ay=RYAY

INCORPORATING ELECTRONICS MONTHLY

STEPPING MOTOR DRIVER/INTERFACE

THE No. INDEPENDENT MAGAZINE for ELECTRONICS, TECHNOLOGY and COMPUTER PROJECTS
\square

ISSN 02623617

PROJECTS . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES . . .

- wimborne Publlahing Lid 1901. Copyrigit in all drawines, photographs and articies pubilished in VTRYDAY ELECTRONICS is fuly protected, ind reproduction or fintitailons in whole or in part are expreecty forbiddon.

Fridey, 3 domeny 1008. see pope 3 for dotinle

TRANSISTOR CHECKER by Steve Knight
Check out unmarked or suspect semiconductors
MICRO-SENSE ALARM by Jason Sharpe
Protect your test gear and valuables with this novel alarm
STEPPER MOTOR DRIVER/INTERFACE by Mark Stuart 34
Stand-alone demonstration board, with computer interface facility
MIND MACHINE PROGRAMMER by Andy Flind
Part Two: Capture your best mood, and take the strain out of your brain!
SIMPLE MODEL SERIES
7 - BISHOP ROCK LIGHTHOUSE by Owen Bishop
Simulated model of this famous shipping landmark

Series

INFORMATION TECHNOLOGY AND THE NATIONAL
CURRICULUM by T. R. de Vaux-Balbirnie . 22
Part Three: Information Storage
INTERFACE by Robert Penfold
The spot for all computer enthusiasts - Improved Temperature Sensor
MAGNETIC RECORDING by Vivian Capel
Part Four: Head Driver Circuits
AMATEUR RADIO by Tony Smith G4FAI
Albania's Back; USA Bombshell; RA Annual Report

Eentwnes

EDITORIAL

EUROPEAN SHOW REPORT by Barry Fox 28
Barry unearths some of the latest trends and thinking at Europe's largest
home entertainment show in Berlin
CROSSWORD/WORDSEARCH by Malcolm Argent 32
A "simple" puzzle with an electronic theme for Christmas amusement 40
What's happening in the world of electronics
SHOPTALK with David Barrington 40
Product news and component buying
SIMPLE MODELS SERIES SPECIAL
EASIWIRE OFFER 54
DIRECT BOOK SERVICE 62
Selected technical books and all the EE books by mail order
PRINTED CIRCUIT BOARD SERVICE 66
P.C.B.s for EE projects
FREE WITH THISISSUE
CRICKLEWOOD ELECTRONICS COMPONENTS1992 CATALOGUE
Banded to all copies
ADVERTISER'S INDEX 72
Raoders Services • Editorial and Advertisement Departments 11

HARD DISC DRIVES

20 Mb (IDE - CONNER)			± 79
20 Mb (MFM)			E 79
40 Mb (IDE)			E140
100 Mb (IDE - CONNER)			£235
MOUNTING KIT			£ 9
MOUNTING KIT (Rails only			¢ 5
HARDCARDS			
20 Mb AT			6105
- 20 Mb XT			$E 125$
40 Mb AT			$E 170$
- 40 Mb XT			$E 185$
100 Mb AT			E265
- 100 Mb XT			E285
- IDEAL FOR 1512 / 1640 COMPUTERS			
FLOPPY DISC DRIVES			
3年"	1.44 M	Internal	E40
$3 \frac{12}{10}$	720K	INTERNAL	E 33
5ı"'	1.2M	INTERNAL	£ 45

MONITORS

TILT \& SWIVEL BASES ON ALL MONITORS
 0.28 DOT PITCH - 1024×768
$12^{\prime \prime}$ VGA PAPER WHITE E 75

COMPUTER CASES

WITH 200W P.S.U AKD L.E.D.DISPLAY
FLIP-TOP
with z bays E60
DESKTOP
MINI TOWER MIDI TOWER FULL TOWER

WITH 4 BaYs $£ 80$
WITH 5 ears $£ 70$
WITH 5 bays $£ 95$
WITH 8 bays $\mathbb{E} 107$

KEYBOARD / MICE

AT 102 KEY - UK - IBM CLICK £24 MOUSE-3 BUTTON / MAT / adaptor E15

ADD ON CARDS

CONTROLLER CARDS

IDE - AT 16BIT-2HOD/2FOD E17
IDE - AT 16BIT-2HDD/2FFDD/25/PP/IG E 26
IDE - 8 BIT-xT
-IDE - в Bit-sLave / 1 ST OR 2no hoo $£ 39$
-IDE - A. ABove-16 Bit-works with MFM $£ 45$
XT - MFM - 8 8it-2 HDD омLY $\in 38$
AT RLL - $2 \times$ HOD
E 25
AT MFM - $2 \times$ HDO $/ 2 \times$ FDD $£ 44$
AT RLL - $2 \times$ HDO/2xFDO $€ 40$

- IDEAL FOR 1512 / 1640 COMPUTERS

MOTHERBOARDS

* COMPLETE WITH I Mb MEMORY *

286-16 L/S $21 \mathrm{MHz} \in 105$
286-20 L/S 25 MHz € 125
386SX - $25 \mathrm{~L} / \mathrm{S} 31 \mathrm{MHz}$ € 225
386SX - 25 WITH 64 K CACHE $£ 298$
386DX - 33 WITH 64 K CACHE $£ 407$
486DX - 33 WITH 64 K CACHE $£ 786$
OTHER 386 / 486 MOTHERBOARDS - PLEASE CALL

SPECIAL OFFER

 286-16 SYSTEM - FEATURES INCLIUDE \bullet - 286-16 (L/S 21MHZ) - I Mb ON BOARD MEMORY 20 Mb HARD DISC IDE -3느를 1.44 M FLOPPY - HDD / FDD CONTROLLER - 2S / IP / IG - VGA CARD (256K) - KEYBOARD (102 KEYS) - MINI TOWER CASE - CHOICE OF MONITOR 12^{n} VGA PAPER WHITE $£ 460$ 14" VGA COLOUR £545 14" SVGA+/ XVGA COLOUR $£ 640$
D O S SYSTEMS

Ms Dos 5.0
665
DR DOS 6.0 665

HOBBYKIT

CREDIT GARD HOTLINE 중 081-2057485

UNIT 19 CAPITOL INDUSTRIAL PARK CAPITOL WAY, LONDON, NWG OEQ FAX NUMBER : 081-205 0603

END OF LINES

MODEMS - V22 BIS - 2400 BPS
aUTO DIAL / REDIAL / ANSWER - FULL DUPLEX TONE \& PULSE DIAL - BT \& BABT APPROVED SUPPLLED WITH EAZILINK COMMS PACKAGE
MC2400-INTERNAL €65
3!" - 720K EXTERNAL FLOPPY
DISC DRIVE - NEW - GREY CASE
£ 26
$3: \frac{1}{2}-1.44 M$ INTERNAL FLOPPY
DISC DRIVE - NEW-BLACK ONLY $£ 36$
5: $6^{\prime \prime}$ - 960 KK INTERMAL FLOPPY DISC
DRIVE - NEW - GREY OR BLACK E 24
CGA CARD - FULL LENGTH
COMPOSITE \& TTL
£ 12
60 MEG TAPE STREAMER DC600-5 $\frac{1}{4} "$ TRAY PRICE : £ 190

ACCESSORIES

$52^{\prime \prime}$ ADAPTOR KIT FOR 3ı" ${ }^{\prime \prime}$	¢ 8.00
5!" ${ }^{\text {™ }}$ TRAY FOR 3t" FDD	£ 5.50
POWER LEAD FOR 3\}" FDD	£ 3.00
IDC PIN TO EDGE CONNECTOR PCB	E 4.00
SHORT F D D CONTROLLER CABLE 2'	£ 4.00
LONG F D D CONTROLLER CABLE 4'	E 7.00
POWER SPLITTER	E 4.50
HARD DRIVE CABLES (MFM/RLL)	£6.00
IDE HARD DRIVE CABLE (2 DRIVES)	E 6.00
kEYbOARD EXTENSION CABLE	£ 3.00

FDD EXTERNAL CASES

METAL GREY CASE SUITABLE FOR EXTERNAL MOUNTIMG OF FLOPPY DISC DRIVES, HARD DISC DRIVES, TAPE STREAMERS, CD ROMS ETC
5!" CASE ONLY
$5 \frac{17}{\prime \prime}$ CASE + LEADS FOR F D D £ 17
$31^{\prime \prime}$ CASE ONLY
$E 8$
3:" CASE + LEADS FOR F DD
E 20

3 STTTION NETWORK SYTETM

ALL PARTS FOR 3 STATIONS SUPPLIED DRIVER SOFTWARE AND DATA. USES TWISTED PAIR CABLE - EXPANDABLE - IMb TRANSFER rate - EASY installation.
PLEASE ADD 5.00 TO ALL ORDERS TO COVER POSTAEE

FREENSIDE

BULL ELETALOGUE

SP/NN/NG
HEART
A novelty circuit to impress your loved one on St. Valentines day. Novellies to tell your sweetheart how you feel are often expensive. Here is a clever little circuif that is bound to get the message over and impress the one you love. The spinning heart consists of 24 red l.e.d.s arranged in the shape of a love heart. The lights appear to move around the heart giving a spinning effect which looks very effective.

TELESOUND

If you find your personal hi-fi is a little too personal at times - in a hotel for instance. Then this little gadget is for you. The Telesound plugs into your personal stereo and into the aerial socket of a TV set and hey presto! your tapes can be played through the TVset

PROGRAMMABLE TIMER

A simple, easy to construct unit that will give time periods from microseconds to hours. The timer has unlimited uses such as; TV sleep timer; alarm bell duration timer; lamp flasher; process or cooking timer etc.

FEBRUARY ISSUE ON SALE FRIDAY 3rd JANUARY 1992.

CA31406	${ }^{0} 1.48$	cill	${ }_{1}^{2.108}$	LM1117	8.74	LM	${ }^{3.13} 4$		SNT5107AN 1.57	${ }_{650}$	， 2	330
	1.16								SN7510	\％		
CA316	1.25	1 Cm 7207 A	6．0．				\％	MAX ${ }^{\text {a }}$	SNTI5109AN	${ }_{65200}^{602}$		
CA316	1.41	ICM720710					\％		SNTSIOAN 1.67	${ }_{6522}^{620} 1.00$		
CA316	5.8	ICM721tait	4．m		32.0				SNT5112N	632		
CA3183E	1.39	İMP21AM	4．m						SN757113N	655		
CA3183	1.30	CCM212	4									
CA3240E	1.4	（Cm72164W）	27.									
Ca334E	0.4	＇Cm7217alp				（M3zoN－s		мс				
		CMM2171		（M1366		Lmasia		MC1455P ${ }^{\text {M }}$				
		Cur		LM13700	2.32	Lm361N	4.5	MC14s8P 0.32 S				
		cmpraca		Sa		L	4.31	MC1488\％l．	SN75138N $\quad 4.61$			
${ }_{\text {Cajashe }}$	1.57		0.41	LM	3.31	Lmban	4.17	MC1488P 0.58	5140P $\quad 3.11$	6sc		
	0.23	ICN	16.	L	20	Lm3364P－1． 2	208	MC1489A 0.00	55150p ${ }^{\text {che }}$	8．02	0	KM
	0.20	cmpzaipa		L	1.08	Lmzastip．	208	MC14998	SNT515N	${ }_{\text {in }}^{\text {\％}}$	10.4	MSM4
CATAICE	18		28		0.48	LM ${ }^{\text {LM }}$ S	${ }^{2} 100$	Mç301P	1.10	1.70	S9829ANL 4.70	MCM2114P1S 2.0 m
	0	icmmzascia			2.30	LM		MC3302P 0．04		$\stackrel{ }{6}$		Mm2102
	0	ICM $72421 \mathrm{P}^{\text {a }}$	2.40	Lmisseh	5.75	Lm336N． 1	1.63	мсзня9 1.02	SN751570 s．em	${ }^{68029} 5247$	∞	M211
dacoer	2.7	ICM724910	14.	Lmisses	5.73	Lм336	218		\％	11		${ }_{\text {P2114L }}$
oncract		ICMTsssca		Lmisf	${ }^{3}$	Lumer	${ }_{3}^{3.15}$	Mcatera	5．35	${ }_{60100}^{605029}$	UMCB2C280．12 in	Pcosiolp $\quad 3.00$
dacoucalcn	3.60	${ }_{1}$ CM		LM	． 4	－	2.4			32	3.0	тмм2016ap－ $10 \quad 3.60$
退coso	12.28		20.0	L	1.33		0.72				． 6	
dacos3a	7.13	${ }^{1617100 C P 5}$	1.75	LM	${ }^{3} .42$	Lm3909N	2.11	1.10	SN75172N 6.58	6548 （ 17.80	uppazasc	
DAC 10002 CN	1.20	ICL7107CP		877	7.13	Lm301／	3.18		S 38	5	UPP0701002C．10	
dacioose		1090		Lmib9in	8	Lum91	\％ 218	MMSS6174AN 10.62	SNT5175N ${ }^{\text {S }} 20$	684SSP en	UP070116C．8 $\quad .20$	2.20
DACroose	Y1．06	${ }_{\text {clill }}$	${ }_{5.35}$	Lı189	4.11	Lm391	4.10	Mmsez74en l．30		SEAOOP $\quad 7.02$	0118C．10 12．20	
－${ }_{\text {OACI201k }}$	14.0	${ }_{1} \mathrm{CL} 17606$	17.02	Lм91934	10.67	Lu932	1.56	m	SN	7.13	－	UPDa36aC
		ICL		LM193	$\underset{\substack{11.51 \\ \hline \\ \hline 15}}{ }$	33A		2．02	SN		UPDP65SC	
		23100		Lmpor		LM3935	0.0	MV6010 P 3.31	SN75183 $\quad 2.0$		UPDosesac－2－4．m	
OGO	2，	1 Cl －	\％e		4.17	（m394C	6.47	nazan 3.6	SN／5183N $\quad 200$	68803P $\quad 15.25$	UPDODSEAHC－2－4	${ }^{27 \mathrm{C}} 1$
OG211	2.05	IClis6zera	3.24	¢м＞ze\％	14	LM		NESO20N	SN751	688099	Uproacsatic	${ }_{27 C 256-155 A}^{2185}$
		ICL7673CPA		L			10.35 27	NESS32N	SNNT5129AN	${ }_{688211}^{6081}$	UPD	
DGez3ach	．ch		200		15.75	im	6．39	NESS5N 0.20	SNTH374ANE $\quad 1.8$	688600 $\quad 5.28$	UPDBzesiaf 5.70	
	3.30	1 Llosec	1.01				2.22	NESSL	SNiSast 0.28	1.12		HN2TC102410－10 ${ }^{3} 50$
DP82121	2.6	iclazilc	2.28	LM		Lma23a			SN7 4 S13		（1）	HN27COAFP－20T 5．\％
		1 C			4.23	Lma3acz	${ }^{4}$	NEES6SN	SNTSG638P	$1{ }^{1}$	－8255AC－5 $\quad 3.20$	
OS			\％ 8	LM	1．2	Lmsssch	0.28	ne566 ${ }^{\text {a }}$	$0 \cdot 8$	（25358 $\quad 2.85$	updeasanc	
					1.72	Lmssec	1.16	NES568N ${ }^{\text {a }}$		${ }^{\circ}$		HNM62332P
DS1231		21		LM2375	8	Lmsar	P． 38	NESTON			UPDO8741AO 12.52	HA＋62716G $\quad 3.40$
	3.7	${ }_{1} \mathrm{C}$	4	Lm2275	28	LM60	4.18	NE592N14 ${ }^{\text {N }}$		ceso	3．6	Ss
OS 1469	0.0	¢см7217	， 15	Lm2575T－1	7.15	Lmborcm	2.4	Num45sec oien	1.0	$\operatorname{ccosc} 20-16 \quad 54.70$	${ }^{6} 5$	20
DS 1489	0.0	cm		LM2377T	7.07	611	26	Nu4s56s	SNTSATE 210	4.4	20	
		LCM214		L m 2577	${ }^{1} 1.78$	LM6612	14.6	NMmassbs	SNTSCIBAR ${ }^{\text {a }}$	De2ena 3.20	V30．10MHz 12.00	M2716－1F1 218
OS		icmprica	．${ }^{\text {c }}$	Lm2s	\％	LM61	4.00	12	SnTSCliascn 1．a	D8288 4．4．	280．DMA 4.45	usk2712
DS	1.5	¢CM72 18 E ｜	15.	Lm257	3.10	Lmers ${ }^{\text {che }}$	${ }^{3}$	${ }^{35}$	s7		200．p10	4s．2764k ${ }^{\text {a }}$
		icmizalia		LM2579\％	129	$L^{\text {maz2 }} 18 \mathrm{Na}$			STK41411	（10．54	${ }_{2204-C T C}^{280 A}$	
		ICM722			\％18	LME2	7.6	OP27－GP	Tar215P $\quad 7.20$	Ossooo－32．12 12．04	2J0a－0ART 3.80	
Ossuca	20	ICMrasis	12．0	Lm	0.00	LMB225	0．ss	0352302 0．00	tatisep 2.200	4．10	2804－P10 1.81	－18m27C25630
75150w		icm7356il		Lmzoon	0.00			p80352303 b．00		0		
DS551s	1.2	LDD74	00	LM2807N	0.41	LM	36	P8，	ta boosap 1．m		2200－CIC	NMC27C640－25 ${ }^{3.30}$
DS75160	S．	inato						${ }_{\text {PCoca311P }}$	traizos 0．60			56
OS575181	． 16	INsers	5	（mar	4.25	LM	7.17	PCO3312P 4．73	tbalizosa 1．20	mdenssp in	220	TMS231EL－45 4．60
－DS751780N	2.51	ISo	0.0	Imzatoct	1.20	LM70	2π	Pcrasear $\quad 7.04$	tbasto 1.48	4.20	¢	TMs279
DS3754	0.02	127	1.0		3.20	LM	1.46	OMV168P5 7.00	tbasio－6．00	MSMB2CSAP．\quad S．40		
DS	0.02	1	2.45	Lmzesct	2．4	L－	1．00	om	T84800	50		1poz72560／
${ }_{\text {os }}$	${ }_{0}$	L20	\％ 1	LM	2.0	Lm710	45	OMV62AW1 $\quad .10$	тва920 1．60	${ }^{\circ}$		PD2732N21V 40
					1.3	（m715	128	RCA130N $\quad 0.00$	184900 1．5		co procissor	
Os	23	L29	${ }^{4} 31$			LM	1.02	${ }^{\text {RCCu207GN }}$	do	1.60		UPO27C860－25 3.6
			2．20	1	${ }_{200} 0$	Lmp	C． 28		20			
${ }^{\text {DSSe }}$	1	L	2.18	Lm30e	1.56	［m725CH	12.58	rcassep 0.7	TDAlosic $\quad 3.00$	mswaccisa $\quad 3.60$	${ }^{12720}$	
			3.4	LM308	2.03	LM73SCN	230	REFFICP 1.58	1.10	msmbecasa－2 J．es		AT20C256－150c enem
DS		17	238	LM	7.45	LM733	285		Til17 0.04	MSMalcss 4．00	Boxz7xULINT 177.00	${ }^{20}$
ds	s．72	${ }^{\text {che }}$	$0 \cdot 1$	Lm300	270	LMrich	\％			S8		
＋	11.8	LFI 132	7.00	Lm308n	1.01	Lmpacen	0.28	REFOCGP 1．85	Til3 311	MSmazesa－2 ${ }^{\text {anm }}$	dynamic mam	${ }^{0}$
H⿳⺈⿴囗十大		LF1320	7	Lm3ioh	4.01	LMITIEN	2.81	ReFraz				∞
HCPL－2		1333		LM	2．x	－	${ }^{4.0}$	SM1027	TV031c9 0.35		$418+10$	${ }^{231640} \quad .102$
$\mathrm{HCPL}^{\text {cheren }}$	4，		10．00	LM	${ }_{3}^{2.28}$	LM7	\％．	SMatoasp ise	tloescr $\quad 0.40$			20
1 CO	3.0	LFISser	0.02	L M 311 N	0.40	LM747	${ }^{4.50}$	SAM50250	TROHCN	${ }_{\text {MSM Mazechan }}$	812568－10 is	
HCP^{-4}	． 18	LF157	8.12	Lm31N－1819	2.15	Lm7 mish			TLC272CP	NSILS50AFN 12．00		
		LF25	7.21	LM3	0.7	LM	8.70	SAS570S $\quad 1.00$	ThCsscip o．es	pgosian ${ }^{11.20}$	$4146412{ }^{2}$	
${ }^{\text {He}}$	\％	L53	7.2	M	12	Lims	1.75	SFCC2710C 0.10	TLCSSECN 1.14	proszahibasic ${ }^{23.45}$		
N11．020	12		7	L	5.05	［	2.6	St145108 12.4	TpS21 0．60	P8000A 3.60	${ }^{\circ} \mathrm{S}$	${ }^{\text {a }}$
H110507	12.19	LF351m	0．	Lm3172－	1.16	LM778C	2.54	Sl1452		3.30	511000 －s i．00	Amz75281PC 200
H11	124	${ }^{\text {LFF3S }}$	0.46	LM317\％	\％		－ 1.38		TSCRssocpa i．20	，		10771334－1000 12.42
H11．060		1－530	${ }^{3} \mathrm{O}$	－	3．4．	Lм 7 вм	1.57	SL14S50P 12．4	U10958 1.02	10.00	H16n－20 28	
	10.00		1.06	［ب318－8	2． 2	Lm7912	0.36	SL1812C0P $\quad 5.00$	U20868 $\quad 2.4 .4$	1.50		
1 c 232	4.90	Lf336	2.3	LM	1.8	（m79	0.40	SL1133COP	vazater 1.40		км44C256azio i．x	mсmamzacs 1．80
IC，		－	238	LM3	\％ 28	Lmasin	2.12	SLlbaicop 7．0．		P8212 2.40	A	
1 Cl 1007	．	Lf3	1.40	Lm31	7.32	Lmcsssca	1.4	Slzsasccm 12n	${ }^{\circ}$	P6228 ${ }^{2.40}$	5	0
$1 \mathrm{CLI7100C}$	．		0.00	Lmaven	1.45	LmCCaOCN	1.7	SL2304COC 18.23	0.16	A	${ }_{5}$	0.
1118			1.78	LM324	20	Lmoiazor	${ }^{20.28}$	Sl2304COP	0.92	P9251a ${ }^{\text {20es }}$	TMSA10t 12 NL	0
${ }^{\text {CLL }}$		Lif3	${ }_{3} .17$	$\operatorname{Lims32aN}^{\text {max }}$	${ }_{0} 1.3$	LmFsacin 100	1．2	523		2.20		
713			1.08	Lm325N	$4 \times$	Lmflacin	9．1	SL314SCOP ${ }^{2.75}$	M9936acP	2．20		0
1 CLT 908 CJM	17.02	Lf3000	2.75	LM3302N	1.4	LmFeocin	0.17	Sl3146	${ }^{138}$	2， 2.00		
（1）		Lfal1c	1.20	LM331aN	11，	Lmpabcil	8．48		Vapersco lies	2.0	UPOSACC－2 $\quad 3.0$	\％
$77110 C^{\text {a }}$	1.32	Lestiza		Lu33	1.0		1.31	S	1.5	Paz75 21.20	पPDAEC－3 J．m	
	1.7	LFM ${ }^{\text {dac }}$	0.8	Lma3s2	2.16	M	30	SL4908 ${ }^{\text {a }}$		${ }_{\text {Paz792 }}^{\text {PR282 }}$		TCSS17AP－2 4.20
8218 CD	s．n	LFMich	0.00	LM3320N	1．32	LP390N	123	$\begin{array}{ll}2120 C M & 12.52 \\ 12.61\end{array}$	0．40	${ }_{3.00}$		0
821DCa		LFAL	1．40	Lma382－2．5	120	LPCess	120	SLS118CM	UNI2OOSA ${ }^{\text {O．40 }}$	P8287 iss		TMM 20880． 45
\％	3．2	LH000	22.17	［m337）	1.20	LS204C		SLS4180G $\quad 10.20$	ulazocsan 0．4e	10		
7850	4.4	Lhocozar	0	Lм \quad 338к	－． 50	Lszasac	15	SLsmoccm	ULNzOOAN	Paccs ${ }^{\text {PCFSEOT }}$	62841－12 ${ }^{2.40}$	
$1 \mathrm{CL} 17652 \mathrm{ECP0}$	8.8	Lroos	48.0	Lm332k s	7	Ls2288	3．00	slis	uinzoosan			
11.17853568	7.1	Lrooza	20	Lima	14	（1）	2.9	slssicop	ums101 3．00		We stock DIN 41462， IDC \＆＇D＇Connectors， PCB Pin Headers， LEDs，LCD Displays， Relays．Also Resistors and Capacitors， Including Surface Mount． RDERS from Govt \＆Educational AIR／SURFACE charged at cost．VAT post． ility． London E13 9PX	
		Lhtooss	428	（m33	1.30	LT1000clpa	2.1	Sletocam in	$\times \mathrm{Rz20aCP}$ 3．5	PCFESO1P		
7eboscpa	274	Lromica	3.17	L	1.0	17000 CH	${ }_{2018}$	Slibliccm ine		Ressozap		
78022	3.2	Lmo	12	LM	1.10	${ }^{\text {LTTOOOCCP }}$	27	SL8210CM 16．92	ZM 2727 E － 10.65	765522 $\quad 3.20$		
${ }_{7638 \mathrm{CP}}$	3.12	Hresi	2.17	Lm	1	L17014	\％es			${ }^{\text {m }}$		
Treas	3.80	Lum10	8.4	Lm3	${ }_{4}$	LTroseca	3.20	SL6270COP ${ }^{\text {2，75 }}$	2Mast 7	\％		
	4.42	1 L	5．${ }^{\text {a }}$	LM3402	4.4	LT10370	${ }_{3} 8.07$	$\begin{array}{ll}\text { SLE2370MP } \\ \text { SLE310COG } & 3.09 \\ 4.07\end{array}$	71.4			
	20	LM	8.40	IM MSOT	20	LTTOS	${ }_{0} .0$	SL6310cop 23	2NHUE 19	126		
\％00cpa	2.74	Lм10	22.4	LM3524N	1.7	LT1070ck	13.04	${ }_{\text {SLL }}$				
A	1.10	LM10e	\％ 7138	LM335	${ }_{69} 0$	LT10	10．18	SLenccm		－		
S03sccp		LM10	${ }_{12.00}$	Lmassen	32	LTroetck	10.86	4		18		
тзасал	${ }^{13.00}$	Lm10		LM33ap	0.7	LTChescma	${ }_{0}^{1.42}$	33	a supportics			
1CL 8000 ccso icl 90000 cs a	20	L	3．724	LM3SCHN	10.50		：70		$6321 P$ O24SCP3／SMO 42.20 20			
90CZ 2												
VIEWCOM ELECTRONICS 77 UPPERTON ROAD WEST PLAISTOW，LONDON E13 9LT EASE PHONE／WRITE FOR ITEMS NOT LISTED							PLEASE ADD 85ρ P\＆P and then 17.5% VAT．OFFICIAL ORDERS from Govt．\＆Educational Establishments are accepted．OVERSEAS orders，postage AIR／SURFACE charged at cost．VAT not applicable for EXPORT orders．Stock items by return of post． N．B．Prices subject to change without notice \＆stock avallability． Retail Shop： 139 New Clty Road，Plaistow，London E13 9PX					

SURUVMITMANCE DIROPFBSSIDNAL DUAMTYY KITS

No.

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an-ordinary VHF FM radio.

UTX Ultra-miniature Room Transmitter

Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3 12 V aperation. 500 m range
. 16.45

MTX Micro-miniaturs Aoom Irumsmitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. 3 -12V operation. 1000 m range...................... $£ 13.45$

sTX Kigh-performance Reosi Tramemittor

Hi performance transmitter with a buttered output stage for oreater stability and range Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$

VT500 Migh-power hoom Iranswitter

Powertul 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} x$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range...
£16.45

VXT Voles Activated Tramsmitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$
nNX400 Malas Powerod Room Iransmitter
Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range
$\ldots,{ }^{2} \times 19.45$
SCRX Subcarrior Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9V operation. 1000 m range.............. $£ 22.95$ scux Subcarrier Telephone Tramsmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires.SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range $£ 23.95$

SCDM Subcartier Decoder Unif for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9-12V operation
..222.95

ATr2 micre Size Telephone Recording intertace

Connects between telephone iline (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line
... $£ 13.45$

UILX Ultrn-miniature Tolephors Transmitter

Smallest telephone transmitter kit available. Incredible size of $1 \mathrm{~mm} \times 20 \mathrm{~mm}$ Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range
§15.95
TLX700 Micro-miniature Telephone Transmitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range
. 13.45
STIX Migh-performance Teiephone Tramswittor
High performance transmitter with butfered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$.
1500m range
£16.45
THuspo Signaling/Tracking Transmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation
CO4OO Pocket Bug Detector/Rocator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation
. .530 .95
COs00 Professional Bug Dotector/Locator
Multicolour readout of signai strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to disting uish between localised bug transmission and normal legitimate signals such as pagers, celluiar, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm} .9 \mathrm{~V}$ operation \qquad . 50.95

aIx100 Crsital Controiled Room Iransmitter

Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our $\mathrm{QRX180} \mathrm{kit}$ (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm . 9 V operation. 1000 m range
.840 .95
ax180 Crystal Cointrollod Telephone Transinitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range
. $£ 40.95$

asx180 Lne Powered Crystal Controlled Phone Trensenitter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m ...

OAX180 Crystal Controllod FM Receiver

For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section supplied as a pre-buit and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation
£60.95

A bulld-up service is avallable on all our kits If required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.

our latest catalogue contaimag many more new SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Dept. Ee
SUMA
DESICNS

1992 CATALOGUE + 48 PAGE BARGAINLIST - OUT NOW!

TIMER SWITCH
25174 Superb geared mains motor 1 rev per 12 hrs with cam operated switches $60 \times 54 \times 43 \mathrm{~mm}$ 16A 250 V . S12e LOW COST SOUND CHIPS Um34811A Melody generator Price
$1.20100+0.75$
UM3562 3 gun sound generator
Price $100+0.38$ UM66 3 chrlstmas carols 75p $100+0.38$ All supplled with a typical circuit.
BRIDGE RECT CLEARANCE 22347 4A 200 V in line.
Prices … $\quad6 / £ 1 \quad 100+0.091 k+0.06$

PC KEYBOARDS

28946 Standard 102 key kevboard made by Cherry with 5 pin Din connector to plug straight into your PC! (switchabie between MF/AT/XI) : Oh yes, nearly forgot . the kevs have a Russian character set (in addition to English) so you can practice a bit of peristrolkal Price. .. $\mathbf{2 5} 50$ 28954 AT/XT switchable, French character set. \quad E20.00 28955 AT/XT switchable, German
E20.00

NICAD BATTERIES

22349 Nicad Battery Pack. comprising $4 \times 1 / 2 A$ size cells each rated 1.2 V 0.45 Ah , size 16.1 mm dla $\times 28 \mathrm{~mm}$. DP £9.92.
Our price $. . . . £ 2.00 \quad 100+1.00 \quad 1 k+0.70$

24150 Ex moblle radio battery. $56 \times 63 \times 33 \mathrm{~mm}$ case isometimes damaged) contains $8 \times A A$ slze rechargeable Nicads. These can be removed by breaking the case open. Each cell rated 1.25 V 600 mA . $\quad £ 3.00$ 24149 As above but $84 \times 66 \times 33 \mathrm{~mm}$. There are again 8 cells but they are longer than AA size, being 73 mm long. each cell rated 1.25 V 900 mA
HIGH VALUE CAPACITORS code value vorts stae Price $24343 \quad 2200 \quad 40$ $244193300 \quad 25$ $25147 \begin{array}{lll}2500 & 100\end{array}$ $24345 \quad 10,000 \quad 40$ $2514610,000 \quad 100$

MODEMS

28956 Buzzbox DSL 21 CCITT V21 modem (300 baud) made by DaCom Systems Complete, new and boxed. External PSU, 5 pin DIN plug, and instructions Very simple to use, only a wires employed. Originate and answer mode selectable.
28937 One to one 21/23 IAD CCITT 28937 One to One 21/23 IAD CCITT V21/23 auto answer modem 300 1200/75, 75/1200 baud full duplex 1200 baud half duplex Tx, or Rx. Made by Master Systems Ltc. Complete, new and boxed modem sultable for use with micro computers with R5232C Interfaces. Comprehensive 76 page manual. external power supply and 25 oln 'D' standard DCE connector. $\quad 575.00$ 25123 Modem. Fully functional brand new and boxed. Standard $160 \times 100 \mathrm{~mm}$ oniv 300 baud but at the price we're oring pepresents superb value for asking represents superb value for nonev!! suppled complete with wiring

VARIABLE PSU KIT

xen2 simple kit utililsing our 2660 power supply to give a 10 watt varlable outpt from 4.20 V , fully stablilsed. Only needs 2 components added! input must be at least 3 V above max required output Circult features overioad/short circuit protection and thermal cut-out. Input 7.25 V DC, 1.5A; Output 4.20V DC varlable 10 watts max; size $50 \times 50 \times 21 \mathrm{~mm}$. Price.

132 Pages

SURFACE MOUNT

Electronic, Hobby and Craft materials + Tools, Audio, video and Test Equipment! + 48 pages of Surplus Bargalns!
Only $£ 2.00$ inc post Why not subscribe to the next 6 bargain lists at approx monthly intervals? Only $£ 2$ inc post.

ZONEPHONE TERMINAL

TX/RX in plastic case with logic control all inside steel case with I/P and O/P sockets, 8V 3.8Ah sealed lead acid battery. All this inside another steel case $480 \times 300 \times 150$ with 2 whip aerials on top.
Price
E29.95

217124 characterx 2 ilines LCD by Optrex. High quallty display with 192 character ROM, easily interfaced with elther 4 or 8 blt uP's. Supplied with data. Characters are 5×7 dot arrays with separate cursor. Module size $118 \times 35 \mathrm{~mm}$. DP around $£ 30.00$.
Our price …................................00
217240 characterx1 line LCD by Optrex Uapan). Double helght display with 192 character ROM; other characters can be displayed by generation in RAM, easily Interfaced with elther 4 or 8 bit UP's. Supplled with data. Characters are 5×12 dot arrays data. Characters are 5×12 Mot arrays
measuring $3.2 \times 10 \mathrm{~mm}$. Module size measuring $3.2 \times 10 \mathrm{~mm}$.
$220 \times 40 \mathrm{~mm}$. DP over $£ 50.00$.
Our price
2509616 character $\times 1$ lline.... $£ 15.00$ similar to our 21814 but sllontly very character $6.3 \times 3.1518 \times 5$ dots) larger LCDM16166 by 15×5 dots). Type data Uses by Refac. Supplled with supplied) Hitachi HDA4780AOO chip 2148 LCD as 24115 but 6 diglt 50 pins. Trade price £10.86
SWWICHMODETP
25119 Communications LCD. This large $(140 \times 40 \mathrm{~mm}$) display (made for Marconl) has 110 pins and shows a varlety of symbols and power levels used in radio communication, includes a bargraph display. No further info and only limited appeal, hence the very low price Price.

Just $£ 2.00$
241158 digit 12.7 mm high LCD and nolder. These are 14 segment devices allowing alphanumeric display Normally costing over £15.00 we are offering these for just \qquad .. $£ 4.50$
21637 LCD Display - direct drive $31 / 2$ digit with 'Lo-8att'. 12.7 mm high digits. Op voltage 4.12 RMS (a 32Hz type. Consumes only $25 \mu \mathrm{~A}$ with all segments on. Trade but no edge connector
Prices £1.00 25 prices $. \varepsilon 1.00 \quad 25+0.65100+0.50$ 22163 D Digit multiplexed LCD, $50 \times 30 \mathrm{~mm}$ probably for an electronic balance-symbols Include balance pens, 5 stage bar graph, ib's and kg's etc. Digit helght 12 mm . Self adhesive pad on back. 13 pin PCB Connector
Price

Converston
K725 This kit converts the AA12531 PSU into a much more versatlle suppiv, glving +5 V (a 2.5 A ; +12 V (a 2 A 12 V (a 0.1A: 5 V (a 0.55 A . Complete kit of parts and full instructions. Price E3.50

28921 Apricot PSU - beautiful unit $160 \times 110 \times 55 \mathrm{~mm}$ with IEC switched mode iniet. Made by Astec. Model BM43024. $120 / 240 \mathrm{~V}$ input. Outputs $+5 \mathrm{~V} \oplus 2.5 \mathrm{~A} ;+12 \mathrm{~V}$ (a) 2A E12.95

28939 Two tone brown case contains PCB $192^{*} \times 195 \mathrm{~mm}$ with easlly removed UHF modulator made by Labgear (Sound and Vision); video pre-amp; stabilised power supply and all the decoding circultry 19 transistors and TBA673 chid). On the front of the case is a cable/off air switch and 5 push buttons $(5$ channels and on/off mains switch). There are 4 cables coming from the rear. The case can easily be utilised for other purposes. the dark brown inserts on the front the dath easlly removable if required please note the low price we are asking Please note the low price we are asking in no way reflects thelr true worth they're taking up a lot of space, so we need to shift them quickiy! supplied with circult dlagram.
Price.........E6.95 $100+3.501 k+2.50$
COMPUTER INTERFACE

28957 versatle malns powered switching unit and power supply, Ideal for controiling up to 5 separate circults va 8BC user port. Suppiled with program Ilstings and full Instructions Can also be used with PC . detalis included. Relay contacts are SPCO rated 10A. There's also 2 auxillary $D C$ outputs $12 V_{\text {a }} 1.5 \mathrm{~A}$ and $5 V_{\text {M }} 1 \mathrm{~A}$. E14.95 CHARGER

25136 Nicad switched mode battery charger for charging $6 \times \mathrm{AA}, \mathrm{C}$ or D cellis 70 mA 16 hour rate, 700 mA 1.5 hour

sma1012 Astec totally enciosed steel cased unit $175 \times 136 \times 65 \mathrm{~mm}$, with witched and fused IEC mains inlet. PCB $160 \times 80 \mathrm{~mm}$ with output pins and connector.
Input \qquad +5V $3.75 \mathrm{~A}, 112 \mathrm{~V}$. $115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Totai Wattage Price E14.95 $25+1170100+975$ 28923 Intelligence 54060 oo watt unit $180 \times 110 \times 57 \mathrm{~mm}$ SM060 80 watt unic $180 \times 110 \times 57 \mathrm{~mm}$. $120 / 240 \mathrm{~V}$ input, and output quoted. total load must not exceed 80 W) $+5 \mathrm{~V}(6 \mathrm{~A}$; $+12 \mathrm{~V}(2 \mathrm{~A}$; +25 V (a 3A; -12V $<$. 500 mA
Price.
E22.95
rotal Wattage rate, 25 mA float charge automatically switched in when battery reaches correct charge level. Outputs for fast and slow charging simuitaneously if necessary, both on timers to prevent over charging
STEPPER
MOTOR

25054 Supert littie 12 V motor by Alrpax. 35 mm dla $\times 21 \mathrm{~mm}$ deep with a 16 tooth 9.5 mm dla gear wheel mounted on the 2 mm dia spindle. Fixing centres 42 mm $71 /{ }^{*}$. 48 step. $100+$ price is $£ 9.04$ Supplled with data sheet.
PricesE each $100+2.00$

EASIWIRE

The easy to use no-soldering wiring tool which makes construction of small electronic projects so simple! included in the kit are: Wiring pen: Utility tool; Punched wiring board; Self adhesive sheet Spring loaded terminals and lacks: spare spool of wire: Excellent instruction book Cataiogue price instruction E15.00
85.00

MAGENTA

> Supplying Electronics for Education, Robotics, Music, Computing and much, much more! CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques.
ID36 PERMANENT MAGNET MOTOR48 steps per rev
£16.86
MD200 HYBRID MOTOR-
200 steps per rev
MD35 $1 / 4$ PERMANENT MAGNET MOTOR48 sieps per rev.
f12.98
MD38 PERMANENT MAGNET MOTOR
48 steps per rev.

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATUAEO IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS SEPARATE REPRINTS ALSO AVAILABLE PRICE 80p EACH INCLUSIVE P\&P KITS INCLUDE CASES, PCB'S HAROWARE ANO ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT ORILLED OR LABEIS SUPPLIED UNLESS STATED

843 STEPPING MOTOR DRIVER/INTERFACE Jan 92
842 PORTABLE ULTRASONIC PEST SCARER, Aug 91
891 DIGITAL LCD THERMOSTAT May 91 with punched and printed case
840 OIGITAL COMBINATION LOCK Mar 91 with drilled case
839 ANALOGIC TEST PROBE Jan 91
838 MICROCONTROLLER LIGHT SEQUENCER Dec 90 . With drilled and labelled case
835 SUPERHET BROAOCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90
815 EE TREASURE HUNTER Aug 89
814 BAT DETECTOR June 89
812 ULTRASONIC PET SCARER May 89
800 SPECTRUM EPROM PROGRAMMER DOC 88
796 SEASHELL SYNTHESISER NOV 88
790 EPROM ERASER Oct 88
VARIABLE 25V-2A BENCH POWER SUPPLY Feb 88
744 VIDEO CONTROLLER Oc1 87
740 ACOUSTIC PROBE NOV 87
739 ACCENTED BEAT METRONOME Nov 87
734 AUTOMATIC PORCH LIGHT Oct 87
730 BURST-FIRE MAINS CONTROLLER Sep 87
728 PERSONAL STEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
719 BUCCANEER I.B. METAL DETECTOR July 87
718 3-BAND 1.6-30MHz RADIO Aug 87
715 MINI DISCO LIGHTS June 87
707 EOUALIZER (IONISER) May 87
700 ACTIVE I/R BURGLAR ALARM Mar 87

Price
Rof
£29.95
C22.56
$£ 29.96$
£19.86
f13.23
¢57.17
$\mathbf{5 1 7 . 1 6}$
510.39
¢ 32.13
ull Kit $£ 45.95$
E21.44
$514 .{ }^{21}$
614.81
$£ 28.55$
E28.51
£56. 82
¢ 33.29
¢20.01
£23.94
$\mathbf{8 1 9 . 6 2}$
615.50
16.34
c16.30
£13.88
£ 30.22
¢30.30
f14.39
17.75

4 SPECTRUM SPEECH SYNTH (no case) Feb 87
581 VIDEO GUARD Feb 87
569 CAR ALARM Dec 86
561 LIGHT RIDER LAPEL 8ADGE OCt 86 560 LIGHT RIOER DISCO VERSION Oct 86 559 LIGHT RIDER 16 LED VERSION Oct 86 556 INFRA-REO BEAM ALARM Sep 86 544 TILT ALARM July 86
542 PERSONAL RADIO June 86
528 PA AMPLIFIER May 86
523 STEREO REVER8 ADP 86
513 BBC MIDIINTERFACE Mar 86 512 MAINS TESTER \& FUSE FINDER Mar 86 497 MUSICAL DOOR BELL Jan 86 493 DIGITAL CAPACITANCE METER DeC 85 493 DIGITAL CAPACITANCE METER Dec 85
481 SOLDERING IRON CONTROLLER Oct 85
464 STEPPER MOTOR INTERFACE FOR THE B8C COMPUTER less case Aug 85 1035 STEPPER MO OR EXTRA 461 CONTINUITY TESTER July 85
455 ELECTRONIC DOORBELL June 85 44 INSULATION TESTER ApI 85 392 BBC MICRO AUDIO STORAGE SCOPE INTERFACE Nov 84
387 MAINS CABLE DETECTOR Oct 84
386 DRILL SPEED CONTROLLER Oci 84
362 VARICAP AM RADIO May 84
337 BIOLOGICAL AM PLIFIER Jan 84
263 BUZZ OFFMar 83
242 INTERCOM no case July 82
240 EGG TIMER June 82
108 IN SITU TRANSISTOR TESTER June 78
106 WIERD SOUND EFFECTS GEN Mar 78
101 ELECTRONIC DICE Mar 77

Price
E23.90 59.59 £14.24 $\$ 11.65$ f 22.41 f 22.41
E 15.58 515.58 $£ 32.39$ ع8.94 613.17 830.60 f 30.21 E 31.93 fl 0.07 E21.41 $\begin{array}{r}\text { } 849.96 \\ \\ \hline 6.25\end{array}$

New model just arrived. High quality reliable instrument made in W. Germany. Outstanding performance. Full two year parts and labour warranty. £338 Easy to operate and

+ 559.15 VAT Next Day Delivery $\mathbf{c 1 0 . 0 0}$ (cheques must be cleared)

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages. Idea for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects including three radios, siren, matronome, organ, intercom timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S. DEC breadboard and all the components for the series.
ADVENTURES WITH ELECTRONICS
〔5.75
COMPONENT PACK (less book)
£22.83

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series - An enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - faull finding - components fidentification \& how they work). Also full details of how to build 6 projects - burglar alarm, radio, game, etc. Requires soldering -4 pages clearly show you how.
The components supplied in our pack allows all the projects to be built and kept. The book is available separately.
FUN WITH ELECTRONICS Book
¢2.95
617.93
COMPONENT PACK (less book)

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects byR.A. Penfold covering a wide range of interests. All projects are buitt on a Verobloc breadboard. Full layout drawings and component identification
diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuilh several times using the same components. The component pack allows all projects in the book to be buith one at a time
Projects covered include amplifiers, light actuated s witches, timers, metronome, touch switch, sound activated switch, moisture detector, M.W. Radio، Fuze unit, etc.
30 SOLDERLESS BREADBOARD
PROJECTS Book 1
COMPONENT PACK

ENJOYING ELECTRONICS

A more advanced book which introduces some arithmetic and calculations to electronic circuits. 48 chapters covering elements of electronics such as current, iransistor switches flip-flops, oscillators, charge, pulses, etc. An excellen
follow-up to Teach-in or any other of our series. Extremely well explained by Owen Bishop who has written many excellent beginners' articles in numerous electronics magazines.
ENJOYING ELECTRONICS Book COMPONENT PACK

Note - A simple muttimeter is needed to fully follow this book. The M102 BZ is ideal.

A FIRST ELECTRONICS COURSE

A copiously illustrated book that explains the principles of electronics by relating them to everyday objects. At the end of each chapter a set of questions and word puzzes allow progress to be checked in an entertaining way. An S-OEC breadboard is used for this series - soldering is not required.
A FIRST-ELECTRONIC COURSE BOOK [4.99 PACK
$\mathfrak{£} 22.83$

INSULATION TESTER
 EE APRIL 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular. KIT REF 444
£22.37

3 BAND
 SHORT WAVE RADIO

EE AUG 87

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.

KIT REF 718
£30.30

PORTABLE ULTRASONIC PEsTSCARER

EE AUG '91
A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or
alignment. Kit includes all components. PCB, transducer and case. KIT REF 842
£22.56

EE
 EQUALISER
 EE MAY '87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB.

KIT REF 707
617.75

LIGHT RIDERS

EE OCT '86

Three projects under one title - all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling over 500 watts.
KIT REF 559 CHASER LIGHT
£15.58
KIT REF 560 DISCO UGHTS
£22,41
KIT REF 561 LAPEL BADGE
£11.65

PET

SCARER
EE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor) KIT REF 812
Mains Adaptor E 2.02

DIGITAL COMBINATION LOCK

EE MAR '91
Digital combination lock with a 12 key keypad. 4 digit code operates 250 V -16A SPCO pelay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security Can be operated in many modes (latching/unlatching. manual/automatic setting, continuous/momentary output. etc.). Article describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case.
KIT REF 840

ACOUSTIC

 PROBEEE NOV '87
A very popular project which picks up vibrations means of a contact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC'90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a mictocontroller !.C. to generate 8 -channel light sequences. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long aiso available. 1000 watts per channel, zero volt switching. inductive load capabilify. Opto-isolated for total safetr. Many other features. Complete kit includes case, PCBs. all components and hardware.
KIT REF 838

KITRE 838

EE TREASURE

HUNTER

EE AUG '89

A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground \uparrow effect". Can be used with search-head underwater.

Easy to use and build, kit includes search-head, handle, case, PCB and all parts as shown.
KIT REF 815
Including headphones

DIGITAL LCD THERMOSTAT

EE MAY '91

A versatile thermostat with LCD read out. MIN/MAX temperature recording. clock and individually settable upper and lower switching points. Covers -10 to 110 degrees Celsius, accurate to within 0.1 degrees Submersible probe on 3 meter lead. Kit includes punched and printed case. Save on energy bills by
improved control of yout hot water system. Also ideal tor
greenhouse soil temperature and aquarium control. greenhouse soil temperature and aquarium control.
Complete kit includes thermostat and probe mains Complete kit includes thermostat and probe, mains
powes supply and relay output. PCB's and punched and printed case
KIT REF 841

MOSFET VARIABLE BENCH 25V 2.5A POWER SUPPLY

EE FEB 88

A superb design giving 0.25 V and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V . A Toroidal transformer MOSFET power output device, and Quad op-ampIC design give excellent performance.
KIT REF 769

4 CHANNEL

LIGHT

CHASER
EE Jan '90

A 1000 W per channel chaser with zero volt switching, hard drive, inductive load capability, mic sound sensor and sophisticated 'beat' detector. Chase steps to music or auto when quiet Variable speed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channels. P552 output. Ideal for rope lights, pin spots, disco and display lighting.
KIT REF 833
£32.13

EPROM ERASER

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in tess than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.

KIT REF 790
f28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit . Covers Long and medium Wave bands. built in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without special equipment. Kit available less case, of with pre-cut and driled transparent plastic panels and dial for a striking see-through effect. $£ 17.16$ KIT REF 835 system for every electronics engineer!

3 oardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed circuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based systems.

BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys. mouse or direct keyboard commands to start designing a PCB or schematic within about half an hour of opening the box.

All trade marks acknowledged

Produce clear, professional schematics for inclusion in your technical documentation.

PCBlayout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

£95

Despite its quality and performance. BoardMaker 1 only costs $£ 95.00$. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your investment in Tsien products is assured. Price excludes carriage and VAT.

Don't take our word for it. Call us today for a FREE demonstration disk and judge for yourself.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
tsien
Fax 0223277747

INCORPORATING ELECTRONICS MONTHLY

The No. 1 Magazine for Electronic \& Computer Projects VOL. 21 No. 1 JANUARY '92

Editorial Offices:
EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET. WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692. DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO130JS.
Phone (0255) 850596

COMMITMENT

A recent visit to Philips at Southampton (see our news pages) made me realise just what level of financial commitment is now necessary for the development of "consumer electronics" chips. What is perhaps even more interesting is the level of development that takes place in the UK, and the importance of Philips in the world market for i.c.s and consumer electronics in general.
We all know the brand name but what is perhaps less obvious is the vast number of Philips chips that appear in equipment made by a wide range of other manufacturers from all over the world. Worldwide semiconductor sales are dominated by American and Japanese companies with Intel and Philips keeping the European flag flying. If you just look at dedicated consumer i.c.s Philips are the third largest supplier behind Toshiba and Sanyo and during 1990 (1991 figures are not yet available) they gained ground on both of them.

MADE IN JAPAN

We tend to think of consumer electronics products as coming mainly from the Far East, it is good to know that much of that product contains chips that were designed, developed and made (but often not packaged) in Europe.
With the gradual overlapping of consumer, electronic data processing and communications markets the development of "consumer" electronics has a greater impact on the overall electronic product market. Home computers are now virtually the same machines as those used in industry and communications systems are no longer obviously for just home or office use. So while IBM (the largest electronics company in the world - based on sales in financial terms) are very much an electronic data processing market manufacturer many of the smaller companies are finding their consumer electronics base is spreading more and more into traditional "business" equipment areas.

DEVELOPED IN THE UK

Many of the innovative products that we will be buying in the future marked "Made in Taiwan" will be based on the technology and chips that were "invented", designed and developed - in association with their manufacturers - by UK engineers working in Southampton. This is thanks to an investment of $£ 6.8$ million and one of the largest single concentrations of electronic engineering expertise in the UK.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 18.50$. Oversees: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in \mathbf{E} sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept.. 6 Church Street. Wimborne, Dorset 8H21 1JH. Tet: 0202 881749 . Subscriptions start with the next

Editor: MIKE KENWARD

Secretary: PAMELA BROWN

Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW. Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs pubfished in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and internetional reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertiers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactire. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that certain items of radio transmitting and tolephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipmont as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country overseas readers should check local laws.

TRANSISTOR CHECKER

Check out your collection of "suspect" and unmarked transistors, including f.e.t.s, with this tester.

TRANSISTORS. both of the bipolar and field-effect varieties, particularly when they have been used over and over again in experimental set-ups, (and schools and colleges are in the forefront of such situations) are apt to find themselves in circuit systems where the operating conditions are not always to their liking. Reversed and excessive applied voltages are old established favourites on the road to ruin, and eventually there arrives the day when a box or a drawer full of assorted devices of dubious antecedence are left for the pupil or the student to take his or her pick, and (when the experiment doesn't do what it should) ruminate on whether the trouble is due to their incompetence, the circuit design or the bits they are using.
Some transistors pack up completely and it doesn't take too long to spot the cause of the trouble. However the main problem usually arises from those transistors that give the appearance of working but have in fact poor gain or excessive leakage, so that things half function and the circuit designer (if he is being followed) gets a lot of unwarranted stick.
But dubious devices apart, it is frequently necessary to select transistors from perfectly good collections for, perhaps, high gain, or to pick out pairs having close gain and current figures for matching purposes, and so on. A transistor checker is then a useful piece of test equipment.

RECUIREMENTE

What is needed is not a complicated box of tricks which will provide us with every parameter a transistor possesses, most of which the amateur experimenter would have no use for, anyway, but a simple checker that will provide, in a few seconds flat, those reassuring functional checks on diodes and transistors before they are incorporated into equipment.
There have been a number of simple testers published in magazines over the years since the transistor put in an appearance, but I have not seen any which cater for field-effect devices (f.e.t.s) as well as the "ordinary" bipolar types. The circuit to be described will cater for all diodes and both sorts of small-signal transistors as well as. of course, differentiating between npn and pap bipolars and n - and p-channel f.e.t.s.

BASIC PAINCIPLES

The bipolar transistor can usually be summed up for acceptance or rejection by the basic measurements of its leakage (saturation) current and its current gain. In the case of the f.e.t. the parameters of importance are the pinch-off voltage $\left(\mathrm{V}_{\mathrm{p}}\right)$. the value of the drain current (IDSS) with the gate voltage (V_{k}) set to zero, and the mutual transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$. Diodes, of course, can be chocked simply by noting the effectual forward and reverse resistance.

COMMON EMITTER

Starting with bipolar transistors, the effect of leakage becomes most important when the transistor is used in the common-emitter configuration. Suppose in Fig. I that an npm transistor is connected to collector and base

वाइस표

Fig. 1. The effect of leakage current.

Fig. 3. Method of measuring static current gain.
supplies but has its emitter (e) left opencircuited.
A meter included in the collector circuit might be expected to record zero collector current. but actually a small leakage current will flow across the collector-base junction even though it is reverse biased. This leakage is composed of minority carriers (holes in this case) which move across the junction in the direction collector-tobase. But such a movement of holes from collector to base inside the device is equivalent to a movement of electrons (as recorded, outside the device) in the direction base-to-collector.
This current therefore shows itself in the external circuit as an addition to the collector current I_{c} which will fow normally when the emitter is reconnected. This unwanted part of I_{c} is designated $I_{\text {CBO }}$, and is temperature dependent. In a silicon transistor it amounts to only a few nanoamps under normal conditions, but can be considerably higher in a germanium device.
If a transistor is now connected as shown in Fig. 2, this time with the base (b) left open, the leakage current $I_{\text {CBo }}$ which still

Fig. 2. How leakage is amplified by transistor action.

Fig. 4. Method of mossuring transconductance.
flows, will be treated as a base input signal and will be amplified by the transistor to give a collector current expressed as Iceo This current may well be several hundred times the value of $I_{\text {CBO }}$ and hence may be significant in determining the thermal stability of an amplifier when it becomes an unwanted part of the main collector current.
The checker will measure $I_{\text {CBQ }}$ and the ef fect of its amplification in the common-emitter configuration, that is, the value of $I_{\text {CEO }}$ The $I_{\text {CEO }}$ is simply measured by using the basic circuit of Fig. 2.
The transistor under test has its base connection left "open circuit" and the amplified leakage is shown on a microammeter ME! (protected to full scale deflection (f.s.d.) by resistor R1) wired into the collector circuit. In a good silicon device the current, even though amplified, will normally be negligible but in a poor example it may run to seyeral microamps.
Germanium transistors have relatively high Icso's even when perfectly good, and Iceo's up to $100 \mu \mathrm{~A}$ are not uncommon, particularly in some of the older types. Anything over this figure should certainly be rejected.

CLARENT GAIN

Turning now to the measurement of current gain, the d.c. gain of a transistor (or its static common-emitter amplification factor h_{FE}) is a figure indicating how many times the base current is effectually contained in the collector current. In other words, how well is it amplifying?

This is determined by measuring the change in collector current resulting from a known change in base current. Fig. 3 shows a common method (there are others); here resistor R1 is selected so that when switch S1 is operated, the current flowing through R 1 into the base is some precise figure, say, $10 \mu \mathrm{~A}$
By suitable scaling, the collector current as measured on the meter MEI will indicate a direct value for the current gain. This gain figure is for purely d.c. conditions: the a.c. gain or dynamic gain figure (h_{FE}) when a load resistor is used in the collector circuit, is always less than the static gain, in general about 10 per cent smaller.

CHECKING F.E.T.s

For the f.e.t., the diagram of Fig. 4 shows the basic circuit arrangement for the measurement of $I_{\text {DSS }}$ and g_{m}. With switch S1 in the position shown, the gate (g) of the f.e.t. is "earthed" and the milliammeter MEI gives a direct reading of $I_{\text {DSss }}$. When the switch is changed over, the gate (g) is biased by $-1 V$ and the drain current falls.
The mutual transconducante g_{m} is a measure of the change in drain current divided by the change in gate voltage. Since the gate change is one volt, the change in the meter current gives a direct indication of g_{m}, that is, so many milliamps-per-volt or, as it is usually expressed, so many milli-siemen.
A close approximation to the pinch-off voltage is obtained from a simple relationship between $I_{D S S}$ and g_{m} which will be given later.
The above descriptions have been made assuming npn transistors and n-channe f.e.t.s. For pnp transistors and p-channel f.e.t.s, all supply voltage polarities are simply reversed. We are now ready to combine these basic systems into the complete checker.

CIRCUIT DETA/LS

The complete circuit diagram of the Transistor Checker is shown in Fig. 5, and this

contains all the forms of the basic systems discussed earlier under Fig. 2, Fig. 3 and Fig. 4
The amount of switching might seem offputting at first sight, but provided the work is approached in a logical way, things are not so fraught as they might appear. There are two main switch assemblies involved; S1 having three wafers each of 2 -pole, 5 way; and S2 made up of two wafers, each also 2-pole, 5 -way.
One of the poles on S2 is not used. For both these switches, 2 -pole, 6 -way wafers are used but the mechanism is stopped off at the 5 -way position.
The only other components are seven resistors, a preset potentiometer, a capacitor, a $500 \mu \mathrm{~A}$ moving coil meter MEI, diode DI, a biassed loggle switch and a push-to-make push button switch S3, plus
coloured terminals and knobs. Most of the resistors go on to a simple circuit board for convenience and this is fitted directly to the terminals of the meter
The whole assembly is consequently built on to a single aluminium panel which fits into a small "console" type ABS plastic case measuring 159 mm by 91 mm by 61 mm . Any alternative style of case may of course be used provided it has adequate space.

POLAFITY SWMTCHING

The first wafer of switch S1, that is, Sla and $\mathbf{S} 1 \mathbf{b}$, are simply reversing switches for the meter ME1. The meter terminals are changed over to suit the polarity when either npn or pnp (or n - or p-channel f.e.t.s) are being tested.

Fig. 5. Complete circuit diagram for the Transistor Checker. Switch S1 is shown in the N-FET position and S2 in the ICEO - Diode position. Components enclosed in dotted lines are mounted on the p.c.b. Circled letters refer to connections on the circuit board.

(a) 0185

(b)

Fig. 6. Front panel legends (full size) required at 30 degrees indexing for Polarity switch (top) and Function switch (above).

COMPONENTS

Resistors	
R1	867k (820k + 47k,
	(soe text) Se
R2, R4	389 (2 off) SH
R5	100
R6	3 k 3
R7	6 k 8
All 0.25W 5\% carbon or better	
Potentiometer	
	22k min. skeleton preset
Capacitors	
	O 11 ceramic disc
Miscellaneous	
ME1	$500 \mu \mathrm{~A}$ Altai type T23
	6 -pole 5 -way, three wafers each 2-pole 5-way
S2	3 -pole 5 -way, two wafers each 2-pole 5 -way
	Push-to-make pushbutton switch
S4	Min. changeover toggle, biased one side
Plastic ABS console type case,	
$161 \mathrm{~mm} \times$	96mm $\times 61 \mathrm{~mm} / 39 \mathrm{~mm} ; 1 \mathrm{~mm}$
wander plug and socket, 1 green, 2 red	
and 2 blac	ck; miniature crocodile clips
(3 off); 9V battery, type PP3; 1.5 V	
cell; $19 \mathrm{~mm}(3, \mathrm{in}$.) collet knobs, 2 off; various colours of connecting wire; solder pins (12 off); solder etc.	
Printed circuit board available from $E E$	

Similarly, the second wafer, SIc and SId, reverses the polarity of the 9 V supply (battery B1) for the same reason. Wafer Sle and SIf also reverses the polarity of the f.e.t. gate supply battery B2 when f.e.t.s are being checked.

The relevant functions of the switch positions are indicated in Fig. 6(a). Use this as your lettering guide on the front panel.

FUNCTIONSWITCH

Switch S2 selects the various measuring modes after S 1 has been set to suit the type of device being tested. Looking at the circuit diagram, in the position shown ($J_{\text {CEO }}$-Diode), the meter is connected in series with preset potentiometer VRI (wired as variable resistor) and the transistor (or diode) under test.

For a transistor, the base connection is an open-circuit and hence the meter will read the leakage current $/$ CBO. For a diode, the forward conduction will be indicated.

The second and third positions of $\mathbf{S} 2$ give an indication of current gain, $h_{\text {FE, }}$, after the manner shown earlier in Fig. 3. On the second position resistor R2 shunts the meter and converts it to read $5000 \mu \mathrm{~A}(5 \mathrm{~mA})$ f.s.d.; in the third position the meter is left unshunted.
When the pushbutton switch S3 is pressed, $10 \mu \mathrm{~A}$ flows through resistor R1 into the base (b) of the test transistor, hence the meter indicates either a maximum $h_{\text {FE }}$ of 500 (position 2) or 50 (position 3). This last sensitive position should only be used for cases of $h_{\text {FE }}$ which fall below 50 on the 500 range.
The fourth and fifth positions of the switch are reserved for f.e.t. testing; on the fourth position IDss is shown on the meter (now shunted by resistor R3 to read 50 mA f.s.d.). If the reading is very small, an auxiliary switch S4 converts the f.s.d. to 5 mA ; this switch is normally biassed to the least sensitive position.
The fifth switch position (as per Fig. 4. earlier) puts a IV potential of appropriate polarity, derived from the 1.5 V cell B 2 via the resistor divider chain R6, R7, on to the gate of the f.e.t. and hence, by the change noted in IDss. provides an indication of gm_{m} The legends required on the front panel for this switch are given in Fig. 6(b)

CONSTRUCTION

The front panel drilling measurements are given in Fig. 7. These measurements suit the original panel which is 155 mm by 90 mm . The hole size for the meter also suits the specified meter; the holes for this can be marked out using the packing piece as a guide.

All the front panel lettering should be added after drilling but before any of the components are mounted. The switch positions are indexed out at 30 degrees intervals on a radius from the fixing hole which suits the knobs you are going to use. Collet, 19 mm (3 in .), type knobs were found to be best as there is then no problem with the alignment of the pointer-mark when they are fitted and no precise orientation of the switches on the panel is necessary.

SWITCH WIAING

It is best to wire up the wafers of switches S1 and S2 before fixing them to the front panel. If each wafer is wired up systematically and interconnections made where necessary between the wafers, there is no real problem about the job; all that is needed is a logical progression from each wafer to the next.
If you look again at the main circuit diagram Fig. 5, there are connections from the wipers (w) of each of the three wafers of SI which go to: (i) the meter, (ii) the 9 V battery, (iii) the 1.5 V cell. Solder distinctive coloured wires on the switch wipers for easy identification.
Again looking at the diagram, notice that there are only four leads which actually come from these wafers to connect with the remainder of the circuit; these are indicated by the letters W, X, Y, Z. Once the interconnections between wafers have been made, the switch can be mounted on the front panel.
The same procedure applies to switch $\mathbf{S 2}$; most of the outgoing wires (in this case shown as circled letters on the circuit diagram) go off to a small printed circuit board (p.c.b.) which will be described in a moment. Again, the use of coloured leads will avoid confusion.

The pushbutton switch S3 and the biassed changeover switch S 4 are mounted immediately below the meter, while the input test sockets are fitted on the right of the panel as the photographs show. The group of three sockets are for bipolar and field-effect transistors and are marked D-C, G-B and S-E, representing either drain, gate, source or collector, base, emitter inputs respectively. The two lower sockets are for diode testing and are marked + and - (plus and minus) respectively.

The terminals used are 1 mm type coloured sockets which are bought together with matching 1 mm plugs. You can use spring

Fig. 7. Front panel drilling details. The meter hole drilling depends on unit used.

Fig. 8. Printed circuit component layout and full size copper foil master pattern. Resistor R5 and capacitor C1 are wired directly between switch wafer and output sockets.
type terminals as an alternative but watch the available space.
The method of connecting transistors adopted by the author utilises three miniature crocodile clips connected by short flexible leads to the 1 mm plugs which then go into the appropriate sockets. Some of the older transistors had leads sufficiently long to plug directly into the sockets but these are now few and far between; using croc' clips will accommodate practically every style of transistor output configuration.

CIFCUIT BOARD

Apart from the switches and sockets, most of the remaining discrete components are mounted on a small printed circuit board; the exception being resistor R5 and capacitor CI. This board is available from the EE PCB Service, code EE781.
The p.c.b. is screwed directly on to the meter's rear terminals and carries all the resistors except R5 which, along with capacitor Cl , is hard wired directly between switch wafer S2c wiper or pole contact and the appropriate sockets. The full size copper track layout and component dispositions are given in Fig. 8 where the lettering refers to that shown on the circuit diagram; this makes the interwiring from the switch leads
and the connections to switches S3 and S4 relatively easy.
Preset potentiometer VRI should at this point be set to its maximum resistance position, fully anticlockwise. It is important to note in passing that the values of the shunt resistors R2, R3 and R4 apply only to the specified meter and will have to be modified if you use an alternative meter.
Resistor R1 is actually made up from an 820 k in series with a 47 k ; we need $10 \mu \mathrm{~A}$ to flow into a transistor base when switch S3 is pressed but the base-emitter voltage drop is different for silicon and germanium devices. Assuming the battery p.d. is 9 V , then about 8.4V is available for a silicon device and about 8.75 V for a germanium one.
Hence, to get $10 \mu \mathrm{~A}$ to flow a compromise is necessary in the value of resistor R1. So 867 kilohms seems reasonable, though thëre is not much point in being pedantic about this, bearing in mind the tolerance of the resistors, and the variation in the potential barrier voltage of different transistors.
The two batteries are located beneath and to either side of the circuit board. They are fixed to the front panel with doublesided sticky pads. The 9 V supply battery is positioned nearest the wafer switches, see photographs.

With the simple p.c.b. used here, it is no problem to use either etch-resistant transfers or a Dalo pen to map out the tracks. The only critical spacing is that for the meter fixing holes which must be exactly 25.4 mm (lin.) apart. Use solder pins as the connecting points for the incoming wires.

EETTING UP

With the project assembled and with the batteries in place, a quick preliminary check can be made. This is quite simple as only preset VRI needs adjustment to give the meter a full-scale reading on the available battery voltage.
With S1 set to OFF and S2 set to ICEO Diode, short out the input sockets C and E . Then switch SI to either the npn or pnp position and adjust VRI to provide a full-scale reading on the meter.
This completes all that is strictly necessary for the operation of the tester but you can if you wish check on the accuracy of the meter shunting for the hFE ranges. To do this, connect a 47 kilohms (or thereabouts) variable potentiometer, resistance fully in, across the C-E terminals.
Switch S1 to cither npn or pnp and switch S2 to the $\mathrm{h}_{\mathrm{FE}} 0-50$ range. Adjust the. pot carefully to give f.s.d., then turn switch S2 to

Components mounted on the rear of the front panel. The switch wafers are pre-wired before mounting on the switch mechanism.
-

Front panel layout and lettering.

the 0-500 range. Check that the meter now reads 50 on this $0-500$ range. For any serious error, say, a reading outside 45-55, resistor R2 will need adjusting.

OPERATION

Here is a brief summary of the procedures for testing diodes, bipolar and field-effect transistors. Always start with the instrument switched OFF and with the Function switch set to I ICEO-Diode.

Diodes

To check a Diode: Connect the marked end of the diode (the cathode (k)) to the negative terminal and the anode (a) to the positive terminal. With S2 on I ${ }_{\text {CEO-Diode. switch }}$ SI to the PNP position: the meter should then indicate the forward conduction of the diode, generally close to a full scale reading.
Switch now to the NPN position on SI. The meter will now indicate the diode reverse leakage which for a good diode should be undetectable.

Transistors

To check a bipolar transistor: Assuming an npn device, connect the collector (c), base (b) and emitter (e) leads to the appropriate terminals. Set the function switch to $I_{\text {CEO }}{ }^{-}$ Diode and the polarity switch to NPN.
The meter will now indicate the open-base leakage current $I_{\text {CEO }}$ on a $500 \mu \mathrm{~A}$ full-scale deflection. For a good silicon transistor this reading should be negligible but for a germanium transistor a current of $100 \mu \mathrm{~A}$ might not be unusual. particularly for some of the older types.
To check the gain, switch to the hFE 0-500 position and press the Test button S_{3}. The meter will indicate the static current gain directly: if the reading is less than 50 , switch to the $0-50$ position.
In cases where the leakage is appreciable, make a note of the meter reading before pressing Test switch S3; deduct this reading from that obtained when S 3 is pressed to get a true value for h_{FE}. It is the change in the current which matters.
To determine whether a transistor is npn
or pnp use can be made of the diode terminals. Put the collector lead into the + socket (plus) and the combined emitter and base leads, shorted together, into the socket (minus). Switch the function switch alternately to PNP and NPN; then the position which produces the full-scale reading (or very close to it) is that which suits the type of transistor under test.

Field Effect Transistors

To check a f.e.t.: Assuming an n - channel f.e.t. connect the drain (d), gate (g) and sources (s) leads to the appropriate terminals. Set the Function switch to I DSs and the polarity switch to N-FET.
The meter will now indicate (on a 50 mA f.s.d. range) the drain current for zero gate volts. If the reading is below 5 mA , operate the biassed switch S 4 to give a 5 mA f.s.d. range. Note this reading.
Switch now to gm_{m} the previous I Dss reading will decrease, a bias of IV now being applied to the gate. The change in the current will give an indication of g_{m} either in mA / V or millisiemen.
To evaluate V_{p} (the pinch-off point) use the simple relationship:

$$
V_{p}=\frac{-2 I_{\text {Dss }}}{g_{m}}
$$

Thus, for example, if $I_{\text {DSS }}=4 \mathrm{~mA}$ and $g_{\mathrm{m}}=$ $1.5 \mathrm{~mA} / \mathrm{V}$ (or 1.5 millisiemen) then:

$$
V_{\mathrm{p}}=\frac{-2 \times 4}{1.5}=-5.3 \mathrm{~V}
$$

PRECAUTIONE

At all times, when carrying out tests, make sure that the clips to the "transistor under test" do not short together before switching the unit on: failure to do this could lead to the meter "cracking" over and the result could be a bent pointer. Always return switch SI to OFF before connecting or removing a transistor.
Most small-signal type transistors and f.e.t.s can be checked on this instrument, as can most small power silicon types: high power types cannot be tested accurately because of the low collector currents used. \square

The completed tester showing the two batteries secured (with double-sided sticky pads) beneath the circuit board. The resistor R5 and capacitor C1 can just be seen on the left.

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W + 450W)
FEATURES: \# Independent power supplies with two toriolal transtormers * Tin LEN

USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.
SIZES:- MXF200 W $19^{\prime \prime} \times \mathrm{H}^{21 / 2}(2 \mathrm{U}) \times D 11^{\prime \prime}$

PRICES:- MXF200 E175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CARRIER DEL \& 12.50 EACH

OMP VAAISPEED TURINTABLE CHASSE
Manual arm * Steel chassis * Electronic speed control 33845 R.P.M. Vari pitch control \star High lorque servo driven DC motor *ransit screws * $12^{\prime \prime}$ die cast platter. Neon strobe © Calibrated balance weight Removable head shell ${ }^{*} 4 / 2$ cartridge fixings © Cue lever $220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ * $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out template.

PRICE 561.30 - $\mathbf{2 3 . 7 0}$ P\&P
GPIONAL MACNEIIC CARTRIDGES STANTON AL500mkII GOLDRING G950 PRICEC16.95 - SOP PAP PRICE 57.15 - SOP PAP STAREO DISCO WIKXR DJGEOC
 STEREO DISCO MIXER with 2×7 band LED R graphic equalisers with bar graph FEATURES: Fearunes.- Including ECho wirn ropeat a ${ }_{8}$ talk-over switch, 7 Chane control Individual taders plus cross fade, Cue Headphone Monitor. Usoful combination of the following inputs:- 3 furntables (mag), 3

Price £134.99 - £5.00 P\& P

PIजKELECTAICTWEGERS - MOTVQEA

Join the Piezo revolution! The low dynamic mass (no voice coll) of a Piezo tweeter produces an improved iransient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not requlred The se unllis can be added to existing speaker systems of up to 100 war
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price £ $4.90-50 \mathrm{p}$ P P P.
TYPE 'B' TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers,
disco and disco and P.A. systems etc. Price C5.99-50p P\&P. TYPE 'C' (KSN1016A) 2" $\times 5$ " wide dispersion horn for quality Hi.Fi sys. tems and quality discos etc. Price 56.99 - 50p P\&P. TYPE 'D' (KSN1025A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. Upper Prequency response retained extending down to mid-range (2 KHz). Suitable lor high quality Hi-Fi systems and quality discos. Price C9.99-50p P\&P. TYPE 'E' (KSN1038A) 3t4" horn iweeter with attractive silver finish trim. Suitable for Hi.Fi monitor systems etc. Price 55.99 - 50p P\&P. EVEL CONTROL Combines, on a recessed mounting plate, level

OWPLINTET LOUDSPFAKERS

THE VERY BEST IN QUALITY AND VALUE
Made especially to suit loday's need for compactness with high output
sound levels, finished in hard wearing black vynide with protective corners, grille and carrying handle. Each unit incorporates a $12^{\prime \prime}$ driver plus high frequency horn for a full frequency range of 45
Both models are 8 Ohm impedance. Size: H20" $\times \mathrm{WH}^{\prime \prime} \times 012$

CHOICE OF TWO MODELS
POWER RATINGS QUOTEDIN WATTS RMS FOR EACH CABINET
OMP 12-1 OOWATTS (100dB) PRICE ¢163.50 PER PAIR OMP 12 2.200WATT S (200dB) PRICE 1214.55 PER PAIR SPECIALIST CARRIER DEL. £ 12.50 PER PAIR

THREE SUPERB HIGH POWER
AR STEREO BOOSTER AMPLIFIERS CAR STEREO BOOSTER AMPLIFIERS

150 WATTS $(75 \quad 75)$ Stereo, 150 W Bridged MS (75 | OSTER |
| :--- |
| 75) |
| 125$)$ | 250 WATTS (125

125) Stereo 250 W Bridged Mono
400 WATTS
126) Stereo, 400 W

400 WATTS $(200 \sim 200)$ Ster
Bridged Mono
ALL POW ERS INTO 4 OHMS
Features:
Stereo, bridgable mono. Choice of high \& low level inputs \$L \& level
controls * Remote on-off © Speaker \&
PRICES: 150 W C49.99 250 W C99.99
400W 1109.95 P\&P E2.00 EACH

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS
 R.M.S. into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$.3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.A. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE 40.85 - C3.50 P\&P.

OMP/MF 200 Mos-Fet Output power 200 watts

 R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Iypical 0.001%, Input Sensitivity 500 mV , S.N.R 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$PRICE C64.35 - C4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$.
PRICE E81.75-E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.M.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. .110 dB, Fan Cooled, D.C. Loudspeaker Protection, Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE \&132.85- E5.00 P\&P
NOTE MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS: NOTE MOS.FET MODULES ARE AVAILABLE IN TWO VERSIONS:
STANDARD -INPUT SENS SOOmV, BAND WIDTH TOOK Hz
PEC (PROFESSIONGL EOUIPMEMT COMPATBLE). IMPUT SENS STA (PROFESSIONAL EQUPMEET COMPATIBLE)- INPUT
PTSmV, BANO WIOTM SOKHz. OADER STAMDARD OR PEC.
 Vu METER Compatible with our four amplifters detalled above. A very accurate visual display employing 11 L.E.D. 17 green, 4 red) plus an additlonal on/oth moulded plastic case, with acrylic finted front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE E8.70 + 50p P\&P

TOUDSPGAKEP: LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E (50p STAMPED) FOR COMPLETE LIST.
P-From McKenzle Prolessional Serles

MEXIENEIE-INSTRUMEMTS, P.A. DDSCO, EIC

ALL MCKENZIE UNITS \& OHMS IMPEDANCE
8100 WATT PB-100GP GEN, PURPOSE, LEAD GUITAR. EXCELLENT MID. DISCO
 RES. FREO. 72 Hz , FREO. RESP. TO 6 KHz , SENS 970 B .
OARD, DISCO. EXCELLENT MID. 10 200WATTS C10-200GP GUITAR, KEYB'O, DISCO, EXCELLENT HIGH POWER MID RES. FREQ. 69 Hz , FREO. RESP. TO 5KHz, SENS 97dB. PRICE 553.21 12 100WATT PC1 2-100GP HIGH POWER GEN. PU
RES.FREQ. 49 Hz . FREO. RESP. TO 7 KHz . SENS $98 d \mathrm{~B}$. RES.FREQ, $49 \mathrm{~Hz} \overline{\text {, FREO. RESP. TO } 7 \mathrm{KHz} \text {, SENS } 98 \mathrm{~dB}}$
12 100WATP C12-100TC (TWIN CONE) HIGH
RES. FREQ 4SHz, FREQ. RESP. TO 12KHz, SENS 97 dB .
12 200WATT S C1 2-2 OOB HIGH POWER BASS, KE
RES. FREO. 45 Hz, FREQ. RESP. TO 5 KHz , SENS 99dB.
RES. FREO. 49 Hz , FREQ. RESP. TO 7 KHz , SENS 100 dB
15 . 100 WATT P C15-100日S BASS GUITAR, LOW F
RES. FREO. 40 Hz , FREQ. RESP. TO 5 KHz , SENS 98 dB .
15 200WATT P C1 5-200BS VERY HIGH POWER BASS
RES. FREO. 40 Hz , FREO. RESP. TO 3 KHz , SENS 98 AB .
15 250WATTSC15-250BS VERY HIGH POWER BA
RES. FREO. 39HZ, FREQ RESP TO 4 KHz SENS 99 .
RES. FREO. 39Hz, FREQ. RESP. TO $4 K H z$, SENS 99dB.
15 4OOWATT S C $15-400 B S$ VERY HIGH POWER, LO
RES. FREO. $40 H \mathrm{H}$, FREO. RESP. TO 4 KHz , SENS 100 dB .
18 SOOWATT SC18-500BS EXTREMELY HIGH POW
RES. FREQ. 27 Hz , FREQ. RESP. TO 2 KHz , SENS. 98 dB . \qquad TAR, DISCO. PRICE C 40.35 ONSE, P.A., VO PRICE C 41.39 P.A.

PRICE 671.91
PRICE $671.91-$ C
OARDS DISCO ET PRICE C95.66 ISCO.
PRICE ¢ 59.05
PRICE C80.57 - C4.00 PEP
PRICE C 90.23 + ¢4.50 PEP PRIC
PRICE C105.46-C4.50 PAP NCY BASS.
PRICE E174.

ZAB:

ALL EARBENDER UNITS 8 OHMS (EICept EB8.50 \& EE10-50 which are dua
BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND
8 50watt EB8-50 OUAL IMPEDENCE, TAPPED 4/8 OHM BASS, HI-FI, IN-CA

RES. FREO. 40 Hz , FREQ. RESP. TO 7KHz SENS 97dB. 10 SOWATT EB10-50 OUAL IMPEDENCE. TAPPED RES. FREO. 40 Hz , FREQ. RESP. TO SKHz, SENS. 99 dB RES. FREO. 35 Hz , FREO. RESP. TO 3 KHz , SENS 96 AB . 12 10OWATT EB12-100 BASS, STUDIO, HIIFI, EXC RES. FREO. 26 Hz , FREO. RESP. TO 3 KHz , SENS 93 dB
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUN
5\%" GOWATT EB5-GOTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC
AES. FREQ. 63 Hz , FREO. RESP, TO 20 KHz , SENS 92 dB .
$\mathbf{6}^{1 / 2}$ GOWATT EB $6-60 T C$ (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREO. 38 Hz , FREQ. RESP. TO 20KHz. SENS 94 dB . 8 GOWATT EBB-GOTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC. RES. FREQ. 40 Hz . FREQ. RESP. TO 18 KHz , SENS 899 B .
10^{\prime} COWATT EB $10-60 T C$ (TWIN CONE) HI-FI MULT RES. FREO. 35Hz, FREO. RESP. TO 12KHz, SENS 98dB.

PRICE CB. 90 - C2.00 PAP PRICE C13.65- C2.50 PAP
PRICE C30.39 - ¢3.50 Pap
PRICE C42.12 - ¢3.50 PAP

PRICE C10.99 - 1.50 PAP
PRICE E12.99 - C1.50 PAP PRICE 16.49 - 52.00 Pap

URIANSMITER YOEREX KTE

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TRANSMITTER BO-108MHR. VAACAP COMPROLLED PROFESSIONAL

FW MICRO TRAMSMITTER $100-105$ MHZ, VARICAP TUMED, COMPLETE WITH
VEAY SENS FET MIC. RANGE $100-300 \mathrm{~m}$. SIZE 56 I 45 mm . SUPPLY OV BATTERY.

PRICE CQ A - C1MOPAP PHOTO: SW FM TRAMSMITTER

Constructional Project

MICRO SENSE ALARM

JASON SHARPE

A comprehensive alarm that can protect any object, particularly electronic equipment, uses piezo sensors combined with tilt switches, if required, stuck onto the equipment.

useful in the case of false alarms to detect what caused the error, also when the alarm is first switched on it will show if the loop is open or short circuited. Features of the alarm are:
\star Uses sensitive piezo transducers
*Three state security loop

* Trigger source indicators
* Status indicator
* Auto turn off sounder

Thanks to modern technology electronic goods keep becoming smaller and more portable, unfortunately this also makes life easier for the thief. This alarm was designed to protect computers and their peripherals from being removed while unattended.

Items are protected by fixing piezo transducers to them, with self adhesive foam pads. When an attempt is made to remove the sensor a voltage is produced by the piezo crystal as it is distorted, which will set off the alarm. If the security loop is cut or short circuited the alarm will also be set off, tilt switches (and other types of switches) may be connected in series and parallel with the loop and fixed to the back of the sensors for even more security.
The source of the last trigger pulse is shown by three l.e.d.'s, this feature is

Fig. 1. Block diagram of the Micro Sense Alarm.

A block diagram of the Micro Sense Alarm is shown in Fig. 1 and Fig. 2 shows the full circuit diagram without the power supply unit.
The output from the piezo transducers is fed into an inverter arranged as an amplifier, the input sensitivity is set by VRI and RI, the higher their combined resistance the higher the input sensitivity. The output of the amplifier is fed into another inverter which translates the analogue signal into a digital high or low.
Components R3, TRI, R4, Cl and a further inverter form a monostable which has the affect of "stretching" the short pulse received from the piezo transducer. If the input becomes high (i.e. a trigger pulse has been sensed) Cl is discharged via TRI, when the input goes low again C1 starts to charge via R4, the inverter squares the output to produce a high pulse which is longer than the input pulse.

Most security loops are just wire loops, which means they can be shorted out and disabled, the security loop on this alarm has an 18 k resistor from the loop input to ground, which is fixed to the last sensor in the chain. Inside the alarm the input has an 18 k resistor connected to positive, this

AMSTRAD PORTABLE PC'S FROM 1149 (PPC1512SD). £179 (PPC1512DD). [179 (PPC1640SD). £209 (PPC1640DD). MODEMS $\{30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Steneo pair outpul 100 w each 4ohm impedance and consist ng of 612 woofer $2 "$ mid range and 1 "tweeter Ideal to work with hite amplifer described above. Price per 2KV 500 WATT TRANS
2KV 500 WATT TRANSFORMERS Surable for high volkage expenments oras a
S. 10.00 iel 10 Pg 9 B
MICAOWAVE CONTROL PANEL. Mains operated, with touch smitches Complete with 4 digt display, digital clock, and 2 relay outpuls one for power and one for pulsed power (programmabie) Ideal for all sorts of precision vimer apolc ations etc. £6.00 ref 6P18R PVC. Five melive length $£ 700$ ref $7 P 29 \mathrm{~A}$
VV SOLAR CELL 200 mA output ideal for trickle
charging etc 300 mm square Our price $£ 15.00$ ret

PASSIVE INFRA-RED MOTION SENSOR
Complett with dayight sensor, adjustable fights on timer (8 secs- 15 mins). So range with a 90 deg coverage Manual overide facility Com. plete with wall brackets. buib holders etc. . Brand
new and guaranteed $£ 25.00$ ret 25 P 24 R .
Pack of two PAR38 bulbs for above unit $\$ 12.00$
ef 12 P 43 P
VIDEO SENDER UNIT Transmir both audio and video signals from other a ndeo camera, video recorder or computer to amy standard TV set within a 100 rangel (tune TV to a spare channel),
$12 v$ DC op. $£ 15.00$ ret 15P39R Suitable mains adaptor $£ 500$ ret 5P191R
FM TRANSMITTER housed in a standard working 13 A adapter (bug is manns driven) $\mathrm{M}^{26} 00$ ref 26 P 2 R
MINATURE RADIO TRANSCEIVERS A pair of
walkie takies with a range of up to 2 kilometres Units
measury
mita measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases $£ 30.00$ FM CORD
FM CORDLESS MICROPHONE Small hand hoid unit with a 500° rangel 2 transmit power levels reas PP3 batrery Tun. eable to any FM receiver. Our ponce S. 15 ret 15P42AR
12 BAND COMMUNICATIONS RECEIVER
12 BAND COMMUNICATIONS RECEIVER. 9 shor

 NOW ONLY £19.00! 19P14R.
WHISPER 2000 LISTEPIING AID.Enables you to hear sounds that would othermse be inaudiblel Complete mith headphones Cased S5 20 ref 5P179R.
CAR STEREO AND FM RADIOLOw cost stereo system giving 5 watts per channel Signal to nase ratio betier than 45db. wow and itumer less than 35% Neg eath $£ 2500$ ref 25P21R LOW COST WALIKIE TALKIES Pair of battery oper ated units with a range of about 200 Our price $£ 8.00$ a pair ref 8 P50
7 CHANNEL GRAPHIC EOUALIZERONS a 60 watt power amol 20-21KHZ 4-8R 12.14vDC negative eath Cased C 25 NICAD BATTERIES. Brand new IOP quatity $4 \times A A^{\prime}$ s $£ 400$ rel 4 P44R. $2 \times$ C's E4 400 rel 4 P73R $4 \times$ D's $£ 9.00$ er 9P12R, $1 \times$ PP3 ©6.00 ref 6P 35R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book Latest oation £ 20.00 ret 20P32R
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref 3P104R Bumper pack of 1.000 pes $£ 14.00$ ref 14P6R

1992 Catalogue available now
IF YOU DO NOT HAVE A COPY PLEASE REOUEST ONE WHEN ORDERING OR SEND US A 6 "K9" SAE FOR A FREE COPY

GEIGER COUNTER KIT. Complete with tube PCB and all components to build a batrery operated gerger counter $£ 3900$ rel 39P1R FM BUG KIT.New design meth PCB embedded coil Transmits to any FM radio gy batter rea'd $£ 5.00$ ref SP158R FM BUG Buth and tested supenor $9 v$ operation $£ 14.00$ ref 14 P 3 3R
COMPOSITE VIDEO KITS. These COMPOSITE VIDEO KITS. These conven composie video into separate H sync. V sync and video $12 v$ DC $\varepsilon 8.00$ rel $8 P 39 R$
SINCLAIR C5 MOTORS $12 v 294$ SINCLAIR C5 MOTORS $12 v 29 A$ (full load) $3300 \mathrm{rpm} 6^{\circ} \times 4^{-1 / 1 / 4 *}$ OP shatt Now. £2000 rof 20P22R
As above but with hited 4 to 1 infine reduction box (800 ppm) and toothed nylon belt dnve cxa $£ 40.00$ ref 10 PS 3 R.
SINCLAIR C5 WHEEL
SINCLAIR C5 WHEELS 5^{5} or $16^{\text {" }}$ da including ireaded tyre and inner rube Wheels are black spoked one plece poly carbonate 13^{-} wheel $£ 6.00$ ref 6P20R. 16^{6} wheel $\Sigma 600$ ref 6 P21R
ELECTRONIC SPEED CONTROL KITior c5 motor PCB and all components to buld a speed controller (0.95% of spees). Uses pulse width modulation $\sum 17.00$ ref 17P3R
SOLAR POWERED NICAD CHARGER.Charges 4
${ }^{\text {AA }}$ GPicads in 8 hours Brand new and cased $\{6.00$ ret 6P3R.

12 VOLT BRUSHLESS FAN4 $1 / 2^{\prime \prime}$ square brand new ideal tor

 boal. car. caravan elc 5 SS 00 nel 5 P206ACORN DATA RECORDER ALF503 Made for BBC Computer but suitabie for others inciudes mains adapter. leads and book E1500 ret t5P43A
IDEO TAPES. Three hour supenior quabty tapes made under "cence from the farmous JVC company. Pack ol 10 tapes $£ 20.00$ ret
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. bRAND NEW FULL SPEC 540.00 REF 40P10R. MAINS POWER SUPPLY KIT E20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. AND TESTED LASER IN ONE CASE $£ 75.00$ REF $75 P 4 R$.
GV 10AHLEEAD ACIDsealed battery by yuasha ex equipment but 6V 10AHLEAD ACIDsealed batiery by yuasha ex equin
in excellent condition now only 2 for $E 10.00$ ret 10P95R
12 TO 220 V INVERTER KITAS suppied in will handle up to about 15 w at 220 v but mith a larger trans former it will hande 80 watts Basic kit $£ 12.00$ nel 12P17R. Larger transformer $£ 1200$ ret 12 P 41 R

VEROEASI WIRE PROTOTYPING SYSTEMIdeal tor designing proiects on atc Complete with tools, wire and reusabie board Our once 5600 rel 6 P33A
MICROWAVE TURNTABLE MOTORS, Ideal for mindow displays atc $£ 500$ ret SP 165 R
STC SWITCHED MODE POWER SUPPLY22Ov or t10winput givng $5 v$ at $2 A$. +24 vat $0.25 A$, +12 vat $0.15 A$ and +90 at 0.4 A E6.∞ HIGH RESOLUTION $12^{\prime \prime}$ AMBER MONITOR 2v 1.5 A Hercu les compatible (TTL input) new and cased $£ 22.00$ ref 22P2R VGA PAPER WHITE MONO monitors new and cased 240 v VGA PAPER WHITE
AC. 559.00 rel $59 P 4 \mathrm{R}$
25 WATT STEREO AMPLIFIERC STK043 With the addition of a handiul of components you can build a 25 watt ampliter $£ 4.00$ rof 4P69R (Circuit dia included
LINEAR POWER SUPPLY Brand new 220 vinput +5 at 3 A +12 al 1 A . 12 at 1 A Shon crrouit protectoc E 1200 ef 12P21R
MINI RADIO MODULE Only 2 " square with fierrite aerial and tuner Supertet Req's PP3 battery $£ 1,00$ ref BD716R
BARGAIN NICADS AAA SIZE 200 MAH 1.2 V PACK OF 10 £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIF YING LENS $83 \times 52 \mathrm{~mm}$ £ 400 ref BD827A ALARM TRANSMITTERS. No data avaliable but nicely made complex transmitters $9 v$ aperation. $£ 4.00$ each rel 4P81R.
UNIVERSAL BATTERY CHARGER. Takes AA's. C's, D's and PP3 nicads holds up to 5 batrenies at once New and cased, mains operated 5600 rel 6P36R
ASTEC SWITCHED MODE POWER SUPPL $Y_{B O} \mathrm{~mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at 1.5 A . 12 at C .4 A Brand new £1200 ret 12P39R.
VENTILATED CASE FOR ABOVE PSUwth IEC filiered socket and power switch $£ 5.00$ ref 5P190R
IN CAR POWER SUPPLY. Plugs into digar socket and gives 3.4.5.6.7 5.9. and $12 v$ outputs at 800 mA . Complete with universal
spider plug $\& 500$ ret $5 P 1678$ spider plog. ES PACK. 10×50
metal film 5500 ref 5 P1 170 R metal film $¢ 500$ rel 5P170R
CAPACITOR PACK 1.100 assorted non electroytic capacitors E200 Pet 2 P286
CAPACITOR PACK 2. 40 assoned etoetrolytic capacitors $£ 2.00$ ref 2P287P
Plug £3.00 ref 3P92R
L'ug E3.00 rei 3P92R LED PACK. 50 r
FERRARI TESTAROSSA. A tue 2 channel radio controlled car with lorward, reverse 2 gears plus turbo. Working hoadights. WASHIG MAC
WASHING MACHINE PUMP. Mains qperated new pump. Not self PnTnng E500 Pef 5P18R
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel
£500 rel 5P 186 . ES 00 rel 5P 186R
COPPER CLAD STRIP BOARD 17×4 " of 1 " piteh "vero" board. £ 400 a sheet Tef 4 P62R or 2 sheets for $£ 7.00$ ref $7 P 22$ R
STRIP BOARD CUTTING TOOO
STRIP BOARD CUTTING TOOL. $£ 2.00 \mathrm{re}^{i} 2 \mathrm{P} 352 \mathrm{~F}$
50 ME TRES OF MAINS CABLE 53.002 core black precut in convenient 2 m lengths ideal for repairs and profiects ref 3 391p
4 CORE SCREENED AUDIO CABLE 24 METRES $£ 2.00$ Precur into convenient 1.2 m lengths Ref 2P365R
TWEETERS 2 1/4" DIA 8 onm mounted on a smant metal plate for Oasy fixng $£ 200$ ref 2 P366R
COMPUTER MICE Onginally made for Future PC's but can be adapted for other machines. Swiss made $£ 8.00$ ref 8P57A. Atan ST conversion kit $£ 200$ ref 2P362R
5 SP205R
ADJUSTABLE SPEAKER BRACKETS ideal for mounting speakers on internal or external corners, uneven surfaces etc. 2 for PLR
PIR LIGHT SWITCH Replaces a standard light smith in seconds sight oberates when anybody comes within detection range (4m) and stays on for an adjustable time (15 secs 1015 mins). Complete with
dayight sensor Unit also tunctions as a d mmer switchl 200 watt max Not surtable for tiourescents $£ 14.00$ ref 14 P 10 R
CUSTOMER RE TURNED 2 shannel toll function racio controlied cars only £8 00 ret BP200R
WINDUP SOLAR POWERED RADIOI FM AM Padio takes re. chargeable batteries complete with hand charger and solar penel 240 WATT RMS AMP KIT Stereo $30-0-30$ psu required $£ 40.00$ ref 40 P2OOR
300 WATT RMS MONO AMP KIT 555.00 PSu required ret 55P200
ALARM PIR SENSORS Standard 12 v alarm tyo sensor willinter face to most alarm panels $\$ 16.00$ ret 16 P200
ALARMPANELS 2 zone cased keypad enty, entry exit trme delay
MODEMS FOR THREE POUNDSII
Fully cased UK moderms de signed for dial up system (PSTN) no data Or info but only $£ 300$ ref $3 P 145 R$
TELEPHONE HANDSETS
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with nuc and speaker only E3.00 re 3 1 $146 R$
BARGAIN STRIPPERS
Computer keyboards Loads of switches and components excellent PC POWER SUPLIER
PC POWER SUPPLIES
,

BULL ELECTRICAL 250 PORTLAND ROAD HOVE SUSSEX

 BN3 SOT TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS E2.50 POST PLUS VAT. PLEASE ALLOW 7 -10 DAYS FOR DELIVERY NEXT DAY DELIVERY 59.00FAX 027323077
less than the fan alone would cost!) ref 5P208R HIGH VOLTAGE CAPACITORS
A pack of 20500 PF 10 KV capactors idgal for ionizers TV repars and high voltage expenments elc Price is $£ 200$ rel 2P3789 DATA RECORDERS
Custombrreturned mans battery units bull in mic deal for
or general purpose audio use Price is $£ 400$ ref AP100 SPECTRUM JOYSTICKINTERFACE
Plugs imo 48 K Spectrum to provide a standard Atari yppo joystick pon Our price $\mathrm{S}^{4} 00$ rel 4P101R
Pont Our price $¢, 400$ rel
ATARI JOYSTICKS
OK lor use with the above intenta
BENCH POWER SUPPLES
Superdly made fully cased (metal) giving 1 Ivat 2 A plus a 6 V supoly
Supertly made fully caseo (metal) giving 12 vat 2 A plus a 6 V supply
Fused and short circuitprotectec. For saie at less than the cost of the Fused and short circuitprotected. For
casel Our pnce is $£ 4.00$ ret 4 P103
SPEAKER WIRE

MAINS FANS

Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powertull quite Our price Et. 00 ret CDAIR
quire Oup prices
DISC DRIVES
Customer felumed units mxed capacitios (up to $144 M$) We have not sorted these so you just get the nert one on the shell. Price is only E700 ref 7P1R (worth it even as a stripoer)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 4.00$ each ref CD42R
PRONECTBOX
$512^{\prime \prime} \times 31,2^{*} \times 1^{\prime \prime}$ black ABS with screw on had $£ 1.00$ ref CD43R SCART TO SCART LEADS
Bargain pnce leads at 2 tor $£ 300$ ref 3P147R
SCART TO D TYPE LEADS
SCART TO D TYPE LEADS
Standard Scant on ong ond. He density D type on the other Pack of ten ieads only $£ 7.00$ ref 7P2R
OZONE FRIENDLY LATEX
OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ botte of liquid rubber sets in 2 hours. Ideal for mounsing PCB's
fixing wires etc. $\delta .2 .00$ each ret 2 P379f fixing wres etc. 5.2 .00 each ref $2 P 379$ R
OUICK SHOTS
Standard Atari compatible hand controlier (same as pysticks) our price is 2 for $£ 2.00$ rel 2P380R
VIEWDATA SYSTEMS
Brand now units made by JANDA TA complete with 1200/75 builh in modem infra red remote controlled qwery keyboard BT appproved Prestel compatible. Centronics printer port RGB colour and composite output (woiks with ordinary television) comblete with power supply and fully cased. Our price is only $£ 20.00$ ref 20P1R
3 INCH DISCS
Ideal for Amstrad PCW and Spectrum +3 machines pack of 10 discs is E1200 ref 12P1R
AC STEPDOWN
AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime}$ with mains input lead and 2 pin American output socket (suitabie for resistive loads only) our price $£ 200$ rel 2P381R
SPECTRUM
SPECTRUM +3 LIGHT GUN PACK
complete with software and instructions [8.00 rel 8P58R

CURLY CABLE

Extends from 8° to 6 teet|D connectior on one end. spade connectors on the otherideal for joysticks etc (6 core) $£ 1.00$ each rel CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 மy जricks only 2200 ret $2^{\rho} 382$ R
MINI MONO AMPLIFIER PACK
4 ampifiers for $£ 20013$ watt units $9-12$ voperation ideal for expeniments etc $£ 2.00$ rel 2P383R

BUGGING TAPE RECORDER

Small hand heid cassette recorders that only operate when there is sound then :urn olf 6 seconds after so you could eave in in a room all IEC MAINS LEADS
Complete with $13 A$ phg our pace is only $£ 3.00$ for TWO1 ref 3P148R COMP UTER SOFTWARE BARGAIN
10 cassettes mith games for commodore 64. Spectum etc Our bargain price one poundl ref CD44
NEW SOLAR ENERGY KIT
Contans 8 solar ceils, motor, tools, fan eic plus educational book ideal for the budding enthusiast! Price is $£ 12.00$ ref 12P2R
FUSE PACK NO
Firty tuses $11 / 4^{*}$ long (glass) quick blow 10 popular values $£ 200$ ref 2P384R
FUSE PACK NO 2
Fity fuses 20 mm long (glass) quick blow 10 popular values $£ 2.00$ ref POTEN
POTENTIOMETER PACK NO 1

286 AT PC
286 MOTHER BOARD WITH G4OK RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARO AND POWER SUP.

35MM CAMERAS Customer refurned units with built in tlash and
35 MM CAMERAS Customer ret
28 mm iens 2 for 88.00 ref $8 P 200$
28 mm iens 2 for 88.00 ref 8 P 200
STEAM ENGINE Standard Mamod
engine com
TALKING CLOCK
LCD display, alarm, battery operat
Clock will announce the time at
push of a button and when the

from voice to a cock crowng'£14

HANDHELD TONE DIALLERS

Small units tha: are designed to hold over the mouth piece of a telephone to send MF dialing tones ideal for the remote control of COMMODORE 64 MICRODRIVE
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dives with disc and sottware 10 fimes faster than tape machines works with any Commodore 64 setup. The orginal pnce for these was $£ 49.00$ but we can offer them to you USED SCART PLUGS
USED SCART PLUGS
Packof 10 plugs surtabie for making up leads only $£ 500$ rel 5P209R C CELL SOLAR CHARGER
Same style as our $4 \times A A$ chargerbut holds $2 C$ cells. Fully cased with

[634560

Fig. 4. Construction and wiring of the sensors.

Fig. 5. Wiring of the p.s.u. stripboard.

cable of required length, and a chain of piezo transducers to the other, solder the copper outside part of the transducer to the cable screen and connect other wires as shown in Fig. 4. Be careful not to get the sensor to hot, especially the silvered disc as this will begin to desilver if it gets to hot.

The last sensor in the chain should have an 18 k resistor soldered between the security loop wire and ground (outer disc). When the unit has been tested (see Testing section) the sensors can be given extra protection by applying silicon rubber on the solder side of the sensors.

CONSTAUCTION

The Veroboard layout for the power supply is shown in Fig. 5, construction is quite simple, but check the polarities of the capacitors and diodes. In the prototype IC5 (7805) was used to fix the board into the box, and was mounted on a heatsink insulator.

When the case has been drilled the transformer can be fixed in place, and the mains lead connected (the Earth of the mains cable should be connected to the case), the output leads can then be connected to the power supply board which is fixed in place by means of a screw through the regulator tag.

COMPONEVTS

Resistors

Resistors	ee
R1 100k	SuOP
R2 1 M	TAM
R3 6k8	
R4 27k	Page
R5, R6, R8	18k (3 off)
R7, R13	2k2 (2 off)
R9, R10	4k7 (2 off)
R11	47k
R12, R15 to R19	10k (6 off)
R14	2M2
R20 to R22	390 (3 off)
R23	100
R24	680
R25	220

All $1 / 1 / W \pm 10 \%$ carbon film.

Potentiometers

VR1	2 M 2 skeleton preset
VR2	500 multiturn preset

Capacitors

C1	$2 \mu 2$ tantalum 35 V
C2, C3	$3 n 3$ poly. layer (2 off)
C4, C8	1 n poly. layer (2 off)
C5	47μ radial elect. 16 V
C6, C9,	
C11, C12	
C14	$0 \mu 1$ ceramic (5 off)
C7	47μ tantalum 10 V
C10	100μ radial elect. 16 V
C13	$2,200 \mu$ radial elect. 16 V
C15	1μ tantalum 35 V
C16	22μ radial elect. 16 V

Semicondutors

IC1	4069UBE Hex inverter
IC2	LM393 voltage comparator
IC3	555 timer
IC4	4042 quad clocked D-latch
IC5	$7805+5 \mathrm{~V} 1 \mathrm{~A}$ voltage regulator
TR1 10	
TR5	BC548 non silicon (5 off)
D1 to D4. D12	1 N4148 (5 off)
D5 to D7	high brightness red l.e.d. (3 off)
D8 to	
D10	1 N4001 1A 50V rec. (3 off)
D11	tri-colour l.e.d.

Miscellaneous

S1 s.p.s.t. microswitch S2 s.p.s.t. key operated switch
X 1 to Xn piezo transducers number as required
T1 $9 \mathrm{~V}-0-9 \mathrm{~V} 20 \mathrm{VA}$ mains transformer
B1 6V 1 AH sealed lead acid battery
Stereo jack plug and socket as required to connect sensors; l.e.d. mounting clips; 14 pin di.i.., 16 pin d.i.l. and 8 pin d.i.l. (2 off) i.c. sockets; metal case approx $102 \mathrm{~mm} \times 102 \mathrm{~m} \times$ 180 mm ; p.c.b. available from the $E E$ PCB Service, order code EÉ783; stripboard, 9 strips by 17 holes; sticky pads as required for sensors; tilt switches as required - see text.

Approx cost
 guidance only

Exchuding battery

Fig. 6. P.C.B. layout and wiring for the Micro Sense Alarm.

Fig. 7. Interwiring of the off-board components in the alarm.
Internal layout of the prototype alarm. The lead acid battery B1 has been removed to show the p.s.u. board and transformer.

ALARMEOAFD

Assembly of the p.c.b. is quite straightforward (Fig. 6), insert the i.c. sockets and link first, then the diodes and resistors, and then the transistors, capacitors and Veropins. Before inserting the l.e.d.'s place insulation boots (or insulation stripped from some wire) $\cong 2.5 \mathrm{~cm}$ long onto their leads and insert them into the p.c.b., also solder the large tag (screen) of the stereo socket firmly to the 0 V pin (between the loop and sense inputs), connect the other leads and the buzzer.

After testing the board may be fixed into the case (see Fig. 7 for wiring information). The case used for the prototype was made of steel and is not recommended as it is quite hard to work with, cases of similar style made of aluminium are generally a available.

POWERSUPPLY TESTINE

When the power supply has been assembled in the box, you should check that the case is connected to earth, using an ohmmeter. When the mains is connected to the unit the output from the board should be set to 6.8 volts, by adjusting VR2.

Connect the sensors to the alarm board, and also a power supply ($\cong 5 \mathrm{~V}$). Try connecting the security loop input to ground, and also disconnecting the wire from the input, both of these actions should cause the alarm to sound and the appropriate l.e.d.s to light, to reset the alarm remove and reconnect the power (NOTE: when testing the alarm it might be a good idea to cover the hole in the sounder with tape to lower the sound level slightly).

Tapping the piezo sensors with a small metal object should also set the alarm off. Adjust the sensors to the required sensitivity using VR1. When the unit has been tested it can then be installed in the drilled case as shown.

Switch S1 is a microswitch arranged so that it is held closed when the case is fixed together. Thus anyone opening the case will trigger the alarm. The unit is now ready for use.

INFORMATION TECHNOLOGY AND THE NATIONAL CURRICULUM T, R. de VAUX BALBIRNIE

THIS is the third article in a 12-part series concerning Communication, Information Storage and related matters in the Science National Curriculum. Readers who have not been following the series are advised to read the first article (in November's issue) - this gives some background information which will be found useful. This month we will look at the topic of Information Storage.
Children should know that information in the form of number, text, pictures (graphics) and sound may be stored electronically using various everyday devices such as tape recorders and computers.

STORAGE OF INFORMATION

It often happens that information is only useful for a short while. For example, an invitation to a party the following day is unlikely to be of much value in a month's time. However, there are times when information needs to be preserved so that it may be retrieved at a later date. If you have money in the bank, the amount you have needs to be stored and the information updated whenever some is taken out or more is put in.
in ancient times, people stored information in the only way they knew how - by making drawings on the cave walls where they lived. Animals and everyday objects of the time were depicted painstakingly and in great detail. Man always seems to have had an urge to preserve the things in his daily life for others to see. Perhaps he saw this as a type of diary.

When man leamt to read and write, a far more versatile means of storing (by writing) and retrieving (by reading) information became possible. Some of the earliest writing has been found on clay tablets and dates from around 4000 BC . Later, large amounts of information were stored in the form of books.

The earliest books had to be written by hand using quill pens, usually by monks or scribes, and were only seen and used by the educated few. The work in producing them was so slow that only a few copies of a book could ever be made. Books could be collected together in libraries, much as
they are today, to give access to massive amounts of information. One of the sadder stories concerns the burning of all the books in the Great Library of Alexandria by the Muslims in 642 AD . The loss to the world caused by this single act cannot be calculated.

PRINTING

The invention of the printing press allowed many copies of books to be made relatively cheaply and this put large-scale access to information into the hands of more people. There had been some early attempts at printing - the ancient Chinese made wood-cuts of characters, inked them, and pressed them on to paper. It was then possible to make several copies of the same small piece of information relatively quickly and easily. However, for something as large as a book this would have been very difficult.
The first printed books were, in fact, scrolls dating from 896 AD and the first folded page books, from 949 AD. No one knows exactly who invented "real" printing - and there certainly were some very early printed books. However, Johannes Gutenberg in the 15th century is accredited with producing the first practical printing press using moveable type. He made moulds for each letter of the alphabet and, from these, pieces of type were cast in metal. The type was placed in rows on a flat bed to make words and sentences.
By careful design, all the pieces of type were made the same height so they could be inked, gently pressed on to paper and a high-quality copy of a whole page made in one operation. His greatest task was to print the Bible in Latin - the "Gutenberg Bible" - this consisted of over 1200 two-column pages of 42 lines each (see photograph). Two hundred copies of the Gutenberg. Bible were printed in 1456.

Gutenberg's basic printing method remained more or less unchanged for 400 years. Although of great importance, it was still relatively slow and not well suited to printing newspapers and other material which needed to be produced quickly. Even so, single news sheets - the forerunner of the newspaper - were produced in the early 10 th century using this method and
in 1622 the first commercial newspaper The Weekly News - was printed using a flat bed printing press.

In the early 19th century, an automatic press using steam power was invented and this greatly speeded up the printing of sheets of newsprint - The Times was produced in this way. However, it was still slow by today's standards because the paper had to be manipulated in the machine sheet by sheet.
in the mid-19th century, the rotary printing press was invented and this, in modified form, is still used today - here the type is not set out on a flat bed as in the Gutenberg press but formed on the surface of a cylinder instead. The paper is in the form of a large roll. As the cylinder rotates, the paper rolls over it producing one copy after another very rapidly. The paper is then cut into sheets and folded. This is basically how newspapers (and magazines like $E E$) are printed today but modern technology has revolutionised the actual assembly of information before presenting it for printing.

The Gutenberg Bible
(Phoro courtesy of The British Museum)

BOOKS

Books, of course, remain a vital form of information storage and modern technology has not reduced the importance of the printed word. The advantage of a book is that it is convenient does not need a power supply and the information may be retrieved (by reading it) more or less anywhere. Moreover, once a person has learned to read, the whole world of books is available. No further specialized knowledge is needed.
This may be compared with information stored on a computer. A person must first learn to be computer literate but, unlike reading, this literacy needs to be constantly updated as new equipment becomes available. On the other hand, books are large compared with the amount of information stored. A complete set of telephone directories - about 100 books - for the United Kingdom is extremely bulky. This same information may be stored using a computer database in a very much smaller space. Moreover, the use of a database would enable you to find the telephone number you wanted far more quickly.
With books, it may be difficult carrying a large amount of information from one place to another. Also, the weight of a book may mean that the information would be costly and time-consuming to send long distances - by post.

Books are versatile in that they can store text, images (pictures and diagrams), numbers and music (in the form of a score). Until fairly recently banking was carried out manually by writing down all the details of deposits and credits in the various accounts in a ledger. This job is now done electronically using computers. Computers do the job faster, far more accurately and with the support of fewer people.

Most important of all, the information can be turned into electrical signals and sent along telephone wires from one computer to another. Money (in the form of electrical signals) may then be deposited or withdrawn automatically. Since a complete telephone network already exists, the signals may be sent from one bank to another - even in another country - conveniently and in practically no time at all.

STORING PICTURES

Photography enables man to store accurate visual information - a scene, person, etc. Previously, these had to be drawn or painted by hand. Painting was not always accurate - the painter often flattered the client because he or she was paying the fee! Like printing, no one actually invented photography - there had been several early experiments using chemicals which darken when light shines on them.
Joseph Niepce produced a successful photograph in 1826 but Henry Fox Talbot (1800-77), a British botanist and physicist. invented a photographic process using a negative which would be recognized by photographers today.
This experiment shows that chemicals containing silver darken when light shines on them and this can be used to produce

Making a shadow photograph (top) and the finished result (bottom).
a simple form of photograph called a "shadow photograph". Note that this experiment should not be performed by young children and should be demonstrated. Since silver nitrate is poisonous and causes staining of the skin, rubber gloves should be worn throughout.

You will need a small amount (about 10 ml) of freshly made 2 per cent silver nitrate solution, a small artist's paintbrush and some writing paper. You will also need some scrap paper to work on. Keeping away from bright light, "paint" the silver nitrate solution on to the writing paper to make a 10 cm square. Place the paper in a warm, dark place to dry. When it is dry, arrange some flat objects such as paper clips, scissors and a plastic rule on it.

Carefully carry the paper with the objects on it to a place where bright light preferably sunlight - can shine on it. Do not allow the objects to move during the exposure. The paper will darken to a deep brown colour but the paper beneath the objects will remain white. This will hap-
pen in a few seconds in bright sunlight but may take several hours in weak daylight. If the objects are removed in a dim part of the room, their outlines will be clearly seen (see photograph). Unfortunately, the paper will darken all over and the images will fade in time.

MOVING PICTURES

To make moving pictures was an early dream of man. Some simple inventions appeared to show birds llying and other similar things by flashing drawings rapidly before the eye. The Zoetrope (see photograph) had a paper cylinder with a series of pictures painted on the inner surface. When the cylinder was rotated, and the pictures viewed through slits in the body of the device, the subject seemed to be moving naturally. However, this was nothing more than a toy.
Movie film (cinematography) remained a problem. Again, there was no one inventor but the French Lumiere developed a camera and projector

The Zoetrope a simple form of "moving pictures".
(Roproduced by permission of the Trustees of the Science Museum)

Thomas Alva Edison and his phonogram (1888) some cylinder recordings are shown. (Roproduced by permission of the Trustees of the Science Museum)
celluloid film which worked in the style of modern equipment. They demonstrated their process in 1895. Here, information is stored as a succession of still pictures on transparent film. By projecting these in quick succession on to a screen, the impression of smooth movement is obtained.

STORING SOUND

Another of man's dreams was to preserve sounds - the spoken word and music. It was through Thomas Alva Edison's work with the electric telegraph (see last month's article) - recording the dots and dashes of the Morse code - which convinced him that speech itself could be recorded and subsequently replayed using similar apparatus.

His idea - which he called the phonograph - was to speak near a diaphragm which would vibrate. The diaphragm would be attached to a needle which would also vibrate. The needle would rest in a piece of tin foil wrapped around a revolving cylinder. The vibrating needle would produce a spiral groove in the tin foil and the modulations of this groove would carry all the information of the sound. To reproduce the sound, the needle would be placed at the beginning of the groove and the cylinder turned again. The needle would be made to vibrate by
the undulations in the groove and hence the diaphragm would vibrate in sympathy. The original sound would then be reproduced.

Edison successfully tested his phonograph in 1877 by speaking the words, "Mary had a little lamb". The oldest surviving cylinder recording in the BBC record library dates from'1884.
Although this method worked after a fashion, tin foil was found to be a poor material for the job and Edison made an improved version of the phonograph in 1888 using wax instead. Very soon, Emile Berliner replaced the cylinder with a flat disc rather like a present day record. Wax-covered cardboard was used and different needles were used for cutting and playing. The device was now known as a gramophone - a name which survives to this today.

The original records were "one-offs" and made for curiosity. To make more than one copy, it was necessary for the performer to speak or sing into a funnel from which several rubber tubes would radiate to a number of phonographs, each making its own record! To be an effective storage medium, records needed to be copied in bulk and pressing techniques for this were soon developed using a plastic material. These copies did not wear out as quickly as
the wax master from which they were made.

With the triode valve having been invented by Lee de Forest (see last month's article), it became possible in the 1920's to use electronic techniques to make recordings. For this, a microphone turned the sounds into electrical signals which held all the information. These signals were magnified using a valve amplifier and the resulting output made to vibrate the needle of an electric cutter. Non-electric methods, however, were still used for playing the records back. The sound was made loud enough for household listening by playing the vibrations of the diaphragm into a large horn.

Early records had a very short playing time because they rotated at high speed 78 r.p.m. (revolutions per minute). The playing time was increased by the invention of the long-playing record in the 1940's. This rotated at a far slower speed - 33 r.p.m. or 45 r.p.m. - and the grooves - microgrooves - were much closer together. In the meanwhile, inexpensive valve-operated record players became common in the home. These gave a better quality of reproduction as well as much louder sound compared with an acoustic gramophone. It is interesting to look at the groove of an old record using a low-power microscope.

Berliner disc gramophone (1890)
(Raproduced by parmiseion of the Trustees of the Science Museum)

Fig. 1. Basic method of magnetic recording and replay.

RECORD EXPERIMENT

This experiment needs an old "useless" record and a sewing needle or pin. The needle is threaded through a small piece of paper to act as a diaphragm and held gently between the fingers of one child. Using a pencil or pen in the centre hole, another child turns the record steadily. The needle is now rested in the groove. The sound will be heard and the paper felt to be vibrating. This non-electric method clearly shows how the record groove produces vibrations which reproduce the original sound.

MAGNETIC RECORDING

A more recent advance is making sound recordings on tape. This method is widely used today - almost every home has a cassette recorder often combined with a radio. This method developed from early experimental recorders using steel wire which were tried at the turn of the century. In these, sound was picked up by a microphone and the electrical signals passed through a coil of wire wound on an iron core with a narrow gap (see Fig. 1).
The iron core was magnetized and the strength of its magnetization followed the pattern of the original sound. Steel wire was passed across the iron core and this picked up the magnetization. Steel - unlike iron, retains it magnetism so along the length of the wire was a magnetic imprint whose strength followed the sound pattern.

To replay the recording, the wire was rewound to the beginning and passed over the iron core again. Now the coil produced an electrical signal which reproduced the original sound in an earphone. This invention was ahead of its time and was waiting for Lee de Forest to invent the triode valve. This enabled the weak electrical signals to be amplified and fed to a loudspeaker.

Steel wire was found to be a poor material for the job and specially made tape was later used. Early magnetic tape used a paper base but this was easily damaged and later tape used a plastic material. In an improved form this is still used today. The base material is coated with a very thin layer of iron oxide (or similar magnetic material) which behaves like the steel wire described earlier.

Tape recorders began to appear in the 1940's in the home, for entertainment, and in offices as dictation machines. The original machines used spools of tape (open reel recorders) and similar open reel machines are still used by professional sperators. Cassette recorders are more convenient and have largely replaced open reel recorders for household and semiprofessional use but the principle of operation and type of recording tape used is the same.
One advantage of tape recording is the ease with which the recording may be erased and the tape used again (unlike disc recordings). Also, with open reel equipment, editing may be carried out - the tape cut in places, parts spliced in or removed. re-arranged, etc. Thus, a radio intérview can have all the hesitations and mistakes removed before broadcasting it.

SOUND MOVIES

It is interesting to see how the two techniques - film making and sound recording came together to make sound movies. In some early films, the sound was recorded on a large diameter disc. However, it was difficult to keep accurate synchronization between the sound and picture (the lip movement and words fell out of step). Also, if the needle jumped or was knocked, synchronization was lost. This often happened and caused great amusement in the audience. Sometimes the only way to proceed was to start the reel of film again from the beginning!

Wamer Brothers kept to this system even after optical sound recording had been perfected. Good quality optical sound recording was the invention of Lee de Forest (the inventor of the triode valve)

Fig. 2. An optical sound track running down the side of a film.
and he demonstrated his system in 1923 although there had been some unsuccessful attempts using similar methods previously.

In his system, the sound track ran along the edge of the film itself. This meant that there were no synchronization problems and the quality of the sound was much better. Fig. 2 shows the appearance of an optical sound track.

When the film was projected, light from a separate small lamp - the exciter lamp shone through the sound track. The light passing through would then flicker in sympathy with the original sound. This light was picked up using a light-sensitive cell which produced varying electrical sig-
nals. The result was fed into the input of a valve amplifier and hence to a loudspeaker. In this way, the original sound was reproduced. Using this method The Jazz Singer was shown in 1928 and was an instant success.
Today, sound is stored using magnetic stripes on the film itself (see under Magnetic Recording).This has several advantages. Firstly, the quality is much better. Also, by using more than one track, stereophonic sound can be recorded and played back through more than one loudspeaker. With modern wide-screen films the sound will then appear to come from the actors themselves as they move across the screen. Loudspeakers all around the auditorium add eyen greater realism.
With the development of television, film-makers found themselves in competition with it and many improvements some of them merely gimmicks - were used in an attempt to lure the audiences back to the cinema. Colour films succeeded because these could be shown in the cinema before colour television was available at home. Also the quality and breadth of the sound coupled with the large screen made the experience more realistic.
There were even attempts at 3D (threedimensional) films. These involved the audience wearing special pairs of glasses without which the picture was simply a jumble; these were not popular.

VIDEO RECORDING

In the late 1950's special tape recorders succeeded in recording not only sound information but television pictures too. For technical reasons this is a difficult job and was waiting for more advanced technology to be developed. Before then, television programmes had to be made "live" and any recording made on film.
With video recording the programme could be recorded several times as necessary to produce a perfect result. Also, the tape could be edited like audio tape. This made programme production much simpler because all the scenes at one particular location could be made in one recording session, videotape editors could then assemble the whole programme in the right order and this is the technique used today. Now, videocassette recorders are familiar pieces of equipment.
A recent storage medium is the Compact Disc. This is usually thought of as being ${ }^{2}$ sound storage medium. However, it may be used to store text and pictures too. In the future it will be used for much bulk storage of information - for example, maps and telephone directories. Unfortunately, the information stored on it cannot be updated - it is a read only medium at the moment. The Compact Disc is an important advance because it uses digital technology. The meaning of this will be explained in a future article.

CLOCKS AND WATCHES

A further modern device using digital technology is the electronic watch or clock. This is set with the correct information the day, date, time and so on and this is updated automatically. The information
may be retrieved by looking at the display (for the time) and by pressing various buttons (to recall the day, date, etc).

It would be useful for children to use a digital stop clock or watch for simple timing operations. You will probably find that they are better at setting these devices than you are!

STORING INSTRUCTIONS

Sometimes the information we wish to store is a set of instructions for a machine to follow. The most powerful way of doing this is by using a computer as we shall see later. However, it is worth mentioning "punched card" systems which are still in use today. Anyone who has looked around the back of an old fairground "steam" organ "will have noticed that the music is stored in the form of holes punched in card. This rolls through the machine.

Today, we would call the information on the card a program since it tells the playing mechanism what to do and when to do it. Some Victorian table-top organs stored similar information on discs where raised protrusions on the surface pressed keys and allowed air to blow the pipes inside. Punched cards were used by Joseph Jacquard in the early 1800's to control the pattern of weave in his loom.

Today, car-wash machines often use a form of punched card which is fed into the machine and provides the instructions for exactly what kind of wash has been paid for. Early cash dispensers outside banks used punched cards. Today, these have been replaced by cards with magnetic striping. Here, information about the account is read from the card using a device similar to a tape recorder.

Today, a computer (the hardooare) needs instructions (the softroare) to tell it what to do. We often store these instructions as a program on a magnetic disc. We shall be looking at some simple examples of this next month.

CALCULATOR

As well as text (writing), pictures and sound, we often need to store and work with numbers. We can enter a number in an electronic calculator and that number will remain in the calculator's memory. However, to use a calculator simply to store a number is a waste of a calculator's power. The same job could be done by writing it down on a piece of paper.

The advantage of a calculator is that as well as storing numbers, it can perform calculations on them too. Calculations which would be too time consuming for a human to do can now be done easily by an electronic calculator and with much less likelihood of error.

The first calculator was an abacus and although this has been around for some 5000 years it is still commonly used in China, the Middle East and Japan. It is likely that the abacus developed from the idea of making marks in a tray of sand with the finger. In use, beads are slid up and down rods.

In the most common type of abacus, the Chinese suan pan, there are several columns of beads with a cross piece to

A Chinese abacus - these are still used in China.
divide them into columns of two beads above and five below (see Fig. 3). In the right-hand column, the lower five beads represent units and those above the division fives. The next column represents tens and fifties and so on. By sliding the beads on the rods, a skilled operator can add and subtract numbers more quickly than by using an electronic calculator.
In 1642, Pascal invented a calculating machine where numbers could be added together by entering them on dials at the front of the machine. In 1617 Leibnitz produced a calculator which could perform multiplication using toothed wheels. This type of technology was used until relatively recently. William Oughtred invented the slide rule which is still sometimes used today. This has a cursor which can move along the various scales on the ruler to perform multiplication and division. Someone is certain to have one of these at home.
These devices have the advantage of needing no power supply. However, there are many types of calculation which are not well suited to them, especially where very large or very small numbers are involved and the inexpensive electronic calculator is much faster and a great deal more versatile.
Calculators can orily deal with numbers but computers can deal with text, images (graphics) and sound. In reality, a computer can only store numbers. Even when you think it is storing text or pictures it is really storing numbers. Every letter of the alphabet, upper and lower case,
also punctuation marks and so, on, are turned into a code of numbers and it is really these which the computer is storing. When we recall the words we are recalling the numbers and the computer turns them back into letters of the alphabet. When storing a picture, it breaks the image into thousands of small squares (pixels) and stores these as numbers.

COMPUTERS

The first designs for machines which could be called true computers were made by the English mathematician Charles Babbage (1791-1871). In 1833 he designed his "Difference Engine No. 1" and in 1847 his "Difference Engine No. $2^{\prime \prime}$. He went on to design other machines - notably the "Analytical Engine". Unfortunately, none of his machines were ever completed because of the limitations of machine tool technology at that time.

Although the machines would today be classed as computers, they were designed long before the electronics age and were to be purely mechanical devices. The Second Difference Engine has recently being constructed using the original plans at the Science Museum in London. This uses 4,000 (excluding the printing mechanism which has not been built) parts and weighs approximately 3 tonnes. The total cost of building the machine and mounting a six month exhibition is $£ 500,000$. This exhibit demonstrates that these machines would have worked had it been possible to build them in Babbage's day.

Similar but simpler mechanical devices were used until fairly recently for such calculations as insurance premiums and betting odds for dog races. By today's standards, mechanical computers are complicated, relatively slow, expensive, heavy and bulky. Also, because they were mechanical, parts would wear out so constant maintenance was required.

Next month we shall complete this topic by looking in more detail at the computer is a storage medium and also explore the range of microelectronic devices which are now found in everyday life.

Babbages Second Difference Engine being demonstrated at the Science Museum.

ESR ELECTRONIC COMPONENTS
Station Road, Cullercoats,
Tyne \& Wear NE30 4PQ
Tel. 0912514363 Fax. 0912522296

SOLDERING IRONS	
Antex Soldering irons	
M12 Watt	$¢ 7.11$
C15Watt	¢7.11
G18Watt	c7.30
CS 17 Watt	¢7.21
XS 25Watt	¢7.30
ST4 STAND	¢2.75
New PORTASOL HOBBY	
35 Watt gas iron	¢11.17
DESOLDER PUMP	E3.00
ANTISTATIC PUMP	C4.30
22SWG 0.5Kg Solder	87.40
18SWG 0.5Kg Solder	c6.60
1 mm 3 yds Solder	C0.50

AUDIO CONNECTORS Red or Black
PHONO PLUG right angle
Red or Black Red or Black
PHONO Chassis Socket
6.35mm Plastic Mono Plug with strain relief As above but Stereo tief
Socke

St | $\mathrm{f0}$ |
| :---: |
| fo | Mono EO .36 3.5 mm Mono Piug 3.5 mm Stereo Plug 3.5 mm Mono line skt 3.5 mm Stereo line ski

OLASTIC DIN PLUGS

$$
\begin{aligned}
& \begin{array}{l}
2 \text { pin f0.15. 5/360 £0.27. } 3 \text { pin } \\
\text { f0.24. } 6 \text { pin fo. } 30.4 \text { pin } 60.29
\end{array}
\end{aligned}
$$

co.46, 5/240 co.30 XLR Chassis Socket XLR Chassis Plug XLR Line Socke
XLR Line Plug

ELECTROLYTIC RADIAL CAPACITORS				
UF	16 V	25 V	63 V	100 V
0.47	-	-	¢0.05	c0.07
1.0	-	-	¢0.05	c0.06
2.2	-	-	¢0.05	c0.06
4.7	-	-	¢0.05	c0. 08
10	80.05	c0.05	¢0.08	c0.08
22	c0.05	C0.05	C0.09	-
47	¢0.06	c0.06	¢0.11	-
. 100	ع0.06	c0.09	¢0.11	-
220	¢0.09	C0.12	C0.31	-
470	C0, 15	C0. 19	¢0.57	-
1000	c0.22	¢0.29	-	-
2200	¢0. 37	C0.57	-	-
4700	-	¢1.11	-	-

+

 PO102SCR
c0.17 60.23 .16 0.25
0.45 60.49
80.17 80.49
0.17 0.17
0.29 0.17
0.29
0.29

29

11.65 6V SPDT $6 A$

6V SPDT 6 A

HARDWARE

PCB Nylon Stand-offs clip into board, screw from base.
5 mm spacing $£ 0.24 / 10 \subset 1.68 / 100$ 10 mm spacing $\mathrm{f} 0.26 / 10 \times 1.82 / 100$ 13 mm spacing $£ 0.30 / 10 £ 2.10 / 100$ ELF TAPPING SCREWS Pan head No $6 \times 6.4 \mathrm{~mm}$ C0.14/10 $\mathrm{C} 0.88 / 100$ No $6 \times 13 \mathrm{~mm}$ c0.13/10 $0.85 / 100$ No $6 \times 13 \mathrm{~mm}$ co.13/10 c0.85/100 No $6 \times 19 \mathrm{~mm}$ ट0.16/10 ट1.04/100 12 Box $75 \times 56 \times 25 \mathrm{~mm}$
T3 Box $75 \times 51 \times 25 \mathrm{~mm}$ T Box $75 \times 51 \times 25 \mathrm{~mm}$ 4 Box $111 \times 57 \times 22 \mathrm{~mm}$ MB2 Box $100 \times 76 \times 41 \mathrm{~mm}$ M83 Box $118 \times 98 \times 45 \mathrm{~mm}$ MB5 Box $150 \times 100 \times 60 \mathrm{~mm}$

REGULATORS	
78L05. 78L12.78L15	C0. 2
79L05. 79L12.79L15	C0. 2
7805, 7812, 7815	¢0. 2
7905, 7912, 7915	c0.
LM317T 1.5A 1.2.37V	c0.4
LM723 150mA 2-37V	co

 Zener Diodes 2V
BZY88 400 mW B2 $\times 851.3 \mathrm{~W}$ 1 N4001-1 N4005
1 N4006-1 N4007 N5400-1N5402 1N5404-1N5406 iN5407-1N540 OA90 Signal

THYRISTORS \& TRIACS

SCR

TIC106D 5A 400V SCR
TIC206D TIC206D 4A 400V Triac
BTA08-400BW8A iso VELLEMANKITS Stockists of the full range available upon request.

RESISTORS

0.25 W 5\% CF E1 2 Serie

c0.60/100

 TLTL
TL
TL
TL
TB

Polystyrene $160 \mathrm{~V} 5 \% 47 \mathrm{pF}$
 $$
\text { to } 10 \mathrm{nf}
$$
 $$
\begin{aligned} & 1010 n \mathrm{~F} \\ & 47 p-2 n 2 \text { £0.09. } 2 n 7-10 n \\ & 60.12 \end{aligned}
$$

TELAYS

	$\mathbf{C 0 . 7 0}$
	$\mathbf{C 0 . 7 0}$
	$\mathbf{£ 1 . 9 6}$

LM1458 LM1458
ULN2004 ULN2004
TOA2030
CA 3046
CA 3080
CA 3080
CA 3130
CA 3130
CA 3140
CA3140
CA3240
LM3900
LM3914
LM3915
MC4558
NE5532
ICL7621

TEST \& MEASUREMEN HM103S ANALOGUE METER
 HM103S ANALOGUE METER

 19 ranges (inc 10Adc), fuse \& diode ilted case, mirrored scale, supplied with battery. leads \& instructions
Dim. $154 \times 77 \times 43 \mathrm{~mm}$ HC2O20S ANALOGUE METER

20 Ranges (inc 10Adc), fuse \& diod protection, transistor \& diode tester, polarity reverse switch, high impact shock resistant case. Supplied with battery, leads, stand instructions.
Oim $150 \times 102 \times 45 \mathrm{~mm}$

hrrot logic probe

TLL \& CMOS, displayed in light \& sound. pulse enlargement, pulse detection down to 25 nsec , max treq. 20 MHz . Supplied with full instructions.
 4000 Se
4000
4001
4002
4006
4007
4008
4010
4011
4013
4014

19 renges, 3.5 digit 12 mm LCO, signal injector, diode test. fuse protection, auto polarity \& zero, supplied with battery, leads $\&$ instruction manual. Dim. $126 \times 70 \times 24 \mathrm{~mm}$

M23158 DIGITAL METER
17 Ranges (inc 10Adc). 3.5 digin 12 mm LCD, diode test. buzzer, auto polarity \& rero, over-range \& low bat indication, Dim. $130 \times 72 \times 33 \mathrm{~mm}$
f23.40

CALL IN - OPEN: MON 8.30-5.00 SAT 10.00-5.00

EUROPE迆 INTERNATIONAL AUDIO @n@

 VIDE(O) FAR
Barry Fox reports from Berlin on the latest trends in home entertainment on show at the Funkausstellung '91 exhibition.

EVERY two years since 1924, with only the war years missing, the city of Berlin has staged a radio show or Funkausstellung. The radio show has now become an international "world of consumer electronics" exhibition taking in TV, video, satellite, telecommunications, computers, games, hi fi and electronic gadgetry.

Manufacturers from all round the world now see the \ln ternationale Funkausstellung, or IFA, as the prime pad for launching new products into Europe. This year IFA was bigger than ever, with 571 exhibitors from 29 countries spread through 25 enormous exhibition halls. Despite an entry fee to the public of 15 German marks (around $£ 5$ pounds) the organisers expected nearly a million visitors during the ten day show.

For the first time since 1961, visitors came over from the East. Where the Berlin wall once stood, there is now just a strip of land with not a trace of the concrete obscenity which for thirty years split the city in two. In fact the only trace of the wall are the pieces of rubble which street merchants now sell off as souvenirs.

Significantly, satellite aerials are now sprouting over the drab concrete appartment blocks and old housing (some still bombdamaged and shell-pocked) in the Eastern sector.

IFA saw the usual crop of electronic novelties, and the emergence of several distinct trends in the consumer electronics industry.

Whats Up Mac

In the run-up to opening-day all eyes had been on Philips and Sony who were due to try and build confidence in their new home digital recording systems, Digital Compact Cassette and Mini Disc. There was also clearly a row brewing between the satellite broadcasters, such as BSkyB, who want to continue transmitting in PAL, and European electronics companies who have invested heavily in the development of MAC and high definition MAC technology. As the show opened a temporary truce between Philips and Sony collapsed and the simmering bitterness between the PAL and MAC factions flared into open warfare.

By 1992 the Eureka 95 team of 1000 engineers will have spent over $£ 500$ million pounds on an HDTV system to broadcast the Olympics to 1000 HDTV sets across Europe. The HDTV system is a 1250 line version of the 625 line MAC system developed for satellite. If MAC fails, so does HD-MAC. Most

Widescreen TV set from Nokia/ITT

satellite broadcasters, like Rupert Murdoch's BSkyB, are scorn ing MAC and using the terrestrial PAL system.

In Berlin Peter Bogels, President of the EU-95 HDTV directorate, blamed the European Commission for leaving PAL loopholes in its 1986 MAC Directive.
"There was a flaw, a hole in the law, that let people start PAL transmissions", said Bogels. Despite the magnitude of the EC's mistake no one in the HDTV directorate can say who in the EC was responsible.

EC Telecommunications Commissioner, Filippo Maria Pandolfi recently met Rupert Murdoch in Brussels and joined German Telecommunications Minister, Christian Schwarz-Schilling in Berlin to announce the EC's latest plan. This doubles, to 1 Bn ECUs, the European tax payers' money available for simultaneously broadcasting PAL programmes in MAC until January 1994. Any new broadcaster now starting in PAL must switch to MAC in 1994 and will not be paid the sweetener to simulcast.

Pandolfi has now asked a Working Group to report by 15 September on whether there will be enough satellite transmitters in orbit to cope with simulcasting.

Eight German broadcasters (ARD, ZDF, RTL Plus, Sat I, Pro 7. Tele 5, Premiere and VPRT) issued a statement saying "No" to the proposal because "it is not fair for the EC to make this law and not friendly for the consumer or for owners of satellites or receivers in Europe"
Although demonstrations of the 1250 line HD MAC system at Berlin were impressive, parallel demonstrations intended to show how HDTV signals can also be received on 625 line MAC sets were disappointing.

Although this was due to technical defects in the cable relay system used on the enormous exhibtion site, no one told the million visitors expected. Whereas the ditigal circuits in a fullblown HDTV set can compensate for spurious echo signals, other sets cannot.

The first demonstration of a wide screen PAL system, PAL Plus, which Grundig, Nokia, Philips, Thomson and European broadcasters have been developing in parallel with HDTV, gave better pictures than the MAC demonstrations. To avoid undermining MAC's credibility, the PAL Plus designers stress that their system is intended only for terrestrial use. But they admit it could equally well be used by satellites.

To transmit PAL Plus, the broadcaster feeds a 625 or 1250 line wide screen picture signal through a digi-

The HK33 LD multi-media laserdisc system from Sharp brings all the fun of "Koraoke" into the home. The system is claimed to allow anyone to "sing-along" with the video clips of their favourite stars.

tal filter. This reduces the number of picture scanning lines by a quarter. The remaining three quarters appear on a conventional 4:3 aspect ratio PAL TV set as a letterbox picture, with black borders at the top and bottom.
The filtered information is converted into a digital "helper" signal like teletext. This helper is buried in the black borders of the letterbox picture as a signal which conventional TV sets treat as pure black. So the helper code is invisible on conventional sets. A PAL Plus receiver decodes the helper to rebuild a 625 line picture which fills the full area of a 16:9 wide aspect screen. Demonstrations given at Berlin prove that the "helped" signal is clearer than the orginal.

Behind Closed Doors

Pre-show leaks had Philips and Sony doing a cross-licencing deal on their new, rival, home digital recording systems. Digital Compact Cassette (Philips) and Mini Disc (Sony). There were no such deals. And both companies badly fumbled their pitch. It is a measure of the strength of DCC that the format still looks likely to prevail over MD.

The show opened with no sign of MD or DCC on Sony's public stand. Upstairs, in a closed room behind a wall of bureaucratic security the trade and press could see MD, with descriptive plackards and literature round the room. A DCC player (one of the many hand-built models made by Philips) sat on a shelf, without any descriptive material, like an unwelcome corpse.
The was no sign of DCC or Mini Disc on the Philips stand either. This in itself was a surprise bearing in mind the considerable amount of advance publicity which DCC has generated. Upstairs, and behind similarly bureaucratic security, Philips demonstrated DCC in a studio room and had four units in a glass case. The top end DCC- 900 will be launched in the spring, the mid-range DCC- 300 in the late summer along with the DCC-180 "portable personal", and a car player due towards the end of 1992.
At Sony's press conference Kozo Ohsone, Senior Managing Director of Sony and Jack Schmuckli. Chairman of Sony's European operations, claimed that Mini Disc was being "endorsed by major players in the software industry such as EMI, Warner and Sony's own CBS group". Sony also distributed a document which clearly promised that Sony, EMI, Warner, Virgin and BMG "will support Mini Disc". A question and answer session proved this to be pure wishful fantasy.

Said Christian Jorg, BMG's Manager of New Technologies (representing RCA, Ariola and Arista), "We are interested in Mini Disc. We would like to evaluate it. But we are quite a way from introducing it. It does not have our full support at this point. No decision has yet been made about it and when we will release material on Mini Disc"

BMG's Chairman Michael Dornemann had already written to Michael Schulhof, President of Sony Software, CBS. "Clearly BMG needs more information on Mini Disc before we can begin to consider marketing and manufacturing preparations".
A spokesman for EMI was equally vague. "We have an open mind to every carrier". Geoff Holmes, Senior Vice President of Time Warner, (Warner, Elektra and Atlantic) was equally reserved. "It is too early to talk. We are evaluating MD". The man from Virgin never showed up.

Back in London Virgin confirmed there had been no deal with with either Philips or Sony.
"If the public wantit it we will sell it" said Virgin.

No Endorsement

Prior to the show there had been agreement between Philips and Sony that each would exhibit each other's format. "I don't know what they've done with ours", admitted Schmuckli. In fact Philips had sent it straight to Eindhoven for technical evaluation.

Around 500 people attended the Philips' press conference and many left bitterly disappointed. Completely misreading the predominantly technical environment at Berlin, Philips salled in with a patronizing presentation that centred round a clumsy audio-visual show anchored by Peter McCann, described by Philips Audio MD Wim Wielans as from the BBC's Tomorrow's World. As a matter of record. McCann left TW in June.

Both McCann and Wielans repeatedly used the slogan "everybody is supporting DCC". Even with the qualification which McCann later added, "by which we mean everyone in the whole chain of the music industry who is of importance". this claim is patently and blatantly untrue.

BASF are committed to tape production. For hardware, Grundig, B\&O, Thomson, Sanyo, Sharp and Yamaha are on board with Matsushita (Panasonic/Technics) and Tandy.

Philips has much stronger software support than Mini Disc, but missed the trick of bringing this out at the press conference; there was no Question and Answer session.

Whole strings of Japanese electronics companies, including Sony, Pioneer, JVC, Denon, Mitsubishi, Akai, Trio-Kenwood and Toshiba have not yet signed to support DCC. Neither have tape companies TDK or Maxell.

The rest of the industry may very well back DCC in the future. but at present for Philips to say that "everybody is supporting OCC" is as inaccurate and foolhardy as the origial slogan Philips coined for CD, "perfect sound for ever". As proved by the poor quality of early CD players and the scare over discs which failed because the air got to the aluminium reflective layer, nothing is perfect and nothing lasts for ever.

Mobile Library

Although Philips looks likely to win the battle for a new defacto home digital audio standard with DCC, Sony is surely onto a winner with Data Discman, launched last July in Japan. Tagged "Tomorrow's Mobile Library", this is a portable CD player with an LCD screen and small Owerty keyboard. It plays 8 cm CD-ROM discs which contain reference works, text books. foreign language dictionaries and encyclopaedias. The 8 cm disc has a storage cepacity of 200 megabytes. Although this is only one-third the storage capacity of a full size, 12 cm CD-ROM, it is more than enough to hold several volumes of an encyclopaedia.

Data Discman has been a success in Japan with over 130,000 units sold and 35 disc titles now available. The Discman ROM discs are incompatible with existing CD-ROM computer systems and with the CD-Interactive system to be launched next year. Also, although the portable unit can be connected by video lead to a TV screen for clearer display there is no socket for connection to a computer. This is deliberate policy. It prevents users downloading text or data from an electronic book. This restriction has encouraged publishers to support the format.

Data Discman will go on sale in Germany this November, for around 1000 DM (around $£ 350$) with 14 electronic books including Langenscheidt's English/German dictionary and the Bertelsmann Universal Lexicon. Sony plans a launch in the UK early next year with English language titles.

Data Discman could finally make electronic publishing a reality. Although many electronic books and databases are already available on 12 cm CD-ROM, a mish-mash of standards requires that the set-up for a Personal Computer with CD-ROM drive must be fine-tuned to run each CD-ROM in turn, with the set-up for one disc not working for another. By creating a new standard for Data Discman Sony guarantees the user buy-andplay simplicity, while protecting the publisher from piracy.

Travelling Light

Every year it seems that manufacturers cannot possibly make video camcorders any lighter or any smaller. Virtually all now use a tiny solid state image sensor (CCD chip, less than 1 cm in size) behind the lens instead of the bulky tube sensors used in early video cameras. But every year the rival manufacturers manage to shave off a few more grams and centimetres. This brings its own penalties. Panasonic now builds an electronic image stabilizer into its Palmcorder, a VHS-C camcorder with 12:1 zoom lens weighing 700 grams. The image stabilizer compensates for the unsteadiness in pictures shot with a light camcorder that fits in the palm of a hand.

Sony now claims the record for the smallest and lightest camcorder in the world. The new Traveller TR-705 weighs just 590 grams and will sell for under $£ 1000$. The remarkable feature of the Traveller is that it is a $\mathrm{Hi}-8$ recorder, the 8 mm video equivalent of Super VHS.

The VHS-C NV-35 Pabmeorder from Pamasonic weighs in at only 700grams.

Pictures are better than broadcast quality. The Traveller also records sound in stereo.

Hitachi is now introducing new technology which will let camcorders get even smaller and lighter in the future. Its new 8 mm models VM-23 and VM-25 convert the analogue signal which comes from the image sensor into digital code. All the processing work which must be done on the picture signal before it is recorded can now be in the digital domain. This reduces the amount of circuitry needed because it much easier to integrate digital systems into a single chip than analogue systems. Witness the way watches and claculators have got smaller and cheaper, with more and more facilities.

TV Mouse

Nokia/ITT is already selling table-top VCRs with a system called ASO (Active Sideband Optimum) which gives clearer pictures from poor recordings, e.g. old tapes. ASO works by cleaning up the f.m. video signal which comes off the tape before it is demodulated and processed by all the conventional circuitry in a VHS recorder. Now Nokia has developed ASO Plus, which goes one stage further.
ASO Plus continually monitors the condition of the f.m. signal coming off tape and applies only the amount of clean-up processing that the signal needs. So the recorder gets the best possible picture from any tape, whether old and worn or brand new.

Japanese company Sanyo uses ASO, but probably only because Sanyo makes Nokia's VCRs under subcontract in Japan. So far no other Japanese company has taken up Nokia's system. Nokia's new slogan is, "The sharpest image VHS video ever had to offer". But JVC, inventor of the VHS video system is not impressed and has no plans to use ASO.
Nokia may have more success with a clever now remote control for a TV set or VCR. It works like a computer mouse. The viewer just presses a couple of buttons to display a cursor on screen and then tilts the control from left to right or up and down to move the cursor and select options from a menu. The control has a tiny roller ball, like a ball bearing, hidden inside. The ball rolls between infra-red diode light sources and light sensors to generate an electrical signal which indicates the physical position of the controller. This signal is then translated into a control signal which moves the cursor on screen.

CD Photos

Over the last ten years portable video recorders and camcorders have completely killed the small gauge, home movie film industry. Kodak no longer even makes Standard 8 movie film and Super 8 cartridges are increasingly hard to find in the shops. Now there is a trend towards electronic still imaging. Kodak argues that electronic still cameras can never match the resolution of 35 mm camera slide film and is committed to the hybrid system called Photo CD. At Berlin Kodak confirmed plans to launch this new system in the UK next June.

Photographers will shoot pictures with conventional cameras and conventional film and have it processed in the usual way. Then they will pay a Photo CD centre to convert the pictures into digital code and transfer up to 100 onto a 12 cm CD. This Photo CD will play on a Photo CD player, looking like a CD player, which displays the pictures on the screen of any TV set.

The images stored on the disc are of a far higher quality than any TV screen can display (four times the resolution of a high definition TV picture and fifteen times the resolution of a con-

ventional TV picture) so photographers can use their Photo CDs as a storage and quick display medium. They will then pay the Photo CD centre to make high quality paper prints of selected images.

Philips will make Photo CD players for Kodak to sell under the Kodak brand name. Other manufacturers will be able to buy a circuit board which performs all the vital functions. Kodak hopes that this will encourage other firms to start selling their own-brand Photo CD players.

Unlike all other new formats Photo CD has the advantage that it is not dependent on pre-recorded software. Photographers are in effect creating their own Photo CD software.-

The big question mark is over price. Kodak may well be able to meet the promised price tag of around $£ 300$ for a player (which also plays audio discs) but the predicted prices for transferring snapshots to Photo CD look very over-optimistic. At Berlin Kodak reiterated its pledge that the Photo CD Centre will charge less than $\mathrm{E10}$ to transfer 24 pictures from film to disc. Having in mind the heavy capital investment in transfer equipment (up to $£ 100,000$) the cost of blank record-capable CDs (currently around $£ 30$ each) and the cost of labour to control the transfer process, it is hard to swallow the £10 price promise.

Kodak says that volume production of discs will drastically reduce their price. But I now have a bet (one pint of beer) with Kodak's head of public relations and legal affairs in Europe, Dr. Karl Steinorth. At Berlin I bet him that the cost of transferring 24 pictures will be higher than the 25-30 DM (well under £10) he pledged at Berlin.

In Japan both Sony and Canon sell electronic still picture cameras which record 50 images on a 5 cm (2in.) magnetic floppy computer disc. Both companies launched in the USA but sales were slow. Sony never launched its Mavica system in Europe but Canon went ahead with the lon. Sales of the lon have been slow too, for one very simple reason. People like to carry snapshot prints around in their wallets to show to friends. An electronic still camera must be connected to a TV set to display images.

New Trends

At Berlin Panasonic announced a video printer which can connect to a video recorder, or electronic still camera, and make a paper print from the video image. But the Panasonic Movie Printer, which goes on sale this winter, will cost at least $£ 1000$, with blank paper as costly as photographic paper.

To solve the cost problem Canon unveiled its "Ion print service" at Berlin. Canon says that by the end of 1992 over 1000 hi fi , video and camera shops throughout Europe will have installed a video printer. Photographers will take electronic snapshots on an Ion camera and then take the floppy disc to their nearest lon service centre. There they will tell a sales assistant which of the 50 images on the disc they want printed. Each colour print will take around two minutes to make, and cost around 75p. The printer is controlled by a Commodore Amiga computer, which allows some manipulation of the image before printing. Although the system works well print quality is frankly poor - generally inferior to a Polaroid instant picture print.

BASF has a neat idea for a new range of VHS cassettes. It is borrowed from the 8 mm video format. On audio cassettes users prevent accidental erasure or over-recording by breaking off a safety tag on the rear edge of the cassette. The same system is used for VHS. The only way then to record on a protected cassette is to stick Sellotape over the gap left by the broken tag, which is inelegant.

Video 8 cassettes have a sliding tag, similar to the sliding tag on 3.5 in. computer floppy discs. Now BASF has made a VHS cassette with a sliding tab instead of the usual breakable tag. First prototypes use a red tag but BASF will change it to green, reasoning that it makes more sense to have a "green for go" signal.

Now that wide screen $16: 9$ aspect ratio TV sets are coming on the market (from Thomson/Ferguson, Nokia/ITT and Philips), manufacturers are looking at ways of using home video as a source of wide screen material. JVC in Japan already sells an anamorphic lens adaptor for its camcorders. This optically squeezes a wide screen image into the conventional $4: 3$ picture area, just like a Cinemascope cinema film camera. The tape is played back on a conventional VCR, and for viewing is projected onto a screen with an anamorphic lens over it.

The more elegant approach is to squeeze and unsqueeze the image electronically, without the use of extra lenses. This is done by altering the speed at which the picture lines are scanned. A standard already exists for doing this.

At Berlin JVC announced that it will soon start selling a

Super VHS recorder which will electronically compress a wide screen image for replay on wide screen TV sets. The HR-S 4700 also has circuitry which automatically detects whether the image recorded on tape is of conventional 4:3 size or compressed $16: 9$ wide screen format. It then decodes the picture, depending on aspect ratio
Initially the HR-S4700 will be of most use for playing back pre-recorded tapes of wide screen films made in compressed format. Thomson/Feguson already has plans to subsidise the duplications of widescreen movie tapes. But the logical next step is a camcorder with the ability to record electronically compressed wide screen images. Although there is so far no VHS camcorder which plays this trick. Hitachi showed the pre-production prototype of an 8 mm camcorder which can shoot in either wide screen or conventional $4: 3$ format

This Hitachi camcorder has a CCD image sensor which has wide screen, $16: 9$ aspect ratio. For wide screen filming, the full area of the $C C D$ is used, with the picture electronically compressed into $4: 3$ format for recording onto tape. For $4: 3$ shooting, the camera uses only part of the CCD image sensor area. Electronic compression is made easier because the camcorder uses Hitachi's digital signal processing circuitry.
The widescreen pictures shown at Berlin on a wide format back projection screen were very impressive. This must surely be the way amateur video movie making goes in the future.

Cinevision

Berlin was seen by the European TV manufacturers as the launch pad for widescreen TV sets, with an aspect ratio of 16:9 The manufacturers have now coined the neat name tag "Cinevision"

There is mounting confusion over just what the various new widescreen sets offer, and what compromises they adopt. To try and clear the air I put together a short summary in the simplest words I could find and then got all three manufacturers. Philips, Nokia/ITT and Thomson/Ferguson to check it for accuracy.

Conventional 625 line TV in Europe displays 50 images a second. each made up from 312.5 lines, vertically staggered so that they interlace to create the illusion of twenty five 625 line pictures a second.

Philips and Grundig are already building 100 Hz circuitry into their large screen 4:3 TV sets. Some people, especially if used to

The new Photo CD discs and player from Kodak. The latest Philips widescreen TV can be seen in the background.

North American NTSC TV which has a picture rate of 60 Hz , find wide area flicker very noticeable on European 50 Hz TV sets. At 100 Hz flicker disappears completely.

The Ferguson Space System 16:9 wide screen set, and also Nokia's, doubles the line structure from 625 to 1250 but retains an interlaced structure and retains the 50 Hz field rate. So there are 50 images a second, each made up from 625 lines staggered to interlace on screen as a $50 \mathrm{~Hz}, 1250$ line picture.

The Philips widescreen set retains the 625 line interlaced structure, but doubles the field rate from 50 Hz to 100 Hz . So there are 100 images a second, each made up from 312.5 lines, staggered to create the illusion of fifty, 625 line pictures.

Philips will move next to 625 line "progressive" scan at 100 Hz , with 100 images a second each made up from a full 625 lines.

WINTER 1991/1992 CATALOGUE

OUT NOW!

- 100's of price reductions throughout the catalogue 200 pages Latest new products EEE's worth of discount vouchers

> On sale from 14th November at most large newsagents or directly from Cirkit

Across

2 Some call a servant, a shining light, It's straight and narrow, all right?
6 Very tiny, but just the same, A thousand micro's this contains.
7 A useful amp, that 741,
So Pam Perkins now has one.
9 Electric pressures rule the game, I x R equals the same.
10 The initial start I want to see Of a rival to EE.
11 Likewise of 10 across,
This time the BEST - the Boss!
12 Current is limited, there's no chance, But Oh Mum! She has resistance.
14 Transistor's are all the same, some moan, But this one's in a field of its own.
15 Some words reversed have a value of none, This little gem is worth a million.
18 Such a variable device, my dear, To measure one's potency, we hear.
19 Let there be light, and resistance low. What is it, initially, I want to know.
20 Although not manual, this feedback is able, It's in my bag contents and keeps me stable.
21 A large source of energy, it can't be seen, The MP holds it, if you see what I mean.
23 Not NOT, nor NOR, this gate can be, But any high input, a high output you'll see.
25 No connection, but there should be, It is a fault? It could be.
27 "Hear this!" he said "The answer's within." It will provide a thorough grounding.
29 On the end of a 'scope lead, to prod so willing. But first stop Robert, he holds it within.
30 Electric, water or gas, it could be, Most likely 240 volts a.c.
31 Is this a golf course, we hear? Just short connections from there to here.

Down

1 Digital electronics is the order of the day, Initially, it's an uncommitted logical array.
2 Far from dead, this brown wire be, Potentially dangerous, go carefully!
3 A burning need that won't melt your heart, A bit too hot to handle this part.
4 One by any other name, but so appealing.
This holds wires in the ceiling.
5 A memory so lecherous, we hear, It's random and without Visa. Oh dear!
6 A sound where left and right compare, Fine if you only have one ear.
8 A male connection and that's a fact, Just gulp backwards to make contact.

13 Swinging needle or LCD, It'll measure the same with accuracy.
15 It's a good yardstick for some, And sounds just like 13 down.
16 All inputs up switch and output too, This clever gate hides in sand for you.
17 This is motivation initially,
Applied to electronic circuitry
19 Freed from darkness but still in clamps, This shining example might draw amps.
22 Some good contacts must be found, They"ll be a snip, the other way round.
24 For wire or solder this can be, It sounds genuine enough to me.
25 As 12 Across, but plural you see, A James Bond Movie, initially.
26 It's not paper, you can't write to this, But you can read, only memory it is.
28 Noah led his animals with this direction, This i.c. socket will make the connection

Graxnt greptings ta all nur readers

These puzzles are for fun only. See page 51 for solution.

EE WORD SEARCH

All the words in this Word Search are to do with electronics. When all the words are found, the remaining letters, starting from the top left hand corner, will spell out a familiar title and a name associated with it. Every letter is used.

The words to find are:

ADC	POTENTIOMETER
AGC	POWER SUPPLY
AMPERE	RADAR
ASTABLE	REEL
CHOKE	RESISTOR
DIODE	RIPPLE
EMF	SCALE
INFRA RED	SOFTWARE
LAMP	SOLDER
LED	SPEAKER
LINEAR	SWITCH
MOSFET	TEST
OHM	TRACK
OPAMP	TIMER
PHASE	TOOLS
PINS	VOLTAGE
PLUG	WIRE

MARCO TRADING

INCORPORATING EAST CORNWALL COMPONENTS ELECTRONIC COMPONENTS

visa

SEND ORDERS TO - DEPT 1
MARCO TRADING
THE MALTINGS, HIGH STREET, WEM SHROPSHIRE SY4 5EN
Tel: (0939) 32763 Telex: 35565 Fax: (0939) 33800 ELECTRICAL \& ELECTRONIC 4HR ANSAPHONE LATEST 1992 CATALOGUE

* Velleman Kit Catalogue * Free pre-paid envelope - Many new lines * Pages of speciai offers * Free giths
\& EOUIPMENT MAIL ORDERS WHOLESALE

TO81B VIDEO LIGHT KIT A semi protessional video light kit comprising 100 W halogen lamp. remote 12 V dc 7 Ah sealed lead acid battery in carry- ing case with shoulder strap. $220 / 240 \mathrm{~V}$ ing case with shoulder strap. 220/240V ac operated battery charge corder power supply adaptor
 TOBOB CAMCORDER BATTERY CHARGER

 JANUARY SPECIAL OFFER

 SUPERTRONICS Tel: 0216665504 65 MURST STREET BIRMINGHAM B5waltons
 IVERMAMPON

rereer. कातrme	POST \& PACKING IS NOW $E 2.25$ ALL PRICES INCLUDE $171 / 2 \%$ vat

TWIN FLUORESCENT LAMP - 1

 tic case with cleat plassici ribbed dithusel
and OWOFF swich Supplised with socms

 $\begin{array}{llll}\text { Price } & \mathbf{1 +} & \mathbf{£ 6 . 5 0} & 5.00 \\ \mathbf{1 0 n} & \mathbf{5 0 . 2 5}\end{array}$ SINGLE FLUORESCENT LAMP - 12 V COMPUTER GRADE CAPACITORS

 | $\begin{array}{l}\text { Relaz. Not trom us } \\ \text { ORDER CODE SOICOMG }\end{array}$ | $£ 3.50$ | $£ 3.00$ |
| :--- | :--- | :--- | QUARTZ-HALOGEN SPOTLIGHT

\qquad
 SPARE TUBES
 lengith approz 300 mm linc.
OROER COOE 0010 fuoe £1.50 ea, 10 for $£ 12$ PORTABLE FLUORESCENTLAMP-12V

 Car, Doal. Van oi home em
EVEN FLOATS IN WATERI
 $\begin{array}{llll}\text { Priçe } & \mathbf{E 6 . 5 0} & 6.00 & \mathbf{5 5 . 2 5}\end{array}$
full Rance of BABANI BOOKS IN OUR 1992 CATALOGUE

FULL RANGE OFICS AND
SEMI CONDUCTORS IN OUR LATEST 1992 catalogue BT APPROVED

Waster Sockel (tuush)	
Master Sockel (surtace.	ci. 25
ondary Sockel (tiumb)	925
onasry sockel (surtace)	C2, 15
I. Cable (per metre).	150
15 199M 4 Core	∞
15 199M 8 Core	. 0
Line Jack core with Plug	
Extr. Lesos metres.	2.75

CAMCORDER BAG

T089A
CAMCORDER BAG $£ 16.99$ One internal pocker and low zioped exiternal pock CD PLAYER G060 (CDP 10)

- G-track proprammable memor

-T

 Opticel Dichup
Emor correction error correction
Samoling liequancy
ova conversion Samoling
DiA con
Firet
Frequency Frequency response
Msmmonic disisionion.
SN SN ratio
Channel se Chamel separation
Mas outout voltage. Mas
Power
Dims.

RESISTOR KITS		ADDITIONAL KITS		
- each value		Disc ceramic 50 V .	. 125 pieces	£3.99
individually packed		Zener Diodes 5ea	55 piaces	£3.99
		radial.........	pieces	£8.50
\%W pach 5 oach value E $12-10 \mathrm{to}$ to 1 M 305 pieces	[375	fuses 0 blow 20 m	n. 80 pieces	£4.75
\%/W pach Populim- 1081010 m 1000 pricees	${ }^{5699}$	Fuses 9 delay 20 m	$n 80$ pieces	¢8.50
\%W pach 10 ench value E12-2f2102M2 730 pieces	ca 75	Pre-set pols. Hor.	120 pieces	¢7.75
\%W pesk Seact value E12-2R2102 2 M 2335 pioces	[51070	Pre-sel pots. Vert	120 pleces	$\underline{17.75}$
	${ }_{6} 1185$	Polyester 100V.	110 pieces	¢5.00
2W pack 5 each value E 12 - 10 H 102 M 2317 piaces.	¢25,00	Nuts a Bolts.	. 800 pieces	E599

YUASA SEALED LEAD ACID BATTERY

Ni.Coss
240VAC
NI-CAD RECHARGEABLE
BATTERIES

	PRICE	EACH
	$1+$	$10+$
MA	$\mathbf{1 1 . 5 0}$	$\mathbf{~ 1 . 3 0}$
AA	95 p	85 p
C	$\mathrm{C1.95}$	$\mathrm{C1.80}$
D	$\mathrm{C2.00}$	$\mathrm{C1.85}$
PP3	$\mathrm{C3.80}$	$\mathrm{C2.75}$

COMPONENT SPEAKER SYSTEM B020 (TC6500)

PRICE £25.75
2n 3 way component speater system comprising itwo 8.5 wooters. . Wo
Maxum power

SOLDER 18 \& 22 SWG -500gm REEL
$\begin{array}{lll}18 \mathrm{swg} & £ 4.95 & \mathbf{8 4 . 7 0} \\ 22 \mathrm{swg} & £ 4.99 & £ 4.75\end{array}$
Remember: Our prices iNCLUDE VAT!

Plus £ 10 carr

Constructional Project

STEPPING MOTOR dFIIVRIITTEFFACE

MARK STUART

An explanation of stepping motor operation plus a stand-alone demonstration/driver board which also allows computer drive.

STEPPING motors have always provided one of the simplest ways of producing controlled movement in a wide range of hobby. commercial, and industrial applications. Although mechanically very simple, their electrical drive requirements are more complicated, requiring special driver i.c.s which are in turn driven from a computer.
For many applications the computer programming is simple, providing no more than a measured pulse train to the driver i.c. In these circumstances an excessive amount of computer time can be wasted just running the motor to evaluate its mechanical performance. Where computer access is limited, as in a teaching environment, any means of saving computer time is valuable
This project allows stepping motors to be operated and demonstrated without tying up a computer, but also includes a computer interface which allows full computer control when required. It is an ideal means of testing and evaluating stepping motor applications and projects, and allows excellent classroom demonstrations. The design is the result of many requests from teachers, and others, over the past few years and it is hoped that it meets most of their requirements.

FEATURES

The circuit can drive almost any standard four phase unipolar stepping motor in Full Step. Half Step. or One Phase mode, with variable speed and acceleration, and with continuous l.e.d. monitoring of the winding energisation sequences. Two preset speed controls allow instantaneous Start/Stop operation for low speeds and low inertia loads, and Ramp Up/Ramp Down operation for high speeds and high inertia loads.
A third control allows the ramp time to be adjusted to match the load. The low and high speed controls can be used together to give instant starting to low speed followed by ramped acceleration and deceleration to and from a higher speed.
A separate power supply is required; 12 V at 1 A is sufficient for most small motors but up to 35 volts and 1.5A can be handled by the output driver i.c. which has built in thermal protection. An on-board voltage
regulator provides a 5 volt supply from the main motor supply for the low power section of the circuit.
The main driver i.c.'s inputs are all accessible via a single-in-line eight way plug on the board which allows direct computer control without having to change any links or switches.

STEPPING MOTOR PRINCIPLES

The operation of stepping motors is best explained by means of Fig. 1 which shows a diagram of an elementary motor with a single permanent magnet for a rotor and two pairs of electromagnetic poles for the stator. This motor would have only four steps per revolution, but operates on exactly the same principle as one with 48 or 200 steps. The main difference is that both the rotor and stator have several pairs of magnetic poles instead of the few shown so

Fig. 1. Principle of operation of a stepping motor.
that they can align in 48 or 200 different positions.
If the rotor of the simple motor were rotated by hand, it would tend to "notch" into one of four preferred positions with the magnet aligned either way round with each pair of poles. This effect is shown by ordinary stepping motors which have a very "notchy" feel when rotated. Counting the notches gives the number of steps per revolution in Full Step mode.

Fig. 2. Wave Drive magnetising sequence.

Table 1: Wave-Drive Sequence

\#	Half Step $=$ L. One Phase $=\mathrm{H}$				
	Step	A	8	C	D
O	PRO	ON	OFF	OFF	OFF
$\stackrel{5}{5}$	1	ON	OFF	OFF	OFF
W	2	OFF	ON	OFF	OFF
뜿	3	OFF	OFF	ON	OFF
	4	OFF	OFF	OFF	ON

FULL STEP (TWO PHASE)

Fig. 3. Full Step or Two Phase drive sequence.
Table 2: Two-Phase Drive Sequence

\square	Half Step $=\mathrm{L}$, One Phase $=\mathrm{L}$				
2	Step	A	B	C	D
은	PRO	ON	OFF	OFF	ON
$\stackrel{5}{6}$	1	ON	OFF	OFF	ON
$\underset{\sim}{\text { u }}$	2	ON	ON	OFF	OFF
-	3	OFF	ON	ON	OFF
-	4	OFF	OFF	ON	ON

Fig. 4. Half Step mode magnetising sequence.

Table 3: Half Step Drive Sequence

To energise the simple motor, terminals $\mathrm{A}, \mathrm{C}, \mathrm{D}$, and B are connected individually or in combinations to the negative terminal of the motor power supply. If terminal A is connected, then current flowing from the motor supply through the winding magnetises the associated iron core in one direction. Connecting terminal \mathbf{C} instead of A magnetises the core in the opposite direction.
If terminals A and C are connected to negative together, then the two currents' magnetising effects oppose one another and the core is not magnetised at all. The same effects apply when connecting points B and/or \mathbf{D} to negative, the magnetisation of the associated core follows a similar pattern. Note that the two cores, with their windings, operate entirely separately from one another.

WAVEDRIVE

The simplest way to drive the motor is called Wave Drive. Fig. 2 shows the stator magnetising sequence and the corresponding rotor positions, and Table 1 shows which terminals are connected to negative for each step. Ignore for now the other information in the tables which refer to other connections of the driver i.c. The relevant information is in the columns marked A to D and rows I to 4.

In Wave Drive, as each winding is energised, the magnetic rotor moves to align with the electromagnetised poles. By switching in the correct sequence the magnetic rotor moves to each position in turn, rotating fully after four steps. By energising the windings in the reverse sequence, the rotor can be made to revolve in the opposite direction.
Wave Drive is the simplest method to describe but is not a very efficient way to run a stepping motor. This is because only one winding is used at a time and so only half of the winding wire and space, and the stator core material is utilised. To improve upon this Two Phase or Full Step drive is used.

FULL ETEP

Full Step (or Two Phase) drive involves a similar four step sequence to Wave Drive but two windings are energised at each step. Fig. 3 and Table 2 show the rotor positions and the winding energisation patterns.
Note that the rotor aligns with the stronger magnetic field between the two sets of poles. The torque is increased substantially over Wave Drive as two windings now provide the magnetic field instead of one.

HALFSTEP

A third method of operation is Half Step mode. This is a combination of the two previous ones and takes advantage of the rotor's ability to align alternately with the stator poles and between them, to double the number of steps available from the motor. Fig. 4 and Table 3 show the rotor positions and winding energisation patterns.
In this mode the torque varies up and down with each half step as the motor moves alternately between Wave Drive and Full Step modes. This would seem to be a disadvantage, but it is not a serious one. As the motor does not have to move so far with each step the varying torque does not reduce performance significantly, and the increased smoothness of running due to twice the number of steps being used gives big reductions in noise and vibration levels.

In most practical stepping motor applications Full Step or Half Step operation are used. Wave Drive is inefficient and often a smaller (and cheaper) motor can be used driven in Full Step mode than would be possible with Wave Drive. Other more sophisticated methods of drive are used in industry.
One such method is Microstepping, where the current in each winding is not just switched on and off, but increased and decreased in a series of steps so that the rotor can take up many intermediate positions between the poles. With the necessarily complicated circuits this method gives very high accuracy smooth movement.

SPEED

There is no lower speed limit to stepping motor operation. One step every week is quite acceptable. At the opposite end of the spectrum however the maximum speed is limited by many things.
The main limit is determined by the inductance of the windings which reduces the rate at which the winding current can rise. Above a certain speed the winding current reduces until the torque becomes too small to be any use. This limit can be pushed up effectively by increasing the motor drive voltage at high speeds, but there is still a limit, and stepping motors can only be considered as low speed drives.
Switching of the windings is normally carried out electronically by power transistors. To use mechanical switches such as relays is impractical because of the operating speed required. In this design a special i.c. is used which contains four Darlington power transistors and all of the logic to switch them in the correct sequence to give all three modes of operation described.
The i.c. is driven by various logic inputs which select the stepping mode, direction etc. In addition a variable frequency pulse train is provided to drive the "Step" input of the i.c. For each pulse received the i.c. outputs advance one step in the selected sequence. The faster the pulse rate, the faster the motor rotates.

CIACUIT

The full circuit diagram of the controller is shown in Fig. 5. The motor driver and interface i.c. (ICI) is the M5804. The inputs to ICI are pins $9,10,11,14$, and 15. These are driven with logic levels provided by SI to S4 and the output of IC3a which provides a pulse train for the Step input.
The four i.c. outputs are Darlington transistors connected to pins 1, 3, 6, and 8. The internal block schematic of ICl is shown in Fig. 6 and the output Darlington transistors are shown individually in more detail in Fig. 7. Each output device is fitted with a parallel reverse protection (ground clamping) diode and a flyback (supply clamping) diode. These prevent any high voltages from appearing across the transistors as the inductive motor windings are switched on and off.

Though the transistors are each rated at 35 volts and 1.5 amps , the total output that can be provided by the i.c. is limited in practice by the package temperature rise. To allow, the maximum dissipation the i.c. has a thick copper lead frame which allows heat to pass down the pins to the circuit board tracks. The printed circuit board layout has been designed to allow plenty of track area around the ground pins $(4,5,12$, and 13) to act as a heatsink.

The flyback diodes are connected to pins 2 and 7 of the i.c. These are normally connected to the highest (positive) voltage point in the circuit. In this application these connections have been made via wire links to the motor supply positive rail. Alternative connections are possible (for example via Zener diodes) but for most applications direct links to the motor positive supply are preferred.

Plenty of space has been allowed on the board for current limiting resistors. These (marked RM) are used when the application demands especially quick response time and improved torque at high speeds. How this works is explained later. For most applications these resistors can be omitted and replaced with short circuiting links.

On the input side the i.c. is almost a standard CMOS device. The only difference being that the logic supply must not exceed 7 volts. There are five input pins which function as follows:

[120]80
Fig. 6. Internal schematic of IC1.

Pin 9 - One Phase
This pin sets the i.c. in One Phase stepping mode when it is set to logic 1 .

Pin 10 - Half Step
This pin sets the i.c. in Half Step mode when it is set to logic 1 .
Note that when pins 9 and 10 are both at logic 0 the i.c. is in Full Step mode, and when they are both set to logic I the i.c. ignores incoming Step pulses (Step Inhibit mode). This latter function can be useful under computer control as it allows the motor to be stopped without interfering with the Step pulse input. Table I shows this more clearly.

Pin 11 - Step Input
When this pin changes from logic 1 to 0 (negative transition) the motor executes one step. The actual winding energisation sequence depends on which step mode is selected.

Pin 14 - Direction Input
This sets the direction of rotation of the motor by reversing the stepping sequence. The selected sequence progresses down the table when the pin is set to logic 0 , and up the table when set to logic 1 . To ensure correct sequences are followed, this pin, and pins 9 and 10 , should only be switched when Pin 11 (Step Input) is at logic 0 .

Pin 15 -Output Enable
All outputs are turned off when this pin is held at logic I. This is useful for power saving in advanced applications by allowing the outputs to be pulsed on and off (Chopped). For most applications it is tied to logic 0 . This pin does not affect the stepping sequences in any way.

The rest of the circuit is concerned with providing ICl with input pulses and logic levels to determine the mode of operation, and indicators to monitor the output. Four input control pins to ICl (pins 2,3,7, and 8 on PL2) are normally held at OV by means of 100 k resistors R 10 to R14. To set these pins to 5 V (logic 1) they are pulled up through resistors R5 to R8 via the fourway s.p.s.t. switch S1 to S4. As the direction control switch is likely to get a great deal more use than the others an additional switch (S5) is also fitted. this is a more robust p.c.b. mounted switch that will save wear and tear on S3.

The main input to ICl is the STEP input which is at pin 6. This is driven with positive pulses from a voltage controlled oscillator made up from IC3a, and b, and IC4a. The frequency of this oscillator is controlled by d.c. voltages supplied via IC 4 b from IC 4 c and d . These in turn are fed from the two speed control potentiometers VR3 and VR4 via push to make switches S6 and S7.

OECILLATOR

The oscillator is best explained if it is first assumed that C4 is fully discharged and therefore has no voltage across it. If a slow speed has been set by VR4, and S7 is being pressed, a d.c. voltage will be present at the output of IC4, C4 begins to charge from this voltage via R18 and VR1. IC4 compares the voltage across C 4 with a reference voltage (approximately 0.5 V) which is generated by a potential divider consisting of VR3 and VR4 in parallel in its upper section, and R22 in its lower section.
At first the voltage on C4 is small and well below the 0.5 volts across R22 and so the output of IC4a stays close to 0 V . As soon as the voltage on C4 rises above the reference voltage, the output of IC4 rises swiftly to nearly 5 V , and triggers the monostable formed by IC3a, and b. The output from IC3a is a positive pulse which drives the STEP input of ICI via RIS and turns on TR1 via R17. As TR1 turns on it immediately discharges C4 which begins to charge again via R18 and VR1 at the end of the monostable pulse, and so the cycle continues.

The higher the voltage on the output of IC4b, the higher the charge current and so the quicker the voltage across $\mathbf{C 4}$ rises. In this way the frequency of the output pulses is proportional to the applied voltage.

The use of a voltage controlled oscillator is necessary because stepping motors cannot be driven at full speed from a standing start. The two push switches allow this to be demonstrated because the SLOW speed switch (S7) applies the control voltage instantaneously whilst the FAST speed switch (S6) allows the control voltage to ramp gently up to the set speed at a rate determined by C5 and VR2.

FASTEETTINE

The Fast speed setting voltage is buffered by IC4c which has a voltage gain of 1 . It has a very high input resistance and so does not load VR3 which provides it with a d.c. voltage input corresponding to the required speed. The voltage from IC4c is applied to the input of another buffer amplifier (IC4b) via the ramp control VR2 and shunt capacitor C5. The other end of C5 is held at constant voltage by IC4d which is set to the reference voltage via R20 when S7 is open, or to the Slow speed select voltage from VR4 when S7 is closed.

As S6 is closed the voltage from VR3
slider immediately appears on the output of IC4c. C5 then charges via VR2 so that the voltage at the input to IC4b slowly changes to match that at the output of IC4C. In this way the voltage controlling the pulse frequency ramps slowly up (and down) to the required level. The setting of VR2 and the value of C5 set the ramp rate which can be adjusted so that the final speed is reached in a time between a few milliseconds and several seconds.

The Slow speed setting control does not have a ramp facility and the pulse frequency changes immediately to the required setting. This is achieved by applying the voltage from VR4 to the lower end of CS via IC4d and to the upper end via IC4C. This means that C5 does not have to charge or discharge as the voltage ACROSS it does not change, and so the pulse frequency changes instantly.

This method is known as bootstrapping. and is used in many other types of circuit. especially to reduce the effect of undesired capacitances. Its application here is less common but it does an admirable job as it allows both fast and slow controls to work independently and together without any unwanted interaction.
The power supply for the logic section of ICl and the pulse generating circuits is derived from the motor supply via D 9 and IC2 with decoupling capacitors Cl and C 2 .

INDICATORS

Four l.e.d.s (D5 to D8) are provided to monitor the states of the output drivers, these are protected from reverse voltages by DI to D4 and have their supply current limited by RI to R4. These are useful for demonstrating the various operating modes, and light with or without a motor being connected.

Spaces are allowed on the board for series limiting resistors "RM" which are used with lower voltage motors or higher supply voltages. For most applications these should be replaced with wire links and the motor supply voltage should match the motor rating.

It is advantageous to use series resistors and to increase the supply voltage above the motor rating when very high performance is required. The resistor values are chosen to limit the motor current to the maximum allowed for the motor. This has the effect of increasing the rate of rise of motor current and allows faster stepping rates and higher acceleration to be achieved without overheating.

CONETAUCTION

Construction is relatively simple as the entire circuit is built on a single printed circuit board (available from the EE PCB Service code EE782), and there isn't any wiring to off-board components. Fig. 8 shows the component layout and the copper track pattern.

Before fitting any components check that the three potentiometers fit correctly into the large holes in the board and that all of the other holes are clear of solder.

Fit the resistors and diodes first and solder them in. Resistors R10 to R14 are in a single-in-line network which has its common pin at one end marked with a dot. The board has been drilled to accept 8 or 9 pin networks. Some of the pins are unused but do not need to be cut off as they only connect harmlessly to the negative supply. Preset VRI should be fitted with care as it is an open type and prone to damage.

Fig. 8. P.C. B. layout and wiring, the text refers to LK1.

Next fit IC1 directly into the board. As explained earlier this i.c. uses its pins to conduct heat away to the printed circuit board tracks, a socket is not recommended as it seriously reduces the flow of heat to the board and would reduce the i.c. current rating. The M5804 has proved to be very reliable and so it is unlikely ever to need unsoldering. IC3 and IC4 can be fitted in sockets as this will help with faull-finding should any be required. IC2 should be soldered directly into the board.

Apart from C1 and C2 the capacitors can be fitted either way round. Two spaces have been provided for C5 so that its value can be doubled by adding another capacitor in parallell to give a prolonged ramp time.

Switches S1 to S4 are in an 8 -pin d.i.l. package and could be fitted into a socket if preferred. If heavy use is expected it is better not to use a socket, as the constant movement could cause intermittent contact. SS must be soldered straight into the board. In order to keep the switch upright it is helpful first to solder just one pin. The switch position can then be adjusted by melting the solder, and the other pins can be soldered when the correct position has been obtained. This process is also useful when fitting PL1 and PL2 and the l.e.d.s all of which need to be fitted upright on the board.
A number of wire links are required. These can be made from insulated or bare tinned copper wire and should be bent neatly before insertion into the board. Fit two more wire links in the positions marked RM unless resistors are to be used.
The two push-to-make switches have small plastic pips on their undersides which must be removed so that the switches fit flat on the board.
When everything else has been done the potentiometers should be fitted. Bend the tags forward so that they fit into the holes from the track side of the board with their spindles passing through to the component side. Fit the nuts first and tighten them before soldering the tags.
Once assembly is complete, carefully check the soldering for dry joints and bridges, and ensure that all components are correctly placed and the right way round where necessary. Time spent at this stage can save a great deal of time later finding simple faults.

TESTING

The entire circuit should be tested before connecting a motor. D5 to D8 indicate the state of the outputs from ICI.
Apply a current limited supply of between 8 and 15 volts to the Motor Supply terminals. A convenient type of current limit is a small bulb, such as a 12 V 2.2 Watt type wired in series with the positive supply. Alternatively a resistor of 10 ohms or so could be used. A bulb is preferable. as it lights to indicate excessive current drain.

As S6 and S7 are open circuit there should not be any drive pulses to ICl and a static pattern of one or two l.e.d.s should be present provided SI is set to the OFF state. Set S2, S3, and S4 to OFF as well so that ICl is set into the Full Step or Two Phase mode.
Now set VR1 to mid position, and VR2, VR3, and VR4 fully anticlockwise, and press S7. Whilst holding S7 rotate VR4 clockwise and check that the pattern of l.e.d.s begins to change and speeds up as VR4 is rotated further. Release $\$ 7$ and
check that the l.e.d.s stop. Repeat the process this time using S6 and VR3 and note the effect of VR2 on the speeding up and slowing down of the pattern. If all is well so far adjust VRI and check that this has an overall effect on the speed range of both controls. Note also that the speed range is the same for VR3 and VR4, the only difference being that the ramp affects only S6 and VR3.
If any of the l.e.d.s will not light check the polarity and the associated resistor and diode.
If the oscillator section is not operating properly check that the voltage from IC2 is 5 V and that the voltage across R22 is approximately 0.5 V . Measure the voltage on the sliders of VR3 and VR4 and check that it can be adjusted from 0.5 V to 5 V . IC3c. and d are buffer amplifiers and so their outputs should follow their inputs over most of the range between 0.5 V to 4 V . Similarly the output of IC4b should also follow its input.
The output of IC4a should be low most of the time, pulsing positive only very briefly. Without an oscilloscope this will be impossible to see and so a multimeter will simply read 0 V . It should be possible to get this section of the circuit working by simple checks and careful inspection as there are not many components involved.

The correct operation of switches S1 to S5 can be checked by a multimeter on the pins of IC1 or PL2. Setting a switch to ON will raise the voltage from zero to 4.5 V . Note that as S3 and S5 are in parallel closing either of them will have the same effect, and both must be open to get 0 V .
The various operating modes of ICI can be inspected by operating the switches and setting the lowest possible speed with VR3 or VR4. With the correct setting it is possible to single-step the circuit so that the motor drive sequences can be followed. The truth table and motor drive sequence tables should be referred to and each combination checked.

MOTOR
 CONNECTIONE

Once it is established that the circuit is working correctly, a motor can be connected to PLI. The Magenta MD35 has a connector attached already that matches these connections and can be plugged in either way round. All Four phase unipolar motors have two separate centre-tapped windings which are interchangeable. As long as the two centre taps are correctly identified, and the corresponding winding ends are connected either side, the motor will run. Reversing either of the windings
will change the direction of rotation, but will not have any other effect.
Whichever motor is used it is essential to have a power supply that can deliver enough current to supply two windings together without dropping below 8 V . If the supply falls further the voltage regulator IC2 will run out of headroom and its output will drop, causing no damage, but with unpredictable results to the rest of the circuit.
It is possible to operate lower voltage motors by having a separate 5 volt supply for the logic circuits and removing link LKI. Motors can then be driven from as low as 3 volts, but the l.e.d. indicators will not function properly. PL2 allows a separate 5 V supply to be connected for this purpose, and it can be conveniently derived from a computer supply as only 30 mA or so is required. Resistor R9 protects the computer in case of short circuits.

COMPUTER OPERATION

All inputs to ICl are available at PL2 for connection to a computer output port. For many applications it will only be required to connect the Negative, Step, and Direction pins. The rest can be pre-set by the switches. Most computer ports will easily override the switch settings which are fed to ICI via Resistors R5 to R8. These resistors should prevent any conflict and give the computer automatic priority.
Programming is simply a matter of setting the output port line connected to the Step input High and Low alternately each time a step is required. More advanced programming will allow the motor to be accelerated and run at different speeds. Up to four boards and motors can be operated from a single port if sufficient programming skill is available, and only Step and Direction commands are required to be under program control.

INUSE

As a demonstration tool this board is excellent. The three modes of motor drive can be run and their characteristics observed. The effect of inertial loads on the acceleration and motor stability can also be investigated. For practical applications the motor can be run from the board and any mechanical problems sorted out before embarking on computer control. Two boards and motors provide the basis of a computer controlled X - Y positioning system which could be operated from just four lines of a computer port. All in all the board is an effective and inexpensive way to put stepping motors to work.

The prototype p.c.b., the final version has been modified slightly.

TRANSISTOR CHECKER

Running through the list of components required to build the Transistor Checker, we were not expecting any supply problems to be encountered when ordering parts. We were surprised to find that the two major components, namely the rotary switch mechanism/wafers and the meter, are not so widely stocked as first anticipated.

The 0-500 A moving coil meter used in the model is an Altai T23 type and has an internal resistance of 360 ohm . This meter is currently listed by Greenweld (code Y200, some with mirrored scale). Henry's Audio Electronics (code Y200) and Electrovalue (code T23).

Other meters can be used of course provided they have identical electrical characteristics. The size of case may need to be changed to accommodate the meter used. One such meter is available from Greenweld (Code Y183) at about half the price.

The miniature rotary wafer switch assembly is usually listed in catalogues under such sub-headings, within switch sections, as "Maka-Switch" types and consists of the mechanical mechanism and various combinations of wafers. The spindle rotation limit stop of the mechanical assembly is adjusted to stop at position five A number of 2-pole 5 -way (Electrovalue - RA series) or the more common 2-pole 6-way wafers (Maplin FH46A-mech, FH48C-wafer), (Cricklewood Electronics WSM1-mech WS26-wafer) are mounted on the mechanical assembly to form suitable switches for this application.

The single-sided printed circuit board is available from the EE PCB Service, code EE781 (see page 66).

STEPPING MOTOR

DRIVER/INTERFACE
The M5804 stepping motor driver i.c specified in the "comp list" for the Stepping Motor Driver/Inferface is only available from Magenta Electronics. They also list a range of suitable stepping motors for use with this stand-alone or computer linked circuit.

A complete kit of parts (£29.95), in
cluding p.c.b. and their MO35-1/4 motor is available from Magenta Electronics, Dept EE, 135 Hunter Street. Burton-on-Trent, Staffs, DE14 2ST (4) 0283 65435). Add $£ 2$ for post and packing

The printed circuit board is available from the EE PCB Service, code EE782.

MIND MACHINE PROGRAMMER

Some of the semiconductor devices called up for the Mind Machine Proarommer, an add-on board for last month's project, will certainly cause local sourcing problems and take some finding
The only source we have been able to locate for the LP2951CN micropower voltregulator is from Electromail (4 0538 204655), code 648-578.

Double checking current catalogues and advertisement listings for the DAC0832LCN D/A converter chip, the only source of supply appears to be from Viewcom Electronics (? 081471 9338). They are also able to supply the Analogue to Digital i.c. ADC0804LCN and the static RAM.

The rest of the semiconductors seem to be generally available and should not cause concern. Most of them are listed in the latest components catalogue from Cricklewood.

However when placing your order for parts, make sure your supplier understands that you want the BC184 transistor and NOT one with the letter \angle (BC184L). Although it is the same transistor, it has differing leadout arrangements according to lettor code. If you are stuck with a BC184L, the leads can be carefully bent to fit on the circuit board.
The printed circuit board for the Programmer is available from the EE PCB Service, code EE780. Finally, it is very important that ALL constructors and possible users of the unit pay special attention to the warning at the start of the article.
BISHOP ROCK LIGHTHOUSE SIMPLE MODEL SERIES
The miniature solder terminals shown in use on the "circuit boards" for the Bishop Rock Lighthouse, this month's Simple Model Series project, are the p.c.b. eyelet type. These consist of a looped wire with
the resulting two end leads separated by a coloured ceramic bead and are usually used to establish test points on circuit boards.

The oyelet terminals should be readily available from advertisers and are normally sold in packs of ten, each of different colour, for about £1 per pack. The rest of the components are standard items, but the lighthouse "rocks" or base must be able to accommodate the loudspeaker.

The speaker must be rated at 64 ohms but physical size will depend on the final modet. The one used in our "cut out" light house is a miniature 38 mm diameter type.
The model and electronic circuit is buit on printed white card which can be obtained from the EE Editorial Offices for the sum of $£ 1.50$ (including postage). The wiring up of the circuit card is accomplished by the use of the Vero Easiwire "no soldering" wire-wrapping system.
To help with assembly special arrange. ments have been made with Greenwald Electronic Components (-0703 233363) and Bull Electrical (0273 203500) to supply a complete kit, including cards, for the sum of $£ 5.95$ plus $£ 1$ postage. They are also making a special offer on Easiwire wirewrap kits - see "Special Offer" page 54.

MICRO-SENSE ALARM

We do not expect any component purchasing problems to be encountered when buying parts for the Micro Sonse Alarm. The piezoelectric sounders used in the model are, in fact, the elements only.
Because of the dangers of possible damage during soldering. it might be wise to purchase elements which have leads alreacty attached to them. These leads can be cut short and the specified two-core screened cable soldered to the shortened leads.
If you are going to use tilt switches for additional security, the miniature motal encapsulated mercury types should be purchased. These are fairly widely stocked and should not be a problem.

You could use the miniature, mercury loaded, metal cased vibration switch or the miniature glass encapsulated tilt switch. The glass type are fairly fragile and would certainly need to be well protected as mercury is a poisonous substance.

The 6 V battery used in the unit should be a rechargeable sealed lead-acid type. These appear to be available from the lagger components stockist. On special offer at the moment is a 6V 10AH version from Marco Trading which, although slightly more expensive, will give a much longer "standby life". This will mean a larger case. The printed circuit board is obtainable from the EE PCB Service, code EE783 (see page 66).

EVERYDAY NEWS UKIC DEEIGN

The Integrated Circuit \& Application Centre at Southampton, the first of its kind to be established within Philips Semiconductors, was formally opened by Kevin Kennedy, Chairman and Managing Director, Philips Electronics (UK), on Tuesday 22 October 1991.
Employing some 360 staff, the majority of whom are graduate engineers or equivalent, it represents an investment by Philips of some $£ 6.8 \mathrm{~m}$ and is one of the largest single concentrations of electronic engineering expertise in the UK.
The centre combines on one site the design, marketing and logistics operations for microchips used in all types of consumer electronics equipment - television sets, VCRs, compact disc players etc. It also looks at how new developments in chip technology will improve the performance of such equipment.

Startext

At Southampton engineers are developing the chips for the products of the future. Just reaching the retail shops are VCR's with Startext or PDC (Programme Delivery Control), this is the best system of programming a VCR we have so far seen.
The user simply colls up the Teletext programme schedule page, selects the required programme with a cursor and the rest is automatic. If the programme is delayed (or broken with a news bulletin) the VCR will still record it and not the interruptions. It will record every episode
of a series or mini series but it will not record films designated 18 without a security code. In addition to this it puts a title and time on the start of the recording so your tape is easily identified. The system is not "local time" dependent thus eliminating the problem associated with a 24 hour clock. summertime changes. different time zones (on satellite broadcasts) etc.

Channel 4 are already transmitting the necessary Startext codes and others are likely to follow soon. Philips say that the systems is so simple even an adult can program the video.

Oiher developments at Southampton include Teletext for Far Eastern countries where ideographic systems of writing are used i.e. in Chinese: closed captioning for hearing impaired on US television, as required to be fitted to most TVs sold in the USA by 1993: Digital Compact Cassette chip sets: continuing development of chips for NICAM stereo and compact disc. plus HDTV developments with D2-MAC chips etc.
2×220 watt MOSFET AMPLIFIER A top-of-the-range performer that
will satisfy the will satisfy the
most demanding audio enthusiast. It you're looking for an amplifier to power your Subwoofer. SPARKOMATIC is all you'll need! Highly sophisticated MOS-FET technology dramatically extends frequency response, separate input sensitivity controls, built-in protection circuitry for sensitivity controis, buitrin protection Indication, output power: 2×220 watt maximum and 2×110 output power: 2×220 watimaxinum watt mono
watt at 0.1% THD, Bridged 440 wati matt at 0 and 220 watt mono at 0.5% THD.
£164.50 plus £3.50 P\& P

100 watt $\times 4$ CLASS A AMPLIFIER FOR CARS

Delivers 4×100 watt into 4 woofers of with the aid of its built in active cross over delivers 200 watt of Bass via sub-wooter output and 2×100 watt. full range Into 2 speakers; thus giving you all the power you require to make even tratfic jams the power you require to make even traftic jams (4Ω), $2 \times 200 \mathrm{w}$ Bridged, THD $.08 \%$, S/N RATIO: 7 (4 Ω), $2 \times 200 \mathrm{w}$ Bridged. THD $.08 \%$. S/N RATIO: 7
90 db . RESPONSE $10 \mathrm{~Hz}-50 \mathrm{KHz}$ LOW PASS FILTER 90 db . RESPONSE 10 Hz -SOKHz, IN 4 PASS
SWITCHED 75 Hz 150 Hz , INPUT 4 PHONO $100-3$ Volts, INPUT $\times 4$ HIGH LEVEL 2OK Ω, SIZE $240 \mathrm{~mm} x$ $50 \mathrm{~mm} \times 400 \mathrm{~mm}$.

£118.50 postage $£ 4.50$

75 watt $\times 2$ CLASS A AMPLIFIER

 FOR CARSSmall but powerful, high efficlency amplifier, suitable for a number of hidden mounting locations. Easy connection through phono and high level input capability. SPECIFICATION 2×75 watts $4 \Omega, 1 \times 150$ watt Bridged. THD $0.190, \mathrm{~S} / \mathrm{N}$ RATIO: 785 dB , RESPONSE $20 \mathrm{~Hz}-30 \mathrm{KHz}$. INPUTS; $2 \times$ PHONO $100 \mathrm{mV}-3$ VOLT $2 \times$ HIGH LEVEL $2 \times$ 20ks. SIZE $240 \mathrm{~mm} \times 50 \mathrm{~mm} \times 140 \mathrm{~mm}$
£48.50 postage $£ 3.50$

11 BAND COMPONENT GRAPHIC EQUALIZER FOR CARS

This neat unit connects between the line output o your car stereo and your power amplifiers so you are able to adjust the sound as in a studio compensating for soft furnishing and sound reflecthons from glass, also it has a sub-woofer output to drive a separate amplifier for that extra deep bass sound. FEATURES: 2 channel inputs 4 channel outputs via phono sockets. CD input ${ }^{4}$ channel outputs via phono sockels. 3.5 mm jack 11 band graphic. SPECIFICATION RANGE $20 \mathrm{~Hz}-60 \mathrm{KHZ}$ THD 0.05%, S/N RATIO 85 dB .
 EQ FREQUENCIES
$500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}, 16 \mathrm{KHz}$ $500 \mathrm{~Hz}, 750 \mathrm{~Hz}, 1 \mathrm{KHz}, 2 \mathrm{KHz}, 4 \mathrm{KHz}, 8 \mathrm{KHz}, 16 \mathrm{KHz}$
(Boost cut of $\pm 12 \mathrm{~dB}$) SIZE $178 \mathrm{~mm} \times 25 \mathrm{~mm} \times$ (Boost
140 mm .

£32.70 postage $£ 1.80$.

EMINENCE 4Ω PROFESSIONAL USA MADE IN CAR CHASSIS
 SPEAKERS

All units are fitted witt; big magnets "Nomex Voice coils NOT ALUMINIUM, "Nomex" is very light and can stand extremely high temperatures, this mixture makes for high efficlency and long lasting quality of sound.
V6 $61 / 0^{\prime \prime} 200 \mathrm{~W}$ Max Range $50 \mathrm{~Hz}-3 \mathrm{KHz} £ 34.40$ V8 $8^{\prime \prime}$ 300W Max V10 10" 400W Max V12 12" 400W Max VI2 400 Max Range 35 Hz - -KHz E 44.45 BOSS $15^{\prime \prime} .800 \mathrm{~W}$ Max Range $35 \mathrm{~Hz}-4 \mathrm{KHz} £ 79.90$ KING $18^{\prime \prime}$ 1200W Max Range 20Hz-1KHz P.O.A. Postage $\mathbf{£ 3 . 8 5}$ per speaker.

AUDAX JBL 40-100 watt CAR TWEETERS

These state of the art advanced technology, high performance 10 mm dome tweeters are Ferrofluid coded and are active horn-loaded for high dispercoded and are active horn-loaded
slon of sound with very low distortions. Ideal for ston of sound with very low distortions. Id
tuning up your dull sounding in-car system. tuning up your dulm SPECIFICATION IMP4 40 watts at 5 KHz .100 watt at 10 KHz, MAGNET, SIZE $5 \mathrm{~mm} \times 30 \mathrm{~mm}$, VOICE at 10 KHz , MAGNET, SIZE $5 \mathrm{~mm} \times{ }^{\times} 30 \mathrm{~mm}$,
COIL SIZE 10.5 mm EIFFICIENCY 92.8 dB . SIZE $51 \mathrm{~mm} \times 51 \mathrm{~mm} \times 16.5 \mathrm{~mm}$. RECOMMENDED. 5 k 1st ORDER CROSSOVER, VALUE $1.5 \mathrm{ff}-2.2 \mathrm{ut}$ supplied. $\quad \mathbf{~} 7.50$ pair plus 90 p post.

MAIL ORDER £1 BARGAIN PACKS BUY 20 GET 1 FREE Please state pack(s) required

$\begin{array}{ll}\text { No. } \\ \text { BPOISB } & \text { Oty. per pack }\end{array}$
BROISB
BPO17 $33000 \mu \mathrm{~F} 16 \mathrm{~V}$ d.c. electrolytic high quality com $\begin{array}{ll}\text { BPOI9 } & 20 \\ 20 \text { ceramic trimmers }\end{array}$
BPO19 20
BP0
20
Tuning ceramic trimmers
BP021 10 Tuning capacitors, 2 gang die lecric a.m. troe
Push-bulton switches. push on push off. changeover. PC mount
BP023 62 pole 2 wav rotary switch
BP024 22 Right angle. PCB mounting rotary switch, pola, 3 way rotary switch UX made by LOR

BP025
BP026
BP027 304 pole. 2 way fotary switch UK made by LORLIN 30 Mixed control knobs
BP030 Stereo rotary potentiometers
BP032 4 UMF varicap tunei heads. unboxed and untested
JHF varicap tunet heads.
FM stereo decoder modules with diagram UK made by PHILIPS
BP033A $4 \quad 6^{\prime \prime} x^{2}$. ${ }^{\text {High grade Ferrite rod UK made }}$
BP034 3 AM IF modules with diagram PHILIPS UK MADE
BP034A 2 AM.FM tuner head modules. UK made by Mul-
BP034B I Hi-Fi stereo pre-amp module inputs for CD tunet, tape. magnetic cartridge with diagram UK made bY MUL LARD
All metal co-axial aerial plugs
Fuse holders, panel mounting 20 mm trpe
$\begin{array}{lll}\text { BP038 } & 20 & 5 \text { pin din. } 180 \text { chassis socket } \\ \text { BPO39 } & 6 & \text { Double phono sockets. Paxolin mounted }\end{array}$ BP041 $\quad 3 \quad 2.8 \mathrm{~m}$ lenghis of 3 core 5 amp mains flex BPO42 2 Large VU meters JAPAN made
BPO43 $30 \quad 4 \mathrm{~V}$ miniature bultos. wire ended. new untested BPO44 2 Sonotone stereo crystal cartridge with 78 and LP

$\begin{array}{lll}\text { BPOASA } 2 & \text { Mono Casselte Record and play heads } \\ \text { BPO46A } & 206 \text { Mains translormerts. PCB mounting. Size }\end{array}$

BPO47A I 25 V DC 150 mA mains adaptor in black plastic units made for lamous sound mixer manufacture Size $80 \times 55 \times 4$
BP049 10 OC44 transistors. Remove paint from top and it becomes a photo-electric cell (ORP 12). UX made by MULLARD
BPOSO $\quad 30 \quad$ Low signal transistors n.p.n., p.n.p. types BP051 614 watt output transistors. 3 complimentary pairs in TO66 case (lded roplacement for AD16) and 162s)
BP0S2A 1 Tape deck pre-amp IC with record/replay swinching No LM1 818 with diagram
$\begin{array}{lll}\text { BP053 } & 5 \text { watt audio ICs. No TBA800 (ATEZ) } \\ \text { BP054 } & 10 & \text { Motor speed control ICs, as used with most cas. }\end{array}$ BP054 Motor speed controlics, as used w
sette and record player motors Oigital OVM meter I.C. made by PLESSEY as used by THANOAR with diagram 7 segment O. 3 LED display (red) Bridge rectifiers. $1 \mathrm{amp}, 24 \mathrm{~V}$
Assorted carbon resistors MC7818CT IC \& bridge 4 V/A wanstormer. ${ }^{2{ }^{3}}$
6.35 mm Mono jack plugs 6.35 mm stereo swithed jack sockets 12 Coax chassis mount sockets

Postage \& 3 per order

ROADSTAR OF SWITZERLAND. QUALITY 13 cm 40 watt CAR SPEAKERS. Fitted with dual polypropylene cone and foam rubber surround Large 70 mm magnet for good bass and treble response. Supplied complete with grills, flxing screws and cable

OFFER PRICE £11.70 pair

$$
\text { They weigh nearly } 1.5 \mathrm{~kg} \text {. Postage } £ 3.15 \text { each }
$$ 2 pairs for E22 POST PAID UK ONLY UNDER $1 / 2$ PRICE OFFER

AUSTIN ROVER MINI MAYFAIR, 15 watt POD SPEAKERS. Moulded in a black housing for vertical or horizontal use. Fitted with a good mains 10 cm speaker.
£4.95 pair plus $£ 3$ pp or
2 pairs for $£ 10.50$ post paid UK only
BSR STEREO RECORD PLAYER DECK Manual auto operation, 3 speed (78, 45, 333), 240 V opertion unused but store solled
£10.50 ea p\&p £3.75 2 for $£ 18.00$ P\&P £3.75
RADIO AND TV COMPONENTS ACTON LTD
323 EDGWARE ROAD LONDON W2 1BN

Phone 0717238432 or 0819928430

Punched with 6 holes to fit into all personal or ganisers Llated price 19.95 OUR PRICE $\mathbf{8 8 . 9 5}$ plus $\mathbf{7 5 p}$ plep
$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specification. All the components are mounted on the single PCB which is already punched and backprinted.

- 30W $\times 2$ (DIN 4 ohm)
- CD/Aux, tape I, tape II, tuner and phono inputs.
- Separate treble and bass
- Headphone jack

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$
Kit enclosed: case. PCB, all components, scale and knobs
$£ 40.00+£ 3.50 \rho p$
(Featured project in Everyday Electronics. April 1989 issue). Reprint Free with kit

MULTIBAND RADIO
VHF 54-176MHz + AM CB BANDS 1.80 Listen to: AIR TRAFFIC CONTROL $\mathbf{£ 1 7 . 9 5 \text { AlRCRAFT, RADAR, }}$

UBLIC UTILITIES POSTAGE RADIO AMATEURS AND £2.85 MANY MANY MORE SQUELCH CONTROL AERIAL
ROSS PUSH BUTTON RADIO

Mains and battery operated

High quality VHF/FM
Medium and Long Wave reception,
preset stations
oreset stractions.
Fully retractable telescopic
aerial
Headphone/earphone
jack socket.
Size 230H x $150 \mathrm{~W} \times 650$
Ref. RE-5500
Brand new.
Listed price over $\mathbb{5} 30.00$
OFFER E15.00
$+\mathbf{£ 2 . 8 0} p p$

VIDEO SENDER

With this handy unit you can transmit the output of your home video, video camera or satellite equipment over-the-air to a receiving television within a range of 100 ft . Simply connect the video and audio output of your equipment into this unit and a $10-13.8 \mathrm{~V}$ dc power supply extra £ 3.75 size $122 \times 70 \times 21 \mathrm{~mm}$
$\mathrm{f11.50+£2pp}$
VHF RADIO TRANSMITTERS 100 m W mini bug. Buile on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band. $9 V$ DC
$\mathbf{£ 5 . 7 5}+\mathbf{£ 0 . 9 0} \mathrm{pp}$ 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. 12-24V DC
$\mathbf{~} 5.50+\mathbf{C 0 . 7 0} \mathrm{pp}$
25 Watt Transmitter kit. Fully tuneable over the FM band. Kit comprises double sided pcb diagrams and all components, including heat sink Supply voltage $12-18 \mathrm{VDC}$. $\mathbf{~} 67+£ 1 \mathrm{pp}$ Transmitters listed on this page are not licensable in the UK.

SPECIAL OFFER
 DTMF TONE DIALLER

Suitable for remote control
of telephone answering
machines, videos, appliances
 elc. requiring DTMF signals over telephone lines
Prease sda 75p psp when ordering

Please add 2.2% to all our prices due to the increase of the VAT rate to 17.5%

CONSTRUCTORS of last month's Mind Machine will probably have found that the best way to use it is to start at a fairly high frequency, reduce it gradually, then, when the session is drawing to a close, slowly bring it back up. The snag with doing this manually is that it requires concentration which, however small, prevents the user really "letting go" and enjoying the deep relaxation the instrument can induce.
A fixed frequency could be used, but the brain appears to adapt to steady stimulation, reducing the effect. A programmable controller for the Mind Machine is therefore a highly desirable addition to this project.

PROGAAMMING

When the programming part of the design was first tackled it seemed simple, which just proves how wrong one can be! The idea at least is uncomplicated. The existing "Frequency" control is used to program the desired frequency pattern over about thirty seconds, then this is replayed over fifteen, thirty or forty-five minutes. The circuit has only to store the control sequence and reproduce it at the slower speed.
It soon became clear that the best method would be conversion of the control voltage to
a stream of 8 -bit digital words for storage in a RAM. These would then be read back at the slower rate and restored to the voltage.
The block diagram of Fig. 1. shows that the system consists of an analogue-to-digital (A/D) converter, the RAM, and a digital-toanalogue (D / A) converter for the output. A "clock" oscillator motivates it, an "address generator" tells the RAM where to store the bits, some switching and timing controls it all and a counter halts it when the sequence is complete. For anyone who hasn't actually designed this sort of circuit however, life is full of exciting surprises!

STORAGE

The 6264 CMOS RAM was chosen for storage. With a capacity of just over eight thousand 8 -bit words and a micropower standby mode, it seemed ideal. The first pitfall was that when "enabled" for data transfer, it proved quite thirsty.
It must be given a valid address, "selected" briefly and written to or read from, then returned to the standby state to conserve power. The current eight bits of data must therefore be copied into an eight-bit latch before conversion to analogue.

Fig. 1. Block diagram of the programming system for the Mind Machine.

The \mathbf{A} / \mathbf{D} and \bar{D} / \mathbf{A} converters, chosen for their low operating current, are both intended for use with microprocessors and have connections that must be tied high or low to achieve the desired operation. Like the RAM they must be told when to perform their functions, and their inputs must be valid before this happens, leading to some fairly complex timing circuitry.
Finally, the analogue output from the D/A chip is a current, not a voltage, which should flow into negative supply potential. To convert this to the original voltage requires an op-amp able to operate below negative supply, so an extra, lower voltage negative supply rail is needed.

CIFCUIT
 DESCRIPTION

The full circuit of the Mind Machine Programmer appears in Fig. 2. Starting with the "clock", this is constructed from internal oscillator gates in IC4, a CMOS 4060B. Switches Sla and S1b determine the final output frequency by selecting the appropriate oscillator speod and division ratio.
This is further divided by four in the 4024 B divider IC6, the final "clock" appearing at pin 11 of this chip. The frequencies here are approximately 270 Hz for the $30-$ second programming sequence; 9.1 Hz for a fifteen minute session; 4.6 Hz for thirty minutes, and 3 Hz for forty-five minutes.
Moving to the address generator, the RAM address bus has thirteen bits, the first of these being taken from the next stage of IC6 at pin 9. This is also applied to the input of the twelve-stage divider IC7, a 4040 B , which generates the remaining twelve address bits.

COMPONENTS

PROGRAMMER

Resistors

R, R2, R7, R8, R17
R3
100k (5 off)
220k
R4, R5
22k (2 off)
R6, R10, R15, R18
10k (4 off)
R9, R16
1k (2 off)
R11, R12, R13, R14 $\quad 120 \mathrm{k}$ (4 off)
R19, R20, R21
47k (3 off)
All 0.6W 1\% metal film

Capacitors

C1, C4, C7, C9, C15, C16
C2
C3
C5. C11, C12, C17
C6, C8.
C10
C13
C14
C18, C21
C19
C20
C22. C24
C23
Semiconductors
D1, D2, D3, D4, D5, D6
TR1
IC1
IC2
IC3. IC9, IC10
IC4
IC5
IC6
IC7
IC8
IC11
IC12
${ }^{1} \mathrm{C} 13$
100 n ceramic disc, 50 V (6 off)
100μ radial elect., 25 V
10 n miniature polyester layer
10μ radial elect. 50 V (4 off)
100μ radial elect., 10 V (2 off)
$2 \mu 2$ radial elect., 50 V
470p polystyrene
1 n polystyrene
100 p ceramic plate (2 off)
470p ceramic plate

in ceramic plate
100 n miniature polyester layer (2 off)
150 p ceramic plate

1 N4148 signal diode (6 off)
BC1 84 npn silicon transistor
LP2951CN +5V micropower voltage regulator
ICL7660 negative voltage converter
4093B, CMOS quad Schmitt NAND gate (3 off)
4060B CMOS 14 -stage counter. with internal oscillator
4011 B CMOS quad NAND gate
4024B CMOS 7 -stage counter
4040B CMOS 12 -stage counter
4082B CMOS dual 4 -input AND gate
TL064C low power quad op-amp
ADC0804LCN 8-bit A/D converter
626464 K CMOS static RAM
IC14
DAC0832LCN 8-bit double buffered D/A converter
Miscellaneous
S1
3-pole 4-way rotary switch
Miniature push-to-make, release-to-break, pushbutton switch

S3

Miniature s.p.d.t. toggle switch
PBN2720 piezoelectric transducer element, with leads Printed circuit board, available from EE PCB Service, code EE780; 8-pin d.i.l. socket (2 off): 14-pin di.i.l socket (7 off); 16 -pin d.i.l. socket (2 off); 20 -pin di.l. socket (2 off): 28 -pin d.i.l. socket; AAA alkaline cells (3 off); ribbon cable, connecting wire; solder etc.

	CHARGER
Resistors	
R1	12
R2	10k
Both 0.6W 1\% metal film	
Capacitors	
C1	470μ radial elect., 25 V
Semiconductors	
D1, D2, D3	1 N 40071 A 1000 V rect. diode (3 off)
TR1	BC214L pnp silicon transistor
TR2	BFX30 pnp silicon transistor

Miscellaneous

T1
Mains transformer, 240 V primary:
15V-OV-15V 100 mA secondary
Stripboard 0.1 in . matrix, size 10 strips $\times 20$ holes; miniature 240 V mains chassis mounting plug and "free" socket; plastic bracket for mounting stripboard; mains rated wire; connecting wire etc.

These thirteen bits are applied directly to the RAM, IC13. The last seven also go to IC8, a 4082 B dual 4 -input AND gate. When the output of this goes high, after 8128 cycles. it stops the clock by taking IC4's (pin 12) "reset" input high. When the output of IC8 goes high it also turns on transistor TRI to indicate the end of the sequence to the user. Resistor R16 is connected to the top of the Brilliance control, VRI of the "sound/light board", so that when TRI is biased on, it dims the glasses.
Pressing the Reset switch S2 takes the "resets" of IC4, IC6 and IC7 high, resetting the whole counter. When the circuit is switched on, capacitor C 17 resets it as though switch S 2 had been operated.
The output from switch SIc is normally pulled low by resistor R6 except when set to "Program", which connects it to +5 volts. This enables the circuit to read a sequence into the RAM and activate the circuit around IC5, which generates one-second "bleeps" during programming. There are exactly thirty-one bleeps, counting them helps the user to time the program pattern as it is entered.

PULSE CONTROL

The timers and gating built with IC9 and IC10 determine whether data is "written" or "read" to IC13, by providing the appropriate sequence of control pulses to $\mathrm{IC12}, \mathrm{IC13}$ and IC14. The address increments each time IC6 pin 11 goes low, whilst control pulses are produced as it goes high, so there is always a valid address when control pulses appear.
Each time the clock goes high, the RAM is activated by a $100 \mu \mathrm{~S}$ pulse from IC9c to it's "chip enable" input, pin 20 . If switch SIc is in the "Program" position, a $10 \mu \mathrm{~S}$ pulse from IC9a causes A/D converter IC12 to start a conversion. At the same time IC12's outputs are enabled by a $100 \mu \mathrm{~S}$ pulse from IClOc, so the data resulting from the conversion appears at them.
Note that IC9a and ICl0c are both enabled by the positive signal from switch Slc. In "replay" positions this signal is "low" so input conversion does not take place and IC12's outputs are effectively open circuit.
The analogue input at resistor R17 is buffered by IC1 la before going to IC12. Manual or "Direct" operation is possible through switch S3, which transfers this buffered input directly to the output, bypassing the digital process.

A delay of about $45 \mu \mathrm{~S}$ is produced by IC9b, following which IClOb, also enabled by switch SIc, sends a $10 \mu \mathrm{~S}$ pulse to the "write enable" (pin 27) of RAM IC13. This
causes it to read the data from IC12 into the current address.
A similar pulse from IC10a is sent to the WRI pin (2) of the D/A converter IC14, causing it to copy data at it's input to internal latches, where it is converted to a current at "Iout", pin II. IC9d inverts the signal from SIc and so inhibits ICIOd, preventing an "output enable" signal going to the RAM.
The D/A converter IC14 contains an internal chain of switchable resistors, fed from a reference voltage, with a feedback resistor for use in an inverting op-amp circuit. The designer has to supply the op-amp, in this case IClIc, and the output of this is inverted and restored to the original value by IClId.
The reference for the resistor chain is 2.5 V in this design. Conveniently, this appears at pin 9 of IC12, derived from the 5 volt supply rail. Not so conveniently, the input to ICl4 has a low impedance, so it is buffered by ICllb.
During "replay", the signal from Slc is low, disabling IC9a and IC1Oc, so IC12 does nothing. IClod is now enabled, however. As the clock goes positive and the RAM is activated, IClod tells it to output data from the current address.
As before, a delayed $10 \mu \mathrm{~S}$ pulse from ICl0a initiates copying of data to the internal latches of IC14 for analogue conversion. When the RAM enabling pulses end and it's outputs go open-circuit, the data remains in 1 Cl 4 's latches and the analogue output remains valid. The timing for all this is shown in the diagram of Fig. 3.

VOLTAGE REGULATION

Voltage regulation for the circuit, shown in Fig. 4, is on the same board. Raw battery +12 V is decoupled by capacitors Cl and C 2 . and supplied to $\mathrm{ICl1}$ and $\mathrm{ICl4}$. ICl provides regulated +5 V through diode D1 for everything else except the RAM, which is powered through diode D2.

Placing diode D1 between the output pin 1 and sense pin 2 of ICl causes automatic compensation for the drop across this diode and D2. When the power is off, the +4.5 V backup battery supplies the RAM through diode D3 to retain the program, with diode D2 isolating it from the rest of the circuit.

The error output, at ICl pin 5 , is normally

high but goes low if the output falls by five per cent. It needs a pull-up resistor, in this case RI.
When the circuit is switched on and this output indicates a healthy supply, resistor R2 and capacitor C10 introduce a brief delay before the RAM can be activated. When it is switched off, the RAM is disabled immediately.
This arrangement prevents it being enabled and connected to other parts of the circuit whilst they are in "non-valid" states.

Finally, as ICllc's output must be able to swing below negative rail, an auxiliary -5 V supply for ICII is generated by the converter IC2.

CONETRUCTION

The Programmer and Supply Regulator circuits are both built up on the same printed circuit board (p.c.b.). This board is available from the $E E P C B$ Service, code EE780.

The printed circuit board component lay-
 earth "point can be seen on the right.

Fig. 5. Printed circuit board component layout and full size copper foil master pattern.
out and full-size copper foil master pattern is shown in Fig. 5. Construction of the board should follow the usual procedure of fitting components in height order, the lowest first for greatest case.
To reduce cost a single-sided p.c.b. is used, a drawback to this being that thirteen links are necessary. Additionally the six points marked in pairs as WE OE and OEI must be linked together with insulated wire. The route of these three wires can be seen from the photographs.
The small ceramic capacitors tend to crack easily so their leads should be handled with care. Sockets should be used for all the i.c.s, none of which should be inserted until testing is commenced. A 27 mm piezo transducer, WD1, is glued to the p.c.b. with a spot of Araldite adhesive and connected by two short leads.

Note that transistor TR1 is a BC184, not a BC184"L" as used in the Light/Sound board (last month). Same transistor, different lead arrangement. If only a BC184L is available, the leads can be bent to allow it's use.

TEETING

Testing is commenced by powering up without any i.c.s fitted. After a brief surge as the electrolytics charge, there should be no further supply drain. The supply should be switched off and the electrolytics should be discharged with a resistor across the supply connections, a one kilohm (1k) will do nicely.
The +V regulator ICl should now be fitted and the circuit powered again. Note that most of the i.c.s on this board are CMOS types, so appropriate precautions against static damage should be taken. The
supply current should now be about $140 \mu \mathrm{~A}$, and the regulated +5 V should be present across decoupling capacitors $\mathrm{C8}$ and C 6 .
Next, the -5 V converter IC2 can be fitted, and when powered the presence of -5V across capacitor C12 chocked. The drain current should now be around $200 \mu \mathrm{~A}$. If this is OK, the regulation is operational and testing of the rest of the circuit can proceed.

CLOCK

Starting with the clock IC4, this won't run unless it's "reset" line is low so a 10 k resistor should be inserted across pin 1 and pin 7 of IC8's socket to do this. Then IC4 can be fitted and the circuit powered. There is no need to make connections to any of switch Sl points yet. If the oscillator is running, pin 3 of IC4 will be clocking at about 1 Hz , easily chocked with a meter.
Following this the bleep generator IC5 can be fitted. Switch Slc connection points " C " and "D" on the p.c.b. (soe Fig. 6.) should be linked together to put the circuit into Program mode, which will produce bleeping from the transducer at about 1 Hz when power is applied. The supply drain ought now to be around lmA.

Switch SIb connection points E and G can now be linked, effectively selecting the 30 Minute position. The circuit will continue to bleep, because C and D are still connected.

If divider IC6 is now fitted, pin 6 should clock at about 1 Hz , in time with the bleeps. This proves correct operation so far, so address generator IC7 can be fitted. Pin 9 of this should clock at about 1 Hz , and pin 7 at about 0.5 Hz . If $s 0$, this $t 00$ is working, $s 0$ the "end of run" detector IC8 can be fitted,
following removal of the 10 k resistor from it's socket.

At the connections for $S 1 \mathrm{~b}$, points E and F should now be linked to select a ThirtySecond run time. On power-up, an automatic "reset" should be effected by capacitor C17, so the circuit should bleep thirty-one times and then stop.
Momentarily shorting S2 connection points I and J should cause the sequence to repeat. If so, the clock and address generator sections are working correctly.

pulse generators

Control pulse generators IC9 and IC10 can now be fitted. With the circuit bleeping, check the apparent voltage at IC12 socket pin 2 and pin 3, 1C13 socket pins 20,22 and 27 , and IC14 socket pin 2. All of these should show +5 V . If an oscilloscope is available it may be ppssible to see negative pulses on all but IC13 pin 22, although these are very short and may be difficult to resolve.

If the link across Sic points C and D is now rtimoved, the circuit will still run for about thirty seconds, but will not bleep as it is effectively executing a thirty-second "replay" sequence. A check should be made whilst it is running that the above points are still positive. A 'scope may be used to look for negative pulses on all except IC12 pins 2 and 3, and IC13 pin 27.
The RAM power-up controller IC3 should be inserted and pin 26 of IC13's socket monitored whilst turning on the 12 V supply. There should be a small but visible delay before this point goes high when the circuit is switched on.

A/D-D/A CONVERTERE

With power supplies, clock, address generator and control pulses all running, at last the interesting part has been reached! The A/D converter IC12 can be inserted. Pin 19 is an interna "clock" output and should have an ave.. ge d.c. level of about 2.5 V . It may be checked with a 'scope, it runs at about 350 kHz .
Reference output pin 9 should be at 2.5 V d.c. The supply current should by now be 2.5 mA to 3.0 mA .

Next, ICII, the TL064 quad op. amp, should be fitted. The circuit input, point Q, should be connected to "ground" (negative rail). This ought to result in OV at ICII pin 14, the input buffer. Pin one should be at 2.5 V , and the total supply current should be about 4.1 mA .
The D/A converter IC14 can be inserted next, and Sle points C and D shorted again to put the circuit into Program mode. Whilst the circuit is running (and bleeping), the output, from point R, should equal the input, since data conversion and transfer between the A / D and D / A chips should be taking place.
If a ten kilohm linear potentiometer is connected across the 5 V supply (across capacitor C8) and the wiper (centre tag) taken to the input, a meter will show the output tracking the input during the programming period. When the sequence ends, the output should remain at it's final value.

RAMCHECK

Finally, the RAM chip IC13 can be fitted. A programming sequence should be executed with a varying voltage applied to the input, then the short across SIc connections removed, and the sequence triggered again by linking S2's connections briefly.

The programmer board "stacked" above the Lights/Sound p.c.b.

This should result in a replay of the voltage pattern just entered, this time obtained from the RAM. It will run for only thirty seconds of course, since for testing this period is still selected at S 1 b's connections.
This completes the board checks, so it can now be fitted to the Mind Machine project for fully automated operation. The total supply current taken by this board when running should be about 5.0 mA .

ASSEMELY

The Programmer board fits above the existing Mind Machine Lights/Sound board,

Fig. 6. Interwiring from the circuit board to off-board components.
on the four screws projecting from the chassis plate. It faces the opposite way to the Sound/Lights board, all the i.c.s pointing away from the front panel.
The board is longer than the first board, one end projecting beyond the mounting. The back-up battery "pack" fits beneath this projection.
Connection into the Mind Machine project is straightforward. The trickiest part is the bunch of wires connecting switch S1, but with some ribbon cable to keep things neat this shouldn't cause any real difficulties. All connections are shown in Fig. 6.
The lead from the wiper of Frequency control VR4 is disconnected from the original p.c.b. and taken instead to the input, point Q, of the Programmer board. A s.p.d.t. S3 switch selects Programmed (point R) or Direct (point N) output from the programmer and feeds it to the original board's input. $\mathbf{S} 2$ is a miniature press-tomake switch for program restarting.
The +12 V supply is taken from the existing on-off switch to point S on the board, whilst negative, point T, is connected to the common "Earth" on the chassis. The backup battery consists of three alkaline AAA cells, taped and soldered together to make a 4.5 V pack and fastened to the chassis with cable ties. This semipermanent installation is fine since they should last virtually for their shelf life, a couple of years at least.
The "end of run" output, point M, is soldered to the existing lead on the top end of Brilliance control VR1. When transistor TRI turns on it reduces the voltage across this potentiometer to about a tenth of it's normal value, causing marked dimming of the lights.

RELAX

In normal use, switch S 1 is set to Program, S3 to Programmed, and the Reset button S2 pressed. Programming begins as soon as it is released, and the desired pattern is entered with the frequency control, the bleeps being counted so that the point in the program is known. The author normally starts at about 14 Hz , falling to 7 Hz to 8 Hz over the first two or three bleeps, holding this briefly, then dropping slowly to 4 Hz , then back up to

Rear view (above) of components mounted on the front panal and (below) front panel lettering on the completed unit.

General layout of components inside the Mind Machine.
about 7 Hz , with some brief (one-bleep) excursions to 12 Hz , then over the last two or three bleeps returning smoothly to 14 Hz 16 Hz .
Following program entry, S 频 set to 15,30 or 45 minutes and S2 pressed to repeat the sequence over this period. It is possible to relax far more deeply with the automatic control sequence, in fact it is all too easy to fall asleep as detee frequencies are approached! This doesn't seem to detract from the beneficial effects, though.
Once a satisfactory program pattern has been found, it can be used repeatedly. There is no need to reprogram as it will be retained in the RAM when the machine is switched off. On power-up a "reset" is performed automatically, so it is only necessary to don glasses and phones and switch on to enjoy a session.
Switch S3 permits manual frequency control, though if the sequence has ended the lights will be dimmed. This is easily overcome by pressing Reset.

EUILT-INCHARGEA

The project can be powered by ordinary batteries. However, to save case dismantling for battery changes, the prototype is fitted with Ni-Cads and a built-in charger.
This is a simple transformer, rectifier and constant-current arrangement connected permanently to the battery pack. A miniature three-pin chassis plug mounted on the case rear panel accepts mains input to the charger.
The charger circuit diagram is shown in Fig. 7. The mains transformer TI has a $15 \mathrm{~V}-0 \mathrm{~V}-15 \mathrm{~V}$ secondary winding, with the output rectified by diodes D1 and D2 and smoothed by capacitor C1. Transistors TR1 and TR2 form a simple constant-current circuit, the output from this going to the battery pack through diode D3 to prevent any "back-feeding" when it is not operating.
This little circuit was assembled on a scrap of 0.1 in . stripboard. The breaks in the underside copper strips and the topside component layout appear in Fig. 8.
Transistor TR2 may warm up a little in use so a clip-on heatsink should be fitted. Testing is simple, just check that a voltage appears across capacitor Cl when the transformer is powered and that the output into the batteries is around $50 \mathrm{~mA}-60 \mathrm{~mA}$.
There is just room inside the case for the transformer and board behind the p.c.b.s.s, alongside the battery pack, as can be seen in the photographs. The board is mounted vertically on a bracket cut from a piece of plastic.
The mains Earth is connected to the chassis plate, and all connections to the rear of the plug are sleeved for safety. The wiring for this part of the project is shown in Fig. 9. The Mind Machine can be used whilst on charge, although the batteries must be connected.

Fig. 7 (laft). Circuit diagram for the internal charger.

Fig. 8 (below). Charger stripboard component lavout and details of underside breaks in copper strips.

Fig. 9 (below left). Interwiring of the charger components.

내ำ

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the apportunity to build the very best engineered hill equipment there is, designed by
the leaders in their field, using the dest components that the leaders in
are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, glving you guid hands-on experience of modern electronsc techniques.
In short HART is your friend in the trade' giving you in short Hart is your friond in the trade ghing you, as a lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to bulld your own equipment the
HART way. The FULL cost can be credited against your HART way. The FULL co
subsequent kit purchase.
subsequent kit purchase.
Our fist will give you fuller details of all our Audio Kits, components and special others.

AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your
ultimate hiff system. This kit is your way to get EK perfor. ultimate hifi system. This kit is your way to get EK pertorcover of Electronics Today International' this complete stereo power amplifier others World Class pertormance allied to the famous HART quality and ease of construc. tion. John Linsley Hood's comments on seeing a complete init were onthusiastic:- The external view is that of a aroroughly professional piece of audio gear, neat elegan and lunctional. This impression is greatly reinforced by the internal appearance, which is redolent of quality, both In components and in layout. Options include a stereo switched inputs using ALPS precision, low-noise volume and balance controls. A new relay switched tront end option also gives a tape input and output facility so that for use with tuners, tape and CD players, or indeed any other Hat' inputs the power amplifier may be used on its own. without the need for any external signal handling stages. 'Slave' and "monobloc versions without the passive input stage and power meter are also available. All verstons if within Series Tuner range. ALL six power supply rails are fully stabilised, and the complete power supply, using a toroidai transtormer, is contained within a heavy gauge atuminium chassis/heatsink timed with IEC mains input and output sockets All the clrculiry is on protessional grade printed circuit boards with roller tinned finish and green solder resist on the component ident side. the power amplifiers teature an advanced double sided layout for maximum periormance. All wiring in this klt is pre- terminated, ready or instant usel.
RLH11 Reprints of latest articles...
COMPUTER CORNER

The following are a selection of our new range of VEAV compet

 tively pricad. High Ouality, Computer systoms. Due to our longexperience of importing we have the necesiany contects in the Far Ease so buy ol very edvanlogeous pricee and can pase the
tevings on to you. All hard disc mechines ordered with DOS are thily tormamed and robdy 10 usp. hulily formaned and roedy 10 use.
HA RT MODEL AT -28e cheap enough to use as the lastest wordprocessor in the west! Only a few years ago the AT-286 machine was the lastest standard office computer known. Now we can other the supertast 16 MHz version (earher ones were only 10 or
12MHz) at such an incredibly 12 MHz) at such an incredibly
low price that it can be used in any office or home. Not only thal but ours comes with ultrafast memory so that the machine can fun in 'zero wait state
Full 1MB of memory (Ex-
 Full 1MB of memory (EX-
key UK keyboard, compact desktop case, 1.2MB 5% "High Density Disk Drive and intertace card for extra drive, Graphics/Printer Card, bullt in Hard Disk intertace. HART AT $=286 / 16 \mathrm{WP}$.
14" FST Hercules monitor. Amber . ONLY C277.25 14" Paper White Hercu er..... T/S Base) 40MB AT-236/164G Mard Diar Comma Specification as above but with 45 MB 25 ms hard disk, VG Colour Graphics Cara with 512 K RAM, parallel printer port? serial ports. 1 game port ..23.50 14' VGA Mono Monitor, Amber $£ 86.70$ Paper white $c 89$

Send or phone for your copy of our List (50p) ot these and
cust or phone for your copy of our List (50p) of mese and many other Kits \& Components. Enquifies customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surtace post, or 5 for Airmail.
Ordering is easy. Just write, telephone or fax your fequirements to sample the friendiy and efficient HAR
service. Payment by cheque, cash or credit card. A telephoned or laxed order with your cred|t card number will get your order on its way to you THAT DAY.
please add part cost of carriage and insur.
 Orde onlvent by courler) OVERSEAS - Piente sen they.

MANUFACTURERS OF QUALITY
24 hr . SALES LINE
(0691) 652894
requirements, at NO extra cost!. Simply select the options you equire. If replacing ary item in the standard specification for
hat model then deduct the cost of the parr not needed.

MS OOS 51 atest Peiense Full version
RDOS 6 (atest Release. Full version. 3.5" or 5.25

SM1421 AM TU Hercules Mono with FST Tube and SLand,
Arnber... SM1421 PW TU As Above but Paper White Screen_........
SM1416A VGA Mono Monitor c/w lith and swivel stand. SM1416
Amber.... f89
SM148S-00 Super VGA Mulisync Colour Monitor. -28" oot onch, 50 MHz Bandwith, up to $1024 \times 768, \mathrm{c} / \mathrm{w}$ stand..........c23 KEYBOARDS
K261 102 Key Enhanced UK Layout. Tactile Click. AT/XT Switchable with dual stope leet (Standard Keyboard suppli
with systems),31
535
54

T Super t/OCard 2 aFDD IaPE 2 Serial. 1 Parallel 1 Game Ports.. Hercules Mono Graphic \& Printer card70 16-Bit vga Caro. 256K
Trident 8900 VGA Card. 512 K ... £ 46.50
. 67.30
Trident 8900 VGA Card with 1Mb... . 586.90
25"1 1 2Mb Fioppy f49
3.5" 1.44 Mb Floppy Diak Drive

Adapter to fit 3.5 drive in 5.25 sid. CIW power adapter
45 MB 25 ms Haro Disk Drive
52M8 Quantum Hard Disk Lightning Fast 9ms Access

CASES

WE 611P Desktop Case, Flip Top, 200W PS
.556 .40
amazing 9 millisecond access time hard diak 2MB SIMM RAM. Compact Tower Case, VGA 1024×768 card with 512 K RAM, uppradeable to 1 MB ol Video memory. . ONLY cas3 10
40 MB AT-386/20SX UG...................................
OPTIONAL EXTRAS
WE727P Mini Tower Case, 200W PSU.
108MP Mini Tower Case, Compact Style
MOTMERBOARDS
AT-206/16 OK.RAM
AT-306-16SX OK.RAM \cdots.

AT-306-205X OK RAM
PLEASE NOTE THAT ALL ITEMS IN THIS SECTION ARE PRICED EX VAT.

Robert Penfold

N LAST month's Interface article a simple eight bit Analogue to Digital Converter was described, together with a simple temperature sensor. This month we continue on the same theme, with an improved temperature sensor circuit. This provides greater resolution and a wider temperature range.

SIGNAL PROCESSING

The main problem with the basic design described last month is that it provides a resolution of only one degree Centigrade. Over a temperature range of 0 to 100 or 110 degrees, it is actually possible to obtain a much more useful resolution of 0.5 degrees using an 8 -bit converter.

A second problem with the original design is that it lacks accuracy at low temperatures. This is partially due to limitations of the temperature sensor, and partially due to problems in removing the slight zero offset of the converter.

The circuit diagram for the Improved Temperature Sensor is shown in Fig. 1. Like the original circuit, this is based on the LM35DZ temperature sensor (IC1), which is usable over a 0 to 100 degree Centigrade temperature range. If the more expensive LM 35 CZ is used, the upper end of the range is extended to 110 degrees Centigrade.

The LM35 provides an output voltage that is equal to 10 millivolts per degree Centigrade, with no d.c. offset. This matches the 10 millivolt resolution of the Analogue to Digital Converter (last month), giving the one degree resolu-
tion. Simply amplifying the output from the LM35 by a factor of two boosts the output voltage to 20 millivolts per degree, and gives 0.5 degree resolution. With a maximum temperature of 100 or 110 degrees Centigrade, this gives a maximum output potential of 2.0 or 2.2 volts, which is still within the 2.56 volt maximum of the converter.

CIRCUIT

Component IC2 is a simple non-inverting amplifier which is d.c. coupled and has a voltage gain of two times. Its gain must be set very precisely at this figure in order to obtain accurate results. The gain has therefore been made adjustable, and VR2 is used to trim it to precisely the correct figure.
Potentiometer VR1 is an offset null control. Conventionally an offset null control is used to compensate for offset voltages in the operational amplifier's biasing. It will do so in this case, but it can also be used to compensate for any slight offsets in the analogue to digital converter, or in the temperature sensor.
Note that the output of this circuit must connect directly to the analogue input terminal of the ZN 448 E in the converter circuit. The input attenuator and zero adjustment circuits of the converter should be omitted.

SOFTWARE

Taking readings from the interface is achieved in much the same way as for the original temperature interface. First out-
put a dummy value to in/out address 768 in order to initiate a reading. After a delay of at least nine microseconds, the converter is read at input/output address 768. Simply divide the returned values by two in order to convert them into readings in degrees Centigrade.
I have assumed here that the converter is at the base address of the thirty two address "prototype card" block. If the unit is placed elsewhere in the input/output map, then obviously the appropriate address must be used instead of address 768.
The accompanying Listing. 1 is for a program that takes readings at one second intervals. It displays the current temperature on the screen, together with maximum and minimum readings.
This program is useful for testing and calibration purposes, as well as for use when utilizing the system for temperature monitoring. It is suitable for the Quick BASIC compiler, or the QBASIC interpreter supplied with MS/DOS 5.0. It might work with other PC BASICs, but if not it should certainly be quite easy to convert it to work with other PC BASICs.

CALIBRATION

The original temperature interface circuit does not require any calibration, but it does not exactly offer the ultimate in accuracy. This version can provide much better accuracy, but only if it is calibrated accurately.
Calibration requires two accurate temperatures, and one of these can be iced water at 0 degrees Centigrade. The other

Fig. 1. Circuit diagram for the Improved Temperature Sensor Interface.

```
SCREEN 0
WIDTH 40, 25
CLS }
Tmax = 0
Tmin = 127
f% = "&&&.&&"
                                    Listing One:
                                    Temperature
                                    Reading
LOCatB 8, 6
PRINT "Temp."
LOCATE 8, }1
PRINT "Max"
LOCATB 8, 31
PRINT "Min"
locate 15, 1
PRINT "Press SPACE BAR to exit"
WHILE INKBY: <>" "
    OUT 768, O
    SLEEP 1
    Tnow = INP(768) / 2
    IF Tnow > Tmax THBN Tmax = Tnow
    If Tnow < Tmin THBN Tmin = Tnow
    locate 10, 5
    PRINT USING 18; Tnow
    LOCATE 10, 17
    PRINT USING fs; Tmax
    lOCaTE 10, 30
    PRINT USING ps; Tmin
WEND
```

temperature must be much higher, and this could be water at about 50 degrees Centigrade or so. A good quality thermometer should be used to accurately monitor the precise temperature of the water.
The calibration process is very straightforward. Start with both VR1 and VR2 set at roughly the centres of their adjustment ranges. Place IC1 in the iced water and adjust VR1 for a reading of zero. Next place ICI in the hot water, and adjust VR2 for the correct reading. Repeat this procedure a few times until no further adjustment is necessary. The unit should then work with good accuracy over the full temperature range.
When calibrating and using the unit, bear in mind that IC1 should not be directly immersed in liquids. It must be mounted inside a container of some kind, such as a small test-tube, so that no liquid comes into contact with its leadout wires.
It is a good idea to use some silicon grease to give a good thermal contact between the container and IC1. Even so, the response time will not be particularly fast. It will take the sensor several seconds to respond to large and rapid changes in temperature. Be careful to allow sufficient adjustment time when calibrating the unit.

NEGATIVE TEMPERATURES

The LM35CZ can handle negative temperatures down to -40 degrees Centigrade. Unfortunately, these negative temperatures provide negative output voltages which the converter can not handle. One way around this difficulty is to use VR1 to provide an offset, so that the output voltage from IC2 is always positive.
For example, suppose that the unit must measure temperatures down to -10 degrees Centigrade. With IC1 at this temperature, VR1 would be adjusted for a reading of zero. With IC1 then set at the higher calibration temperature, VR2 would be adjusted for a reading ten degrees higher than the actual calibration temperature.
In order to obtain readings in degrees Centigrade, the software would first
have to divide readings by two, and then deduct ten to compensate for the deliberate offset. This would give a usable temperature range of -10 to -110 degrees Centigrade.
Some initial experiments would suggest that a 10 degree offset can be handled with no significant degradation in accuracy. This might not be the case with the full 40 degree offset needed to read down to the -40 degree minimum of the LM35CZ.
However, if you need to read down to such low temperatures it might be worthwhile experimenting along these lines. VR1 certainly seems to be able to handle a 40 millivolt input offset. Of course, if the unit is made to read right down to -40 degrees, you have to accept some loss of coverage at the other end of the range. The maximum input voltage of the converter would be reached at a temperature of 87.5 degrees.
There is plenty of scope for experimentation with a unit of this type. With suitable software you can do such things as monitoring heating systems, the outside temperature, etc. Most PCs have good graphics capability these days, and it should not be too difficult to produce software to log readings and then display them as graphs.

PC INCOMPATIBILITIES

There are hundreds of different PC expansion cards, monitors, etc. currently available, and with a few provisos, they should all work perfectly well together. In reality there seems to be the occasional problem, which 1 suppose is inevitable with so many products being produced by so many different companies around the world. This means that you need to be a little careful when buying PC hardware.
Possibly I have been unlucky, but I have encountered numerous PC compatibility problems over the last few years. The worst case was a 12 MHz AT motherboard which only seemed to work with about one-in-two expansion cards! With some swapping around of cards between various computers 1 did eventually managed to produce a complete
computer based on this motherboard, but why did some cards refuse to work with it while others were fine?
More recently I have had problems with non-Intel maths co-processors which worked in some computers but not in others, and a monitor which worked with some VGA cards in all modes, but refused to respond to others when used in the 800×600 super VGA mode.

In the case of the monitor the problem seemed to be due to differences in the scan rates of VGA cards. The super VGA modes are not properly standardised, and this clearly leaves room for incompatibility problems. Many VGA cards now have a configuration switch which enables you to select between two sets of scanning frequencies. A lower set than any super VGA monitor should be able to handle, and a higher one for "flicker-free" viewing on suitable monitors.

The expansion card problem and (possibly) the co-processor one seems to be something more fundamental. Modern motherboards and expansion cards are largely devoid of TTL chips, and instead use a variety of LSI chip technologies. This seems to result in occasional conflicts where two sets of chips do not agree about what constitutes valid logic 0 and logic 1 voltages. This usually results in the computer completely hanging up, or crashing soon after switch-on.

There also seems to be problems with drive currents, with some chips simply not having sufficiently powerful outputs. This factor seems to be responsible for some computers being unable to drive some printers via their parallel ports.

It would seem to be a good idea, where possible, to check that PC hardware will work properly with your system before handing over any money. Alternatively, make sure that you can return the equipment for a refund if there are any incompatibility problems.

> Next month: We will continue with PC interfacing, and the subject of digital to analogue converters will be covered.

\footnotetext{
E
E
W
O
R
D
S
E
A
R
C
H

Special Series MAGNETIC RECORDING Part 4: HEAD DRIVE CIRCUITS

VIVIAN CAPEL

TMAY may seem that all we need to do to make a magnetic recording on tape is to connect a recording head to an amplifier and a biasing system, and pass the tape at uniform speed across it. As may be expected, there is rathet more to it than that.
Our first consideration is that of head impedance, it should be of the optimum for the required function. Just as with the magnetic characteristics we discussed last month, the electrical requirements for the recording and playback heads are quite different.

The strength of a magnetic field produced by a coil is proportional to the current flowing through it rather than the voltage across it. So we must be able to drive adequate signal and bias currents through the head in order to make a good recording. As high impedances limit the amount of current that could pass, it follows that the head winding should be of low impedance.

In the case of the playback head, it is necessary to generate as high a voltage as possible from the flux on the tape, in order that a large signal voltage is presented to the first stage and a high signal/noise ratio thus be obtained. This requires a large number of turns on the coil, which gives it a high impedance.

So, a low impedance is best for the recording head whereas a high impedance is desirable for playback. No problem here as long as separate heads are used, but with a single record/playback head, impedance must be a compromise.

EWITCHINE

When a single head is used it must be switched from the record to the playback amplifier and back again, which can be done with a single-pole two-way switch. An obvious way of connecting it is having one side of the winding connected to the chassis, and the other switched either to the input of the playback amplifier or the output of the recording amplifier.

Such an arrangement though, would be prone to trouble. Remember that very high gain must follow the playback head to translate the minute signals from the tape into the high volume needed for realistic sound reproduction. So, any trace of oxide on the switch contacts would produce audible noise. Furthermore, the switch and its terminals would be liable to pick up hum and would need careful screening which could pose practical difficulties.
The alternative switching system commonly used, is both simple and ingenious.

One side of the head winding is permanently connected to the recording amplifier output circuit, while the other side is permanently taken to the playback amplifier input. Connections from both are taken to a switch, while the switch common is connected to the chassis (Fig. 1).
In the play position, the switch "earths" the A side of the windings, but in the record position, the B side of the winding is earthed. As the switch is connected to chassis in both positions it cannot pick up, hum, and there is no switching of "live" connections,

There is no need to switch the erase head during playback with a.c. systems, as the oscillator is switched off. With d.c. erasure, switching the head is necessary.

H.F. LOES

Taking a further look at the impedance of the head, this results from a combination of inductance and the d.c. resistance of the coils. The formula is:

$$
Z=\sqrt{ } R^{2}+X_{\mathrm{L}}^{2}
$$

where Z is the impedance; R is the resistance of the coils; and X_{L} is the reactance resulting from the coil inductance.

When recording low frequencies, the reactance X_{L} is low compared to the resistance, but at high frequencies the opposite is true, and the reactance becomes large in proportion to the resistance. What this means in practice is that the recording current encounters a low impedance at bass frequencies, but a continually rising one

तxाie

Fig. 1. Switching 10 a combined record/phaybeth heed. One end of the head minding goes to the recording amplifier and the other to the playbuck circuit. Ahernate ends of the winhing are corthed for each function thereby avoiling signal switching and passible hem problems.
as the frequency increases. It decreases proportionally, producing a falling treble response.

PHAEEANCLEE

There is another ill effect. Phase angles change as the relationship between reactance and resistance alters. So, high frequencies becorfie displaced in phase relative to lower ones. As the stereo effect depends strongly on phase differences between channels it can be seen that phase errors can result in impaired stereo.
The most common solution to these problems is to increase the value of R by including a high value resistor in series with the head coil. This has a swamping effect by maintaining a more constant ratio between reactance and resistance over the frequency range. It ensures that the circuit is mainly resistive and so behaves in a more linear manner in its frequency as well as its phase response.
A further improvement can be achieved by connecting a capacitor across the resistor. This increases the high froquencies applied to the head and also improves the phase corelation between high and low frequencies. The values of the resistor and capacitor depend on the resistance and inductance of the head, all being chosen to give the flattest overall response with minimum phase displacement for the particular head.

This gives rise to an important practical point. Replacing a worn head on a tape recorder is quite a straightforward task. If the maker's replacement is used there is no problem, but it may not be available, or it may be decided to upgrade from a permalloy to an HPF (hot-pressed ferrite).

Whatever the replacement, it should have approximately the same resistance and inductance as the original, otherwise the series components will not produce the required compensation. Having said that, minor differences, particularly of coil resistance, have little effect and can be ignored.

RECOADING AMPLIFIEA

The output stage feeding the head circuit must produce a high voltage to overcome the high series resistance, and also a high current to drive the coils. So it must provide a high power compared to what actually is needed to generate the recording flux. The output stage must therefore be of a power output type, and many recorders use the loudspeaker output stage to drive the head in the record mode.

Another factor which comes into play is the slew rate of the output stage. All power amplifiers have a limit to the rate of change that the output voltage can follow. It is obvious that the rate of change of a large signal is greater than that of a smaller one.
It is also evident that a high frequency cycle is completed much quicker than a cycle of a low frequency, so the rate of change is correspondingly greater. The rate of change is thus proportional to frequency and signal magnitude.

In a recording amplifier where high output voltages are required, the output stage slew rate may be inadequate at high frequencies. This can be another cause of falling h.f. response, and also generate the intermodulation distortion which occurs when the slew rate is exceeded. The effect is reduced by selecting output transistors having high slew ratings at the voltages and frequencies required.
There is another type of output stage which overcomes these problems by eliminating the need for the high-value series resistor. As we have seen, the recording flux is obtained as a result of current through the head windings rather than voltage. The output stage therefore is designed as a constant-current source,

4120

Fig. 2. Transconductance recording omtpmt stage smpplies signal current that is not dependant on the impedance of the load thereby eliminating the meed for a high-value series resistor (Tanburg Acrilinear).
that is the current it supplies remains constant irrespective of the impedance of the load. So, when the impedance rises at higher frequencies, the current is not reduced.
An example of this type of circuit is the Actilinear circuit devised by Tanberg, (Fig. 2). It consists of a complementary push-pull output circuit similar to that used for many audio amplifiers, but with negative feedback from the transistor collectors (c) to the base circuit. An LC filter circuit couples'the output to the head.
This type of circuit provides more than sufficient current to drive the head and because high signal voltages are not required to overcome a high series resistance there are no slew rate problems. A bonus is that the stage serves as a buffer between the bias oscillator and the recording amplifier so that feedback of the oscillator voltage to earlier stages is greatly reduced.

HEAD DAIVE ADJUETMENT

Recording signals that are too large cause the operating point on the hysteresis
loop to encroach onto the curved portions and so generate distortion. Yet those that are too small degrade the signal/noise ratio and require the playback amplifier to be turned well up, further increasing noise. So there is an optimum point beyond which peak recording levels should not rise, nor should they fall too far below.
This is the 0 dB point on the recording level meter. However, due to the tolerances of components in the recording amplifier this has to be set for each particular instrument during manufacture, and a pre-set control will be found inside the machine for the purpose.
To reset it a millivoltmeter and an audio oscillator with variable output is required, also the service manual, or at least the appropriate information from it. A 10 or 100 ohm resistor is included in the "earthy" end of the record head by the makers and the meter is connected across it, see Fig. 3. To avoid false readings the bias oscillator must now be disabled, and then the fixed tone from the external audio oscillator is injected into the Auxiliary or MIC socket.
The output level of the oscillator is next adjusted to obtain OdB on the VU meter, then the pre-set drive control is set to give the millivolt reading specified in the manual. Readings vary from model to model, but a typical one is 0.35 mV over 10 ohm for Ferric tape, and 0.7 mV for Chrome tape.
It can be said that this adjustment rarely needs to be done unless major components have been changed in the recording amplifier.

BlASLEVEL ADJUETMENT

The bias level may need resetting if a different type of tape from that recommended is used. In most cases the differences are too small to make much difference for average domestic use. Professionals set the bias for each tape recorded, as these are masters from which copies will be made and top performance is essential. Hi-fi enthusiasts may also wish to optimise the setting for a particular brand of tape.
Adjustment is usually by means of a small variable capacitor in series with the bias oscillator feed to the record head, but variable resistors or tunable coils are also used. The measurement is made in the same way as that for recording level, that is across the 10 or 100 ohm resistor in series with the recording head.
When the recorder is switched to record with no signal input, a reading is obtained. If the maker's setting is being checked, the reading should be compared with that given in the manual and any necessary adjustment made. As with the recording drive, values vary between models, but roughly, the reading should be about ten times that of the recording level at zero VU . Across 10 ohm it usually ranges from $3.0-7.5 \mathrm{mV}$, while across 100 ohm . $30-75 \mathrm{mV}$.
To set the level for a different make of tape, an audio oscillator that can generate a 400 Hz and a 10 kHz tone is required. These are recorded on the tape at -12 dB on the VU meter. The tape is played back and the output levels of the two tones compared. If that of the 10 kHz tone is lower, there is too much bias and the amount should be decreased, but if it is higher, bias is insufficient and it should be increased.
Adjust accordingly, then erase the tape and record the two tones again at the

[1]

Fig. 3. Adjusting recording bias, commonly by preset resistor in series with the bias feed. Reading is taken by a millivoltmeter across 100 ohros (10 ohms in some models) in the earthy end of the head.
same level. Playback once more and check the comparative levels as before, then make further bias adjustment as required.

The process is repeated until the 10 kHz tone is just 1 dB down if optimum distortion level is desired. It may be remembered from a previous article, that the two do no coincide, one must adjust for either one or the other, or a compromise can be made.

AUTOMATIC LEVEL CONTROL

Automatic level control (ALC) is found in most portable recorders. Part of the output of the recording amplifier is rectified then used to control the gain of an earlier stage. This ensures that the recording level is not too high or too low without the necessity of manually adjusting the level. It also takes care of increases and decreases of signal level during recording.
The time constants of the circuit are chosen to give a rapid attack, but slow decay. Thus sudden loud signals produce an almost immediate reduction in gain to prevent overload, but afterwards the circuit fades up the gain gradually to avoid too obvious gain changes.
The system is useful for speech and "on location" recordings where it would be difficult to set and maintain levels manually, but it does have serious drawbacks for other work. Level changes are noticeable, as background noise drops then fades up as the signal varies.
For recording music it is hopeless, as the dynamic range is telescoped, musical climaxes are emaciated, and quiet passages that are reduced to almost inaudibility after loud fortissimos, gradually get unnaturally louder.
Early recorders had a manual/automatic switch, whereby the user could select the mode according to the use, but although gimmicks abound on modern machines, this very useful facility has disappeared. Some serious users have had their machines converted to manual operation. This involves removing the feed to the controlled stage and either fitting a manual control or in some cases it is possible to arrange for the playback volume control to serve as a level control during recording. Modification details differ considerably between models.
Having explored the heads and their drive circuits, we will return to the tape itself in our next article and see how this apparently simple commodity is far more complex than it appears, and what is involved in its manufacture.

GIMPLEMODEL SERIES
 SPECIAL EASIWIREOFFAR

FREE EASIWIREIF YOU BUY ANY FOUR MODEL KITS OR EASIWIRE FOR ES WHEN YOU PURCHASE A PROJECT KIT.

The two companies mentioned below have large stocks of Easiwire solderless wire wrapping systems, as used to build all our Simple Model Series projects. They have agreed to make these available to EE readers who purchase complete kits of components for the projects, INCLUDING printed cards to cut out and assemble for each model. If you are prepared to buy any four of the seven model kits then you can get your Easiwire FREE.

If you buy any one model kit you can purchase an Easiwire kit for just ES. (These kits were previously advertised by BICC-Vero at E15, including p\&pJ. To get your kit and Easiwire simply fill in the appropriate coupon and send it with your cheque cor credit card details) to either of the companies.
The seven projects are: Police Car Wuly 911; Musical Roundabout (Aug 91); Micro Micro-a dolls house microcomputer (Sept 91); Centurion Tank (Dct 91); Mini Microwave - dolls house microwave oven (Nov 91); Christmas Novelty Decoration (Dec 91); Bishop Rock Lighthouse (Jan 92). These models all play tunes or make noises or flash lights etc.

Please fill in the appropriate coupon below. tick the relevent boxes and send your cheque/PD/credit cerd number with one of the coupons to:

GREENWELO ELECTRONIC COMPONENTE 2フPARKROAD. SOUTHAMPTONSO1 3TB
Tel:0703236363 Fax:0703236307

BULL ELECTRICAL
25OPORTLAND ROAD,
HOVE, SபSSEX日N350T
Tel: 0273203500
Fax: 027323077

BEND EITHEA COUPON TO EITHEA COMPANY - YOU CHOOSE YOUA BUPPLIEA Overseas readers please add E3 to cover the extra postage charge.

FREEEASIWIRE

Please send me my FREE Easiwire kit. I understand that I must buy four model kits at the price given by EE -
I enclose a cheque/PO for $£$........... for the kits ticked below Please debit my credit card
CardNo. \qquad
Ex. Date. \qquad .Signature.
The kits Irequire are:

The kits Irequire are: Tick four ormore	
	Musical Roundabout (Aug' 91)......... $\mathbf{.} 7.95$ plus $£ 1$
	Micro Micro (Sept ' 91)..................... $£ 2.50$ plus $£ 1$ p\&ip
	Centurion Tank (Oct '91)..................£4.95 plus $£ 1$ p\&p
Tick four ormore boxes.	Mini Microwave (Nov ' 91)................... $£ 5.50$ plus $£ 1$ p\&p
	Christmas Novelty (Dec '91)...........E4.95 plus E1p\&p
	Bishop Rock Lighthouse (Jan '92) £5.95 plus E1pEip

Name
Address.

TE5 EASIWIRE

| Please supply the Lighthouse I on its own at E5.95 plus E1p\&p \square I Please supply an Easiwire at ES with the above kit
I Oversees readers please add E3 to cover the I extrepostage cherge.
I lenclose a cheque/PD for E.
(E6.95 or E11.95)
I Please charge my credit card- \square
Card No. ...
ExDate
Signature
Name.
Address
\qquad

Simple Mode/ Series

 THISII! BLEEP!
BISHOP ROCK

 LIGHTHOUSE:
OWEN BISHOP

The last model in a series which combines two hobbies in one-electronics and model-making. Simple electronic circuits combined with easy-to-assemble models that cover a wide range of interests.

Standing on a pinnacle of rock rising sheer out of the ocean floor in the westernmost Scilly Isles, the Bishop
 Rock lighthouse is said to be the most exposed in Britain. The rocks are submerged at spring tides and, given that there are an average of 30 gales in this area each year, it is small wonder that this region is a potential danger to shipping. The rock is said to be named after a sailor called Bishop who was one of only two survivors cast up on it after the wrecking of a whole merchant fleet in the Scillies in the 17th Century.
The present lighthouse is Bishop Rock 11I. The original Bishop Rock I was started in 1847 but was destroyed by a storm in 1850 before it ever became operational. Bishop Rock 11 was a sturdier and taller structure which was first lit in 1858, but suffered greatly from the storms. Eventually it was encased in further granite masonry and increased in height to its present size. Its design was by James Douglass, and it was built by his son William Tregarthen Douglass. It first came into service on 25 October 1887.
Even in these days of remote operation, Bishop Rock III continues to be a watched lighthouse, operated by Trinity House. The addition of a "helideck", well above the surges of the Atlantic breakers, makes relief operations considerably easier than they used to be, though still hazardous enough.
Bishop Rock III was originally lit by oil lamps, but now uses an electric lamp of $2.600,000$ candle-power, with a range of 29 sea miles. It is white and its characteristic signal is two flashes every 15 seconds. The original fog warning was an explosive charge set off every five minutes but nowadays there is a fog-horn, giving two blasts every 90 seconds.
The model is based on the dimensions of the light-house at a scale of approximately $1 / 200$. It reproduces the light character and fog warning of Bishop Rock III, except
that we have simplified the logic circuit by sounding the fog-horn every 60 seconds.
In the real lighthouse, the flash is produced by a set of lenses rotating around the lamp; for simplicity we flash the lamp on and off electronically. However, to simulate the effect of the rotating lenses, the lamp takes an appreciable time to acquire full brightness and to turn off.
The circuit can be adapted to produce other light characters should you prefer to base your model on a lighthouse near your home. Similarly, the fog horn has variable pitch and a programmable sounding sequence.

EUILDING THE TOWEA

The lower part of the tower is a cylindrical base. Use a plastic or metal cap taken from a domestic spray-can (furniture polish, oven-cleaner etc). The cap should have an external diameter of about 54 mm , and an internal diameter of at least 50 mm The exact height does not matter except that, to accommodate the circuit boards and speaker, it needs to be at least 47 mm high. Fig. 1 shows the details. Paint the cap a "rocky" granite colour and draw a vertical ladder down from top to bottom, about 2 mm wide with rungs 2 mm apart.
If you cannot find a suitable cap, cut the base from thin cardboard as shown. Form this into a cylinder and secure the flap with glue. Bend the tags inward. Cut out the base top and glue this to the tags. We used buff-coloured card for the base and main

Fig. 1. The base of the Lighthouse.

LANTERN

1126720

Fig. 3. Formation of the lantern housing

cut 2

HELIDECK

Fig. 2 (left). Card rings for the lantern
tower, so no painting was needed. If you are using white card, paint the base and draw the ladder on it where shown.
Readers with the equipment and skill could model the main tower by turning it in wood on a lathe. It is 162 mm long and tapers from 42 mm diameter at the bottom end to 27 mm at the top. The tapering is more pronounced toward the bottom of the tower, and it hardly tapers at all near the top. Bore a hole centrally up the tower to take the wires from the base to the lamp.

The tower is topped by a circular platform which can be cut from 9 mm plywood, with a hole bored centrally in it. Paint the tower, and draw the door and windows. A ladder leads from the door down to the bottom of the main tower.
The main tower can also be made from thin cardboard, though this inevitably lacks the graceful lines of the real thing, and of the wood-turned model. Form the cardboard into a narrow cone and secure the flap with glue. Make the platform from two card circles glued to two discs which form the top and bottom of the platform. Finally glue the tags at the top
and bottom of the main tower to the platform and base respectively.

THELANTERN

Make a photocopy of the designs for the lantern, helideck and helideck cage on transparent film, in black. Cut out the lantern design. Cut two strips of thin card 5 mm wide and about 200 mm long. Apply glue to one side of one strip, for half its length. Wind the strip around a cylindrical object 20 mm in diameter, to form a ring of about three turns (Fig. 2). The cylinder should preferably taper slightly to make it easier to remove the ring from it when the glue has dried. A small:cap from a domestic spray-can was found to be exactly the right size and shape for this. Use a large black spirit-marker pen to blacken the edges and outside surface of the ring. Prepare a second ring using the other strip and blacken this too.
Cut out a card disc 27 mm diameter, for the top of the lantern; blacken the upper surface of this, its edge and the outer region of the lower surface (Fig. 3). Cut another disc 20 mm in diameter. Roll the lantern transparency into a cylinder and use one
ring to hold it rolled, the ring being nearer to what will eventually be the bottom of the lantern. Apply glue to the inside of the other ring and insert the eventual top of the rolled transparency into this. Press the transparency firmly against the inside of this ring to form it into a perfect cylinder.
While the glue is still wet, invert the rolled transparency on the under-side of the lantern top. Then apply glue to the inner card disc and push this down inside the lantern, gluing it to the underside of the lantern top. This helps push the transparency firmly against the inside of the ring. When the glue has dried, remove the first ring, apply glue to its inner surface and push in back on to what will eventually be the lower end of the lantern.
Cut out an annulus of medium-thick card and glue this to the top of the platform. The lantern is a push-fit into this so that it can easily be removed for changing the bulb.
Cut out the photocopied designs for the helideck and the helideck cage. The construction of the helideck cage is similar to that of the lantern, except that the rings are made from strips 2.5 mm and 9 mm wide. They are wound around a cylindrical object 36 mm in diameter. Paint the narrow ring black inside and out. The wide ring is to be the same colour as the tower. Form the cage design into a cylinder and slip the narrow ring around it near the top. Apply glue to the inside of the wide ring and push the lower end of the cage into this so that the lower edge of the cage pattern itself

Fig. 4. Circuit diagram for the light and fog horn.
(the triple railings) are just visible above the ring. This ring is to be a push-fit over the platform, so that the cage may be removed for changing the bulb.
When the glue is dry, apply glue to the inside and top edge of the narrow ring and slide this into place at the top of the cage. At the same time invert the cage on to the helideck transparency (also inverted), so fixing the helideck to the top of the cage.

HOWIT WOAKE

The clock (ICl in Fig. 4) oscillates at 273 Hz . This signal is repeatedly halved in frequency by the 14 stages of the counter in IC2. The outputs from stages 2 and 3 are not available. The available outputs with their frequencies or periods are shown. Any of these outputs can be used to produce the desired character. The logic is explained below in some detail so that readers will understand how to adapt the circuit for producing other characters.
The logic for flashing the lamp depends on the binary sequence of outputs from stages B, D and E, where " 0 " = low voltage and " 1 " = high voltage (Table 1). Each count in the table represents slightly less than one second, so the sequence repeats with the period of output E, which is approximately 15 seconds, as required. During this time the lamp flashes twice, each flash lasting one second.

Table 1:

| Truth table for lamp flashing | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Count | Output
 E | D | C | | State of lamp

The table shows that the flash occurs if and only if B, D and E are all low. The state of C is immaterial. The state of B, D and E is detected by feeding the three outputs to a NOR gate. A four-input gate is used, so signal E is fed to two of the inputs.
The output of the NOR gate is normally low, but goes high when all three inputs are low. A high output from the NOR gate raises the voltage of the gate of TRI, turning the transistor on. The transistor conducts readily and the lamp lights. The switching action is modified by R4 and C2, which delays the time at which the lamp reaches full brightness. When the NOR gate goes low, the diode prevents the capacitor from discharging. The charge leaks away through R4 and the lamp dims out.
The logic for sounding the fog-horn depends on the binary sequence of outputs from stages C to G (Table 2). Each count in this table represents about four seconds, and the sequence repeats with the period of output G , which is approximately 60 seconds. During this time the foghorn sounds twice, each blast lasting two seconds. The table shows that the flash occurs if and only if C and G are low and E and F are high. The fact that E has to be high means that there is always an appreciable gap between the horn sounding and the lamps flashing, giving a more realistic effect. The state of D is immaterial.
The state of C, E, F and G is detected by feeding the four outputs to a NOR gate, as before. However, because we are looking for high states of E and F, these signals must be inverted. The signals first go to NAND gates (IC4a/b) with their inputs wired together so that they act as INVERT gates, then to the NOR gate.
When C, E, F and G are in the correct state the output of the NOR gates goes high, and this output goes to a NAND gate (IC4c). This gate also receives the 136 Hz audio signal A , but this passes through the gate only when the NOR gate output is high. When the NOR gate is low the output from IC4c is continuously high. The signal is inverted once again, by IC4d, so that it is low between blasts, thus leaving TR2 and the loudspeaker switched off during the inactive state.

CIFGUITEDAFDA

Circuit board "A" (Fig. 5) holds the timer and counter i.c.s. Like (almost) everything to do with lighthouses, the circuit boards are circular and stack inside the lighthouse base. Drill the holes in the board, then insert the two i.c. sockets and capacitor Cl ; glue them to the board to make the wiring more secure. Insert C2 and bend its leads and glue the body of the capacitor to the board. Next insert the p.c.b. terminals.

There are more terminals than usual in this project as this makes it easier to customise the circuit design to produce a range of light and fog-horn characters. The beads on the recommended p.c.b pins are in a

Table 2:
Truth table for the fog-horn

Count	Output					State of hom
		G F			C	
0	0	0	0	0	0	
1	0	0	0	0	1	
2	0	0	0	1	0	
3	0	0	0	1	1	
4	0	0	1	0	0	
5	0	0	1	0	1	
6	0	0	1	1	0	
7	0	0	1	1	1	
8	0	1	0	0	0	
9	0	1	0	0	1	
10	0	1	0	1	0	
11	0	1	0	1	1	
12	0	1	1	0	0	SOUND
13	0	1	1	0	1	
14	0	1	1	1	0	SOUND
15	0	1	1	1	1	
16	1	0	0	0	0	
17	1	0	0	0	1	
18	1	0	0	1	0	
19	1	0	0	1	1	
20	1	0	1	0	0	
21	1	0	1	0	1	
22	1	0	1	1	0	
23	1	0	1	1	1	
24	1	1	0	0	0	
25	1	1	0	0	1	
26	1	1	0	1	0	
27	1	1	0	1	1	
28	1	1	1	0	0	
29	1	1	1	0	1	
30	1	1	1	1	0	
31	1	1	1	1		

COMPONEVIS

Resistors

R1	$270 k$
R2	$12 k$
R3	$120 k$
R4	$220 k$
R5	470

Se9 SHOP TALK Page
Carbon film $0.25 \mathrm{~W}, 5 \%$, or metal film 0.6 W 1\%.

Capacitors

C1	18n polyester miniature dipped case, or metallised
	ceramic plate
C2	10μ tantalum, 15 V C3 220n polyester miniature layer

Semiconductors
D1 1 N4148 silicon signal diode TR1 VN10KM VMOS n-channel power f.e.t.
TR2 ZTX300 non transistor
IC1 7555 CMOS timer
IC2 4020 CMOS 14 -stage counter/divider
IC3 4002 CMOS dual 4 -input NOR gate
IC4 4011 CMOS quadruple 2 -input NAND gate

Miscellaneous

LP1 6V, 60mA MES filament lamp (or similar)
LS1 64Ω speaker, 38 mm diam.
16-pin d.i.l. i.c. socket; 14-pin d.i.l. i.c. sockets (2 off): 8 -pin d.i.l. i.c. socket; p.c.b. eyelet terminals (21 off); battery connector; insulating tape; p.c.b. lacquer; Easywire pen and tool; insulated connecting wire.

Materials

Thin card, buff or printed white card see Shop Talk and Special Offer page, (or wood) for tower. Block of expanded polystyrene, approx. $140 \times 100 \times 50$. Red and white enamel paint (e.g. Humbrol); black acrylic paint (e.g. Tamiya Color).

Approx cost guidance only

(components onty)
range of different colours: it is advisable to adopt a colour code for each of the lines A to G, and to use the same code on board B. For certain variations in the light and sound characters, you may need to wire the p.c.b. terminals to a different set of output pins (see later).
Test the circuit by connecting the battery. The output from ICI pin 3 is a signal of 273 Hz . You can hear this if you connect a crystal earphone to pin 3, by way of a 100 n capacitor. Connect the other terminal of the earphone to the 0 V rail.

On an oscilloscope, the signal can be seen to have a very high mark-space ratio. Monitor the signals from the terminals of IC2; the important ones are those labelled A to G in Fig. 4. Signal A can be heard with an earphone; a voltmeter is used to check signals B to G .

CIRCLIT EOARDE

Circuit board "B" holds the logic circuits and the transistor switches which control the lamp and loudspeaker. It may be necessary to revise the logic connections if other light and sound characters are required.

Fig. 5. The construction of the two circuit cards using the Easiwire wiring system.

Wiring up the board is straightforward. The board is tested after wiring the inter-board connections (Fig. 6). Note that there are two E terminals on Board B.
Use thin flexible insulated wires, each about 10 cm long, except for the lamp and battery is connections. For the battery, you can use a press-stud battery connector, but you may need to extend the wires if the battery to be hidden from sight. The wires to the lamp need to be about 30 cm long. If a bulb holder is used, connect the wires to the screw terminals. Otherwise, solder the wires directly to the bulb, or hold them in place with insulating tape. When the battery is connected, the lamp begins to flash and the loudspeaker sounds as described earlier.

$A=E=M=12 Y$

The final assembly is shown in Fig. 7 , with the circuit boards and loudspeaker stacked inside the base with card separators (discs 50 cm diameter) to prevent short circuits. The speaker rests face-down on the table.

If the lamp is in a holder, glue this to the platform. If the wires are soldered to the lamp, wrap black insulating tape around the threaded part of the bulb. Nip the tube of tape below the bulb and wedge it firmly into the hole in the top of the platform. Place the lantern over the bulb; it is held in place by the annulus. Lower the cage over the lantern and push it gently down over the platform. All that is needed now is a helicopter to bring supplies to the keeper.

Fig. 6. Interwiring betwoen the board, battery, lamp and loudspeaker.

Fig. 7. Fitting the electronics in the base.

HELICOPTER

The supply helicopter used by Trinity House is the popular West German light utility helicopter, the MBB BO105. We made a simple model of this, moulding the main fuselage from Fimo, a modelling material which is fairly soft when purchased but which hardens when placed in an oven at $130^{\circ} \mathrm{C}$ for about half an hour. To save a certain amount of painting use either red or white Fimo.

Make the rear fuselage from 3 mm diameter white plastic rod. Before hardening the main fuselage make a socket in this to accept the rear fuselage. Also push a pin in at four places to make holes ready for the undercarriage struts.

Cut the tail and rudder from thin red card and glue into slots cut in the rear fuselage (Fig. 8). Cut a propeller from thin white card and mount this on the tail-plane as shown; fill the collar with glue before inserting the pin into it. Cut the four-bladed rotor from the same white card.

Carve the floats from plastic strip; bore two holes half-way into each to take the struts. Make the struts from dressmaker's pins; you may have to experiment here, as some types of pins snap in two when you try to bend them. The pins will not be a really firm fit in the holes but, when the model is painted, the paint secures them well enough.

Paint the main fuselage white, with red top and bottom. Also paint windows in black and, if possible the logo "Trinity House" and the registration number of
one of its helicopters G-BATC. Finally mount the rotor.

EISHOP ROCK

The rock itself can be carved from a block of expanded polystyrene or timber. It needs a flat bottom, sheer sides and a very rugged top. A circular opening 54 mm in diameter runs from top to bottom so that the rock surrounds the base of the light-house, making it less likely to topple over. Cut a groove in the bottom of the rock for the battery wires.
Paint the rock matt black. possibly adding a touch of dark brown here and there. Before painting. test the paint on a spare scrap of expanded polystrene; the solvents of some paints cause the polystyrene to shrink away almost to nothing! A water-soluble acrylic model paint (Tamiya Color, matt black XF-1) gave a very realistic effect on white polystyrene.

OTHEF CHAAACTEAS

Both the light and fog horn can be changed to different characteristics. The first thing to decide is the length of the longest sequence, usually the fog-horn sequence. The length of the shorter sequence (usually the light) must be a binary submultiple (half, quarter, eighth ...) of this. The actual length of the Bishop Rock fog-horn sequence is 90 s but, since the light sequence lasts 15 s , it was decided to make the horn sequence 60 s, i.e. four times the light sequence, instead of six times, which is difficult to arrange.

Fig. 8. Construction of the helicopter.

ALBANIA BACK

The first Albanian amateur radio station for 45 years came on-the-air on 16 th September. At a grand opening ceremony at Albania's PTT headquarters, attended by high government officials, and broadcast on Tirana TV, amateur station ZA1A made a special transmission to ITU headquarters in Geneva where the ITU Secretary-General was present.

In the days that followed, the bands went wild as Dxers, award hunters, and others just wanting to welcome the AIbanians back, tried to contact ZA1A. Because of the numbers involved, each contact could only be a brief exchange of reception reports, but that was enough to get a OSL card confirming contact with a new country. More stations are appearing as time goes on and just a few days before writing this, in early October, I listened with awe as a "pileup" of what must have boen hundreds of stations from many countries tried to make contact with two more ZAs on 28 MHz .

No one new to amateur radio could cope with such a situation unaided however, and teams of experienced operators from several countries, under the auspices of the International Amateur Radio Union and other amateur organisations, have been in Albania training a number of enthusiastic students ready to take the lead in reviving amateur radio throughout their country.

Trying to get through pileups is not my favourite type of operating, but I do have a go sometimes and get the same satisfaction as everyone else when I manage to beat the pack. In this case though, I shall probably wait till there are a few more ZAs on the air and there's time to actually have a chat with some of them!

USA BOMBSHELL

A sensational proposal by the FCC (the USA licensing authority) could change the entire concept of "amateur" radio; a change which in the long term could well affect the status of the hobby in many countries, including the UK.

Continually bombarded with letters and phone calls from amateurs who want changes in the "absolutely-no-business" rules; and subject from time to time to political lobbying and Congressional inquiries along the same lines, the FCC has suggested to the American Radio Relay League, America's national radio society, that it makes formal proposals for change. It has even suggested what those changes might be, so there seems little doubt about the eventual outcome.

It all hinges around "third party" communications, that is, the passing of messages on behalf of other persons. In the USA, and in many other countries, all amateurs can already pass simple greetings messages on behalf of others and they can also provide communications on behalf of the emergency and other
services in certain defined circumstances. In the UK there are lesser third party facilities plus long-established emergency services as mentioned in this column from time to time.
The essential basis of third party communications is that no regular organizational or business communications should be provided for which commercial services are available, and that no payment should be received by amateur operators whatsoever. It has often been suggested to the FCC that the rules are too restrictive and that amateur radio could be used for noncommercial activities without affecting its amateur status.

RELAXATION OF RULES

The FCC now proposes that nonamateur communications handled by amateurs in the future, without the present limitations, could include communications for non-profit or charitable organizations, government agencies, and public safety agencies; classroom instruction in schools; salling or trading electronic apparatus amongst amateurs: providing information to the news media; club business; personal business, including placing orders on local suppliers via auto-patch into the public telephone system; and rebroadcasting transmissions from other stations such as weather stations, the Voice of Americe, or WWV (time signals, etc.)

The order or precedence would be Priority - emergency communications; Primary - normal amateur communications; and Secondary - non-amateur communications. Only when the first two traditional usages are insufficient to completely occupy the bands would the unused frequencies be available to carry non-amateur traffic.

To preserve the non-business status of amateur radio no operator would be able to sell a communication service using amateur frequencies. An exception to this would be permitted payment to control operators transmitting Morse practice and information bulletins from W1AW, ARRL's headquarters station (already permitted); and those providing classroom instruction over the air.

These proposals will inevitably provoke a mixed reception. Those who believe the amateur spectrum should be opened up to non-amateur communications will be delighted, but many will feel that the unique character of amateur radio is under threat and that the bands are full enough already without congesting them further with nonamateur traffic.

The communications industry, which stands to lose business if the proposals are implemented, may have something to say alsol It will be interesting to follow this debate over the months ahead and to see the final outcome. With the OTI's current policy of liberalisation and
deregulation it will also be interesting to see if similar proposals eventually reach, and receive consideration, in the UK. (Information from W5Y/ Report).

ANNUAL REPORT OF RA

The Radiocommunications Agency (previously the Radiocommunications Division) of the OTI recently published its annual report for the year 1990-1991. This covers the entire field of nongovernment activity in the radio spectrum, but I refer here only to that part of the report covering amateur radio.

Apart from describing the introduction of the Amateur Radio Novice licence on 1st April 1991, previously covered at length in this column, the report refers to the concern of the RA about abuse on amateur radio. in particular associated with repeater stations.

Action, the report says, has been taken to deal with this by improving the management and monitoring of the 300 or so repeaters in the UK. Each repeater is managed by a local group, while the Radio Society of Great Britain provides a number of central services and support through its Repeater Management Group.

Additionally, amateurs are encouraged to submit reports of abuse to the RSGB's Amateur Radio Observation Service (AROS). If AROS is unable to solve the problem a report may be sent to the Radio Investigation Service for further investigation, and this has resulted in a number of successful prosecutions.

During the year, some changes have been made to the amateur radio licence. The most significant involved providing clubs with special event privileges, allocating extra frequencies for unattended operation and allowing vertical polarisation and mobile operation at 50 MHz .
As at 31 st March 1991, the number of amateur licences class A, was 32,954 and Class B, 27,930. There were also 257 voice repeaters, 236 packet radio repeaters, and 55 beacons. During the year there were five convictions for offences under the Wireless Telegraphy Acts and two formal warnings were issued for breaches of the Act.

SANGEAN SERVICING - 2

I mentioned last month the problem a reader was having in getting his Sangean ATS 803A world band receiver repaired by Comet. I have now received a letter from Charlie Avery, PR Executive of Comet PLC, who says that his company decided to discontinue this model early in 1991, and that the manufacturer has since gone out of business.

Prior to this, Comet were able to secure a limited supply of spare parts so they can still repair some sets, depending on the problem. If they do not have the appropriate spares, however, it is unlikely that they will be able to help.

SPECIALEVERYDAY ELECTRONICSEOOKS

ELECTRONICSTEACH-IN B8/OS-
NTRODUCING MICROPROCESSORS
hike Tooley of (published by Everyder Electronics)
complete course that can leas successful readers to the Microprocessors (726/303) The boot contrins every thing you need to know including full details on register ing for asseasement. otc
Sections cover Microcomputer Systerns, Micro-processors. Memorves. Inpul/Output, Interiacing and Progremming There are various practical assignments and engh chipe An excelient introduction to the subject even for those 80 popes (A 4 size) Ordercoderlig8:

LECTRONIC PROJECTS BOOK 1
Published by Everreday Electronics in association with Magenta Electronics.
Contains twenty of the best projects from previous issues of Eeseach backed with a kit of components The propects are Soeshol Sea Syninesiser. EE Tressure Hunter, Min Strobe BBC 16 K sideway Ram, Simpie Shor Wave Radio, InsulaIon Tester, Stepper Motor interface, Eprom Eraser, 200 MHz
Orgiti Frequency Meter. Infra Red Alarm EE Equaliser

. 5 5

 INTRODUCI DICITAL ELECTRONI Whasic
Atorn
4johting Worning Dotact Macem MASEDY

Ionser, Bet Derscior, Acoustre Probe, Mainstraster and Fuse Finder. Light Rider - (Lapel Bedge. Duaco Lights. Cheser 10 W . Audio Amplifior EE Bucceneer induction Belance Matel Donecior, BBC Mid Intertace. Varibbte Bench Power
Supphy, Por Scarer, Audro Signal Genvatior.
128 proges (AA suro)
C2.46
ELECTRONICS TEACH-IN No. 3 - EXPLORING ELECTRONHCS (publishod by Evorydey Electronice) Owen Biethop
Anothee EE value for money publication ammed as students of anctronccs. The course is doesigned to explein the workings in experimenting with them. The book does not contain masses of theory or formulse but straightforward explana. tions and cmeurss to build and expermerte with
Exploring Electronics contains more than 25 useful proiecses, asumes no previous knowidge of electronucs and

C2.46
ELECTRONICS TEACH-IN No. 4
INTRODUCING DIGITAL ELECTRONICS (publinhed by Evervday Elictronics)
Although thas book is pnmemily a Ciry \& Guilds Introductory Although this coune $(728 / 301)$, epproximetely 80% of the informe
tion form a very besic introduction to electronics in genere. it therefore provides an excellent introducsory text for begin ners and a course and reverence book for GCSE exudeme Full detaits on registoring for CBG astesement detaits of on the course in peneral are given.
on the course in peneral are given. The City \& Guilds introduction to module 726/301 reade A candidese who setiefactority compleses this module wil interated circuits and comnect them together to form simpt working cincults and loguc units" This provides an excelten introduction to the book 112 peges (A/ sera) \qquad E2.85

ELECTAONICS TEACH-IN NO. 5 GUIDE TO BUILOING ELECTRONIC PROJECTS Published by EVERYOAV ELECTRONIC
Due to the demand from students, teschers and hobbvist wo hove put logether a angl of aricies from past hssues of construction of electronic proiectes construction of electronic projects.
GCSE series. Contente: Feotures - First Stepe in Project Building
Building with Vero; Project Development for GCS Getting your Projects Woiki Development for GCSE Boards: Choosing and Using. Tiest Equipment - The Multimeter, The Oacilloscope PS U. Lopic Probes: Digital Frequency Meters, Signal Gemerators, etc: Date - Circult Symbols; Component Codes; Resistors; Iden Understanding the Circuit Diagram, Component Codes Mounting circuit boords and controls. Understanding Capacitors; Projects - Lie Datector; Personal Stereo Amplifier; Digital Expermentsr's Unit, Quizmaster; Siren Effects Unit; UV Exposure Unit: Low-cost Capacitance Meter; Personal Radio.
88 peges (A4 size) Order codeTI5 $£ 2.86$
EVERDAY ELECTRONICE DATA BOOK
Mike Tooley BA
(published by EEin aldocilion with PC
Publishing)
This boot is an invaluable source of information o teuns not only sections which deal with the essentie theory of electronic circuits, but it also deals with a wide range of practical electronic applications.
It is ideal for the hobbyist, student. technician and engineer. The information is presented in the form of besic electronic recipe book with numerous exemples showing how theory can be put into prectice using range of commonly
A must for everyone involved in electronics
256 peges
Order code DATA]

DIRECT BOOK SER VICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full
ordering details are given on the last book page. For another selection of books see next month's issue

prectical buss - tedious and highter mathematics have been avoided
where possible and many vables where possible and many table
(plus a very few inexpensive components in some cases) Some useful quick check methods are also covered. White multumeter is supremely versatile, it does heve the limitations. The simple add-ons described in chapter 2 oxtended the capsbilties of multimeter to make it even probe asigh resstance probe an a.c. enesitivity boostet. and a current tracer unit.
84 anges Ordercode BP265
E. 2.85

THE ILLUSTRATED OICTIONARY OF

ELECTRONICS - 4 th EDITION
Rufus P. Turner and Sten Gibilieco
With more than 27,000 terms used in elecronics today. this collection is THE most comprehersive dictuonary avaiabie. Including all practical electronics and computer tselfi Tables and dats on subjects most ohen consulied for projectis and experiments eve included. Other conversion ables include English/metric and metric/Enolish convermons for units of energy. power and volume. and Faheenhert/Celsus temperature conversion charts.
Setting this edition apart from other electronic dicluonarues is its emphasts on iltustration. Featuring more than complete definitions, this fourth edrtion includes over 450 detailed drawings and diagrams.
All entries are listed in alphabeticel order. Abbreviations and intials are listed in sequence with whote words. All corms of more than one word ere treated as one word. (An American book)
648 peges Temporarily out of primt

ELECTRONICS - A "MADE 8IMPLE" BOOK

G. H. Olsen

Thus book provides excellent beckground reeding for our Introducing Digutal Electronics series and will be of interest o everyone studying stectronics. The subject is simply explaned and well illustrated and the book assumes only a bory basic knownog of shetriciry 330 pege

Ordarcodensid]
f4.96

PRACTICAL ELECTRONICS CALCULATION\& AND FORMULAE
F.A. Whon, C.G.A. C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Bridges the gap between complicared technical theory. and "cut-and-tried" methods which may bring success in

The book is divided into six besic sections: Units and Constants. Direct-current Circuits. Passive Components Alternating-current Circuits. Networks and Theoreme 256 peges Order code BP533 £3.06

PRACTICAL DIGITAL ELECTRONICS HANDEOOR
Mitke Tooley (Published in association with
Everyday Eisctronics)
The vast majority of modern electronic systems. raly Prectical Digital Electronics Handbook aims to provide renders with prectically based introduction to this subject. The book will prove invelusble to enyone involved with the design, manufacture or servicing of digital circuitry. as well as to those wishing to updet their knowledge of modern digital devices and tech niques. Contents: Introduction to integrated circuits basic logic garas: monostabla and bistable dovices timers; microprocessors, memories; input and outpu Date. Appendix 2: Digital lest gear proiects; toots and test equipment: regulated bench power supply: logic probe; logic pulser: versatite pulse generator: digit ic tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digitel counter/frequency mete. Appendix 3: The oscilloscope: Appendix 4: Suggested reading. Appendux 5: Further sludy

Order code PCTOO
f8.86

ELECTRONICS-BUILD AND LEARN
R. A. Penfold

The first chapter gives full constructional details of a cir cuit demonstrator unit that is used in subesquent chapter cepecitors, transformers. diodes, trangistors, thyristors, foti and op amps. Later chapters go on to describe how thee componente ere buin up imo usehl circuits, occiltators multivibrators, bistables and logic circuits.
At every stage in the book there are prectical tests and experiments that you can carry out on the demonetrato unit to investigata ine pornts described and to help you to 00 on to more complex circuite and tectie fouth finding 10% ically in other circuits you build.

AUDIO ANDMUSIC

LOUDSPEAKERS FOR MUSICIANS
LOUDSPEAK
This book containe all that a working musicien needs to know about loudspeakers; the different types, how they work, the most suitable for different instruments. for caberet work. and for vocals. It gives tipe on constructing cabrets, wiring up. when and where to use wadding. and when not to, what fittings are available. finishing. how to ensure they travel well. how to connect multi-speaker arrays and much more.
Ten pracuical enclosure designs with plans and commonts are gren in the last chapter, but by the tume you've 164 poges [Order code BP297 own $£ 3.86$

MAKE MONEY FAOM HOME RECORDING
Clive Brook:
Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn's is be nice to get some of it back? Whll here's the book fo show you how.
It's packed with money making ideas, any one of which will recoup the price of the book many times over. Whether you have a fully fiedged recording studio at home. or just you'll be able to put the ideas in this book into practice and yoult be able to put the ideas in this book inio practice and 105 peges

Order codePClo4 c5.86

INTRODUCTION TO DIGITAL AUDIO
(Second Edition)
lan Sinclair
Digital recording methods have existed for many year and have become fammar to the profeasional recording anginetr, but the compact disc (CD) was the first device to bring digital audio methods into the home. The nexi step is the appearance of digtal audio tape (DAT) equi pment.
All this development has involved methods and circults that are totally atien to the technician of kesn The princiotess and practices of digital audio owe linte o nothing to the traditional linear circuits of the past, and are much more comprehensible to today s computer en gineer than the older generation of audio engineers
This book is intended to bridge the gap of understand ing for the rechnician and enithusiast The princlpion and methods are explained. but the mathermatical beck ground and theory is avoided. other than to state the end 128 pegos

Order codepcius E6.95

SYNTHESIZERS FOR MUSICIANS

A. A. Penfold

Modern syntheszers are extremety complox. but they mostly work on principles that are not too difficule to
understand. If you want to go beyond using the factory pros you.
It covers the principles of modern synthess - lineer arithmeric as used by Roland. phase distortion (Casio). Yamaha's frequency modulation. and sampling - and then describes how the instruments are adjusted to produce various types of sound - strings. brass. parcuseasy to understand way - the technical information being restricted to what you need to know to use your instrument effectively. rordercodePCio5 ce.95

AUDIO

F. A. Witson. C. G.I. A., C.Eng., F.I.E.E., F.I.E R.E. F.B.I.M.

Analysis of the sound wave and an explanation of acousti. cal quantities prepere the way. These are followed by a study of the mechanism of haying and examination of the verious sounds we hear. A look at room acoustics with then sats the scene for the main chapter on audio syrteme mplifiers. oscillators. disc and magnatic recording and otectronic music
320 pages [Ordercode BPllil
Ordercode BPTII E3.96

CIECUITS ANDDESIGN

REMOTE CONTROL HANDBOOK

Owen Bishop

Remote control systems lend themselves to a modular approach. This makes it possuble for a wide renge of ystems. from the simplest to the most complex. to be built up from number of relatively simple modules. The author has tried to ensure that. as far as possible. the circuit modules in this book are compatuble with one another. They can be linked logether in many difarent coniligurations to switch a table lamp on and off, or to poperate an industrial robot, this book should provide the circuit | you require. | |
| :--- | :--- |
| 226 peges | |
| 3.95 | |

Order code BP240
COIL DESIGN AND CONSTRUCTION MANUAL B. B. Babani

A complate book for the home constructor on "how to make" RF. IF, audio and power coils, chokes and transcalculations necesaery are given and explained in detail. Athough thus book is now rather old, with the exception of orroids and pulse transformers littia has changed in coil detign since it wes written.
96 pages C2.50

30 80LDERLESS BREADBOARD PROJECT8 -

300K 1
R. A. Penfold

Each proiect. Which is designed to be built on a "Veroboc breadboerd. is presented in a simular fastion with a diegram, components list and notes on construction and sas where necessery. Whenover possuble, the components used ere common to seversl projects. hence with only modest number of ressonably inexpensive components. it is possible to build in turn. overy project shown. Recom mended by BICC - Vero.
160 peges
Order code BPTO7
c2.96

BOOK 2
All proyects use CMOS I.c.s. but the items on componens
dentification etc., are nof repeated from Book 1.
160 pages [Order code BPIT3]
C2.25

ELECTRONIC CIRCUITS HANDBOOK
 Michael Tooloy BA

This book sims to explode two populer misconceptions concerning the design of electronic circuits: that only those with many vers of experience should undertek circuit deagn and that the process reises on an undertonding of adonced mathows populaty hold boliefs is too
Specilically, this book aims to provide the resder with unique collection of prectical working circuits 10 gether with supporting information so thet cricuits can be produced in the shortest poseible lume and without recourse to theoretical texts.
Furthermore, information has been included so thet the circuits can readily be modified and oxtended by readers to meet their own individual needs. Related circuits heve bext (and stso in the index) so that reeders eve awere of which circuite can be reedily connected together to form more complex systems. As far as posetible, a common range of supply volteges. signal levels and impedances has been adopted.
As bonus. ten test geer projects have been included. These not only serve to illustrate the techniques described but also provide a range of test equipment which is uspful in its own right.
277 pages
Order codeneos
c16.96

> AUDIO IC CIRCUITS MANUAL
> A. M. Mareton
> A. vast range of audio and audio-associated i.c.s. are resdily avaifable for use by smateur and proiessional design engineers and rechnicians. This manual is a quide to the most popular and usoful of these devices, with over 240 diagrams. It deals with i.c.s. such as low frequency linear amplifiers. dual pre-amplifters, audio power ampdifiers. charge coupled device dy reoulators. and ehows how to use thes devices in circuite rengin

from sumple signal conditioners and filters to complex graphic equalizers, stereo amplifier systems, and acho/reverb delay line systems otc. 168 pages [Order codenel3] 12.96

HOW TO DESIGN ELECTRONIC PROJECTS

A. A. Penfold

The sim of this book is to hetp the reader to put together propects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet $\begin{array}{ll}\text { your special requirements are also provided. } \\ 128 \text { peges } & \text { Order codespl27 } \\ & \text { C2.25 }\end{array}$

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES
ZENER DIO
R. N. Soer
Contains 50 interasting and useful circuits and applica. tuons, covering many different branches of electronics. using one of the most simple and inexpensive of components - the diode. Includes the use of germanium and silicon signal diades. silicon rectifier diodes and Zener diodes. eic.
64 peges
Order code BP36
£1.95

DESIGNING WITH LINEARICs

G. C. Loveday

A book that deals with the design of the vital ares of analog circultry covering design with modern linear integrated circuit devices. The first chapter introduces the reader to importani desugn techniques, test strategies. layout, and protection and siso includes a section on the use of a typical CAD tool. There are separate chaplers that cover in depth the ust of op-amps. comparators and imers esch with detailed design oxamples end reeder orciser in number of complete design problems with olly worked solutions. The lext is essentially non-mathmatical and is supported by many diagrams. 64 pages Order cote BP's6 8pecial Price E6.05

TIMER/GENERATOR CIRCUITS MANUAL

A. M. Marston

This manuel is concerned mainly with waveform generator techniques and circuits. Waveform generators are used somewhere or other in most types of electronic clulpesent. of circuit. Thoy may be designed to produce outputs with sine, square. triangle, ramp. pulse, staircase. of a variety of other forms. The generators mav produce modulated or unmodulated outputs. and the outputs may be of single or multiple form.
Wavelorm generator circuits may be built using tranistions. op-ampes.standand digital ICs. or dedicated vaveform on "function" generator ICs
The manual is dividad into eloven chapters, and presents over 300 practical circuits, diegrems and isbles heve generetors Square wave. Benerctors; Pulse generator circuite; "Timer IC"" generator circuits; Triangle tor circuits: "Timer IC" generator circuits: Triangle Weveform synthesizer ICs; Special weveform generators Phaselocked loop circuits: Miscellaneous " 555 " cirPhats
cuts.
267 p
267 peovs \quad Ordercodeneis

OPTOELECTRONICS CIRCUITS MANUAL
R. M. Marsto

A useful single volume guide to the optoslectronics dovice user. specilically aimed at the practucal design the electronicsician. and the expermenter. as wall a subyect in en sesy-to-read. down-to-terth. and non mathematical yet comprehensive manner, explaning the basic principles and characteristics of the bote known devices. and presenting the reader with many practica applications and over 200 circuits. Most of the i.c.s and ather devicas used are inexpensive and readily available types, with universslly recognised type numbers.
182 peges 182 peges Ordercodenefia 12.98

POPULAR ELECTRONIC CIRCUIT8 - BOOK 1
POPULAR ELECTRONIC CIRCUIT8-BOOK 2
R. A. Penfold

Each book provides a wide range of destgns for electronic enthusiasts who are capable of producing working profecis from just a circuit diagram without the and of detailed construction information. Any specia setting-up procedures are described. $\begin{array}{lll}\text { BOOK } 1160 \text { panes } & \text { Order code BPG } \\ \text { BOOK } 2160 \text { peges } & \text { Order code BP9: }\end{array}$ c2. 5

CMOS CIRCUITS MANUAL
R. M. Marston

Written for the professional engineer, student of en thusiast. If describes the besic principles and charac teristics of these devices and includes over 200 crrcuits. All the circuits have been designed. bult and fully evaluated by the author: all use inexpensive and internationally ovaileble devices.
187 pages Order codenEl2
f12.95
Note - our postage charge is the same for one book or one hundred books!

PROJECT CONSTRUCTION

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.E A. A. Ponfold Deais with the sumple methods of copying printed circurt boord designs from magazines and books and covin aspects of simpit p.c.b. construction including 80 pages [Order code BP12] E2.50

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work corectly. or at all, when first switched on, The aim probis book is to heip the reader overcome just these many of the common faults that can occur when buitding up propects 96 poges
Poses I Order code BPITO $\mathbf{C 2 . 5 0}$

ELECTRONIC SCIENCE PROJECTS
O. Bishop

These projects range in complexity from a smple colou such as an electronic clock regulated by resonating spring, and an oscilloscope with solid-state display. There are scientific masasuring instruments such as a DH mete and an electro-cardiometer. All projects have astron sciantific flavour. The way they work. and how to build and use them are fully explaned. 144 pages [Order code BPIO4 E2.96

BEGINNER'S GUIDE TO BUILDING ELECTRONICS PROJECTS
R. A. Penfold Shows the complate beginner how to rackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in
nepezines and books. Aso includes exemples in the form simple projecte

EST EQUIPMENT CON8TRUCTION

R. A. Penfold
ins book deecribes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equipment. Stripboard layouts are provided for all designs. together with wiring diagrams where appropriate. plus notes on construction and use.
The following designs are included:- AF Generator, Capacitance Meter, Test Bench Amplitier, AF Frequancy Heter, Audio Milivortmeter, Analoque Probe, High ResisProbe The designs are suiteble for both newcomers and more experienced hobbyists.
104 peges [Order code BP248 E2.06

DATA AND COMPONENTIDENTIFICATION

ECTROMIC SEMICOMOUCTOR \& LOGIC SYMBOLS

CHART OF RADIO, ELECTRONIC.
SEMICONDUCTORRAND LOGIC SYMBOLS M. H. Ganani B.Sc. (Eng.)
lliustrates the commion, end many of the not-so-common radio. electronic. somiconductor and logic symbols tha acc. in mosi countrien theoughour the world
Chert Ordercoderigh

INTERNATIONALTRANSISTOR EQUIVALENT: GUIDE
A. Michanls

Helpe the reader to find possible substitutes for a oopular selection of Europaan. American and Japanese ransistori. Also showe material type. polerity, menufac. 320 peges

Order code BP85

RADIO, TV, SATELLITE

SETTING UP AN AMATEUR RADIO STATION

 D. PooleThe aim of this book is to give guidence on the decisions which have to be made when setting up any amateur radio or short wave hetening station. Often the experience which be expensive. To help overcome this, guidence is given on many aspects of setting up and running an efficient station It then proceede to the steps that need to be taken in ganning a full transmitting licance.
Topics covered include: The equipment that is needed; Setuing up the shack; Which aerials to use; Methods of construction; Preparing for the licence.
An essential addition to the library of all those taking heir first stepa in amitur redio
86 peges \quad Order code BP300
BEGINNER'S GUIDE TO RADIO - 9th EDITION
Gordon J. King \quad Redio signats, transmitters, recesvers, antennas, components, valves and semiconductors, $C B$ and mmateur redio
266 poges [Order codene08 EB.86

AN INTRODUCTION TO RADIO DXING

A. A. Penfold

Anyone can switch on s short wave recelver and play with the controls until they puck up something, but to find perticule station, country of type of brasdcast and to and knowredge. The object of this book is to help the reader to do just that, which in essence is the fascinating hobby of redio DX ing.
112 pege [Order code BP97
$\mathbf{8 1 . 9 6}$
EXPERIMENTAL ANTENNA TOPICS
H. C. Wright

Ahthough neerly a century has passed since Marconi's first demonstration of radio communication, there is stlll antenna design and behaviour.
The aim of the experimenter will be to make messurement or confirm a principte. and this con be done with relatively fragile, short-life epperatus. Beceuse of this devices described in this book make liberal use of cardbown, cooking foil, plestic bottles, cat food tins, otc These materials are, in general, cheap to obtain and easily
worked with simple tools, encouraging the trial-and-error chitosoply which bads to innovation and discovery. Athough primarily practical book with text closely ypporiaby diagrs, subtion and some simple araph hove also been included. 2 pages Order code Bp27: c3.50

NEWNES SHORTWAVE LISTENING

HANDBOOK
Joe Pritcherd G1 UOW
Part One covers the "science" side of the subject going from few sample electrical "fivet principles", through a brod treatment or radio transmission methods to simple raceivers. The and modify them, with soveral circuits in the book
Pen Two covers the use of sets, what can be heord, the verious bends, propagation, identification of tutations, ources of information, OSLing of stations and listening o smateurs. Some computer techniques. auch es computer morte decoding and redio teletype decoding are abo coversd

Ordercodensfi E14.56

COMPUTINE

SERVICING PERSONAL COMPUTERS -
2nd EDITION
Mike Tooley BA
The revised and enlerged second edition contume a new chapter on the IBM PC. AT. TX and compatibles. If is essontal for anyone concerned with the maintenance of persional service mechnician, student or enthusiest. 240 puges (Hard covertOrder codenels

HOW TO EXPAND, MODERNISE ANO REPAIR PCE

 AND COMPATIBLESR A Penfold
Not only are PC and compatible computers very expendable. but before long most users actually wish to take Pdyantage of that expandability and stont upgreding their PC systems. Some sapects of PC upgrading can be a bit the popular forms of internal PC expension. and should holp to make things reasonably straightforward and paintess. Little knowledge of computing is assumed. The only asaumption is that you cen operate, a atendard PC of come kind (PC, PC XT. PC AT. or a 80388 besed PC).

The subjects covered include: PC overview. Memory upgrades: Adding a hard disk drive; Adding afloppy disk drive; Disploy adaptors and monitors; Fitting a math co-processor: Kepboends; Ports: Mice and digitisens Maintenance (including preventative maintenance) an 156 peger OrdercodeBP271 C4.95

AN INTRODUCTION TO PROGRAMMING THE BBC MODELB MICRO
R. AR J. W. Penfold

Written for readers wanting to learn more about program ming and how to make bert use of the incredibly powerful model B's versatile features. Most aspects of the BBC uselully be added to the information provided by the manulactureris own manual. information provided by the 14 page TOrder codeBPI39 E1.95

AN INTRODUCTION TO 8502 MACHINE CODE A. A. J. W. Penfold

No provious knowledge of microprocessors or
machine code is assumed. Topics covered are: assembly language and assemblera, the register set and memory. binary and hexadecimel numbering and also mixing mechine code with BASIC. Some simple programming examples are given for 6802 -based home computers like the VIC. 20 ORIC-1/Atmos, Electron, BBC and also the Commodore 64.
112 peges COrder codeBPY47 $\mathbf{1 2 . 9 6}$
The PRE-BASIC BOOK
F. A. Wilson. C.G.I.A., C.ENG., F.I.E.E

Another book on BASIC but with difference. This Another book on BASIC but with difference. This one does not skip through the whole of the subject and thereby beve many would-be prointroducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all now and potential micro users.
192 pages

Please state the title and order code clearly. print your name and address and add the required postage to the total order.

Add 75p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DI-

RECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1 RW (mail order only). Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists. Note - our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

Hish Happy Memories

4116	150 ns pulls	1.00	256x9	$80 n s$	11.50
4164	100 ns	1.45	256x9	SIPP 80ns	12.00
41256	120ns	1.40	6264	100ns LP	1.95
41256	100 ns	1.55	62256	100ns LP	2.95
41256	80ns	1.65	2764	250ns	1.85
41464	100 ns	2.20	27128	250 ns	2.25
414256	80 ns	3.95	27256	250ns	2.45
411000	80ns	3.95	27C256	250ns	2.45
$1 \mathrm{Megx9}$	SIMM 80ns	33.50	27512	250 ns	3.45
1 Megx	SIPP 80ns	35.50	27 C 512	250ns	3.75

Motherboards
80286 Upto 4 Mb RAM EMS on board $12 \mathrm{MHz} £ 6616 \mathrm{MHz} £ 8320 \mathrm{MHz} £ 99$ g0386SX 16 MHz £155 20MHz $£ 175$ $03860 \times 25 \mathrm{MHz}$ £295 80386 DX 33 MHz Cache $£ 399$

Odds

120 Mb Internal Tape Streamer 102 Key Tactile Keyboard 3 Button opto-mech mouse Video
16 bit VGA 256K 800×600
16 bit VGA 1Mb $1024 \times 768 \times 256$
Hercules / printer card
Paper White TLL 14" Monitor
VGA Paper White
VGA Colour 1024×768 with 2yrs
on-site warranty

Diskdrives
514." 1.2 Mb Floppy
$31 / 2^{\prime \prime} 1.44 \mathrm{Mb}$ Floppy 5y/" Frame for foppy $40 \mathrm{Mb} 28 \mathrm{Ms} 31 / 2^{\prime \prime}$ IDE 90 Mb 19Ms $31 / 2^{-1}$ IDE 108Mb $19 \mathrm{Ms} 31 / 2^{\prime \prime}$ IDE 211Mb 15Ms 31/2" IDE §499
$\begin{array}{llll} \\ \text { E275 Tower Case 220W } & \text { Sman Desk } \\ \text { S169 }\end{array}$
Carnige on Motherboards, Floppy drives \& Keyboards 55 , Video
\& Controler cards £3, Hard disks, Cases \& Monitors £10, IC's
fee if over $£ 15$ nett, otherwise add 50p. VAT to be added to total. Full list of IC's, computers and computer parts on request.
\square Happy Memories, FREEPOST, Kington, Herefordshire HR5 3BR Tel (054 422) 618 Fax (054 422) 628

HILS COMPONENTS
established since 1973
can offer the trade a selection of nearty 4,000 product lines covering the following ranges Acriols \& Accessories Batiorios \& Accessories Cables \& Accessories Computer Accessories Connectors (oll ypes) Electronic kits/Modules Filwers/Fuses Hordwore/Fixings Headphones/Intercoms Comecting leads (oli it pes) Microphones Multimetors
Passive Componerls P.C. Boords Relays Spookers swiches Service Aids
Soldering Equipment Telephones \& Accessories Transformers

TRADE ENQUIRIES ONLY please phone or wirte quoting your company name \& address for a copy of our 1991 catalogue

ELECTRONIC KITS \& MODULES

FOR HOBBYISTS ELECTRONICS ENTHUSIASTS EDUCATIONAL ESTABLISHMENTS ETC.

Build your own:
Geiger-Mouller Indicator, Meid Detector,
Stereo Amplifier, Digithl Combination Lock, or
any of the many ather kits ovailcble for numerous applications
Each kit comes in component form with easy to follow instructions for assembly
OVER 100 KITS TO CHOOSE FROM
Some of the popular kits include

TRADE ONIY
HILS COMPONENTS LTD
Melinite Industrial Estate
Brixton Road, Walford
Herts WD2 5SL
092352000

* Antenna Amplifiers * Lie Detectors * Alarm Systems \& Monitors
* Infra-Red Light Barriers * Sirens - Kojak-Warship-FBI-Ships-Space * Micro-Wave Indicators * Radios \& Receivers * Electronic Barking Dog * Lighting Consoles * Amplifiers (up to 200w) * Car Aerial Amplifiers PLUS MANY MANY MORE
Call us now for details of your local Stockist

PCB SERVICE

Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remirtances should be sent to The PCB Service, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everydav Electronics (Payment in E sterling only).
NOTE: While 95% of our boards are now held in stock and are disperched within seven days of receipt of order, please allow a maximum of 28 days for delivery overseas readers allow extre if ordered by surface mail. Please check price in the latest issue.

Boards can only be supplied on a payment with order basis.
We do have older baards in stock - please enquire.

PROJECT TITLE	Order Code	Cost
Spectrum EPROM Programmer JUN 89	628	¢7.87
Bat Detector	647	¢4.95
Electronic Spirit Level AUG'89	649	¢3.85
Distance Recorder	651	\{5.23
Power Supplies - Fixed Voltage SEP'89	654	¢4.08
Variable Voltage	655	£4.48
Music on Hold [OCT 89	646	£3.85
Power Supplies - 25V 700 mA	656	¢4.35
30V1A	657	[4.55
EE Seismograph - Control	658	[4.08
Detector	659	¢4.22
Lego/Logo \& Spectrum	660	¢6.49
Wash Pro JNOV'89	643	¢3.83
Biofeedback Monitor - Front End	661	¢4.52
Processor	662	¢4.56
Logo/Lego \& Spectrum Interface	664	[5.60
EEG Electrode Impedance Meter DEC 89	665	£3.98
Biofeedback Signal Generator JAN90	666	$\underline{4.08}$
Quick Cap Tester FEB 90	668	¢3.92
Weather Station		
Anemometer - Froq./Volt Board	670	¢3.94
Optional Display	669	¢3.73
Wind Direction	673/674	[4.22
System Power Supply	675	¢3.59
Prophet In-Car Ioniser	676	¢3.18
EE Weather Station MAR 90		
Display Driver	672 \& 678	¢4.22
Display and Sensor	671	¢4.47
Fermostat Mk2	677	¢4.28
Superhet Broadcast Receiver-		
Tuner/Amp	679/680	[4.22
Stereo Noise Generator APR'90	681	[4.24
Digital Experimenter's Unit - Pulse Generator	682	¢4.46
Power Supply	683	¢3.66
Enlarger Timer	684	£4.28
EE Weather Station		
Rainfall/Sunlight Display	685	¢4.27
Rainfall Sen and Sunlight Sen	686/687	[4.16
Amstrad Speech Synthesiser MAY 90	689	¢4.68
80 Metre Direct Conversion Radio JUN'90	691	£4.95
Mains Appliance Remote Control Infra-Red Transmitter	692/693	¢4.75
Mains Appliance Remote Control JUL90		
Encoder Board A	694	£6.61
Encoder Board B	695	£4.78
The Tester	696	¢4.15
Mains Appliance Remote Control AUG'90		
Mains ON/OFF Decoder (5 or more 697's ordered rogether $£ 3.25$ each)	697	¢4.55
Simple Metronome	698	¢3.94
Hand Tally ${ }^{\text {SEP } 90}$		
Main Board (double-sided) and Display Board	699. 700	£10.95
Alarm Bell Time-Out	701	£4.10
Mains Appliance Remote Control		
Temperature Controller (p.c.b. only)	702	£5.20
Ghost Waker OCT 90	703	£4.32
Frequency Meter	704	¢5.25
Freq. Meter/Tachometer NOV'90	705	£3.98
EE Musketeer (TV/Video/Audio)	706	$\underline{5} 5.78$
Colour Changing Christmas Lights DEC'90	707	$\{4.39$
Microcontroller Light Sequencer	708/709	£10.90
Versatile Bench Power Supply Unit	710	f4.24
Teach-In'91, Part 1 -L200 Module	711	£3.93
Dual Output Module	712	£4.13
LM723 Module	713	£4.21
Spatial Power Display JAN 91	714	£5.33
Amstrad PCW Sound Generator	715	$£ 5.03$
Teach-In '91, Part 2 -G.P. Transistor Amp	717	£3.77
Dual Op.Amp Module	718	£3.83

NEW DISCO KITS

SWITCHABLE 3-4 CHANNEL LIGHTING CONTROLLER. With beatchase and speed controls.
PCB + Components Kit... $£ 21.00$
Hardware + punched
case kit with label etc.
. 12.00
MULTICHASE 4 CHANNEL LIGHTING CONTROLLER. With chase select, beatchase and speed controls.
PCB + Components kit.... $£ 26.00$
Hardware + punched
case kit with label etc. $\mathbf{£ 1 3 . 0 0}$

COMPUTER CHASE 4 CHANNEL LIGHTING CONTROLLER. With sound chase/sound to light automatic audio level. 3 superb programs including over 20 different chases.
PCB + Components Kit.................£35.00
Hardware + punched
case kit with label etc..................... $\mathbf{£ 1 5 . 0 0}$
All Hardware Kits include Bulgin 8 way socket, mains lead, mains switch, $1 / 4$ " audio jack socket, cable restraint, feet and all fixings. All Prices Include VAT. P\&P only $£ 1.50$ per order.
 98 School Street. Wolverhampton, West Midlands WV3 ONR.

Tel: (0902) 23275

PCB \& SCHEMATIC CAD	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC	PULSAR	ANALYSER III $\mathbf{\Sigma}$	Z-MATCH II $\mathbf{\Sigma 1 9 5}$
- Design SIngle slded, Double sided and Muhtilayer boards. - Provides Surface Mount support. - Standard output includes Dot Matrix / Laser / Inkjet printers, Pen Plotters - Award Winning EASY-PC In use in over 9000 installations in 50 Countries World-Wide. - Runs on PC/KT/AT/286/386 with Herc, CGA, EGA, VGA. - Superbly Easy to use. - Not Copy Protected.	- At lastl A full featured Digital Circuit Simulator for less than $£ 1000$! - Pulsar allows you to test your logic designs without the need for expensive test equipment. - Catch glitches down to a pico second per week! - Includes 4000 Series CMOS and 74LS Libraries. - Runs on PC/XT/AT/286/386/486 with EGA or VGA. Hard disk recommended. - Not Copy protected.	- NEW powerful ANALYSER III has full graphical output. - Handles R's,L's, C's, BJT's, FET's, OP-amp's, Tapped and untapped Transformers, and Microstrip and Co-axial Transmission Lines. - Calculates Input and Output Impedances, Gain and Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PC/XT/AT/286/386/486 with EGA or VGA. - Not Copy protected.	- Z-MATCH II takes the drudgery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutions to many matching problems using transmission line transformers, stubs, discrete componénts etc.etc.. - Supplied whth comprehensive user instructions including many worked examples. - Runs on PCNXT/AT/386/486, CGA,EGA,VGA - Not Copy Protected
REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND. Telephone: 048061778 (7 lines) Fax: 0480 494042 International: +44-480-61778 Fax: +44-480-494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.			

EvERYDAY CLASSIFIED

ELECTRONICS
The prepaid rate for semi-display space is $£ 8$ ($+V A T$) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is $30 p$ (+ VAT) acr..nerd (minimum 12 words).
All cheques. postal orders. etc.. to be made payable to Everyday Electronics. VAT must be added. Advertisements, logether with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

SERVICE MANUALS

Available for most equipment. TV, Video, Audio, Test, Amateur Radio, Military Surplus, Kitchen, etc. Any Video Recorder. Video Camera or

Oscilloscope Manual $£ 15.00$ (subject to stock).
All other Manuals $£ 10.00$ (subject to stock).
State Make and Model required with order Over 100,000 manuals available for equipment from 1930's to the present. Circuit sections supplied on full size sheets up to A1 size ($33^{\prime \prime} \times 24^{\prime \prime}$) if applicable. Originals or photostats supplied as available.
FREE Repair and Data Guide Catalogue with all orders or send SAE for your copy today
MAURITRON (EE)
8 Cherry Tree Road, Chinnor,
Oxfordshire OX9 40Y Tel: (0844) 51694 Fax: (0844) 52554

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING

THOSE ELIGIBLE CAN APPLY FOAE.T. GRANT SUPPORT AN EOUAL OPPORTUNITIES PROGRAMME
O.N.C., O.N.D. and H.N.C.

Next course commences
Monday 6th January 1992
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721

NEW VHF MICROTRANSMITTER KIT Tunesble $80.136 \mathrm{MHz}, 500$ metre range, senstive electret microphone, high qualit PCB.
SPECIAL OFFEA complete hit ONIY E5.95
Aseambled and reedy to use E 9.95 post fre
mate
aUANTEK ELECTRONics"ItD Kits Dept. (EE), 46u 8tation Road
Northfield, Birmingham B31 3TE

res
 Cooke International

We stock used test equipment, scopes, sig. gens
DVM's, oscillators, elc in large quantities. We can now offer a copy service for workshop manuals for many instruments. Please ask for details. Send SAE for lists
Contact: Cooke International. Unit 4, Fordingbridge Site, Main Road, Barnham Bognor Regis, Wost Sussex PO22 OEB Open: Mon-Fri 9am-5pm or phone ©243545111-Fax: $\mathbf{0 2 4 3 5 4 2 4 5 7}$

OL-LILTE TIDEO

ELECTRONICS FOR THE HOEBYIST is a 90 minute video-cassette using computer-graphic simulations to enable the hobbyist or student to understand the way in which common electronic components work and is available directly from us at only £ 19.95 inc. P\&P.
Other titles available. S.A.E. for list. Allow 14 days for delivery. Send Cheques/P.O. payable to: On-LIne Video Merketing (Dept EV-2) The Cottage, Tredown Farm, Bradstone, Milton Abbot, Tavistock, Devon PL 19 OOT

RESISTORS \& CAPACITORS

Top quality components at
VERY SPECIAL PRICESII!
SAE for lists and Order Form
M. Coller, Grantham House Grantham Bank, Barcombe East Sussex BN8 5DJ

PCE CAD USERS
Artwork transparencies produced from
your printouts or files
Superb quality
:---:
Tel O6O2 841831

A
C
C
D
D
D
S
1

Ou	$1-90$	100-499
(MPP) 500 maH	$\underline{80.90}$	80.77 + VAT
AA 500 maH solder legs	¢1.55	¢0.95 + VAT
AA 700 maH high capacity	¢1.8	$81.20+$ VAT
C (HP11), 1.2AH	C2.20	£1.60+VAT
C 2 AH with solder tags	E3.80	$5.25+$ VAT
D (HP2) 1. 2 ан	. 80	$\underline{1.96}+\mathrm{VaT}$
D AAH with solder ta	¢4.95	E3.50+VAT
PP3 8.4V 110 mAH	¢4.95	E3.65-VAT
Sub C with solder tags 1.2AH	$\underline{2} .50$	£1.70+VAT
1/2 A with solder tags	¢1.55	£1.17+VAT
AAA (HP18) 180 mAH	¢1.75	£1.15+V

Special offers for unusual sizes
only while stocks last. Please check availability before ordering.
$\begin{array}{llll} & \text { cell } 7 \text { AH } 32 \times 87 \mathrm{~mm} \text { with fiat top } & 1.09 & 100-490 \\ & 53.95 & 8300+\mathrm{VA}\end{array}$ F cell with solder thes $£ 4.30$ £3.00+VAT
Celluilir telephone battery
$42 \mathrm{~mm} \operatorname{long} x 16 \mathrm{~mm}$ dia $\quad £ 1.45 \quad \mathrm{c} 0.55+$ VAT
Stick of 4171×18 dia with 150 mm
red \& black leads $55.95 \quad \mathrm{C4.00}+\mathrm{VAT}$ 4 cell oentery $94 \times 25 \mathrm{~mm} 4.8 \mathrm{~V} \quad £ 3.50 \quad £ 2.30+\mathrm{VAT}$ All 1 to 99 prices include VAT Please add 95p postage \& packing per order

278-278 Chateworth Road, Chesterfield S40 2BH Access i Visa orders tel: (0246) 211202

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send $2 \times 22 \mathrm{p}$ stamps for list. ACE(EE), 53 Woodland Way. Burntwood. Siafts.
G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COI 5 TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. Circuits. 38 Poynings Drive. Sussex BN3 8GR, or phone Brighton 720203.
OSCILLOSCOPE SC110 10 MHz Sinclair battery or PSU. single trace. £60. Thandar PFM-200-A frequency counter £60. Phone 0267 290363.

HUNDREDS of unusual items cheap! Send 90p (coins/stamps) for interesting samples and list. Grimsby Electronics, Lambert Road, Grimsby.
UNUSUAL KITS, bat detectors, brain wave stimulators, microtransmitters, etc. For list send SAE to P. Cartwright. 10 Charlotte Rd, Edgbaston. Birmingham Bis 2NQ.
WANTED. Circuit diagram for soundlab car amplifier model KB 907 . Will pay good money as urgently required. Tel 0933665128.
RS232 Serial comms, professional software. COMIO VI.I, for IBM PC com ports. Very easy to use. C. 8086, source code functions for byte. string, block, buffered, interrupt driven I/O. Manual, Demos, utilities. $£ 25$ per package. Richard. Micro SciTech Ltd 0252625439.
OSCILLOSCOPE, Hameg HM $1005,100 \mathrm{MHz}$. still with I year warranty, $£ 700$. RS UV exposure box £45. Weller solder station $£ 35.0993705877$. TURN your hobby into a business using the Home Enterprise Package. For details send SAE to H.E.P., 53 Greystoke Avenue, Sandyford. Newcastle-upon-Tyne NE2 IPN.
TRANSMITTER circuit diagrams - FM. Medium, Shortwave. CB - Full instructions, minimum seventeen circuits. Cheques/PO's $£ 4.25$ to: D. Davies, 33 Gwaelodygarth. Merthyr Tydfil, CF478YU. UK.
CHEMILUMINESCENT lightsticks - fascinating chemical lightsource. Nine 4° sticks sent for $£ 9.99$ (red. blue or green). Likco Lid, 23 Middlewood Park, Livingston. EHS4 8AZ

THE BRITISH AMATEUR ELECTRONICS CLUB exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter. For details, write to the Chairman:

Mr H. F. Howard, 41 Thingwall Park Fishpond, Bristol BS16 2AN
Space donsind by Everyday Elvctronics

Technical Information Services 76 CHURCH STREET, LARKHAL, LANARKSHIRE, MLO IHE Tel. (8698) 84585 Mom-Pri 8.30am - 5.00pm TeL (06s8) s:3334 Outwith business hours
 FREE QUOTB FREE VOUCHERS \& FREB CATALOGUB

Romonbor, not ont do we have EVEIV sentce meet ever prociced, out wo atoo have

THE WORIDS LARGEST COLLECTION OF SERVICE MANUALS
a We are sole sumplers of vanous fant.fmome evids MEPAR MANULLS \& TECMNCAL MANYALS
 OATA REFERENCE MANUNL "- cocoritio for the sortowe dectictan"


```
WE BUY MANUFACTURER'S SURPLUS STOCK HENCE THESE LOW PRICES FOR PRIME COMPONENTS
PAFBT FAN. 12 V OC 1 W \(80 \mathrm{~mm}^{2} 32 \mathrm{~mm}\) doep
```



```
MANM FIITEM - Euton or mind quelty make/IE.C./3A 280 V .... .. ...
Bos of 40 mils
```



``` in bula to the trade. All spedier aty. perts 90 in the pects rogerdice of velue
```



``` H
```



``` PLEASE ADD 17Y\% VAT TO TOTAL COST WCLU\&VE OF POSTAL CMARGES
RICH ELECTRONICS
Dept. E.E. The Werehouse. Windeor Plece, Senghenydd,
0222830022
0222831547 Mid-Glem.S. Wales CF8 2GD
```


We do. The Advertising Standards Authority ensures advertisenients neet with the strict Code of Advertising Practice.

So If you question an advertiser, they have to answer to us.

To find out more about the ASA. please write to Advertising SLandards Authorlty Department X, Brook House, Torrington Place, London WC1t: TIIN.

MAKE YOUR INTERESTS PAY!
over the past 100 vears more than 9 mumon students throughout the worla have found it worth their while An ics nome study course can helo vou get a better job. make more courses and is the targest correspondence school in the world. You learn at your own Dace, when and where you want under the guldance of expert personar tutors Find out how we can hevp rov. Post or phone todar for vour mi miomintiow pack on the course of your choi

Electronics	\square	TV, video : Hi-Fl servicing	\square
Baske Eigetronic Encineering ICity it Cullde	\square	Refrigeration 3 Air condtioning	\square
Electrial Engineerino	\square	car mectranies	\square
Electrical Contracting/ instavation	\square	computer Prooramming	
Mrme		- aocress	

MINNDASCOPELID

REPAIR \& RECALIBRATE OSCILLOSCOPES

 ALL MAKES AND MODELS NATIONWIDE COLLECTION \& DELIVERYFREE ESTIMATES

Llangollen, CIwyd, N. Wales LL20 7PB PHONE: 069172597

MISCELLANEOUS ITEMS	
Comera returns 35mm Auto	
Aaeh/ Wind-on, minor factis or 2 for	$\begin{gathered} c \\ . c 10.00 \\ \hline .8100 \end{gathered}$
Dictuphone caseste, mech/record erase pleybeck heeds. 6 V solvnoid. motor, hell ether minch \qquad $12.00 .0^{*}$	
T.V./Printer stends Bicc-Voro Eseiwine consituction kit	c3.5 0
TTU/CMOS shont circuit enoo	.4.56
Dot metrix LCD 10.2 inee	$3.76{ }^{*}$
Dot matrix LCD 16×1 lines with Datt \qquad	
2 digin 16 segment VF diaploy with data 4 dight innolligent dot metrix dia	2.58.00*
17 ecomen V.F. dimploy with diver boerd and deta...	
8 digit liquid crytal dieploy	1.75 ea
4 digit LCD with 7211 driver	53.60 ¢*
Dipitel clock dimploy.........	22.50 ${ }^{\circ}$
11 koy membrene keyped	C1.50 ea*
Mepboerd $392 \mathrm{~mm} \times 180 \mathrm{~mm} / 100$ kere on boerd + LCD + 74HCO6/BOCAS esaity remor	. 4.85
$19^{\circ} 3 \mathrm{U}$ sub rack enclosures.... 12V mapper motor. 48 seape pe $7.3^{\circ} \mathrm{smp} \mathrm{ming}$	
Simppow motor boerd with 2 sla opto +2 mercury sit awith	$\text { c3.8 }+e^{*}$
1000 mixed X watt 1\% resimior	[4.85 0
250 dectrolvic axiol + redial	c4.55 0
100 Mixed trinnerer cepse popule 50 of MC 78M12CT Vot Rege	$\begin{gathered} 54.85^{\circ} \\ \hline \end{gathered}$
20 ofl W02m Volt Rege.	C1.50*
Cable box UHF modulenor/video premp/traneformer/R's +C 's/ce.s
1000 off mixed Muhiloyw Cernanic Cepa	17.5
Soler cell modules 0.46 V 700	5
B.B.C. Micro to diec drive leed	c1. $60{ }^{\circ}$
Cer Burgler alarm vitration auto entry/exit doley \qquad	c5.85 ca*
Singete zone aldem penel ato entry/exit deley houed in domentic lights socket. \qquad chas e	

P.S.U.'s, TRANSFORMERS, COMPONENTS

P.C.P.S.U. 60 watt 115 - 230 V inpu1 +5 V IA +12 V 2.5 A output with buill in fan. STC P.S.U. 240 V input 5V 8 A outpul (converts to 12 V 3 A details (Converts to $12 \mathrm{~V} 3 A$ dotail 240 V input 5 V 104 output (con E 5.96 e 12V 5A no details) E5......... 6000 line output tranaformers. . .f1.25 ea 240 V in 0.12 V 0.75 A out transformer
vor

240 V in $0-28 \mathrm{~V} 82 \mathrm{VA}$ oul tent $£ 1.75$ Transformer + PCB oives $2 \times 7.5 \mathrm{~V} 32 \mathrm{VA} .7$ with skt for 5 or $12 V$ regulator, will powe
 recevve) …....................... 1.50 pal 3 to 16 V Piezoslectric sounders $\quad 50 \mathrm{p}$ 9VDC electromechanical sounder. 24 V DC electromechanical sounder
2 A 250 V kerwwitch 3 position key 24250 V kerswitch 3 position key removable in two positions DIL switches PCB MT 3/4/8 way
SV SPCO SIL reed nolay 5V SPCO SIL reed nolay
5 V 2PCO DIL 12 V 2 PCO or 4 PCO continental relay 12V 10A PCB MT (to make contect

3 to 12 V electro meonetic ecoustic traneducer with dati............. 2.4576/8.8329/21.10 MHz crystal Bridges 25A 200V 2A100V 310 Mixed components pec 50 Mixed temminal blocks

$$
\begin{aligned}
& 2500 \text { of } 18 / 22 / 24 / 40 \\
& 100 \text { off Phono plugs }
\end{aligned}
$$

(red/black/orey)
\qquad
QUANTITY DIBCOUNTSAVALABLE PLEASE RING

St. Ives, Huntingdon,

 Cambs PE17 6EQ Tel/Fax: 0480300819

C_SIM Electronic Circulk Simulation \& Analysis Sotware C_sim is a circall analyats a almulation environment for smell competors. You can check for loop stability, Irequency responee or distortions in circuits before actually building anything, leading to 'right first time' designs, and lower development costs. It features:

- Elasy to uee oraphical user intertace.
- Editior for cremion and viewing of circuit descripeone and simulamion recult. - Graph ploting program to plot simulation results. up to 4 treces per graph. with full cursor measurament aybiom.
- Antopue circurt simuletor utilasing a subed of the indvetry standard SPICE 2 amulator Ianguege, handing all pagarve components. BuTs, drodee, cependent and independen sources, and performing DC, AC end tranaiem analysle.

C_SIM is constantly undergoing development. Forthcoming upasese incluce en expreesion
 C_SMM is avaliabte for the ATARI ST. COMMOOORE AMICA, and IBM PCE and compmables. and compe complote with a ring bound manual. The PC veraion requires 512 KD RAM mimmum. the ATARI ST/AMIGA veraione regire 1Mb RAM and 1Mo dist minimum. All veraione run with hari

Order now by post direct from

Akula Systoms, 49 Lisson Grove, Mutiey, Plymouth PL4 7DL using cheque or postal order. Allow vo to 23 days ior detivery. Inquiries welcome. Alernatively.
 misnual on diak and printiod corwmend summery.

| Cerbon Film resistors XW 5\% E24 series 0.51 R to 10MO
 100 off per value - 75p. even hundreds per value totelling 1000
 Metal Film retistore XW 10R to 1 MO 5\% E12 series-2p. 1\% E24 series
 Mixed metal/carbon film resistors KW E24 errise 1 RO to 10MO.
 1 watt mixed motal/Carbon Film 5\% E12 series 4R7 to 10 Megohms
 Linear Carbon pre-sats 100 mW and KW 100R to 4 M7 E6 series.
 Miniature polyster cepecitors 250 V working for vertical mounting
 $.015, .022, .033, .047, .068-4 p .0 .1-5 p .0 .12,0.15,0.22-6 p .0 .47 \cdot 8 p .0 .68 \cdot 8 p .1 .0 \cdot 12 p$
 Mylar (polyeteter) capacitors 100 V working $E 12$ series vertical mounting
 1000 p to 8200p - 3p. 01 to 068 - 4p. 0.1 -5p. 0.12, 0.15. 0.22 -6p. $0.47 / 50 \mathrm{~V}$. 8p
 submin ceramic plate capucitors 100 V whe vertical mountinge. E12 eeriee
 $2 \% 1.8 \mathrm{pf}$ to $47 \mathrm{pt}-3 \mathrm{p}$. $2 \% 56 \mathrm{pf}$ to 330pf - 4p. 10\% 390p-4700p.
 Disc/plate cermics 50V E1 2 series 1 PO to 1000P. E8 Serres 1500P to 47000P............... 2p
 Polytyrene capacitors 63 V working E12 eeries long axial wirce
 10 pf to 820pf - 4p. 1000 pf to $10,000 \mathrm{pf}$ - 5 p. 12,000pf
 741 Op Amp - 20p. 555 Timer
 cmos 4001-20p. 4011 - 22p. 4017
 ALUMINIUM ELECTROLVIICS (Mfde/Nolte)
 $1 / 50,2.2 / 50,4.7 / 50,10 / 25,10 / 50$
 22/16. 22/25, 22/50, 47/16, 47/25, 47/50
 100/16. 100/25 7p; 100/50 12p: 100/100
 220/16 8p: 220/25. 220/50 10p: 470/16. 470/25
 1000/25 25p; 1000/35, 2200/25 35p; 4700/25.
 Submin, tantalum bead electrolyics (Mfds/Votts)
 $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
 2.2/35, 4.7/25, 4.7/35, 6.8/16 15p; 10/16. 22/6
 33/10.47/6, 22/16 30p; 47/10 36p; 47/16 60p; 47/35
 VOLTAGEREGULATORS
 $1 \mathrm{~A}+\mathrm{or}-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}$ \& $24 \mathrm{~V} \cdot 55 \mathrm{p} .100 \mathrm{~mA} .5 .8 .12,15 . \mathrm{V}+\ldots30 p$
 DIODES (piv/armpa)
 78/25mA 1 N41 48 2p. $800 / 1$ A 1 N4008 4\%p. 400/3A 1 N5404 14p. $115 / 15 \mathrm{~mA} 0491$
 100/1A 1 N4002 3 Kpp. $1000 / 1$ A 1 N4007 5p. $60 / 1.5 A$ S1 M1 5p. 100/1A bridge 25p
 $400 / 1$ A 1 N4004 4p. 1250/1A BY 127 10p. 30/15A OA47
 Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8p. 1 watt
 Battery snaps for PP3 - 6p for PP9
 L.E.D. $s 3 \mathrm{~mm}$. \& 5 mm . Red. Green. Yellow - 10p. Grommets 3 mm - 2p. 5 mm .
 Red fisashing L.E.D.'s require 9.12 V supply only
 Mains indicator neons with 220 k resistor
 20 mm fuses 100 mA to 5 A . O. blow 5 p .A/surge 10p. Holders, cheseis, mounting 6p
 High speed pc drill 0.8.1.0, 1.3, 1.5. 2.0mm-30p. Machines 12 V dc.
 HELPING HANDS 8 bell joints and 2 croc clips to hold awkwerd jobs f 3.50 s
 ANHP7 Nicad rechergeable cells 90p each. Universal cherger unit .
 Glase reed switches with single pole make contects -8 p . Magnets.
 $0.1^{\prime \prime}$ Stripbosed $2 K^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holos -25 p . $3 \mathrm{~m}_{4} \times 2 \%^{-} 24$ rows 37 holes
 Jack plugs 2.5 \& 3.5 m .
 Sockets Panel Mig. 2.5 \& 3.5 m .
 TRANSISTORS
 BC107/8/9 - 12p. BC547/B/9 - 8p. BC657/8/9 - 8p. BC182. 182L. BC183. 183L
 BC184, 184L, BC212, 212L. 10p.
 BC327. 337, 337L-12p. BC727. 737-12p. BD135/6/7/8/9 - 25p. BCY70-15p.
 BFYSO/51/52.20p.
 |
| :---: | All prices ere inclusive of VAT. Poetege 300 (free over f5). Lists Free.

THE CR SUPPLY CO
127 Chesterfield Rd., Sheffield S8 ORN Tel: 0742557771 Return posting

AF WAVEFORM GENERATOR

 KIT ONLY
£29.95

($\mathbf{£ 3 9 . 9 5}$ BUILT \& TESTED) The major drawback for the electronics enthusiast is the high cost or test gear. This is the first in a series make test gear more affordable to the enthusiast.

* SINE,SQUARE/TRIANGLE

* FREQUENCY RANGE $20 \mathrm{~Hz}-18 \mathrm{kHz}$
* OUTPUT SIGNAL VOLTAGE 0-10V p-p
* POWERED BY TWO PP3 BATTERIES (Not supplied)

Just add $£ 1.50$ P\&P and send cash, cheque or P.O. to:-
KM ELECTRONICS
54 Moorside Road, Kirkheaton. Huddersfield HD5 0LP. Tel: (0484) 545914

LOW COST UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET
Incorporating the latest surtace Acoustle Wave technology, the sybtem con sists of a small "zero-power". UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and 3 relay outputs, 2 alternate and momentary.
8-way DIL switches on both boards set the unique security code. Many epplications including lighting, alerms, the "eutomatic home". etc.

Size:	$T \times 45 \times 30 \mathrm{~mm}$	$R \times 55 \times 65 \mathrm{~mm}$
Supply:	$T \times 3-12 \mathrm{~V}$	$R \times 5-12 \mathrm{~V}$
Range	Up to 200 m	

Complete System (2 kits . 529.98
Individual Transmitter..
Individual Receiver..
Please allow 28 days for delivery
Cheques/POs to
BLB Electronics
341 Darwen Road, Bromley Cross, Bolton BL7 9BY

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry national BTEC awards. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

Analogue Electronics
Digital Electronics
Fibre/Optoelectronics
Programmable Logic Controllers
Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, toois, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Lid., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

The catalogue

The COMPONENTS

As wide a choice as you could wish - semiconductors surface mourting, opto-electronics, Rs \& Cs, etc. Top quality; fairly priced.
The SUPPLIERS
Siemens, Boss, Cliff, Omeg, Lorlin, R.S., Uniross, etc to our top quality standards.
The SERVICE
Prompt, personal, with customer satisfaction guaranteed. Access/Visa facilities.

Eectro alue

28(A) St. Jude's Road, Englefield Green. Egham. Surrey TW20 OHB Phone-0784433603 Fax-0784435216

The UK Distributor for the complete ILP Audio Range

* Bipolar Modules - 15 watts to 180 watts
* Mosfet Modules - 60 watts to 180 watts
* Power Supplies
* Pre-amplifier Modules

100 volt Line Transformers

* Power Slave Amplifiers

Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611

A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE

OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE COSTS £1.50 - INCLUDES VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY PLEASE SEND YOUR REMITTANCE WITH THE VOUCHER BELOW.

ADVERTISERS INDEX

AKULA SYSTEMS 70
BK ELECTRONICS 68
BLBELECTRONICS (iii)
BULL ELECTRICAL Cover (ii)
CAMBRIDGE COMP SCIENCE 70
CIRKIT DISTRIBUTION 30
COMPELEC 69
CR SUPPLY COMPANY 70
ELECTRONIZE DESIGN. 72
ESA ELECTRONIC COMP 27
ELECTROVALUE 71
GREENWELD ELECTRONICS
65
65
HART ELECTRONIC KITS 49
HIGH-Q-ELECTRONICS. 67
HILLS COMPONENTS 65
HOBBYKIT2
JAYTEE ELECTRONIC SERVICES 65/72
JPG ELECTRONICS 68
KMELECTRONICS 70
MAGENTA ELECTRONICS 8/9
MAPLIN ELECTRONICS (iv)
MARAPET 71
MAURITRON TECH. SERV'S 68
MENDASCOPE 69
NATIONAL COLLEGE OF TECHNOLOGY 70
NORTECH ELECTRONIC 67
NUMBER ONE SYSTEMS 67
OMNI ELECTRONICS. 67
.. .72
.. .41
RICH ELECTRONICS. 69
SHERWOOD ELEC. COMP 69
STEWART OF READING 71
SUMA DESIGNS 6
TECHNICAL INFO SERVICES 69
TK ELECTRONICS 71
TSIEN. 10
VIEWCOM ELECTRONICS $4 / 5$
electronize
CAR ALARM KITS

MICAOPRESSURE CAR ALARM

This new type of alarm is triggered by a unique pressure sensing system. As any venicle door is opened air is drawn out causing a minule drop in air pressure. A sensor detects this sudden pressure change and sets off the alarm. An electronic filter, luned to only 3 Hz , and adjustabie sensitivity avoid taise alarms whilst an arrangement of timers provide automatic operation.

* Operates on all doors and taligate - no ewitches needed.
* Automatically armed 40 seconds after leaving vehicte.
* 10 second entry delay with sudible warning. (0.5 second avellabie.) * Sounds horn or siren Intermittentiy tor 30 seconds - then re-apms.

E Easy fitting - only 3 wires to connect - no holes to drill.
\& Controlled by Ignition switch, hidden switch or coded remote controt (The optional siren and coded remote control are supplied separately.)

MICRO-PRESSURE ALARM Parts kit E15.95 Assembied $\mathbf{2 2 . 3 5}$

NEW CODED /R REMOTE CONTROL

Our latest addition allows controt of our alarms from outside the vehicle. Both ransmitter and receiver use a chip designed specially for car security systems with 59,046 code combinations. You can even set your own code. with several vehicles on the same code or several transmitters for one vehide if required. - High security, customer selected, 24 bit code.

- Key-ring transmitter with long life minature alkaline battery.
\& HIgh power infra-red emitter with range up to 5 metres
\& Low protlle dash top recelver/decoder.
\& Flashing high intensity red L.E.D. warns off intruders
t Green L.E.D. shows alarm is off.
Use the coded transmimer and receiver with our Micro-Pressure or Volt Drop alarm to form a coded remote controlled system.

CODE TRANSMITTER Parts klt £13.95 Assembled £17.95
CODE RECEIVER Parts kit E21.35 Assembled E26.55
Also available :
VOLT DROP CAR ALARM Partsklt £14.90 Assembled $£ 20.95$ 120dB PIEZO SIREN
MICRO-PRESSURE TRIGGER EXTENDED CDI IGNITION

Parts klt £10.95 Parts klt $£ 22.75$ Assembied $£ 11.95$ Assembled £14.95 Assembled $£ 28.45$ All the above Include cabie, connectors and clear easy to follow instructions. All kits include case, PCB, everything down to the last washer, even solder. All prices now inctude post, packing and VAT on U.K. orders. Same prices apply to all European countries. For delivery outside Europe please add £3. Telephone orders accepted with VISA or ACCESS payment.
Order direct (please quote ret. EE1) or send for more details from
ELECTRONIZE DESIGN Tel. 0213085871
2 Millside Road, Four Oaks, Sutton Coldtield, B74 400

[^0]
1992 BUYER'S AUIDE TO ELEGTRONIG COMPONENTS

Over 600 product packed pages with more than 600 brand new products. On sale now, only $£ 2.75$ Available from all branches of WHSMITH and Maplin shops nationwide. Hundreds of new products at super low prices!

[^0]: Published on approximately the first Friday of each month by Wimborne Publishing Lid.. 6 Church Street. Wimborne. Dorset BH21 IJH. Printed in England by Benham \& Co. Limited. Colchester, Essex. Distributed by Seymour. Windsor House. 1270 London Road. Norbury. London SW16 4DH. Sole Agents for Australia and New Zealand -Gordon \& Gotch (A sia) Lid., South Arrica -Central News Agency Lid. Subscriptions INLAND £ 18.50 and O ERSFAS 23 ($£ 40$. 50 airmail) payable to "Everyday Electronics Subscription Department. 6 Church Street. Wimborme. Dorset BH2IIJH. ERYDAY ELECS otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affined to or as part of any publication or advertising. literary or pictorial matter whatsoever.

