gy=ivoay $==c$ ir co and computer projects
 MARCH 1985

NiCad Battery Charger

On Spec... A NED Fiacre

 for Spectrum

EVERYDAY ELECTRONICS and computer proJ=cts

VOL. 14 No. 3 MARCH 1985

```
PROJECTS . . THEORY . . . NEWS  COMMENT . . . POPULAR FEATURES ...
```


See Page 155

(c) IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

HEADLIGHT ACTIVATED SWITCH

by T. R. de Vaux-Balbirnie136
Flash your headlights when you arrive home and light up your house
MODEL RAILWAY POINTS CONTROLLER
by R. A. Penfold 142
An interface that allows your micro to control your "rolling stockNICAD CHARGER by J. R. W. Barnes158
Will charge a single PP3 or up to ten single cell types connected in series
STORAGE HEATER SETTING by T. A. Priest 172
Indicates optimum setting according to temperature
SERIES
ON SPEC by Mike Tooley BA 155
New monthly feature devoted to the Sinclair Spectrum FUNTRONICS by Thakery 156
A new outlook to electronics-Radio Control
FAULT FINDING by E. A. Rule 170
Part Five: Locating the notorious intermittent fault
DIGITAL ELECTRONICS by D. W. Crabtree 175
Part Six: Memory devices and numbering systems
fEATURES
EDITORIAL 135
SHOPTALK By David Shortland 146
Product news and component buying
FOR YOUR ENTERTAIN MENT by Barry Fox 149
Hard Times; Video Split; Question of Age$-$We look at a wide range of currently available monitorsEVERYDAY NEWS162
What's happening in the world of electronics
NEW PRODUCTS 164
Facts and photos of instruments, equipment and tools SQUARE ONE 166
Beginners' Page: Transistor Action
CIRCUIT EXCHANGE 169
A forum for readers' Ideas
PLEASE TAKE NOTE 169
Sound Operated Flash; Mini Workshop Power Supply; Doorchime
COUNTER INTELLIGENCE by Paul Young 179
A retailer comments
PRINTED CIRCUIT BOARD SERVICE 180

Our Aprill 1985 issue will be published on Friday, March 15. See page 165 for details.

INCLUDING VAT \& CASE PLUS £2.75 P \& P
For a special offer price of only $£ 29.95$ we're offering you this super Quaser Cassette Deck Kit. Including tape transport mechanism, n, ready punched and back printed quality circuit board and all electronic parts i.e. semi-conducters, resistors, capacitors, hardware, top cover, printed scale, mains transformer and a self assembly simulated wood cabinet. You only supply solder and hook-up wire.
SPECIFICATIONS:

Case size $285 \times 260 \times 90 \mathrm{~mm}$ approx. Mechanism with automatic stop and tape counter with reset button. Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}(17 / 8$ $\mathrm{in} / \mathrm{sec}$. Wow \& Flutter: Typically 0.1%. Drive Motor: 12 V d.c. with electrical governor. Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC). Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC). Rewind \& Forward Time: Less than 100 sec . for C 60 tapes. Bias/Erase Oscillator:
Externally variable, frequency $60-100 \mathrm{kHz}$. Output: (Adjustable) Up to 1 volt r.m.s. Mic. Sensitivity: $1 \mathrm{mV} @ 47 \mathrm{k}$. DIN Sensitivity: 30 m V @ 47 k . Frequency Response; $30 \mathrm{~Hz}-12.4 \mathrm{kHz}(-3 \mathrm{~dB})$. Signal to Noise Ratio. Noise reduction OFF-50dB. Noise reduction H.F. -56 dB Noise reduction FLAT-70dB Cross Talk: Typically-50dB. CALLERS WELCOME: 323 EDGWARE RD., LONDON W2.

- Open 6 davs a week $9.00-5.30$.

21 HIGH ST., ACTON LONDON W3 6NG
Tel: 01-992 8430 - Open 6 days a week 9.30-5.30 1/2 day closing Wednesdays.

To: RT-VC, 21A High St., Acton, London W3 6NG

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Every kit includes a constructors' guide covering soldering and component identification which makes construction straightforward even for a beginner. The Heathkit range contains many kits ideal for beginners as well as amateur radio kits, computer-
ised weather stations, a highly sophisticated robot, a 16-bit computer kit and a range of home (or classroom) learning courses that have easy-to-understand texts and illustrations, in sections so that you can progress at your own pace, whilst the handson experiments ensure long-term retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

You'll be proud to say, "I built it mysel!?"

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleign, Essex, SS6 8LR. Tel: (0702) 552911. (For shop addresses see back cover.)

AB MICROSYSTEMS

FOR QUALITY COMPONENTS BY MAIL ORDER

TELEVISION/COMPUTER FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN
EDUCATION COUNCIL

2 YEAR

BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Faulh Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Faut Diagnosis)

15 MONTHS
BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Fauth Diagnosis, ATE, Robotics) THESE COURSES INCLUDE A HIGH PERCENTAGE OF COUEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPUICANTS WTH PREVIOUS ELECTRONICS KNOMLDGE
NEXT TWO SESSIONS COMMENCE ON
APRIL 22nd 8 SEPTEMBER 16th
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENVWERN ROAD. EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

			Boxted, Tel. Orde	$\text { r (0206) } 36$	ACCESS A BARCLAYC WELCON				
					Canaelic				
	mansfommas								
	and				\%aition				
Emichents				Titacs					
	210								
The Rapid Guarantee * Same day despatch \star Competitive prices \star Top quality components $\star \ln$-depth stocks									

E.E. PROJECT KITS

Full Kits Inc. PCBs, or veroboard, hard ware, electronics, cases funless stat ed). Less batteries.
If you do not have the issue of E.E. which includes the project - you will need to order the instruction reprint as
an extra -70 p each. Reprints available an extra -70 p each. Reprints availab
separately 70 p each $+\mathrm{p} \& \mathrm{p} 60 \mathrm{p}$. separately $70 p$ each $+p \& p 60$
SOLD STATE REVERB Feb. 85 SOLID STATE REVERB FEb. 85 E39. COMPUTERISED TRAIN CONTROLLER FED MAINS MONITOR FEb. 85
WASHING MACHHE ALER Feb. 85
LOAD SIMPUER Feb. 85 MIC PRE-AMP Jan. 85
GAMES TMMER Jan. 85
SPECTRUM AMPLIRER Jan. 85 TV AERLAL PRE-AMP Dec. 84
Optional PSU 12 V \& 203 . £12.36
$240 \mathrm{~V} £ 9.86$ MINI WORKSHOP POWER SUPPLY DOOR CHIME DEC. 84 FLUID DETECTOR Nov. 84 BACE NOV. 84
DIGITAL MULTIMETER Nov JJec. 84 PROXIMITY ALARM NOV. 84 MAINS CABLE DETECTOR Oct. B4 MICRO MEMORY SYNTMESISER Oct DRILL SPEED CONTROUIFR O P4 147.98 GUITAR HEAD PHONE AMPLIPER Sept. 84 OP-AMP POWER SUPPLY Sept. 84 §1.98 SOUND OPERATED FLASH less lead Sept. 84 TEMPERATURE INTERFACE FOR BBC Aug. 84
CAR RAOH BOOSTER Aug. 84 THERMOSTATIC SEED PROPOGATOR Aug. 84
needs 12 V supply KTCHEN APPLANCE TIMER Aug. 84 less
socket
$\mathbf{E 1 7 . 2 6}$ WASHER FLUID MONITOR Aug. 84 E5. 28 URTRASONIC BURGLAR ALARM July 84 inc
ezelay + sOUnder
Eas 40 CAPACTANCE COMPARATOA July $84 \quad £ 8.99$ CAR LIGHTS WARNING July $84 \quad \mathbf{8 7 . 9 9}$ SPEECH SYNTHESISER June 84 29.22 VARICAP AM RADIO May 84 ${ }_{84}$ EXPERIMENTAL POWER SUPPLY SIMPLE LOOP BURGL AR AL ARM May் 84 f 13.72 MASTERMIND TIMER May 84 FUSE/DODE CHECKER ADR. 84 E3.45 DIGTTAL MUL TIMETER add of for BRC Micro

Ni-CAD EATTERY CHARGER Mar. 84 REVERSING BLEEPER Mar. 84
IIN LEAD TESTER Mar. 84
PIPE RNDER Mar. 84
LOW POWER STEREO AMP Mar. 84 ZX\$1 EPROM PROGRAMMER Feb 84 SIGNAL TRACER FEb 84
CAR LIGHT WARNING Feb 84
GUTTAR TUNER Jan 84 CONTINUTY TESTER Dec 83
CHILDREN'S DISCO LGHIS 89.99 $\begin{array}{lr}\text { CHILDREN'S DISCO LGGHTS Dec } 83 & \mathbf{8 8 . 4 2} \\ \text { NOVEL EGG TIMER Dec } 83 \text { inc. case } & \mathbf{£ 1 0 . 2 4}\end{array}$ SPEECH SYNTHESRER FOR THE BBC MRCRO
Nov. 83 less cable + sockets MULTIMOD Nov. 83 E16.98 E16.98 LONG RANGE CAMERA/FLASHGUN TRIGGER
Nov, 83 HOME INTERCOM less link wire Oct. 83E14.38 ${ }_{83}^{\text {SHORT WAVE RADIO less 'phones, Oct }}$ Mono headphones extra E3.36 DIGITAL TO ANALOGUE BOARD Oct. 83 £19.98 HIGH POWER DAC DRIVER BOARD Oct. 88 less
case
$£ 12.52$ Case
A TO D CONVERTER FOR RM3s0Z Sept 83 inc
plug

$\mathbf{E 3 5 . 9 8}$ HIGH SPEED A TO D CONVERTER SEDt 93 I6s | HIGH SPEED A 10 D CONVERTER Sept 83 less |
| :--- |
| cable 2798 |
| 28 | SIGNAL CONDITIONING AMP Sept 83 no STORAGE 'SCOPE INTERFACE FOR BBC MI CRO Aug 83 less software $\mathbf{\$ 1 5 . 3 8}$ PEDESTRIAN CROSSING SIMULATON BOARD

Aug 83 no case
$£ 10.29$

HIGH POWER INTERFACE BOARD Aug 83 no | case | |
| :--- | :--- |
| CAR INTRUDER ALARM Aug | |
| 83 | $£ 10.38$ | USER PORT, I/O BOARD less cable + $\begin{array}{ll}\text { plug } \\ \text { USER PORT CONTROL BOARD July } & 83 \text { less } \\ \text { E } 25.10\end{array}$ cable + plug + case EPROM PROGRAMMER Jun. 83 less sofware,

Genie $£ 45.73$. RS80 E44.99 Genie £45.73 ENVELOPE SHAPER JUN. 83 less case $£ 12.33$ MODEL TRAIN CONTROLLER May $83 \quad 827.17$
GUITAR HEADPHONE AMPURER May 8387.32 GUITAR HEADPHONE AMPURER May 8387.32
MW PERSONAL RADO less case, May 8387.62 MWISERSONAL RAOH less case, May $83 \$ 7.62$ MOISTURE OETECTOR MaY 83 RADHO POWER BOOSTER April 83 E11.50 FUNGTION GENERATOH April 83 £ 45.98 FLANGER SOUND EFFECTS April 83 ع 2.17 NOVELTY EGG TIMER April 83 less case 85.48 OX SPECTRUM AMPLARER April 83 OUAL POWEA SUPPLY March 83 E39.3: BUZZ OFF March 83
UUSH BIKE ALARM Feb.
ZX TAPE CONTROL Nov. 82
SINE WAVE GEN Oct. 82
G. P. PRE-AMP Oct. 82

UGHTS ON ALERT Oct. 82
CONTINUTY CHECKER Sept. 82
SOUND SPUTTER Sept. 82
SOUND RECOMBINER Sept. 82
SCREEN WASH DELAY Sept. 82 SCREEN WASH DELAY Sept. 82 CB ROGER BLEEPER Aug. 82 2- WAY INTERCOM July 82 no case REFLEX TESTER July 82 REFLEX TESTER July 82
SEAT BELT REMMNDER Jun 82 EGG TMER JUne 82 CAR LED VOLTMETE \qquad Carlied Voltmeter less case. May 8253.4 V.C.O. SOUND EFFECTS UNIT Apr. 82 £1271 CAMERA OR FLASH GUN THIGGER Mar. 82

POCKET TIMER Mar. 82 ESt

 GUITAR TUNER Mar. 82 SIMPLE STABILISED POWER SUPPIY Jan. 82
MINI EGG TMMER. Jan. 82.
 SIPEN MODUIE Jan 82 less speaker E4.40

 MODEN MODUIE Jan. 82 less speaker CHUFFER Jan. 82 SIMPLE INFRA RED REMOTE CONTROL Nov. 8CAPACTTANCE MEIER OCt. 81
SUSTAIN UNIT OCT. 81
TAPE NOISE UMITER OCT HEADS AND TALLS GAME OCT. CONTNUUTY TESTER Oct. 81 PHOTZ BOX OCt B1
SOLE MOISTURE UA
SOIL MOISTURE UNTT OCT 81
CE ALARM OCT. 81 PI
CMOS CAR SECURITY ALARM Sept. 81 CMOS DIE Sept. 81
CMOS METRONOME Aug. 81 COMBINATION LOCK July 81 E8.9 SOIL MOISTUAE GUTAR HEADPHONE ATOR EE E May 81 E4.49 GUITAR HEADPHONE AMP EEE May 81 E4.66 PHONE BELL REPEATER/BABY ALARM May
81 81
INTEACOM April 81
LED DHCE Mar. 81 E9, 8 2 NOTE DOOR CHIME
LVE WRE GAME Dec. 80
GUTAR PRACTICE AMPLIFER Nov. 80 GUTTAR PRACTICE AMPLIFER Nov. 80 E14.10 less case. Standard case extra
SOUND TO LIGHT Nov. 803 channel TRANSISTOR TESTER Nov, 80 E12.8 AUDO EFFECTS UNIT FOR WERD SOUNDS
IRON HEAT CONTROL OCL. 80
TMENEA DIC PRE TESTER JUN. 80
UGHTS WARNING SYSTEM May 80 BATIERY VOLTAGE MONITOR May 80 MMCRO MUSIC BOX Feb
Case extra
SLIDETTAPE SYNCHRONISER Feb 80
MORSE PRACTCE SPRING LINE REVERB UNIT Jan, 80 UNIBOARD BURGLAR ALARM DEC. 79 DARIKROOM TIMER July 79 TRANSISTOR TESTER Apr. 79 MCROCHIME DOORBELL FEb. 79 SOUND TO LGGHT SOPL 78
CAR BATERY STATE INDCATOR les Sept. 78
RF. SIGNAL GENERATOR Sept. 78
IN STU TRANSISTOR TESTER JUN. IN STM TRANSISTOR TESTER Jun. 78
FLASHMETER less calc \& diffuser May 78 FLASHMETER less calc \& diffuser May 78
WERO SOUND EFFCTS GENERATO
78 AUON VSUAL METRONOME Jan. 78 ELECTRONKC TOUCH SWITCH Jan. 78 RAPID DIODE CHECK Jan. 78
ELECTRONIC DHCE Mar. 7

THIS MONTH'S KITS

 SAE or 'phone for pricesOUR PRICES INCLUDE VAT

MAGENTA ELECTRONICS LTD

EE26, 135 HUNTER ST BURTON-ON-TRENT STAFFS, DE14 2ST. MAIL ORDER ONLY. 0283 65435, Mon-Fri $9-5$. Access/Barclaycard (Visa) by phone or post.
24 hr Answerphone for credit card ordewhe

IRISH REPUBLIC and 8FPO: UK
EUROPE: UK PRICES plus 10%.
ELSEWHERE: write for quote.
ADD GOP PRP TO ALL ORDERS.
PRICES INCLUDE VAT
SAE ALL ENQUIRIES.
OFFRLAL ORDERS WELCOME, OVERSEAS: Payment must be sterling,

We offer a range of superb Fischertechnik sets. These cover robotics, electronics, electromechanics, motors \& gears, \& basic construction.
Robolics kit: build 6 different working models including a robot arm, graphics board, sorting system etc. Note that not all the models can be built at the same time. Simple to assemble. Easily combined with all other Fischertechnick kits. Top quality. Includes 2 motors, an electromagnet, lámps, potentiometers, switches etc. ROBOTICS kit (554)/EE
. 164.99 Constructiondbase kit (ut1)--............... 57 Motors \& Gears (ut2)
Use ut2 to motorise ut1
Electromechanics (ut3)
.. E 42.70 Electronics (ut4)..
.173 .20 Extra Lamps \& Cables $E 5.95$ Extra Lamps \& Cables Computers. Interfaces are available for controlling the Robotics kit (554), and the motorised construction kit (ut1 \& ut2). Details in our catalogue (£1) or sae marked 'FT/EE' (state micro).

BOOKS

FUN WITH ELECTRONICS

Enjoyable introduction to electronics. Full of vory clear full colour pictures and easy to follow adults. Only basic tools needed. 64 full colour pages cover all ospects - soldering - fautt inding - components fidentification and how Also work).
arglar alarm derging alarm, radio, games, etc. Requires sol COMPONENTS SUPPIED ALIOW AIL PROJECTS TO BE BUILT ANO KEPT.
Sugplied less batteries \&
FUN WITH ELECTRONICS.
COMPONENT PACK £16.98
BOOK EXTRA $£ 1.75$.

TEACH IN 84

Full kit including 2 EBBO breadboards \& a FREE copy of our cataloque. YEACH IN 84 KIT E22.98
ine VAT. Reprimis $70 p$ each (12 part series).

CATALOGUE

FULIY REVSED 1985 CATALOGUE. Brief details of each krit, our books, \& illustrations of our range of tools $\&$ components. Also stepper motor, interface kit \& simple robotics. Plus circuit ideas for you to build, if you read Every-
day Electronics than you need a copy of the day Electronics than you need a copy of the CATALOGUE \& PRICE UST - Send 81 ln temps etc. or sdd E1 to your order. Price list 9×4 sae
Catalogue FREE TO SCHOOLS/COLLEGES
REQUESTED ON OFRCIAL LETTERHEAD.

TOOLS

ANTEX MODEL C IRON

ANTEX X5 SOLDERING IHON 25W STA STAND FOR IRONS
HEAT SINK TWEEZERS
SOLDER HANDY SIZE 5
SOLDER CARTON
SOLDER REEL SIZE
LOW COST PUERS
LOST COST CUTTERS
BENT NOSE PLIERS
MULTMETEA TYPE 1 : 10000 pV
MULTIMETEA TYPE 1 100000V
MULTIMEIER TYPE 3 30.0000pV
MULTIMETER TYPE 4 IOM DIGITA
DESOLDER PUMP
SIGNAL INJECTOR
CIRCUIT TESTER
HEIPING HANDS JIG \& MAGNIFIER
MINLATURE VICE (PLASTIC)

ROBOTICS

DIV ROBOTICS \& SENSORS BOOKS - with the BBC E7.95; for the Commodore 6487.99 Components used in these books are in ou catalogue/price list. Catalogue $£ 1$. Price list only
sae. SAA 1027 driver 25.99 ; 8 way darlington driver ULN2803) E238; TLO81 49p.
D35 STEPPER MOTOR. 48 Steps. 12V. 14.50 DC MOTOR 6-12V. Good torque. Mounting BBC TO ID35 STEPPER MOTOR INTERFAGE PC8, driver IC, components, connectors 8 l leads included. Demonstration software listings, cir given. Requires unregulated 12 V dc powe supply.
INTERFACE KTI (ref EE)
OPTIONAL POWER SUPPLY PARTS HOW TO MAKE COMPUTER CONTROLLED RO BOTS by Potter/Oxlade, 800K $£ 3.20$. For BBC Spectrum, C64 \& VIC20.
Make a mobile arm robot from simple mater als. Electronic parts etc. available from Magen ta. Ideal for age 11 upwards $\&$ all beginners
Also similar to above How TO MAKE COMPUTER MODEL CONTROLLERS, BOOK E3.19.

COMPONENTS

We stock a standard range of electronic components including resistors, pots, ICs, capacitors, relays, transformers, switches, connectors, tails are in our catalogue. $£ 1$.

COMPUTER ACCESSORIES
 BBC TRACKBALL CONTROLIER. \boldsymbol{Z} ball. 2 fire buttons. Analogue input port connector, includes simple software listing for freehand drawing. Sim
 BBC Digital Joystick. 2 fire buttons. D plug

ADVENTURES WITH ELECTRONICS

An easy 10 follow book suitable for all ages. Ideal for beginners. No soldering, uses an SDet Breadboard. Gives clear instructions with
tots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Advantures wht Electronics £3.58. Component pack $\mathbf{f 2 0 . 9 8}$ less battery.

VOL 14 No? MARCH '85

EVERYDAY ROM CS
$=$ End computer PROJECTS

READERS' ENQUIRIES

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope or international reply coupons.

We cannot undertake to engage in lengthy discussions on the telephone.

COMPONENT SUPPLIES

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 12.00$. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower. Stamford Street, London SE 1 9LS.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available world-wide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF. In the event of non-availability remittances will be returned.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.50$ inclusive of postage and packing worldwide.

SNUG HOBBY

A^{\top}T THE time of writing the country is in the grip of what will no doubt go down as one of the worst winters in living memory; ' 85 will be remembered for it. While much of the sport grinds to a halt, various social events are cancelled and few people wish to venture out in pursuit of their pastimes, EE readers have been having a heyday snug at home with their hobby to keep them amused and some useful projects as a result. Provided you ordered items for one or two of our designs a few weeks before the freeze there was no need to go out at all. You could simply stay at home, let the postman deliver the components and build your next project.

Not only is our hobby excellent for this time of year, electronics can be of assistance when the elements do their worst and therefore it has a double attraction.

COMPUTERS

From the p.c.b. data it is obvious that many readers have computers and are in need of add ohs. Our Monitor Buyer's Guide should prove invaluable to such readers. The Guide looks at the advantages of a monitor, explains the specifications and then shows a wide range of available products. I must point out that readers buying by mail order directly from the Guide are not protected by the Mail Order Protection Scheme unless the company have placed a display advertisement for the product in this issue.

It would be of great value to EE if readers always mentioned the magazine when buying anything as a result of our features or projects; if you can, please do this when you phone or write to any company.

SUBSCRIPTIONS

Due to the vast number of publications now available many newsagents simply cannot carry them all and some readers may find EE harder to locate. There are two ways to overcome this. The first is to place a regular order with your newsagent and the second is to take out a subscription so that we post your copy to you every month.

If you take a subscription you have to pay in advance, but an EE subscription for a year now costs the same as twelve times the cover price, so you pay no premium, and should the cover price be increased during the year for any reason you are obviously better off in the long run. It's worth thinking about, particularly at the present time. Subscription details are given on this page and on Page 161.

WEST QUAY ROAD, POOLE, DORSET EH 15 1JG Phone: Poole (0202) 671191
We regret that lengthy technical enquiries cannot be answered over the telephone
EditorMIKE KENWARD
Secretary
PAULINE MITCHELL
0202671191 Ext 259
Advertisement Manager
NIGEL BELLWOOD 01-2616882
Advertisment Sales ExecutiveClassified Supervisor
BARBARA BLAKE O1-2615897
Advert Make-Up and Copy Department

Advertisement Offices

EVERYDAY ELECTRONICS
ADVERTISEMENTS
KING'S REACH TOWER
STAMFORD STREET.
LONDON SE 1 9LS
Telex 915748 MAGDIV-G

HEADLIGHT activated suitch

T. R. de Vaux Balbirnie

ADARK APPROACH to the house is not very inviting and can be dangerous. This project switches on a driveway light for a preset time when the car headlights are flashed onto a distant sensor. The system is designed for dusk-to-dawn use and has a range of at least 20 metres.

Although described as headlight activated, the unit may be operated by a hand held torch (although perhaps over a shorter range). It may thus be of interest to the non-motoring reader.

In the present design, the headlights must be flashed 3 times within approximately 5 seconds. This makes the circuit practically immune from false triggering providing the sensor is correctly located. Once on, the driveway light switches off automatically about two minutes later.

All the circuitry, apart from the sensor, is built into a plastic box which may be accommodated wherever a mains supply exists-inside the garage, for example. The sensor is housed in a waterproofed plastic box which may be placed any reasonable distance from the main unit and connected to it by light-duty twin wire. Lights of up to 5 A rating (1200 watts or 240 V mains) may be used. Since there are mains connections to make, this part should be left to a qualified electrician if the constructor is unsure of his or her ability to make a safe job.

FALSE TRIGGERING

Before beginning the project, it would be wise to check that a suitable position for the sensor exists. Note that people or pets walking in front of it sometimes causes false triggering. A car with its headlights on being driven along a bumpy
path may also trigger the system-but, this may be thought an advantage rather than the reverse. Since the driveway light goes off automatically, any occasional false triggering is of no concern. Fig. 1 is a block diagram of the Headlight Operated Switch while Fig. 2 shows the entire circuit.

When light-dependent resistor, R13, together with component network VR1, R1 and Cl detect a flash of light, a voltage pulse is passed to the operational amplifier, IC1. This causes its output to go momentarily low and trigger IC2. This is a dual monostable with time periods of approximately 0.5 and 5 seconds respectively. With each flash of light, IC2, pin 9, sends a clock pulse to the decade counter IC3. Meanwhile, the output from IC2, pin 5 , is inverted by TRI and connected to the reset input of IC3. Thus, IC3 is enabled to count pulses while IC2 is on, but when it goes off IC 3 resets. If 3 pulses are registered before this happens, the output corresponding to digit " 3 " (pin 7) goes high and, after inversion by TR2, triggers IC4. This is a further monostable with a time period of about 2 minutesits purpose is to operate the relay, RLA, and hence the mains light through its "make" contacts. IC4 remains on for its full time despite resetting of IC3. The relay provides complete isolation between the mains and low voltage sections of the circuit.

Light-emitting diodes D1, D2 and D3 (different colours were used in the prototype) indicate the on states of each monostable. These are observed through holes in the lid of the case and will be found very useful at the testing stage. Further holes in the lid provide screw-
driver access for VR1, VR2 and VR3. In this way, the setting-up procedure is followed with the lid in position-an important safety point since there are mains connections inside.

The unit receives power from a standard arrangement of mains transformer, bridge rectifer and smoothing capacitor. This last component has a high value to prevent false triggering due to fluctuations in the supply voltage.

SENSOR

The sensor operates in the following way. The non-inverting input of IC 1 is set to approximately one-half supply voltage by the potential divider R2 and R3. The inverting input is held just below this voltage by means of VR2-thus, IC1 is normally on. When R 13 detects a flash of light, its resistance falls sharply and so does the voltage at point A (Fig. 2). This change is passed on through Cl and upsets the action of $R 2 / R 3$. The voltage at the non-inverting input falls momentarily below that at the inverting point and the op-amp switches off. This triggers IC2 in the manner previously described. The value of $C 1$ gave good results in the prototype but changing its value could be the subject of experiment.

CONSTRUCTION

Note that since IC3 is a CMOS device, it should not be unpacked until needed. Refer to Fig. 3 and construct the main circuit panel. This is based on $0 \cdot 1 \mathrm{in}$. matrix stripboard size 14 strips by 51 holes. Drill the mounting holes, make the breaks in the copper tracks and solder the

Fig. 1. Block diagram of the headlight-activated switch.

inter-strip link wires in position. Fóllow with the on-board components noting especially the polarities of all diodes and of C 7 and C8. C8 is mounted alongside the panel as shown in the photographic illustration. Mount R4 and R5 clear of the panel-this will facilitate changing them in the unlikely event of the IC2 timings proving unsatisfactory. Solder connecting wires to copper strips B (3 off), N (2 off) and H as indicated in Fig. 3.

TESTING

It is wise to test the completed circuit panel using a 9 V battery so that any faults may be corrected before making the mains connections. Start by inserting all the i.c.'s, apart from IC3, into their sockets. Without touching the pins, remove IC3 from its special packing and insert it into its socket noting that it is upside-down compared with the others. Leave VR1, VR2 and VR3 adjusted to approximately mid-track position.

Connect the wires labelled "a.c. in" (Fig. 3) either way to the battery. Adjust VR2 gently so that D1 and D2 just remain off-remember that D1, once on, takes a few seconds to go off. Touch the wires labelled "R13 (ORP 12)" together for an instant. D1 and D2 should both come on with D2 going off again after about 0.5 sec . and D1 after about 5 sec .

Now make D2 flash 3 times with D1

on. D3 should light and remain on for about 2 minutes-this time will depend on the setting of VR3.

Mount RLA1 on its separate stripboard panel size 9 strips by 29 holes. Make sure it fits the runners of the case tightly-for safety reasons it must not break free or slide about in operation. Note that RLA1 must be of the fullyenclosed type with mains rated contacts as specified in the components list.

ASSEMBLY

Prepare the case by making holes for S1, JK 1 (sensor connector), mains leads and for attaching the terminal block, transformer and fuseholder. Mount all the offboard components.

Carefully measure the positions of the 1.e.d's and preset potentiometers and drill 5 mm diameter holes in the lid to correspond. Attach the circuit panel to the lid using suitable small fixings and stand-off insulators. Check that a small screwdriver will engage the preset potentiometers for adjustment.

Refer to Fig. 5 and complete all internal wiring. 3A mains-rated wire must be used for relay contact and terminal block connections. Slide the relay panel in position and "lock" it securely with a little glue in the runners of the case. The photograph opposite shows the relay panel glued in place, and also the internal wiring and layout of the off-board components. Insert the fuse in its holder.

Offer the lid to the rest of the case and check very carefully that no short-circuits are caused between the main circuit panel and the relay connections-for this reason, the main panel securing bolts should be cut short.

Switch off the mains supply at the fusebox and remove the fuse. Make the external mains connections using $1.5 \mathrm{~mm}^{2}$ twin and earth p.v.c. cable. Use similar cable to connect the light-do not use flexible wire.

Fig. 3. Drilling details and component layout for the headlight-activated switch. Note that IC3 is in position the opposite way round to the other i.c.s. The connections off the board to the positions labelled A, B and C are for the optional add-on cut-beam triggering circuit.

Fig. 4. Drilling detalls and positioning for the relay. Note that mains voltages will be present on this board.

Fig. 5. Interconnecting wiring for the complete circuit.

Photograph showing the positioning of the relay board, the off-board components and the interconnecting wiring.

SENSOR

Refer to Fig. 6 for mounting details of PCCl . If the sensor is to be exposed to the weather it will be necessary to make a plastic seal for the lid. Connect up the sensor using light-duty twin wire. Test and adjust the system at dusk.

Adjust VR2 so that D1 and D2 remain
off and adjust VR1 for best operation. Adjust VR3 for a suitable operating time- 2 minutes in the prototype. Note that all adjustments are made with the lid in position.

If there is any tendency for the unit to operate randomly or when fluorescent lights are switched on nearby, this means that VR2 has been adjusted too critically. The light may be cancelled at any time by switching S1 off for a few seconds.

TRANSFORMER

Certain cheap mains transformers fail to develop their nominal secondary voltage and this can cause intermittent operation or failure of the relay to work at all. This can be avoided by using a good quality component. In marginal cases, try short-circuiting D4.

With the Headlight Activated Switch, you will always have a cheerful welcome home on dark evenings.

The light-dependent resistor mounted in its box. The diagram below shows the wiring details.

Fig. 6. Sensor mounted in its case.

COMPONENTS

Semiconductors

D1,2,3 5 mm red, yellow, green I.e.d's (3 off)
D4,5 1N4001 silicon diodes (2 off)
D6-9 W005 bridge rectifier
TR1.2 ZTX300 npn silicon (2 off)

\section*{Integrated circuits
 | IC1 | 741 operational amplifier |
| :--- | :--- |
| IC2 | 556 timer |
| IC3 | 4017 decade counter |
| IC4 | 555 timer |}

Resistors
R13
ORP12 light dependent resistor
R1,6,7,12 470 (4 off)
R2,3 $1 \mathrm{M}(2 \mathrm{off})$
R4,5 4M7 (2 off)
R8,10 $\quad 10 \mathrm{k}$ (2 off)
R9,11 1 k (2 off)
VR1 10 k miniature horizontal preset potentiometer
VR2 $\quad 100 \mathrm{k}$ miniature horizontal preset potentiometer
VR3 $\quad 1 \mathrm{M}$ miniature horizontal preset potentiometer

Capacitors

C1	0.47μ
C2	0.1μ
C3	1μ
C4,5,6	0.01μ (3 off)
C7	$220 \mu 16 \mathrm{~V}$ electrolytic
C8	$2200 \mu 16 \mathrm{~V}$ electrolytic

Miscellaneous
Miniature mains transformer with 240 V primary and 2 off 4.5 V secondary windings (or single 9 V secondary) at 100 mA .
RLA Fully enclosed miniature relay 400 ohm 12 V coil, 10A mainsrated "make" contacts
PL1/JK1 $\quad 3.5 \mathrm{~mm}$ miniature jack plug and chassis socket
Stripboard 0.1 in. matrix 14 strips by 51 holes (main circuit panel)
0.1 in . matrix 9 strips by 29 holes (relay panel)

FS1 Panel mounting mains fuseholder with 5A fuse
TB1 5 A terminal block- 8 sections required
S1 s.p.s.t. rocker switch rated at 240 V 5 A minimum
A.B.S. plastic boxes: $150 \times 80 \times 50 \mathrm{~mm}$ (external) for maln unit (2005 box)
$80 \times 61 \times 41 \mathrm{~mm}$ (external) for sensor (MB1 box)

Cut-Beam Triggering

By using a small add-on unit, the circuit may be triggered by cutting a light beam. With a suitably placed light source and sensor, a person walking between them will activate the driveway light. This could be useful to light the way for visitors or to deter prowlers. This extra facility in no way affects "normal" operation of the circuit using headlight flashes. Fig. 7 shows the circuit of the additional part and it will be noted that this receives power from the main section. IC5 is an operational amplifier used as a voltage comparator.

The non-inverting input is set to onehalf supply voltage by the potential divider R20 and R21. The inverting input receives a voltage which depends on the adjustment of VR20 and the level of illumination of the sensor, R24. With R24 illuminated, its resistance is low and the voltage at the inverting input less than that at the non-inverting input. Thus, the
op-amp will be on with its output, pin 6, high. D20 "blocks" this output which therefore has no effect on the main circuit. When illumination to R24 is reduced, its resistance rises and the opamp switches off with pin 6 going low.

This triggers IC4, pin 2, in the main section and the driveway light operates in the manner described previously.

COMSTRUCTION

The additional circuit is constructed on 0.1 in. matrix stripboard size 6 strips by 13 holes (Fig. 8). This is accommodated alongside the main circuit panel as shown in the photograph. A single hole is used for mounting and connections are made to Points A, B and C on the copper strip side of the main circuit panel (see Fig. 3). Points A and B are supply + and respectively while Point C is the trigger connection. VR20 is a vertical preset potentiometer which allows for adjustment through a small hole drilled in the case. The sensor is connected by means of a 3.5 mm jack socket mounted next to the existing one.

SENSOR UNIT AND LIGHT SOURCE

The sensor unit may be the same as the one already described for headlight triggering.

The light source used in the prototype is shown in Fig. 9. This is merely a suggestion and there is plenty of scope for experiment, especially if a long range of operation is required.

The bulb-which should not exceed $2 \cdot 2 \mathrm{~W}$ rating-must be powered by its own transformer placed inside the building. This is connected to the light source using light-duty twin wire. A cheap plastic lens (magnifying glass) focuses the light onto R24. The box used should be of plastic-suitably waterproofed-and of a length rather more than the focal length of the lens used.

Adjustment must be provided so that the lampholder may be moved to its optimum position. The prototype operates over a distance of more than 5 metres and this is thought to be sufficient for most

Fig. 7. Circuit diagram for cut-beam triggering operation.

Photograph showing the optional add-on circuit, the cut-beam triggering unit which will activate the driveway light automatically when a light-beam is broken. The circuit layout is shown below, actual size, and the unit can be fixed to the lid of the case next to the main circuit, using a single screw as shown.

Fig. 8. Drilling details and component layout for the cut-beam triggering optional add-on circuit.

Fig. 9. Prototype light source for cut-beam triggering activation.
page 146

Semiconductors

IC5	741 operational amplifier D20
IN4148 diode	

Resistors

R20,21 100k (2 off)
R22 220
R23 10k
All $0.4 \mathrm{~W}+1 \%$
VRं20 47 k miniature preset potentiometervertical mounting
R24 ORP12 lightdependent resistor

Miscellaneous

0.1 inch matrix stripboard size 6 strips by 11 holes; Mains transformer with 240 V primary and 12 V 250 mA secondary with suitable housing; PL2/JK2 3.5 mm jack plug and socket; Plastic boxes for sensor and light source; plastic lens; M.E.S. lampholder; 12 V 2.2W M.E.S. Iamp. Aluminium for lampholder bracket. Terminal block; fixings; connecting wire.

Approx. cost
Guidance only
19.50
purposes. For a greater range, a similar lens could be used at the sensor unit to focus a beam of parallel light onto R24. This would increase the range. It is wise to under-run the lamp, using about 10 volts instead of 12 as this will greatly increase its life.

Check the voltage at the lampholder terminals using an a.c. voltmeter. Some voltage drop may be expected due to the connecting wire.

ADJUSTMENT

Once it is established that the lightsource and the sensor are working correctly, they can be fixed permanently in position. After these initial experiments, which must be performed after dusk, it will be necessary to mount the lamp and sensor units rigidly in correct alignment. The best setting for VR20 is found over a period of trial. Shield the sensor as necessary from other sources of lightstreet lights and the driveway light itself, for example. Duiring daylight hours the circuit is de-activated since sufficient light reaches the sensor to keep the op-amp on.

If the sensor is unplugged from the unit for any reason, it will be necessary to insert a dummy jack plug with shortcircuited terminals to prevent the unit from operating.

model Rallwar points controller

 R.A.PENFOLDThis article is primarily concerned with a simple project that enables a digital output of a computer to control an electric point reliably, and with no risk of burning out the solenoids in the point. However, track sensors to detect the position of the train and automatic signals will also be considered.

POINT OPERATION

An electric point is an extremely simple item of equipment, and it is basically just an ordinary (manually operated) point with the addition of two solenoids that give optional automatic operation. A short pulse of current to one solenoid sets the point to one position, and a current pulse through the other solenoid sets it back to the original position again. A manual points controller can therefore consist of nothing more than a single-pole-double-throw (SPDT) switch connected as shown in Fig. 1. Note though, that the switch must be a type having a central "Off" position. By operating the
used to limit the maximum amount of time power would be supplied to the solenoid so that overloading and damage would be impossible, but this would still result in the point being left in the wrong position.

CAPACITOR DISCHARGE

More reliable operation can be obtained using a capacitor discharge circuit. With this type of controller a high value capacitor is charged to around 24 volts via a current limiting resistor: The points controller switch then uses the capacitor as its power source. This arrangement is shown in the circuit diagram of Fig. 2.

The advantages of this type of controller are that it gives a stronger pulse of current and therefore better reliability, and that the solenoids can not be burned out if the switch is operated for an excessive period of time. The higher pulse of current is produced due to the higher voltage utilized, and the very low source impedance of the capacitor also helps in
power source and through the resistor is inadequate to damage the solenoid. This is less important in a computerised controller than in a manual circuit, but it does protect the points in the event of a software error or if the computer is crashed.

This type of controller could again be computerised simply by replacing the switch with two relays driven from digital outputs of the computer. The circuit finally devised is a little more sophisticated than this though, as it uses semiconductor switching devices and is driven from a single digital output of the computer. The block diagram which appears in Fig. 3 helps to explain the way in which the controller operates.

The 15 volt a.c. input from the auxiliary output of a train controller is rectified to give a pulsating d.c. signal having a peak potential of typically about 24 to 25 volts. This supply is used for the charge circuit, and the capacitor charges to virtually the peak input voltage in only

THE JUNCTION BETWEEN MODEL AND MICRO THAT PUTS BRAINS IN YOUR BRANCHLINE

switch power can be applied to one or other of the solenoids, and the position of the point can be altered. The power source is the usual nominal 12 volt d.c. type which is in fact usually a rectified 15 V a.c. signal.

It would be quite easy to produce a computerised controller of this type, and the most simple way of doing this would be to drive two relays from digital outputs of the computer, and then use one relay to control each solenoid. This might not work well in practice since there is a slight flaw in the basic form of points controller outlined in Fig. 1. The problem is brought about by the tendency of many points to stick when power is applied. With a manual points controller this can result in power being applied to one of the solenoids for an excessive amount of time in an attempt to force it to change positions, and this can in turn lead to a solenoid burning out. With a computerised version the software could be
this respect. The solenoid can not be burned out even if the switch is operated continuously due to the inclusion of the current limiting resistor. Once the capacitor has discharged this resistor ensures that the current flow from the
about one second. The control signal from the computer connects to the inputs of two monostable multivibrators. These are of the non-retriggerable type, and when triggered each monostable provides an output pulse of a certain duration,

Fig. 1. A simple manual points controller.

Fig. 2. An improved points controller circuit.
regardless of how long or short the trigger pulse happens to be. One of the monostables is a negative-edge triggered type, and it therefore generates an output pulse when the input is taken from high to low. The other monostable is a positiveedge triggered type, and it produces an output pulse when the input signal goes from low to high.

If we assume that the input is initially low, by setting it high the positive triggered monostable can be made to give an output pulse. This pulse is used to activate an electronic switch, and this switch connects one of the point's solenoids to the discharge circuit. The pulse duration is long enough to permit the capacitor to discharge through the solenoid and operate the point. If the input is now taken low. again the negative triggered monostable generates an output pulse, activating the other electronic switch and connecting the charge circuit through to the other solenoid of the point. Provided the charge circuit has been
given a second or so to recharge, this results in the point being switched back to its original position. This makes the software to control the unit very straightforward, with a high output level corresponding to one position, and a low output level giving the opposite position.

THE CIRCUIT

The full circuit diagram of the Model Railway Points Controller appears in Fig. 4.
sistor TR1 via current limiting resistor R3. Although the drive current to TR1 is not very high (about 3 milliamps), TR1 is a Darlington device which consequently has an extremely high current gain (about 5000 times). When switched on TR1 connects one of the solenoids across C 1 , and due to the high gain of TR1 it allows a suitably large pulse of current to flow. TR1 must be a power device as the peak current flow can easily reach 2 or 3 amps .

Resistor R5, and C3 are the timing

Fig. 3. Block diagram of the points controller.

Diodes D1 to D4 form a bridge rectifier which fullwave rectifies the 15 volt a.c. input. C1 is the charge storage capacitor and R1 is the current limiting resistor.

Both monostable multivibrators are based on a CMOS 4098BE (or the 4528 BE which is an exact equivalent). It is possible to produce most types of monostable using CMOS gates, but the 4098 BE is actually a dual monostable, and is more convenient in this application. Each section of the device can be used as a positive or negative edge triggered circuit, and in the retriggerable or non-retriggerable mode. In this case both sections are used in the nonretriggerable mode. C2 and R4 are the timing components for the first section, and these give an output pulse duration of approximately 250 milliseconds. This may seem rather short, but in practice is more than adequate to give the point time to switch over. This section is wired to operate in the positive-edge triggered mode, and it therefore generates the output pulse when the input goes from low to high. This pulse appears at pin 6 of IC1, and it is used to activate switching tran-
components for the other monostable which is, of course, wired to operate in the negative-edge triggered mode. It provides an output pulse at pins 10 and 12 of IC1, and this is used to drive TR2 via current limiting resistor R2. TR2 controls the second solenoid of the points.

As IC1 is a CMOS device none of its inputs must be left open circuit and vulnerable to damage by static charges. R6 is therefore used to tie the two inputs to the negative supply rail when the unit is not connected to the computer. The input can be driven from any cmos compatible logic output, and the mOS devices often used in computer ports (the 6522 and 8255 A for example) are perfectly suitable. The unit also seems to function satisfactorily when driven from an LS TTL output. If the unit is used with the previously published Computerised Train Controller in conjunction with a VIC-20, Commodore 64 , or BBC model B computer, line PB1 of the user is probably the most convenient one to use. $\mathrm{A}+5$ volt output supply is needed for the monostable circuit, and most computers (including the three mentioned above) have a +15 volt output on the user port that is suitable. As IC1 is a cmos device the current consumption is negligible.

Fig. 4. Circuit diagram of the Model Railway Points Controller.

construction

A metal case measuring about 150 by 100 by 50 millimetres is used for the prototype controller, but any case about this size should be suitable and it does not have to be a metal type. Although a 6.35 mm stereo jack is specified for SK 6 , and 4 mm sockets are specified for SK 1 to SK5, these can, of course, be changed for alternative types if these would be more convenient in your particular set-up. SK 6 is mounted at the right hand end of the front panel, SK 4 and SK 5 are mounted at the opposite end, with SK1 to SK3 grouped in the middle of the panel. It is advisable not to alter this layout as it would make the wiring of the unit a little less straightforward.

The other components are fitted onto a printed circuit board, as detailed in Fig. 5. TR1 and TR2 are power devices, but as they do not have to dissipate much power in this application they do not :equire heatsinks. They are fitted horizontally onto the board and are each fixed in place using an M3 6 mm screw plus fixing nut. Their leadout wires are then trimmed to length and soldered to the board. ICl is a cmos device and requires the normal antistatic handling precautions. Use a 16 pin di.i.l. i.c. socket for this component, and do not plug it into circuit until all the other components have been fitted onto the board. Do not handle this device any more than is absolutely necessary. Fit pins to the board at the points where it will be connected to the sockets.

Once completed the board is mounted on the chassis or base panel of the case using M3 or 6BA fixings. If a metal case is used these should include spacers to keep the connections on the underside of the board clear of the metal casing. Finally, add the point to point style wiring using ordinary multistrand pvC insulated connecting wire.

IN USE

SK 4 and SK 5 are fed from the 15 volt a.c. output of a train controller, and the Computerised Train Controller unit has a suitable output. If preferred the unit could be powered from an internal 15 volt mains transformer having a secondary rating of 100 milliamps or more, but normal safety precautions to prevent an accidental electric shock from the mains supply would then need to be taken. SK 1 to SK 3 connect to the electric point, and SK 1 must connect to the Common terminal of the point (this is usually the middle one of the three terminals). As explained earlier, SK 6 connects to the user port of the computer, or whatever output port you wish to utilise. Fig. 6 gives connection details for the VIC-20, Commodore 64, and BBC model B computers, and this assumes line PB1 is to be used to operate the controller.

To test the unit the first task is to set the appropriate line of the user port as an

Fig. 5 (a). Printed circuit board (avallable through EE p.c.b. service No. 8503-01).

Fig. 5 (b). Component layout.

A simple project indeed. A lid off view of the complete unit.

COMPONENTS

Resistors

R1 270 1W 10\%
R2,3 1 k (2 off)
R4.5 2 M 2 (2 off)
R6 100k
All resistors $\frac{1}{4}$ W 5% except where stated otherwise

Capacitors

C1 $\quad 3300 \mu 30 \mathrm{~V}$ axial elect
C2,3 220n carbonate (2 off)
C4 100 n carbonate

Semiconductors

IC1 4098BE or 4528BE dual CMOS monostable
D1 to 1 N 4004100 V 1A
D4 rectifiers (4 off)
TR1,2 TIP122 Darlington power transistors (2 off)

Miscellaneous
SK 1 to
SK5 4 mm sockets (5 off)
SK6 Standard stereo jack socket Printed circuit board; case about $150 \times 100 \times 50 \mathrm{~mm}$; 16 pin d.i. .
i.c. socket; veropins; fixings; connecting wire and cables; computer connector; etc.

Approx. cost
Guidance only
output. The following is used to achieve this:
POKE 37138,2 (VIC-20)
POKE 57579,2 (CMB64)
2\&FE62-2 (BBC model B)
The point is then controlled by writing 0 or 2 to the user port, to set PB1 low and high respectively. For example, with the VIC-20:-

POKE 37136,2

sets PB1 high, and:-

POKE 37136,0

sets it low again. The corresponding addresses for the Commodore 64 and BBC model B computer are 56577 and \&FE60. This obviously assumes that no other lines are used as outputs, and the number written to the port might need to be different if they are.

POSITION SENSING

When a model train is run automatically it is normally necessary to have one or more sensors on the track so that the controlling circuit can determine the position of the train when necessary. For example, if the train is to complete a certain number of laps around the track and then run into a siding and stop, the controlling circuit must be able to determine the number of laps completed, switch the points once the appropriate number of laps have been done, and then stop the train at the desired place. A sensor on the main loop of track would be needed to enable a lap counter action to be produced, and another one would
probably be needed on the siding to inform the controller when the train had almost reached the desired stopping point. With many automatic systems the train is either switched to full speed or is switched off completely. This does not give very realistic results, and is something that can be considerably bettered with a proper computerised system.

Fig. 6. Connection details for the BBC Model B, Commodore 64 and VIC-20.

The train can be gradually slowed down in advance, and then brought smoothly to a halt as it passes the appropriate track sensor. In this way very realistic results and precise control of the train can be obtained.

Fig. 7. A 'debounce' circuit for use with reed switches.

The most simple type of track sensor, and probably the most convenient type to use in practice, is a reed switch. This is mounted on or under the track, and operates in conjunction with a small bar magnet mounted on the underside of the train. The switch is normally open, and closes momentarily as the magnet on the train passes over it. Note that the magnet and the switch must be parallel to one another and must pass within a few millimetres of each other if the switch is to be activated.

One way of using this type of sensor is
to simply connect the switch from a spare input line of the user port to ground. The internal pull-up resistor of the port results in this line normally being high, but when it is activated the line is briefly taken low. There is a slight problem with this arrangement in that the switch might be closed for only a few milliseconds, making it necessary to monitor the line at a fairly high rate in order to be certain that the signal from the switch is not missed. This problem can be overcome using the circuit of Fig. 7. This is basically just a 555 monostable which is triggered by the track switch, and then provides a positive output pulse of about 0.5 seconds to an input of the user port. This pulse stretching means that the line only has to be checked two or three times per second.
The VIC-20, Commodore 64, and BBC model B computers all have two built-in 16 bit timer/counter which can be used in conjunction with a track sensor to act as a lap counter. One of these is used to provide the control signal for the Computerised Train Controller unit, but this still leaves one free to act as the lap counter. With the VIC-20 and BBC machines the input pulses are applied to Timer 2 via PB6 of the user port, but with the Commodore 64 the pulses are fed to Timer A by way of the CNT2 input. Although reed switches suffer from contact bounce to a much lesser degree than most other types of switch, two or three pulses are likely to be generated each time a switch is activated. This can be overcome by using the circuit of Fig. 7 as a debouncer, but in this application R2 can be reduced to about 270 k .
The control register for Timer 2 in the VIC-20 and BBC model B computer is at 37147 and \&FE6B respectively. To give the correct mode of operation bit 5 is set high. The low byte of the timer is at 37144 and \&FE68 respectively, while the high byte is at 37145 and \&FE69 respectively. In this application the high byte is not really needed as a range of 255 to 0^{\prime} (they are down counters) should be adequate, but a value must be written to this address since the low byte is not loaded until this is done. Suppose that you are using the VIC-20, and that you want the train to do ten laps of the track. POKE 37144, 10 would load 10 into the low byte counter latch, and then POKE

Fig. 8. Simple l.e.d. driver circuit for a red/green signal set.

37145,0 would load 0 into the high byte of the counter and 10 from the latch into the low byte of the counter. Reading address 37144 will return a value of 10 , but this will decrement by one each time the sensor is activated. If the train is allowed to run until 37144 equals 0 , and then it is stopped, the required ten laps will be completed. Of course, as explained earlier, more realistic results can be obtained by gradually slowing down the train, with a reduction in speed being programmed to occur when address 37144 equals (say) 3,2 , and 1 , and the train then being brought to a halt when the returned value equals 0 . By suitable positioning of the track sensor the train can be made to stop at the desired position on the track.

With the Commodore 64 the control register for Timer A is at address 56590 , and the appropriate mode of operation is obtained by setting bits 1 and 5 of this
register high (i.e. POKE 56590,33). The low byte of the timer is at address 56580 , and this can be POKEd to the desired value without also writing a value to the high byte (which is at 56591).

AUTOMATIC SIGNALS

Automatic signals are easily implemented in a computerised system. With one form of automatic signaliing the signal is set to "red" as the train passes, and back to "green" again when the train has passed a certain distance along the track. Track sensors are used to indicate to the computer when the train passes the signal, and when it has progressed the required distance along the track. A simple routine then controls the two lights of the signal via an output line of the user port.

With a second type of signal the computer controls the signal or signals under
program control, so that the train always stops at a "red" signal and passes a "green" one, giving the appearance that the train is responding to the signals. With either type of signal some sort of driver circuit will almost certainly be needed due to the low output current capability of computer ports. The circuit of Fig. 8 is suitable for use with homeconstructed signals using red and green l.e.d.s as the signal lights. The input must be taken high for "green" and low for "red".

Even a fairly modest model train layout can be computerised to good effect, giving added interest with sophisticated automatic control of the layout being easily achieved. As these two articles have shown, with a homecomputer as the basis of the design only a few inexpensive accessories are required in order to produce a versatile system.

Safety Plug

Most electrical accidents are a result of cut or frayed cables, loose connections, exposure to dampness, contact with water or the abuse or misuse of equipment. The only effective way to guard against such dangers is by using a residual current circuit breaker (RCCB).

The PowerBreaker 20 from B\&R Electrical Products is an electrical adaptor which has been designed to plug into any standard 13 amp socket prior to plugging in a piece of equipment or an appliance to provide a high degree of protection against electric shocks in the case of an accident.

The adaptor provides RCCB protection which senses a tiny amount of current flowing to earth and cuts off the supply much faster than a fuse could blow.

Additional safety features include a 'power on' indicator, a test button and an automatic current cut-off if the adaptor is plugged into an incorrectly wired socket.

The PowerBreaker 20 is designed for ${ }^{*} 220 / 240 \mathrm{~V}$ operation and is slim enough for two units to fit side-by-side into a double socket.

The price of the PowerBreaker 20 is around $£ 20.00$ and is available from a number of retail shops and outlets.

Magenta Electronics

Magenta Electronics who are well known to many readers for their electronic kits have just released their
latest catalogue which includes many of their projects which have been featured in both EE and PE as well as a wide range of components and tools.

The catalogue which is free to schools and colleges if ordered on official letterheads is available from Magenta Electronics Ltd., 135 Hunter Street, Burton-on-Trent, Staffs DE14 2ST (0283 65435) and is priced at $£ 1.00$ including $p \& p$.

Skybridge

Skybridge Electronics who have just opened their new shop at 441 Princes Road. Dartford, Kent (Skybridge 91454), are now stocking a wide range of components for the hobbyist.

A technical library is also available to customers covering component data by product and manufacturer. Literature can also be provided for constructors who wish to design their own projects using proven 'building blocks'.

Skybridge are currently compiling their catalogue which should be available in the near future. In the meantime their advertisements cover a wide range of stock and the company still offer a procurement service for items they do not hold.

Software Service

Please note the EE Software Service has now been discontinued.

CONSTRUCTIONALPROJECTS

Heat Setting Indicator

There appear to be very few problems with components, in this issue the only problem that might arise is on the Heat Setting Indicator where the thermistor TH1 can be obtained from Maplin Electronic Supplies and should be ordered as WH24B (Thermistor G23).

MASTIFR 퐈ectronics-Microprocessors-Now! The PRACHICAL Way!

- Electronics - Microprocessors - Computer Tech nology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

Hard Times

If your business is bad, spare a thought for the manufacturers of blank tape. Most of them are making nothing, or selling at a loss.

When the first video recorders, from Philips, came on the market ten years ago, they used half inch tape and ran it at 14.29 cms a second to give a maximum of one hour playing time per cassette. A one hour cassette cost around $£ 25$.

Modern VHS machines can run the tape at 1.2 cms a second, which is half the normal VHS speed of 2.34 cms a second. These half speed machines give six hours from a standard VHS E-180 three hour cassette, or even eight hours from a four hour VHS cassette.

The first half speed machines offered pretty poor quality, especially from the sound, but VHS hi fi works at half speed almost as well as at full speed. On hi fi machines the sound is recorded as an f.m. signal by the rotating video heads. This rotational speed, or 'writing speed', remains the same irrespective of linear tape speed.

Picture quality at half speed can be remarkably good. The sound, even in stereo, is excellent.

It is now possible to buy an E-180 VHS cassette for well under $£ 5$. That means that it now costs between 50 p and $£ 1$ per hour to feed a video machine with tape. Compare that to $£ 25$ an hour just ten years ago!

The tape manufacturers thought video was going to make their fortunes. The snag was that too many of them thought this. There is now a glut of tape which is why it has fallen to such a low price.

Although the tape manufacturers don't like to talk about it, they are now down to rock bottom manufacturing costs. Even with the most advanced and automated production equipment, they cannot make an $\mathrm{E}-180$ for under around £ 2.70 .

Around half that cost is in the precision plastic moulded shell and mechanism, and the other half in the tape. With raw materials, energy, and capital investment, that f 2.70 is just about as low as they can go. Perhaps it can drop to $£ 2.50$ in some places where wages, energy costs and chemical supplies are cheap, but no lower.

The duplication houses, which turn out pre-recorded cassettes, can buy an E-180 for around $\mathbf{f 3}$. The public expects to pay less than a fiver. Out of that fiver there is VAT and the retailers and wholesalers want their cut. Profits are in pennies or nonexistent. There is no brand loyalty in the tape market. People buy what is cheapest.

The tape manufacturers have tried to convince people that they should pay extra for good tape. But market research shows that most video owners are used to poor quality, from badly set-up TV sets and worn or pirate rental tapes. They just don't notice the difference between good and bad tape. Anything sells as long as it produces pictures on the screen.

Another thing the tape manufacturers don't like to talk about is that it isn't practical to run a factory with several produc-
tion lines, some producing high quality tape and some mid or low quality. It's for the same reason that budget label LP records are as good as full price issues. They all come off the same production line.

Ironically this favours factories which churn out only poor quality videotape! So expect a shake-out in the tape market with only a few of the biggest companies surviving. Already many of them are subsidising video tape reproduction on profits made from audio tape. This still remains reasonably expensive, and profitable.

But not all companies in the video business make audio tape; 3 M for instance makes very little audio now. Even companies which make audio tape in bulk, like BASF and TDK, can't go on for ever subsidising video losses from audio gains.

It's like a game of poker. Who will crack first?

Video Split

So far Philips remains the only company to have demonstrated a PAL 8 mm camcorder. The latest showing was at Photokina, the European photographic show hetd in Cologne every two years.

Philips was originally buying in camcorders from Matsushita-Panasonic, as Kodak is of course now doing for sale in America. But Philips says its current models are made in Europe.

Although Kodak made a big splash with 8 mm at Photokina, it was NTSC equipment only. There is still no firm date for a launch, or even demonstration, of a PAL version.

The Philips camcorder is splitable, that is to say the camera can be separated from the recorder. This takes us back full circle. In the first days of portable video, everyone said how wonderful it would be to have a single integrated camcorder. Only a few people observed that it might be much more convenient to have a separate camera and recorder because, unlike a film camera, there is no need for the camera to be aligned with the recorder. Light must travel to film in straight lines, but electronic video signals can travel down a wire around as may corners as you like. Now that we have single unit camcorders, for the VHS, Beta and 8 mm formats, people are starting to wonder whether it might not be better to have them separate after all.

A professional cameraman who was at Photokina noted with interest that the demonstrations of a Fuji camcorder (made for Fuji by Sony) used a video tape which had been shot on a broadcast quality camera and then dubbed onto 8 mm tape. Kodak's demo tape had been shot on film and then transferred to video tape.

I do hope that if and when these companies launch 8 mm video in Britain they will at least have the honest good sense to demonstrate tapes shot on the camcorders which they are demonstrating.

-Question of Age

How old are you? Sorry for the personal question, but if you are over 35 the Japanese think you are over the hill for making electronics. That puts me well and truly out of business.

Hitachi has a TV factory in Wales, at Hirwaun (pronounced Heer-wine). It used to be owned by GEC who sold a half share to Hitachi in late 1978. This followed heavy opposition from British unions and politicians to Hitachi's previous plans to build its own TV factory over here.

The joint venture between GEC and Hitachi was a flop. The factory ran only at around half its potential capacity and lost money on what it made. In March 1984 Hitachi bought out GEC's half share, putting the company almost exactly where it had wanted to be in the mid-70s, i.e. with its own TV factory in Britain. But there was one difference.

Some Japanese companies in Britain have built their own factories, for instance Sony and Matsushita-Panasonic in Wales. Others, Toshiba and Sanyo, have bought factories left empty by European firms. Toshiba took over the Rank factory in Plymouth and Sanyo took Philips' factory in Lowestoft.

In each case the Japanese have been able to employ exactly who they want. On the whole they have gone for younger people. But Hitachi inherited the original workforce.

Soon after buying out GEC, Hitachi sacked

500 people on the last-in, first-out basis. So that made the workforce even older, at least by Japanese standards. The average age at Hirwaun was just under 40 , which is twice that of other Japanese factories in Britain.

So just before Christmas 1984, the Hitachi management sent its workforce a now-famous letter. This offered anyone in the age bracket over 35 the chance to quit their job, take $£ 1,800$ cash tax free and nominate a 16 year old, probably their son or daughter to take their place. Fifteen people took the bait.

What upset people, and created terrible publicity for Hitachi, was the point on age made in the letter. "As we get older", it read "we become more susceptible to illness, our reflexes become slower, our eyesight becomes less keen and our attitudes more difficult to change."

I asked Hitachi what scientific or medical studies they had done to prove their point. "None," admitted a company spokesman, "but 999 out of 1,000 people would accept that it is true."

May be, may be not. Certainly Mitsubishi in Scotland, with a workforce of 16 year olds, knows the problems of employing too many young poeople. Fresh out of school they don't take work seriously and that is even worse by Japanese standards.

Forgive me if I stop writing now, but my eyesight is failing, my reflexes are slowing down and I feel a cold coming on.

ARE YOU dissatisfied with the quality of the television display from your computer, or are you forced to compute only during off-peak viewing time? If the answer to either or both of these questions is "Yes", then this article will help you to select a suitable monitor to satisfy your needs, and the buyer's guide surveys the monitors available for home computers at a reasonable price.

As a first step, however, we need to be able to make sense of the manufacturer's specifications. It is useful, therefore, to start by looking at the ways in which computers generate their displays. We are then in a better position to appreciate what a monitor must be able to do with the signal from the computer.

A FEW BASICS

Home computers drive their displays by providing a video output for an external monitor. As we shall see, this signal can take many different forms, but it is basically a convenient way of transferring the picture information from the computer to the screen. The most popular method, available on most computers, is to provide a signal to drive a domestic television through its aerial socket.

Fig. 1 shows a typical arrangement for the video section of a home computer. Basically, the computer's memory (RAM) is shared between the program and the display, with specific regions allocated exclusively for each. The memory area used for the display is often referred to as 'video RAM', while that reserved for programs is referred to as 'user RAM'.

In a shared-memory system, the CPU writes coded information into the video RAM, usually via a language such as Basic. The video processor then reads the codes, and converts them

Fig. 1. Small computer video section.

into signal(s) suitable for driving a display (monitor or television). Both of these operations seemingly occur at the same time, but in fact the CPU and video processor time-share the busses and memory. The exact details vary between computers, but the general principles apply to them all. Now let us look at the various types of video signal produced by home computers.

TYPES OF VIDEO SIGNAL

RGB-sync UK television/video pictures use frames of 625 lines. Each frame is drawn in two scans to avoid flicker, the oddnumbered lines on the first scan, and the even-numbered lines on the second scan; a technique known as interlacing. To produce a stable picture, the frames are re-drawn 25 times per second.

The video processor output gives a colour for every possible display position (pixel) in each picture line, even if only to indicate no colour (black). The overall picture is thus represented by a two-dimensional matrix, built up from lines of coloured pixels. The number of pixels in each line depends on the resolution of the computer; the more pixels, the finer the detail which can be displayed. The pixels are usually simple combinations of the primary colours, giving eight possible colours; black, red, green, blue, yellow, magenta, cyan, and white.

Fig. 2. RGB-sync signals.

On its own, the colour information is not enough to be able to recreate an image, and some control information is required to show the start of each line and frame. Each line therefore starts with a line synchronisation pulse ('sync'), and is followed by the colour information for the pixels in that line. Not all of the 625 lines are used for picture information, since a few lines at the beginning and end of each frame are used to allow the picture spot to move from the bottom back up to the top of the screen.

The display line in Fig. 2 shows the four video processor outputs; red, green, blue, and sync. On many computers these signals are made available to drive a suitable monitor, but even when not accessible externally, the RGB-sync signals are often produced internally by the computer.

Standard colour display tubes use three electron 'guns' to produce the image. Each primary colour component is drawn on the screen by a separate gun, with the beams aligned to illuminate only the appropriately coloured phosphor dots. Thus the image is built up from numerous small clusters of the three primary colours. The RGB-sync signals are ideally suited to drive a colour tube, and monitors which acept such an input are

Fig. 3. PAL colour signal bandwidth.
referred to as RGB monitors. However, not all computer owners will have an RGB monitor, so alternative video outputs are usually provided.

PAL Colour The next section of the video circuitry generates a composite colour signal by combining the red, green, blue and sync signals. There are many different methods of combining these signals, but PAL encoding is used in the UK. This composite signal is essential for producing a signal to drive a u.h.f. television, but as Fig. 3 shows there are disadvantages to encoding. With fine picture detail, for example, problems can arise because closely-spaced picture changes are represented by high luminance frequencies. This effect is demonstrated by clothing with close checks or stripes when seen on television; the fine patterns take on unexpected bursts of colour.

The PAL signal is sometimes available as an output, and is particularly suitable for driving the VCR or CTV input provided on some television sets, and represents a significant improvement over using the u.h.f. output.

UHF Television The modulator used in home computers is designed to produce a u.h.f. signal which can be connected to the aerial socket of an unmodified domestic television. The limitations of the PAL technique have already been mentioned, but it shoud be noted that the limited modulator bandwidth also limits the maximum resolution available with the u.h.f. signal. The output frequency of the modulators used in home computers (usually channel 36) also tends to drift slightly during warm up. This may necessitate adjustment of the television's tuning controls to maintain the sharpest possible picture, particularly on older sets.

The u.h.f. signal is initially the most useful output for home computing since it allows the computer to be used immediately with an unmodified televison set. The use of this output does impose some limitations on image quality, but in many cases these will not be important, and a domestic television will provide adequate performance.

Monochrome In many applications a clear and sharp high resolution display is of greater importance than colour; the best example of this is perhaps word processing. However, $80-$ column text is typically composed of characters which are eight pixels across (i.e. 640 pixels on each line), and this is well beyond the capabilities of a standard colour television. A monochrome monitor is therefore often preferred when high resolution is more important than colour.

A PAL signal can be used to drive a monochrome monitor, but it results in the loss of the very resolution which we are striving to retain. Instead a monochrome signal is generated by summing (rather than encoding) the red, green, and blue signals. This shows the different colours as shades of grey, but retains the highest possible resolution; the sync information is then added to produce a composite monochrome signal,

TYPES OF MONITOR

An RGB monitor is without doubt the ideal type for colour displays since it makes the best possible use of the information from the computer. The major decisions to make in choosing an RGB monitor relate to price, screen size and resolution. Choice of screen size is rather limited to what is actually a vailable; most

RGB monitors have 14 in screens. Resolution is a rather more involved matter.

For a good display, a monitor should have a bandwidth of approximately 1 MHz for every 60 pixels in each display line. Thus, 80 -column text from a computer with 8 -pixel characters (i.e. 640 pixels per line), will be clearly visible on a $10-12 \mathrm{MHz}$ monitor. A lower bandwidth may produce acceptable results, but this will depend on the degree of image sharpness required. The minimum bandwidth to distinguish between adjacent pixels is around 1 MHz for every 120 pixels in each line. In the example above this represents a 6 MHz bandwidth. With bandwidths below this minimum, adjacent pixels begin to merge into one another, progressively losing detail. The usable bandwidth of a colour television is typically 4.5 MHz .

RGB monitors are often referred to as a standard, medium or high resolution, with bandwidths of typically 7 MHz , $10-12 \mathrm{MHz}$, and 14 MHz , respectively. As an alternative to bandwidth, horizontal resolution is often quoted, and will typically be 480,640 or 800 pixels, respectively. The safest choice with an RGB monitor is to choose one with a horizontal resolution of 640 pixels or more. This should cope with even the highest resolution displays currently available for home computers.

Monitor/Televisions A dual purpose monitor/television represents an ideal compromise for many computer owners. Ideally such a set should have an RGB-sync input, rather than the PAL colour input associated with VCR's. With such a set, the problems associated with PAL encoding, limited modulator bandwidth, and the modulator warm-up drift, are avoided.

The set is still usable as a conventional television, although this may be considered a disadvantage! It should be borne in mind that such sets have usually been designed primarily as televisions, but the bandwidth is still usually adequate for all but the most exacting requirements.

Monochrome A number of phosphor colours are available for monochrome monitors. These are usually white (as in conventional black-and-white televisions), green (most popular), and amber. The colour chosen is a matter of personal taste, although green is considered to minimise the strain associated with long periods of use, and is by far the most readily available.

Most monochrome monitors have much higher bandwidths than RGB monitors, with $18-24 \mathrm{MHz}$ models readily available at little or no extra cost. Finding a monochrome monitor with adequate bandwidth is therefore not usually a problem.

CHOOSING A MONITOR

You are now ready to look for a monitor, but which type do you choose? Before starting, is is well worth looking at the image on your television and deciding what you feel is not quite right with it. Next think carefully about what you want to use the monitor to display, and decide on the performance improvements required. Price inevitably features high on the list of factors influencing any selection. Other considerations include the need for colour, and whether a custom-designed monitor can be justified or is a monitor/television more appropriate? The outputs available from the computer may limit the choice slightly, although it may be possible to obtain an interface to provide any missing ouputs. Only when these factors have been considered will you be ready to start choosing a monitor.

When looking at a monitor, there are some general points worth noting. First, try it out on the highest resolution display you will be using, and in particular see if the text is easily readable. Putting up 80 -column text, for example, provides a simple but severe test. Next, fill the whole screen with 'plus' signs and look to see if they vary in shape or size across the display; they shouldn't! With the same display, look for any signs of picture shimmer caused by poor power supply design. Next, try producing as white a display as possible (e.g. lines of white blocks), and check that the brightness is constant across the screen; this again checks the power supply.

Finally, always try out a monitor on an image which is typical of your most exacting requirements, and then compare the results with at least one other model.

Model: Zenith ZVM-124 Screen: 12 in . mono (amber) Input: TTL Resolution: not known Bandwidth: 22 MHz Audio Output: no Price: £ 128 Notes: Tilt base available at $£ 8$, Commodore cable $£ 6$ Supplier: Zenith Data Systems Lid., Bristol Road, Gloucester, GL2 6EE 10452 29451).

Model: Sanyo CD3115 Screen: 14 in . colour Input: RGB Resolution: high Bandwidth: not known Audio Output: no Price: £499 Supplier: Micro Peripherals Ltd., 69 The Street, Basing, Basingstoke, Hants (0256 473232).

Model: Sanyo DM 8112 CX Screen: 12 in . mono (green) Input: composite Resolution: not known Bandwidth: 18 MHz Audio Output: no Price: $£ 99$ Supplier: Micro Peripherals Lid., 69 The Street, Basing, Basingstoke, Hants 10256 473232).

Model: Tandata C12 Screen: 12 in . colour Input: RGB Resolution: medium Bandwidth: not known Audio Output: no Price: $£ 230$ Notes: comes complete with antiglare screen Supplier: Tandata Marketing Lid., Albert Road North, Worcs, WR14 2TL 10684568421).

Model: Ferguson MC01 TV/Monitor Screen: 14in. colour Input: composite/RGB Bandwidth: $\quad 25 \mathrm{MHz}$ Resolution: medium Audio Output: yes Price: £229 Notes: separate input sockets with auto. signal sensing and switching Supplier: High Street retail outlets.

Model: Tandata C10 TV/Monitor Screen: 10 in . colour Input: RGB Resolution: medium Bandwidth: not known Audio Output: yes Price: £ 350 Notes: also includes infra-red remote control Supplier: Tandata Marketing Ltd., Albert Road North, Worcs, WR14 2TL 10684568421).

Models: Barco DCD1640, DCD2740 Screens: 16 in . colour and 27in. colour Inputs: RGB Resolution: medium Bandwidth: 10 MHz Audio Output: yes Prices: £425 and £520 Notes: Various models available with options Supplier: Cameron Communications, 3 Burnfield Road, Glasgow, GH46 7TH (041-6330077).

Model: Akai CTE 142 TV/Monitor Screen: 14 in . colour Input: RGB/TTL Resolution: medium Bandwidth: not known Audio Output: yes Price: £299 Supplier: Craig Hi-Fi, T/A Spacial Audio, 29 Tottenham Court Road, London W. 1 101-637 8702).

Model: Tandata C14F Screen: 14 in . colour Input: RGB/composite Resolution: not known Bandwidth: 15 MHz Audio Output: ves Price: £199 Supplier: Tandata Marketing Ltd., Albert Road North, Malvern, Worcs, WR14 2TL 106845 68421).

Model: Barco DCD 2240 F PAL Screen: 22 in . colour Input: RGB Resolution: not known Bandwidth: not known Audio Output: yes Price: $£ 490$ Supplier: Cameron Communications, 3 Burnfield Road, Glasgow, GH46 7TH 1041-633 0077)

Model: Kaga KG 12 N Screen: 12 in . mono (green) Input: composite video Resolution: not known Bandwidth: 15 MHz Audio Output: no Price: £109 Supplier: Data Efficiency Ltd., 2 Maxted Road, Herts, HP2 7LE (0442 60155).

Model: JVC TM90 PSN Screen: 10 in . colour Input: RGB Resolution: not known Bandwidth: not known Audio Output: yes Price: : £439 Supplier: JVC, Eldonwall Trading Estate, Staples Corner, 6-8 Priestly Way, London (01-450 2621).

Model: Sony PVM-91CE Screen: 9in. mono Input: Composite Resolution: high Bandwidth: not known Audio Output: no Price: $£ 250$ Supplier: Metro Video Ltd., 5 Landsdowne Way, London, SW8 101-928 2088).

Model: Zenith ZVM 133 Screen: 13 in . colour Input: RGB Resolution: not known Bandwidth: 20 MHz Audio Output: no Price: $£ 395$ Notes: Tilt base available at $£ 8$, Commodore cable $£ 6$ Supplier: Zenith Data Systems Led., Bristol Road, Gloucester, GL2 6EE (O452 29451).

Model: Zenith ZVM-122 and ZVM-123 Screen: 12 in. mono (ZVM-122 amber, ZVM-123 green) Input: composite Resolution: not known Bandwidth 15 MHz Audio Output: no Price: $£ 95$ Notes: Tilt base available at $£ 8$, Commodore $£ 6$ Supplier: Zenith Data Systems Ltd., Bristol Road, Gloucester, GL2 6EE 10452 29451).

Model: Microvitec Cub C14-P Screen: 14 in . colour Input: RGB Resolution: medium Bandwidth: not known Audio Output: no Price: £235 Supplier: Microvitec Ltd, P.O. Box 188, Futures Way, Bolling Rd, Bradford 10274 3900111.

Model: Philips PTC1202 Screen: 12 in . mono (green) Input: composite Resolution: not known Bandwidth: 22 MHz Audio Output: no Price: $£ 118$ Notes: Also available, orange screen version at $£ 99$ Supplier: Swift Sasco Lid., Box 2000, Crawlev, Sussex 10293 28700).

Model: Fidelity CM14 Screen: 14in. colour Input: RGB/composite Resolution: not known Bandwidth: 12 MHz Audio Output: yes Price: $£ 199$ Supplier: Micro Peripherals Ltd., 69 The Street, Basing, Basingstoke, Hants (0256473232).

Model: Sony Trinitron PVM-1370 Screen: 13in. colour Input: RGB Resolution: not known Bandwidth: 10 MHz Audio Output: yes Price: $£ 899$ Supplier: Metro Video Ltd., 5 Landsdowne Way, London, SW8 101-928 2088).

Welcome to "On Spec" our new monthly page devoted to the Sinclair Spectrum. If you don't happen to own a Spectrum please don't turn the page yet as we hope that there will be something here that will interest everyone.

At this point, somebody out there is bound to be wondering why we have chosen to devote one whole page of the magazine to the Spectrum. There are three main reasons for this which, for the benefit of the unconverted, we will just take time to explain.

The Spectrum has enjoyed immense popularity and, to date, has outsold all other personal computers in the U.K. The Spectrum is readily available in several of the major high street stores as well as by mail order and, most importantly, it provides an excellent specification at low cost. Now, with the arrival of the Spectrum-Plus, it looks as if this particular microcomputer will continue to be a winner for Sinclair and we aim to show you that you can do more with it than just play games or dabble with BASIC! Incidentally, BBC Micro owners will be interested to learn that our sister publication, Practical Electronics, will be running a similar series aimed at the BBC Micro.

If you don't have a Spectrum of your own and can't get your hands on one, don't panic. The projects which we describe can, with very little modification, be easily adapted for a variety of other micros. The commonly available machines which are most closely related to the Spectrum (by virtue of the microprocessor used) are the Sinclair ZX81, Tandy TRS80Models I and III,

Research Machines 380Z, Sharp MZ80 and Video Genie.

Spectrum I/O

Despite all its good points, the lack of "on-board" I/O is one of the Spectrum's major shortcomings. Happily, Sinclair have at least provided us with a means of connecting external devices to the Spectrum with the aid of the 28 -way doublesided edge connector at the rear of the machine. This gives access to all of the system data and address bus lines as well as the principal control lines, clock, and power rails.

At this point, and before readers rush to their soldering irons, it is important to stress that these lines are not buffered and that any inadvertent misconnection could potentially cause permanent damage to the Spectrum. It is, therefore, essential to carefully check any external wiring since a single misplaced wire could result in an expensive repair.

Edge connectors

Several suppliers stock suitable edge connectors which will mate directly with the p.c.b. The connector is normally described as an "open end double-sided 2.54 mm pitch 28 -way connector", the Vero part number for which is 838-24826A.

The pin connections for the edge connector are shown in Fig. 1. The upper (component) side is labelled " A " whilst the lower (foil) side is labelled " B ". Connections on both sides are numbered 1 to 28 and a polarising notch is fitted in position 5 .

Errors

It should be noted that the diagram of this connector shown in the original Spectrum BASIC Programming Manual is a little confusing as it shows the view of the connector as it would appear looking out of the Spectrum (i.e. it is a pin view of the connector itself, and not the pads of the double-sided p.c.b.). Furthermore, the diagram shows a -12 V line which is, in fact, 12 V a.c. and is connected directly to the collector of the oscillator transistor, (TR4) used in the on-board d.c.-to-d.c.
converter. This error has been perpetuated in several other publications, so beware!

Over to you . . .

Unlike most of the rest of Everyday Electronics, we will be relying on reader input on this particular page. Our aim is that this page will act as a "bulletin board" for Spectrum owners, providing a regular point for the exchange of information related to hardware and interfacing. To this end we welcome contributions from readers on any I/O related topic. It must be stressed, however, that we cannot provide individual written replies to reader's queries. So as not to deter the curious, we will, however, be pleased to raise (and also attempt to provide some solutions!) all topics of general interest. Furthermore, subject to the level of response from readers, we also hope to produce a regular "Update" sheet which will both provide a more immediate response to reader's problems and also provide a means of including items such as program listings which, due to restrictions of space, could not usually be included within this page.

As an inducement to write in with your news and comments, a copy of the latest "Spectrum Update" will be sent to all those who include a stamped addressed envelope. So, let us know what you are doing, or would like to do, with your Spectrum: we will do the rest!

NEXT MONTH we shall be describing a simple four-channel input interface which can be built for well under $£ 5$!

Please Note:

All contributions to "On Spec" should be sent to the following address and not to the Editorial Offices:

Mike Tooley,
Department of Technology,
Brooklands Technical College,
Heath Roạd,
WEYBRIDGE,
Surrey,
KT13 8TT

Fig. 1. The Spectrum Edge Connections

anjur er surbio

If youre interested in Radio Controd for the pure pleasure of operoting the control's then you can very easily buy complete models or pre-tuned outfits ready to fit into an adopted model of your own choosing. However, If you want to make everything yourseif then start here. The circuits will be for a simple'single channel tone transmitter' system and the models for Transmitter and Receiver will be formed from 2 mm thick hich impact polystyrene sheet. There will be a certain amount of vacuum forming will be repured for the recelver model but don't norry about that until you reach part 2.
Tuning the crioults for T_{x} \& B_{x} will be the mast difficule part of the project and thereare ways of doing this without \{expensive exuipment.

All components will be readily available from most known suppliers. The Crystal will work on the 27 MHz band (same as Citizen band) Thetransistors will have a minımum fT of 50 MHz such as the $2 \mathrm{~N} 3553, \mathrm{BFY} 51, \mathrm{BClO} \& 2 \mathrm{~N} 2221$ or 2N4292 ... Dut all components will be fully detaled a listed in part 3
You :vill need the following instruments for maring the plastic models.
scalpel. metal straightere Sanding block.

You will aiso require a good adhesive like 'clear Evo stick' but use it sparingly.

(2) 4 B 0

you will comeacross many terms in the world of'Radio Control'but for the time being all you need know is that our T_{x} a Fx is caleda'combo' $\}$

A^{s}S THE use of electronics becomes more widespread so does the requirement for a portable source of power. Most portable electronic equipment relies on 'dry' (primary) batteries for a power supply. When the use is occasional or the current drain is low they provide a compact source of energy.

The chief problem is that of cost when the power required is large. Alkaline batteries last longer than the normal zinc carbon type batteries but cost more. Incidentally, alkaline batteries have better discharge characteristics; the internal resistance does not rise, and hence the output voltage on load falls until the battery is almost completely exhausted. This means that a larger percentage of the chemical energy in a new battery can be converted into electrical energy.

Two alternatives to using batteries exist. Either a mains power supply may be used if the equipment is located where a suitable supply can be found, or rechargeable (secondary) batteries can be used. Of the many kinds of secondary cells, nickel cadmium is the most common.

Nickel cadmium or 'nicad' batteries differ from zinc carbon batteries in several respects. The output voltage per cell is lower; 1.25 volts versus 1.5 volts. The internal resistance is much lower, in fact the internal resistance is so low that nicad batteries should never be short circuited because they can overheat and explode.

Care must also be taken not to damage the cells when charging. In practice this means charging the batteries with a constant current source.

POPULAR BATTERIES

Most electronic equipments use one of five sizes of battery. These battery sizes are also available as rechargeables. The sizes are:

D	U2,HP2,SP2 etc.
C	HP1, $1, S P 11$ etc.
AA	HP7,SP7
AAAA	HP16

All the above batteries are single cells and have a nominal terminal voltage of 1.25 volts. The other popular battery is the PP3 size which has a nominal output of 9 volts.

The unit described here can charge either a single PP3 or up to ten of the single cell types connected in series.

Charging rates have been chosen so that the batteries will be fully charged in sixteen hours but will not be damaged if they are left for longer than this.

CHARGING CURRENTS

Physics students will know that the total charge in battery can be obtained by integrating the current with respect to time. If the charging current is constant,
then the charge in battery is equal to the product of the current and the charging time. The same applies when the battery is discharged, the charge extracted is the product of the output current and the time. These are the criteria used to describe the capacity of a battery. It is usually measured in mAh (milliampere hours).

For a given case size the capacity of nicad batteries varies slightly, generally those with a higher capacity cost more.

The capacity of the cells is used to calculate the current required to fully charge the cells. For example a D cell with a capacity of 4000 mAh will require a charging current of 250 mA to be fully charged in sixteen hours.

The charging currents, and capacities of popular batteries are given in Table 1.

TABLE 1

Size	Capacity mAh	Charge Current mA
PP3	100	5.5
AAA	160	10
AA	450	30
C	1800	120
D	4000	250

CIRCUIT

The full circuit diagram of the unit is shown in Fig. 1. The mains transformer

What's the difference between a drained nicad and a drained dry battery? You've guessed it. A drained pocket!

T1 reduces the input voltage to 15 volts a.c. and provides isolation. Rectifier diodes D1 to D4 rectify this current which is then smoothed by Cl .

R1 provides current for the l.e.d. D5. This l.e.d. performs two roles. Firstly, it acts as a power on indicator. Secondly, it fixes the base voltage of TR1 at 2.2 volts above the negative rail.

The two transistors, TR1 and TR2, are wired in the Darlington configuration, and can be considered as one high gain transistor. The Darlington is biased on when there is 1.4 volts across its base and emitter. This means 0.8 volts will appear across the emitter resistor.

The emitter current $\mathrm{Ie}=\mathrm{Ib}+\mathrm{Ic}$, but, Ib is very small compared to Ic. From Ohm's we have $I=V / R$, so by suitable choice of emitter resistor the collector current of the transistor can be set. The switch S2 and the resistors R2-R9 allow different values of current to be selected.

This allows the charger output current to be controlled. The resistors are connected in parallel to allow commonly available 0.25 W att resistors to be used.

THERMAL DESIGN

As with most power supply projects ${ }^{\text {. }}$ some form of cooling is required for the series transistor. Component supplier's catalogues will reveal many different
shapes and sizes of heatsink. They range from a simple piece of bent sheet to complex aluminium extrusions. As a figure of merit, the performance of a heatsink is measured in degrees Centigrade per Watt. This is called the thermal resistance, and is analogous to electrical resistance. Instead of volts, potential is measured in degrees Centigrade, the flow of thermal energy per second being measured in Watts.

So how do we choose a heatsink for a given application? The most important decision is the selection of the maximum permissible junction temperature. Normally for silicon devices a temperature of $100^{\circ} \mathrm{C}$ is acceptable. The other important parameter is the maximum power that will be dissipated in the transistor under 'worst case' conditions.

Using the 'formula, Watts $=$ volts x amps. Take the maximum volts that can appear across the transistor, 20 volts, and the maximum current that can flow through the transistor 250 mA . This gives a power dissipation of five watts. Now the thermal resistance from the junction to the heatsink must be calculated. Like electrical resistance, thermal resistances are simply added together when the heat energy has to travel through several materials. Between the junction of the transistor and the ambient air there are three thermal resistances; that internal to
the transistor, the thermal resistance of the insulating washer, and the thermal resistance of the heatsink. The first two must be obtained from manufacturer's data sheets. The third is the parameter to be calculated so that a suitable heatsink can be found.

CALCULATION

Thermal Resistance junction case	1.2
Thermal Resistance insulator	1.0
	total
	$2.2^{\circ} \mathrm{C} / \mathrm{W}$

Hence, with five Watts being dissipated the heatsink will be 11 degrees cooler than the junction. If a maximum ambient temperature of $40^{\circ} \mathrm{C}$ is assumed, then the temperature of the heatsink may be allowed to rise to $49^{\circ} \mathrm{C}$ (above air) before the temperature of the junction reaches $100^{\circ} \mathrm{C}$. With five Watts being dissipated then, a thermal resistance, heatsink to air of better than $10^{\circ} \mathrm{C} / \mathrm{W}$ is required.

PRACTICALITIES

So much for the calculation, now let us consider the practicalities. With all mains powered equipment a plastic case is desirable in the interests of safety.

Fig. 1. Full circuit diagram for the Nicad Charger.

Although the transistor would be perfectly alright with a heatsink temperature of $90^{\circ} \mathrm{C}$ it would cause a nasty burn if touched. If the maximum temperature of the heatsink is to be $50^{\circ} \mathrm{C}$ then a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ is required. This can be obtained from a two inch length of aluminium extrusion as used on the prototype.

CIRCUIT BOARD

The charger circuit is built on a piece of stripboard (0.1 inch pitch) 22 holes by 30 strips. Begin construction by drilling the four mounting holes, 3.5 mm diameter. There is one break in the copper strip. Constructors are advised to fit Veropins for the flying leads. It is best to leave the large electrolytic capacitor C1 until last, otherwise the components can
be mounted in any order. Take care to get the capacitor and the diodes the right way round.

HEATSINK

The heatsink was mounted on the rear panel of the box. The details can be seen in the photographs. Care should be taken to deburr the holes in the heatsink so that they do not damage the insulating washer. The insulating washer can either be a traditional mica one, in which case a thin coating of thermal grease should be smeared on both sides of the washer. Alternatively one of the more modern impregnated washers can be used.

It is good practice to insulate the base and emitter leads of the transistor with
small pieces of rubber sleeving. When the transistor has been mounted on the heatsink it is wise to check the continuity between the transistor and the panel.

In the prototype a strain relief grommet which prevents the mains cable from being pulled out of the charger. If you cannot obtain one of these a P clip should be used to anchor the flex.

Five holes need to be made in the front panel. The diameters of these holes should be made to suit the components purchased. The positions of the holes can be obtained from the photograph of the unit.

The panel lettering can be applied using rub-down dry transfer lettering followed by a protective coat of varnish.

WIRING

The circuit board is bolted to the bottom of the case using 10 mm spacers and 3 mm screws. The transformer is bolted to the case using 4 mm screws.

The interwiring details are shown in Fig. 2. With the exception of the mains wiring, $7 / 0.2$ wire should be used for all the connections. For the mains wiring use $14 / 0 \cdot 2$. Take care with the polarity of the light emitting diode.

IN USE

Some form of holder will be needed for the batteries, or in the case of a PP3 battery only a clip is necessary. Since the requirements of individuals will vary considerably no details can be given.

The batteries are connected to the unit; observing polarity, the positive output

D1-D4	1N4002 (4 off) L5
	Light Emitting Diode must be yellow. With
	panel mounting holder
TR1	BC107
TR2	2N3055 npn power
	transistor

Miscellaneous

T1 15 volt 12 VA mains transformer Double Pole Double Throw (dpdt) toggle switch Single pole 12-way rotary switch with adjustable stop, set to five ways.
SK 1,SK2 4 mm sockets, one each red and black

Veroboard; Veropins; 3 mm nuts and bolts; 4 mm nuts and bolts; 10 mm spacers, 4 required; Insulated mounting kit for a T03 transistor; Knob for S2; Mains cable; Grommet for above; Case; Insulated wire.

Semiconductors

1 N4002 (4 off) must be yellow. With panel mounting holder 2 N3055 npn power transistor
goes to the positive terminal of the battery. The correct charging current is selected with the switch then the unit is turned on. The batteries will be fully charged in about sixteen hours, shorter if they were not fully discharged. No damage will result if the batteries are left longer. Under no circumstances attempt to charge a battery on a higher current range than recommended, nor should any attempt be made to charge ordinary zinc carbon batteries.

Resistors

R1	820
R2,3,4	10 (3 off)
R5,6	12 (2 off)
R7	27
R8	82
R9	150

All resistors are 0.25 W carbon film

Capacitors

C1 $\quad 1000 \mu 25 v$. Electrolytic axial leads

PREPARE FORTOMORROW'S WORLD,TODAY!

An understanding of electronic and computer technology is fast becoming a vital part of today's living. Take out an annual subscription and have

EVERYDAY ELECTRONICS \& COMPUTER PROJECTS delivered direct to your door every month.

SUBSCRIPTION RATES
U.K.

Overseas
$£ 12.00$
$£ 13.00$
COMPLETE AND POST THIS ORDER FORM TODAY!

Annual Subscription Rates	
U.K.	$£ 12.00$
Overseas	$£ 13.00$
(Students: deduct £1 and quote	
Student number)	

Complete this form and post it, with payment or credit card authorisation to: Everyday Electronics Subscription Dept. Oakfield House, 35 Perrymount Road, Haywards Heath, West Sussex RH16 3DH

POST COPIES TO

NAME:

ADDRESS

Everyday news

 ... from the world ot
VIGIL ON SMALL BOAT RADAR

The Marine System Division of Mars Electronics have launched two new radar products, Vigil-2 and Vigil-RM. Their first product, Vigil Radar, was launched in 1983 and quickly became a market leader in small boat radar. With a wide range of advanced and unique features, Vigil-2 and Vigil-RM are destined to maintain this position.

Vigil- 2 is basically an improved version of Vigil Radar and like its predecessor is designed mainly for yachts. Many changes are purely cosmetic, such as the redesigned head moulding and instrumentation. Major functional improvements include the clearer display and increased visual persistence. The complete system can easily be installed by the di.i.y. yachtsman, with only simple connections to be made between the scanner and control unit, both of which are easily mounted.

"'The new Vigil Radar offers Sailor friendly design at a very friendly price"

The Vigil-RM whilst remaining ideal for yachtsman, has also been aimed at the workboat and power boat market. It is a luxury item offered at a surprisingly low cost (less than $£ 2000$), providing features which have previously only been available on more expensive equipment.

A unique feature of the Vigil-RM is its modular design which allows the control unit to be mounted remote to the display, making better use of space. Additionally all the controls are operated from a portable infra-red transmitter giving much greater freedom to the operator. Display controls include: variable range markers (VRM's), electronic bearing markers (EBM's), range rings and sea and rain clutter. There are three levels of screen intensity and four levels of brilliance permitting clear day or night time vision.

Mars Electronics are associated with Mars the confectioners and were originally set up to provide further outlets for their confectionery products. They achieved this by setting up Mars Money Systems Division which
produces electronic coin validation mechanisms for vending machines.

Since then, two new divisions have been created, Marine Systems and Automatic Test Equipment. They claim to be market leaders in both coin validation systems and small boat radar, and although it will be some time before they launch a product in the ATE field, they confidently predict their superiority in this area.

Their success to date can be attributed to many factors, not least their modern manufacturing and stock handling methods at their factory in Reading.

They have one of Europe's most advanced materials handling system with automatic transportation vehicles and computer controlled stock handling. Additionally most of their process machinery is automated or computer controlled making small to medium scale production very cost-effective. This together with their niche marketing strategy makes them very competitive in whatever area they choose to trade.

The photograph below shows one of the

Automatic Guided Vehicles transporting materials, under computer control.

electronics

HOME VIDEO

AN ALL-IN-ONE video camera-recorder that uses standard $\frac{1}{2}$ in. VHS video cassette tapes has just been announced by Panasonic.

Capable of four hours recording and playback, the NV-M1 VHS Movie is Panasonic's answer to the growing demand for a lightweight, easy-to-use video camera with a built-in recording/playback capability using standard VHS video cassette tapes. The snap-on-rechargeable battery pack can power the unit for up to 2 hours of continuous recording.

The electronic viewfinder (EVF) is a $\frac{1}{2}$ in. black and white TV screen that is claimed to give easy focussing and doubles up as a playback monitor for immediate checking of recordings. Playback is also possible by connection to a TV monitor or TV set. The playback functions also include cue and review as well as still playback.

A new M-shape tape loading system, in which the tape is wound around the cylinder for a full 270 degrees (compared to 180 degrees in the conventional system), enables a reduction in diameter of the video head cylinder down to two-thirds the diameter of conventional cylinders.

A $\frac{1}{2}$ in. high-band Newvicon pick-up tube features a lowlight capability for shooting in levels as low as 10 lux. Additional camera features include a $6 \times$ power zoom lens with macro function and automatic white balance adjustment.

SHOP TALK

The first new-style British Telecom Shop opened in Southend High Street, recently.

The shop sells a wide range of telephones, business equipment and telephone accessories. Customers will also be able to pay their telephone bills at the shop and make general enquiries about other services.

EXPANSION

Bell Canada International (BCI) of Ottawa, Canada, has expanded its European activities with the acquisition of General Computer Systems Ltd., of Feltham, Middlesex, one of the UK's leading repair and maintenance service companies.

This is the initial step in a planned development and represents its first outright take-over of a UK company

Sony Broadcast have appointed Mr. Mitsuru Ohki as Administrative and Commercial Director.

POWER HOUSE

Advanced Power Supplies, the power supply manufacturer formed in April 1984 as a result of a management buy-out of the former Gould Power Conversion Division, has purchased instrument distributor specialist House of Instruments.

Commenting on the move, Tony Jannece, Chairman of Advance, says: "We are very pleased to be able to acquire an entrepreneurial firm like House of Instruments in an area which complements our existing manufacturing operations.

Test Line

Automatic line test equipment worth $£ 20$ million is to be bought by British Telecom to speed telephone fault detection and repair for about 10 million customers.

Beginning next month (March) the equipment will be installed in about 100 of British Telecom's 360 repair service controls, which are the nerve centres of its fault repair service.

It is claimed that the equipment will automatically test customers' lines and equipment overnight to pinpoint degradation before it develops into faults which could affect telephone service.

adventure Cablw

A^{N}N AMUSEMENT "Star Ship" machine that moves in synchronization with an image projected on a screen inside the cabin has been developed jointly by Mitsubishi Electric Corp. and Korakuen Stadium Co.
"The "Flying Cabin" simulates space travel: the cabin sways, careens and dives in line with changing scenes of ground surfaces and deep space projected on a large screen.

A six axis hydraulic system is used in the flight simulator and is employed in the Flying Cabin for computer controlled synchronization of the moves of the 44-man craft with the screen's images and the six channel sound system.

The two companies hope to sell 20 systems in Japan and 40 systems abroad in the coming five years, chiefly to amusement parks, shopping centres and science museums. It will only cost the purchaser $£ 300$ million Yen!

Architect's concept of the "Flying Cabin"

SCREENING

The problems of radio frequency interference (RFI) has been increasing over the years as metals have been replaced by modern plastics to house electronic components and switching circuits. Although more aesthetically acceptable, cheaper and lighter, plastics are "transparent" to radio waves, and so protective screening becomes essential to prevent damage or malfunctioning.

Now a new zinc coating process which, it is claimed, eliminates RFI has been developed by Deccospray.

The process, called Deccoscreening, consists of the homogeneous appliction of molten zinc to the internal surfaces of plastics enclosures without deforming, discolouring, or weakening the base material.

It is claimed that electro magnetic energy is absorbed by the coating, and external radio frequency interference is subsequently reflected. This interference can be caused by such mundane things as vehicle ignitions, fluorescent lights, radio transmitters, or refrigerators.

Deccospray Lid.,
Dept EE, Eastmore Street, Woolwich Road, Charlon,

London, SE7 8NA.

PRINTER STAND

THE range of computer furniture from Alinco has been extended to include two new universal printer stands. These all steel "trolleys" have been engineered to take most printers, in both 80 and 132 column styles.

A useful feature of these stands, when fitted with optional basket and shelf, is that they can carry up to three type of continuous stationery. Also offered as an extra are castors that interchange with the standard glides.

The stands are supplied in quick assembly form, with simple illustrated instruction sheets, together with the necessary spanners.

It is claimed that using sound absorbing foam pads stops noise and vibration transmission and that they remain stable when fully loaded and/or mobile. All sharp corners and edges have been avoided in the design.

For further information, stockists and literature write to:

> Allineo,

Dept EE, Albert Drive, Victoria Industrial Estate, Burgess Hill, West Sussex, RHIS 9TN.

CONTROL CENTRE

FOR USE in the ever increasing number of homes where the family TV set is now the heart of an increasingly complex array of electronic entertainment equipment, Ross Electronics of Lon don have introduced their RF170 Television Control Centre.

The centre provides instant selection of TV, video recorder, home computer, video game and Cable TV or additional VTR dubbing and monitoring facilities. It has one phono and 5 co-axial input sockets which may be interconnected through a bank of six low-loss slide switches.

Supplied with a switching chart, the Ross RF-170 retails at a VAT inclusive price of around £31.95.

More details may be obtained from:

Ross Electronies,
Dept EE, 49/53 Pancras Road. London, NWI 2 QB.

POCKET MULTIMETER

ALow-COST, "spare" multimeter is always a very useful piece of test gear to have in the workshop as it can always "double" as a temporary monitoring meter prior to installing the more expensive final item.

Just such a meter is now being marketed by Harris Electromics. Manufactured by TMK Test Instruments, the VF-3 is a four function, 12 position, 16 ranges $2000 \mathrm{ohm} /$ volt multimeter that is claimed to sell for under $£ 7$.

The range selection of the pocket-sized multimeter is by a single rotary switch and readings are taken from an analogue, mirror scaled, meter. The meter will read: volts, a.c. and d.c; d.c. current (mA); ohms ($0-1 \mathrm{k}$) and decibels.

The VF-3 comes packaged in a protective "blisterpack" complete with test leads and battery.

Further details may be obtained from:

Harris Electronics (London), Dept EE, 138 Grays Inn Road, London, WCIX 8AX.

Based on a winning design from the Schools Design Prize Competition 1984. Protect your valuables with this fool-proof loop alarm which employs fibre optic cable. The Fibrelarm can easily be modified to be used in a variety of security projects.

CYBERUOX ROBOT VOICE
 Voice synthesisers, whether fitted to a car or a robot, tend

 to sound like depressed Daleks with a cold. Cybervox, interfacing between microphone and amplifier, can make your voice sound equally weird! This project offers endless opportunities to create strange sound effects.

APRIL 1985 ISSUE ON SALE FRIDAY, MARCH 15

THE FLOW of electric current is usually "explained" by analogy. The description of the way that water flows through piping is often used, and this can be very helpful in appreciating the function of such electrical components as resistors and capacitors. However, the analogy used to describe transistor action, which is the subject of this month's Square One, is somewhat different.

NUCLEAR PHYSICS

Electricity is a very vague term, although its usage is common. In simplest terms, electricity implies simply the presence of electrons. An electron is conveniently visualised (and often characterised) as being a small sphere with a radius of 2.818×10^{-13} centimetres
This implies that it would take rather more than $1,770,000,000,000$ electrons packed side-by-side to form a line one centimetre long. Electrons, of course, do not behave like this, and their "size" is deduced from the behaviour of atoms under particular kinds of electromagnetic stress.

Fig.1. Transistor construction.

The structure of atoms, moreover, is poorly understood, and each new "explanation" raises more questions that it answers. Nuclear physics is a fascinating pastime, but provides very little practical information.

ELECTRON MOVEMENT

The scientists of the nineteenth century were practical men. They wanted to make interesting or useful things which worked. Electricity was, in a very real sense, less mysterious then than it is now: a source of the mysterious power flow (a cell) could be easily got, or made, and its properties put to use. And today, when we switch on a piece of electronic equipment, we do not normally stop to reflect on the properties of electrons.

If we accept that some substances (conductors) have electrons which move easily towards a positive electrode, and are expelled from a negative electrode-as in a simple cell-then the idea of electron flow is at least comprehensible. Insulators have no such free electrons, and semiconductors only a very few. So why are semiconductors so important? The short answer is that the movement of electrons can be precisely controlled.

Essentially, solid-state electronics is concerned with the flow of electricity through semiconductors, the most commonly used of which (at present) is silicon. In n-type silicon, there are a relatively large number of electrons free to move, and in p-type, there is a shortage.

TRANSISTORS

A transistor is constructed (in principle) as shown in Fig. 1. A narrow piece of p-type silicon is sandwiched between two pieces of n type; connections are made to each end, and

Fig. 2. People analogy.
to the piece in the middle. The connectionsemitter, collector, and base-are also shown in the standard symbol.

The movement of electrons in the device . can be described by analogy with the movement of people through a street, as in Fig. 2. The street is very crowded, and no-one is moving. The equivalent situation is a transistor with no power applied.

When power is switched on, the negativelycharged electrons are attracted to the positive electrode, and injected from the negative one, as shown in Fig. 3, so that electrons flow from the emitter to the collector, via the base. A very few electrons (fewer than five per cent) flow from the emitter through the base.

The voltage at the base is the key to current amplification. When the base voltage is made more positive, the current flow increases from emitter to collector. When it is made more negative, it decreases. It is as though, in Fig. 2,

Fig. 3. Transistor electron flow.

Fig. 4. Transistor amplifier.
the large flow of people through the street were controlled by one person who could move a barrier across. A small change in the distance the barrier moves makes a very big difference to the number of people able to move from Entry to Clearway.

Similarly, in a real transistor, the large flow of current from emitter to collector is controlled by a very small base current. The barrier that the p-type silicon represents is decreased, or increased by, respectively, a positive or a negative base voltage.

AMPLIFICATION

Different transistors have different characteristics in this respect (current amplification factors), but, for example, a change of $25 \mu \mathrm{~A}$ at the base might cause a change of 1 mA at the collector. Current gain is thus $\frac{1}{0.025}=40$.

Ohm's famous law states that the voltage developed across a resistor equals the product of current flow and resistance value; symbolically, $V=I R$.

Hence, in the example of Fig. 4, where there is a 4 k 7 resistor between the collector and the positive terminal, a collector current change of 1 mA will cause a voltage change at the collector load resistor of $1 \times 10^{-3} \times 4.7 \times 10^{3}$, that is, 4.7 volts. Different values of load resistor will of course result in different values of voltage change. The input (base) voltage was due to a current of $25 \mu \mathrm{~A}$ flowing through a 1 k resistance, and hence was $25 \times 10^{-6} \times 1 \times 10^{3}=25 \mathrm{mV}$. Thus the voltage gain of the circuit is $\frac{4.7}{0.025}=188$.

As the small signal input varies, the output signal varies by a much greater amount, and this simple circuit is the basis for the amplifiers used in so many different applications today.

MARCO TRADING

LINEAR I.C.S RESISTOR KITS

CA3011 $\quad 1.80 \mid$ 1/aW Pack 10 each value E12 10R-1M

CA3011
CA3012 CA3012 CA3014 Total: 610 resistors

CA3018
CA3020
CA3028A
CA3035
CA3080E
CA3085
CA3086
CA3090A0
CA3130E
CA3140E
HA1336W
HA1336
LM339
LM348
LM380
LM381N
LM382N
LM386
L.M387 LM389N LM3914N LM3915N ML232B 555 C-mos555 C-m 41 SAS560S
SAS570S SAS570S
SL9018
SL917B TA7205AP TA7222P TDA1004
$7 L 072$
TL081
1.80 1.75 Total: 730 resistors
1/2W Pack 5 each value E12 2R2-2M2 Total: 365 resistors

AA	$0-95,10$	8.00
HPII	230,4	250

CHART RECORDERS

CHART RECORDERS
Brand new 3 channel pen recorders complete with charts spares kit. Full spec. upon request - Once only bargain £ $40+\mathbf{£ 1 0} p \& \mathrm{p}$ p plus

MULTI METER SPECIAL
Requires AA cells (not supplied) and Russian ype U4324, 20,000 O.P. D.C. Voltage: $0.6,1.2,3,12,30,60,120$

W Pack 10 each value E12 2R2-2M2

SOLDERING AIDS
SOL-DERing
Antex 15 W iron
Antex 18 W iron Antex 18W iron
Antex 25W iron Antex Elements Antex Bits Antex stands Desoider Tool Spare nozzle 25W Kit-iron with 13A plug

NI-CAD CHARGER
Universal charger to charge PPS, AA, C, D PRICE 60

Ni-CADS $\begin{array}{lll}\text { PP3 } & 4-45,4 & 16.00\end{array}$ 15% VAT.

ONLY 4.80
ONLY 2.75
ONLY 5.25
ONLY 3.50

\section*{| TELECOM EQUIP |
| :--- |
| BT Plug \& 3 M lead |} BT Plug \& 3M lead

BT MASTER SOCKET
BT
10R-1M $\begin{array}{lr} & 2.85 \\ \text { BT Sec Skt } & 1.95 \\ \text { BT 4-core cable } & 1 \mathrm{M} \\ 0.15 & \\ & \end{array}$
100M 12.00
ROTARY POTS
0.25W Carbon Log \&

0.25W Carbon Log 8
Lin $1 \mathrm{~K}-2 \mathrm{M} 2$
103.00

Any 10028.00 VEROBOARD
 VEROB $21 / 2 \times 3^{1 / 4}$

$21 / 2 \times 5$
$21 / 2 \times 17$
$21 / 2 \times 17$
$31 / 4 \times 17$
$31 / 4 \times 5$
$33 / 47$
$33 / 4 \times 17$
Pkt of 100 pins
Spt face cutter $\begin{array}{ll}\text { Pin insert tool } & 1.48 \\ & 1.85\end{array}$ Vero Wiring Pen \& Spool $\begin{array}{ll}\text { Dip Board } & 3.50 \\ \text { Vero Strip } & 3.25\end{array}$

TLO84 -

600, 1200;
AC. Voltage: $36,15,60,150,300,600,900$; D.C. Intensity MA: $0.06,0.6,6,60,600,3000$; A.C. Intensity M/A: 03, 3, 30, 300, 3000; D.C. Resistance: $0.2,5,50,500,5000 \mathrm{kO} \mathrm{hm} ;$ g.e. level dB: -10 to +12 P 22 FANTASTIC SPECIAL PRICE:

C-MOS						
4000	0.24	4021	0.58	40364	2.75	
4001	0.24	4022	0.96	4038	0.75	

$\begin{array}{llllll}4002 & 0.25 & 4023 & 0.35 & 4039 A & 2.80 \\ 4007 & 0.25 & 4024 & 0.50 & 4040 & 0.60\end{array}$
$\begin{array}{llllll}4007 & 0.25 & 4024 & 0.50 & 4040 & 0.60 \\ 4011 & 0.24 & 4025 & 0.24 & 4042 & 0.50\end{array}$
$\begin{array}{llllll}4011 & 0.24 & 4025 & 0.24 & 4042 & 0.50 \\ 4012 & 0.24 & 4027 & 0.45 & 4043 & 0.42 \\ 4013 & 0.56 & 4028 & 0.45 & 4044 & 0.50\end{array}$
$\begin{array}{llllll}4013 & 0.56 & 4028 & 0.45 & 4044 & 0.50 \\ 4014 & 0.60 & 4029 & 0.75 & 4046 & 0.60\end{array}$
$\begin{array}{llllll}4014 & 0.60 & 4029 & 0.75 & 4046 & 0.60 \\ 4015 & 0.60 & 4030 & 0.35 & 4049 & 0.38\end{array}$
$\begin{array}{llllll}4015 & 0.60 & 4030 & 0.35 & 4049 & 0.38 \\ 4016 & 0.40 & 4031 & 1.30 & 4050 & 0.36\end{array}$
$\begin{array}{llllll}4017 & 0.60 & 4033 & 1.25 & 4051 & 0.70 \\ 4018 & 0.60 & 4034 & 1.45 & 4052 & 0.60\end{array}$
$\begin{array}{llllll}4018 & 0.60 & 4034 & 1.46 & 4052 & 0.60 \\ 4020 & 0.85 & 4035 & 0.70 & 4053 & 0.60\end{array}$
DIODES

DIODES			
IN916	0.04	AA119	0.12
IN4001	0.05	AA129	0.18

IN4001	0.05	AA129	0.18
IN4004	0.06	AAY30	0.16
IN4005	0.06	BA100	0.24

$\begin{array}{llll}\text { IN4005 } & 0.06 & \text { BA100 } & 0.24 \\ \text { IN4007 } & 0.07 & \text { BY126 } & 0.12 \\ \text { N } 4148 & 0.05 & \text { BY } 127 & 0.10\end{array}$
IN4148
IN4149
$\begin{array}{lll}0.07 & \text { BY126 } & 0.12 \\ 0.05 & \text { BY127 } & 0.10 \\ 0.05 & \text { BY } 133 & 0.16\end{array}$
0.06 BY133
0.12 BY184
$\begin{array}{ll}0.15 & \text { OA47 } \\ 0.15 & \text { OA90 }\end{array}$
0.16 OA91

18 OA95

.18	$0 A 95$
0.20	

MARCO TRADING (DEPT EE3)
The Maltings
High Street
Wem, Shropshire SY4 5EN
Tel: 093932763 Telex: 35565
the total Either send cheque/cash/postal order or senditelephone your Access or Visa number Official orders from schools, universites, colleges, etc, most welcome (Do not forget to send for our
All orders despatched hy return of mail

NEW REIAll .,000 SQ. fi Shop now open Mon-Fi 900.500. Sa1 900.1200

Our latest 123
page catalogue ov 4000 items fully illustrated. Send 65p now for your copy. FREE with orders

A COMPLETE SECURITY SYSTEM FOR ONLY $£ 39.95$

+ V.A.T.
Control Unin
Enclosure
Enclosure
Key Switch \& 2 keys 1250
HW 1250
L.E.D's 2 keys

51/2" Horn Speaker 4 quality sumen
Swithes

With only a few hours of your time it is possible to assemble and install an effectrve security system to protect your family and property, at the amazingly
low cost of $63995 \$$ V.A.T. No compromises have heen made and no corners have been cut. The outsianding value resulis from volume production and direct supply. Assembly is straight forward with the detailed instructions provided. Should you wish to incraase the level of security, the system may be extended at any time with additional megnetic switch
Don't wait unfif it's too late- order today.
Don't wait until it's to
Ordef code CS 1370

Don't put it off any longer!

Protect your family and property with your know how and our security modules. Complete ($\begin{aligned} & \text { security modules. Complete as } \\ & \text { systems start from as iftle as }\end{aligned}$ \$9.95

Ca $1250-2$ zone alarm control unit with built in
alarm
cise
and
 LED 1 - Set of 4 l.e.d.'s in chrome bezels + Push Switch to fit HW $1250 \quad[215+$ VAI KS 3901 - 3 position Key Swith $18.33+$ VAI HS 588-51/2' Horn Speaker, output of 11-dbs with CA Wide range of modulas and accessuries etc. Send S.A.E. for details

US 5063 - advanced Digital Ultrasonic Detector, high sensitivity, with false alarm suppression
SC 5063 - Enclosure for US 5063 [1135 + VA.T. TR 1470 - Infra-red system to provide 50° invisible beam, includes both transmitter and receiver
\qquad

SELF-CONTAINED ULTRASONIC UNIT CK 5063
 protes sionally built and tested modules.

- Adjustable range up to 25 h .
- Quith-in timed alarm

Key oper ted swhth. OH. Test and Operate only
Provision for an extension speaker - Fulty seff-contained 3901, 3^{-}Speaker 3515 Iried and tested Riscomp modules. Supplied with full instructions, the kit house or flat. With a builh-in LED indicator and test position the unit is easily set up requiring no installation. It may simply be placed on a cupboard or desk. Movement within its range will then cause the built-in siren to produce a penetrating 90dbs of sound, or even 110 dbs with an additlonal speaker. AH parts included and supplied with full instructions for ease of assembly
Size $200 \times 180 \times 70 \mathrm{~mm}$ Order as CK 5063

		RISCOMP LiMITED	

Mail order \& shops:
441 PRINCES ROAD, DARTFORD, KENT DA1 1RB Telephone: (0322) 91454
ORDERING INFORMATION: P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed. Discounts available on orders over $£ 50$ - phone for details. For unlisted components phone for price. Goods normally despatched by neturn post.

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.
Sections are headed as follows:
Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, OPTO, PCB, Resistors,
Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.
In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.
How many suppliers do you have at the moment that offer a service like this?
Please fill in coupon below and send with $£ 1.25$. Print clearly as coupon is used as address label.
Catalogue contains $£ 2.50$ discount order form - You make a profit straight away.

NAME
ADDRESS

POSTCODE

NEW THIS MONTH

12V SOLENOID, 10 mm travel. Overal longth $46 \times 13 \times 15 \mathrm{~mm}$. Coil 75 R Orly \mathbb{E}

2924 Super Modem panel $260 \times 175 \mathrm{~mm}$ with a host of top quality parts -2×4 way DIL switches, 2 BCD switches, 31 LS chips. TR1602B UART, 2211/2206 FSK Rx and Tx chips. $\mathbf{8 8} .00$

LEADS AT SILIY PRICESII
PL696 DC adaptor lead for Walkman, 1.8 m long 30p
PL528 2 pin DIN line skt to phono plug 0.2 long 20p
PL508 5 pin DIN to 3 pin DIN audio lead 1.2 m long 40p

PL5 41 Intercomm extn. lead. 3.5 mm line skt to 3.5 mm plug. 6 m long 40 p PL 708 Video lead. PL259 plug to F type plug. 3 m low loss coax 85 p
FM TUNING MODULE. This neat unin $75 \times 40 \times 19 \mathrm{~mm}$ as used in car radios etc Standard 10.7 MHz IF output. 9-12V DC sup ply. Full connexion data supplied. 2.40
STEREO CASSETT HEAD. Only $£ 1.00$

SHOP SALE

23rd Feb to 9th Mar.

Many bargains - worth a visitl|

POWERVU METER

Nest unit $40 \times 40 \mathrm{~mm}$ scaled $0.25 \quad 200 \mathrm{uA}$ movement. Only E1.00; 10 for $\mathbf{E 8} ; 25$ E17 $100 \varepsilon 58$.

FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visible light or infra red. Core 1 mm dia, overall 2.25 mm dia Single $50 \mathrm{p} / \mathrm{m}$; 20 m coil $£ 6.30$. Twin $90 \mathrm{p} / \mathrm{m}$; 20 m coil f 11.00 .

1W AMPUFER

2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives IW outpu with $9 V$ supply. Switch and vol. control Just connect batt. and speaker. Ful details supplied. Only $\mathbf{£ 1 . 5 0 ; ~} 10$ for $\mathbf{£ 1 2}$ 25 for $\mathrm{E} 25 ; 100 £ 75$.
$2915-$ Stereo version of above $115 \times 65 \mathrm{~mm}$ featuring $2 \times$ T8A820M and dual vol. control. £3.50; 10 for $£ 30$ 25 for $£ 65$; $100 £ 200$.

AM TUNER PANEL

2916 - For use with mono amp above. Neat panel $60 \times 45 \mathrm{~mm}$. Only E1.50; 10 for $£ 12.00$

miniature relays

PCB mounting, DPCO size $20 \times 15 \times 15 \mathrm{~mm}$. Available in 3,9 or 12 V f1 each.

STEPPING RELAY

Schrack 2 pole 10 way 24 V DC (works down io 15 V) only $39 \times 20 \times 24 \mathrm{~mm}$ Connexions by $0.1^{\prime \prime}$ pitch edge plug Special low price $\mathbf{£ 1 . 9 5}$.

20 WAY RIBBON CABLE

Twisted and flat computer grade for lower crosstalk. Reformed into flat sections every 21^{11} for IDC connectors. Only 70p/21" or EL5 per 100ft reel.

IEC FILTER PLUG

Made by Rendar, integrated chassis mounted plug with mains filter rated 2A. Like RS 238-514. Only E3.00.

7-SEG LEDS

MAN8910 $0.8^{\prime \prime}$ red seven segment LED's common anode. E1.25. 10 for £10.
DIL SOCKETS
Gold plated low profile at unbeatable prices:

$$
\begin{array}{ll}
14 \mathrm{DIL} & € 7 / 100 \\
16 \mathrm{DIL} & € 8 / 100 \\
24 \mathrm{DIL} & £ 12 / 100 \\
40 \mathrm{DIL} & € 2 / 100
\end{array}
$$

VOLTAGE REG SCOOP
7924UC 1A 24 V 40 p.
UA317UC $1 / 2$ A Variable 50p
78MGUIC Variable 65p. more components than ever beforel With each copy there's discoumt vouchers, Bargain List, Wholesale Discount List, Bulk Buyers List, Order Form and Reply Paid Envelope. All for just $£ 1.0011$ Winte Supplement now out - Send large SAE for your free copy.

"TORUS"

Computer-controlled Robot buit around the gearbox described below. Complete kin of parts inc RCB, program listings for BBC lother micros soon). f4485. 20W ribbon cable (min 3 m recommended -5 m better) $\mathbf{\$ 1 . 3 0 / m . ~ S A E ~ f o r ~ i l l u s t r a t e d ~ l e a f l e t . ~}$

MOTORIZED GEARBOX

The unit has $2 \times 3 V$ motors, linked by a maginetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors.
Two new types of wheels can be supplied the aluminium discs and smaller plastic wheels are now sold outl. Type A has 7 spokes with a round black tyre and is 100 mm dia. Type B is a solid hesvy duth wheel 107 mm dis with a flat rigid tyre 17mm wide PRICES: Gea

Wheel type A: 60.70 es

NI-CAD CHARGER SCOOP! Ever-Ready model CH4, this charger will Ever-Ready model CH 4 , this charger will take up to 4 AA, C or D cells plus 2 PP3 if required. Smart two tone
$212 \times 97 \times 60 \mathrm{~mm}$. Only $£ 7.95$.

NI-CAD CHARGER PANEL
$17 \times 114 \mathrm{~mm}$ PCE with one massive Varta Deac $57 \times 50 \mathrm{~mm} \varnothing$ rated 7.2 V 1000 mAH and $3.6 v 600 \mathrm{~mA}$. The price of these Ni-cad 3.6 v 600w . The prise Also on the panel is a mains input charger transformer with two separate secondaries wired via bridge rectifiers, smoothing capacitors and a relay to the output tags. The panel weighs 1 kgm to the fis for lust E5.00. -
PCB MOUNTTNG NI-CADS
Much sought after 4.8 V 150 mA batts with PCB mntg tags on 25 mm pitch. Batt size $25 \times 16 \emptyset$. Ideal for paralleling. $99 p$ ea; $10+$ 85p; 25+70p; 100+60p.

NI-CADS: AA 99p; C 199p; D 220p; PP3 395p.

K523 RESISTOR PACK - 1000 - yes 1000 M and $1 / 2$ watt 5% hi-stab carbon film resistors with pre-formed leads for PCB mounting. Enormous range of preferred values from a few ohms to a several megohms, Only 250p; $5000 £ 10 ; 20,000 £ 36$.
WE CAN SUPPLY KITS OF PARTS FOR MOST PROJECTS FEATURED IN
"EVERYOAV ELECTRONICS".
Ring of write for quote.

Our shop has enormous stock of components and is open 9-5.30 Mon-Sat.
 Min Access order 55.00 No min. CWO value. Official orders from schools etc. welcome min involce charge f10.

443D Millbrook Road
Southampton SO1 OHX
Tel (0703) 772501/783740

CIRCUIT EXCHANGE

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in slgnificant part the original work of the sender and that it has not been offered for publication elsewhere.

LOGIC PROBE AND PULSER

The Logic Probe described here is easy to make and provides a useful piece of inexpensive test equipment. It can test for the conditions of high impedance, high, low or pulsing.

When the probe input is open circuit, the output of IC1a is held at $\frac{1}{2} \mathrm{Vcc}$ by the feedback resistor R 1 . The input to IClb is held low by R5 which gives the condition of D2 off and D1 dimly lit.

When the probe is at logic ' 1 ', D1 is extinguished and when the probe is at logic ' 0 ' D1 is brightly lit.

If the circuit receives pulses then, short pulses are transmited to IClb and the I.e.d., D2 is lit. This enables all conditions to be indicated.

To make use of the two remaining gates a

1 Hz pulsing circuit is provided by a multivibrator made up of IC 1c and IC1d and their
associated components.
W. A. Adam, Kettering, Northants.

PIEASE
 TAKENOTE

Mini Workshop Power Supply (December '84).
The p.c.b. has a track missing from C1 negative end to C2 negative end. An insulated wire link between these points will correct the error.

Doorchime (December '84)

The circuit diagram on page 759 is incorrect. The left-hand end of R10 should connect to pin 2 of IC3 and also to R7. The junction of R8 and R9 should go to pin 3 of IC3 as published, but should not also connect to R10. On page 760 , IC1 is shown the wrong way round on the component layout.

Computer Club (February ${ }^{8} 8$)
We regret that there are several line amendments to the Culuplex game and these should now read as follows:
$5 \emptyset$ PRINT TAB (c,0)" ' $\mathrm{TAB}(27, r)$ '
"TAB(0,29)SPC26:*FX15,1
$8 \emptyset$ PRINT CHR $\$ 7$ TAB $(1,27)^{\prime \prime}$ NIL MOVE TRY AGAIN(Y/N)
$22 \emptyset$ Colour2:PRINT TAB(29.31)"BLUE $=$ "; S(2);
$260 \mathrm{C}=12: \mathrm{nc}=13: \mathrm{F}=1$
$33 \emptyset$ IF INKEY (-58) ANDr $>2 n r=r-1$
$42 \emptyset \mathrm{C}=\mathrm{C}+\mathrm{IN}: \mathrm{SQ}=\mathrm{PO}$ INT $(\mathrm{c}, \mathrm{nr}): \mathrm{IFSQ}=3$ THEN 420
560 PRINTTAB $(2,29) S P C 23: s=0$
$590 \mathrm{SQ}=\mathrm{POINT}(\mathrm{c}, \mathrm{r}): \mathrm{IFSQ}=\mathrm{OSQ}=\mathrm{p}: \mathrm{s}=\mathrm{s}+1: \mathrm{GOTO} 620$
$61 \emptyset S Q=3: s=s+2: F R=F R-1$

FAULT FINDING E.A.Rule Part 5

WE NOW come to an area of fault finding that to most engineers is a nightmare, that of the 'intermittent fault'. This type of fault can range from an almost continuous fault condition to that of a fault every few days or even months. Without any doubt these are the most difficult to locate because chances are that each time you attempt to trace the fault, it will 'clear' and of course while the unit is working correctly, there is no fault to find! It is convenient to group intermittent faults into three groups.

The first group is where some form of mechanical pressure will actually affect a fault condition, for example tapping a printed circuit board or slightly bending it. This type of fault is often due to a broken printed circuit track or a 'dry' joint, however it can be due to faulty components.

The second group is where the fault appears after a period of time and then later clears itself again without any movement of boards or components.

The third group is where the fault condition is effected by temperature change. There are others of course but these three groups will cover most eventualities.

CAREFUL DETECTION

Quite often after a fault has appeared you will find that as soon as a piece of test equipment is connected up, a voltmeter for example, the fault clears. This happens because the small voltage surge produced when connecting up test equipment is enough to clear the fault. Because of this, test equipment often has to be left connected into the circuit until the fault appears and a note made of any

changes in instrument readings. Sometimes it is necessary to have a number of test instruments connected up for long periods.

It is also possible to rectify what you believe is the fault, only to have it reappear days or months later! Very careful detective work is required if intermittent faults are to be found and cleared. Procedure in general is similar to that used to trace 'normal' faults, first try to reduce the area of search using the methods described last month, for example, a variation in signal strength may also show as a change in the signal strength of a tuning meter, indicating a fault condition somewhere in the RF or AGC sections. If the meter remains steady, then it could be an audio fault arid the search can be confined to that section, etc.

The signal tracing methods referred to last month could also be used, in fact, often this is the only satisfactory method. The problem is that test equipment has to be tied up for long periods until the fault appears. However, working backwards stage by stage should quickly reveal the problem area.

MECHANICAL POINTERS

When a fault can be produced by tapping or flexing a board or component (group 1), the secret of success is to reduce the amount of pressure used until only a very light pressure produces the fault, which will normally be in the most sensitive area, i.e. the area requiring the least touch. A plastic knitting needle is a useful tool for applying light pressure to a small area or for tapping components.

Do not use a metal tool for this as the static charge it carries can cause misleading results, it could also add faults by shorting something out by accident.

TIME DEPENDANT FAULTS

With the type of fault that is dependant on time (group 2), the only way to trace these is by signal tracing and leaving test equipment connected into the suspected circuit. Fig. 1 shows one example where the audio section of a receiver is suspected. An oscilloscope should be used but if one is not available it may be possible to monitor the signal present by feeding it into an external amplifier. One word of

Fig. 1. A signal injected into an early stage can be monitored at points A, B, and C, to see if it 'disappears' when the fault occurs.
caution, always place a series capacitor (0.1 to 0.01 microfarad) in all test equipment leads when tracing a signal as many parts of a circuit carry high voltages which could damage sensitive test equipment. It goes without saying of course that this method should not be used when measuring d.c.
In Fig. 1, a signal variation at say the loudspeaker (point c) but a steady signal on the scope would mean that the fault was between those two points. If both scope and speaker signals show a variation then the fault would be before the point of monitoring i.e. between the input and the first stage showing a steady signal (A or B). Methods like this will locate the faulty stage but it takes time and keeps test equipment tied up for long periods. If possible connect a number of pieces of test equipment into the suspected circuit, voltmeter, scope, etc and see if any of the signals displayed change when the fault occurs, this will give you a positive clue as to where the fault lies.

REASON OUT THE RESULTS

Try to reason out the observed results, for example if the voltage falls at one test
point, should it also fall at another? Fig. 2 shows a simple example of this procedure. A voltage check of this stage (simplified) showed that when the fault occurred, the voltage at point E was steady, at point D it increased slightly, at A it increased slightly, fell at C and went very high at B. The most likely suspect therefore was the transistor TR1. If point A had shown a decrease instead of an increase then R1 or R2 could be suspect, as a reduced voltage here would reduce the current through the transistor and also cause its collector voltage to rise. However, as the collector voltage rose even with a slight increase in Base voltage, a faulty transistor was diagnosed.

TEMPERATURE DEPENDANT FAULTS

When a fault is temperature dependant (group three) a very useful tool is a freezer spray These sprays can reduce the temperature of a component to below minus $20^{\circ} \mathrm{C}$ in a few seconds and this sudden drop will often reveal the faulty component. Broken printed circuit tracks

Fig. 2. Monitoring the voltages at various points.

will also often show up under this treatment as the drop in temperature causes the board to contract and 'pulls' the broken track apart, stopping operation until the board warms up again. Keep the sprayed area small. Remember it is the most sensitive area that is most likely to contain the faulty component or track. Spraying a large area may well develop the fault but it will not tell you where it is. Suspected noisy transistors will also respond to the spray treatment.

Transistor noise normally falls as the temperature falls, so a sudden drop brought about with the spray will produce a similar drop in noise, a repeat spray should confirm the test. Be careful if you are using the freezer spray near oscillator circuits because you could cause enough change in operating frequency to cause misleading results.

Like all servicing aids, a degree of common sense is required. Another method of revealing temperature sensitive faults is to use a hair dryer, in this case of course you can either heat up the suspect area or with the heater element off, gently cool it down. Don't overdo the heat, however, or you may add more faults due to damaged components.

FROM EXPERIENCE

The author has spent many hours tracing intermittent faults but one that stands out was on a new production line $\mathrm{Hi}-\mathrm{Fi}$ receiver. This set would suddenly stop working and could always be started again by tilting it to one side. Sometimes tapping would produce the fault, at other times it just simply happened. By using the signal tracing method the fault was finally tracked down to an IF transformer. Removing this component and removing its can revealed all. A loose piece of solder was hanging from one of the connections to a coil, as it moved it shorted the coil out to the can.

A more recent fault was one of intermittent distortion at loud volume on a portable transistor radio. At low volume all was well but at the higher levels distortion would suddenly appear. Tapping or flexing boards etc had no effect. Signal tracing traced the fault to the loudspeaker. This had a broken braided lead from its cone to its tag panel and as the cone moved at loud volume levels the lead became open circuit as the cone returned to its relaxed position the lead re-made contact. This constant making and breaking caused the distortion.

Another recent case of similar distortion followed by fuse blowing was traced to a loose fixing screw on a power transistor. As the transistor heated, up the screw became loose and contact was broken, the reverse in fact to what one would expect. From several years of bitter experience I have learned that some of the most complicated symptoms are due to very simple causes.

Next month we shall take a look at faults found on cassette recorders.

STORACE HEATER SETTIIG IIDICATOR

 Considerable economy in fuel billsCcan be obtained if the charge setting control on your storage heaters is carefully set to suit weather conditions; especially during Autumn and Spring when rapid changes of weather are experienced. This Guide was devised to take the guesswork out of that operation.
It was reasoned that with good insulation the full capacity of the storage heaters installed should maintain an indoor temperature of 18 degrees C when it is freezing outside (0 degrees C). Also that when the outdoor temperature rises to 14 degrees C it should only be necessary to use the minimum setting of the storage capacity to maintain a 4 degrees C difference inside (18 degrees C). On this basis, if the guide could be made to indicate outside temperatures from 14 degrees down to 0 degrees C in four stages, this would be an indication of the charge setting required.

HOW IT WORKS

The circuit diagram is shown in Fig. 1. The thermistor, R23, is a temperature

changes from about 1 k 5 at 15 degrees C to 2 k 5 at 0 degrees C -it is suitably protected and mounted. TR1, R1, R2, and R3 form a constant current circuit (similar to that used for charging Nicad batteries) which will pass a constant current through the thermistor.

The circuit was calibrated and the volt drops analogous to 14 degrees $\mathrm{C}, 10$ degrees C, 7 degrees C, 4 degrees \mathbf{C}, and 1 degree C were measured. The resistance chain VRI and R5 to R11 with constant current supply from TR2, R4, R12 and R13 provides reference volt drops equal

Table 1. Heater setting indications

NUMBER OF L.E.D.s ALIGHT	CORRESPONDING OUTSIDE TEMPERATURE	INDICATED CHARGE SEITING REQUIRED
1	$14^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$	MINIMUM
2	$10^{\circ} \mathrm{C}$ to $7^{\circ} \mathrm{C}$	QUARTER
3	$7^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$	HALF
4	$4^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$	THREEQUARTERS
5	LESS THAN $1^{\circ} \mathrm{C}$	MAXIMUM

To allow for the battery running down and to stablise this circuit the supply is taken from IC1 which provides a stabilised five volts. A push-to-make switch is used to activate the circuit so as to conserve the battery and reduce heating of the thermistor. The constant current will produce a voltage drop through the thermistor which is proportional to its resistance-which is related to temperature. Hence the volt drop provides a temperature-to-voltage analogue.

The Storage Heater Setting Indicator allows considerable savings on fuel bills

to those measured.
Five operational amplifiers IC2b and IC2c and IC3a, IC3b and IC3c are used as comparators to compare the voltage drop across the thermistor with each of the reference voltages.

As the voltage drop from the sensor exceeds the reference voltage drop on each of the comparators the inverting input will become positive of the noninverting input. This will swing the output from 9 volts to 0 volts and sink 2 mA through the appropriate l.e.d. and control resistor (lighting the l.e.d.). This provides the required indication-see Table 1.

INDICATED SETTINGS

The indicated settings can only be used for broad guidance and must be adjusted by experience because each installation will be different, with varying insulation and heating.

The two ICs used provide eight opamps, so one of the surplus units is used in conjunction with a potential divider (R15 and R16) to indicate when the battery voltage falls to 7.7 volts. At this point the output from the divider falls to 4.98 volts-just below the stablised voltage-and I.e.d. D1 will light.

CIIISTRIITIINN starts here

The layout of components on a 31 hole by 23 strip single sided strip board is shown in Fig. 2.

Sockets are used for the two ICs so that the unused pins of the op-amps can be removed to facilitate a compact layout-pins 10, 11 and 13 are removed from the sockets.

Insulated sleeving is used on component leads and connecting links where there is a risk of shorting-R14, R15 and R16 and links, LKA and LKB. The l.e.d.s should be carefully mounted all at the same height so that they can be positioned just below the opening in the lid of the box.

The usual precautions should be taken when making the required breaks in the
strips. Avoid shorting them with solder and use a heat sink when soldering.

Fig. 3 shows how the circuit board, switch, sensor input, jack socket and battery are arranged and connected in the box. Adhesive pads are used to hold the battery, board and blocks in place. Blocks are fitted beneath the circuit board to lift the l.e.d.s to show through. Fig. 4 shows the method of mounting the thermistor. The thermistor leads are soldered to one end of a piece of lighting flex of sufficient length to enable it to be mounted under the eaves on the north side of the house while the other end of the flex is

Resistors

R1, R4 390k (2 off) R2, R12 1 k 5 (2 off) R3, R13 5k6 (2 off) R5 1k R6, R9 220 (2 off) R7, R8, 100 (3 off)
R10
R11 150
Ok Carbon $\pm 5 \% \frac{1}{4} \mathrm{~W}$
R15 12k
R16 22k
R17-R22 3 k 3 Carbon $\pm 5 \% \frac{1}{4} \mathrm{~W}$ (6 off)
R23 Miniature bead thermistor 1 k at $25^{\circ} \mathrm{C}$
VR1 1 k preset stripboard mounting
All resistors metal film 1\% $\frac{1}{4} \mathrm{~W}$ unless stated

Capacitors

C1, C2

page 146

Fig. 3. (above) The component layout of the Storage Heater Setting Indicator.

Fig. 4. (below) Method of mounting the thermistor, R23.

plugged into the unit in some convenient position within the house.

The soldered joints are insulated with shrink sleeves and the joint given mechanical protection by fitting a shrink sleeve over the whole. It is then mounted inside a small plastic test tube, the flex being passed through a rubber stopper and made watertight with mastic. The other end of the flex is fitted with a jack plug.

ADJUSTMENT

The only adjustment necessary on completion is to adjust VRI until l.e.d. D2 just lights when the sensor is at 14 degrees C , there will then be a voltage of 4.23 volts at pin 6 of IC2.

If held on for 5 seconds the sensor will be heated and its temperature will rise by 1 degree \mathbf{C}. This can be used to see if the temperature is just below what is indicated-for in that case one of the l.e.d.s will go out if the switch is held on.

CHETTHL ELELTRDNHES D.W. GRABTREE BSc Tech Eng (cEI) PHFT SIX

NN the last article we looked at logic counters and shift registers and some of their applications. We will now take a look at the many types of memory devices available for use in digital systems.

First of all, why do we need memory devices at all? Well, sometimes we need to obtain information and store it away for later use, say whilst carrying out calculations or whilst waiting for fresh data, etc. At other times we sometimes need to store fixed data for access at later stages. Therefore, some storage mechanism is required and this is provided in many different forms, with the exact form chosen being dependent upon the application required.

RANDOM ACCESS MEMORY (RAM)

One of the most widely used memory devices is the 'RAM' or 'RANDOM ACCESS MEMORY'. In digital electronics we are generally concerned with the use of binary manipulation, with the use of logic ' 1 's and ' 0 's indicating the presence or absence of an electrical/electronic signal. A RAM can be considered to be like a set of 'pigeon-holes' with each hole being able to hold an object. Hence, at any time, each pigeon-hole can be full or empty, this being representative of logic ' 1 ' or ' 0 ' respectively, as considered for the electrical signal above. The RAM is, in fact, a device capable of storing data in the form of a ' 1 ' or ' 0 ' in the suggested manner described. Therefore, a 'Byte' of information (8 bits) would be stored as a series of ' 1 's or ' 0 's, in eight successive 'pigeon-holes'.

RAM's have the capability of being accessed by reading (i.e.: looking at any pigeon-hole and obtaining a copy of the data contained within it) or by writing (i.e.: by changing the contents within the pigeon-hole). They can be altered by the user, using program control.

READ ONLY MEMORY (ROM)

'ROM', or 'READ ONLY MEMORY' is, just like the name suggests, a device capable of storage but not capable of
changing the information stored. In other words, it can be read but not written into. It is, therefore, equivalent to a similar set of pigeon-holes to those described above, but with a glass cover over the holes so that the user can view the contents but in no way can he change the state of the contents. A ROM is, generally, given fixed data for a device to work to. For example, a computer may have an 8 K byte ROM device associated with it, that contains certain fixed instruction or fixed data for use by the computer. It may have the computer's display instructions or it may have fixed routines that are capable of being called by the computer during a program. ROM devices have their contents fixed during manufacture only and are 'non-volatile' (i.e.: Switching the power off does not lose the contents.)

PROGRAMMABLE READ ONLY MEMORY (PROM)

The name 'PROM' is a cover-all that is given to the different types of Programmable Read Only Memories that are available. They are programmable in the sense that, although they are designed to be accessed by reading only (i.e.: data can only be 'looked at'), they can be reprogrammed, using special techniques to be described below, to have a different set of data contained within them. Generally, special circuits or special pieces of equipment are required to carry out these programming techniques. It cannot be done using program control. Three different types of PROM should be described, these being:-

(1) EPROM

The most popular PROM in use. Data is entered in a specific way (say electrically) and is fixed until it is required to change the data in some way. EPROM means 'Erasable Programmable Read Only Memory' and, as the name implies, data can be erased. The technique used is to expose the actual chip (which is made visible through a special window on the package) to ultra-violet light for a certain length of time, after which new data can be entered.

(2) EAROM

This is the 'Electrically Alterable Read Only Memory'. These are not widely used but programming and altering of data is carried out by electrical/electronic means. They are generally slow to alter.

(3) EEPROM (or $\mathrm{E}^{2} \mathrm{PROM}$)

This is the 'Electrically Erasable PROM', where the whole contents of the device are erasable by electrical means.

APPLICATIONS OF MEMORY DEVICES

There must be more applications for memory devices in the computing circle than in any other field, with RAM's, ROM's and PROM's all being used for various functions. However, these will be discussed in greater detail later. For the moment we will discuss the non-computer applications, such as in combinational logic circuitry, where, if outputs are required for a large combination of inputs. the use of a memory device may be worthwhile.

USE IN COMBINATIONAL LOGIC

We have, in previous articles within this series, already discussed the ways of implementing combinational logic circuits, where outputs are obtained only when certain input combinations are provided. The ways previously mentioned were using hard wiring to logic gates and using MSI multiplexor chips, again involving hard wiring. The multiplexor, with its 'local' pin to pin wiring to provide the required functions (as previously described) has obvious advantages over the use of hard-wired gates since the overall printed circuit board size may possibly be reduced, the amount of copper tracking on the board may. be reduced and also the amount of chip to chip wiring may be reduced. Since the above factors all tend to reduce manufacturing costs, whether for a single unit or for many units, there are obviously therefore, many reasons to look to the multiplexor as an aid to design of combinational logic circuits. But the problem (if it is a
problem) is that, even with the multiplexor, there is still pin to pin wiring to be done and, if changes are required to the input logic at some later stage, this involves either changes to the pin wiring or changes to the circuit board tracking. In the latter case this could possibly involve redesigning of the circuit board completely.

How much simpler it would be if a design could be made using little wiring and with the logic, to determine the various input/output requirements, available in software form, so that any later changes would involve reprogramming only and no wiring or circuit board changes. Using a PROM as the component to contain the fixed data involved with the logic, such a thought becomes a reality.

Let us consider a previous example in these articles, where:-

$F=\overline{A B C D}+\bar{A} B \bar{C} D+A B \bar{C} \bar{D}$
 $+A B C \bar{D}+A B C D+A \overline{B C D}$
 $+\mathbf{A B C D}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathbf{C} \bar{D}+\overline{\mathrm{A}} \bar{B} C D$

Now let us consider the use of a PROM device to implement the above logical expression. There is, for example, a 32×8 bit bipolar PROM available. It is so called because it can contain 32 lines of 8 -bit words. Now remember that an 8 bit word is called a Byte. Therefore this particular PROM can contain 32 Bytes of information. In order to address these 32 Bytes (i.e.: select the byte required) on the PROM, there are 5 address pins, which are A_{0} through to A_{4} (remember that $2^{5}=32$), and it is to these pins that we will connect our input data lines, A, B, C and D.

Let us look at the truth table for our function F and consider the input/output requirements. Since we have only 4 inputs, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and the PROM address lines have 5 connections, we must realise that if we had a 5 th input, E , this would be connected to the largest significant address line of the PROM, A_{4}. Since we do not have an input E, then A_{4} must be connected to logic ' 0 '. Inputs A, B, C and D are connected to $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ and A_{3} respectively.

Inputs						Required Output
Prom Word Addressed						
\mathbf{A}	B	C	D	E	F	$(\mathrm{DO}-\mathrm{D} 7)$
0	0	0	0	0	0	00000000
1	0	0	0	0	1	10000000
0	1	0	0	0	0	0000000
1	1	0	0	0	1	10000000
0	0	1	0	0	1	10000000
1	0	1	0	0	0	00000000
0	1	1	0	0	1	1000000
1	1	1	0	0	1	10000000
0	0	0	1	0	0	00000000
1	0	0	1	0	0	00000000
0	1	0	1	0	1	1000000
1	1	0	1	0	0	0000000
0	0	1	1	0	1	10000000
1	0	1	1	0	1	10000000
0	1	1	1	0	0	00000000
1	1	1	1	0	1	10000000

Truth table showing the PROM function required.

Looking at the truth table, we have the five input lines A through to E, together with the function output F. We also have another column which represents the PROM WORD that will be put out onto the data lines when inputs A, B, C D and E are set to the relevant states (i.e.: when $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E have the corresponding input address word present). Note that, in this example, we are interested in only 1 bit of the output word since that will satisfy the requirements of F output, which is only a single bit anyway. We have shown the lowest significant data bit, D0, to be used but any of the data bits, D0 through to D7 could have been selected. The actual word that is output on the eight data lines is programmed into the PROM and can contain any combination of ' 0 's and ' 1 's so long as the actual bit that we are interested in contains the correct data required with the respective input word addressed. The diagram below shows the actual connections made to the 32×8 bipolar PROM used, with F output being taken, in this instance from D0 data line.

The 32×8-bit PROM.

Now one point to consider it that, because we have set A_{4} to logic ' 0 ', and are only using address lines A_{0} to A_{4}, we are only addressing a possible $2^{4}=16$ data words out of a total of 32 possible words. Therefore, our 32×8 PROM is only being used at 50% efficiency. However, we still have the savings previously mentioned, in chip-to-chip wiring, pin-to-pin wiring and ease of making alterations, so the use of this PROM is still quite an advantage. Also it could be that, if we use another data line bit, say D7, as an output we could, instead of setting A_{4} to ' 0 ', put an actual input E onto A_{4} and thus the total memory capabilities of the PROM would be used. An exercise should be done at this stage, with no consideration being given as to the means of 'Blowing the PROM' (i.e.: entering the 'fixed' data into the memory) either in the exercise or in the description above. Just appreciate that this is possible.

Exercise 1

A device has four outputs for alarm purposes. Show how a 32×8 bipolar PROM can be used to give an output condition when more than 2 alarm outputs are present.

Draw the truth table and the circuit diagram.

USE OF MEMORY IN COMPUTER DESIGN

All computer systems need some form of memory, both for fixed data and for variable data. Let us consider a typical computer system and see how memory is used.

OPERATING SYSTEMS

Every computer system uses an 'Operating System'. This is a fixed set of rules which the computer uses in order to function in an orderly manner. It is the basic tool that tells the computer how to operate, in the sense of how the user can gain access to it and information from it. Because the Operating System is fixed data, it must be stored in such a way that it cannot be changed, or lost in any way. There are two ways of storing such data. The usual way is to put all the information into a ROM chip which is then installed as a unit onto the main processing circuit board. The processor used in the computer system then interrogates the ROM for the information as required.

Another way of storing the Operating System data is to save the data onto 'Floppy Disks'. These are disks that contain 'tracks' which can be magnetised, or demagnetised, as required, to represent the binary information. Special 'Reading Heads' are used to look at the disks and get the necessary information. So, if Floppy Disks are used to store the Operating System for a computer, then the information is first of all loaded from the disk (which involves merely 'reading' the fixed information contained within it) into the computer RAM memory, which the processor uses in the same way as for the ROM method previously described. This has the possible disadvantage that a shut-down of the power supply will result in the RAM data being lost (unless a battery backed supply is used) and the necessity to reload from the disk.

APPLICATION DATA

This is data that is used by the computer for a particular application and, because it is data that on occasions may require changing, due to specifications for a particular system being altered, then Applications Data is generally kept in PROM form. For example, a computeroperated lathe system will probably use an Applications PROM that contains all the fixed information (such as sizes, tolerances, shapes, etc.) for a particular item to be manufactured. A change in specification of the item will require a reprogramming of the Application PROM.

PROGRAM

The actual program that the computer runs can be stored in many ways. In the case of the lathe system described above, the program would probably be in PROM form to facilitate changes at a later date. For most other applications the program will most likely be stored
either on magnetic tape or on disks. For example, for many home computers software is sold on cassette tapes. In some of the older computer systems still to be found in use, programs are stored on paper tape (and are then read by a tape reader) or on program cards. The latter type incorporate cards with coded holes patterns that are read by special card reading machines.

VARIABLE AND FIXED DATA

Variable data used in computers, by its obvious need to be stored and recalled or altered at any time required, must be stored in RAM form, although, depending on the application, it may additionally be temporarily saved on magnetic tape or disk.

Fixed data used in computers would be normally put into PROM to enable easy changes to be made at later dates. Alternatively it could also be put into disk form or magnetic tape form and 'Called' as required. It is also possible that it would be incorporated into either the operating system, the application data or the program, or any combination of these.

BINARY NUMBERS

Binary numbers which are used in computing, work to a base of 2 . That is to say, they have only two figures in use, ' 0 ' and ' 1 ', which, as we have seen before, represent low and high respectively. Therefore, numbers written adjacently in binary form are a factor of 2 apart. For example, 1011 is equivalent to $(1 \times 8)+$ $(0 \times 4)+(1 \times 2)+(1)=\left(1 \times 2^{3}\right)+(0 \times$ $\left.2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=11$ in decimal. We can therefore, as in decimal or any other base system, write down any number we wish, in this case by a series of ' 0 's and ' 1 's. Try the following exercise:-

Exercise 2

(a) Convert 736 octal (base of 8) to its decimal equivalent.
(B) Convert 348 octal (base of 8) to its decimal equivalent.
(c) Convert 1011101 binary (base of 2) to its decimal equivalent.
(d) Convert 1101 binary (base of 2) to its decimal equivalent.
(e) Convert 1101 binary (base of 2) to its octal equivalent.

Now, in the description above, we have stated whether a number is to base 10,8 or binary by giving the numbers followed by the word 'decimal', 'octal' or 'binary' respectively. There is another way to give this information. We simply give the numbers a suffix which is the base number. Hence:

$$
\begin{aligned}
& 836_{10} \equiv 836 \text { decimal } \\
& 235_{8} \equiv 235 \text { octal } \\
& 101_{2}=101 \text { binary }
\end{aligned}
$$

Sometimes the suffix is omitted completely in which case great care must be taken to remember which base is being used. Obviously, 836 decimal would not be the same as 836 octal.

BINARY CODED DECIMAL (BCD)

Let us consider, as an example, the number 50 (decimal). Now, in binary form, this would be equivalent to 110010 (binary), since $50=32+16+2$ in decimal. Now looking at this binary number, let us encode it as a number of 4 bit words, and since our word here has only 6 bits, give it two extra ' 0 's so that we can have two 4 bit words thus:

0011,0010

If we now look at each of the two words in turn and convert each to decimal form. From the above code we get 3,2 , which we put together to say 32 , this being the Binary Coded Decimal equivalent of 50 decimal and 110010 binary.

Why do we say 'Binary Coded Decimal'? Well, we are giving a code for a numbering system and that code utilises numbers from the decimal system. It follows therefore that, in Binary Coded Decimal, we can only represent numbers from 0 decimal (0000 binary) up to 9 decimal (1001 binary) therefore, for example, 999 binary coded decimal would be equivalent to 100110011001 in binary form, which in turn could be converted to 2457 in decimal form $(2048+256+128$ $+16+8+1$).

From what we have said above, that binary coded decimal only uses the figures 0 to 9 , it should become obvious that it is an inefficient number code, since there is a four bit code in use that does not utilise the equivalents of 10 to 15 (which are 1010 to 1111). Nevertheless it does allow some contraction of the size of the written numbers for either binary or decimal. For example, the binary numbers 1001001001010111 , which contain 16 bits, are equivalent to 37463 in decimal, which uses 5 digits. However, breaking the 16 bits into 4 groups of 4 bits, we get, in BCD, 9257 which utilises only 4 digits.

HEXADECIMAL

The term 'hexadecimal' is quite often used in computer magazines and sometimes electronics journals and is the name given to the number system to the base 16. Now, we do not have any figures which signify the values above 9 and so, for hexadecimal systems, we use letters as well as numbers. Below are listed the hexadecimal equivalents of the decimal numbers 0 to 20, together with the binary equivalent.

Notice the pattern for the hexadecimal numbers. Since a base of 16 is used, we have 0 to 9 as in decimal, then we use the letters A to F for the 10 to 15 numbers. If we exceed 15 then the last significant column is zeroed and the next column assumes an increment. In this case 0 is increased by 1 to 1 . Therefore, as with any other base of numbers, we can give any number we wish, but by using numbers 0 to 9 and letters A to F. Hence, 2A3 is equivalent to $\left(2 \times 16^{2}+10 \times 16^{1}+3 \times\right.$

Decimal	Binary	Hexadecimal
0	00000	00
1	00001	01
2	00010	02
3	00011	03
4	00100	04
5	00101	05
6	00110	06
7	00111	07
8	01000	08
9	01001	09
10	01010	0 A
11	01011	0 B
12	01100	0 C
13	01101	0 D
14	01110	0 E
15	01111	0 F
16	10000	10
17	10001	11
18	10010	12
19	10011	13
20	10100	14

Table showing the Hexadecimal equivalent of decimal numbers.
$\left.16^{\circ}\right)=512+160+3=675$ in decimal. Try some more exercises:

Exercise 3

(a) Give the BCD equivalent of 01001001 binary.
(b) Give the decimal equivalent of 01001001 binary.
(c) Give the hexadecimal equivalent of 01001001 binary.

BINARY ADDITION

Let us first consider the addition of two decimal numbers, say 46 and 73 :

$$
46+73=119
$$

We first of all say $6+3=9$. This is equivalent to a number less than 10 (which is the base) so we write down 9 as part of our answer. We then say $4+7=$ 11. This is 1 more than 10 so we write down the 1 as part of our answer and, because we have 'carried' a 10 , we must write down a 1 in our next column of numbers.

The method is exactly the same that we use for binary numbers, but remembering that we are working to base of 2 instead. Let us consider the addition of binary numbers 111 and 110:

$$
110+111=1101
$$

As before, we start by adding the numbers in the least significant column. In this case $0+1=1$. Write it down, since it is 'less than 2'. Next we add the two middle figures together $1+1=0$ with a carry of 1 which is added to the most significant bit. The 0 is written down. In the third column we have $1+1+1$ (remember we have a carry 1 also). This is best done in two parts. Now $1+1=0$ with a carry 1 , which is passed onto the next column. We then say $0+1$ (i.e.: the 0 we have just obtained + the carry from column 2) is equal to 1 . We then write down this 1 . In the fourth column, we
only have the carry 1 from column 3 so we write it down. Our answer is then 1101.

Let us check our answer. Convert each sum to be added and convert to decimal, $110=6$ and $111=7$. Now $6+7=13$. Our answer from the binary addition is 1101 which is, of course, equivalent to 13 in decimal, so our answer is correct.

It does seem a lengthy explanation for what is really quite simple but the rules to follow are quite straightforward:

$$
\begin{aligned}
& 0+0=0 . \\
& 0+1=1 . \\
& 1+1=0 \text { carry } 1 . \\
& 1+1+1=1 \text { carry } 1 .
\end{aligned}
$$

BINARY SUBTRACTION

Binary subtraction is not quite as easy as addition, but nevertheless it can easily be worked out by comparing with decimal subtraction. Consider 784-366 in decimal:

$$
784-366=418
$$

First of all we say 4-6 'won't go'. So we add 10 to the 4 , to make 14 and then say $14-6=8$. Write down the 8 . We have 'borrowed' a 10 from column 1 so we must 'return' it to column 2 by adding 1 to the figure on the bottom line. We don't return a 10 since there is a factor of 10 between columns. We then say $8-7$ $=1$. Write it down. (Remember the 7 is 6 +1 'returned'.) We then say $7-3=4$, which we write down.

Above we are using base of 10 . In binary we are using base of 2. Otherwise the rules are similar. Consider the subtraction $110-101$, in binary.

$$
110-101=001
$$

First we say $0-1$ 'won't go', so we add 2 (since we have a base of 2) to the top figure of the first column. Then $2-1$ $=1$. Write this down. Since we have 'borrowed' a 2 we must 'return' it to the middle column, but we only 'return' a 1 , not a 2 , since there is a factor of 2 between columns. We therefore add this to the 0 on the bottom line. We then say 1 $1=0$. Write down a 0 . In the next column we say $1-1=0$. Write it down: Therefore, our answer is 001, which is 1 in decimal.

As a check, convert to decimal values and see what the answer in decimal would be. $110=6$ and $101=5$, with $6-5=1$, giving the correct answer.

OCTAL ADDITION AND SUBTRACTION

In octal addition and subtraction we observe the same rules yet again, but we must remember that we are working to a base of 8 .

HEXADECIMAL ADDITION AND SUBTRACTION

Hexadecimal again carries the same set of rules as those above, but here a base of 16 is used. It is not so straightforward since we are trying to add
or subtract letters, not numbers, in some cases. As an example, consider 5A3 + 27A in hexadecimal.

$$
5 \mathrm{~A} 3+27 \mathrm{~A}=82 \mathrm{D}
$$

We must first add $3+\mathbf{A}$. This is best done by remembering that \mathbf{A} is equivalent to 10 in decimal, so that $3+10=13$. 'Convert' this back to hexadecimal to give D , which we write down. We then have to add $\mathrm{A}+7$. Convert the A to decimal, to give $10+7=17$. Now this is 2 more than F, so write down the 2 and carry 1 to the next column. Finally $5+2$ + carry $1=8$. So our answer is 82 D . Similar mathematical rules apply for hexadecimal subtraction, but take care with the base of 16 . Note that a number to the hexadecimal code is sometimes written either preceded by a $\$$ or with an H after. (For example $30 \mathrm{H}=\$ 30$.)

The advantages of hexadecimal are numerous. Firstly it is an efficient code. Secondly a direct conversion to binary is possible. (For example, 3AE $=3 \times 16^{2}+$ $10 \times 16^{1}+14 \times 16^{0}=942$ decimal.) Thirdly it is of great use in the "bus system', to be explained later, used by microprocessors. Also, as previously mentioned, because a large base is used, compression of numbers is available. (E.g.: 65535 in decimal carries 5 digits whereas its equivalent in hexadecimal, FFFF, carries only 4 digits/characters.)

CODES USED IN NUMBERING SCHEMES

There are several coding schemes used, some of which are set out below.

ASCII (American Standard Code for Information Interchange)

This is a universally accepted code for the transmission of data of an alphanumeric nature. It is a 7 -bit code which gives a total of $2^{7}=128$ characters. It is widely used by teleprinters (and computers which 'talk' to each other) and also is used by peripherals and computers in communication to each other. The code allows all upper and lower case letters, together with numbers and certain 'control characters' and special characters. Some examples are set out below:

Character	Binary	Hex.
0	0110000	30
1	0110001	31.
2	0110010	32
3	0110011	33
9	0111001	39
A	1000001	41
B	1000010	42
C	1000011	43
LINEFED (LF)	0001101	0 D
@	1000000	0 A
CARRIAGE		
RETURN (CR)	0001010	40

Some examples of the ASCII code used by computers and peripherals.

EXCESS-3 CODE

This code is quite easily achieved by adding 3 to the standard BCD code. For example:

Number	BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	01111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

The Excess- 3 code.

Now, if an imaginary line is drawn between 4 and 5 it is seen that there is an 'inverse symmetry' at each side of this line. For example, looking at 4 , which has an excess- 3 code of 0111 , the inverse of this is 1000 , which is the excess -3 code of 5 at the other side of the line. Hence it is said to be self-complementing. Arithmetic can be performed on excess- 3 coded numbers providing certain rules are carried out. These will not be explained here but they involve adding or subtracting 3 from the answer of any arithmetic, depending on whether there is a carry or not available.

Certain arithmetic processes are available and are used to make life easier for computers when carrying out calculations, and also to speed up the process of calculation. These processes are described below:

ONES' COMPLEMENT

Ones'-Complement is often used in mathematical processes. This is simply the taking of each bit in turn in a word and inverting. Thus a ' 0 ' becomes a ' 1 ' and a ' 1 ' becomes a ' 0 '. For example: Form the 1's complement of 01010111. This simply alters to 10101000 .

TWOS' COMPLEMENT

Two's-Complement is formed by taking the l's complement of a number and then adding 1. For example: Form the 2's complement of 01010111 . This becomes, in l's complement 10101000 (as before). Adding 1 gives 10101001, which is the 2's complement.

In this article, we have considered certain number and coding systems and types of arithmetic used primarily by computers. In the next article in the series we shall consider the systems which utilise such numbering and coding techniques and the arithmetic processes mentioned, the systems with which we are concerned being the computers themselves. We will be looking at the basic formation of computers, including microprocessors and will consider simple design techniques, with an exercise in designing a microprocessor-based system. An introduction to microprocessor programming techniques (software only) will be included, which should provide a basis for further learning and research.

Answers to Exercises.

Exercise 1

EE150G

The 32×8-bit EPROM used in the alarm circuit to give the required output. The unused outputs D1 to D7 may be used for other purposes such as extra functions. Also A4 may be used to take full advantage of the 32×8-bit EPROM.

Truth Table showing the alarm output

Alarm Outputs					Required Function	Data Word Addressed
A	B	C	D	E	F	DO(D1-D7)
0	0	0	0	0	0	0 XXXXXXX
1	0	0	0	0	0	0 XXXXXXX
0	1	0	0	0	0	0 XXXXXXX
1	1	0	0	0	0	0 XXXXXXX
0	0	1	0.	0	0	0 XXXXXXX
1	0	1	0	0	0	0 XXXXXXX
0	1	1	0	0	0	0 XXXXXXX
1	1		0	0		1 XXXXXXX
0	0	0	1	0	0	0 XXXXXXX
1	0	0	1	0	0	0 XXXXXXX
0	1	0	1	0	0	0 XXXXXXX
1	1	0	1	0	1	1 XXXXXXX
0	0	1	1	0	0	0 XXXXXXX
1	0	1	1	0	1	1 XXXXXXX
0	1	1	1	0	,	1 XXXXXXX
1	1	1	1	0	1	1 XXXXXXX

${ }^{\prime} \mathrm{X}^{\prime}={ }^{\prime} \mathrm{DON}$ 'T CARE'

In the next article, we will be taking a look at computer design and basic software techniques.

Exercise 2

(a). $736_{8}=\left(7 \times 8^{2}\right)+\left(3 \times 8^{1}\right)+\left(6 \times 8^{0}\right)$ $=(7 \times 64)+(3 \times 8)+(6 \times 1)=478$ decimal.
(b). $348_{8}=\left(3 \times 8^{2}\right)+\left(4 \times 8^{1}\right)+\left(8 \times 8^{0}\right)$ $=(3 \times 64)+(4 \times 8)+(8 \times 1)=232$ decimal.
(c). $1011101=\left(1 \times 2^{6}\right)+\left(1 \times 2^{4}\right)+(1 \times$
$\left.2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{0}\right)=64+16+8$ $+4+1=93$ decimal.
(d). $1101=\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{0}\right)$
$=8+4+1=13$ decimal.
(e). $1101=13$ decimal $=\left(1 \times 8^{1}\right)+(5 \times$ $\left.8^{\circ}\right)=15$ octal.

Exercise 3

(a). $01001001=0100,1001=49$ in BCD.
(b). $01001001=(64+8+1)=73$ in decimal.
(c). $01001001=73$ in decimal $=\left(4 \times 16^{1}\right.$ $+9 \times 16^{\circ}=49$ in hexadecimal.
Note that the answers to (a) and (c) are identical. This will only happen when a BCD equivalent can be given. For example, if the figures in binary were 10011111 then no BCD value could be given since the last 4 significant are greater than 9. However, the hexadecimal equivalent would be 9F.

COUNTERTGENCE

I would first like to thank those readers who were kind enough to write and enquire why my column failed to appear in the November issue. Poor old Young was visibly shaken, when I noticed my name was missing. "Rumbled, after ten years" was my comment. However, it turned out that there was too much material for the magazine to accommodate.

Acoustic Comment

| am sure most electronic enthusiasts go through a Hi Fi phase, and it naturally follows that they would at the same time become interested in acoustics. Ruminating about it a few days ago, it occurred to me that acoustics have gone through three distinct stages in the last hundred years.

Stage one, was the period prior to World War Two, when the science of acoustics hadn't even been thought of. When an architect designed a building, he had no idea whether acoustically it would be good or bad.

At one end of the scale, you had the good old Queen's. Hall, which was almost perfect, due. I was informed, to the auditorium being shaped tike the end of a violin. Be that as it may, I can personally vouch for its excellence, having enjoyed many a Promenade Concert there. Regretfully it was destroyed by the Luftwaffe during the Blitz. I expect Sir Thomas Beecham attributed this to the Germans not liking the way Sir Henry Wood interpreted their composers, but I must admit this is pure conjecture on my part. At the other end of the
scale, you have the Albert Hall, which has this dreadful echo, and to actually quote Sir Thomas Beecham this time, he said, "It was the only place in the world, where a British composer would hear his work performed more than once."

At stage two you come to the post war period, and by now acoustics were an established science. You have a splendid example of this in the Festival Hall, designed to be acoustically perfect, whether full or empty.

Finally you come to the third stage, where, or so it appears to me, the building is constructed without any thought given to the acoustics at all, and its faults are compensated by sound reinforcement. I recently had the opportunity of witnessing this type of approach having been invited to attend the opening of a new ice rink. A grand affair it was, and everything was perfect, except for one thing, no one could understand a word of the announcements.

1 contacted the management next day, and they put me in touch with the engineers who installed the system. I spoke to the head of the firm, and he told me they had spent several days carrying out tests and fitting microphones and speakers where they were required. When the final adjustments had been made, it was almost perfect. Unfortunately, a day or two before the opening along comes a disc jockey who alters all the controls and the result is cacophony. I suppose the thought strikes me, that, after shooting the disc jockey surely the manufacturers should make provision for locking all the vital controls?

Hi Fi Short Cuts

To demonstrate that the subject has a lighter side, let me recount the experience I had with a hi fi customer several years ago. He attributed the lack of perfection of his hi fi to the acoustic properties of his living room. What was happening, he explained, was that the sound bounced back off the wall and landed here, and he pointed to indicate a position at the base of his neck.

Realising that I was dealing with someone who ought to have been certified long ago, I decided it was safest to try and humour him. "What did you do then," I asked, trying to appear eager to hear his words of wisdom. "Oh! I soon got round that all right, I cut four inches off the legs of all the chairs."

Suppressing my astonishment, I asked, "And did that cure it?" His expression clouded over. "No, not entirely, especially in the higher register."

Struggling to keep a straight face, I asked him, "And what did you do then?"
"Ohl curing that was even simpler, I knocked the wall down!!"

Computer Tale

I do sometimes get annoyed at the way computers are used. Calling at an electrical wholesaler the other day I was told that I couldn't be supplied with any order less than $\mathbf{f 3}$, as each entry on the computer costs the firm £2. I accepted this. I was then informed that the order had to be fed into the computer before I could be served and twenty minutes later I was still. waiting.

I was interested to see that the Fredkin Foundation of Boston, Massachusetts, is offering $\$ 100,000$ to the first person who can write a computer program which subsequently makes a genuine mathematical discovery. I don't like to be dogmatic on any subject, particularly electronics, but I would wager that their. money is safe for all time.

EDERYDAY ELECTRONICS PRIMTED CIRCUIT BOARD SERUICE

Printed circuit boards for certain EE constructional projects are now available from the EE PCB Service, see list. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC M.agazines Ltd.

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
- JUNE '83 - Eprom Programmer, TRS-80 Eprom Programmer, Genie Eprom Programmer, TRS-80 \& Genie	8306-01 8306-02 8306-03	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & £ 1.98 \end{aligned}$
JULY'83 - User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part ${ }^{9}$	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{array}{r} £ 4.82 \\ £ 5.17 \end{array}$
\qquad AUGUST 83 Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Part 2 Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \\ & £ 4.56 \end{aligned}$
- SEPTEMBER 83 - High Speed A-to-D Converter Signal Conditloning Amplifier M.I.T.'Part 3 M.I.T. Part 3 Stylus Organ D:stress Beacon Distress Beacon Pocket Version	$\begin{array}{r} 8309-01 \\ 8309-02 \\ 8309-03 \\ -8309-04 \\ 8309-05 \end{array}$	$\begin{aligned} & £ 4.53 \\ & £ 4.48 \\ & £ 6.84 \\ & £ 5.36 \\ & £ 3.98 \end{aligned}$
- OCTOBER 83 - D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electronic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	$\begin{aligned} & £ 5.77 \\ & £ 5.13 \\ & £ 5.43 \end{aligned}$
- NOVEMBER'83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Digital Gauss Meter Speech Synthesiser for BBC Micro Car On/Off Touch Switch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 83111-03 \\ & 8311-04 \\ & 8311-05 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & £ 3.11 \end{aligned}$
- DECEMBER '83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 TRS-80 Twin Cassette Interface Touch Operated Die (Dot matrix) Touch Operated Die (7 -segment) Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.29 \\ & £ 7.43 \\ & £ 4.34 \\ & £ 4.34 \\ & £ 3.41 \end{aligned}$

[^0]Central Heating Pump Delay -
8401-01
$£ 3.33$ Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard

- FEBRUARY'84 Eprom Programmer/ROM Card for ZX81 Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver
- MARCH '84 Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 M.I.T. Part 9

8403-02
$£ 5.30$
VIC-20 Extension Port Connector
8403-03 £ 4.42

Commodore 64 Extension Port Connector M.I.T. Part 9

8403-04
£4.71
Digital Multimeter Add-On for BBC Micro

- APRIL` 84 -

Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10
Data Acquisition "Output" M.I.T. Part 10

$8404-01$	$£ 5.72$
$8404-02$	$£ 5.20$
$8404-03$	$£ 5.20$
$8404-04$	$£ 3.09$
$8404-05$	$£ 3.58$
$8404-06$	$£ 3.55$
$8404-07$	$£ 3.56$
$8405-01$	$£ 3.07$

Simple Loop Burglar Alarm
Computer Controlled Buggy M.I.T. Part 11
Computer Controlled Buggy M.I.T. Part 11
Interface/Motor Drive

$8405-02$	$£ 5.17$
$8405-03$	$£ 3.20$
$8405-04$	$£ 4.93$

\qquad Infra-Red Alarm System Spectrum Bench PSU Speech Synthesiser M.I.T. Part 12 Train Wait		$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
\qquad JULY'84 \qquad Ultrasonic Alarm System Atom EPROM Simulator Electronic Code Lock Main board Keyboard	$\begin{aligned} & 8407-01- \\ & 8407-02 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{aligned} & £ 4.72 \\ & £ 3.08 \\ & £ 2.70 \\ & £ 3.24 \end{aligned}$
\qquad Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{aligned} & £ 4.36 \\ & £ 2.24 \end{aligned}$
- SEPTEMBER • 84 - Op-Amp Power Supply	8409-01	¢3.45
$\begin{aligned} & \text {-OCTOBER } 84 \text { - } \\ & \text { Micro Memory Synthesiser } \\ & \text { Drill Speed Controller } \end{aligned}$	$\begin{array}{r} 8410-01 \\ 8410-04 \end{array}$	$\begin{aligned} & £ 8.20 \\ & £ 1.60 \end{aligned}$
- NOVEMBER ' 84 BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{array}{r} £ 2.90 \\ £ 2.65 \end{array}$
TV Aerial Pre-Amp DECEMBER 84 - Digital Multimeter Mini Workshop Power Supply	*8412-01 *8412-02/03 8412-04	$\begin{array}{r} \mathrm{f} 1.60 \\ \text { £5.20 } \\ £ 2.78 \end{array}$
\qquad Power Lighting Interface Games Timer Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 8501-02 \\ & 8501-03 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 8.23 \\ £ 1.86 \\ £ 1.70 \\ \hline \end{array}$
- FEBRUARY ' 85 - Solid State Reverb Computerised Train Controller	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & £ 3.68 \\ & £ 3.38 \end{aligned}$
-MARCH '85- Model Rallway Points Controller	8503-01	£2.78

M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.

BAKERS DOZEN PARCELS

All the parcels listed below are brand new component
Price per parcel is $£ 1,00$, bus if you order 12 you get

1-513 amp ring maln junction box
513 amp ring main spup boxes
2513 amp tuses for ring mains
5 surface mounting switches suitable Insulated for mains
voltage
replace) 0 in switches intermediate type, will also
5 replace 1 or 2 way swliches
6 - $\quad 5$ in flex line switches
a in flex line switches with neons
280 watt brass cased elements
280 watt brass cased elements
2 mains transformers with $6 v 1$ a secondaries
1 extension speaker cabinet for $61 / /^{\prime \prime}$ speaker
5 octal bases for relays or valves
12 glass reed switches
4 OCP 70 photo transistors
25 assorted gemanium transistors OC45 etc
4 tpae heads, 2 record, 2 erase
2 ultra sonic eransmiters and
2 ultra sonic transmitters and 2 ditto receivers
215000 mfd computer grade electrolics
2 light dependent resi
2 mains interference suppressors
225 watt crossover units
140 watt 3 wav crossover unit
1 of each water switches $=6 p 2$ way; $4 p 3$ way; $2 p 6$ way; 1012 way
2 tape deck counters
16 digit counter $12 v$
15 digit counter mains voltage
1 BOAC in flight stereo unit
1 BOAC in flight stereo unit (second hand)
2 Nicad battery chargers
2 humidity switches
2 aerosol cans of ICI Dry Lubricant
96×1 metre lengths colourcoded connecting wires
4 battery operated model motors
2 air spaced 2 gang funing condensors
2 solid diaelectric 2 gang tuning conden sars
Long and Medlum wave tuner k
Long and Medum wave turs
$4 \times 465 \mathrm{KC}$ IF transtormers
8 Rocker Switches 10 amp Mains SPST
6 Rocker Swliches 10 mp Mains SPDT
5 Rocker Switches 10 amp SP DT Centre Ofi
4 Rocker Switches 10 amp DPDT
124 hour time switch mains operated
16 hour clockwork timeswirch
16 hour clockwork timeswitch
2 lever switches 4 pole changeove
2 6v operated reed switch relays
10 neon valves - make good night lights
$2 \times 12 v D C$ or $24 V A C 4 C O$ relays
$1 \times 12 v 2 \mathrm{C} 0$ very sensitive relay
$1 \times 12 v 4 C O$ relay
2 mains operated relays $3 \times 8 \mathrm{amp}$ changeovers (secondhand)
10 rows of 32 gold plated iC sockets (total 320 sockets) 1 locking mechanism with 2 kevs)
Miniature Uniselector with circuir for electric figsaw puzzle
5 Dolls' House switches
2 telephone hand sets incorporating ear piece and mike (p) 5 ferrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerlals
4 ferrite slab aerials with L \& M wave coils
4200 earpieces
1 Mullard Thyristor trigger and modules
10 assorted knobs $\%$ spindles
With most ìtems quantity buyers get good discounts and
save on postage costs.
SOUND TO LIGHT UNIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is housed in an attractive iwo tone metal case and has controls for
each channel, and a master on/off. The audio input and outout each channel, and a master onloff. The audio inpur and
are by $1 / 4^{\prime \prime}$ sockets and three panel mounting fuse holders provide
 connecting lamps. Special price is $\mathbf{£ 1 4 . 9 5}$ in kit form or $£ 25.00$ assembled and tested.

MINI MONO AMP on p.c.b., size 4"x 2" (app.) Fitted volume control and a hole for a ton
trol should you require it. The amplifier has inree transistors and we estimMore technical tate will be includ. ed with the amp. Brand new, perfect condition, offered at the ver

The AMSTRAD Stereo Tuner.
This ready assembled unit is the ideal tuner for a music centre or an amplifier, it can also be quickly made into a personal stereo radio-easy

Other uses are as a "get you to sleep radio", you could even take it with you to use in the lounge when the rest of the family want to view programmes in which you are not interested. You can listen to some music instead
Some of the features are: Iong wave band $115-270 \mathrm{KHz}$, medium wave bend $525-1650 \mathrm{KHz}$. FM band 87 108 MHz , mono, stereo \& AFC switchable, fully assembled and fultv allgned. Full wiring up data showing you how to connect to amplifier or headphones and details of suitable long wave bands. All made up on very compact board Offered at a fraction of its cost: only £6.00

25w SPEAKER SYSTEMS

By Amstrad

25 watt RMS loading $8^{\prime \prime}$ wooter, $4^{" t}$ iwe ter with crossover. $£ 12.00$
per pair $+£ 4$ post. New and unused per pair + E4 post. New and but cabinets slightly damoged
hence this low price, carry our normai quarantee.

CAR STARTER/CHARGER KIT Flat Batieryl Don' worry you will start your car in a few minutes with thls unh -
watt transformer 20 amp rectifiers, case and all parts with data £16.50 or without case $\mathrm{C15.00}$. post paid.
4/5A BATTERY CHARGER
e3. 95 \& E1 post 3 kits $£ 12$ post pald.
PRESTEL UNITS
These are brand new
and we understand
rested carne with
manufocturer's
guarantee now yoid
as the manufacturer
no longer trades.
These originally-
sold for over E150.

We offer them
7 plug in i.c.'s and price is only $£ 14.95$ (less than the value of the modern included).
STABILISED POWER SUPPLY (FWains Input) By LAMDA (USA) - Ideal for computer add-ons, d.e. output. Requlated for line volts and losd current. Voltage regulation. Is with input variations up to 20% - load regulation 1% from no
loed to full load - or full load to no load. Complete in heavy duty

THIS MONTH'S SNIP
MULTI PURPOSE BINS
10 interiocking bens can be wall or bench mounted,
each size agorox $109 \times 53 \times 100 \mathrm{~mm}$, hight

COMPUTER DESKS
Again available
desks - size apolox $4^{\prime} \times \mathrm{Z}^{\prime}$
2'6" high formica covered
2.
cost over $£ 100$ each. Our price only from E9.50- vou must
collect - hundreds supplied to collect - hundreds supplied to
schools.
FROZEN PIPES. Can be avoided by winding our heating cable around therm - 15 mirs connecied to mains costs only about $10 p$ per week to run. Hundreds of other uses as it is waterproof and very
flexible. Resistance 60 ohms/metre. Price $280 /$ metre or 15 m for $£ 3.95$

FLEXIBLE EXTENSION LEAD iwin rubber 5 mm ideal grass

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms tester, A.C. amps meter, Alarm clock, Soldering ohms tester, A.C. amps meter. Alarm clock, Soldering
iron minder, Two way telephone, Memory jogger, Live line tester. Continuitv checker, etc. etc., and you will still have hundreds of parts for future projects. Our 10Kg
parcel contains not less than 1.000 items - Danel melers, parcer contains not liess has , witches, motors, drills, taps
timers, thermal yrips, relays, swite tind dies, tools, thermostats, coils, condensers, resistiors. neons, earphone/microphones, nicad charger, power unit. 90% are unused componants.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
REVERSIBLE MOTOR WITH CONTROL GEAR Made by the famous Framco Company this is a very robust motor size approximately 7% " long, $3 / \mathrm{K}^{\prime \prime}$ die. $3 / 8^{\prime \prime}$ " shaft Tremendous/V
powerful motor, almost impossible to stop. Ideal for operating powerful motor, almost impossible to stop. Ideal for operating
stage curtains, sliding doors, ventilators etc., even garage doors if adequarely counter oslanced. We offer the motor complete with control gear as follows:
$\begin{array}{ll}1 \text { Framco motor with gear box } \\ 1 \text { manual reversing \& on/off switch } & \begin{array}{l}1 \text { push to start switch } \\ 2 \text { limit stop switches }\end{array}\end{array}$ $£ 19.50$ plus postage $£ 2.50$ leircuti diag. of connections

J. BULL (Electrical) Ltd.
 (Dept. EE), 34 - 36 AMERICA LANE, Esrabished HA YWARDS HEATH, SUSSEX RH16 3 QU. 30 VEARS

 MAIL ORDER TERMS: Cesh, P.O. or cheque with order. Orders unde £12 add 60 p service charge. Monthly account orders accepted from schools and public companies. Access \& B/card orders accepted day or night. Haywards Heath (0444) 454563 . Bulk orders:Shop open $9.00-5.30$, Mon to Fri, not Satur day.

VENNER TIME SWITCH Mains operated with 20 amp switch, one automatically correcting for the lengthen ing or shortening day. An expensive time switch but you can have it for only $£ 2.95$ without case, metal case - $\mathbf{2} .95$, adaptor kit to convers this into a normal 24 hr . time
switch but with the added advantage of up to 12 onloffs per 24 hrs. This makes an ideal controller for the immersion heater Price of adaptor kit is $£ 2,30$. Ex-Electrieity Board.
Guaranteed 12 monihs. Guaranteed 12 months.

EXTRACTOR FANS - MAINS OPERATED
 2.5 Kw KIT Still available: $£ 4.95+£ 1.50$ post

ROCKER SWITCHE
Rut Sine out. Single pole on/off -15 peach 1000 for $\mathbf{~ C 7 5 . ~ S i n g l e ~ p o l e . ~}$
changeover 200 each -1000 for 5100 . Single pole chango with centre off -250 each -1000 for $£ 125$. Single pole onloff
with neon $-36 p-1000$ for $£ 180$. ROCKER SWITCH DP/DT 15 amp 250 vol ts sultable for motor reversing etc. $-46 p-100$ for $£ 34.50,1000$ for $£ 230$.
MICRO SWITCHES $1000-£ 100$ Spdr $30 \mathrm{p} 1000-£ 150$, very low tongue Spdt TOP OF THE POPS LIGHTING if you use our disco switch

These have $9 \times 10 \mathrm{amp}$ changeover switches each rated at 10 amps so a whole swreet could
easily be lit with one. Switches adjustable and couid be set to give a running light, random flashes, etc etc. 230 volts mains operation: E5. 75 each or 10 for $£ 50$. VAT included.
WALL MOUNTING ROOM THERMOSTAT By Danfoss has a really pretty two tone grey case with circular
white scale and diat. Setting temperature from $0-30 c-13 \mathrm{amp}$ 250 v contacts. Price £4.60. - 10 for £40.
BLEEPERS 6 or 12 v battery or transformer operated, ideal for using in alarm circuiss but particulariy sultabie for can and
motor cycle alarms. These give a loud shrill note. Price 69p. motor cycle alarms. These
1000 for E345. Jap made.

12 volt MOTOR BY SMITHS
Made for use in cars, ete. these are ver
3 poweriul and easily reversibie. Size

Price £3.45. Ditto, but double ended $£ 4.25$.

MAINS MOTORS
We have very large stocks of motors from 2 wotts to $1 / \mathrm{hp}$. Most ot

IONISER KIT

Refresh your home, office, shop, work room, etc, with
negative ION generator. Makes you feet better and work negaver a complate mains oper
£11.95 plus £2.00 post.

OTHER POPULAR PROJECTS

3 Channel Sound to Light - with fuliy prepared metal case | ¢14.95 |
| :--- |

Big Ear, listen through walls
Silent sentinel Ultra Sonic Transmitter and receiver
Car Light 'left on' alarm
Secret switch - fools friends and enemies alike
3 - 30 V Varlable Power Supply
2 Short \& Medium wave Crystal Radio
$3 v$ to 16v Mains Power Supply Kit
Radio ste thoscope - fault finding aid
Mug stop - emits piercing squark
Morse Trainer - complete with kev
Drill control kit
Interrupted beam kit
Radio Mike
F M receiver kit - for surveillance or normal FM
Insulation Tester - electronic magger
Battery shaver or fluorescent from 12 v
Matchbox Radio - receives Medium Wave
40 watt amp - hifl $20 \mathrm{hz}-20 \mathrm{kH}$
115 Watt Amplifier 5 Hz 25 kHz
Power supply for 115 watt amps

$£ 14.95$
$£ 9.50$
$£ 9.50$
$£ 3.50$
$£ 1.95$
$£ 13.80$
$£ 3.99$
$£ 1.95$
$£ 4.80$
$£ 2.50$
$£ 2.99$
$£ 3.95$
$£ 2.50$
$£ 2.30$
$£ 6.90$
$£ 3.50$
$£ 7.95$
$£ 6.90$
$£ 2.95$
$£ 9.50$
$£ 13.50$
$£ 8.50$

EVERYDAY and computer Projects AT YOUR

Reach effectively and economically to-days enthusiasts anxious to know of your through our semi-display and classified pages. Semi-display spaces may be booked at timetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word number 60p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisetance, should be sent to the Classified Advertisement Department, Everyday Electronics and 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone

Aerials

Services

INVENTORS

Think of something new?
Write it down!
American industry offers potential royalties for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.
American Inventors Corporation
82 Broad Street, Dept. EV,
Westfield, Massachusetts 01086,
United States of America
A fee based marketing company

Tuition

Service Sheets

FULL SIZE TOP QUALITY Service Sheets $£ 2.50+$ 1.s.a.e. CTV/Music centres $£ 3.50$ + l.s.a.e. Repair data almost any named TV/video $£ 10.50$ in circuits. L.s.a.c. brings any quite-free magazine/pricelists. TI SEE, 76 Churches, Larkhall, Lanarkshire. Tel. 0698 883334.

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus S.A.E. Service Manuals on Colour TV and Video Recorders, prices on request. S.A.E. with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
 Please insert the advertisement below in the next availble issue of Everyday Electronics for Insertions. I enclose Cheque/P.0. for $\mathbf{£}$ (Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

 HEADING REQUIRED:
 NAME ADORESS
 EVERYDAY ELECTRONICS and COMPUTER PROJECTS
 Classified Advertisement Dept., Room 2612.
 King's Reach Tower, Stamford Street, London SE1 gLS Telephone 01-261 5042
 Rote:
 33 per word, minimum 12 words. Box No. 60p extra.
 Company registered in England. Registered No. 53626. Registered Ottice: King's Reach Tower, Stamford Street, London SE1 glS.

Receivers \& Components

RESISTORS 1,000 mixed $1 / 8 w, 1 / 2 w, 1 / 2 w, 2 \%, 5 \%$, 10%, C. film $£ 3.45$ inc p\&p. D. J. Hooker, Romney Marsh Electronics, Pennywood Park Road, Greatstone, Romney Marsh, Kent TN28 8PB.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement.

SERVICE

 products and services £7.80 per single column cen(minimum 12 words), box and Computer Projects and ments, together with remitComputer Projects, Room 01-261 5942).
Wanted

WANTED BACK ISSUES of Everyday Electronics.
Telephone Kings Langley 63708 after 6 pm.

Miscellaneous

FREE! PARCEL OF COMPONENTS worth $£ 10$. Send only 80p postage! D. HORSLEY, 113 Clare Road, Braintree, Essex.

RESISTORS $1 / 4 w-2 \%$ 100R-1MO Price per value 100 for $£ 1.3010$ for 17 p Minimum 100 resistors. SMITHS, 14 Bolton St, Blackpool S.S. FY1 6AQ.

"PROJECT BULLDERS" Our cased transistorised breakdown units will save £ff's. S.A.E. for lists, 5 St Josephs Park, Ballycruttle, Downpatrick, BT30 7 EN .

24hr Clock display non-multiplex Point 3^{\prime} LED 7 segment display red $\$ 100$ each Point 4 3' LED 7 segment display red 8175 each			
Pack No.	asy	Description	Price
N 11	12	RED 5mm LED	11.00
N 12	6	Green 5 mm LED	11.00
N 13	6	Yellow 5 mm LED	19.00
N 51	100	White/Red LED	£6.00
N 14	25	5 mm LED Clips \& Rings	11.00
N 52	5	DCP 71	E5.00
N 15	30	500 Mz Zeners 5\%	151.00
N 21	100	1 amp Rect.Diodes in 4000 Series	12.00
N 22	200	4148 Diodes	72.50
N 31	200	4151 Diodes	53.00
N 23	12	1 amp Bridge Rect.	[2.00
N 24	20	3 amp Rect Diodes	2200
N 25	4	DRP 12 Photo Contacts	0200
N 61	720	1/4 watt Carton Film IW 10 mm ten of each value	56.00
N 26	250	Mixed Resistors	$\underline{1200}$
N 16	100	Mixed Trans. Hardware	11.00
N 27	10	BR 100 Diac	02.00
N 28	4	2N3055 Power Transistor	E200
N 17	10	BC 108 C	¢1.00
N 18	15	BC 337	151.00
N 19	10	BC 107	81.00
N 120	10	BC 108	11.00
N 121	50	BFR 86	11.00
N 123	10	BC 109B	¢1.00
N 124	100	Transistor Pads	151.00
N 29	40	10 mm horiz pre-set (10 values)	11.00
N 125	10	Mixed Pots inc. slides	11.00
N 126	12	8 pin DIL Sockets	21.00
N 127	10	14 pin DIL Sockets	11.00
N 128	10	16 pin DIL Sockets	17.00
N 230	15	18 pin DIL Sockets	[200
N 129	10	IC's all different	0200
N 231	10	LM 3900N	$\underline{200}$
N 232	10	Mixed DTL	$\underline{2200}$
N 233	10	Mixed TTL (7.4 series)	1200
N 234	5	709	$\underline{8200}$
N 53	10	LM 324	15.00
N 54	20	55 Timer	15.00
N 55	25	741	65.00
N 235	50	Electrolytics Axial	6200
N 236	50	Electrolytics Radial	2200
N 237	100	Ceramic Discs	0200
N 238	100	Ceramic Plates	92.00
N 239	5	$4700 \mu \mathrm{~F} 25 \mathrm{v}$ Tag Elect. $\mathrm{Z}^{\prime \prime} 11^{\prime \prime}$	92.00
N 240	10	100 1 F 63v Ax Elect.	0200
N 241	50	022 $\mu \mathrm{F} 400 \mathrm{v}$ Rad. Polv	$\underline{2000}$
N 242	10	100 $\mu \mathrm{F} 250 \mathrm{v}$ Axial	9200
N 243	10	$2.2 \mu \mathrm{~F} 160 \mathrm{v}$ Rad. Poly	$\underline{8200}$
N 244	10	V.D.R.S.	$\underline{2} \mathbf{2 0 0}$
N 56	3	10,000 F 40v Comp Grade Elect.	15.00
N 62	$1 / 2 \mathrm{~kg}$	Reel 22 g Solder	56.20
N 130	20	500 mA AS 20 mm Fuses	£1.00
N 131	150	Mixed Nuts/Bolts/Washers	£1.00

ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW $\&-$
NORMALIYDESPATCHE BY RETURN POST NORMALLY DESPATCHED BYY RETURN POST.
TERMS: Cash with order. POST \& PACKING: Please add

AC/DC ELECTRONICS COMPONENTS

DEPT E.E, 45 CHURCH STREET, ENFIELD, MIDDLESEX.

$\star \star \star$ STEPPER MOTORS $\star \star \star$
 For robotics, turties and X / Y Plotters

Type ID35014. Low Current Model t 48 steps/rev. (17 deg staps.) Wh 300 Grms. Price 11350 inc. P/P \& VAT.
Type HRZ3. (Higher Resolution) 200 steps per rev. (1.8 deg steps.) Wt 600 Gms . Price $\mathbf{2} 9.00$ inc. P/P \& VAT
RS 8 stage Darlington $*$ Drives 21035 s from the User Port Price $\not 225$ inc. P/P \& VAT.
SA1027. I.C. Single Pulsed input determines speed. Second input determines direction. Suitable for direct Drive of one 3035 (HR23 requires additional Power Transistors). Price E6.50 inc. P/P \& VAT Book DIY Robotics \& Sensors with the BBC MICRO. $\mathbf{7} .55$ inc. PIP. (Commodore 64 version.. Book, DIY Ro
same price.l
same price.)
NOTE. Motor prices vary with foreign exchange rates. If ordering after 28.2.85, please telephone first.

Telephoned ACCESS \& VISA orders welcome.
We cannot help with advice on projects, but a Price List of the RS components mentioned in the above books, plus limited Stepper Motor data is available free, BUT will be sent ONLY ON RECEIPT OF AN A4 SELF ADORESSED ENVELOPE, STAMPED WITH 24p.

CARDIGAN ELECTRONICS

Chancery Lane, Cardigan, Dyfed, Wales. Tel: (0239) 614483 Shop Hours: Mon-Sat, 10 to 5.

Closed all day Wednesday.
Goods normally by return post, allow 14 days delivery if not in stock

It's no secret

From a gentle purt to a mighty roar, the tighlly controlled power of the beast is yours to command!

PROFESSIONAL QUALITY WGH POWER LOU ISP EAKERS

A new range of superb quality loudspeakers.
 * VIrtually indestructible high temperature voice-coil reinforced with glass-flbre
 * 100% heat overload tolerance
 * Advanced technology magnet system
 * Rigid cast alloy chassis
 * Linen or Plastiflex elastomer surrounds * 5-year guarantee (In addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to 300 We e.g.
5in. 50W 95dB 8 Ω : XG39N / 16 : XG40T $£ 17.95 \S$
8in. $100 \mathrm{~W} 98 \mathrm{~dB} 8 \Omega$: XG43W $£ 29.95 \S$
10in. 100W 100dB 8 Ω : XG46A £29.95§
12in. $100 \mathrm{~W} 101 \mathrm{~dB} 8 \Omega$: XG49D £29.95§
12 in . Twin Cone 100 W 100dB 8 Ω : XG50E / 16 Ω : XG51F £31.95§
Note - the output power doubles for each 3dB increase (ref 1W@ 1m).

PREGBION GOLD MULTIMETERS

A new range of very high quallty multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2000 תN DC/AC $£ 6.95 \S$ (YJO6G)
$\mathrm{M}-102 \mathrm{BZ}$ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, 20,000 2 N DC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 Ω N DC £19.95§ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and $20 \mu \mathrm{~A}$ DC/AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ10L)
N.B. Allour prices include VAT and Carriage. A 50p handling charge must be added if your total order is less than $£ 5$ on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxford Road, Tel:061-236 0281
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831.
- SOUTHEND 282-284 London Rd, Westcliff-on-Sea, Essex. Tel: 0702-554000

Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detalled in our catalogue, and with well over 600 new lines in our 1985 editlon and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue. (The items below are NOT kits).

* Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14 p (gold from 70 p)
* Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from £77.95

* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo 11 controls. Only $£ 195.00$ (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
* Detailed descriptions of the exciting new 74HC range of IC's which combine the advantages of CMOS and TTL. From 46p
* Keyboards: sloping keys, two-tone grey, mounted in steel frame, very sman cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only £37.95 (YJ13P)

* 1% Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!
* Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, ~ £ 10.75 \S$ (YJ56L). 100VA $£ 14.95 \S$
(YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
* Digital Clinical Thermometer. Only £13.95 (FK51F)

Check our 1985 Catalogue for all our other fascinating new lines.

8. Phone before 2pm for same day despatch.

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C)

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$.

Name
Address

[^0]: *Complete set of boards. **Calibrated with C1, VR1 and IC3 fitted.

