
 and computer pioj=che
 MAY 1984

electropire AUTO-ELECTRONIC PRODUCTS KIIS OR READY BUIT

TOTAL ENERGY DISCHARGE ELECTHONIC IGNITION

15
YOUR CAR

AS GOOD AS IT COUID BE?

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
t Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service
\& Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines maximum (even with 8 cylinders).
* Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the "near misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.
* Do the PLUGS and POINTS always need changing to tring the engine back to its best? Total Energy Discharge filminates Wentac arcing and erosion by removing the heavy electricil load The liming stays "spot on" and she conncese candifion diesn't affect the performance either. Larger flugg gash can be osed, effen wet or badly fotal
* TOTAL ENERGY OIBCWARGE is a ulique system and the most powerful on the matiet $31 / 2$ times the \bar{p} ower of inductive systems $31 / 2$ times the gy and 3 times the duration of ordinary ca acitime systems. These are the facts:
Performance at only 6 volts (m SPARK POWER \qquad - 140 W SPARK DURATIO VOLTAGE

$$
\begin{aligned}
& \text { D OUTPUT } \\
& 50 \mathrm{pF} \text { load }
\end{aligned}
$$

We challenge any manufacterer toublish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal

* All ELECTRONIZE electronic ignitions featurn:

EASY FITTING. STANDARDIELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantea).

- IN KIT FORM it provides a sop performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.

Most NEW CARS already have electronic ignition, Update YOUR CAR

ELECTRONIZE ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR ?

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from.

LOOK AT THE PROTECTION AN ELECTRONIZE ALARM CAN GIVE
t MINIATURE KEY PLUG A minnaturejeck pug areches to your key ring and is coded to your pariew ar alam

* 2025 INDIVIDUA COMnHWATIO As the key wlup contains two 1% tovertance resletors, both must be the enriact vilut and together give 2025 difie ent combinations.
* ATTRACTS MAXIMUM AITENTION This alarm system not only intermitiontly sequels the horn, but also flashes the headight and prevents the engine being started.
* 60 SECOND ALARM PERIOD Once triggered the alarm will sound for 60 seconds, unless cancelled by the key plug, before resetting ready to be triggered again
t 30 SECOND EXIT DELAY The eystom is armed by pressing a small butier: of a dashosard mountion control panel. This starts a 30 Is withour ufgoering tho warm
SECOND ENTAY OELAY When a door is opened a 10 second onerates to allow the owner to disarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug
+ LED. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition.
* ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
\star SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
t LOW SUPPLY CURRENT CMOS IC's and Iow power operational amplifiers achieve a normal operating current of only 2.5 mA .
* IN KIT FORM It provides a high level of protection at a really tow cost. The kit includes everything needed, the case, fibreglass PCB, random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

nd send t

ELECTRONI2E DESIGN Dept C. Magnus Rd Wilnecote - Tamworth B77 5BY tel 0827281000

TOTAL ENER
\qquad D.I.Y. parts kit

Assembled ready to fit \square (positive earth unit £15.90 £14.95 $£ 26.70 £ 19.95$ E22.95)
TWIN OUTPUT for cars and motor cycles with dual ignition
\qquad Twin, D.I.Y. parts kit
£24.55 £22.95
Twin. Assembled ready to fit
£36.45 $\mathbf{£ 2 9 . 9 5}$
CAR ALARM (12 volt negative earth)
£24.55 $£ 19.95$
£ $37.55 £ 29.95$
\square D.I.Y. parts kit

SPECIAL OFFER. Buy one electronic ignition kit plus one alarm kit for $£ 30.85$ or assembled units for $£ 44.65$ Goods must be purchased at the same time.

I enclose cheque/postal order OR debit my Access/Visa card ni L| | | | | | | | | | |
Name
Address \square

EVERYDAY EL=CTRODICS

VOL, 13 NO. 5 MAY 1984

PROJECTS . . . THEORY . . . NEWS COMMENT . . . POPULAR FEATURES ...

(c) IPC Magazines Limited 1984. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

EXPERIMENTER'S POWER SUPPLY 298
Switched outputs from 2 V to 12 V in 1 V steps VARI-CAP A.M. RADIO by R. A. Penfold 302
Personal m.w. receiver
COMPUTER-CONTROLLED BUGGY
by J. Adams and G. M. Feather 317
EXTRA 1K RAM for the ACORN ATOM
by A. J. Presnail 326
Simple expansion project
EXTRA UTILITY PROM for the ACORN ATOM by A. J. Presnail 327
For extra power at switch-on
MASTERMIND TIMER by L. A. Privett 330
Black Box Project-Recreates the "black chair" atmosphere
SIMPLE LOOP BURGLAR ALARM by C. Lare 338
Battery powered loop protection system
SERIES
TEACH-IN 84 by George Hylton Part 8: Power in General 306
MICROCOMPUTERINTERFACING TECHNIQUES
by J. Adams and G. M. Feather 314
Part 11: Computer control of small vehicles
WHY NARROW BAND F.M.? by E. A. Rule 334
Modulation systems compared
FEATURES
EDITORIAL Robotics: Shortage 297
FOR YOUR ENTERTAINMENT by Barry Fox 312
Holographic Call; Sociable Mic; War Games SHOPTALK by Dave Barrington 313
Product news and component buying EVERYDAY NEWS 324
What's happening in the world of electronics
RADIO WORLD by Pat Hawker G3VA 329
Finding Directions; Voice from Space; Chatter Box; Shoot Out READERS' LETTERS 332
Your news and views
BOOK REVIEWS 337
A selection of recent releases
NEW PRODUCTS 342
Facts and photos of instruments, equipments and tools PRINTED CIRCUIT BOARD SERVICE 343
SQUARE ONE Beginners' Page: Logic Symbols 344
CIRCUIT EXCHANGE 345
A forum for readers' ideas
COUNTER INTELLIGENCE by Paul Young 346
A retailer comments

M/ASMษ: Ehtamionics now!

YOURCAREER..YOUR FUTURE..YOUR OWN BUSINESS..YOUR HOBBY THIS IS THE AGE - OF ELECTRONICS! the word's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours.
We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practica and visual method. No previous knowledge is required, no maths, and an absolure minumum of theory. You learn by the practical way in easy steps, mastering all the essentials
of your hobby or to start, or further, a of your hobby or to start, or furtic
career in electronics or as a selfcareer in electronics or as a self.
employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end
of every course. of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current efectronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$, VCR and microprocessor/computer equipment.

CACC Bitish National Radio \& Hectronics School Reading,Berks.RGl IBR

Please send your brochure without any obligation to
COLOUR BROCHURE

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Every kit includes a constructors' guide covering soldering and component identification which makes construction straightforward even for a beginner. The Heathkit range contains many kits ideal for beginners as well as amateur radio kits, computerised weather stations, a highly sophisticated robot, a l6-bit computer kit and a range of home (or classroom) learning courses that have easy-to-understand texts and illustrations, in sections so that you can progress at your own pace, whilst the handson experiments ensure long-term retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.
P.O. Box 3, Rayleigh,

Essex, SS6 8LR.
Tel: (0702) 552911.
(For shop addresses see back cover.)

EHPAK BARGANS

MINIATURE TOOLS FOR HOBBYISTS

2. Miniature round nose side curters - insula
red nandles 4inch length. Order No: Yot3 Miniture leng nose pliers -insulated
handles 5 Inch length. Order No: YO4

Minimure bend nose phers Minature bend nose pher
insulated handides sinch length Order No : Yo 045 . Miniarure end nippers insulated
nandles Order No: Yous. Minimure snipe nose phers with side cutter and sermated iaws - insulated
nandles 5inch length. Order No: nandle
YOXR

ALL AT $£ 1.25$ each Cross point no. 0 e9sp each

flexty driven

A flexible shatt screwdriver for those amkward
to gel at screws Overall length 8 tinch Order
No. FS-1 Aat blade 4 mm FS- 2 Cross point no. f1.75 each.
-GRIP-DRIVER
Binch long screwdiver with spring looded grip on end to hold screws in postrion wille reaching into those ditficut pleaces

13 PIECE TOOL KIT AND CASE

13-plece tool set housed in amractive moulded plastic case with clear sliding cove

- 1 off 5° snipe nose "radio" phers with side cutters $4)^{2}$ end cutters -2 off hex "Alken" key drivers 2 mm and 2.5 mm ; 2 off eross-poln Philhps" drivers No. 0 and
No. 1 (with tommy bar) No. I (with tommy bar)
off precislon screwdrivers of precision screwdrivers
Sizes from 1 mm to 3.5 mm

ONLY £7.50 ORDER No. VPICZ

PRECISION

JEWELLERS' TOOLS
Rustorvof. Tempered Handles and Blades Chrome Plated Handies. Swwel Heads for use on Precsion Work
5 T21 SCAEWDRIVER SET 6 precision screwdrivers in ninged plastic 5 T31 NUT DRIVER SET 5 precision nut divers in hinged plastic case With turning rod. Sues - 3. 3.5, 4. 4.5 and 5 mm

E1.75
5T41 TOOL SET
5 precision instruments in haiged plastic case. Crosspoin (Phitips screwdrivers - HO and HI Hex key
2.5 mm
5 T51 WRENCH SET
5 precision wrenches in hinged plastic case

率ULTITESTER

1.000 opv including test leads \& Batery
${ }^{\circ} \mathrm{C}$ vors $-0.15-150-500-1.000$ DC volts - $0.15-150-500-1,000$ DC currents - $0.1 \mathrm{ma}-150 \mathrm{~m}$ Resisiance -0.25 K ohms 100 K ohms O/No. 1322 OUR PRICE 66.50 ONLY

BRAND NEW LCD

 DISPLAY RUULTITESTER RE 188 mLCD 10 MEGOHM INPUT IMPEOANCE
$-3 \frac{1}{2}$ digit 16 ranges plus hft test fociity tor PNP and NPN transistors *Auto zero, auto polerity "Single-hended, pushbutton operation - Over range indication -12.5 mm (3) inch). Large LCD readout ${ }^{\circ}$ Oiode check ${ }^{\circ}$ Fast circuin protection *Test leads, bertery and instructions included
Max indication 1999 or - 1999
Polanity indication Negative only Postive readings appear whthout + sign

Input impesa Zero adjust

Sampling time Automatic 250 miliseconds

Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Power Supply $1 \times$ PP3 or equivalent 9V | | $\begin{array}{ll}\text { Battery } \\ \text { Consumption } & 20 \mathrm{~mW} \\ \text { Sie } \\ \text { Rices } & 155 \times 8 \times 31 \mathrm{~mm}\end{array}$ | \square |
| :--- | :--- | :--- |
| RaNGES | | | RANGES

DC Voltage 0.200 mV $0.2 .20-200-1000 \mathrm{~V}$. Acc. 0.8% AC Voltage O-200-1000 Acc. 12% OC Current 0.200 0.2.20-2000 MA 0. -104 Acc. 12% Resistance $02-20-200 \mathrm{~K}$ ohms 0.2 Megohims. Acc. 1\% BI-PAK VERY LOWEST PRICE

$$
£ 45.00
$$

Leather Case for 188 m £2.50 EACH

Simple push button operation. Oscillates at 700 -1 Hz with harmonics to 30 MHz . $1.4 \mathrm{~V} \mathrm{p} / \mathrm{p}$ output Impedance $10 \mathrm{k} \Omega$ ideal for trouble shooting with audio equipment. One AA
penfight battery suppled. 0/No VPs $\mathbf{£ 2 . 5 0}$ LOGIC PROBE

Automatic leveling Write LED indicatio Automatic leveling
Minimum width of measuring pulse 30 milissecs.Maximum inpuit trequency 10 M Hz Input impedance:
Power consumption:

$400 \mathrm{~mA} \Omega$ Power consumption: $\begin{aligned} & 4.5-18 \mathrm{~V} \text { d.c. } \\ & \text { Power supply: } \\ & \text { ORDER No. VP97 } \\ & \text { I } 10.50\end{aligned}$.

\rightarrow CIRCUIT
D.C. continuity tester for circuin checking on all low voltage equipment and components. Diode checking also possible. Takes two AA batteries 50 cm lead has crocodile clip. Bocr length
145 mm . $0 / \mathrm{Na}$. VP100 75 p
ELECTRONIC SIREN 12v DC
Red plastic case with adjustable fixing bracket. Emits high-pifched waling note of
varying pitch- 100 cvcles per minute. Dims varying pitch. 90 mm (dia) 60 mm (depth). Power - 12v OC. 0/P godBA im type.
Our Price: $\mathbb{£ 5 . 5 0 0 / N o . ~ V P 7 9}$

MINIATURE FM TRANSMITTER

 Freq: S5-106MHz. Range; $\frac{1}{2}$ mile O/No. VPI28 Size: $45 \times 20 \mathrm{~mm}$ Add: $9 v$ batt. ONLYNor licenced in U.K

POWER SUPPLY OUR PRICE $£ 4.25$ Power supply fits directly into 13 amp socket Fused for safety. Polarity reversing sock

RATCHET SCREWDRIVER KIT

Comprises 2 standard screwdrmar blades 5 \&
7 mm size 2 cross point siee 486 . 1 Ratchet
handle. 5 -in-1 Kit. $\mathbf{E 1 . 4 5} \mathrm{emch}$. O/No 3298

VALUE PACKS

Ory Description
300 Assorted Resistors Mixed Types 300 Assorted Resistors Mixed Types 150 , Want Resistors 100 ohm-1M Mixed 200 Assonted Capacitors All Types
200 Ceramic Caps Miniature - Muxed 200 Ceramic Caps Miniature - Muxed 100 Moxed Ceramics Disc. 1pf - 56 pt
100 Mixed Ceramic Disc. $88 \mathrm{pf}-.015 \mathrm{p}$ i 100 Assorted Polve sister/Potystyrene Cap 60 C280 Type Caps Matal Foil Mixed 100 Electrolytics - All Sorts 60 Electroyturs - Alis Sont
50 Siver Mice Caps Asse Min Caps
50.6 F - 150 p . 50 Siver Mica Caps Ass $1800 \mathrm{pf}-\mathbf{4 7 0 0} \mathrm{p}$
50 High Voltage Disc Ceramic 750 V - KKv 50 Maned
-12K 0 Metres PVC Covered Single Strand Metres PVC Covered Multi Strand Wire Mixed Colours Metres PVC Single/Multi Strano Hook-Up Wire Muxed
VP20 6 Rocker Switches 5 Amp 240N
0 Pcs. $1-284 \mathrm{~mm}$ Plugs \& Sockets
Maiching Sees
Sq. Inches fotal Copper Clad Board
Mored Sizes
VP23 Maxed Sizes
VP3
VP24 40 Stsorted Stider Pots. Mixed Values
10 Slider Pots. $40 \mathrm{~mm} 22 \mathrm{~K} 5 \times$ Log 5
10 Sinder Pots $40 \mathrm{~mm} 47 \mathrm{~K} 5 \times$ Log. 5
20 Small 125° Red LED'S
20 Large 2 Red LED'S
10 Rectangular $2 *$ Green LEOSS
30 Ass Zener Diodes 250 mW -
Missed Vits. Coded
Minder
10 Ass low Zener Dodes Mired Vits
105 Amp SCR's TO 6650400 V Coded 03 Amp SCR's TO 66 Up To 400 V 00 Sncoded 00 Sil. Diodes Gen. Purpose Like OAzO $8 \mathrm{Ax} 13 / 16$
1 Amp IN 4000 Series Si Diodes Uo Amp IN4000 Serie

$$
\begin{aligned}
& \text { Uncoded All Good } \\
& 8 \text { Bride Rects } 4 \times
\end{aligned}
$$

8 Bndge Rects. 4×1 Amp 4×2 Amp
8 Black Instrument Type Knobs With
10 Black Heatsinks To fit T03, TO-220 10 Black Heatsinks
Ready Drilled
50 Ready Drilled Gen. Puryose Uncoded
50 BCIn/B Type PNP Transistors Good Gen. Purpose Uncoded Silicon Power Trans Suniar 2N3055
Uncoded

TRANSISTOR CLEARANCE

 All Sorts Transistors A mixed Bag NPN.PNP Silicon \& Germ. Mainly Uncoded You To Sort Pack includes instructions for Making SimpleTransistor Tester. Super Value. Order No. Iransistor Tester, Super Value. Order No
VPEO
Vo for $£ 1$

REGULATED VARIABLE MODULE

 Stabilised POWER SUPPLY + KIT Variable from 2.30 volts and $0-2$ Amps Kits Variable from $2-30$ volts and $0-2$ Amps KitsincludesIranstormer. Module. 1-25 Manel Meter. 1-0.2 amp 2^{*} Panel $1-0.50 \mathrm{v} 2^{*}$ Panel Meter. 1 - $0-2 \mathrm{amp} 2^{*}$ Panel Meter. 1 - 40 ohm potentiometer. 1 - 4 K 7 ohm
potentiometer. Wring Diagram
included Order No. VPS30 KIT £20

TECASBOTY THE ELECTRONC COMPONENTS ANO SEM

 on Components \& Semiconductors for the hobbyist is probably the most value-packed selection ever offered, it consists of Resisiors, carbon and wirewound of various values. Capaciors All types, sorts and sizes including êlectrolitics. Potentiometers single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection of These include SCR's Diodes, Rectifiers Triacs \& Brides as well These include: SCR's, Diodes, Rectiviers, Triacs an Bridges as well as a fire this in current retail catalose to be over pasl So hetp value of this in curent relail cal order Box TODAY for ONiY yourserrio a greaks are limited so hurry You can coll us on 9920-3182/3412 and order with your Barclaycard of Access Card 24 hr Answerphione Service NOW. Order No. V.P. 85 . just £6.50 ems in our Catalogue are available ex stock. The Catalogue ems in our Catalogue are available ex stock. The Catalogue is designed for use with our 24 hours ansaphone serviceand the Visa/Aocess credit cards, which we accept over the and the Visa

To receive your NEW 1984 BI-PAK Catalogue, send 75p PLUS 25p pep to:

Use your creatit card hing us on Ware 3182 Now and get your order even fasier. Goods nomaly sem 2nd Class Mail.
Remember you must add VAT at 15% to your Tozal onder.

Are you bewildered by the choice of Software Programs on the market?
Not sure what Program you really need what it does or where to get it?

Soll shermat

The most comprehensive magazine listing of Software programs for the eight leading Microcomputers. -BBC COMMODORE 64 DRAGON VIC 20 ORIC ATARI 400/800 SPECTRUM ZX81

Software Index takes the headache out of choosing the programs suited to your Micro.
For people involved in electronics and specialist programs, Software Index will provide the information you need and be a valuable time-saving guide.
Games, education, business and personal management are also covered.
DON'T LET SOFTWARE GIVE YOU A HARD TIME, GET THE USER GUIDE TO MICROCOMPUTER SOFTWARE-

OVER 2,511 PROGRAMS LSTED

IN YOUR
NEWSAGENT'S
NOW

TUNER
SERIESII
BUILT AND TESTED

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction. The unit is mains operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $10 \frac{1}{2} 2^{\prime \prime} \times 7 \frac{1}{2} 2^{\prime \prime} \times 2 \frac{1}{2 \prime}$

- NOISE REDUCTION SYSTEM - AUTO STOP - TAPE COUNTER SWITCHABLE E.Q. INDEPENDENT FLUTTER 0.1\% . RECORO/PLAYBACK I.C. WITH ELEC TRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TAPES. - METAL, CHOME DIOXIDE, ETC.

Kit includes tape transport mechanism, ready punched and back printed quality cireuit board and all electronle parts. i.e. erer, printed scale and mains transformer. You only supply solder and hook-UP wire.
Featured in April issue P.E.
Reprint 50 . Free with kit.
$£ 34.50+£ 2.75 \mathrm{p}+\mathrm{p}$.
Complete with case

SLEEP SAFELY AT NIGHT
SMOKE DETECTOR ALARM!

Gamma ionization type smoke detector with built-in audible alarm. Model No. F227
IDEAL FOR HOMES
IDEAL FOR HOMES,
HOTELS \& GUEST HOUSES, CARAVANS, BOATS, ETC. - MICROCHIP technology, no mechanical parts. - Maintenance free. - No wiring needed. - Runs off iransistor battery, lasis for

QUALITY SPEAKER SYSTEMS

Made to sell for over £3001 Must be heard to be believed. Made in England by World tamous British manufacrurer
SPECIFICATIONS: Bi-Directional 5 speaker system. Drive units: $2 \times 25 \mathrm{~mm}$ soft dome tweeters, $2 \times 13 \mathrm{~cm}$ polymer cone mid range speakers, one 24 cm bass unit. Impedance: 80 hms . Rated power 200 W peak max. Sensitivity: 87 Finish: Satin walnupe: 45 to $20,000 \mathrm{~Hz}$. trim. Size: $35 \%^{\prime \prime} \times 8 \frac{1}{7^{\prime \prime} \times 15 \%^{\prime \prime} \text {. Weight: } 27 \mathrm{kgs}, ~}$ £99.95 astereo pair. Buyer collect onlyl
£4.95 plus 75p pep. or 2 for $£ 8.50$ plus €1.50 p\&p.

All mail to: 21C HIGH ST, ACTON W3 6NG. Callers Mon-Sat, 9.30 - 5.30. Half day Wednesday. Note: Goods despatched to U.K. postal addresses only. All items subject to availability. Prices correct at 30/11/83 and subject to change without notice. Please allow 14 working days from receipt of order for despatch. ATVC Limited reserve the right to up-

MONO MIXER AMP

Idesi for Church
halls \& Clubhouses.
£45.00 $+£ 2.00$ p\&p.
50 WATT Six individually mixed inputs for two pick ups (Cer. or mag.), two moving coll microphones and two auxiliary for tape tuner, organs, etc. Elight slider controls six for level and two for master bass and treble, four
extra treble controls for mic. and aux. inputs. Size: extra treble controls for mic. and aux. inputs. Size:
$13 /{ }^{\prime \prime} \times 6 \% /^{* *} \times 3 \%^{*}$ apo. Power output 50 wats R.M.S. $13 /{ }^{2} \times 6 /{ }^{2} \times 3 y_{4}$ app. Power output 50 watis R.M.s.
(cont.) for use with 4 to 8 ohm soeakers. Altractive black vinyl case with matching fascia and knobs. คeady to use.

VHF STEREO TUNER KIT

This easy to bulld 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July $\quad 81$ issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF. System. FEATURES: VHF, MW, LW Bands, interstation muting and
AFC on VHF Tunine AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM. 75 or 300 ohms. Stahalised power supply with C' core mains transformer. All components supplied are to strict P.E. specification, Front scale size: $10 /{ }^{\prime}{ }^{\prime \prime} \times$
diagram and instructions.

HI-FI SPEAKER BARGAINS

AUDAX 8" $^{\prime \prime}$ SPEAKER High quality 40 watrs RMS Bass/Mid. Ideal for either Hifi or Ditsco use this speaker features an aluminium voice
coll and a heavy 70 mm diameter coil and a heavy 70 mm diameter 20 Hz to 7 KHz . $£ 5.95$ Impedance: 8 ohms. $+\mathbb{E} 2.20 \mathrm{p} \& \mathrm{p}$.

AUDAX 4OW FERRO-FLUID HI-FI TWEETER
Frequency response: $5 \mathrm{kHz}-22 \mathrm{kHz}$.

Impedance: $\mathbf{8}$ ohms

GOODMANS TWEETERS 80 hm soft dome radiator tweeter
13% "s 9.) tor use in up to 40 W system f. 3.95 each plus $£ 1.00$ p $\&$ p, or £6.95 a palt plus $£ 1.50$ p\&p.

125W HIGH POWER AMP MODULES

$£ 12.00$ £17.50

$+£ 1.15 p \& p$

+ £1.15 p\&p
The power amp kit is a module for high power applications - disco units, gultar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open cir cuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use.

ACCESSORIES: Stereo mains power supply w/transformer $£ 10.50+£ 2.00$ p\&p. Mono version, $£ 7.50+£ 2.00$ p\&p.

BSR RECORD DECKS

3 speed, auto, set-down; with auto retum. Fitted with wiscous damped cue, tubular aluminium counter-weighted arm, fitted with
ADC magnetic head. Ideally sulted for home or disco use.
£25.95
plus $£ 1.75$ p\&p.

Auto-Changer model - takes uo to 6 records with manual override. Supplied with stere £12.95 plus $\mathbf{E} 1.75$ p \&

Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2
speeds with 45 rpm spindle adaptor ideally suited for home or disco. $13^{\prime \prime} \times 11^{\prime \prime}$
 approx.

£14.95 + £1.75 p\&p.
SPECIAL OFFERI Replacement stereo cassette tape heads £1.80 ea, add 50 p p\&p to order.
Phillips stereo magnetic cartridge. $£ 3.95+60 \mathrm{p}$ p\&p. PLINTH TO SUIT BSR RECORD PLAYER DECK (with cover) Size: $16 \frac{1}{2 \prime \prime} \times 14 y /{ }^{\prime \prime} \times 21 / 6^{\prime \prime}$. Cover size $14 \frac{1}{2 \prime \prime} \times 131^{\prime \prime} \times 3 \mathrm{~s}^{\prime \prime}$. Due to fragile nature ONLY $\mathrm{£8.95}$
of this item, buyer to collect only.
date their products without notice. All enquiries send S.A.E. All cheques \& P.O.'s payable to RTVC Lid.

CALLERS TO: 323 EDGWARE ROAD, LONDON W2. Telephone: 01.723 8432.
(5 minutes walk from Edgware Road Tube Station) Now open 6 days a week $9-5.30$. Prices include VA r.

Mail or "phone orders by ACCESS. Tel: 01-992 8430.

EVERYDAY Electrontcs and computer PROJECTS

VOL. 13 NO. 5 MAY 1984

Editor

MIKE KENWARD
Consultant Editor
FRED BENNETI

Assistant Editors
DAVE BARRINGTON (Production)
DAVID SHORTLAND (Technical)
Technical Editor
MIKE ABBOTT
Technical Sub-Editors
RICHARD BARRON
BRIAN BUTLER
Art Editor
JACK POUNTNEY
Assistant Art Editor
KEITH WOODRUFF
Senior Technical Illustrator
JOHN PICKERING
Techrical Illustrator
ISABELLE GREENAWAY

Editorial Offices

EVERYDAY ELECTRONICS EDITORIAL
WESTOVER HOUSE
WEST QUAY ROAD, POOLE, DORSET BH15 IJG
Phone: Poole (0202) 671191
We regret that lengthy technical enquiries
cannot be answered over the telephone
Advertisement Manager
DAVID TILLEARD 01-2616676

Secretary

CHRISTINE POCKNELL 01-2616676

Advertisement Sales Executives
 ALFRED TONGE 01-2616819

RICHARD WILLETT 01-2616865
Classified Supervisor
BARBARA BLAKE 01-261 5897
Advert Make-Up and Copy Department
JULIE FISH 01-2616615
Advertisement Offices
Advertisement
KING'S REACH TOWER
STAMFORD STREET
STAMFORD STREE
Telex 915748 MAGDIV-G

ROBOTICS

THIS issue of EE carries our first step into robotics with the "vehicle" in our Microcomputer Interfacing Techniques series. This step is a significant one and will lead to other projects in this area. We do not see a big market for expensive androids at the present time but we do expect to see small robotic arms being introduced to schools, colleges and industry for educational and development purposes.

Our buggy is relatively cheap and easy to build and can provide a fascinating involvement in control applications for microcomputers. We believe that many computer users are now tiring of just playing gamesgreat fun though they are-and that this project will extend the fun element while developing new software skills and understanding.

As regular readers will be aware the whole Microcomputer Interfacing Techniques series has been designed to provide practical assistance in connecting computers to the outside world. Many computer hobbyists may have read the series with interest but resisted the temptation to actually build any projects and get involved in a practical way: We suggest that this project is the one to take you over the edge. Not only will it be fun to build but should provide hours of entertainment and learning for all the family.

A nother project which has always been a must for the novice is a small radio. We are sure many of our more experienced readers remember the thrill of tuning in your first station on a set made with your own hands. Perhaps it is the thrill of capturing radio waves out of the "air", or of being able to listen to distant stations for next to nothing. Maybe familiarity with radio has diminished the excitement for modern youngsters but we still feel such a project would give many novice constructors quite a kick. Why not try it and see?

SHORTAGE

Recent reports in the industrial electronics press indicate that the consumer industry is about to face a shortage of high technology chips. While this should not affect the constructor whose interest lies in the nonmicroprocessor projects those with aspirations to building any mPU-based system or add-on would be well advised to buy components as soon as possible.

Many manufacturers have sold their entire production of memory and microprocessor chips for the remainder of 1984 and stories of "black market" prices of up to six times the list price are filtering through from the States. Needless to say we will watch component availability on the products we publish but we cannot promise that chips we use will continue to be available at all times. Delivery time from manufacturers is often 16 weeks and 40 -plus weeks is being quoted on some devices now. Plan ahead if you can.

We wonder how chip shortages might affect sales of microcomputers next Christmas.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department. IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-avallability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worldwide.
Please state which Volume

Subscriptions

Annual subscription for delivery direct to any address in the UK: $£ 12.00$. Overseas: $£ 13 \cdot 00$. Cheques should be made payable to IPC Magazines Ltd., arid sent to Room 2613, KIng's Reach Tower, Stamford Street, London SE1 9LS.

EXPERIMENTER'S POWER SUPPLY UNIT

BY S. NIEWIADOMSKI

An essential piece of laboratory equipment for the experimenter with the output switchable from 2 to 12 V in 1 V steps thus invalidating the need for an expensive voltmeter. Maximum output current of 325 mA .

0
NE of the first things a newcomer to electronics learns is that powering circuits from batteries can be expensive and inconvenient. It is easy to leave a circuit accidently switched on overnight and find the batteries flat next day.

So a mains powered variable d.c. supply is a must to the serious constructor and experimenter. This Power Supply
provides a cheap and easy solution to this problem and additionally, has educational value in the use of an operational amplifier as an output driver.

The unit has 11 preset voltage settings from 2 to 12 V at up, to 325 mA output current. Its output is short circuit protected and since the voltage is switched, a voltmeter is not required, considerably
reducing the cost of the instrument. A novel feature is the use of a power operational amplifier which provides the output current without the use of an additional device.

On the prototype, the output voltage was found to be within 0.1 V of the expected value at all switch positions.

POWER OP-AMP

The $\mu \mathrm{A} 759$ is a power operational amplifier manufactured by Fairchild. It operates like a $741 \mathrm{op}-\mathrm{amp}$, having a very high open loop gain and high input resistance. It also has an output stage capable of supplying up to 325 mA . This makes it suitable for many applications such as audio amplifiers, servo amplifiers and power regulators. Like any conventional operational amplifier, its closed loop gain is defined accurately by the ratio of feedback resistors.
The features of the $\mu \mathrm{A} 759$ which make it specially suitable for use in a power supply are firstly, its output current capability; secondly, its output is short circuit protected and thirdly, it is internally protected against thermal overload. Care has to be taken to use an adequate heatsink so that the temperature of the device does not rise above that which will cause the thermal shutdown to operate. The dissipation in the device is at its highest at low output voltages and high current.

CIRCUIT DESCRIPTION

The full circuit diagram of the unit is shown in Fig. 1. Tl is the mains step down and isolation transformer. Its primary is fed from the mains via the anti-surge fuse FS1 and the mains on/orf switch, SI. The transformer used on the prototype has split primary windings so that it can be used on 120 V mains. In this country, the two windings

Fig. 1. Circuit diagram of the Experimenter's Power Supply Unit.

are connected in series. Similarly the secondary consists of two windings each giving 6 V r.m.s. which are also connected in series. A transformer with a single 12 V r.m.s. secondary is also suitable.

The secondary feeds the bridge rectifier D1 to D4 and smoothing capacitor C1. An unregulated d.c. voltage of 16.5 V at no load and 15.5 V at 325 mA output appears on C1. R1 supplies about 10 mA to the front panel mounted light emitting diode D5 which indicates when the unit is switched on.

Current is supplied to the 6.8 V Zener diode D6 by R2, allowing about 6.5 mA to be split between D1 and the resistor chain R3 to R13. The voltage across the

Fig. 2. The potential divider chain around S2. D6 establishes a reference voltage and points along the chain give voltages, that when multiplied by the gain of IC1 (set at 1.91 by R15 and R16), give the output voltages.

COMPONENTS

Resistors

R1,2	$1.5 \mathrm{k} \Omega$ (2 off)	Se
R3-13	$1 \mathrm{k} \Omega$ (11 off)	
R14	$2 \mathrm{k} \Omega$	-10
$R 15$	$10 \mathrm{k} \Omega$	
R16	$9.1 \mathrm{k} \Omega$.
All ${ }_{6} \mathrm{~W}$	carbon $\pm 5 \%$	page 313

All \ddagger W carbon $\pm 5 \%$
 page 313

S2
T1 rotary (11 ways used) 12 V or $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ secondary
FS $1 \quad 1 \mathrm{~A}, 20 \mathrm{~mm}$ anti-surge fuse plus panel mounting holder
SK1 4 mm insulated screw terminal, red
SK2 4 mm insulated screw terminal, black
Verobox, $155 \times 85 \times 80 \mathrm{~mm}$ (type 202-21042L); 0.1 in matrix stripboard, 24 strips by 17 holes; knob, 20 mm diameter; grommet; P-clip; mains cable; mains plug: $7 / 0.2 \mathrm{~mm}$ p.v.c. sleeved wire: p.v.c. sleeving; solder tags (6 off); M3 screws and nuts (to mount T1); M2.5 screw and nut (to mount (Ci.); stick-on rubber feet (4 off).
resistor chain is maintained stable by D6 despite changes in the supply.

The number of 1 -kilohm resistors and the 2 -kilohm resistor in the chain mean that voltage steps of 0.52 V are tapped off by the rotary switch S2 (see Fig. 2). Capacitor C2 holds the previous voltage level on pin 2 of IC1 when rotating $S 2$ until the new position is reached. This means that a break-before-make component can be used for $\$ 2$ without the output voltage becoming uncontrolled when being changed.

R15 and R16 are the operational amplifier feedback resistors, defining the voltage gain of the circuit. Their values are chosen to give a gain of 1.91 which
when multiplied by 0.52 (the input step value) gives the output step value of 1 V .

The unregulated supply is connected to the power supply pin of IC1. Ripple on this pin is smoothed out by the ripple rejection of the operational amplifier and the stabilising action of D6.

SK1 and SK2 are 4 mm screw terminals to which the positive and negative outputs are connected. The negative supply to ICl is the tab of the package and is bolted directly to the back panel to provide a heatsink. This arrangement means that the negative output is earthed. If a floating output is required the tab of IC1 must be insulated from the case earth.

The completed prototype Power Supply with front panel removed. Note how the cable form permits the withdrawal of the panels without the need for desoldering.

CIRCUIT BOARD

The prototype unit was constructed on a piece of stripboard (24 strips by 17 holes) mounted in a Verobox, $155 \times 85 \times$ 80 mm , which also houses the transformer. The layout of the stripboard is shown in Fig. 3. No trackside view is shown as only one break is required at location B9. The two mounting holes are positioned to line up with the moulded bosses in the base of the case.

The leads of the bridge rectifier D1 to D4 have to be preformed to suit the layout and this component must be mounted quite low into the board to avoid it hitting the fixing stud of SK 2 when construction is complete.

The transformer is mounted in the other side of the base of the box as shown. It is positioned to the rear to allow for the switch and l.e.d. and also to allow for the fuseholder and mains cable grommet.

CASE

The drilling details of the front and rear panels are shown in Fig. 4. These are the anodised aluminium panels that are supplied with the Verobox. The rectangular cut-out for the l.e.d. (D5) may be replaced with a hole if a standard l.e.d. and mounting clip is used.

The rotary switch, on/off switch, l.e.d. and terminals SK 1 and SK2 are mounted on the front panel. Note that SK 1 (the positive) screw terminal is mounted so that it is isolated from the panel (with the bushes supplied) but SK2 (the negative) is
secured so that it makes contact (the plastic bush on the threaded mounting stud is not used). These terminals require a "keyhole" cut-out to prevent them turning.

S2 is a 12-way, break-before-make midget rotary switch of which 11 ways are used. This type of switch has an adjustable stop and to set it, the mounting nut must be removed and the special washer with a tab on it lifted out of the recess. The tab is then inserted into the hole marked " 11 " and the washer is pushed back into the recess.

Resistors R3 to R13 are soldered directly to the terminals of S2 and note that R3 actually uses terminal " 12 " as this position is not required.

The back panel carries ICl , the fuseholder and the cable grommet. IC1 is mounted directly to the panel (no isolating kit required) with M2-5 fixings.

WIRING

The mains cable enters through the grommet and is clamped to one of the transformer fixings with a P-clip. The live wire (brown) is taken to the fuse and then to on/off switch S1. The neutral (blue) is wired directly to the switch. The primary of T1 is then wired to the other side of the switch.
The earth wire (yellow/green) is routed to the fixing screw of IC1 via a solder tag. The earth is then wired to a mounting screw on T1 and onto the component board (ref. U17). The front panel will be earthed via SK2.

All interwiring details are also given in Fig. 3. Note that most joints are sleeved as this not only improves the appearance but also acts as strain relief to aid reliability.
When wiring from the component board to the front panel, the wires should be long enough to allow this panel to be withdrawn if necessary. The connection from the board to the secondary of T1 is made with a twisted pair of wires and these are kept away from all other wires. This helps prevent mains pick-up.

When complete, the wiring can be neatly held together (with the exception of the a.c. side) with spiral cable wrapping or lacing cord.

TESTING

When construction is complete, check all wiring carefully particularly that associated with the mains. If everything is in order, switch on and D5 should light. Check that the voltage across C1 is about 16.5 V . Also check that D6 has 6.8 V across it. Now connect a voltmeter to the output terminals and rotate $\$ 2$ through all its settings. If an analogue voltmeter is used the output voltage should appear to be indistinguishable from the nominal voltages expected. A digital voltmeter should show differences of only about 0.1 V .

Since the current limiting circuit is built into IC 1, no testing of it is really necessary. High power resistors of appropriate values can be connected to the output to draw up to 325 mA to check the regulation of the supply. For the 12 V range, a 27 ohm, 4 watt resistor will draw the maximum current.

Fig. 4. The front and rear panel drilling details. Note that these panels are supplied with the specified case.

The regulation on the prototype was extremely good; at a nominal 10 V , the output fell by only 0.01 V on increasing the current from 0 to 325 mA .

CIRCUIT MODIFICATIONS

It is worthwhile to mention some possible modifications to the circuit which might make the power supply more versatile.

An output current ammeter could be included in series with the positive output terminal. This gives a useful indication of the operation of the circuit being powered. If an infinitely variable output voltage is required, then replace the resistor chain of R3 to R13 with a 10 kilohm linear potentiometer. The front panel can still be marked with the output voltages or a moving coil d.c. voltmeter of suitable range could be connected across SK 1 and SK 2.

Higher output voltages can be obtained by using a transformer with two secondary windings of say 9 V r.m.s. connected in series. The maximum allowable supply voltage for IC 1 is 36 V . Remember that the built-in features of IC1 make it virtually indestructable so if you do blow it up, send it back to where you bought it!

The finished component board (above) and the front panel labelling of the Experimenter's Power Supply Unit (below)

Vari~cap A.M. Radio

BY R.A.PENFOLD

VARIABLE capacitance (varicap) diodes have been in use for many years now but they are mainly used in v.h.f. designs. This is partially because varicaps have the advantage, at v.h.f., that they can be positioned close to the tuning coils, with the tuning control situated as far away from the varicaps and coils as one wishes.

VARICAP TUNING

This is simply because varicaps are tuned by a d.c. tuning voltage, and there is no real limitation on the length of a lead carrying a d.c. signal. On the other hand, using an ordinary tuning capacitor necessitates the fitting of the tuning coils close to the tuning gangs, since the leads to the variable capacitor are carrying v.h.f. signals, and the small inductance in even quite short connecting leads could easily cause a malfunction.

This makes the component layout very critical, and it can be a little awkward to achieve a satisfactory layout.

However, even though varicaps do not have this advantage in a.m. (medium and longwave) radios where the lower signal frequencies render lead lengths of relatively little importance, they still represent a neat and attractive alternative to ordinary tuning methods.

The reason for the lack of varicap tuning in a.m. radios is mainly due to the lack of suitable devices. An a.m. receiver requires a much larger maximum tuning capacitance than v.h.f. types, and the ratio of maximum to minimum capacitance is also substantially larger for a.m sets. Most varicaps give totally inadequate capacitance swings.

VARICAP PERFORMANCE

A few varicaps having adequate performance for a.m. applications were introduced a number of years ago, but they failed to achieve popularity due to their fairly low Q (magnification factor) values and more importantly, they required inconveniently high maximum tuning voltages of as much as 27 volts in some cases. More recent devices are much better in both respects with Qs of around 200 to 500 being typical, and a maximum
tuning voltage of only about 7 to 8 volts being adequate.

This enables the tuning voltage to be obtained using a 9 -volt battery supply without any voltage step-up circuitry, and a.m. varicap diodes now represent a really viable alternative to conventional tuning methods.

The simple t.r.f. (tuned radio frequency) radio described in this article covers the full medium waveband in a single tuning range. The output is for a crystal earphone, and good volume and sensitivity are obtained by using the popular ZN414 integrated circuit plus a simple high gain audio stage. A simple varicap tuning circuit is used, and the whole receiver is powered from a single PP3 size 9 -volt battery.

CIRCUIT DESCRIPTION

The circuit diagram of the receiver is shown in Fig. 1, and the varicap tuning diodes are $\mathrm{D} 2 / 3$ which are in a single device called the KV1236. These are used in the usual back-to-back arrangement and are connected direct across the ferrite aerial (L1). The latter is tuned over slightly more than the full medium-wave broadcast band by the series capacitance of D2 and D3.

R1 and D1 provide a stabilised 7.5 volt supply, and VR1 gives a continuously variable 0 to 7.5 volt output at its wiper. This voltage is used to tune the set, and VR1 is, of course, the tuning control. R2 couples the output of VR1 to the tuning diodes and prevents VR1 from heavily damping the aerial tuned circuit.

DEPLETION LAYER

Varicap diodes are basically the same as ordinary silicon diodes, and the tuning voltage reverse biases both diodes so that an insulating depletion layer is formed

Fig. 1. Complete circuit diagram of the Vari-cap A.M. Radio.

Fig. 2. Diagram showing construction details for the ferrite rod aerial.

Fig. 4. Pinning details for the varicap device.

0	-ONENS
Resistors	
R1	$1 \mathrm{k} \Omega$
R2,3	$1 \mathrm{M} \Omega$ (2 off)
R4	$2.2 \mathrm{k} \Omega$
R5	560Ω S
R6	$39 \mathrm{k} \Omega$
R7	$1.5 \mathrm{M} \Omega$
R8	$4.7 \mathrm{k} \Omega$
All $\frac{1}{6} \mathrm{~W}$ carbon $\pm 5 \%$	
Capacitors pag	
C1	10 nF ceramic plate
C2,3	220 nF polvester (2 off)
C4	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors	
D1	BZV88 C7V5 400 mW 7.5 V Zener
D2.3	KV1236 dual varicap diode
D4,5	1N4148 (2 off)
1 C 1	ZN414 a.m. radio
TR1	BC650 npn silicon
Miscellaneous	
VR1	$100 \mathrm{k} \Omega$ linear carbon potentiometer
$\begin{aligned} & \text { S1 } \\ & \text { SK1 } \end{aligned}$	rotary on/off switch
	3.5 mm jack
B1 9 V type PP3	
Stripboard: 0.1 inch matrix size	
12 strips by 25 holes; battery connector; plastic case size $150 \times$	
$100 \times 50 \mathrm{~mm}$ (ABS 2005); $140 \times$	
9.5 mm ferrite rod plus wire; tape and mounting clips; crystal	
earphone; control knobs; 6BA fix-	

$k 0000000 \cdot 00000000000000000$
$1000000000000 \cdot 00000000000$
$r 00000000000000000000000000$
HOOOOOOOOOOONOOQOOOOQOOOO
600000000000000000000000000
$F 0000000000000000000000000$
EOOQ0000 $00000000 \cdot 0000000000$
00000000000000000000000000
c 000000000000000000000000000
8000000000000000000000000
A 0000000000000000000000000
Fig. 3. Stripboard layout and external component wiring diagram.

Components mounted on the completed circuit board.
between the two pieces of semiconductor material that form each diode. In effect, the two pieces of semiconductor material are the plates of the capacitor and the depletion layer is the dielectric. The depletion layer increases in thickness as the reverse bias is increased, and the capacitance of the diode is consequently decreased.

It is not possible to simply use any silicon diodes for D2 and D3, since it is necessary for the diodes to provide certain capacitances at various reverse voltages with reasonable accuracy, and for the diodes to give a reasonable Q. Only a few modern varicaps are capable of giving satisfactory results in respect to this application where a large capacitance swing is required.

Each diode in the KV 1236 device has a typical capacitance of 450 pF at a reverse potential of 2 volts, falling to a capacitance of only 30 pF with an $8 \cdot 5$ volt reverse bias. For series connected diodes both these capacitance figures are halved. The typical Q of the KV1236 is 200.

CONVENTIONAL CIRCUIT

Because of the use of varicap tuning, ICl is used in a circuit which does not quite conform to the normal ZN414 configuration. CI couples the non-earthy end of the ferrite aerial to the input of ICI and R3 is used to bias IC1. R3 has been made somewhat higher in value than would normally be the case in order to minimise damping of the aerial. The circuit has been tried using several ZN414 i.c.s, and worked well in each case. Apart from the input coupling and biasing this part of the circuit is quite conventional.

The audio output from IC1 is coupled by C3 and R6 to a simple common emitter amplifier based on TR1. R6 is needed to prevent the output from TR 1 becoming excessive in amplitude, which would cause clipping and severe distortion. It also introduces a degree of high frequency attenuation in conjunction with the input capacitance of TR1, and this reduces the risk of instability.

A crystal earphone can be driven direct from the collector of TR1 and no coupling capacitor is necessary here. The current consumption of the circuit is only about 5 mA , or so, and this gives many hours of use from each PP3 battery.

AERIAL

A home-constructed ferrite aerial is used in this design, although a readymade type such as the Denco MWSFR can be used if preferred. In common with most readymade ferrite aerials the Denco MWS. FR has a small coupling winding in addition to the main winding, and this should either be removed or just ignored.

Details of the home-constructed aerial are provided in Fig. 2, and this is based on a ferrite rod which measures 140 mm long by 9.5 mm in diameter. The winding consists of 60 turns of $7 / 0.2 \mathrm{~mm}$ p.v.c. insulated connecting wire, or any similar multi-strand connecting wire. Bands of 19 mm insulation tape are used to hold the winding in place, and the turns should be as closely wound as possible if the winding is to fit into the available space. Leave leadout wires about 100 mm long.

Mount the completed ferrite aerial high up on the rear panel of the case using special mounting clips or P style cable clips of adequate diameter. Make sure that adequate space is left for the component panel to be fitted below the aerial.

Note that the case must be made from plastic or some other non-metallic
material that will not screen the aerial and prevent any significant signal pick up. The simple front panel layout of the set can be seen from the photographs.

COMPONENT PANEL

A 0.1 inch matrix stripboard measuring 12 strips by 25 holes is used to take most of the components, and Fig. 3 gives details of this board. It is constructed in the standard way with a board of the required size first being cut out using a hacksaw, after which the two 3.3 mm diameter mounting holes and the five breaks in the copper strips are made. The latter can be made using a small handheld twist drill if the special tool is not available.

The components can then be soldered into place with the semiconductor devices being left until the end. Fig. 3 gives details of the wiring of the set. Be careful to connect C 4 and the semiconductors the right way round, and make sure that the single link wire (beside D2/3) is not accidentally omitted.

Complete all the point-to-point wiring before finally fitting the component panel onto the rear panel of the case using 6BA fixings. After a final thorough check of all the wiring the set is then ready for use, and no alignment whatever is required if the home constructed aerial described earlier is used.

Finished project with a crystal earphone fitted.

TRIAL AND ERROR

If a ready-made ferrite aerial is used it will be necessary to position the aerial coil on the rod correctly, in order to obtain full coverage to both ends of the medium-wave band.
This is really just a matter of trial and error, and the correct position will almost certainly be with the coil slid right to one end of the ferrite rod. As the set covers slightly more than the full medium-wave band the positioning of the coil will not be too critical. When the correct setting has been found, glue or tape the coil in place.

Are you as fast as a bullet?

WOULD YOU HAVE MADE A FIGHTER PILOT? NOW YOU CAN FIND OUT WITH THE NEW REACTION TESTER

 A FREE PROJECT FROM GSCSplit second timing is essential for this, the latest and fastest game from GSC Find out how long you could have stayed "upstairs" before you "bought it". Press start switch, after a random time period, a moving light appears. The quicker you press the button, the longer you "stay alive". You can't fool this game though - a "cheat" light will tell everyone that you guessed when the lights would come on. Speed and concentration are the names of this game - build our kit and "beat the bullet'

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled, and the values are given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet
"Clip the coupon" and get your- FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identifled by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE Any Experimentor breadboard can be 'snap-locked' with others to build a Breadboard of any size.

1. EXP 325 E2.25 The Ideal breadboard for 1 chip circults. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 point bus-bars.
2. EXP 350 E3.80 Specially designed for working with up to 40 pin ICs pertect for 3814 pin ICs. Has 270 contact points including two 20 point bus-bars.
3. ExP 300 §6.50 The most widely bought breadboard in the UK with 550 contact points. Two 40 point bus-bars. the EXP 300 will accept any size IC and Up to 6×14 pin
DIPS. Use this Dreadboard with Adventures in Microetectronics
4. EXP $600 \quad \mathbf{5 7 . 9 5}$ Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600.
5. EXP 650 §4.75 Has $6^{\prime \prime}$ centre spacing so is periect for MICROPROCESSOR applications.
6. EXP $48 \quad \mathbf{2} .75$ Four more bus-bars in "snap-on" unit.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.
7. PROTO-BOARD 6 KIT $\$ 12.00630$ contacts, four 5 way binding posts accepts up to six 14-pin Dips.
8. PROTO-BOARD 100

KIT Complete with 760 contacts accepts up to te 14 -pin Dips, with two linding posts and sturdy base. Large capacity with kit economy.

"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd. Dept. 4J8,

Unit 1, SHire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
G.S.C. (UK) Limited Dept 4J8, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO Price include P \& P and 15% VAT.

Name \qquad Address
\qquad or debit my Barclaycard/Access/ American Express card no. \qquad expiry date

FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service

Telephone (0799) 21682 and give us your Barclaycard, Access. American
For FREE
Express number and your order will be in the post immedlately

A TWELVE-PART HOME STUDY COURSE IN THE PRINCIPLES AND PRACTICE OF ELECTRONIC CIRCUITS. ESSENTIALLY PRACTICAL, EACH PART INCLUDES EXPERIMENTS TO DEMONSTRATE AND PROVE THE THEORY.
USE OF A PROPRIETARY BREADBOARD ELIMINATES NEED FOR SOLDERING AND MAKES ASSEMBLY OF CIRCUITS SIMPLE.
THE IDEAL INTRODUCTION TO THE SUBJECT FOR NEWCOMERS. ALSO A USEFUL REFRESHER COURSE FOR OTHERS.

By GEORGE HYLTON

ELECTRIC POWER, as we saw last time, is the rate at which electrical energy is being transformed into some other form. This can be heat, sound, light, mechanical energy, and other kinds.

The electronic engineer is often also concerned with the transformation of one form of electrical energy into another. In audio amplifiers, for instance, d.c. power from the battery is transformed into a.c. power to drive a loudspeaker. In mains power supply units, a.c. power is turned into d.c.

In d.c.-d.c. converters, d.c. at one voltage is turned into d.c. at another voltage.

VOLTAGE CHANGING

A.c. power supply circuits are sometimes called a.c.-d.c. converters. Here, a.c. mains power (at $240 \mathrm{~V}, 50 \mathrm{~Hz}$ in the UK) is turned into d.c., usually at a much lower voltage.

If the mains is 240 V a.c. and we need 12 V d.c. what do we do about the excess voltage? One possibility would be to "drop" it in a series resistance (Rs in Fig. 8.2). This would be grossly inefficient: 228 V out of the 240 V would be thrown away. At a current of 1 A , the resistor would burn up 228 W and the equipment being powered only 12 W .

Power in Watts $=$ Volts \times Amps. In electronics we are often concerned with volts and milliamps rather than amps. The Power Alignment Chart or nomograph (Fig. 8.1) covers a range of common values.
If a rule is placed across Fig. 8.1 so that its edge intersects two known quantities the unknown third quantity is then read directly from where the rule intersects that column.

To return to Fig. 8.2, even if the waste were tolerable there is another snag. The d.c. output voltage varies. In real life the "load", RL is not a resistor but a piece of equipment such as an amplifier. If the power demanded by the amplifier varies,

then the value of Rl varies. An amplifier which requires 12 V at 1 A looks like 12Ω. But if its current demand falls to 0.5 A it looks like 24Ω.

In the Fig. 8.2 type of circuit, Rs is so much larger than RL that the current is forced to keep nearly constant despite such variations. The result is that the amplifier voltage nearly doubles if its effective resistance is halved.
To avoid this (which may be dangerous) we need a magic box (Fig. 8.3) which always gives out 12 V , whatever the load. In other words, we need something which automatically adjusts the current drawn from the mains to suit the needs of the load, keeping the voltage supplied to the load constant.

TRANSFORMERS

Something like this can be done, for a.c. only, with the aid of an electrical transformer. The first transformer (invented by Michael Faraday in the course
of experiments on electro-magnetism) looked like Fig. 8.4. An iron ring is provided with two "windings" of insulated wire. When an a.c. voltage is ap plied to the primary winding another a.c. voltage appears at the secondary winding.

The relationship between the two voltages is the same as the relationship between the numbers of "turns" on the windings. If the secondary has only onetenth of the turns on the primary then the secondary gives out only one-tenth of the voltage.

What about the currents? Well, the secondary current is determined by the load. If the secondary voltage is 10 V and the load connected to the secondary is 10Ω, then the secondary gives out 1 A . The primary current is the load current divided by the ratio of primary to secondary turns. In our example, this turns ratio is 10 , so when the load draws 1 A the primary supplies 0.1 A .

LOSSES

If the voltage applied to the primary is 100 V , then a current of 0.1 A implies a power at the primary of $100 \mathrm{~V} \times 0.1 \mathrm{~A}=$ 10 W . The power at the secondary is 10 V $\times 1 \mathrm{~A}$, which is also 10 W . So a transformer changes the voltage without itself consuming any energy.
Or rather, it would, if it were perfect. Real-life transformers are imperfect. Their windings have resistance so heat is produced (and voltage dropped) when currents flow. A certain amount of current also circulates uselessly round and round the iron core.

There is also a magnetic loss. Transformers work by creating a changing magnetic field in the core. The core's job is to conduct the whole of this field to the secondary, where it operates in reverse, inducing a voltage in the secondary winding. But in real life some of this field escapes. This is waste.

Despite these losses, a well-designed transformer can be very efficient. The small, low-power transformers often used in electronics are not specially efficient, but can still be quite good. The best type (toroidal transformers) use the same shape of core as Fig. 8.4, a "doughnut".

Most mains transformers, however, have rectangular cores made of thin sheets of silicon steel called laminations, stacked to provide the required thickness. (Much less waste current circulates in a laminated core than a solid core.) In a toroidal transformer the core is wound from a long strip of silicon steel tape which has the same loss-reducing effect.

A.C.-D.C. CONVERSION

We still have to convert the a.c. from the secondary into the d.c. for our equipment. For this we use rectifiers and reservoir capacitors.
A rectifier is an assembly of diodes. A diode is a device which allows current to flow in one direction (anode to cathode) but not in the reverse direction.

The kind of diode used as a power rectifier is able to pass large currents in the easy (or forward) direction and is able to withstand large reverse voltages which try to make it conduct "backwards". (In most rectifier circuits the peak reverse voltage, also called the peak inverse voltage or p.i.v., is twice the peak a.c. voltage at the transformer secondary.)

HALF-WAVE RECTIFIER

A single diode (Fig. 8.5a) makes a halfwave rectifier. It lets only half of the mains-derived sinewave through to the load. During the alternate half-cycles it is reverse biased and blocks current. So the load receives "humps" of current. This is useless for powering most sorts of electronic equipment. So the humps are smoothed out by adding a reservoir

Fig. 8.5(a). Half-wave rectifier circuit, with waveforms. (b) Halfwave rectifier with reservoir capacitor.

Fig. 8.4. One form of transformer.
Fig. 8.3. "Magic Box" for voltage Fig. 8.3. The output is always 10 V , whatever the size of RL.

[EE156

EE 176

(b)

Fiq. 8. 8. Full weve "ush-pull reacifer with weveloms
capacitor C1. This charges up rapidly when the a.c. input Vin is near its peak, and gives out its charge when D 1 is nonconducting.
If Cl is large enough, the fall in voltage which occurs between the times when DI conducts and tops it up is small. This up and down wobble on the d.c. output is called the ripple voltage. Since it is an a.c. effect and is applied to a capacitor it follows that a.c. must flow through C1. This is the ripple current.
In the circuits commonly used the ripple current is about one-third of the a.c. input current to the rectifier. (For design purposes, call it half and use a reservoir capacitor with at least that ripple current rating.)
The larger the capacitance of C1 the smoother the d.c.; that is, the less the ripple voltage. Reservoir capacitors (sometimes called smoothing capacitors) are usually high-value electrolytics.

FULL-WAVE

Half-wave rectification is hardly ever used in the sort of power supply units (p.s.u.s) incorporated in mains radios and amplifiers. Full-wave rectification is the norm. Here both half-cycles of the mains are persuaded to produce d.c. of the same polarity.

One way of performing this trick is to use a mains transformer with a centretapped secondary (Fig. 8.6). The centre tap (c.t.) is a voltage zero or reference point.

During one mains half-cycle the voltage polarities are as shown. DI conducts. During the next, the polarities reverse and D2 conducts. And so on. In the absence of C 1 the voltage across RL would be as in curve 2 . With C 1 it is as curve 3. C1 gets topped up every halfcycle. Current flows into Cl in short sharp pulses near the peak of each halfcycle.
The need for a centre-tapped winding is avoided if a bridge rectifier is used (Fig. 8.7a). This has four diodes. Only two conduct at any one time. When the mains polarity is as shown, D1 and D4 conduct, topping up C1. On the next half-cycle D3 and D2 conduct, and so on.

RECTIFIER VOLTAGE DROP

Rectifiers are cheap, so bridge circuits (often drawn in other ways, including the "shorthand" form illustrated in Fig. 8.7b) are common. But for very low voltage outputs they are not so attractive as the Fig. 8.6 arrangement (."push-pull" rectification).

The reason is that some voltage (usually about IV) is dropped across each diode. In a bridge circuit, where two diodes conduct together, 2 V is lost and the d.c. output voltage is 2 V less than the peak a.c. input. With the push-pull circuit, only IV is lost.

On the other hand, in Fig. 8.6 each half of the secondary is idle half the time, while in Fig. 8.7 the whole secondary is used on every half-cycle.

D.C. OUTPUT VOLTAGE

Since C1 gets topped up to nearly the peak a.c. voltage the d.c. output voltage is higher than you might expect. Transformer secondary voltages are often quoted as "r.m.s. voltage output at full load". Let's look at this.

For starters the peak of a sinewave like the mains voltage is 1.414 times the r.m.s. value. So 10 V r.m.s. would yield 14.14 V d.c. if there were no drop in the rectifiers. In a push-pull circuit this would fall to about 13 V .

Next, the full-load output voltage means what the transformer delivers when it's working flat out, delivering as much current as it can safely do. But then the losses in the winding resistances and the core are greatest and the voltage suffers. The voltage loss can easily be 20 per cent more in the flat-out condition than when "idling". With no load, the d.c. voltage might be 16 V instead of the 10 V you might expect from the transformer specification.

In practice, much greater differences between full-load and no-load voltages are found in miniature transformers. The variation is called the regulation of the transformer and expressed in specifications ("specs") as a percentage:
Regulation $=\left(\frac{\text { No-load V }- \text { Full-load V }}{\text { Full-load V }}\right)$

'Fig. 8.8(a). Elements of a "shunt" or parallel vótage stabiliser. (b) Elements of a series stabiliser.

In complete power units the regulation is worse than the figure for the transformer alone.

VOLTAGE STABILISERS

In many applications this variation in voltage can be tolerated. But some equipment, notably computers and most other digital equipment, the voltage must be kept at a constant level (such as 5 V d.c.) even when the current demanded by the equipment is varying, and also the mains voltage.

In such cases a voltage stabilising circuit is needed. There are two basic "traditional" ways of stabilising the voltage (Fig. 8.8). In the first (a) a higher than needed voltage is applied to a voltage divider ($\mathrm{R} 1, \mathrm{R} 2$). If the current demanded by RL changes, R2 is automatically adjusted to compensate.

To make this sort of circuit work it must be operated at full current all the time. If RL doesn't need it, the surplus current is absorbed by R2. Suppose the current demanded by RL varies from 10 mA to 100 mA . Then when it is 10 mA the unwanted 90 mA must flow in R2. As the load current IL rises, R2 adjusts itself to absorb less and less until, when IL = 100 mA no current at all flows in R2.
The required automatically varying R2 is obtained by using, not a resistor, but a Zener diode. A "Zener" behaves like an

CHECK YOUR PROGRESS

Questions on Teach-In 84 Part 8 Answers next m̈onth

Q8.1 A Zener diode is rated at 10 V . 400 mW :
(a) What is the maximum current it can safely pass?
(b) When used as R2 in Fig. 8.8 a , if the d.c. input is 14 V what is the lowest safe value for R1?
(c) If the tolerance on the Zener voltage is 10% and your Zener is on the lower limit what power does the Zener then dissipate when no load is connected across it?
(d) If R1 is 10% low how much current flows? (Other conditions as in c).

Q8.2 In Fig. 8.9, if the maximum permissible l.e.d. current (Imax) is 30 mA and at this current the combined l.e.d. voltages come to $3 \cdot 3 \mathrm{~V}$, what is:
(a) The value of R1 which allows Imax to flow?
(b) The power dissipated in the l.e.d.s when no load is across them?
(c) The power in the l.e.d.s when a load across them draws 20 mA ?
08.3 In a half-wave rectifier circuit like Fig. $8.5 \mathrm{~b}, \mathrm{~V} \mathrm{IN}=10 \mathrm{~V}$ r.m.s. What is:
(a) The output voltage d.c. when RL is infinite?
(b) The peak reverse voltage then experienced by D1?

Q8.4 A mains transformer has a secondary winding rated to deliver 12-0-12V r.m.s. at 100 mA maximum.
(a) What type of rectifier circuit is it intended for?
(b) If the regulation of the transformer is 20% what is the likely d.c. output off-load?
(c) What would be a suitable minimum ripple current rating for the reservoir capacitor?
(d) If the 100 mA rating is "r.m.s." what is the maximum safe d.c. output current when a reservoir capacitor is used?
(e) If the centre-tap is left unconnected and a bridge rectifier connected across the whole secondary, with a reservoir capacitor, what is:
(1) The likely d.c. output voltage, off-load?
(2) The maximum permissible output current?

Q8.5 When a reservoir capacitor is used, the rectifier diodes conduct for only a portion of a half-cycle. During this period they must provide enough current to charge the capacitor sufficiently to keep up the d.c. output. In Fig. 8.5, if the d.c. output is 100 mA and D1 conducts for 10% of its "on half-cycle, roughly how much current does it pass when conducting?

ANSWERS TO PART 7

Q7.1 (a) 100 mA (0.1A). If all Vcc is dropped across the load lleaving nothing across the transistor) the current is $10 \mathrm{~V} / 100 \Omega=0.1$ A.
(b) $1 \mathrm{~W}(10 \mathrm{~V} \times 0.1 \mathrm{Al}$.
(c) Zero (OV $\times 0.1 \mathrm{~A}=0 \mathrm{~W}$). In practice there is always a small voltage across the transistor but it can be neglected in this kind of calculation.
(d) Vcc shared equally beiween load and transistor.
(e) $V C E=5 \mathrm{~V}$. $/ c=50 \mathrm{~mA}$. (Dissipation is then 250 mW .) (f) $0.5 \mathrm{~mA}(500 \mu \mathrm{~A})$.
07.2 (a) 10 W . If the case is at $50^{\circ} \mathrm{C}$ and the junction at $150^{\circ} \mathrm{C}$ the temperature drop inside the transistor is $100^{\circ} \mathrm{C}$. This drop appears across the thermal resistance $\left(10^{\circ} \mathrm{C} / \mathrm{W}\right)$. For every $10^{\circ} \mathrm{C}$ the transistor is dissipating 1 W , so in our example the dissipation (called "collector dissipation" in data sheets) is 10 W
(b) $2.5^{\circ} \mathrm{C} / \mathrm{W}$. The thermal power supplied by the transistor to the heatsink is 10 W and the temperature difference between sink and ambient air is $25^{\circ} \mathrm{C}$.

Q7.3 (a) 25W. Peak load current $=$ $10 \mathrm{~V} / 4 \Omega=2 \cdot 5 \mathrm{~A}$. Note that peak current $=(V C c / 2) / R R_{L}$, which is the same as Vcc/2RL. Peak power is this times the peak voltage Vcc/2. So peak power is Vcc/2RL times Vcc/2 which comes to Vcc²/4RL. This formula is a handy rule of thumb for estimating the power obtainable from this type of circuit. In practice it is always an over-estimate because of inadequacies in the transistors and drive circuit.
(b) 100 W . Note that doubling the voltage quadruples the power. (See Part 8).
(c) If the peak power is $V C c^{2} / 4 R L$, half this is $V C c^{2} / 8 R L$. This is the rule-of-thumb formula for estimating the r.m.s. sinewave power. In real-life mains-powered amplifiers, however, it may not be possible to obtain a sustained sinewave power output of half the peak power. This is because with sustained sinewave signals of large amplitude the supply voltage Vcc often falls and this limits the output power.
ordinary silicon diode in the "easy" direction, but it is in the reverse-biased state that it is used. Once the reverse voltage reaches a certain breakdown value the Zener conducts very freely.

If the voltage is to be stabilised at say 10 V then a " 10 V Zener" is substituted for R2. If the voltage tries to rise above 10 V the Zener conducts and the "surplus" is absorbed by R1.

By the way, all silicon diodes breakdown at some reverse voltage, but for rectifier diodes this is kept as high as possible. Zeners are made with breakdown voltages down to a few volts.

Circuit Fig. 8.8 (b) is less wasteful than (a). With no-load Rs becomes infinite so it absorbs all the surplus voltage without drawing current. At full-load, Rs is small and then also wastes little power even
though it is passing all the current.
There is no simple component like a Zener which will do the work required of Rs. Quite complex combinations of transistors, Zeners and other components are required to make efficient voltage stabilisers. Fortunately they can be obtained in the form of integrated circuits, which you can use without bothering about their inner workings.
8.1-SHUNT STABILISER

EE196

Fig. 8.9. Shunt stabiliser experiment. The two l.e.d.s are equivalent to a Zener diode giving 3 V approximate.

Fig. 8.10. EBBO board layout for Fig. 8.9. The lead to potentiometer VR1 marked "W" should connect to the centre or wiper terminal.

8.2-INPUT VARIATIONS

Fig. 8.11. Checking the effect of input-voltage changes.

Fig. 8.12. EBBO board layout for Fig. 8.11. The lead marked " W " should connect to the wiper terminal of VR1

8.3-SERIES STABILISER

EETG
Fig. 8.13. Simple series stabiliser.

Fig. 8.14. EBBO board layout for Fig. 8.13. The lead marked " W " should connect to the wiper tag of potentiometer VR1.

EXPERIMENTS 8.1,2,3

A simple test circuit (Fig. 8.9) will demonstrate the working of the first sort of voltage stabiliser.

You haven't got a Zener? Never mind. It so happens that a l.e.d. used in the normal, "easy" direction acts like a lowvoltage Zener. We'll use two in series (D1 and D2) to get a higher voltage. Variations in current show as brightness changes.

The "pot" (used here as a two-terminal variable resistance) simulates load variations (R_{L}). At very low settings of RL the diodes are not turned on and have no effect. But at around 3 V they start to take current. Increasing RL then has little effect on the output voltage.

The set-up for this experiment is shown in Fig. 8. 10.

INPUT VARIATIONS

In real life the input voltage of a mains p.s.u. varies. This must not affect the stabilised output voltage much. We aren't using the mains, but the circuit of Fig. 8.11 enables the effective voltage of our 9 V battery to be reduced. VR1 adjusts it to anything between 0 V and about 8 K e
A transistor used like this is called an emitter follower because its emitter voltage follows any variations in its base voltage.

You should find that once the l.e.d.s light, turning R1 up further has little effect on the stabilised output. Thus the stabiliser protects against input voltage variations.

The set-up for Fig. 8.11 is given in Fig. 8.12 .

SERIES STABILISER

Your transistor and I.e.d.s can also be used to demonstrate the Fig. 8.8b type of circuit. This is called a series stabiliser because the control element (RS) is in series with the load RL.
In Fig. 8.13, R1 and the l.e.d.s provide a stable voltage (about 3 V). This is applied to the base of TR1 as a reference voltage. The load RL is R3 and VR1, and can be varied between 100Ω and $10 \mathrm{k} \Omega$ approx. With SI in position 1 the meter measures the output voltage Vout. In position 2 it measures the drop (V_{1}) across R3; this indicates the load current since every 10 mA drops 1 V .
Plot a rough graph Vout against V_{1}. The output voltage is stabilised reasonably well at low and medium currents.

VARIABLE VOLTAGE

For many purposes a variable-voltage stabilised supply is needed. The essential elements of a variable series stabiliser are shown in Fig. 8.15. The differential (operational) amplifier is used to compare a tapped-off portion (VF) of the output

Fig. 8.15. Elements of an adjustable series stabiliser.
voltage with a reference voltage (VREF) derived from the Zener, D1.
If there is any difference the amplifier output drives the "series" transistor, TR 1, the right way to reduce the difference. (Negative feedback rides again!) In other words, the circuit forces V_{F} to equal Vref. The output voltage is then greater than Vref by the voltage attenuation factor of the voltage divider VR 1 .

If $V_{F}=5 \mathrm{~V}$ and the factor is. 3 then Vout $=15 \mathrm{~V}$. The circuit works only between certain limits. Vout can't be less than VREF, and it can't be quite as high as Vcc because a certain voltage is needed to operate TR 1.

SWITCHING STABILISERS

In recent years another kind of stabiliser has come into fashion. The es-

The EBBO layout for input-voltage varia-tions-Experiment 8.2.
sence of the switching stabiliser, as it is called, is to keep a capacitor across the load charged to the required voltage. To do this the capacitor is "topped up" from time to time by short pulses of current. These pulses come from the unstabilised supply via a series transistor. If the load demands more current the series transistor is turned on for longer periods at a time.

In practice switching regulators are rather complex. The capacitor topping-up is usually done indirectly, via an inductance, because this enables the efficiency to be increased. Integrated circuits for switching stabilisers are now available (as indeed they are for series stabilisers).

Next month: Radio Systems

Layout for Experiment 8.3. The "test" lead S 1 is shown between meter and leads.

FOR YOUR
 ENTERTAINMIENT
 BY BARRY FOX

Holographic Call

Since British Telecom came under threat (now becoming reality) of privatisation, it has been loudly announcing or inaugurating something every day. The snag is that when BT has something really worthwhile to announce or inaugurate, it can pass unnoticed.

The fact that British Telecom's Phonecards use a holographic optical pattern, rather than a magnetic strip, to control a cashless call box, is a good example. The hot news on holography was buried in a rather boring press release which many people did not read the whole way through. So the clever use of holography was never reported.

Another good example, recently, was inauguration by BT of the world's first 140 M bit/s commercial optical fibre link between Luton and Milton Keynes. Although an important achievement, it sounded like old news to many people.

At the British Association's annual meeting in Brighton last August ${ }^{\text {A }}$ BT told scientists that it had transmitted light over 100 km of optical fibre without amplification and predicted runs of 400 km . In October 1983. BT announced "the first single mode optical fibre link", following a successful test of the 27 km link between Luton and Milton Keynes.

Then, in November, BT announced the "go-ahead" for a submarine cable using single-mode fibres to carry phone-calls and data under the Allantic. These will operate at a data rate of 280 M bit/s. A month later BT announced that it had signed the contract for what had previously been announced.

Despite the inevitable feeling of deja vu, inauguration of the Milton Keynes link bears testimony to the fact that BT made the right decision in 1980. That was when engineers switched from graded index fibre, which carries a wide beam of light prone to undesirable dispersion, to mono-mode or single-mode fibre, which carries a single light ray with no dispersion.

The switch proved far easier than anyone expected. "The problems just tumbled as people put their minds to them," says Dr. John Midwinter, of BT Research Laboratories in Ipswich. "We were astounded when we put pulses in one end and they came out with identical shape after 50 kilometres"

Future Developments

They have, so far, kept quieter on their long-term research. They are now working on solid-state lasers with a longer wavelength, 1.5 micrometres instead of 1.3 micrometres, and with the laser tuned very tightly to a specific frequency. Longer wavelengths means less absorption by the fibre.

Tighter tuning makes it possible to send a large number of separate channels of information simultaneously down one mono-mode fibre, separated by only a slight shift in light carrier frequency. The use of tightly defined frequencies also makes it possible to use optical boosters in-
stead of converting light into electricity and then back into light again.
Until now light amplifiers have operated on a broad frequency band and introduced too much unwanted noise. With tight frequency tuning the receiver at the far end of the cable can work on the heterodyne principle just like a radio receiver; the incoming light signal beats with a beam of locally generated laser light to produce an intermediate frequency (i.f.) of much longer wavelength.

BT believes it was the first body in the world to recognise the benefits of using lasers tuned to very narrow frequency. The system is still only a laboratory tool. But commercial development would mean that even existing mono-mode fibres, like those now laid under the ground between Milton Keynes and Luton, could carry more information channels than anyone has previously thought possible.
Also the theoretical distance for monomode transmission, without any boost along the route, rises to 500 kilometres. In contrast to all this, France is locked into the ten-year-old technology of "Graded Index Fibre" which is not upwards compatible in the same way as the mono-mode technology on which BT has successfully gambled.
The biggest problem in bringing monomode fibre technology out of the laboratory and Into, quite literally, the field was the difficulty of joining the fibres, every kilometre, by a wet and windy roadside. The microprocessor contralled arc-fusion jointing machine built by BT, welds two fibres, each 125 micrometres in diameter, with a light carrying core of 8 micrometres, to an alignment accuracy of 0.25 micrometres!

Sociable Mic

Electronics shops often sell f.m. radio microphones, even though it is against the
law to use them in Britain. An f.m. radio mic. is an ordinary microphone with a low power f.m. transmitter built into the handle which trails a wire aerial. A hidden tuning screw adjusts the transmission frequency over the v.h.f. f.m. band (usually 88 MHz to 108 MHz).

The idea is to transmit on a frequency which is unused in your area and pick it up on an f.m. receiver tuned to that frequency. It's an extension of the technique used in TV studios to let performers roam in front of the cameras unencumbered by trailing wires and without the need for a microphone slung on the end of a boom.

In Japan wireless mics are big business because they are ideal for "karaoke". the Far East craze for singing along with a prerecorded musical backing track. In Japan you can also buy an f.m. wireless gramophone. A radio link, instead of wires, connects the gramophone turntable to the hi fi system.
In theory gadgetry of this type is of such low transmission power that it won't interfere with other domestic radio equipment. But there is no guarantee that there won't be some interference. This is one reason why f.m. radio mics, like all unauthorised transmission equipment, are illegal in the UK.

Obviously I'm not going to recommend that anyone uses an f.m. radio mic. in Britain. But there's no reason why you shouldn't use one abroad and their disadvantage (tendency to interfere with other people's radios) can be turned to your advantage. Here's how.
Imağine you are laying on a sunny beach, on holiday. Quite a few people on the beach are quietly llistening to music on headphones from cassette tape. Then along comes an unsociable sunbather with an ordinary portable radio and sits down beside you. There are few worse sounds in the world than a portable radio turned up too loud so that it distorts music that you don't want to hear anyway.
To kill it, all you have to do is quietly switch on an f.m. radio mic. and tweak the tuning screw until its transmission frequency hits the same number as the rogue receiver. There is then either feedback or distortion. Before long the unsociable sunbather either changes stations, in which case you re-tune your mic., or gives up and switches off, in which case you've won.

War Games

The film War Games is now famous for its scarey suggestion that anyone with a home computer could gain access by telephone to one of the computers used by the military. Of course, War Games goes over the top, but it is true that any computer which is programmed for telephone access cannot be 100 per cent safer from unauthorised connection.

The more complicated the password procedure, the more difficult and time consuming it is for an authorised computer to gain access. So password procedure may not be too complicated. Also the basic idea of the film, that a defence computer will be accidentally triggered into playing war games for real, may not be as absurd as the military apologists have professed.
Take the case of the Thorn-EMI company, Simtec, who recently developed a war game simulator for the navy. The Simiec system is intended for training sonar and radar operators, and crews in charge of weapon systems. It can simulate a war in an area of
over four million square miles, with up to 100 land vehicles, submarine or aeroplanes. Each of the vehicles can be assigned characteristics from a selection of 250 different classes, for instance: bomber, fighter, helicopter and so on.

There is nothing new in this, although the Simtec simulator obviously relies on a bigger and more powerful computer system than most. The sting is in Thorn-EMI's own description of the system. I quote verbatim:
"These trainers inject simulated responses into the actual sensor/weapon system. Operators and command teams are at their "real" battle stations and so train in a situation very close to realistic battle conditions."

In other words the Simtec war game computer actually tells the ship's missile crews how, when and where to fire. Let's hope that the system doesn't develop a fault, and doesn't have telephone inputs that can be accessed by a kid with a home computer.

sHop TALK
 in
 BY DAVE BARRINGTON

Catalogues Received

This month only two catalogues, from Marco Trading and Electrovalue, have landed on the "Shoptalk" desk. Also news of the latest Ambit components catalogue was delivered, but alas no catalogue accompanied the release!

The TV service repair engineer will find a range of voltage-dependent resistors. TV replacement droppers or resistor networks and valves all included in the 109-page Marco Trading mail order components catalogue. isvb

Also, there's an excellent range of plugs and sockets, including BNC and coaxial types. Aerial amplifiers and a u.h.f./v.h.f. colour bar generator are also listed.

The semiconductor section is spread over 35 pages and covers a comprehensive range of transistors, bridge rectifiers and integrated circuits, including CMOS devices.

Amongst the soldering equipment is an Antex 12 V 25 watt soldering iron ideal for car owners. This iron comes with approximately 4 metres of cable terminated with heavy duty clips and is easily clamped on the battery normally fitted to any car, boat or caravan.

All prices of goods are contained on the page of entry but are exclusive of VAT, which must be added to the total order. A 30p credit note is included with each catalogue.
Copies of the Marco Trading catalogue cost $65 p$ each and can be obtained from: Marco Trading, Dépt EE. The Maltings, High Street. Wem, Shropshire, SY4 5EN

Most of our readers will no doubt be familiar with the excellent component service offered by Electrovalue and will need no persuasion to obtain their latest $A-Z$ product list

If in doubt, we can only point out that this 36-page catalogue lists items ranging from cases and discrete components to meters and printed circuit materials. This is without listing the numerous computer equipment stocks.

Copies of the Electrovalue A-Z product list are available free of charge from: Electrovalue Ltd., Dept EE, 28

St Judes Road, Englefield Green, Surrey, TW20 0HB.

Ace Buy

Some good news for owners of the Jupiter Ace home computer who felt left out in the cold by the sudden demise of Jupiter Cantab Ltd.

It is now back on sale, by mail order only, from Boldfield Limited Computing. Existing owners will be pleased to note that the Jupiter 16 K RAM packs and software are also available. Further titles will be added in the near future.

The best news is that the prices have been drastically cut! The Ace, with power supply, 182 page manual, demonstration cassette, leads, and a 12 month guarantee, is only $£ 26$. The 16 K RAM pack costs $£ 20$ and all the software cassettes are $£ 3$ each. But add VAT and $£ 3$ towards postage and packing.

As a combined deal, you can purchase the Ace with a 16 K RAM pack for $£ 44$ plus VAT. This would have set you back $£ 124.90$ previously.

For more information write to: Boldfield Limited Computing, Dept EE, Sussex House, Hobson Street. Cambridge.

CONSTRUCTIONAL PROJECTS

Simple Loop Burglar Alarm

The quad 2 -input NAND gate i.c., type number 4011 , used in the Simple Loop Burglar Alarm, carries the designation B after the numerals.

The use of this letter signifies that it has a buffered output and this type should be used in this circuit. Some devices may carry the letters BE, these types will work quite satisfactory in the circuit.

It is quite possible that an un-buffered type, designated UBE, will work, but they have not been tried in the prototype model.

The key switch or lock switch should not cause any buying problems, and is stocked by most component suppliers. However, if readers do experience difficulties in locating a source, it is currently listed by Maplin (code: FH40T), Greenweld, Rapid and En-field-Electronics.

Experimenter's Power Supply
The operational amplifier, type μ A759, used in the Experimenter's Power Supply has similar characteristics to the 741 but features a power output stage capable of providing up to 325 mA output current into a 50 -ohm load. This advice appears to be only available from RS Components, Order code 303-258.

It should be noted that RS will not supply to the general public but must be ordered through a local stockist.

Microcomputer Interfacing Techniques
The motors and gearbox used in our model for the Computer Controlled Vehicle was obtained from Greenweld Electronics.

As the motors and gearbox come as one complete unit, this appears to be the "best buy" at $£ 5.95$, and to be recommended. They are also able to supply the wheels (two for £1.30)

These motorised gearboxes, originally used in a mobile model tank, have two $3-$ volt motors linked by a magnetic clutch. The gearing arrangement reduces the final drive speed to about 50 r.p.m.

Full details of these units can be obtained from: Greenweld Electronics, Dept EE, 443D Millbrook Road, Southampton SO1 OHX.

The mains transformer (code 207-199) and the infra-red slotted opto-switches (code 306-061) are available from RS Components. These items must be purchased through a bona fide dealer as RS will not supply components to the general public.

A similarly rated mains iransformer could be used, but the printed circuit board layout would probably need to be changed to cater for the different pinning arrangements.

Most of our advertisers stock micro switches and types with an operating lever should be specified when ordering.

Vari-cap A.M. Radio

The only component called-up in the Vari-cap A.M. Radio which could cause purchasing problems is the Vari-cap diode D2/3.

This is a dual-diode device in a single package and is stocked by Ambit International. The Vari-cap type KV1236 should be purchased and carries the stock number 12-12365.

Mastermind Timer

A suitable "earpiece" called for in this month's "Black Box" project-Mastermind Timer, is available from Magenta, Rapid and Enfield Electronics.

We do not expect any component purchasing problems for the Extra IK RAM for the Acorn Atom or the Extra Utility Prom.

Please mention EVERYDAY ELECTRONICS

 when replying to products mentioned on this page and to Classified Ads
-microcomputer IITEERFACIIIG TECHIIIOUES

 INCLUDING MANY USEFUL CONSTRUCTIONAL PROJECTS

 INCLUDING MANY USEFUL CONSTRUCTIONAL PROJECTS}

PART 11: COMPUTER CONTROL OF SMALL VEHICLES
BY J. ADAMS b.Sc. M.Sc. \& G.M. FEATHER b.Sc.

THE intrinsic ability of the micro-computer- to execute a specific set of stored instructions--allied with its capability to interface with a wide range of peripheral devices has formed the basis of this series of articles.

In particular the reader will be aware that the microcomputer, in conjunction with external circuitry, is capable of accessing data, corresponding to both digital and analogue quantities. Such information may be used to modify or control the execution of output signals to additional electronic devices.
This month's article will deal with another application of this technique to control small motor driven vehicles.

Such vehicles are widely employed in "Technology" courses and several versions, differing both in general philosophy and mode of operation, are available. This article sets out to describe the underlying principles and construction of a simple "buggy" which will offer at least some of the facilities of its commercial counterparts.

TRACTION MOTOR CONTROL

In order that reasonable precise positioning of the vehicle can be achieved it is of course essential that the operation of the traction motors is carefully controlled by the microcomputer.

Various techniques have been devised in order to achieve this end and an effective, albeit rather expensive, solution is the employment of stepper motors for this purpose. Readers interested in developing a system along these lines should refer to M.I.T. Part 5 (November 1983) in which the control of such motors was described.

FEEDBACK

If it is intended to employ d.c. motors to provide traction for the vehicle, then some form of feedback is essential.

In the system to be described, such information is derived by opto-electronic sensing of the number of revolutions of the driving wheels. Assuming that slipping of the wheels does not occur, this arrangement is capable of providing

reasonable precise information concerning the vehicle's operations. These include forwards, backwards and rotational motions.

COLLISION DETECTORS

Two other "sensors" are provided; these are collision detectors and will provide signals in the event of the vehicle encountering obstacles in its path whilst moving either forwards or in the reverse direction.
ment iseceipt of such information, appropriate software can output control signals to the traction motors in order that the obstacle might be negotiated.

CIRCUIT DESCRIPTION

A complete circuit diagram of the Interface/Motor Control and associated circuitry is given in Fig. 11.1 and the reader should consult this.

Output signals from and input signals to the microcomputer user port are buffered by IC1, a 74LS244 octal noninverting buffer. A pin-out diagram of this is shown in Fig. 11.2, which also shows the internal arrangement of the individual buffers.

Each employs Schmitt trigger circuits (which, insofar as signals from the sensors is concerned, is necessary) and all buffers offer tri-state outputs. Pins 1 and 19 provide control of the tri-state facility and are active low; in this application. The devices are permanently enabled by grounding these control inputs.

Inputs $1 \mathrm{~A} 1,1 \mathrm{~A} 2,1 \mathrm{~A} 3,1 \mathrm{~A} 4$ to IC 1 are used for motor control information from the user port, corresponding respectively to starboard motor forward, starboard motor reverse, port motor reverse and port motor forward.

Associated outputs from IC1, 1Y1, $1 \mathrm{Y} 2,1 \mathrm{Y} 3$ and 1 Y 4 are routed directly to four of the inputs of IC2, a 7 -stage Darlington driver i.c., the collectors of which drive the motor control transistors TR1 to TR8.

MOTOR OPERATION

Fig. 11.3 shows a simplified version of this section of the circuit for one of the motors, TR1 to TR4 having been
represented as simple switches S1, S2, S3, S4.

S1 and S4 are closed, then the motor will run in one direction, whilst opening these and closing S2 and \$3 will reverse the direction of the motor. If either S1 and S 3 , or S 2 and S 4 are open or closed, then the motor will stop. One motor can thus be controlled by a 2 -bit binary number as shown in Table 1.

Table 1

Switch State	
S1/S3	S $2 /$ S4

$\emptyset=$ open $1=$ closed

For control of both motors, a 4-bit number is required and this is derived from appropriate user port control lines configured for output. This is discussed later in the software section.

The drive motors are likely to produce some rather spurious pulse on their supply lines and, for this reason, a separate 7.5 V supply for them is derived in the power supply section of the circuitry.

Fig. 11.3. Switch representation of the motor drive circuit.

Fig. 11.2. Pin-out details of the 74LS244 tri-state octal buffer.

Fig. 11.1. Circuit diagram of the Interface/Motor Drive section of the Computer Controlled Buggy.

Fig. 11.4. Infra red opto-switch sensing circuit

Fig. 11.5. Collision sensing/warning circuit diagram. The switches S1 and S2 are microswitches which form part of the "bumper" mechanism.

Fig. 11.6. Circuit diagram for a suitable power supply of the "buggy"

Completed prototype power supply showing the "umbilical cord" which connects to the micro user port and the buggy (SK 1). Note the slots in the case sides for the ribbon cable.

Diodes D1 to D8 provide protection against switching transients for the drive circuitry.

ROTATION SENSING

The final drive shafts from the motor/gearbox assembly are provided with rotational sensors. Each shaft carries a slotted disc which rotates in the gap of a slotted opto-switch. The pulse output from the phototransistor section of these devices is applied to two of the inputs of the 74LS244 buffer and the corresponding outputs are routed to the user port P4/P5 lines. Suitable software can provide positional information perhaps to be displayed on the vDu. The l.e.d. sections of the opto-switch derive their power from the +5 V supply for the main board. Fig. 11.4 shows the circuitry of this section of the vehicle.

COLLISION DETECTION

Forward and rear mounted microswitches, S1 and S2, provide collision signals. The associated circuitry is shown in Fig. 11.5.

Under no collision conditions, these switches, S1 and S2, are open and the associated buffer inputs are pulled up to logic 1 by resistors R9 and R10. A collision pulse pulls either input down to logic 0 and the corresponding buffer output of IC1 also goes low. These signals are applied to user port lines P6 and P7 and ICI.

A subsidiary "on-board" circuit also provides an audible indication of a collision. This consists of IC5 and its associated circuitry. This i.c. is a CD4011 cmos quad 2-input NAND gate.

One gate, IC5a, is used to detect a collision sensor output going low and reference to the NAND gate truth table given below will reveal that this condition results in the output of that gate going high. Two of the remaining three gates are wired as inverters in an astable circuit, oscillating at approximately 1 kHz , the output of the first gate providing a logic 1 to initiate operation of the astable.

Transistors TR9 and TR10 form a conventional Darlington pair circuit to drive the small loudspeaker, LS I.
NAND gate truth table

Inputs		Output
A	B	
0	0	1
0	1	1
1	0	1
1	1	0

POWER SUPPLIES

Fig. 11.6 shows the circuit diagram of the power supply section.

The power supply circuitry is fairly conventional; fixed and variable voltage regulators IC6 and IC7 providing respectively the +5 V TTL and +7.5 V motor drive supplies. Preset VR1 gives a measure of speed control for the vehicle and should be adjusted to provide the required voltage up to 7.5 V .

COMPUTER Controllid BUGG Construction

INTERFACE DRIVER BOARD

The prototype employed three printed circuit boards in its assembly, two in the vehicle and the third in the case containing the power supply circuitry.

The actual-size master p.c.b. pattern for the board containing the interface and motor drive circuitry is shown in Fig. 11.7. This board is available from the $E E$ PCB Service, Order code 8405-02.

The layout of the components on the topside of this board is shown in Fig. 11.8. Begin by fixing the Veropins to the board to allow easy interconnection to other boards/components in the system. Next mount the i.c. sockets and link wires followed by the transistors and diodes. Pay special attention to the orientation of these devices when mounting to the board.

There are four resistors required in the circuit and all of these are contained in a single-in-line package (s.i.1.). This package may be mounted either way round.

COLLISION SENSING/ WARNING BOARD

Most of the components forming the collision sensing and warning circuitry of Fig. 11.5 are mounted on a printed circuit board, the actual-size master pattern of which is shown in Fig. 11.9. This board is available from the EE PCB Service, Order code 8405-03.
The layout of the components on the topside of this board is shown in Fig. 11.10. Assemble the components as indicated making sure to use a d.i.l. socket to house IC5. Do not insert this device until all construction is complete. Once again use Veropins where indicated to facilitate easy wiring up later.

POWER SUPPLY

The power supply circuitry is housed in a plastics box measuring $215 \times 130 \times$ 85 mm . Most of the components are fitted to a printed circuit board and the master pattern (actual-size) for this p.c.b. is

COM	PONENTS	Approx. cost Guidance only	E35	excluding boards		
Resistors		IC5	CD4011 смо quad 2 -input NAND gates			
R1-4RR	$1 \mathrm{k} \Omega$ 8-pin s.i.I. package 150Ω	IC6	$7805+5 \mathrm{~V}$ regulator i.c	ltage		
		$1 C 7$				
R6 R7	$1 \mathrm{k} \Omega$ 150Ω 150		LM317M			
R8,R9,10R11, 12	$1 \mathrm{k} \Omega$ 150Ω 100 k		O. 5 A voltage regulator i.c.			
R14	22Ω 560Ω	Miscellaneous				
815 816	${ }_{220 \Omega}^{4.7 \mathrm{k} \Omega}$ page 313	S1,2 s	standard levermicroswitch (2 offi)			
		S3	miniaure mai			
		VR1	mains primary/ 0-12V, O-12V 500 mA secondaries			
Capacitors						
C1. 2	1uF 10 V					
C5		Ls1	(RS 207-699) miniature moving			
${ }_{\text {C6 }}^{\text {C6 }}$	$1000 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. $0.47 \mu \mathrm{~F}$		coil speaker 75 ohms impedanc			
C8		M1/2	motorised gearbox assembly			
C10			(Stenweld)			
C11	(FS 1	panel mounting holder			
Semiconductors		Printed circuit boards: Interface/drive board, single-sided size $115 \times 100 \mathrm{~mm}$, EE PCB Service,				
D1-8	OA81 small signalgermanium diode(8 off)					
		Order code 8405-02; Collision sensing/warning board, single-				
D9	T1L220 5 mm red	sided size $103 \times 69 \mathrm{~mm}$, EE PCB				
	${ }^{\text {lie.d. }} 1 \times$ Bridge	Sovice supply board, single-sided				
014.17		size $160 \times 90 \mathrm{~mm}$, EE PCB Service, Order code 8405-04				
TR 1, 3.5.7 ${ }_{\text {TR }}$	BDO 36 silicon pnp	Plastics case type, size $215 \times$				
TR9,						
TR10	8 BFY 51 silicon npm					
iC1	74LSE S S low-power Scotkyoctal non-inverting	sensing) (2 off): : brackets for boardsupport; ribbon cable to connect				
		to micro user port with appropriate SK1; 3 -core lightweight				
	buffer with tri-state outputs					
$1{ }^{1} 2$	ULN2003 7 -stage	supply unit to vehicle; 3 -core				
		mains cable; material for base ofbuggy; general-purpose hook-up				
IC3,4	Slotted infra-red opto switch (2 off)	wire stranded, various insulation colours.				

INTERFACE AND MOTOR DRIVE BOARD

Fig. 11.7. Actual-size master pattern for the Interface/Motor Drive. This board is available from the EE PCB Service, Order code 8405-02.

Fig. 11.8. Layout of components on the topside of the Interface/Drive board. The leads terminated in letters G,H,I,K, go to the bumper microswitches S1 and S2. SK1 is the inter-connecting socket for the buggy and microcomputer, via the power supply unit. Refer to the circuit diagram for wiring to the plug.
$A=$ IC 3 pin 6
$B=1 C 4$ pin 4
$C=1 C 3 \%$ pins
$C=1 C 34$ pins 2.3
$0=1 C 30 i n 1$
$0=|C 3 \operatorname{pin}|$
$E=|C 4 p| n \mid$
$F=1 C 5$ PIN 2
$G=$ MICROSWITCH $S 1$
$H=M M C R O S W I T C H$ $t=\} \quad \mathrm{S} 1 \& 52$
$j=I C 5$ pin
K = MICROS WITCH S
(

Completed prototype Collision Sensing/Warning board. One microswitch can be seen in the top right.

Completed prototype Interface and Motor Drive board.

COLLISION SENSING WARNING BOARD

Fig. 11.9. Actual-size master pattern for the Collision/Warning board. This board is available from the EE PCB Service, Order code 8405-03.

Fig. 11.10. Layout of components on the topside of the Collision/Warning board. The loudspeaker is held in position with impact adhesive.

Fig. 11.11. Actual-size master pattern for the power supply board. This board is available from the EE PCB Service, Order code $8405-04$.

Fig. 11.12. Layout of components on the fopside of the power supply board and interwiring to case mounted components.
shown in Fig. 11.11. This board is available from the $E E$ PCB Service, Order code 8405-04.

Assemble the components according to the topside layout given in Fig. 11.12. Next prepare the case to àccept the case mounted components and then fit these items. Fix the assemble board into the case and wire up as shown.
Thoroughly check over the assemblies and when satisfied secure these to the mechanical equipment detailed in the photographs or some other arrangement that may be required.

CABLES

Attach suitable lengths of cable to the vehicle to reach the power supply box and the micro user port outlet. The latter cable should be suitably terminated to mate with the micro user port. Constructors are referred to the pin assignment tables and diagrams for the user ports of the micros catered for in this series which appeared in M.I.T. Part 1.

Early prototype of the power supply unit. This model shows two mains transformers which have been replaced by a single unit. The pcb has been extended to accept the new transformer.

Close-up view of the bumper mechanism.

Close-up view of the sensor opto-switch and sensor disc.

The completed Computer Controlled Buggy showing arrangement and positioning of boards, motors and front and rear bumpers.

Insofar as the mechanical side of the construction is concerned the photos give the layout used in the prototype, but clearly much scope exists for the ingenuity of the reader in designing his own version of the vehicle.

MECHANICAL DESIGN OF THE VEHICLE

The prototype vehicle was designed around the motorised gearbox assembly currently available from Greenweld Ltd and intending constructors are strongly urged to employ this unit. An interesting feature of the unit is its magnetic clutch arrangement; the purpose of this is to pull both motors into synchronisation with each other and the arrangement appears to be quite effective.

The use of entirely separate port and starboard motors without some arrangement for synchronising the speed of the two would almost certainly lead to problems.

SOFTWARE

The behaviour of the "buggy" is entirely under the control of the microcomputer. The following software modules should allow the flexibility necessary for the reader to write software appropriate for the particular application.
It should be stressed that in cases where the computer senses a collision, for example, PRINT "FRONT COLLISION", then remedial action should be taken. One obvious step would be to reverse both motors if a front collision is detected. This is particularly important if the vehicle is stationary even though the motors are active. Rotational sensing software would prove useful in this case.

Although this series has dealt exclusively with the use of BASIC for control it is worthwhile to note that machine code software can offer considerable advantages in many control applications.

For example, the rotational sensing software could be written as an interrupt service routine and the position of the vehicle displayed on the vDU. This approach is, unfortunately, beyond the scope of the article.

The BASIC software utilises the same principles that have been used throughout the series. Logical operators are used to test for individual bumper collisions.

In BBC BASIC an ExCLUSIVE-or operation is first performed to confirm the states of lines P7 and P6 whilst lines P5 to $\mathrm{P} \mathrm{\emptyset}$ are masked by the AND operator.

This is accomplished in Commodore BASIC by the use of a WAIT statement as outlined in M.I.T. Part 2.

A NOT operation and then six shift rights ensures that the nature of the collision will result in an appropriate branching condition.
It should be noted that logical operators follow a strict order of priority with the NOT operator taking the highest precedence.
Next Month: Speech Synthesis

SOFTWARE MODULES

INITIALISATION

The least significant four lines ($P D$ to P3) need to be configured for output whereas the four most significant lines (P4 to P7) must be configured for input. This is achieved using the appropriate data direction register as follows:

BBC	?65122 $=15$
PET	POKE 59459,15
COMMODORE 64	POKE 56579,15
VIC-20	POKE 37138.15

MOVE THE BUGGY FORWARDS

Linear forward motion can be achieved by rotating both port and starboard motors in the same direction at the same speed as follows:

BBC	?6512 $\varnothing=5$
PET	POKE 59457,5
COMMODORE 64	POKE 56577,5
VIC-20	POKE 37136,5

MOVE THE BUGGY

 BACKWARDSLinear reverse motion can be achieved by rotating both port and starboard motors both in the opposite direction to that required to move the buggy forwards:

BBC	?6512 $=1 \phi$
PET	POKE 59547,1申
COMMODORE 64	POKE 56577,10
VIC-20	POKE 37136,10

TURN THE BUGGY

TO THE LEFT

A left turn can be achieved by reversing the port motor whilst the starboard motor rotates in a forward direction:

BBC	P65120 $=6$
PET	POKE 59459,6
COMMODORE 64	POKE 56577,6
VIC-20	POKE 37136,6

TURN THE BUGGY

TO THE RIGHT

A right turn can be achieved by reversing the starboard motor whilst the port motor rotates in a forward direction:

BBC	? $6512 \emptyset=9$
PET	POKE 59457,9
COMMODORE 64	POKE 56577,9
VIC-20	POK 37136,9

STOP THE BUGGY

This can be achieved by turning off both port and starboard motors:

BBC	P6512 $0=255$
PET	POKE 59457,255
COMMODORE 64	POKE 56577.255
VIC-20	POKE 37136,255

TEST FOR

BUMPER CONTACT

A front collision will be indicated by a negative transition on P7 whereas a rear collision will be indicated by a negative transition on P6:

BBC

10 IF (765120 EOR 192) AND 192 THEN $2 \varnothing$ ELSE $1 \varnothing$
$2 \emptyset$ ON NOT ($76512 \emptyset / 64$) AND 3 GOSUB $100.200,300$
30. STOP

106 PRINT "REAR COLLISION":RETURN
200 PRINT "FRONT
COLLISION":RETURN
300 PRINT BBOTH FRONT AND REAR
COLLISIONSI":RETURN

PET

10 WAIT 59457,192,192
$2 \emptyset$ ON NOT (PEEK (59457)/64) AND 3 GOSUB $100,200,300$
$3 \emptyset$ STOP
100 PRINT "REAR COLLISION":RETURN
200 PRINT "FRONT
COLLISION": RETURN
30 PRINT "BOTH FRONT AND REAR COLLISIONSI":RETURN

COMMODORE 64
10 WAIT 56577,192,192
$2 \emptyset$ ON NOT (PEEK(56577)/64) AND 3 GOSUB 100,200.300
$3 \emptyset$ STOP
100 PRINT "REAR COLLISION":RETURN
20 PRINT "FRONT COLLISION":RETURN
$3 \emptyset$ PRINT "BOTH FRONT AND REAR COLLISIONSI":RETURN

VIC-20
$1 \emptyset$ WAIT 37136,192,192
20 ON NOT (PEEK (37136)/64) AND 3 GOSUB 100,200,300
30 STOP
100 PRINT "REAR COLLISION":RETURN 200 PRINT "FRONT

COLLISION":RETURN
300 PRINT "BOTH FRONT AND REAR COLLISIONS!":RETURN

Electranic

How can electronics effectively guard property? What are the various surveillance options? This series explains the advantages and disadvantages of relative systems and presents the following three alarm projects:

Passive Infrared, U/trasonic, and Microwave.
All these provide a secure envelope in which any movement is detected, and an alarm sounded.

SPECTRUIII

This digitally controlled bench PSU has been designed for use with the ZX Spectrum. It has a maximum output voltage of 24 volts which can be incremented in 0.1 volt steps and is current limited over four switched levels; $50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1 A .

This is a must for model train enthusiasts, wanting more realism and automation. This circuit provides automatic wait facility for selected trains at stations and crossings.

and computer PROJECTS

JUNE 1984 ISSUE ON SALE FRIDAY, MAY 18

EVERYDAY ח- $-1 / 5$... from the world of

MATCHING UP TO THE FUTURE

Remote control of all the home entertainment facilities such as TV, R hi fi, teletext and video are featured in the new Matchline System Television unveiled by Philips.

Made up of separate units, it can, for instance, integrate all the present video possibilities into one system under the command of a single remote "keypad".

Matchline is their answer to the changing role of the domestic television. Video recorders, teletext, home computers, TV games, "stereo" sound and video discs are already with us; satellite and cable broadcasts are just around the corner.

Initially, three TV models will be available, the 20 in V6620, 22 in V6720 and the 26 in V6820. Each model incorporates a 15 W stereo tuner/amplifier, with two speakers mounted at the rear of the cabinet behind adjustable, hinged flaps for sound direction. Alternatively, for a better "stereo impression", a pair of separate hi fi speakers are available, or the sound can be replayed through an existing home audio system.

Teletext is standard, along with Philips' "Supertext" facility. This allows 20 page numbers to be stored in the sets memory. Automatic tuning is capable of giving direct access to 99 channels, 50 on pre-selection. Channel selection is indicated by a fluorescent display.

Euroconnector
The secret to Matchline's flexibility lies in the use of the "Euroconnector", an internationally agreed new standard for connecting video and audio components. The TV receivers each have two Euroconnector sockets, allowing permanent connection of additional equipment. This can take the form of video recorder and computer.
Using the remote control, via the Euroconnector link, it is possible to control and operate the Philips Video 2000 video recorder. Also, it is claimed that in the future control of the LaserVision video disc player will be possible, even if it is in a different room.

One of the new Matchline sets with remote control and separate loudspeakers. New video features and services such as Satellite TV and Videotex may be added to the system by plugging in new modules as they become available.

TRAINING FOR ROBOTS

As more and more firms turn to robots in their drive for efficiency, so the need for experts who understand what these non-human workers can and cannot do increases.

Now a new project under the Open Tech Programme, sponsored by the Manpower Services Commission, aims to meet that need by making training readily available throughout the country.

It will be run by the Organisation for Rehabilitation through Training (ORT), whose Technical Department in London, under the direction of Dr. Dan Sharon, has developed a robot study programme.

This programme is split into 92 two-hour study units under seven "chapters": introductory topics, supporting subjects, electronics, computers, robotics, applications, and social and economic impacts.
The plan is to establish a network of up to 20 countrywide contact points, at which students will be able to receive instructions and access to robotics hardware, or even borrow equipment such as desk-top computers and educational robotic arms to use at home.

You can, of course, start by constructing the Computer Controlled Buggy in this issue, see page 317.

Training for the Microprocessor

One of the claims for the new Heathkil microprocessor training course being marketed in the UK by Maplin, is that it provides the most comprehensive educational and training programme covering 16/8-bit micros currently available.

The training course provides full-scale understanding of the principals and practice of 16 -bit micro technology and the kit has been designed to meet the needs of both beginner and those who may already be familiar with 8 -bit techniques.

The self-contained training course will meet the needs of the classroom student or provide individual self-instruction. Basic training units include programming, memory segmentation, data handling and hardware interfacing.

Doug Simmons of Maplin, believes that completion of the total course will take about 100 to 120 hours. Cost of the classroom course, together with experiment parts is approximately $£ 99$.

Micro-Robotics Fair

The "London Computer Fair" is being held at the Central Hall, Westminster over the Easter Bank Holiday weekend from 19 to 23 April. This is the fifth annual fair to be sponsored by the Association of London Computer Clubs.

The "1984 ACC MicroRobotics Conference" is also to be held at Central Hall, Westminster, on 21 April. This venue is in conjunction with the Association of London Computer Clubs' Easter Fair, and many of the stands will have a Robotics flavour.

COMPUTER HOLIDAYS for the HANDICAPPED

Last year the first one-week Computer Holiday for the Handicapped was planned to accommodate only 25 persons, but the response was overwhelming with over 400 applicants wanting to take up residence.

This year, from July 23 onwards, it is planned to run three one-week computer holidays for the handicapped at Valence School, Westerham, Kent. Accommodation is limited to 60 persons at a time and will be on a "first come first served" basis.

The holiday will cost 1145 for full-board, tuition and the use of the computers. For more information write to Dr. Lionel Wardle, c/o M.A.P.S. Ltd., Dept EE, 37 University Road, Southampton, SO2 1 TL .

TRANS WORLD CALL

The Business Communications Service end of British Telecom has just secured a data transmis sion contract from Trans World Airlines (TWA) of Kansas City, Missouri, worth $£ 1$ million over five years.
Working in close harmony with TWA, they have designed and are to install dedicated equipment to give a 24 -hour, yearround communications facility for the airline.

This deal from a major multinational company means that TWA will use London as the hub of all its computer data transmissions between Europe and the United States.

Locations in 12 European capitals and major cities will feed their computer data to London, over private leased circuits, and through equipment in London, to TWA's offices in Kansas City using undersea transatlantic cable links.

Exhibitionist

The 15th Annual Scottish Electronics Exhibition and Convention, SCOTELEX '84, organised by the Institution of Electronics, will be held during the period 5 to 7 June, inclusive, 1984, in the Royal Highland Exhibition Halls, Ingliston, Edinburgh, EH28 8NF Admission will be free-of charge to visitors, via tickets available from the exhibitors, and from the organisers.

The first International Computer Show for Venezuela, "Inforven $84^{\prime \prime}$, will be held from 8 to 11 May 1984, in the new Convention Centre at the recently opened Caracas Hilton Hotel in central Caracas.

The exhibition, and the associated conference, will be sponsored by the Minesterio de formento, Oficina Central de Estadistica (OCEI) and by Petroleos de Venezuela S.A. (PDVSA).

The Offshore Computer's Conference and Exhibition, to be held from 5 to 7 June in Skean Dhu, Altens, Aberdeen, has to date attracted 35 confirmed exhibitors from The Netherlands, Norway and the UK.

Vote of Confidence

The Organisers of "The AllElectronics/ECIF Show" announced that over four hundred members of the electronics industry voted "yes" to the proposal that "The Show" should move to the new Olympia 2 in 1985.

After detailed discussions with Hudson Sof Co., of Tokyo, Kuma Computers have announced that an agreement has been reached for them to market certain Sharp MZ700 and Spectrum software packages in the UK. The most important of which is HuBasic and $\mathrm{Hu}-\mathrm{Cal}$.

GEC Computers has been selected to supply hardware for the second phase of British Telecom's Prestel Service.

Avon Direct Mail Services, is to install Rediffusion R2800 Telecentre system.

RAIL LINK

Following successful trials of a Westinghouse "Westronic System Two" data link installed between East Finchley station and Cobourg Street control centre, London Transport has ordered a further nine links for installation on the Northern Line between High Barnet and Kennington.

BIASED REPORT

Recording-tape manufacturers throughout the Common Market are taking a lead from Britain. A UK call for immediate action to stop the European Parliament imposing levies on sales of blank audio and video recording tape has been fully accepted by manufacturers in member states.

At an international conference in Brussels, staged by the UK "Tape Manufacturers' Group" (TMG) last month, delegates from France, Germany, Italy, Belgium, Denmark and the Netherlands all agreed to campaign in their own countries and on a united basis amongst European parliamentarians . . . just as British manufacturers have been campaigning since May 1981.

Their first task is to expose the "total bias and inadequacy" of a report, requested by the EEC, which could force consumers to pay more than double the present retail costs for recording tape.

Entitled, "The Private Copying of Sound and Audio-Visual Recordings", the report calls for levies of one EEC currency unit (61 p Sterling) per playing hour on sales of blank audio tape and three currency units per playing hour on blank video tape. In addition, Value Added Tax would be payable on the costs of the levies as well as on the costs of the recording tape. That would mean that a one-and-a-halfhour C90 audio cassette, at present retailing for 90 p, would have an over-the-counter cost of about $£ 1.80$. And a three-hour E180 video cassette, currently retailing at around $£ 5.30$, would sell for upwards of £ 10.60 .

The report was prepared by the International Federation of Phonogram and Videogram Producers (IFPI)-the very people who would receive the money raised by levies.

Leader of the British initiative, TMG Chairman, Mr. Bill Fulton (MD of Sony UK) said after the conference: "I'm delighted. We came here to make the case for immediate, united action and response has been magnificent. The degree of co-operation here is remarkable. Our mission has been a complete success."
Condemning the controversial report requested by the EEC, Mr. Fulton stressed: "It is a totally biased document, compiled without consulting consumer protection groups or, indeed, anyone except the people who would benefit from the imposition of levies; in other words the music and film industries.
"What is needed is a genuinely impartial analysis of the situation by a totally independent body, experienced in preparing such documents."

As this is a subject of very controversial opinions, our Readers' Letters page is open to all interested parties to record their own personal "soundings".

EXTRA IK Ram FOR THE ACORI ATOM

The basic Acorn Atom ram is made up from 2114 static memory devices. These are 1024×4-bit chips and are arranged in pairs in the Atom to yield 1024×8-bit blocks.
An extra 1K of ram can easily be added to the Acorn Atom without a great deal of difficulty. All that is needed is experience with a soldering iron.

This extra IK of ram will be located between the maximum on-board memory (at hex 3BFF) and the start of off-board memory (at hex 4000).

This is accomplished by soldering two extra 2114 s directly on top of two existing 2114s, IC10 and IC1I of the Atom circuitry; the pins are soldered in parallel with those of the existing chips except for pin 8 of each which connects to other parts of the Atom circuitry.

CIRCUIT DIAGRAM

The circuit diagram of the expansion is shown in Fig. 1. Pin 8 of IC1 and IC2 (the "chip select" pins, $\overline{\mathrm{CS}}$) are connected together and also to IC5 pin 1 and IC6 pin 7. The remainder of the lead-outs are in parallel with the on-board ram chips.

IC 5 pin 1 and IC6 pin 7 must be disconnected from the Atom p.c.b. This is easily achieved by bending up the i.c. pin so that it sits out of its socket.

IC6 selects these new memory chips between locations hex $3 \mathrm{C} \emptyset$ and hex 3FFF. Pin 1 of IC5 connects to pin 7 of IC6 to disable the locations from being accessed by the off-card buffers.

CONSTRUCTION PROCEDURE

(1) Carefully remove IC6 from its socket and bend out pin 7.
(2) Remove IC5 and bend out pin 1 .
(3) Remove IC10 and IC11.
(4) Bend out pin 8 on both of the new memory chips and then place these new chips over the two removed 2114s, IC 10 and IC11, and carefully, with a small soldering iron, solder the two chips together.
(5) Connect a wire to pin 7 of IC6, another to pin 1 of IC5 and one to each pin 8 of the new memory chips. Cut the wires to a convenient length, strip their ends, twist together and solder. Slide a short length of sleeving over the connection to prevent it shorting on any other part of the circuitry.
(6) Re-insert all the chips into their respective sockets.
(7) Run the Memory Test given below.

Fig. 1. Circuit dlagram of the 1K RAM expansion for the Acorn Atom. IC1 and IC2 are the additional 2114 static memories; IC5 and IC6 are part of the existing Atom circuitry.

MEMORY TEST

10 F.A $=\emptyset$ TO $255 ; F . X=\# 3 C \emptyset \emptyset$ TO \#3FFF
$2 \emptyset \quad P=A ; N$.
30 F.X=\#3CD TO \#3FFF
40 IF?X<>AP.\&?X,"AT
" \& X, "SHOULD BE" \& A'
50 N.;N.;E.
If all is well the program should run and end without any errors.
If however errors are printed out, by examining the printout you should be able to tell where the problem is.

 adjustments to pins on existing chips IC5 and IC6, and to additional 2114 chips; the mounting of the latter onto IC10 and IC11 and the extra wiring required.

EXTRA UTILITY PROM FOR THE ACORI ATOM

BY A.J. PRESNAIL

The Atom only has one EPROM socket for utility PROMS which can be a disadvantage if you have more than one EPROM to go into it, for example, Wordpac, Toolkit, etc., since you have to power off and open the Atom's case to change the EPROM.

A simple solution to this would be to parallel two sockets from the Acorns with a switch on the select lines, but a better way would be to select the PROMS by software or from the keyboard.

The following circuit allows up to eight EPROMS to be selected, or with an additional i.c. it can select 16 .

DESCRIPTION

IC1 pin 14 goes low if an address in the range hex 9000 to 9 FFF is written to, or read from.
IC2 pin 8 goes low if an address in the range hex XFF0 to XFFF is selected.

These two lines are Nored together by IC4 which when anDed with clock 2 ($\phi 2$) by IC3 enables the latch IC5. This means that IC5 is enabled in the range 9 FFO to 9FFF, which is not normally used in the Atom.

When IC5 is enabled the address lines A0 to A3 are latched into IC5 to become LA0 to LA3, these outputs will stay at their latched levels until IC5 is again enabled or the power is turned off.

Table 1. EPROM Socket Pin 20 to IC6 or IC7

Prom	IC6	Prom	$1 \mathrm{C7}$
Address	Pin	Address	Pin
9FF8	15	9FFO	15
9FF9	14	9FF1	14
9FFA	13	9 FF2	13
9FFB	12	9FF3	12
9FFC	11	9FF4	11
9FFD	10	9FF5	10
9FFE	9	9FF6	9
9FFF	7	9FF7	7

Table
 2. Atom Output Bus

 Connector Pins| +5V | al |
| :--- | :--- |
| OV | a32 |
| AO | a15 |
| A1 | a14 |
| A2 | a13 |
| A3 | $a 12$ |
| A4 | $a 11$ |
| A5 | $a 10$ |
| A6 | $a 9$ |
| A7 | $a 8$ |
| A8 | $a 7$ |
| A9 | a28 |
| A10 | a27 |
| A11 | a26 |
| A12 | a25 |
| A13 | a24 |
| A14 | a3 |
| A15 | a2 |
| | |
| D0 | a23 |
| D1 | a22 |
| D2 | a21 |
| D3 | a20 |
| D4 | a19 |
| D5 | a18 |
| D6 | a17 |
| D7 | a16 |
| clock 2(ф2) | $a 29$ |

COMPONENTS
 Resistors
 R1-4 470Ω (4 off)
 Capacitors
 C1-7 $10 n \mathrm{~F}$ (7 off)
 Semiconductors
 eight EPROMs required.

Fig. 2. Pins 1 to 6 and pins 11 to 13 of the new 74LS08 must be bent away from IC5's pins.

Fig. 3. Modification to allow Utility PROM (address $A X X X$) to appear on the output bus (i.c. numbers refer to the Atom's main p.c.b. i.c.s).

Fig. 4. Modification for 16 EPROM sockets.

When an address in the range A 000 to AFFF is read from, or written to, pin 13 of ICl goes low and in turn selects one of the outputs of IC6. Which output is selected depends on the binary code on latched lines LA0 to LA3, which must be between 8 and hex F. The l.e.d.s will display the binary code that is latched.

MODIFICATION FOR 16 EPROMS

By inverting LA 3 with one of the spare NAND gates (for example, pins 8,9, 10 of IC4) and then repeating the wiring as for IC6 an extra eight EPROMS can be selected, their address would be 9FF0 to 9FF7.

MODIFICATION REQUIRED TO THE ATOM MAIN PCB

Because Addresses A000 to AFFF are normally only present on the main p.c.b. a small modification has to be undertaken. This requires that IC5 of the Atom has to be removed from its holder and pin 8 bent out, a 74 LS 08 then has to be placed over this chip so that pins 7 and 14 can be soldered. Pin 8 of IC 5 has to be connected to pin 9 of the 74LS00 and pin 10 of the 74LS08 has to be connected to pin 13 of IC23. Pin 8 of the new 74LS08 now has to be connected to pin 9 of IC4. Replace IC5 into its socket.

RADIO WORLD

 BY PAT HAWKER G3VA

 BY PAT HAWKER G3VA}

Finding Directions

Radio navigational techniques have come a long way since their early use, now dating back more than 70 years, of the simple loop aerial. This, when combined with triangulation on two or more transmitters, was already in use before the first World War.

One of the first scientists to become in terested in the directional properties of radio was Professor Frederick Braun, inventor in 1897 of the "cathode-ray indicator tube", that was later to become such an important component not only for TV but also for many radio-navigational systems. Two Italians, E. Bellini and A. Tosi, introduced the idea of using fixed aerials in 1907, but it was the wide use of d / f (direction finding) techniques, in World War I, for tracking the movement of warships, airships, and the like, that raised the status of d / f systems and resulted in reliable equipments.

Similarly World War II gave ä'further impetus to d / f and also saw the development of the pulsed hyperbolic systems such as Gee, Loran and Decca for accurate radionavigation

Bird Sense

But radio navigators have always looked with interest and puzzlement at the natural navigational abilities and compass sense of birds and animals.

Over the past decades many attempts have been made to determine just how some birds are able to navigate so accurately over enormous distances. There is now good evidence that the compass sense of birds is based on a combination of celestrial and geomagnetic cues.

The celestrial cues are provided by the Sun, sunset, skylight polarisation pattern and stars much as in classic astronavigation. More puzzling, and for a long time more controversial, are the natural "magnetic compasses", yet there is good and convincing evidence that young birds, particularly before the full development of their celestrial compass, do possess a magnetic sense that they use, if only to "calibrate" their Sun compasses.
Further evidence of the role of the geomagnetic field has come from experiments carried out at the University of Lund in Sweden. Scientists deliberately "shifted" the magnetic field at the nesting boxes of Pied Flycatchers and have been able to show that a corresponding shift was still occurring two months later.

This was done using large Helmholtz coils energised from 12 -volt batteries throughout the incubation period of the eggs and the subsequent nestling periods (about one month in all). Control birds had no coils attached to their nesting boxes and showed no sign of any anomalies in their
navigation. Fully-grown birds seem to depend much more on their "Sun compass" than on magnetic fields.

Auto-route

Engineers for several decades have sought to develop navigational systems that would provide guidance to car drivers in urban or rural areas or for cross-country journeys, seeking to replace map-reading or stopping to ask the way.

While various systems of vehicle position location and guidance have been developed most of these have postulated the use of buried inductive loops or radio transmitters, and would be expensive to install. The latest system, "Autoscout" has been developed by Siemens and Volkswagenwerk in West Germany, and is currently undergoing field trials in Wolfsburg.

This uses low-cost infra-red transmitters, basically similar to those used in many TV remote-control units, installed on trafficlights. They act as beacons providing to the vehicles a stream of data on main roads in the area.

The vehicle has a microprocessorcontrolled, dashboard-mounted, control unit with display and keypad, and also a magnetic field sensor mounted under the car roof which acts as a "compass", with circuitry that is claimed to correct errors due to surrounding metal and similar objects. Distance pulses are fed into the control unit from the vehicle's speedometer providing direction and line-of-sight distance data.

The control unit can operate independently of the infra-red beacons to display distance and direction; however, in conjunction with the local information provided by

Shoot Out

Some people regard particular TV and radio presenters less than enthusiastically but usually express their dislike by means of a channel switch. But Jerry Dunphy, a 62 -yearold TV "news anchor" in Los Angeles for more than 20 years, together with a woman make-up artist, were victims of a shooting incident last Autumn.

Both were shot, Jerry Dunphy seriously, while returning to the studios of KABC-TV, Hollywood, after a meal. The police, however, believe it to have been a random act of violence rather than the action of a TV critic.

However, in nearby Monterey a man first fired several shots over the head of a radio disc jockey and then scattered some 58 shotgun rounds into the equipment, including the record that was being played. When arrested, the suspect claimed that KWAV-FM was "poisoning his mind".
the beacons it can guide a driver to the destination programmed by the keypad into the control unit, including detours or other local routeing information. Autoscout can even direct the driver to a specific building, garage, or parking space using information from the local beacons.
The vehicle unit, in volume production, would cost about the same as a good car radio. All traffic lights at a major intersection could be equipped at under £1500.

Sounds good, but how far is it away from a completely "guided" vehicle in which the "driver" becomes merely a passenger?

Voice from Space

The success of the long-awaited operation of a 144 MHz amateur-radio hand-held transceiver by Dr. Garriott, W5LFL, aboard the "Columbia" Space Shuttle early December, focused much media publicity on the hobby.

Whether it added much to anybody's technical knowledge of space communications is more doubtful, though it certainly showed that a low-power v.h.f. rig can easily span over 250 km when the curvature of the Earth or the local topography does not get in the way. Dr. Garriott taped the incoming calls from amateurs to sort out on the ground, all a bit like the airborne "JeanEleanor" v.h.f. equipment used by the Americans during the closing stages of World War II when they were able to wire-record messages from their agents in Germany.

Chatter Box

The silicon revolution in the form of ultra large-scale integrated circuits means that it is already possible to put nearly one-million components on a single silicon chip for such purposes as providing large electronic memories. Over the past two decades this represents an increase of some 100,000 times on the first integrated circuits-and equally important a corresponding decrease in terms of "cost per transistor" to the level where this amounts to only about onethousandth of a penny.
But at a recent Mountbatten lecture of the National Electronics Council, Dr. Ian Ross, president of the famous Bell Laboratories, confidently predicted that we still have a long way to go before we reach the end of this road. After carefully analysing all the ultimate limiting factors, he foresaw development over the next two decades of devices with 1000-million (an American billion) components on a single 1 -inch chip. operating from a 1 -volt supply, and suitable, because of the miniscule dimensions of the components, of acting at speeds of about 10 picoseconds.
"Micro-electronics is merely at the halfway point," he said, though he seemed a little less certain of what will be done with such complexity. He mentioned computers for language translation, for weather forecasting, for the prediction of the land-fall of hurricanes-and computers that can be programmed just by talking to them. Indeed, he feels there is a need to make computers more "user-friendly" so that ultimately it should be possible to hold a fluent discourse with a computer.
It sounds to me a bit like having a chat with your accountant, wondering all the time what he is really thinking. With individual computer-designed dolls sweeping America I wish I could be as enthusiastic as Dr. Ross about a world in which one is liable to be nagged by a computer!

A Black Box Project

MASTERMIND TIMI

A
s the title suggests, this is a timer which can be used to give the similar conditions to a contestant as in the BBC's Mastermind quiz. After switching on the unit and pressing the reset button, a delay is in effect (variable from one to two minutes), after this time the familiar bleep-bleep will sound signifying the end of the required time. It can also be used for other games such as chess or draughts to give a time limit for each move.

CIRCUIT DESCRIPTION

The circuit diagram of the Timer is shown in Fig. 1. The first time period is based around IC1, a 555 timer. This is wired up as a resettable monostable multivibrator; this can be stopped in the middle of a cycle and re-started again by pressing SI.

This connects the trigger input and reset pins to ground, creating a negativegoing pulse (positive to ground transition) as the pins were previously held high by RI. If a negative-going pulse appears at this input then the timing capacitor C2 will be discharged, resetting the cycle.
The output from this i.c. (pin 3) is connected to pin 12 and pin 13 on IC2a and is inverted by the Schmitt trigger action of this NAND gate. The output pin 11 is connected to input pin 9 on IC2b. The other two gates are made up as two oscillators; one being controlled by the other. The oscillator based around R3, C4 (IC2d) is approximately 0.5 Hz ; this switches on and off the oscillator based around R4, C3 (IC2c); this has a frequency of about 3 kHz approximately.

The output of IC2c goes to the other input of gate IC2b. When the condition arises that IC1 output (pin 3) goes low then IC 2a goes high; this makes input pin 9 high and so whatever appears at the input (pin 8), will appear at the output (pin 10); in this case half second bursts of a high frequency squarewave (see Fig. 2). This is then fed to the output speaker via

C1. The sound level is quite adequate for this circuit as long as the earpiece is used. The current drain on the battery is approximately 4.5 mA on standby and 18 mA to 20 mA when bleeping.

CONSTRUCTION

All the components should be mounted on the Veroboard as shown in Fig. 3. It
was found best to solder in the i.c. sockets first as this provides a location to base all the other components and links. IC1 can be soldered in directly if the constructor feels confident enough, otherwise an 8 -pin socket should be used.

Note that CI is fitted lying flat against the board to allow room for all the components and the board to fit into the case.

Fig. 1. Circuit diagram of the Mastermind Timer.

Fig. 3. Veroboard layout.

EETV

BY L. A.PRIVETT

Fig. 2. Output waveforms.

Both switches were fixed to the top of the box (Fig. 4) while the speaker was glued to the front after drilling suitable holes; VRI is also mounted on the front panel and is held by its own fixing nut. Cardboard can be used to insulate the battery from the rest of the circuit. When placing IC2 into its socket normal смos precautions should be taken.

TESTING

Insert battery; switch on; the bleep may sound depending on the condition of C2. Pressing S1 will sound the bleepbleep and upon releasing, the sound will be extinguished for the time period set by VRI (between one and two minutes).

Fig. 4. Wiring diagram.

Internal view of the Timer.
After the preset time the familiar sound should be heard and will continue until switched off by S2. For games such as chess then each player has a set time to make his move; after which he then presses S1 and so resetting the time for his or her opponent. As to whether the move has to be made before any sound is heard or within so many bleeps is up to the players making the rules.

COMPONENTS

Resistors

R1 10ks
R2 $1 \mathrm{M} \Omega$
R3 $82 \mathrm{k} \Omega$
R4 $22 \mathrm{k} \Omega$
VR1 IM Ω log. carbon pot.
All resistors $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$

Capacitors

C1 470 nF
C2 $47 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic radial
C3 $22 n \mathrm{~F}$ polyester
C4 $\quad 4 \cdot 7 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic

Semiconductors

IC1 555 timer
IC2 4093 quad 2 -input NANO

Miscellaneous

S1 push-to-make single pole S2 on/off toggle
Veroboard; case $80 \times 61 \times$ 41 mm ; PP3 battery connector: 14 pin i.c. socket; knob for VR1; wire and cable for on and off board links; (LS1) telephone earpiece: (B1) PP3 battery.

LETTERS

Clearing the Air

Sir-It is to be regretted that your contributor A. Flind was not better informed on the question of ozone generation from ionisers. As a direct consequence he has caused considerable concern to a number of our clients who have purchased ionisers for the treatment of asthma (see Negative Ion Generator, February issue.)

We trust that you will make space available to offer the reassurance afforded by the following:

1) Whilst a number of early ionisers (particularly American models) generated considerable quantities of ozone, techniques to overcome this were developed and patented in the UK by Medion some 15 vears ago.
2) Since then all Medion lonisers and many other models utilising these design features have been free of ozone. Independent or government tests in the UK, USA, Canada and Austratia have all confirmed that, at distances of four or more inches from the ion-emitters, ozone densities do not exceed 1 part in 2000 million. This is dess than the natural background level which exists in clean air and is, in fact, less than can be detected by the most sophisticated equipment currently available.
3) Ozone is not produced purely as a function of the voltage applied to a needle tip. but by the employment of too high a field intensity. This would almost certainly be the case with the published design where an earthed lead is positioned only 5 mm from needles with voltages of 7 kV to 8 kV . 4) It should be appreciated that any ioniser can be induced to produce ozone if an earthy object comes close to the needles, and this includes the human nose. Sniffing close to an ioniser gives no indication whatever of ozone emission under normal usage. Perhaps the simplest way to confirm this is to sniff the air when first entering a room with an ioniser. The "electric motor" smell of ozone will be quite apparent if it is present.
4) The author suggests that ozone is linked to output voltage and that it seems to be higher at about 3.5 kV and above 8 kV . We can assure readers that this simply is not so and wonder how this conclusion was reached.
5) It should be appreciated that research into various therapeutic effects of negative ions has been conducted in many parts of the world since before the last war. Many of the results of controlled trials have been outstanding, particularly with all kinds of respiratory disorders and tension conditions.

Julian P. Laws,
Manager-Environmental Division, Medion LImited,

Old Oxted,
Surrey.
Firstly, the disparaging remarks about some commercially made ionisers were not intended to apply to the products of Medion, a reputable firm specialising in them. Indeed this company's name is not mentioned anywhere in my article. Nevertheless, I
hope Medion will accept my apologies for any inconvenience that may have been caused unintentionally.

The fact -is that for some years it was possible to assemble a trañsformer with half a dozen diodes and capacitors into a box and sell the result for E 80 or more, and this not unnaturally attracted a few "cowboys". This led to sub-standard ionisers being sold.

Field intensity, and thus ion and ozone production, seems to be related to voltage, area and the proximity of earthy conductive objects. If the voltage is high enough it must exceed a point where ozone is emitted directly into the atmosphere, regardless of the other factors.

The earthed wire in my design is some distance from the needle tips where the field intensity is supposed to be at its highest. Over a long period of use I have never encountered any smells of ozone except, as Medion suggest, when taking a good sniff very close to the needles.

I hope this will set the minds of both Medion's customers and constructors at rest.
A. Flind.

Vanishing Tardis

Sir-As an ardent viewer of the BBC TV series Dr. Who, I am pleased to see that the instrumentation used by so many planets civilisations rely on meters, lamps and switches of European manufacture.

Obviously our electronic and electrical industries advertising and sales teams have achieved results "out of this world". But why haven't we heard about this from the firms themselves?

Is there a straightforward answer or are my suspicions likely to be proved correct. Have the aliens been secretly stealing our best designs from inside the Tardis I!! Would they dare steal from a British Police Box!

Mind you, rumour has it that the Tardis will "change" in the underwater series. The police box is retiring because "children no longer understand what a police box is!" Viewers in other countries have lived with this problem since the first series in 1963 and have accepted this rare British customised police "vehicle" with the blue flashing light on top waming of its imminent disappearance.

How true. Very few are now visible in the UK. Although a very slim Dr. Who might be able to make use of London's Metropolitan Police call boxes: the door does seem very small though.

Doesn't Dr. Who understand that parents and grandparents remember with pride the old "Tardis" in their village or town and enjoy telling the children what they were for, or is the doctor happy in the knowledge that the generation gap will widen?

Derek Gooding, London.

Help the Handicapped

Sir-I am compiling a catalogue of programs and hardware available to help the handicapped make use of a Micro and would be very glad to hear from anyone who has developed or knows of such "aids".
In particular programs or devices to help the severely handicapped to communicate or to control their environment, for instance, controlling domestic appliances, opening doors, turning book pages and so on.

Dr. Lionel Wardle, c/o M.A.P.S. Ltd., 37 University Road
Southampion, SO2 1 TL.

Mini-Roulette

Sir-I wish to draw readers attention to my circuit for a "Mini-Roulette" published on the Circuit Exchange page in the February 1984 issue.

The wire from pin 13 of IC2 (4017) should run to the cathode of D1 not to battery negative.

The wire from TR1 collector should run to battery negative not to the cathode of D1.
J. Wood,

West Lothian, Scotland.

The BBC assures us that there are no immediate plans to retire the "Tardis" and it will appear throughout 1984-5. Apparently the speculation was sparked off by a comment made by the programme's producer when he suggested the Dr. Who team might need to consider the relevance of the police box style in an age when few children see them.Ed.

F ENFIELD ELECTRONICS 208 Baker Street, Enfield Middlesex. EN1 3JY. Tel: 01-366 1873

Prices for TTL Components
are changing all the time.
Please phone for current prices
NEW ILLUSTRATED CATALOGUE
NOW AVAILABLE
£1 including VAT plus P\&P

whiv nafraw ranio fimit

IN the first part of this article we considered the main differences between the f.m. and a.m. systems. We shall now take a closer look at some of these differences.

Taking the receiver first, Fig. 8 shows a typical a.m. detector circuit and Fig. 9, an f.m. discriminator; however these are only two examples of the different types used in each system.

SIMPLE A.M. DETECTOR

In Fig. 8 we have a simple a.m. detector circuit where T1 is the last i.f. transformer (normally around 455 kHz), this feeds DI (the actual diode detector) and R1, the diode load resistor. Capacitors C1, C2 and R2 form a lowpass filter which removes any residual i.f., and C3 is a d.c. blocking capacitor which passes the recovered audio on to the next stage but prevents any d.c. being passed on. The diode detector DI acts like any half-wave rectifier and a voltage will develop across R1. The amplitude of this voltage will depend on the amplitude of the signal feeding into D1 from T1.

As the signal increases more voltage will be produced across R1 and this can be fed via R3 back to the earlier stages to control their gain and prevent overloading on strong signals. (Remember that in Part 1 we explained that the amplitude modulation on the signal must be passed on without distortion and that some means of preventing stages from overload must be provided.)

The audio is recovered from the signal by D1 acting as a half-wave rectifier which removes one half of the modulated carrier leaving the other half with the audio signal on it. The low-pass filter removes the remaining carrier and the audio passes via C3 to the next stage. This action is shown in the waveform diagrams in Fig. 8.

RATIO DETECTOR

Fig. 9 shows an f.m. discriminator circuit and this type is called a "ratio detector". The phasing of the coils which make up TI are arranged so that at the centre frequency (normally 455 kHz or 10.7 MHz) the voltage across the two
diodes D1 and D2 is equal and the resultant voltage at the end of L 2 is zero.

Now when the incoming frequency shifts due to deviation, the circuit will no longer be balanced, and because of the phase differences between L2 relative to the two halves of L3 there will be unequal voltages applied to the diodes and the difference between these two voltages will appear at the end of L2. As this voltage will be varying at an audio rate due to the modulation of the carrier it will be passed on to the next stage via C 5 as the recovered audio signal.
The explanation of how these detectors work has been simplified, as a full description would require considerable space and there are many technical books available for those who wish to pursue the matter in more detail.

Fig. 10 shows the response of the f.m. discriminator regarding its output voltage plotted against input frequency. As the output voltage swings plus and minus in polarity depending on the deviation of the incoming signal it can be used to control an automatic frequency correction circuit

to maintain the receiver on tune. However with the modern crystal controlled oscillators used today this feature may not be used.

Although amplitude pulses will already have been removed by the limiter stage (to be described later) the f.m. discriminator will also reject any amplitude pulses remaining on the signal, because such pulses will be presented to the diodes in equal amounts, and cancel out in the same way as a carrier at the centre frequency. Many of today's transceivers use a "quadrature" detector. This is normally included into an integrated circuit which also contains the i.f. amplifiers, limiters
and meter drive circuits. Such a circuit is shown in Fig. 11.

THE I.F. AMPLIFIER

The i.f. amplifier stage is different for the two systems because in the case of the a.m. signal we want to amplify it and pass it on with the minimum of amplitude distortion, and in the f.m. case we want to remove any amplitude variations and only pass on changes in frequency.

Fig. 12 shows a typical a.m. i.f. stage and Fig. 13 one used for f.m. These are simple versions as the modern circuit would almost certainly use integrated cir-
cuits for these. In the case of the a.m. circuit, automatic gain control is applied via R5 so that as the signal gets stronger the gain is reduced to prevent the next stage overloading. The f.m. circuit is allowed to operate at maximum gain all the time so that the next stage is fully saturated. This next stage is the "limiter" and has no counterpart in the a.m. receiver.

Fig. 14 shows a simple limiter. The main difference between this and the i.f. amplifier is that the collector voltage is held down to a low level so that the output is prevented from increasing once a certain level has been reached. The graph in Fig. 15 shows what happens.

Fig. 11. Typical quadrature detector circuit using the CA3089 i.c. The use of integrated circuits makes for fewer overall components and greater reliability. The l.c. contains the i.f. amplifiers, limiter stage, a.g.c. amplifiers, quadrature detector, muting circuits, and an audio output stage. In fact, a complete receiver except for the r.f. and mixer.

Fig. 12. Simple a.m. i.f. amplifier stage.

Fig. 13. Basic i.f. amplifier circuit used on f.m. Note that each stage is designed to operate at maximum gain so that the maximum possible signal is applied to the limiter stage to ensure saturation (limiting).

Fig. 14. Simple f.m. limiter stage. Resistors R2 and R3 make up a potential divider which limits the voltage on the collector of TR1 and ensures that the output obtained "saturates"

[E316

Fig. 15. Showing how once a certain input level has been reached the output remains constant.

Fig. 16. Points F1 and F5 are the absolute limits of the selectivity curve. F2 and F4 represent the point where the selectivity curve would be about -3 dB down on its maximum response. These also represent the two sidebands, one above the carrier, F3, and one below. Any sidebands spaced further out than these would be attenuated by the selectivity curve until at points F1 and F5 there would not be any output at all. From this it can be seen that the higher the selectivity (narrower) the greater the loss of the higher audio frequencies.

Fig. 17. Showing how the various sidebands vary in amplitude with the modulation index. The carrier would go through zero at a number points at higher values of modulation index. This also applies to the sidebands

Once the maximum output has been reached any further increase in input will not cause a corresponding increase in output. Thus any interference pulses on the signal are effectively removed, it also means that all signals irrespective of their strength are passed to the discriminator at the same signal level, effectively removing any need for an r.f. gain control on an f.m. receiver. Some f.m. receivers have a.g.c. applied to their r.f. amplifier stages before the mixer, to prevent overload and cross-modulation, but that is another story and also applies to a.m. Here we are only concerned with the main differences between the two.

GENERATING THE A.M. OR
 F.M. SIGNALS

The main difference between the a.m. and f.m. transmitter is in the way the signal is produced. Looking first at the a.m. system, we find that the modulation is mixed with the carrier wave and this results in the amplitude of the carrier varying at the same rate as the modulating signal.

This modulation process also produces "sidebands" adjacent to the main carrier frequency. For example, if the modulation signal was at 1 kHz and the main carrier frequency was at 1 MHz then the modulation process would also produce frequencies at 1 MHz plus 1 kHz and 1 MHz minus 1 kHz , that is, three separate radio frequency signals.

When speech is used to modulate the carrier the sidebands can extend to plus and minus 3 kHz , a total bandwidth of 6 kHz . The a.m. receiver must be able to accept these in order to reproduce the original audio without distortion. In other words the receiver bandwidth (selectivity) would be a minimum of 6 kHz . Fig. 16 shows a typical a.m. receiver selectivity curve and the type of signal it will accept.

With the f.m. transmitter the modulating signal is used to shift either the carrier frequency or the phase; in practice the end result is the same and most so called f.m. transmitters are in fact phase modulated. This modulation process also sets up sidebands but the number of sidebands that occur on f.m. depend on the relationship between the modulating frequency and the amount of deviation used. The relationship between these two is called the "modulating index".

Modulation index =

Carrier frequency deviation Modulating frequency

for example, if our modulation frequency is 3 kHz (same as our a.m. example) and our maximum deviation is 5 kHz (the maximum for the UK CB service), we get

$$
\frac{5000}{3000}=1 \cdot 666
$$

For the same deviation the modulation index at 300 Hz would be 16.666 and so on. The deviation figure is for a frequency shift on one direction, so a 5 kHz deviation means plus and minus 5 kHz , that is a total of 10 kHz .

A full technical explanation would take up far too much space but a given modulating frequency will produce a number of sidebands whose individual amplitude will depend on the modulation index for the particular system. A rough rule of thumb calculation for f.m. overall bandwidth is: $2 \mathrm{Fd}+$ Fmod, where Fd is the maximum deviation and Fmod is the highest modulating frequency used.

In our example, of maximum deviation 5 kHz and 3 kHz maximum modulating frequency we get, $2 \times 5+3=13 \mathrm{kHz}$. In other words our bandwidth is 13 kHz compared with 6 kHz of the a.m. system for the same modulating frequency.

So clearly, the maximum deviation and modulating frequency must be restricted
if a larger number of stations are to operate in a given band of frequencies (channels) M $^{\prime}$, Just for interest the BBC stereo system requires a bandwidth of 250 kHz and is known as "wide-band C.m." whereas the CB specification calls for a maximum bandwidth of 13 kHz and is known as "narrow-band f.m."

SHIFT OUTSIDE PASSBAND

From the above it can be seen that if the f.m. transmitter is over-deviated or if higher than permitted audio frequencies are used, the signal can shift completely outside the receiver passband, with resulting distortion or even loss of signal.

Fig. 17 shows how the amplitudes of the carrier and sidebands vary with the modulation index. The chart is for a single tone modulation. These sidebands will occur on each side of the carrier. For example, if our modulating frequency is 2 kHz and our carrier frequency is 28 MHz the first sideband pair will be at 28.002 MHz and 27.998 MHz , the second pair at 28.004 MHz and 27.996 MHz , the third pair at 28.006 MHz and 27.994 MHz , and so on. The amplitude of these sidebands will depend on the modulation index, not the amount of frequency deviation present.

Note also that in Fig. 17 the carrier strength varies with the modulation index, compared to a.m. where the carrier amplitude is constant and only the sideband amplitudes vary. In the f.m. system the energy that appears in the sidebands comes from the carrier, the total power is the same regardless of the modulation index (on a.m. the total power varies with the modulation).

Since the amplitude is constant with an f.m. signal any amplification can be carried out with class "C" biased stages for maximum efficiency (or as mentioned earlier a receiver can use amplitude limiter stages).

MACHINE CODE FOR BEGINNERS

```
Author L. Watts & M. Wharton
Price £1.99 limp
Size }\quad240\times168\textrm{mm}.48\mathrm{ pages
Publisher Usborne
ISBN
```

ONE of the most difficult areas of computing is machine code programming, not only is it more difficult to write, but it is less easy to understand than a program in BASIC.

Machine Code For Beginners is a book designed to introduce fun into learning machine code and with the aid of easy text and cartoon drawings it manages to succeed. The book has 48 pages and starts with a basic description of machine code and its advantages and disadvantages. Although the contents of this book are aimed at a fairly low level of computing knowledge, the subject matter becomes progressively more difficult as you delve further.

A particularly useful section are the Decimal/Hex conversion charts, because in machine code programs, numbers and addresses are always written in hexadecimal. Plenty of conversion examples are given, so no difficulties should be encountered.

Mnemonics are short words which represent an instruction to the computer and are much easier to understand than hex. A program in mnemonics is called an assembly language program and is fully explained and example programs are provided.

On the whole the book provides a reasonable introduction to machine code programming and does not try to baffle the reader.
R.A.H.

ROBOTICS

Author	T. Potter \& I. Guild
Price	£1.99 limp
Size	$240 \times 168 \mathrm{~mm} .48$ pages
Publisher	Usborne
ISBN	$0-86020-724-2$

$\mathrm{R}^{\text {овотics }}$ is classed as a complete science all on its own, $R_{\text {although computing does play an important part in the con- }}$ trol of the robot. There are many robots in existence today which are mainly used for industrial processes and doing jobs that would be impossible for people to do.

The text gives the reader a sufficient insight into the uses of robots and the basic technical format that is required to operate one. The book also provides constructional details for a computer-controller micro-robot with step by step instructions on how to make an electronic interface circuit to connect the robot to a computer.
In the Usborne tradition the book is full of colour illustrations which enhance the overall appearance of the pages and help support the text. There are 48 pages contained within and the text touches briefly on the most important areas of robotics. Cybernetics, the science of control and communication in both machines and living organisms is also briefly explained, which is just as well, because this is a highly specialised area.
R.A.H.

[ixT MONHE ISSUE...

PRACTICAL
 ELECTRONIGS

JUNE ISSUE ON SALE FRIDAY, MAY 4

Most designs for alarm units are very flexible and quite expensive. The unit described here is a simple loop alarm which was originally designed to be connected to a wire loop of the sort used in shops to protect small and easily stolen articles such as radios. The design does, however, have many applications since the principle is that the alarm sounds for a preset length of time once the loop is broken. It would be possible to connect the loop to a magnetic reed switch or even foil strips as often used on large windows.

The circuit is designed around смOS logic components and consumes less than $10 \mu \mathrm{~A}$ in its standby condition and so it is well suited to being battery powered. Naturally, the supply current rises dramatically once the alarm sounds. The alarm tone itself is pulsed at half second intervals which not only makes it much more noticeable but cuts down battery consumption by some 50 per cent.

OSCILLATIONS

It has already been mentioned that the circuit is designed around cmos logic i.c.s to minimise power consumption. It is important to note that this type of logic will not work reliably when fed with slow moving analogue signals, and therefore the levels supplied to each gate at any time should be close to the supply voltage.

Other voltages, particularly those around the half supply area, are likely to cause the gate to oscillate at a high frequency which will cause the i.c. to overheat and eventually destroy itself, not to mention the apparent spurious action of the circuit involved. It may be of interest to note that TTL logic is much more sensitive to this type of abuse than cmos parts, and half supply input voltages will almost certainly quickly destroy the gate; although for a different reason.

Consider a typical cmos gate as shown in Fig. 1. This is an inverting gate so that when the input voltage is close to 0 volts the output is high. As the input voltage is increased the output will eventually go low, but at some time in between the gate may become unstable and several sam-
ples measured oscillated at 2 MHz as well as consuming large amounts of current. This oscillation becomes worse with increasing input series resistance but may be reduced by the addition of a 100 pF capacitor between the gate input and 0 volts which effectively reduces the source impedance presented to the gate.

SCHMITT TRIGGERS

The most popular way to clean up a slow moving edge such as this is to employ a Schmitt Trigger which operates by applying feedback across the logic gates Some logic gates are actually manufactured for this purpose including the смоs 4093 (quad 2 -input NAND). These require no further treatment of the input signals but do tend to be much more expensive than the equivalent standard gate. Fig. 2 illustrates a Schmitt Trigger designed around standard смоs gates and serves as a suitable example to explain the Schmitt action.

With 0 volts applied to the $330 \mathrm{k} \Omega$ input resistor $\left(\mathrm{V}_{\mathrm{in}}\right)$ the output of the first gate will be high and naturally the output of the second gate will be low. This means that until the output from the second gate starts to go high the $1 \mathrm{M} \Omega$ resistor will act as a potential divider to any input voltage applied, such that the input gate voltage ($\mathrm{V}_{\text {gate }}$) will be only about two-thirds $\mathrm{V}_{\text {in }}$. Obviously therefore, an input voltage of
some 3 volts will be required before the gate starts to change its output state.

Immediately this happens however, the output of the second gate will rise and the $\mathrm{l} \mathrm{M} \Omega$ resistor will no longer act as a potential divider to ground, but to the +ve supply since the gate output will pull it high. Immediately therefore the starting voltage on the gate of some 2 volts becomes 4 volts without any increase in $V_{\text {in }}$.

This action is very fast and so the final output is a good edge. Once the gate has changed state the $1 \mathrm{M} \Omega$ will tend to source current holding $\mathbf{V}_{\text {gate }}$ slightly high and so the input voltage has to be reduced considerably to return the system to its original state. This is the most important feature of a Schmitt Trigger: The input voltage at which switching occurs is different depending on whether the input voltage is rising or falling. This action is called hysterisis and is denoted by a symbol which combines the graphs of rising input and falling output into a box with two tag ends. Hysterisis was originally noticed in magnetic circuits when iron cores tended to retain some magnetisation.

CIRCUIT DESCRIPTION

The full circuit diagram of the alarm is shown in Fig. 3. In normal non-active conditions the "loop" pins will. be joined

EE6P
together which means that the inputs to gate ICl a are held high by R 1 .

When the loop is broken $\mathbf{R} 2$ pulls these inputs low, but it must be a fairly high value resistor to minimise current flow when the loop is joined. R3 is present to protect the gate inputs from static and mains pick-up when the loop is open.

As soon as the loop is broken the gate output goes high which rapidly charges up C1 by means of R4 and D1. The
voltage across $\mathbf{C l}$ then triggers the Schmitt Trigger formed by the two gates of ICIb and ICIc. When the loop is joined again pin 3 of ICI will go low which will discharge C1 through R $5, \mathrm{R} 4$ having no effect because of the series diode.

The relative high value of R 5 ensures that Cl takes a long time to discharge sufficiently to alter the output state of the Schmitt Trigger and so allows the alarm
to go on ringing some time after the loop has been rejoined.

It must be noted that R5 is not solely responsible for this reset delay and that in its high state the Schmitt Trigger sources some current through R6 and R 7 helping to increase the reset time.

Obviously some form of manual reset is required since the alarm is not required once someone has been alerted and total reset is obtained by simply removing the power for a brief period. This allows C1 to discharge via D2 and hence resets the circuit.

OSCILLATORS

The output from the Schmitt is used to gate two oscillators, also built around standard смоs parts. The first formed by IC1d and IC2b uses a 220 pF capacitor and operates at about 700 Hz , whilst the second formed by IC 2a and IC2d operates at 1.3 Hz . Only when the output of the slow oscillator is high will the tone be allowed on the output by virtue of gate IC2c. SI serves as a test switch and may be omitted if desired, the main advantage of this is the alarm only sounds when the switch is pressed. R8 protects gate IClC when the switch is pressed.

The tone output on pin 10 of IC2 is buffered by two transistors arranged such that when the alarm is inactive pin 10 is high and no current is consumed. In this state TRI will be off (since it is pnp) and so no current will be available to switch TR2 on. When pin 10 does fall TR1 turns on and sources current to TR2 which drives the speaker at some 700 Hz in 0.6 second bursts. Diode D3 blocks any back e.m.f. from the speaker which might damage other parts of the circuit. A 22 -

Fig. 3. Circuit diagram of the Loop Alarm.

ohm resistor was inserted in series with the prototype speaker to limit the volume slightly since the shop display was always staffed but this may be linked instead if required.

The complete circuit was decoupled with a $10 \mu \mathrm{~F}$ electrolytic capacitor.

COISTRUETION

PRINTED CIRCUIT BOARD
The prototype unit was assembled on a p.c.b. which gives a much neater and more reliable result than circuits built on stripboard. Fig. 4 shows the design of the p.c.b. and the component layout is shown in Fig. 5. The components should be placed into the board in a logical way, i.e., the smallest first, although the 4011 s should be left until last. The i.c.s used in the prototype were directly soldered in but sockets may be used if preferred. Pay

COMPONENTS

Resistors
R1.4
$1 \mathrm{k} \Omega$ (2 off)
R2,3,7,9, $1 \mathrm{M} \Omega$ (7 off)
10,11. 12
R5
R6
R8, 13
R14
33 k
$330 \Omega \quad$ page 313
All resistors $2{ }^{\frac{1}{2}} W$ carbon
where otherwise stated

Capacitors

C1 $\quad 22 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C2 220pF polystyrene
C3 100n polyester C280
C4 $\quad 10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic

Semiconductor

D1	1N4148
D2,3	1N4001 (2 off)
TR1	BC214L
TR2	BD175
IC1.2	4011B quad 2-input
	NAND gate (2 off)

Miscellaneous

Printed circuit board: single-sided, size $105 \times 42 \mathrm{~mm}$; EE PCB Service, Order code 8405-01; terminal pins (8 off); plastic case 190 $\times 60 \times 110 \mathrm{~mm}$; S 1 press-tomake switch; S2 keyswitch; battery PP9; battery clips for PP9; 8 -ohm speaker 85 mm square; polystyrene foam: aluminium sheet; loop plugs and sockets (if required); connecting wire; 6BA bolts 25 mm (4 off); 6BA nuts (12 off); grommet.

Fig. 4. P.c.b. design

Fig. 5. Component layout.

particular attention to the orientation of the BD175 transistor which is not always obvious; the side of the transistor with the metal plate should face the rest of the circuit board (see Fig. 2).

It is best to bench test the circuit board before final assembly.

CASE ASSEMBLY

The prototype was housed in a black plastic box $190 \times 60 \times 110 \mathrm{~mm}$. The circuit board is exactly the right size to slip into the slots provided in this type of box. It is suggested that the speaker be mounted first into the lid of the box to ensure that suitable clearance is left for all the other major components. Fig. 5 shows the general assembly and the method of mounting the speaker.

A 50 mm hole should be cut in the middle of one end of the box lid, and the speaker mounting hole positions marked and drilled. The hole may be covered with an aluminium plate cut slightly larger than the hole with four corner holes corresponding to the speaker mounting holes. This plate was painted matt black for the prototypes. Assemble the speaker as shown in Fig. 5. Note that three nuts are used on each bolt, one to space off the metal plate, one to space the speaker and one to hold the speaker in place. Additional washers may be required if the speaker has unusual mounting holes or none at all, in which case the rim must be clamped.

Position the circuit board at one end and then choose the positions for the other components. Note that if a keyswitch is used care must be taken before assembly to ensure that it does not foul the speaker. Wire up the unit as shown in Fig. 6. Cut a piece of aluminium $105 \times 35 \mathrm{~mm}$ to act as a battery retainer and place it and the battery in the box. Two pieces of polystyrene foam were glued in place to hold the battery secure.

Since the prototypes were used as security loops the loop consisted of lengths of black $24 / 0 \cdot 2$ in wire each terminated in a 3.5 mm jack plug and

socket. Two lengths were connected to the box itself, again one end terminated with a plug, the other with a socket.

TESTING

Connect the complete unit with the loop closed to a battery and speaker. Testing may be accomplished by simply opening the loop when the alarm should sound. If it does, reconnect the loop and check that the alarm keeps on for 30-40 seconds. Finally break the loop quickly and remake it which should again sound the alarm but only for the $30-40$ seconds.

If these checks are correct measure the current consumption of the board. Firstly connect an ammeter in series with the supply line set to the highest range, switch on and wait for a minute. This is to allow the circuit to settle. Progressively increase the range until the current can be measured; this should be less than $20 \mu \mathrm{~A}$. If it is much greater than this ensure that all the cmos pins that should be connected together actually are, and that the transistors are fully off.

If the unit does not fully work check each stage in turn, starting at the output of IC1 pin 3, through the voltage on C1, the Schmitt operation, and finally the oscillator and output stages.

IN USE

The prototype units were connected to a 10 -metre loop split into eight sections and two one-metre lengths attached directly to the alarm unit itself. This loop was then threaded through the handles of the goods to be protected. Other uses where the loop is connected to window foil or even pressure pads under a carpet are not hard to imagine.

Again in a shop situation it would be far nicer to have a pressure mat in front of the counter instead of a bell push marked "press for attention". In this sort of application it would be better to replace the keyswitch with a simple press-to-break switch since it does not really matter who resets it.

IN THE PICTURE

The Bradford-based manufacturer of colour computer monitors, Microvitec, has just announced that it is making available its Cub range of 14 in and 20 in monitors to home users.
The Cubs are already familiar to schools as they are the only colour monitor to be approved under the Government's "Micros in Schools" programme and over 20,000 primary and secondary schools, not to mention colleges of further education, are claimed to be users.
They claim that the monitors are better than conventional television sets in two ways. First of all, the screens have up to four times as many "dots" as ordinary colour television tubes and so can reproduce much finer detail.

Secondly, because they are "RGB" monitors, the Cubs can accept signals straight from the computer without the necessity for those signals to be encoded on a carrier by the computer and then decoded by the conventional TV circuitry.
Because the coding and decoding have been eliminated, the clarity of the picture or display is claimed to be much sharper. The greater resolution offered by the Cub range is seen by Microvitec as an important feature, particularly as a textwidth of 80 characters is becoming an industry standard for the microcomputer.

Microvitec Ltd.,
Dept EE, Futures Way, Bolling Road, Bradford, West Yorkshire BD4 7TU.

ACT ONE

Acomplete analogue training instrument containing all the functions required for studying and experimenting with active filters, operational amplifiers and other analogue circuitry is being marketed by E \& L Instruments.
Called the ACT- 1 it contains four regulated, short-circuit proof, d.c. power supplies. Two are fixed at $\pm 12 \mathrm{~V}$ d.c., the third is variable from 0 to +7.5 V d.c. and the fourth is variable from 0 to -7.5 V d.c.
Integral to the front panel is a function generator circuit providing waveform outputs for amplifier experiments. It has outputs of sine, triangle, square and

TTL as well as a.m. and f.m. modulation control lines.
The front panel also contains a number of uncommitted devices, including a $10 \mathrm{k} \Omega$ slide potentiometer, $100 \mathrm{k} \Omega$ slide potentiometer, two slide switches, two BNC connectors and one uncommitted solderless breadboard.
To support the "trainer" a series of manuals are being produced.
For more details of price and addresses of local stockists contact:
$\boldsymbol{E} \& \mathcal{L}$ Insiruments Lid.,
Dept EE, Whitegate Industrial
Estate, Whitegate Road,
Wrexham, Clwyd LLI3 sUG.

OSCILLOSCOPE AMPLIFIER ADD-ON

THE μ Amplifier from Otter Electronics allows signals as minute as $100 \mu \mathrm{~V}$ from d.c. to 2 MHz to be viewed and measured on most oscilloscopes. The amplifier offers sensitivities from $100 \mu \mathrm{~V} /$ division to $50 \mathrm{mV} /$ division with a.c. or d.c. input coupling, and maintains a constant output of $100 \mathrm{mV} /$ division.

To make full use of the high sensitivity a differential input is provided so that common mode signals can be minimised. Also to improve the display, a bandwidth limiting switch is provided to
reduce the upper frequency limit to 20 kHz or 1 kHz .

This amplifier will find many uses in audio and video work enabling monitoring of signals direct from playback heads and measuring ripple. Even physiological signals come within the amplifier's wide performance.

The amplifier is powered from PP3 batteries and further details and addresses are obtainable from:

Ouer Electronics Led..
Dept EE, Out House,
West Underwood,
Olney, Bucks MK46 5JS.

Printed circuit boards for certain EE constructional projects are now available from the EE PCB Service, see list. These are fabricated in glassffibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH. 15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

We regret that the ordering codes for the August projects have been incorrectly quoted in the Sept-Oct issues. Correct codes are given here.

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps.

Readers ordering both p.c.b.s and software cassettes may send a single cheque/ PO for the combined amounts listed.
*Set of four boards.
**Calibrated with C1, VR1 and IC3 fitted. M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.

Readers are advised to chèck with prices appearing in current issue before ordering.

PROJECT TITLE	Order Code	Cost
Eprom Programmer, TRS-80 (June 83) Eprom Programmer, Genie (June 83) Eprom Programmer, TRS-80 \& Genie (June 83)	$\begin{aligned} & 8306-01 \\ & 8306-02 \\ & 8306-03 \end{aligned}$	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & £ 1.98 \end{aligned}$
User Port Input/Output M.I.T. Part 1 (July 83) User Port Control M.I.T. Part 1 (July 83)	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{array}{r} £ 4.82 \\ £ 5.17 \end{array}$
Storage 'Scope Interface, BBC Micro (Aug 83) Car Intruder Alarm (Aug 83) High Power Interface M.I.T. Part 2 (Aug 83) Pedestrian Crossing Simulation M.I.T. Part 2 (Aug 83) Electronic Die (Aug 83)	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 5.15 \\ & £ 5.08 \\ & £ 3.56 \\ & £ 4.56 \end{aligned}$
High Speed A-to-D Converter M.I.T. Part 3 (Sept 83) Signal Conditioning Amplifier M.I.T. Part 3 (Sept 83) Siylus Organ (Sept 83) Distress Beacon (Sept 83) Distress Beacon Pocket Version (Sept 83)	$\begin{array}{r} 8309-01 \\ 8309-02 \\ 8309-03 \\ 8309-04 \\ 8309-05 \\ \hline \end{array}$	£4.53 £ 4.48 £6.84 £5.36 £ 3.98
D-to-A Converter M.I.T. Part 4 (Oct 83) High Power DAC Driver M.I.T. Part 4 (Oct 83) Electronic Pendulum (Oct 83)	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	£5.77 £5.13 £5.43
TTL/Power Interface for Stepper Motor M.I.T. Part 5 (Nov 83) Stepper Motor Manual Controller M.I.T. Part 5 (Nov 83) Digital Gauss Meter (Nov 83) Speech Synthesiser for BBC Micro (Nov 83) Car On/Off Touch Switch (Nov 83)	8311-01 8311 -02 8311-03 8311-04 8311-05	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & \text { £3.11 } \end{aligned}$
4-Channel High Speed ADC (Analogue) M.I.T. Part 6 (Dec 83) 4-Channel High Speed ADC (Digital) M.I.T. Part 6 (Dec 83) TRS-80 Twin Cassette Interface (Dec 83) Environmental Data Recorder (Dec 83) Touch Operated Die (Dot matrix) (Dec 83) Touch Operated Die (7-segment) (Dec 83) Continuity Tester (Dec 83)	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-04 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	£5.72 £5.29 £7.43 £7.24 £4.34 £4.34 £3.41
Central Heating Pump Delay (Jan 84) Biological Amplifier M.I.T. Part 7 (Jan 84) Temp. Measurement \& Control System for ZX Computers (Jan 84) Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard (Jan 84)	$\begin{aligned} & 8401-01 \\ & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & £ 3.33 \\ & £ 6.27 \\ & £ 2.35 \\ & £ 2.56 \\ & £ 9.60 \end{aligned}$
Eprom Programmer/ROM Card for 2×81 (Feb 84) Oric Port Board M.I.T. Part 8 (Feb 84) Negative Ion Generator (Feb 84) Temp. Measurement \& Control System for ZX Computers (Feb 84) Relay Driver Unit	$\begin{array}{r} * 8402-01 \\ 8402-02 \\ * 8402-03 \\ \\ 8402-04 \end{array}$	$\begin{aligned} & £ 7.84 \\ & £ 9.56 \\ & £ 8.95 \\ & \\ & £ 3.52 \end{aligned}$
Latched Output Port M.I.T. Part 9 (Mar 84) Buffered Input Port M.I.T. Part 9 (Mar 84) VIC-20 Extension Port Connector M.I.T. Part 9 (Mar 84) Commodore 64 Extension Port Connector M.I.T. Part 9 (Mar 84) Digital Multimeter Add-On for BBC Micro (Mar 84)	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$£ 5.30$ $£ 4.80$ f4.42 $£ 4.71$ f 4.63
Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10 (Apr 84) Data Acquisition "Output" M.I.T. Part 10 (Apr 84) Data Acquisition "PSU" M.I.T. Part 10 (Apr 84) Timer Module (Apr 84) A.F. Sweep Generator (Apr 84) Quasi Stereo Adaptor (Apr 84)	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-05 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.20 \\ & £ 5.20 \\ & £ 3.09 \\ & £ 3.58 \\ & £ 3.55 \\ & £ 3.56 \end{aligned}$
Simple Loop Burglar Alarm (May 84) Computer Controlled Buggy M.I.T. Part 11 (May 84) Interface/Motor Drive Collision Sensing Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	£2.92 £4.75 £3.04 £4.53

ocic gates are used in many electronic applications to perform a variety of specific functions. The idea of logic is to have only two distinct states known as high or low, on or off, or simply 1 or 0 . In electronic circuits these states are determined by voltage levels present at the input or output of the gates. Each gate has two or more inputs, and one output whose logical state can be manipulated by its input condition.
There are several "Logic Families" available, the most common being Transistor-Transistor Logic (TTL) and Complementary Metal-Oxide Semiconductor (смоз). Their characteristics are quite different but the same logic rules apply to both. These gates are usually contained in dual-in-line (d.i.l.) i.c. packages, a typical example being a quad 2 -input NAND gate (TTL-7400), which has 14 pins.

LOGIC SYMBOLS

The logic symbols used in circuit diagrams are shown in Figs. 1 to 4, and input/output functions are shown in the truth tables. A 0 and 1 represent low and high voltage levels, respectively.

Fig. 1

Fig. 2

$$
3 \text { INPUTS } \text { OUTPUT }
$$

The three basic logic functions can be explained as follows:
The AND function will always give a low output unless all its inputs are high, for example, any 0 in will give a 0 out.

The or gate will give a low output unless any of its inputs are high, for example, any 1 in will give a 1 out.

The ex-or gate will give a high output if only one input is high (not both).

Each of the above gates is available with inverted outputs, thus giving: NAND, NOR and EX-NOR functions. An inverted logic level is one that is changed from a high to low, or low to high. For example, any 1 into a NOR gate will give a 0 out. Logic gates are available with up to eight inputs with exception of the EX-OR and EX-NOR which can have only two inputs.

Fig. 3

Fig. 4

Other gates which are commonly used are the Buffer, Inverter and "Schmitt" triggered gates. Buffers and Inverters are single input devices used to buffer previous outputs. The buffer will give the same logic level at its output, as applied to its input, whereas the inverter will give the inverse. "Schmitt" triggered devices are fast switching inverting gates used in high speed circuits.

There are limitations to the use of these chips which vary from one type of i.c. to another. However, they are all clearly defined in manufacturers' data sheets. Examples of limits are supply voltages, load currents and fan-out capability. Fanout capability, being the number of gates which can be connected to any one output.

TRUTH TABLES

AND			OR			EX-OR		
Inputs		Output	Inputs		Output C	Inputs		Output C
A	B	C	A	B		A	B	
0 0 1 1	0 1 0 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	0 0 1 1	0 1 0 1	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$
NAND			NOR			EX-NOR		
Inputs		Output	Inputs		Output	Inputs		Output
A	B	C	A	B	C	A	B	C
0 0 1 1	0 1 0 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	0 0 1 1	0 1 0 1	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 1 1	0 1 0 1	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$

CIRCUTT EXCHANGE

This is the spot where readers pass on to fellow enthuslasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

LEVEL CROSSING LIGHTS FLASHER

This circuit is used to simulate level crossing lights on a model railway. R8 and C3 trigger IC2 as soon as S1 is closed. The yellow l.e.d., D3, lights for about five seconds, after which the output of IC2 goes low. The yellow l.e.d. goes out and TRI is biased into conduction which starts the red l.e.d.s flashing.

The circuit operates from a 9 V battery, but if the railway power controller has a separate fixed voltage d.c. output, then this can be used, although the smoothing and regulator circuit shown above may be required. On an " 00 " scale layout, 3 mm diameter l.e.d.s should be used.
R. Ormston,

Hythe,
Hants.

DIGITAL GAME

The circuit presented here is a game which uses two l.e.d.s and a large 7 segment display for playing and one of its features is touch operation. To start the game, the player must touch the two touch plates. As soon as these are bridged C1 and C2 will be charged up via D1 and D2. The time constant for these networks will be determined by C1, R2 and C2, R3 respectively, and will change the logical states of two nand gates from high to low (1 to 0). TR1 and TR2 will switch on for a predetermined time, and thus supply current to the rest of the circuit. Since C 1 is smaller than $\mathrm{C} 2, \mathrm{TR} 1$ will switch
off, first causing the oscillator to switch off before the display. The frequency of the oscillator may be adjusted by VR1.
After a certain time, the display will turn off and the power consumption of the whole circuit will be around $1 \mu \mathrm{~A}$ or less (because of cmos i.c.s). Because of the low current drain an on/off switch is not needed. For D3 and D4 a Tri-colour l.e.d. could be used but this device will increase the price of the unit.

Hamid Reza Tajzadeh, Tehran, Iran.

ELECTRONIC SIREN

THE heart of the electronic siren is a quad two-input NOR gate MC717 integrated circuit or equivalent. The four gates are used in pairs to make two oscillators. One oscillator varies the frequency of the other.

After completing the circuit, setting all pots to mid position should yield a sound much like that of an air-raid siren.

Hamid Reza Nameri, Tehran, Iran.

ELECTRONIC CANARY

THE Electronic Canary was designed for play sound effects. The circuit is quite simple and is based around an NE 556 timer i.c. Pin 3 is connected to the emitter of TR 1 which follows the voltage on Cl to produce a "ramp" waveform. That is the charge/discharge curve of C1. Thus a roughly triangular wave is fed to the audio oscillator causing it to glide between tones.
 Shaun Gander, Lewes, Sussex.

COUNTER NTELIGENCE

Ubiquitous Electronics

A cartoon in the "Nationals" the other day, depicted a little boy being asked by the King what he wanted to be, and he answered, "A jeweller and an electrical engineer". "Why both?" asked the King. "Sol can repair watches"
I think I might have used the word, "Electronic" instead of "Electrical" but what impressed me was, that the cartoonist was stating a truth that goes far beyond watches. If the boy in question wanted to be any number of things, Automobile Engineer, Washing Machine Mechanic, Typewriter Repairer, Refrigeration Engineer, the list could be extended almost indefinitely, today, he would still need to have a thorough grounding in electronics.

This can only be good news for the technical schools and the electronics magazines, for what better start can any
youngster have in this field, than reading "Everyday Electronics" and our sister publication, "Practical Electronics"

Solutions Good and Bad

One thing that pleases all of us is a neat solution to a problem, especially if electronics are involved. Here is a case in point.

High up in the very isolated Ibardin Pass between France and Spain, telephone engineers wanted to install a coin-operated phone box. Laying cables would have presented a major problem so this is what they did.

The power supply was solved by using solar panels to charge up batteries. It can function up to 15 days without any sunlight and instead of wires carrying the sound, a short-wave radio link connects it to the nearest exchange.

If this earns a bouquet, then a brick bat should go to whoever installed the lighting at Fenchurch Street Station. The lights are arranged to come on automatically when the natural daylight falls below a certain level.

Nothing new in that of.course, but here is the rub. The sensors have been placed so that the artificial light falls directly on them. The result being, that they immediately. switch all the lights off again.

Sound Sense

I recently had the misfortune to burst an ear drum, a legacy of my flying days. About a week later I was wandering disconsolately down Middlesex Street, better known as Petticoat Lane, and speculating on whether it would eventually heal, or whether I should need a hearing aid, when ! heard a costermonger calling out, "Dón't bother with the National Health, Deaf Aids only 10 p "

Deciding that I could hardly go wrong, I purchased one. I was given a small cardboard box and inside was a yard (sorry metre) of white tea string with a knot in one end.
"How does it work?" I asked the vendor. "Simple, Guv, put the knot in your ear and the other end in your breast pocket, and people will shout at you like mad!!

PREVIOUSLY ADVERTISED STILL AVAILABLE

Tape punch and reader
BOAC in-flight stereo unit
Drill assorment each 25 sizes
Nicad chargers, mein
Floursscent inventor 13 watt from 12 v
Ten digit stiteh pad-pb phone erc.
Uniselector 2 pole 25 wiy.
Counter 8 digit mains opersted
ditto 12 V resetrable
Double glazing clear PVC sheet, $23 \times$ wide per running tt
Locking mechanism with 2 key
Magnetic Clusch
Mouth opersted suck or blow switeh
ditto 230 v mains
Timer Omron STP NH 110 v A \dot{C} Coll
Koy switch with $\mathbf{2}$ keys dp
Alr valive mains operated
Latching relay mains operated
Dry film lubricant serosol can

E22.50

 $£ 22.50$$£ 7.75$
$£ 1.50$
$\varepsilon 11.50$
$£ 1.75$ $\begin{array}{r}\text { £11.50 } \\ £ 1.75 \\ \hline\end{array}$ $£ 1.78$
ع0.75 ${ }^{23.50}$
 ${ }_{\text {E4. }} \mathrm{E} .95$ E4.60

26.50 £1.15 16.15

63.45 \begin{tabular}{l}
E2. 1.15

\hline

 £1.15 \&4.50

ع2.30

\hline
\end{tabular} £2.30

ع1.82 | ع1.30 |
| :--- | ع6.30

ع6. | ع1.75 |
| :--- |
| 1.75 | 61.75

£3.75 E3.50 60.65
64.60

Complete kit of parts for a three channel sound to light unit
controlfing over 2000 watts of lighting. Use this at home if y controiting over 2000 watts of lighting. Use this at home if you
wish but is is pientr rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controts fo each ch "\% sockets and three panel mounting fuse holders provide Ate by
thyristor protection. A fourpin plug and sockent facilitate ease of
connecting lamps. Special price is $£ 14.95$ in kif form or E 25.00 connecting lamps. S

12 volt MOTOR BY SMITHS

 MINI MONO AMP Firted volume control and a hole for a a,
trol should you require it. The amplifier has three tronsistors end we estimate the output to he 3 W rms
More iechnical data will be More sectinical data will be in wect conditio. Grand new.

- BARGAIN OF THE YEAR The AMSTRAD Stereo Tuner.
This ready assembled unt is the ideal tuner for a mustc centre or an amplifier, it can also be quickly made into a
personal stereo radio - easy to carty about and which will give vou superb reception.
Other uses are as a "veet you to sleep radio", vou could even taker is wimes you or use In he e lounge when the rest of the
tamily want to view programmes in which you are not tamily want to view programmes in which you are
interested. You can listen to some music inseat interested. You cmn listen to some music instead,
Some of the features oce: long wave band $115-270 \mathrm{KHz}$, Some of the leatures gre: Iong yave band $115-270 \mathrm{KHz}$
Tedium wave band $525-1605 \mathrm{KHz}$ FM band $87-$
 to give You soot on tereo tuning, ootlonai LED wave band
 up date show ing ou how to connect to amplifier or head
phones and details of suitabie $F M$ cerial (nole ferrite rod phones snd detalls of suitabie FM serial (note ferrite rod
aerial is included for medium and long wave hends. All made up on very compact board.

 assembled and tested + +21.50 posi + insurance.

THIS MONTH'S SNIP
pm speaker \& instructions E 2.45
REVERSIBLE MOTOR with control gear Made by the
 ooerating stage currains, doors, ventilapors, etc. Even garape doors if property balanced. Offered complete with control gear aitch
I Framco motor with gear box
i push to start swith

FOR SOMEONE SPECIAL
Why nor make your greeting card plav a tune? 1 Trould play
Hoppy Birinday', Merry Christmas' Wedding March'
Home Sweer Home'. erc. Water thin 3 part assemblies, for
making cards musical. Mini microchip speaker and battery, with
swirch that operates as the card is opened. Piesse rate tune when switch thet operates as the card is opened.
ordering. Complete, leady to work $£ 1.25$.
JOYSTICK

 TRectum or 2×81 it is equally sultable for any home compurer. TELEPHONE ITEMS
Plugs only \& pin or 5 pin
Modern desk telephone
Modern desk telenhone
Meavy black old type
External bell unit
Bell ringing power unit
Pich
Pick up coil
STABILISED POWER SUPPLY (Mains Input) By LAMDA (USA) - Ideal for computer Podd-ons, d.c. output.
hegulared for line vols and load current. Voltage reaulition. 18 with input variations up to 20\% - lood reautation 1% from no
load to full load -or full loaio to no oload. Complete in heavy du

PRESTEL UNIT -

50 THINGS YOU CAN MAKE

 Thinss you can make include Multi range meter, Lowohms tester, A.C. amps meter. Alarm clock, Soldering ohms tester, A.C. ampr meter, Alarm clock Soivering
iron minder, Tho way teleopoone, Memory jogger, Live line tester, Continuity checker. eic. etce., and you will st
have hundreas of parts for future profecis. Our 10. ${ }_{9}$.

 and dies, tools, therrmstris, cois, nicad charger, power unit. multiturn pois and notes on the 11.50 plus $£ 3.00$ post.
YOURS FOR ONLY

TELEPHONE \& INTERCOM CABLES 15 conductors collour cotéd 200 mit colt 859.00
10 conductors colour coded 200 mt coil 839.00 Ferextention lead win nutber
.5 mm ideal rass cutrers erc . 250 mtn coll $£ 25.00$ 50 meter coil 26.75
MAINS TRANSFORMERS

4 voll	4 amp	c1	24 v	4 amo	¢4.85
	mp	f1.15			
12 volt		E1.15	olt	2 a	E3.95
			volt	2\%/2mb	¢4.95
12 volt	1 mmo	¢1.75	volt	10	E9.95
15 volt	2 amp	E3.45		2 mp	50
15 volt	4 amn	E4.60	25.0.25		5
		¢1.95	12.0 .12	amp	
volt	mp	¢2.30	15 L		
24 volt	2 mp	¢3.45	115 v	w auto	c5.75

J. BULL(Electrical) Ltd.
 HAYWARDS HEATH, SUSSEX RH16 3OU. 30 YEAAS MAIL ORDER TERMS: Cash, P.O. or cheque with order. Diders under
E12 add 600 service charge, Monthiy account orders accepted from schools and public companies. Access \& B/card orders accepted day or night. Hay wards Heath (044s) 454563 . Bulk orders
Shop open $9.00-5.30$, mon to Fri, not Saturday.

STORE CLOSING SALE
All stocks musi go from one of our big warehouses. $10,000,000$
items, every thing from AERIALS to ZENER will be cleared at fantastically low prices - If you are a manufacturer you can save vourself a forsune.

EXTRACTOR FANS - MAINS OPERATED

 E6.50. Post $£ 1.25$.
$\times 4$ " Multin $115 \times$.
 E5.75. Post 750. All the above ex compure,
those below are unused
 9" Ameritan made
E11.50. post $£ 2.00$.
Tangential Blower 10×3
 Tangential Blower fox
air outhet, duall peed
$\mathbf{E 4 . 6 0}$. Post $\mathbf{~} £ .50$.

LIGHTING \& POWER CABLES
Made by Volex to.BRITISH STANDARD SPECIFICATIONS

P.V.C. sheathed outer-copper clad conductors i. 5 mm fiat twin 100 metres $\quad £ 4.50$ 1.5 mm flat 3 core 8 E merres E 19.00 6 mm flat 3 core metres $\quad \mathbf{E 5 4 . 0 0}$ 16 mm flat twin 8 E metres E 115.00

MINIATURE WAFER SWITCHES
 OTHE R TYPES IN STOCK - PLEASE ENOUIRE BLEEP TONE These work off 12 vand have an unusuat and CONNECTING WIRE PACK 96 lengths of connecting wire, each 1 meve iong and aiverenily colour coded, a must for RED LEDS 10 for 69 p . 100 for $\mathrm{E5} .75 .1000$ for $\mathrm{E52}$. IN LINE SIMMERSTAT Ideal heat controller for soldering

IONISER KIT

Relresh your home, office, shoo, work room, etc. with o nequative ION gemerator. Makes you teel better and work
harder -a complete mains operated kit, case included. £ 11.95 plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

Short Wave Set - covers all plug in coils. Kit complete
 R C Bridge KIt

3 Chamnel Sound
Ditto - made up
Dinto - made up
Big Ear, Histen through walls
Hobot controller - receiver/fransmitrer
Ignition kit - helps starting, saves petrol, improves
perient sentinet Uitro Sonic
Sid
Car Light 'left on' alarm
Socret switch - lools frlends and enemies alike
$3-30 v$ Variable Power Subply
2 Short \& Medium wave Crystal Radio
3v to 16 v Mains Power Supply Kit
Light Chaser : three modes
Mullard Unilex Hifi stereo amolifier with speakers
Radio stethoscope - lautt finding aid
Mug stop - emits piercing squark
Morse Trainer - complete with key
Oritc control kit
Drill control kit - made up
Transmitter survellance kit
Radio Mike
Seat Bell reminder.
Car Starter Charger Kit.
Soil heater for plants and seeds
Insulation Tester - electronic megger
Battery shaver or tluorescent from 12 vav
Matchbox Radio - recelves Medium Wave
Mixer Pre-amp - disco spectlal with case .
Aerral Rotator - mains operated
Aerial direction indicato
40 walt amp - hifi $20 \mathrm{~Hz}-20 \mathrm{kHz}$ Microvolt mullhblier
ordinary multhester
Pure Sine Wave Generator
Linear Power output meter
115 Watt Ampiliter 5 Hz 25 kHz
Power supply for 115 watt amps
Stereo Bass Booster, most items
£ 14.50
$\mathbf{8} .95$
$\varepsilon 14.95$ £9.50 £9.50
$\{13.95$ 69.50 63.50 81.95 $£ 13.80$ £3.99
$\mathbf{E 1 . 9 5}$ E 1.95
$\mathbf{~} 17.50$ C16.75 16.75
ce. 80

BIC K IT:IJ ONT COMLUMFR MACARHN YOU'T अVMR NभगD.

BIG K IS BURSTING WITH NEW IDEAS TO HELP YOU GET THE MOST OUT OF YOUR MICRO - HARD-HITTING REVIEWS OF NEW EQUIPMENT, INGENIOUS TECHNIQUES TO ADD NEW DIMENSIONS TO YOUR SOFTWARE, IN-DEPTH TESTS OF THE VERY LATEST GAMES, AND IN EVERY ISSUE YOU'LL FIND LISTINGS FOR SOME OF THE VERY BEST ADVENTURE GAMES YOU'LL EVER PLAY.

STAY IN TOUCH WITH BIG K EVERY MONTH.

SECOND AMAZING ISSUE ON SALE 19th APRIL-85p

THIS ISSUE:

FALKLANDS VICTOR GENERAL SIR JEREMY MOORE REVIEWS THE LATEST WAR GAMES.
COMPUTERS COMPARED - 3 NEW BRITISH MICROS VERSUS
3 AIERICANS.
ADVENTURE X - A SUPERB FULL SIZE GRAPHIC ADVENTURE FOR THE SPECTRUM.
AMAZING GAMES FOR BBC, VIC 20, SPECTRUM, ATARI, COMMODORE 64.
SPECTRUM GRAPHICS SPECIALGREAT 3D ROTATION TECHNIQUES.

RRTJ

 FLTXXIDISC-3 superb programs to add amazing effects to your BBC and Spectrum games.

ELECTROVALUE Your SUPPLIERS for GAPAGITORS of all preferred types
 polyester layer isie. mensl) B 325095 mm PCM 1076 ioterance 63 K . In 13 values trom 0.0017 to 0.47 , F 8.3351075 mm PCM 10% toterance $100 \mathrm{~V} \min \ln 7$ vat B. 3256075 mm PCM 26 types 10\% tolerance 400 V 0.001 to $0.0068 \mu \mathrm{~F}$ Po 10 lerance from 00082 to $0.68 \mu \mathrm{~F}$ in $400.250 \& 100 \mathrm{~V}$
 CERAMIC PLATE Above To00pF, in E. 6 values to 4700 DF C. $333100 \mathrm{Vdc} 184700 \mathrm{pFF}=10$ types 8.3748 8.374863 Vdc 2.5 mm PCM $0.010 .08 \mathrm{DF}-5$ types 8.3744963 Vdc 5 mm PCM CERAMIC OISC Inf-10 $\mathrm{mF}, 300 \mathrm{Va}$ Inf-10nF, 300 V ac ELECTROLYTIC Axial in 48 values from 1 to $10000 \mu \mathrm{~F}, 10$ to 63 Vdc Cenned in 9 values from 2000 to $220000 \mu \mathrm{~F}$, vathages to 350
 Reversible ham $210100 \mu \mathrm{~F}$ Reversible hom 2 to $100 \mu \mathrm{~F}$ 17 values, $6-50 \mathrm{Vdc}$ Radial 15 values $\mathrm{I}-1000 \mu \mathrm{~F}$, 16 . 63Vdc
 TANTALUM beados in 18 values from $0.1-100 \mu F$, 3.35 Vdc
 POLYSTYRENE (Siemens) 39 values 5 pF to 18 nf 160 Vdc The above ranges should requirements. Mention EE when sending for our latest A. Z list showing very many more types.

BRITAINS LEADING QUALITY COMPONENT

 SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST aITRACTIVE DISCOUNTS•FREE POSTAGE-GOOD SERVICE \& DELIVERY

28 St Jude's Rd Englefield Green, Egham, Surrey TW2O OHB. 10784 33603 Telex 264475. (Callers only) 680 Burnage Lane MV. 10614284945 EV Computing Shop. 700 Burnage Lane. Manchester (061 \$31 4866).

ACCESS AND BARCL AYCARD Phoned Orders Welcome

METERS: $110 \times 82 \times$ 35 mm $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$. £6.90 Post 50p.	T.V. UHF Aerial Amplifier 300 - 890 MHz £6.03 post 57p Desoldering Pump£4.25 post 27p Resistance Substitution Box £3.97 post 17p Vernier Dial 50 mm Dia. £2.31 post 17p Tape Head Demagnetizer £2.60 post 39p Min. Buzzer 6 or 12V 63p post 21p
METERS: $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $25 \mathrm{v}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A} 25 \mathrm{~V}$. £3.54. Post 30 p .	TRANSFORMERS 240v Primary 3-0.3v 600 mA $6.0-6 \mathrm{v}$ 100 mA 6 E 1.20
METERS:	6-0-6v $\quad 250 \mathrm{~mA}$ E1.33
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}$,	12-0.12v 50 mA E1.13
$100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$,	12.0.12v 100 mA ¢1.21
$50-0.50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A}$. 6.0	9-0-9v $\quad 75 \mathrm{~mA}$ E1.20
VU meters $£ 6.04$	$9-0.9 \mathrm{v}$ 250mA £1.37
Post on above meters 30	Post on above transformers 48p.
Silicone grease $50 \mathrm{~g} \mathbf{~} 1.32$. Post $16 p$.	$\begin{array}{ccc}9-0.9 \mathrm{v} & 1 \mathrm{~A} & £ 2.05 \\ 12.0-12 \mathrm{v} & 1 \mathrm{~A} & £ 2.52\end{array}$
NI-CAD BATTERY CHARGER	$\begin{array}{llr}150-0.15 \mathrm{~V} & 1 \mathrm{~A} & \mathrm{Ez} .11 \\ 60-6 \mathrm{~V} & 11 \mathrm{~A} & \mathrm{Ez} .20\end{array}$
Led indicators charge-test switch. For PP3, HP7, HP11 \& HP2 size betteries. Price £5.85. Post 94p.	Rotary Switches: 1 Pole 12 Way 2P6W, 3P4Way, 4P3W 42p
Motorola Piezo Ceramic Tweeter E5. 20 Post 33p	Illuminated Rocker Switch 240V 6A Red 88p Post 16p
All above prices include V.A.T. Send $\mathbf{£ 1}$ for a new comprehensive 1983/84 fully illustrated catalogue with a new price list. Send S.A.E. with all enquiries. Special prices for quantity on request.	
All goods despatched within 3 days from receipt of the order.	
158 Bradshawgate, Bolton, Lancs. BL2 1BA.	

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7 -segment displays You need the board and components from SUPERKIT to enable you to build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.
SUPERKIT (SUP) E22.00 SUPERKIT II (SUP II) £16.00 Special price $£ 36.00$ for both (SUP + II) (inc. VAT and $p \& p$) The SUPERKIT series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COM PUTER DESIGN (more advanced). which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.
DIGITAL COMPUTER LOQIC (DC4 E7.00
DIGITAL COMPUTER DESIGN (DCD) 89.60
MICROPROCESSORS AND MICROELECTRONICS (MIC) £8.60

Please send for full information on these and our other courses.
GUARANTEE If you are not completely sarisfied. reium the hem to us within 28 days tor a full refund All prices include worldwide surface postage fask for preparment invoice for simmail. Allow 28 days for delivery in UK. Overse as payment by intemational credt card or by bank drath drawn on a London bank
CAMBRIDGE LEARNING LTD, Unit 38, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England.
Tel: 0480-67446
Vat No 313026022 Yranscash No 27 B9159 Reg No 1328762
Please send me (initial letters used):

I enclose a cheque/PO payable to Cambridge Leaming Lid for£.
Please charge my . credit card,
No . Expiry date
Telephone orders from credit card holders accepted on 048067446 (24 hrs)

Name

Address

Signature
CAMBRIDGE LEARNING
Unt 38, Rivermill Sho, FREEPOST. St Ives, Cambe PE17 4BR. England

Miscellaneous

COMPLETE SET EVERYDAY ELECTRONICS Nov 71 to Dec ' 84 except Sept ' 84 . Offers Box No. 13.

ORIC-1 EPROM PROGRAMMER. Full hardware and software plans of a low-cost unit which programs, stimulates and duplicates Eproms on your 48K Oric.
 ways, Crawley, Sussex RH10 1QT.

THE SCIENTIFIC WIRE COMPANY

ENAMELLED COPPER WIRE				
SWg	1 lb	$8{ }^{8} 8$	4 oz	2 oz
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
401043	6.00	3.20	2.25	1.69
441047	8.67	5.80	3.49	2.75
SILVER PLATED COPPER WIRE ${ }^{\text {E }}$ (69				
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Prices include P\&PVAT. Orders under $£ 2$ add 20 p.				

For Sale

WORKING TEST EQUIPMENT, Signal generators, variable P.S.U.S, meters, isolating transformers and breakdown units etc at give away prices. S.A.E. to S.H.E., 5 St Josephs, Ballycruttle, Downpatrick, BT30 7 EN .

Repairs

M \& S COMPUTER REPAIRS. Specialising $\mathbf{Z X 8 0}$, 2X81, ZX Spectrum, ZX Printer. Cheap rates. guaranteed. Phone 021-384 1297 Ipm-6pm for enquiries.

Receivers \& Components

S00 SMALL COMPONENTS including TTL transistors $£ 2.50,7 \mathrm{lbs}$ or 10 lbs assorted components $£ 5.00 /$ £6.50. Fifty 74 series I.Cs on panel $£ 2.20$. Post Paid. J. W. BLANSHARD, 2 Bamfield Crescent, Sale Cheshire, M33 INL.

EVERYDAY Elegrooncs

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.80$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word (minimum 12 words), box number 60 p extra All cheques, postal orders, etc., to be made payable to

COMPONENTS \& EQUIPMENT - 1984 Catalogue $70 \mathrm{p}+20 \mathrm{p}$ P\&P. Callers: 18 Victoria Road, TAMWORTH. 369 Alumrock Road, BIRMINGHAM. 103 Coventry Street, KIDDERMINSTER Express Mail Order Service. LIGHTNING ELECTRONICS, PO Box 8, Tamworth, Staffs.

BUMPER BOX OF BITS

wowill we've got so many components in stock, we can't possiby list them allIII - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels wn. All modern parts - ouaranteed at least 1000 items. on. Al modern parts-guaranteed at least 1000 tems,
minimum weight 10 bibs ONLY $£ 8.50$. PSU PANEL
Stabilized 5 V , variable $\pm 0.5 \mathrm{~V}$. Regulation 1% Max. cur Stabilized 5 V , variable $\pm 0.5 \mathrm{~V}$. Regulation 1% Max. cur-
rent $2 A$. Will take $A C I \mathcal{P}$. 15 V or $D C V P$ up 24 V . Panel $140 \times 35 \mathrm{~mm}$ contains all components except series reg. transistor which is mounted separately. PCB stand-offs, included ONLY E3.95. Heatsink 75p: transformer $\mathbf{E 5} .00$.

RESISTOR PACK All sunts - eventhing from tith to 10 W. Carbon, Film, only E 495 .

SWITCH PACK

Slide (up to 9 way), push button banks, push types - a Slide (up to 9 wayl), push button ban,
total of 50 switches for onty $\$ 3.95$.

All prices include VAT and Post/Packing. Send SAE for latest lists 1d Dews Road, Salisbury, Wilts, SP2 7SN

AERIAL BOOSTERS

Nert to the sel firiong
Qu5H/GUHF TV, gain about 20dbs, Tunbole over the complete UHF TV band PRICE 5 : 70
AMPURED SET TOP AERINS, for VHF TV. Trebles the gain PRICE E11.0.
All Boosters we make work off a PP3/006p/6F22 trpe batren OV to 18V DC. PRP 30p PER OROER.

NKC MUI OADER © Bridge St Remabottom
Lancs BLO SAG. Tel (070sea) 3006
Access/Visa Cards Welcome

TO ADVERTISE ON THESE PAGES PLEASE RING PAT ON 01-2615942

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink Wisbech, Cambs. 0945-584188. Immediate Brink Wist
setulement.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P. 0 for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME
 ADDRESS

EVERYDAY ELECTRONICS

Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5942
Rate
33p per word, minimum 12 words. Box No. 60p extra. Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

AT YOUR SERVICE

Everyday Electronics and Computer Projects and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics and Computer Projects, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St, London SE1 9LS. (Telephone 01-261 5942).

Courses

CONQUER THE CHIP-master modem electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept C3, Reading, Berks RGI 1BR.

Service Sheets

FULL SIZE SERVICE SHEETS $\mathbf{£ 2}+1$ sae; CIV/ MusC $£ 3+1$ sae. Repair/circs almost any named TVI VCR $£ 9.50$. 1 sae free quotations for manuals, sheets - free mag inc. service sheet. T.I.S.E.E. 76 Church Sureet, Larkhall, Lanarks - Phone 0698883334.

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus S.A.E. Service Manuals on Colour TV and Video Recorders, prices on request. S.A.E. with eriquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

If you see an advertisement in the press, in print, on posters or a cinema commercial which you find unacceptable, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority
ASA Lid.. Brook House, Torrington Place.
London WCIF 7 MN

FREE CATALOGUE
 Sem to every new customer

AC/DC COMPONENT PACKS

$\begin{aligned} & \text { Pack } \\ & \text { No. } \end{aligned}$	Oiv	Description	Price
TFII	12	RED 5 mm LED	51.00
TF12	30	500 mz ZENERS 5%	E1.00
TF13	100	IN4148 Diode	51.00
TF14	100	IN4151 Diode	¢1.00
TF15	50	1 amp Rect. Oiodes in 4000 series	11.00
TFI6	6	1 amp Bridge Rect.	17.00
TF17	100	Transistor pads	\$1.00
TF18	20	A/S Fuses 20 mm	E1.00
TF19	10	3A Rect. Diodes	¢1.00
TF110	2	ORP 12	¢1.00
TF111	5	BR 100 DIAC	£1.00
TF112	10	BCI09B	51.00
TF113	10	IC's all different	£1.00
TF114	50	BFR86	51.00
TF115	12	8 pin DIL sockets	f1.00
TF116	20	10 mm Horiz. Pre set (10 values)	£1.00
TF21	200	47pf 160v Polystone cap	E2.00
TF22	10	LM 3900 N	£200
TF23	10	Mixed DTL	E200
TF24	5	4700 mf 25 v Tag Elect $2^{\prime \prime} \times 1$ "	52.00
TF25	10	1000 mf 63v Ax Elect.	± 200
TF26	50	. 022 mf 400v RAD POLY	52.00
TF27	10	100 mf 250 vax	5200
TF28	10	2.2 mf 160 y Polyester RAD	$\underline{0.00}$
TF51	100	white/red 5 mm LED	55.00
TF52	50	BC 108C	E5.00
TP53	2	$10,000 \mathrm{mt}$ G7v comp. grade elect.	£5.00
TF54		$\frac{1}{2 g}$ reel 22 g ersin multicore solder	E5.00
TP55	10	2N3055 H(RCA)	£5.00
TF56	5	OCP71	E5.00

ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW \& NORMALLY DESPATCHED BY RETURN

POST.
POST. Please sdd $75 p$ to total order.

> AC/DC ELECTRONICS COMPONENTS
> DEPT E.E. 45 CHURCH STREET ENFIELD, MIDDLESEX.

MIT Part 11 in this issue:
 "COMPUTER CONTROL OF SMALL VEHICLES"

Complete set of components (not PCB) + gearbox and wheels (as recommended by the authors) for around $£ 30$. Ring for exact price and place your order by Access at the same timel

MOTORRED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electromechanical parts required in building remote controlled vehicles. The unn
has $2 \times 3 \mathrm{~V}$ motors, tinked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained whin the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unin showing various options on driving the motors etc. 85.95 . Suitable wheels also available: 3 br" Dia plastic with blue tyre, 2 drilled to push-fit on spindle. 2 for $\mathrm{E1.30}$ 3 mm thick, drilled to push-fit on spindie. 2 for 68 p .

PRECISION PCB DRILL Small size, 35 mm dia $\times 165 \mathrm{~mm}$ long. 12 V operation. Supplied with collett +

PACKSI PACKS! PACKSI
K517 Transistor Pack. 50 assorted full spec marked plastic devices PNP include $\mathrm{BC} 114,117,172$ numbers $198,239,251,214,225,320$, 198, 239, 251
$8 F 198,255,394,2143904$ etc etc. Retall cost $\mathbf{~} 7+$. Special low price 275p

K523 Resistor Pack, 1000 - yes, 1000 and it watt 5% hi-stab carbon film resistors with protormed leads for PCB mounting. Enormous range of preterred values from a ow ohms to a several megohims.

K520 Switch Pack. 20 different assorted switches - rocker, slide, push, switches - rocker, sice, push,
rotary, toggle, micro ofc. Amazing value at only

K522 Copper clad board. All pieces 100 small for our etching kits. Mostry double sided fibreglass. 250 g (approx 110 sq ins) for 200 p

K541 it's backll Our most popular pack ever - Vero offcuts. This has been estricted for some time, but we have now built up a reasonable tock and can once again offer 100 sa ins of vero copper clad ffcuts, average size 4×3
Ofiered at around it the price of
K530 100 Assorted polyester caps - all now modern components, radial new modern acomponents, radia 0.01 to luf at voltages from 63 to 100011 Super value at

TEACH-IN 84

Once again GREENWELD is supplying a complete set of parts for this ever popular series - as we have done for all previous series.
Our experience in this field means your kit can be supplied from stock at the best possible price, so order with confidence. Price for complete kit is only $\mathbf{£ 1 8 . 9 5 \text { inc }}$ post and VAT.

SEAT BELT ALARM Originally for sate at $[8.95$, these well made units $70 \times 50 \times 25 \mathrm{~mm}$ provide both aucible and Visual alarms. Uses 21 Cr ,
PB2720 transducer, etc. Available read P82720 transducer, erc. Avaliable read just E3.95. Also available as a kit, PCB + all components, box, wire, etc, together whth instructions. Only $\mathrm{E}_{2} .55$.

RIBBON CABLE
Special purchase of multicoloured 14 way ribbon cable - 40p/motro; 50 m £18; $100 \mathrm{~m} £ 32.00 ; 250 \mathrm{~m} £ 65.00$.

TIL PANELS

Panels with assorted TLL inc LS types Big variety. 20 chips E1.00; 100 chips E4.00; 1000 chips ${ }^{530.00}$

"THE SENSIBLE 64"

David "Tighmores new book on the David Highmores new book on the
Commodore 64 now available. $£ 5.95$.

THE 1984 GREENWELD CATALOGUE

NOW AVAILABLE!!
H'a Bigger, Brighter, Better, more components than ever bofore. With Bach copy there discoumt vouchers, Bulk Buyers List. Order Form and Roply Paid Envelope. All for just E1.001 Order now for early deliveryl

COMPUTER GAMES

2501 Can you follow the flashing light pulsating tone sequence of this famous game? Supplied as a fully working PCB with speaker (no case) plus full instructions. Only E4.95

2902 Probably the most popular electronic game on the marker - based on the old fashioned pencil and pape battieship game, this computerized version has brought it bang Up to datel
We supply a ready buit PCB containino 76477 sound effect chip. TMS1000 micro-processor chip. R's, C's etc Offered for its component value only (board may be cracked or chipped. It's only $\mathbf{f 1 . 9 5}$. Instructions and circuit, 30 p .

NICAD CHARGERS

Versatile unit for charging AA, C, D and PP3 batteries. Charge/test switch, LED indicasors at each of the 5 charging poinis. Mains
Model A124. Unit plugs directly into 13A socket, and will charge up to 4 AA cells at a time. Only 94.80.

NLCAD BATTERIES

A size 99p each; C size 199p; D size 220 p ; PP3 size 395p.

VELLEMAN - KIT THAT'S IT!
 NEW INTERFACE SYSTEM FOR $\mathbf{Z X 8 1}$ and

K2609 DC Output Board $\mathbf{£ 1 9 . 0 1}$
K2610 A/D Converter $£ 28.26$

K2611 Opto Input Board £20.55
K2614 Centronics Interface
K2615 Spectrum Interface
K2610 Spect Int
Interface Motherboard $E 25.69$
K2618 D/A Converte
$£ 24.66$
(Prices include VAT)
K2606 - LED Audio Power Meter
4 selectable scales, complete with front plate for panel mounting, no power supply required
£12.48
K2601 - Stroboscope
Flash frequency $2-20 \mathrm{~Hz}$
Power supply: 220-250V AC
£10.79
K2590 - Light Computer
New version with 16 programs of max. 128 steps each. Triac outputs, adjustable speed
$£ 30.38$

SEND FOR NEW FULL COLOUR SHEET DETAILING COMPLETE RANGE WITH LIST OF STOCKISTS available free from:

VELLEMANUK.

P.O. Box 30, St. Leonards-on-Sea,

East Sussex TN37 7NL, England.
Telephone: (0424) 753246

INDEX TO ADVERTISERS

AC/DC Electronics 351
AD Electronics 350
Big K 348
Bimsales 351
Bi-Pak 293
BK Electronics 292
B.N.R.E.S 290
Bull J. 347
Cambridge Learning 349
Dziubas M 349
Electronic Mail Order 350
Electronics World 350
Electronize Design Cover I
Electrovalue 349
Enfield Electronics 333
Global Specialties Corporation 305
Greenweld Electronics 352
ICS Intertext 295
Magenta ElectronicsCover II
Cover
Maplin Electronics
351
Radio Component Specialists
296
296
R \& TVC
Rapid Electronics 291
Roden Products 350
Software Index 29
Sparkrite 295
T.K. Electronics 295
Velleman UK 352

[^0] out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

E．E．PROJECT KITS MAGENTA TEACH IN 84

THIS MONTHS
 KITS

PHONE OR WRITE

FOR PRICES
 ware，electios．
Less banteries．

 5
Digral mutimeter add on tor Bac Micico
 REVERSING BLEEPER Mar，
DIN LEAD TESTER Mar． 84是
IOMser bab
EPROM PROGRAMMER（ZX88）Feb 84 SIGNAL TRACER FEb 84
CAR LIGHTS WARNING
GUITAR TUNER JJO 84
\qquad BIOLOGICAL AMPLIFIER
CONTNUMT TESTKI CONLDRENS OISCO LIGHTS ¢9．992
68.42
 SPEECH SYNTHESRER FOR THE BBC
NOV． 83 less cable + sockels
 LONG RA
Nov． 83
HOME IN
 HOME INTEACOM less link wire Oct 8314.38
IMMERSION HEATER TELL．TALE Oct 8369.98 TEMPERATURE TRANSDUCER AMP OC．
8,14, 83
SHORT
83
8
 less cabre case \＆connector
HIGH POWER DAC DRIVER BOARD

 CRO AUG 83 less sotware
PEDESTRIAN
CROSSING SIMULTITON BOARD Aug 83 no Case
HIGH POWER ITTERACE BOARD AA 10.29 Case inthuoer alarm aug
CA
CAR
83 USER PORT H／O BOARD less

 EPROM PROGRAMMER JUn． 83 less sotware． TRS80 EMA． 99
ENVELOPE SHAPER Jun． 83 less cane Ret 12.33
REAL TIME CLOCK May 83 less sotiware and
 GUITARHEADPHONE AMPLIFIER MAY 8377.92
 MOIETURE DETECTOR MAY 83 CAR RADIO POWER BOOSTER A
FUNCTION GENERATOR APri FUNCTION GENERATOR ADRII
FLIAGER SOUNO EFECTS APII
 ZX SPRETRUM AMPIIIE APFiIIB Buzz Off March 83 SPEECH PAOCESSOR Feb 83
PUSH BIIE ALABM PUSH BIKE ALARM FEB． ELECTRONIC VII METER DEC 8 2 TAPE CONTROL Nov． 82 SINE WAVE GEN OCt LIGHTS ON ALERT OT CONTINUTY CHECKER Sept 82 SOUND SPLTTER Sept．
SOUND AECOMBINER SOUND RECOMBINEA Sept，B2
SCREN WASH OELAY Set A2 CB ROGER BLEEPER AUG． 82 2．WAY INTERCOM July 8 Z no case ELECTRONLC
REFLEX TESTER JUHY 82 REFLEX TESTER July 82
SEAT BELT REMINDERJ EGG TIMER June 82

MORE KITS AND COMPONENTS IN OUR LISTS
 KAITS LOTD MO KOMPONENTS

CAMERA OR FLASH GUN TRIGGER Mar． 82 POCKET TIMER Mar． 82.65 less tripod bushes GUTIAR TUNEA Mar． 82
SIMPLE STAEL

NEW SERIES－ALL COMPONENTS IN STOCK NOW FOR＊ ＊FAST DELIVERY．All top quality components as specified by＊ ＊Everyday Electronics．Our kit comes complete with FREE＊ ＊COMPONENT IDENTIFICATION SHEET．Follow this edu－ MINI EGG TIMER Jen MIREN MODULE Jan． 82 less speaker ${ }_{\text {E6．}}^{\text {E4 }} 10$

 aerinal
Headphones
 CAPACTANCE METEA
SUSTAIN UNIT OGI B1 ＇PPOLA D DESIGNS＇ 8 Oct． 8 TAPE NOLISE CIMTER
 head and tall game CONTINUITY TESTER
PHOTO FLASH SLAVE fuZz BOX

SOIL MOIST ICE ALARM

＊cational series and learn about electronics－Start today
＊MAGENTA＇S TEACH IN KIT INCLUDES ALL OF THESE TOP QUALITY ITEMS：resistors，pot，capacitors，semiconductors， －varicap diode，leds，ferrite rod，sockets，crystal earpiece，termi－ ＊nal blocks，wire and of course 2 breadboards．PLUS A FREE ＊COPY OF OUR CATALOGUE \＆PRICE LIST．AVAILABLE NOW ＊－TEACH IN 84 KIT．$£ 18.98$ inc VAT．P＋P 50p．Send now for ＊fast delivery．Reprints of previously published parts 50p each． ＊Official school／college orders welcome．
＊t t t t t $\star \star \star$

SOLDERING／TOOLS

¢88． 8

O－12V POWER SUPPLY Sept 81
CMOS CAR SECURPTY ALAMM Sepl 81 E19．4．
CMOS DIE CMOS DIE Sept
CMOS METRONOME Aug 81
 COMBINATIN LOCK July 1 less case E21．58
 SOIL MOISTUAE INDICATORE．E．May 81 E． 4.49
GUITAR HEADPHONE AMP E．E．May
B1
EA． 66 PHONE BELL REPEATER／BABY ALARM
${ }^{81} 1$ TERCOM April 81

M6．15
E24．43

INTERCOM APril 81 © ${ }_{81}$ SIMPLE TRANSISTOR VErSIOO \＆DIODE TESTERS Mar Led version
LED DEGE Mar． 81
 2 NVE WIRE GAME Dec． 80 GUITAR PRACTICE AMPLIFIER NOY 80 E14，10 less case．Slandard case exurre SOUND TO IIGHT Nov． 803 channet $\underset{\text { E23．40 }}{\text { E3．88 }}$ AUDIO EFFECTESUR NOV． 80 E12．80 AUDIO EFFECTS UNIT FOR WEIRD SOUNDS IRON HEAT CONTROL OCL 80
 ZENER DIODE TESTER JUn． 80

LIGHTS WARNING SYSTEM Mar LIGHTS WARNING SYSTEM May $80 \quad$| E7． |
| :--- |
| BATERY |
| 750 | CABLEA $\&$ PIPE LOCATOR less coil former Mar

CALE 80 KITCHEN TIMER Mar． 80
MICRO MUSIC BOX Feb bo

 MOASE PRACHCE OSCILLATOR FED BOEA， 98
 DARK ROOM TMMEA JUL 79
ELECTRONIC CANARY JUn 79 ELECTRONIC CANATY JUN． 79 TRANSISTOR TESTER AOF． 79
MCROCHIME DOOBBEL FEB 79 FUSE CHECKER Sept． 78
FOUND TO SOUND TO LIGHT Ser 78 EAB Sopt． 78 Hercator less cas SApt SIGNAL GENERATOA Sept． 78 IN ITTU TANASNERTOA TESTER JUn 78 78 TEIRD SOUNO EFFECTS GENERATOR Mar

 $\star \star \star$ ＊Enjoyable initroduction to election
 ＊text Ideal for all beginners－children and －pages cover all aspects－soidering－laut ＊tinding－wompoonents lidentification and how Also full detaits of how to build 6 projects－
burger allorm，radio，games，elc denng－ 4 Dages clearky show rou how sot COMPOCTS TO BE BUILT AND KEPT． ALLOW

FUN WITTELECTRONICS．
OOK EXTRA 11.25

ELECTRONICS CATALOGUE

Illustrations，product descriptions，clrcuits all in－ cluded．Up－to－date price list enciosed．All pro－ ducts are stock lines for fast delivery．
Send 80 p in stamps or add 80 p to order． Free to Schools／Colleges requested on official Free to Sc
letterhead

MAGENTA ELECTRONICS LTD．

EE16， 135 HUNTER ST BUATON－ON－TRENT STAFFS，DE14 2ST
MAIL ORDER ONL 0283 65435，Mon－Fri 9－5 Access／Barclaycard（Visa）by phone or post 24 hr Answerp

Offrial orders welcome

 OVERSEAS：Payment must be sterlingIRISH REPUBLIC and BFPO UK PRICES． IRISH REPUBLIC and BEPO：UK
EUPOE：PKRCICES plus iox
ELSEWHERE：Write for quote． ard orders．

ANTEX $\times 5$ SOLIERING IRON 25 W

SOLERERISGIRON STAND
SPARE BTSS．Small，standard，large
soloen．Handy size
older carton
DESOLDER BRAID
HERT SINK WEEZER
HEAT SINK HEEZER
DESSLDER PUMP
HOW TO SOLDER LEAFLEI
LOW COST CUTERS
LOW COST LONGERS NOSE PUERS

PRECISION PETITE

12 V PCB DAIL
DRIL STAND
VERO SPOT FACE CUTTER
VEROPINS（D中 of 100

CROCODLLE CLIP TEST LEAD SET．
with 20 clips
With 20 Clips
RESITTOR COLOUR CODE CALCULA
CONNECTNG WIRE PACK TYPE ED．
COLUMINATED MAGNIFIERS

CORE TRIM TOOL
PRESET TRIM TOOL
FREEER AEROSOL
CONTACT CLEANER AEROSO
ELECOLTT CONDUCTVE PAIN
PVC TAPE（RGB） 3 reels
SCREWORNEA SET
POCKET TOOL SET
DENTISTS INSPECTION MIRROR JEWELERS EYEGLASS
PLASTIC TWEEZERS

B00KS：

A Practical lntroduction to Dighal IC＇s $£ 1,75$
How to design and Make Your Own PCB＇s
50 Simple LE．D．Circuits
How to Make Walkie．Talkie
Projects in Opto．Electronics
Eleatronic Projects for Begin
Eliectronic Projects for Beginners
Eectronic Security Dovices

Second Book of CMOS IC Proiects
Electronic Household Projects Aectio Control for Beginners Electronic Synhes iser Projects
How to Identify Unmarked IC＇ How to Identify Unmarked IC：
International Diode Equivalents Handbook of Integrated Circuits（IC＇s）

6629
$\epsilon 2.18$
61.04 61.38
5.50
690 69 p
$\mathbf{3 5 p}$
$\mathbf{\varepsilon 6 4 0}$ 13 p
$\mathbf{6 1 . 6 9}$
$\mathbf{6 1 . 6 8}$
$\mathbf{6} 288$ 12.80 68.78
81.76
62.52
$65 p$

MULTIMETER TYPE 2．（YN360TAI ZOK O．p． Whit rankistor tester．
$\mathrm{AC}+\mathrm{OC}$ vots DC current． 4 very usehul resis－
tance ranges We＇ve used it and we like it

PAIR OF PROBES WITH LEADS（OC）．77p Q MAX PUNCHES $3 / 8^{*} £ 2.98 ; 1 / 2^{*}$ E3．06；5／8＇ $63.17 ; 3 / 43$ 24

PCB etching wit

Ferrite rod 5 inch
PT3 clips 10p．PP9 dips 11p
2 Station intercomm 14 pin 10.53
C Sockets 8 pin 16p； 14 pin 17 p；－16 pin 18p．
Traditional Style Beli
f1．95
Public Address Mic 50 K
Mic Insert Cryatal
Cassette Mic
Pillow Speaker
Horn Speaker 5 He $^{8} 8$ ohm

Microprocess ors for Mobbyists
Electronic Test Equipment Construction
BP75
Electronic Projects for Home Security
Electronic Projects for Home Security
Questions and Ansers 61.75
63.90
62.70

20 Solid State Projects Car and Garage 84.80

52 Projects using IC741
Electronic Music Projects E 1.25
$\mathrm{£1.95}$
E 1.75
Practical Construction of Pre－Amps．Ton
Controls．Fitters＋Arten．
Radio Control For Beginners
Mobile Disco Handbook
Mare books in our price list $E 1.95$
$\varepsilon 1.75$
61.35

K Substitutes
\qquad
Proiects
Second
Second Boo
sistor Equivalen Oscilloscope Basic Electronics．Theory and practic Burgular Alarm Systems Electronics，Build and Learn Electronic Projects in Music
Electronic Projects in Photography

ADVENTURES WITH ELECTRONIOS 墭Fer

[^1]
กinkplin tassive range of oomponents for your hobly....insist on Hiaplin quality:

MAPLIN'S FASCINATING PROJECTS BOOKS

Full details in our Project Books Price 70p each.

In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge $\bullet 6$ Vero Projects In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W Mosiet Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz . Ultrasonic Intruder Detector - I/O Port for ZX81- Car Burglar Alarm Remote Control for 25W Stereo Amp. In Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100 W 240VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security

System - Model Train Projects -
Timer for External Alarm.

MMWN MADUN MAPLIN MARLN

In Book 6 (XA06G) Speech Synthesiser for 2×81 \& VIC20 - Module to Bridge two of our Mosfet Amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter - Damp Meter Four Simple Projects.
in Book 7 (XA07H) Modem (RS232) Interface for ZX81NIC20/Commodore 64 - Digital Enlargēr Timer/Controller - OXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 8 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum. Synchime - I/O Ports for Dragon 32 Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - Infra-

Red Intruder Delector - Multimeter to Frequency Meter Converter - FM Radio needs no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric 1 - VIC20 Extendiboard - ZX81 ExtendiRAM - Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to RS232 Converter Logic Pulser - Pseudo-Stereo AM Radio - Ni-Cad Charger Timer -

1984 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including p \& p) to our mail-order address.

Adder-Subtracter - Syndrum's Interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for ZX Spectrum - 80 m Amateur Recelver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 2.8kW Mains Power Controller Extendiport for Dragon 32 - 12V Fluorescent Tube Driver - 32-Line Extension for Digi-Tel.

GREAT PROJECTS FROM ERMM

Our book "Best of E\&MM Projects Vol. 1" brings logether 21 fascinating and novel projects from E\&MM's first Year.
Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster MOS-FET Amp and other musical, hi-fi and car projects Order As XH61R. Price $£ 1$.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose $£ 1.65$ Name Address

DTB D D L D
 ELECTAONIC SUPPLIES LTD

Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911. Shops at: 159-161 King Street, Hammersmith London W6. Tel: 01-748-0926. • 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. -282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50 p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: Published approximately the third Friday of each month by IPC Magazines Lid, Kings, Reach Tower, Stamford St., London SE1 9LS. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand-Gordon and Gotch (A/Sia) Ltd. South Africa-Central News Agency Ltd. Subscriptions: Inland $£ 12.00$, Overseas $£ 13.00$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. Everyday Electronics is sold subject to the following conditions namely that it shall not, without the written consent of the

[^1]: An easy to follow book suitable for all ages．Ideal for beginners．No soldering，uses an S － Dec Breadboard．Gives clear instructions with lots of pictures． 16 projects－including hree radios，siren，metronome，organ，intercom，timer，etc．Helps you leam about electronic components and how circults work．Component pack includes an S－Dec breadboard and all the components for the projects．
 Adventures with Electronics $\mathbf{£ 2 . 8 5}$ ．Component pack $£ 20.98$ less battery．

