= MERYA

Squeaking Bat

PLUS...
SMALL TOOLS
BUYERS CUIDE
Screaming Mask TEACH IN '86 PROJECT - LCR BRIDCE

Newcomers Magazine for Electronic \& Computer Projects

£1 BAKERS DOZEN PÁRCELS

(all $£ 1$ each 13 for $£ 12$)
All parcels are brand new components price $£ 1$ per parcel - if you order 12 then pick another free

BD115 -

1. Wall mounting thermostat with

BD116-
3 pairs small and 2 pairs medium insulated croc clips
BD117 - 4 pairs large croc clips (car battery type)
BD119 - $\quad \begin{gathered}\text { with back } \\ 2 \text { fibreglass fire fronts } \\ \text { log } \\ \text { effect } \& \text { coal effec }\end{gathered}$
BD120- $\quad 2$ component boards with 2 amp 400 v bridge rectifier and 15 other recs
BD121 - 4 push push switches for table lambs etc
BD123-100 staples for thin flex white plastic and hardened nail
BD124-25 clear plastic lenses $13 / 4$ " diameter
BD125-4 items: rev per hour mains motor, counter,
BD126 - 4 pilot bulb lamp holders bakelite batten type
BD127-4 pilot bulb holders metal clip on type
BD128- 10 very fine drills for pobs etc
BD129 - 4 extra thin screw drivers for instruments
BD130 - 2 centre zero panel meters 100-0-100 uA
BD131- 1100 uA edge wise balance meter
2 plastic boxes with windows, idea 1 Microsonic radio cas
BD133- 1 morre case
BD135-10 large and 20 small Screwit porcelain
BD136 - 2 car radio speakers $5^{\prime \prime}$ round 4 ohm made
$15^{\prime \prime} 4$ ohm speaker 5 watts \& 1 matching tweeter
$19^{\prime \prime} \times 4^{\prime \prime} 8$ ohm 5 wath speaker
BD139- 4600 ohm microphone/speaker inserts
BD140 - 1 waterproof metal cased plug and socket 3 pin
10 m
BD141 - 10 miniature slide switches 2 pole c/o 04 ba spanners 1 end open, other end closed
BD143 - 5 100k multi turn pots with knob
BD144-10 chassis mounting fuse holders for 5 mm fuses
BD145- 24 reed relay kits 3 v coil can be normally
BD146- 20 pilot bulbs 6.5 v .3a Philips
Secret switch kit with data
BD148-1 Printed circuit kit with data and 100 circuits
fingers) for twin 13 A fingers) for twin 13A

BD151 - 204 way terminal blocks 3 A 250 N
BD152 - 1 Air or gas shut off valve - clockwork BD153- $\quad 1$ Air or gas shut off valve - thermostatic BD154- $\quad 112 v$ drip proof relay - tideal for car jobs 2 Varicap push button tuners winh knoms ${ }_{6} 2$ circuit micro switches - Licon ideal for Joystick
512 way connector blocks 2A 250 V
312 way connector blocks 25 A 250 V
BD160 - 6 pairs 3 way connectors plug in, terminal block type
BD161 - $113 A$ panel socket MK ref 735 WH
BD162 -
$13 A$ mounting or can be removed from box for flush mounting
BD163 - 313 A sockets good British make but brown BD164 - $213 A$ switched sockets good British make but brown
BD165 - 1 13A switched socket on base for surface mounting
1 30A panel mounting toggle switch
18 pin flex terminating plug and chassis mouning socken (s.h
250 tag component mounting strips
4 Shor wave air spaced trimmers 2-30pf 2 Hivac numicator tubes neon type
10 12v 6 w bulbs Philips m.e.s.
16 v d.c. soienoid with plunger $1^{\prime \prime}$ travel 2 end of ravel clo switches - very robust 1200 rpm motor mains operated 2 watt 4 heavy duty push switches - ideal for foot operation 3 A 250 v
BD177- 5 Lilliput bulbs 12 v . BD178- $\quad 3$ Oblong amber indicators with neuts 24 V
BD179-
3 Oblong amber indicators with neons 240 V 6 round amber ind 3 hos 8D182 - 100 p.v.c. grommels

BD183 - 1 two gang short wave tuning condenser
BD184 - With $/ 4^{\prime \prime}$ spindle $2 \times 50 \mathrm{pf}$ er each section 500 pf with trimmers and good length $1 / /^{\prime \prime}$ spindle
BD185-4 ferrite rod aerials $8^{\prime \prime} \times 3 / 8^{\prime \prime}$ rods with long BD186-1 3 wafer switch: 18 pole 2 way, 12 pole 3 way, 9 pole 4 way, 6 pole 6 way, 3 pole 1 way, your choice
BD187-2 2 wafer switches 12 pole 2 way, 8 pole 3 way, 6 pole 4 way, 4 pole 6 way, 2 pole 12
way, any 2 your choice 1 plastic box sloping met
BD188-1 plastic box sloping metal front, size $160 \times$
BD189 - 2 double pole 20 amp 250 V flush mounting

VENNER TIME SWITCH

Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily automatically correcting for the expensive time switch but you can ha it for only $£ 2.95$ without case, metal
case $-£ 2.95$, adaptor kit to conver this case - $\mathbf{\ddagger 2 . 9 5}$, adaptor kit to convert this
into a normal 24 hr . time switch but with the added advantage of up to 12 onvoffs per 24hrs. This makes an ideal controller for the immersion heater. Price

\section*{| Ex-Electricity Board. |
| :--- |
| Guaranteed 12 mont |} of adaptor kit is $£ 2.30$.

12 volt MOTOR BY SMITHS
 length of $1 / 1 / 4^{4}$
1110 hp c3.45

SOUND TO LIGHT UNIT

Complete kit of parts for a thre channel sound to light unit
controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is each channel, and a master onoff. The audio input and output are by $1 / 4 /$ sockets and three panel mounting fose holders provide

PRESTEL

UNITS
These are b
new and we new end we
understand
came with
 guarantee
void as the

TANGENTIAL BLOW HEATER

or have 3 for $\mathbf{E 1 6}$ post paid

FROZEN PIPES

Can be avoided by winding our heating cable around them - 15 Hundreds of other uses as it is watetrouot and ver witiexible.
Resistance 50 .

CORDLESS TELEPHONES
"TTS FOR YOU-OU" even if you are in the bath, its an infinite extansion any room ann eveni in the garden- - have one on
approval or come and try one here. BT approved $£ 120$ not yet

thas surge arrestior -ril

B.T. plug,

Extension socket
Dual adaptors (2 from one socket).
Kit terminating with B.T. plug 3 merres
master sockert, complete with 4 core cable, cable clips and 2 BT extension sockets
$25 A$ ELECTRICAL PROGRAMMER
Learn in your sleep. Have radio playing and
kettle boillng as you wake - swich on lights to
ward off intruders - have a warm house to come
home to. You can do all these and more. By a
home to. You can do all these and more.
famous maker with 25 amp orvoff switch. Independent 60 minute m
A beautiful unit at $\vDash 2.50$

THE AMSTRAD STEREO TUNER

an ready assembled unit is the ideal runer for a music centre or an amplifier, it can also be quickly made into a personal stere
radio - easy to cairy about and which will give you superb radio-e
reception
Other uses are a "get you to sleep radio", you could even take it
with you to use in the lounge when the rest of the family want to view programmes in which you are not interested. You can listen to some music instead.
Some of the fave band $115-170 \mathrm{KHz}$, medium wave band $525-1650 \mathrm{KHz}$, FM band $87-108 \mathrm{MHz}$, mono, stereo \& AFC switchable, fully assembled and fully aligned. Full wiring up data showing you how to connect oampimer orial is included for medium and long wave bands). All made up on very compact

J. BULL (Electrical) Ltd.

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under $£ 20$ add $£ 1$ sevice charge. Monthly account orders
accepted from schools and public companies. Access \& B/card orders accepted day or night. Hawwards Heath (0444) 454563. Bulk orders: ph
not Saturday.

TWO POUNDERS
Following the popularity of our BAKERS DOZEN £1 PARCELS, we are now introducing some BAKERS DOZEN $£ 2$ PARCELS. We feel that you will agree that most are exceptional bargains but you can still get a bit extra, as with the $£ 1$ parcel, if you buy 12 you get another free!
2P1 - 24 hour time switch with 2 on/offs. an ideal heating
2P2 - Wall mounting thermostat, high precision with
mercury switch and thermostat
2P3 - Variable and reversible 8-12v power supply, ideal for model control
$2 P 4-24$ volit psu with separate channels for stereo made for
2P5 - 12 volt psu 750 ma output - plastic cased
2P6 - 100 wat mains to 115 volts auto-transformer with voltage tappings
Mini kev lin membrane keyboard, list price over

- Mains motor with gear box and variable speed selector
control
2P9 - Time and set switch. Boxed, glass fronted and with knobs. Controls up to 15 amps. Ideal to program
electric heaters, patnery chargers etc
2P10-12 volt 5 amp malns transformer - low volt winding on separate bobbin and easy to remove to conver to lower voltages for higher currents
2P11 - Power amp module Mullard Unilex Ep9000 Inote stereo 2 P 12 - Dise-amp module Unilex 9001 is BD216
2P12 - Disk or Tape precislon motor - has balanced rotor and 2P13- is reversibe switch stays on for $1 / 2$ hr or 1 hr Sun Lamp swich stays on for $1 / 2 \mathrm{hr}$ or 1 hr depending
2P 14-Mug Stop kit - when thrown emit piercing squawk
${ }_{2 P 15}$ - Interupted Beam kit for burglar alarms counters
${ }_{2 P 16}^{2 P 15}$ - Interupted Beam kit for burglar alarms counters, etc
${ }_{2} 2$ P16-Lockable metal box with 2 keys, ideal for your tools
2P17- ideal to operate mirror ball
${ }_{2}^{2 P 19}$ - Liquididgas shut oft valve over micro switches supplied ready for mains
$2 P 20$ - 20 metres extension lead, 2 core - ideal most Black and Decker garden tools
$2 P 21$ - 10 watt amplifier, Mullard module reference 1173 2P22 - Motor driven switch 20 secs on or off after push
2P24 - Clockwork operated 12 hour switch $15 A 250 \mathrm{~V}$ with 25 - clutch 1000 watt flasher mains motor driven ${ }_{2 P 26}$ - Counter resettable mains operated 4 digi 2P27- Goodmans Speaker 6 inch round Bohm 12 watt
2P28-Drith Pump - always useful couples to portable drill ${ }_{2}{ }^{2} 2930-15$ metres 6 way telephone or interconnecting wire 2P31-4 metres 98 way interconnecting wire easy to strip to use the cores separately
2P32 - Hot Wire amp meter - $41 / 2$ round surface mounting $2 P 33-0.30 \mathrm{amp}$ meter $2^{\prime \prime}$ round panel mounting with
P34 - ministry equipment
2 2P35 - Battery charger kit comprising mains transformer, full wave reclifier and meter, suitable for charging 6 v or
12 v 2P36
2P37-0-100 micro amp meter, 2 " ${ }^{\text {s }}$ square flush mounting good 2P38-200 R.P.M. Geared Mains Motor ${ }^{\prime \prime}$ " stack quite powerful, definitely large enough to drive a
 of fibre, 3 other steel and brass wheeis. 80 turns of fibre wheel give one turn of final drive shaft which is $1 / a^{\prime \prime}$ dia. $2 P 40-12$ volt motor - can be fitted to $2 P 39$ gearbox

IONISER KIT

1ONISER KIT home, otfice, shop, work room, etc. with a
Refresh your
negative lon generator. Makes you feel better and work harder - a complete mains operated kit. case included.

MORE BAKERS DOZEN $£ 1$ PARCELS

BD189-2 double pole 20 amp 250 v flush mounting BD190-2 $\begin{aligned} & \text { switches - white } \\ & \text { double pole } 20 \mathrm{amp} 250 \mathrm{v} \\ & \text { surface mounting }\end{aligned}$ BD191-6 $\begin{aligned} & \text { switches with neon indicators - } \\ & \text { B.C. lamp holder adaptors white }\end{aligned}$ BD192-3 \quad B.C. to 2 pin lamp holder adaptors | BD193-6 | 5 amp 3 pin flush sockets brown |
| :--- | :--- |
| BD194-3 | 5 ma | BD195-5 brown \quad B.C. lampholder bakelite threaded entry BD196-1 in flex simmerstat for electric blanket solderin BD197-2 $\begin{aligned} & \text { ironetc } \\ & \text { themostats, spindle setting - adjustable range }\end{aligned}$

BD198-1 rod thermostat for water heater etc 11" rod
BD199-1 mains operated solenoid with plunger
BD200-1 10 digit switch pad for tetephones etc
BD201-8 computer keyboard switches, with knobs, pcb or vero mounting
solenoid mains
BD202-1 solenoid mains operated air valve 110 v col 8 push button switch banks 6 interlocking and
two independent locking less knobs or one with knobs your choice
BD204-1 3 push mains voltage switch with knobs
ultra small 12 v relay 3 A gold-plated contacts
BD206-20 metres 80 ohm coax, off white
BD207-20 metres high voltage flex 14,0075
BD208-1 Photo multiplier tube RCA 4555
$\begin{array}{ll}\text { BD209-1 } & \text { Metal box approx. } 71 / 2 \times 41 / 2 \times 11 / 2 \\ \text { BD210-4 } & \text { Transistors }\end{array}$
$\begin{array}{ll}\text { BD210-4 } & \text { Transistors type 2N3055 } \\ \text { BD211-1 } & \text { Electric clock mains driv }\end{array}$
Double 8v $1 / 2$ amp mains transformer ideal for dimming or strobing fluorescent tubes
Curly 5 core leads for mobile telephones transmitters etc
BD214-3 sub-miniature toggle switches spdi
BD215-5 miniature slide switches dpdt with chrome dolly
BD216-1 Stereo preamp Mullard EP9001
BD217-100 push on tag connector $1 / 4$ straight
BD218-100 push on tag connector $1 / 4$ right angled
BD219-100 soldercon terminals make IC sockets any length
BD220-3 $\begin{aligned} & \text { Heat sinks for flat ICs predrilled size } 40 \times 40 \times\end{aligned}$

VOL14 NO11 NOVEMBER'85

ISSN 0262-3617

PROJECTS . . THEORY . . . NEWS

 COMMENT . . . POPULAR FEATURES
(c) IPC Magazines Limited 1985, Copyright in all drawings, photographs and articles published in EVERYDAV ELECTRONICS and ELECTRONICS MONTHLY is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

EVERYDAY
 EL=CTRONICS am Electionics minily

Projects

FLASHING PUMPKIN

An electronic candle on the blink

SQUEAKING BAT

Doesn't require oil, but might need a stretcher back-up
SCREAMING MASK
Screaming people!
UNIVERSAL LCR BRIDGE
by Michael Tooley BA \& David Whitfield MA MSc CEng MIEE
Inductance, capacitance and resistance tester to solve component i.d. Inductance, capacitance and resistance tester to solve component i.d. -Teach-In ' 86 Project 2
SIMPLE AUDIO AMPLIFIER
Low cost signal tracer/amplifier-Building Blocks Project
MAGNETIC FLUX DENSITY AMPLIFIER
A multimeter is all that is needed to measure magnetic strength

Series

TEACH-IN ' 86
by Michael Tooley BA \& David Whitfield MA MSc CEng MIEE Resistance, capacitance, inductance and the Wheatstone bridge
TRANSDUCERS by Mike Feather
Part Three: The theary and practice of measuring magnetic strength

FUNTRONICS by Thakery

A light-hearted approach to electronics and television

ELECTRONIC BUILDING BLOCKS by Richard Barron

ACTUALLY DOING IT by Robert Penfold
Dealing with transistors

Features

EDITORIAL 583
FOR YOUR ENTERTAINMENT by Barry Fox 592
Accountability; Red Dust-up
SHOPTALK by Richard Barron- 602
Product news and component buying
NEWS 612
What's happening in the world of electronics ON SPEC by Mike Tooley BA 618
Sinclair Sp capabilities
MAN BEHIND THE SYMBOL by Morgan Bradshaw 620
628
PRINTED CIRCUIT BOARD SERVICE 628
COUNTER INTELLIGENCE by Paul Young 629
A retailer comments
Buyers Guide

Our December 1985 issue will be published on Friday, November 15. See page 621 for details.

TEACH－IN＇86

As usual，GREENWELD are supplying all TEACH－IN＇ 86 items－as we have done over the past 10 years．Our experience with these projects ensures you receive top quality components as specified at the best possible price，so you can order with confidence．This years kits are available as follows：
BASIC ITEMS：M102B2 multimeter；Verobloc，bracket \＆design sheets， 10 leads with croc clips＋FREE－The latest GREENWELD Catalogue and a resistor colour code calculator！！PRICE，inc VAT and post $£ 21.95$ ． EXTRA COMPONENTS required for parts 1 and 2
$£ 1.50$
PSU－EE Special offer mains adaptor
$£ 4.95$
REGULATOR UNIT：All parts including case，also in－line fuseholder，fuse and 2 mm plugs for PSU
£16．95
LCR BRIDGE：All parts including case

1985 CATALOGUE

More components than ever before！ With each copy there＇s discount vouch－ ers，Bargain List，Wholesale Discount Buyers List，Order Form and

NEW PACKS

K534 SLEEVE PACK－wide selections of types and sizes－PVC，rubber，sili－ cone，heatshrink，etc．in bores from 1 mm to 18 mm ，lengths 9 mm to
100 mm ．Approx． 100
K536 74 SERIES PACK－＇on board chips for you to desolder－containing many LS and other types．Good mix． $40 \quad £ 1.85 \quad 100 \quad £ 4.00$
K537 I．C．PACK－a mix of linear and logic chips，form 6 to 40 pin．All are new and marked，but some may not be full
spec．
100
$\begin{array}{llll}100 \\ £ 45.00 & £ 6.75 & 250 & £ 14.00\end{array}$ ＊mostly in tubes
K538 DIODE PACK－untested small signal diodes like IN4148 etc．at a price hever before seen！！
$\begin{array}{llll}1000 & £ 2.50 & 10,000 & £ 20.00\end{array}$
K539 LED PACK－not only round but many shaped leds in this pack in red， vellow，green，orange and clear．Fantas－
${ }^{\text {tic mix．}}$ m
K540 RESISTOR PACK－mostly $1 / 8,1 / 4$ and $1 / 2 w$ ，also some $1 \& 2 w$ in carbon， and film，oxide etc．All have full length film，
Tolerances from 5 to 20\％．Excellent range of values
$\begin{array}{llll}\text { range of alues } \\ 500 & \mathbf{2} 2.50 & 2500 & £ 11.00\end{array}$
K535 SPRING PACK－approx 100 as－ sorted compression，extension and tor－
sion springs up to 22 mm dia and 30 mm long
K541－A selection of panels（PCB＇s） containing a wealth of components－ logic and linear IC＇s，power and small signal transistors，trimpots，DIL switch－ which includes an amplifier panel which includes an amplifier panel．

MOTORIZED GEARBOX
The unit has $2 \times 3 V$ motors，linked by a magnetic clutch，thus enabling turning
of the vehicle，and a gearbox contained within the black ABS housing，reducing the final drive speed to approx 50 rpm ． Data is supplied with the unit showing various options on driving the motors． Two new types of wheels can be sup－ plied（the aluminium discs and smaller plastic wheels are now sold out）．Type A has 7 spokes with a round black tyre and is 100 mm dia．Type B is a solid heavy duty wheel 107 mm dia with a fiat
rigid tyre 17 mm wide． rigid tyre 17 mm wide．

Wheel type A：$£ 0.70$ ea $\begin{array}{ll}\text { Wheel type A：} & \text { c0．70 ea } \\ \text { Wheel type B：} & \text { ¢0．90 ea }\end{array}$

WHOLESALERS RETURNS
We have recently purchased a job lot of returns and have reasonable quanti－ ffered＂e following items．They are all lee other than they are complete．Many tems are working perfectly－some All are at a remarkably low price． PM4401C CASSETIE
$£ 10.00$ Top quality computer cassette unit
deisgned specifically for use with Vic 20 ，CBM 64 home computers．Attrac－ tive，robust cream ABS body with brown＇piano＇control keys．Record and playback levels are preset，giving per－ fect recordings every time and single
reliable operation．Connections by glass edge socket
Features include：Tape counter，auto stop，＇save＇indicator，remote contro facility．Input： $20 \mathrm{mV}, 2.5 \mathrm{~V}$ p／p； 10 k ．Out－ put： 2.5 V p／p；10k．Tape speed：$+3 \%$ ． er： 240 V a．c． 50 Hz ．
TH55B SIREN
E3．le Gold coloured hom with fixing plate． cycles per minute．Output：： $115 \mathrm{~dB}(\mathrm{~A})$ at 3 m typ．Power： 12 V d．c． 1.5 A ．Dims： 130 （dia）$\times 160 \mathrm{~mm}$ ．
MW398 NI－CAD CHARGER
Universal NI－CAD battery charger．All plastic case with hinged lid．Charge／nest switch with filament lamp showing de gree of charge．Separate LED indicators Charges：PP3（9V）AA（1．5 penlite）C $(1.5 \mathrm{~V} \mathrm{HP11)},(1.5 \mathrm{HP} 2)$ ；Power： 240 V
a．c． 50 Hz ．Dims： $210 \times 100 \times 50 \mathrm{~mm}$ NH56R MULTIMETER 5500 Modern styled tester with carrying han－ die／stand．Rotary selector switch has 22 ranges．Leads（ 4 mm plugs），battery and instruction manual supplied．Mirrored scale．20KRN．AC voits： $0-1000 \mathrm{~V}+5 \%$ ．DC Volts： $0-0.25-1-2.5$ 10－25－100－250－1000V $\pm 4 \%$ ．DC current： $0-50-500 \mathrm{u}-5 \mathrm{~m}-50 \mathrm{~m}-500 \mathrm{~mA} \pm 4 \%$ ．Re－ sistance： $0-6 k-6-k-600 k-6 M$
bels：-20 to +22 dB ．Deci－ bels：-20 to +22 dB ．Proteci
Diodes．Dims： $130 \times 88 \times 37 \mathrm{~mm}$ ． KUHG AERIAL AMPLIFER £4．50 1 in 2 out HIGH GAIN antenna amplifier for colour and black while T．V．White indicator and 1 m lead．Band width： $300 \mathrm{M} \mathrm{Hz}-890 \mathrm{M} \mathrm{Hz}$ ，Gain： $14 \mathrm{~dB}+1 \mathrm{~dB}$ ． Impedance： 75 ；Power： 240 Va．c． 50 Hz ； Dims： $125 \times 79 \times 50 \mathrm{~mm}$
MW88 POWER SUPPLY £2．50 Plug－in power supply fits directly into
$13 A$ socket．Fully encapsulated trans－ $13 A$ socket．Fully encapsulated trans former and internal fuse for safety．Po－
larity reversing socket．Voltage selector switch．Output via lead with 4－way＂spi－ der＂glug．Input voltage： $240 \mathrm{Va.c}$ ． 50
Hz ；Output voltage： $3 / 4.5 / 6 / 7.5 / 9 / 12$ der Gutput voltage： $3 / 4.5 / 6 / 7.5 / 9 / 12$
Hz V．c．；Output current： 100 mA ；Stabil－ Vd．c．；Output current： 100 mA ；Stabil－
ity： 40% ；Ripple： 1 V ；Dims： $74 \times 52 \times$ （unchecked）$£ 30.00$ ．Lots of 100 （un checked）$£ 100.00$ ．Lots of 250 （un－

＂SENSING \＆CONTROL

PROJECTS FOR THE BBC MICRO＇
Have you ever wondered what all those plugs and sockets on the back of the BBC micro are for？This book assumes no previous electronic knowledge and
no soldering is required，but quides the reader（pupil or teacher）from basic connexions of the user sockets，to quite complex projects．The author，an ex perienced teacher in this field，has pro－ vided lots of practical experiments，with ideas on how to follow up the basic
principles．A complete kit of parts for all the experiments is also available．Book $245 \times 185 \mathrm{~mm} 120 \mathrm{pp}$ £5 95 ．Kit $£ 29.95$

ELECTRONIC
COMPONENTS

备 8 8

 －

Master

 Blectronics－Microprocessors －Now！The Practical Way！Electronics－Microprocessors －Computer Technology is the career and hobby of the future．We can train you at home in a simple，practical and interesting way．
Recognise and handle all current electronic components and＇chips＇．

－Carry out full programme of experimental work on electronic computer circuits including modern digital technology
－Build an oscilloscope and master circuit diagram．
Testing and servicing radio－T．V．－hi－fi and all types of electronic／computer／industrial equipment．

NewJob？New Career？New Fobloy？

END THIS COUPON NOW
THRE！COLOUR BROCHURE
OR TELEPHONE US 062676114 OR TELEX 22758 （24 HR SERVICE）CACC
 ELECTSONICS MICROPROCESSORS radio amateur licence Other Subjects．
Eritish Mational Radio\＆Electronics School P．O．Box 7，Teienmouth．Devon，TQH OHS
OP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES

Now enjoy a

 world-wide reputation for quality, reliability and performance at a realistic price. Four models world-wide reputation for quality, reliability and performance at a realistic price. Four modelsavailable to suit the needs of the professional and hobby market. i.e. Industry. Leisure, Instrumental and Hi-Fi. etc. When comparing prices, NOTE all models include Toroidal
power supply, Integral heat sink, Glass fibre P.C.B., and Drive circuits to power compatible Vo meter. Open and short circuit proof. Supplied ready built and tested
 OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Res pons $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max, output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $533.99+£ 3.00$ P\&P
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms. Frequency Resposse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80 , Slew Rate $45 \mathrm{~V} / \mathrm{US}, \mathrm{T} . \mathrm{H} . \mathrm{D}$. Typical 0.002%, Input Sensitivity 500 mV , S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $539.99+$ e 3.00 P\&P.
OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms. Frequency Responce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250. Slew Rate 50V/uS, T.H.D. Typical 0.001%, Input Sensitivity 500 mV . S.N.R. PRICE 130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE PRICE $562.99+$
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms. Frequency Resposse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor ponse 1 Hz - $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor
350 . Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 350, Slew Rate $60 \mathrm{~V} / \mathrm{uS}, \mathrm{T} . \mathrm{H.D}$. Ty.
0.0008%, Input Sensitivity 500 mV . S.N.R. 0.0008%, Input Sensitivity 500 mV . S.N.R.
-130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $\mathbf{5 7 9 . 9 9}+\mathbf{f 4 . 5 0}$ P\&P

NOTE: Mos-Fets are supplied as standard (100 KHz bandwidth \& Imp ut Sensitivity 500 mV). If required P.A. verst ion (50 KHz bandwidth \& Input Sensitivity 775 mV). Order - Standard or P.A

VI METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D diodes 17 green, 4 red) plus an additional on/off indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic PRICE $\mathbf{E 8} 80+50$ p P\&P.

LOUDSPEAKERS 5" to 15 " up to 400 WATTS R.M.S. Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details. POWER RANG GE
$8^{\prime \prime \prime} 50$ WATT R.M.S. Hi-Fi/Disco.
 6KHz Sens 92dB. PRICE f 10.99 Avail
$12^{\prime \prime} 100$ WATM R.M.S. Hi-Fi/Disco
$12 " 100$ WATT R.M.S. Hi-Fi/Disco
50 oz. magnet. $2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Die-cast chassis. White cone. Res.
Freq. Freq. Resp. to 4 KHz . Sens. 95 dB . PRICE $\int 28.60+£ 3.00$ P\&P ea.
McKENZIE
12" 85 WATT R.M.S. C1285GP Lead guitar/keyboar d/Disco

+ divvy voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. to 6.5 KHz . Sens. 98 dB . PRICE c 28.76

Res. Freq 45 Hz . Freq. Resp. to 14 KHz , PRICE $£ 29$.
$15^{\prime \prime} 150$ WATT R.M.S. C15 Bass Guitar/Disco.
15 " 150 WATT R.M.S. C15 Bass Guitar/Disco.
$10^{\prime \prime} 60$ ll y voice coil. Die-cast chassis. Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . PRICE $554.99+£ 4.00 \mathrm{P} \& \mathrm{P}$ ea 10" 60 WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. P.A $10^{\prime \prime} 200$ WATT R.M.S C10200. GP Guitar K z . Sens. 99dB. PRICE $19.15+£ 2.00$ P\&P $2^{\prime \prime}$ voice coil. Res. Freq. 45 Hz . Freq. Resp. 107 KHz . Sens. 101 dB . PRICE $£ 51.00+£ 3.00$ P\&P. 15" 200 WATT R.M.S. C15200 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp. to 5 KHz . Sens 101 dB . PRICE $559.45+\mathbf{5 4 . 0 0}$ P\&P
$15 " 400$ WATT R.M.S. C15400 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB . PRICE $\mathbf{f 8 5 . 0 0}+£ 4.00$ P\&iP.
FEM
$5 " 70$ WATT R.M.S. Multiple Array Disco etc
 - " 150 WATT R.M.S. Multiple Array Disco etc.

1 ." voice coil. Res. Freq. 48 Hz . Freq. Resp. to 5 KHz . Sens. 92 dB . PRICE $£ 29.49+£ 1.50 \mathrm{P}$ \& P ea
10 . 300 WATT R.M.S. Disco/Sound re -enforcement etc.
 $11 / h^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRICE $£ 41.49+£ 3.00$ P\&P SOUNDLAB (Full Range Twin Cone)
5" 60 WATT R.M.S. Hi-Fi/Mulriple Array Disco etc
voice coil. Res. Freq. 63 Hz . Freq. Resp. 1020 KHz . Sens. 86 dB . PRICE $59.99+61.00 \mathrm{P} \mathrm{\&}$ P ea "voice coil. Res. Freq. 56 Hz . Freq. Resp. to 20 KHz . Sens. 89 dB . PRICE $\mathrm{f} 10.99+\mathrm{f} 1.50 \mathrm{P} \mathrm{\& P}$ ea. 8" 60 WATt R.M.S. Hi-Fi/Muttiple Array Disco etc.
$11 / /^{\prime \prime}$ voice coil. Res. Freq. 38 Hz Freq. Resp. to 20 KHz . Sens. B9dB. PRICE $\mathrm{f} 12.99+61.50 \mathrm{P} \mathrm{\&}$ Pea $0^{\prime \prime} 60$ WATT R.M.S. Hi-Fi/Disco otc.
$1 / 4^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 15 KHz . Sens. 89 dB . PRICE $\mathrm{f} 16.49+£ 2.00 \mathrm{P} \mathrm{\&}$ P
N fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $\mathbf{£ 8 . 6 2 + 7 5 p}$ P\&P
3 WATT. FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap comtrohed
professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Price: f14.49+75p P\& F
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal fo many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price:
$£ 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt $)$. Price: $£ 11.29$ £17.82 transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt). Price: E 11.29

VIA POSTAL CHARGES PER ORDER $£ 1.00$ minimum. OFFICIAL ORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMENT BODIES, ETC. PRICES INCLUSIVE OFV.A.T. SALES COUNTER BODIES, ETC. PRICES INCLUSIVE OF VISA/ACCESS/C.O.D. ACCEPTED.

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDLY

BURGLAR ALARM

Better to be 'Alarmed' then terrified. Thandar's famous 'Minder' Burglar Alarm System, complete with interconnection cable. FULLY
cont GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control.
Three position, keyoperated facial switch - off - test - armed. 30 second exit and entry delay. Indoor alarm - Electronic swept freq. siren. 104 dB output.
Outdoor Alarm - Electronic swept freq. siren. 98 dB
Out output. Housed in a tamper-proof heavy duty metal Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mains failure. Power requirement $200 / 260$ Volt $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic SAVE $\mathbb{C} 13 \mathbf{8} .00$ Usual Price $£ 228.85$ BKE'S PRICE $£ 89.99+£ 4.00$ P\&P

IMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit today need for compactness with high sound output levels. Finished in handle. All models 8 ohms. Full range $45 \mathrm{~Hz}-20 \mathrm{~K} \mathrm{~Hz}$. Size $20^{\prime \prime}$
OMP 12-100 Watts 100 dB . Price $£ 149.99$
per pair
OMP 12-200 Watts 102 dB . Price $£ 199.99$
per pair.
OMP 19" STEREO RACK AMPS

1 K -WATT SLIDE DIMMER

8S800

* Suitable for both resist. ance and inductive loads. In numerable applications industry, the home, and PRICE $£ 13.99+75 p$ P\& P

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 40 hms). Input Sensitivity 775 mV MF200 (100 + 100)W. $£ 169.00$ Securic or MF 400 $200+200$ W. $£ 228.85$ Delivery MF600 $(300+300$ W. $£ 274.85$ £10.00

BR P295 ELECTRONIC TURNTABLE * Electronic speed control $45 \& 331 / 3$ r.p.m. * Plus/ Minus variable pitch control * Belt darren * A lu
minium platter with strobe rim \# Cue lever *Antiskate (bias device) * Adjustable counter balance
Manual arm $\#$ Standard Manual arm $*$ Standard $1 / 2 "$ cartrige fixings
Supplied complete with cut out template $\#$. Supplied complete with cut out
Operation $9-14 v$ DC. 65 mA

ADC 04 mag . cartridge for above. Price $£ 4.99 \mathrm{ea}$. P\&P 50p

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an crossover is nor required these units can be added to existing speaker dy dynamic tweeters. As (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' $K \mathrm{KS} \mathrm{N2O36A)} 3^{\prime \prime}$ round with protective wire
 mesh, ideal for bookshelf and medium
speakers: Price E 4.90 each +40 p P\&P. TYPE 'B' (KSN1005A) 3 $1 / 2$ " super horn. For general purpose speakers, disco and P.A. systems etc. Price K5.99 each + top P\&P
TYPE "C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc.
Price $\mathbf{f 6 . 9 9}$ each +40 p P \& P.
 TYPE ' D^{\prime} ' KSN1025A) 2 " $\times 6^{\prime \prime}$ wide dispersion
horn. Upper frequency response retained extending horn. Upper frequency response retained extending
down to mid range $(2 \mathrm{KHz})$ Suitable for high quality Hi-fi systems and quality discos. Price $\mathbf{f} 9.99$ each + HOp P\&P.
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $£ 5.99$ each +40 p P\&P. LEVEL CONTROL Combines on a recessed mount ing plate, level control and cabinet input
$85 \times 85 \mathrm{~mm}$. Price $£ 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segment 5 Inputs with individual faders providing a useful combination of the following:3 Turntables (Mag), 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor Pan Pot. L. \& R. Master Output controls. O Price £134.99-£3.00 P \& P

JOIN UP WIHH: HTHOSOLD

Professional Soldering Equipment at Special Mail. Order Prices.
EC50 Mains Electronic Iron. $\lceil 27.50$ Inteas

Features spike-free, solid state
proportional electronic temperature control inside the handle. Adjustable 280° to $400^{\circ} \mathrm{C}$. Burn-proof 3 -wire mains lead. Fitted 3.2 mm Long-Life bit. $1.6,2.4$ and 4.7 mm available. 240 v a.c.
SK18 Soldering Kit, f15.60
Build or repair any electronic project.
LC18 $240 \mathrm{v} 18 w$ iron with $3.2,2.4$,
and 1.6 mm bits. Pack of 18 swg
flux-cored $60 / 40$ solder. Tweezers.
3 soldering aids. Reel of De-Solder
braid. In PVC presentation wallet.
ADAMIN Miniature Iron. $\mathbf{E B . 2 7}$
Possibly smallest mains iron in the
world. Ideal for fine work. Slim

BRADEWICK De-Solder Braid.

$\{1.10$ per Real

Pre-tinned face (Long Life). State tip size. iron and type.

For simple, safe and effective de-soldaring of all types of joint, using a standard soldering iron. Handy colour-coded packs of 1.5 metres in 3 widths: Yellow - 1.5 mm , Green - 2 mm , Blue -3 mm .
\square
thumb operation. Automatic solder sjection. Conductive PTFE nozzle no static problems.
\square
\square

De-Solder Pumps. E6.64 High Quality version of increasingly popular type of tool. Precision made anodised aluminium body, plunger guard and high-seal piston. Easy

Top quality Japanese metric hardened and tempered tools. Swivel-top chrome plated brass handles. Fitted plastic cases. 113 set -6 miniature screwdrivers 0.9 to $3.5 \mathrm{~mm} £ 2.84$

227 set 5 socket spanners 3 to $5 \mathrm{~mm} \mathbf{f 2 . 9 6}$ 305 sot 2 crosspoint and 3 hex wrenches 1.5 to $2.5 \mathrm{~mm} £ 2.84$

228 set 20 piece combination:
5 open, 5 skt spanners, 2 crosspoint, 3 hex and 3 plain drivers, scriber, handielholder $£ 5.06$
Microcutters. $£ 4.05$ Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Soldering Aids.

Set of 3 §4.20 Scrapar/Knife, Hook/Probe, Brush/Fork. 3 useful double-ended aids to soldering/dasoldering? assembly. In plastic wallat.

ADAMIN Electric Stylus. $\mathbf{f 1 4 . 8 5}$
Writes like a ballpoint in Gold, Silver, Copper or 6 colours, on card, plastics, leather etc. Personalisp. wallets, bags, albums, books, models . . Operates at 4.5 v from its own plugl transformer - totally safe. Supplied with coloured foils.
SEND FOR OUR ORDER FORM TODAY AND JOIN UP WITH THE PROFESSIONALS

[^0]
AFFORDABLE ACCURACY QUALITY MULTIMETERS FROM ARMON

ANALOGUE

MM 102BZ
10ADC Range, zokRNDC, Buzzer, Battery Test Scale.
19 measurng ranges
HM-102R
Low end voliage \& current ranges, Jack for Audio o p Voltages ... es
20 measu
HM-1015
HM-1015
Augged, Pocked sized meter, for general purpose
16 measuring ranges
Battery. Test Leads and Manual included with each

A comprehensive range of Analogue and (Pushbutton or Rotary Switched) Digital Models

FULL DETAILS ON APPLICATKN FROM:-
\section*{ARMON ELECTRONICS LTD}
 PLEASE ADO 15% to your order for VAT. PRP Free of charge. Payment by cheque whth order Offer applicable to mainiand UK. only Trade enquiries invited

DIGITAL

HC-7030 0.1\% Accuracy. Standard Modet $E 39.50$ HC-6010 0.25\% Accuracy. Standard Model HC-5010T 0.25\% Accuracy. TR Test Facimy DM. 1050.5% Accuracy. Pockelatie E39.50 All models have full functions and ranges and teature
$31 / 2$ digr $0.5^{\prime \prime}$ LED display

Low battery indication
Auto zero \& Austic Casing
DC AC 10 amp Range (not DMM-105)
Overload Prolection on all ranges

W=ET HYロE THE UKS LEADING STOCKIST OF BOXES, CASES, HANDLES AND ACCESSORIES
 * All types available - Plastic, Aluminium, Steel
 * Choose from 1100 styles in 750 different sizes
 * Large range of Handles, Knobs, Feet, LEDs etc.
 Huge, 104 page catalogue - full of illustrations, sizes,
 drawings and comprehensive information so that picking
 the right box for your latest project is easy!
 Send just $£ 2$ for catalogue which contains two $£ 1$ discount vouchers for use when you order.

9-10 Park Street Industrial Est.
Aylesbury, Bucks. HP20 1ET
Telephone: (0296) 20441

Enormous Stocks - Fast Delivery

MAKE YOUR INTERESTS PAY!

More than 8 milion students throughout the world have found it worth their while! An ICS home-study course can help you get a detter job, make more money and have more fun out of life! ICS has over 90 vears experience in home-study courses and is the largest want under the guidance of expert 'personal' tutors. Find out how we can helo you Post or phone today for your Free information Pack on the course of your choice. (Tick one box only!)

Electronics	\square		

1 M-

E.E. PROJECT KITS

MAGENTA

Full Kits inc. PCBs, or veroboard, hardware, elecironics, cases (unless stated). Less batteries.
If you do not have the issue of E.E. which includes the project - you will need to order the instruction reprint as an extra - 70p each. Reprints available

THIS MONTH'S KITS

SAE or 'phone for prices UNIVEASAL LCR BRIDGE Nov 85 STRAIN GAUGE AMPUFIER OCt 85 SOLDERING IRON POWER CONTRO ${ }_{85}^{\text {sol. }}$
VOLTAGE REGULATOR Sept 85 ersonal stereo p.s.u. Sept 85 R.I.A.A. PRE.AMP Sept 85 CARAVAN ALARM Sept 85 frioge alarm Sept 85

 25 SENSOR Sept RESISTANCE THERMOMETER Sept | 85 |
| :---: |
| E18.83 |
| Less | LATINUM PROBE Extra Ez2.00 LOW COST POWER SUPPLY UNIT Aug TR1-STATE THERMOMETER (Batt) Aug 85 E6.05 REMOLO/VIBRATO Aug 85 E34,48 STEPPER MOTOR INTERFACE FOR THE BBC

COMPUTER less case Aug 85 1035 STEPPER MOTOR EXTRA OPTIONAL POWER SUPPLY PARTS EMERGENCY UGHTS FLASHER less uly 85
CONTINUTTY TESTER JUIV 85 TRAIN SIGNAL CONTROLLER JUIY 85 AMSTRAD USER PORT JUlY 8 ACROSS THE RIVER June 85 COMPUTERISED SHUTTER TIMER

GRAPHIC EQUALISER JUne 85 AMSTRAD CPC 464 May 85 MAINS VERSION
AUTO PHASE May 85
INSULATION TESTER Apr. 85
LOAD SIMPLIRER FED. 85
SOLD STATE REVERB Feb. 85
GAMES TIMER Jan. 85
SPECTRUM AMPLIIER Jan. 85

Optional PSU I2VED Optional PSU 12 V E2.03. \quad| E12.36 |
| :--- | 84 MI WORKSHOP POWER SUPPLY Dee. OOOR CHIME Dec. 84 bBC Micro audio storage scope inter. FACE Nov. 84

PROXIMTTY ALARM Nov. 84 E28.77
 MICRO MEMORY SYNTHESISER OCt. 84 E47.98
 £6.38
SOUND OPERATED FLASH less lead Sept 8.84
TEMPERATURE INTERFACE FOR BBC MICRO
CAR RADIO BOOSTER Aug. $84 \quad £ 13.87$
CAR LIGHTS WARNING July 84 EXPERIMENTAL POWER SUPPLY ${ }^{\text {E }} 10.4$ IMPLELOOP BURGLAR ALARM May $84 \varepsilon 18.72$ MASTERMIND TIMER M3y 84 E5.44 FUSE/OIDDE CHECKER Apr. 84 LUASI STEREO ADAPTOR Apr. 8 E3.45 DIGITAL MULTIMEEER add on for $88 C$ Micro
Mar 84 NI-CAD BATTERY CHAFGER Mar. 84
 Rever ONISER Feb 84
2X81 EPROM PROGRAMMER Feb 84 SIGNAL TRACER Feb 84 53.60
67398
£14.89
GUITAR TUNER Jan 84 ${ }^{63.76}$
BIOLOGICAL AMPLIFIER Jan 84 £ 19.1
CONTINUTTY TESTER Dec 83 £9.99
CHILDREN'S DISCO LIGHTS Dec 83
NOVEL EGG TMER Dec 83 inc. case SPEECH SYNTHESIZER FOR THE BBC Nov. 83 less cable + sockets MUITMMOD Nov. 83
LONG RANGE CAMERA/FLASHGUN TRIGGER
HOME IN
DIGTAL TO ANALOGUE 80 ARD Oct. 83 E14.38
less cable, case \& connector

HIGH

HIGH SPEED A TO D CONVERTER Sep
83 less

STORAGE SCOPE INTERFACE FOR BBC MI-
CRO Aug 83 less soltware
$\mathbf{E 1 5 . 3 8}$ pedestrian crossing simulation board Aug 83 no case

HIGH POWER INTERFACE BOARO Aug 83 no
case
E10.38

USER PORT I/O BOARD less cable ${ }^{+}$ plug
uSER PORT CONTROL BOARD July 83 less cable + plug + case GUITAR HEADPHONE AMPLFER May $83 \varepsilon 7.92$ MW PERSONAL RAOIO less case, May 83 27.62 MOISTURE DETECTOR May $83 \quad$ E5.46 CAR RADIO POWER BOOSTER ADnil 83 e11.99 FUNCTION GENERATOR April 83 E45.38 FLANGER SOUND EFFECTS April $83 \quad 24.17$ NOVELTY EGG TIMER April 83 less case 65.48 DUAL POWER SUPPLY March 83 E59.38 BUZZ Off March 83
PUSH BIIE ALARM Feb. 83
2X TAPE CONTROL Nov. 82
CONTINUTY CHECKER Sept. 82
2.WAY INTERCOM July 82 no case

LECTRONIC PTCH PIPE July 82
REFLEX TESTER July 82
SEAT belt reminder jun 82
EGG TIMER June 82

C.D.

CAMERA OR FLASH GUN TRIGGER Mar. 82
POCKET TIMER Mar. 82 E4. 10
GUTAR TUNER Mar. 82
SIMPLE STABIUSED POWER SUPPLY
MINI EGG TIMER. Jan. 82.
E4.40
SIMPLE
NOV. 81
CAPACITANCE METER OCt. 81 E25.81
SUSTAIN UNIT OCT 89
TAPE NOISE UMITER Oct 81
HEADS AND TAILS GAME OCt. 81
CONTINUTTY TESTER OCT. 81
PHOTO FLASH SLAVE Oct. 89
FUZZ BOX Oct. 81
SOLL MOISTURE UNTT Oct 81
-12V POWER SUPPLY Sept. 81
E E 1.58
SOIL MOISTURE INDICATOR E. E. May 81 £4.49 GUTAR HEADPHONE AMP EE. May 81 £4.66 PHONE BELL REPEATER/BABY ALARM May
NTERCOM April 81 © 24.43
MODULATEO TONE DOORBELL Mar. 81 £7.35 2 NOTE DOOR CHIME Dec. 80 £11.35 UE WIRE GAME DEC 80

GUITAR PRACTICE AMPLIFIER NOV. 80 14.10 $£ 4.99$ SOUND TO LIGHT Nov. 803 channel - 23.40 TRANSISTOR TESIER Nov. 80 E12.80 AUDIO EFFECTS UNIT FOR WEIRD SOUNDS RON HEAT CONTROL Oct. $80 \quad \mathbf{~} 6.30$ $\begin{array}{lr}\text { MICRO MUSIC BOX Feb. } 80 & \left.\begin{array}{l}\text { Case exara } \\ £ 3.86 \\ £ 3.60 \\ \hline\end{array}\right)\end{array}$
SPRING LINE REVERB UNIT Jan. $80-627.20$ UNIBOARD BURGLAR ALARM Dec. $79 \quad £ 6.70$ DARKROOM TMER July 79 £3.20 MICROCHIME DOORBELL Feb. $79 \quad$ £17.48 SOUND TO LIGHT Sept. 78 £9. 20
CAR BATTERY STATE INDICATOR less case
R.F. SIGNAL GENERATOR Sept. $78 \quad$ E31.20 IN STU TRANSISTOR TESTER JUN. $78 \quad 87.50$ WEIRD SOUND EFFECTS GENERATOR Mar.
ELECTRONIC DICE Mar. 77 E4.96

TOOLS
ANTEX MODEL C IRON ANTEX XSOLDERING IRON 25W ST4 STAND FOR IRONS HEAT SINK TWEERERS SOLDER CARTON
SOLDER REEL SIZE 10
OW COST PIERS
LOST COST CUTERS
BENT NOSE PUERS

MINI DRHL 12 V MMDI
MULTMMETER TVPE 1
MULTMEIER TYPE 220,0000 op MULTMETER TYPE 3 30.00000V DESOLLEER PUMP SIGNAL INJECTOR CIELPING HANDS JIG E MAGNIFER MIMIATURE VIEE (PLASTIC)

FUN WITH ELECTRONICS

Enjoyable introduction to electronics. Full f very clear full colour pictures and easy to fllow text. Ideal for all beginners - children and adults. Only basic tools needed. 64 full colour pages cover all aspects soldering - fault finding - comp Also full details of how to build $\mathbf{6}$ projects - burglar alarm, radio, games, etc. Requires soldering -4 pages clearly show you how.
COMPONENTS SUPPUED ALLOW ALL PROJECTS TO BE BUILT AND KEP Supplied less batteries \& cases. OMPONENT PACK 15.98
BOOK EXTRA $£ 1.75$
Book available separately.

INTRODUCTION
 TO ELECTRONICS

An introduction to the basic principles of electronics. With lots of simple experiments, mell g. Lots of full for all ages
NTRODUCTION TO ELECTRONICS
69.99

BOOK EXTRA
$£ 2.45$
bok also available separatety.

TEACH IN 86

MULTMETER TYPE M102BZ as specified. Guaranteed. Top quality. $20 \mathrm{k} / \mathrm{N}$, with battery check, continuity tester buzzer and fuse and diode protection. 10A dc range. Complete with leads, battery and manual. £13.98.
VEROBLOC BREADBOARD, DESIGN PAD, MOUNTING PANEL AND 10 CROCODILE CLIP CONNECTING LEADS.
REGULATOR UNIT FOR SAFE POWER SUPPLY. All components including the
specified case. Also the plugs, fuse and fuseholders to suit the EE mains adaptor.
COMPONENTS FOR PRACTICAL ASSIGNMENTS, Parts 1 and 2 (Oct \& Nov) 16.78 £1.94. Part 3 (Dec) $\mathbf{f 1 . 3 7}$

All the above include VAT. P\&P 60p. Plus
FREE CATALOGUE with Teach In orders over £20.00.

THIS MONTH'S PROJECT

UNIVERSAL LCR BRIDGE complete kit including the
specified case
£23.49

MOTOR - GEARBOX ASSEMBLIES

Miniature precision made. Complete with quality electric motor. Variable reduction ratios achieved by fitting from 1.6 gearwheels (supplied) as required. Operates from 1.5 V to 4.5 V . Small unit type MGS speed range 3 rpm-2200rpm depending on voltage \& g gear ra arge unit type MGL (higher torque motor) $2 \mathrm{rpm}-1150 \mathrm{rpm}$. Long 3 mm dia outpul shafts. deal for robots and buggies.
Small Unit (MGS) E3.49. Large Unit (MGL) E3.98.
Pulley wheels 3 mm bore. Meral flange with brass hub. 10 mm dia 85 p . 20 mm dia $98 p$. 30 mm dia $£ 1.21$
Metal collar with fixing screw, 3 mm bore 24 p . Flexible spring coupling
5 mm . Length 31 mm 68 p Flexible metal coupling (universal) $3 \mathrm{~mm} £ 2.98$

CATALOGUE

FULLY REVISED 1985 CATALOGUE. Brief details of each kit, our books, \& illustrations of our tails of each kit, our books, \& illustrations of our
range of tools \& components. Also stepper motor, interface kit 8 simple robotics. Plus circuit ideas for you to build. If you read Everyday Electronics than you need a copy of the MAGENTA catalogue.
CATALOGUE \& PRICE UST - Send $£ 1$ in 9×4 sae.
Calalogue PREE TO SCHOOLS/COLLEGES REQUESTED ON OFFICIAL LETTERHEAD.

ADVENTURES WITH ELECTRONICS

An easy to follow dook suitabie for all ages. Ideal for beginners. No soldering, uses an S-Dec Breadboard. proiects - including three radios, siren, merro nome, organ, intercom, timer, etc. Helos you learn about electronic components and how circuits work Component pack includes in S-Dec breadboard and ail the components for the projects. 20 . 20.98 less battery

OUR PRICES INCLUDE VAT
MAGENTA ELECTRONICS LTD.
EE34, 135 HUNTER ST.
BURION-ON-TREN
STAFF, DEI4 2ST.
0283 65435, Mon-Fri 9-5
Access/Barclaycard (Visa) by phone or post
24 hr Answerphone for credit card orders.

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

COMPONENT SUPPLIES

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 13.00$. Overseas: £15.00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE 1 9LS.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS and ELECTRONICS MONTHLY are available world-wide price $£ 1.00$ incluside of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd:, Lavington House, 25 Lavington Street, London SE 1 OPF. In the event of non-availability remittances will be returned.

Binders to hold one volume (12 issues) are available from the above address for £5.50 inclusive of p and p worldwide.

WELCOME

| would like to welcome all Electronics Monthly readers to our pages, I hope you like your new style magazine. I am sure you will like the lower cover price- 15 p lower than you have paid lately.

Unfortunately the purchase of Electronics Monthly took place over a very short period and we have not been able to fit everything we want to in this the first issue of EE \& EM. New readers will also find a couple of series are now on part 2 or 3; to overcome this problem back numbers are available-see the note on this page.
Fortunately some of the series that Electronics Monthly were running were coming to an end but we will be continuing with Reporting Amateur Radio (which has just started) next month-space permitting.

P.C.B.s

Many EM readers have been waiting for p.c.b.s for some time. Argus Specialist Press had got into a mess with their p.c.b. service but we have been able to sort it out quickly and everyone should now have their boards. All boards listed on our PCB Service page are now available from our service, this includes many from past issues of EM and some which have never been advertised before.

YOUR MAG

I hope all readers will like the new Everyday Electronics and Electronics Monthly-old EE readers may have read this before but EE \& EM is your magazine, we want to make sure we publish what you want, that we give you enough information to help you along the way with this exciting hobby and possibly to help you move on to greater things in the future. Maybe some of you will find our sister publication Practical Electronics will become another regular purchase as your knowledge and experience grows. (PE is aimed at both experienced hobbyists and technicians/engineers in the electronics and allied industries.)

If there is some subject you would like to see us cover, an idea for different treatment or if you need more data at a particular interest level etc., please write in and let us know. Such feedback helps to shape future issues and with many new readers being introduced to the magazine your views would be appreciated. We hope you will find more to interest you in EE \& EM. We are trying to make sure that the items we cover are better explained and better presented than previously. We will go on striving to continually improve, so let us know what you like, what you don't and what you want to see.

P.S. Just in case you have difficulty getting issues I would like to point out that a subscription costs less than the cover price-see the note on the left

Editorial Offices

EVERYDAY ELECTRONICS EDITORIAL, WESTOVER HOUSE
WEST QUAY ROAD, POOLE, DORSET' BH15 1JG Phone: 'Poole (O202) 671191 We regret that lengthy technical enquiries cannot be answered over the telephone

Editor

MIKE KENWARD

Secretary

PAULINE MITCHELL
0202671191 Ext 259
Advertisement Manager
NIGEL BELLWOOD 01-2616882
Classified Advertisements
MANDY MORTON 01-2615846
Advert Make-Up and Copy Department JULIE FISH 01-261 6615

Advertisement Offices
EVERYDAY ELECTRONICS
ADVERTISEMENTS
KINGS REACH TOWER
STAMFORD STREET
LONDON SE 1 9LS
Telex 915748 MAGDIV-G

\square R.A.PENFOLD FLASHIIIG PUMPKIII

THIs is the first and most simple of three projects for halloween that are quite definitely in the "fun" category. All three projects are based on the same printed circuit board and are easy to construct from the electronic point of view. By their nature they provide something of a challenge as far as mechanical construction is concerned, calling for some unusual construction techniques, to say the least. This aspect need not be too difficult though, especially if a suitably skilled helper can be brought in to assist here, or ready made objects which form a satisfactory constructional basis can be found. Each project is fairly inexpensive, but can nevertheless provide a great deal of fun and entertainment (and not just at halloween).

This circuit merely flashes two l.e.d.s in anti-phase (as one switches on the other switches off), and the idea is for the unit to be installed in a hollowed-out halloween pumpkin. However, with little imagination it would probably be possible to think up a few other similarly festive ways of utilising this project (mask with flashing eyes, etc.).

555 TIMER

In common with the other two projects, the Pumpkin Flasher makes use of the ever popular 555 timer device. In fact some of the circuits use the 7555 timer integrated circuit, but this is essentially just a low current consumption version of the 555 and is no different in the way that it is used. Many readers will be familiar with the way in which the 555 operates, but for newcomers who are not, a brief description of the device will be provided here.

There are only two standard operating modes for the 555; the astable (oscillator) and monostable (timer) modes. In the astable mode the output of the device switches to-and-fro between virtually the positive and negative supply voltages. It is this switching action that we require in this application as it can be used to automatically switch two l.e.d.s on and off in the required manner. In the timer mode the output goes positive for a period which is determined by two discrete components. This mode is not needed in the present project, but is worthy of consideration here as it is utilised in both the other halloween projects.

Fig. 1 shows the internal arrangement of the 555 in block diagram form, and it also shows how the device operates in the astable mode. RI, R2 and CI are discrete components, but R3 to R5 are internal resistors. It is these three equal value resistors plus the two voltage comparators that are at the heart of the 555 . The resistor network provides a reference voltage equal to $1 / 3$ of $V+$ to one input of comparator 2 , and $2 / 3$ of $V+$ to one input of comparator 1 .

When power is first applied to the circuit the switching transistor is switched off and Cl is able to charge from the supply lines via the series resistance of R1 and R2. The charge potential on Cl is monitored by an input of each voltage comparator, and charging continues until the charge on C1 exceeds $2 / 3$ of V_{+}. The output of comparator 1 then changes state, resetting the flip/flop and turning on the switching transistor. C1 then discharges through R2 and the switching transistor, and the fall in voltage results in the output of comparator 1 returning to its original state. However, this does not affect the flip/flop which remains in the reset state.

Cl continues to discharge until the charge voltage falls below $1 / 3$ of $\mathrm{V}+$. This triggers the output of comparator 2 to the opposite state, causing the flip/flop to be set back to its original state. Cl is then able to charge by way of R1 and R2 again, and the rise in charge voltage sets the output of comparator 2 back to its original state, but this does not have any effect on the flip/flop.

The circuit is now back in its original state, and Cl continues to charge until the charge potential exceeds $2 / 3$ of $\mathrm{V}+$. Then, as before, the output of comparator 1 changes state, the flip/flop is reset, and the switching transistor is turned on. This process continues indefinitely, with Cl being repeatedly charged and discharged. This gives a very roughly triangular waveform across C 1 , but in most applications it is not this signal that is required. The primary output of the circuit is from the flip/flop at pin 3, and this is a rectangular waveform. Pin 3 goes high while Cl is charging and low when it is being discharged. In this basic configuration the period during which the output is high must be longer than the low output period, since Cl charges through both R1 and $R 2$, but only discharges through R2. The output will be close to a squarewave though, if RI is made low in value when compared to R2. Having R1, R2 and C1 as discrete components enables a very wide range of operating frequencies and markspace ratios to be achieved.

An external reset input for the flip/flop is available, and this is useful as a gate input when the 555 operates as an astable. Taking the reset input high enables oscillation, while taking it low blocks oscillation. Pin 5 gives access to the potential divider circuit and enables the reference voltages to be modified to some degree, but this is a facility which is not required in the present applications.

Fig. 1. 555 astable configuration.

Fig. 2. 555 monostable configuration.

Fig. 2 shows the arrangement used in the monostable mode. Only two discrete components are required in this operating mode, with just one timing resistor being used. Initially the trigger input is held above $2 / 3$ of $\mathrm{V}+$; then the switching transistor is turned on, and Cl is prevented from charging via RI. Taking the trigger input below $1 / 3 \mathrm{~V}+$ sets the output at pin 3 high and switches off the switching transistor so that Cl can charge by way of R1. Cl is allowed to charge until a potential of more than $2 / 3$ of $\mathrm{V}+$ is reached. This is detected by comparator I which then resets the flip/ flop, resetting the output at pin 3 to the low state. This also turns on the switching transistor which almost instantly discharges Cl and takes the circuit back to its original state, ready to be triggered again. However, an important point to note when using the 555 in the monostable mode is that the output pulse will only end after the appropriate charge on Cl has been reached if the trigger input has been returned to more than $1 / 3$ of $\mathrm{V}+$. Otherwise the circuit is held with the output high until the trigger input is taken back above the trigger threshold.

Conversely, when ICl's output goes low power is supplied to D1 but D2 is cut off. The required alternate flashing action is thus obtained.
The current consumption of the circuit is approximately 9 milliamps, and the standard 555 is adequate for this application. The 7555 will also operate in the circuit, but it will not give a massively lower current consumption as the l.e.d.s inevitably consume quite a lot of current, making the lower consumption of the 7555 of little practical significance. As the 7555 is substantially more expensive than the standard 555 the latter is the better choice for this circuit.

CONSTRUCTION

Details of the printed circuit component layout for the unit are provided in Fig. 4. As explained earlier, all three halloween projects are built using the same printed circuit design. As the Pumpkin Flasher unit is by far the most simple of the three circuits, much of the board is left unoccupied. Rather than leave vast expanses of board

Fig. 3. Circuit diagram of the Pumpkin Flasher.
unused you may prefer to trim off the unused ends using a hacksaw. Of course, if you make your own board it is only necessary to copy and produce the section of the board that is actually required for this circuit.
Construction of the board is very straightforward, but do not overlook the single linkwire just below ICl . The l.e.d.s, unlike ordinary filament bulbs, must be connected with the right polarity or they will not light up. The cathode (t) terminal is normally indicated by either a shorter lead or a flat on the body of the component, but this does vary from one make and type of l.e.d. to another, and it is worth checking the correct method of connection in the retailer's catalogue if you are in doubt. When initially checking the unit it is alright to simply mount D1 and D2 on the printed circuit board together with the other components, but in use it will probably be necessary to mount them off-board, and to connect them to the board using twin insulated leads. It is not essential to use ordinary red l.e.d.s, and the circuit will work perfectly well with green or yellow types (or mixed colours). Some green or yellow l.e.d.s are not very bright, and with these it would be advisable to reduce R3 and R4 to 470R in order to give increased l.e.d. current and brightness.

Fig. 4. P.c.b. and the component layout. Only the centre part is used for this project.

FLASHER CIRCUIT

The circuit diagram of the Pumpkin Flasher appears in Fig. 3.
1 C 1 is the 555 and it is connected in the standard astable configuration. The values of R1, R2 and Cl give an operating frequency of just under 1 Hz (just under one flash per second), and as the value of R 2 is high compared to that of RI the "on" times of the two l.e.d.s are approximately the same. The I.e.d.s are D1 and D2, with R3 and R4 acting as current limiting resistors to prevent excessive l.e.d. currents. D2 is switched on when the output of ICI goes high, but the voltage across DI is reduced to practically zero and it is switched off.

An on/off switch could be included in series with the battery, but with this project, and the other two halloween projects, the addition of an on/off switch would probably be a little awkward in practice, and it is probably best to omit one. However, be careful not to accidentally try to connect the battery to the battery connector the wrong way round, as this could just possibly damage some of the components. A small (PP3 size) 9 volt battery will run the unit continuously for many hours, but if the unit is likely to receive a great deal of use it would be better to use a higher capacity type such as a PP9, or rechargeable cells.

CIMPONENTS anproximate

COMPONENTS - 焉:

With power connected to the unit D2 should switch on for about a second, and then the l.e.d.s should switch on alternately at the appropriate rate. If the appropriate action is not obtained, switch off at once and recheck all the wiring.
The flash rate can be altered if desired by changing the value of Cl . Changes in the value of Cl produce an inversely proportional change in the operating frequency (e.g. a reduction to 47 nF increases the flash rate to about 2 Hz).

Resistors	
R	1 M
R2	10 M
R3, 4	$1 \mathrm{k}(2$ off $)$
All $\frac{1}{4} \mathrm{~W}$ carbon 5%	

Capacitor
C1 100 n polyester
Semiconductors
IC1 555 timer
D1,2 TIL209 (2 off) or any coloured l.e.d.s

page 602

Miscellaneous

Printed circuit board (available from EE P.c.b. Service, No. EE506), 9 volt battery and connector, wire, solder, etc

SQUEAKIIMG BAT TM

THIS second halloween project is a "squeaking bat", which has eyes that light up in addition to the "squeaking" sound effect. As is really the case for all three projects, it is not essential to use the device in the suggested manner, and there is plenty of scope for someone who is prepared to let their imagination run riot to come up with something equally scarey. The recommended way of using the circuit is to fit it inside a home-made bat which is hung from a wall on a length of string. If someone's curiosity gets the better of them and they disturb the bat, it objects by flashing its eyes and emitting a rapid sequence of squeaking sounds. The bat can provide much amusement for bystanders who are aware of its talents, and short term cardiac arrest for those who are not.

The unit is triggered by means of a tilt switch, which can be either a proper mercury type or a simple component improvised by the constructor. The circuit has an extremely low stand-by current consumption so that it can be run economically from an ordinary 9 volt battery even if the unit is to be left running for prolonged periods (which will presumably be the case).

SYSTEM OPERATION

The block diagram of Fig. 1 helps to explain the way in which the unit functions.

Although it might seem that the "squeaker" circuit and the l.e.d.s to make the eyes flash could be powered via the tilt switch, and would be activated in the required manner when the unit was disturbed, this
could well fail to operate properly in practice. The problem is simply that the tilt switch is likely to give only intermittent contact, for perhaps only a very short overall time. This could make the unit rather erratic and unspectacular.

A monostable multivibrator is used to solve this problem. It is triggered by the tilt switch, and once triggered it gives an output pulse of about 1.5 seconds or so which is used to activate the display circuits. One drawback of this arrangement is that it results in power being permanently supplied to the circuit, and there is a continuous drain on the battery rather than only when the unit is activated. In fact it is only the monostable which draws current continuously, and it is only this section of the unit that needs to have a low current consumption in order to make ordinary battery power a practical proposition. In this circuit the device used in the monostable is a 7555 which gives a typical current consumption of a mere 80 microamps from a 9 volt supply.

The monostable controls the l.e.d.s and sound effects circuit via an electronic switch. The two l.e.d.s merely light up continuously while the switch is activated, and they do not flash on and off as in the Pumpkin Flasher unit.

One way of generating the squeaking sound would be to just gate a high pitched audio oscillator on and off, but in practice this tends to sound rather mechanical and unconvincing. There are several possible ways of giving a rather less mechanical sound, but the one finally adopted is to
frequency modulate the pitch of the squeaking sounds. The audio oscillator is a VCO (voltage controlled oscillator), which is an oscillator that has its frequency controlled by means of a voltage applied to an input terminal. In this case a simple C-R network is used to provide the control voltage, and this is a voltage which starts at a high level and gradually decays over a period of a second or two. This gives a falling pitch from the VCO.

As far as the bat sound effect is concerned this gives quite authentic results, with the bat squeaking at a high pitch when it is initially disturbed, then squeaking at a lower pitch as it calms down, and finally going silent again. Although you might think that bats do not actually produce audible squeaks at all, and that they only produce inaudible (to humans) ultrasonic sounds as part of their radar location system, many bats do in fact produce audible squeaks.

Here we require a rapid sequence of short squeaking sounds rather than a continuous falling pitch sound. An LFO (low frequency oscillator) is therefore used to drive the gate input of the VCO so that the VCO is switched on and off at a frequency of a few Hertz. The output of the VCO is fed to a loudspeaker which converts the electrical signals into corresponding audio ones. The loudspeaker used here is not the usual moving coil type, but is a Piezo ceramic sounder. This has the advantage of small size and relatively good efficiency at the high audio frequencies involved here.

EEI64M

Fig. 1. Block diagram.

Fig. 2. Circuit diagram of Squeaking Bat.

CIRCUIT OPERATION

The full circuit diagram of the Squeaking Bat appears in Fig. 2.
ICI is the 7555 used as the monostable, and it is connected in the standard configuration described earlier. The output pulse duration is $1 \cdot 1$ CR seconds, which is nominally 1.65 seconds with the specified values for R1 and C2. R2 holds the trigger input of ICl at the positive supply potential, and S : is the tilt switch which pulls this input to the 0 volt supply potential when it is activated. The positive output pulse from IC1 is used to switch on common emitter switching transistor TR I, which controls the negative supply to the rest of the circuit. TRI is a silicon device, and when in the off state this has a leakage current of under 1 microamp so that it does not significantly boost the quiescent current consumption of the circuit.

IC2 is a 555 astable circuit, and it acts as the low frequency oscillator rather than the VCO. An ordinary 555 is satisfactory here, since this part of the circuit will only consume current during the brief periods when the circuit is activated, and the lower current consumption of the 7555 would probably not significantly increase battery life. The LFO operates at a frequency of a few Hertz, giving a fairly rapid and excited series of squeaking sounds from the unit.

The VCO could be based on another 555 astable, but a different device, the CMOS 4046BE is more convenient in this case, and has therefore been chosen instead. The 4046BE is actually a phase locked loop device rather than just a VCO, but it is quite possible to utilize the VCO section of the device while ignoring the other stages, and this is the way in which the 4046BE is used here. Consequently there are a number of pins which are left unconnected.

There is an "inhibit" input at pin 5 of the 4046BE (IC3), and this can be used as a gate input for the VCO. As its name implies, taking this input high inhibits the VCO while taking it low enables normal operation. Simply connecting the output from pin 3 of IC2 direct to the inhibit input of IC 3 consequently gives the required pulsing of the VCO.

C5 and R8 are the timing components which determine the centre frequency of the

Fig. 3. The standard p.c.b. (actual size).

Fig. 4. Component layout.

VCO. The output frequency can be varied over wide limits by means of a control voltage applied to pin 9. This voltage is generated by the $C-R$ network formed by C4 and R6, and it is coupled to pin 9 of IC3 by protection resistor R7. When power is first connected through to the sound effects circuit $C 4$ will be in an uncharged state and the control voltage will be equal to the positive supply potential. As C4 gradually charges by way of R 6 the control voltage decreases. The output frequency of IC3 changes in proportion to the control voltage, and this falling control potential produces the required falling pitch effect.

Although IC3 can provide only a very limited output current it can drive a ceramic resonator at reasonable volume. An ordinary moving coil loudspeaker should not be connected in the LS1 position as it would give a virtually inaudible output, and could possibly overload and damage the output stage of IC3.

D1 and D2 are the "eye" l.e.d.s, and these are simply wired in series across the switched supply rails via current limiting resistor $\mathbf{R 8}$, so that they light up continuously for the duration that the circuit is active.

CONSTRUCTION

Details of the printed circuit component layout are shown in Figure 3.

This circuit is somewhat more complex than the previous project, but electronically it is still fairly simple and straightforward to construct. In this case there are two link wires on the board, both just below IC2. These run quite close together and to avoid accidental short circuits they must either have a minimal amount of slack, or one of them should be insulated with a short piece of PVC sleeving.

ICI is a CMOS device, but it has built-in protection circuits that render the antistatic handling precautions normally associated with this type of device totally unnecessary. On the other hand, IC3 is a standard CMOS

A REAL

 BAT OUT OF HELL
type which does require the normal handling precautions. Boiling these down to the bare essentials, a (16 pin d.i.1.) integrated circuit holder should be used for IC3, but the device should not be plugged into the holder until the board is in all other respects complete. It should be left in the antistatic packaging (conductive foam, plastic tube, or whatever) until then, and when it is time to plug IC3 into the holder, handle the pins of the device as little as possible.

This circuit occupies more of the board than the previous one, but there are still a number of holes in the board which are left vacant. When fitting the components be careful to avoid the potential confusion that the unused holes could cause, and to fit each of the components in the right place. Thoroughly check the finished board for mistakes.

TILT SWITCH

By far the easiest solution to the tilt switch is to buy a ready-made component. The standard form of tilt switch consists basically of a tube of insulating material which contains a small amount of mercury. Two electrodes are fitted inside the tube, and lead-out wires or some other form of external connections to these are made available. With the switch in some positions the mercury does not cover both electrodes, and there is a high resistance across the two terminals. In other positions the mercury does bridge the electrodes, providing an electrical connection between the two electrodes and effectively closing the switch.

Unfortunately, tilt switches can be rather difficult to obtain and can also be quite expensive. This makes some form of improvised tilt switch an attractive proposition, and perhaps a more practical solution in a simple application of this type. In its most simple form a tilt switch can just consist of two short lengths of single strand, noninsulated wire hanging very close together, but not quite touching. Any movement of the object on which they are mounted tends to cause them to touch together, completing the circuit. Simple switches of this type are not very efficient, but in this application only a very brief contact is needed in order to activate the circuit, and a low contact resistance is not needed either.
When initially testing the circuit the two leads to SI can simply be shorted together in order to trigger the unit, and this should produce the squeaking sounds and switch on the l.e.d.s for a second or two. It is possible to modify the sound effect to suit individual tastes, and the squeaking frequency can be increased by making C3 lower in value, or decreased by making it higher in value. The general pitch of the sound can be adjusted by means of R8, and is again increased by using a lower value or decreased by using a higher value. Do not try to reduce the pitch by a large amount as LSI is a ceramic resonator which will not work efficiently at low frequencies.

FOR the record, halloween (or hallowe'en, depending on which dictionary you consult) is on the eve of All Saints Day, or on October 31st in other words. Halloween is apparently derived from All Hallows Even (even meaning evening rather than the opposite of odd in this case). In times past it was believed that practically anything could happen on this day, including witches riding on broomsticks and elves playing pranks on mere mortals. These days it tends to be mere mortals playing pranks on other mere mortals, using gadgets such as our third halloween project. This one is intended for use with a halloween mask which it endows with a screaming sound effect and flashing eyes. The unit is triggered whenever a sound is made in its vicinity.

SYSTEM OPERATION

This project is by far the most complex of the three, although the component count and cost have still been kept down. Fig. 1 shows the block diagram for the screaming mask.

An inexpensive crystal microphone insert is used to pick up sounds and convert them into electrical signals. The output from the microphone is at a very low. level, and considerable amplification is required in order to make the unit reasonably sensitive. Two stages of amplification are therefore provided, and both stages are low current types so that the quiescent current consumption of the unit is kept down to a level which permits economic battery operation of the unit. The second amplifier drives a monostable multivibrator which controls the sound effects and display circuits via an electronic switch. This part of the unit is essentially the same as the equivalent circuit in the Squeaking Bat unit described previously. As in this previous project, the monostable is based on a 7555 which gives a suitably low stand-by current consumption.

In this application the tone generator must operate continuously rather than be pulsed, but the LFO is still included and is used to flash the "eye" l.e.d.s. A VCO is used to generate the audio signal, as in the previous project, and a ceramic resonator is again used as the loudspeaker. A $C-R$ network provides frequency modulation of the VCO. but in this case a rising pitch seems to be preferable to a falling pitch, and the network generates a falling control voltage.

HOW TO SCARE GRANDAD WITH . . .

There is a flaw in the basic arrangement described so far, and this is due to acoustic feedback from the loudspeaker to the microphone. The practical result of this feedback is that once triggered the unit will retrigger itself indefinitely, and it will not give the required single-shot operation. This problem is circumvented by driving a second electronic switch from the output of the monostable. When turned on this switch short circuits to earth the out put signal from the first amplifier stage, and it therefore cuts off the input signal. A simple $C-R$ delay circuit at the input of the switch holds it momentarily in the on state after the output pulse from the monostable has ended. This ensures that the input circuitry is kept muted until the audio output from the unit has completely ceased, and that there is no risk whatever of the unit retriggering itself. On the face of it the delay circuit is not needed, but in practice the output from the loudspeaker will not end instantly, and it takes a short time for the sound waves to travel from the loudspeaker to the microphone.

CIRCUIT OPERATION

The full circuit diagram of the Screaming Mask project appears in Fig. 2.

TR1 acts as the input amplifier, and this is a low gain stage having negative feedback provided by unbypassed emitter resistor R4. R2 and C2 decouple the positive supply to the input amplifier and prevent low frequency instability due to feedback through the supply lines. There is a very high resistance through a crystal microphone and this avoids the need for a d.c. blocking capacitor at the input of the circuit. The collector load resistor (R3) and base bias resistor (R1) have been made high in value so as to keep the current consumption of the amplifier down to an acceptable level. The collector current for TR1 is actually only about 40 microamps. For good results a crystal microphone requires a fairly high load impedance, and the combination of low collector current and negative feedback provided by R4 provide a suitably high input impedance.

Fig. 1. Block diagram.

A 555 TIMER

The second amplifier is built around TR3, and this is a straightforward common emitter amplifier. It is operated at a low collector current of only around 40 microamps, and this gives the circuit a total quiescent current consumption (including the monostable) of about 150 mic (mamps or so. Even a small 9 volt battery can provide this for very many hours without becoming exhausted. TR2 is the gating transistor, and C3, C4 , and R5 are included to prevent the gating action from generating a pulse which would cause unwanted retriggering.

IC1 is the 7555 which acts as the basis of the monostable. This has timing components R9 and C6 which give an output pulse duration of approximately five seconds. The trigger input of $I C 1$ is fed direct from the collector of TR3, and this point in the circuit is biased to about half the supply voltage. Under quiescent conditions ICI is not triggered, but in the presence of an input signal of adequate strength the trigger input of ICl is taken below the $1 / 3$ of $\mathrm{V}+$ threshold level on negative excursions, and triggering is produced.

TR4 is the common emitter switch that controls the display and sound generator circuit. R10, D1, and C5 provide the switch off delay for gating transistor TR2. The delay is quite short at well under one second, but it is more than long enough to provide reliable operation of the unit.

The low frequency oscillator uses 555 timer device IC2 in the astable mode, and this part of the circuit is in fact identical to the Pumpkin Flasher circuit described previously. The VCO is based on a 4046 BE , and this section of the circuit is similar to the tone generator section of the Squeaking Bat project which was also described earlier. However, there are one or two important differences. In the $\mathrm{C}-\mathrm{R}$ circuit that generates the control voltage the resistor (R16) and capacitor (C8) have been swopped over to give the required rising control voltage and pitch. C8 is initially uncharged, giving zero control voltage, but as C8 charges up the control voltage increases. R17 is included to limit the maximum control voltage and to modify its characteristic. D4 ensures that C8 is quickly discharged at the end of the monostable's output pulse, so that the unit is almost immediately ready to operate properly again if the unit is quickly reactivated. The output impedance of the control voltage generator is very high, but no buffer amplifier is required as the input impedance at pin 9 of IC 3 is extremely high indeed.

With zero control voltage the output frequency of IC3 is zero. As the control voltage increases, the output frequency increases from a very low audio frequency and soon rises into the desired range. This does not give quite the required effect, and

it would be much better to have the VCO commence at a fairly high frequency. The 4046 BE has a facility that permits this, and all that is required is the inclusion of offset resistor $\mathbf{R} 20$.

CONSTRUCTION

Fig. 3 shows the printed circuit track pattern and the component layout. With this project the printed circuit board is almost fully utilized, with just one hole being left unused. There are two linkwires, one below IC2 and the other one is juu. above C9. IC3 is a CMOS device and therefore requires the normal antistatic handling precautions to be taken. In this application it is not necessary to have a long microphone lead, and a screened input lead is consequently unnecessary. Many crystal microphone inserts seem to have flying leads these days, and these should be all that is needed to carry the connections to the board. However, make sure that they do not short circuit logether or to any other exposed leads, and insulate them with short lengths of PVC sleeving if necessary. Incidentally, a ceramic resonator seems to be a perfectly good substitute for the crystal microphone insert, and if anything it actually seems to give slightly better sensitivity. The two l.e.d.s will almost certainly

Fig. 2. Circuit diagram of the Screaming Mask

Fig. 3. P.c.b. (actual size) and component layout.

Resistors

R1,6,13 10M (3 off)

R2 27 k
R3,5,8 100k (3 off)
R4, 18,19 10k (3 off)
R7 4M7
R10,11 4k7 (2 off)
R12 1 M
R14,15 1k (2 off)
R16.17 3M3
R20 33k
All $\frac{1}{4} \mathrm{~W}$ carbon 5%

Capacitors

$\begin{array}{ll}\text { C1,2 } & \begin{array}{l}100 \mathrm{fF} \\ \text { (2 off) }\end{array}\end{array}$

Semiconductors

IC1 ICM7555 low power timer
IC2 555 timer
C3 404BE CMOS PLL
TR1,2,3,4 BC547 (4 off) silicon npn
D1,4 1N4148 (2 off) silicon
D2,3 TIL209 (2 off) or any coloured l.e.d.s

Miscellaneous

Mic1 Crystal microphone insert
LS1 PB2720 ceramic resonator
B1 9 volt (PP3 size)
Battery connector, printed circuit board, wire, solder, etc.

have to be mounted off-board and connected to the component panel via twin insulated leads.

It is not essential for either the microphone or the loudspeaker to be fitted on the outside of the mask, especially if it is made from a fairly thin material and is openbacked, but in order to achieve optimum sensitivity and volume they would need to be mounted externally (and preferably disguised in some way).

TESTING

The unit might be triggered when it is connected to the battery, but if not try tapping the microphone. This should cer-
tainly trigger the unit and produce both the flashing l.e.d. display and the rising pitch sound. If not, disconnect the battery immediately and recheck all the wiring very carefully.

There is some scope to vary the sensitivity of the unit. As the circuit stands the unit should respond to a voice at a distance of a metre or two. Reducing the value R4 will boost the sensitivity, but it is probably best to avoid making the unit so sensitive that even the slightest background sound sets it off. If the particular microphone insert you are using has above average sensitivity you might find that a reduction in sensitivity would be helpful, and this can
be achieved by increasing the value of R4. The sound effect can be altered to suit individual requirements, and the starting pitch of the sound generator can be raised or lowered by respectively decreasing or increasing the value of R20. The general pitch range can be changed by altering the value of C 9 , and it is inversely proportional to this value. The amount of pitch modulation can be increased by reducing the value of R16, or decreased by raising the value of this component. Finally, the duration of the sound effect and display is proportional to the value of C 7 .

Fig. 4 shows a typical "death mask" layout.

Accountability

I must admit I went along to British Telecom's first Annual General Meeting expecting a shambles; they have $\mathbf{1 . 7}$ million shareholders. All are entitled to go to the AGM and ask questions. BT admitted that it had no idea how many people would turn up, how many would ask questions and how well they would behave.
Amongst the 1.7 million there are bound to be a few people looking for trouble and self-publicity. Also, spare a thought for the Chairman, Sir George Jefferson, who was up for public interrogation on every aspect of BT's giant empire. No-one can know everything about a company. In some cases (although I think not in Sir George's) the Chairman seems to know least of all.

Well, I have to report that there wasn't any trouble. The whole thing ran like clockwork. This is doubtless why the press didn't give it much coverage. And it was all thanks to some very clever behind the scenes electronics.

BT employed British firm Crown International of Esher, to organise the audio/visual show and communications. The meeting went so smoothly that Crown has already been promised the $£ 300,000$ contract for next year. The National Exhibition Centre in Birmingham was the venue, Britain's biggest meeting hall.
The AGM was treated as a military operation and Crown created the most elaborate two-way communications network ever provided for a conference meeting. They estimated a maximum attendance of 20,000 , booked two of the largest halls at the NEC, and erected an overflow marquee.
Crown brought in nine professional TV cameras to record the event on video for regional meetings and provide constant live coverage. Cameras in Arena Hall could have sent TV pictures of Chairman Sir George Jefferson and his directors to the overflow halls.

In the event they were not needed, as only 4,500 people turned up. But the TV signals were still used, live. Because Hall 7 is so large, and Sir George appeared to most of the audience like a diminutive pop star in the distance, TV pictures were projected onto two 6×4.5 metre screens mounted high above the directors' table.
Crown used General Electric light valve projectors. Conventional projectors work by forming an image of a TV tube by a lens system, so picture brightness is limited by tube brilliance. The GE light valve projector creates an image on screen by beaming light through a film of oil which is modulated with the video signal to create a transparent video image, like a film frame. So a very bright screen image can be created.
But the engineers hit snags when they tried to mount the projectors on a gantry at the rear of the hall. The throw, of nearly 100 metres, was so long that the pictures on screen were far too large and dim. They could not get a projector lens of focal length long enough to produce a small picture on such a long throw.
So Crown brought in a Quantel video special effects unit, of the type used by
broadcast TV stations to create squeeze effects on commercials and pop videos. With this they artificially reduced the size of the picture by 30 per cent before feeding it to the projector, so the final picture was of reasonable size and brilliance.

Because the arena is so large, with bare walls, it has an echoing acoustic which makes speech unintelligible. Paul Ellis of Crown describes the Arena as "a giant bathroom". He used 34 separate 750 W BGW pop-group amplifiers making a total of over 25 kilowatts of sound power.

Instead of feeding all the amplified sound signal to a stack of loudspeakers at the front, as at a pop concert, they split the signal between sixty smaller loudspeakers dotted around the arena. A digital delay line created an artifical lag in the sound sent to speakers towards the rear of the hall, so that sound heard at any position in the hall arrived from all directions at the same time.

Hot Line

The biggest concern was how to deal with hecklers, but still make questions from the floor audible. Crown built eight soundproof booths out of transparent plastics, and dotted them around the arena.

Each booth had its own telephone inside. Although apparently normal BT Slimtels, each had its normal mouthpiece microphone replaced by a high quality Sony electret microphone. Sound signals from all the booths were fed to a 24 -track recording studio mixing desk.

As Sir George took questions from one
of the numbered booths, the engineers faded up a spotlight on the booth, lifted the level of sound from its microphone and fed it through to the main amplification system. When a questioner failed gracefully to stop talking, the sound engineers simply faded out the signal, plunged the booth into darkness and switched to another questioner in another booth across the hall.

Expecting a barrage of questions on service problems, BT played the master stroke of printing in advance a form which shareholders could fill in after the meeting. This asked them to detail their complaint. Anyone who tried to harangue the chairman about wrong numbers or crossed lines during the meeting, was simply told by Sir George to fill in the form and then switched off by the engineers as the Chairman called for "next question"

Mission Control

But how did Sir George answer so many questions so easily, with facts apparently at his fingertips? The facts were, quite literally, at his fingertips-on a TV monitor screen hidden on his lectern.
Every questioner had to fill in a form before going into the booth. This was not bureaucracy; the forms were continually collated in a hidden mission control centre. Here BT "experts" had prepared in advance 200 prompt sheets with vital facts on every question likely to be asked. These could be placed in front of a closed circuit TV camera, and the image routed to the lectern monitor. So by the time a questioner had reached the booth and started talking, Sir George already knew the answer.

Where questions touched on issues not covered by the prompt cards, another team of "experts" typed essential data into a video text generator which relayed help to Sir George's private screen.

Red Dust-up

Late last summer the popular press was full of reports on how the KGB in Russia had endangered the health of foreigners by sprinkling spy dust on them. The dust is invisible to the human eye but shows up under ultraviolet light.

Inevitably this prompted some questions because the KGB were using a technical trick already well known to laundries, theatres and night clubs. How safe is it?

The key phenomenon is fluorescence. Near-ultraviolet or "black" light, in the wavelength range 320 to 400 nanometres, causes a wide range of chemicals to fluoresce. They absorb the invisible short wavelength UV energy and radiate visible light of longer wavelength. Ultraviolet light of shorter wavelengths, in the middle and far bands, causes skin tanning and kills bacteria. In excess it burns skin, especially the eyes.
Black light is generated by a modified domestic fluorescent lamp. An electric discharge in mercury vapour produces far-UV radiation which causes phosphors deposited on the inside of the tube to radiate visible light and near UV at around 350 nm .

A filter of dark glass, called Woods glass, blocks escape of visible light but lets through the invisible near-UV. This filtering increases the contrast when the UV falls on a fluorescent substance.

In an almost dark environment it glows very brightly; in normal ambient lighting it stands out like a sign written in fluorescent
paint. So the KGB can watch for fluorescence without the subject knowing, for instance by putting a black light source over a doorway.

In California visitors to the Disneyland amusement park can get a "pass-out" to go on a monorail into the nearby Disneyland hotel. They go there for a drink, because Disneyland is "dry". The pass out is a stamp on the back of the hand. It's an ink which is barely visible in daylight but glows brightly in UV light. Many British clubs and discos do the same.

Crime prevention officers in the UK recommend that British householders mark their property with a pen sold by Berol of King's Lynn. This contains an ink which is sensitive to ultraviolet light. Every UK police force now has black light equipment to check for hidden markings when stolen property is recovered.

So is it safe? Disneyland confirmed to a colleague of mine after the KGB scare that its dye was nothing like the Russian chemical. Believe it or not they call it "Blak-Ray blacklight fluorescent invisible readmission swimming pool ink"

Berol buys its dye for its markers from chemical giant Ciba Geigy. It is an optical brightener, similar to that used to make paper look clean and white. They also provided health and safety clearance data.

Berol's chemists have already checked that they are not dealing with nitro phenyl pentadiene (NPP) the KGB's pet chemical.

PART 2 - Michael Tooley ba David Whitfield ma msc ceng miee

N electronics an important distinctior, exists between components used as prime movers in the generation and amplification of signals (i.e. transistors and integrated circuits) and those which have more mundane applications such as filters, attenuators, and bias networks.
Transistors and integrated circuits rely on a source of direct current for their operation and are said to be active. Resistors, capacitors, and inductors, on the other hand, do not require a supply and are said to be passive.

Most practical circuits comprise a mixture of both active and passive components. A simple single-stage transistor amplifier, for example, contains a single active device (the transistors) aided and abetted by several passive devices lincluding resistors which provide the prescribed bias current for the transistor and capacitors which allow signals to be coupled into, and out of, the stage). In this second part of Teach-In we shall be taking a detailed look at the principles and construction of passive components.

RESISTORS

In last month's instalment we mentioned that a circuit diagram is nothing more than a form of electronic street map. Furthermore, we assumed that the direct links between components shown in a circuit diagram have negligible resistance and thus offer no opposition to the passage of current.

Within a circuit, paths for current are also provided by resistors; the greater the resistance the smaller the current that will be flowing (assuming, of course, that the same voltage is applied).

Developing the previous analogy further, we could equate a direct connection (having a resistance of a mere fraction of an ohm) with a motorway and a resistance of several thousand ohms with a footpath; the volume of traffic that can flow being representative of the amount of current that can pass.

As briefly mentioned in Part One, we need to consider a number of factors when selecting a resistor quite apart from its resistance value. These factors include its power rating, tolerance, stability, and sometimes also its construction. We shall now take a brief look at the construction of some common types of resistor which have their characteristics summarised in Table 2.1

WIREWOUND

The resistance of a metallic wire is directly proportional to its length and inversely proportional to its area.

Resistor type	Wirewound	Carbon composition	Carbon film	Metal oxide
Resistance range [Ω]	0.1 to 22 k	$2 \cdot 2$ to 1 M	10 to 10M	10 to 1 M
Typical tolerance [\%]	± 5	± 10	± 5	± 1
Ambient temperature range [${ }^{\circ} \mathrm{C}$]	-55 to +200	-40 to +105	-40 to +125	-55 to +125
Typical noise level [$\mu \vee / \mathrm{V}$]	(see note)	>2	1.0	$0 \cdot 1$
Typical stability [\% over 1 year]	± 1	± 5	± 2	$\pm 0 \cdot 1$
Power rating [W]	$2 \cdot 5$ to 17	0.125 to 1	0.25 to 2	0.25 to 0.5
Note: Noise level is unlikely to be an important consideration in applications involving wirewound resistors				

Table 2.1. Typical characteristics of some common types of resistor.

Thus, for a given material, longer and thinner wires exhibit a higher resistance than their shorter and fatter counterparts.

Wirewound resistors are made by winding "resistance wire" (made from alloys like constantan, nichrome and manganin) on a ceramic or fibreglass insulating former. The resulting assembly is then coated with silicone or vitreous enamel which is capable of withstanding surface temperatures of several hundred degrees celsius.
Typical values for wirewound resistors range from a fraction of an ohm to around $22 \mathrm{k} \Omega$. Commonly available power ratings range from around 2.5 W to 17 W . They are also rather large and inappropriate for rating requirements of around 2 W or less. Hence we have to turn to different materials, the most obvious choice for which is carbon.

CARBON COMPOSITION

Carbon composition resistors use a

an insulating surface layer, the resulting resistor exhibiting a closer tolerance and higher stability than its carbon composition counterpart. Values range from 10Ω to $10 \mathrm{M} \Omega$ at tolerances of ± 5 per cent and power ratings of between 0.25 W and 2 W .

The tolerance of carbon resistors tends to be limited to about ± 5 per cent and, whilst this is adequate for most applications, a closer tolerance is sometimes required. Furthermore, the random fluctuations of resistance within carbon resistor result in a small unwanted "noise" voltage. For most applications this is of little consequence however, where the resistors are to be used in.high gain amplifiers, the "noise" produced may become significant and hence a better form of resistor is required.

METAL OXIDE

Metal oxide resistors are similar in construction to their carbon film counterparts but instead employ a film of tin oxide deposited on a ceramic rod. This results in tolerances of around ± 1 per cent coupled with very high stability (i.e. the resistance does not change appreciably as time goes on).

POTENTIOMETERS

In a variety of applications it is necessary to be able to continuously vary the resistance in a circuit rather than rely on a range of fixed values. Some "close to home" examples include the volume and tone controls in radio and audio equipment and the brightness and contrast controls of a television receiver.

Variable resistors come in a variety of different forms but invariably they are fitted with three, rather than two, terminals. In this form, variable resistors are more correctly referred to as "potentiometers" since they constitute a potential divider (an arrangement which we met briefly in Assignment 1.2).

Potentiometers are available as either rotary or slider types, the former enjoying greater popularity amongst equipment manufacturers. A rotary potentiometer (see Fig. 2.1) consists essentially of a carbon (or wirewound) track which occupies an arc of approximately 270°. Each end of the resistive track is fitted with a connecting tag to facilitate soldering. The third connection is linked to a wiper, the position of which is controlled by the shaft on which the knob is mounted. The resistance between the wiper and end

Fig. 2.1. Internal construction of a typical (rotary) carbon track potentiometer.

Fig. 2.2. Resistance characteristics of linear and logarithmic potentiometers.
terminals thus varies according to the position of the shaft.

Pre-set potentiometers are smaller and usually used for p.c.b. work, they are somewhat similar in their construction and require adjustment with a small screwdriver or trimming tool.

Whilst some potentiometers have a "linear" track (i.e. the change in resistance is constant) others (particularly those used in volume controls) exhibit a logarithmic characteristic (see Fig. 2.2).

THE WHEATSTONE BRIDGE

At this point we shall briefly digress from our main theme in order to introduce a circuit which is both useful and elegant in its simplicity. This circuit forms the basis of this month's Practical Project, the LCR Bridge, page 604.

If four resistors are connected as shown in Fig. 2.3, the arrangement is said to constitute a "bridge"
To understand how the bridge circuit works first consider the action of each half of the circuit, as shown in Fig. 2.4. Each pair of resistors consti-

Fig. 2.3. Basic Wheatstone bridge configuration.

Fig. 2.4. Potential divider, formed by each pair of resistors from Fig. 2.3.

EE012C5

EE013C5
Fig. 2.5. Practical form of Wheatstone bridge.
tutes a "potential divider"; the voltage at the junction of the two resistors being, in the case of equal value resistors, exactly half the supply voltage.

If all four resistors have the same value, identical potentials (relative to either of the supply rails) will appear at A and B (Fig. 2.3). Hence the potential difference existing between A and B will be zero. In this condition the bridge is said to be "balanced" and no current would flow in a meter connected between A and B.
If we now replace one of the resistors (arms) of the bridge with a calibrated variable resistor (or potentiometer with one end terminal left disconnected) and an adjacent resistor (arm) with an "unknown" resistor, a balanced condition would be obtained whenever the variable arm has a resistance which is exactly equal to the unknown resistance. The balanced condition can be detected by simply connecting a milliammeter (ideally with a "centre zero" movement) between terminals A and B , as shown in Fig. 2.5.

The range of indications of the basic Wheatstone bridge can be extended by including switched decade values of resistance in the two fixed arms. These are then referred to as "ratio arms". The bridge circuit can also be modified so that capacitance and inductance can be measured (for this we require an a.c. rather than d.c. source). Once again this can be seen in the LCR Bridge, page 604.

ENERGY AND POWER

Energy exists in many forms; heat and light being perhaps the most obvious examples. In electrical circuits, the electrical energy supplied to a resistor is dissipated as heat. A resistor can therefore be thought of as a device which changes electrical energy to heat energy. A lamp, on the other hand, converts the electrical energy applied to it to both heat and light.
Energy is measured in joules (J). One joule of electrical energy is changed into other forms of energy when one coulomb of charge passes through a circuit across which a potential difference of one volt exists. Thus:

$$
\text { joules }=\text { coulombs } \times \text { volts }
$$

or

$$
W=Q V
$$

where W is the energy in joules (J), Q is the charge in coulombs (C), and V is the potential difference in volts (V).

Power is the rate at which energy is changed from one form to another. Power is measured in Watts (W). One watt of power exists when energy is converted at the rate of one joule per second.

$$
\begin{gathered}
\text { watts }=\text { joules } / \text { seconds } \\
\text { or } \\
\qquad P=\mathrm{W} / \mathrm{t}
\end{gathered}
$$

where P is the power in watts, W is the energy in joules and t is the time in seconds.

Now, to put all this into context let's take a simple example. Suppose we have a torch which contains a light bulb rated at $6 \mathrm{~V}, 250 \mathrm{~mA}$. If we leave the torch switched "on" for 1 minute, the charge consumed will be $0.25 \mathrm{~A} x$ $60 s=15 \mathrm{C}$. The energy converted by the torch will be $15 \mathrm{C} \times 6 \mathrm{~V}=90 \mathrm{~J}$. Finally, the power will be $90 \mathrm{~J} / 60 \mathrm{~s}=$ 1.5 W .

We could, of course, have calculated the power rating using the formula which we met last month;

$$
P=I V
$$

where I is the current in $A m p s$ and V is the potential difference in Volts.
The power in our light bulb will thus be $6 \mathrm{~V} \times 0.25 \mathrm{~A}=1.5 \mathrm{~W}$ which, of course, gives the same result as with the other formula

Electrical energy may be temporarily stored in the form of either an electric field or a magnetic field. In either case the energy expended in creating the field is returned when the field collapses. This vital concept forms the basis of two important components; the capacitor and the inductor

CAPACITORS

In Part.One of Teach-In we identified the need for a device capable of storing electric charge. Unlike a battery, such a device need only provide short term storage of charge since we can arrange for regular replenishment of any lost charge from the supply.

A capacitor is a storehouse for electric charge. Fig. 2.6 shows the simplest form of capacitor which consists of a pair of parallel metal plates separated by an insulating material known as a dielectric
When a potential difference appears between the plates, a difference of charge appears across the dielectric and an electric field is established within the dielectric. The material chosen for the dielectric is designed to
Fig. 2.6. Basic parallel plate capacitor construction showing charge and electric field lines.

support an electric field without allowing the charge to leak away (Fig. 2.6).
The capacitance (C) of a capacitor is a measure of its ability to store a charge. The larger the capacitance the greater the charge that can be stored for a given applied potential difference. Capacitance is measured in farads (F). A capacitor is said to possess a capacitance of one farad (F) if it stores a charge of one coulomb when a potential difference of one volt is applied. Thus:

$$
\begin{gathered}
\text { capacitance }=\text { charge } / \text { voltage } \\
\text { or } \\
C=Q / V
\end{gathered}
$$

where C is the capacitance in farads (F), Q is the charge in coulombs (C), and V is the p.d. in volts (V).
In practice a capacitance of $1 F$ is somewhat large and we frequently have to resort to very much smaller sub-multiples, the most common of which are:
microfarads $\times 10^{-6} \mathrm{~F}$ abbreviated $\mu \mathrm{F}$ nanofarads $\times 10^{-9} \mathrm{~F}$ abbreviated nF picofarads $\times 10^{-12} \mathrm{~F}$ abbreviated pF
An important characteristic of a capacitor is its "working voltage". This is the maximum d.c. (or peak a.c.) voltage which can safely be applied to the capacitor. Voltages in excess of this value are likely to cause permanent damage to the dielectric and this, in turn, can lead to the failure of other components.

Capacitors are distinguished by the material used for the dielectric. Commonly used dielectrics are mica, polyester, polystyrene, and aluminium oxide (electrolytics) and their characteristics are summarised in Table 2.2.

POLYSTYRENE

The plates of polystyrene capacitors are formed by thin strips of aluminium foil, separated by a plastic film and rolled into the form of a tube. The completed assembly is then fitted with its axial connecting leads and coated with plastic.

MICA

Mica capacitors offer close tolerance (± 1 per cent typical) coupled with very high stability. The plates of the capacitor are formed by two layers of silver deposited on the opposite faces of a thin slice of mica. The capacitor is then treated with a protective coating of cement.

POLYESTER

A system of colour coding is applied to polyester capacitors along much the same lines as that applied to resistors. The capacitor body is coded with coloured bands, as shown in Fig. 2.7. Note, however, that unlike the system used for resistors, no gaps are left between adjacent coloured bands. This sometimes causes confusion when digits are repeated (as would be the case with 22 nF , for example).
Fig. 2:7. Colour coding for polyester capacitors.

COLOUR	$\begin{aligned} & \text { BAND } 1 \\ & 1 \text { Is } \\ & \text { FIGURE } \end{aligned}$	$\begin{aligned} & \text { BAND } 2 \\ & \text { 2IGd } \\ & \text { FIGURE } \end{aligned}$	BANO 3 MUL TIPLIER	$\begin{gathered} \text { BAND } 4 \\ \text { TOLERANCE } \end{gathered}$	$\begin{gathered} \text { BANO } 5 \\ \text { WORKING } \\ \text { VOLTAGE } \end{gathered}$
BLACK	0	0		\pm 20\%	
BROWN	1	1			
REO	2	2			250 V
ORANGE	3	3	$\times 1,000$		
YELLOW	4	4	$\times 10,000$		400V
GREEN	5	5	$\times 100.000$	$\pm 5 \%$	
BLUE	6	6			
VIOLET	7	7			
GREY	8	8			
WHITE	9	9		$\pm 10 \%$	
Nota Values are quoted in of					

Note that the values are quoted in pF (rather than F) and that it is usual to convert to nF or $\mu \mathrm{F}$ by shifting the decimal point three and six places to the left respectively.

Here are just two examples of the use of the capacitor colour code:-

Table 2.2. Typical characteristics of some common types of capacitor.

Capacitor type (dielectric)	Mica	Polyester	Polystyrene	Electrolytic
Capacitance range [F]	$2 \cdot 2 p$ to $10 n$$\pm 1$	$10 n$ to $2 \cdot 2 \mu$	10p to 10 n	1μ to 10000μ
Typical tolerance [\%]		± 10	$\pm 2 \cdot 5$	± 20
Ambient temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	-40 to +85	-40 to +100	-40 to +70	-25 to +80
Typical d.c. voltage [V]	350	250	160	25
Typical insulation resistance [Ω	$>5 \times 10^{10}$	$>10^{10}$	$>10^{12}$	(see note)
Note: Leakage current depends on capacitance value and working voltage				

ELECTROLYTICS

The principal disadvantage of all of the previous capacitor types is that they become impractically large when high values of capacitance are required. Polyester capacitors, for example, tend to become disproportionately large for capacitance values of only a few microfarads. Fortunately, electro-chemistry comes to our aid with chemical dielectrics which permit large value capacitors of very small physical size.

Electrolytic capacitors use a polarised chemical dielectric which comprises a thin layer of aluminium oxide. In order to polarise the dielectric, a direct voltage (of usually between about 1 V and 15 V) has to be applied to the capacitor. Furthermore, this polarising voltage must be applied with the correct polarity and, since a variety of different marking conventions are employed, it is always wise to check the connections of an electrolytic capacitor very carefully before wiring it into a circuit. Readers should be aware that the effect of connecting an electrolytic capacitor with incorrect polarity can, in some cases, be disastrous. In exceptional cases there may even be some risk of explosion!

CAPACITORS IN SERIES AND PARALLEL

Just like resistors, capacitors, may be connected in series or parallel arrangements in order to provide any desired value. When two capacitors are connected in series (as shown in Fig. 2.8) they each have the same charge whilst the applied voltage is shared between them. Thus,

$$
\mathrm{Q}=\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C} 2 \mathrm{~V}_{2}
$$

or $\mathrm{V}_{1}=\mathrm{Q} / \mathrm{C} 1$ and $\mathrm{V} 2=\mathrm{Q} / \mathrm{C} 2$
Now, the sum of the individual voltage drops, V1 and V2, must be equal to the applied voltage, V. Hence,

$$
V=V_{1}+V_{2}
$$

If we combine the three previous formulae we arrive at,

$$
V=Q / C 1+Q / C 2
$$

and since $V=Q / C$ we deduce that,

$$
\mathrm{Q} / \mathrm{C}=\mathrm{Q} / \mathrm{C} 1+\mathrm{Q} / \mathrm{C} 2
$$

Dividing this last expression throughout by Q gives,

$$
1 / C=1 / C 1+1 / C 2
$$

When two capacitors are connected in parallel as shown in Fig. 2.9 they each have the same applied voltage and the charge is then shared between

Fig. 2.8. Capacitors connected in series.

Fig. 2.9. Capacitors connected in parallel.
them. Hence,

$$
\begin{aligned}
\mathrm{V} & =\mathrm{Q} 1 / \mathrm{C} 1=\mathrm{Q} 2 / \mathrm{C} 2 \\
\text { or } \mathrm{Q} 1 & =\mathrm{C} 1 \mathrm{~V} \text { and } \mathrm{Q} 2=\mathrm{C} 2 \mathrm{~V}
\end{aligned}
$$

The total charge, Q , must be the sum of the individual charges, Q 1 and Q 2 . Thus,

$$
\mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2
$$

Combining the last three expressions gives,

$$
\mathrm{Q}=\mathrm{C} 1 \mathrm{~V}+\mathrm{C} 2 \mathrm{~V}
$$

and, since $Q=C V$ (where C is the total capacitance).

$$
C V=C 1 V+C 2 V
$$

Finally, dividing throughout by V, we arrive at,

$$
C=C 1+C 2
$$

Readers should recall that the formulae for series and parallel arrangements of capacitors take the opposite form from those which relate to resistors, as summarised below:

	Capacitors
Series	$1 / \mathrm{C} 1+1 / \mathrm{C} 2+\ldots$
Parallel	$1 / \mathrm{C} 1+\mathrm{C} 2+\ldots$

CHARGE AND DISCHARGE

If an initially uncharged capacitor is connected to a battery, we generally assume that charge is transferred from the battery to the capacitor instantaneously. In practice this is never the case as the rate of charging is always limited by the internal resistance of the battery and the resistance of the connecting wires.

A large number of electronic circuits do, in fact, rely on the charging and discharging of a capacitor over a period of time. To delay the transfer of charge we only need introduce some resistance into the circuit. To understand how this works consider the circuit of Fig. 2.10. With S1 in position A, the capacitor, C, charges from the supply with current supplied through the series resistor, R1. The rate of charging is determined by the product of the capacitance and resistance, $\mathrm{C} \times$ R1, which is known as the "time constant" of the charging circuit.
As the capacitor charges, the voltage on its plates rises in an exponential fashion, as shown in Fig. 2.11.

EEOVCS
Fig. 2.10. Capacitor charge/discharge arrangement.

Fig. 2.11. Exponential rise of voltage across a capacitor undergoing charge.

Fig. 2.12. Exponential fall of voltage across a capacitor undergoing discharge.

After a period equal to one complete time constant, the capacitor voltage will have risen to approximately 63 per cent of its final value. During the next time constant period it will achieve 63 per cent of the remainder, and so on.
Eventually the capacitor voltage becomes very nearly equal to the supply voltage. It should, however, be noted that the capacitor never quite becomes fully charged and there will always be some small difference between the capacitor voltage and the supply voltage. In practice we can safely assume that the capacitor is fully charged after a period equal to about five times the charge time constant (i.e. approximately $5 \times$ C R1.).
Now let us assume that our "fully charged" capacitor is discharged by switching S1 to position B (Fig. 2.10). Current flows through R2 as the capacitor's charge gradually leaks away. The rate of discharge depends upon the time constant, C \times R2.
As the capacitor discharges, its voltage falls in an exponential manner (see Fig. 2.12) to 37 per cent of its initial value at the end of one time constant period. During the next time constant period it will fall to 37 per cent of the remainder, and so on.
Eventually, the capacitor voltage becomes very nearly equal to zero (i.e. 0 V). Again, the capacitor never quite becomes fully discharged, however it is again safe to assume that the capacitor will have lost all of its charge after a period of time equal to about
five times the discharge time constant (i.e. approximately $5 \times$ C R2).

If all of this is beginning to sound a little too theoretical don't panic! The essential point is that we can control the rate of charge and discharge of a C-R circuit by means of an appropriate choice of component values. By increasing the values (of either C or R) we can slow-up the response or by decreasing the values we can speedup the response. This leads to numerous applications in the fields of waveshaping and timing.

INDUCTORS

An invisible magnetic field surrounds any wire which carries an electric current. When a wire is straight, the field lines surrounding it are circular. By coiling the wire, we effectively concentrate the strength of the field in the centre of the coil (Fig. 2.13). A further increase in flux density (for a given applied current) can be achieved by introducing a flux-supporting medium (such as iron or steel) in the centre of the coil.

Fig. 2.13. Magnetic field lines in straight and coiled conductors.

If a steady direct voltage is suddenly applied to an inductor, the changing magnetic flux induces an e.m.f. within it which effectively opposes the applied voltage. Hence the current flowing in the inductor gradually builds up to a steady value (determined ultimately by the resistance of the circuit).
If the applied voltage is alternating (rather than direct) the continual change in current will produce a changing magnetic flux which, in turn, opposes the applied e.m.f. The result is an opposition to current which increases with increasing rate of change of current. Since inductors offer negligible opposition to the pas-
sage of direct current but offer an appreciable opposition to alternating current flow, inductors are often called "chokes"
Inductors are usually distinguished by the core material (i.e. the material in which the flux exists). High value inductors require a core which easily supports flux and this is achieved using high quality steels which are laminated to reduce losses and hence improve efficiency.

Other inductors use ferrite (a nonconducting ferric oxide) formed into a suitably shaped core. Ferrite "pot cores" are used to completely enclose a coit wound on a small bobbin. Other inductors use coils wound on ferrite rods and these are often found in radio equipment. The characteristics of a variety of common inductors are summarised in Table 2.3.

INDUCTORS IN SERIES AND PARALLEL

Series and parallel arrangements of inductors are somewhat less usual than series and parallel arrangements of resistors or capacitors: For the sake of completeness, however, we should perhaps mention that series and parallel arrangements of inductors behave in a similar manner to those of resistors. Thus, for a series arrangement of two inductors:

$$
\mathrm{L}=\mathrm{L} 1+\mathrm{L} 2
$$

and for a parallel arrangement of inductors:

$$
1 / L 1=1 / L 1+1 / L 2
$$

IMPROVED POWER SUPPLY

Finally, having briefly outlined the principles of capacitors and inductors. we shall put them to good use by making a few improvements to the rudimentary power supply described in Part One.

The first and most obvious improvement is to incorporate a capacitor which will act as a charge reservoir, as shown in Fig. 2.14. This capacitor alternately charges as the peak of each positive half-cycle approaches and then discharges through the load (i.e. the circuit connected to the power supply).

Fig. 2.14. Improved power supply incorporating a reservoir capacitor.

The value chosen for the "reservoir capacitor" is made as large as possible in order to maintain a reasonably steady current through the load. (Doubtless readers will have remembered that the charge stored in a capacitor is directly proportional to its capacitance!)
Typical values for reservoir capacitance range from around $470 \mu \mathrm{~F}$ to

Fig. '2.15. Output voltage waveforms showing effects of reservoir capacitor and smoothing filter.

Fig. 2.16. Improved power supply incorporating reservoir capacitor and smoothing filter.

Table 2.3. Typical characteristics of some common types of inductor.

Inductor type (cove)	Laminated steel	Ferrite pot or ring	Ferrite slug	Air
Inductance range [H]	$\begin{gathered} 20 \mathrm{~m} \text { to } 2 \mathrm{H} \\ \pm 20 \\ \text { (see note) } \end{gathered}$	$\begin{gathered} 10 \mu \text { to } 100 \mathrm{~m} \\ \pm 10 \end{gathered}$	$\begin{gathered} 100 \mathrm{n} \text { to } 1 \mathrm{~m} \\ \pm 10 \end{gathered}$	$\begin{gathered} \text { In to } 100 \mu \\ \pm 5 \end{gathered}$
Typical tolerance [\%]				
Typical frequency range [Hz]	10 to 10 k	1k to 100k	100k to 100M	00k to 500M
Note: Inductance liable to vary according to any d.c. component present				

around $10,000 \mu \mathrm{~F}$ in applications where load currents range from between 100 mA to around 5A. Electrolytic types are thus essential!

Unfortunately, the output of our improved power supply is still far from perfect. The regular charging and discharging of the capacitor produces a small "ripple" which is effectively superimposed on the direct output voltage, see Fig. 2.15.

Our power supply may be further improved by taking some positive steps to remove the residual ripple. This may be achieved by adding a simple inductance/capacitance filter.
as shown in Fig. 2.16. This filter needs to comprise of nothing more than a series inductor, L, and a shunt capacitor, C 2 , and it allows direct current to pass unhindered whilst, at the same time, considerably reducing the level of the alternating ripple component at the output (Fig. 2.15). We shall be looking at filters in greater detail in Part Six of the "Teach-ln" series.
Next month we shall deal with the principles and operation of some common semiconductor devices.

PROBLEMS

Difficulty rating: (e) easy; (d) difficult; (m) moderate.
2.1 How much energy is consumed by a domestic 60 W light bulb in 1 hour?
2.2 What type of resistor would be best suited to each of the following applications?
(a) A multiplier resistor used in a multimeter.
(b) A resistor used as a high current load for testing power supplies.
(c) A bias resistor for use in the first stage of a low-noise amplifier.
2.3 A polyester capacitor is coded with the following coloured bands; orange, orange, yellow, red, white. What is the value, tolerance, and working voltage of the capacitor? (e) 2.4 What type of capacitor is best suited to each of the following applications?
(a) A reservoir capacitor for use in a power supply.
(b) A low value capacitor for use in the oscillator stage of a high frequency transmitter.
(c) A medium value capacitor for general use.
2.5 A capacitor of $16 \mu \mathrm{~F}$ is charged to a potential difference of 50 V . What charge is contained in the capacitor?
2.6 A capacitor of unknown value is connected in series with a known $2 \mu \mathrm{~F}$ capacitor. The series arrangement is then charged by connecting it to a 100 V d.c. supply. If 20 V appears across the $2 \mu \mathrm{~F}$ capacitor determine the value of the unknown capacitor.
(m)
2.7 A capacitor of $470 \mu \mathrm{~F}$ is connected in series with a resistor of $220 \mathrm{k} \Omega$. What is the time constant of the arrangement?
(e)
2.8 An oscillator requires a C-R circuit having a time constant which is adjustable from approximately 1 ms to 11 ms . Assuming that a capacitor of 100 nF is available devise a suitable circuit and specify the component values required.
Fig. 2.17. Circuit diagram for problem 2.10

2.9 A $1 \mu \mathrm{~F}$ capacitor is charged from a 10 V supply via a $1 \mathrm{M} \Omega$ resistor. What voltage will appear across the capacitor
(a) 1 second
and
(b) 2 seconds after connection? (m)
2.10 The circuit shown in Figure 2.17 shows an unbalanced Wheatstone bridge. Determine the voltage appearing between terminals A and B . (m)

the answers to these PROBLEMS WILL APPEAR IN TEACH-IN PART 3

ANSWERS TO LAST MONTH'S PROBLEMS

1.1 six
$1.211 \Omega, 36 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$
$1.3 \quad 2.22 \mathrm{~A}$
1.4 (a) 43.6 mA
(b) 2.053 V
$1.5150 \Omega \times 2$
1.6 Unfortunately this question was wrongly printed and should, therefore, be ignored
$1.7 \mathrm{VV}(\min)$ to $8 \mathrm{~V}(\max)$
1.83 V (min) to 6 V (max)
$1.9 \quad 27 \mathrm{k} \Omega 5 \%$ tolerance
1.10 No
$1.1147 \mathrm{k} \Omega$, yellow/violet/orange/ silver
1.12339 V peak, 678 V pk-pk
1.134 V pk-pk, 500 Hz

Practical Assignments

COMPONENTS

Besides the items used for Part One, you will need the following components in order to complete the practical assignments described in this part of Teach-In:-
Resistors $0.25 \mathrm{~W}, 5$ per cent, 100Ω (1), $470 \Omega(4), 1 \mathrm{k} \Omega(1), 10 \mathrm{k} \Omega(3)$

Capacitors 16 V electrolytic, $1000 \mu \mathrm{~F}$ (1), $2200 \mu \mathrm{~F}$ (1).

In addition, readers will require a digital wristwatch preferably incorporating an elasped time display.

ASSIGNMENT 2.1

Charge and discharge of a capacitor

This assignment is designed to demonstrate the charge/discharge characteristics of a C-R arrangement. Before we begin, a few words of explanation are necessary concerning our choice of component values used in this experiment.
Firstly, since we shall be using nothing more sophisticated than a watch and a multimeter (for recording time and voltage or current respectively) we shall need to use some relatively long values of time constant.
Since we are aiming for a large $C \times R$ value readers might be forgiven for thinking that we should make both C
and R as large as possible. To some extent this is true but consider, for a moment, the effect of the voltmeter's own internal resistance. This will appear in parallel with the circuit at the point of connection.
The voltmeter has a finite resistance ($200 \mathrm{k} \Omega$ on the 10 V d.c. range) and, to ensure that any current drawn by the voltmeter will be insignificant by comparison with that flowing in R, we must choose a value for R which is very much smaller.
A sensible value for R would thus be about one tenth of that of the voltmeter (i.e. between $10 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$). Unfortunately this poses something of a problem since, in order to produce a time constant of several tens of seconds, we are now constrained to using some fairly large values of capacitor.

Secondly, large capacitance values can only be achieved with the use of electrolytic devices. Such devices tend not only to be of rather poor tolerance (i.e. we cannot assume that their marked value is precise) but they are also prone to some leakage (i.e. small direct current flows in the dielectric). These problems tend to become more severe as the value of capacitance increases.
The choice of $\mathrm{C}-\mathrm{R}$ values has, therefore, to be something of a compromise; C must be large but not so large that leakage becomes significant, whilst R must be low but not so low that we are forced into using excessively large values for C. All this serves to illustrate the sort of dilema that often faces the electronic equipment designer!

Now to turn to the assignment itself. For convenience we have split the assignment into three separate parts, as foilows:
(a) Investigation of capacitor voltage during charge
(b) Investigation of capacitor current during charge
(c) Investigation of capacitor voltage during discharge
In each part of the experiment we will examine the effect of various C-R combinations in order to assess the performance of the circuit with different time constant values. Readers should tabulate all values (using the tables provided) so that graphs can be plotted and compared with those found earlier in the text.

PROCEDURE AND RESULTS

Connect the circuit shown in Fig. 2.18 on your breadboard, using the wiring diagram shown in Fig. 2.19 The value initially used for R should be $10 \mathrm{k} \Omega$ whilst C should be $1000 \mu \mathrm{~F}$. Set the voltmeter to the 10 V d.c. range (do not subsequently change the range)
Start the wristwatch time display for choose a convenient value displayed on the normal seconds indication) and at the same time remove the shorting link. Now observe and record the capacitor voltage at each 5 sec . interval to a maximum of 60 sec . (You may find it best to enlist the help of another person who can call out the times

Fig. 2.18. Investigation of charging voltage.

Fig. 2.20. Investigation of charging current.

Fig. 2.22. Investigation of discharging current.

Fig. 2.24. Wheatstone bridge circuit for assignment 2.2.
whilst you read the meter and note down the results!) Your results should agree with those in Table 2.4.
Now repeat the measurements with $R=20 \mathrm{k} \Omega$ and $R=30 \mathrm{k} \Omega$ (wiring modifications are shown inset in Fig. 2.19) and $C=2200 \mu F$. You should obtain a total of six sets of results for the six different C-R combinations. Plot these results in the remainder of Table 2.4.

Results should now be plotted on graph paper and the graphs compared with Fig. 2.11. Readers should also calculate the time constant for each circuit and relate this to the graphs obtained.

Now connect the circuit shown in Fig. 2.20 using the wiring diagram shown in Fig. 2.21. The value initially chosen for R should be $10 \mathrm{k} \Omega$ whilst C should be $1000 \mu \mathrm{~F}$. Set the multimeter to the 5 mA d.c. current range (do not subsequently change the range).
Again remove the link at $t=0$ but this time record values of current at 5

Fig. 2.19. Wiring diagram (Fig. 2.18).

Fig. 2.21. Wiring diagram (Fig. 2.20)

Fig. 2.23. Wiring diagram (Fig. 2.22).

Fig. 2.25. Wiring diagram (Fig. 2.24).

$\begin{aligned} & C=1000 \mu \mathrm{~F} \\ & R=10 \mathrm{k} \Omega \end{aligned}$	Time, t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
		0	3	5.5	6.7	7.5	8.1	8.4	8.6	8.7	8.75	8.8	8.85	8.9
$\begin{aligned} & C=1000 \mu \mathrm{~F} \\ & \mathrm{R}=20 \mathrm{k} \Omega \end{aligned}$	Time, t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\begin{aligned} & C=1000 \mu \mathrm{~F} \\ & \mathrm{R}=30 \mathrm{k} \Omega \end{aligned}$	Time, t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\begin{aligned} & C=2200 \mu F \\ & R=10 k O \end{aligned}$	Time. t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\begin{aligned} & C=2200 \mu F \\ & A=20 k Q \end{aligned}$	Time, t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\begin{aligned} & \mathrm{C}=2200 \mu \mathrm{~F} \\ & \mathrm{R}=30 \mathrm{~K} \Omega \end{aligned}$	Time. t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60

Table 2.4. Results for assignment 2.1 to be entered in this table (voltage during charge).

$\begin{aligned} & C=1000 \mu \mathrm{~F} \\ & \mathrm{R}=10 \mathrm{kQ} \end{aligned}$	Time. 1 (s)	0	5	10	15	20	25	30	40	50	60
	Current. 1 (mA)	0.9	0.55	0.35	0.2	0.12	0.08	0.05	0.02	0.015	0.01
$\begin{aligned} & C=2200 \mu \mathrm{~F} \\ & \mathrm{R}=10 \mathrm{k} \Omega \end{aligned}$	Time. 1 (s)	0	5	10	15	20	25	30	40	50	60
	Current. 1 (mA)										

Table 2.5. Results for assignment 2.1 to be entered in this table (current during charge).

$C=1000 \mu \mathrm{~F}$	Time, t (s) Voltage. $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\mathrm{R}=10 \mathrm{k} \Omega$		9	5.5	$3 \cdot 6$	$2 \cdot 2$	$1 \cdot 8$	1.2	0.8	0.6	0.5	0.45	0.4	0.35	0.3
$\begin{aligned} & \mathrm{C}=2200 \mu \mathrm{~F} \\ & \mathrm{R}=10 \mathrm{k} \Omega \end{aligned}$	Time. t (s) Voltage, $v(v)$	0	5	10	15	20	25	30	35	40	45	50	55	60

Table 2.6. Results for assignment 2.1 to be entered in this table (voltage during discharge).

sec. intervals to a maximum of 60 sec . Repeat the measurements with $\mathrm{C}=$ $2200 \mu \mathrm{~F}$. Your results can be entered in Table 2.5. Then plot graphs for both values of time constant. Attempt to reconcile the shape of these current/ time graphs with the voltage/time graphs for the same C-R values (i.e. does the circuit obey Ohms law?).
Finally set up the discharge circuit shown in Fig. 2.22 using the wiring diagram of Fig. 2.23. The value initially chosen for R should be $10 \mathrm{k} \Omega$ whilst C should be $1000 \mu \mathrm{~F}$. The multimeter should be set to the 10 V d.c. range (and again this must not be subsequently changed during measurement).
Remove the link at $\mathrm{t}=0$ and then record values of voltage at 5 sec . intervals to: a maximum of 60 sec . Repeat the measurements with $\mathrm{C}=$ $2200 \mu \mathrm{~F}$. Your results can be entered in Table 2.6. Then plot graphs for both values of time constant comparing the results with the graph shown in Fig. 2.12. Calculate the value of time constant for each circuit and again relate this to each graph.

ASSIGNMENT 2.2

The Wheatstone bridge
This assignment is dedsigned to illustrate the operation of a simple Wheatstone bridge.
Connect the circuit shown in Fig. 2.24 using the wiring diagram depicted in Fig. 2.25. All four resistors should initially be 470Ω and the multimeter should be set to the 5 mA d.c. range. Readers should note that, in this initially balanced state, no current flows in the meter.
Now replace R4 first by 100Ω and then by $1 \mathrm{k} \Omega$. In each case note the indication produced on the meter (reverse the meter connections if the meter indicates a negative current).

Finally, replace R4 by a $1 \mathrm{k} \Omega$ variable resistor (i.e. the same variable resistor used in Part One). Note the effect of varying R4 over its complete range of adjustment. Then carefully set R4 to produce a balanced condition. Now disconnect the variable resistor and the multimeter from the circuit and, using the multimeter "Ohms" range, measure the resistance presented by the variable resistor.

RESULTS

Relate the values of current flowing in the meter to the conditions within the bridge circuit. (Readers may like to calculate the currents and voltages appearing in each arm of the bridge for all three conditions). Finally, readers should confirm that the resistance presented by the variable resistor is the same as that present in the adjacent arm (R3).

Next Month you will need the following additional components in order to complete the practical assignments.
Resistors ($\frac{1}{4}$ Watt, 5% carbon). 100Ω (1 off); 220Ω (1 off); $2 \cdot 7 \mathrm{k} \Omega$ (1 off);
Potentiometer 100k (linear)
Semiconductors OA-91 (1 off): IN4 148 (1 off); BZY-88-C3V9 (1 off), BZY-88-C4V7 (1 off); BFY-50 (1 off); 2N3053 (1 off)

OVER the vears, for numerous and various reasons, many suppliers of electronic components have become household names to the hobbyist. Some have gained a reputation for speed or value, others for reliability and quality. Many have grown from small part-time businesses to thriving multi-million pound industries, one such company being Maplin Electronics.

Humble beginnings

Maplin Electronic Supplies Ltd. are now one of the largest and probably the best known supplier to the hobbyist. The company was founded by, and is still run by Roger Allen, his wife Sandra and Doug Simmons. Back in 1972, during the peak of the amateur constructor boom, Roger and Doug saw the need for a reliable and speedy mail order service. Hobbyists themselves, they had experienced long delays when ordering components and so decided that they could provide a better service.

Convinced that they had the right strategy, low prices and a promise of delivery by return of post, they placed an advert in Practical Electronics (our sister publication). Both Roger and Doug were working so Sandra was to stay at home to answer the phone and process mail orders; at this time they were wondering whether to have extra phone lines installed to cope with expected demand.

Unfortunately they were to be disappointed. Orders came in slowly and their investment was not paying off yet, despite this, their enthusiasm never diminished. Continuing with their policy of providing à reliable, first-class service, they struggled on.

After further investment, more debts and advice from the accountant to give up, the' business slowly pulled through. Both Roger and Doug gave up their jobs and they àcquired some small business premises above a launderette. Several problems and set-backs later, the first Maplin shop was opened in 1974, in Southend-on-Sea.
There are now.five Maplin shops situated in: Birmingham, London, Manchester, Southampton and Southend-on-Sea. At all times, every effort is made to ensure that the shops are fully stocked with the complete Maplin range so, if you're in the area, a visit should be well worth while. If you know exactly what you want, a quick phone call is all that is required to confirm availability but should an item be out of stock, it will be ordered immediately.

Catalogue

A comprehensive catalogue is produced every year by Maplin and is available from branches of W.H. Smith or by mail order. It, is crammed with useful information, pinouts, specifications, application notes, projects, kits and circuit ideas, as well as the usual stock lists and prices. The new 1986 catalogue will be available soon and, as usual, will depict a futuristic scene with an electronics theme; an idea which has become something of a hallmark for Maplin. Also, a calendar with all the 'Maplin Scenes' may be available in the future.

To avoid confusion and standardize prices, components bought mail order will be exactly the same price as those in the shops. There will be a standard charge of $50 p$ for mail order and a small handling charge for orders under $£ 5$. To keep customers up to date Maplin's produce a quarterly magazine which includes price changes, new projects and products.

Around 150,000 Maplin catalogues are sold each year, so as you may imagine their distribution centre must be well organised. It is. They have just extended their 'factory' premises in Southend and now employ around 100 staff.

As orders arrive or are phoned in, they are entered into a computer together with a unique customer reference number. At all times the main computer knows the exact stock level of all components and can therefore give an immediate indication of availability. A printer prints out a customer address label and the order is put together and packed by efficient staff. The Post Office collect the packages for delivery each day so same-day dispatch is usually achieved.

Policy

As far as the hobbyist is concerned, Maplin's policies have changed little over
the years. Reliability and low prices have always been a major objective. However, in the 1986 catalogue, low prices will be stressed even more. Roger Allen says that for some reason,
"many people believe Maplin's prices are a little high,"
so he would challenge anyone to compare prices. In the new catalogue there will be the "lowest ever" prices on a range of products as well as many new items.

To highlight the slight changes in policy, there will be some subtle changes to the Maplin image such as a new design for the Maplin logo

'Tap into the Maplin Computer

Maplin's services can be used in a variety of ways. You can place orders by phone or by post and payments may be made by cash, cheque, postal order, credit card or the special Maplin credit facility. Also available to computer users, with an RS232 compatible port and modem, is the CASHTEL service (Computer Aided SHopping by TELephone). With this service, you can get access to the Maplin computer to place orders, make comments about the service or check stock levels and prices. For further information contact:
Maplin Electronic Supplies Ltd., PO Box 3, Rayleigh, Essex SS6 8LR. O (0702) 554155. © (Sales only) (0702) 552911.

Five Six Seven Eight Nine Ten

Apart from their wide variety of components, telephone accessories, project kits and ancillary equipment, TK Electronics are perhaps best remembered by their telephone number, (01) 5-6-7-8-9-10.

TK Electronics provide a wide range of project kits designed to cater for the absolute beginner through to the experienced hobbyist. Their beginner's kit includes a solderless breadboard and sufficient components to build ten simple projects. At the other end of the range are microprocessor timers and mains wiring remote control units.
For full details of all TK Electronics projects and products, a comprehensive catalogue is available free of charge. The catalogue is designed for easy reading, each section being clearly marked and all components shown together with the current price. To ensure up to date information and prices, the catalogue is updated every few months

Security

TK Electronics, as well as the general components range, also supply a number of telephone accessories and security products. These include: master and extension sockets for phones, line chords with four-way plugs and spade terminals, door and window security contacts, pressure mats and ultrasonic burglar alarms.
For a free catalogue, send a stamped addressed envelope to: TK Electronics, 11 Boston Road, London W7 3SJ. or 01 5678910.

For technical enquiries, these are dealt with on Tuesdays and Thursdays after 3 pm . For general enquiries 01-5799794 and for technical enquiries $201-579$ 2842

Catalogue Received

The 1985/86 catalogue from MS Components is now available free of charge to both trade and retail customers. It contains almost 300 pages compiled in 20 sections for ease of reference and lists around 10,000 products. All the products are held in stock and the company offers 24 hour dispatch time for any size of order

The catalogue itself is quite an impresside publication, full of well reproduced photographs, application notes, data and specifications. All products are fully described and appear together with the cataloge order number and the price. Items range from sophisticated electronic instruments to less interesting but essential items like sleeving

For non account customers there is a minimum order charge of $£ 10$ including VAT and orders can be made in writing or by phone. More details are available from: MS Components Ltd., Waring Street, West Norwood, London, SE27 9LH ©01-6704466.

CONSTRUCTIONAL PROJECTS

Flux Density Transducer (Transducers-3)

The main component for the Flux Density Transducer is a linear hall effect i.c. This i.c. produces a differential output voltage which is directly proportional to the magmetic flux density. The one used in the prototype is available from RS, part no. 304-267. If an alternative is used it should have a linear output over a 40 mT range and a sensitivity around $8.5 \mathrm{mV} / \mathrm{mT}$

Hallowe'en Projects

This month we feature three topical "fun projects including: Flashing Pumpkin, Squeaking Bat and Screaming Mask. As far as the electronics go, for these projects, there should be no problems as they are all common components available from a number of suppliers.
However, if you decide to build them at any time other than Hallowed en, you may experience difficulty in obtaining a pumpkin. In actual fact, the prototype was built a couple of months ago, and was fitted in a melon-it collapsed The mask and the 'toy' bat are available at most joke shops.

Simple Audio Amplifier (Building Blocks)

Once again, no difficulty with the components in Building Blocks and the p.c.b. is available from the EE PCB Service. If an alternative case is used, as suggested, a metal type is preferred such as one similar to the Verospeed 86-20101F. Orders to: Verospeed, Stanstead Road, Boyatt Wood, Eastleigh, Hants, SO5 4ZY. S 0703644555.

Universal LCR Meter (Teach In '86)

A number of advertisers are offering complete kits for the Teach In ' 86 projects or alternatively, the components may be ordered separately. If so, there should be no problems, except for the case.
With each project, the front panel of the case is printed allowing a more professional result to be achieved. However, this restricts the type of case to one of the correct size, and the one used in the prototype is in short supply at the moment. This may mean some delays but most of our regular advertisers have a few in stock or have them on order

Hobbyist Kits and Printed Circuit Boards

Croydon Discount Electronics have just announced the availability of a range of components, including relays and motors, which may be useful to hobbyists experimenting with robotics. Croydon also supply a number of low cost projects in kit form such as a mini drill and controller at £11.95 and a NiCad charger at £3.50

For the beginner to p.c.b. work, a useful kit comprising everything required to produce small printed circuit boards is available, including instructions, for $£ 5.95$. Full details from: Croydon Discount Electroniss, 38 Lower Addiscombe Rd, Croydon, Surrey, CRO 6AA 2 01-688 2950.

* BAKER * GROUP PA DISCO
 AMPLIFIERS post \mathbb{Z} O 0 O 0 : 150 wat Output. 4 input Mixer pre-amp. Illustrated
 150 watt Oulpul. Slave 500 mv. Input $4+8+16$ ohm . 899 $150+150$ watt Stereo, 300 watt Mono Slave 500 mv . Inputs $£ 125$ 150 watt P.A. Vocal, 8 inputs. High/Low Mixer Echo Socket $\varepsilon 129$ 100 watt Val eve Model. 4 inputs, 5 Outputs. Heavy duty, 8125 60 watt Mobile 240 v AC and 12 v DC. $4-8-16 \mathrm{hm}+100 \mathrm{v}$ line E 8 s MIKES Dual Imp £2a, Floor Stand £13, Boom Stand $\mathbf{E z 2}$. PP CZ Reverb Unit for Microphone or Musical Instruments $£ 35$ PP $£ 1$. Electronic Echo Machine for micletc. $£ 85$. Deluxe $£ 95$ PP $\mathbf{E 1}$. $H+H^{1000 w}$ mono, 500 w stereo quality amplifiers, model DISCO CONSOLE Twin Decks, mixer gre amp £145. Carr £10. 150 watt $£ 300$; 360 watt $£ 410$. Carr $£ 30$.
 DISCO MIXER. $240 \mathrm{~V}, 4$ stereo channels. 2 magnetic, 2 ceramic tope, 1 mono mic channel, twin wu. meters, headphone monitor outlet, slider controls, panel or desk mounting, math black facia. E59. Post $\mathbf{~} 1$. DELUXE STEREO DISCO MIXER/EOUAUSER as above plus LEED. V.U. displays 5 band graphic equaliser. leff/right fader, switchable inputs for phone/line, mike/line. Headphone Monitor, Mike Taiko As above but 3 deck inputs, 4 lineawith in $=129$ pP $£ 2$ headphone monitors $£ 145$.

A. CABINETS (empty) Single 12 £34; Double 12 £40. carr £ 10
NTH SPEAKERS $45 W$ £52; 75 W £56; 90 W £75; $\$ 50 \mathrm{~W}$ £ 84 . 200 Watt $£ 100,400$ Watt $£ 150$. carr $\mathbf{E 1 2}$.
300 WATI MID-N-TOP SYSTEM Complete E 125 carr 12 TEETER HORNBOXES 200 Watt £32. 300 Wort ε 38. PP $\varepsilon 2$ WATERPROOF HORN SPEAKERS 8 ohms. 25 watt 52030 watt 23. 40 watt $£ 29$. 20 W plus 100 volt line $£ 38$. Post $£ 2$.

R.C.S. DISCO LIFTING EQUIPMENT

READY BUILT DELUXE 4 CHANNEL 4,000 WATT sound chaser + speed +4 programs $\mathbf{E 6 9}$. Mk 16 programs, £89 PP $£$ PARTY LIGHT 4 coloured Flood Lamps Flashing to Music.
Self-contained Sound to Light $410 \times 196 \times 115 \mathrm{~mm}$ E 34.95 PPR 2. Full stock of Components, plugs, leads, etc

MAINS TRANSFORMERS

.
Price Post
$250-0.250 \mathrm{~V} 80 \mathrm{~mA} .6 .3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V}$
$350-0.350 \mathrm{~V} 250 \mathrm{~mA} .6 .3 \mathrm{~V}$. CT $\begin{aligned} \varepsilon 7.00 & \text { ER } \\ \varepsilon 12.00 & \text { EZ }\end{aligned}$
OW VOLTAGE MANS TRANSFORMERS CF 50 . 5 P LOW VOLTAGE MAINS TRANSFORMERS es. 50 each post paid
$9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-0.1 \mathrm{~V}$ $9 \mathrm{~V}: 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 1 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-\mathrm{O}-1 \mathrm{~V}$,
$20.40-60 \mathrm{~V}, 1 \mathrm{~A} ; 12-0-12 \mathrm{~V}, 2 \mathrm{~A} ; 20-0-20 \mathrm{~V}, 1 \mathrm{~A} ; 50 \mathrm{~V}, 2 \mathrm{~A}$.

E8.50 post 50 p MINI -MULTI TESTER
 DC current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{~K} 1000$ o. D.V.
DeLuxe Range Doubler Meter, 50.000 o.p.v. $7 \times 5 \times 1$. 2 m . Resistance 0,20 med in 5 ranges. Current 50 mA to ERS 50 mA .20 mA . V . PANEL METERS $50 \mathrm{~mA}, 100 \mathrm{~mA}$. $500 \mathrm{~mA}, 1 \mathrm{~mA} .5 \mathrm{~mA} .100 \mathrm{~mA} .500 \mathrm{~m}$
$1 \mathrm{amp}, 2 \mathrm{mpp}, 5 \mathrm{mp}, 25 \mathrm{vol}, \mathrm{VU} 2^{1 / 4 \times 2 \times 1} / \mathrm{sin}$. 5.50 post 50 p

PROJECT CASES. Black Vinyl Covered Steel Top, All Base

ALUMINIUM PANELS 18 sw. $g .12 \times 12 \mathrm{in} . £ 1.80 ; 14 \times 9 \mathrm{in} . £ 1.75$;
$6 \times 4 \mathrm{in} .55 \mathrm{p} ; 12 \times 8 \mathrm{in}, ~ £ 1.30 ; 10 \times 7 \mathrm{in}, 96 \mathrm{p} ; 8 \times 6 \mathrm{in} .90 \mathrm{p} ; 14 \times 3 \mathrm{in}$.

 MG H VOLTAGE ELECTROLYTIC

RECORD PLAYER DECKS. P\&P EZ.
 decca teak veneered punt sp Board cut for BSR or Garrard $18^{3} / 4 \mathrm{in}$, $\times 14^{1 / 4 i n}$. $\times 4 \mathrm{in}$. 25 . Post E1

RADIO COMPONENT SPECIALISTS Dept 4, 337, WHITEHORSE ROAD, CROYDON ACCESS SURREY, U.K. Tel: 01 -684 1665 VIsit 65 F Minimum. Callers Welcome Full Lists 34_{p} Stamps Same day despatch

66 610

UNIVERSAL LCR BRIDEF

Michael Tooley ba David Whitfield ma msc ceng miee

ALaRGE proportion of any electronic circuit is usually made up of resistors, capacitors, and (to a lesser extent) inductors. It is often useful to be able to measure the values of these passive components, since their markings can easily become obscured or the colour codes may fade. With resistors, this can be accomplished fairly easily with the aid of a general purpose multimeter. For measuring the values of inductors and capacitors, however, the problem is more difficult since their characteristics vary with frequency. In particular, the technique used in a multimeter for making resistance measurements (using a d.c. supply/battery) are particularly unsuitable, since at d.c. capacitors behave like very high impedances (theoretically infinite), and inductors usually have very low impedances (theoretically zero).
This month's project is a Universal LCR Bridge which is capable of measuring a wide range of values of resistance, capacitance and inductance, and performs all of its measurements at a frequency of approximately 1 kHz .

Fig. 2.1. General bridge circuit.

UNIVERSAL BRIDGE

Bridge circuits are used a great deal in measuring components of unknown value. Broadly, they work by comparing the unknown component against a number of other 'standard' components of known value. The general form of such a bridge circuit is shown in Fig. 2.1. The four arms of the bridge are arranged as two potential dividers, with an impedance in each arm. A voltage source is applied across two opposite corners of the bridge, and a detector is connected across the remaining two corners (i.e. A to B).

To measure the value of an unknown impedance, it is used to replace one of the arms of the bridge. The value(s) of one or more of the other arms of the bridge are then adjusted so that there is no-reading on the detector. At this point the bridge is said to be balanced, and the potential at point A is the same as that at point B. The impedance of the detector does not feature when
the bridge is balanced since no current flows through it. Similarly, the output level of the voltage source is not important since in effect only ratios are being compared. Thus, when the bridge is balanced, the following relationship holds true:-

$$
\frac{X 1}{X 2}=\frac{X 3}{X 4}
$$

If one of the impedances is the unknown (X 1 , say), this relationship can then be rearranged to allow its value to be determined, e.g.

$$
\mathrm{X}_{1}=\mathrm{X}_{2}\left(\frac{\mathrm{X} 3}{\mathrm{X} 4}\right)
$$

Knowing the frequency of the source, it is then a simple matter to convert from impedance to capacitance or inductance, as appropriate.

Depending on the component to be measured, various different configurations of bridge may be used. The objective here is to use standard resistors wherever possible, since these are most readily available in high accuracy at relatively low cost. Similarly, they are also most readily and conveniently available in variable form.

The universal bridge to be described uses three different bridge configurations to measure capacitance, inductance, and resistance. These basic configurations are based on the classic Hay, Maxwell and Wheatstone bridges, respectively, and their general forms are illustrated in Fig. 2.2. The advantage of these arrangements is that they use standard resistors wherever possible, and when a reactance is required, a standard capacitance is employed.

CIRCUIT DESCRIPTION

The circuit for the universal bridge is shown in Fig. 2.3. The main circuit falls into three main sections: the 1 kHz signal source, the bridges, and the balance detector.

The oscillator stage is based on a phase shift ladder network with a bipolar transistor as the active element. The frequency of oscillation is set by RI, R2, R3 and C2, C3, C4, which form a rather lossy phase shift network. The actual frequency is also slightly affected by the collector load, R5. A high

Fig. 2.2. LCR bridges.
gain transistor is used for TR1 to overcome the loss in the ladder network. The stage is required to have a gain of 29 for oscillation to be sustained. The output level is approximately 0.5 V RMS, and the signal is a.c. coupled via C5 to the next stage.

After the oscillator, an FET buffer is used to isolate the oscillator stage from the variable load impedance of the bridge circuits. TR2 is arranged as a source follower, which presents a very high input impedance to the oscillator, but a low output impedance to the bridges. The output signal is a.c. coupled to the bridge circuits via C7.

The individual bridge configurations are shown in Fig. 2.2, and the bridge required is selected by means of S1. The standard capacitor for the Hay and Maxwell bridges is provided by C8. The switched resistors used to set the range are shown in Fig. 2.4, and the ranges which result are shown in Table 2.1. The balance arm of the bridges is formed by R25 and VRI, while the unknown component is connected between SK1 and SK2

Fig. 2.4. Range switch.
Table 2:1. Switched range settings.

S2	((Henrys, H)	C (Farads, F)	R (ohms, Ω)
1	$10 \mu-110 \mu$	$1 \mu-11 \mu$	$10-110$
2	$100 \mu-1 \mathrm{ml}$	$100 \mathrm{n}-1 \mu 1$	$100-1 \mathrm{k} 1$
3	$1 \mathrm{~m}-11 \mathrm{~m}$	$10 \mathrm{n}-110 \mathrm{n}$	$1 \mathrm{k}-11 \mathrm{k}$
4	$10 \mathrm{~m}-110 \mathrm{~m}$	$1 \mathrm{n}-11 \mathrm{n}$	$10 \mathrm{k}-110 \mathrm{k}$
5	$100 \mathrm{~m}-1 \cdot 1$	$100 \mathrm{p}-1 \mathrm{n} 1$	$100 \mathrm{k}-1 \mathrm{M} 1$
6	$1-11$	$10 \mathrm{p}-110 \mathrm{p}$	$1 \mathrm{M}-11 \mathrm{M}$

The detector circuit is formed by three of the BIFET operational amplifiers in ICI. The difference signal across the bridge is . sensed by two amplifiers, ICIc and ICId, which are both configured as voltage followers. This configuration minimises the loading on the bridge (particularly since the

COMPONENTS

Resistors

R1,R2,R3	6k8* (3 off)
R4	47k
R5	3k3 *
R6,R23	'1k (2 off)
R7	1 M
R8	470
R9,R11,	1 k * (3 off)
R25	
R10	100 *
R12	10 k *
R13	100k*
R14	1 M *
R15	10 M *
R16,R17.	10 k (4 off)
R19,R20	
R18	100k
R21,R22	470k (2 off)
R24	15k
All 0.25 W	10\% except

Potentiometers

VR1
1 k linear pot. (wirewound type preferred)
VR2 10 k linear pot

Capacitors

1,C11	$22 \mu 16 V$ electrolytic off)
C2-C4	10 n polyester 5\% (3 off)
C5	100 n polyester
C6,C7	$10 \mu 16 \mathrm{~V}$ electrolytic (2 off)
C8	1μ polyester 5\%
C9	$2 \mu 216 \mathrm{~V}$ electrolytic
C10	$1 \mu 16 \mathrm{~V}$ electrolytic

Semiconductors

IC1 TLO84 quad bifet

TR1 Op amp
TR2 2N3819E
D1-D5 OA47

Miscellaneous

SK1,SK2 4 mm terminals
SK3 red 4 mm socket SK4 green 4 mm socket
SK5 black 4 mm socket M1 $\quad 100 \mu$ A edgewise meter
S1 4P-3W rotary switch S2 2P-6W rotary switch Veroboard $0.1^{\prime \prime}$ pitch 34 strips \times 50 holes; terminal pins; knobs with pointers (4 off); mounting pillars (4) and hardware; stick on plastic feet (4 off); case.

Approx. cost
Guidance only
£24
input impedance of the amplifiers is of the order of $10^{12} \Omega$), while providing a differential input to the final stage. The two buffers then drive the third amplifier which is arranged as a subtractor stage with gain.
The output from the subtractor is proportional to the amount by which the bridge is currently unbalanced. After rectification by DI, this signal is used to drive the balance detector, M1. The sensitivity of the meter is
adjusted by VR2, which allows the meter sensitivity to be increased as the balance point is approached. A zero reading is obtained on the meter at the balance point; D3 and D4 serve to protect the meter against serious abuse.
The bridge is powered from a $\pm 9 \mathrm{~V}$ supply whose inputs are on SK3, SK4 and SK5, with protection against incorrect polarity provided by D2 and D5.

EE265* ${ }^{\circ}$
Fig. 2.6. Veroboard track cutting details.

After assembly of the board is complete, a careful check should be made of the underside of the board to ensure that there are no accidental splashes of solder, or others unwanted solder bridges. Another visual check of the component arrangement is then worthwhile, since it may well save many hours of troubleshooting later on!

The circuit board should then be mounted in the case, leaving plenty of space for the front panel mounted components. The front and rear panels should then be drilled to accommodate the various controls and connectors. The panel overlay shown in Fig. 2.7 (photocopy) may then be fixed to the front panel. It is worth protecting the overlay with self adhesive transparent film.

The final stage in the construction is to wire the main circuit board to the front panel and rear panel components. The mounting for the meter will depend on the type used. In the prototype, a centre-zero type (RS 259549) was used and fixed with

CONSTRUCTIONAL DETAILS

The main Veroboard for the bridge is shown in Fig. 2.5 and construction starts by drilling the four mounting holes for holding the board in the case. Once this has been done, there are 21 track cuts to be made, as shown in Fig. 2.6. These should be made using either a track cutter or a large diameter sharp drill rotated slowly by hand.

The components are then mounted on the board. There are no special mounting considerations to be observed, although constructors may wish to fit ICl into a 14 -pin d.i.l. socket. Terminal pins are recommended to simplify all off-board wiring. It is suggested that the terminal pins and the wire links (7 off) should be fitted first, followed by the remaining components. Particular care should be taken to ensure that all polarised components (semiconductors and electrolytic capacitors) are mounted correctly aligned.

TEACH-IN '86 SOFTWARE NEWS

To complement each published part of the Teach-In series, we have produced an accompanying computer program. The Teach-In Software is available for both the BBC Microcomputer (Model B) and the Sinclair Spectrum (48 k) or Spectrum-Plus. The programs are designed to reinforce and consolidate important concepts and principles introduced in the series. The software also allows readers to monitor their progress by means of a series of multi-choice tests, with scores at the end.

There will be three cassettes in all, each with three full parts, i.e. parts $1,2 \& 3$ will be on Tape 1, parts $4,5 \& 6$ will be on Tape 2, and parts 7,8 \& 9 will be on Tape 3 .

Tape 1 is now available for $£ 4.95$ (inclusive of VAT and postage) from Everyday Electronics and Electronics Monthly, Westover House, West Quay Road, Poole, Dorset, BH15 1JG

Fig. 2.7. Front panel artwork for the Universal LCR Bridge.

Fig. 2.8. Overall wiring diagram.
the brackets provided, but a $0-100 \mu \mathrm{~A}$ type is to be preferred (e.g. RS 259-561). Due to the lack of panel space, and in the interests of a neater finished result, the meter may instead be glued to the panel from the rear.

The overall wiring diagram is shown in Fig. 2.8, and it should be noted that this includes all the remaining components specified in the components list. The wiring arrangement for $\mathbf{S} 2$ has been omitted for clarity, but it follows the scheme shown in Fig. 2.4, with resistors R 10 to RI 5 mounted on the tags of the switch, using sleeving on the leads as necessary. After a final check, the lid may be put back on the case.

SETTING-UP

Initial testing of the unit involves measuring the supply current drawn to make sure that it does not exceed approximately 20 mA . The bridge will operate from a supply of between $\pm 9 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$. Any significant deviation in the current drawn should lead to a check on the wiring. If no current is drawn, particular attention should be paid to the polarity of D2 and D5.

When all is satisfactory, set S1 to the resistance range, and connect a 4 k 7 resistor across the bridge terminals. The setting of the sensitivity control should then be increased until a full-scale meter reading is obtained. Next the setting of R2 and VR1 should be adjusted to produce a minimum meter indication. As this balance point is approached, the sensitivity may be increased. When the minimum reading is achieved, the value of resistance may be read by multiplying the figure on the inner ring of the VALUE scale (e.g. it should be $4-7$) by the figure on the RANGE switch (e.g. it should be Ik), to give the value in ohms. Similar checks should be performed with other values of resistance, capacitance and inductance. The outer scales are used for capacitance, and the inner scales for resistance and inductance.
Any significant scale errors should be investigated. If the resistance scale only is correct, the likely source of error is the frequency of the oscillator. Errors on all ranges suggest that one of the bridge arms is in error. Errors in extremely high resistances and inductances, and with very small values of capacitance may be due to stray wiring effects, and rearranging the wiring may help reduce these effects.

Next Month: Project 3 will be a Diode/ Transistor Tester.

A
$A^{\text {MONG the many reasons for going d.i.y., }}$ be it in electronics, motor maintenance or the home, is to save cash. But even when the activity doubles as a hobby, and economy is only a partial consideration, there remains the risk of attempting to swell savings by improvising, or abusing inappropriate tools. Almost always this leads to frustration, and ultimately the deprivation of job satisfaction. Taking hold of the right tool for the job feels good and puts the hobbyist in a positive frame of mind. Just one initial outlay can be the downpayment on a lifetime of satisfied grins.

Browse through a tools catalogue or scan the shelves of a di.y. supercentre and one thing becomes clear. These days there are implements to do every conceivable job. Often there are several tools capable of doing the same job, each with a nuance that brings on galloping indecision in the purchaser.

This guide is intended to help clear the jungle a little for the electronics hobbyist, at the very least by providing the addresses of the major suppliers (and many manufacturers) of appropriate hand tools to be contacted for further information.

TYPICAL TOOLKIT

Some readers may ask why pin chucks are not included (we had to draw the line
somewhere), or likewise stripboard spot face cutters (only one type exists so there is no choice. Also, the hobbyist may use a twist drill). Other readers might wonder why the directory differentiates between screwdriver types, yet not pliers and wire cutters which have a greater number of varients. The answer is that suppliers tend to be less predictable in the range of screwdrivers they stock than they do in cutters, strippers and instrument pliers. That is to say, vendors stocking this class of tool invariably offer a range with something to represent every possibility (see facing page). As far as the hobbyist is concerned the difference between one supplier's snipenose pliers, for example, and another's often amounts to little more than the price and the colour of the handle insulation. Before any tool suppliers write to $E E$ to argue that there are differences in the quality of steel used, and robustriess etc., these are differences that are of concern more to the intensive user in R\&D and production than the weekend activist. The best advice to the hobbyist, who after all has his own ideas about quality, is to get hold of the toolmakers' catalogues. They are mostly of excellent quality and provide a more than adequate graphic representation of the tools on offer.

Further omissions from this guide include all soldering related equipments be-
cause these can only be done justice in a separate guide, and other tools requiring power. Ready-made toolkits are rather pricey and mostly inappropriate in content, being mainly aimed at service technicians. Toolboxes are not in themselves tools, of course, and are perhaps one area in which improvisation can be worthwhile anyway.

TIPS TIP

Screwdriver tips are so varied that they often cause confusion, and so to clarify the situation the illustrations in Fig. 1 are included. Basically the difference between - Pozidriv and Supadriv is negligible so that they are effectively interchangeable. The situation is much the same with Phillips and crosspoint screws and drivers in which the difference lies mainly in the name.

Almost all suppliers of screwdrivers market wallet sets and interchangeable bit sets.

Hex screwdrivers and keys are included in the directory, and these tools are sometimes specialised, such as the "ball end" type giving a 30° freedom of angle. An asterisk denotes the availability of specialised versions of hex tools, and specialised tools such as 'Torx' drivers.

DIRECTORY

The directory chart is divided into columns representing the components of a typical comprehensive hobbyist toolkit, although with so many plastic and metal boxes available off the shelf these days, many of the metalworking tools could be overlooked. The rows comprise the major suppliers of tools rather than the manufacturers (with exceptions), since many of the latter are based overseas. Many suppliers also incorporate their own brand tools in their range.

Fig. 1. Screw TYPICAL AUTOMATIC WIRE STRIPPERS WIRE STRIPPERS

(Available from Cliff)

(Available from Welwyn)

The tool manufacturers and suppliers included in this guide are listed below in alphabetical order.

AB-Śee TOOLRANGE.
Abingdon King Dick Ltd.,
Kings Rd.
Tyseley,
Birmingham B11 2AE
Adcola Products Ltd.,
Adcola House,
Gauden Rd.,
London SW4 6LH.
Bahco Tools Ltd.,
Bahco House,
Beaumont Rd.,
Banbury,
Oxfordshire OX 16 7TB.
(See STC.)
(See TOOLRANGE.)
(See TOOLMAIL.)
Belzer-See STC
Bernstein-See TOOLRANGE.
Bondhus - See TOOLRANGE

Bostik Ltd.

Ulverscroft Rd.,
Leicester LE4 6BW.

Britool-See NEILL TOOLS

TOOLMAIL
CeKa Tools (CK),
CeKa Works
Caernarvon Rd.
Pwllheli,
Gwnedd,
Wales.
(See TOOLRANGE.)
Cirkit,
Park Lane
Broxbourne,
Hertfordshire.
Clauss-See TOOLRANGE.
Cliff Electronic Components Ltd.,
76 Holmethorpe Avenue,
Holmethorpe Industrial Estate,
Redhill,
Surrey RH 1 2PF
Commercial Tools Ltd.,
72-77 Lower Tower St.,
Birmingham B19 3HL.
Cooper Tools Ltd.,
Seding Rd
Wear District 6 ,
Washington,
Tyne \& Wear

Crescent-See TOOLRANGE.

Cricklewood Electronics Ltd.,
40 Cricklewood Broadway,
London NW2 3ET.
Dormer-See COMMERCIAL TOOLS. Dowidat-See TOOLRANGE.

Draper Tools,

Hursley Rd.,
Chandlers Ford,
Hampshire
(See STC.)
Eclipse-See NEILL TOOLS, TOOLRANGE, TOOLMAIL.

Electrovalue Ltd.,
28 St. Judes Rd.
Englefield Green, Egham,
Surrey TW 20 0HB.

Elliott Lucas-See NEILL TOOLS,
TOOLRANGE.
Elora-See STC, DRAPER.
Erdi-See WELWYN, TOOLRANGE.
Ergo-See BAHCO.
Facom-See TOOLRANGE
Fisco-See TOOLMAIL.
Footprint-See TOOLMAIL.
Gilbow-See BAHCO, TOOLMAIL.
Granit-See WELWYN.

Greenweld Electronics Ltd.,
443 Millbrook Rd.
Southampton, SOI 0HX.
Hanso-See TOOLRANGE
Hellermann Electric,
Pennycross Close,
Plymouth PL2 3NX.
Idealtek-See TOOLRANGE
JoKari-See TOOLRANGE.
Kiesel-See TOOLRANGE.
Klippon Electricals Ltd.,
Power Station Rd.
Sheerness,
Kent ME12 3AB.
(See WELWYN.)
Knipex-See TOOLRANGE, DRAPER.

Leytool-See TOOLMAIL.
Lindstrom-See BAHCO,
TOOLRANGE
Magenta Electronics Ltd ${ }_{\text {w }}$
135 Hunter St.
Burton-on-Trent,
Staffordshire DE14 2ST.
Maplin Electronic Supplies Ltd.a
PO Box 3,
Rayleigh,
Essex SS6 8LR.
Marco Trading,
The Maltings,
High St., Wem,
Shropshire SY4 5EN.
Marples-See BAHCO, TOOLMAIL.
Micro-See TOOLMAIL.
Moore \& Wright-See NEILL TOOLS.
MS Components Ltd.,
Zephyr House,
Waring St.,
West Norwood,
London SE27 9LH.
Neill Tools Ltd.,
Napier St.
Sheffield Sı 18 HB .
Nicholson-See STC, TOOLRANGE.
OK Industries (UK) Ltd.
Dutton Lane,
Eastleigh, SO5 4SL
Olfa-See TOOLRANGE.
Oryx-See VEROSPEED
Osborne-See TOOLRANGE
Panavise-See STC, TOOLRANGE.
Powerlock-See STANLEY.
Presto-See STC, TOOLMAIL
Q-Max-See TOOLRANGE.
Rapid Electronics Ltd.,
Hill Farm Industrial Estate,
Boxted, Colchester,
Essex CO4 SRD.

Record Tools-See BAHCO.
Ridgway-See BAHCO.
Safico-See TOOLRANGE.
Sandvik-See TOOLMAIL.
Sibille-See TOOLRANGE.
SKF-See COMMERCIAL TOOLS.
Spear \& Jackson (Tools) Ltd.,
St. Pauls Rd.
Wednesbury WSIO 9RA.
(See TOOLRANGE.)
Spiralux Handtools Ltd., Gillingham,
Kent.
(See TOOLMAIL.)
Stanley Tools (The Stanley Works Ltd.),
Woodside,
Sheffield S3 9PD.
(See COMMERCIAL TOOLS.)
(See TOOLRANGE.)
(See TOOLMAIL.)
STC Electronic Services,
Edinburgh Way,
Harlow,
Essex CM20 2DF
Steadfast-See STC.
Stirex-See TOOLRANGE.
Stripax-See TOOLRANGE
Stubs-See NEILL TOOLS.
Superior-See TOOLRANGE.
Supreme-See TOOLMAIL.
Surform-See STANLEY.
Tandy Corporation (UK),
Tameway Tower,
Bridge St., Walsall,
West Midlands WS' I ILA.
Thor-See TOOLRANGE.
TK Electronics,
13 Boston Rd
London W7 3SJ.
Toolmail Ltd.es
7 London Rd.
Sevenoaks
Kent TN13 IAH.
Toolrange Ltd.,
Upton Rd.,
Reading,
Berkshire RG3 4JA.
Toptool-See TOOLRANGE.
Vaco-See TOOLRANGE.
Verospeed,
Stansted Rd.,
Boyatt Wood,
Eastleigh,
Hampshire SOS 4ZY
Vigor-See WELWYN.

Vitrex Tools Division,
Florin Ltd.
457-463 Caledonian Rd.,
Bold type - see adverts for more

London N79BB.
Weidmuller-See TOOLRANGE.
Welwyn Tool Co. Ltd.,
4 South Mundells,
Welwyn Garden City,
Hertfordshire AL7 IEH.
Weralit-See TOOLRANGE.
William Whitehouse-See
TOOLRANGE.
Wiss-See STC.
Xcelite-See STC, TOOLRANGE,
TOOLMAIL.
Xuron-See WELWYN.
Yankee-See STANLEY
Yankee Handyman-See STANLEY.

Future training

J
UST as the Department of Trade and Industry's Information Technology Skills Shortages Committee has laid the blame firmly on Industry's doorstep for aggravating the shortage in skilled IT staff, BPICS (The British Production and Inventory Control Society) has announced the formation of a National Training Committee to develop a UK programme of fomal training courses on production control aimed at all levels of users.

Arthur Evans, Chairman of the Training Committee, said "There are currently only some seventy seven people taking First or higher degrees in Production

Control. We estimate that over the course of the next fen years, some two thousand companies will install manufacturing systems. Consequently there will be a need for approximately fifty thousand people to be trained in this field'

The Training Committee is approaching industrial consultants nationwide in order to establish a series of modular courses, varying in length and complexity to be announced over the next eighteen months to two years. These are aimed at providing practical first-hand training for industry by industry.

The Government of Western Australia, in association with the Commonwealth Bank of Australia, will be holding a seminar at the Australian High Commission in London on 7 November 1985.

The aim of the seminar is to encourage participation in the development and expansion of the State's electronics and technology based industries.

Celebrity Match

Visitors to the Amstrad stand at this year's PCW Show were able to meet top entertainers such as Alex "Hurricane" Higgins, from the world of snooker, and Tottenham Hotspur and England footballer Glen Hoddle, as well as their own star performer the PCW8256 Home computer/Wordprocessor (see last month's News page).
Both celebrities were helping to promote software which has been launched under the Amsoft range. The games are simulations of their respective sports and they were on hand to challenge visitors to a match

Glen Hoddle shows football and computer enthusiast Phil Mordecai how relaxing it can be to play football in the comfort of your own home, or in this case, at the Amstrad stand.

TOUCHDOWN

Touchdown, British Telecom's unique touch-screen computer and phone system, has been chosen to help run British Rail's Southern Region

The installation at Waterloo is part of a $£ 350,000$ contract to speed up communications and ensure information to passengers is fully up-to-date.
The first stage, is a suite of terminals enabling train operations controllers to direct train movements literally at the touch of their fingertips. Touch sensitive screens give immediate access to telephone lines and computer data.

The complete installation comprises 28 terminals which combine telephone, data and telex facilities. They have been installed at Waterloo regional headquarters to help keep track of some 6,000 train movements a day on the Southern Region.

From a single desk-top terminal each of the controllers has direct telephone links to signalling centres, stations and depots, as well as the railway police. Calls are connected automatically by touching the appropriate names on the screen. Action to be taken, in special circumstances, can also be displayed on the screens and controllers are able to log incidents direct from the keyboard

FELLOWSHIP AWARD

A year's work in Japan lies ahead of Bradford University student Ranjit Singh Mand. Ranjit is currently finishing his PhD research in the Univer sity's School of Electrical and Electronic Engineering, and has been awarded one of the coveted Toshiba Fellowships. He will spend a year possibly longer, working at Toshiba's Research and Development Laboratories in Kanagawa, Japan.

The Toshiba Fellowship has been established by the Japanese electronics manufacturing giant to encourage research and innovation from young scientists in the UK.

Micro Change

Over 25 per cent of the products and services currenily being sold on the UK micro markesplace have been launched or revamped within the past few months. In contrast, the rate at which new suppliers are entering the market, particularly in software, appears to have dropped sharpl!!

These are some of the conclusions to be gleaned from the recently published Computing Survey from the NCC. The survey covers more than 10,000 products, packages and courses known to be available on the UK market and reveals that just under 2,800 (27.5 per cent) have been launched or revised with new features within the last few months.

Computer Dig

British Olivelli is to provide an archaeological project from the Archaeology Department of Cambridge University with compiter hardware and sofiware for use in excavations currently under way at the famous medieval town of Gubbio in Central Italy.

The Cambridge team, led by Caroline Malone and Simon Stoddart, is excavating those archaeological remains which precede the medieval period. The research is being carried out at relatively low cost thanks to sponsorship from companies such as Olivetti., the National Geographic, the British Academy, the Regione of Umbria
and the Commine of Gubbio, and the unsalaried work of students working on the project.

The sponsorship takes the form of the provision of M24 and M10 micros, printers and sofiware, worth nearly $£ 10,000$. Maintenance for the systems will be provided by Olivetti's service siaff.
One set of PC's is to be installed in Cambridge and another set in Gubbio. Three principal databases will be used: one for each of the two sites being excavated this year and one for the field survey which is recovering archacological material from all over the valley. surrounding the town.

TRANSDUCERS

PART 3 MEASURING MACNETIG FIELD STRFNGTH. MIKE FEATHER вsc

The measurement of magnetic field strength or flux density is of considerable importance, particularly to the designer of electromagnetic devices such as motors. transformers etc.
Traditional methods of measuring magnetic flux density tended to rely upon the electromagnetic induction effect in which a small coil-often called a search coil-was moved through the field. Fig. 3.1 shows the arrangement.

Fig. 3.1. Search coil action.
The voltage induced across the coil was measured and taken as an indication of the strength of the field. If the charge induced in the coil can be measured, then this can be shown to depend only on the field strength and the resistance of the coil, so that the flux density can be determined.
Search coil methods suffer from two drawbacks however:
(a) There must be some relative movement between the coil and the magnetic field in order to induce a charge.
(b) With a weak magnetic field, the induced charge is likely to be small and the direct measurement of small quantities of charge can present problems.

THE HALL EFFECT

Modern techniques for magnetic flux density determination are usually based on the Hall effect. This was observed as long ago as 1879 and is illustrated in Figs. 3.2 and 3.3.
The metal slab carries a steady current of electrons from " A " to " B ", provided by the battery.

With no applied magnetic field, the distribution of the moving electrons will be more or less uniform throughout the slab, as shown in Fig. 3.2.

Fig. 3.3 shows the slab placed in a magnetic field which is perpendicular to its face PQRS. The moving electrons will now experience a force acting on them which will cause them to drift towards the back edge of the slab. This will make edge PQ more negative than SR and a small voltage -the Hall voltage - will appear between the two edges. The size of this voltage will depend, amongst other things, upon the flux density of the magnetic field and a millivoltmeter can be used to read this.

Fig. 3.2. Electron flow through an unmagnetised metal plate.

Fig. 3.3. The Hall effect-the applied transverse magnetic field causes electron drift

For pure metals, the Hall voltage is very small and the arrangement would not be suitable for measuring the strengths of weak magnetic fields. If, however, a slice of semiconductor material is used for the slab, the Hall voltage becomes much greater and such materials are employed in Hall effect sensors. The arrangement of a typical sensor is shown in Fig. 3.4.
A small current (usually of the order of a few milliamps) is passed through the semiconductor. If a magnetic field is applied perpendicular to the face of the slice, a Hall voltage is developed between its sides and this is measured by the voltmeter.

THE UNIT OF MAGNETIC FLUX DENSITY-THE TESLA

In order to define the unit of magnetic flux density, we use the fact that a currentcarrying wire placed in a magnetic field will experience a force acting upon it-the socalled motor effect.

The unit is called the TESLA (T) and 1 T may be defined as the flux density of a field in which a wire one metre long situated at right angles to the field and carrying a current of 1 A experiences a force of

1 Newton acting upon it. A flux density of 1 T is a strong magnetic field and smaller unit, the milliTesla (mT) is often used.
The remainder of this article describes the theory and construction of a flux density transducer system for measuring fields within a range of $0-40 \mathrm{mT}$.

A FLUX DENSITY
 TRANSDUCER USING A HALLEFFECT SENSOR

The 634SS2 device is a 4 -pin d.i.l. i.c. which includes a semiconductor Hall-effect slab and associated circuitry designed to produce an output voltage which varies linearly with magnetic flux densities within the range $\pm 40 \mathrm{mT}$. The principal characteristics are given in Table 1.

Table 1: Characteristics of 634SS2 device

Supply voltage	+4 V to +10 V
Supply current.	3.5 mA (typical)
Output voltage at zero flux density	1.75 V to 2.25 V at +5 V supply
Sensitivity	7.5 to $10.6 \mathrm{mV} / \mathrm{mT}$
Frequency range	d.c. to 100 kz

The chip has two outputs, one of which increases linearly in voltage whilst the other decreases as the magnetic flux density increases. The circuit diagram of the complete transducer unit is shown in Fig. 3.5, and the physical construction of the 634SS2 is also illustrated.

The negative going output (pin 2) of the 634 SS2 is used and this is applied to the inverting input of the LM301 operational amplifier. Increasing flux densities will thus cause the output pin of the operational amplifier to go more positive. As with other projects in this series, the output of the transducer unit can be measured with a voltmeter (analogue or digital) or it may be used as the input to an analogue-to-digital converter so that the data can be processed by a microcomputer.

At zero flux density, the outputs of the 634 SS 2 are somewhere between $1 \cdot 75 \mathrm{~V}$ and $2 \cdot 25 \mathrm{~V}$. The potential divider network consisting of R3/VR1/R4 provides a variable

Fig. 3.4. Hall-effect sensor in basic circuit.
offset voltage so that the input to the operational amplifier can be adjusted to zero when the sensor is not in a magnetic field. The non-inverting input of the operational amplifier is taken to ground via R7.

VR2 enables the feedback and hence the gain of the circuit to be varied so providing a sensitivity control for the unit. The LM301 operational amplifier requires an offset zero facility and this is achieved by the R9/VR3 combination. VRI and VR3 are used as coarse and fine set-zero controls for the circuit; for ease of adjustment, multi-turn potentiometers are used for these components.

R 8 and Cl set the overall gain/frequency response of the operational amplifier and, with values chosen, this tails off rapidly above about 500 Hz

The $\pm 5 \mathrm{~V}$ power supply lines are derived from the 9 V batteries via +5 V and -5 V 100 mA regulators IC 2 and 1 C 3 . The l.e.d provides a visual on/off indicator for the unit.

CONSTRUCTION OF THE UNIT

The circuit can be built using Veroboard, but it is recommended that the p.c.b design shown in Fig. 3.6 is used. Components should be inserted in accordance with the overlay diagram, taking special care to
observe the orientation of polarised components such as the voltage regulator i.c.s and the two electrolytic capacitors C2 and C4.

An 8 pin di.i.l. socket should be used for IC1: the LM301 should not be placed in the socket until all the wiring has been completed. Veropins should be inserted and soldered in at all external connection points.

Check the circuit board carefully for dry joints, solder bridges etc. and then complete the external wiring-see the photograph.

CONSTRUCTION OF THE PROBE UNIT

The 634SS2 is a very small device and it is convenient to mount it in a probe arrangement such as that shown in Fig. 3.7, and the photograph.

The sensor is soldered into a small piece of Veroboard which is mounted at one end of a short length of rigid plastic tubing (the case of an old felt-tip pen can often be used for this purpose). A length of 4 -core cable is used to connect the probe to the transducer unit via a 5 pin DIN plug and socket.

TESTING AND CALIBRATING

Connect up the probe to the unit, install the batteries and switch on. Measure the

Fig. 3.5. Circuit diagram for the magnetic flux density transducer amplifier.

COMPONENTS	
	See
Resistors *	
R1,R2	2k2 (2 off)
R3	1 k 5
R4	$1 \mathrm{k} \quad$ page 602
R5,R6,R7	10 k (3 off)
R8,R9	$1 \mathrm{M8}$ (2 off)
R10	1 k 8
All $\frac{1}{4} \mathrm{~W} \pm 5 \%$ carbon film	
Potentiometers	
VR1	10k 25 turn cermet
VR2	25k linear carbon
VR3	100k 25 turn cermet
Capacitors	
C1	1 n polyester
C2, C4	$10 \mu 16 \mathrm{~V}$ radial elect. (2 off)
C3, С5	100n polyester (2off)
Semiconductors	
D1	0.2 in l.e.d.
IC1	LM301 8 pin d.i.l. op-amp
IC2	$78 \mathrm{~L} 05+5 \mathrm{~V} 100 \mathrm{~mA}$ voltage regulator
IC3	$79 \mathrm{~L} 05-5 \mathrm{~V} 100 \mathrm{~mA}$ voltage regulator
IC4	634SS2 Hall-effect sensor
Miscellaneous	
$\mathrm{B} 1, \mathrm{~B} 2$	9 VPP 3 batteries (2 off)
PL1	BNC plug
PL2	5 pin DIN plug
S1	min. double-pole toggle switch
SK1	BNC socket
SK2	5 pin DIN socket
Case-approx. $203 \times 127 \times$ 51 mm ; printed circuit board, available from the EE PCB Service, order code EE-505; terminal clips for batteries; I.e.d. mounting clip; adhesive feet for case.	

Fig. 3.6. Top, layout of components on the p.c.b., and interwiring details for the transducer amplifier. Above, the actual-size p.c.b.

Fig. 3.7. The transducer mounted in a plastic tube.

Above, the photograph shows the 634SS2 transducer soldered onto a small piece of Veroboard, and fixed into a tube to form the probe.

The prototype unit: the large potentiometer fixed to the rear of the case is VR2.

Fig. 3.8. Calibration of the transducer. Although not essential for many purposes, it is not difficult to calibrate the unit by this means. See the text for full details.

voltages at the regulated positive and negative supply lines. They should not differ appreciably from $\pm 5 \mathrm{~V}$.

Connect a voltmeter (preferably a digital type) to the output of the unit and set VR2 to its maximum value. Adjust the coarse zero set control VR1 until the voltmeter reads zero. Switch the voltmeter to its most sensitive range and adjust the fine zero set control VR3 so as to bring the output voltage back to zero.

The sensor can now be placed in the field of a small permanent magnet: this will produce an output voltage which is proportional to the flux density of the field. Although the unit is not yet calibrated, it can now be used to compare the strengths of magnetic fields produced by other magnets, coils etc. and, for many purposes, this is quite adequate.

Calibration of the transducer requires a magnetic field of known flux density and the only convenient method of realising this is to construct a solenoid coil. Knowing the number of turns per metre length and the current flowing in it, the flux density within the coil may be calculated using a simple formula.
Such a solenoid can be made up using $1 / 0.6 \mathrm{~mm}$ single cored PVC covered wire. This gives a coil of approximately 850 turns per metre and a current of 4.7 A flowing in this will produce a flux of 5 mT at the centre of the coil acting along its axis.

The sensor can be placed in this coil and the sensitivity control VR2 may then be adjusted so as to produce an appropriate output voltage from the transducer unit -see Fig. 3.8. The orientation of field and sensor is important and, during calibration, the position of the sensor relative to the axis of the coil should be adjusted so as to obtain maximum output.

NEXT MONTH: An optical intensity transducer.

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS

SPECDRUM

DRUM SEQUENCER

From the people who gave you Digi-Drums now comes a six channel sequencing package to go with them (or any other electronic drums you have to hand). The system uses the Sinclair Spectrum and comprises a simple hardware interface and a software cassette. The software allows the generation of 16 patterns of 1-32 events each which can then be chained together in 8 chains of 1-8 patterns each, sequenced in 8 sequences of up to 12 chains +1 - repeats and finally brought together in 2 tracks of 24 mixed sequences, chains, patterns and repeats ($>70,000$ events per track). Features real-time pattern modification together with external clock and joystick inputs. Microdrive and tape interfaces are included to allow storage of completed pieces. A complete kit (including a case and the software cassette) is available for $£ 43.47$ fully inclusive ready built units are also available at $£ 54.97$ each.

ALSO AVAILABLE - The DIGISOUND 80 modular synthesiser (including VCDO, Voice Card etc. - demo tape $\mathbf{£ 1 . 0 0}$), three different Digi-Drum modules (EL-TOM, EL-TOM + and EL-CYMB) and a large range of ICs suitable for electronic music applications, including the CEM series from the USA and the MN series of BBD devices.

Write or telephone for details and a free catalogue

DIGISOUND LIMITED
14/16 QUEEN STREET
BLACKPOOL, LANCS FY1 1PO
Tel: Blackpool (0253) 28900

[r) TEACH IN '86 KITS

BASIC ITEMS - Muttimeter, Verobloc and Mounting Panel and Ten Connecting Leads REGULATOR - Project 1 October ' 85
UNIVERSAL BRIDGE - Proiect 2 November 85
AdDITIONAL COMPONENTS - (Patis 1 \& 2)
SPECIAL PRICE - ALL THE ABOVE ITEMS £62.00 plus postage EVERYDAY ELECTRONIC KITS E ELECTRONICS MONTHLY KITS Strain Gauge Amplifier Soldering Iron Controller Tremolo Vibrato Low cost P.S.U. Electronic Doorbell Across The River Oct ${ }^{3} 85$ 23.95 Compressor Ped Oct 85 19.95
 THIS MONTHS JuTS June 8522.50 Footpedai Flanger July ' 85 AIS MONTHS KITS - S.A.E. OR TELEPHONE FOR PRICES. ALL PRICES INCLUDE VAT All-kits complete (less batteries) unless specified, including components, P.C.B. (or Vero), case and
hardware. All new full soec. components. Many more kits avai able for E.E. E.M. P. P. P and haroware. All new tul spec. components. Many more kis avalable for E.E., E.M., P.E., P.W.
E.T. magazines. Plus a coriorehensive range of components, boxes, tools, mutimelers etc.
T.1. magaznes. Pus a comprenens. FOR FREE PRICE LIST

Please add 60 p postage per order. Article reprints 60 p . Cheque or P.O. to:-
C.P.L. ELECTRONICS

8 Southdean Close, Hemilingtan, Middlestrough, Cleveland TS8 9HE Tel: 0642591157

This month, as promised, we shall be taking a look at a number of add-on modules which can vastly improve the Spectrum's audio and video capabilities.
Whilst each module is useful in its own right, readers may wish to combine several of them together on a single external plug-in board. It would then be possible to drive colour and monochrome monitors simultaneously, as well as produce sound from an external loudspeaker.

More Audio

Most Spectrum users will be only too well aware of the machine's shortcomings as a generator of sounds. Regrettably, the "BEEP" command is a frank description of the sound that it produces. This, however, is perhaps not all that surprising when one remembers that the transducer in the Spectrum is only 25 mm in diameter.
A considerable improvement can be achieved by amplifying the sound output from the Spectrum and delivering it to a loudspeaker of reasonable size. The resulting increase in output and extension of low frequency response renders the machine much more acceptable for games-you really can zap the aliens now!
For the technically minded, we shall now digress a little and explain how the Spectrum goes about generating sound. Fig. 1 and Fig. 2 show the internal circuitry associated with the Spectrum's.cassette tape interface for Issues 1 and 2 (and later) models. The two cassette connectors (labelled "EAR" and "MIC") are effectively linked together at pin 28 of the ULA (the Uncommitted Logic Array). This arrangement is, of course, permissible as the "SAVE" and "LOAD" operations are mutually exclusive. The internal logic of the ULA ensures that pin 28 is linked to the appropriate CPU data bus line whenever an I/O port address of 254 (FE hex) is enabled.

Sound is produced in the loudspeaker whenever a sequence of OUT (FE), A instructions is performed in which bit 4 of the accumulator is alternately set and reset.

This is achieved by XORing the contents of the accumulator with an immediate value of 16 (10 hex) and different frequencies are produced by incorporating a timing loop of appropriate length.

Since the BEEP output signal appears at the "MIC" connector, an increased level of sound output may be achieved by connecting an external amplifier to this point. The simple circuit shown in Fig. 3 is perfectly adequate for this application and furthermore can readily derive its supply from the nominal 9 V unregulated d.c. available at B4 of the Spectrum's edge connector.

Unfortunately, most domestic colour televisions have difficulty displaying 64 characters per line. Whereas this problem is easily resolved with the use of an external monochrome monitor, the Spectrum has no facility for interfacing with such a device.

A simple interface for linking a Spectrum to. a standard monochrome monitor is shown in Fig. 4. The video signal is derived from the $\overline{\mathrm{Y}}$ (inverted luminance) output from the ULA. This gives a rather better picture than that which can be obtained using the VID (composite video) line as, in this application, the colour information is

Fig. 1. Circuit for the Spectrum's cassette tape interface-Issues 1 and 2.

Fig. 2. The cassette tape interface circuit-lssue 3 and later.

The LM380N is an integrated circuit audio amplifier capable of delivering powers of around iW to an 8Ω load. The device is housed in a 14 pin d.i.l. plastic encapsulation and does not normally require a heatsink.

Driving a Monochrome Monitor

Serious users of the Spectrum will undoubtedly be using software which reconfigures the TV display for 40 or 64 column text rather than the normal 32 characters.
not required. TRI, which can be almost any low-power medium frequency silicon transistor, operates as an inverter. VR1 is adjusted for correct black level and VR2 for contrast. Cl provides some additional high frequency emphasis and improves bandwidth. The effect of Cl is particularly noticeable when characters such as " m " are displayed; without Cl these tend to be rather blurred.
In order to remove noise from the supply rail (which may otherwise result in degradation of the picture with spurious dots and

Fig. 3. Circuit diagram for the audio amplifier module.

Fig. 4. Interface circuit for linking a Spectrum to a standard monochrome monitor-giving a much higher-resolution display than is possible with a domestic TV.
lines), a choke/capacitor filter comprising L1 and C3/C4 has been incorporated. The inductor should be a miniature ferrite cored component: but its value is not critical.
It is also essential to ensure that the circuit has an adequate 0 V (earth) connection between the video output connector, the negative ends of C 3 and C 4 , and $6 \mathrm{~B}(0 \mathrm{~V})$ on the Spectrum's edge connector. Failure to observe such a precaution may also result in objectionable video noise.
Connection to the monitor should be made via a short length of 75Ω coaxial cable and, while many people may prefer the use of standard "cheap and cheerful" Belling. Lee type TV plugs and sockets, readers may choose to use BNC or DIN types in order to match the style of connector provided at the monitor.

Driving a Colour Monitor with Composite Video Input

A circuit for driving a colour monitor having a composite video input is shown in Fig. 5. Unlike its monochrome counterpart, this circuit makes use of the video (VID) signal available at 15 B of the Spectrum's edge connector. It is important to note that this signal was only made available on Issue 3 (and later) versions of the Spectrum. On earlier versions an internal link (marked "VID" and situated adjacent to TCl) will have to be fitted in order to provide external composite video.

Readers having access to the "official" Spectrum circuit diagram covering Issue 3 may also like to note that, in addition to several other errors, the connections to 15 A and 15B have been transposed; 15B is the VID signal and 15A is the HALT line. Doubtless this will have already been the cause of a few sleepless nights.

As the VID signal is of the correct sense, there is no need for an inverter as was the case with the monochrome interface. It is, however, good practice to include a transistor buffer in ordef to prevent the monitor and its associated cable from loading the VID line. An emitter follower, TRI, is therefore incorporated together with preset resistors, VR1 and VR2, which respectively provide black level and contrast adjustment.

The earlier comments concerning supply line filtering and common rail connections are again valid and constructors should take care to observe the same precautions sug. gested for the monochrome interface.

Sound From Your Television

As an alternative to an external audio amplifier, readers may wish to consider making use of the audio stages within their own TV receivers. In such cases it will be necessary to add an external modulator.

The circuit for a combined external video and sound modulator is shown in Fig. 6. Again, this arrangement benefits from additional supply line filtering; furthermore, since the modulator requires a slightly different d.c. level on its composite video input waveform, bias adjustment is provided by VRI. Fig. 7 shows the pin connections for the UM1286. It should be noted that a means of fine tuning is provided by the application of an adjustable bias voltage to pin 4. This, however, will not normally be necessary as the user can simply make this adjustment at the TV receiver rather than at the modulator.

At this point, a word of caution is perhaps necessary. Readers are warned against making adjustments to the ferrite and brass cores which are rather temptingly made available through the four access holes provided in the external screening of the UM1286. Not only is their adjustment critical for optimum picture quality but the ferrite cores are extremely brittle. To avoid damage, a purpose-designed trimming tool is an essential pre-requisite to making any adjustment. Furthermore, adjustment is not likely to improve the picture-indeed it is more likely to worsen it.
A typical video waveform compatible with the UM 1286 is also shown in Fig. 7. As previously stated, the d.c. level of this waveform is adjusted by means of VRI and readers should experiment to achieve the

Fig. 5. Circuit for driving a colour monitor with a composite video input-Issue 3 and later.

This will functionally replace the internal modulator and also accommodate an additional sound channel input. Modulators of this type have only recently become generally available and, due to their relative complexity, are unfortunately somewhat more expensive than their older "video only" counterparts.
correct setting (some interesting effects can be produced by means of this control).

Construction

Apart from the recommendations concerning supply line filtering and earthing, construction of the modules is generally

Fig. 6. The UM1 286 combined video and sound modulator interface circuit.

Fig. 7. Top, the connections for the UM1286. Above, the video waveform needed.
uncritical and the circuits can be conveniently mounted on a small piece of Veroboard in the same manner as the modules previously described in these pages.
It should be noted that, whereas the monochrome and colour monitor interfaces only require access to the edge connector, the amplifier and modulator modules also require inputs from the "MIC" and "M1C"/"TV" connectors respectively. Short lengths of screened cable fitted with miniature 3.5 mm jack and phono plugs should suffice for this purpose.

Testing your TV/Monitor

This month, a program which can be used for testing and adjusting your TV/monitor is available from the address opposite, included in the "Spectrum Update" package. Whilst not intended to completely replace the functions of a full-blooded TV.
pattern generator, the program should prove to be extremely useful to anyone involved with setting-up or servicing TVs or monitors and should more than repay the effort required to key it in.

If you have any comments or suggestions please drop me a line at:

Department of Technology,
Brooklands Technical College,
Heath Road,
WEYBRIDGE,
Surrey,
KT13 8TT
P.S. Don't forget to include a stamped addressed envelope if you would like to receive a copy of our latest "Update"

NEXT MONTH: A simple three-chip analogue-to-digital interface.

The Man Behind the Symbol

NO4 Charles Augustin de Coulomb

This month we meet the man who gave his name to the SI practical unit of electric charge (Table 1). Charles Augustin De Coulomb, later to be described by a contemporary as a "Mathematician and Engineer with the love of definition and the habit of measurement"

Born on June 14, 1736, in the town of Angouleme in south western France, Charles was the only son of Henry De Coulomb, who held important legal and administrative posts in Montpelier, and Catherine De Senac from one of France's most wealthy and important families. Atways a bright boy, the young Charles was sent to the engineering school in Paris in the autumn of 1758 where he revealed an outstanding aptitude for mathematics.

> Table 1 : THE COUROMB (C)
> The International Congress of Electricians meeting in Paris in 1884 recognising the importance of Coulomb's discoveries and how they had paved the way for other scientists to follow new lines of research, selected his name to designate the practical unit of electric quantity.
> Since 1950 the absolute coulomb (C) has been defined as the amount of electric charge that crosses a surface in one second when the current flowing is one ampere (A).

In November 1761 he joined the army as a Lieutenant of Engineers serving in various parts of the then large French Empire, including a spell in Martinique where in between bouts. of illness he masterminded the building of a chain of military forts.

In 1722 he was posted to Bouchain where he wrote an article on mechanics which brought him to the notice of the Paris Academy of Science. His next posting was to Cherbourg where he began work on his magnetic compasses which gained first prize in the Academy's competition for 1777.

In 1779 Charles was posted to Rochefort to assist the Marquis de Montalembert in the construction of a wooden fort on the lle d'dix. Whilst working in the shipyards there he carried out experiments in friction which in later years led to the invention of his well known torsion balance. This torsion balance found many uses and Cavendish was later to use it to determine the density of the earth by comparison with that of a ball of lead. Coulomb however made the most successful application of his invention when he used it to measure the feeble force of frictional electricity and magnetism and the discovery of the inverse square law.

COULOMB'S LAW

Coulomb found that "The attractive or repulsive force" between two charged bodies (whose charges behave as though they were concentrated at a point), is proportional to the magnitude of the charges and inversely proportional to the square of the distance between them. In other words if the distance between the bodies was

by Morgan Bradshaw

doubled or trebled the force they exerted in each other was respectively a fourth and a ninth of what it had been.

These discoveries lead to Coulomb being elected to the Académie des Sciences and a post which carried with it a residence in Paris. Charles "had arrived". He was famous and happily married with a young family.

PRISON

Then in 1783 much against his will Coulomb was sent to Brittany to sit on the national coal and harbour improvement commission, and he was made the scapegoat for the critical report which resulted in him serving a short prison sentence in November of that year.

In 1789 to escape the revolution, Coulomb and Jacques Tenon the French Surgeon General came to England to lecture and to examine the hospital service. On his return he was "retired" from the Corps of Engineers as a Lt. Colonel and forced to leave Paris by the law expelling all nobles.

His army pension helped him to purchase a small estate in Blois where he continued his scientific research and experiments and published many internationally acclaimed papers.

In 1801 he achieved a life long ambition when he was elected President of the new Institute of France where he met and worked with many of the great men of the day, including Napoleon.

Coulomb died in Paris at the age of 70 on August 23, 1806, the first pioneer to apply mathematics to the phenomenon of electricity.

- FREE INIDE cancmiocatalogue WORTH 70p

DIGITAL CAPACTTANCE METER

Discover the values of your old, unmarked capacitors. Discover the values of your new, marked ones (20 per cent tolerance is commonplace, 50 per cent likely on some electrolytics).

CHRISTMAS GIFT BUYERS GUIDE
 Having problems selecting a suitable gift for Xmas? We offer our grand selection of ideas for all the family-

 from tools, meters and robots to the very latest in "home entertainment".

ELECTRON BEAMS .."

Solutions on page 626

"Well, you wanted to watch this

A
${ }^{\text {MPLIFIERS }}$ are, probably, the most common device used in electronic circuits. As their name suggests, amplifiers are used to amplify electronic signals by causing an increase in voltage or current, which generally means causing an increase in power. In some form or another, they are used in almost every electronic circuit, so this. month, we will take a look at the basic building blocks of electronic amplifiers, including transistor and i.c. designs.

PARAMETERS

The general parameters of an amplifier are shown in Fig. 1, and for ease of reference and understanding, are listed below, together with a short explanation.
INPUT IMPEDANCE: In the simplest of terms, the input impedance of an amplifier is the resistance presented to the input signal and is given by Rin=Vin/lin. Similarly, the OUTPUT IMPEDANCE is given by Rout=Vout/Iout. In practice, these parameters are much more complicated as impedance is dependant on such things as resistance, capacitance and inductance, and is different for d.c. and varying signals.
EFFICIENCY: As with any system, the efficiency is given by the ratio of the total power in, including the power supplied from the power supply and the signal, to the signal power out.
GAIN: The gain of an amplifier is the ratio of the output signal to the input signal. Thus the voltage gain, $A v=$ Vout/Vin. The current gain $A l=l o u t / l i n$ and since power is the product of voltage and current, $A p=A v \times A$.

TRANSISTOR AMPLIFIERS

In its basic form, the transistor is a current amplifier, as a small base current will cause a large collector currerit. This is shown in Fig. 2a. It is easy to convert a current gain, by adding a resistor as shown in Fig. 2b, to a voltage gain. As the current in the collector circuit increases, the voltage across Rc will decrease proportionally. Under these conditions, only a small change to the input voltage will cause a large change to the output voltage. This is an inverting amplifier.
output to swing up to the positive rail or down to ground.

BETTER BIAS

This method of biassing is a little more difficult than that of Fig. 3b. Using the latter method, a simple voltage divider connected to the base ensures that the quiescent voltage is set at the correct level as the emitter voltage will be the divider voltage minus 0.6 V . In both these cases, a capacitor has been used to isolate the input signal from the d.c. bias.

Fig. 2. Simple current and voltage amplifiers using a single transistor.

In the circuits of Fig. 2, the amplifier will only work when the base emitter voltage is sufficient to cause the transistor to conduct (around 0.6 V). This means that unless the signal input is at the correct level, distortion would be a major problem caused whenever the base voltage fell below a certain level. This type of distortion can be overcome by biassing the input so as to keep the transistor in a state of permanent conduction.
The circuits of Fig. 3 illustrate two methods of biassing. In Fig. 3a, a single resistor is

STABILITY

Unfortunately, transistors are not particularly stable devices. Their current gain can vary dramatically with temperature variations, and unless precautions are taken transistor amplifiers will at best not function currectly and, at worst, the transistor could be destroyed by excess current. If, for example, an amplifier is designed to have a quiescent base current of 0.5 mA and its gain is 100 , then the quiescent emitter

Fig. 1. Basic amplifier characteristics.

Fig. 3. Amplifier biassing techniques.
connected between the base and the positive supply, causing a standing (quiescent) current to flow all the time. Rb should be set to cause a quiescent voltage (Vq) to be around half the supply voltage, thus a small change in the input signal will allow the
collector current will be 50 mA . However, if the temperature rises, then the current gain may rise causing the collector current to rise. This will cause the quiescent voltage to change resulting in distortion of the output.
Also transistors of similar types may have

As shown in Fig. 1, an amplifier can be considered as a signal generator whose output is controlled by the level of the input. In general, the output signal should only differ from the input with regard to level. Any difference in shape, to the output signal, is referred to as DISTORTION. Also any unwanted signal produced at the output is called NOISE. This noise may be caused by the amplifier itself or it may be as a result of input noise being amplified together with the signal.

In most cases, the input impedance of an amplifier should be very high to prevent undue loading of the input source. The output impedance should be low, allowing most of the signal power to be dissipated by the load, and avoiding undue dissipation within the amplifier itself.

Fig. 4. Stabilisation using negative feedback.

Fig. 5. Op-amp circuit symbol.
widely different gains. This means that although they should be interchangeable, in practice they are not. That is, of course, unless some type of stabilisation is employed. Stabilisation is achieved by including negative feedback in the circuit as shown in Fig. 4.

In Fig. 4a, a simple feedback resistor, Rf, is connected between the collector and the base. In this set-up the feedback resistor provides both stabilisation and bias. If the gain is too high, the voltage across Rc increases and thus the bias current decreases. In Fig. 4 b an improved method of negative feedback is used.
When the emitter current increases, a voltage increase across R4 causes the baseemitter voltage to decrease, thus reducing the current in the collector circuit. C3 ensures that only the d.c. bias causes feedback by allowing the signal to bypass R4. (Remember the impedance of a capacitor is low for a.c. or varying signals.)

Fig. 6. Inverting amplifier.

OPERATIONAL AMPLIFIERS

Transistor amplifier design is, of course, very much more complicated than has been shown so far. However, since the introduction of operational amplifier i.c.s, the use of discrete transistor amplifiers has become much less common op-amps are basically high gain direct-coupled amplifiers which rely on a few external components to control their stability and gain.

The circuit symbol and ideal specifications for op-amps are shown in Fig. 5 and Table 1 respectively. Although these are ideal specifications, modern technology brings actual devices close to these, and for the purpose of design, these characteristics can be accepted as true. Because, they are such versatile devices next month's article will continue with more op-amp details, but this month, we shall look at their basic operation.

Fig. 8. Typical op-amp packages.

Fig. 7. Non-inverting amplifier.
As shown in Table 1, the open-loop gain of an op-amp is typically 10^{7}, so obviously in its basic form it would be very unstable as a few $\mu \mathrm{V}$ variation to the input would cause a variation of several volts to the output. To overcome this, negative feedback is applied via the inverting input.

Table 1. Ideal op-amp specifications.

Using negative feedback, the gain can be reduced using just two resistors. This is shown in Fig. 6. In this configuration, the op-amp is connected as an inverting amplifier and the gain is given by $A v=R 1 / R 1$. The input impedance is equal to R1 which should be kept high. Alternatively, a noninverting amplifier can be formed which has a very high input impedance and a gain, $A V=1+R 2 / R 1$. This is shown in Fig. 7 . Some typical op-amp packages are shown in Fig. 8.
NEXT MONTH: A closer look at opamps and lots of circuit ideas.

\square SIMPLE AUDIO AMPLIFIER

\square

This month's constructional project is a simple amplifier, designed primarily to be used in conjunction with last month's audio generator. It is a very basic single rail amplifier with a variable voltage gain up to 100x. Its performance is very poor, as far as noise and reproduction is concerned, but is acceptable for our purposes.

The circuit is built around a dual op-amp, ICI, the first stage providing amplification and a buffer for the input and the second buffers the output. Both the input and output are a.c. coupled via Cl and C 2 respectively. VR1 is included to provide input level control and VR2 sets the gain.

USE

As was stated earlier, the main use of this project, is as a signal tracer to be used in conjunction with the signal injector of Part 3. The idea being, that an audio signal should be injected into a circuit, such as a hi-fi device and faults may be located by tracing the signal through various parts of the circuit. Obviously, the level of the test signal will vary in different parts of the
circuit, so VRI allows a proportion of this signal to be presented to the input stage and to keep loading of the circuit to a minimum, VRI is 100 k .
If a strong signal is being tested, say 5 V peak, then a fraction of this is presented to the amplifier stage and the gain is kept fairly low. However, if the signal is weak, then the
full signal is presented, and the amplifier gain should be set high. In this manner, using VRI and VR2 together, a wide variety of signals may be detected from a few mV to several volts.

Unfortunately, partly due to bad design, there are several short-comings in this circuit. It can only deal with signals which are

Fig. 9. Circuit diagram of the Simple Audio Amplfier.

more positive, with respect to 0 V and it is very susceptible to noise. In practice, it works satisfactorily under most conditions and to improve its specifications dramatically, it would have to be much more complicated and a split-rail supply would have to be used
The original idea was to use this project with the Building Blocks power supply, but since it is common to the audio generator, noise becomes a major problem. It was found in practice to work much better from a battery supply. Similarly it was found that the problem could be reduced by using screened cable and housing the project in a metal box keeping it away from the oscillator.

CONSTRUCTION

Construction of this project should present no major problems as all the components are mounted on a small p.c.b. and there is very little interwiring involved. The

smaller components, such as the capacitors and resistor should be mounted first together with the i.c. socket. Terminal pins

COMPONENTS	
Resistor	
Potentiometers	
VR1,VR2 100k	pag
p.c.b. mounted	
Capacitors	
C1 220ns	220 n silvered mica
C2 4 U 7 tant. elect.	
Miscellaneous	
SK 1, miniature phone socket; S1 s.p.s.t.; LS1 miniature 8 speaker wire; cable; solderpins, etc.	
Approx. cost Guidance only	13.90

should be used for connection to the power supply wiring input and speaker wires. On the prototype, the speaker, p.c.b. input socket, SK1, was mounted inside the case used in Building Blocks, Part 1-Part 3, but as was suggested earlier, it is probably better to use an alternative case. The p.c.b., speaker and socket should be mounted in a suitable size metal case for screening purposes and any input wires should be screened cable.

NEXT MONTH: The constructional project wíll be a useful logic probe for testing TTL circuits.

Acturally Sibeet Sarfold Doing it!!

ALTHOUGH the humble transistor has been ousted to some extent by the ever increasing use of integrated circuits, if you look through some back issues of this magazine you will still find plenty of projects that use one or more of these devices. In most cases transistors do not provide any real difficulties to the constructor, even so, it is worthwhile checking that the apparently obvious method of connection is the correct one before fitting the transistors into place.

MOUNTING

When using stripboard you will often find that the leadout wires of transistors need to be carefully preformed before they will fit onto the board. Here more care needs to be exercised if connection errors are to be avoided. The three leadout wires should be marked "e" (emitter), "b" (base), and "c" (collector) on the component layout diagram. It is not necessary to understand anything about transistor operation or any other electronics theory in order to construct an electronic project, and in this case it is really just a matter of referring to the leadout diagram to determine which lead is which, and then fitting the device in place. If the article does not provide a leadout diagram for the transistors in the design you can find these diagrams in the larger component mail order catalogues.

When using leadout diagrams avoid the pitfall of thinking that they show the devices as they are seen in component layout diagrams. The convention has transistor leadout diagrams showing base views (i.e. looking onto the leadouts of the devices)

You may sometimes see references to something like a "TO-92" device, and this is the type of encapsulation. TO-92 is a plastic type and is probably the most common, although the TO- 18 metal type is also frequently encountered. A possible cause of confusion for beginners is the use of several leadout configurations with most case styles. Fig. 1 shows leadout diagrams for a few common TO-92 devices, and the leadout configuration is different in each
case. Therefore, you must find a leadout diagram that refers specifically to the device in question.

FET'S

Not all transistors have the usual base, emitter, and collector terminals, you may encounter field effect types (f.e.t.s) which have gate, source, and drain terminals instead. There are also dual gate types which have four leadout wires, and unijunction devices which lack a collector terminal but have an extra base leadout wire. Fortunately, for the constructor it does not really matter what the leadout wires are called or how many there are, it is still just a matter of referring to the diagrams to determine which leadout is which, and where on the board each leadout must be fitted.

The original germanium devices have now been superseded by silicon types which are generally much tougher, especially with regard to damage by overheating when they are being soldered into place. At one time special heat-shunts were available, and these were fitted over each leadout wire as it was soldered into place to tap off much of the heat travelling up the lead and prevent it from reaching the interior of the component. Much the same effect can be obtained using a pair of pliers, but provided each joint is completed quickly and the leadouts are not cropped short a heat-shunt should not really be necessary.

You may occasionally be faced with a transistor for which you can find no leadout diagram. Using a multimeter set to an ohms range it is quite easy to find the base lead by trial and error. With the negative test prod connected to the base leadout there will be a low resistance indicated with the positive test prod connected to either of the other two leadouts (reverse the test leads for pnp devices). Trying this check with the emitter and collector leadouts will always produce a high resistance reading.

Once the base has been identified, the test circuit of Fig. 2 can be used to sort out the emitter and collector terminals. This test can easily be rigged up with the aid of a

Fig. 1. Leadout diagrams for three TO-92 devices.

Fig. 2. Identifying the collector and emitter terminals. A low resistance reading indicates that the " + " is connected to the emitter and the " - " is connected to the collector. A high reading indicates the opposite.
Fig. 3. Insulating a plastic power device from its heatsink.

Fig. 4 (right). The mounting arrangement for TO-3 and TO-66 devices.
breadboard or crocodile clip leads. A resistance range having a midscale value in the region of a few hundred ohms is suitable. For an non device the positive test lead is the one connected to the emitter if a low resistance is indicated, or to the collector if there is little deflection of the meter. The test will work with pnp types, but the positive test lead is then connected to the collector if a low resistance reading is obtained, or to the emitter if• a high resistance is indicated.

POWER DEVICES

Power devices, be they transistors, triacs, thyristors, or even integrated circuits, differ physically from ordinary types not only in that they are bigger, but also in that they have a heat-tab of some kind which must be bolted to a heatsink. The latter is just a piece of metal which acts as a cooling fin and prevents the power device from being destroyed by overheating. The heatsink might just be a small type fitted on the circuit board, or it might be a large type mounted (say) on the rear panel of the case. Sometimes the cost of a special heatsink is avoided by utilising the metal case or chassis of the project as a heatsink.

The heat-tab of the component often has to be insulated from the heatsink as the two do not always have the same operating potential. This insulation is not invariably needed, and it certainly makes things much easier if it is not. Special insulation kits are available, but you must be careful to order the right type for the case style of the particular component you are using. Fig. 3 shows how an insulation kit is used. The mica washer (which is usually made of plastic these days) fits between the heatsink and the metal heat-tab of the component. The washer is very thin so that it does not greatly hinder the transfer of heat from the power device to the heatsink, but the heat transfer can be made more efficient by smearing silicon grease between the device and the washer. Use a large drill bit to remove jagged edges around the mounting hole which could pierce the mica washer.

The washer alone is not sufficient to insulate the device from the heatsink since the mounting nut and bolt will provide an electrical connection between the two. This is avoided by using a plastic bush which fits over the bolt and insulates it from the heatsink. The mounting hole in the heatsink must therefore be somewhat larger than the mounting bolt would normally require, as the larger diameter of the insulating bush has to be accommodated. Always use a continuity tester or a multimeter set to a high resistance range to check that the insulation is effective

PLASTIC POWER

Most modern power devices are of the so called "plastic power" type and have a single mounting hole. 'Some older types and very high power types have the all metal, diamond-shaped, TO-3 and (smaller) TO-66 encapsulations. These require a total of four mounting holes. Two of these take mounting bolts, and the other two take the emitter and base leadout wires, which are actually pins about 10 millimetres or so long on the underside of the device. The collector terminal is the metal case. Fig. 4 shows how these components are mounted, and this is basically the same as for plastic types. However, two insulating bushes and mounting bolts are required, and a soldertag is fitted on one of the bolts to provide a connection to the collector.

Printed circuit boards for certain constructional projects are now available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics and Electronics Monthly Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH 15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title as welf as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue.

PROJECT TITLE	Order Code	Cost
- JULY '83 - User Port Input/Output M.I. T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{array}{r} \text { £ } 4.82 \\ \text { £5.17 } \end{array}$
- AUGUST '83 - Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Pt 2	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \end{aligned}$
- SEPTEMBER ' 83 - High Speed A-to-D Converter.M.I.T. Pt 3 Signal Conditioning Amplifier M.I.T. Pt 3 Stylus Organ	$\begin{aligned} & 8309-01 \\ & 8309-02 \\ & 8309-03 \end{aligned}$	$\begin{array}{r} \mathrm{f} 4.53 \\ \mathrm{f} 4.48 \\ \mathrm{f} 6.84 \end{array}$
- OCTOBER ' $83-$ D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 5.77 \\ \text { £5.13 } \end{array}$
- NOVEMBER '83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Speech Synthesiser for BBC Micro	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-04 \end{aligned}$	$\begin{array}{r} £ 5.46 \\ £ 5.70 \\ \text { £3.93 } \end{array}$
- DECEMBER '83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 Environmental Data Recorder Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-04 \\ & 8312-08 \end{aligned}$	$\begin{array}{r} £ 5.72 \\ £ 5.29 \\ £ 7.24 \\ £ 3.41 \end{array}$
- JANUARY ' 84 - Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard	$\begin{aligned} & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & \text { £6.27 } \\ & \text { £2.35 } \\ & \text { £2.56 } \\ & \text { £9.60 } \end{aligned}$
- FEBRUARY ' 84 - Oric Port Board M.I. T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{aligned} & 8402-02 \\ & 8402-03 \\ & 8402-04 \end{aligned}$	$\begin{array}{r} £ 9.56 \\ £ 8.95 \\ £ 3.52 \end{array}$
- MARCH ${ }^{\text {' } 84-}$ Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Con. M.I. T. Part 9 CBM 64 Extension Port Con. M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$\begin{aligned} & £ 5.30 \\ & £ 4.80 \\ & £ 4.42 \\ & £ 4.71 \\ & £ 4.63 \end{aligned}$
- APRIL 84 - Multipurpose Interface for Computers Data Acquisition "Input" M.I. T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition "PSU" M.I.T. Part 10 A.F. Sweep Generator Quasi Stereo Adaptor	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	£5.72 £5.20 £5.20 £3.09 £3.55 £3.56

- MAY '84- Simple Loop Burglar Alarm Computer Controlled Buggy M.I.T. Part 11 Interface/Motor Drive Collision Sensing Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \end{aligned}$
Infra-Red Alarm System Spectrum Bench PSU Speech Synthesiser M.I.T. Part 12 Train Wait	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
$\quad-\quad$ JULY '84 - Ultrasonic Alarm System Electronic Code Lock Main Board Keyboard	$\begin{aligned} & 8407-01 \\ & \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{aligned} & £ 4.72 \\ & £ 2.70 \\ & £ 3.24 \end{aligned}$
- AUGUST '84 - Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 4.36 \\ £ 2.24 \\ \hline \end{array}$
- SEPTEMBER '84 -Op-Amp Power Supply	8409-01	£3.45
$\begin{aligned} & \text { - OCTOBER '84- } \\ & \text { Micro Memory Synthesiser } \\ & \text { Drill Speed Controller } \end{aligned}$	$\begin{aligned} & 8410-01{ }^{\circ} \\ & 8410-04 \end{aligned}$	$\begin{aligned} & £ 8.20 \\ & \text { £ } 1.60 \end{aligned}$
- NOVEMBER '84 - BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{array}{r} £ 2.90 \\ £ 2.65 \end{array}$
\qquad TV Aerial Pre-Amp Digital Multimeter Mini Workshop Power Supply	$\begin{aligned} & 8412-01^{\circ} \\ & 8412-02 / 03^{\circ} \\ & 8412-04 \end{aligned}$	$\begin{aligned} & \text { £ } 1.60 \\ & £ 5.20 \\ & £ 2.78 \end{aligned}$
Power Lighting Interface Games Timer Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 8501-02 \\ & 8501-03 \end{aligned}$	$\begin{array}{r} £ 8.23 \\ £ 1.86 \\ £ 1.70 \end{array}$
Solid State Reverb Computerised Train Controller \qquad	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & \text { £3.68 } \\ & \text { £3.38 } \end{aligned}$
- MARCH 85 Model Railway Points Controller	8503-01	£2.78
Insulation Tester Fibrelarm	$\begin{aligned} & 8504-02 \\ & 8504-03 \end{aligned}$	$\begin{array}{r} £ 2.53 \\ £ 3.89 \end{array}$
Auto Phase Amstrad CPC464 Amplifier - MAY '85- Mains Unit Micro Unit Voltage Probe	$\begin{aligned} & 8505-01 \\ & \\ & 8505-02 \\ & 8505-03 \\ & 8505-04 \end{aligned}$	£3.02 £2.56 £2.56 £2.67
Graphic Equaliser Computerised Shutter Timer Mono-Bi-Astables (Experimenters Test Bed) Across The River	$\begin{aligned} & 8506-01 \\ & 8506-02 \\ & 8506-03 \\ & 8506-04 \end{aligned}$	£3.21 £2.09 £2.45 £2.63
Amstrad User Port -JULY '85- Nascom Printer Handshake	$\begin{aligned} & 8507-01 \\ & 8507-02 \end{aligned}$	$\begin{array}{r} £ 3.17 \\ £ 1.90 \end{array}$
Electronic Building Blocks-1 to $4 \dagger$ Tremolo/Vibrato Stepper Motor Interface - AUGUST ' 85 - Drill Control Unit	$\begin{aligned} & 8508-01 \\ & 8508-02 \\ & 8508-03 \\ & 8508-04 \end{aligned}$	$\begin{aligned} & £ 2.98 \\ & £ 4.03 \\ & £ 2.40 \\ & £ 2.90 \end{aligned}$
\qquad RIAA Preamplifier Input Selector Transducers Resistance Thermometer Transducers Semiconductor Temp. Sensor	$\begin{aligned} & 8509-01 \\ & 8509-03 \\ & 8509-04 \end{aligned}$	$\begin{array}{r} £ 2.36 \\ £ 2.64 \\ £ 2.72 \end{array}$
- OCTOBER '85 - Transducers Strain Gauge Soldering Iron Power Controller	$\begin{aligned} & 501 \\ & 504 \end{aligned}$	$\begin{array}{r} £ 2.87 \\ \text { £2.09 } \end{array}$
```- NOVEMBER '85 - Transducers- Magnetic Flux Density Amplifier Halloween Projects (single board price)```	$\begin{aligned} & 505 \\ & 506 \end{aligned}$	$\begin{aligned} & £ 3.93 \\ & £ 2.68 \end{aligned}$

- Complete set of boards.
M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.
$\dagger$ Four separate circuits.
Prices for ELECTRONICS MONTHLY PCBs are shown on opposite page.

PROJECT TITLE	Order Code	Cost
Cymbal Synth The Thing	$\begin{aligned} & \mathrm{EM} / 8412 / 2 \\ & \mathrm{EM} / 8412 / 4 \end{aligned}$	$\begin{aligned} & £ 4.86 \\ & £ 3.18 \end{aligned}$
Speak Board - JAN ${ }^{\text {8 }} 8$ -	EM/8501/2	£3.97
Headphone Amp   Intelligent Nicad Charger   Anti Phaser   - FEB '85 -   Logical Lock   Touch Dimmer	$\begin{aligned} & \mathrm{EM} / 8502 / 1 \\ & \mathrm{EM} / 8502 / 2 \\ & \mathrm{EM} / 8502 / 3 \\ & \mathrm{EM} / 8502 / 4 \\ & \mathrm{EM} / 8502 / 5 \end{aligned}$	$\begin{aligned} & £ 2.08 \\ & £ 3.50 \\ & £ 4.56 \\ & £ 3.58 \\ & £ 3.29 \end{aligned}$
Courtesy Light Extender - MAR '85- Disco Light Chaser	$\mathrm{EM} / 8503 / 4$ $\mathrm{EM} / 8503 / 5$	$\begin{aligned} & £ 3.29 \\ & £ 8.11 \end{aligned}$
Sound to Light Unit   Car Audio Booster - APRIL ' 85 Short Wave Converter	EM/8504/1   EM/8504/2   EM/8504/3	$\begin{aligned} & £ 4.02 \\ & £ 3.12 \\ & £ 4.15 \end{aligned}$
Car Burglar Alarm - MAY ${ }^{\text {8 }}$ 8-	EM/8505/3	£2.88
Metal Detector   Power Supply Module - JUNE '85 Flanger	EM/8506/1   EM/8506/3   EM/8506/4	$\begin{aligned} & £ 4.24 \\ & £ 3.20 \\ & £ 4.29 \end{aligned}$
El Tom/EI Tom+ EI Cymb Heartbeat Monitor Real Time Clock	EM/8507/1   EM/8507/2   EM/8507/3   EM/8507/4	$\begin{aligned} & £ 4.10 \\ & £ 4.10 \\ & £ 3.98 \\ & £ 4.62 \end{aligned}$
Intelligent Windscreen Wiper (incl. Terminal Board)   HiFi Intercom (2 boards)   Plug Power Supply   - AUG ${ }^{\circ} 85$ -   Hot Water Alarm	EM/8508/1/2   EM/8508/3   EM/8508/4   EM/8508/5	$\begin{aligned} & £ 4.12 \\ & £ 2.92 \\ & £ 2.28 \\ & £ 1.93 \\ & \hline \end{aligned}$
Sinewave Generator - SEPT '85 Household Battery Checker Audio Signal Generator	EM/8509/1   EM/8509/2   EM/8509/3	$\begin{array}{r} £ 2.76 \\ £ 1.97 \\ £ 3.65 \end{array}$
Compressor Pedal   Computer Cont Filter - OCT '85 -   Spectrum MIDI Interface	EM/8510/1   EM/8510/2   EM/8510/3	$\begin{array}{r} £ 2.87 \\ £ 2.94 \\ £ 3.20 \end{array}$



POWER AMPLIFIERS
AL 1030 (AL 301 - Low cost general purpose 10w Aohm module, supply voltage range 18.30 V .


AL 1540-At 15W/8ohm medium power module AL 1540 - At 15 W \&ohm medium power module
incorporating over-load protection. Operating
voltage range $20-40 \mathrm{~V}$.
$\mathbf{E 4 . 1 5}+$ V.A.T.

AL 2550 (AL60) - Compact $25 \mathrm{~W} / 8 \mathrm{ohm}$ module for domestic applications with a distortion figure o $.06 \%$, operating voltage range $28-50 \mathrm{~V}$.
$\mathbf{E 4 . 9 5}+$ V.A.T.
AL 5070 (AL120) Top class $50 \mathrm{~W} / 8 \mathrm{ohm}$ module With self-contained heat sink and built-in protection circuitry, produces really ist class sound
sound.
$.02 \%$.
$\mathbf{£ 1 2 . 4 5 ~ + ~ V . A . T . ~}$
AL 12550 (AL250) - A rugged top of the range module providing output powers of up to 125 W into 40 hms which employs 4 heavy duty output
transistors to ensure stable and refiable transistors to ensure stable and rellable addr
ali-fi
$\mathrm{f} 14.70+$ V.A.T.

Order by post. order by 'pho<br>Add $15 \%$ V.A.T. to aif orices $T$<br>Exporders add 75p posi and packing Please allow 7 days for delivery



MM 100. 3 input mixer featuring individual level controls, master volume, treble \& base controts, with inputs for microphone, magnetic pick-up and tape of secand pick-up (selectable). Operates
from $45-70 \mathrm{~V}$.

$\mathbf{5 1 2 . 4 0}+$ V.A.T.

MM 100G. As MM 100 except inputs are for
E1200 + Var.

## POWERSUPPLY

SPM90/45/55/65. A stabiliser module available in 3 voltages, 45.558 \& 65 V providing a stabilised
output of up to 2 A and providing a superior performance especially with the higher power audio modules. (Requires an appropriate
transformer t reservoir capacitor).


All modules supplied with a
comprehensive Data Sheet.

## RISCOMP Princes Risborough MT $工 \mathrm{D} \begin{aligned} & \text { Bucks. HP17 90B. } \\ & \text { Princes Aisborough }\end{aligned}$

## COUNTER TNTELCENCE <br> BY PAUL YOUNG

## One for the Road

Never having reached the top echelons, or even the middle ones for that matter and having to raise three expensive children, I have invariably been in the state they call impecunious
As a result, I don't manage to swop my Deux Chevaux every time the ash trays are full, but usually after the mileometer has been right round the clock three times. Even then, it will be probably for a car about four years old.

All the same, there are advantages in not being able to afford the latest. I have avoided cars with lights flashing all over the dashboard and even worse, with builtin computers. Only recently I read of a man being driven mad by one. His Microchip mistress with an acid voice, tells him of non-existent faults, and forgets to report the real ones

The visual display is as bad, within minutes of collecting his new vehicle it flashed up, "This car needs a service". Since then it has reported faulty brakes, failing lights and low oil pressure all of which turned out to be incorrect, but not a word about not releasing the handbrake, or doors not being closed. Now after ten trips to the dealer, he has had enough.

To be fair, I will admit, there are one or two inovations I welcome, such as nonreflecting glass over the dials, indicators (if they work properly) showing doors not completely shut, the delay on windscreen wipers and electronic ignition, both pioneered by magazines including Everyday Electronics

## Criminal Hackers

Some time ago, an American computer expert, using a home computer, managed to tap into the computer system of one of the big banks and transferred a million pounds into his own account in Switzerland. He then moved to Switzerland and commenced living in luxury.

The bank hadn't noticed it (I suppose the odd million is just tea money to them) and he was apparently completely in the clear. Unfortunately, he went back to America for a holiday and one day having run out of small change, found that all he had in his pockets were one or two large uncut diamonds that he had purchased quite legitimately. He went into a jewellers to try to sell them which aroused the jeweller's suspicions, he alerted the F.B.I. and now the poor man faces a long jail sentence.

This reminded me that during the war, aircrew were given various items to help them escape if they were shot down over enemy territory. Included in the escape kit was local currency but such was the brilliance of the planners, that the unfortunate airman concerned, when faced with this situation, found he had been given the equivalent in Deutch Marks of a five hundred pound note. What chance had he got of changing it and remaining inconspicous?

Arising out of this, I heard a story, apocryphal, but probably true of a Wing Commander in this position, who made good use of the money. He had a business in Berlin until the outbreak of hostilities, so when he suddenly appeared, it caused no comment. He decided to spend the money on new suits, watches, cameras, anything portable and when he was ready, buy a train ticket to neutral Switzerland, where he would have no difficulty in returning to the UK. On arrival here he would have been entitled to the Military Cross (given automatically to escapees). I think he deserved it for enterprisel

To return to the incorrect use of computers, I was alarmed to read that a group of American sehoolboys had tapped into the Pentagon computer system and were able to alter the trajectory of American satellites. Surely if American schoolboys can do it so can unfriendly foreign powers?

I can imagine the super powers both rerouting each others infernal machines, each one trying to make the other score an "Own Goal". I do hope they get their coordinates right

# EVERYDAY and computer projects 

Reach effectively and economically todays enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.80$ per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 33 pence per word (minimum 12 words), box number 60 p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics and Computer Projects and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics and Computer Projects, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5846).

## Receivers \& Components


#### Abstract

URN YOUR SURPLUS capacitors, transistors etc. into cash. Contact COLES HARDING \& CO., 103 South Brink, Wisbech, Cambs. 0945-584188.


 Immediate settlementHUNDREDS OF UNUSUAL ITEMS CHEAP. Send $68 p$ for interesting samples and list. A.H. Electronics 17 Beeley Road, Grimsby, South Humberside.

## Service Sheets

SOLE SUPPLIERS TV/Video repair manuals/circuits. 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/M. centres/stereos $£ 3.50$ LSAE with every order/query please brings free pricelist/ magazine inc s/sheet - or phone 0698884585 (883334 outwith business hours) TIS(EE) 76 Church Street Larkhall Lanarkshire.

> BELL'S TEIEVISION SERVICE for service sheets on Radio, TV etc $£ 1.50$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request, SAE with enquiries to BTS, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885 .

## Project Repair Service

FOR SPEEDY "PAINLESS" REPAIR of malfunctioning projects, send project description + circuit diagram to C. W: Key, 119, Whitbourne Avenue, Park North, Swindon, Wilts. SN3 2LG. Charge: 30\% of the project cost + adequate postage for return.

## Miscellaneous



## Tuition

## IMPROVE YOUR PROSPECTS

With skills that are in demand. Learn the easy way with a Modern Home Study Course in:

## ELECTRONICS

Train for a success in the fastest ever growing Industrial Sector. Course includes topics such as: Simplified Circuit Theory, Resonance, Transister Amplifiers, Fitters and Non-Linear Wave Shaping, Digital Circuits, Micro-Computers etc (Use our course to help prepare for BTEC or C\&G examinations.)

Write or telephone today for Free Prospectus - No Obligation IDEAL SCHOOLS Ref: EE1 60 St. Enoch Square, Glasgow G1, UK or Tel: 041-248 5200

> To Advertise on these pages Phone Mandi 01-261 5846

ORDER FORM PLEASE WRITE in block CAPITALS

Please insert the advertisement below in the next availble issue of Everyday Electronics for ............ Insertions. I enclose Cheque/P. 0 . for $f$
(Cheques and Postal Orders should be crossẹd LIoyds Bank Lid. and made payable to Everyday Electronics)

heAding required:
EVERYDAY ELECTRONICS and COMPUTER PROJECTS

Name
ADDRESS

Classified Advertisement Dept., H.H.,
King's Reach Tower, Stamford Street, London SE1 gLS
Telephone 01-261 5846
Rate: $33 p$ per word, minimum 12 words. Box No. 60p extra.

Vero Plug Block ...................................................... $£ 4.50$
PSU Components Complete £16.50
PSU Components Without Case £10.00
Regulator Unit Complete ...................................£21.00
Regulator Unit Without Case £14.50
Test Leads £1.50
Part 2 Components Nov. 85
Dec. 85 £1.00
Part 3 Components

## PLEASE ADD P+P 50p PER ITEM U.K. + VAT@15\%

CATALOGUE £1.00 U.K. £1.50 EUROPE £2.00 REST OF WORLD 75p CALLERS

## WHERE TÖ FIND US


$\square$


CALLIN AND SEE US 9-5.30 MON TO FRI 9.5.00 SAT EXPRESS MAIL ORDERS ACCESS/BARCLAYCARDS WELCOME SAME DAY SERVICE

MAIL ORDER WE REGRET WE CANNOT ANSWER MAIL ORDER/ STOCK ENQUIRIES WITHOUT AN S.A.E. SAME DAY SERVICE TRADE AND EXPORT ENQUIRIES WELCOME

TELEPHONE MAIL ORDER 041-332-4133 SHOP AND STOCK ENQUIRIES 041-332-4133/5 TELEX 261507 REF 2194

## TELEVISION/COMPUTER FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN education council)

## 2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Faut Diagnosis)

## 15 MONTHS

BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
EElectronics, Television, Video Cassette Recorders, CCTV, Testing \& Faut Diagnosis) 15 MONTHS
BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods) 9 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS (Microprocessor Based Systems, Faut Diagnosis, ATE, Robotics) these courses include a high percentage of college based

PRACTCAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN be ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE

NEXT SESSION TO COMMENCE
ON JANUARY 6th
H.N.C. SEPTEMBER 1986

FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE)
20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.


15 WATT MONO AMPLIFIER
CHASSIS With i.c. protection $\mathbf{£ 8 . 8 0}$ post 48p

TRANSFORMERS		
240v Primary		
3-0-3v	100 mA	85p
6-0-6v	100 mA	£1.38
6-0.6v	250 mA	£1.52
12-0-12v	50 mA	£1.32
12-0-12v	100 mA	£1.40
9-0-9v	75 mA	£1.40
9-0-9v	250 mA	£1.52
Post on above transformers 48 p .		
9-0-9v	1A	£2.37
12-0-12v	1A	$£ 2.95$
15-0-15v	1A	£3.45
6-0-6v	$11 / 2 A$	£2.38

Post on above transformers 94 p .
Rotary Switches: 1 Pole 12 Way 2P6W, 3P4Way, 4P3W

42p Post 16p
Illuminated Rocker Switch 240V 6A Red 88p Post 16p

ALSO IN STOCK
2, 3, 4, 6 \& 8A Transformers

All above prices include V.A.T. Send $£ 1$ for a comprehensive 172 page fully illustrated catalogue with a new price list. Send S.A.E. with all enquiries. Special prices for quantity on request. All goods despatched within 4 days from receipt of the order.

## M. DZIUBAS

158 Bradshawgate, Bolton, Lancs. BL2 1BA.



## OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

## INDEX TO ADVERTISERS

ARMON ELECTRONICS ..... 580
AUDIO ELECTRONICS ..... 593
BARRIEELECTRONICS ..... 593
BK ELECTRONICS ..... 579
B.N.R.E.S ..... 578
BULL J. ..... Cov. II
CIRKIT HOLDINGS ..... Cov. III
CPLELECTRONICS ..... 617
CRICKLEWOOD ELECTRONICS ..... 632
CROYDON DISCOUNTELECTRONICS ..... 617
DIGISOUND LTD. ..... 617
DZIUBAS M ..... 631
ELECTROVALUE ..... 617
gRANDATA ..... 578
GREENWELD ..... 578
ICS INTERTEXT ..... 580
IDEALSCHOOLS ..... 630
LIGHT SOLDERING DEVELOPMENTS ..... 580
LONDON ELECTRONICS COLLEGE ..... 631
MAGENTAELECTRONICS ..... 582
MAPLIN ELECTRONICS ..... Cov:IV
MARCO TRADING ..... 591
MARSHALLS ..... 631
RADIO COMPONENTS SPECIALISTS ..... 603
RAPID ELECTRONICS ..... 581
RISCOMPLTD ..... 626, 629
RODEN PRODUCTS ..... 630
T.K. ELECTRONICS ..... 593
VIKING COMPONENTS ..... 617
WEST HYDE DEVELOPMENTS ..... 580


Bumper new edition of the Cirkit Catalogue out now, containing 128 pages packed full of electronic components and accessories. Available from your local newsagents or by post from us. The Catalogue includes:


BATTERIES BOOKS CABLE
CALCULATORS
CAPACITORS
COMPUTER ADD-ONS PRINTERS CONNECTORS
CRYSTALS
FILTERS
BOXES
KNOBS
AEROSOLS
HEATSINKS
INDUCTORS
KITS AND MODULES METERS
PCB MATERIALS RELAYS
RESISTORS
SEMICONDUCTORS
MEMORIES
MICROPROCESSORS LED
LOUDSPEAKERS
SWITCHES
TEST EQUIPMENT
SOLDERING IRONS
TOOLS
TRANSFORMERS

Kits \& Modules
7254 TUNERSET
$\begin{array}{llll}\text { Complete FM Tunerset from RF input to } & \\ \text { stereo audio output } & 40.07254 & \mathbf{S 2 8 . 5 0}\end{array}$
TV PREAMP
UHF masthead TV-Pre-Amp with mains
PU
$\begin{array}{ll}40-06200 & £ 12.80\end{array}$
18W AMPLIFIER

| Mono 18 W power amp based around |  |  |
| :--- | :--- | :--- | :--- |
| HAl 388 | $40-91388$ | $£ 8.38$ |

$5 W$ AMPLIFIER
$\begin{array}{lrl}\begin{array}{l}\text { A very compact } 5 W \\ \text { supply power amplifier. } 12 \mathrm{~V} \\ \\ \text { SOM }\end{array} & \\ 41-01406 & \$ 4.60\end{array}$
MONO REVERB
Spring line mono reverb unit.
TEMPERATURE SWITCH
Thermistor based, temperature controlled

switch. Can be set to trip between $-5^{\circ}$
and $100^{\circ} \mathrm{C}$.
$\begin{array}{l}\text {. }\end{array}$ 41-01303
6.20

3-NOTE CHIME
Simple, easy to build 3 -note doorbell. $41.01503 \quad \$ 7.00$

Simple, easy to build 3-note doorbell. $41.01503 \quad \mathbf{\$ 7 . 0 0}$
LAMP DIMMER

Power controller for both inductive and
resistive loads.
$41-01305$

loco SOUND
A steam locomotive sound generator
with speed controlled from a pot or the
train controller.
WATER LEVEL ALARM

Audible alarm when water reaches a   preset level	$41-01601$	$\$ 2.70$

preset level
A short r
Infra Red
RADIO CHANNEL TX
A 4-channel proportional FM radio
control transmitter. 500 mW output. $40-94445 \quad \$ 9.48$
RADIO CONTROL RX
Companion receiver. 27 MHz , FM, based
around KB 4446 [C.
AUDIO FUNCTION GENERATOR

Function generator with sine, triangle
and square wave output from 1 Hz
to 1 MHz .

to 1 MHz . $41-01302 \quad \$ 27.00$



Books
BEGINNERS GUIDE TO ELECTRONICS
A readable Introduction to the world of electronics for the enthusiast with little knowledge of
electronics.
BEGINNERS GUIDE TO AMATEUR RADIO
If you are new to radio, you will find here a great deal of information which will help to prepare you for the Radio DESIGN OF OP-AMP CIRCUITS WITH EXPERIMENTS A complete introduction to almost every op-amp application. 02-21537 §10.95 555 TIMER APPLICATIONS SOURCEBOOK
A host of applications for using this device ranging from voltage regulation to signal generation.
BUILDING AND INSTALLING ELECTRONICS INTRUSION ALARMS
Written for the novice who wants to install a
security system in his home and the technician who wishes to enter the field of security electronics.
DESIGNING AND CREATING PRINTED CIRCUITS
An in-depth guide to the design, layout, manufacture and assembly of printed circuits. 02-40964 $\mathbf{\$ 8 . 7 9}$ ELECTRONIC PROJECTS IN PHOTOGRAPHY 15 useful photographic projects written for the electronics enthusiast and the
ELECTRONICS - BUILD AND LEARN
If you hope to become proficient in electronics you will need to master some basic theory as well as to acquire
a practical skill in construction. $02-04541 \quad £ 3.80$ ELECTRONIC TELEPHONE PROJECTS
Information long needed which could be used by electronics hobbyist and others to increase the utility of their telephones. 02-21618
PRACTICAL ELECTRONICS CALCULATIONS Written as a
Written as a workshop manual for the electronics

| enthusiast. | $02-00174 \quad \mathbf{\$ 2 . 9 5}$ |
| :--- | ---: | ---: |
| Please add $15 \%$ VAT to all advertised prices and 60p |  |

Please add $15 \%$ VAT to all advertised prices and 60 p
post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market fluctuation
Just send for our catalogue or visit one of our three outlets at:
200 North Service Road, Brentwood, Essex. CM14 4SG - (0277) 211490 ;
53 Burrijelds Road, Portsmouth, Hampshire. PO3 5EB - (0705) 669021;
Cirkit, Park Lane, Broxbourne,
Hertfordshire. EN10 7NQ - (0992) 444111.
To: Cirkit $\overline{\text { Holdings PL }} \bar{C}$, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ. I enclose $\$ 1.15$. Please send me your latest catalogue and $4 \times \$ 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name $\qquad$
Address
$\overline{\text { Bigger Stock. Better Service. }}$



[^0]:    Prices melude p\& and VAT. Send order with ChequePPO Ring tor Accessivisa sales or ask tor order forms
    LIGHT SOLDERING DEVELOPMENTS LTD. DEPT. EE
    97-99 GLOUCESTER ROAD, CROYDON CRO 2DN. 01.689 0574

