wiring whatsoever. The kit has very detailed instructions, and even comes with a roll of Hart audiograde silver soider. It can also be supplied factory assembled and tested.
Selling for less than the total cost of all the components, if they were bought separately, this unit represents incredible value for money and makes an attractive and harmonious addition to any hifi system.
K2100 The total cost of a complete set of all components to build this unit is $£ 126.37$. Our special discount price for all parts bought together as a kit is..50 K2100SA Series Audiophile, with extra selected components.
selected
..$£ 12.46$
HART TC1D Triple Purpose TEST CASSETTE
Now available again and even better than before! Our famous triple purpose test cassette will help you set up your recorder for peak performance after fitting a new record/play head. This quality precision Test Cassette is digitally mastered in real time to give you an accurate standard to set the head azimuth, Dolby/VU level and tape speed, all easity done without test equipment.
TC10 Triple Purpose Test Cassette.
$\varepsilon 9.99$

NEW BOOK

'Audia Electranics
And now, hot off the press, yet another classic from the pen of John Linsley Hood. Following the ongoing enormous success of his "Art of Linear Electronics" the latest offering is the all-new edition of "Audio Electronics" now entirely re-written by the master himselt
Underlying audio techniques and equipment is a world of electronics that determines the quality of sound. For anyone involved in designing, adapting or using digital or analogue audio equipment understanding electronics leads to far greater control over the reproduced sound.
The subjects covered include tape recording, funers, power output stages, digital audio, test instruments and loudspeaker crossover systems. John's lifetime of experience and personal innovation in this field allow him to apply his gift of being so familiar with his subject that he can write clearly about it and make it both interesting and comprehensible to the reader.
Containing 240 pages and over 250 line illustrations this new book represents great value for money at only $£ 18.99$ pius $£ 2.50$ postage. Send or telephone for your personal copy now.

ALPS Blue Veluet Precision Audio Controls

To fulfil the need for ultra high quality controls we import a special range of precision audio pots in values to cover most quality amplifier applications. All in 2 -gang stereo format, with 20 mm long 6 mm diam. steel shafts, except for the 50 K Log which is $25 \mathrm{~mm} \times 6 \mathrm{~mm}$. Overall size of the manual pot is 27 W $\times 24 \mathrm{H} \times 27$ Deep, motorlsed versions are 72.4 mm Deep from the mounting face. Mounting bush for both types is 8 mm diameter.
Now you can throw out those noisy ill-matched carbon pots and replace with the real hi-fi components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability.
The motorised versions use a 5V DC motor coupled to the normal control shaft with a friction clutch so that the control can be operated manually or electrically. The idea of having electrically operated pots may seem odd, archaic even, but it is in fact the only way that remote control can be applied to any serious Hi-F system without loss of quality. The values chosen are the most suitable available for a low loss passive volume and balance control system, allowing armchair control of these two functions.
Our prices represent such super value for pots of this quality due to large purchases for our own kits. MANUAL POTENTIOMETERS
2-Gang 100K Lln.
or 100K Log.
. 15.67
2-Gang 10K, 50 K or 100K Log. $£ 16.40$ zero centre loss............... MOTORISED POTENTIOMETERS 2-Gang 20K Log Volume Control E26.20 less than 10% loss in centre position REEL TO REEL HEADS
999R 2/4 R/P 100 mH
£26.98

999R 2/4 R/P 100 m
. 16.84
We have a few erase heads to suit which can only be șupplied when 2 R/P heads are purchased $£ 36.80$ TAPE RECORDER CARE PRODUCTS DEM1 Mains Powered Tape Head
Demagentizer, prevents noise on playback due to residual head magentisation DEM115 Electronic, Cassette Type, demagnetizer.

LINSLEY HOOD ‘SHUNT FEEDBACK' RIAA
MOVING COIL \& MOVING MAGNET MOVING COIL \& MOVING MAGNET

The HART K1450 Magnetic pickup preamplifier kit features a totally discrete component implementation with a specially designed low input impedance front end and the superior sound of the Shunt Feedback circuitry. High quality components fitting to an advanced double-sided printed circuit board make this a product at the leading edge of technology that you will be proud to own. Nevertheless with our step by step instructlons it is very easy and satistying to assemble The higher current consumption of this unit means that it is current consumption of this And ante Audio Power Supply, itself by our new Andante Audio Power Supply, itself an advanced piece of technology in a matching case. This supplies the superbly smoothed and stabilised supply lines needed by any sensitive preamplifer and features a fully potted Hi-grade toroidal transformer along with a special limited shift earth system for hum free operation. The K1450 is suitable for all moving coil and moving magent transducers this unit is especially recommended for, and will extract the very best from the modern generation of low output high quallty moving coil transducers.
K1450 Kit, complete with all parts ready to assemble inside the fuliy finished $228 \mathrm{~mm} \times 134 \mathrm{~mm} \times$ 63 mm case. Kit includes full, easy to follow, assembly instructions as well as the Hart Guide to PCB Construction, we even throw in enough Hart Audiograde Silver Solder to construct your kit!
£111.58
K1450SA Series Audiophile version with selected components

HIGH QUALITY REPLACEMENT

CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours. Fitting one of our high quality replacement heads could restore performance to better than new! Standard inductances and mountings make fitting easy on nearly all machines (Sony are special dimensions, we do not stock) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actuar importers you get prime parts at lower prices compare our prices with other suppliers and see! All our heads are suitable for use with any Dolby system heads are sultally availab ex-stock. We also stock and are norge of avecial heads for home construc a wide range of special
tion and industrial users.
HC80 NEW RANGE High Beta Permalloy Stereo head. Modern space saver design for easy fitting and lower cost. Suitable for chrome, metal and ferric tapes, truly a universal replacement head for everything from hi-fi decks to car players and at an incredible price too!...
HRP373 Downstream monitor combi head.................................... HQ551A 4-Track R/P.
HQ551S Sony Mount 4-Tr. R/P....
HQR560 Rotary Base 12.5 mm R/P/E. HQR570 Rotary Base 15 mm R/P/E. HQR580 Rotary Base 12.5 mm R/P.

HART Classical CD's.

Top quality. Full Digital (DDD), over 100 titles from only $£ 1.991$ Ring or send for your list!

TECHNICAL BOOKSHELF
We stock a good range of books of interest to the electronics and audio enthusiast, including many reprinted classics from the valve era. Some were in last months advertisement, but see our list for the full range.
New this month is the GEC Valve designs book at £18.95, and the VTL Book, a modern look at valve designs, 817.95

Send or 'phone for your copy of our FREE List of these and many other Kits \& Components. Enquiries from Overseas customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmail
Ordering is easy. Just write or telephone your requirements to sample the friendly and efficient HART Ordering is easy. Just write or telephone your requirements to sample the friendy and efficient HART
service. Payment by cheque, cash or credit card. A telephoned order with your credit card number will get your order on its way to you THAT DAY.

Please add part cost of carriage and insurance as follows:-INLAND Orders up to $£ 20-£ 1.50$,
Orders over $£ 20-£ 3.50$. Express Courier, next working day $£ 10$.
OVERSEAS - Please see the ordering informatlon with our lists.

QUALITY

AUDIO KITS

Constructional Project

EPE Hifi VALVE AMPLIFIER

JAKE ROTHMAN

Creating the valve sound, without suffering "antique dealer'"prices!

- 30W r.m.s. into 8 ohms • 20Hz to 20kHz, $\pm 0 \cdot 2 d B \bullet$ - input Sens. 300 mV for fulloutput • less than 0.1\% t.h.d. at 15 W into 8 ohmse Hybrid design forminimum valve count • Monoblock design ctwo required for stereol• Dptimised for use with CD•

LAST month we looked at comparisions between valve and solid-state amplifiers and introduced circuits which combined both technologies. We also covered the p.c.b. construction of the single i.c. phase-splitter stage of the amplifier.
This month we conclude with the final wiring, testing and setting-up. We also offer some circuit ideas for possible further development.

HEATER"WIRING

With all valve circuits wired in the traditional manner, the heater wiring is put down first so that it can be laid close to the chassis. It is also twisted and kept clear of the grid pins and by using these techniques hum pick-up from the heater a.c. power is minimised.
The heater, power wiring and other wiring that needs to be completed before the tag strips are dropped into place, on the underside of the chassis, is shown in Fig. 11.

The phase-splitter (last month) printed circuit board should also be mounted in position at this intermediate stage.

TAG STRIPS

There are two tag strip assemblies in the design which can be conveniently constructed outside of the chassis before they are installed. Fig. 12 shows how the two tag strips should be cut from standard lengths before use. Note that some of the "earth" tags on the driver strip have been cut to increase the number of "floating" tags.
The component layout on the tag strip for the Driver stage is shown in Fig. 13. Note how the grid stopper resistors are positioned so as to slide straight through the grid tags on the valveholders.
Another point to watch is the possibility. of shorts and these are prevented by use of silicone sleeving over component leads. Also, if uninsulated metal-cased capacitors are used for C15 and C17, mount them so

EE65820

Fig. 14. Cathode tag strip assembly and wiring.
that their case is connected to the grids otherwise they will be floating at 200 V . Before bolting and soidering the tag strip into place make sure the output transformer wiring is in place.

The second, smailer, tag strip is for the cathode components for the power valves. The anti-surge resistor R39 is also mounted on the same tag strip and the whole assembly is shown in Fig. 14.

It is essential to use a hot thermostatically controlled soldering iron such as a Weller W60 for traditional hard wiring. That old 15 W iron will not do!
The final complete interwiring of the chassis is shown in Fig. 15. Note that the connections to the p.c.b. are made by Molex connectors. These need a special crimp tool to do the job properly. Fig. 16 shows how to complete a Molex connector.

Fig. 13. Driver stage tag strip assembly.

Fig. 11. First stage of the chassis "hard wiring", prior to dropping the tag strips in place. The heater wiring should be completed first and be kept away from the valve grid pins.
ORIVER STAGE TAG STRIP
Fig. 12. Preparation of the two tag strips from
standard lengths.

Fig. 15. Final complete chassis interwiring. Connections to the Phase-splitter p.c.b: are made using p.c.b. header connectors.

Layout of components on the topside of the chassis.

TESTING

This amplifier is quite difficult to test with the normal test gear set-up of signal generator and oscilloscope because of the balanced inputs and outputs. The balanced input is not a problem since it can easily be converted to unbalanced by the simple expedient of grounding one of the input terminals.

Putting a 'scope on the output is problematic because if either terminal of the floating output is grounded the feedback is unbalanced and the amp will operate incorrectly giving a greatly reduced output swing. The unsafe method of getting round this is to remove the mains earth on the 'scope. The safer recommended method is to use a differential probe or a balancing transformer.
As with all valve power-amps it is not happy without a load, since there may be damaging flashovers in the output valves due to high back e.m.f.s being generated by the output transformer.
Valve amps are generally much more tolerant of wiring errors than solid-state amps, because there are no ready paths for chains of destruction, as there are with direct-coupled semiconductors.

However, it is logical to test the unit in a sensible sequence rather than just firing it up. The first stage is to check the mains and heater wiring by powering-up with the h.t. fuse FS2 removed. All the valves should light up. Listen out for unusual noises such as stressed power transformer hum, but do not be alarmed by the tinkling noises valves normally make as they warm up.
The next stage is to power-up with the h.t. fuse in place, with the driver valve V1 removed (this reduces the chance of oscillation). An 8 ohm 25 W load resistor should be connected at this stage. If the h.t. fuse does not blow, measure the h.t. (which should be around 430 V) and the voltage across the cathode resistors which should be 29 V to 34 V .

The next stage is to check the op.amp power supply voltage at pin 8 of ICl which should be 32 V to 36 V . The offset voltage at the outputs of ICl should be measured and should be half the rail voltage at around 16.5 V .

If all is well, plug in the driver valve V1. If the amplifier oscillates it will be generally
be audible as a high pitched buzz from the output transformer. The normal cause of oscillation is the feedback being the wrong phase. If this is the case it can be cured by reversing the feedback Molex connector on the Phase-splitter board. Finally check the voltage on the driver valve anodes (pins 1 and 6) which should be 205 V
A final check should be made with a 1 kHz sine wave applied to the input looking for distortion. The level should be increased to check for symmetrical clean clipping. The amplifier should be able to swing 40 V peak-to-peak into the 8 ohm load resistor just before clipping. This equates to 24 W r.m.s. (20 V peak $\times 0.707=$ 14 V r.m.s. $P=V^{2} / R=196 / 8=24.5 \mathrm{~W}$.

PUSH-PULL BALANCE

Here is an old dodge to check that each half of the amplifier is operating with equal gain so that the push-pull operation is fully balanced. Simply wire a pair of matched 100 kilohms, one per cent, resistors across the anodes of the output valves as shown in Fig. 17 and hook up to the 'scope.

Fig. 17. Using two close tolerance, 100 kilohm resistors to check "push-pull" balance.

Layout of components on the completed Phase-splitter p.c.b. (last month). Notice the ceramic bead spacers on the "dropper" resistors (to help keep heat away from the board), and the p.c.b. header pin connectors.

If the amp is in balance the two signals should cancel out. It is worth trying this at a few different levels and frequencies.
If there is an imbalance in level it can be corrected by tweaking one of the anode resistors in the driver stage. Imbalances at the high frequency end are best corrected by adjusting the feedback capacitors in the phase-splitter.

IN USE

Since the amplifiers are monoblocks and have a low impedance balanced input, they
can be placed near the loudspeakers, minimising the need for expensive loudspeaker cables.
With a 10 k input impedance, the valve amplifier is only suitable for use with preamps that can drive low impedance loads. Usually the amp will be used with a passive pre-amp of the type shown in Fig. 18 with a CD player.
The output is only 24 W but because of the soft clipping it will sound as loud as a 40 W solid-state amp. To get high levels it is necessary to use high sensitivity loudspeakers.

SAFETYWARNING

Not only is there mains in this amplifier, there is also 450 V h.t. which is even more dangerous because it is d.c., which means that muscles may freeze. Such shocks across the heart may result in ventricular fibrillation or breathing paralysis leading to death within a few minutes without resuscitation.
Always use well insulated probes when testing and always check the h.t. capacitors for residual charge when working on the unit
if switched off. To prevent the across the chest shocks, work with "one hand in the pocket" if possible.
It should be pointed out that the l.e.d. D6 is extinguished when the h.t. fuse has blown, this means that the bleeding function is also disabled and the capacitors could still be holding a lethal charge. The same applies if the amplifier is operated with the Phasesplitter board removed.
 speakers set at reasonable domestic levels. One way of increasing the maximum level and retain the quality, is to use valve driven LS3/5a speakers along with an active crossover driven sub-woofer powered by a solid-state amp
Valve amps can get quite hot so it is essential the units get plenty of ventilation. It is not a good idea to put them in an enclosed box - use a perforated steel cage if they need to be cased.

Here are some suggested possible circuit improvements that should be of interest to experimenters.

Standby Switch

If the amp is to be left running for a long time, such as in a studio, it is worth putting a switch in the h.t. line. This enables the heaters to be left running without the h.t. When the amp is needed it can be switched on instantly with the Standby switch.

A Standby switch also prolongs the life of the valves since it is the electron emission that fails long before the heaters. Cathode stripping is also eliminated if the standby switch is turned on after the valves have warmed up.

The compact chassis underside component layout and interwiring of the completed EPE HiFi Valve Amplifier. The twisted heater winding leads run along the bottom and the screened signal lead across the top (as seen).

Output

Trensformers

The output transformers are the heart of any valve power-amplifier and they basically determine the low frequency performance of the amplifier. The recommended transformers are perfectly functional and at around $£ 26$ are one of the cheapest. It is possible to get better transformers which give more bass power below 40 Hz from companies like Sowter's and Audio Note, but expect to pay at least double.

The reason for the high cost of valve output transformers is that the windings are much more complex than a power transformer. They have to be, to minimise distributed capacitance and leakage inductance which are the main factors in obtaining a flat frequency response.
The winding configuration used in the specified transformer is shown in Fig. 19. This configuration is called a five-section winding, where the primary is divided into three layers and the secondary into two.
, Cheap output transformers use a threesection winding which generally results in a resonance in the 25 kHz area, whereas the one above has a damped resonance of around 80 kHz , well out of the audio band. Some very expensive types use up to ten sections, but after five sections the onset of diminishing returns is very rapid.

Choke Smoothing

To reduce the hum further, a choke filter could be tried since a 10 Henry valve smoothing choke is now available from Maplin (order code ST28F). It is only officially rated at 100 mA but this is not a thermal rating and on this basis, the choke can handle the full 140 mA current of the valve amplifier.
The problem is that the core saturates reducing the inductance to some extent. The remaining inductance still seems to offer much improved smoothing however. The circuit for installing the choke is shown in Fig. 20.

Cathode Current Regulation

The anode currents of both output valves must be equal to ensure complete cancellation of hum and residual magnetic field in the output transformer. Of course, the signal voltages do not cancel since they are out of phase, while the steady-state anode current does, because it flows through the valves in the same direction
If the currents are unequal the result is 100 Hz hum. This can be trimmed out by tweaking the cathode resistors, although there should not normally be a problem since valve tolerances are generally very good.

Fig. 19. Five-section output transformer construction and d.c. resistances.

Fig. 21. Constant current cathode biasing.

Fig. 24. Heater derived dual-rail op.amp power supply.

Solid-state Ripple Suppression

To obtain the lowest supply ripple, a solid-state regulator could be used. However, semiconductors are not very reliable in such high voltage conditions and the circuit given in Fig. 22 is unlikely to be short circuit proof. However a regulated h.t. rail will make an improvement for valve pre-amps.

Heater-derived Op.amp P.S.L.

The simple Zener supply in the amplifier is only suitable for powering a couple of op.amps in single rail mode. If extra power
is needed, for a preamplifier for example, it would be better to derive it from the heater supply.

A voltage tripler circuit such as that shown in Fig. 23 which provides dual rails, could be used.

Cathode-derived Op.amp PSU

If it is desired to remove the dissipation of the dropper resistors it should be possible to derive op.amp power from the cathode resistors as shown in Fig. 24. The maximum voltage available is limited but there is sufficient gain in the driver stage to make up for any lost headroom.

Fig. 25. Cathode derived op. amp power supply

27 V TO PIN 8
IC

PLAMEN PETKOV

Ancient and modern rectifying techniques are combined to facilitate multi-voltage supply line derivation.

THE CLASSICAL bridge rectifier circuit, as shown in Fig. 1, is one of the most widely used types of a.c. to d.c. rectifying circuit. Conventionally, it is powered from a single secondary winding of a mains transformer.

When additional voltage supply lines are required from the same transformer, this secondary winding is either centre tapped, or additional secondary windings are employed, each having its own rectifying circuit.

Fig. 1. Classical bridge rectifier circuit.

COSTFACTORS

In many commercial manufacturing situations, it may be cost-effective to have transformers specially wound to meet the voltage requirements of new equipment designs. In other cases, though, cost demands may make it preferable to use an off-the-shelf transformer rather than a custom designed one. Regrettably, however, the available transformers may not have the number of windings needed to supply the required variety of voltage levels.

Also, the need sometimes arises for additional voltage levels to be supplied to existing equipment if it is being upgraded. For example, the addition of op.amps, where previously none had been used, may require a negative voltage line to be added. It could even be the case that voltages higher than those already existing might need to be added.

Rather than use an additional trans former to supply the extra voltage levels, it is possible in a variety of instances to derive the voltages from an existing secondary winding of a transformer, by using conventional voltage multiplying, inverting or regulating circuits.

BRIDGE PROBLEMS

However, not all situations can be catered for in this manner because of an inherent problem with bridge rectifier circuits, caused by their lack of a common connection between the input and the output.

Although it may be tempting to try using an additional rectifying circuit connected between one of the a.c. leads and the ground line, for example the voltage inverter/doubler circuit shown in Fig. 2a, the attempt will be likely to fail due to the uni-directional conductivity of the voltage source. Unfortunately, the input connections to this circuit require both charge and discharge current paths.

The reason for this is that the transformer secondary winding, grounded via the diodes of the bridge rectifier, provides only a charge path. A discharge path does not exist, as will be seen in the equivalent circuit in Fig. 2b.

In other words, the problem is that the diodes conduct only in one direction, which
is, of course, an essential feature for the correct operation of the classical bridge rectifier circuit.

SYNCHRONOUS RECTIFIER

What is needed in this situation is a switching component which is capable of conducting during the appropriate halfwave period of the a.c. supply, irrespective of its polarity.

Historically, such a switching circuit was invented long before valves or semiconductor diodes became available. It was known as the synchronous rectifier and was based on a polarised relay circuit, schematically shown in Fig. 2c.

It is possible to upgrade this concept for modern applications by using semiconduc tor devices. Indeed, the functionally equivalent circuit shown in Fig. 3a offers vast opportunities for multi-voltage supply requirements.
The idea of the circuit illustrated in Fig. 3 a is to complement the "grounding diodes" of the bridge rectifier with bypassing transistors, switched on simultaneously with the corresponding diode during the appropriate a.c. half wave.

The operation of this modified bridge rectifier is similar to the historical synchronous rectifier configuration due to the fact that the respective transistors are on or off simultaneously with their diodes. The only difference from the historical circuit is the ability of this modern equivalent to provide a discharge path through transistors in addition to a charge path through diodes.

It should be noted that the transistors are protected from "wrong polarity" by the diodes, which inhibit the "reverse voltage".

Fig. 2(a) Voltage inverter, (b) and its equivalent circuit; (c) relay-driven synchronous rectifier.

Fig. 3(a) Modified bridge rectifier circuit and (b) its symbol.

Fig. 4. Bipolar rectifier, full-wave addition indicated by dotted line.
series capacitors must be sufficiently great to provide current charge transfer to the output, in other words, to pass the amount of a.c. current required. The value of the parallel (output) capacitors should be chosen to provide acceptable ripple levels. This proviso applies to all the nominal voltage relationships quoted in the ensuing circuit diagrams.

SCALING VOLTAGES

The circuits of Fig. 5 and Fig. 6 demonstrate an additional refinement. respectively dividing the nominal output negative voltage by two and by three.
A negative voltage which is nominally half that of the equivalent positive voltage can be produced by the circuit shown in 'Fig. 5 . That is, if " +V " $=+12 \mathrm{~V}$ then $\cdots-\mathrm{V} / 2^{"}=-6 \mathrm{~V}$.
Similarly, a negative voltage nominally one third that of the equivalent positive voltage çan be produced by the circuit shown in Fig. 6. Thus, if " +V " $=+12 \mathrm{~V}$ then " $-\mathrm{V} / 3$ " $=-4 \mathrm{~V}$. Obviously, further voltage division in a similar fashion to less than one third is theoretically possible, but is rarely practical.
The idea of these circuits, which the author calls "scaling inverting rectifiers", is to alternately charge a number of serially connected capacitors, and to discharge them to the load in parallel connection. Accordingly, each capacitor is "equipped" with a charge diode and

The inclusion of the resistors ensures that the transistors are controlled by "safe" voltages and currents.

For the sake of illustrative convenience in later circuit diagrams, the circuit of Fig.3a has been given the schematic symbol shown in Fig.3b. The letter "E" denotes the common emitter (0 V) point.

CIRCUIT EXAMPLES

The circuits shown in Fig. 4 to Fig. 9 illustrate how the circuit of Fig. 3a can be used in conjunction with other rectifying circuits to produce a variety of "integer" and "non-integer" conversion ratios of the output voltage levels, both positive and negative, with respect to the input voltage level.
The circuit diagram in Fig. 4, for example, illustrates how an additional negative voltage can be derived from a transformer secondary winding which is already engaged in bridge-rectifying a positive voltage. As will be seen in the upper section of the circuit diagram, the positive voltage is produced by a sircuit identical to that shown in Fig. 3a.

The circuit configured around diodes D5 and D6, and capacitors C2 and C3, forms a standard half-wave voltage-inverting rectifier. Full-wave voltage-inverting rectification is a chieved when the circuit configured around capacitor C4 and diodes D7 and D8 is included as well (shown as dotted line. connections).
Nominally, the negative voltage is equal to the positive voltage. For example, if " $+V$ " equals +12 V , then " -V " will be -12 V . Note, though, that the exact voltage relationship may be different due to component tolerances and the actual currents drawn. In this context, note that there is a voltage drop of about 0.7 V across the series diodes, and that the value of the

Fig. 7. This circuit delivers $+V,+3 / 2 V$ and $-V$.
a pair of discharge diodes. The first capacitor, from the input, has only one discharge diode to the output.
Referring to Fig. 5, these capacitors (C2 and C3) are charged during the positive half-wave along the path: lower a.c. connection, capacitor C2, diode D6, capacitor C3, diode D8, OV (ground), diode D1, upper a.c. connection. Given that capacitors C2 and C3 are of equal capacitance, they charge to approximately half of the input voltage level.
During the "zero" half-wave, capacitors C2 and C3 are connected in parallel to the output: their positively charged leads (C3 via diode D5, and C2 directly) through transistor TR2 to 0 V (ground), and their negative leads to the output via diodes D7 and D9, respectively.
The discharge paths for capacitors C2 and C3 start from their positive leads, either directly, or via diode D5 and transistor TR2. and then 0 V (ground) through the load and capacitor C4 to the output, and then finally to their negative leads, via diodes D7 and D9 respectively. In this stage, charge transfer takes place to output capacitor C4.
The circuit of Fig. 6. operates in a similar way, the only difference being that three, rather than two, capacitors share the input voltage, so dividing the voltage accordingly.

The "scaled" voltages can be made positive and added to the main positive voltage in order to produce "non-integer" multiplying. For example, the circuit in Fig. 7 illustrates a " $+3 / 2 \mathrm{~V}$ " multiplier in addition to " $+V$ " and " $-V$ " supply lines.

Indeed, there is practically no limit to the number of rectifying circuits that can be driven in association with the modified bridge circuit of Fig. 3a. A further example is shown in Fig. 8. This circuit illustrates how full-wave " $+2 \mathrm{~V},+\mathrm{V},-\mathrm{V}$ and $-\mathrm{V} / 2$ " voltage supply lines can be derived from a single winding of a transformer.
It should be noted that in Fig. 8 only one of the bridge rectifiers is the modified (Fig. 3a) type. The others are auxiliary and associated with their respective voltages.

DESIGN CONSIDEAATIONS

It should be noted that general considerations in respect of half-wave or full wave rectifiers should be applied as usual. The type of rectifier configuration chosen affects the currents through the transistors, diodes and capacitance values in the normal way. If only a half-wave rectifier circuit is required, the unrequired transistor and its associated resistor may be omitted.

Fig. 8. Four voltage levels are output from this circuit: $+V,+2 V,-V$ and $-V / 2$.

CAUTION

Readers will undoubtedly wish to bread-board and experiment with these enhanced rectifiers It must be stressed, though that mains voltages will be present at the transformer and that the utmost care must be exercised at all times. Experimentation with the circuits is not recommended for electronics beginners.

When choosing which component types and values to use, the following parameters should be considered:
Transistor Maximum Collector Current: average current to match the output current; peak current at least three times higher to take into account the capacitive load.
Transistor Maximum Collector Voltage: to match the peak value of the input voltage (1.41 times nominal input voltage), plus some safety margin, i.e. at least twice the input voltage.

Transistor Base Resistance: less than Vin $\times \mathrm{h}_{\mathrm{f}} / \mathrm{I}_{\text {out }}$, where V_{in} is the input voltage, h_{fe} is the transistor's minimal current gain (common emitter), and $\mathrm{I}_{\text {out }}$ is the output current. A resistance value lower than this is required to provide saturation when in the on state. A resistance value of about one fifth of that calculated would be a good choice. Too low a value, though, may jeopardise the self protection against short circuits, resulting from the current limitation of the transistor's base (and therefore collector current).

Output Filter Capacitors: these are required to reduce ripple voltages, consequently the optimum capacitance value is both load current and ripple voltage dependent. A rough rule is $2 \mu \mathrm{~F} / \mathrm{mA}$.

Charge Pump Capacitors: these transfer the charge to the output. Insufficient capacitance leads to a voltage drop when the load increases. A general rule is again $2 \mu \mathrm{~F} / \mathrm{mA}$. When dividing circuits are used, the capacitance can be reduced proportionally to the division ratio.

POTENTIAL BENEFITS

The example circuits shown in this article actually deal with two independent matters, the modified bridge rectifier circuit, and various diode/capacitor rectifier circuits. There are instances, of course, where the latter may be used independently in other circuits without the modified bridge circuit.

Any one or more of the circuits could be of benefit where several voltage levels need to be supplied from a single transformer winding, provided that the output current requirements are not too great to be readily supplied via capacitive coupling.
It is acknowledged, though, that in some instances conventional voltage derivation techniques may provide better power line stabilisation. However, when next considering how best to derive several different supply line voltages from a single transformer winding, give thought to the versatility offered by the examples shown here.

Electroalc siren kth with an impressive 5 watt power output. Ideal for car/blke alarms etc. 6 12vdc, max current 1A. tone frequency 1.2 Whz \&7.05 Kh no 1003.

3-30V Power supply, variable atshllized power supply for laborzory use. Shertcircult protected, sultable for professional or amateur appllications. 24v 3A transformer is also peeded to complete the ktt. $\mathbf{1 1 6 . 4 5} \mathbf{K t} 1007$.

Poweriud 1 wath FM iransmilter supplited complete with plezoelectric microphone. \& 30vde. At 1009.
 the knob yourself but you will hear things on thls radio (even TV) that you would not bear on an ordinary radlo!, Recetver covers $50-160 \mathrm{Mhz}$ both AM and FM. Bult in 5 wit amplifler. $\{17.62 \mathrm{Kt}$ no 1013.

Mosquito repeller, moder a way to keep midges at bay! Runs for about a month on $21.5 v$ battery. $\mathbf{8 8 . 2 2} \mathbf{K t h}$ no 1015

3 chanmel wireless mound to Üght systema malna operated, mparze senstitivity adjusiment for each channel, 1,200 watt power handling. Microphone included. $\mathbf{1 6 . 4 5}$ Kta no 1014.

Motorbike/cycle trembler alarma adjustable senthivity, promal alm time, aufo resel. Could be connected to bllkes born elc. $\$ 14.10 \mathrm{Kth}$ no 1011

a. 5 minute timer, adjust able from 0 to 5 ming will which up to 2A mains Perfect for alarmas, photoeraphic laboratorles etc 12 vdc .58 .22 KIt no 1020 .

4 watt FM tranmitter, mall but powerful trans untrier, 3 RF stages, milcropbone and an audio preamp luclude ln ktt. $\mathbf{\varepsilon 2 3 . 5 0 ~ K t t ~ n o ~} 1028$.

25 watt FM transmitter 4 RF stages, preamp coytured (our kit 1068 is suitabie). Due to the complexity of the transmitter it is supplied in built up form only. $\mathbf{~ 5 9 2 . 8 2 ~ K i t ~ n o ~} \mathbf{1 0 3 1}$.

Strobe light, adjustable frequency from $1-$ to $60 \mathrm{H}_{2}$ (a lot faster than conventional atrobes) mains operated. $£ 18.80 \mathrm{Kh}$ no 1037

Uitrasonlc radar Ideal as a movement detector whth ar ange of about 10 metres, automate your cat flap! 12 voperation solideal for cars, caravansetc. f16.45 Ktt 1049.

Liquid level detector useful for detecting flutd levels intanks, in shponds, baths or as a ratn or leak alarm. Will switch 2 A mains $\mathbf{5 5 . 8 7 \mathrm { Kt }}$ no 1081 .

Combination lock 9 key, easlly programmable, will suttch 2 A mains. Complete with keypad. 9v operation. $\mathbf{\varepsilon 1 1 . 7 5 ~ K h t 1 1 4 .}$

Phone bug detector, thls device will warn you if somebody is eavesdropping on your phone line. $\mathbf{8 7 . 0 5} \mathrm{KH} \mathrm{no} 1130$.

Robot voice, intereating drcuit that distorts your volce! adjustable, answer the phone with a differ. ent volce! $12 \mathrm{vdc} \boldsymbol{\varepsilon 1 0 . 5 7 \mathrm { Ktt }} \mathbf{n o} 1131$.

Telephone bug small bug powered by the tet ephone line, tarts transmitting as soon as the handisel is plick up? 29.40 Kit no 113.

function gener ratof, produces inumidal saw toot and square waves adjustable from 20 hz - 20 khx , separate levet controls for each shape. Will pro duce all 3 together. $24 \mathrm{vac} \mathbf{1 1 7 . 6 2 ~ K t t ~ b o ~} 1008$.

3 Channel Uight chaser, 800 watts per channel speed and direction controls supplied with 12 leds and malns triacs, so you can une mains light bulb tf you want. $9.15 \mathrm{vdc} £ 19.97 \mathrm{Kt}$ no 1026

12v flourescent. A useful ktt th ot will enable you to light \&' fourescent tubes from your car battery? you will also need a 9v 2A trandormer, not supplied) 59.40 KH mo 1069.

VOX switch sound activated switch ideal for turn lag tape recorders on and off when sounds are beard. Makes the tape last a lot longer! adjuatable senstivitiy, built in delsy. $\mathbf{6 9 . 4 0} \mathbf{K h} 1073$.

ncar sound to light, Put mome atmo phere in your car witb this mint 3 channel sound to light. Each hannel has 6 led's $\mathbf{6 1 1 . 7 5} \mathbf{K k}$ no 1086.

watt HI FI power amplifler useful powerful deal for Intercomms audio systems car use etc $12-18 v d c 500 \mathrm{~mA} .68 .22 \mathrm{Kh}$ No 1025

Phone call relay, useluidevice that operates arelay when ever the 'phone rings, could be used to operate more bells or sfenalling lights etc. WII swtich malns at 2A. $\mathbf{5 1 1 . 7 5 \mathrm { KH } \text { no } 1 1 2 2 .}$

Lead actd charger, two automatic charging rates visual indication of battery state, Ildeal for alorm yhems emergency lighting etc. 100 mA 12 vdc 614.10 Kt no 1095.

orks on voltage drop and/o vibration entry and ext delays plus adjurtable larm duriaion. Good for cars, caravansetc 814.10 KH mo 1019.

Portable alarm ay wem, baved oos mercury swtich The alarm continues to sound untll the unit is Isabled by the owner. Buuser Included. $\mathbf{4 1 2 . 9 2}$ Ktt no 1150

Preamp mixer, 3 hapuif mono mixer, separate bas and treble controls plus indepeuderat vevel controls. 18vdc tinput sens 150 mv . 100 mA . 417.62 Ktr no 1052.

Minl metel detectior, sultable for locating pipes in walls etc, range $15-20 \mathrm{~cm}$ complete with case. 9v operation. $\mathbf{5 9 . 4 0 \mathrm { KH } \text { to } 1 0 2 2 .}$

800 watt tagle chamnel sound to light kth, malns operated, add rhythm to your party for onty 59.40 KH De 1006.

Sound effects generator, produces sounds ranging from bird chips to areas, complete with speaker, add sound effects to your projects for Jurt $\$ 10.5$ Kit no 1045.

Gultar preamp with tone controls malienough to At inside any gultar, based on TLos2 IC, 9-12vdc 50 mA . $\mathbf{£ 9 . 4 0 \mathrm { KIt } \text { no } 1 0 9 1 . ~}$

15 watt FM tranmaltter, 4 stage high power preamp required. 12-18vdc Can use etther ground plane, open dipole, or Yagd Supplied In bullif form only at $\mathbf{5 8 1 . 0 7 \mathrm { KH } 1 0 2 1 .}$

Telephone amplifer, Very senditive ampither which uses a'phonse pickup coll (supplled) will het ou follow a conversation whthourt holding the hone. $\mathbf{E 1 2 . 9 2 \mathrm { Kt } \text { no } 1 0 5 9 .}$
TOP 10 BEST SELLING KITS CORNER 1. Variable speed controlkit for 12v DC motorsup 0 30A! (You may need a heat fnk for 30A) E19.97. Compostie video kit, converts compontie sgmad Into separate Hsync, Vsyne and video $£ 9.40$ 3. Geiger counter Kith, contzins everything yo meed to bulld a working counter $\mathbf{\Sigma 2 2 . 3 2}$ 4. Solar energy kit, contains a solar panel, motor buzzer and cable for experiments $\mathbf{2 5 . 8 7}$ 5. Electronic sccupuncture kit, may belp with migrane, poor circulation, backache etc $\mathbf{£ 8 . 2 2}$. migrane, poor circulation, backache etce $\mathbf{E 8 . 2 2}$. djust able high tenrion of $80-300 \mathrm{y}$ from avy tery, Ideal for catching wormesetc! 59.40 . 7. Adapter bugkh, contains every itining you need o bulld a professional bug bults laside a standerd 13A mains adapter! the bus is maini powered so it operates all the time the adapter is plugged in. Price is $\mathbf{2 1 6 . 4 5}$ for the complete kit inctuding adapter. Hand tools and glue required. 8. Nicad charger kit automatic charger for celit rom 1.2 v to $15 \mathrm{v}, 7$ settings 50600 mA , trandorme required $18-20 \mathrm{v} 600 \mathrm{~mA} .59 .40$.
\&il. Fiverter lidi produce 2 dovaciromalivid supply, two ver dons are avallable a $15 w$ one £14.10, and an 80 wer ver at $£ 21.50$.

EXPRESS COMPONENTS

how to order.
......
Remember to add $£ 1.50 \mathrm{p} \& \mathrm{p}$. By phone with a credit card. By post with either a cheque, postal order or credit card details. By fax with credit card details. EXPRESS COMPONENTS, PO BOX 517 HOVE SUSSEX BN3 SQZ. DEPT EE

TEL 01273771156
FAX 01273206875
Overseas orders please add $£ 3.50$
post and packing.

PROJECT BOXES A range of high quality boxes

TYPE W	L	H	PRICE		
T2 75	56	25	¢0.77	SPECIAL OFFER	
T4 111	57	22	£0.92		
MB1 79	61	40	£1.35		
MB2 100	76	41	£1.47	Attractive, two tone beige. Measures $10 \times 7 \times 2.75 \mathrm{~cm}$. Wall mounted.	
MB3 118	98	45	£1.71	Measures $10 \times 7 \times 2.75 \mathrm{~cm}$. Wall mounted. 44^{\prime} Detection area. $6-14 \mathrm{~V}$ DC at 12 to 28 mA .	
MB4 216	130	85	£5.19	Normaly closed relay contact output. Sealed optical system - prevents false	
MB5 150	100	60	£2.35		
MB6 220	150	64	$£ 3.95$	alarms from Insects. Tamper circuit.	
$\begin{array}{ll}\text { MB } 7 & 177 \\ M 88\end{array}$	120	83	£3.42	Very neat attractive unit.	Only $£ 7.95$
MB8 150	80	50	£2.22		
All sizes are in millimetres					
	MICRO SWITCH roller arm operation spdt 40p each MINIATURE TOGGLE SWITCHES				BULKLEDS OFFER
spdt	60 peach	spdt	,	70p each	50mm round
dpdt	70p each	dpdt 3	sition c/	80p each	
spdt biased	60p each	spdt 3	ition	biased both ways 70p each	

miniature push to make switch

DIL RELAYS 5 volt dp/changeover
12 volt op/changeover
RELAY 10 amp contacts sp/changeover 12 volt coil CAR HORN RELAY in metal can with fixing lug,
s/pole on 10 amp contacts $£ 1.00$ each 6 for $£ 5.00$ 20 AMP RELAY dp on 12 volt coil
REED RELAY 12 volt $\quad \Sigma 1.50$ each 4 for $£ 5.00$
240 VOLT AC RELAY. 3-pole c/o 10 amp

ontacts $£ 1.50$ each

SEMICONDUCTORS - TRANSISTORS - ICS - DIODES - REGULATORS - ETC VOLTAGE REGULATORS
1 amp $7805 / 7812 / 7815$ all 33 p each. $7905 / 7912 / 7915$ all 39 p each 2 amp 78505578 S 212540 each
100 mA 78L05/78412/78L 15 all 26 p each. 79L05/79L12/79L15 all 29p each Adjustable LM317T 70p each. LM72329p each, L200 £1.28 each Transistors TIP2955 70p each, TIP 305570 p each 2N3053 29p each, 2N3055 70p each, 2N4403 28p each, 2N3819 40p each MICRO IC'S - Z80A CPU $11.20 ;$ Z80A PIO $£ 1.50 ;$ Z 80 B SIO- 1 £4.00;

SPECIAL OFFER PROJECT BOX In white MICRO IC'S - Z80A CPU £1.20; Z80A PIO £1.50
SAB80C $35-$ N $£ 11.75 ;$ PCB80C $31 B H-16 P ~ £ 2.35$

OPTO DEVICES - LEDS - ETC

5 mm rnd red/yellow/green/amber
5 mm rnd high brightness red/green 5 mm rnd flas hing
LED mounted in chrome bezel red, yellow or green
LED mounted in a black bezel red only LED mounted in a black bezel red
PLASTIC BEZEL for 5 mm rnd leds PLASTIC BEZEL for 5 mm rnd leds
High brightness bi-colour l.e.d., rectangular, red/green, two leads

辟

TEMPERATURE PROBE

High quality probe precision temperature sensor. Mounted in a plastic covered probe with a 1 meter coiled lead. Temp. range -40 to $150^{\circ} \mathrm{C}$. Resistance at: $150^{\circ} \mathrm{C} 188.3$ ohms; $25^{\circ} \mathrm{C} 10.0 \mathrm{kohm}$ and at $-40^{\circ} \mathrm{C} 336.5 \mathrm{kohm}$. The original price of these probes was over .

UNIVERSAL BELL TIMER

10 or 20 minute bell cut off + ve or - ve trigger. timed relay contacts.

ALARM CONTROL UNIT

Single zone alarm control unit built into a domestic light switch box. Ideal for home, caravan, boat, garage, shed etc.
Facilities: - Normally closed loop for pir sensors, door/window contacts etc. Normally open 100 p for pressure mats. 24 -hour loop for personal attack button Visual indication that the system is operational. Automatic SIREN
entry/exit delay. Automatic system reset. Alarm output cmos logic level. \square PRICE COMPLETE WITH FULL INSTRUCTIONS $£ 8.95$ SUB-MINIATURE PASSIVE INFRA-RED SENSOR ONLY $£ 7.95$ Brand new passive infra-red sensor, measures only $33 \mathrm{mmW} \times 24 \mathrm{mmH} \times 29 \mathrm{mmD}$. Loglc level output. Full data and application notes supplied.
EX INSTALLATION PASSIVE INFRA-RED SENSORS TESTED WORKING.L
Type 1. Measures $130 \times 70 \times 50 \mathrm{~mm}$ with walk test led, relay output
and tamper protection. 12 volt dc supply required
15 db
$\check{8.95}$

$$
\begin{aligned}
& \text { Type 2. As above but a smaller unit } 90 \times 75 \times 50 \mathrm{~mm} \\
& \text { Type 3. Ceiling mounting passive, infra red sensor } 360^{\circ} \text { detection, } 12 \mathrm{~V} \text { d.c. }
\end{aligned}
$$ output, tamper circuit and pulse count option. Data supplied. (tamper circuit and pulse count option. Data supplied. supply relay

Please note. There may be variations in the size DOOR/WINDOW CONTACTS of the above possive intra red sensors depend ing on stock at the time of ordering. But the unit will certainly be within the stated sizes

DUOPACe or flush mounting white Surface or flush mounting, white JUNCTION BOX | Way | 60 p |
| :--- | ---: |

DUAL TECH SENSOR Mlcrowave and passive
white 6 way 60 p infra-red combined. Separate led, indication for each function. Measures $120 \times 75 \times$ 50 mm .12 volt d.c. supply, Relay output. Tamper protection. TEMPERATURE CONTROL UNIT
Temperature control circuit mounted in a $85 \mathrm{~mm} \times 12 \mathrm{~mm}$ diameter tube. Range -5 to $150^{\circ} \mathrm{C}$. Supply $5-15 \mathrm{~V}$. Output open collector upto 200 mA . Temperature is set by means of a multiturn pre-set. Ideal unit for temperature controlled fan cooling §3.76 each. MAINS FILTER
81.99 each.

IEC plug filter, $115 / 240 \mathrm{~V}$ at 3 A , panel mounting.

CCD CAMERA

PCB CCD CAMERA. Mounted in a plastic dome. 12 V d.c. supply. Composite video output. Fitted with a 2.9 mm lens. Mono. 0.5 lux. $£ 98.70$

EPROMS 27C256-30. Once programmed but never used eprom. Mounted on a plastic carrier, can easily be removed from
orce socket. $27 \mathrm{C} 256 £ 1.00$ each 6 for $£ 5.00$ suitable low insertion force socket 28 pin 40 p

100db PIEZO SOUNDER
2 KHz note, $3-12 \mathrm{~V}$ d.c. $40 \mathrm{Ma}, 45 \mathrm{~mm}$ dia. $\times 26 \mathrm{~mm}$ lastlc BOMB Two tone al
UINIATURE HORN SIREN 100 db two-tone Piezo siren 12 V D.C
VIBRATION SENSITIVE ALARM BOARD WITH PIEZO SOUNDER
Originally a bike alarm. There is a short delay after activation then the plezo sounder operates for a preset period.

E1.00 BARGAIN PACKS

SUB-MINIATURE TOGGLE SWITCHES

301 S.P. on 4 for $\$ 1.00$
302 D.P. on 3 for $£ 1.00$
$3033 \times$ D.P. 3 pos, centre off
3004 DIL SWITCHES 4 -way S.P. on 3 for $£ 1.00$
BOO5 DIL SWITCHES 8 -way S.P. on 2 for $£ 1.00$
8OO6 $12 \times$ PPF BATTERY SNAPS
BOO8 $1 \times$ CAPACITOR 1 FARAD 5.5 VOLT 20 mm dia. $\times 7 \mathrm{~mm}$ high
BOO9 INSTRUMENT KNOBS ($0.25^{\prime \prime}$ SHAFT) High quality grey plastic knob, collet fixing 15 mm dia, 5 for $£ 1.00$
8010 as above but 29 mm dia, 3 for $£ 1.00$
BO11 4×28-WAY TURNED PIN DIL SOCKIT 3.5 mm plug
BO13 15×12 VOLT WIRE-ENDED LAMPS
BO14 8×2 PIN DIN PLUGS screw terminal connection
BO15 $2 \times$ LIGHT DEPENDENT RESISTOR Less than 200 ohms in daylight; greater than 10 megohms in darkness
$00161 \times$ KEYPAD $20-k e y$ in 5×4 matrix bubble type witch contacts
$80172 \times$ PIEZO BUZZERS approx 3 to 20 volt d.c.
BO18 $5 \times 78 M 12$ VOLTAGE REGULATORS positive 12 V 500 mA
BO19 $4 \times$ TL082CP bi-fet op-amps
O20 $20 \times$ ASSOR
(213 (NFA-RED
$024 \times$ CONSTANT CUARENT LED 5 mm round, red $2-18 \mathrm{~V}$ d.c. or a.c. nominal
BO23 $50 \times$ IN4148 diode
BO24 $2 \times$ INFRA-RED TRANSISTOR FPT5133
BO25 $5 \times$ DIACS
3O26 3 BDX33C 10 amp 100 V non transistor
BO27 12×2 N3702 Transistor
BO28 12×2 N3904 Transistor
$802912 \times$ BC337 Transistor
O31 $2 \times$ MAN6610 2 digit $0.6^{\prime \prime} 7$ segment display Com anode, amber
O323 $3 \times$ PHONO TO PHONO LEAD 63 cm long
$30341 \times$ PHOTO SENSITIVE SCR mounted on a PCB, data sheet supplied
BO35 $4 \times$ IEC Panel Mounting Malns Plug Snap fix
$30365 \times$ ASSORTED PIEZO TRANSDUCERS
BO37 5 LENGTHS OF HEATSHRINK SLEEVING 8 mm dia. 400 mm long
$303825 \times$ CERAMIC DISC CAPACITORS 0.1 mfd 63 V
$303915 \times$ MONOLITHIC CERAMIC CAPACITORS 0.1 mtd 63 V , in a dil package $304025 \times$ ASSORTED ELECTROLYTIC CAPACITORS PCB mounting useful value
BO41 25 ASSORTED PRE-SE RESIST ORS
$30426 \times 3.5 \mathrm{~mm}$ LINE JACK SOCKETS (mono)
BO44 $8 \times 3.5 \mathrm{~mm}$ CHASSIS SOCKET (mono)
$80452 \times$ TRIACS 800 volt 8 amp
$804612 \times$ BC213L Transistor
$804712 \times$ MIN SLIDE SWITCH dpdt
BO48 $15 \times$ MIN CERMET TRIMMER POTS (good range of values)
BO49 $1 \times$ PCB WITH TWO LARGE LEDS 15 mm square, one red and one green
$30501 \times 12 \mathrm{~V}$ DC RELAY 4 -pole clo with plug in base
$30514 \times$ LM324 quad op-amp
BO53 5×741 op-amp
805425×1 N 4001 diode
BO55 $20 \times$ IN4007 diode
BO56 $1 \times$ SLOTTED OPTO
BO57 $1 \times$ DAC08 Digltal to analogue converior with data
BO58 $4 \times$ OPTO ISOLATOR
$30603 \times$ C106D Thyristor
BO61 5×78 M05 VOLTAGE REGULATORS positive 5 volt 500 mA
OO62 $10 \times$ TACTILE SWITCHES
O63 25 O-01MFD $50 V$ CERAMIC DISK CAPACITORS
BO65 6 CMOS 4011B IC's
BO66 $15 \times$ VARIOUS LOW PROFILE DIL SOCKETS
BO67 15 VARIOUS TANTALUM BEAD CAPACITORS
BO68 30 VARIOUS POLYESTER CAPACITORS
Please use order code when ordering the bargain packs
Please make cheques and postal orders payable to Mailtech. All prices include VAT. Please add $£ 1.00$ postage to all orders. Telephone enquiries between 10a.m. and 5 p.m.

Tuesday to Thursday
Fax and answerphone at other times on 0158474475.

DIRECT BOOK SERVICE

ELECTRONICS TEACH-IN 88/89
INTRODUCING MICROPROCESSORS
Mike Toolay B.A. (published by Everyday
Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory
Microprocessors $(726 / 303)$. The book contains everyMicroprocessors (726/303). The book contains every-
thing you need to know including full details on registerthing you need to know
ing for assessment, etc.
Sections cover Microcomputer Systems, Microproces-
sors, Memories, Input/Output Interfacing and Progrem sors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eigh
And excellent introduction to the subject eve
 80 peges [Order code TI-88/89] E2.45

ELECTRONICS TEACH-IN No. 6
DESIGN YOUR OWN CIRCUITS
(published by Evervdey with Practical Electronics) Mike Tooley B.A.
This book is designed for the beginner and experienced reader alike, and aims to dispel some of the mystique associated with the design of electronic circuits. It shows
how even the relative newcomer to electronics can, with the right approach, design and realise quite complex circuits.
Fourreen individual p.c.b. modules are described which. with various detailed modifications, should allow anyone to design and construct a very wide range of different projects. Nine "hands-on" complete DIY projects have also been included so readers can follow the thinkevaluation, together with suggested "mods" to meet individual needs.
The subjects covered in esch chapter of the book are: Introduction and Power Supplies; Small Signal Amplifiers Power Amplifiers; Oscillators; Logic Circuits; Timers; Radio; Power Control; Optoelectronics.
The nine complete constructional projects are: Versatile Bench Power Supply; Simple Intercom; Bench Amplifier/Signal Tracer; Waveform Generator; Electronic Die; Pulse Generator; Radio Receiver; Disco Lights Con troller; Optical Communications Link.
$£ 3.46$

TEACH-IN No. 7. plus FREE SOFTWARE
ANALOGUE AND DIGITAL ELECTRONICS COURSE (published by Everyday with Practical Electronics) Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE This highly acclaimed EPE Teach-in series, which included the construction and use of the Mini Lab and Micro Lab test and development units, has been put together in developed a GCSE Electronics software program to compliment the course and a FREE DISKC covering the first two parts of the course is included with the book.
An interesting and thorough tutorial series aimed specifically at the novice or complete beginner in electronics. The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles.
If you are taking electronics or technology at school or college, this book is for you. If you just want to learn the basics of electronics or technology you must make sure you see it. Teach-In No. 7 will be invaluable if you are considering a career in electronics or even if you are
already training in one. The Mini Lab and software enable already training in one. The Mini Lab and software enable the construction and testing of both demonstration and to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab

microprocessor add-on system will appeal to higher level 160 peges those developing microprocessor projects. 160 pages

Oriter code TII
ELECTRONIC PROJECTS BOOK 1
(published by Evervday Electronics in association with Magenta Electronics)
Contains twenty projects from previous issues of $E E$ each backed with a kit of components. The projects are Seashell Sea Synthesizer, EE Treasure Hunter, Mini Strobe Digital Capacitance Meter, Three-Channel Sound to Light BBC 16K sideways RAM, Simple Short Wave Radio Insulation Tester, Stepper Motor Interface, Eprom Eraser 200 MHz Digital Frequency Meter, Infra Red Alarm, EE Equaliser, loniser, Bat Detector, Acoustic Probe Mainstester and Fuse Finder, Light Rider - (Lapel Badge,
Disco Lights, Chaser Light), Musical Doorbell, Function Generator, Tilt Alarm, 10W Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Midi Interface Variable Bench Power Supply, Pet Scarer, Audio Signal Generator.

Order codeEP1
£2.45

> The books listed have been selected by Everyday with Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue.

RADIO / TV / VIDEO

ELECTRONIC PROJECTS FOR VIDEO
ENTHUSIASTS
R. A. Penfold

This book provides a number of practical designs for video accessories that will help you get the best results from your camcorder and VCR. All the projects use inexpensive comconstruct. Full construction details are provided, including stripboard layouts and wiring diagrams. Where appropriate, simple setting up procedures are described in detail; no test equipment is needed.
The projects covered in this book include: Four channel audio mixer, Four channel stereo mixer, Dynamic noise limiter (DNL), Automatic audio fader, Video faders, Video wipers, Video crispener, Mains power supply unit
109 pages
Order code BP356 £4.95

SETTING UP AN AMATEUR RADIO STATION

I.D. Poole

The aim of this book is to give guidance on the decisions which have to be made when setting up any experience which is needed is learned by one's mistakes however, this can be expensive. To help overcome this, guidance is given on many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting licence.
Topics covered include: The equipment that is needed; Setting up the shack; Which aerials to use; Methods of construction; Preparing for the licence.
An essential addition to the library of all those taking 86 pages Order code BP300 £3.95

EXPERIMENTAL ANTENNA TOPICS

H. C. Wright

Although nearly a century has passed since Marconi's first demonstration or radio communication, there is still research and experiment to be carried out in the field of antenna design and behaviour.

The aim of the experimenter will be to make a measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this,
devices described in this book make liberal cardboard, cooking foil, plastic bottles, cat food use of These materials are, in general, cheap to cat food tins, etc. worked with simple tools, encouraging the trial-and-error philosophy which leads to innovation and discovery. Although primarily a practical book with text closely supported by diagrams, some formulae which can be used have also been included. 72 peges been included.

Order code BP278
£3.50
NEWNES SHORTWAVE LISTENING HANDBOOK Joe Pritchard G1 UQW
Part One covers the "science" side of the subject, going from a fow simple electrical "first principles", through a brief treatment of radio transmission methods to simple and how to build and modity them, with several circuits in the book
Part Two covers the use of sets, what can be heard, the various bands, propagation, identification of stations, sources of information, OSLing of stations and listening to amateurs. Some computer techniques, such as computer Morse decoding and radio teletype decoding are also covered,
224 pages

Order codene16
$£ 15.95$

PROJECT CONSTRUCTION

POPULAR ELECTRONIC PROJECTS

R. A. Penfold
included in this book are a collection of the most popular types of project which, we feal sure, will provide many designs to interest all electronics enthusiasts. All the circuits utilise modern, inexpensive and freely available com ponents. The 27 projects selected cover a very wide range and are divided into four basic areas: Radio Projects, Audio Projects, Household Projects and Test Instruments. An in Peresting addition to the library of both the beginner and 135 pages Order code BP49 £2.50

TEST EQUIPMENT CONSTRUCTION

A. APenfold

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equip ment. Stripboard layouts are provided for all designs, to gether with wiring diagra
The following designs are included:-
AF Generator, Capacitance Meter, Test Bench Amplifier AF Frequency Meter, Audio Mülivoltmeter, Analogue Probe, High Resistance Voltmeter, CMOS Probe, Transis or Tester, TTL Probe.
The designs are suitable for both newcomers and more experienced hobbyists.
104 pages Order code BP248

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books, and covers all aspects of simple p.c.b. construction including photo 8 graphic methods and designing your own p.c.b

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking fo up projects.
96 pages
Temporarily out of print

AUDIO AMPLIFIER CONSTRUCTION
R. A. Penfold
The purpose of this book is to provide the reader with The purpose of this book is to provide the reader with a
wide range of preamplifier and power amplifier designs that will, it is hoped, cover most normal requirements. The preamplifier circuits include low noise microphone and RIAA types, a tape head preamplifier, a guitar
preamplifier and various tone controls. The power preamplifier and various tone controls. The power amplifier designs range from low power battery operation to 100W MOSFET types and also include a 12 volt bridge amplifier capable of giving up to 18 W output.
All the circuits are relatively easy to construct using the p.c.b. or stripboard designs given. Where necessary any setting-up or test gear is required in order to successfully complete the project.
100 pages
Order code BPI22
£2.95

DESIGN YOUR OWN CIRCUITS
See ELECTRONICS TEACH IN No. 6 above left

TESTING, THEORY, DATA AND REFERENCE

PRACTICAL ELECTRONICS HANDBOOK -

Third Edition

lan Sinclair
A completely updated and revised third edition of this popular title. It still contains a carefully selected collection of standard circuits, rules-of-thumb, and design data for professional engineers, students and enthusiasts involved in radio and electronics, but is now over one hundred pages bigger.
The book covers many areas not available eisewhere in such a handy volume, and this new edition now includes Chapters on: Microprocessors and Microprocessor Write Memory, Buses, Reading and Writing Actions, Three-state Control, Control Bus, Timing and Bus Control, PC Register and Addressing, Addressing Methods, Interrupts, Inputs and Outputs, Ports, Keyboard Interfacing, Video Interfacing. Digital-Analogue conversions: Analogue-to-Digital Conversion, Sampling and Conversion, Digital-to-Analogue Conversion, Current Addition Methods, Conversion Problems, Bistream Methods, Computer Plug-in Boards. Computer Alds in Electronics: The Computer, Linear Circuit and Nodes, PCB Library. Hardware Components and Practical Work: Hardware, Video connectors, Control Knobs and switches, Cabinets and cases, Packages for semiconductors, integrated circuit packages, Constructing circuits, Surface mounting, Testing and trouble-shooting, Practical work on microprocessing equipment, Instruments for digital servicing work, Logic analysers.
Other chapters cover Pa
Other chapters cover Passive Components, Active Discrete Components, Discrete Component Circuits, Linear
ICs, Digital ICs. Transferring Digital Data and Computer ICs, Digital ICs, Transferring Digital Data and Computer 338 pages Order codene19 £14.95

MORE ADVANCES USES OF THE MULTIMETER

R. A. Penfold

This book is primarily intended as a follow-up to BP239, (see below), and should also be of value to anyone who already understands the basics of voltage testing and simple component testing. By using the techniques desmance of a range of components with just a multimeter (plus a very few inexpensive components in some cases) (plus a very few inexpensive components inseful quick check methods are also covered
While a multimeter is supremely versatile, it does have its limitations. The simple add-ons described in Chapter 2 extended the capabilities of a multimeter to make it even more useful.
84 pages
Temporarily out of print

ELECTRONIC TEST EQUIPMENT HANDBOOK

Mone

The principles of operation of the various types of test instrument are explained in simple terms with a minimum digltal matical analysis. The book covers analogue and digital meters, bridges, oscilloscopes, signal generators, counters, timers and frequency measurement.
Everything from Audio Oscillators, through R,C\&L measurements (and a whole lot more) to Waveform Generators and testing Zeners.
206 pages \quad OrdercodepClog 8.95

A REFERENCE GUIDE TO BASIC ELECTRONICS

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E.
F.B.I.M.

The wonders of electronics multiply unceasingly and electronic devices are creeping relentlessly into all walks of modern life. As with most professions, ours too has a language of its own, ever expanding and now encompass-
ing several thousands of terms. This book picks out and ing several thousands of terms. This book picks out and explains some of the more important fundamental terms
(over 700), making the explanations as easy to understand as can be expected of a complicated subject and avoiding high-level mathematics.
Through its system of references, each term is backed up by a list of other relevant or more fundamental terms so that a chosen subject can be studied to any depth required.
472 pages
OFrder coute BP286
$\mathbf{E 5 . 9 5}$

GETTING THE MOST FROM YOUR MULTIMETER R. A. Penfold

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In
Chapter 2 various methods of component checking are Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resis-
tors, capacitors and diodes. Circuit testing is covered in tors, capacitors and diodes. Circuit testing is covered in continuity checks being discussed.
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tacke servicing of most electronic projects.
96 pages
lOrdercode BP239
f 2.95

ELECTRONICS-BUILO ANO LEARN

R. A, Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapters to introduce common electronic components - resistors, capacitors, transformers, diodes, transistors, thyristors, fets and op.amps. Later chapters go on to describe how these components are built up into useful circuits At every stage in the and logic circuits.
At every stage in the book there are practical tests and unit to investigate the points described and to help you understand the principles involved. You will soon be able to go on to more complex circuits and tackle fault finding 120 pages 120 pages
order code pcios
f6.95

PRACTICALELECTRONICS CALCULATIONS AND FORMULA
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M

Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias - tedious and higher mathematics have been avoided where possible and many tables have been included

The book is divided into six basic sections: Units and Alternating-Current Circuits, Networks and Theorems, | Measurements. | | |
| :--- | :--- | :--- |
| 256 pages | Order code BP53 | |

NEWNES ELECTRONICS TOOLKIT

Geoff Phillips
The author has used his 30 years experience in industry to draw together the basic information that is constantly demanded. Facts, formulae, data and charts are presented ing, fault finding and repairing electronic circuits. The result is this handy workmate volume: a memory aid, tutor and reference source which is recommended to all electronics engineers, students and technicians.
Have you ever wished for a concise and comprehensive guide to electronics concepts and rules of thumb? Have you ever been unable to source a component, or choose between two alternatives for a particular application? How much time do you spend searching for basic facts or manufacturer's specifications? This book is the ductors, logic circuits, EMC, audio, electronics and music, telephones, electronics in lighting, thermal considerations, connections, reference data.
158 pages
E12.9.
INTERNATIONALTRANSISTOR EQUIVALENTS
A. Michaels
A. Michaels
Helps the reader to find possible substitutes for a popular Helps the reader to find possible substitutes for a popular
selection of European. American and Japanese transistors. Also shows material type, polarity, manufacturer and use.
320 pages
O. der code Bribj

AN INTRODUCTION TO LIGHT IN ELECTRONICS
F. A. Wilson

Marconi first bridged the Atlantic with radio waves, then of a mere 200 kilohertz. Since then for communication we have moved up the frequency scale through megahertz and microwaves and are now probing light waves. Accordingly no self-respecting electronics engineer can afford not to be conversant with light and its uses in elec. tronics since development of opto-electronic devices and comm.
rate.
rate. This book is not for the expert but neither is it for the completely uninitiated. It is assumed the reader has some basic knowledge of electronics. After dealing with subjects like Fundamamentals, Waves and Particles and The Nature of Light such things as Emitters, Detectors and Displays are discussed. Chapter 7 details four different types
of Lasers before concluding with a chapter on Fibre Opof 161 pages

Order code BP359

£4.95
PRACTICAL ELECTRONIC DESIGN DATA
Owen Bishop
This book is a comprehensive ready-reference manual for electronics enthusiasts of all levels, be they hobbyists, students or professionals. A helpful major section covers the main kinds of component, including surface-mounted devices. For each sort, it lists the most useful and readily available types, complete with details of their electronic characteristics, pin-outs and other essential information. Basic electronic units are defined, backed up by a explained. There are five more extensive sections devoted to circuit design, covering analogue, digital, radio, display, and power supply circuits. Over 150 practical circuit diagrams cover a broad range of functions. The reader is shown how to adapt these basic designs to a variety of applications. Many of the circuit descriptions include step-by-step instructions for using most of the standard types of integrated circuit such as operational amplifiers, mode power supply devices, as well as the principal logic mode po
328 pages
Order code B 复 316
£4.95

AUDIO AND MUSIC

INTRODUCTION TO DIGITAL AUDIO

 (Second Edition)lan Sinclair
Digital record
Digital recording methods have existed for many years and have become familiar to the professional recording engineer, but the compact disc (CD) was the first device to appearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers.
ing for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end product.
128 pages
Order codele vilu2

AuDio
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E.
F.B.I.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are followed by a various sounds we hear a look at examination of the a subsequent chapter on microp at room acousdics with then sets the scene for the main chapter on audio systems - amplifiers, oscillators, disc and magnetic recording and electronic music.
320 pages
Order code BPIT11
£3.95

MAKE MONEY FROM HOME RECORDING
 Clive Brooks

Now that you've spent a fortune on all that recording gear,
MIDI and all, wouldn't it be nice to get some back? Well here's the book to show you how
l't's packed with money making ideas, any one of which
will recoup the price of the book many wou have a fully fledged recording studio at home, or ius you have a fully fedged recording studio at home, or ius
a couple of stereo cassette recorders and a microphone you'll be able to put the ideas in this book into practice and 105 pages
[per code PCiO4
£6.95

MIDI SURVIVAL GUIDE

Vic Lennard

Whether you're a beginner or a seasoned pro, the MIDI Survival Guide shows you the way. No maths, no MID theory, just practical advice on stanting up, setting up
and ending up with a working MIDI system. and ending up with a working M1DI system.
Over 40 cabling diagrams. Connect synths, sound modules, sequencers, drum machines and multitracks. How to budget and buy secondhand. Using switch, thru and merger boxes. Transfer songs between different sequencers. Get the best out of General MIDI.
Understand MIDI implementation charts. No MIDI Understand MIDI implementation chars. No MIDI
theory. theory.
$104 p a$

Order code PCTIT
£6.95

PRACTICAL ELECTRONIC MUSICAL

EFFECTS UNITS

R. A. Penfold

This book provides practical circuits for a number of electronic musical effects units. All can be built at relatively low cost, and use standard, readily available components. The projects covered include: Waa-Waa Units; Distortion Units; Phaser; Guitar Envelope Shaper; Compressor; Tremolo Unit; Metal Effects Unit; Bass and The projects cover a range of complexities, but most are well within the capabilities of the average electronics hobbyist. None of them require the use of test equipment $\begin{array}{ll}\text { and several are suitable for near beginners. } \\ 102 \text { pages } & \text { Order code } 3 \text { PSB68 }\end{array}$

LOUDSPEAKERS FOR MUSICIANS

Vivan Capel
This book contains all that a working musician needs to know about loudspeakers; the different types, how they work, the most suitable for different instruments, for cabaret work, and for vocals. It gives tips on constructing cabinets, wiring up, when and where to use wadding, and when not to, what fittings are available.
finishing, how to ensure they travel well, how to connect multi-speaker arrays and much more
Ten practical enclosure designs with plans and comments are given in the last chapter, but by the time you've read that far you should be able to design your

CIRCUITS AND DESIGN

REMOTE CONTROL HANDBOOK (Revised Edition) Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of systems, from the simplest to the most complex, to be built up from a number of relatively simple modules. The author has tried to ensure that, as far as possible, the circuit mod-
ules in this book are compatible with one another. They ules in this book are compatible with one another. They produce remote control systems taifored to switch a table lamp on and off, or to operate an industrial robot, this book should provide the circuit you require.
240 pages E4.95
COIL DESIGN AND CONSTRUCTIONAL MANUAL B. B. Babani

A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transcalculations necessary are given and explained in detail. Although this book is now twenty years old, with the exception of toroids and pulse transformers little has changed in coll design since it was written
96 pages Orier code 160
£2.50
30 SOLDERLESS BREADBOARD PROJECTS
BOOK 1
R. A. Penfold

Each project, which is designed to be built on a plugoreadboard, is presented in a similar fashion with a diagram, components list and notes on construction and use where necessary. Whenever possible, the components used are common to several projects, hence with only a modest number of reasonably inexpensive components, it is possible to build in turn, every project shown.
160 pages
Temporarily out of print

AUDIO IC CIRCUITS MANUAL

R. M. Marston

Avastrange of audio and audio-associated i.c.s are readily available for use by amateur and professional design engineers and technicians. This manual is a guide to the most popular and useful of these devices, with over 240 diagrams. It deals with i.c.s such as low frequency linear amplifiers, dual pre-amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display use these devices in circuits ranging from simple signal conditioners and filters to complex graphic equalizers. $\begin{array}{ll}\text { stereo amplifier systems, and echo/reverb delay lines etc. } \\ 168 \text { pages } & \text { Order C de NET3 } \\ \text { E13.95 }\end{array}$

50 CIRCUITS USING GERMANIUM, SILICON AND ZENER DIODES
R. N. Soar

Contains 50 interesting and useful circuits and applica ons, covering many different branches of electronics, using one of the most simple and inexpensive diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener $\begin{array}{lll}\text { diodes, etc. } \\ 64 \text { pages } & \text { Order code SP? } 36\end{array}$

A BEGINNERS GUIDE TO CMOS DIGITALICs
R. A. Penfold

Getting started with logic circuits can be difficult. since many of the fundamental concepts of digital design tend applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous "real world' applications.
The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and
rics, and their advantages in practical circuit design; oscillators and monostables (timers); flip/flops, binary dividers and binary counters; decade counters and display drivers. The emphasis is on a practical treatment of the subject, and all the chiculs aire based on CMOS devices. A number of the circuits demonstrate the use ot CMOS logic 119 pages Order code BP333
£4.95

OPTOELECTRONICS CIRCUITS MANUAL

R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as the electronics student and amateur. It deals with the subject in an easy-to-read, down-to-earth, and non-mathematical yet comprehensive manner, explaining the basic principles
and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the i.c.s and other devices used are inexpensive and readily available types, with universally recognised type numbers.
182 pages [13.95
OPERATIONAL AMPLIFIER USER'S HANDBOOK R. A. Penfold

The first part of this book covers standard operational amplifer based "building blocks" (integrator, precision rectifier, function generator, amplifiers, etc), ảnd considers the ways in which modern devices can be used to give superior performance in each one. The second part describes a number of practical circuits that exploit modern operational amplifiers, such as high slew-rate, ultra low noise, and low input offset devices. The projects include. Low noise tape preamplifier. low noise RIAA preamplifier,
audio power amplifiers, d.c. power controllers, opto-
solator audio link, audio millivolt meter, temperatur monitor, low distortion audio signal generator, simple

120 pages \quad Order corle BP335 54.95

CMOS CIRCUITS MANUAL
R. M. Marston

Written for the professional engineer, student or en
thusiast. It describes the basic principles and characteris ics of these devices and includes over 200 circuits.
All the circuits have been designed, built and fully evaluated by the author;
ionally available devices.
87 pages \quad Orcler code NE12 13.95

TIMER/GENERATOR CIRCUITS MANUAL

R. M. Marston

This manual is concerned mainly with waveform generato echniques and circuits. Waveform generators are used and thus form one in most types of electronic equipmen circuit. They may be designed to produce outputs with sine, square, triangle, ramp, pulse, staircase, or a variety of ther forms. The generators may produce modulated o unmodulated outputs, and the outputs may be of single or multiple form.
Waveform generator circuits may be built using transis tors, op amps, standard digital l.c.s. or dedicated waveform "function" generator i.c.s.
The manual is divided into eleven chapters, and presents ver 300 practical circuits, diagrams and tables. The sub ects covered include: Basic principles; Sine wave gener ors, Square wave generators; Pulse generator circuits "Timer i.c." generator circuits; Triangle and sawtooth gen a.s. Multi-waveform generation; Waveform synthesize c.s: Special waveform generators; Phase

267 pages Order code NET8
£13.95

COMPUTING

INTERFACING PCS AND COMPATIBLES

R. A. Penfold

Once you know how, PC interfacing is less involved than interfacing many elght-bit machines, which
o use some unusual int A facing mothod

This book gives you: A detailed description of the lines present on the PC expansion bus. A detailed discussion of the physical characteristics of PC expansion cards. The //O map and details of the areas where your add-on can be fitted. A discussion of address decoding techniques. Practical address decoder circuits. Simple TTL 8 -bit input and output ports. Details of using the 8255 parallel interface adaptor. Digital to analogue converter circuits. In fact | everything you need to know in order to produce success- |
| :--- |
| ful PC add-ons. |
| 80 pages |
| Under code |
| 28.25 |

HOW TO CHOOSE A SMALL BUSINESS COMPUTER SYSTEM
D. Weale

This book is for anyone intending to buy an IBM compatible computer system, whether it is their first system or a replacement. There are sections on hardware, applicachoice as well as sections on the law, ergonomics and a glossary of common terms. The text contains many useful tips and some warnings (which could save much effort and expense). After having read this book you should have a better idea of what is suitable for your needs, how to obtain it and how to ensure that the system is operated 144 pages Orter code BF 323

DIRECT BOOK SERVICE ORDERING DETAILS

Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add £1.50 to your total order for postage and packing (overseas readers add $£ 3$ for countries in the EEC, or add $£ 6$ for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order (f sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY WIMBORNE, DORSET BH21 1RW (mail order only)
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post
Please check price and availability (see latest issue of Everyday with Practical Electronics) before ordering from old lists.
For a further selection of books see next month's issue.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD.

HOW TO EXPAND, MODERNISE AND REPAIR PCS AND COMPATIBLES (Revised Edition)
R. A. Penfold

Not only are PC and compatible computers very expan dable, but before long most users actually wish to take PC system. Som expandability and start upgrading the onfusing, but this aspects of PC upgrading can oe a bit the popular forms of internal PC expansion, and should help to make things reasonably straightiforward and pain Sss. Little knowledge of computing is isssume and pain ssumption is that you can operate a standard PC of some kind (PC, PC XT. PC AT or an 80386 based PC)
The subjects covered include: PC overview; Memory pgrades; Adding a hard disk drive: Adding a floppy disk dive; Display acaptors and monitors, fring a math co-processor; Keyboards; Ports; Mice and digitisers Maintenance (including preventative maintenance) and Repairs, and the increasingly popular subject of di.i. PCs.
156 pages
Oruer code BP2FII

THE PRE-BASIC BOOK

F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E.,
B.I.M. oes not skip throug leave many would-be programmers floundering but in tead concentrates on Introducing the technique by look ing in depth at the most frequently used and more easily understood computer instructions. For all new and poten ${ }_{192}$ pal micros

SERVICING PERSONAL COMPU
3rd EDITION
Mike Tooley BA
The revised and eniarged third edition contains a new chapter on servicing 68000 based microcomputers. It has been updated throughout and includes many new photo and diagrams. It is essential for anyone concerned with he maintenance of personal computer equipment o eripherals, whether professional service technician, stu
240 oages Order code NEI5
£25

A CONCISE USER'S GUIDE TO MS-DOS 5

N. Kantaris

If you are a PC user and want to get the most out of you computer in terms of efficiency and productivity, then you With this hook you will learn to do just that in the shortes and most effective way
The book explains: The enhancements to be found in MS-DOS version 5, over previous versions of the operat ing system. How the DOS operating system is structured o that you can understand what happens when you firs witch on your computer. How directories and subdirec maximum efficiency How to use the DOS Shell program (a menu-driven graphical interface) to perform variou house-keeping operations on your disk. How to manag disk files, and how to use the MS-DOS Editor to fully configure your system by writing your own CONFIG.SY and AUTOEXEC.BAT files. How to optimise your system by either increasing its conventional memory or increasing is speed. How to write batch files to automate the opera ion of your system.
A summary of all DOS commands, illustrated with ex amples, is given in the penultimate chapter, which turns it 124 pages Order code BPצ18 £4.95

SEETRAX CAE RANGER PCB DESIGN WITH COOPER \& CHYAN AUTOROUTER

RANGER2 + SPECCTRA £400.00

RANGER \& SPECCTRA AUTOROUTER
Together giving the most cost effective PCB design system on the market TODAY !
SEETRAX'S ease of use combined with COOPER \& CHYAN'S renowned gridless autorouter, at an outstanding price.

R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber, NC Drill, AutoCAD DXF
Demo Disk available at $£ 5.00+\mathrm{VAT}$

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAN SPECCTRA auto-router (SPI)
Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 $£ 60$

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036

+ VAT \& P.P
Mixed metal/carbon film resistors $1 / \mathrm{sW}$ E12 series 10 ohms to 1 Megohm
Mixed metal/carbon film resistors $1 / \mathrm{sW}$ E12 series 10 ohm
Carbon Film resistors $1 / 2 \mathrm{~W} 5 \%$ E24 series 0.51 R to 10 MO . Carbon Film resistors $1 / \mathrm{WW}$. $\%$ E24 series 0.51 R to 10 MO
100 off per value -75 p. even hundreds per value totalling 1000 Metal Film resistors $1 / 4 W 10$ R to 1 MO 5\% E12 series - $11 / 2 \mathrm{p} .1 \%$ E24 series Mixed metal/carbon film resistors 1/2W E24 series 1 RO to 10 MO 1 watt mixed metal/Carbon Film 5\% E12 series 4R7 to 10 Megohms Linear Carbon pre-sets 100 mW and $1 / 4 \mathrm{~W} 100 \mathrm{R}$ to 2 M 2 E 6 series Miniature polyster capacitors 250 V working for vertical mountin
 Mylar (polyester) capacitors 100V working E12 series vertical mounting-12p M000p to $8200 \mathrm{p}-3 \mathrm{p} .01$ to $068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}-8 \mathrm{p}$ Submin ceramic plate capacitors 100 V whg vertical mountings. E12 series $2 \% 1.8$ pf to 47 pf - 3p. $2 \% 56$ pf to 330 pf - 4p. 10\% 390p-4700p Disc/plate ceramics 50 V E1 2 series 1 PO to 1000 P, E6 Series 1500P to 47000P 2p Polystyrene capacitors 63 V working E12 series long axial wires 10pf to 820pf - 5p. 1000pf to 10,000pf - 6p. 12,000pf.
741 Op Amp - 20p. 555 Timer - 20p. LM3900..........................
CMOS 4001-20p. 4011-22p. 4017-40p. 4069UB unbuffered
220/168p; 220/25, 220/5010p; 470/16. 470/25
1000/25 25p; 1000/35, 2200/25 35p; 4700/25.
Subminiature, tantalum bead electrolytics (Mfds/Volts)
$0.1,0.22,0.47,1.0,2.2,3.3 @ 35 \mathrm{~V}-4.7 / 16,6.8 / 10,10 / 6,10 \mathrm{p} ; 6.8 / 35,12 \mathrm{p} .16 .20 \mathrm{p}$
$4.7 / 25,6.8 / 16,10 / 6,11 \mathrm{p} ; 15 / 16,22 / 6,33 / 10,15 \mathrm{p} ; 10 / 25,16 \mathrm{p}: 10 / 35,22 / 16 \mathrm{p}$ $47 / 10,20 \mathrm{p} ; 47 / 16,25 \mathrm{p} ; 47 / 20,30 \mathrm{p} ; 47 / 35,32 \mathrm{p}, 100 / 3,18 \mathrm{p} ; 100 / 6,220 / 6,20 \mathrm{p}$. VOLTAGE REGULATORS
 DIODES (piv/amps)
$75 / 25 \mathrm{~mA} 1$ N4148 2p. 800/1A 1 N4006 41/2p. 400/3A 1 N5404 14p. 115/15mA OA91 .. 8p 100/1A 1 N 4002 31/2p. 1000/1A 1 N $40075 p .60 / 1.5 A$ S1 M1 5p. 100/1A bridge. 400/1A 1 N 4004 4p. 1250/1A BY 127 10p. 30/150mA OA47 gold bonded Battery snaps for PP3-7p for PP9.
L.E.D.'s 3 mm . \& 5 mm . Red, Green, Yellow -10 p . Grommets $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$ Red flashing L.E.D. s require $9-12 \mathrm{~V}$ supply only, 5 mm .
Mains indicator neons with 220 k resistor
20 mm fuses 100 mA to 5 A . O. blow $6 \mathrm{p} . \mathrm{A} /$ surge 10 p . Holders, chassis, mounting High speed pc drill $0.8,1.0,1.3,1.5,2.0 \mathrm{~mm}-40 \mathrm{p}$. Machines 12 V dc HELPING HANDS 6 ball joints and 2 croc clips to hold awkward job AA/HP7 Nlcad rechargeable cells 90p each. Universal charger unit. GA/HP7 zinc/carbon batteries in packs of 4 Jack plugs $2.5 \& 3.5 \mathrm{~m}-14 \mathrm{p}$; Sockets Panel Mig. $2.5 \& 3.5 \mathrm{~m}$.

> HIGH QUALITY LOW COSTT C.C.T.V. CAMERA LOWLIGHT LEVEL 0.03 LUX a F1. 4 auto electronic shutter. COMPOSITE VIDEOOUT VIA bNC PLUG
> RETE SIZE CAN BE USED WITH PC DIGITISER

This super quality CCD camera can be connected into your existing can be cornecled into your existing
TV or video using the AV channel and can be used for discrete
and surveillance or observing your prop surveillance or observing your property externally using a suitable weatherproof housing. Can accommodate lighting levels ranging from daylight to street lighting using its built in electronic shutter. Excellent when using with an infra red source. Buill in wide angle fixed focus lens the camera has a resolution of 380
TVL Can be housed inside TVL. Can be housed inside an empty floodight case, (extra).

For full range of CCTV products send SAE to:
Direct CCTV Ltd., Dept. PE27,, Unit 6, Carrick Court, Forrest Grove Business Park, Middlesbrough, TS2 1QE.10 MHz Function Generator 1 year guarantee. Prices include VAT and tree dellivery, phone for completet list. H1001 Continuity tester inc probes \& cary case ₹ 28.00 £ 9.99 18533 dig multimeter bar graph,V,1,R,Hz,F, ${ }^{\circ} \mathrm{C}$ § 86.95 \& 57.00 H2001 2 MHz bench pulse generator inc carry case $\mathbb{1} 739.29$ £ 69.00 MX1010 100 MHz bench frequency counter 8 dig led $£ 751.58$ \& 79.00 H3001 Digital storage adapter, use on any scope £251.40 $£ 119.00$ PS303 PSU sgle 0-30V 03M o/f s/c oc cv 2 meters £154.61 £128.00 PS3030 PSU dual 0-30V 0-3A o/ s/c cc cv 4 meters E289.76 $£ 186.00$ VANN DRAPER ELECTRONICS LTD Tel (0116) 2813091 Fax (0116) 2570893 Afexander House. Eampton Close. Wigston. Leicester. LE18 $2 R Z$

PCB SERVICE
Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remitances should be sent to The PCB Serv ice, Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Cheques should be crossed and made payable to Everyday with Practical Electronics (Payment in \mathbf{f} sterling only).
NOTE: While 95\% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back Issues page for details.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
L.E.D. Sandglass OCT'93		
Main and Display boards	841/2	£7.30
Kettle Alert	843	f5.19
Linear Power Supply (double-sided)	844	£9.77
Multi-Purpose Audio System		
Six Channel Stereo Mixer	845	£11.98
Multi-Purpose Audio System NOV'93		
Microphone Pre-Amp module	846	f4.88
RIAA Pre-Amp module	847	£5.11
20 Metre Receiver	848	£6.63
Multi-Purpose Audio System EDE'93		
Tone Control and 1W Stereo Amplifier	849	f6. 09
Tone Control	850	£5.12
1W Stereo Amplifier	851	£4.88
Three-Way Christmas Tree Lights Flasher	853	£5.65
Auto Alarm	854	f5.49
250W/600W Battery to Mains Inverter	855	£13.92
Multi- Purpose Audio System		
10W + 10W Stereo Power Amplifier		
Amplifier	852a	£5.65
Power Supply	852b	£5.49
Pond Heater Thermostat	856	£5.77
Timer/NiCad Capacity Checker	857	£6.30
Multi-Purpose Audio System FEB'94		
Balanced Microphone Preamplifier	858	£5.30
Balanced Microphone Power Supply	859	£5.14
Whistle Controlled Light Switch	860	£5.19
Battery to Mains Inverter - U.P.S. charger board	862	£7.38
Three Phase Generator MAR'94	861	£5.95
Visual Doorbell	863	£5.80
CCD TV Camera - Control Board (double-sided, plated-through-hole)	865	£15.00
Telephone Ring Detector APR'94	864	£4.72
CCD TV Camera		
Combined Video, Test \& Ext Plug Boards	866a/e	£11.00
Frame Grab Control	867	£15.00
(double-sided plated-through-hole)		
EPE Sound DAC PC Sound Board	868	f4.77
MOSFET Variable Bench Power Supply	869	£5.80
L.E.D. Matrix Message Display Unit MAY'94		
Display Board	870	£18.00
CPU Board	871	£7.20
Stereo Noise Gate	873	£6.14
Simple TENS Unit	875	f5.84
Capacitance/Inductance Meter	876	£6.44
Advanced TENS Unit JUN'94	877	f6.56
Digital Water Meter - Scaler	878	
Counter/Display L.ED. Matrix Message Display Unit	879	pair
Keypad	872	£5.19
PC Interface	880	£5.82
Microprocessor Smartswitch	881	£5.61
Microcontroller P.I. Treasure Hunter	882	£6.60
Print Timer JULY'94	874	£5.82
Watering Wizard	883	¢6.60
Simple NiCad Charger	884	£4.98
Voxbox	885	£6.90
Stereo HiFi Controller - 1 Power Supply	886	£5.66
Stereo HiFi Controller - 2 AUG 94		
Main Board	887	£7.39
Expansion/Display Boards (pair)	888	¢9.80
Dancing Fountains - 1		
Pre.amp	889	£5.28
Pump Controller	890	£5.41
Filter	891	£5.23
6802 Microprocessor Development Board	894	£9.15
Dancing Fountains - 2 SEPT'94		
PC-Compatible Interface (double-sided)	892	£10.90
Automatic Greenhouse Watering System	895	£5.33
Seismograph - 1 Sensor/Filter	896	£6.23
Clock/Mixer	897	£5.87
3-Channel Lamp Controller	899	£8.17

PROJECT TITLE	Order Code	Cost
Seismograph - 2 OCT94		
PC-Compatible Interface (double-sided)	898	£10.72
Visual/Audio Guitar Tuner	900	£7.55
Digilogue Clock	901	£12.50
Hobby Power Supply	902	£5.00
Audio Auxiplexer		
Control Board	903	¢7.72
Receiver	904	¢6.24
Power Controller NOV'94	905	¢4.99
$1000 \mathrm{~V} / 500 \mathrm{~V}$ Insulation Tester	906	£5.78
Active Guitar Tone Control	907	¢4.50
TV Off-er (pair)	908/909	£7.25
Video Modules - 1 Simple Fader	910	£5.12
Improved Fader	911	¢6.37
		£5.15
Rodent Repeller DEC'94	913	¢6.26
EPE Fruit Machine	914	£8.14
Video Modules -2 Horizontal Wiper	916	¢6.23
Vertical Wiper	917	f6.35
4-Channel Audio Mixer	918	£6.20
Spacewriter Wand	921	f4.00
Universal Digital Code Lock	922	£6.25
Video Modules - JAN'95		
3 Dynamic Noise Limiter	919	£5.92
System Mains Power Supply	920	$\mathrm{f} 4.98$
Magnetic Field Detector	923	£5.77
Model Railway Track Cleaner	924	¢5.11
Moving Display Metronome	925	£6.24
The Ultimate Screen Saver FEB'95	927	¢5.66
Foot-Operated Drill Controller	928	¢5.73
Model Railway Signals	929	£5.96
12V 35W PA Amplifier	930	f12.25
Multi-Purpose Thermostat MAR95	931	$\text { £6. } 30$
Multi-Project PCB	932	£3.00
Sound-Activated Switch		
Audio Amplifier		
Light Beam Communicator (2 boards required)		
Multi-Project PCB APR'95	932	£3.00
Light-Activated Switch		
Switch On/Off Timer		
Continuity Tester		
Auto Battery Charger	934	£5.36
National Lottery Predictor	935	£5.34
R.F. Signal Generator R F Mod	936	
Coil \& Power Supply (pair)	937a/b	£6.10
MIDI Pedal	938	£7.78
Club Vote Totaliser	939	£6.05
PIC-DATS Development System (double-sided p.t.h.)	940	£9.90
EPE HiFi Valve Amplifier Phase splitter PIC-DATS 4 -channel Light Chaser	941 942	$\begin{aligned} & £ 6.71 \\ & £ 7.90 \end{aligned}$
HV Capacitor Reformer JULY'95	943	£5.60
Ramp Generator		
Logic Board (double-sided p.t.h.) \& Analogue board (pair)	944/5	£32.00
Automatic Curtain Winder	946	£6.75
Windicator	947	£4.10

EPE PRINTED CIRCUIT BOARD SERVICE

Order Code Project Quantity Price
\qquad

Address.

I enclose payment of $£ \ldots .(c h e q u e / P O ~ i n ~ £ ~ s t e r l i n g ~ o n l y) ~ t o: ~ I ~$
 Minimum order for credit cards $£ 5$

[^1]I Signature.
Card Exp. Date
1

SATELLITES LOST

Two amateur radio satellites were lost when their launch vehicle, a Russian START rocket, exploded on March 28. Two Russian satellites (for studying meteorite particles) were also lost.
One of the amateur satellites was the GURWIN-1 Techsat, built at the Tech-nion-Israel Institute of Technology in Haifa. The other was the UNAMSAT, assembled by students at the Universidad Nacional Autonoma de Mexico (UNAM) in Mexico City. Both were designed for packet radio repeater use and UNAMSAT also carried a unique "meteor" radar" experiment.
The START rocket is based on the SS-25 inter-continental balistic missile and the launch was to have. demonstrated that refurbished military rockets could be used for civilian purposes.

In November 1993, the first test launch of a converted SS- 25 was successful, but with a lighter load. As a result, radio amateurs, particularly in Europe, had hoped that the Russian rockets could provide an inexpensive way to launch amateur radio satellites.
The loss is a very great disappointment, not only to those who worked so hard to design and construct the spacecraft but to all radio amateurs around the world who participate in satellite operation.
The Israelis will, apparently, rebuild and could have another unit ready in a matter of months, but it is not known if the Mexicans are able to do this. There was no insurance. (Information from W5Y/ Report).

FIRST RADIO AMATEUR

The international Amateur Radio Union has designated the third Saturday in September as World Amateur Radio Day. This, it says, will be an opportunity to focus public attention on the benefits derived from Amateur Radio; and the theme for 1995 will be " 100 Years of Radio"
This year is of course being celebrated as the 100th anniversary of the invention of wireless by Guglielmo Marconi in 1895. Marconi's name has been so wellknown since that time that it is hard to realise how ill-equipped he was when he began the experiments which gave him his place in history. In later years he was described as "the first radio amateur".
He was not particularly well educated, although an aptitude for physics was encouraged by a neighbour, Prof. Augusto Righi, who arranged library facilities for him at Bologna University. He obtained no qualifications, and spent much of his time at home undertaking minor scientific experiments.
In 1894, he read a commemorative article by Righi about Heinrich Hertz'
work with radio waves. Fired with enthusiasm he repeated Hertz' experiments, quite indifferent to the fact that previously only experienced scientists had sought to repeat, and improve on, the great man's work.
Hertz had found that waves radiated from an electric spark induced another, feebler, spark in a receiving circuit a few metres away. Marconi experimented with a coherer (detector), discovered by Edouard Branly and aiready used by others, including Oliver Lodge, in similar experiments. By trial and error Marconi produced an improved version, enabling his signals to be detected outside the house.

In 1895, he connected sheet iron to each side of his transmitter spark gap to obtain a longer wavelength. By chance he held one sheet in the air whilst the other lay on the ground. This primitive antenna radiated a much stronger signal. He modified the receiver in the same way and increased the range to about a kitiometre.

FIRST INTERNATIONAL CONTACT

The receiver was carried further into the surrounding countryside by Marconi's brother, helped by his father's employees. A handkerchief waved on a stick acknowledged reception of a signal, and a rifle shot told Marconi that his waves had successfully reached over two kilometres, with a hill between transmitter and receiver
He now tried to interest the Italian authorities in his work, but without success. In February 1896 he went to London where, on June 2, he applied for the first ever wireless patent. He was introduced to William Preece. Engineer-in-Chief of the Post Office who, impressed by Marconi's equipment, arranged demonstrations before Post Office and military observers.
At a püblic demonstration, Preece lectured whilst Marconi, moving among the audience, carried a receiver which rang a bell every time Preece pressed a switch on the platform. Marconi, the amateur experimenter from Italy, was now a 22 yearold celebrity.

Only eighteen months after leaving home, he returned by official invitation and was presented to the King and Queen of Italy. In a demonstration for the Italian navy he established contact with a ship below the horizon.
On 27 March 1899 he achieved the first international radio contact, between England and France, a distance of some 50 km . Later that year the range was increased to about 130 km .
The earliest transmitters were untuned and during demonstrations for the US navy Marconi was unable to communicate between two warships whilst a shore-based station was operating. In

1901, however, he patented a system enabling a transmitter to radiate on a particular radio frequency and a receiver to be tuned to that frequency.
In that year he carried out his famous transatlantic tests. High-powered spark transmitters were installed at Poldhu in Cornwall. After various mishaps, with the vast antennas 'specially erected for the purpose blown down by gales, oneway contact was finally established from Cornwall to Newfoundland, where Marconi used a 183 metres long kite antenna coupled to an untuned receiver.

TRANSATLANTIC SUCCESS

Poldhu sent the Morse letter " S " for three hours a day. At 12.30 on December 12, Marconi passed the earphone to his assistant, asking, "Can you hear anything Mr Kemp?'" The prearranged signal was there, and was heard three times that day.

A company was formed in 1900 to provide communications with ships at sea carrying Marconi apparatus. Seventy ships were equipped by the end of 1902, and there were twenty-five shore stations, including several in America
He died on July 20, 1937. The next day radio transmitters rourd the world shut down for two minutes in tribute to him. For that brief period the ether was as quiet as it had been in 1894

From modest beginnings had grown a great commercial empire but Marconi was always aware of the value of the amateur approach. In 1919, when there was pressure on the British government to re-introduce amateur radio after WW1, he wrote:
'In my opinion it would be a mistake to introduce legislation to prevent amateurs experimenting with wireless telegraphy. Had it not been for amateurs, wireless telegraphy as a great world-fact might not have existed at all. A great deal of the development and progress of wireless telegraphy is due to the efforts of amateurs.

SUMMER BROADCAST GUIDE

The International Short Wave League's summer issue of their "Guide to English Language Short Wave Broadcasts to Europe" is now available.
With programme information given in 24-hour time order, this useful publication enables English language broadcasts from many countries around the world to be found by frequency at any time of night or day.
At a modest price of only $£ 1.50$ (IRCs or postage stamps to the same value acceptable) it can be obtained from the ISWL at 10 Clyde Crescent, Wharton, Winsford, Cheshire CW7 3LA, or from ISWL stands at amateur radiof rallies. Please mention EPE when ordering.

SUSSEX AMATEUR RADIO \& COMPUTER FAIR

Sunday 9th July 199510.30 to 16.00

Brighton Race Course

Trade stands for: New and Used Amateur Radio Equipment, Computers and Components Sales, Bring and Buy Stall, Picnic Area, Refreshments and Free Car Parking
Admission £1.50. For details: 01273501100

N. R. BARDWELL LTD (EPE)

20	Signal dodes 1N4148..................... $£ 1.00$	25	3 mm red l.e.d.s............................. 51.00
75	Rectifier Diodes 1N4001.................. $£ 1.00$	25	Asstd. high brightness 1.e.d.s.......... $£ 1.00$
50	Rectifier Diodes 1N4007................. $£ 1.00$		Axial l.e.d.s (Diode package) 11.00
25	Rectifier Diodes 1N5401................. $£ 1.00$	12	Asstd. 7 -segment displays............. 11.00
8	NE555 Timer I.C.s.......................... $£ 1.00$		ORP 12 light dependant resistors..... $£ 1.00$
50	Asstd Zener Diodes.......................§1.00	30	Assid. If transformers.................. 11.00
30	BC212L Transistors....................... $£ 1.00$	48	Asstd, coil formers $£ 1.00$
30	BC2131 Transistors...................... $£ 1.00$	100	Asstd. RF chokes (inductors)........... $\mathbf{\Sigma 1} 00$
20	BC327 Transistors $£ 1.00$	30	Asstd. connectors edge, d.i.1., sil etc $£ 1.00$
30	8C328 Transistors........................ $£ 1.00$		Asstd. d.I.I. sockets up to 40-pin....... $£ 1.00$
30	BC337 Transistors....................... $£ 1.00$	200	Asstd. disc ceramic capacitors....... $\mathbf{¢ 1 . 0 0}$
30	BC478 Transistors........................ $£ 1.00$	80	Asstd. capacitors 1 nF to $1 \mu \mathrm{~F}$........... $\mathbb{E} 1.00$
30	BC546 Transistors........................ $£ 1.00$	80	Asstd electrolytic capacitors........... $¢ 1.00$
30	BC547 Transistors........................ $£ 1.00$	10	4P3W MB8 min. rotary switches...... $£ 1.00$
30	BC548 Transistors........................ $£ 1.00$	20	Min. SP/CO slide switches.............. $£ 1.00$
30	BC549 Transistors......................... $£ 1.00$		1" glass reed switches $£ 1.00$
30	8C550 Transistors............................ $£ 1.00$	200	4N7 mini axial capaclors................ $£ 1.00$
25	BC557 Transistors........................ $£ 1.00$		24-pin d.i.l. wire wrap i.c. skis. $\$ 1.00$
30	BC558 Transistors........................ $£ 1.00$		12 V motorised volume control 50k... $£ 1.00$
30	BC559 Transistors........................ 1.00		Grommets $6.3 \mathrm{~mm} \mathrm{id}, 9.5 \mathrm{~mm}$ od.,..... $£ 1.00$
25	BC640 Transistors............................ $£ 1.0$	100	c/t $1 / \mathrm{W} 5 \%$ resistors any one
30	MPSA42 Transislors.................... $£ 1.00$		value, E24, range 1R to 10M........... ¢0.45
30	MPSA92 Transistors..................... $£ 1.00$		
20	2N3702 Transistors....................... ${ }^{\text {2 }}$ 1.00	Prices Include VAT. postage \{1.25. Stamp for Lists 288 Abbeydale Road, Sheffield S7 1FL Phone (0114) 2552886 Fax (0114) 2500689	
10			
10 25	$79 \mathrm{M08} 8 \mathrm{~V} 500 \mathrm{~mA} \mathrm{Neg}$ Regulators $£ 1.00$		

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX $\star 01316672611$
The supplier to use if you're looking for:* COMPONENTS AIMED AT THE * HOBBYIST * COMPETITIVE VAT INCLUSIVE * PRICES

MAIL ORDER - generally by * RETURN OF POST

* FRIENDLY SERVICE *

OPEN:
Monday-Thursday 9.15-6.00
Friday 9.15-5.00

Everyday with Practical Electronics reaches nearly twice as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last ten years

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday with Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday with Practical Electronics Advertisements, Holland Wood House, Church Lane, Great Holland, Essex CO13 0JS. Phone/Fax (01255) 850596.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

PCB PHOTOGRAPHY
 SERVICE AVAILABLE

Photo-plotts from Gerber Data, Disc or Modem, Enlargement/Reduction, Taped Artwork.
Call: SEVERNSIDE PHOTO TOOLS 01746763203

 ENVLCD
 A versatile digital thermometer/hygrometer module on a small PCB with a 20 way solder edge connection allowing connection of various options and data capture to a computer. ENVPCB
 £14.95 ex VAT
 A microprocessor controlled acquisition module that connects to the Temperature/Humidity module to interface to the computer's serial port.
 £67.50 ex VAT king and 17.5%
 Please add $£ 2.50$ po VAT to your order.
 SATURN SOLUTIONS Ingles Yard, Jointon Road, Folkestone
 Phone (01303) 248634 2RF

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:

Mr. J. F. Davies, 70 Ash Road, Cuddington,

 Northwich, Cheshire CW8 2PB.Space donated by Everyday with Practical Electron/cs

Every day

 With PRACTICAI ELECTRONICS
SUBSCRIPTION ORDER FORM

Annual subscription rates (1995): UK £24.00. Overseas $£ \mathbf{3 0}$ (surface mail), £47.50 (airmail).

To:

Everyday with Practical Electronics,
Allen House, East Borough, Wimborne, Dorset B H21 1PF

Tel: 01202881749
Fax: 01202841692
BTEC ELECTRONICS FULL-TIME TRAINING
THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT AN EQUAL OPPORTUNITIES PROGRAMME O.N.C., O.N.D. and H.N.C. Next course commences Monday 18th Seplember 1995 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-3738721

> This 3 cm space in Everyday with Practical Electronics will ONLY cost you $£ 24$ +vat

TECHNICIAN

SUPPORT

EGE
AD
9SU

Name
 Address

\qquad
\qquad
\qquad
l enclose payment of $£$.
(cheque/PO in $£$ sterling only, payable to Everyday with Practical Electronics). Alternatively send Access or Visa number and card expiry date.

Signature

Please supply name and address of cardholder if different from the subscription address shown above. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Miscellaneous

PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8GR, or phone Brighton 883871
G.C.S.E. ELECTRONICS KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics, 70 Oxford Road, Clacton, COIS 3TE.
PLDs AND EPROMS copied or programmed We supply logic devices/convert discrete logic to PLDs. Also PCBs designed. Send for details to PO Box 1561 Bath (01225444467).
VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice/lists please ring, Geoff Davies (Radio), Tel: 01788574774.
CAPACITORS WANTED, axial, 350 V and above, polyester, polypropylene and electrolytic. Geoff Davies (Radio), Tel: 01788574774.
MIDI LIGHTING MODULE, eight 500W channels, 64 levels, 127 presets, assembled and tested Requires 20 V AC supply and case. Cheques for $£ 59$, made payable to Technology Direct, 27 Hartland Grove, Priestfield, Middlesbrough, Cleveland TS30HL.
ELECTRONICS AND COMPUTER accessories, tools, etc. Free lists from Spiral Solutions Ltd., 37 Wilmot Road, London, N176LH.
LASER POINTERS 5 mW 670nM (RED). German quality, $£ 69.50$ post paid. Also complete He-Ne Laser systems from $£ 85.00$ Telephone 01925575848 for details. Cheques or PO to, English Scientific, 12 Orford Avenue, Warrington, Cheshire, WA2 7QL.
ELECTRONIC PROJECTS FOR MODEL ROCKETS. A new book describing how to construct and fly electronic payloads on model rockets - atmospheric measuring, radio telemetry, tracking and much more. $£ 5.95$ (inc. P\&P) payable to ORS Publishing, 8 Allerton Gardens, Heaton, Newcastle upon Tyne NE6 5UT.
PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production Artwork raised from magazines or draft designs at low cost. PCB's also designed from schematics. Production assembly also undertaken. For details send to P. Agar, 36 Woodcot Avenue, Belfast, BT5 5JA or phone 01232473533 (7 days).
PLASTIC INJECTION MOULDING at prices you can afford. Very low cost (sometimes free) Tooling. Small quantities speciality. 01685 (Aberdare) 874763.
PIC CHIP PROGRAMMER. Low cost solution, uses PC printer port, full constructiona details, £20. 1. Bailey, 15 Mount Road, Fleetwood FY7 6EZ.
WANTED, Circuit diagram for a Harrison SP 7 Audio Mixer, also a UB 79 Cherry keyboard. Please phone 01772435678.
NEW. Learn to repair PC Computers. Complete Home Study Course. Includes 20 comprehensive lessons, separate reference manual fault finding charts, diagnostic sofware and more. Only $£ 24.95$. Tel: 01633280216.
ANY ITEM £2.99 INCLUSIVE! Stereo preamp +5 push buttons; 10W amplifier + controls; Slider P.S.U. 12-40V. K.I.A., Regent Road, Ilkley
GOULD 400 Digital storage oscilloscope, in cluding battery unit, probes and manual, $£ 320$. Guildford 01483572994 or 01344826985.

MAKE YOUR INTERESTS PAY!
Over the past 100 years more than 10 million students throughout the worla have found $t \mathrm{t}$ worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of lifel ICS has over 100 years experience in home-sludy courses, and is the largest correspondence school in the world. You leam at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for FREE INFORMATION on the course of your choice. (Tick one box only')
 GCSE'A' LEVEL over 20 examination subjects to choose from. Ask for details.

Electronics

\square	TV, Video \& Hi-Fi Servicing
\square	Retrigeration \& Air Conditioning

Electrical Engineering
Electrical Contracting/Installation
PC Repair
Computer Programming Address
RE International Correspondence Schools, Dep. ECS $75,312 / 314$ High Street.

VSA
 Cooke International
 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE
EXPORT, TRADE AND U.K. ENQUIRIES WELCOME SEND LARGE S.A.E. (50p POSTAGE) FOR LISTS OF EQUIPMENT \& MANUALS ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS \qquad SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM-SPM
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel $(+44) 01243545111 / 2$ Fax $(+44) 01243542457$ EQUIPMENT \& ACCESSORIES PURCHASED

Most advertisements are legal, decent, honest and truthful. A few are not, and, like you, we want them stopped.

If you would like to know more about how to make complaints, please send for our booklet: 'The Do's and Don'ts of Complaining'. It's free.

The Advertising Standards Authority. We're here to put it right.

ASA Ltd., Dept. Z., Brook House, Torrington Place, London WCIE 7HN This space is donated in the interests of high standards of advertising.

- INFOTECH \& STREE 포

$$
76 \text { Church St, Larkhall, Lanarks, ML9 1HE }
$$

Phone (0698) 883334/888343 or Fax (0698) 884825

The World's Largest Collection of SERVICE MANUALS \& CIRCUITS

We are now successfully running a Library Service which allows you to borrow any manual you want for as long as you want, and when you need another manual, just return the one you have, plus a $£ 4.95$ exchange fee and tell us what you want next.

$$
\frac{\text { Borrow any Service Manual for } £ 4.95}{\text { regardless of its size or normal cost }}
$$

The cost of this service is a yearly subscription fee of only £59.95. Join now \& get a free 'Data Ref Guide"

SERVICE MANUALS \& Technical Books
Available for most equipment, any make, age or model. Return the coupon for your FREE catalogue MAURITRON TECHNICAL SERVICES (EPE) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY. Tel:- 01844-351694. Fax:- 01844352554.
Piease forward your latest catalogue for which I enclose 2×1 st Class Stamps. or $£ 3.50$ for the complete Service Manuals Index on PC Disc plus catalogue. NAME
ADDRESS \qquad

POSTCODE

photocopy ini, coupon if you do not with to cut the emagexine

NEWMARKET
 TRANSFORMERS LTD.

Unit 15, Craven Way Industrial Est., Newmarket, Suffolk. CB8 0AP Telephone: (01638) 662989 Facsimile: (01683) 660799 TOROIDAL TRANSFORMER MANUFACTURERS 220/240V ANY Two Secondaries

VA	Price	Dimensions
30	$£ 11.30$	$70 \times 35 \mathrm{~mm}$
50	$£ 12.40$	$80 \times 45 \mathrm{~mm}$
80	$£ 13.90$	$90 \times 35 \mathrm{~mm}$
120	$£ 14.80$	$90 \times 45 \mathrm{~mm}$
160	$£ 18.95$	$110 \times 45 \mathrm{~mm}$
225	$£ 21.75$	$110 \times 50 \mathrm{~mm}$
300	$£ 23.80$	$110 \times 60 \mathrm{~mm}$
500	$£ 29.85$	$140 \times 60 \mathrm{~mm}$
625	$£ 34.70$	$140 \times 70 \mathrm{~mm}$
800	$£ 39.80$	$125 \times 65 \mathrm{~mm}$
1000	$£ 45.70$	$160 \times 70 \mathrm{~mm}$

Prices include VAT \& Carriage
For further information and quantity discounts. contact Michael Dornari Phone: 01638662989 Fax: 0163866.0799

KITS	
TIMER KIT. Controls 4 outputs at preset times over a 7 day cycle. ${ }_{\text {c }} \mathbf{5} 5.95$LED display. Easily programmed via keyboard.	
ELECTRONIC LOCK KIT. Over 38,000 possible combinations.Alarm sounds after $3-9$ failed guesses and locks out keyboard for	
preset time.	
SUPER SENSITIVE FM MICROBUG. Runs of a 9 V battery, fits in a match box, listen in on any FM radio £10.25 STROBE KIT. Can be triggered by external voltage e.g. loudspeaker	
flash for photographic purposes. ${ }^{\text {Plus many many more. Including all TK Kits. }}$	
For full details send your SAE now.	
COMPONENTS	
We have a full range of electronic components at competitive prices. Send an SAE for price lists. NEW BOOK! Beginner's Guide To the Internet. $88 \mathrm{pp} £ 5$ Inc.	
GATS 149 The Vale, Acton W3 7HR Tel: 01819320144 Fax: 01819320145	

COMPAC ELECTRONICS
3L WEYLOND ROAD, DAGENHAM, ESSEX RM8 3AB Tel: 01819840831

REMOTE CONTROLS

Amstrad, Toshiba, from Eb .
Ferguson, Philips. ITT, Sony from ElO . Universal Remote Control, operates TV, Video Satellite, with Teletext buttons, $\mathbf{£ 1 6 . 9 9}$ o non-Text $£ 10.99$
We repair Philips hand sets, $\mathbf{5 5 . 0 0}$
Pinch Rollers from $£ 2.99$.
Video Fig. 8 Mains Lead, Telefunken type. $\mathbf{~} 1$ R.F. Video leads, 50 p .

SCART to SCART leads, $\mathbf{£ 1 . 7 5}$.
SCART to SCART leads, all pins connected.
£2.33.
Aerial R.F. cable, RG62, 30p per mtr
Aerial R.F. male plugs, 30p each.
TV on/off switches, from $\mathrm{f1.95} \mathrm{}$,
Halogen Lamps, 240 V 500 W , for outdoor
floodlamps, 81.75.
Miniature Tool Kit, com
screwdrivers, $\mathbf{E} 7.00$.
VBrta, p.c.b. mounting rechargeable batteries, oval type Ni-Cad. Suitable for CMOS and NMOS systems. $2 \cdot 4 \mathrm{~V} 100 \mathrm{nAH}, 99 \mathrm{p}$. Ferguson TX90 tube bases, $\mathbf{E 2}$.
Frguson TX1
Ferguson TX100 SCART panels, £2.
Indoor amplified antenna, wide band, UHF/VHF
Philios K30 colour brightness c.
draw etc. $£ 2$.
TV Loudspeakers, $6^{\prime \prime} \times 4^{*}$ " 16 ohms, $\mathbf{£ 1} .50$ each.
Power Supply AC adapters. universal 300 mA . £4.99, 750mA. $£ 7.99$.
Philips Krypton Torches, $\mathbf{£ 1 . 6 0}$
Philips Television G11 line
Philips Television G11 line output pane
complete, $£ 5$ plus $£ 2$, post $\&$ carr complete, $£ 6$ plus $£ 2$, post \& carr.
Philips Soldering Iron, $240 \mathrm{~V}, \mathbf{2 5 W}$. 5.9. Votage Regulators, LM340T, 44p. I.C.s: SAA3010P £3.40; TDA3651SI E7.10; TDA3654 £1.89; TDA3651A $£ 2.85$;
TDA3562A $£ 2.85$; TDA2600 $£ 5.73$; TDA2578 £3.43; TDA2579 £2.86; TDA2030 £2.28; TDA3653 £3.43; TDA3651 £2.29; TDA 3562 £3.44; TDA 3564 £4.59; TDA4500 £3.43: TDA8180 £5.48: TDA8190 £3.43: DIODES: TYpe RHI, £2.00.
TRANSISTORS: BU208A E1, 20; BU508AF E1.75; BU11AF 55p; BC32710p; BC337 10p; BC338 10p; BC548 10p; BC54910p. CAPACITORS ELECTROLYTIC: $0.22 \mu 50 \mathrm{~V}$ $5 \mathrm{p}: 1 \mu 50 \mathrm{~V} 5 \mathrm{p}: 2 \cdot 2 \mu 50 \mathrm{~V} 6 \mathrm{p}: 4.7 \mu 25 \mathrm{~V} 10 \mathrm{p}$: $47 \mu 100 \mathrm{~V} 20 \mathrm{p} ; 470 \mu 25 \mathrm{~V} 20 \mathrm{p} ; 680 \mu 63 \mathrm{~V} 60 \mathrm{p}:$
$2,200 \mu 40 \mathrm{~V} 60 \mathrm{p} ; 3,300 \mu 25 \mathrm{~V} 80 \mathrm{p}$.

SATELLITE

Satellite Finder Kit, Meter etc. $\mathbf{£ 2 9 . 9 9}$
plus $£ 2$ post \& carr.
Amstrad Compact Black Cap. LNB, voltage Amstrad Compact Black Cap. LNB, voltage
swithing. 1 dB , special price $£ 23$, 95 plus $£ 2$
 Satellite dishes,
E5 post \& carr.
SPECIAL OFFER, satellite owners upgrade to Astra 10 with our ADX frequency extender, £25.00. Can be used with standard or
enhanced LNB.
mtr., 100 mtr, roll $£ 27$ plus $E 5$ post $\&$ carr. F. Connectors, 40p each.
NOKIA LNB FSS $1 \cdot 3, £ 15.00$.

NOKIA LNB FSS $1-3, £ 15.00$.
NOKIA Feed Horns, for offset antenna, $£ 8$. VIDEO
Head Cleaners, £2.99.
Amstrad Universal remote controls, $\mathbf{E 6 . 0 0}$ eriswitch SCART switching box, autamatically switches between VCR,
Satellite and TV. Expensive unitl Original priced at $£ 99.95$. OUR PRICE $£ 9.99$. These units require an additional 12 V d.c. adaptor
at $£ 4.99$ and 3 SCART leads at $\mathbf{£ 6}$. Technical at $£ 4.99$ and 3 SCART lesds at £6. Technical
details on request. $£ 4$ post 8 cart.

AUDIO

CONNECTORS: Phono to Phono couplers, 40 p each; Phono plugs, red or black, 50 p
each; Phono sockets, red or black, 50 p each Philips Audio Cassette Head Cleaning Splicing Kit, £2.
High quality loudspeaker cable, 50 p per mtr.
Servicing Sprays $£ 3.00$ mostres. Servicing Sprays $£ 3.00$ most types. Ceramic Type Pulse Capacitors, 20 for $f 1$. with stand, $\mathbf{£ 2 5}$ a pair, plus $\mathbf{5 6}$ post $\&$ carr. Speaker terminal outlets. 50 p each.
SPECIAL OFFER THIS MONTH
PYE Stereo Cassette/Radio, FM/AM, Now. Boxed, $£ 25.99$ plus $£ 5$ post \& carr. MINI DRILL, circuit beard drill, 12V 1A, $\mathbf{~ 6 6 . 2 0 .}$

L.O.P.T. TRANSFORMERS

 WIDE RANGE AVAILABLE,PHILIPS, FERGUSON etc.
This is just a small sample of components available, prase phone with your requirements.
Please add $£ 1.00$ postage $\&$ packing, except Please add £1.00 postage \& packing, except
where stated otherwise.
No VAT charged.

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only.
All inclusive prices NO VAT to add on.
Send 43 p stamped self addressed label or envelope for catalogue/clearance list.
At least 2,100 offers to amaze you.
Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 0181-393 9055

ADVERTISERS INDEX

N. R. BARDWELL
.577

B.K. ELECTRONICS .. (iii)

BRIAN J. REED... 580
BULL ELECTRICAL.. (ii)
CHATWIN GUITARS (JCG) ... 577
CIRKIT DISTRIBUTION.. 511
COMPAC ELECTRONICS.. 580
COMPELEC.. 577
COOKE INTERNATIONAL... 579
CRICKLEWOOD ELECTRONICS.. 510
CR SUPPLY COMPANY.. 574
DIRECT CCTV... 574
DISPLAY ELECTRONICS... 506
EPT EDUCATIONAL SOFTWARE.. 509
ESR ELECTRONIC COMPONENTS................................ 516
EXPRESS COMPONENTS.. 569
GATS ELECTRONICS... 579
GREENWELD ELECTRONICS.................................. 539
HART ELECTRONIC KITS... 559
ICS... 579
INFOTECH \& STREE.. 579
INTERCONNECTIONS... 511
JPG ELECTRONICS... 580
LABCENTER .. 544
MAGENTA ELECTRONICS..515 515
MAILTECH.. 570
MAPLIN ELECTRONICS... (iv)
MAURITRON.. 579
M\&B ELECTRICAL SUPPLIES.. 512
MOP ELECTRONICS... 511
NEWMARKET TRANSFORMERS................................... 579
NICHE SOFTWARE... 557
NUMBER ONE SYSTEMS... 510
OMNI ELECTRONICS.. 577
PICO TECHNOLOGY.. 513
POWERWARE... 551
QUASAR ELECTRONICS... 510
RT-VC... 565
ROBINSON MARSHALL... 541
SEETRAX CAE... 574
SHERWOOD ELECTRONICS..
SUMA DESIGNS.. 508
SUSSEX AMATEUR RADIO \& COMPUTER FAIR. 577
TSIEN... 527
VANN DRAPER ELECTRONICS.. 574

ADVERTISEMENT MANAGER:
 PETER J. MEW

ADVERTISEMENT OFFICES:
EVERYDAY with PRACTICAL ELECTRONICS,
ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS.
Phone/Fax: (01255) 850596
For Editorial address and phone numbers see page 517.

[^2] Colchester. Essex. Distributed by Seymour, Windsor House. 1270 London Road. Norbury. London SWI6 4DH. Sole Agents for Australia and New Zealand-Gordon \& Goich (Asia) Ltd., South
 Wimborne, Dorset BH21 IPF, EVERYDAY with PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers firs -otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

OMP MOS-FET POWER AMPLIFIERS THOUSANDS PURCHASED HICH POWER, TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) M M $9000(450 \mathrm{~W}+450 \mathrm{~W})$

 USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

PRICES:- MXF200 \&175.00 MXF400 E233.85
MXF600 C329.00 MXF900 ¢449.15
MXF600 C329.00 MXF900
SPECIALIST CARRIER DEL. \& 12.50 EACH

OMP XO3 STERIEO 3-WAY ACTIVE CROSS-OVER

Advanced 3 . Way Stereo Active Cross-Over, housed in a $19^{\prime \prime} \times 1 \mathrm{U}$ case. Each channel has three level controls
bass, mid \& top. The removable front fascia allows access to the prog bass, mid \& top. The removable front fascia allows access to the programmable DIL switches to adjust the cross-over frequency: Bass-Mid $2501500 / 800 \mathrm{~Hz}$, Mid-Top $1.8 / 3 / 5 \mathrm{KHz}$, all at 24 dB per ociave. Bass invert swit
Price E117.44 + ع5.00 P\&P
STERIEO DISCO KIXER SDJ3400SE * ECHO \& SOUND EFFECTS STEREO DISCO MIXER with 2×7 band LED Vu meters. MANY OUTSTANDING FEATURES:- including Echo with repeat \& speed control, DJ Mic with talk-over switch, 6 Channels with individual faders plus cross fade, Cue Headphone Monitor. B Sound Effects. Useful combination of the mics, 5 Line for CD, Tape, Video etc.
Price 144.99 + E5.00 P\& P

PIE20 ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distorton level Ihan ordinary dynamic tweeters: As a crossover is not required these units can be added to existing speaker systems of up to 100 watt
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) 3 " round with protective wire mesh. Ideal to
 bookshelf and medium sized Hi-Fi apeakers. Price $\mathbf{E 4 . 9 0 - 5 0 p}$ P\&P. TYPE ' B^{\prime} ' (KSN1005A) $31 / 2$ " super horn tor general purpose speakers, disco and P.A. systems etc. Price ع5.99-50p P\&P.
TYPE 'C' (KSN1016A) 2 " $\times 5^{\prime \prime}$ " wide dispersion hom for quality Hi-Fi sys tems and quality discos etc. Price $\mathbf{E 6 . 9 9}+50 \mathrm{p}$ P\&P
TYPE 'D' (KSN1025A) 2" $66^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $\mathbf{£ 9 . 9 9 - 5 0 p \text { P\&P. }}$ TYPE 'E' (KSN10384) $3^{3{ }^{3} 4}{ }^{\text {" }}$ horn tweeter with attractive silver finish trim Suitable for Hi -Fi monitor systems etc. Price $\mathbf{\Sigma 5 . 9 9 + 5 0 p \text { P\&P. }}$ LEVEL CONTROL Combines, on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbb{E 4 . 1 0}+50 \mathrm{p}$ P\&P.

ThIFLIGHT CASED LOUDSPEAKERS

Anew range of qualily Iouspeakers, des. gned to lake advantage of the latest
peeaker technology and encl osure destigns. Both models sutize stucio ouality
 constant directivity horns. extruded aluminium corner protection and steel
bail corners, complimented with heary duty black coverine. The enclosures ball corners, complimented with heavy duty black coverino. The e
are fited as standard with iop hats for opional lowdspeaker stands.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FUCL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
ibIFC 12 -100WATTS (100dB) PRICE $£ 159.00$ PER PAIR
tibl FC $12-200$ WATTS (100dB) PRICE $£ 175.00$ PER PAIR SPECIALIST CARRIER DEL. E12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$ Delivery $£ 6.00$ per pair

IN-GAR STERIEO BOOSTER AMPS

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS
150
WATSS
$(755+75)$ Stereo, 1 I50w 150 watrs ${ }^{10}$ ${ }_{250}^{\text {Braged WATIS (125 }}+{ }^{\text {B }}$ 125) Stereo, 250w Bridged Mono 400 WATTS (200 +200) Slereo, 400 W Bridged Mono
ALPoWER
ALLPOWERS INTO 4 OHMS
Features: Features:
\# Storeo, bridgable mono * Choice of
PRICES: 150W E49.99 250W E99.99
$450 \mathrm{E} \varepsilon 109.95 \mathrm{P} \mathrm{\& P} \Sigma 2.00 \mathrm{EACH}$
 high \& low level Inputs * L \& R level
controls $\#$ Remote on-oft * Speaker \& controls *Remote oo MINIMUM. OFFICI POSTAL CHARGES PER ORDER E1.OO MINIMUM. OFFICIAL INCLUSIVEI OF V.A.T. SALES COUNTER. VIS
ACCESS ACCEPTEOUYPOST, PHONEORFAX.
 These modules now enjoy a world wide reputalion for quality, reliability and pertormance at a realistic price. Four
models are avallable to suit the needs ol the prolessional and hobby market i.e. Industry, Leisure, Instrumental and Hi - Fi models are avallable to suit the needs ol the prolessional and hobby market i.e. Industry. Le
elt. When comparing prices. NOTE thal all models include toroidal power supply, integrai he
drive circuits to power a compatible Vu meler. All models are open and short cIrcuil proot.
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mas-Fet Output power 110 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KH}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.B. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE C40.85 + C3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE E64.35 + C4.00 P\&P
OMP/MF $\mathbf{3 0 0}$ Mos-Fet Output power 300 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE ©81.75 - $\mathbf{C 5} .00$ P\&
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D, typical 0.001%, Input Sensitivity 500 mV , S.N.R. T.1.D. typical 0.001%, Input Sensitivity 50 Pm, F.N.R Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. Second Anti-Thump Delay. Size
PRICE $£ 132.85+£ 5.00$ P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 walts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Dampling Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$. PRICE E259.00 + E12.00 P\&P

NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS: STANDARO-INPUT SENS 500 mV , BAND WIDTH 100 KHz . PEC (PROFESSIONAL EQUIPMENT COMPATIBLE) - INPUT
775 mV BANO WIDTH $5 O K H z$. ORDER STANDARD OR PEC.

LOUDSPEAKERS

 LARGE SELECTION OF SPECIALIST LOUDSPEAKEIRS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60p STAMPED) FOR COMPLETE LIST.McKenzie and Fane Loudspeakers are also available.

ZMINENCE:- INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
8" 100 WA'TT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREO. 72 Hz , FREQ. RESP. TO 4 KHz, SENS 97 dB . \quad PRICE E $32.74+$ 10 100 WATT R.M.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID. RES. FREQ. 71Hz, FREO. RESP. TO 7 KHz , SENS97dB. RES. FREO 65HZ FREO RESP 200 GUITAR, KEYB $2^{\circ} 100$ WATT, FREQ. RESP. TO 3.5KHz, SENS 9 dB. RES.FREQ. 49 Hz , FREQ. RESP. TO 6 KHz , SENS 100 dB . 2, FREQ. 49 Mz , FREQ. RESP. TO 6 KHz , SENS 100 dB . 12100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A.. VOCAL, STAGE MONITOR. RES. FREQ 42Hz, FREQ. RESP. TO 10KHz, SENS 98 dB 2 200 WATT R.M.S. MES 2 - 20 GREN. SBHZ, FREO RESP TO 6 KHz SENS 98 dB , GUITAR, DISCO, VOCAL, EXCELLENT MID PRICE £46.71 + £3.50 RES. FREQ. 47 Hz , FREQ. RESP. TO 5 KHz , SENS 103 dB . 15 " 200 WATT R.M.S. ME $15-200$ GEN. PURPOSE B RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99dB. $15^{\prime \prime} 300$ WATT R.M.S. ME1 5-300 HIGH POWER BASS
RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB .

ETC
ARBENOZRS5- HI-FI, STUDIO, IN-CAR, EIC
ALL EARBENDER UNITS 8 OHMS (Extept EB8-50 \& EB10.50 which are dua
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
$8^{n} 50$ watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR
8 50watt EB8-50 DUAL IMPEDENCE, TAPPED 4/8 OHM BASS, HI-FI, IN-CAR.
RES. FREQ. 40 Hz , FREQ. RESP. TO 7 KHz SENS 97 dB .
PRICE £8.90 + £2.00 PRP 10" 50 WATT EB10-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR. RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz , SENS. 99 dB . 10 100WATT EB10-100 BASS, HI-FI, STUDIO. RES. FREQ. 35 Hz , FREO. RESP. TO 3 KHz , SENS 96 dB . 2" 100WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO RES, FREQ. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB . PRICE $£ 13.65$ - $£ 2.50$ P\& PRICE $£ 30.39+\mathbf{~} 3.50$ P\& P FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND
 $6^{1 / 2}$ GOWATT EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC. RES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . B" GOWATT EB8-60TC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC RES. FREQ. 40 Hz , FREQ. RESP TO 18 KHz , SENS 89 dB 10 " 60WATT EB10-60TC (TWIN CONE) HI-FI, MULTI ARRAY DISCO E RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98 dB

TRANSMTTER HOBEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER 80-108MH2, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE. RANGE UP TO 3 MILES. SIZE $38 \times 123 \mathrm{~mm}$. SUPPLY 12 V @ $0.5 A M P$. PRICE $\{14.85-¢ 1.00$ P\&P
FM MICRO TRANSMITTER 100.108 MHz , VARICAP TUNED. COMPLETE WITM VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY SV BATTERY
B.K, =L_FTRONIOS

UNITS 1 E 5 OOMET WAY, SOUTHENO-ON-SEA,

[^0]: C) Wimborno Publishing Ltd 1995. Copyright in all drawings, photographs and articles published In EVERYDAY with PRACTICAL ELECTRONICS is fully protectod, and reproduction or imitations in whole or in part are expressly forbiddon.

 Our August '96 Issue will be publishod on Friday, 7 duly 1995. See page 507 for detalls.

[^1]: I

[^2]: Published on approximately the first Friday of each month by Wimborne Publishing Ltd., Allen. House. East Borough, Wimborne. Dorser BH21 IPF. Printed in England by Benham \& Co. Lid.

