Easy to bulld projects for everyone

 (2)
jointhe 1 dBDiOn with our

 rill on

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits....

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
\star Expert staff - Sound advice *
\star Choose your DIY HiFi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
\star Ample parking *
* Access . Visa . American Express accepted \star

35/39 Church Street, Wilmisow, Cheshire SK9 1AS
\square Lightning service on telephoned credit card orders!

THACH-N '82

STARTED LAST MONTH!!

Full set of parts as specified by "EE". All new goods, despatched by return of post.
\star All parts for the "MINILAB" only $£ 17.50$ + £1 post

* All components for first 6 parts of "TEACH-IN ' 82 ' $£ 7 \cdot 50+60$ p post.

BUY BOTH SETS FOR $£ 24+£ 1$ post !!
Deduct $£ 1$ if Vero voucher enclosed
FREE catalogue with all orders ! !
FREE component Identification Chart ! !
FREE piece of Veroboard ! !
Send NOW to:
(All prices inc. VAT)

-REENMMED

443D Millbrook Road, Southampton, SO1 0HX Tel (0703) 772501

Whatherie mokes soldering easy fost \& relioble

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin}$ /lead for general purpose electrical soldering and 60/40 tin/lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead £1.38 Handy pack ${ }^{0.028 m m \text { dia }}$

Multicore Savbit

Multicore Savbit, solder contains 5 cores of copper erosion reducing flux, increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack ${ }^{1.2 \mathrm{~mm} \text { dia }}$

Multicore Alu-Sol

Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Size SV130 Savbit £1.73 Per pack $0.048 m$ dix

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.

Size AB10 Solder Wick
Size AB10 Solde
$£ 1.43$ Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Size 2 Tip Kleen £0.92 Per pack

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.

$$
\begin{aligned}
& \text { Size AL150 Alur-Sol } \\
& \text { f2.07 Per pack } .048 \text { mm dia }
\end{aligned}
$$

Size 4 Alur-Sol
£7.82 Per reel

All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For

* World's most powerful BASIC pocket computer CASIO FX-702P

(RRP £134.95)
ONLY £119.95
High speed computer using BASIC language, with program/data storage on cassette tape via optional FA-2 adaptor.
AVAILABLE SOON: Plug in ROM program modules and FP. 10 Mini Printer for program/data printout.
LCD dot matrix scrolling display. Input can be varied from 1680 program steps, with 26 independent memories, to 80 program steps with 226 memories, plus text display memory (string and string manipulations), all with power back-up. Up to 10 program storage.
Subroutines: 10 levels. FOR NEXT looping, 8 levels.
Debugging by tracing. Editing by moving cursor.
55 built-in functions including Regressional Analysis and Correlation Coefficient all usable in programs. Program/data storage on cassette tape. Two lithium batteries give approximately 200 hours continuous use, with Auto Power Off after 6 mins disuse.
Dimensions: $17 \times 165 \times 82 \mathrm{~mm}$. ($\left.\times 6 \frac{1}{2} \times 3 \mathrm{~h}\right)$. Weight $180 \mathrm{~g}(6.30 z)$.
FX-602P Advanced programmable. Up to 512 steps $£ 74.95$ Plus FREE Professional Programmable Pack (RRP £12.95)

NEW! FX-3600P 38 program steps

£22.95

alarm chronograph watch

(RRP £34.95)
| ONLY £29.95
Hourly time signal "Big Ben" chimes at noon. Easily switched on or off.
Countdown alarm timer mode
*Amazing ANALOGUE display, plus digital countdown. Normal and net times from 1 to 60 minutes with automatic retrieval of preentered time.
Stopwatch mode
*ANALOGUE countup, with digital timing of net, lap and first and second place times from $1 / 100 \mathrm{sec}$ to 1 hour. Confirmation signal.
Easy setting of times and alarm with forward and backward stepping and rapid run facility. Dimensions: $9.25 \times 35 \times 36 \mathrm{~mm}$ approx. Mineral glass. Long life lithium battery. Accuracy ± 15 seconds/month.

CASIO PROGRAMMABLES
 Wth power back.up tor memories and programs!

NEW FX-602P
LCD dot matrix
scrolling display. 32 to
512 program steps. 22 to 88 memories. 33 parentheses, 11 levels. Editing by cursor. Jumps
Jumps. 1412 m
$9.6 \times 71 \times 141.2 \mathrm{~mm}$. 100 g .
(RRP £84.95) £74.95
Plus FREE Professionai Programming Pack
(RRP $£ 12.95$)

NEW FX-3600P
Up to 38 steps and 2 programs, plus 7 memories. 18 paren theses, 6 levels. 61 functions, including Integrals \& Regressional Analysis. Long iife Lithium battery. $8.7 \times 71.5 \times 134 \mathrm{~mm} .64 \mathrm{~g}$. (RRP £25.95) £22.95

$x=x=-2$ $x \mathrm{x}=00$ 40000 00000
 ต20

"Game II" and calculator. Full memory and \% plus 3 level digital space invader game. (RRP £12.95) $£ 10.95$ The highly successful MG-880 calculator/game plus FREE cubik puzzle ONLY £10.95

Fortune Teller, Matchmaker, Calendar and Fortune Teler
Alarm Clock CASIO FT. 7

(RRP £18.95)

Predictions of individual fortunes (Health; Gambline/lnvestment, Business and Love) or the compatibility between two persons on any given day.
6 digit clock. Auto calendar pre-programmed from 1901 to 2099. Daily alarm and hourly chimes can be easily switched on or off. Calculator with full memory, \%. One year battery life ($2 \times$ LR44). $7.9 \times 114 \times 56.5 \mathrm{~mm}\left(\frac{5}{1} \times 4 \frac{1}{2} \times 21^{\prime \prime}\right) .58 \mathrm{~g}(20 z)$. With wallet.

Delivery normally by return of posi. Prices include VAT and P \& P. Send your cheque, P.O, or phone your ACCESS of B'CARD number to:

SHORT FORM CATALOGUE Available October 14p stamp appreciated

THE LEADING U.K. REPRESENTATIVE,
Dept. EEII
164/167 East Road, Cambridge, CB1 1DB
Tel: 0223312866

*VIVID REALISM *

Sound is the criterion when judging a musical instrument. Our CASIOTONE keyboards are outselling all others because of their superb reproductlon, quality and legendary reliability

Order today, play tomorrów
SECURICOR 24 hour delivery Included in price, or RETURN OF POST (small keyboards) or CASH \& CARRY
3 The Professionals
Is THE EXCITING NEW CASIOTONE CT. 202

By Securicor ONLY £275
"Son of success...The two harpsichords demonstrate the Casiotone's talent for sparkling, crystal clear tones...Even more impressive is the clav.' (Melody Maker)
8 -note polyphonic playing of 49 instruments over 4 octaves. 4 voice memory function with push-button selection. 3 Vibrato settings and Sustain switch. Integral amplifier and speaker (10 watts o/p). Line Out and headphone jacks, Foot volume and sustain pedal jacks. Pitch control.
斿 CASIOTONE MT-30

(RRP E115.00)
ONLY $£ 95.00$
22 instruments over 3 octaves 4 -position sound memory. Battery or mains. O/P jack. Dims: $2 \frac{1}{2} \times 22^{3 / 4} \times 61 / 2^{\prime \prime}$. 6 lb .

Vivid realism for beginner and exper

 CT 4018 -note polyphonic playing of 14 instruments over 4 octaves. 16 rhythm functions with full-in auto rhythm. A fill-in button adds variety. Casio Auto Chord system for one-finger accompaniment (major, minor and seventh chords) or automatic chord and bass accompaniment. With Vibrato. Delayed Vibrato, Sustain and Hold switches. Integral amplifier and speaker. Line and headphone jacks. Foot volume and sustain pedal jacks. Pitch control. AC only. $4 \frac{1}{1} \times 315 \times 12 \frac{1}{6}$ inches. Weight 28.2 lbs . CT-301. Similar to the 401 without Casio Auto Chord $£ 199$ MT-30. 22 instruments. 3 octaves. Vibrato, Sustain. Mains/Battery. $£ 95$
 BECOME AN INSTANT MUSICIAN
"Tomorrow's World" featured this resounding success. Hundreds sold already. Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back...beautifully! CASIO VL-TONE (VL-1)
Electronic Musical Instrument

(RRP £ 39.95 ONLY £35.95

This complete 29 note (expandable) synthesizer records and plays back up to 100 notes. Enter the notes of a melody into the memory and recall them in sequence with the One Key Play button, varying tempo and duration of each keystroke to create a melody. Mistakes can be corrected and individual notes added or deleted. Your best performance can be re-recorded back into the memory, then re-played at a touch of the Auto Play key. Choose an instrument (Piano, Violin, Flute, Guitar or Fantasy) or switch to A.D.S.R. and program your own unique sound from one of 80 million combinations. Select one of the ten Auto Rhythm accompaniments, adjust the Tempo Control and play back your composition, then try a variation. Facilities: Digital display of notes and tempo Mains or battery operation with battery saving Auto Power Off, with protection of the stored melody and preset A.D.S.R. data. Built-in amplifier/speaker. Output jack. Pitch Control. 111 $\times 11 \frac{3}{2} \times 3$ inches. Weight 15.4 oz .

DENSHI KITS-

Final offer on kit type SR-3A

"... fun and entertainment as well as education" -
(EVERYDAY ELECTRONICS mag.)
This is the final opportunity to obtain this first-class multi-project kit at little more than its 1977 prlce! (Current value over £40).
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board. No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.
SR-3A KIT (16 $\frac{1}{2}^{\prime \prime} 10^{\prime \prime} 2 \frac{1}{2}^{\prime \prime}$)
£29.95
Build over 100 projects Including 3-TR reflex radio receiver, 3-TR radio recelver with RF amplifier, 2-TR reflex radlo recelver, $3-T R$ amplifier tor crystal mike, 3-TR amplifier for speaker/mike, 3-TR signal tracer, Morse
Code trainer, 2-TR electronlc organ, electronic metronome, electronic bird, Code trainer, 2-TR electronlc organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleeping aid, high voltage generator, discontinuity warning device, water supply warning supply warning device, 3 -TR. water level warning device, 3 -TR photoelectric alarming device, Morse Code trainer with sound $\&$ light, discontinuity warning device with sound \& light, water level warning device with ound \& light, electronic metronome with sound \& light, buzzer with sound ing device, wireless water level warning device, wlreless water supply warning device, wireless photoelectric warning device, etc.
All kits are guaranteed and supplied complete with extensive construction manual PLUS Hamlyn's "All Colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include educational manual, free book, VAT, p \& p (in the UK), free introduction to the British Amateur Electronics Club.
PLEASE NOTE OUR NEW ADDRESS. PERSONAL CALLERS WELCOME.
Cheque/P.O./Access/Barclaycard (or 23p for illustrated literature) to ELECTRONI-KIT LTD., Dept. EE.

ELECTRONI-KIT LTD

388 ST. JOHN STREET LONDON, EC1V 4NN (01-278 0109)

Buy British-Buy Douglas Transformers Mail Order from TITAN Transformers \& Components
Central Hall Chambers, Duncombe Street, Grimsby, South Humberside DN32 7EG
Prices include $\mathbf{1 5 \%}$ V.A.T. Send for our Catalogue.

Send Today 50p (Refundable with First Order) for Catalogue TITAN TRANSFORMERS AND COMPONENTS
CENTRAL HALL CHAMBERS MAIL ORDER ONLY - PRICES INCLUDE 15\% VAT EE 11

SUPER VALUE PACKS AND COMPONENTS

P1. 50 'Ass. Electrolytics Caps. P2. 80 Potyester, Polycarbonate, Polypropylene 80p P10. 18 HIgh Voltage Discs 1 kV P4. 80 Square Cer, Plates....... $\mathbf{B 0 p}^{20} \quad$ P11. 1020 mm in line fuse holders P5. 80 Square Cer. Plates 80p P12. 105 pln din chassls sockets P5. 50 Polystyrene caps. 5-6pi-3900pf 80p P13. 150 Axial $\frac{1}{}$ watt resistors. P6. 45 Polystyrenecaps.4700pt-047uf 80p P14. 5 100K Multitone trimmers for P7. 20 Silver MIca $5 \cdot 6 \mathrm{pi}-220 \mathrm{pt}$....... 80p P15 P8. 18 Silver Mica 270pt-0047uf 80p as listed below...... Oty 20 £3-50 DIODES
1N4001; 04p. 1N4002; 04p. 1N4003; 04p. 1N4004; 05p. 1N4005; -05p. OA90; 06p TANT EEAD CAPACITORS
$-1 / 35 \mathrm{v},-22 / 35 \mathrm{v},-33 / 35 \mathrm{v} .47 / 35 \mathrm{v},-68 / 35 \mathrm{v}, 1 / 35 \mathrm{v}$ 10p each. $2 \cdot 2 / 16 \mathrm{v}, 3 \cdot 3 / 16 \mathrm{v}, 4 \cdot 7 / 6 \mathrm{v} \cdot 12 \mathrm{p}$
 33/10v-25p. 47/6v-25p. 47/46v-50p. 100/16v-65p.
Polystyrene Caps. from-03p. Low Voltage discs from-03p. Silver Mica from - 10p. Etc., Etc orders for components only.
C. H. J. SUPPLIES

4 STATION ROAD, CUFFLEY, HERTS. Tel: 01-440 s9s.

THE EXHIBITION FOR THE ELECTRONICS ENTHUSIAST

Wednesday 11 th November 10 a.m. -6 p.m. Thursday 12 th November 10 a.m. -8 p.m.
Friday 13th November 10 a.m. 6 p.m. Saturday 14 th November 10 a.m.- 6 p.m. Sunday 15th November 10 a.m. -4 p.m.

COMPONENTS • DEMONSTRATIONS• SPECIAL OFFERS• MAGAZINES• BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even those lucky 17,000 would be surprised to hear that this year we've improved BREADBROAD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy!
BREADBOARD 81 is the place to be from November llth to 15 th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81 Close to Victoria Station and NCP car parking facilities.

Cost of entry will be $£ 2.00$ for adults and $£ 1.00$ for children under 14 yrs and O.A.P.s. ORGANISED BY MODMAGS LTD., 145 CHARING CROSS ROAD, LONDON WC2H OEE.

ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W.I.

Adults £2.00 Children under 14 yri and O.A.P.s $£ 1 \cdot 00$ Please send tickets @ £2.00...... tickets © £1-00 To:
To:
\qquad

GREENWELD

443D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-just add 40p post. Tel (0703) 772501

VEROBLOC BREADBOARD

Now from vero, this versatlie ald for modate any size of IC. Blocs and be jolned together, Bus strips on X \& X axis-tota (Photo shows 2 blocs)

COMPONENT PACKS

K503 150 wirewound resistors from 1 W to 12W, with a good range of values. £1-75. K505 20 assorted potentlometers, all types
including single, ganged, rotary and including single, ganged, rotary and K511 200 small value poly, mica, ceramle caps trom a few pF to $\cdot 02 \mu \mathrm{~F}$. Excellent varlety. $£ 1 \cdot 20$.
K514 100 sllver mica caps from 5pF to a ew thousand pF . Tolerances from 1% to K 520 Swltch pack-20 different, rocker, slide, rotary, toggle, push, micro, etc. Only £2.00.
K 521 Heatshrink pack-5 diff. sizes. each 200 mm . 50 p .

UHF TUNERS

Mullard ELC1043/05 Channels
Brand new, supplled with data. $54 \cdot 00$. 69
VHF TUNERS
Type F3720 (CCIR) by Sylvania. Bargaln

1 N4002 DIODES

Lowest ever pricell-full spec. by
Motorola. Pre-formed leads for horlz. miff., 10 mm pifch, 100 V 1 A rating. 100

THEY'RE BACK!!!
Several years ago one of our most success ful offers was our "7lb Bargain Parcels",
containing hundreds of components containing hundreds of components,
panels, and bits and pieces Impossible to panels, and bits and pieces impossible to
list. Our stores are now bursting at the list. Our stores are now bursting at the
seams due to a lot of buyng in recent months, and we must clear out several
tons of components. So ... we're offerlng tons of components. SO $1 i$. We're offerlng
you metric verslons-a 1 kg pack for $£ 2 \cdot 60$, you metric verslons-a 1 kg pack for $£ 2 \cdot 60$,
a 3 kg pack for $\mathrm{E5} \cdot \mathbf{6 0}$, a 5 kg pack for $£ 7 \cdot 60$ or a pokg pack for $£ 12 \cdot 60$. These won't

GAS DISCHARGE

DISPLAYS

7 seg displays available in 3 styles. Char. helght $12 \cdot 5 \mathrm{~mm}$. with 16 way ribbon cable terminated in 16 DIL header plug, giving multiplexed output. $£ 1 \cdot 20$
2651
3
$\mathrm{dlg} \mid \mathrm{t}$ as above $£ 1 \cdot 70$ $26523+2$ digit as above $£ 2 \cdot 50$ Data supplled.
MK4027 SHIFT REGISTER 2048 blt dynamic shift register, 6 MHz ideal for CRT displays, buffer memories
etc. Speclal low price $\& 1$ ench, 8 for $\& 6$

FILAMENT DISPLAYS

Z653 7 seg display 12.5 mm high. Ideal for Std 14 DIL package. Only 8 mA each, 4 for Std 14 DIL packape.
\& 3.00 . Data supplied.

TOROIDAL

TRANSFORMER

110 mm dia. $\times 40 \mathrm{~mm}$ deep. $110 / 240 \mathrm{~V}$ pri. or scopes, monltors, VDU's, etc. Specia ow price \&7.95.
1000 RESISTORS £2.50 We've just purchased another 5 mllilon simllar offer to that made two years ago at the same pricell! K523-1000 mixed t and $+\mathrm{W} 5 \%$ carbon film reslstors proformed for PCB mntg. Enormous range £10; $20 \mathrm{k} \mathbf{£ 3 6}$.

OPTO/LINEAR

Til311 Hexadecimal display with decoder $0-9$ and $A-F$. With data $£ 3 \cdot 50$. AD563KD D-A converter. Only £.3.50
 FND $360,367,501$, all 50 p; $530,847,850$, al N .50 Regs, $T 03$ case: $7924120 \mathrm{p}, 7885$
1000
R $100 \mathrm{p}, 7808100 \mathrm{p}, 7912100 \mathrm{p}, 78 \mathrm{CB},{ }^{230 \mathrm{p}}$.
Others on $\mathrm{B} / \mathrm{L} 13$ Op-Amps: 4 A 4136130 p .
 4A 776 145p 4 A 777 300pi 4 A 318 245p.
Isolators: FCD831,

AMAZING! COMPUTER GAMES PCB's FOR PEA-

 NUTS!!A bulk purchase of PCB's from several well known computer games including Battleships, SImon, Logle 5 and Starblrd
enable us to offer these at Incredibly low prlces:

STARBIRD"

Glves realistlc engine sounds and flashing when module is polnted up. decelerating nolse when pointed down. Press contact o see flash and hear blast of lasers shooting. PCB tested and working com-
plete with speaker and batt cllp. (needs plete with speaker and batt clip. (needs
Pattery). Only $£ 2.95-2$ for $£ 5$. For detalls of other games, send SAE.

PANELS

2521 Panel with 16236 (2N3442) on small eat sInk, 2N2223 dual transistor, 2 BC108 2482 Potted $\mathrm{dosistars}, \mathrm{efc}. \mathrm{60p}$. rom 1.20 V , can be used as LED fiasher $3 \mathrm{~V} \mathrm{~m} / \mathrm{n}$). Supplied with connection data uitable R, C \& LED. £1 00.
2527 Reed relay panel-contains $2 \times \mathrm{VV}$
reeds, $6 \times 2 \mathrm{~S} 030$ or $2 \mathrm{~S} 230,6 \times 400 \mathrm{~V}$ ects + Rs. 50 p .
2529 Pack of ex-computer panels containIng 74 serles ICs. Lots of different gates and complex logic. All ICs are marked
with type no. or code for which an dentification sheet is supplied. 20 iCs £1.00; 100 ICs $£ 4 \cdot 00$.
A504 Black case $50 \times 50 \times 78 \mathrm{~mm}$ with ctal base. PCB Inside has 24 V reed relay, 200
etc. 60 p.
tc. 60 p .
siso 28 other chips inc $7 \times$ LS75, $4 \times$ giso 28 other chips onc $7 \times$ LS75, $4 \times$
$74368,3 \times 74180$ etc. Only $£ 5 \cdot 00$. 2536 As above, but extra 15 74LS chlps $6 \cdot 00$.

THE SPECTACULAR

 1981 GREENWELDComponent Catalogue
Bigger and better than everl!!
\& 60 discount vouchers

* Frst Class reply paid envelope
* Free Bargain.List
\# Priorlty Order Form
太 VAT inclusive prices

TEABH-N 82
 see ourad elsewhere
 IN THIS ISSUE FOR FULL
 DETAILS AND PRICES!!!

CAPACITOR BARGAINS

 $2200 \mu \mathrm{~F}$$10 / \mathrm{E} 5 \cdot 50 ; 220 \mu \mathrm{~F} ~ 10 \mathrm{~V}$ axlal $5 \mathrm{p}: 100 \mathrm{E} .30$; 1000 £ $16 ; 400+100 \mu \mathrm{~F} 275 \mathrm{~V} / 102 \times 44 \mathrm{~mm}$ dia. $1000 £ 16 ; 400+100 \mu \mathrm{~F}$
$75 \mathrm{p} ; 10 \$ 5 \cdot 50 ; 200 \mu \mathrm{~F} 350 \mathrm{~V}, 100+100+$ $50 \mu \mathrm{~F} 300 \mathrm{~V}$ can $75 \times 44 \mathrm{~mm}$ dia
$100 / \& 20100 \mathrm{uF} 25 \mathrm{~V}$ Axial $£ 3 / 100$.

4 TERMINAL REGS

HA7BMG in power minl-dip case 5-30V tA. $£ 1.00$

$\mu A \cdot 20$.
$\mathbf{~} 1.27 \mathrm{E}$ Only. 4 extra components required (50 p extra) to make a fully varlable supplyll Data supplled

IW AMP PANELS

A011 Compact audio amp Infended for
record player on panel $95 \times 65 \mathrm{~mm}$ includrecord player on panel $95 \times 65 \mathrm{~mm}$ includIng vol. control and swltch, complete With knobs. Apart from amp circuitry bullt
around LM 380 N or $\mathrm{TBA820M}$, there is a speed control circult using 5 transistors. gy operation, connexion data supplied.
ONLY $\& 1-50$.

VU METERS

Voo6 Very attractive $55 \times 48 \mathrm{~mm}$ scaled
-20 to $+5 \mathrm{~dB} .250 \mu \mathrm{~A}$ movement. Only £1.75, or $£ 3.00$ palr

OP-AMP PSU KIT

A198 All parts + instructions to make a input. Only £i's5.
COPPER CLAD BOARD K522 All pieces too small for our etchlng
kits. Mostly doubla sided fibreglass klts . Mostly doubla sided fibreglass.
250 gm (approx. 110 sq ins) for just $\mathrm{E1} 1.00$.

JOB LOT OF

 COMPONENTS$95001 \mathrm{~N} 4006 ; 10000 \cdot 033 / 50 ; 2200010 \mathrm{pF} / 50 ;$
$15000 \cdot 22 / 12 ; 11000270 \mathrm{pF} / 50 ; 1500068 \mathrm{pF} / 50$. 3000 varlous resistors. Total 112,500 components for $£ 350$ Inc. VAT \& carr.
12 VOLT INDICATORS Ideal for llght chasers, etc. MInlature 10p each. 100 for end. 50 lamps, clear,

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. KIts include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed clrcult boards (fuily etched artlele, and roller tinned) or Veroboard are, of course, included as specifled in the original otherwise stated, BATTERIES ARE NOT INCLUDED COMPONENT SHEET INCLUDED If you do not have the issue of EE. which Includes the project-you will need to order the Instruction reprint at an extra 45p each
Reprints evailable separately 45 p each + p. \& p. 40 p

0-12Y POWER SUPPIY Sept 81 ROL
ANTI-THEFT LINK DEVICE. Sept. 81
116.84
67.99

CMOS CAR SECURITY ALARM. Sept. 81 88.49
AUDIO COMPRESSOR-MIXER. Sept. 81 E21. 21
CMOS DIE. Sept. 81
$\begin{array}{r}67.21 \\ \hline 67\end{array}$
LED SANDGLASS. Aug. $81 \quad$ _7.98
WHEEL OF FORTUNE, Aug. 81. less wire, panel and case.............. $£ 39.98$

DOOR ALARM. Aug. 81, ... 98
COMBINATION LOCK, July 81 Less case $\mathbb{E 1 8} \mathbf{8 0}$
BURGLAR ALARM SYSTEM. June 81 Less bell, loop \& Mic's ... \&38.30
TAPE AUTO START. June 81
TREMELO. June 81 Less case.
LOOP AERIAL CRYSTAL SET. June 8
LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81
SOIL MOISTURE INDICATOR E.E. May 81.
T. Y. I NTERFERENCE FILTERS E.E. May 8I. LOW PASS less tinplate $\mathbf{2}$ 2•8. HIGH PASS $\mathrm{EI} \cdot 56$
GUITAR HEADPHONE AMPLIFIER E.E. May 81. ©3.96

AUDIO TEST SET E.E. May 81. 644.92............ Less case. Case extra 66.95
DIGITAL RULE (ultrasonic) April 81
INTERCOM April 81

SIMPLE TRANSISTOR \& DIODE TESTERS. Mar. 81
Ohmeter versionEI-89 Led version..
MINI SIREN. Mar. 81
LED DICE. Mar. 81
LED FLASHER. Mar. 8
MODULATED TONE DOORBELL. Mar. 81
BENCH POWER SUPPLY. Mar. 81
TREBLE BOOST. Mar. 81.
CAR ACTUATED DRIVEWAY LIGHT. Feb. 8il less socket
THREE CHANNEL STEREO MIXER. Feb. 8I
SIGNAL TRACER. Feb. 81
FOUR BAND RADIO. Feb
FOUR BAND RADIO. Feb. 81
Ni-Cd BATTERY CHARGER. Feb. 81
AUTO SLIDE CHANGER. Jan. 81
PHASER SOUND EFFECTS. Jan. 81
LOGIC PULSE GENERATOR. Jan. 81
LOGIC PULSE GENERATOR. Jan. 8
ICE ALARM. Jan. 81
2 NOTE DOOR CHIME. Dec. 80
LIVE WIRE GAME, Dec. 80.
SOUND TO LIGHT. Nov. 80.3 channel
Standard case 63.88. High quality case $68 \cdot 33$.
SOIL MOISTURE MONITOR Nov 80
SOIL MOISTURE MONITOR. Nov. 80
$65 \cdot 43$ inc. probes
.87 inc. cest leads
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS. Oct. 80...... \&12.26
PHONE CALL CHARGE JOGGER. Oct. $80, \ldots \ldots \ldots$.
BICYCLE ALARM. Oct. 80 $69 \cdot 68$ less mounting brackets
IRON HEAT CONTROL. Oct. 80 .. $5 \cdot 48$

TTL LOGIC PROBE. Sept. 80..................
CRICKET GAME. Aug. 80.....................
WEATHER CENTRE. Aug. 80 (less case)
WEATHER CENTRE. Aug. 80 (less case)
AUTOPHASE. June 80. Rectangular Case
A.F. SIGNAL GENERATOR. June 80 AUTOWAA. June 80. Recrangular Case SIGNAL TRACER

ADVENTURES WITH Eatiom MICROELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners. No solderlng. Uses a Bimboard 1 breadboard, gives clear Instructions with lots of pictures. 11 projects based on integrated circults -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack Includes a Blmboard 1 breadboard and all the components for the projects.
Adventures with Microelectronics $£ 2 \cdot 55$. Component pack $£ 29 \cdot 64$ Adventures
less battery.

ADVENTURES WITH ELEOTRONIGS 㽞Tom

An easy to follow book suitable for all ages. Ideal for beginners. No soidering, uses an S.Dec breadboard. Glves clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics £2•40. Component pack £17.98 less battery.

MAGENTA ELECTRONICS LTD.

1981 ELECTRONICS CATALOGUE		
KITS	Hundreds ol lilustrations, product data,	TOOL
I.C.s	of all our klta and	RESISTORS
TRANSISTORS	S Up to date price list included. All products	HARD
CAPACITORS	70.	CASES

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS \& KITS All products are stock lines and are new \& full speciflcation. We olve personal service OU TRIED Us

MAGENTA ELECTRONICS LTD

EP34, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON.-FRI. 9-4. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS.
ALL PRICES INCLUDE 15\% V.A.T.
 OFFICIAL ORDIRS WELCOM IRISH REPUBLIC \& B.F.P.O. EUROPE: must be in Strerling.
ACCEBS and BARCLAYCARD (VISA) ORDERS ACCEPTED GY PHONE OR POSE ALL ENQUIRES

THACH IN 82

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specified by Everyday Electronics. Our kit comes complete with FREE COMPONENT IDENTIFICATION SHEET. Follow thls educational series and learn about electronics-Start today. Reprints 45p each Send £24-98 for Lists $1 \& 2$. 'VERO/E.E. £1•00 vouchers accepted. WOODEN CASE KIT also available. Phone or send SAE for price and details
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS

ANTEX X5 SOLDERING IRON 25W £5.48 SOLDERING IRON STAND £2.40 Small, standard large. 65p each. For XS + X25.
SOLDER. Handy size 99p
HOW TO SOLDER LEAFLET
12p

DESOLDER BRAID 69p.
HEAT SINK TWEEZERS 29p DESOLDER PUMP £6.48 SOLDER CARTON £1-84
LOW COST CUTTERS $£ 1.69$ LOW COST LONG NOSE PLIERS £1-68
WIRE STRIPPERS \& CUTTERS
£2. 69

CHRISTMAS KITS

PCBs for $E . E$
MODEL RAILWAY SPEED CONTROLLER. Sept. 81 CMOS DIE. Sept. 81
COMBINA FORTUNE. Aug. 81 (pair)
BENCH POWER SUPPLY. MA
MODEL RAILWAY POINTS COONTROLLER. Mar. 8 SOUND TOLIGHT. Nov. 80
GAS SENTINEL, ADI. 80

free price list Price list Included with orders, or send sae (9×4). Contains lots more kits, PCBs \& components.

Books

PRACTICAL ELECTRONIC PROJECT CONSTRUCTOR'S PROJECT BOOKS	R. Coles ILDING, Alnsile \& Colwell	$\begin{aligned} & \mathbf{E} 5.90 .90 \\ & \& 3.95 \\ & \mathbf{x} .75 \end{aligned}$
ELECTRONIC GAME PROJECTS		70
ELECTRONIC PROJECTS FOR HOM	ECURITY. Bishop	0
ELECTRONIC PROJECTS IN AUDIO		E3.70
ELECTRONIC PROJECTS IN MUSIC		
ELECTRONIC PROJECTS IN PHO	APHY. Penfold	E.3.70
ELECTRONIC PROJECTS IN		E3.70
PROJECTS IN AMATEUR RADIO \&	ORT WAVELİT	${ }_{23} \mathbf{2} 70$
PROJECTS IN RADIO AND ELECTR		23.70
ELECTRONIC PRO		E.3.70
ELECTRONIC PROSECTS IN THE HO		E.3.70
ELECTRONIC PROJECTS SN THE W	SHOP. Pentoid	E3.70
ELECTRONIC TEST EQUIPMENT P		E3.70
MORE ELECTRONIC PROJECTS IN	Ho	E3.70
110 ELECTRONIC ALARM PROJECTS	OR THE HOME CONSTRUCTOR	
ELECTRONIC PROJECTS - PAPERMA		
COST EFFECTIVE PROJFCTS AROUN	THE HOME. Watson..................	
ROJECTS FOR THE CAR AND	E, Bishop	
AUDIO CIRCUITS AND PROJEC		E5. 60
GE		
Crronic circuls for		c. 81.10
IN STATESHORT WAY		E1.30 E1.35
ELECTRONIC MUSIC AND CREATI	APE RECORDING. Berry.......	${ }_{\text {c1 }}$ 213
IC555 PROJECTS. Parr .-..........		
ELECTRONICS-BOOKS		
Superb set of books covering theory and p of useful projects-circults built on an S-D	tice. Educatlon breadboard. So	$\begin{aligned} & \text { Lots } \\ & 11 \cdot 25 \end{aligned}$
ERS. MInlature. 8 ohm......... 87p	$84-75 \text { ohr }$	
NO HEADPHONES................. E2.9		
LEPHONE PICK-UP COOIL ... 72p		49 p
BUZZERS. ${ }^{\text {OV, 50p. } 9 \mathrm{~V} \text {. E1/10. }}$		
CB Assema		
EUROBRE		${ }^{\circ}$
80		
		6. 04
NEL METERS. $00 \times 45 \mathrm{~mm} .50 \mu \mathrm{~A}$,	$\text { ImA, 1A, } 25$	
EROBOARD $1 /{ }^{\prime \prime}$ COPPER. 10 at		
	9p. 365 SOH .89 p .	
N INSERTION TOOL	SPOT FACE CUTT	$\begin{aligned} & \mathrm{p} / 1000 \\ & 81-23 \end{aligned}$
ETER TYPE 1. 1,000 opy w/th		
TIMETER		3
OC CLIP TEST LEAD	h 20	
NNECTINO WIRE PACK. $5 \times$		
OR		
M-FM		E8.98
STATION DESK	${ }^{3} \mathrm{STATI}$	E8.14
M		
PVC TAPE		
NTIS		
ELLERS EYEOLAS3.....		
ND magnifi		
LUMINATED MAOMIFIER. $1 \mathbf{1}^{\prime \prime \prime} \mathrm{El} \cdot 14$		-

Sinclair 2X8I Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Every ZX81 comes with a comprehensive. specially-writte manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

- Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops. - Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron And you may already have a suitable mains adaptor - 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

16K-byte RAM pack for massive add-on memory.
Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only £49.!
Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
How to order your ZX81
BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. HARRINGTON

TECHNICAL SUBEDITOR
G. P. HODGSON

ART EDITOR

R. F. PALMER

Assistant ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING Tech. (CEI)

EDITORIAL OFFICES

KIngs Reach Tower
Stamford Street,
London SE1 OLS
Phone: 01-261 6873

ADVERTISEMENT MANAGER
 R. SMITH
 Phone: 01-281 6871

REPRESENTATIVE

R. WILLET

Phone: 01-261 6865

CLASSIFIED SUPERVISOR

B. BLAKE

Phone: 01-261 5897

MAKEUP AND COPY
 DEPARTMENT

Phone 01-261 6815

ADVERTISEMENT OFFICES

KIngs Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

and Popular Features ...

IN THE BEGINNING
Techniques change with the years but basic principles remain for all time. This is shown in the present day version of the crystal set. Developments in semiconductors have resulted in greatly improved signal detectors which are simply wired into the circlit and forgotten. Rather different to the early crystal with its accompanying cat's whisker that required carefuel and diligent manipulation in order to find the sensitive spot.

In Before The Chip the writer recalls some early days of electronics and refers in particular to that most notable period in the 'fifties when the transistor appeared on the scene for the first time. No doubt this preBeadle era will seem ages ago to our younger readers. On the other hand we have readers whose memory range is likely to be far more extensive (if you believe electronics is for younger folk alone, tell that to those enthusiass of four-score plus). These senior readers will be able to recall some of the very earliest wireless receivers and the tussles they had to coax a signal from the enigmatic lump of mineral.

Some of the fun and excitement of those pioneer radio days can be recaptured through building the Expertmental Crystal Set described this month. Home-made coils provide a coverage of medium and short waves and, incidentally, contribute to that
sense of personal achievement that is generated when signals are picked up from a piece of equipment built largely with one's own hands.

In these present times of computers, TV games, music synthesisers and other elaborate concoctions of electronic circuitry, it is no bad thing to pause now and again and take a look back at the origins of all this modern sophistication. And the humble diode lives on in logic gates, clipping circuits and the like-in multifarious applications far removed from radio reception-an indispensable member of the semiconductor team that electronics relies on.

SEMICONDUCTOR STABILITY

Looking back in a more modest way, we observe a decade has now passed since Everyday Electronics first appeared. Among transistors commonly used in our early days were several old stalwarts still going strong today. More surprisingly perhaps is the fact that some (like the BCl 08 for example) cost only the same as they did 10 years ago. Alas, the trend of diminishing prices which has been a most welcome characteristic of semiconductors over the years is not typical of materials and parts in general. Still, for this small mercy at any rate we have a lot to be thankful.

Our December issue will be published on Friday, November 20. See page $\mathbf{7 4 3}$ for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responslbility for it. Prices quoted are those current as we go to press.

E ECT RONICS

CONSTRUGTIONAL PROJEGTSELECTRONIC IGNITION For improved car performance and economy by P. S. Bowling 726
LOUDHAILER Battery powered hand-held unit by A. Partridge 732
EXPERIMENTAL CRYSTAL SET For medium and short waveband listening by F. G. Rayer 740
SIMPLE INFRA-RED REMOTE CONTROL Modulated beam system by R. A. Penfold 750
TRIGGER MAT PRESSURE ALARM Buzzer sounds and latches on when activated by A. R. Winstanley 761
GENERAL FEATURES
EDITORIAL in the Beginning; Semiconductor Stability 724
READERS' LETTERS Your news and views 731, 766
COUNTER INTELLIGENCE A retailer comments by Paul Young 736
SHOP TALK Product news and component buying by Dave Barrington 737
EVERYDAY NEWS What's happening in the world of electronics 738
BEFORE THE CHIP Early days of electronics by R.D. Railton 742
JACK PLUG AND FAMILY Cartoon by Doug Baker 742
TEACH-IN 82 Part 2: Understanding and using the VMOS transistor by O. N. Bishop 744
INTRODUCTION TO LOGIC Part 7: The NOR gate, Logic Reversal and Logic Circuitry by J. Crowther 756
FOR YOUR ENTERTAINMENT In the Picture, Teletext, Home Computers by Barry Fox 758
SQUARE ONE Beginners' Page: Soldering 764
PLEASE TAKE NOTE Introduction to Logic, Audio Compressor Mixer 766
CIRCUIT EXCHANGE A forum for readers' circuit ideas 769
RADIO WORLD Lure of Low Power, Technifear by Pat Hawker G3VA 770

Back Issues
Certain back issues* of EVERYDAY ELECTRONICS are available worldwide price 80p inclusive of postage and packing per copy. Enquirles with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

- Not available: October 1978 to May 1979.

Binders
Binders to hold one volume (12 issues) are available from the above address for $£ 4.40$ (home and overseas) inclusive of postage and packing. Please state which Volume.
Subscriptions
Annual subscription for delivery direct to any address jn the UK: £11-00. Overseas:
£12.00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, Kings Reach Tower, Stamford Street, London SE1 9LS.
(¢) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

$B[B] B[B)$

Royal Horticultural Societies' New Hall, Greycoat Street, Westminster, London, SW1 11 to 15 November 1981

I^{T} is becoming increasingly evident that electronic ignition increases the efficiency of the motor car. Once fitted, the motorist can experience improved starting, especially in the cold, smoother acceleration and most important, lower fuel consumption.
The conventional ignition system fitted to most modern day cars generates the voltage required to produce a spark by interrupting the current flow through the primary windings of a transformer (the "coil") generating a back e.m.f. in the region of 400 volts which induces a secondary voltage of about 25,000 volts.
However, some of the disadvantages inherent in this system are high current consumption, slow rise time, mis. fire due to points bounce and low output when starting.

In order to produce an electronic counterpart which overcomes these disadvantages, 500 volts has to be produced. This is done with an inverter circuit. The generated voltage is used to charge a capacitor, which is discharged through the primary winding of the coil producing a fast healthy spark in the order of 25 kV , see Fig. 1 .

CIRCUIT DESCRIPTION

Referring to the circuit diagram shown in Fig. 2, the inverter consists of TR1-TR2 in conjunction with transformer T1. Bias is provided by the potential divider R3-R4-D3, which is fed via R1-R2 and the feedback windings of T1. This unconventional bias arrangement gives the inverter the ability to work down to very low voltages (less than 3 volts).

The output of the inverter is rectified by the bridge D4-D7 and should be $500 \mathrm{~V} \pm 25 \mathrm{~V}$ for an input voltage of $13 \cdot 75$, so watch those fingers! The rectified output is smoothed by C 2 ,
which is a disc-type capacitor for spike reduction. R6 is fitted to keep a minimum load on the inverter thus preventing the voltage rising too high and damaging C3 and CSR1.

C 3 is the discharge capacitor, and charged to 500 volts; thus when the thyristor CSR1 is fired, C3 is effectively connected across the coil. The thyristor is triggered when its gate is pulsed by the opening of the points via the simple R-C network R8, C4 and C5, This configuration helps eliminate the effects of "points bounce". R9 provides this circuit with a current of 100 mA which is sufficient to keep the points clean but not damage the contacts.
TR3 removes the bias from TR1 and TR2 when the ignition fires, because at this point the inverter output is effectively shorted by the thyristor, and could result in these transistors passing a large d.c. current. TR3 is triggered via R-C network R5, R7 and C 1 , providing the same protection as the thyristor firing circuit. The Zener diodes D1 and D2 are fitted to protect TR1 and TR2 against excessive spikes being fed back from the transformer.

The author fitted changeover switches S1 and S2 to his model just in case the unit failed, then conventional ignition could be selected. This also gives added anti-theft protection by immobilising the car by selecting electronic ignition on one switch and conventional on the other.

TRANSFORMER

It is suggested the transformer be wound first, great care being taken that the correct number of turns are wound and in the right order. If the ferrite core gets damaged it is possible to repair with Araldite. A Mullard pot core is used to keep the size

PERFORMANCE SPECIFICATION

 The unit will only operate on negative earth wired cars.| Operating voltage | $5 \cdot 5-14 \mathrm{~V}$ max |
| :--- | :--- |
| Current consumption (stand-by) | $500 \mathrm{~mA} @ 13 \cdot 75 \mathrm{~V}$ |
| Current consumption $(6,000 \mathrm{rpm})$ | $1.3 \mathrm{~A} @ 13.75 \mathrm{~V}$ |
| Current through points | $100 \mathrm{~mA} @ 13.75 \mathrm{~V}$ |
| Output with standard coil | $>25 \mathrm{kV} @ 13.75 \mathrm{~V}$ |
| Output with sports type coil | $>30 \mathrm{kV} @ 13.75 \mathrm{~V}$ |
| Max r.p.m. (4 cylinders) | 8,000 r.p.m. |

Fig.1. Block diagram for a capacitive discharge electronic ignition system.
down and efficiency up and two types of core were tried on the prototype, Mullard types FX2243 and FX3288, both being acceptable but the latter giving greater power output though unfortunately being more expensive!

The first winding to go on to the bobbin is the secondary. Take the bobbin and start winding one complete set of turns using 34 s.w.g. enamelled copper wire. It takes about 50 turns to fill one layer of the bobbin. Continue winding in this fashion until 350 turns are complete, that is seven complete layers of the bobbin. When this stage is reached, tape the whole winding down using thin strips of insulating tape. Fit sleeving over the wire tails to insulate them, and label the start and finish of this winding " 7 " and " 8 " respectively.

Fig.3. Method of producing a centre-tapped transformer winding.

Fig.4. Exploded view of the transformer assembly showing the two halves of the pot core and the fally wound bobbin.

Fig.2. Circult diagram of the electronic ignition unit.

Next the primary. Starting at the same end of the bobbin and using 22 s.w.g. enamelled copper wire, wind 10 turns in the same direction as before. The 10 turns should end approximately in the centre of the bobbin; a tapping should be fixed here by twisting about 200 mm of wire together as shown in Fig. 3.

Now wind a further 10 turns in the same direction filling the whole bobbin and tape down as before. Sleeve the tails and label the start, tapping and finish with " 1 ", " 2 " and " 3 " respectively.
Now comes the feedback winding. Using 34 s.w.g. wire and starting at the same end of the bobbin, wind 3 turns in the same direction as before, finishing the tapping in the centre of the bobbin. Bring out a tapping in the same fashion as for the primary and then wind a further 3 turns in the same direction and tape down.

Once again sleeve the wire tails and label the start, tapping and finish of the winding with " 4 ", " 5 " and " 6 " respectively. Fit the bobbin into the pot cores, bringing the wire tails out through the slots in the ferrite as shown in Fig. 4.

PRINTED CIRCUIT BOARD

The prototype circuitry was assembled on a piece of glass fibre printed circuit board, size $122 \mathrm{~mm} \times$ 100 mm with a cut-out to accommodate the two changeover switches S1 and S2. The foil pattern (copper tracks) for the p.c.b. is shown full size in Fig. 5.

This Fig. also shows the layout of the components from the top side of the board. When assembling the p.c.b. the resistors should be mounted first followed by the capacitors and finally the semiconductors. It is recommended that all the components be mounted approximately 2 mm (about the thickness of a matchstick) above the top surface of the p.c.b. Attach sufficient lengths of flying lead to reach the switches S1 and S2 and the transistors TR1 and TR2.

At this stage the transformer can be secured to the board with a countersunk 2BA screw, nut and washer and the wiring made to the relevant pads on the p.c.b. keeping the leads as short as is practical.

CASE

The next step is the preparation of the case. To drill the four 3 mm diameter p.c.b. mounting holes in the bottom of the box it is suggested that the board itself be used as a template to mark the positions of the hole centres (it is best to do this prior to any components being assembled onto the board) as this will assure accurate alignment.

The completed circuit board assembly mounted inside the case.

Capacitors

C1	$0.22 \mu \mathrm{~F}$ polyester
C 2	4700 p disc ceramic $1,000 \mathrm{~V}$ working
C3	$0.47 \mu \mathrm{~F}$ mixed dielectric 1,000 V working
C 4	$0.22 \mu \mathrm{~F}$ polyester
C 5	$0.22 \mu \mathrm{~F}$ polyester
C 6	$220 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. single ended

Semiconductors
Semiconductors
D1
BZX61C30 30V $1 \cdot 3 W$ Zener
D2 BZX61 C30 30V $1.3 W$ Zener

Switches
S1 d.p.d.t. toggle 250 V 3 A
S2 d.p.d.t. toggle 250 V 3 A
Miscellaneous
T1 FX2243 or FX3288 pot core (2 halves required), DT2206 bobbin, 22s.w.g. and $34 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire.
FS1 $\quad 5 \mathrm{~A}, 1 \cdot 25 \mathrm{in}$ fuse link, in-line holder (automobile type).
Aluminium box size $133 \times 120 \times 38 \mathrm{~mm}$ (Type AB10).
Single-sided printed circuit board $122 \times 100 \mathrm{~mm}$, TO3 transistor mounting kit (2 off), TO3 transistor covers (2 off), PVC covered 19/0.2 wire (red, black, orange, purple, brown and grey), Veropins, screws, nuts, washers, 6BA spacers, sleeving, spade terminals, soolder tags, solder, varnish, matt black paint, grommet. ratchet cable ties.
 components on the p.c.b. and the interwiring of the ignition unit. The sides of the case have been folded flat for clarity.

Fig.7. Case drilling details for the transistor and switch mounting holes.

Also at this point any mounting holes for securing the unit to the car bodywork must be drilled ensuring that they will not be obscured by either the p.c.b. or the switches after the final assembly of the unit. The mounting holes for the switches and transistors TR1 and TR2 are shown in Fig. 7.

Before anything is mounted to the box, it should be sprayed matt black as this will not only enhance the appearance but also improve thermal dissipation.

On the four board mounting holes on the bottom of the box, it is suggested that the $0 \cdot 25$ in high 6BA clearance spacers are glued into position to make construction easier.

TRANSISTORS

TR1 and TR2 can now be mounted onto the end of the box with mica washers to isolate the collector (case) of the transistor from the metalwork. Plastic bushes must also be used to insulate the fixing screws and the transistors should be smeared with silicone grease to aid thermal conduction. Before the plastic covers are glued onto TR1 and TR2, check the resistance between collector and chassis is high.

Fit the changeover switches, and then secure the board down with long countersunk 6BA screws. TR1 and TR2 should now be wired to the board. Do not wire the switches in until the unit has been bench tested.

TESTING

If a regulated power supply is available (a couple of 6 V lantern batteries will do) connect this to the unit via a lA fuse. Switch on with the output set at the lowest voltage at which the unit will operate (3 volts). A high pitched whine should be heard from
the unit. If a 'scope is to hand connect it to the collector of TR1 or TR2. A square wave should be seen here with a peak to peak voltage of twice the supply voltage. Measure the output from the bridge D4-D7 across a suitable point (R6). The voltage here should be 500 V d.c. $\pm 25 \mathrm{~V}$ for a 13.75 V input.

If the inverter fails to start, check the feedback windings are going to the correct transistors, TR1, TR2 are wired correctly and the polarity of D1, D2 and D3. The current drawn at 13.75 volts would be in the order of 0.5 A .

When the unit is fully functional wire in the switches and feed the leadouts through the grommeted hole in the side of case, fitting the appropriate spade connector to each lead. The inline fuse holder containing FS1 must be fitted into the positive (red) lead going to the ignition switch.

The author strongly recommends that all soldered connections to the transistors, switches and Veropins are sleeved and then the whole assembly is coated with clear varnish. The leadouts must be firmly clamped together with a ratchet cable tie inside the box to act as strain relief in the event of the wires being pulled sharply.

The unit can now be mounted to the car using self tapping screws, fitting it as close to the coil and distributor as possible but obviously not in a position where the elements would attack it.

INSTALLATION

Before the unit is wired to the car it should be established what type of ignition is fitted to your motor. Some vehicles have what is known as ballasted ignition. Basically this type of ignition uses a 6 volt coil with a series

resistor, and once the car is started the resistor is shorted to give greater output. The resistor is usually a wirewound type fitted to the body, but be careful as the resistor is sometimes in the form of resistance wire.
See Fig. 8 for the method of installation. The supply (red) lead is connected via FSI to the "on" position of the ignition switch and the orange lead to the solenoid end of the ballast resistor.
Should no ballast resistor be fitted, as on many older models, this lead is connected to the same terminal on the ignition switch as the red lead.

The purple and brown leads are connected to the positive and negative terminals of the coil respectively and the grey lead is connected to one side of the contact breaker points in the distributor. The black lead must be firmly bolted down to the bodywork of the car to ensure good chassis contact.
Finally, remove any suppression capacitors (condensers) from the coil as they will affect the operation of the unit.

When the ignition is fitted and wired it is suggested the distributor, rotor arm, and ignition leads are cleaned and checked. There is no point in producing 30 kV only to throw it away! It has also been found advantageous to open the spark plug gap, in the case of the author's car, to 40 thousands of an inch.
Now comes the greatest test; will it work on the engine? First just switch on the ignition and check if the high pitched whine can be heard. Then start the engine which should catch first time. A test drive should show an immediate improvement in

Finished unit w ith all wire terminations shown
acceleration, however it may also be found that a slightly weaker petrol mixture is in order.

PERFORMANCE

Once the unit is fitted to the car an all round improvement in performance will be found. The most stunning is starting, especially when the car is left out in severe winter weather. The author's car is purposely left out in the elements and always starts first time and has seen as much as a 20 per cent improvement in fuel consumption, but the figure of 6 per cent is closer to reality but even this is a saving of about $£ 20$ per year for the average motorist.

The savings don't stop there either, as spark plug life is extended due to
the fast rise time ($30 \mu \mathrm{~S}$). The only wear on the points is now mechanical so its life should virtually outlast the cars.

The strain on the battery and starter motor is also greatly reduced, in fact once the unit is fitted you wonder how you ever managed without one!

None of the components are critical, values can be changed by 20 per cent without effecting the performance greatly. Virtually any general purpose diode will do for D3, 8, 9, and for D4D7 any 1 amp 800 p.i.v. diode will suffice. Again, any medium power $n p n$ silicon transistor will work in place of TR3. The gauge of wire for Tl is not too critical, only the turns ration should be kept constant.
wiggling it about a bit each time. A narrow ring of resist will be left around the outside of the hole. The rest of the tracks can now be filled in the normal way. C. G. Bulman Droitwich, Worcs.

Buffered CMOS Explained

May I bring to your attention an error which is repeatedly perpetrated in your pages, in particular in your reply to a letter published in your August issue. I refer to logic integrated circuits belonging to what is commonly known as the CMOS family.

The term buffered applied to these i.c.s implies that there is an amplifier, usually consisting of two p-channel MOSFETS and two n-channel MOSFETS. interposed between the output of the logic circuit and the output pin of the i.c. This is a desirable feature and is incorporated in the RCA cosmos and the Mullard locmos devices.

The buffer amplifier serves to give the i.c. a lower output impedance which allows faster operation of the i.c.s as the low impedance charges wiring capacitancies faster, provides greater output current capability (useful for driving l.e.d.s for example). Also in cases where the input voltages to the logic gates are changing slowly, the extra voltage gain
provided by the buffer causes the output voltage to swing more cleanly between the logic 1 and logic 0 levels.

Static protection of pins is entirely different. The inputs of the Mullard LOCMOS range are protected from excessive voltage by two clamp diodes and a resistor.

Personally I prefer unprotected types, since when these i.c.s are used in nonlogic applications such as oscillators for example, the protection circuit clamps the input to between OV and the full supply voltage, affecting circuit operation, whereas no damage to the i.c. would in fact result if the gates of the internal MOSFETS were allowed to attain potentials of $\pm 30 \mathrm{~V}$ with respect to the MOSFET channels.

I hope this may be of use to you.
Peter F. Vaughan, Lynton, Devon.

We certainly made a bloomer when replying to Mr. Robson, Readers' Letters, August issue, and thank Mr. Vaughan for bringing this to our attention and fully explaining the meaning of "buffered CMOS". We apologise to our readers for this mistake.

Amegaphone or loudhailer is always a useful instrument to have at fêtes rallies, carnivals and shows.

In this article we describe the construction of a simple megaphone suitable for many applications where the cost of a commercial unit cannot be justified. The output power of 1 W is somewhat limiting but enables the unit to operate for long periods from small, low capacity batteries.

Use of an integrated circuit audio amplifier simplifies construction, reduces cost, and eliminates any setting up adjustments.

A significant cost saving may be implemented by the use of a home-made horn speaker. An off-the-shelf horn speaker unit will of course work perfectly well but we found the homemade type to be quite adequate, particularly with the relatively low power of the amplifier.

CIRCUIT DESCRIPTION

The circuit of the Loudhailer, based around the LM380N amplifier, is shown in Fig. 1. The signal from the microphone, MIC 1, is fed via the volume control potentiometer, VR1, to a single transistor preamplifier stage consisting of TR1.

Any r.f. pick-up from the microphone is filtered out at the output of the preamplifier via the R-C network R5 and C3, and the signal is then coupled to the input of the power amplifier, IC1, by C2. As previously mentioned this amplifier is an LM380N integrated circuit and is wired as a non-inverting type with the inverting input connected to ground.

The output from IC1 is coupled to the speaker through C , a d.c. blocking capacitor whilst the R-C network R6 and C7 has been added to the output to improve the i.c.'s stability under certain load conditions.

Fig. 1, Circuit diagram of the Loudhailer.

PUSH-TO-TALK SWITCH

So far nothing has been said about the unusual position of the push-totalk switch, S2.

Normally a push-to-talk switch would be wired in series with the supply. However, there was found to be a five second delay before the loudhailer became operational after switch-on.
This delay is due to the capacitors in the preamplifier requiring time to charge and preventing the full signal from reaching the power amplifier. The solution is to keep these capacitors "powered up" and so S2 switches off the main amplifier, IC1, but not the preamplifier. Therefore, a second switch (S1) to disable the entire circuit was included, being part of the volume control VR1.

Since the current drain when S 2 is off is in the order of 2 mA , it should not prejudice battery life during

short periods of non-use with S1 left switched on. On the prototype S2 was a non-latching toggle switch mounted in the base of the box just in front of the handle so as to act like a trigger when in use.

MICROPHONE

It was decided to use a readily available dynamic cassette type microphone for the input.
The microphone can be a dynamic insert or a salvaged cassette microphone with the "business end" cut off and glued to the box with epoxy resin, as in the prototype. If purchasing a microphone for this purpose, make sure that it has a unidirectional response so that acoustic feedback will not be a problem. Electret microphones are not suitable for this unit.
Power for the unit is supplied by eight 1.5 V batteries and provision is made for an external power source (such as a 12 V car battery) via SK2. This socket must be of the switching type so that the internal battery pack is disconnected when external power is being used. The power supply rail is decoupled by capacitor C6.

COMPONENTS

It is suggested that before construction commences, the constructor has to hand all the parts for this project. The layout of the parts within the box is of necessity tight and the constructor is advised to buy carefully with this in mind.

In some cases it may be found necessary to use a different layout to that shown or use a slightly larger box.

CIRCUIT BOARD

Begin work on the circuit board by cutting a piece of $0 \cdot 1$ inch matrix stripboard to the correct size with a fine hacksaw.

Remember that the size of your board may vary slightly from that illustrated in Fig. 3, this again will depend on the size of the box chosen. It is a good idea to check the fit of the board in the box before any components are mounted on it.

Next make the breaks in the copper strips in the positions indicated. Assemble the components onto the board beginning with links and pro-

The completed prototype employing a commercially available horn unit.
gressing through resistors, capacitors and the transistors, leaving C5 until last, this being mounted on the reverse side of the board.

Before ICl is installed its heatsinks must be fitted. The heatsinks are made from thin copper sheet, the dimensions of which are shown in Fig. 5 and are soldered to pins 3, 4, 5 and $10,11,12$ of the i.c. as illustrated.

Great care must be taken to prevent any solder shorting out any other pins and the soldering iron must not be held on the i.c. legs for too long. It helps to "pre-tin" the tabs on the heatsinks to aid the flow of solder for this operation.

The i.c. can now be fitted into the board, ensuring that it is correctly orientated.

The flying leads may now be wired to the board to connect to VR1, S1, S2 and the speaker socket, and the board can be put aside while the box is prepared to take the remaining parts.

CASE

The case used in the prototype to hold the circuit board, batteries and other parts, and to support the horn speaker, was a standard plastics box with an aluminium lid and measuring $130 \times 70 \times 40 \mathrm{~mm}$. Moulded slots inside the box held the circuit board in position, but self-adhesive board guides may be used instead.

The horn speaker is attached to the removable aluminium lid of the box, while the microphone is mounted at one end. The other end houses the on/off volume control, the push-totalk toggle switch and the two jack sockets SK1 and SK2 (see Fig. 6).

When buying the box ensure that it will accommodate the battery holders and is rigid enough to support the horn speaker.

HANDLE

A loudhailer is a portable device and must be easy to hold, a balanced handle with a good grip is essential.

To this end a moulded bicycle handgrip, pushed over a length of 20 mm dia. dowel (of the type used for broom handles) was used as a handle for the prototype. The handle is angled forward by 15 degrees from the vertical and is mounted towards the front of the box to balance the mass of the speaker against that of the batteries. (See Figs. 4 and 6.)

The handle is held in place with a single large woodscrew with a large washer under the head to prevent it pulling through and damaging the plastic base of the box.

HORN SPEAKER

Commercial megaphone designs use a horn speaker which is specially made and an integral part of the device. In a home-made loudhailer the same neat result can be a little more difficult to achieve.
The prototype used a 140 mm horn speaker and this was mounted directly on top of the box. This speaker is intended for permanent, fixed mounting and is in consequence quite heavy. Horn speakers are also expensive so for those on a tight budget, a homemade horn speaker can be made from a domestic plastic funnel and a small 76 mm diameter transistor radio type speaker.
The home-made horn speaker shown in Fig. 2 is lightweight and costs very little. The speakers found in transistor radios have no difficulty coping with the power force from the loudhailer and the home-made speaker sounds similar to a ready-made one. The only disadvantage of this speaker is that it is more prone to acoustic feedback and limits the maximum volume available from the loudhailer.
In order to reduce this feedback, the speaker must be mounted into the the funnel with a flexible gasket. We found that a length of extruded grommet strip of the type used for irregular holes is ideal and this must be securely glued in place. (The connecting cable having first been soldered to the speaker terminals and fed through the "pointed end" of the funnel.)

Fig. 2. Home-made version of the horn speaker showing a suggested method of mounting.

The home-made version of the horn speaker.

COMPONENTS

Miscellan eous

LS1 140 mm dia horn speaker, 8Ω (see text)
VR1/S1 10k lin. carbon potentiometer with integral on/off switch
S2 s.p.s.t. momentary action toggle
SK1 $\quad 3.5 \mathrm{~mm}$ chassis mounting jack
SK2 $\quad 3.5 \mathrm{~mm}$ chassis mounting jack, switched
PL1 3.5 mm jack
MIC1 Dynamic microphone insert or cassette microphone (see text)
B1-8 'AA' size 1.5 V cells (8 off)
Stripboard: $0 \cdot 1$ inch matrix, 23 holes $\times 14$ strips; $4 \times$ AA size battery holder (2 off); knob for VR1; plastic box with aluminium lid- $130 \times 70 \times$ $40 \mathrm{~mm} ; 20 \mathrm{~mm}$ dowel and moulded bicycle hand grip for handle; copper sheet for heatsink; mounting hardware for handle and speaker; connecting wire; screened cable.
excluding speaker

FINAL ASSEMBLY

The box, having been drilled to take the remaining parts, mount VR1, SK2, S2, the microphone and the handle. In the prototype the battery holders were a firm push fit in the box and consequently required no other mounting arrangements. Other styles of battery holder may require fixing and this will have to be taken into account.

Switch S 2 is specified as a momentary action toggle switch as this type of switch can be conveniently mounted inside the box in front of the handle and operated by the forefinger. If a pushbutton or lever operated microswitch is substituted for S2 it may have to be mounted externally on a bracket if the loudhailer is to be onehand operated.

Fixing arrangements for the horn speaker will also vary so this is left to the constructor.
Slot the circuit board into the box
and solder the flying leads to their various destinations. Also complete the wiring between $S 1$, the external power socket and the batteries and between VR1 and the microphone. (See Fig. 6.)

If the external power socket SK2 is omitted then the positive battery connection should be wired directly to Sl.

In the prototype the wiring to the microphone was made with shielded cable to avoid stray pickup or interference. Fit a jack plug to the lead from the horn speaker to mate with SK1 and the unit is ready for testing.

TESTING

Testing of the completed unit is best carried out with the lid of the box removed to observe any possible signs of distress. Before the unit is first switched on, a final, comprehen-

Fig. 4. Completed Loudhailer.

Fig. 5. Heatsink details for IC1.
sive check of all wiring is advised in case any faults are present.
Be absolutely sure that the battery polarity is correct or the i.c. and transistor may be destroyed at switch-on.

Now with VR1 "off" and S2 not activated, insert the batteries into their holder and plug in the horn speaker of your choice.

Switch the unit on at VR1 and wait for about five seconds. Now with VR1 set to minimum volume, activate S 2 and if all is well a gentle "click" will be heard from the speaker. If you are blasted by a loud howling, the outer terminals of VR1 are probably connected in reverse, meaning the volume will be at its maximum setting.

All being well with this test, slowly rotate VR1 clockwise and speak into the microphone. You should hear your voice from the horn speaker, the volume dependent upon the setting of VR1.

At some volume level the unit will begin to howl. This is the point at which acoustic feedback occurs and will vary according to the surroundings. The howl can be stopped by turning down the volume or by shielding the microphone from the sound from the speaker.

At this stage the external power socket may be tested for correct operation, if fitted. Connect a 12 V supply to a suitable plug, making sure of polarity-tip positive in the prototype-and insert the plug into SK2. The unit should operate as before.

IN USE

For normal operation, switch the unit on at VR1 and use S2 as a push-to-talk switch. As previously mentioned, the prototype draws less than 2 mA when S 2 is off, so S 1 can be left on but it is recommended, though, that the unit be switched off at VR1 when long periods of non-use are anticipated.

Earlier, the subject of acoustic feedback was touched upon. If this is a problem even at low volume levels, it is possible that vibrations from the horn speaker are reaching the microphone through the box. In this case, it will be necessary to isolate the microphone from these vibrations by mounting it in foam or some other 'floating' mount. Alternatively, or in fact, in addition to, a mat of dense cork or rubber may be sandwiched between
the base of the speaker mount and the box.

Finally, please remember that loud noise in the wrong place and at the wrong time, can be regarded as a form of pollution. Don't give yourself and other users of public address equipment a bad reputation by using it to infringe upon the rights of others.

Mature Advice

As you begin to mature in years and the first hint of grey adds a touch of distinction to your appearance, you are assumed to have knowledge and more important still, wisdom. It is at this point that people seek your advice and while it is flattering it also brings responsibility.

Let me give you two examples of this. First at the top end of the scale. A few years ago a firm of components distributors, who were, and still are almost a household word, asked my partner and myself out to lunch and before we reached the main course it was clear what they were seeking was guidance.

In effect they said, "Every year our shareholders expect us to increase our profits, the only thing we haven't tried is the retail market, what do you advise? If we do go ahead we shall buy you out. and keep you on as managers"

They didn't expect an immediate answer but rang me up a fortnight later. What I told them was this, "You are one of the most efficient firms in the business, if you do go ahead, you will make a profit, but after a year or two you will be so appalled how small it is that you will wonder if it was worth the trouble". They
thanked me for my trouble and said they had come to the same conclusion themselves.
The final outcome of this story was less satisfactory, because about three years later they did go into the retail trade, ran it for three years and then got rid of it. Why they decided to ignore my advice I shall never know, unless they thought I was telling them a yarn to prevent competition!

Coming now to the bottom end of the spectrum, I had a reader who told me he had recently been made redundant, and was wondering if he should use part of his redundancy money to start a components shop. He was asking my advice on something which to him was crucial, and I felt I had a greater responsibility in replying to him than the previous individuals mentioned. I told him I wished to be as helpful as possible, but it would take a twenty-page letter to begin to do justice to his question. I pointed out that the last thing I wished to do was to deter him, and that his idea was feasible, even at the present time. Only the previous day that entrepreneur extraordinary, Clive Sinclair, said in an article, that a recession was the ideal time to start a new business, and he
gave sound reasons for saying it.
However, I did warn our reader to approach the idea with extreme caution and not to commit all his reserves in case the worst should happen.

More Fun

Several years ago an Uncle of mine asked me to make him a stereo radiogram. I was very pushed at the time so I bought a set of those Mullard Modules, which I knew were excellent, and a turntable and pickup. A friendly carpenter did the rest, my Uncle was delighted with it and in his estimation, next to me Doctor Moog came nowhere. However, when you analyse it, what did my achievement prove? Simply that I was capable of putting a series of coloured wires in numbered holes and screwing them up.

I thought of this the other day when a friend of mine said he was giving up constructing. I asked him why and he said, in the old days when you could take a dozen or so discrete components, you really felt you were making something worthwhile and learning about electronics at the same time. Now you take a couple of i.c.s join one numbered tag to another and achieve the same result, but all the interest and the fun is gone and nothing is learnt from it.

It is quite a problem because a magazine like EvERyday ELECTRONICS has to offer a range of projects to suit all abilities, from the raw beginner, who, if he joins two transistors together and gets results is over the moon, to the University graduate who wants to build a complicated piece of test gear. I am concerned, that in order to be in on the latest discovery, projects will become more complex, use more i.c.s until the whole fun of building is gone. After all, it would be a shame if we damaged our hobby by being too clever.

Choosing a Soldering Iron

Probably one of the first and most important items the newcomer to electronic construction should purchase is a soldering iron. Fortunately the standards set by British manufacturers are very high and the chance of buying a "rogue" iron is almost nil.
There are quite a few irons on the market to select from and choice will finally be dictated by one's pocket. However, we recommend that a little extra outlay now will more than pay for itself in the years to follow. They can range from no temperature control to fully electronic control of bit temperatures.
To emphasise the comments in this months Square One page, an iron rated between 15 and 25 watts is adequate for nearly all projects published in EE. For bit sizes we would suggest a selection of $1 \cdot 6,3$ and 4 mm preferably of the long life iron plated type.
Try to choose an iron that is well balanced, easy to handle and has an adequate length of mains cable. Also, make sure you choose an iron with an anti-roll handle. This can take the form of a hook or a many sided "collar'
If not supplied with the iron, we recommend the purchase of a protective stand. These usually take the form of a protective metal coil fixed to a weighted base. Incorporated in the base is usually space for spare bits and a tray with a wiping sponge for "cleaning" the iron tip.

The Antex CS soldering iron.

Another useful aid to soldering, or in this case desoldering, is "solderwick" or desoldering braid. As the name implies the "wick" is immersed in the molten solder which is drawn up the wick leaving the joint free from solder. Stocked by most advertisers, it is certainly worth keeping a small supply in the workshop.
It has been our experience that the most popular irons have been the British manufactured C and X series from Antex and the Litesold L series.
The Litesold L series from Light Soldering Developments are only available direct. The heating elements are enclosed in a stainless steel shaft and insulated with mica and ceramic. It is claimed that the bits will not "seize-up"' and are completely interchangeable.
The latest Antex CS and XS miniature irons are fitted with a fused, moulded 3 -pin mains plug and are rated at 17 and 25 watts respectively.
Apart from the interchangeable bits the irons feature a detachable hook-cum-finger protector.

Catalogues Received

Only two new catalogues have been received this month, but both are excellent examples of how a components catalogue should be, presented to customers.

Well renowned for their special "bargain paks", it is only when you flip through the new large size 64 -page components catalogue from Bi -Pak that you realise the range of devices and products stocked. These include aerials, cases, wires and cables, meters and p.c.b. accessories.

Some 21 pages are devoted to semiconductor and opto devices. Of these four contain transistor technical data.
The catalogue is lavishly illustrated, costs $£ 1$, (which includes 25 p postage and packing) and is available from Bi-Pak, Dept EE, P.O. Box 6, Ware, Herts S.G12 9 AD .

The inclusion of approximately 20 new additions may not appear to be very many, but when you consider there are already 144 pages crammed with products in the latest Verospeed catalogue it must become hard to find new items for inclusion.

The catalogue is excellently illustrated, and the use of colour to indicate important information, such as component title, order code and price, seems a good innovation. They also claim a same day despatch service, on orders received before 3 p.m.

Copies of the 12th edition Verospeed components catalogue can be obtained from Verospeed Ltd, Dept. EE, Stanstead Road, Boyatt Wood, Eastleigh, Hants SO54ZY

CONSTRUCTIONAL PROJECTS

Experimental Crystal Set

Readers should have no problems in selecting a tuning capacitor (C1) for the Experimental Crystal Set as practically any air spaced type valued at $350 \mathrm{pF}, 365 \mathrm{pF}$ and 500 pF will suit.

If an aerial tuning capacitor C 2 is going to be incorporated, then one of the mica dielectric compression trimmers could be used. This could range from 10 to 110 pF or 20 to 250 pF , the latter range would be preferable.

We understand that Home Radio are able to supply a suitable compression trimmer with a special spindle converter to enable a control knob to be used with the aerial capacitor

Most component advertisers should stock the wire for the tuning coils, however if any readers experience difficulty then Industrial Supplies and The Scientific Wire Co., should be able to help. Their addresses can be found under our classified advertisements section.

The choice of mono headphones is left to individual taste, but they must be at least 2 kilohms impedance. This is quite a common value and available from most component suppliers.

Loudhailer

All components for the Loudhailer project are readily available items and should not prove difficult to purchase.

Practically any plastics case with an aluminium lid will suffice for housing the components. The reason for calling up a case with an aluminium lid is because of the need for additional strength to take the horn loudspeaker.

One of the many ABS plastics cases with an aluminium lid or one of the ever popular metal diecast boxes would appear to be most suited for this project.

It may be necessary to order a larger case as the only ones we have located measure approximately $161 \times 96 \times 59 \mathrm{~mm}$ and $150 \times 80 \times 50 \mathrm{~mm}$ respectively.

One of our Advertisers, J. Bull Electrical offers a 5 in horn speaker on a swivel base that seems tailor made for the job. Originally intended for car use, it costs $£ 5.85$ inc. $p \& p$ and is rated at 8 watts $80 h m s$.

Electronic Ignition

The only components likely to cause concern in the Electronic Ignition are the ferrite cores, bobbin and the thyristor.

The only source of supply we have been able to locate for the thyristor type TAG1/ 600 is Maplin Electronic Supplies.

The ferrite pot cores (type FX2243) and bobbin seem to be only stocked by GMT Electronics, Dept EE, PO 301, Hampton Street, Birmingham B19 3JR.

Simple Infra Red Remote Control

The relay called up for the Infra Red Remote Control is available from Maplin Supplies and should be ordered as HY20W. However, practically any $6 / 12 \mathrm{~V}$ relay having a coil resistance of 1850 hms or more can be used, with contacts to suit the final application.
The LD271 infra-red I.e.d. is quite common, but the. SFH205 infra-red photo diode would appear to be only available from Watford Electronics.

Pressure Mat Trigger Alarm

The TLO82CP twin op-amp integrated circuit used in the Pressure Mat Trigger Alarm is available from Watford Electronics. The CA3240E and the LF353 are possible alternatives but neither of these devices have been tried.

There appears to be only two sources of supply for the pressure mats and these are available from J. Bull and Maplin.
We understand that J. Bull supply two sizes of pressure mat. As two mats are called for in this project they are prepared to supply them at a special price of $£ 5$ tor the large size and $£ 4$ for the smaller size. The price for one-off mats is $£ 2$ and $£ 1 \cdot 50$ plus VAT respectively.

ORACLE WORLD FIRST

The world's first commercial teletext service is being inaugurated by Oracle Teletext Ltd, a new company jointly owned by all the ITV companies, and coincides with this month's Government's National Teletext Month.

The most important technical development is the addition of two further broadcasting lines to Oracle's transmission. This will effectively halve its present access time and, more importantly, will make regionalisation of the service possible.

The first of the regional areas will be Scottish Television, followed by Channel TV. Oracle hope to expand into a fully regional service by 1984-85, providing for local advertising as well as news and information services.

Would-be advertisers are offered two basic types of advertisement. A Fractional Page, one or two lines at the bottom of an ordinary information page, for $£ 300$ per week if he chooses the placement of the message, or $£ 200$ if choice is left to the producer. A Whole Page can cost up to $£ 400$ per week.

For extending messages a "rolling pages" facility is available. Clients booking whole page automatically get a fractional page and space in an advertisers index.

Viewdata in Moscow

The Moscow Hospital Authority and Stankoimport (a Russian machine-tool trade agency) are now using private Viewdata Plus R800 systems supplied by Rediffusion Computers.

Other systems have been installed in Czechoslavakia, Malaysia and Ireland and exports are now approaching $£ 2$ million in value.

Long-distance look

British Telecom Research is developing a long-distance low-cost TV surveillance system. This will enable distant scenes to be viewed over ordinary telephone lines.

A slow-scan technique is used in which the TV field from the camera is digitalised, stored and transmitted at slow rate, then reconsti tuted at the receiving monitor. High sensitivity Cotron 'Guardsman' cameras provide see-in-the-dark capability.

System-X On Stream

Britain's first System X all-electronic local telephone exchange is now successfully in full-time public service.
The exchange is initially providing telephone service to about 1,000 customers in Woodbridge, Suffolk. It has been carrying test calls since January, as part of a planned commissioning programme that has brought the exchange "on stream" earlier than originally planned.

The Woodbridge System X unit will be extended to serve up to 6,000 customers and provide new services, such as code calling and automatic call diversion. These are called "star" services.

INTELSAT GROWTH

There are now some 300 ground terminals in 140 countries and territories locked in to the Intelsat international satellite communications network. Its spacecraft in orbit now handle about two-thirds of the world's total transoceanic communications.

Two more earth terminals have just been ordered from Marconi for Hong Kong, bringing the number there to four. All the Hong Kong "dishes" are designed to withstand wind speeds of 210 mph experienced in typhoon conditions.

OPEN DAY FOR DISABLED

The Manchester branch of the British Computer Society's Disabled Group are holding an "Open Day for the Disabled" at the National Computing Centre, Manchester, on Saturday, October 24, 10 a.m. to 4 p.m.

The "Open Day" will consist of exhibitions and talks to demonstrate the valuable work of the disabled in computing. Help and guidance will be on hand for the disabled person who seeks to make a career in the computing industry.

MICRO BOOST

Scotland is retaining its popularity as a European base for i.c. manufacture. Building work has commenced at the $£ 40$ million plant for Nippon Electric Company at Livingston, and Motorola is to invest $£ 60$ million in extensions at their existing site at East Kilbride.

In hybrid microcircuits, Smiths Industries has invested $£ 1.5$ million in expanding its Micro Circuit Engineering subsidiary, British Aerospace Dynamics has opened a new $£ 1$ million laboratory at Stevenage, and ITT has invested $£ 1$ million at Great Yarmouth on extensions to bring together both thick and thin film operations at a single site.

In Agreement

A new agreement has just been signed with the Hong Kong Government in which Cable \& Wireless has a franchise to operate and manage the country's external telecommunications for another 25 years. A new similar agreement has also been reached with the Barhain Government.

At home C \& W is involved in a consortium with BP and Barclays Merchant Bank to set up a trunk digital data network between major cities and trading centres based on optical fibre and microwave technology.

Bristol has been chosen by Hewlett-Packard as the best site in Europe for a $£ 25$ million investment in $R \& D$ labs and a production unit for magnetic disc memories. About 1,300 people will be employed by 1986 with a pos sible expansion to as many as 8,000 people by the 1990s.

overseas news

WAGGON TRAIN

West German Federal Railways have bought Britishdeveloped software for computer management of rail freight movement throughout the Federal Republic.

The central data base stores all the information on up to 200,000 individual waggon movements every day from inputs from more than 4,000 data terminals.

Labelled Programmes

German engineers are thinking of labelling radio programmes broadcast on V.H.F. into groups such as pop music mood, concerts or news. This would be achieved by adding a supersonic tone to each type of programme. At the receiving end you would press a button for the type of programme required and the receiver would search for the selected type.

Another variant is to programme the receiver on a
music programme to a volume level of "background" with the receiver reverting automatically to normal room volume when the news comes on. The same idea would be valuable in a car to alert the driver to traffic news without having to adjust any controls.

Bilingual Stereo

A novel feature of the multi-channel sound system available to West German TV viewers is that it can be used for stereo sound and for bilingual transmission. Thus; in the case of an English language film the viewer can select on the sound channel either the original English sound or a dubbed German version.

When not used for bilingual transmission the system operates in stereo sound.

REALISM

The new ship-handling simulator being installed at the University of Wales Institute of Science and Technology, Cardiff will be used as a research tool as well as for the training of ships' officers.

It includes a full-scale ship's bridge and is the first in the world in which all visual scenes from the bridge windows are generated entirely by computer using the Marconi Tepigen system.

—ANALYSIS

UNITED KINGDOM LTD.

In an open society with free speech anyone can say almost anything. Freedom of expression is inherently good but is open to abuse, not so much by outright falsehood which is often obvious, but by propagation of half-truths or distortion. Thus, in periods of economic depression there is always the tendency, especially so in political debate, to exaggerate policy failure of one's opponent and, conversely, to minimise success.
The general impression soon gets round that UK industry and UK trade is a flop. We seem to have a habit of talking ourselves into depression. True there are some flops, just as in any race there are winners and also-rans. But why should we always be moaning about losers when we could be boasting about winners?
In 1980 UK Ltd as a trading nation exported $£ 4,126$ million of equipment and services in the electrical engineering sector, some 37 per cent of all sales. If we take separately the so-called electrical machinery sector, the one that includes electronics and telecommunications, we exported 48 per cent of all sales. Sure, electrical engineering and electronics are struggling, but only in coping with all their present work and ensuring an even more prosperous future.

I only have room to quote one example but it's a cracker. A single order worth $£ 550$ million for construction of a huge power station in Hong Kong won by UK Ltd against international competition. It will be among the largest in Asia generating 2,640 megawatts of power. Main contractor is GEC with a host of sub-contractors throughout the UK, supporting employment stretching over six or even seven years. Although the big items are the boilers (by Babcock) and turbine generators (by GEC) there will be a huge electronic content in process control and instrumentation.

Why do we not talk more of 450 UK engineering companies operating in 120 different countries and currently handling $£ 40,000$ million worth of business? Hardly a nation of hasbeens although some slick talkers would have us believe so.

Brian G. Peck.

Electronic Car Park

Access to car parks on a new housing estate in Amsterdam is electronically restricted to residents using EMIDATA magnetically encoded cards which open and close the entry and exit bar riers. Cards are changed monthly and the system will reject any attempt to use the same card for parking a second car, thus foiling multiple use.

The contract with EMI DATA is for supply of 7,000 cards a month for the next five years.

GEC's total turnover in 1980-81 hit a new record of £3,462 million. Electronics accounted for $£ 1,235$ million of the total and was $£ 200$ mil. lion higher than the previous year. GEC's exports have grown 20 per cent in the past year.

Videography

With video recorder sales world-wide now in millions, a new hobby of creative videography is developing fast and threatening the well-established home-movie hobby.

Principal advantage of video is instant playback of shots to check quality, and electronic editing, neither of which is available with cine film.

Correction Slip

We have been asked to point out that Technical Press have found it necessary to issue an errata slip for parts one and two of their "Electronics for the Service Engineer" books. Copies are available from Technical Press, Freeland, Oxford OX7 2AP.

The popularity of the crystal radio arises from its simplicity, and the fact that it needs no power supply. The circuit here allows for easy experiments with tuning, aerial and diode coupling, and frequency coverage. Wrong connections can cause no damage to any components.

Such a receiver is generally used for long and medium waves, but short waves are also readily available. It will normally be possible to receive some overseas transmissions.

BASIC CIRCUIT

The basic circuit is shown in Fig. 1. The coil Ll may be air cored, or have a ferrite rod placed in its winding. Capacitor C1 (in conjunction with aerial-earth capacitance) tunes the circuit to resonate with the wanted signal, and the diode D1 "detects" or

Fig. 1. Basic circuit of the Experimental crystal set.

demodulates this, so that the programme is heard in the headphones.

As will be seen, this basic circuit can be modified in various ways, to obtain improved results.

BASEBOARD ASSEMBLY

A 12-way strip connector, TB1, can be screwed down to a wooden baseboard, $165 \times 130 \mathrm{~mm}$ as in Fig. 2, to provide an easy method of joining up the components. Tuning capacitor Cl is bolted to a bracket of scrap metal which is then screwed firmly down to the baseboard. Thin wood screwed to the front edge of the baseboard would do instead. A knob with pointer is fitted to Cl , and a scale is drawn and fitted behind this.

Except for C1, all connections are made by the terminals of the 12 -way screw terminal block as shown in Fig. 2. Loosen the screws with a small screwdriver, insert the bared ends of the wires, and tighten the screws. The various locations on the terminal block, TB1, are also shown in the circuit diagram, Fig. 1.

AERIAL, EARTH AND HEADPHONES

Crystal receivers need a wire aerial, preferably some 25 m long. If this is out of doors, high and clear of earthed objects, signals will be improved.

The earth lead can be run to a cold water pipe if you still have metal pipes, or better still to an earth rod or spike. Or it may be soldered to a bare metal can buried in damp soil. Stranded, insulated wire, or aerial wire can be used for aerial and earth leads.

INDUCTORS

The following four coils are suggested for initial use as Ll:

Coil 1: Make a thin card tube to slide on a 10 mm diameter ferrite rod, and on this tube wind about 105 turns of 32 s.w.g. enamelled wire, side by side. Secure ends with adhesive.

Coil 2: Make a similar coil to to coil 1 having about 15 turns of 24 s.w.g. enamelled wire on the card tube. Loops of cotton will help hold the ends in place.

Coil 3: Wind nine turns of 20 s.w.g. bare tinned copper wire on an object about 20 mm in diameter. Remove and stretch to separate the turns, to obtain a coil about 25 mm long.

Coil 4: Make a similar coil to coil 3 , but with five turns.
Also have a ferrite rod some 60 to 75 mm long. Coils 1 and 2 will enable medium waves and the longer short wave bands to be covered. Coil 3 covers about $3-10 \mathrm{MHz}$ with the ferrite placed in it, or $6-18 \mathrm{MHz}$ with the ferrite rod removed. Coil 4 covers about $6-13 \mathrm{MHz}$ with the rod in, and about $9-20 \mathrm{MHz}$ without the rod.

It will be noted that as the ferrite rod is inserted, any particular signal has to be re-tuned by opening Cl . This arises because the ferrite increases the inductance of the winding, so less parallel capacitance is needed for the same resonant frequency.

EFFICIENCY CHECKS

Tune in a m.w. transmission using coil 1 which gives good headphone volume. Place a microammeter or multi-range meter on a sensitive range
in series with the headphones. A reading of $50-100 \mu \mathrm{~A}$ or more may be obtained, depending on aerial, earth, headphone resistance, coil and detector efficiency.

Placing the ferrite rod in the coil and re-tuning should boost the meter reading to some extent. Surplus or other detector diodes can be tried by substituting them in turn and noting the meter reading.

Improvements to the aerial (or earth) will show up too, as a rise in meter reading.

Should you experiment with a crystal earpiece, which gives no direct current circuit, clip the meter across the phone leads, that is, Dl cathode to earth.

AERIAL COUPLING

The aerial loads the tuned circuit heavily when connected as in Fig. 1. The series capacitor, C2 connected in Fig. 3a, reduces this loading. A variable or pre-set component, about 250 pF maximum is most suitable.

Connecting the aerial to a tapping on the coil, as in Fig. 3b, also sharpens tuning. It may also increase volume. Try about 2 turns from earth for coil 4, or 4 turns from earth for coil 3. Another method is to have a coupling primary, as in Fig. 3c. This consists of a second coil, with about one third the turns of the original wound on top of the existing coil.

You can even combine these methods to find what best suits the aerial in use.

The diode can be disconnected from the end of L1, and taken to a spare position on TB1, for example location TB1/9. You can then run a flying-lead fitted with a crocodile clip from this position, connecting it to various tappings on the coil as required as in Fig. 3d.

This method also reduces loading on the tuned circuit. Coils with spaced turns of bare wire are readily tapped. For other coils, small loops can be made every ten turns or so, and clips can be attached to these when selecting tappings.

SHORT WAVES

For s.w. reception, a reasonably efficient outdoor aerial is recommended, and evening listening in the region around $5-9 \mathrm{MHz}$ in particular.

There is no amplification, as with a valve or transistor receiver, and certain frequences will be dead at various particular times of day. So if the receiver works satisfactorily on medium waves, but no s.w. signals are heard, check again at evening, or after dark, when conditions are different.

Components

C1	365 pF air spacèd capacitor
	OA81 or s
TB1	12-way pla block
Enamelled wire	
L1; 20 s.w.g. tinned copper wire for	
L1; ferrite rod, 75 mm long by 10 mm in diameter; wire for aerial, 25 m	
materials for earth (see text);	
baseboard, 6 mm plywood, $165 \times$	
130 mm ; scrap metal for bracket for	

capacitor
germanium diode

TL1 high impedance magnetic headphones
block
Enamelled wire, 32 and 24 s.w.g. for L1; 20 s.w.g. tinned copper wire for L 1 ; ferrite rod, 75 mm long by 10 mm in diameter; wire for aerial, 25 m long: materials for earth (see text); 130 mm ; scrap metal for bracket for C1; crocodile clip (see text); knob.

Fig. 2. Baseboard layout and interwiring for the crystal set.

BY R.D. RAILTON

f's only when someone brings you up short in a conversation about past experiences with a question likeWhat is an EF50?-that you realise just how much technology has flowed down the drain since you built your first crystal set. Now go and ask me what a crystal set is-I dare you.

As someone who has always been involved in one way or another with technology and usually with the electronic side of that art, I find it hard not to be jealous of the youth of today, with access to pocket calculators, microprocessors, colour video and many more items which were far less than pipe dreams in the forties
when I did indeed build my first crystal set. But in a way they have lost out because so much of the fun of making things out of virtual rubbish is now just not possible. After all, whoever heard of manufacturing semiconductors at home-although, come to think of it, it has been done.

Transistors are still around so you all know what one looks like: it's a little can with three wire legs that you sometimes have to use to amplify a signal before you feed it to a chipO.K. Or perhaps it's a little black lump of encapsulation with wire legs. Anyway, it's development marked the total change of the world of electronics which has led to the microprocessor and all its associated paraphernalia.

Way back in 1951 or 52 this development called a transistor was hailed as being the thing which would make all valves so much scrap in a matter of months. A couple of years later it became obvious that indeed there was more to this new device than at first seemed the case and there were those amongst us who felt it important to obtain some for themselves. But as with all new developments none were to be had except at great cost.

MAKE A TRANSISTOR

A good friend (it's always a good friend when I can't remember the name) said that you could make your own transistor by simply sticking two pins into a lump of germanium. Indeed, articles did appear in various of the learned press at the time purporting to show you how to do this wonderful trick. And of course we had to try. So those of us who could-even then-still remember what a crystal set looked like, sought out our old treasures and removed the most important item, the crystal which, as it happens, is a lump of nothing less than germanium.

For those of you who have never heard of a crystal set it is the simplest form of receiver you can have for radio signals. It has lots of disadvantages, not least of which is that it is very insensitive and very unselective. However, it sufficed in the early days of radio as there were only a few transmitting stations, so the second weakness was never really a problem.

The crystal set uses a simple tuned circuit, comprising a coil and condenser (capacitor nowadays I believe). This feeds a signal to the rectifier or diode. The rectifier or detected signal is then made audible by means of a pair of headphones. What could be simpler.

THE CATS WHISKER

The only problem was that diode -it was a poor thing of very variable sensitivity and to make it do its best you had to use a tiny bit of spring wire commonly called a Cat's Whisker to search on its surface for a sensitive spot where the rectifying action worked.

What you were really looking for (as we now know) was a spot on the crystal where local impurities created a zone which could be used as a diode. Now, a transistor can be likened to a couple of diodes connected in series and both facing in opposite directions, the base being the common connection of anodes or cathodes. Thus it was reasoned-I always assumedthat if you were very lucky it should be possible to find a zone on your lump of germanium where two diodes could be created with the correct polarity relationship. And so you would have a "transistor"

At any rate, that was the idea. In practice, of course, it turned out to be something yet again and I have to admit that for me it never did work.

After that little episode I for one was forced to admit that it is easier to buy the bit than to make it.

JACK PIUA \& FAMILY...

Get organised

ised with

RACE TRACK 5PEEDO

An accessory for model car racetracks. Measures the average lap speed of the car, and lap times up to a period of 9.9 seconds.

${ }^{\text {CHPLISTMP }}$ ICHTS FLASTREE times a secontching rate from three
for lighting loads four times a minute

GUITRR RDAPTOR

A de-equalising RIAA filter that allows an electric guitar to be played through a magnetic "phono" input on a hi fi amplifier.

BASIC ELECTRONIC THEORY WITH EXPERIMENTS

UNDERSTANDING AND USING THE VMOS TRANSISTOR

L
Ast month we noticed the rather strange behaviour of the vmos transistor. Its resistance seemed to vary in an unpredictable way when we touched the gate terminal wire. An explanation was promised and is given below, but first we must look more closely at the nature of the material which is inside the transistor. This material is a slice (or "chip") cut from a crystal of the element, silicon.

In a crystal of pure silicon the atoms are all alike and are arranged regularly, as shown in Fig. 2.1. Each atom consists of a nucleus which carries a positive charge, surrounded by a cloud of electrons, which are negatively charged. The total positive and negative charges are equal but opposite, so the atom as a whole shows no charge.

At low temperatures the electrons remain firmly attached to the atom, circling endlessly in orbits around the nucleus. A chip of pure silicon has no electrons available to carry current when it is cold. It is a non-conductor. If it is warmed, some of the electrons gain energy and can escape from the atoms.

These free electrons can carry charge when in an electric field-if, for example, we connect the opposite
Fig. 2.1. Part of a crystal of pure silicon in diagramatic form(not to scale).

sides of the chip to a battery. The silicon is now a conductor. Substances such as silicon which can be conductors or non-conductors, depending on their temperature, are called semiconductors.
In last month's experiments you found that the resistance of the thermistor and the transistor decreased when you warmed them. In other words, their conductivity improved. This is due to the extra electrons set free by warming them.

Pure silicon is a poor conductor compared with a metal, for it has very few free electrons. To increase its conductivity we can dope it with atoms of other elements.

DOPING

Doping is generally done by heating the silicon in a furnace and allowing the atoms of the other element to diffuse into the crystal. These atoms take their place among the silicon atoms (Fig. 2.2).

If the silicon is doped with atoms of phosphorus, for example, the phosphorus atoms each have a "spare" electron. This is easily able to leave the atom to act as a charge carrier. It carries negative charge, so silicon doped in this way is called n-type.
Fig. 2.2. Part of a crystal of n-type silicon (very diagramatic).

HOLES

We can dope the silicon with an element such as boron (Fig. 2.3). Compared with silicon atoms, boron atoms lack an electron, so there are vacancies or spaces in the crystal where electrons ought to be. These are called holes. Holes attract free electrons to fill them, so they act as if they are positive charges.

When an electron escapes from an atom and fills a hole, another hole is created at the atom the electron has just left. This too can be filled by another escaping electron. In effect a hole travels along a bar of silicon which is an electric field (Fig. 2.4).

Semiconductors doped in this way carry charge because the holes can "move". Conduction is by holes, which are considered as positive charges, so the material is called p-type silicon.

The vmos transistor is a particular type of mos transistor. mos stands for "metal-oxide silicon". Diagram Fig.2.5 shows how one type of mas transistor works.
It consists of a piece of p-type silicon with two small regions of n-type. One surface of the piece is coated in silicon dioxide, which is a very good insulator.
Fig. 2.3. Part of a crystal of p-type silicon (very diagramatic),

The fact that silicon dioxide is such a good insulator is one of the reasons why silicon is so widely used in preference to other semiconductors such as germanium.
In Fig. 2.5a, no current can flow through the bar, as will be explained next month. However, if we charge the gate electrode positively the holes in the p-type silicon are repelled (like charges repel).

This creates a region of n-type silicon joining the two doped n-type regions. There is now a path for electrons to flow through the transistor, Fig. 2.5b
The more strongly we charge the gate electrode, the wider the path and the easier it is for current to pass. The greater the charge, the smaller the resistance of the transistor becomes.

EXPERIMENT 2.1

A mos transistor as a touch switch
Look at our circuit diagram for a simple touch switch (Fig. 2.6) and how to set it out on the Minilab breadboard, Fig. 2.7.
When you place your finger across the gap between the two wires A and B, the gate becomes positively charged. Electrons are attracted toward the positive terminal of the battery, leaving the gate more positive than it was before.
The current is very small indeedit can not be large beoause the gate is completely insulated from the rest of the transistor by the layer of silicon dioxide. Because of the effect of the field around the gate, current flows through the transistor and the light emitting diode Dl is turned on.
There will be more about light emitting diodes (l.e.d.s) next month. For

Fig. 2.4. Conduction by holes in p-type silicon.

EXPERIMENT 2.1

Fig. 2.7. The layout on the breadboard and interwiring for the circuit in Fig. 2.6.
the moment, try other ways of altering the charge on the gate. Try bringing your hand near to wire B without actually touching it. Try rubbing a plastic ball-point pen or a plastic comb with a dry duster and bring toward B.

Add a one megohm (1M Ω colour
code: brown black, green) resistor between sockets B23 and B24 on the breadboard. This discharges the gate after is has gained charge (it lets electrons leak back from the 0 V line). What effect has this on the action of the touch switch?

Fig. 2.5. How a MOS transistor works.

FIg. 2.8. Stage 1 of Experiment 2.2 to observe and measure the action of a MOSFET. Here we are calibrating VIN.

Fig. 2.9. Layout and interwiring for the circuit of Fig. 2.8.

Fig. 2.10. Stage 2 of Experiment 2.2. Current flow through TRI for known VIN is being measured.

Fig. 2.11. Layout and interwiring for circuit in Fig. 2.10.

Fig. 2.12. Circuit for investigating voltage amplification using a MOSFET.

Fig. 2.13. Layout and interwiring on breadboard for circuit in Fig. 2.12.

ERRATUM

In last month's Teach-In, one of the identifying spots on potentiometer VR1 in Figs. 1.10 and 1.11 -was incorrectly marked: RED should be changed to YELiOW to be in accordance with the colour coding used on the Minifab circuf बlagram, Fig. 1 on page 665.

EXPERIMENT 2.2

Measuring the action of a mosfet
The circuits for determining the action of a mosfet are in two stages and are shown in Figs. 2.8 and 2.10. The component layouts and wiring to the breadboard are shown in Figs. 2.9 and 2.11 respectively

In this experiment potentiometer VR1 is being used as a potential divider, (see last month). First connect the meter as in Fig. 2.9 to measure the voltage produced by 10 different positions of VR1. Make a note of these 10 settings on the control dial for later reference.

The resistors R 2 and R 3 in series with the meter were selected for the meter used in the Minilab (see last month). This has an internal resistance of 4 kilohms ($4 \mathrm{k} \Omega$).

Teach-In '82 kit suppliers will have selected transistors to suit the meter they have supplied, this may be other than a 4 kilohm type meter. It is possible that only a single resistor will be required and supplied.

Next wire the meter between the transistor and the +6 V line (Fig. 2.11). Set VR1 to each position in turn and measure the current through the transistor.
Does current increase as the voltage at the gate increases? What is the increase in current if the voltage is changed from, say, 0.75 V to 1.0 V ?
Use your measurements to calculate the transconductance g_{m} (or mutual conductance) of the transistor:
$g_{\mathrm{m}}=\frac{\text { change in output voltage }}{\text { change in input voltage }}$
The units of transconductance are amps/volt. This is the inverse of the unit of resistance, which is volts/amp, usually called ohms.

The opposite of resistance is conductance and transconductance is a special example of this. The unit of conductance (amps/volt) is the siemens, symbol S.

ANOTHER USE FOR RESISTORS

When a current passes through a resistor, a p.d. or voltage difference is created between the ends of the resistor. This is a result of Ohm's Law. For example, if a current of 2 A passes through an $180 h m(\Omega)$ resistor, the p.d. is $V=I R=2 \times 18=36$ volts. Here is another use for resistors-turning a current into a voltage.

EXPERIMENT 2.3

Voltage amplification

The circuit for investigating voltage amplification is given in Fig. 2.12 Component layout can be seen in Fig. 2.13.

In this circuit the current through the transistor passes through a resistor R4. When it does this a p.d. develops across the resistor. The meter is now being used as a voltmeter.

Set VR1 in each of the positions you used in Experiment 2.2. This gives 10 different values of $V_{\text {IN. }}$. For each $V_{I V}$ measure the output voltage ($V_{\text {OUT }}$) across the resistor.

Now you can compare two voltage changes, to calculate the voltage gain of the circuit:
voltage gain $=\frac{\text { change } \text { in output voltage }}{\text { change in input voltage }}$
For example, increasing $V_{\text {IN }}$ from 1.2 V to 1.4 V (a change of 0.2 V) might make $V_{\text {out }}$ rise from 0.8 V to $5 \cdot 3 \mathrm{~V}$ (a change of $4 \cdot 5 \mathrm{~V}$). The voltage gain of the circuit is $4 \cdot 5 / 0 \cdot 2=22 \cdot 5$.

This experiment shows how a transistor can be used as a voltage amplifier (or more precisely as a voltage change amplifier). Later we will measure the gain of other types of transistor.

Fig. 2.14. The circuit for an electronic thermometer.

Fig. 2.15. (right). Layout and interwiring for circuit in Fig. 2.14.

EXPERIMENT 2.5

Fig. 2.16. Circuit for investigating the action of a light triggered switch.

Fig. 2.17. Layout and interwiring on breadboard for the circuit in Fig. 2.16. Check connections to diodes before making final connection to power supply. Note that this circuit uses a 100 kilohm potentiometer (VR2 on Minilab).

EXPERIMENT 2.4

Electronic thermometer

In the circuit diagram Fig. 2.14, the thermistor RTH1 and VRI act as a potential divider. The component layout is shown in Fig. 2.15.

As temperature changes, the resistance of the thermistor changes. Increased temperature sets free more electrons and so decreases the resistance. This makes the potential at point A change, so the potential of the gate changes too.

Adjust VRI until the reading on the meter is about 3 V . Now warm the thermistor by gripping it between your fingers. Then touch some other warm (not hot) object against it.

Touch a lump of ice against it. Watch the meter to see how the voltage across R 4 is affected by the temperature of the thermistor. The changes of voltage at point A are quite small but they are amplified by the transistor so that there is a large change in the reading on the meter.

If you were to put the thermistor in various places with known temperatures, you could mark the scale of the meter in degrees Celsius (Centigrade). Then this circuit could be used as an electronic thermometer.

TRANSISTORS AT WORK

This month we have seen two ways in which transistors are used. They can be used as switches, to turn things on and off (Expt. 2.1), and they can be used as amplifiers (Expts. 2.22.4).

These are the two main uses of transistors in electronics. This applies not only to the vmos transistor but to the other types which we shall be using later.

EXPERIMENT 5

Light-triggered circuit
The circuit in Fig. 2.16 is another example of the use of a transistor as a switch.

In this case it is triggered by light. The component layout on the breadboard is shown in Fig. 2.17. It uses a photodiode (D4), a semiconductor device that is sensitive to light.

Adjust VR2 until the l.e.d. (D1) just switches off. When this happens the potential at the gate of TR1 is just not enough to allow current to flow to light the l.e.d. Now cover the photodiode with your hand.

While light was shining on the photodiode the energy of the light helped to set electrons free from the atoms of the semiconductor. These allowed a small current to flow; the photodiode acted as one resistor of a potential divider.
When the photodiode is shaded, there is less light, so there are fewer

TEACH-IN 82

COMPONENTS IDENTIFIED

free electrons to carry charge. Its resistance increases. This raises the potential at A and turns on the transistor. Current flows through the transistor and lights the l.e.d.

THE FIELD EFFECT

The vmos transistor works because of the electric field around the gate electrode, which repels the holes and increases conduction. The transistor is known as a field effect transistor, or f.e.t. for short.

In this transistor, as in all mosfets, the gate is insulated from the body of the transistor by the layer of silicon dioxide. The difference between vmos and the other types of mosfet is that the silicon is etched to produce deep V-shaped grooves in its surface.

Conduction occurs down the sides of the grooves. The path is narrow but, by making the grooves fairly long, we can build a transistor which is able to carry a large current.

> QUESTION TIME
> 2.1. Antimony is another element with a "spare" electron on each atom. If pure silicon is doped with antimony, what type of semiconductor is made?
> 2.2. In which direction do holes move in an electric field?
> 2.3. What does MOS stand for?
> 2.4. If a current of 10 mA passes through a $2 \cdot 2 \mathrm{k} \Omega$ resistor, what potential appears across the resistor?
> 2.5. If the circuit of Expt. $2 \cdot 3$ has a gain of 20 , what change in VOUT will be caused when VIN increases by 0.15 V ?
> 2.6. Name the three electrodes of an f.e.t.
> 2.7. Which one of the electrodes of an f.e.t. is connected to the OV line?
> 2.8. What alteration to the circuit of Expt. 2.5 would make the l.e.d. turn off when the photodiode is covered?
> 2.9. What charge is produced on a plastic ball-point pen when it is rubbed with a duster? (Hint -try Expt. 1 again.)
> 2.10. In Expt. 2 the voltage was increased from 1.0 V to $1 \cdot 2 \mathrm{~V}$. The current increased from $10 \mu \mathrm{~A}$ to $70 \mu \mathrm{~A}$. What is the transconductance of the transistor?

> Answers in Part 3.

The vmos transistors are therefore used mainly is power transistors. The VN10KM used in this series can carry up to 0.5 A , and larger versions can carry up to 2 A .

The f.e.t.s can be made in other ways too, and this will be one of the subjects dealt with in next month's article. We shall also find out a lot more about diodes of all kinds.

To be continued

PART 1 ANSWERS

1.1. Electrons.
1.2. Forced apart.
1.3. Coulomb.
1.4. Electrons, positive ions, negative ions.
1.5. 6 coulombs.
1.6 Metals.
1.7. Full-scale deflection.
1.8. $12 \mathrm{k} \Omega$
1.9. Blue, grey, brown; (680 ohms).
1.10. 1 volt.

 SIMPIE INFA DED denolit
 BY R. A. PENFOLD

MODULATED BEAM

Some readers may be puzzled about the use of a modulated beam, rather than a simple continuous type. The problem with a continuous beam is that it could only be a very low power type if it were to use inexpensive and readily available parts. It would therefore produce very little change in the receiving photocell when it was switched on and off, making it diffcult to produce a system of good sensitivity, plus good immunity to changes in the ambient infra-red level.

TRANSMITTER CIRCUIT

Fig. 2 shows the complete transmitter circuit, and this is based on a 555 timer i.c. (ICl) used in the astable (free running) mode. R1, R2, and C2 are the timing components, and the specified values give an operating frequency of about 4.5 kHz . This is low enough to obtain a good efficiency from the photocells and easily obtain the high gain required at the receiver, but is high enough above 50 hertz to easily provide good rejection at this frequency in the receiver circuit
strong pulses of current during the brief periods when the output of IC3 is negative going.
R3 limits the peak current fed to Dl to about 450 mA , giving an average l.e.d. current of approximately 40 mA . The total current consumption of the circuit is about 48 mA , the additional current being that consumed by ICl.
Sl is the on/off switch, and is a nonlocking push button type. Cl is a supply decoupling capacitor

Fig. 1. Block diagram showing the basic arrangement of the complete system.

By using a pulsed beam, the weak audio signal produced by the receiving photocell as it responds to the infra-red pulses can be considerably boosted by a high gain audio amplifier. The output of the amplifier is then rectified and smoothed to produce a strong d.c. bias which can be used to drive a relay by way of a d.c. amplifier. This system is therefore immune to most ambient infra-red, and is only affected by modulated infra-red sources.

In practice, apart from the trans mitter, the only source of modulated infra-red is likely to be mains lighting. It is simple to make the system virtually immune to interference by mains lighting, since the mains frequency is only 50 hertz. The audio amplifier is merely designed to have a very poor response at this low frequency, and the transmitter is given a fairly high operating frequency, where the amplifier exhibits its full gain.

The circuit is a sort of relaxation oscillator, with C 2 first charging to ${ }^{2} 3$ $\mathrm{V}+$ via Rl and R 2 , and then discharging to ${ }^{1_{3}} \mathrm{~V}+$ through R 2 and an internal transistor of IC1. C2 is continuously charged and discharged in this manner.

The main output of ICl is at pin 3. This terminal is at virtually the full positive rail potential while C2 is charging, and at little more than the negative rail voltage when C 2 is discharging.
As C2 charges through the relatively high resistance of R1 and R2 in series, but discharges through only R2 and the low internal resistance of ICl, the charge time of C2 is far longer than the discharge time. The output from pin 3 is thus a series of brief negative pulses, with an actual mark space ratio of about 10 to 1 .
TRI is an emitter follower buffer stage, and this has infra-red l.e.d. DI and current limiting resistor R3 as its emitter load. TRI drives the l.e.d. with

TRANSMITTER CONSTRUCTION

The transmitter can be housed in virtually any small plastic case. The prototype is housed in one which has approximate outside dimensions of $80 \times 50 \times 30 \mathrm{~mm}$, and this was found to be small enough for comfortable hand-held operation, and just about large enough to accommodate all the components.
A mounting hole for Sl is drilled in the top panel of the case just forward of a central position. The panel holder for DI is mounted on the front panel of the case, low down and offset to the left (when viewed from the front).

The circuit is constructed on $0 \cdot 1$ in matrix stripboard size 13 strips by 17 holes. After cutting out a board of the required size and drilling the two 3.3 mm diameter mounting holes, it is advisable to remove any jagged edges using a small flat file. The four breaks

Fig. 2. Circuit diagram for the infra-red transmitter.
The completed transmitter housed in a small plastics box.

Fig. 3. Component layout and wiring details for the infra red transmitter.

The transmitter with top panel removed. The "trigger" switch S 1 is shown mounted on the top panel.

COMPONENTS

Resistors
R1 $56 \mathrm{k} \Omega$ R2 $6.8 \mathrm{k} \Omega$ R3 10Ω All $\frac{1}{3}$ W carbon $\pm 5 \%$

Capacitors
C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2 $4 \cdot 7 \mathrm{nF}$ ceramic plate
Semiconductors
C1 555 timer i.c.
TR1 BFR81
D1 LD271 infra-red I.e.d
Switch
S1 Push to make, release to break type

Miscellaneous
B1 PP3 battery and connector. Plastic case, $80 \times 50 \times 30 \mathrm{~mm}$ (Teko size TEKP1P, West Hyde Developments).
0.1 in matrix stripboard, 13 strips $\times 17$ holes; wire; solder.
in the copper strips are then made. The components and link wires are then soldered into place.

Mount the completed component panel on the base panel of the case in a position that enables D1 to be fitted into its panel holder. Short M3 or 6BA mounting screws are used. The battery fits into the space at the rear end of the case.

TESTING THE TRANSMITTER

It is advisable to thoroughly check all the wiring once or twice before connecting a battery and operating the unit, since a mistake could easily result in some of the components being damaged. If possible, connect a multimeter set to read about 100 mA f.s.d. in series with the positive battery lead, so that the current consumption of the unit can be checked. If this is not in the region of 45 to 50 mA , release S1 at once and recheck the wiring, for errors.

RECEIVER CIRCUIT

The receiver is somewhat more complicated than the transmitter, as can be seen from its circuit diagram which appears in Fig 4. The photocell used to detect the infra-red pulses is a special photo-diode, D1

Most photodiodes are sensitive to infra-red, but the type used here is designed for high sensitivity in this part of the electromagnetic spectrum, and it has an integral filter which virtually eliminates any response to visible light. This prevents ordinary light sources from interfering with the unit.

Rl is the load resistor for D1, and the voltage at the junction of these two components depends upon the leakage current passed by D1, which is connected so that it is reverse biased.

The pulses of infra-red from the transmitter cause the leakage current to increase, producing a series of
negative voltage pulses at the junction of Rl and D1. These pulses are very low in amplitude, being below one millivolt except when the unit is used at very short range. They must therefore be subjected to a very high degree of amplification in order to produce an output of useful magnitude.

PREAMPLIFIER

TR1 is a j.f.e.t. and is used as a low noise preamplifier. It is used in the common source mode, and C2 is used to couple the output from D1 to the input at its gate terminal. This stage provides a useful gain of over 20 dB (10 times) and has a very low noise level.

Most of the gain is provided by two high gain common emitter amplifiers using TR2 and TR3. These are quite conventional in design. C5 is used to roll off the high frequency response of the amplifier in order to aid stability.

POOR RESPONSE

The circuit is given a poor response at 50 hertz merely by using low value coupling capacitors between the various stages of the amplifier

C7 couples the strong signal at TR3 collector to a rectifier circuit using D2 and D3. A series of positive pulses are produced at the output of the rectifier, and these are used to bias TR4 into conduction. C8 integrates the pulses so that TR4 is continuously biased into conduction, and not rapidly pulsed on and off.
TR5 is an emitter follower buffer stage which drives the relay coil that forms its emitter load. With TR4 switched on, virtually the full supply voltage is fed to the relay coil, and normally open relay contacts RLAl close and operate the controlled equipment.
Of course, if the transmitter is not operating there are no input pulses to switch on TR4. Its collector potential then becomes equal to almost the full positive supply voltage, and the voltage fed to the relay coil is practically zero. With the relay coil non-energised, the relay contacts remain open. The relay contacts can thus be made to close and open by switching the transmitter on and off.
D4 is used to suppress the reverse voltage spike that would otherwise be developed across the relay coil as it was switched off. D4 short circuits this high impedance signal, limiting it to only about 0.65 volts in amplitude, thus limiting it to a level which is far too low to damage any of the semiconductor devices in the circuit. C1, R7, and C9 are supply decoupling components.
The only control is on/off switch S1. The current consumption of the circuit is about 2.8 mA under quiescent conditions, rising to about 30 mA when the relay is activated.

COMPONENTS -ar

Resistors

Capacitors
C1 $100 \mu \mathrm{~F} 10 \mathrm{~V}$
C2 $2 \cdot 2 \mathrm{nF}$ ceramic plate C3 $1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C4 4.7 nF ceramic plate
C5 120 pF ceramic plate
C6 $4 \cdot 7 n \mathrm{~F}$ ceramic plate
C7 100 $\mathrm{n} F$ type C280
C8 47nF ceramic plate
C9 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors
TR1 BF244B j.f.e.t.
TR2 BC109C npn silicon
TR3 BC109C npn silicon
TR4 BC109 npn silicon
TR5 BC179 pnp silicon

D1 SFH205 infra-red photodiode
D2 OA91 germanium
D3 OA91 germanium
D4 1 N4148 silicon
Relay
RLA Omron 306 ohm $6 / 12$ volt coil, printed circuit mounting, single changeover contact (Maplin)

Socket
SK1 Jack socket 3.5 mm
Switch
S1 Rotary on/off switch, or s.p.s.t. toggle

Miscellaneous
B1 PP6 battery and corinector. Case measuring about 150×135 $\times 55 \mathrm{~mm}$ (Teko Nuova, size TEKD.13, available from West Hyde Developments).
0.1 in matrix stripboard 13 strips $\times 34$ holes; control knob; wire; solder.

Fig. 4. Circuit diagram for the infra-red receiver.

WIDA DED LECHME

The completed receiver with top cover removed showing positioning of the circuit board, relay, on/off switch and output socket. If the front panel is not translucent then a hole will have to be cut opposite the infra-red photo diode D1. This diode can be seen to the right of the output socket.

Fig. 5. Receiver circuit board component layout, underside details and interwiring to the off-board components.

RECEIVER CONSTRUCTION

Except for the battery, output socket, relay, and on/off switch, the components are assembled on a 0.1 in matrix stripboard. This has 13 copper strips by 34 holes and is detailed in Fig. 5. This diagram also shows the connections to the off-board components.

Construction of the board is quite straightforward, but note that D2 and D3 are germanium devices, and are therefore relatively easily damaged by overheating when they are being soldered into circuit. It is advisable to either apply the soldering iron to the joints for no more than about one or two seconds when connecting these two components, or to use a heatshunt on their leadouts while connecting them.

CASE

The prototype is housed in a plastic case having approximate outside dimensions of $150 \times 135 \times 55 \mathrm{~mm}$. S1 and output socket SKl are mounted on the front panel. The latter is made from a clear, red-tinted plastic material on the specified case, and this is virtually transparent to the infrared beam from the transmitter. This permits the component panel to be mounted on the base panel of the case so that the sensitive surface of the detector diode (its curved surface) is close to and facing the front panel. The diode can then pick-up the infrared beam through the front panel. The panel does, of course, absorb some of the infra-red radiation, but this only results in a marginal reduction in the range of the unit and does not seriously degrade performance.
If a case having an opaque front panel is used, a hole must be drilled in the front panel, and the component panel mounted so that Dl fits immediately behind this hole, so that the infra-red beam can pass through to D1.

RELAY AND LOAD

The relay is mounted at any convenient place on the base of the cabinet, and most modern types can simply be glued in position using a good quality general purpose adhesive. A few types will require a mounting bracket of some kind to be fabricated by the constructor.

On the prototype the relay contacts are connected to a 3.5 mm jack socket, and this then connects to the projector via a twin lead terminated in the appropriate plugs.

If the unit is used to control a load that is powered direct from the mains, the output socket should be be a type which can be connected to the mains supply without any risk of dangerous

The receiver circuit board. The photo diode can be seen at the bottom right corner.
mains wiring being exposed. Alternatively, the cable from the controlied equipment can be taken through a hole drilled in the case and connected direct to the relay contacts.

USING THE SYSTEM

The completed system requires no adjustment of any kind, and the relay should open and close in sympathy with operations of S1 on the transmitter if the output from the transmitter is directed towards the photodiode of the receiver. The photo-diode detector is sensitive over quite a wide range of angles, and the output from the transmitter is well dispersed.
Therefore, at short and medium ranges it is not essential for the transmitter to be aimed very accurately at the receiver. When used towards the limit of its range (about 9 m or so), the aim of the transmitter is inevitably more critical though.

Of course, the system will not work if there is an obstruction between the transmitter and receiver, unless the object is reasonably transparent to infra-red (such as a window).

Fig. 6. The circuit can be modified to operate as a broken beam burglar alarm.

If the system is used in an application where the receiver will be switched on for very long periods of time, it would be advisable to use a mains power supply, or Ni-Cad rechargeable cells would also be a practical power source.

BROKEN BEAM ALARM

The system can be used as a broken beam type burglar alarm, but the receiver must be modified in the manner shown in Fig. 6.

S2 is an additional switch that is closed when the circuit is first set up, so that the circuit to the relay is completed. When the infra-red beam is received by the unit, additional normally open relay contact RLA2 closes, and completes the circuit to the relay. S2 can then be opened.

If an intruder breaks the beam, relay coil. When the intruder has passed through the beam and it is picked up by the receiver again, TR5 will switch on, but will not be able to drive the relay as relay contacts RLA2 will remain open. Thus, once the beam has been broken, the relay latches in the off state.

The first set of relay contacts can either be of the normally closed type, and used to directly control some form of alarm, or they can be wired into a comprehensive alarm system.

RELAY

The specified relay is unsuitable for use in this modified circuit since it has just one set of contacts. However, the circuit can employ any relay having a $6 / 12$ volt coil with a resistance of about 185 ohms or more, and sufficient contacts of the required type. It would be normal to use key type switches in the circuits.

As the transmitter and receiver circuits will be left running for long periods in this application, both should be run from mains power supplies or rechargeable batteries

PART 7 BY J.CROWTHER

THE "NOR" GATE

"NOT OR" means, that we do NOT get à output if A OR B are logic 1.

Boolean Equation

Since $A+B$ means A Or B, and a ba r means not, it follows that:

$$
\overline{A+B} \text { means "NOT } A \text { OR } B \text { " }
$$

So the Boolean equations for a NOR gate are:

$$
\begin{aligned}
& \overline{A+B}=S \text { for two inputs } \\
& \overline{A+B+C}=S \text { for three inputs }
\end{aligned}
$$

If we apply Demorgan's Theorem to $A+B$ we get $\overline{A B}$ which represents two normally closed switches or relay in series. Therefore a NOR gate may be represented by relays as in Fig: 7.1.

Fig. 7.1. A 2-input NOR gate realised using two normally closed relays connected in series.

Truth Tables

Tnputs	
\boldsymbol{A}	\boldsymbol{B}
$\mathbf{0}$	$\boldsymbol{O}+\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{S}$
0	1
1	0
1	1
1	1

Three Inputs			
Inputs Output A B C $\overline{A+B+C}=S$ 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0			

Symbols

By comparing the above truth tables with those for the or gate it can be seen that they are the inverse, therefore the "NOR" gate is an OR gate followed by a NOT gate and the symbol shows this.

Fig. 7.2. Three different types of symbol for representing a NOR gate in a circuit.

SUMMARY OF LOGIC GATES

Symbol Equation Definition

$$
\begin{array}{ll}
\text { Output if } A \text { AND } B \text { are logic } 1 \\
\text { No output if } A \text { AND } B \text { are logic } 1
\end{array}
$$

Fig. 7.3. The five basic logic gates and their definitions.

Exercises

7.1. Derive the output state at S for the following gates and combination of gates.
(a)

(b)

(c)

(d)

(e)

EFFECTS OF LOGIC REVERSAL

It has been stated previously that positive logic is when the positive half of the waveform is defined as logic 1 and negative logic when the negative half of the waveform is defined as logic 0

It can be seen from the two diagrams, Fig. 7.4 and Fig. 7.5, that in the transition from positive logic to negative logic, what was originally a logic 1 becomes logic 0 and vice versa.

Fig. 7.4. Positive logic. Fig. 7.5. Negative logic.

Now the truth table for a two input and gate using positive logic would be:

Inputs		Outputs
A	B	S
0	0	0
0	1	0
1	0	0
1	1	1

However, if we now take the same and gate but use negative logic, all the 1 's in the table will become 0's and the the 0's will become 1's, the truth table will now become:

Inputs		Outputs	
A	B	S	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

From this truth table it can be seen that there is an output if A is at logic 1 or B is at logic 1 , that is it has become the truth table for a "positive logic" or gate.

EFFECT OF LOGIC REVERSAL ON A NAND GATE

If we now examine the effect of changing from positive logic to negative logic on a NAND gate, again by using the truth tables, we get:

Inputs		Outputs
A	B	S
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for a NAND gate using positive logic

Inputs		Outputs	
A	B	S	
1	1	0	
1	0	0	
0	1	0	
0	0	1	

Truth table for a NAND gate using negative logic

Once again it can be seen that the truth table for the NAND gate using negative logic is the same as the truth table for a NOR gate using positive logic.

From these two examples we have shown that the effect of logic reversal is to change and gates to or gates and NaND gates to NOR gates and vice versa.

For the purpose of this series we will be using the more common positive logic system.

CIRCUITS OF LOGIC GATES

Three circuit configurations can be used to achieve the basic logic functions.

(1) Diode-Resistor Logic (DRL)

Only diodes and resistors are used and since a diode is either "on" or "off" and cannot invert a signal, DRL circuits can only be used for AND and OR gates.

This type of gate has no power gain and consequently can only feed one or two inputs from its output. This configuration is sometimes referred to simply as Diode Logic (DL).

(2) Diode-Transistor Logic (DTL)

Diodes are used to obtain the logic functions and transistors give both inversion and gain, therefore dTL circuits can be used for all the basic types of gate and the output will feed up to three or four inputs.

(3) Transistor-Transistor Logic (TTL)

Transistors are used to achieve both logic and gain.
Since only transistors are used, the input impedance is high, which enables the gate to have more inputs (up to 13) and the greater power gain permits the output to feed up to ten inputs.

The number of outputs which can be fed to an input of a gate is referred to as "fan-in", and "fan out" is the term applied to the number of inputs the output of a gate can supply.

TTL can only be used for Nand gates with positive logic, and NOR gates if negative logic is used.

THE "AND" GATE USING DIODE LOGIC

A three-input diode-resistor and gate is seen in Fig. 7.6.
Suppose logic 1 is 6 V , and logic 0 is 0 V . If all the inputs were at 6 V (logic 1$)$, the diodes would be reversed biased and no current would flow through resistor R1, there would be no volts drop across R1 and the output would be at 6 V (logic 1). This would also be the case if no connections were made to diode cathodes.

If any of the inputs dropped to logic $0(0 \mathrm{~V})$, the diode in that input would be forward biased and conduct, current would now fiow through resistor R1, and the voltage drop across R1 would cause the output to fall to logic 0 (0.6 V approx.).

If the ohmic value of R1 was a lot larger than the forward resistance of the diodés nearly all the supply voltage would be dropped across R1 and the output would fall to almost 0 V (logic 0).

Fig. 7.6. A 3 -input AND gate made from diodes and resistor.

By BARRY FOX

In the Picture

With very few exceptions, people who sell computers divide neatly into two types; the marketing men who know nothing about what they are selling and the boffins who communicate only with each other, cutting themselves off from the outside world by a moat of strange words.
Business users of computers can deal happily with the salesmen and computer enthusiasts can deal happily with the boffins. But this leaves a large grey area of potential users who would like to know more about home computers, but can't find anyone to explain the options open to them in plain, simple terms.
chanced on an especially good example of this recently. In Japan I noticed that most desk-top computers, with built-in TV display screens, now offer a very high standard of resolution.

The words on screen are packed into 24 or 25 horizontal rows, each with space for 80 individual characters, and all very clearly legible. Compare this with some Western home computers and both teletext and viewdata, which offer only 40 characters in each of 24 rows.

The picture on the screen of a European TV set (as used to display teletext, view data and the output of some Western home computers) is built up from a raster of 625 lines. In Japan and the USA the raster is more coarse, at 525 lines.

So is higher definition achieved by increasing the number of lines in the raster? Or what?
Astonishingly I couldn't find anyone, either in the firms selling desk top computers with high definition displays, or amongst people who earn their living writing about them, who could answer the question. The marketing men could tell me about prices and the boffins could talk at length about programming. But no one could answer the simple question; how many TV lines go to make up the picture on the screen of a high definition home computer?
The computer experts couidn't relate to TV technology and the TV experts couldn't relate to computers. But by piecing together a few available facts I can offer a reasonable explanation for why the graphics and characters on some displays look clearer than others.

Teletext

Let's start with teletext and Viewdata, as available on modified domestic TV sets. The teletext or viewdata picture page is made up from 24 rows of information, with up to 40 characters in each row. Each character is created by lighting up appropriate groups in a rectangle seven dots high and five dots wide, a so-called 7×5 matrix.

For normal domestic television in Europe there are 25 pictures a second each formed from 625 horizontal lines. Fifty of these lines are lost for field blanking, which leaves 575 active lines for each picture. To prevent flicker the picture is formed from two interlaced scans of less than 300 lines each and written 50 times a second.
Domestic teletext is displayed in the same way. But professional Viewdata displays don't interlace the two fields, they write one over the other. This still prevents flicker (because the picture is being written 50 times a second instead of 25) and produces a much more precise and bright image.

The line structure is of course relatively coarse, only around 300 lines, which would be quite unacceptable for ordinary photographic reproduction. But for characters and graphics it is quite acceptable. Clarity can be further improved by making the display work in a digital fashion, the beam switching between white and black rather than through the scale of grey needed to reproduce photographic pictures.

A raster of around 300 lines is still perfectly adequate to write 24 rows of characters, each made up from a matrix 7 dots high, because this only needs 168 lines. The remaining lines go to provide the spaces between the rows and at the top and bottom of the picture.

Home Computers

Home computers rely on 24 or 25 rows of characters. To have more rows would make the writing illegible. So a home computer can easily feed display signals into a conventional TV set working on 525 or 625 line standard.

Alternatively, the home computer can have its own built-in screen and this needn't adopt any conventional TV line
standard. For instance, one Japanese computer uses a 336 line raster to provide 24 rows of characters each formed from 7×11 dot matrices in 10×14 dot areas.
Simple arithmetic shows that 24 rows of character areas, each 14 dots high, equates with the raster of 336 lines. The spaces between rows are created because the characters are produced by the 7×11 matrix inside the 10×14 areas. Although it proved impossible to get useful information from the importers, it seems clear that the 336 line raster is over-written rather than interlaced.

Character Counts

The real difference between high definition home computers and low definition home computers, or teletext and Viewdata displays, is in the number of characters per row. Most home computers that plug into a domestic TV set offer only 40 characters per row, like Viewdata and teletext.

It can be argued that 40 characters a row is more than enough and that 80 characters a row produces a message which is too complex to read. But the real reason why designers use 40 characters instead of 80 is video bandwidth.
To write 80 characters in each row it is necessary for the scanning electron beam to change from light to dark very, very rapidly. This in furn means that the control signals must have a very wide bandwidth.
A domestic TV set may have a video resolution of no more than 4 MHz , whereas a- professional monitor or display screen of the type built into a high definition computer may have a bandwidth of around 12 MHz . If you feed an 80 character-perrow signal into a low bandwidth TV set, the chaaacters will smudge into each other on screen. Also definition on a colour screen will often be worse because of the shadowmask used to separate the red, green and blue phosphors.
Only highest quality displays can cope with an 80 character signal. This is why the BBC, IBA and Post Office opted for 40 characters per row for teletext and viewdata. They wanted to put out signals which could be received by the lowest common denominator sets.
It's why home computers which are intended for use with a domestic TV set as display screen usually opt for 40 characters per row. And it's why computers which have a built-in monitor can offer 80 characters per row.

The designers simply ensure that the display screen and circuits can handle the bandwidth necessary to write 80 characters per row without smudging. A new tube from Mitsubishi can display more than 4000 characters at a time, in full colourl
The advantage of 80 characters is obvious, you can get more information on the screen at the same time. The disadvantage is that you may have difficulty in displaying that information on anything other than a screen designed for the system.

This of course explains why some home computers can be sold at enticingly low prices, and some systems with in-built displays appear surprisingly expensive. All the signs are that the next Japanese onslaught into Europe and America will be with high definition home computers, at enticingly low prices.

STEREO AMPLIFIER KIT

- Featuring latest SGS/ATES TDA 200610 watt output IC'

with in-built thermal and short circuit protection. - Mullard Stereo Preamplifier Module.

- Attractive biack vinyl finish cabinet, $9^{\prime \prime} \times 81 /^{\prime \prime} \times 3 \% \%^{\prime \prime}$ (approx) - $10+10$ Stereo converts to a 20 watt' Disco amplifier. To complete you just supply connecting wire and solder Features include din input sockets for ceramic cartridge, mi rophone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorp orates a Mullard LP1 183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and trebte controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instructions
f14.95 available, price 50p. Supplied FREE with the kit. Plus $£ 2.90$ p\&p. SPECIFICATIONS: Suitable for 4 to 8 ohm speakers. Frequency response $\quad 40 \mathrm{~Hz} \div 20 \mathrm{KHz}$. requency response
Input sensitivity \quad P.U. 150 mV . Aux. 200 mV input sensitivity Mic. 1.5 mV .
Tone controls Bass $\pm 12 \mathrm{db}$. $@ 60 \mathrm{~Hz}$
Distortion $\quad 0.1 \%$ typicaliy @ 8 watts Mains supply $\quad 220.250$ voits 50 Hz .
STEREOMAGNETIC PRE-AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic inpur on the $10+10$ to magnetic.
Only available with $10+10 \mathrm{amp}$. $\mathbf{£ 2 . 0 0}$ includes $p \& p$.
8" SPEAKER KIT Two 8"t win cone domestic speakers $£ 4.75$ per stereo pair plus $£ 1.70 \mathrm{p} \& \mathrm{ip}$. when purchased win

PRACTICAL ELECTRONICS CAR RADIO KIT

2 WAVE
BAND
MW -- LW

- Easy to build
- 5 push button
tuning * Modern design
- 6 wart output * Ready etched
and punched PCB Incorporates suppression circuits.
All the electronic components to build the redio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller h a 6 watt ousput neg. ground and incorporates an Integrated circuit outpur stage, a Mullard IF Module LP1 181 ceramic filter type pre-aligned and
£10.50 assembled, and a Bird pre-
aligned push button tuning unit. Plus $£ 2.00$ p\&p Suitable stainless steel fully retractable aerial (locking) and speaker ($6^{\circ} \times 4$ "apo.). £1.95/pack. Plus $£ 1.15$ p\&p.

R
 Tiv

HIGH POWER AMPLIFIER MODULES
 READY. BUILT OR IN KIT FORM

125 WATT MODEL
200 WATT MODEL
SPECIFICATIONS: Max Output power (RMS) 125 W Mode Max. Output power (RMS) 125 watts Operating voltage (DC) $\quad 50: 80$ max Loads

Frequency response
measured @ 100 watrs
Sensitivity for 100 watts 25 Hz 20 KHz $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$
$400 \mathrm{mV} @ 47 \mathrm{~K}$ KIT
$£ 10.50$ BUILT

Typical T.H.D. @
50 watts, 4 ohms
(s) $\frac{0.1 \%}{205 \times}$

Plus $£ 1.15$ p\&p $£ 14.95$ £14.25
 Dimensions (both models) 205×90 and $190 \times 36 \mathrm{~mm}$ Power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of
generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions,
ACCESSORIES:
Suitable LS coupling electrolytic $£ 1.00$ plus 25 p p\&p.
for 125 W model
Suitable LS coupling electrolytic
f1. 200 W model $\mathbf{~ p l u s ~} 25$ p p\&p.
Suitable mains power supply
unit for 125 W model
uitable Twin transformer p
supply for 200 W mu del
supply for 200 W mc del
$£ 7.50$ plus $£ 3.15$ p\&p.
$£ 13.95$ plus $£ 4.00$ p\&p.

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, silver finished rotary controls and pushbuttons with matching fascia, for mic magnetic and crystal pickups, rape and au xiliary. Rear panel features fuse holder. DIN speaker and inpus socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4 to 8 ohm speakers.
$£ 32.90$
BUILT ANDTESTED.
Plus- $£ 3.80$ p\&p.
PHILIPS BELT DRIVE RECORDPLAYER 7
DECK GC037 (Size: $151^{\prime \prime} \times 12^{1 / 4^{\prime \prime}}$ approx.)
HiFi record player deck, 2 speed, damped cueina. autn shut-off, belt drive with floating sub chassis to minimise acoustic feed back. Complete with
GP401 stereo magnetic GP401 stereo magnetic cartridge
LIMITED STOCK
UNBEATABLE
OFFER AT
£27.50
COMPLETE
Plus $£ 3.16$ p\&

MONO MIXER AMPLIFIERS

50 WATT six individually mixed Inputs for two pick ups (Cer. or Mag.), two moving coil microphones and two auxiliary for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble, four extra treble controls for mic and aux inputs. Size: $131 / 4 \times 6 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{3}{4} "^{\prime \prime}$ app. Power output 50 watts R.M.S. (continuous) for use with 4 to 8 ohm speakers. Attractive
black vinyl case with matching
fascia and knobs. Ready to use.
$£ 39.95$

Plus Ez.70 pqo.
100 WATT
Brushed Aluminium fascia and rot-
ary controls. Size: approx. $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%^{\prime \prime}$ Five vertical slider controls, master volume, tape level, mic level, deck level, PLUS INTERDECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice disc before fading it in. disc before fading it in.
VU meter monitors outpu 100w RMS Ontpurs output.

MAIL ORDER ONLY
323 Edgware Rd, London W2. Tel: 01-723 8432. Open 9.30am - 5.30 pm . Closed all day Thursday Persons under 16 not served without parents authorisation.
ALL PRICES INCLUDE VAT AT 15\%

21A HIGH STREET, ACTON, W3 6NG. Note: Goods despatched to UK postal addresses only. For further information send for instructions 20p plus stamped addressed envelope.

* MPU Section accepts $24,28,40 \& 64$ pin DIL microprocessors
* Auxiliary Areas accept any $.3^{\prime \prime}$ or $.6^{\prime \prime}$ RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts

The PROFESSIONALS breadboard that BEGINNERS can start on
BOSS INDUSTRIAL MOULDINGS LTD
2 Herne Hill Rd, London SE24 0AU, England Telephone 01-7372383 Telex 919693
Cables \& Telegrams: LITZEN LONDON SE24
Please send me
.MPUroBreadBoard(s)@ $£ 18$.
This price includes VAT \& PP, is applicable from Mar. 1, '81, but please add 15% for Overseas Orders, make cheques/P. O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.

Name
Company
Address

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy Rechargeable Light instructions take you through every stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself.

There's a great range of kits to start you off. From a
 buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM.

With all this going for you, you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
Buzzer Alarm

To: Heath Electronics (UK) Limited, Dept (EEII), Bristol Road, Gloucester GL2 6EE.
To start me off, please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Youbuild onourexperience HEATHK

TThis simple i.c. project has been specially designed as a control unit for pressure (or trigger) mats. The Pressure Mat Trigger Alarm has two inputs, each being a normally open pressure mat. The mat closes the circuit when an intruder steps onto it, and then an indicator lamp illuminates on the alarm unit. A warning buzzer also sounds.

Even if pressure is then removed from the mat, the lamp and buzzer will continue to operate as this design has a built-in latching action.

POWER SUPPLY

Power can be derived from the mains by means of a nine volt battery eliminator. Designs for these appear from time to time in EE. A rating of 9 V 50 mA will be more than ample.

Alternatively battery operation is possible. For short periods a PP3 battery can be used but if prolonged use is desired then a larger type is recommended.

TWO CHANNELS

The circuit diagram is shown in Fig. 1 where ICl is a TL082 twin opamp integrated circuit. This contains two separate operational amplifiers sharing a common power supply. One amplifier is used per channel and the circuit of just one channel will be described. The other circuit operates in an identical manner.

CIRCUIT DESCRIPTION

The resistors R1 and R2 form a potential divider holding the noninverting input of ICla at about 2 V . The other input would be held at more than this by R3 and R4, say 3 V , and so, by comparator action, the output (pin 1) of ICla is low. This also holds the non-inverting input at a low voltage.

This means that D1, the visual indicator for channel 1 , cannot therefore illuminate.

Once the normally open pressure mat on channel one is closed by an intruder standing upon it, then the inverting input is grounded to 0 V , and so the output of ICla will go high. The voltage at the non-inverting
input slightly exceeding that at the inverting input causes this effect.

The output, being fed back to the non-inverting input, also holds this input high. Even if the pressure mat is now opened (weight being removed from the mat) pin 3 is still held at almost 9 V , and pin 2 at only a couple of volts. The output therefore remains high. In other words, the circuit has latched.

Diode D1 will also illuminate. This high signal is directed by D2 into the base of TR1, a transistor connected as an emitter follower, with an audible warning device (WD1) as its load. The buzzer therefore sounds.

AUDIBLE WARNING

In this application a solid-state buzzer is used which draws roughly 15 mA when sounding. Conventional electro-mechanical buzzers are not suitable in this circuit.
The lamp and buzzer continue operating until S1 is pressed. This normally closed push-button temporarily removes power from the circuit, so that when Sl is closed again, the two op-amps take up their quiescent state as described earlier.
The other channel built around IClb functions in a similar fashion. Diode D3 is the indicator lamp for channel two, and the output signal is coupled via D4 to TR1, which operates the buzzer WDl as before.

Resistors
Resistors
R1 $100 \mathrm{k} \Omega$
R2 $33 \mathrm{k} \Omega$
R3 $68 \mathrm{k} \Omega$
R4 $33 \mathrm{k} \Omega$
R5 560Ω
All $4 W$ carbon $\pm 5 \%$

Capacitors
C1, $210 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. (2 off)
Semiconductors
IC1
TLO82CP dual op-amp
TR1
ZTX X300 npn silicon
D1
TIL220 red lie.d.
D2
D3
DIL148 small signal silicon diode
D3

Switches
S1 push-to-break, release-to-make single pole
S2 s.p.s.t. toggle

Miscellaneous

WD1 9 V solid state audible warning device
TB1 three-way screw terminal block
B1 9V PP3 type
Plastics case, $116 \times 77 \times 35 \mathrm{~mm}$, type PB1 (Maplin), or similar; stripboard, 0.1 inch matrix, 10 strips by 24 holes; pressure mats with normally open contacts (2 off); 8 pin d.i.l. i.c. socket; battery clip to suit B1; connecting wire to link up trigger mats to alarm unit; 6BA nuts, bolts and spacers to mount circuit board (2 off each); hook up wire.

Outside view of the finished unit. The terminal block for the pressure mat connections is shown on the right.

The control box wired into the pressure mats. The relative scales of the unit and pressure mats can easily be seen.

CASE

A plastic case type PBl can be used if an external power source or a PP3 battery is used. This case measures $116 \times 77 \times 35 \mathrm{~mm}$ but any other type of case with suitable dimensions can be used. If larger batteries are employed then a larger box may be needed.

The drawing in Fig. 2 shows the arrangement of electronic components on the 0.1 inch matrix stripboard, which measures 10 strips $\times 24$ holes (standard size). The assembly is fairly compact, and quarter watt resistors must be used.

During assembly take care to orientate the transistor and diode leads correctly, and do not subject them to excessive heat during soldering. It is best to use a heatshunt if you are in any doubt.

I.C. SOCKET

The i.c. is not particularly cheap and it would be wise to protect it from the rigours of soldering by using an 8 -pin d.i.l. socket. Obviously it is important to plug the chip in the right way round.

The stripboard can be bolted to the lid of the box with 6BA hardware and two clearance holes exist in the stripboard for this purpose. There are quite a few flying leads coming off the board, and using several colours of insulated wire may help in identification. General purpose multistranded wire can be used throughout.

FINISHING OFF

Connections to the pressure mats are made by a three-way screw terminal block TB1, one terminal being common to both loops. Three wires from the terminal block pass through a hole in the case to the stripboard within.

Similarly, the buzzer is mounted on the front with 8BA hardware, and its two connecting leads pass through an

Fig. 1. Full circuit diagram of the Pressure Mat Alarm. The mats themselves act as normally open switches and the wiring run between TB1 and each mat can be, in effect, as long as you like. It is not necessary to have both mats in circuit for the unit to function and additional mats can be connected in parallel to those shown to provide additional coverage although there will still only be a maximum of two channels.

adjacent hole to the component panel within.
The two 0.2 inch light-emitting diodes D1 and D3 can be affixed to the front panel with the clips supplied with the l.e.d.s.

TESTING

With construction finished check out all the wiring thoroughly and then switch on. The buzzer may initially sound (and both l.e.d.s illu-
minate) but pressing Sl should reset the buzzer and extinguish the indicators. Shorting out the loop terminals should illuminate the appropriate l.e.d. and cause the buzzer to sound. Pressing SI should reset the I.e.d. and buzzer once more.
You can hide the pressure mats in any suitable location but the mats must be on a flat surface. Several mats can be wired in parallel thus increasing the protection afforded by the system. However, the loop wires
are not tamperproof and must be hidden under the carpets, or otherwise shielded.

Loop lengths of about 10 metres have been tried on the prototype unit with great success and this distance could easily be exceeded with good results.

Transient protection appears to be good and there should be little danger, if any at all, of the alarm being triggered by transients on the loop wires or power rails.

THE most common way to interconnect electronic components is to use a technique called soldering. Besides providing an excellent electrical connection a fairly strong mechanical fixing is also produced.

In soldering, a metal alloy called solder (made from lead and tin) is melted on to the metal surfaces (such as component leads, tags, pins and tracks) that are to be joined together and then allowed to cool and solidify. The solder becomes bonded to the surfaces to form a soldered joint.

SOLDERING IRON

To melt the solder an electric soldering iron is required. Irons intended for other work such as those heated in a flame or furnace of any kind are very definitely not suitable for electronics work.

The business end of an electric soldering iron is the bit, located at the tip of the iron. This is heated by conduction from the heat generated
 BEGNNERS
in an element fitted in the shaft of the iron. The element is usually heated by mains a.c. voltage.

Irons are classified by their heat capacity measured in watts; one rated between 15 and 25 watts will be suitable for all projects in $E E$. A selection of bit sizes say $1 \cdot 5,3$ and 4 mm diameter will meet the majority of requirements. The smallest will be ideal for soldering i.c. leadouts and the largest when making connections to the tags on potentiometers, switches and can-type capacitors for example.

SOLDER

The only solder really suitable for reliable soldered joints in electronic equipment is the type containing a flux, such as Ersin Multicore Solder which contains five cores of flux throughout its length. This is a noncorrosive flux which quickly cleans oxidised surfaces.
This may be bought in dispensers or on reels. At first the reels appear
to be very expensive but are more economical than dispensers in the long term. Other fluxes or cleaning acids and chemicals should never be used on electronic equipment.

New bits are sometimes coated with a thin layer of protective grease for protection during storage and this should be wiped off before use with a damp cloth containing a little deter gent such as washing up liquid.

TINNING THE BIT

Before commencing soldering, especially with a new bit, it should be tinned. This is done by plugging in the iron and when the bit is hot, melting solder on the bit so that it flows evenly over it, see Fig. 1.

Excess solder may be wiped off on a piece of damp sponge fitted somewhere on the bench or iron stand. You will need this frequently during soldering to periodically wipe away any flux and solder that accumulates.

SUCCESSFUL SOLDERING

You will encounter many different kinds of connection between components and hardware but whatever type of joint is being made the same basic rules of soldering must be observed in order to obtain a good joint. 1-The iron should be tinned.
2-Both surfaces to be bonded must be perfectly clean and free from grease.
3-The surfaces to be joined together must be in good contact.
4-The bit must be used to simultaneously heat both surfaces.
5-The solder should be melted around the contact area, and not on the iron, and allowed to flow.

Continued on page 766

gop pop

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices, fast service and technical support facility second to none. Here are some examples from the current issue:

I.C. SOCKETS			OISCRETES	
A range of high quality, low cost, low profile DIL sockets ideally suited for both the OEM and hobbyist. All types feature double sided phospher bronze contacts, tin-plated for low contact resistance.			BC237	8p
			BC238	8 p
			2TX238	9 p
			BC239	8 p
			BC307	8p
			BC308	8p
8×0.3 "	12p 22×0.	" 20p	BC309	8 p
14×0.3 "	13p 22×0.	" 20p	BC413	10p
16×0.3 "	13p 24×0.	22p	BC414	11p
" 3×0.3 "	18p 28×0.	' 25p	BC415	10p
22×0.3 "	19p 40×0.	* 35p	BC416	11p
$20 \times 0.4^{\prime \prime} 19 \mathrm{p} 42 \times 0.6^{\prime \prime} 38 \mathrm{p}$			BC546	12p
			XTALS	
VOLTAGE REGULATORS			1 MHz	3.00
$78 \times \times 1$ A	A TO-220 pos	0.58	3.2768 MHz	2.00
79XX1A	TO-220 neg	0.60	4 MHz	1.70
78G 1A	TO-220 adj pos	1.10	4.194 MHz	1.70
78 G 1 A	TO-3 adj pos	3.95	4.43MHz	1.25
78H5A	TO-3 5 v pos	4.25	5 MHz	2.00
78H5A	TO-3 12 v pos	5.45	6.5536 MHz	200
78HG5A	TO.3 adj pos	7.45	7 MHz	200
79HG5A	TO-3 adj neg	7.45	8 MHz	2.00
LM317.5	5A adj pos	1.30	9 MHz	2.00
LM337.5A	5A adj neg	1.75	10 MHz	2.00
78S401.5	5A adj pos sw reg	1.20	11 MHz	2.00

> Prices shown exclude VAT, Postage 50 p per order (UK). ACCESS/ BARCLAYCARD may be used with written or telephone orders - official MA details on application, and a special prize for those who read our ads carofully a free 4 or 8MHz crrstal filter with every CPU IC you buy - just clip out the paragraph and attach it to your order. E\&OE.

CMOS		407	0.18	4705	4.24	7447 N	0.62	74153 N	0.55	74366 N	0.8	74LS 109 N	0.25	74LS248N	1.35	74 CXX					
4000	0.13	4078	0.18	4706	4.50	7448 N	0.56	74154 N	0.55	74367 N	0.85	74LS112N	0.25	7415249 N	1.35			Processors			
4001	0.13	4081	0.18	4720	4.00	7450	0.14	74155 N	0.55	74368 N	0.85	74SL113N	0.25	74LS251N	0.46	74 COO	0.20	8080 series			
4002	0.13	4082	0.18	4723	0.95	7451 N	0.14	74156 N	0.55	74390 N	1.85	74LS114N	0.25	$74 \mathrm{LS253N}$	0.46	${ }^{74 \mathrm{CO}} \mathrm{CO}$	0.20				
4007	0.15	4093	0.41	4724	0.95	7453 N	0.14	74157 N	0.55	74393 N	1.85	74LS122N	0.40	74LS257N	0.55	${ }^{74 \mathrm{CO}} \mathbf{7}$	0.20	8080AFC/2	3.11		
4008	0.70	4099	0.93	4725	2.24	7454 N	0.14	74159 N	1.90	74490 N	1.85	74LS123N	0.55	74LS258N	0.39	74 COB	0.20	${ }_{8214} 82$	1.70		
4008AE	0.80	4175	0.90	40014	0.54	7460 N	0.14	74160 N	0.55	74LSN		$74 \mathrm{LS124N}$	1.80	74LS259N	0.39	$74 \mathrm{C10}$	0.20	8214	3.50		
4009	0.30	4502	0.79	40085	0.99	7470 N	0.28	74161 N	0.55	74LSN		74LS125N	0.29	74LS260N	0.70	$74 \mathrm{C14}$	0.55	8216	1.41		
4010	0.30	4503	0.48	40098	0.54	7472 N	0.27	74162 N	0.55	74LSOON	0.11	74.5126 N	0.25	74LS266N	0.24	74 C 20	0.20	8224 8251	1.85		
4011A	0.24	4506	0.63	40106	0.69	7473 N	0.28	74163 N	0.55	$741501 N$	0.11	$74 \mathrm{LS132N}$	0.45	$74.5273 N$	0.90	74 C 30 74 C 32	$\begin{aligned} & 0.20 \\ & 0.20 \end{aligned}$	${ }_{8}^{8255}$	4.26 3.97		
4011	0.15	4507	0.38	40160	0.68	77474 N	0.28	74164 N 74165 N	0.55	744 l	${ }_{0}^{0.12}$	${ }^{74 L S 133 N}$	0.25	74LS279N	0.35	${ }_{74 \mathrm{C}}{ }^{742}$	0.80	825			
4015	0.64	4508 4510	${ }^{1} .95$	40162	${ }^{0.69}$	7476 N	0.30	${ }_{74166 \mathrm{~N}}$	0.75	744504 N	0.14	$74 \mathrm{LS138N}$	0.34	74LS280N	2.05	74 C 48	1.03	6800/6809			
4016	0.30	4511	0.66	40163	0.69	7480 N	0.26	74167 N	1.25	74LSO5N	0.14	74LS139N	0.36	74LS283N	0.44	74 C 73	0.50				
4017	0.45	4512	0.70	40174	0.69	7481 N	0.20	74770 N	1.25	$741508 N$	0.14	$74 L$ S145N	1.20	74LS290N	0.58	74 C 74	0.50	68000 3.75 68400 4.75			
4019	0.38	4514	1.45	40175	0.69	7482 N	0.75	74173 N	1.10	74LSO9N	0.14	$74.5151 N$	0.35	74LS293N	1.30	77476	0.48	688800	. 75		
4020	0.58	4515	1.45	40192	0.75	7485 N	0.75	74174 N	0.75	744510 N	0.13	74LS153N	0.35	74LS295N	1.50	$74 \mathrm{C83}$	0.98		$6302 \quad 5.55$		
4021	0.68	4516	0.75	40193	0.75	7488 N	0.24	74175 N	0.75	74LS11N	0.14	74LS154N	0.99	74LS298N	1.50	$74 \mathrm{CB5}$	0.98	$6809 \quad 15.00$			
4022	0.64	4518	0.40	40194	0.69	7489 N	1.05	74176 N	0.75	744S12N	0.15	$74 \mathrm{LS155N}$	0.38	$74 \mathrm{LS365N}$	0.35	${ }_{74} 74 \mathrm{C} 86$	${ }_{2} 0.26$				
4023	0.15	4520	0.75	40195	0.69	7490 N	0.30	74177 N	0.75	744S13N	0.28	74 LS 156 N	0.38	$74 \mathrm{LS366N}$	0.35	74 C 89	${ }_{2}^{2.68}$	$6810 \quad 1.75$			
4024	0.45	4521	1.60	TTL	N	7491 N	0.55	74178 N 74179 N	0.90	$741514 N$ $741515 N$	-0.46	$74 L S 157 N$ $74 . S 158 N$	0.33 0.33	${ }^{74 L S 367 N}$	0.35	$74 C 90$ $74 C 93$	${ }_{0}^{0.80}$	68410 1.85 68810 2.04 881			
4025	0.15 1.05	4522	0.89 0.89	7400 N	0.10	7492 N	0.35 0.35	74179 N 74180 N	1.35 0.75	$744515 N$ 741520 N	${ }^{0.13}$	$74 L S 58 N$ $74.50 N$	0.40	${ }^{74 L S} 373 \mathrm{~N}$	0.78	$74 \mathrm{C95}$	0.94	$6820 \quad 1.95$			
4027	0.50	4528	0.78	7401 N	0.10	7494 N	0.70	74181 N	1.22	$74 L 521 \mathrm{~N}$	0.15	74.5161 N	0.40	74LS374N	0.78	74 C 107	0.48	$\begin{array}{ll}68821 & 1.75 \\ 68421 & 2.10\end{array}$			
4028	0.50	4529	0.89	7402 N	0.20	7495 N	0.60	74182 N	0.70	74LS22N	0.15	74LS162N	0.40	74LS375N	1.15	74 Cl 151	1.52	$\begin{array}{ll}68821 & 2.34 \\ 6800\end{array}$			
4029	0.75	4531	0.85	7403 N	0.11	7496 N	0.45	74184 N	1.20	74LS26N	0.18	74LS163N	0.40	$74 \mathrm{LS3} 37 \mathrm{~N}$	1.99	${ }_{7} 4 \mathrm{Cl} 154$	2.26				
4030	0.35	4532	1.20	7404 N	0.12	7497 N	1.40	74185 N	1.20	74LS27N	0.14	$74.5164 N$	0.46	74LS378N	1.40	74 C 157	1.52	6840 68440 4.25 4.55			
4035	0.75	4534	5.30	7405 N	0.12	74100	1.10	74188 N	3.00	${ }_{74} 74.5882 \mathrm{~N}$	0.19 0.13	$74 L S 165 N$ 741561	1.20	$74 \mathrm{LS379N}$	2.15	$74 C 160$ $74 C 161$	${ }_{0}^{0.80}$	68A840 68850 4.75 175			
4040	0.68	4536	3.00	7406 N	0.22	74104	0.62	74190 N 74191 N	0.55	74.	${ }^{0.13}$	${ }_{74 L S} 168 \mathrm{~N}$	0.85	74.	2.50	74 C 162	0.80	$6850 \quad 1.75$			
$\begin{aligned} & 4042 \\ & 4043 \end{aligned}$	0.58 0.65	4538 4539	0.97 0.89	7407 N 7408 N	0.22 0.15	74105 74107	0.62 0.26	74191 N 749192 N	0.55 0.55	744LS32N	0.14 0.16	74LSI68N 74.5179 N	0.85	${ }^{7} 74 \mathrm{LS} 3886 \mathrm{~N}$	- 0.29	${ }_{74} 7163$	0.80	68850 2.17 6852 2.47			
4043AE	0.93	4543	1.05	7409 N	0.15	74109N	0.35	74193 N	0.55	74LS37N	0.15	74.5170 N	1.40	74LS390N	0.68	${ }^{74 C 164}$	0.80				
4044	0.64	4549	3.50	7410 N	0.12	74110 N	0.54	74194 N	0.55	74 LS38N	0.16	74LSIT3N	0.70	7415393 N	0.61	74 C 165	0.84	$\begin{array}{ll}\text { 68A52 } & 2.75 \\ 68852 & 2.95\end{array}$			
4046	0.69	4553	3.20	7411 N	0.18	$74111 \times$	0.68	$74195 N$	0.55	$74 \mathrm{LS40N}$	0.13	74LS 174 N	0.55	7415395 N	2.10	74 C 173	0.72	$\begin{array}{ll}684888 & 5.25\end{array}$			
4047	0.69	4554	1.30	7412 N	0.19	74112 N	1.70	74196 N	0.55	${ }_{7415472 N}$	0.33 0.39	74LSS175N	1.20	74.5	2.95	$74 C 174$ 74.175	0.72				
40	0.30	4555	0.48 0.53	7413 N 7414 N	${ }_{0.27}^{0.27}$	74116 N 74118 N	1.98 0.85	7497 74198 N	0.55 0.85	$74 \mathrm{LS48N}$	${ }_{0} 0.65$	74LS183N	1.75	74LS399N	2.30	74C192	0.80	280 series			
4051	0.65	4557	2.30	7416 N	0.27	74119 N	1.20	74199 N	1.00	74LS49N	0.59	74LS189N	1.28	74LS445N	1.40	74 C 193	0.80				
4052	0.65	4558	0.89	7417 N	0.27	74120 N	0.95	74221 N	1.00	74LS51N	0.14	74LS190N	0.56	$74 L 5447 \mathrm{~N}$	1.95	74 C 195	0.80				
4053	0.65	4559	3.80	7420 N	0.13	74121 N	0.34	74246 N	1.50	74LS54N	0.15	74LS 191 N	0.56	74LS490N	1.10	74 C 200	4.52	$\begin{array}{ll}\text { Z28ADRT } & 7.50 \\ \text { Z80APIO } & 4.10\end{array}$			
4054	1.30	4560	1.75	742]N	0.28	74122 N	0.34	74247 N	1.51	74LS55N	0.15	74 LS 192 N	0.56	74LS668N	1.05	74 C 221	1.06				
4055	1.30	4561	2.18	7423 N	0.22	74123 N	0.40	74248 N	1.89	74 LS 73 N	0.21	74LS193N	0.59	74LS669N	1.05	74 C 901	${ }_{0}^{0.38}$				
4056	1.30	4562	0.89	7425 N	0.22	74125 N	0.40	74249 N	0.11	74LS74N	0.18	74LS 194 N	0.39	74LS670N	1.70	74 C 902	${ }_{0}^{0.38}$				
4059	5.75	4566	3.80	7426 N	0.22	74126 N	0.40	74251 N	1.05	74.575 N	0.28	74LS 195 N	0.39	RAM				Z88AASIO/9 14.00			
406	0.88	4568	1.45	7427 N	0.22	74128 N	0.65	74265 N	0.66	$74 \mathrm{LS76N}$	0.19	${ }^{7445196 N}$	0.55			$74 C 904$ $74 C 905$	0.38 5.64	z80CTCZ80ACTC $\quad 4.00$			
4063	1.15	4569	1.50	7430 N	0.1	74132 N	0.50	74273 N 74278 N	2.67 2.49	744 LS 78 N 74 LS 83 N	0.24 0.50	${ }^{74 L 5197 N}$	0.65 3.45	2102 2112	1.70 3.40	${ }^{74 C 906}$	${ }_{0}^{5.38}$	$\begin{array}{lr} 280 \mathrm{ACTC} \mathrm{C} \\ 28001 & \begin{array}{r} 4.50 \\ \hline 5.00 \end{array} \end{array}$			
	0.34 4.30	4572 4580	1.95	74332 N	0.23 0.22	74136 N 74141 N	0.65 0.45	74279 N	2.49 0.89	74LS85N	0.70	74 LS 202 N	3.45	2114/2	1.49	74C907	0.38				
4068	0.18	4581	1.50	7438 N	0.22	74142 N	1.85	74283 N	1.30	$74 L$ S86N	0.18	74LS221N	0.60	4027	5.78	74.5908	0.84	PROM			
4069aE	0.18	4582	1.65	7440 N	0.14	74143 N	2.50	74284 N	3.50	74LS90N	0.32	$74 L$ S240N	0.99	4116/2	1.59	$74 \mathrm{C909}$	1.52				
4070	0.18	4583	0.80	7441 N	0.54	74144 N	2.50	74285 N	3.50	74.591 N	0.70	74 LS241N			1.49			$2708 \quad 2.00$			
4071	0.18	4584	0.45	7442 N	0.42	74145 N	0.75	74290 N	1.00	${ }^{744} 592 \mathrm{~S}$	0.34	74LS243N	1.65	${ }^{4964 P}$	12.50 12.50	$\begin{aligned} & 74 \mathrm{C} 914 \\ & 74 \mathrm{C} 918 \end{aligned}$	0.86 0.98	$\begin{array}{ll} 2716 & 3.55 \\ 2532 & 8.50 \end{array}$			
${ }_{4072}^{4073}$	0.18 0.18	4585 4702	0.45 4.50	7443 N 7444 N	0.62 0.62	74147 N 74148 N	1.50 1.09	$74293 N$ $74297 N$	1.05 2.36	74LS93N $74 . S 95 N$	0.34	${ }^{74 L S 224 N}$	1.65	$6116 P-3$ $6116 P-4$	11.25	74C925	4.32				
4075	0.18	4703	4.48	7445 N	0.62	74150 N	0.79	74298 N	1.85	74LS96N	1.20	$74 L S 245 N$ $74.5247 N$	1.50 1.35	8264	12.50	$74 C 926$ 74 C 27	4.32				

74 LS 109 N

Contlinued from page 764

6-Remove the solder followed by the iron.
7-Do not disturb the joint while the solder is solidifying naturally.
A good joint will be seen to be smooth, shiny and globular in shape. If the above rules are not obeyed, a dry joint is the likely outcome. The main causes for such a joint will be due to 2 and 7 above. A dry joint may appear mechanically sound (many are not) but no electrical contact is made and the circuitry will not function satisfactorily-if at all. A dry joint has a dull ragged appearance.

CIRCUIT BOARDS

Soldering component leads to Veroboard or printed circuit boards (p.c.b.s) is fairly straightforward. Trim the lead so that only about 3 mm protrudes beyond the copper track. The leads pass through small holes surrounded by copper (tinned copper in the case of a p.c.b.). Bending the lead slightly to make contact with the copper plate is sufficient. Alterna-
tively, the lead may be bent at 90 degrees on to the copper to increase the contact area and at the same time make a semi-mechanical joint, see Fig. 3.

Place the bit so it makes contact with both lead and track and apply solder to the joint (not the iron) so that solder flows evenly. Remove solder followed by iron.

Veroboard is protected by a thin coat of lacquer to prevent tarnishing. However, if the copper is tarnished rub with emery cloth before soldering.

Most component lead-outs and tags are nowadays solder tinned during manufacture or plated with a nontarnishing metal. However, tinned leads do become "dirty" and it is wise to clean them with emery paper before soldering if this is the case.

If too much tinning is removed, retinning is advised for easier soldering. This is done by heating the lead with the bit and applying solder to the lead (not the bit) so that solder flows evenly over its surface.

A much stronger joint can be made by making a mechanical joint prior to soldering, see Figs. 2, 5 and 6.

STRANDED WIRE

Soldering p.v.c. covered stranded wire to a component tag, pin or circuit board for example can often be a problem for the beginner.

Strip off about 8 mm of insulation and using thumb and index finger twist all the strands together. Place a tinned bit at the extreme to heat up the wire and then melt solder onto the wire, see Fig. 4.

The solidified solder produces a solid core which is suitable for a number of different types of connection. It may be formed into a hook when connecting to a tag on a potentiometer or switch (Fig. 5) or another solid lead such as that from an l.e.d. (Fig. 6). It is also ideal for connecting to a screw terminal block in a straight or U-shaped form.

When it is to be soldered to a circuit board it can now be treated in a similar fashion to a component lead. However, when soldering a lead to a solder tag it has been found easier not to tin the wires, but to thread the strands through the eyelet, loop and twist tightly before soldering.
no way denies the validity of the fact that many otherwise "sad" pubs are given an enormous boost in trade by the presence of live musicians.

Then there is the touching belief that recorded music always starts on time. It does not appear to have struck Barry Fox that the mobile disco operators are also human beings with all their frailties. They are quite capable of arriving late, they are quite capable of not being able to provide what the public wants and they are quite capable of leaving behind dissatisfied customers at certain kinds of functions who wish that they had booked a band who would at least have been capable of responding with a greater flexibility to their needs.

Also, with all the sub cultures which abound in the consumption of popular music it is becoming difficult even for the mobile disco to provide just what it is that their hypothetical audience is supposed to need. The approaching middle aged swinger in his late thirties toting round his box of 60 's soul classics is hardly likely to go down a storm at the local youth club, for example.

Referring to the two apparently contradictory motions from the Central London Branch which Barry Fox quotes. In the case of the first resolution asking for a fee which takes account of extremely early arrival-let us imagine that a musician is supposed to perform, in shall we say, Sheffield. I doubt that as an exmusician even Barry Fox would think it reasonable that his/her fee would take no account whatsoever of the time taken to travel to fulfil the engagement in Sheffield assuming the musician was starting from London.

There is no inconsistency in asking for a fee which allows for the amount of time to be taken in fulfilling the engagement. Presumably even a mobile disco operator must build this time element into his fee.
But the second motion, about the ideterioration in the casual dance business is not necessarily linked to the former at
all. Because of the exigencies of the record business it is a sad fact that many excellent bands who put on tremendous live shows for the public who frequent the halls that they perform in do nowadays lack glamour and "image" through no fault of their own. This is an extremely complex problem and it is this aspect that was built into the attempt to get the problems of the band which keeps up to date with pop trends and yet still finds difficulty in touring discussed by a special working party of the Central London Branch Committee
Finally, let me say that whilst the tone of this reply might appear to be somewhat hostile, we are grateful to Barry Fox for raising some of the questions. It does seem to me however that he is unduly negative in some of his conclusions and that whilst my reply on behalf of musicians cannot, in a discussion of this kind, be the final answer, we would urge that your readers, who presumably enjoy the work of live artists as well as those trapped forever between the grooves of vinyl or on video tape, will bear them in mind.

Brian Blain,
Musician's Union,
London SW9 0JJ.

Introduction To Logic Part 6

(Sept. 81)
Page 608. Under the heading "Simiiarly", the first line should fead: " $A+$ $B+C=S$ " and not " $A+\bar{B}+\dot{C}=S^{\prime \prime}$ Page 609. Under the heading "Boolean Algebra Rules", the second line should read: " \bar{A} means NOT A " and not " A means NOT A'
Audio Compressor Mixer (Sept 81)
In Fig. 1, page 615, C8 value should be amended to read " $10 \mu \mathrm{~F}$ ".

TRIO OSCILLOSCOPES

Range of mains operated Scopes with 5 "displays. triggered sweep (UK c/p £3.50)

OUAL TRACE
CSI562A10 MHZ; 10 MV ; 1 micro sec CSI560A II $15 \mathrm{MHZ} ; 10 \mathrm{mV}: 0.5 \mathrm{micro} \mathrm{sec}$ CS1565A $20 \mathrm{MHZ} ; 5 \mathrm{mV} ; 0.5$ micro sec. CSI577A $35 \mathrm{MHZ}: 2 \mathrm{mV}$: 0.1 micro sec CS 1830 Mk II $30 \mathrm{MHZ} .2 \mathrm{mV}, 0.2$ micro sec (fitted delay line) (fitted delay line) CS1575 $5 \mathrm{MHZ}, 1 \mathrm{mV} .0 .5$ micro sec. Multi display Audio scope. $£ 312.80$ CS1820 $20 \mathrm{MHz} 2 / 5 \mathrm{mV}$. 1 micro delay sweep $\quad \mathbf{~} 483.00$ SINGLE TRACE
CSI550A $10 \mathrm{MHZ}, 10 \mathrm{mV} .1$ micro sec. $5^{\prime \prime}$ display Triggered sweep (UK c/p $\mathbf{~} 3.50$) C013030 $5 \mathrm{MHZ}, 10 \mathrm{mV}$ low sweep for abservation below 1 HZ to 450 MHZ .75 mm display (UK c/o £2.00) $£ 124.20$ Optional probes - all models.
X|£7.95 $\times 10 £ 9.45 \times 1$ - $10 £ 10.50 \times 100 £ 16.95$

MULTIMETERS

(UK c/p 65 p or $£ 1.00$ for two) CHOOSE FROM UK'S LARGEST RANGE KATIO1 10 range pocket $1 \mathrm{~K} / \mathrm{Volt}$ KATIO 12 range pocket $1 \mathrm{~K} / \mathrm{V}$ olt NH55 10 range pocket $2 \mathrm{~K} / \mathrm{Volt}$ ATI 12 range pocket Deluxe 2K/Volt ST5 11 range pocket $4 \mathrm{~K} /$ Voit NH56 22 range pocket 20K/Volt YN360TR 19 range plus He Test $20 \mathrm{~K} / \mathrm{V}$ olt ST303TR 21 range plus Hfe Test 20K/Volt KRT5001 16 range - range double $50 \mathrm{~K} / \mathrm{Volt}$ AT1020 19 range Deluxe plus Hfe Test zOK /Volt ETC5000 As KRT5001 plus colour scales $50 \mathrm{~K} /$ Volt 708118 range-range double $£ 17.95$ 708118 range - range double 10A DC 50K/Volt $£ 20.85$ TMK500 23 range. Plus 12A DC Plus Cont. Buzzer
$30 \mathrm{~K} / \mathrm{Volt}$
AT205 21 range Deluxe 10 A DC $50 \mathrm{~K} / \mathrm{Volt}$
C7080 26 range large scale 10A DC. 5 KV AC/DC 20K/Volt
$£ 22.75$ AT21023 $£ 27.50$ 360TR 23 range Large scale 10A AC/DC He I $£ 31.00$ ohm. 1 KV AC/DC $100 \mathrm{~K} / \mathrm{Volt}$

50 Meg

TRIO GENERATORS

AUDIO ANO RF MAINS OPERATED PORTABLE EQUIP. MENT (UK C/D £1.10) SG402 6 range RF $100 \mathrm{KHZ}-30 \mathrm{MHZ} \pm 1.5$. INT/EXT MDD. 100 mV o/p Variable
 £68.00 AG202A Matching 4 range Audio. 20 Hz 200 KHZ Sine Square. Distortion 0.5-1\% variable old to 10 V

CLAMP-ON-METERS INSULATION TESTERS

Multi-range clamps all with resistance range, carry case \& teads. Also digital and DC clamp in stock (UK c/p75p) ST300 300A 600 V g ranges $£ 25.95$ ST310300A 600 V 9 ranges $£$ K2602 150A , 600V. AC 7 ranges $£ 35.95$ - K2606 300A, 600 V . AC 8 ranges $£ 44.00$ $\mathrm{K} 2803300 \mathrm{~A}, 600 \mathrm{~V}$. AC 9 ranges $£ 53.95$ K2903 900A. 750 V . AC 9 ranges $£ 77.50$ K 2103 1000A. 750 V . AC 9 ranges $£ 95.00$ "Optional temperature probe $£ 13.80$ ELECTRONIC INSULATION TESTEAS Battery oper ated complete with carry case (UK c/p f1.00)
YF500 $500 \mathrm{~V} / 100 \mathrm{Meg}$. Plus $0-100 \mathrm{hm}$
K $3103600 \mathrm{~V} / 100 \mathrm{Meg}$ Plus 0.26 K 5.00 $\mathrm{K} 3106500 \mathrm{~V} \& 1000 \mathrm{~V}, 1000 \& 2000 \mathrm{M} .00$ $\mathrm{K} 3106500 \mathrm{~V} \& 1000 \mathrm{~V}, 1000 \& 2000 \mathrm{Meg}$. $k 4101$ Earth resistance tester $£ 136.50$ M500 Hand cranked insulation tester $500 \mathrm{~V} / 100 \mathrm{Meg}$.

THANDAR - SINCLAIR

Reliable low cost portable instruments, bench models all $25.5 \times 15 \times 5 \mathrm{~cm}$. Generators mains operated rest battery (supplied). UK c/p Hand models 65 p. bench £1.15)
OIGITAL MULTIMETEAS ($31 / 2$ digit LCD)
TM354 Hand held. DC 2 A .2 m ohm. $1 \mathrm{mV}-1000 \mathrm{~V}$ DC. 500 v AC
TM352 Hand held. OC 10A, Hfe test. Continulty test
TM353 Bench, 2 A AC/DC. 1000 V AC/DC. 20 M ohm
Typical 0.25\%

TM35I Bench, 10 A AC/DC. 1000 V AC/DC. 20 M ohm Typical 0.1% NEW LOW PRICE
¢96.60

FREQUENCY COUMTERS 18 Oigit
PFM200A Hand held LED 200 MHZ . $10 \mathrm{mV}(600 \mathrm{MHZ}$ with TP600).
$\begin{array}{r} \\ 667.50 \\ \hline 12.50\end{array}$
TF040 Bench (CD. 40 MHZ .40 mV (400 MHZ with TP600) £ 126.50
TF 200 Bench LCD. 200 MHZ . $10-30 \mathrm{mV}$ (600 MHZ with (TP600)
TP600 $600 \mathrm{MHZ}+10$ Prescaler 10 mV £166.75

GEMERATORS (All bench models) mains operated
TG100 Function. 1 HZ -100 KHZ. Sine/SO/Triangle/TTL $£ 90.85$ TG102 Function. $0.2 \mathrm{HZ}-2 \mathrm{MHZ}$. Sine/SO/Trangle/TTL £166.75 TGI 05 Pulse. $5 \mathrm{MHZ}-5 \mathrm{HZ}$ ($200 \mathrm{nS}-200 \mathrm{mS}$) various outputs $£ 97.75$ OSCILLOSCOPE (Bench model low power portable)
$10 \mathrm{MHZ} 2^{\prime \prime}$ trace. 10 mV .0 .1 micro sec. All facilities Model SC110
£159.85
(Rechargable battery pack £8.63. AC adaptor/charger $\mathbf{£ 5} .69$ OPTIOMAL ITEMS
Carry case (bench only) £6.84 AC Adaptors (state model) $\mathbf{E 5} 69$

CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated. Plus special features (UK c/p $£ 3.00$)

3030 Single trace $15 \mathrm{MHZ} .5 \mathrm{mV}, 0.5$ micro secs. Plus built in component tester, 95 mm tube 35 MHZ 5 mV 0.5 micri £ 1 130 mmal trace 15 MHZ . 1 rig to 35 MHZ . 5 w. 0.5 micro sec. $£ 264.50$ 3034 Battery-mains dual trace 15 MHZ . trig to 20 MHZ .
built in Nicads, $5 \mathrm{mV}, 0.5$ micro secs (Eliminator Charger optional $£ 28.75$)

Also Available 3033, single trace 3034
3035.130 mm 3030
3035.130 mm
3337 dual $30 \mathrm{MHZ} \quad 130 \mathrm{~mm}$
(Optional Probes all models - see Trio above)
£356.50
£293.25
£189.75
$£ 408.25$

LOGIC PROBE

(UK c/p 45p)
Leader LDP076 50 MHZ . 10MEG ohm. 10 n Sec with carry case

DIRECT READ HV PROBE
(UK c/p 65p)
'0/40KV: 20 K Volt $£ 18.40$

OSCILLOSCOPE PROBE KITS

(UK c/p 50 p per 1 to 3) Available BNC Dlug or Banana $\times 1 £ 7.95 \times 10 £ 9.45$ $\times 1 \times 10 £ 10.50$ Also X100 (BNC only) $£ 16.95$

PROFESSIONAL MULTIMETERS

(UK $\mathrm{C} / \mathrm{D} £ 1.50$) All featuring $\mathrm{AC} / \mathrm{DC}$ Volts/Current \& Ohms ranges.
m1500 43 range $20 \mathrm{~K} / \mathrm{Volt}$: AC/DC 10A 53.50 M1500 43 range $20 \mathrm{~K} / \mathrm{Volt}$: $\mathrm{AC} / \mathrm{DC} 10 \mathrm{~A}$
M1200 30 range $100 \mathrm{~K} / \mathrm{Volt}$: $\mathrm{AC} / 0 \mathrm{C} 15 \mathrm{~A} 200 \mathrm{Meg}$ ohm. £67.50 K1400 26 range large scale $20 \mathrm{~K} /$ Volt: $10 \mathrm{~A} A C / D C$ 20 Meg ohm: 5 kV AC/DC
K200 39 range 10 Meg ohm input. $25 \mathrm{HZ} \cdot 1 \mathrm{MHZ} \xlongequal{£ 79.95}$ OPTIONS Cases: M $1500 \& 1200$ £ 16.50 K 1400 . 295.0 Temperature Probe for K 1400 £ 13.80
thurlby DIGITAL MULTIMETER

43/4 Digit. 0.05\% 7 Function LCD
Made to exacting standards in UK
30 ranges: 1200 V DC, 750 V AC, 10A AC/DC, 32 Meg ohm. Also includes frequency measurement to 4 MHZ and 4 KHZ output. Price is with batteries, test leads and mains adaptor (optional carry case £20.45)

CALLERS WILL ALWAYS FIND A RANGE OF LOW COST TEST EOUIPMENT, ACCESSORIES. TOOLS. IRONS AND BOARDS IN STOCK. ALSO SPECIAL OFFERS FOR CERTAIN EOUIPMENT WHICH WILL VARY FROM TIME TO TIME
PRICE CORRECT AT TIME OF PREPARATION E \& OE. ALL PRICES INCLUDE VAT
CHOOSE FROM UK's LARGEST RANGE
£171.00
UK c/D $£ 1.00$
 AC/DC, 32 Meg ohm
and 4 KHZ output.
$£ 1$

Sarge SAE Schools UK)
Schools, Companies,
etc. free on request.

The Low Cost Eurocard Size Microboard

Fully Compatible with indirect connectorsl please and Card Frames to the latest international specifications.

Accepts any Integrated circuit package allows high packing density.

Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.

\qquad

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829 My Access/Barclay No. is:

BATTERIES BOXES BOARDS CAPACITORS RESISTORS CONNECTORS CABLES COAX FLAT RIBBON POTS SWITCHES RELAYS CMOS TTL LS TTL MEMORIES SUPPORT CHIPS LINEAR OP AMPS COMPARA TORS A.D D.A OPTO LEDS DISPLAYS LCD'S TRANSISTORS THYRISTORS TRIACS DIODES BRIDGES METERS ZENERS SOLDERING IRONS IC SOCKETS

FROM A NEW COMPANY WITH NEW

 IDEAS
SOMETHING SPECIAL

AIRWAVES ELECTRONICS INVITE YOU TO OPEN YOUR OWN PERSONAL ACCOUNT.

THERE COULDN'T BE AN EASIER WAY TO BUY COMPONENTS, ONCE YOU HAVE OPENED YOUR ACCOUNT, JUST PHONE OR WRITE YOUR ORDER THROUGH, STATING YOUR ACCOUNT NUMBER TOGETHER WITH YOUR OWN SECURITY CODE NUMBER AND GOODS WILL BE DESPATCHED SAME DAY AND YOUR ACCOUNT DEBITED WITH THE COSTS.

MAYBE YOUR THINKING-YOU'LL HAVE TO PAY OVER THE ODDS FOR THIS, BUT YOU WILL BE WRONG, ACCOUNT CUSTOMERS WILL RECEIVE OUR PRODUCT PACKED CATALOGUE SHOWING VAT inclusive prices, which we believe TO BE VERY COMPETITIVE. AFTER ALL YOU'RE THE BEST JUDGE AND WE DO OFFER SOMETHING SPECIAL.

IF YOU WOULD LIKE TO OPEN YOUR ACCOUNT, THEN PLEASE CONTACT US FOR APPLICATION DETAILS ENCLOSING JUST A STAMP TO COVER POSTAGE.

at BREADBOARD '81

". . twenty inexpensive kits . . . a welcome step . . ." (ELECTRONICS \& M.M. Mag.)
"...assembly instructions are just about idiot-proof." (HOBBY ELECTRONICS Mag.)
". . good value for money . . . most helpful . . ." (EVERYDAY ELECTRONICS Mag.)

See the 20 different kits on

MARSHALLS stand

at Breadboard '81 exhibition
Prices only from $£ 3$ to $£ 5$ per complete kit.
E.G. No. 4 Organ £3.50, No. 6 Burglar Alarm £4.00, No. 18 2-Way Interphone $£ 5 \cdot 00$, No. 19 4-Transistor Radio $£ 5 \cdot 00$, etc. (all plus 50 p each if ordered by post).
or 23p to DEPT. EECS Electroni-K it
Ltd. for full colour illustrated literature.

ELECTRONI-KIT LTD.
 388 ST. JOHN STREET
 LONDON, EC1V 4NN (01-278 0109)

CORCOOTS EBSCHANGES

REACTION TIMER

This reaction timer indicates the players reaction time on a "nonrelated" scale. It does not show it in an actual time of a division of a second but simply on a comparing basis.
When switched on via $S 2$, the machine will be automatically reset and the player must watch the decimal point closely, finger on SI. When the decimal point lights S1 must be pressed quickly to stop the clock which is clocking round. The lower the score shown the better. When the player takes his hand off the button it automatically resets and is ready for the next go.
There are three main stages: The delay pulse generator, IC2 and IC1b; the counter, ICla and IC3; and the decoder and display, IC4 and ICS.
The delay pulse generator creates a brief pulse with S1 closed because of the simple Schmitt oscillator. This is inverted by IC2a and pin 8 on IC2c goes low, so the signal light comes on
and C4 begins to discharge through VR2 which, when the voltage is low enough, enables IC3 allowing ICl to clock. This runs at 50 Hz , depending on the setting of VR1.

Diode D1 alters the freqency or mark/space ratio of the Schmitt oscillator output. It was found that without D1 the oscillator was too fast and I found I could never get a reaction time below aine.

If the button S1 is not pressed it will clock to 10 (binary 1010) and make pin 11 of 1 C 2 go low, resetting the latch for another go.

If during the clocking period S1 is pressed, pin 9 of ICl will go low and stop the oscillator, leaving whatever number on the display still there.

Gate IC2a is there to inhibit pulses from IClb when Sl is open, for this could set off the latch. Diode D2 is used to drop the 6 V down to about $5 \cdot 4 \mathrm{~V}$ to make it usable for TTL. Capacitor Cl must be used and kept close to all the integrated circuits.

Potentiometer VR2 adjusts the delay and VR1 the speed of the clock. It should be set so an average time is 5 or 6.
J. Williams, Haddenham, Bucks.

HAZARD WARNING FLASHERS

LOGIC PROBE

I have devised a simple logic probe for use with cmos i.c.s.

If the input goes high (logic 1), the transistor is turned on and the red l.e.d. lights up. When the input is low (logic 0) the green l.e.d. will illuminate.

If a pulse brain signal is present at the input, then both the red and green l.e.d. will light up but at a reduced brightness due to them being pulsed on and off very rapidly.

The power can be taken directly from the circuit under test.

Andrew Evans,
Chorley,
Lancashire.

This design for hazard warning flashers, which I have successfully used on my own car, is based on a 555 timer i.c. wired as an astable multivibrator.

The external timing components have been chosen so as to provide the correct flash rate.

The collectors of the two TIP2955 transistors are connected directly to the direction indicator lamps and will cause no interference with the normal working of these indicators. These two transistors must be mounted on heatsinks.
K. P. Smith,

Eye,
Peterborough.
and switches. This is provided, of course, that they add useful flexibility and the range of adjustment is actually needed to achieve optimum performance.
It is another matter when it comes to producing electronic equipment for the public or for those whose speciality lies in some other field. For these the two prime requisites should be reliability and ease of operation.
Designs need to be "granny-proof' as the saying goes, though in practice the the age at which one begins to find it increasingly difficult to come to grips with complex controls can be as low as 30-35 years old. The Rubik cube fascinates the young but often appals the old!
Recently one of the doyens among newspaper columnists, James Cameron, wrote: "For a year we have had a new style gramophone-or radiophonic music master or whatever it is called-but I have never turned it on for the adequate reason that I do not know how to make it work. My grandchildren get it going with a flick of a switch, but not I. For me it remains contemptuously mute staring back with its arrogant toothy face".

One manufacturer is said to have coined a new word "technifear" to describe consumer resistance to high-technology products. The firm is convinced that there are many people, not all of them grandmothers or grandfathers by any means, who refuse to use the latest consumer products because they are terrified by all the knobs, sliders and other controls that are so very different from a simple on/off switch.
I have met people who are convinced that many listeners still stick to mediumwave AM radio, despite the interference and poor frequency range. This is usually because they find telescopic aerials and the tuning too "fiddly", especially compared with the push-button or touch controls of modern television sets.

Clear instructions

Where products have lots of knobs and dials they should also have very clear instructions to go with them, preferably for all those who will use the product in the home. Also the sales staff really should be prepared to explain and demonstrate exactly how to get the best results.

A somewhat similar requirement for easier to use and more practical equipment has been expressed recently by Lee Lewis of Hammersmith Hospital who has suggested that "medical electronics is one, area where technology goes beserk". One of the things he does not want is touch controls on bedside equipment: "In a hospital it is too easy to push the wrong one; we can't see if they are in or out, and the patient can touch them by mistake"
He also dislikes some of the complex displays, loads of switches, bells and buzzers, and excess of knobs. On the other hand a few extra sockets to allow machines to be interconnected would not come amiss.

What it really amounts to is that electronic designers should always keep in mind those who will use the equipment. They should give equipment what amateurs call "operability" that can vary all the way from a battery of knobs for those who can use them to good advantage to little more than an on/off switch for others!

MULLARD UNILEX
A moins operated $4+4$ stere
system. Rated one of the
finest performers in the
stereo fleld this would
make a wonderful gift for
almost anyone. In easy to assemble
modular form this should sell at about $£ 30$

- but due to a spectal bulk buy and as an in-
centive for you to buy this month we offer the sys.
centive for vou to buy this month we offer the sys-
tem complete at only $£ 16.75$ including VAT and post FREE GIFT - buy this month and vou will receive a palr of

DELAY SWITCH
Mains operated - delay can be accurately
set with pointers knob for periods of up
amps - second contact opens a tew min.
utes after 1st contact. £1.95.

LEVEL METER
Size approximately ${ }^{7 / 4}$ " square, scaled signa and power but cover easity removable for
rescating. Sensitivity 200 uA. 75 p .
$1 / 2$ PRICE CABLES! Flat P.V.C. covered mains cables - for lighting and power instalations.

SIZE	TYPE	100 Mires	CARRIA
1.5 mm	Single	£ 3.95	
1.5 mm	Flat twin	£ 6.50	£2.50
1.5 mm	Flat three core \& E	ع 9.85	¢3.00
6 mm	Single	¢ 7.50	¢2. 50
4 mm	Flat iwim	£11.50	£3. 50
6 mm	Flap three core	£34.50	E4.5
16 mm	Twin \& E	¢65 + ¢9.75	¢10.

INSTRUMENT BOX WITH KEY
Very strongly made fily-wood sides with hard board top and bottoml. This is black grained effect, vinyl covered, very pleasing appearance. Internal dimensions $122_{2} "$ long, $44 /{ }^{\prime \prime}$ wide, $6^{\prime \prime}$ deep.
Ideal for carry ing your multi range meter and small tools and for ${ }^{2}$ deeaping them in a safe place. $£ 2.30$. Post pald if ordered with other goods, orherwise $£ 1.00$.

COMPUTER KEY SWITCHES (make your own kevboard) These are for making up on a p.c.b. and consist of a vertical mount passes over it. The magnet is located in
the plastic plunger which in turn is the plastic plunger which in turn is
depressed by a push rod, to which the legended top is
fixed. These are made . These are made up in banks of
6 , price $£ 2.30$ ${ }^{\text {6. Price }}$ per benk of 6 per bank of 6
(including tops)

OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can start car off mains or bring your battery up to full charge in a couple of
hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage, whichever suits you best. Price $£ 11.50+£ 2.50$ post.
GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring
only $5 \mathrm{~K} / \mathrm{in} \times 31 / \mathrm{in} \times 1 / \mathrm{in}$ is an extremely high gain (70 dB) solid state amplifier designed for use as a signal tracer on GPO cabies, etc.
With a radio it functions very well as a With a radio it functions very well as a signal tracer. By connecting a simple coil to the input socket a useful mains cable tracer can be
made. Runs on standard $41 / 2 v$ battery and has input, output sockets and on-off volume çontrol, mounted flush on the top. Many other uses include general'purpose amp, cueing amp, etc. An absolute bargain at only .f1.85. Suitable B0ohm earpiece 69p.

MINI MONO AMP on p.c.b., size 4 for a tone control should you require it. The amplifier has three transistors and we estimate More technical data will b included with the amplifier. Brand new, perfect condition,
offered at the very tow price offered at the very tow price o
$£ 1,95$ each, or 10 for $£ 10.00$.

12V FLUORESCENT LIGHTING
For camping - car repalring - emergeny lighting trom a 12 v battery you can't beat
lighting. It will offer plenty of well distribured light and is economical. We offer an inverter
for $21 " 13$ watı or $21^{\prime \prime} 13$ watt ent tube. $£ 3.45$. (tube not supplied

SONY HI-FI SPEAKER CABINETS
Made for an expensive hr. Fi outfit - will suit any decor. Resonance $21 /{ }^{\prime \prime}$ " weeter. The front is thick and stuck in after the speakers are fitted and the completed unit is most pleasing. Colour teak Supplied in pairs, price £6.90 per pair (this is probably less than the original cost of one cab

TANGENTIAL BLOW HEATER
2.5 Kww quiet,
efficient instant heating from 230/240 volt mains. Kit cons
of blower as

illustrated, 2.5 Kw .

MOTORISED DISCO SWITCH With 10 amp changeover switches. Multi-
adjustable switches all rated at 10 amps, this would provide a magnificent display. For mains operated 8 switch model E6.25, 10 switch model $\mathbf{E 6 . 7 5}$, 12 switch

3 CHANNEL SOUND TO LIGHT KIT
parts for a
three-channel sound to light ing controilwatts of light. ing. Use this
at home if
 ou wish but
is plenty rugged enough for disco work. The unit is housed in an at tractive two-tore metgl case and has controls for each channei, and a master on/off. The audio input and output are by $1 / 4$
sockets and three panel mounting fuse holders provide thyristor sockets and three panel mounting fuse holders provide thyristor ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 25.00$ assembled and tested.

THIS MONTH'S SNIP

COMPUTER PRINTER FOR ONLY £4.95

Japanese made Epson 310 - has a self starting. brushless, transistorised dc . motor to drive the print hamm
feed.
Complete in module form with electronics including Printer Synchro Signal Amplifier \& Printer Reset Signal Amplifier. Brand new and with technical and practical data $£ 4.95$ pos
Data separately for $£ 1.00$.

EXTRACTOR FANS - Mains Voltage Ex-computer, made by Woods of Colchester ideal as blower; central heating
systems, fume extraction etc. Easy fixing through panel, very powertul $2,500 \mathrm{rpm}$ but quiet running. Choice of 2 sizes,
$5^{\prime \prime} £ 5.50 .6^{\prime \prime} £ 6.50$. post $£ 1$ per fan.

100UA PANEL METER Japanese made (Shimohara Electrical) so very good quality, these have a full vision front, are approx. $2^{\text {" }}$ square and come
complete with mounting studs and nuts complete with mounting studs and nuts. A
thoroughly reliable instrument usually retthoroughly reliable instrument usualiy re
ailed at over $£ 4$, offered at a snip price this month of $£ \mathbf{2} .85$ or 10 for $£ 25.00$.
12v MOTOR BY SMITHS Made for use in cars, these are series wound and they become more powerul as load increases. Size $31 /{ }^{\text {" }}$ long
by $3^{\prime \prime}$ dia. These have a good length of $\%$ " dia. These have a goo Ditto, but double ended £4.25.

EXTRA POWERFUL 12 v MOTOR

Made to work battery lawmower, this probably develops up to 1/h.p., so it could be used to power a go-kart or to drive a compressor, etc. etc. $£ 6.90+£ 1.50$ post.
MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored scale. 11 instant range measures: DC volts $10,50,250,1000$. AC volts $10,50,250,1000$.
AC volts $10,50,250,1000$. DC amps $0=100 \mathrm{~mA}$.
Continuity and resistance $0-1$ meg ohrns in
two ranges. Complete with rest prods and intwo ranges. Complete with test prods and in-
struction book showing how to measure capactity and inductance as well. Unbelievable value at only $\mathbf{5 6 . 7 5 + 5 0 p}$ post and insurance

FREE Amps range kit to enble you to read DC current from 0. 10 amps, directly on the 0-10 scale. It's free if you
purchase quickly, but of you alread own a Mini-Tester and would like own a send $£ 2.50$.
on

FREE

 OUR CURRENT BARGAIN LIST WILLBE ENCLOSED WITH ALL ORDERS. TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be made in a matchbox-all electronic RADIO MIKE
Ideal for discos and garden parties, allows complete treedom of
 FM RECEIVER
Made up and working, complete with scale and pointer needs only
a speaker, ideal for use with our surveillance transmitter or radio a speaker, ide
mike. $£ 5.85$.

CB RADIO -

Listen in with our 40 -channel monitor. Unique design ensures that you do not miss sender or cal
and instructions only $£ 5.99$.

NEW ADDRESS FOR CALLERS:2, Bentham Road, Off Elm Grove, Brighton Telephone: Brighton 671457. Please phone before calling for anything special.

VENNER TIME SWITCH

Mains operated with 20 amp switch, on on and one off per 24 hrs. repeats daily automatically correcting for the lengthen
ing, or shortening day. An expensive time switch but you can have it for only $£ 2.95$
sime These are new but without case, but we
can supply plastic cases (base and cover) can supply plastic cases (bsse and cover) Also available is adaptor kit to convert this into enormal 24 hr , time switch bu with the added advantage of up to 12 on . offs per 24 hrs . This makes an ideal con-
roller for the immersion heater. Price of troller for the immersion heater. Price of

STEREO HEADPHONES Japanese made so very good qual
8 ohm impedance. padded, term8 ohin impedance. pad
inating with standard
plug. E2.99 Post 60p.

TIME SWITCH BARGAIN
Large clear mains frequency controlled clock, which will always show you the
correct time + start and stop switches with the dials. Comes complete with knobs
$£ 2.50$.

SAFE BLOCK

Mains quick connector will save you valuable time. Features include quick spring connectors, heavy plastic case and auto on and off 1.95

6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 metres. Based on clrcuit which appeared in a recent issue of Radio Constructor. Complete kit inors, inductors, switches, etc. Nothing else to buy if you have an amplifier to connect it to or a pair of high resistance headphones. Price £11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ \mathbf{f} .30$. Crystal earpiece 65p. High reslstance headphones (gives best results) E3.75. Kit includes chassis and front but not case
RADIO STETHOSCOPE
Easy to fault find - start at the arial and work towards the speaker
INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a
steady beam of infra-red or. ordinary light is broken. Main comp ents - relay, photo transistor, resistors and caps etc. Circuit diagram but no case. Price $£ 2.30$
MUGGER DETERRENT
A high-note bleeper, push latching swirch, plastic case and battery connector. Will scare a way any villain and bring help. $£ 2.50$ complete kit.

For models, Meccanos, drills, remote control planes, boats etc. $\mathbf{2} \mathbf{2} .50$ WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on a fibre glass
coif and then covered with p.v.c. Dozens of uses - around water pipes, under grow boxes in gloves and socks. $£ \mathbf{~} \mathbf{2} 50$ for 10 metres. COMPONENT BOARD Ref. WOg98"
This is a modern fibreglass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes and rectifiers including 43 amp 400 v types (made up in a bridge) 8 trans istors type 8C107 and 2 type BFY-51 electrolytic condensers.
SCR ref $2 \mathrm{~N} 5062,250 \mathrm{u}$ 100v DC and 100 uf 25 V DC and over 100 SCR ref 2N 5062, 250uf 100v DC and 100 ut 25 V DC and over 100
other parts including variable, fixed and wire wound resistors, other parts including variable, fixed and wire wound resistors
electrolytic and other condensers. A real snip at $£ 1.15$.

FRUIT MACHINE HEART. 3 wheels with all fruits, motgrised and with solenoids for stopping the wheels with a little innenuity you can defy your friends getting the "jackpot". £9.95. + £4 carriage. 4-CORE FLEX CABLE
White pvc for telephone extensions, disco lights, etc. 10 metres E2, White puc for
100 metres $£ 15$. Other muticore cable in stock.

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under $£ 10.00$, add 60 p service charge. Monthly account orders accepted from schools and public companies ACCESS \& BARCLAYCARD orders phone Haywards Heath (0444) 54563. CALLERS: to Haywards Heath or 2, Bentham Road, Off Eim Grove, Brighton BULK ORDERS: Please write for special quotation.

-JF:ATE $: 4$ BCADIS

HESISTABLE
 RESISTOR BARGAINS"

Pal No. Pat ${ }^{\circ}$ Description Price $\begin{array}{llll}\text { Sx10 } & 400 & \text { Mixed "All Type" Resistors } \\ \text { Sx11 } & 400 & \text { Pre-formed }\end{array}$ Sxil 400 Pre-formed \%-1/2 watt Carbon $\begin{array}{lll}5 \times 12 & 200 & \text { to watt Carbon Resistors }\end{array}$ $\begin{array}{llll}\mathrm{SX13} & 200 & \text { y watt Carbon Resistors } & \mathrm{El} \\ \mathrm{SX14} & 150 & 1 / 2 \text { watt Resistors } 22 \text { ohm. }\end{array}$ Sx15 $\quad 100 \quad 1$ and 2 watt Resistois 22 ohm. 2 m 2 Mixed
Paks $5 \times 12-15$ contain a range of Catherimell of assorted ralues from 22 ohms to 22 mm me.esiston pounds on these resistor paks and have a full range to Cover your projects.
"Quantities approximate, count by weight
"CAPABLE
CAPACITOR PAKS"

$5 \times 16 \quad 250 \quad$ Capacitors Mixed Types Price
C1 $\begin{array}{lll}\text { SX16 } & 250 & \text { Capacitors Mixed Types } \\ \text { SX17 } & 200 & \text { Ceramic Capacitors Miniatute }\end{array}$ Mixed
$\begin{array}{lll}\text { Sx18 } \\ \text { Sx14 } & 100 & \text { Mixed Ceramics 22pl-390pf } \\ \text { E1 }\end{array}$ $\begin{array}{lll}5 \times 19 & 100 & \text { Mixed Ceramics } 470 \mathrm{pt} .047 \mathrm{ut} \\ 5 \times 29 & 100 & \text { Assoted Polyester Po }\end{array}$ Sxin 100 Assorted Polyester/Polystyrene SX21 60 Mixed C280 type capacitors Mixed C280
metal foil
$5 \times 22 \quad 100 \quad$ Electrolytics, all sorts $5 \times 23 \quad 50 \quad$ Quality Electrolytics 50.100 mfd .

Sx24 20 Tantalum Beads. mixed [1 ${ }^{\circ}$ Quantities approximate. count by weight:

AUDIO PLUGS, SOCKETS

 AND ACCESSORIES25 pieces of Audio Plugs, Sockets and Conne Speakers. Phono din $180^{\circ} \cdot 240^{\circ}$. Inline 3-6 Pin. at well over £ $\mathbf{3}$ normal. Order No. $\$ \times 25$. Our Price £1.50 per pak. Guaranteed to save you money.

SK26 3 Prs of 6 pin 240° DIN Plugs and Chassis Sockets.
$\mathbf{\$ k 2 7}!\times$ Right Angle Stereo lack Plug 6.3 mm plus matching metal chassis mounting socket. Sx28 4 Phono plugs and 2 dual phono connectors $\mathbf{S} \times 291 \times 2.5 \mathrm{~mm}$ Plug to 3.5 mm Socket adaptor S $\times 301 \times 3.5 \mathrm{~mm}$ Plug to 2.5 mm Socket adapto $\$ \times 311 \times 3.5 \mathrm{~mm}$ Plug to Phono Socket adaptor

SK32 $1 \times$ Standard Jack Plug to Phono Socket SK33 : $1 \times$ Toggje Switch SPST Minature. $125 \times 10 \mathrm{~A}$.
 SX35 I \times Rocker Switch SPDT Miniature. 240w 5A Sx36. 1 Rught Angle Mono lack Plug.
SX37 20 preces. $1.2 \& 4 \mathrm{~mm}$ plugs and sockets
(Banana) Matching colouts and sizes
SK50 10 Assorted Switches Toggle, Slide. Roclee Push button.

E1FREE ${ }_{\text {pax }}$

Satistaction or your money Da
has always been BI.PAK's GUARANIEE and it still is All these Jale tems are in stock in quantity and we will despatch the same day as your order is received
sxa0 250 Silicon Diodes-Swithing lime INa 148 DO-35. All good-uncoded. Worth double our price. $45 \mathrm{v} / 5 \mathrm{~mA}$
§1.25
Sx41 250 Silicon Diodes-General Purpose, like 0A200/202. BAX13/16. Uncoded $30-100 \mathrm{v} 200 \mathrm{~mA}$ DO-7
\qquad
SX44 10 5A SCR's T064. $3 \times 50 \mathrm{Y} .3 \times 100 \mathrm{P} 2 \mathrm{x}$ $200 v .2 \times 400 v$. Super value less than
$5 \times 45105 \mathrm{~S}$ SCR's TO66. $2 \times 50 \mathrm{v} .2 \times 100 \mathrm{v} .4$ 200v. $2 \times 400 \mathrm{v}$. All coded. Brand new. a

BARGAINS
205 small 125 Red LED's $5 \times 43 \quad 10$ Rectangular Ger Diodes SX46 30 Assorted Zener 230 moded New.
ail Brack instrument
5×474 Black instrume with pointer te
knobs-w sciew. Fit size $29 x$
20 mm . St
${ }^{5}$ Chrome knobs. standaid push fit. 15 mm . 20 Assorted Suder Knobs.

A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR's Iriacs. IC's both Logic and Linear plus Opto's all of which are current everyday usable devices. which are current everyday usable devices.
Guaranteed Value over S 10 at Normal Retail Price
SEMICONDUCTORS FROM AROUND THE WORLD

ع4.00 every pak
Order No. 5×56

BI-PAK'S OPTO BARGAIN OF THE YEAR!

Valued at over \{10-Normal Retail-we offer rou a pach of 25 Opto devices to include LED's Large and Small in Red, Green, Yellow and Clear. 1 Segment Displays both Common Cathode and Common Anoo PLUS bubble type displays-like DL.33. Photo Transistors-simil
OCP71 Pheto Detectors-like MEL11-12. This whole pack of 25 2

ANO we guarantee your money bach ii you are not completely satisfied. FULL data etc included.

Order No, \$X5 7.

MORE BARGAINS! STILL MORE!
 Sxsl GE BARGAINS!

Mre single and Stranderder Mook.ved
5 $\times 58$ 25 Assorted
Series. 7401.7460 Gates 7400
SX59 10 Assorted 7460
ITL Asorted flip Fiops and MSi
20 Assorted Stider
-2×6125 Assorted Pors
SX62 Rotary, Dual, ete 40 Atiometers.
$\mathbf{S K} 6240$ Assorted Pic
etc.

SLIDER POTENTIOMETERS
 iastic 40 mm Travel Mono $5 \times 635 \times 470$ ohms $\operatorname{lin} 5 \times 675 \times 47 \mathrm{kLin}$ S $6665 \times 22 \mathrm{k}$ L08 5x71 50 8C108 "Fanout Youtest spec onvoltsor gain. Movtest clad Board. Fible x72 A mixed bundle or single and double sided. A glass and pargain

IC SOCKETS
The lowest price ever.
The more you buy he chapatng come
Pin. 10 off 50 off 100 off

75p	$£ 3.00$	c5
30p	$£ 3.25$	$£ 5.50$
80 p	$£ 3.25$	$£ 5.50$

 Quilled

a El FREE PACK Ordes over ©10 excluding VYT. Choose E. Pack free (or 2×50 op add it to your order and save even more money. This offer only applies to

This offer only applies to this a dvertisement

6 Black Heatsink will fit T0-3 and T0.220. Ready diflled. Hall price value.
SX53 I Power finned Heatsink. This heatsinh gives the greatest possibie heat dissication in the smallest space owing to its unique staggered fin design. pre difiled.
10.3 Sure 45 mm squarex 20 mm high. 40 p 5x54 10.66 size $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$ 5X55 1 Heat Efficiency Power Finned Heatsinh $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Drilled to take up to $4 x$ 10.3 devices 1.50 each 5

5 watt (RMS) Audio Amp

righ Quality audio amplifier Module. Ideal bor use record players, tape recorders, stereo amps and cassette players. etc. Full data and bach-up dragrams with each module.
Specilication

- Power Outpul 5 watis RMS - Load Impedance 8.1 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ Sensituvity 70 mv for full output \bullet Input Impedance 50k ohms - Sue $85 \times 64 \times 30 \mathrm{~mm}$ - Total Hamonic distortion less than 5%
22.25

You could not Build one

EI-PAK's COMPLETELYNEW CATALOGUE

Completely re-designed. Full of the type of components you require, plus some very interesting ones you will soon be using and of course. the largest range of semiconductors for the Amateur and Protessional you could hope to find.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solnd facts i.e. price, description and individual teatures of what we have available. But remember. Bi-Pah's policy has atways been to sell quality components at competitive prices and THAT WE STILL DO.
BI-PAK'S COMPLETELY MEW CATALOGUE is now available to you Yous will be amazed how much you can save when you shop for Electronic Components with a Bi.Pak Catalogue. Have one by you all the time-it pays to buy BI-PAK
To receive your copy send $\mathbf{7 5 p}$ plus 25p p\&p.

Sx38 100 Sticon NPN Fransistors-all pertect Coded mixed types with data and equt. sheet. No refects, Real value. $\quad[2.50$
\$x39 100 Silicon PNP Iransistors-all perfect. Coded mixed trpes with data and eavt. sheet. No rejects. Fantastic value. $\mathbf{£ 2 . 5 0}$

MULLARD. ASZ 17 PNP
Germ TD-3 Powet Trans
60 VCO AA.
Poss Replacement for
32 VCE JOW AD130/131/140/149 DC25/26/28/35 2N3613/14/
G:eat Value at 65 peach or 2 for I 1 .

Use pour creatic axd Rime us on Wae 3182 Now and cest rovi roder emen taxiti Coods nomaly sent 2 nd Cliss Mat.
Remember pou must add VTI at 15% to pour order
Totbl. Pastaje add 50p pei Iotal orde'

Questions \& Answers on Electronics

Second Edition by lan Hickman

\star What is feedback, and how is it used? \star Why is decoupling necessary? \star How is a square wave produced?
Using a question and answer approach this book provides a condensed account of a wide-ranging subject, intended to give the interested layman and the student an insight into the underlying principles and numerous applications of electronics.

0408005785160 pages

ORDER NOW - from your local bookseller
Write for full details of all our books or
in case of difficulty send cash with order to Patricia Davies, Marketing Manager at the address given

Also of interest...
 Questions and Answers on Integrated Circuits Second Edition R G Hibberd $0408004665 \quad 1 \cdot 2$ pages

Questions and Answers on Transistors
Fourth Edition lan R Sinclair 0408004851 112 pages
Each book in the series measures
$165 \times 111 \mathrm{~mm}$ is illustrated, Paperback and priced at £1.95
\mathbb{N} Vewnes Technical Books
A division of Butterwarths

GIECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to give the best performance and economy. Bring YOUR CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the
advantages of the best capacitive discharge ignitions;
\star Peak Performance-higher output voltage.
\star Improved Economy-consistent high ignition performance.
丸 Better Starting-full spark power even with low battery.

* Accurate Performance-immune to wear without contactless' errors
$\stackrel{\star}{\mathrm{A}} \mathrm{Sm}$
SUPER HIGH POWER SPARK- $3 \frac{1}{2}$ times the energy of ordinary C.D. systems.
OPTIMUM SPARK DURATION一to get the very best performance and DESTONomy with today's lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'ultimate insurance' of a changeover switch to revert instantly to standard ignition.
TECHNICAL DETAILS
HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even battery down to 4 yolts.
SUPERB DISCHARGE CIRCUIT. A brand new technique prevents energ) being reflected back to the storage capacitor, giving $3 \frac{1}{2}$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power output polarity, thereby preventing unnecessary stress on the H.T. system.
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact open ing is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level-just sufficient to keep the contacts clean.
IN MONEY-SAVING KIT FORM at $\mathbf{\$ 1 4 . 8 5}$
ALSO MOTORCYCLE TWIN OUTPUT KIT E22.94 Plus El U.K. P.\&P All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-to-follow instructions.

FITS ALL $6 / 12$ volt NEGATIVE EARTH vehicles ELECTRONIZE DESIGN
Magnus Road, Wilnecote,
Tamworth. B77 5BY
Phone (0827) 281000

W5

JOIN UP WITH: THYFSOTD

Litesold's new 'L' Series soldering iron - now at a bargain price Outstanding performance. Lightweight. Easy to maintain. Elements are enclosed in Stainless Steel shafts. insulated with mica and ceramic. Non-seize interchangeable bits. choose from 'copper' or 'long life'. A very special tool at a very special 'direct' price. Just $\$ 5.22$ for iron fitted with 3.2 mm copper bit Just $£ 2.27$ for 3 spare copper bits (1.6: 2.4:4.7) A mere 84 for professionai spring stand! Or buy the lot for $\$ 10.34$ and save 10%
All prices inc. Vat P. \&P P.

LIGHT SOLDERING DEVELOPMENTS LTD or phone $01-6890574$ for Barclaycard/Access sales.

RADIO/TAPES BARGAINS

LW/MW/Mains/Battery Radios £9.00 each (P\&P $£ 1.00$) LW/MW Car Radios with speaker £9.00 each (P\&P £ 1.00) Small VHF/MW Battery Radios $£ 7.00$ each (P\& P 50p) 8-C60 High gain Cassettes £2.00(P\&P 50p)
5-C90 High gain Cassettes
£2.00 (P\&P 50p)
Stereo Headphones with lead and
Jack Plug £4.50 (P\&P 50p)
Maximum Postage Charge $£ 1.00$.
Money refunded if not satisfied.

AERIAL AMPLIFIERS

Aerial ampläiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
B11 - For stereo or standard VHF/FM radio.
812 - for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8V to $18^{\prime \prime}$ DC next to the set type fitting PRICESE6.70 each.
Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads $\mathbf{f} 5.70$ each.

All Prices include VAT at 15\%. P \& P per Order 30p. S.A.E. for Leatlets. Access Cards.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLo 9AGE Tel Rams (070 682) 3036.

CONTINUE THEIR SPECIAL OFFER mini 20 $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $\quad 6.6 \mathrm{k} \Omega / \mathrm{V}$ a.c.

multimeter only $£ 19.50$
 INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c.V: $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.l: $50 \mathrm{uA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: 0-1k $\Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2\%d.c. \& resistance, 3\% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

ELECTROVILDE

 CATALOGUE 82
Improved . . . updated and a real money saver!

CATALOGUE 82 - Your instant link with today's forward trend in electronic progress; your chance for quick delivery of the components you'll need for 1982 projects plus of course, Electrovalue's vast and dependable stocks of basics - resistors, capacitors, semi-conductors, pots, connectors, meters, hardware and a massive variety of items well arranged for swift reference. In our new catalogue, computing takes far more pages, and there is a sense of urgency and service throughout to help you when ordering.

> SEND 70p FOR YOUR COPY OF CATALOGUE 82 BY RETURN. A RECLAIM VOUCHER ALLOWS YOU TO DEDUCT, $70 p$ WHEN ORDERING GOODS $£ 10$ OR MORE IS INCLUDED.

When sending for Catalogue 82 please mark CAT 82 clearly on top left corner of envelope.

This year it's better than ever!

DISCOUNTS (On all items except where quoted NET or N).
5% on orders over $£ 20$.
10% on orders over $£ 50$.
FREE POSTAGE in U.K. on orders $£ 5$ upwards. Please add 40p handling charge if under.
VAT chargeable on U.K. orders at prevailing rate 15%.
ELECTROVALUE LTD., Dept EE11, 28 ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY TW2O OHB.
Phone 33603 (STD 0784: London 87) Telex 264475.
Northern Branch (personal shoppers only)
680 Burnage Lane, Burnage, Manchester M19 1NA.
Phone (061) 4324945

MICRO TIMES
 19 Mill Street, Bideford, North Devon,

 EX39 2JR, England.Telephone: Bideford (023-72) 79798
INTRODUCING CMOS AND TTL -see below for micro prices:

смоs				linearics	LOW-PROFILE DIL SOCKETS
4001	12p	4520	p	NE555 17p	
4002	12p	4560	E2. 20	NE556 48p	
4008	68p	4572		RC4136 65p	28 pln 26p
4007	13p	74LS00	14p	LM301AN 26p	$24 \mathrm{pln} \quad 24 \mathrm{p}$
4008	60p	74LS01	14p	LM311P 45p	22 pin 22p
4010	${ }^{350}$	74LS02	93p	LM318 \quad E1.45	18 pin . 16 p
4011 4012	12p	744LS03	${ }^{13 \mathrm{p}}$	LM324N ${ }_{\text {L }}$	${ }^{16} \mathrm{pln}$ 14 ${ }^{\text {din }}$
4013	33 p	74LS08	13 p	LM348N 75p	${ }_{8}{ }_{8 \text { pin }}$
${ }_{4015}^{4014}$	${ }_{6}^{60 p}$	74LS14	13 p $\mathbf{5 0 p}$ 18	LM358P 388 LM380 65 p	ENCODER TRANSMITTER
4016	28 p	74LS20	13p	LM3900N 45p	
4017	53p	74LS26	18p		LM1871 $\quad \mathbf{8 1 . 9 0}$
40	58p	741530	14 p	LM3915 E2.00	
4019	360	74LS32	14 p	LM13600 $\mathrm{LE}^{1 \cdot 20}$	RECEIVER DECODER
${ }_{4}^{4020}$	65p	74LS388	${ }^{169}$	SN76477N E1.75	
4023	18D	74LS42	39p	UA709 28p	
4024	38	74LS47	410	LM741 15p	
4025	14 p	74LS73	${ }^{218}$	UA733 ${ }^{685}$	
$4{ }_{4027}$	1.28	74LS74	${ }^{18} \mathrm{p}$	UA747 58p	
4028	${ }_{62 \mathrm{p}}^{35}$	${ }^{744 L S 85}$	${ }_{360}^{290}$		
4029	70 D	74.590	35 p	TL081CP 38p	SOUND
${ }_{4031}^{4020}$	4.95	${ }^{744593}$	${ }^{380}$	TLO82CP 60p	GENERATOR
4040	${ }^{21.65}$	74LS112	70 p	TLO84CN 98p	
4042	${ }^{55 p}$	74LS123	45p	Lм3302 85p	$\begin{aligned} & \text { Suitable for video } \\ & \text { games, } \\ & \text { alarms, }\end{aligned}$
4044	${ }^{60} \mathrm{D}$	74LS123	${ }^{29} \mathrm{p}$	TL490 E1.10	
40	748	${ }^{\text {74LSLS132 }}$	${ }_{39} 5$	1488 70p	$\begin{aligned} & \text { Toys, etc. } \\ & \text { Data 75p Large } \end{aligned}$$26 \mathrm{~S} \text { S.A.E. }$
4048	44 p	74LS151	${ }_{75}$	1489 70p	
4049 4050	27p	7445155	48p		
4051	60p	7445161	32p	$\begin{array}{ll}8 \text { 8728 } & \mathbf{2 1 . 5 0} \\ 8 \text { 895 } & \text { ¢1.50 }\end{array}$	ICL 7650
4052		74LS163	${ }^{42 \mathrm{D}}$	ICM 7555 80p	oltage Converter
4056 .4060	$\begin{array}{r}16.50 \\ 860 \\ \hline\end{array}$	74LS164	50 p		$\begin{aligned} & \text { Cata } 50 \mathrm{p} . \text { Large } \\ & \text { S.A.E. 26p. L2. } \end{aligned}$
4063	¢1.18	74LS173	75 p	TiLs	
${ }_{4068}^{4066}$	36p	74LS175	${ }_{59}{ }^{\text {P }}$		THYRISTORS
4069 4070	15	74LS221	${ }^{63} \mathrm{p}$	TH232,green18p	C106D 280
4071	18 p	74LS244	${ }^{83 D}$	TIL212, yell. 16p	CPUs
4075	20 D	74LS245	£1-20	TIL216, red 18p	
4077	22 p	744S251	45p	Tlu228, red 20p	$6502 \quad 65.45$
4078	20 p	744-S257	55 p	Til2zo, red 12p	${ }_{6504}^{6504} \quad$ E1.25
4093	42p	${ }^{7445261}$	E3 310	Til224, yelf, 18 p	6802 6809
	${ }_{65 p}$		$38 p$ 78 p	T/Lill	${ }_{8080}^{6809}$ (
4510	66p	74LS374	78	TIL312/3 $81 \cdot 00$	8085A E6.45
4518	70p	74LS393	60 p	$\begin{array}{ll}\text { TIL } 321 / 4 & \text { ¢1.15 } \\ \text { TLI330A } & \text { £1-15 }\end{array}$	

6*09 SINGLE BOARD COMPUTER \star KIT \star Complete kit $£ 175$ plus 15% VAT $£ 1 \mathrm{P}$ \& P .
Uses Motorolas Powerful MC6809 CPU $4 \mathrm{~K} / 8 \mathrm{~K}$, 16 K ROM, 2 K RAM, ACIA, PIA. 8080 simulated 1/O RS-232 Handshake 8 Sel. Baud Rates. Manual includes: $11 \times 17 \mathrm{in}$. Schematic Parts Ilst. User Notes. Software listlngs and moret Bare Board $\begin{array}{ll}\text { Uses } 6809,6850,6821-b u y ~ s e t ~ f o r ~ & £ 18 \cdot 50 \\ \text { ADMONS (2716) } & £ 24.00\end{array}$ ADMONS (2716)

MK3888. 21 meg.
Data $£ 1$ plus 26p
£ $19 \cdot 50$
Data £1 plus 26p
COMBO CHIP
S. 400
PROM

PROGRAMS MOST
FAMILIES OF EPROMS!
Bareboard
Bromwriter
Promw
KIT
KIT*
incl. all
Writer"
Del: 3 weeks
KITs for Beginners
WHEEL OF FORTUNE $\quad £ 5$
ULTRONIC FLYREPELLER £4•50
S.100
KLUG

SLUGE CARD

SIMPLIFY YOUR PROJECTS WREADBOARD WITH EXTRASI

- 40n-Board power supplies up to 3 of which can be +5 , or
* Switch Selectable Memory or
* On-Board Address/Device
- Bi-Directlonal Data Bus Buf-
\star On-Board Wait States.
* Large Breadboard Area,

Bare Board and Manual £33-00
Kit £148.00

GI SOUND COMPUTER CHIP Features:

- Full soft

Full software control af sound generatlon. 16 -bit microprocessors 8 and 3 independently programmed analog outputs. Two 8-bit general purpose
$1 / 0$ ports. $1 / 0$ ports.
Single +5
Single +5 -volt supply.
SPECIAL PRICE Data E.1: Large S.A.E. please VEROBLOC SOLDERLESS BREADBOARD
360 reliable contacts. Will accommodate any size IC. Can be
full interlocked one with another $£ 3.55$ each. S100 Prototyping Boards;
MIcroboard Pattern $06-2175$

 ORDERING Please add 50 p Poase add 50 p . EXPORT ORDERS ACCEPTED. Add $15 \% P$ \& P on total order. VA
BARCLAY CARD
Schools, UniversIties. Official
It is our pollcy to offer you brandnew, full-spec. devices. Prices subject to change without
notlice.

ELECTRONICS?

TRY A ZEDPACKI
COMPONENTS AT A PRICE
EVERYONE CAN AFFORD

22150 mixed 1 and 2 watt resistors $£ 1.95$
$\begin{array}{ll}Z_{3} & 300 \\ \text { Z4ixed capacltors. } \\ \text { Z } & 100 \text { mixed electrolytict }\end{array}$
$\begin{array}{lll}\mathbf{Z 4} & 100 \text { mixed electrolytict } & \mathbf{E 2} \cdot \mathbf{2 0} \\ \mathbf{Z 5} & 100 \text { mixed polystyrene caps } & \mathbf{E 2} \cdot 20\end{array}$
Z6 300 mixed printed circult
companents
Z7 300 mixed printed circuit resletors $\mathbf{£ 1} 95$
Z9 900 mixed minialure cerame
plate caps
Z10 25 assorted pots.
Z 1125 assorted prest
Z11 25 assorted presets, skeleton etc
Z12 20 assorted vdr's and thermistors
$Z 13$ 1/b mixed hardware. Nuts, bolts self-tappers, sleeving, etc. $\quad \mathbf{E} \cdot \mathbf{2 0}$ 214100 mixed, now and marked, full spec. transistors. Pack includes:- BC148,
BF154, BF274, BC212L, BC238, BC184L, $\mathrm{BF} 154, \mathrm{BF} 274, \mathrm{BC} 212 \mathrm{~L}, \mathrm{BC} 238, \mathrm{BC} 184 \mathrm{~L}$,
PBC 108 and, or lots of 1 mlitar types Z15 100 mixed diodes including:-zener power, bridge, slenal, germanlum, $Z 1620$ 1N4148.
$Z 1620$ 1N4148
$Z 1720$ 1N4003/10D2
 22010 Assorted switches, Including push bution, silde, multipole, minlature etc. UHF MODULATORS (625 line UHF) housed In metal box $21^{\prime \prime}$ $2^{\prime \prime} \times 1^{\prime \prime}$ wlth 9^{\prime} coaxlal lead, TV plug and connection data.
Aluminlum finish slider 50 ea. 3 for $£ 6$.
Atandard Aluminlum finish slider knobs, standard
fitting. fitting.
$200 \mu A$ Miniature level/batt. meters, as fitted to many cassette recorders. 90 p Deluxe FIBREGLASS printed circult efching kits.
Includes 100 sa ins. of copperclad F/G
board. $1 / \mathrm{b}$ ferric chlorlde (made for army to MIL, SPEC.), 1 dalo etch resist pen, abraslve cleaner, tweezers, etch resist dish'
and Instructions. OUR PRICE 5.95 and Instructions.
11 b of FeCl. $\mathbf{2} 2.25$. $\begin{array}{ll}100 \text { Minlature reed switches. } & \text { £2.30 } \\ 100 \text { Subminlature Reed Switches, } & \text { E4. } 20\end{array}$
To: "GEMINI ELECTRONIC COMPONENTS" DEPT EE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E. 8
Where shown. Send Cheque ${ }^{\circ}$ or Postal Order. Plus 60p P\&P. and 15% VAT
Please Quote ZED Code.
ZED Please Quote ZED Code. Schools otc, SEND OFFICIAL ORDER
$10,000 \mathrm{uf}$. 35 v Tag ended. $20^{\prime \prime} \times 10^{\prime \prime}$ diam with fixing stud and
With hole In P SWITMAGNETS 6 for $£ 1$ These cost a fortun BA Wers made for These cost a fortune! Were made for varlous muslc conlres. Includea Independent and interdependent latching types Can't be repeated. 3 Banks for E1. KNOBS for Swltch Banks 10 for E 1 . Chrome or spun aluminlum finlsh. MINIATURE MAINS TRANSFORMERS Top quallity, Spllt bobbln construction
wlif glve $4 \cdot 5 \mathrm{~V}-0-4 \cdot 5 \mathrm{~V}$ at 250 MA . 1$\}^{\prime \prime} \times 1 \ell^{\prime \prime}$
 PP3 Battery Connectors 10 for 50p. Minlature Press to Malke Switches, Red knob. 3 for 50 p .
Subminiature S.P.C.O. Sllde Switches. Minlature D.P.C.O. Slide SwItches 6 for 50 p .
Standard 2P. 3 Position Slide Swltch. 4 for 50p.
for $£ 1.50$ aker, $2 \mathrm{f}^{\prime \prime}$ Round 8Ω. 60p ea. 3 Assorted Fuse Holders Including 20 mm P.C., Panel and chassls types. Pack of 7 for 50 p . Jack Sockets, swltched. En
3.5 mm closed type. P.C. or panel mounting 9 Sectlon, Chrome on Bras: Tel Aerial. Plugs Into any 3.5 mm socke Approx $25^{\prime \prime}$ extended $£ 1$ each. 3 for $£ 2.50$. LED. TIL 3860 ea. 3 for $£ 1 \cdot 50$
Crystal Clear 3mm LEDS very pretty
Red, Green, Yellow. 10 of one colour $£ 1$. Red, Green, Yellow. 10 of one colour $£ 1$
10 of each $£ 2 \cdot 50$. ALTERNATOR RECTIFIERS
Make lovely 60 amp bIdges Ideal Make lovely 60 amp brldges. Ideal fo Type 4 AFI. Set of 4 (2 neg. case + 2 pos, case) \&2.

Special Purehase enables us to offer

 Mulard C280 Polyester Capacitors (Liquorice Allsorts) at the unbeatable price of £2 for 100 mixed. These spillages, foor sweeplngs, cosmetic relects etc. Also Mullard minlature electrolytics 200 mixea $£ 2$.
TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities pace and if you are studying for an cxamination ICS guarantee coaching until you are successful.

City and Guilds Certificates:
 Telecommunications Technicians Radio, TV, Electronics Technicians Technical Communications Radio Servicing Theory Radio Amateurs
 Electrical Installation Work MPT Radio Communications Certificate
 Diploma Courses:
 Colour TV Servicing
 Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

```

IfsTo: International Correspondence Schools
Dept 268N Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
```


MASTHTR MnGMPIONICS NOW! The PRACHLTAAT wEy!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No prev ous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the esser tials of your hobby or to start or further a career in electronics or as a selfemployed servicing enginee

All the training can be ca-ried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern cquipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of redio, T.V
$\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.

Newdob?NewCareer?NewHobby?GetintoHlectronics Now!

Wheel of Fortune	ZB164	Aug. 81	£27-50
Simple P.H. Meter	ZB165	Aug. 81	£22.00
LED Sand Glass	ZB162	Aug. 81	£5.00
Morse Practice Oscillator	ZB163	Aug. 81	£10.95
Door Alarm	ZB166	Aug. 81	£6. 00
CMOS Metronome	ZB167	Aug. 81	E6. 25
Xenon Strobe Lamp	ZB161	July 81	¢18.50
Combination Lock	ZB160	July 81	¢13.75
Electronic Multimeter	ZB159	July 81	£32.50
*Tremolo Unit	ZB157	June 81	£8. 25
Loop Aerial Crystal Set	ZB158	June 81	£5. 25
Darkroom Timer	ZB155	June 81	£4.00
Tape Auto Start	ZB156	June 81	£10.25
Audio Test Set	ZB152	May 81	£46.00
Soil Moisture Indicator	ZB154	May 81	£3. 95
Phone Bell Repeater or Baby Alarm	ZB153	May 81	¢5-25
Guitar Headphone Amplifier	ZB151	May 81	¢4.00
Lights Reminder or Ignition Locator	ZB150	May 81	¢5. 20
Intercom	ZB149	April 81	¢19.25
Digital Rule	2B148	April 81	£28.00
Freezer Alarm	ZB147	April 81	£11.75
LED Dice	2B146	March 81	£7.50
Mini Siren	ZB145	March 81	£7-25
Modulated Tone Doorbell	2B144	March 81	E6-25
Bench Power Supply	ZB143	March 81	£48.50
Car Actuated Driveway Light	2B142	March 81	£22.00
3 Channel Stereo Mixer	2B141	Feb. 81	£16.25
Slgnal Tracer	ZB140	Feb. 81	£7.50
Nicad Battery Charger	ZB139	Feb. 81	¢12.00
Auto Slide Charger	ZB138	Jan. 81	£9.00
Ice Alarm	ZB137	Jan. 81	£7. 25
Phaser Sound Effects	ZB136	Jan. 81	£23.30
MIni I.C. Radio	2B126	Nov. 80	£10.35
Sound to Light	2B127	Nov. 80	£19.00
Guitar Practice Amplifier	ZB128	Nov. 80	£16.85
Transistor Tester	ZB131	Nov. 80	¢9.00
Soil Moisture Monitor	ZB132	Nov. 80	£5. 00
Audio Effects Unit	ZB122	Oct. 80	¢12.25
Phone Call Charge Jogger	ZB121	Oct. 80	£6.00
Darkroom Controller	ZB123	Oct. 80	£18.25
Bicycle Alarm	ZB124	Oct. 80	£9. 25
TTL Power Supply Unit	ZB78	Sept. 80	¢9.50
*TTL Logic Probe	2B76	Sept. 80	£3.75
Bedside Radlo	ZB74	Sept. 80	£14.75
Signal Tracer	ZB80	July 80	£5.50
Autowaa	ZB83	July 80	£19.75
A.F. Signal Generator	ZB84	July 80	£20.50
Auto Phase	ZB86	July 80	£19.75
Lights Warning System	ZB63	May 80	£4.00
Autofade	ZB66	May 80	£10.25
Cable and Pipe Locator	ZB54	March 80	£4.00
Micro Music Box	2B45	Feb. 80	$\mathbf{1 1 7 . 5 0}$
SImple Short Wave Receiver	2B44	Feb. 80	£19.50
Morse Practice Oscillator	ZB43	Feb. 80	¢6.00
Slide/Tape Synchroniser	2B42	Feb. 80	£11.50
Burglar Alarm	ZB51	Dec. 79	¢5.50
Baby Alarm	ZB40	Nov. 79	¢8.50
Chaser LIght	ZB4	Sept. 79	£18.50
Simple Transistor Tester	ZB2	Sept. 79	¢6.00
Varicap MW Radio	ZB1	Sept. 79	£8.50
Electronic Tuning Fork	ZB7	Aug. 79	£9-50
Warbling Timer	ZB5	Aug. 79	£6.30
Electronic Canary	ZB19	June 79	¢5.00
Tremolo Unit	ZB18	June 79	£10.50
One Transistor Radio MW/LW	ZB104	March 79	£7.25
Mlcro Chime	ZB96	Feb. 79	£13.00
Lights Reminder for Car	ZB32	Jan. 79	¢5. 00
Fuzz Box	ZB106	Dec. 78	£6.75
Sound to Light	ZB112	Sept. 78	¢7.00
Welrd Sounds Effect Generator	ZB113	March 78	£6.00

DIY MUSIC \& EFFECTS KITS

128-NOTE SEQUENCER

Enables a voltage controlled syntheslser, such as the P.E. Minisonle, to automatically play pre-programmed tunes of Ip to 32 pitches and 128 notes long. Programs are inltiated tromern are externally variable. KIt plus keyboard \& contacts

SET $76 \quad$ E114.09

16-NOTE SEQUENCER

Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed Into most voltage controlled synthesisers. The notes and rhythms may be changed whils playing, making it more versatlle than the name would suggest.
Kit order code
SET 86
$\mathbb{E 6 0} \cdot \mathbf{9 5}$

3-CHANNEL STEREO MIXER

Full level control on left and right of each channel, and with master output control and head phone monltor.
Kit order code
SET $107 \quad £ 10.42$

3-MICROPHONE STEREO MIXER
Enables stereo Hive recordings to be made without the 'hole nthe middle' effect. Independent control of each microphone.
KIt order code

6-CHANNEL MIXER

A high specification stereo mixer with varlable input Impedances. Specs given in our tists. The kit excludes some channels

Main kit code
$\begin{array}{ll}\text { SET } 90 & £ 89 \cdot 87 \\ \text { ADN } 90 & £ 11.74\end{array}$

AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& Amerlcan pollce sirens, star-treh red alert, heart beat monltor Kit order code

SET $105 \quad$ £13.60

AUTOWAH UNIT

Automatically glves wah or swell sounds with each gultar note played.
Kit order c

SET 5B E16. 89

CHOROSYNTH

A standard keyboard verslon of the published Elektor 30-note chorus synthesiser with an amazing variety of sounds ranging rom violin to cello and flute to clarinet amongst many others.

COMPRESSOR

Operates as an automatic galn control, with iittle distortion and a compression range of about 300 b . Has compression microphone inputs complate with mixing controls.
Kit order code
SET 120
E21-98

DRUM SYNTHESISER

Synthesises conventional and extraordinery drum sounds ranging from bass drum through bongos woodblocks \& snare drums and way on to sea, thunder \& let-plane whooshes. Can be triggered via a microphone (notincl.), by hitting an existing
drum, or by handclaps and shouts. Requlres a $+12 \mathrm{~V} / 0 \mathrm{~V}-12 \mathrm{~V}$ PSU a approx 40 mA .
Kit order code SET 119 E45.38

DYNAMIC NOISE LIMITER

Very effective stereo circuit for reducing noise found In mosi
tape recordings. SET 97 £14.57

EXPOSURE TIMER

Controls up to 750 watts $\operatorname{In} 0.5 \mathrm{sec}$ steps up to 10 minutes, with Kullt-In audlo alarm.
KIt order code

FUNNY TALKER

incorporates a ring modulator, chopper \& trequency modulaIncorporates a ring modulator, chopper \& trequency modula$\begin{array}{ll}\text { music. } \\ \text { Kit order code } & \text { SET.99 } \\ \text { E16.08 }\end{array}$

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a slonal from most audio sources, producing 8 different 5 wltechable sounds that can be further modified by manual controls.
KIt order code
$£ 14.76$

GUITAR FREQUENCY DOUBLER

Produces an output one octave higher than the input. Inputs and outputs may be mixed to glve greater depth.
SET $98 \quad £ 10.62$
Kit order code

TERMS: C.W.O.. Mall Order or Collection by appointment. Tel. 01-302-6184 (Mon-Fri).

Prices are correct at time of press. E. © O.E. subject to availabillty.

BASIC COMPONENT SETS

Include speclally desloned drllled a tinned fibreglass prinied circult boards with layout charts, all necessary meters. Most kits Include their own power potentiowill operate from 9 volt batteries. They also contain basic hardware such as knobs, sockets, switches, nominal amount of wire and solder, a photocopy of the orlginal published text, and unless otherwlse stated an aiuminium box. Mosi parts may be bought separately Forfuller kit and component details see our current ilsts. Kits originate from projects published in Practica Electronics, Everyday Electronics \& Elektor.

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and iremolo as well as other fascinating sounds. May be used with most electronic Instruments. Meter \& some SW's not in $\begin{array}{ll}\text { Kit order code } & \text { SET } 85 \quad \text { E74.03 }\end{array}$

GUITAR OVERDRIVE

Sophlsticated versatile fuzz unit Incl. varlable controls affecting the fuzz quality whilst retaining the atlack and decay, Kit order code $\begin{aligned} & \text { E19.75 } \\ & \end{aligned}$

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifler suitable for instrumen practise or as a test gear monitor. Drives 8 or 15 ohm speakers (not incl. In kit).

SET $106 \quad$ £20.56

GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration. KIt ordẹr code

HEADPHONE AMPLIFIER

For use with magnetlc, ceramic or crystal plekups, tapedeck or tuner, and for most headphones. Deslaned with RIAA Klt order co

SET $104 \quad$ E18-29

METRONOME

Has a "Ilck' rate that can be varied between approximately KIt order code minute.

SET 198 £9.51

P.E. MINISONIC SYNTHESISER

very versatile 3-octave portable mains operated synthesiser with 2 osclilators, voltage controlled filter, 2 envelope shapers ring modulator, nolse generator, mixer, power supply and sub-min toggle switches to select the functions. A case is exciuded, but the text gives comprehensive constructional
details.
SET 38 ع159.69 $\begin{array}{lll}\text { Kit plus keyboard \& contacts } & \text { SET } 38 & \mathbf{E 1 6 9 . 6 9}\end{array}$

PHASER

An automatically controlled 6 s tage phasing unit with Interna oscillator. Depth can be increased with extension. Maln kIt code
Extension kit
$\begin{array}{ll}\text { SET } 88 & \text { E1E.98 } \\ \text { ADN } 88 & £ 7.68\end{array}$

PHASING UNIT

A manually controlled unit for introducing the phasing effec at the preclse moment requlred. SET 25 Kit order code
K.56

PULSE GENERATOR

Produces controllable puise widths from 100 NS to 2 Sec .

PRICES INCLUDE:-

U.K. post \& handing, and VAT at 15% where appllcable. Overseas customers should consult our current llst for export postage rates. Note that Elre, C.I. and mos
B.F.P.O. addresses classify as export deltyeries.

LIST

Send stamped addressed envelope with all U.K. requests for free llst giving fuller detalls of PCBs, klts and other components. Overseas enquiries for 11 s -Europe send
50 p , other countries send $£ 1.00$.

KIMBER-ALLEN KEYBOARDS

Clalmed by the manufacturers to be the finest moulded plastic keyboards avallable. All octaves are C-C, the keys are plastic, slope fronted, spring loaded, fitted with actuators 3 -octave $£ 32 \cdot 43$, 4 -oct $£ 40 \cdot 20$, 5 -oct £48-53. Gold-clad con-tacts-(GJ =SPCO, GB = DP make-break). GJ 3-oct 14 -85

RHYTHM GENERATÓRS

Two different kits-the control units are desloned around the M252 and M253 rhythm-gen chips wiheh produce pre-pro grammed switch-selectable rhythms driving 10 effects instrument generators feeding into a mixe

12-Rhythm Unit
$\begin{array}{ll}\text { SETT 103-253 } & \text { £65.65 } \\ \text { SET 103-252 } & £ 58.37\end{array}$

RING MODULATOR

Compatlble with the formant and most other syntheslaers.
Kit order code
SET 87
E19:98

SIGNAL TRACER \& GENERATOR

Allows audio signals to be inlected Into circults under test and for tracing their continuity. Includes frequency \& level $\begin{array}{lll}\text { controls. } \\ \text { KIt order code } & \text { SET } 109 & \text { £16.26 }\end{array}$

SIMPLE WAVEFORM CONVERTER

Modiffes a sawtooth wavelorm to produce triangle and sine Kutputs.
KIt order code

SET 96 E8. 25
SMOOTH FUZZ

As the name Impliesi Order code
 SET $91 \quad$ £12.45

SPEECH PROCESSOR

improves the intellgibHlity of nolsy or fluctuating speech slgnals, and Ideal for Inserting Into P.A. or C.B. radio sysKIt order code

SET $110 \quad £ 10.58$

SPLIT-PHASE TREMOLO

The output of the Internal generator is phase-split and moduated by an input signal. Output amplitudes, depth \& rate are panel controlled. The effect is similar to a rotary cablnet.
Kit order code
SET $102 \quad 8287$

SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses.
KIt order code
SET 89
E11 28

TREMOLO UNIT

Sultable for use with most electric gultars, organs and othe similar Instruments. Includes speed, depth \& by-pass controls.
KIt order code

TUNING FORK

Prpduces 84 switch-selectable frequency-accurate tones with LED monltor displaying beat-note adjustments.
Kit order code
SET

TUNING INDICATOR

A simple octave frequency comparitor for use with syn-

VOICE OPERATED FADER

For automatically redueing music volume during diseo taik-
KIt order code SET 30 £\&.93

VOICE SCRAMBLER

Enables a 'garbled' version of a spoken message to be re corded or fransmitted, Decoding of message is achieved 12 V PSU a about 30 mA .
KIt order code

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs variable Kitorder code
K21.g

WIND \& RAIN EFFECTS
As the name saysl Order code
SET $28 \quad$ E 10.55

EXPORT ORDERS ARE WELCOME

Postage rates are shown in our Ilsts. All payments Money Order or through an English bank-we do na offer a C.O.D. service.

[^0]
Tbam un With

for top quality components, innovative kits, fast Service and low, Low prices

Prices do not include VAT. Add 50p PSP + 15% VAT to total. Overseas customers add £1. 50 (Europe) 14 (elsewhere). Access and Barclaycard weicome. Send sae for price list and with enquirles. Shop open: $9-5$ (Mon-Fri) 0-4 (Sat).

EE), 11 BOSTON ROAD, LONDON, W73SJ Tel: 01-579-9794/2842

This 5 volume sêt contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $£ 10.00$ per set (we pay the postage).
Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting wav; providing an approach to acquiring knowledge that is a very enjovable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:

Selray Book Company
11, Aspen Copse,
Bromley
Kent. BRI 2NZ
DUP 10D\% GUAPANTEE
ination, your money will be refunded by return of post.

Amount enclosed: \mathbf{f}
Name:
.

Address:
EE 11

POPS COMPONENTS

38/40 Lower Addiscombe Road, Croydon CR0 6AA 01-688-2950 \star POPS SPECIAL OFFERS THIS MONTH \star

Free L.E.D.s + LIST with every order!
ATTENTION C.B. LOVERS! C.B. Power Supply $13 \cdot 8 \mathrm{v} 5 \mathrm{amp}$ cont. 7.5 amp surge. Short circuit protected. Absolute bargain @ £16.95. AUDIO AND RADIO PANELS. Damaged or incomplete, Thorn manufactured, hundreds of modern useable components including P.B. switches, transistors, resistors, caps, tants \& electrolytics, trimmers, Mini Toko IF \& OSC coils. 31b lots © $\mathbf{5 . 0 0}$.
SMOOTHING UNITS. Comprising of 2 caps 3300 MF (a) 25v 1 amp bridge, wired to tag strip only 80 p each.
VERY HEAVY DUTY RELAYS. $12 v$ Coil $52 \Omega, 2$ normally closed circuits, 2 normally open. 25 amp D.C. contacts. $\frac{1}{}$ " spade connections. £1-50 each.
12v TRANSFORMERS © 400 MA on a panel, with rects. OK for 12 v mains adaptor, for radio cassettes etc. Only £1-10. Boxes to suit 50p. U DEC Plug in bread boards 3 bus bars 40×4 contact bars giving 204 connections. Back board for $3 \times$ pot or switches. Our Special Price £3. 95 ! (Previously $£ 6 \cdot 50$).
\star Lots more bargains. Lisi sent with orders or send sae. \star Please send 50p P/P with all orders.

If you find an ad unacceptable, don't turn the page: turn to us.
 The Advertising Standards Authority.
 A.S.A.Ltd., Brook House, Torrington Place, London WCIE 7HN

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH
POSTAGE 20p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREEI

```
MN1. 300 d-watt Resistors pre-formed for
P&C Mtg.
MN2. 200 1, AND t-watt Resistors
MN3. 100 '& 2-watt Resistors.
MN4.50 Wlrewound Reslators.
and 5%.
MN6.12 assid. potentiometers.
MN6. 12 asstd. potentiometers.
MN8. 50 asstd. Eletrolytlc Capacltors.
MN9. }100\mathrm{ asstd. Ceramic Capacitors. Plte,
dise, tub and monolytlc etc.
MN10. 100 mixed capacifors, Polyester,
types. 20 asstd, Silver Mica Capacitors.
MN11. 20 asstd, Silver Micu Capacitors.
values).
l}\begin{array}{l}{\mathrm{ values). }}\\{\mathrm{ MN13, 20 usstd. Transistors. BC, 2N}}\\{\mathrm{ Series, Power etc}}
Series + Power etc.
MN14. 40 NN448 Dlodes. Devices.
MN15,5 Light Sensitive Devices.
MN17. 2 12-volf Relays. Ex nearly new
equ{p. }3\mathrm{ Encapsulated Reed Relays. 9-12v.
M
```



```
equip. & 240-110 to 12-volt, 100ma Trans-
former. 1 240-110 to 24-volt 100ma Trans-
former. (2" Led's with cilos. }4\mathrm{ red, 2
yellow, 2 green.
MN5. 100 metal oxlde Resistors. 1%, 2%
MN8. 50 asstd. Eletrolytlc Capacitors.
MN12,8 Tantalum Bead CapacItors (useful
```

MN23. 1/b asstd. screws, nuts, washers, self-tappers etc.
MN24. 100 asstd. small springs
MN25. 50 asstd. pop rivets.
MN26. 50 assted. Insulated erimps.
MN27. 200 tems, grommets, spacers, cable markers, plastic serews, sleeving "1e wraps elc.
MN28. 20 asstd. fuses. $11^{\prime \prime} 20 \mathrm{~mm}$ etc. MN29. 75 m equipment wlre, asstd. MN30 \mathbf{M} and sizes.
MN31. 12 a 2 m ength, 3 core, mains cable pression assto. trimmer capacitors, com pression flim. Air-spaced ett.
MN32. 15 30pi Beehive trimmers
MN32. 15 30p Beehive trimmers.
MN33. 20 coll formers, ceramic,
MN33. 20 coll formers, ceramic, plastic,
MN34. 25 mln . glass reed switch.
MN35. 10 asstd. switches, toggle, slide, mero, etc.
MN37. 10 asstd, audlo connectors. Din
MN37. 10 asstd, audlo connectors. Oin
phono etc. MN39. 1 oscillator PCB loads of components (no data).

MN40. 50 Polystyrene Capacitors.
MN4.

MN42. 10 BC107 Transistors.
MN43. 10 BC 108 Transistors.
MN44. 10 screw fix S.P. C.O. min. slide swltch.
SWItch. $51.35 \mathrm{~V} .1,000 \mathrm{~mA} / \mathrm{H}$. Mercury batterles if dlameter \times in high.
MN58. $2 \times$ CA 723 voltage regulator M N64. 5 press-to-make min. switches. MN65. 3 BF 245-FETS.

PLEASE QUOTE NO. OF PACKS WHEN ORDERING

CHORDGATE LTD.

75 FARINGDON ROAD, SWINDON, WILTS.
Tel. Swindon (0793) 33877. Retall shop at above address

MUSICAL MICRO 24 TUNE FA DOOR BELL

 BUILD THE WORLD FAMOUS CHROMA-CHIMEGive your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play
24 well-known tunes. The kit is simplicity itself for
ease of construction. Absolutely everything needed is supplied, including:
\star Resistors, Capacitors,
Diodes, Transistors,
I.C. Socket and all hardware

* Texas Instruments TMS

1000 microcomputer
\star Comprehensive kit
manual with full
circuit details
£11.95

Ready built version also available. Special offer price $£ 15.95$ incl. p\&p.

Plays 24 well-known tunes including:

Star Spangled Banner, William Tell Overture,
Greensleeves, Rule Britannia,
Colonel Bogey, Oh come all ye faithful, plus many other popular tunes.
\star No previous microcomputer experience necessary
\star All programming retained is on chip ROM

* Fully guaranteed
\star Ideal present any time

TMS 1000N

- MP0027A Micro-computer chip availabte separately
if required. Full 24 tune spec device tully guaranteed
This unique chip can be used not only for electronic door chimes
but for other profects requiring mustcal output:
Cal Horns Musicat Boxes Alymi
Anvichinn

or 3 for $£ 12.50$ incl. p\&p.
ALL CHROMATRONICS PRODUCTS SUPPLIEO WITH MONEY BACK GUARANTEE Please send me:
TO : CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ADDRESS

I enclose chequelpo value \mathcal{E}
or debit my ACCESS/BARCLAYCARD account no.
\square
Signature

Receivers and Components

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

300 SMALL COMPONENTS. Transistors, diodes $£ 1 \cdot 60$. 7LBS ASSORTED COMPONENTS £3.95. 101bs £5.25. FORTY 74 series ICs on panel $£ 1 \cdot 60$. 500 capacitors $£ 3 \cdot 00$. List 20 p refundable. Post 50 poptional insurance 20p. J. W. B. Radio, 2 Barnfield Crescent, Sale, Cheshire M33 1NL.

100 MIXED ICs-Transistors-Diodes £2.25. Lists 25p. Sole Electronics, E/E, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

> ** LEDS ** SPECIAL SHAPES ** LEDS ** * ARROWHEADS LINES TRI/RECTANGLES * DOTS-R, G, Y 20 f/spec LED £2.95 * IC skts. 8/14/16/40 pin 7/9/10/25p e P\&P 25p SAE LISTS PETRON ELECTRONICS, Courtlands Rd, Newton Abbott, Devon.

Software

SIXTY-FIVE ZX81 PROGRAMS. Listing only $£ 4 \cdot 95$, Barclaycard accepted. Includes many games, utility programs, home finance, maths, chequebook, plus more. Includes hints'n'tips, from SUSSEX SOFTWARE, Wallsend House, Pevensey Bay, Sussex.

ZX81 Temperature Sensors (single channel), £19•50, includes UK P\&P. SAE leaflet: Cheshíre Micro Design, 66 Close Lane, Alsager, Stoke on Trent.

CLASSIFIED

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7 \cdot 24$ per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5918).

Educational

COURSES-RADIO AMATEURS EXAM. INATION. City and Guilds. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc) write or phone-THE RAPID RESULTS COLLEGE, DEPT JR1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (9 am - 5 pm) or use our 24hr Recordacall Service: 01-946 1102 quoting Dept. JR1.

Veteran \& Vintage

> The only magazine for all vintage sound enthusiasts, paoked with articles by top writers, covering gramophones, phonographs, 78 s , wireless, news, history, reviews, etc.
> All back-numbers to No. 1 available. Send 75 for sample copy.
> 28 Chestwood Close, Billericay, Essex

[^1]SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, psu's. NORFAB PLANT AND MACHINERY. Telephone Potter Heigham (069-27) 721.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. £1 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

OSCILLOSCOPE repair and calibration. Quick service, competitive rates. W. I. R. Electronics, 01-567 6816.

Any single service sheet $£ 1 /$ L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. £6 (with circuits £8). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0698 883334).

ADVERTISERS PLEASE NOTE

Our Box Number Service is NOT
available for Mail-Order Advertising

ORDER FORM PLEASE WRITE in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for .. : insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

		$\square \ldots$

NAME
ADDRESS

Send to: Classifled Advertisement Manager

EVERYDAY ELECTRONICS

Classifled Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street, London SE1 \%LS Telephone 01-261 5918

Rate :
20p per word, minimum 12 words. Box No. 60p extra.

Books and Publications

OUT OF PRINT Book Service. 17 Fairwater Grove (E), Cardiff. Send S.A.E. for details.

MUSIC MAKER. Typewriter Keyboard re places piano type. Amateur organ builders send fl .00 for your copy-post free"QWERTONIC MUSICAL KEYBOARD" new book by P. G. Roche to 71 Elmfield Avenue, Teddington, Middx TWll 8BX

PARAPHYSICS JOURNAL (Russian trans lations): Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE 4in x 9in: Paralab, Downtown, Wilts.

Miscellaneous
 BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803 .

ENAMELLED COPPER WIRE			
SWG	116	+16	± 16
10 co 19	2.60	1.40	0.70
20 to 29	2.65	1.45	0.75
30 to 34	3.10	1.70	0.85
35 to 39	$3 \cdot 30$	1.90	1.05
40 to 43	4.75	$2 \cdot 55$	1.90
44 to 47	5.80	3.65	
FREE WIRE TABLES WITH EACH ORDER. INDUSTRIAL SUPPLIES 102 Parrewood Road, Withington, Mancheeter 20 Prices fully inclusive in U.K.			

GOVERNMENT SURPLUS OPEN SEVEN DAYS. Five acre depot. Millions of consoles, cabinets, components, receivers, meters, transformers, cable etc. No lists, stock constantly changing. Come and browse. ANCHOR ELECTRONICS, Eastwood, Nottingham. Tel: Langley Mill (07737) 67281.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic tweezers, watch screwdriver, case knife and screwback case opener, Also one doz. assort. push-pieces, full instructions and battery identification chart. We then supply replacement batcerie Send fit them. Begin now Send 89 for complete ki and get into a fast grown
business. Prompt despatch.

BOLSTER INSTRUMENT CO. (EE32) 11 Percy Avenue, Ashford, Middx., TW I5 2PB

PRE-PACKED. Screws, nuts, washers, solder tags, studding. Send for price list. Al SALES (EE), PO Box 402, London SW6 6LU.

TELEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. CROSS, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands.

PROFESSIONAL

DIGITAL STOPWATCH

* $1 / 100 \mathrm{sec}$ quartz accuracy-lap \& total times
* BIG z' $^{\prime \prime}$ Liquid Crystal Display
* PLUS—clock/calendar-month; date; day;hrs; mins; secs
* Approx $3^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times{\frac{3}{} 3^{\prime \prime}}^{\prime \prime}$
* Consult the clock/calendar at any time without disturbing the stopwatch timing

£16-95 VAT \& post paid
H. M. WHEELER \& CO.

15 Hawthorn Crescent Bewdley, Worcs. DY12 2JE

DIGITAL WATCH BATTERIES any type £1. 20 each. Send SAE or $15 p$ with number or old battery to DISCLEC $Y, 511$ Fulbridge Road, Werrington, Peterborough.

THE SCIENTIFIC WIRE COMPANY

PO Box 30. London E.4. 015311508
ENAMELLED COPPER WIRE

SWG	11 l	8 Oz	40 O	202
81029	$2 \cdot 76$	1.50	$0 \cdot 80$	$0 \cdot 60$
30 to 34	3.20	1.80	0.90	0.70
35 to 39	$3 \cdot 40$	2.00	1 -10	0.80
40 10 43	4.75	2.60	2.00	$1 \cdot 42$
44 to 47	$5 \cdot 90$	$3 \cdot 40$	2.39	2.00
48 to 49	15.96	9.58	$0 \cdot 38$	$3 \cdot 69$

SILVER PLATED COPPER WIRE
$\begin{array}{lllll}14 \text { to } 30 & 6.50 & 3.75 & 2.20 & 1.40\end{array}$

TINNED COPPER WIRE

14	to	30	3.85	2.36	1.34

Prices incl. P \& P vat. Ordars under $\mathbb{E 2}$ add 20p. SAE for List of Copper/Resistance wire. Dealer enquirles Re

[^2]

Stereo cassette tape deck module Comprising of a top panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complet console of own choice. These units are brand new, ready built and tested.
Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind tast forward. play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input Sensitivity: 100 mV to 2 V Input Im . pedance: 68 K . Output level: 400 mV to both left and right hand channels. Output Im pedance: 10 K . Signal to noise ratio: 45 dB Wow and flutter: 0.1%. Power Supply re quirements: 18 VDC at 300 mA . Connections: The left and right hand stereo inputs and outputs are via individual screaned leads, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2 \mathrm{in} x$ $11 / 4 i n$. Clearance required under top pane $21 / a i n$. Supplied complete with circult diagram and connecting diagram. Attractive black and silver finish.
Price $£ 26.70+£ 2.50$ postage and packing. Supplementary parts for 18 V D.C. power
supply (transformer, bridge rectifier and smoothing capacitor) £3.

NEW RANGE QUALITY POWER LOUD SPEAKERS ($15^{\prime \prime} \cdot 12^{\prime \prime}$ and $8^{\prime \prime \prime}$). These oudspeakers are ideal for both hi-fi and disco applications. Both the $12^{\prime \prime}$ and 15 and aluminium centre domes All three and ants white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons. Specification and Price:-

15" 100 watt R.M.S. Impedance Sohm 59 oz , magnet, $2^{\prime \prime}$ aluminium voice coil. Resonant Frequency 20 Hz . Frequency Response to 2.5 KHz . Sensitivity 97 dB Price £32 each. $£ 2.50$ Packing and Car

$12^{\prime \prime} 100$ watt R.M.S. Impedance $8 \mathrm{ohm}, 50 \mathrm{oz}$. magnet. $2^{\prime \prime}$ alumınıum voice coil Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95dB. Price f23.70 each. £2.50 Packing and Carriage each
$8{ }^{\prime \prime} 50$ watt R.M.S. Impedance $8 \mathrm{ohm}, 20 \mathrm{oz}$. magnet. 1 aluminium voice corl Resonant Frequency 40 Hz . Frequency Response to 6 KHz . Sensitivity 92 dB . Als available with black cone and black protective grill. Price $\mathbf{£ 8 . 9 0}$ each. $£ 1.25$ Pack ing and Carriage each.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

Type ' A ' 3 in round with removable
 wire mesh. Ideal for bookshelf hi-fi speakers. Price (Type 'A') £3.45 each.
Type 'B' $31 / 2$ in super horn. For general purpose speakers disco and PA systems, etc. Price $\mathbf{£ 4 . 3 5 \text { each. }}$
Type " C ' 2 in $\times 5$ in wide dispersion horn. For hi-fi systems and quality disco etc. Price $\mathbf{£} 5.45$ each.
Type 'D' 2 in $\times 6$ in wide dispersion horn. Frequency responss extending down to mid-range $(2000$ c/s) suitable for hi-fi systems and quality disco. Price $\mathbf{£ 6 . 9 0}$ each. Post and Packing, all types, 15p each (or SAE for Piezo leaflets).
Piezo Level Control/Loudspeaker Terminals. Combines two spring-loaded loudspeaker terminals, wire wounc potentiometer and resister network
All mounted on a smart brushed aluminium plate fits neatly through a $3^{\prime} \times 3^{\prime}$ cut out on rear of speake cabinet Price E2.99. 20p postage and packing

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

The World-beating ATARI PERSONAL COMPUTERS

3 consoles available
Atari 400 with 16K RAM (AF36P) £345 Atari 400 with 32K RAM (AF37S) $£ 395$ Atari 800 with 16K RAM (AFO2C) $£ 645$
(expandable to 48K)
All consoles when connected to a standard UK colour (or black and white) TV set can generate the most amazing graphics you've ever seen.

Look at what you get:

* Background colour, plotting colour, text colour and border colour settable to any one of 16 colquis with 8 levels of illuminance!
* Video display has upper and lower case characters with true descenders, double and quad size text and inverse video.
* 57-Key keyboard (touch type on Atari 400) and four function keys.
* Full screen editing and four-way cursor control.
* 29 keystroke graphics and plottable points up to $320 \times 1921160 \times 96$ only with 8 K RAM).
* 40 character by 24 line display.
* Extended graphics control and high speed action using a DMA chip with its own character set.
* Player missile graphics.
* Four programmable sound generators can be played individually or together and each has 1785 possible sounds playable at any one of eight volume settings, for game sounds or music.
* Full software control of pitch, timbre and duration of notes in 4 -actave range.
* Four joystick or paddle ports, sounds output to TV.
* BASIC cartridge and 1OK ROM operating system and full documentation.

Maplin Electronic Supplies Ltd EE/11/81 P.O. Box 3, Rayleigh, Essex. Tel: Southend (0702) 552911/554155

MORE HARDWARE

Atari 410 Cassette Recorder (AF28F) $£ 50$ Alari 810 Disk Drive (AF06G) $\quad[345$
Atari 82240 column Thermat Printer (AF04E)
£265
Atari 850 Interface」AF29G) $\quad \mathbf{£ 1 3 5}$
Joystick Controllers (AC37S) £13.95
Padde Controllers (AC29G) $£ 13.95$
16K RAM Memory Module (AFOBJ) f65
MUCH MORE FOR ATARI COMING SOON

SOFTWARE

Lots and lots of amaing software for Atari available NOW
\star Word Processor \star VISI-CALC

* ADVENTURE GAMES * Arcade Games
* Trek Games * ASSEMBLER \&

DISASSEMBLER \star FORTH \star Teaching $\star 30$ GRAPHICS \star Character Set Generator
SEND S.A.E. NOW FOR OUR LEAFLET (XH52G)

LE STICK

For Atari Computer or Video Game Replaces standard joystick, but much easier to use. Internal motion detectors sense hand movements. Large pushbutton on top of Slick. Squerze Stick to freeze motion. A MUST for SPACE INVADERS STAR RAIDERS \& ASTEROIDS. ONLY £24.95 (AC45n

Note: Order codes shown in brackets. Prices firm until 14th November. 1981 and include VAT and Postage and Packing. (Errors excluded).

Atari 400 Console

Atari 800 Console

SPECIAL PACKAGE OFFER

Disk. based system for $£ 725$ with LeStick
The Atari 400 Console
Special 32K RAM Module
Atari 810 Disk Drive
Disk Operating System
Documentation
Interconnecting Leads
Everything in "Look at what you ger" list.
Can any other computer on the market offer all this at anyhing like this price?

VERSAWRITER

$121 / 2 \times$ Bin. drawing board. Drawing on board is reproduced on TV via Atari with 32K RAM and Disk Drive. Closed areas may be filled in with one of 3 colours. Text may be added in any one of 4 fonts. Paint brush mode: select size of brush and paint away Air brush mode: shade in your drawing- colour and density is up to you. Plus many more features. S.a.e. for price and further details.

Demonstrations at our
shops NOW
See Atari at 284 -Sea, Essex.
Westcliff-on-Sea, Essex
Tel: 107021554000 and at $\mathbf{W 6}$. Hammersmith W6. 159. 161 King St., Hammel: 01 . 7480926

[^0]: 10\% DISCOUNT VOUCHER
 Valld untll end of month on cover of this magazine Applies to U.K. C.W.O. orders over $£ 25 \cdot \infty 0$ value. Not valld with credit card, export or invoiced orders. This (Voucher code E.E.IN).

[^1]: For Sale NEW BACK ISSUES OF "EVERYDAY
 ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

 MULLARD VALVE TESTER with cards, excellent condition. Offers tel: 047244304 (Grimsby).

[^2]: Publated approximately the third Fridey of each inonth by IPC Magazinen Ltd., Kinga Reach Tower, Stamford Et., London 8E1 9Ls, Printed in England by Index Printers, Dunatable Beds. Bole Agente
 ar otherwige dioposed of by way of Trade at more than the recommended selling price ahown on cover, and that is aball not be lont, renold, or hirud ous or otherwiae dispusell of in a mutilated condition or io

