Easy to bufle projects for everyone MAY 81 60p $\square \square \square$

 GUITAR HEADPHONE AMPLIIIER

Interference 2
Miv sidic Introduction to

HOGIC

WATFORD ELECIRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENCLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

 ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDERE DIO OR BANKYRSETURN OF POST, WILCOME, P\&P ADD SOP TO ALL ORDERS UNDER \&1t 00. OVEREEAS ORDIRPOSTAGE AT COST. AIR/SURFACE, (ACCESS orders by tolephone weleome).
VAT
We atock many moreitems. It paya to visit us. We are eltuated behlnd Wafford Football Ground. Neareat Underground/BR Stallon: Watford High Street.
Baturday $\mathrm{B} .00 \mathrm{~mm}-\mathbf{4 . 0 0} \mathrm{pm}$. Ample Froe Car Parklng apace avaliable.

OLYESTER CAPACITORS: Axlal lead type (Values are In nAF)

 $470 n$ '17p; 680 n 19p; 1 $\mu \mathrm{F}$ 23p; 1 4540 p ; $2 \mu 246 \mathrm{p}$.

We stock mot of the
parts for projects in ELECTROLYTIC CAPACITORS: (Values are in μ P) $500 \mathrm{~V}: 10 \mathrm{h2p} ; 4773 \mathrm{p} ; 250 \mathrm{~V} ; 100 \mathrm{b5p}$:
 $25 \mathrm{~V}: 1.5,6 \cdot 8,10,228 \mathrm{p} ; 339 \mathrm{p} ; 478 \mathrm{p} ; 10011 \mathrm{p} ; 15012 \mathrm{p} ; 22015 \mathrm{p} ; 33022 \mathrm{p} ; 47025 \mathrm{p} ; 680,1000$
$34 \mathrm{p} ; 220050 \mathrm{p} ; 330076 \mathrm{p} ; 470092 \mathrm{p} .16 \mathrm{~V} ; 40,47,1009 \mathrm{p} ; 12 \mathrm{~L} 12 \mathrm{p} ; 22013 \mathrm{p} ; 47020 \mathrm{p} ; 68034 \mathrm{p} ; 1000$ $27 \mathrm{p}: 150031 \mathrm{p}$; $220036 \mathrm{p} ; 330074 \mathrm{p}$; 4700 79 p
TAG-END TYPE: $450 \mathrm{~V}: 100 \mu 65 \mathrm{p} .70 \mathrm{~V} ; 4700 \mu 243 \mathrm{p} .64 \mathrm{~V} ; 3300$ 198p; 2200 139p. 50 V
$154 \mathrm{p} ; 2200110 \mathrm{p} .40 \mathrm{~V}: 4700 \mu 160 \mathrm{p} .25 \mathrm{~V}: 400092 \mathrm{p} ; 330098 \mathrm{p} ; 2500,220090 \mathrm{p} .15,00034 \mathrm{p}$

TANTALUM	Bead Capaeltars	POTENTIOMETERS: (ROTARY)	OPTO
$35 \mathrm{~V}: 0.1 \mu, ~$	$0.22,0.33$	$15 \mathrm{p} ; 0.47$,	Carbon Track. 0.25 W Log \& 0.5 W

MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n7}, 10 \mathrm{n} 6 \mathrm{p}$,
$15 n \mathrm{~F}, 22 \mathrm{n}, 30 \mathrm{n}, 40 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}$, $100 \mathrm{n}, 200 \mathrm{n} 9 \mathrm{~g} .470 \mathrm{n} / 50 \mathrm{~V} 12 \mathrm{p}$.
MINIATURE TYPE TRIMMERS
$4-6 \mathrm{p}, \mathrm{F}_{2-10 \mathrm{pF}} 22 \mathrm{p} ; 2-25 \mathrm{pF}, 5-65 \mathrm{pF}$ $4-6 \mathrm{pF},{ }^{2-10 \mathrm{pF}} 22 \mathrm{p}$
$30 \mathrm{p} ; 10-88 \mathrm{pF} 35 \mathrm{p}$.
COMPRESEION TRIMMERS $3-40 \mathrm{pF}, 10-80 \mathrm{oF} 20 \mathrm{p} ; 20-250 \mathrm{DF} 28 \mathrm{p}$;
$100-580 \mathrm{pF} 39 \mathrm{p}: 400-1250 \mathrm{pF} 48 \mathrm{p}$. POLYSTYRENE CAPACITORS
10pF to $1 n F$ ID: $1 \cdot 5 n F$ to $12 n F 10 \mathrm{p}$.
10pF to 1 nF ip: $1 \cdot 5 \mathrm{nF}$ to 12 nF 10 p .

TIL209 Rad
TIL211 Grn
TILz12 Yeilow $\begin{array}{ll}\text { TlL211 Grn } & 18 \\ \text { TIL212 Yellow } & 18 \\ 2^{\prime \prime} \text { Red } & 14 \\ 2^{\prime \prime} \text { Yellow Green } & 11\end{array}$ $\mathbf{2}^{\prime \prime}$ Yellow Gree
Square LED Square LE
OCP11 ORP12
 ORP61

2N5T77	PRESET POTENTIOMETERS	2NST77
Vertical \& Horizontal	$7 \mathbf{S e g}$ Dieplay	$\begin{array}{ll}0-1 W 80 \Omega-5 M \Omega \text { MInlature } & 7 p \\ 0-25 W 100 \Omega-3.3 M \Omega \text { Horlz } & 10 p\end{array}$ TiL321 CAn E" 118

TL322 C Cth ${ }^{\prime \prime} 11 s^{\prime \prime}$
OLT04 C Cth $3^{\prime \prime}$ RE818TORS: Carbon Film, HIgh

Stablity, Low Nolse, Miniature | Tolerance 5% | | | |
| :--- | :--- | :--- | :--- |
| Range | Val. | $1-89$ | $100+$ |

 $\begin{array}{ll}\text { FND357 or } 500 & 180 \\ \text { MAN3640 } & 170\end{array}$ $-3^{\prime \prime}$ Green C.A. 180
Tllas Inf. Red 59 $\begin{array}{lllll}\text { W } 2 \Omega 2-4 M 7 & E 24 & 2 p & \text { ip } & \text { Tlis2 Inf. Red } \\ \text { W2 } \\ \text { IW2-4M7 } & \text { E12 } & 2 p & \text { ip } & \text { TIL78 detector } \\ 1 W 2 \Omega 2-10 M & E 12 & 5 p & \text { 4p } & \text { Bargraph Red. }\end{array}$
 2000 30p. $3300,470060 \mathrm{p}$.
CERAMIC CAPACITORS: 50
0.50 F to ton 4 P ; 22 n to 100 n 7 p .

VOLTAGE REGULATORS*

VOLTA 1A	$\begin{aligned} & \text { AGE } \\ & \text { TOS } \end{aligned}$	REGULA +ve	-ver		
5V	7805	145p	7905	220p	
12V	7812	143p	7812	220p	
I8V	7815	145p	7915	220 p	
18 V	7818	145p		-	
14	TO2\%	0 Plastic	Casing		
3V	7805	60p	7905	85p	
12 V	7812	80p	7912	65p	
15 V	7815	60p	7915	65p	
18 V	7818	${ }^{60} \mathrm{D}$	7918	65p	
24 V	7824	60p	7924	65p	
100 mA	TO92	Plastic	Casing		
5 V	78L05	30p	79L05	65p	
6 V	$78 \mathrm{L62}$	30p			
8 V	78L82	30 p			
12V	78 L 12	30p	79 L 12	85p	
15V	78L15	30p	79 L 15	65p	
CA3085	95	LM326N	N 240	78H05	+5V/5A

1A DPDT 1A DP cloff. 18p tADPDT 13p 1 pole clover 24p PUSH BUTTON Latching of Momentary. SPST C/Over 99p DPDT C/Over 145p	BWITCHES TOGGLE 2A 25 SPST DPDT SUBMIN TOOGLE SP changeover SPST on/oft DPDT 6 tage DPDT c/off
SWITCHES Miniature Non-LockIng Puth to Make 18p Push to Break 20p	
ROCKER: SPST on/of 10A 250V ROCKER: illumInated DPST	
Eht when on: 10A 240V	

LM $300 \mathrm{H} \quad 170$ LM326N $\quad 270$ 78H05+5V/5A 595 ROTARY: Malns $250 \mathrm{VAC}, 4 \mathrm{Amp}$ stp $\begin{array}{lllll}\text { LM305H } & 140 & \text { LM723 } & 39 & 78 H G 5 A\end{array}+5 \mathrm{~V}$ $\begin{array}{cccccc}\text { LM317K } & 35 & \text { TBA } 2525 B & 95 & 79 \mathrm{HG} 5 \mathrm{~S} \\ \text { LM323K } & 825 & \text { TDA1412 } & 150 & \text { to } & -24 \mathrm{~V}\end{array}$ JACKSONS VARIABLE
 $\begin{array}{llll}\text { loo/300pF } & \text { 195p } & \text { slow moino } & \text { 250p } \\ 500 \mathrm{pF} & \text { Drive } & \text { 450p } \\ & 00 & 208 / 176 & 395 \text { p }\end{array}$

 $\begin{array}{llll} & 775 p & 2550 \mathrm{pF} & 278 \mathrm{p} \\ \text { Drum } 54 \mathrm{~mm} & 59 \mathrm{p} & 250 & 100,150 \mathrm{pF} \\ & 352 \mathrm{p}\end{array}$ $\begin{array}{lll}002365 \mathrm{pF} & 395 \mathrm{p} & 00.3 \times 25 \mathrm{pF} \\ 0.250 \mathrm{p}\end{array}$ $\begin{array}{ll}\text { DENCO COILS RDT2 } & \text { 120p } \\ \text { 'DP'VALVETYPE RFC5 } & 120 \mathrm{p}\end{array}$ Range 1 to 5 日l., RFC $7(19 \mathrm{mH}) 135 \mathrm{p}$
Rd. YI. Wht. 106 p IFT 13,14 : 15 .

 $\begin{array}{ll}\text { Rd., Wht. 140p TOC } 1 & 110 \mathrm{p} \\ \text { B9A Valve Holder MW5FR } \\ \end{array}$

VEROBOARDS 1"| COPPER

 Pkt. of 36 pins 20p

Spot Face Cutter 107p Spot Face Cutter 107p	Ferric Chlo
ride	147p $\frac{\text { Anhydr. 225p }}{\text { Dalo Pen 90p }}$

DIODES

DIODES	ZENERS	SCR.
AA129 22	Ranga 2V7 to	Thyriators
BA100 15	39 V . 400 mW	
BY126 12	Epath	
$8{ }^{8127} 12$	Range 3V3 to	8A/b00V $8 \mathrm{~A} / 300 \mathrm{~V}$ 00
CRO33 250	33V.1.3W	
OAS 40	13p eech	
OAAT 12	NOISE	12A/400V 95
OA70 12	NOISE	$12 \mathrm{~A} / 800 \mathrm{~V} 188$
OA79 15	Z5d 180	$15 \mathrm{~A} / 700 \mathrm{~V} 180$
OAB5 15		2N444 140
OADO	BRIDGE	2N5062 32
OAg1	RECTIFIERS	2N5064 35
OADS	(plantlc case)	BT106 1\%
O A200	$1 \mathrm{~A} / 60 \mathrm{~V} 20$	C108D 81
OA202	$1 \mathrm{~A} / 100 \mathrm{~V} 22$	$4{ }^{24}$
IN814	$1 \mathrm{~A} / 200 \mathrm{~V}{ }^{28}$	Tices 29
IN916		
(N4001/2	$1 \mathrm{~A} / 400 \mathrm{~V} 21$	
(N4003	$1 \mathrm{~A} / 600 \mathrm{~V} 34$	
[N4004/5	$2 \mathrm{~A} / 50 \mathrm{~V} 35$	
IN4008/7 7	$2 \mathrm{~A} / 200 \mathrm{~V} 40$	$3 \mathrm{~A} / 100 \mathrm{~V}$ 48
ind148 ${ }_{\text {IS4 }}$	$2 \mathrm{~A} / 400 \mathrm{~V} 46$	3 A/400V 56
1544	$2 \mathrm{~A} / \mathrm{BOOV}$ -	8 A/100V 60
$3 \mathrm{~S} / 100 \mathrm{~V} 16$	2A/600V	$8 \mathrm{~A} / 400 \mathrm{~V} 69$
$3 \mathrm{~A} / 400 \mathrm{~V} 16$ $3 \mathrm{~A} / 600 \mathrm{~V} 17$		$8 \mathrm{~A} / 800 \mathrm{~V} 115$
$3 \mathrm{3A} / 600 \mathrm{~V} 17$	6a/400V $10 \mathrm{~A} / 200 \mathrm{~V} 215$	12A/100V 78
$3 \mathrm{~A} / 1000 \mathrm{~V} 30$ $6 \mathrm{~A} / 400 \mathrm{~V} 50 \mathrm{p}$	10A/200V 215 $10 A / 600 V$ 315	12A/400V 82
6A/400V50p	$10 \mathrm{~A} / 600 \mathrm{~V}$ 315 $25 \mathrm{~A} / 200 \mathrm{~V} 215$	$12 \mathrm{~A} / 800 \mathrm{~V} 135$
	25A/600V 395	16A/100V 103
		16A/400V 105
硡		25A/400V 185
ide selection		25A/800V 295
of Electromic		25A/1000 V 430
Books and	DIAC	30A/400V 525
Magazines	ST2 25	T28000

 м

ABSONGLEN LTD.

ANNOUNCE THE MINIBENCH*

Special Introductory price!

DO YOU EVER NEED A FEW MORE HANDS?

Post Coupon today :	
Name.	
Address	
.......................... Postal Code	
Please supply ONE Minibench If	£12.95
Flexible Arms with clips @ £ 4.75t	
Flexible Arms with lens @ £ 5.75t Postage and Packing	
Cheque/Postal Order enclosed for	\pm
tPrice applicable to Minibench purchasers only.	

Messrs. ABSONGLEN LIMITED, (E.E.5.) THE FORGE, STAPLOW, LEDBURY, HEREFORDSHIRE HR8 INP.
\star Just a squeeze to clamp or release circuit board.

* Adjustable minimum jaw aperture
* Jaws flip over for work on either side of circuit board
\star Rubber lined jaws for clrcuit board protection \& maximum grip
* Single wing nut controls jaw attitude and friction setting
\star Crocodile clips mounted on flexiarms hold components exactly where needed
\star Crocodile clip can be used as a heat shunt
* Lens similarly mounted is ideal for close work and spotting those solder bridges
\star Flexi-arms keep station with circuit board
* A typical configuration would include two Flexi-arms with clip and one with lens
* Attractive stove enamel two-tone finish
\star Built to last a lifetime!

ELECTRONICS?

TRY A ZEDPACKI
COMPONENTS AT A PRICE
EVERYONE CAN AFFORD
 20.30 mixed capactors, most types 83.55 10e mixed electrolyties $\begin{array}{ll}Z 5 \\ Z 6 & \text { tex mixed polystyrene capa } \\ \text { Z } 2.20\end{array}$ 26 componentis $£ 1 \cdot 5$ Z7 300 mixed printed circuit resistors Z9 100 mixed minlature ceramic and plate caps Z11 25 assorted pots. skeleton etc. \&1 Z12 24 assorted vdr's and thermintors $\% 1 \cdot 20$ Z13 1 lb mixed hardware. Nuts. bolts z14 tet mixed, new and marked, full spec. transistors. Pack includes:- BC148, BF154, BF274, BC212L, BC238, BC184L, PBCios and, or lote of similar types Z15 100 mixed diodes Including:-zener, power, bridge, signat, germanlum,
sllicon etc. All full spec. $\begin{array}{ll}216 \\ 20 & 1 N 4148 \\ \text { Z17 } \\ \text { 2 } \\ \text { iN4003/10D? }\end{array}$
Z18 20 assorted zeners, 1 watt and 400 mw
21512 - 125^{*} TIL 208 RED. LED'S 22010 Assorted switch os, Including push button, slide, multipote, miniature etc. UHF MODULATORtstic value. fi-2s. JHF MOOULATORS
(e8s tine UHF) housed In metal box $21^{\prime \prime} \times$ $2^{\prime \prime} \times 1^{\prime \prime}$ with g^{\prime} coaxial lead, TV plug and connection data. Aluminium finish sllder knobs, tondard fitting.
tied to mature level/batt. meters, fited to many cassetfe recorders. circuit tehine kits.
ncludes 100 sa ins. of copperclad F/G board. 1 ib ferric chioride, (made for U.S. brisive cleaner, tweezers, otch resist dish and Instructions. 1ib of Focl. E2.es.
TO: "GEMINI ELECTRONIC COMPONENTS" DEPT EE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Sond Cheque or Postal Order. Plus edp PAP. and 15\% VAT ZED PACKS now avallable for Callerthools at go Deptiord Broadway, London, S.E.E.

> 150 sq. Ins. single sided board.
> 100 Miniature reed switches.
> to Subminiature Reed Swliches. E4.20 8MALL MAGNETS
> With hole in swifch BANKS for £1 These cost a fortunel Were varlous music centres. Includes independent and Interdependent latching types mult, pole c/o etc. Can be modified. Can't be repeated. ${ }^{3}$ Banks for §1. Chrome or spun aluminlum finlah.
> MINIATURE MAINS TRANSFORMERS
> $\begin{aligned} & \text { Top quallty, Spilt bobbin constructlon } \\ & \text { wlli give } 4.5 \mathrm{~V}-0.4 \cdot 5 \mathrm{~V} \text { at } 250 \mathrm{MA}, 17^{*} \times 11^{*}\end{aligned}$

> PPs Battery Connectors 183 for 2.5 Miniature Press to Make Swltches, Red knob. 3 tor 50p.
> Subminia
> f for 50p.
> 4 for sop.
> $4 \times$ HPII Battery Holders (2×2 Flat type) with leads. 2 for 59p.
> Assorted Fuse Holders Including 80 mm .
> 3. 5 mm . Jack Bockets, swliched. Enclosed type. P.C. or panel mounting. With nuts and washers. 4 for SMP. Aerial. Plugs into any 3.5 mm sacket. Approx $25^{\prime \prime}$ extended 81 each! 3 for 82.50 HI Power Infre Red Transmitter 5 mm LED. TIL si 60p em. 3 for $£ 1.50$. Crystal Clear 3 mm LEDS very pretty 10 of each $\mathrm{E}_{2} \cdot 50$.

ALTERMATOR RECTIFIERS Make lovely 0 amp bridges. Ideal for Type 4AFt. St of 4 (2 neg. case +
2 pos. case) \&2.
Special Purchase enables us to offer Muflard C2se Polyonter Capeciters (Llquarice Allsorts) at the E15 fer tou. These consist of factory clearance lote t.e. ppillages, fioor sweepings, cosmetic rejects etc.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so easential to your success; knowledge that whil enable you to take advantage of the many opportumitiea open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coachine

City and Guilds Certificates:
Telecommunications Technicians Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

LI To: International Correspondence Schools

Dept 268G Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
\qquad

TELEX： 817861

PLUGS AND SOCKETS

COMPONENT

PACKS
300 Performed carbon resistors mixed - －$w ~$
50 2－10 watt wire wound reslstors mixed 50 2－10 watt wire wound reslstors mixed
300 Approx Resistors mixed values（count by weight） 300 Approx Resistors mixed values（count by weight）
200 保 60 Preclsion Resistors $1-5 \%$ tol Pleces Ferrite Rods
60 Metres Single strand wire assorted colours 5 Reed switches glass type 5 Micro switches as sorted types Including min． 6 Assorted Audto jack sockets and plug
100 Dlsc ceramlc caps mixed values 20 Assorted pots
${ }^{40}$ C280 type capacitors metal foll ${ }_{50}^{60}$ Electrolytics assorted 50 Assorted polyestor／polystyrene 15 Assorted sllder pots
10 Dual gang pots log and in assorted val
10 Pack assorted Handware in assortsod
10 bolts etc
10 Assorted swltches sllde／rocker／mains 3 Relays 24 c coll
20 Assorted Tag sush，screw and sllder types 4 Wave change switches rotary
1 Pack of assorted PVC sleeving and markers 100 I watt reslstors mlxed values
35 Presets assorted type and values
40 Metres stranded wire assorted colours $10 \mathrm{Aessorted} \mathrm{Din} / \mathrm{sock}$ wis／Coax／speakers／phono 10 Assorted plugs Din／coax／speakers／etc． 10 Metres assorted cable．Malns／speaker／coax／microphone 100 sq In copper clad board single side paper

BABANI BOOKS

BUOGET STEREO
HEAOPHONES
BLACK WITH PADDED EARCUPS IMPEDANCE 8 ohms
FREQUENCY RESPONSE
$30-18,000 \mathrm{HZ}$
£4－20 O／No 885
GOOO QUALITY STEREO
DOUBLE PADADPED HEAD BAND
CIRCULAR VENTED PADDED
PIECES BLACK AND ALUMINIUM FINISH
IMPEDANCE 8 ohms
FRED
$20-19,000 \mathrm{HZ}$
WEIGHT
Ef． 25 O／NO 884
SUPERIOR QUALITY
WIDE BLACK PADDED HEAD
BAND WITH PADDED MATT
ALUMINIUM EARCUPS
IMPEDANCE 8 ohms
FREQUENCY RESPONSE
$15-25,000 \mathrm{HZ}$
WEIGHT 290 gms

$$
15 \cdot \mathrm{~m}_{5} \text { O／No } 884
$$

```
NO.
Popular Electronl Circults Book 1
```

```
*)
```

*)
M,
M,
Practical Electronles Science Projects
Practical Electronles Science Projects
Practical Electronles Science Projects
Practical Electronles Science Projects
Flrst Book of Dlode Characteristics Equlvalents and Substitutes
Flrst Book of Dlode Characteristics Equlvalents and Substitutes
Electronlc Clrcults for Model Rallways
Electronlc Clrcults for Model Rallways
Audio Enthuslasts Handbook
Audio Enthuslasts Handbook
Bulld Your Own Electronle Experiments Laboratory
Bulld Your Own Electronle Experiments Laboratory
Solld State Novelty Prolects
Solld State Novelty Prolects
Bufld Your Own Solld State HI-FI and Audlo Accessories
Bufld Your Own Solld State HI-FI and Audlo Accessories
28 Tested Translstor Prolects
28 Tested Translstor Prolects
Solld State Short Wave Recelvers for Beglnners
Solld State Short Wave Recelvers for Beglnners
50 Projects Using IC CA3 130
50 Projects Using IC CA3 130
50 CMOS IC Projects
50 CMOS IC Projects
A Practical Introductlon to DIgital IC'
A Practical Introductlon to DIgital IC'
How to Bulld Advanced Short Wave Recelvers
How to Bulld Advanced Short Wave Recelvers
Beginners Gulde to Bullding Electronic Prolects
Beginners Gulde to Bullding Electronic Prolects
Ensineers and Machinists Reference Tables
Ensineers and Machinists Reference Tables
Rado and Electronlc Colour Codes and Data Chart
Rado and Electronlc Colour Codes and Data Chart
Second Book of Translstor Equlvalents and Substltutes
Second Book of Translstor Equlvalents and Substltutes
Sil
Sil
52 Projects Using IC41
52 Projects Using IC41
Glant Chart of Radlo Electronle Semlconductor and Logle Symbols
Glant Chart of Radlo Electronle Semlconductor and Logle Symbols
Resistor Selection Handbook (Internatlonal Editlon)
Resistor Selection Handbook (Internatlonal Editlon)
Major Solld State Audio HI-FI Consiructlon Prolects
Major Solld State Audio HI-FI Consiructlon Prolects
Major Solld State Audio HI-FI Construction Prolects
Major Solld State Audio HI-FI Construction Prolects
Electronic Calculator Nsers Handbook
Electronic Calculator Nsers Handbook
Handbook of IC Audlo Preampllifer \& Power Ampllfler Constructlo
Handbook of IC Audlo Preampllifer \& Power Ampllfler Constructlo
50 Circults Using Germanlum, Silicon and Zener Dlodes
50 Circults Using Germanlum, Silicon and Zener Dlodes
50 Projecis Using Relays. SCR,s and TRIACs
50 Projecis Using Relays. SCR,s and TRIACs
50(FET) Fleld Effect Translstor Prolects
50(FET) Fleld Effect Translstor Prolects
Dlgltal IC Equlvalents and PIn Connections
Dlgltal IC Equlvalents and PIn Connections
LInear IC Equlvalents and PIn Connectlons
LInear IC Equlvalents and PIn Connectlons
50 SImple L.E.D. CIrcults
50 SImple L.E.D. CIrcults
IC555 Prolects
IC555 Prolects
Projects In Opto-Electronics
Projects In Opto-Electronics
Radlo Crrcuits Using IC's
Radlo Crrcuits Using IC's
Mobile Dlscotheque Handbook
Mobile Dlscotheque Handbook
l
l
IC LM3900 Projects
IC LM3900 Projects
Electronic Music and Creative Tape FecordIng
Electronic Music and Creative Tape FecordIng
Long DIstance Televislon Receptlon (TV-DX) for the Enthuslast
Long DIstance Televislon Receptlon (TV-DX) for the Enthuslast
Practical Electronic Calculations and Formulae
Practical Electronic Calculations and Formulae
Naulo Stitions Gulde
Naulo Stitions Gulde
\#
\#
How to Eulld Your Own Solid State Oscllloscope
How to Eulld Your Own Solid State Oscllloscope
50 Circults Using 7400 Serles IC's
50 Circults Using 7400 Serles IC's
Practical Constructlon of Pre-amps.Tone Controls, Fllters \& Attn.
Practical Constructlon of Pre-amps.Tone Controls, Fllters \& Attn.
Beginners Gulde to DIgltal Techniques
Beginners Gulde to DIgltal Techniques
Elements of Electronics - Book 1
Elements of Electronics - Book 1
Elements of Electronlcs - Book 2
Elements of Electronlcs - Book 2
Elements of Electronics - Book
Elements of Electronics - Book
SIngle IC Projects
SIngle IC Projects
Beginners Gulde to Mlcroprocessors and Computing
Beginners Gulde to Mlcroprocessors and Computing
Counter, Driver and Numeral DIsplay Prolects
Counter, Driver and Numeral DIsplay Prolects
Choosing and Using your HI-Fi
Choosing and Using your HI-Fi
Electronlc Games
Electronlc Games
I谗-Finding Chart
I谗-Finding Chart
Electronlc Household Prolecis
Electronlc Household Prolecis
A Mlcroprocessor Primer
A Mlcroprocessor Primer
Electronlc Music Prolect
Electronlc Music Prolect
Electronic Test Equlpment Construction
Electronic Test Equlpment Construction
Electronlc Test Equlpment Construction
Electronlc Test Equlpment Construction
Elements of Electronlcs - Book 4
Elements of Electronlcs - Book 4
Practical Computer Experiments
Practical Computer Experiments
Rado Control for Beglnners
Rado Control for Beglnners
Access and Barclaycards accepted－just telephone our
Orderline－Ware（STD 0920） 3182 ．Add 15% V．A．T．，and
50 p postage per order．Terms：C．W．O．，cheques，
Postal Orders payable to Bi－Pak．
Access and Barclaycards accepted－just telephone our
Orderline－Ware（STD 0920） 3182 ．Add 15% V．A．T．，and
50p postage per order．Terms：C．W．O．，cheques，
Postal Orders payable to Bi－Pak．
Access and Barclaycards accepted－just telephone our
Orderline－Ware（STD 0920） 3182 ．Add 15% V．A．T．，and
50p postage per order．Terms：C．W．O．，cheques，
Postal Orders payable to Bi－Pak．
Access and Barclaycards accepted－just telephone our
Orderline－Ware（STD 0920） 3182 ．Add 15% V．A．T．，and
50p postage per order．Terms：C．W．O．，cheques，
Postal Orders payable to Bi－Pak．
Solld State Short Wave Recel
Solld State Short Wave Recel
Transistor Radio Faulf-Finding Char
Transistor Radio Faulf-Finding Char
Electronle Music Project

```
    Electronle Music Project
```

\begin{tabular}{|c|c|}
\hline \&

\hline CRIMSON ELEKTRIK HI FI MODULES \& ILP HI FI MODULES

\hline CE 608 Power Amp £20.09 \&

\hline CE 1004 " „ £23.43 \& HY60

\hline CE 1008
CE 1704

C \&	HY120
HY200	

\hline \& HY400 £31.83

\hline \& Pre Amp

\hline CPS 3 " " £23.52 \& HY6 £6.44

\hline \& HY66 $£ 12 \cdot 19$

\hline \& Power

\hline \& PSU30

\hline \multirow[t]{2}{*}{SINCLAIR INSTRUMENTS} \& $\begin{array}{ll}\text { PSU60 } & \text { £13.04 } \\ \text { PSU70 }\end{array}$

\hline \& \multirow[t]{2}{*}{PSU180 £21.34}

\hline Digital Multimeter \&

\hline \& MULTIPLEX NICKEL

\hline ", DM450 £99.00 \& CADMIUM C

\hline \multirow[t]{2}{*}{equency Meter
PFM200
£49.80} \& Type S101 (HP4) £0.98

\hline \& $\begin{array}{ll}\text { Type SubC (HP11) } & \left.\begin{array}{ll}£ 1.75 \\ \text { Type SubD (HP2) } & \\ £ 1.95\end{array}\right]\end{array}$

\hline Low Power Oscilloscope SC110 £139-00 \& | Friwo Chargers for above |
| :--- |
| Penlight 4: accommodates |

\hline \multirow[b]{2}{*}{245.00} \& \multirow[t]{2}{*}{}

\hline \&

\hline \multirow[t]{2}{*}{TGF 105 Pulse Generator} \& \multirow[t]{2}{*}{accommodates
HP7, HP11}

\hline \&

\hline \multicolumn{2}{|l|}{LCD Multimeter ${ }^{\text {T }}$}

\hline TM351 £99 \& NOTE ALL PRICES

\hline LCD Multimeter \& \multirow[t]{2}{*}{NET. EXCLUDING VAT. POSTAGE}

\hline TM352 £49.9 \&

\hline $\begin{array}{llll}\text { Prescaler } & \text { YP600 } & \text { £37.50 }\end{array}$ \& PACKING

\hline
\end{tabular}

New

Presensitised PC Boards, Developer. U.V. units ${ }_{\text {® }}$ Toyo miniature Fans $230 v$ AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster $£ 9.95$
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles
Just one of the exciting Leader range

£299 + VAT

LB0508A

OSCILLOSCOPE
With 20 MHz DC bandwidth and
10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.

Send SAE for details of full range
Marshall's $80 / 81$ catalogue is now available by post, UK 75p post paid, Europe 95p post paid: Rest of world £ $1 \cdot 35$ post paid.
A. Marshall (London) Ltd., KIngsgate House,

KIngsgate Place, London NW6 4TA. Industrlal Sales: 01-328 1009, Mail Order: 01-624 8582 24 hr service. Also retail shops: 325 Edgware Road, London W2. 40 Crlcklewood Broadway, London NW2, 85 West Regent St., Glasgow, 108A Stokes Crott, Bristol.

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and l.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED, COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the Instruction reprint at an extra 45p each.
Reprints available separately 45p each + p. \& p. 40p.

1981 ELECTRONICS CATALOGUE

KITS	Hundreds of illustrations, product data, circults, and details of all our klts and	TOOLS
I.C.s	RESISTORS	
Iductional courses.		
URANSISTORS		
Upto date prlce Ilst Included. All products		
are stock IInes for fast dellvery. Send 70p		
In stamps or add 70p to order.		

ADVENTURES WITH ELECTRONICS :yntom

An easy to follow book sultable ':r all ages, ideal tor beginners. No Soldering. Uses an 'S Dec' breadboard. Gives clear Instructions with lots of pictures. 16 projectsncluding three radios, siren, metronome, organ, and the components for the projects.
Adventures With Electronics $\boldsymbol{£ 1} \cdot \mathbf{9 0}$. Component Pack $\mathbf{£ 1 6} \cdot \mathbf{7 2}$ less battery.

ADVENTURES WITH MICROELECTRONICS

Same style as above book; 11 projects based on Integrated circuits-includes: dice wo-tone doorbell, el ectronic organ, MW/LW rado, reaction timer, etc. Compols. Adventures with Mieroelectronles $£ 2 \cdot 35$, Component pack $£ 26.95$ less battery.

MAGENTA ELEGTRONICS LTD．

CABLE \＆PIPE LOCATOR．Mar． 80 KITCHEN TIMER．Mar． 80
STEREO HEADPHONE AMPLIFIER．Mar． 80
5 RANGE CURRENT LIMITER．Mar． 80 MICRO MUSIC BOX．Feb． 80
Grey Case 63.63 extra
SIMPLE SHORT WAVE RECEIVER．Feb． 80 Headphones $£ 3.28$
SLIDE／TAPE SYNCHRONISER．Feb． 80
MORSE PRACTICE OSCILLATOR．Feb． 80
SPRING LINE REVERB．UNIT．Jan． 80
UNIBOARD BURGLAR ALARM．Dec． 79
BABY ALARM．Nov． 79
OPTO ALARM．Nov． 79
HW／LW RADIO TUNER．Nov． 79
ONE ARMED BANDIT．Oct． 79
Case extra $£ 3.98$ ．
HIGH IMPEDANCE VOLTMETER．Oct． 7
CHASER LIGHTS．Sept． 79
VARICAP M．W．RADIO．Sept． 79
SIMPLE TRANSISTOR TESTER．Sept． 79
ELECTRONIC TUNING FORK．Aug． 7
Suitable microphone \＆plug \＆I／ 59 extra
WARBLING TIMER AUE 79
Y POWER SUPPLY．Aug． 79
SWANEE WHISTLER．Aug． 79
DARKROOM TIMER．July
TREMOLO UNIT．June 79
ELECTRONIC CANARY June 79
LOW COST METAL LOCATOR．June 79
Handle \＆coll former parts extra $£ 5 \cdot 55$ ．
QUAD SIMULATOR．June 79.
NTRUDER ALARM．May 1979
〔3．40 less coll forme C12．46 $614 \cdot 9$ 64． 24 613－82 421．65 10.46
63.93 13.93
221.05
65.13 85.13
$E 8.20$
\＆5．77 inc．optional port E15． 50 less dia $618 \cdot 39$

TRANSISTOR TESTER．April 79
TOUCH BLEEPER．April 79
ONE TRANSISTOR RADIO．Mar． 79 Wich Amplifier \＆Headse $\mathrm{E}^{2} 5$
MICROCHIME DOORBELL．Feb． 79
AUDIO MODULATOR．Feb． 79
Cl－56 less case
THYRISTOR TESTER．Feb 79 $13 \cdot 48$

ADJUSTABLE PSU Feb 79 E3． 27

Case（horizontal layout）$£ 5 \cdot 21$ extra．
HEADPHONE ENHANCER．Jan． 79
FUZZ BOX．Dec． 78
MIC．AMP．Dec． 78
AUDIBLE FLASHER．Dec 78
YEHICLE IMMOBILISER．Inc．PCB．Dec． 78
AUDIO ERFFECTS OSCILLATOR．Nov． 78
 AUDIO EFFECTS OSCILL
t3．99 in
\＆2． 60

FUSE CHECKER．Oct． 78.
TREASURE HUNTER．Oct． $78 \ldots \leqslant 17 \cdot 86$ less handle \＆coll former
SOUND TO LIGHT．Sept． 78 ．
FILTER
CAR BATTERY \＄TATE INDICATOR．Sept． 78 p．c．b．
$£ 6.98$
less case inc．PCB
R．F．SIGNAL GENERATOR．Sept． 78
SLAVE FLASH．Aug． 78.
N SITU TRANSISTOR TESTER June 78
LASHMETER．May 78
FLASHMETER．May 78 …
WEIRD SOUND EFFECTS GENERATOR．Mar 78
CHASER LIGHT DISPLAY．Feb． 78
Mar． 7
inc．p．c．b．case extra $£ 5.21$
AUDIO VISUAL METRONOME．Jan． 78
ELECTRONIC TOUCH SWITCH．Jan． 78 RAPID DIODE CHECK．Jan． 78
AUTOMATIC PHASE BOX．Dec． 77
HF RADIO．Nov． 77
ULTRASONIC REMOTE CONTROL．Nov．／Dec． 77
ADD－ON CAPACITANCE UNIT．Sepe， 77
PHONE／DOORBELL REPEATER．July 77.
ELECTRONIC DICE．March 77

TEACH－IN－80

E．E． 12 part series．Oct＇79－Sept＇80．Covers the basics of electronics －lots of practical work．Circuits are built on a plug－in Eurobread－ board，which is built into a wooden console which houses the power supplies，speaker，meter，pots and LED indicators．The series uses a range of electronic components in the experimental work including a photocell，I．C．s，transistors，etc
Wooden Console（Tutor Deck）kit $\mathbf{£ 5} \cdot 98$ extra．Includes all the wood，glue，feet and strap handle．
Electronic components，including Eurobreadboard，for the console and the experiments $£ 25 \cdot 40$（called list $A+B+C$ by E．E．）．Re－ prints available－Parts 1－12，45p each． List＇C＇only $£ 2 \cdot 45$ ．

C106D	56p	2N5457	58p	BFY51	
TIC46	49p	2N548	63p	BFY52	p
OA47	11p	40673	980	BFX88	32p
OA90	9p	AC128	29p	BRY39	48p
OA202	16p	AC141	38 p	MPSA65	39p
W005	33p	A C142	39p	RPY58A	¢1．16
W06	47p	AC176	37p	Tip31a	52p
25 J	C2． 92	BC182	110	TIP32A	${ }_{83}{ }^{\text {p }}$
IN4001	51 ${ }^{2}$ P	BC182L	11p	TIP33A	94p
IN4005	6 p	BC183	11 p	TJP34A	99p
IN4148	5p	BC184	11p	TiP121	C1． 12
IN5404	18p	BC184L	110	TIP2955	69p
IN5408	19p	BC212	11 p	TIP3055	69p
BF244B	870	BC212L	11 p	TIS43	38p
MPF102	69 p	BC213	110	TPSA1	35 p
TIS88A	57p	BC214	11p	2N3053	25p
VN67AF	61.21	BC214L	11p	2N3055	59p
2N3819	28 p	BD13t		2N3702	
2N3820	78 p	BFY50	25 p	2N3704	。
IW CARBON FILM RESISTORS E12 SERIES．1R－10M MIN．HORIZ．PRESETS． 100 R－4M7 1立p each MIDGET POTS．LINEAR． 470 R．4M7 37 each LOG． 4 K7－2M3 38p each SWITCHED POTS． $4 K 7-1 \mathrm{M}$ ．LIN． 75 p ．LOG 76 p					
POLYESTER（C280）CAPACITORS，250V $10 \mathrm{nF} ; 15 \mathrm{nF} ; 22 \mathrm{nF} ; 33 \mathrm{nF} ; 47 \mathrm{nF} 7 \mathrm{p}$ each． 68 nF ； 100 nF 8p． $150 \mathrm{nF} ; 220 \mathrm{nF}$ 12p． 330 nF 15 p ． 470 nF 20 p ． 680nF 28p．1 $\mu \mathrm{F}$ 33p． $1 \cdot 5 \mu \mathrm{~F} 49$ p． $2 \cdot 2 \mu \mathrm{~F} 65$ p．					
SUB MINIATURE PLATE CERAMICS，63V Values In $\mathrm{pF}: 2 \cdot 2 ; 3 \cdot 3 ; 4 \cdot 7 ; 5 \cdot 6 ; 6 \cdot 8 ; 8 \cdot 2,10 ; 15$ ； 22；33； 47 \＆ 56 pF 7 p each．68pF；100pF 7p each． 150 pF ； 220 pF ， 330 pF 11p each． 390 pF ， 470 pF ． 1000pF 5p each． 2200 pF 6 p each． 3300 pF， 4700 pF 7p each． $10 n F$ 13p． 100 nF 22p．47nF 14p．					
ELECTROLYTIC CAPACITORS AXIAL Leads： $1 \mu \mathrm{~F} / 16 \mathrm{~V}$ 11p； $1 \mu \mathrm{~F} / 63 \mathrm{~V}, 1 \mu \mathrm{~F} / 100 \mathrm{~V}$ $12 \mathrm{p}_{\mathrm{i}} 2.2 \mu \mathrm{~F}, 63 \mathrm{~V}, 3.3 \mu \mathrm{~F} .63 \mathrm{~V}, 4.7 \mu \mathrm{~F} / 63 \mathrm{~V} \quad 12 \mathrm{p}$ ； $10 \mu \mathrm{~F} / 16 \mathrm{~V} 11 \mathrm{p}$ ； $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ ， $10 \mu \mathrm{~F} f 33 \mathrm{~V}$ 12p； $22 \mu \mathrm{~F}$ ； 10 V ． $22 \mu \mathrm{~F} / 25 \mathrm{~V}$ 12p； $22 \mu \mathrm{~F} / 63 \mathrm{~V}$ 15p； $33 \mu \mathrm{~F} / 40 \mathrm{~V}$ ， $47 \mu \mathrm{~F} / 25 \mathrm{~V}$ 12p； $47 \mu \mathrm{~F} / 40 \mathrm{~V}$ 15p； $47 \mu \mathrm{~F} / 63 \mathrm{~V} 18 \mathrm{p} ; 100 \mu \mathrm{~F} / 16 \mathrm{~V}$ 12p； $100 \mu \mathrm{~F} / 25 \mathrm{~V}$ 15p； $100 \mu \mathrm{~F} / 40 \mathrm{~V}$ 18p； $100 \mu \mathrm{~F} / 63 \mathrm{~V} 29 \mathrm{p}$ ； $220 \mu \mathrm{~F} / 10 \mathrm{~V}$ 15p； $220 \mu \mathrm{~F} / 25 \mathrm{~V}$ 19p； $470 \mu \mathrm{~F} / 16 \mathrm{~V} 29 \mathrm{p}$ ； $470 \mu \mathrm{~F} / 25 \mathrm{~V} 36 \mathrm{p} ; 470 \mu \mathrm{~F} / 40 \mathrm{~V} 55 \mathrm{p} ; 680 \mu \mathrm{~F} / 16 \mathrm{~V}$ 32p： $1000 \mu \mathrm{~F} / 10 \mathrm{~V} 30 \mathrm{p} ; 1000 \mu \mathrm{~F} / 16 \mathrm{~V} 33 \mathrm{p}$ ； $1000 \mu \mathrm{~F} / 25 \mathrm{~V} 46 \mathrm{p}$ ； $1000 \mu \mathrm{~F} / 40 \mathrm{~V} 58 \mathrm{p} ; 1000 \mu \mathrm{~F} / 63 \mathrm{~V} 79 \mathrm{p} ; 2200 \mu \mathrm{~F} / 10 \mathrm{~V} 39 \mathrm{p}$ ； $2200 \mu \mathrm{~F} / 25 \mathrm{~V} 64 \mathrm{p}: 2200 \mu \mathrm{~F} / 63 \mathrm{~V}$ \＆1 10.					
SWITCHES MIN．TOGGLE spst 59p；spdt 69p；dpdt 79p． MIN．PUSH ON．18p．PUSH OFF．22p． FOOTSWITCH \＆ALT．ACTION spco £1．39； ＇dpco 51 1．8． ROTARY SWITCHES．ip 12 way， $2 \mathrm{p} 6 \mathrm{w}, 3 \mathrm{p} 4 \mathrm{w}$ ， 4p 3w 69p each 12V 185R DPCO RELAY \＆2．98					

LINEAR	I．C．s	LM2917N	¢2． 27
555	32p	LM3900W	85p
556	79 p	LM3909N	79p
741	28p	LM3911N	£1．55
748	55p	LM3914N	£．2．89
CA3080	£1－21	LM3915N	£2．98
CA3085A	£1－32	MC3340	£2．15
CA3130T	¢1．12	TBA820	£1－05
CA3140E	57p	TL064	£2．59
HA1388	¢2． 85	U237B	E1－69
ICL7611	¢1． 04	ULN2283B	£1．47
IC 18038 CC	C．3．92	ZN1034E	£2－19
ICM7555	C1．19	ZN414	£1．09
LF351	58 p	ZN419CE	£2．59
LF353	95 p	2N424E	£2．14
LF356	99p	ZN425E	£5－98
LM30才AN	39p	cmos	
LM309K－	£2．99	4001	27p
LM317K	£3．56	4011	28p
LM317T	£2．55	4013	55p
LM324N	79p	4017	95p
LM380N	99 p	4020	£1． 20
LM381N	¢1．98	4024	$76 p$
LM382N	£1． 62	4069	31 p
LM386N	£1． 04	4081	29p
LM387N	£1．39	4093	89 p
LM389N	£1． 29	4522	£1．79
LM1830	£2． 32	40174	£1．50

OPTO	
BPX25	£2．24
2N5777	60p
ORP12	99 p
T1432	

3 mm Red 15 p ．Green 18p．
Yellow 20p．
Yeilow Red 29 p ．RECTANGULAR．Red．．．．．． 58 p
MAINS PANEL．Neon … 32 p
ZENER DIODES．
BZY88．Range 2 V 7 to 33 V ．
I．C．SOCKETS

JACKSON
500pF dilecon£2． $\mathbf{3 6}$
£2．
$\mathbf{~} 2 \mathbf{2}$
C804
25 pF ．Capac． 10 pF ．$£ 2 \cdot 28$.
$£ 2.46 .50 \mathrm{pF}$
$£ 2 \cdot 48,100 \mathrm{pF}$
£2．83． 150 pF £3．48
'01' $365 \mathrm{pF} £ 3 \cdot 48 .{ }^{\prime} 02$ ' 365
' 02 ' $208+176 \mathrm{pF} £ 3 \cdot 98$.

MONO HEADPHONES． TELEPHONE PICK－UP COIL $\ldots . .72 \mathrm{~F}$ ． F （TEREO HEADPHONES MIN．BUZZERS． 6 V .50 p .9 V ．£1 10 ．12V． 65 p ． ANTEX X25 SOLDERING IRON－25W．．．．． SOLDERING IRON STAND SPARE EITS（for X25）．Smal1，standard，large HOW TO SOLDER SHEET SOLDER BOBBIN DESOLDER PUMP DESOLDER BRAID SOLDER．Handy size HEAT SINK TWEEZERS LOW COST CUTTERS LOW COST LONG NOSE PLIERS WIRE STRIPPERS＋CUTTERS PCB ASSEMBLY JIG PCB ETCHING KIT PLASTIC TWEEZERS EUROBREADBOARD BIMBOARD 1 S．DEC	

New! Sinclair 2X81 Personal Computer. Kit: $£ 49$. ${ }^{25}$ compente

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under £100. At £99.95, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the $Z X 81$ kit means an even bigger saving. At $£ 49.95$ it costs almost 40% less than the ZX80 kit!

Lower price; higher capability

 With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower price-

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $Z \times 81$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

Proven micro-processor, new 8KBASIC ROM, RAM-and unique new master chip.
complete

$\frac{x}{5(5)}$
$8:(x)=1 / 12: x)$
$\underset{j}{x}=0$
$J=J+1$

$T=J+1$

롤ㅁ ($3: 3$

$P(T T)=\square$
$\hat{F}=\mathrm{N}-1$

New, improved specification

- Z80A micro-processor-new faster version of the famous Z80 chip, widely * recognised as the best ever made.

Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.

- Unique syntaxcheck and report codes identify programming errors immediately.
Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.

- Up to 26 FOR/NEXT loops.

- Randomise function-useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer (not available yet-but coming soon!)
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

S $1: 14: 0.00$

The new 8K BASIC ROM used in the Sinclair ZX81 is available to $\mathbf{Z X 8 0}$ owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)

With the exception of animated graphics, all the advanced features of the ZX81 are now available on your ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe EX Printer.

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$ - watch this space!

16K-BYTE RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81

BY PHONE-Access or Barclaycard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or Barclaycard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research Ltd, FREEPOST 7, Cambridge, CB2 1YY.

GREENWELO

443 D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-just add 40p post. Tel (0703) 772501

THE SPECTACULAR 1981 GREENWELD

Component Catalogue
Bigger and better than everl!!

- 60p discount vouchers
- First Class reply paid envelope
- Free Bargain List
- Priority Order Form
- VAT inclusive prices

Quantity prices for bulk buyers SEND 75p FOR YOUR COPY NOW1!!
VEROBLOC BREADBOARD New from Vero, this versatile ald for bullding and tesiling circults can accommodste any size ofic. Blocs and be jolned 360 connexion polnts for Just $\mathbf{£ 4} 415$. (Pholo shows 2 blocs)

TTL AND REED PANEL Z529 74 Serles ICs-Gates and complex logic. 20 asstd. ICs on panels $£ 1$; 100 ICs $25272 \times 6 \mathrm{~V}$ reed relays, $6 \times 2 \mathrm{~S} 030$ or 2 S230 $6 \times 400 \mathrm{~V}$ rects, + R's. Only 50p.

IN4006 DIODES

 Speclal purchase of 1 A rects, Russlanmade. Packed in boxes of 300 , 88.50 per box; 4 boxes $£ 30 \cdot 00$; 10 boxes $£ 75-00$. DISC CERAMICS $0.22 \mu \mathrm{~F}=12 \mathrm{~V} 9 \mathrm{~mm}$ dta. Ideal for decoupllng. $0.22 \mu \mathrm{~F}$
100 for $£ 2 \cdot 75 ; 1000 \mathrm{~mm}$ dian deal for decoupling. $0.05 \mu \mathrm{~F} \quad 12 \mathrm{~V} \quad 15 \mathrm{~mm}$ dia. 100 $0.05 \mu \mathrm{~F}$
$\mathrm{\Sigma} 12.00$.
TRANSISTOR PACK K516 Take advantage of thls unbellevable offerli Small signal NPN/PNP transistors in
plastlc package at an Incredibly low, low pricell Almost all are marked with type number-almost all are full spec devices, some have bent leads, Over 30 different types have been found by $\mathrm{us}_{\text {, }}$ including
BC184/212/238/307/328; BF196/7; ZTX107 8/9/342/450/550 etc. Only avallable as a

CALC CHIPS 60p!!!
New full spec, supplied with data. Type 60p.

$$
\begin{aligned}
& 741-7 \text { for } £ 1 \\
& 555-5 \text { for } £ 1 \\
& \text { DISPLAYS }
\end{aligned}
$$

8 and 9 digit 7 -segment bubble type for above chlps-most have minor faults dud types with data. 5 for $£ 1-00$.
REGULATED PSU PANEL Excluslve Greenweld design, fully variable components except pots and transformer Only © $\mathbf{C} \cdot 75$. Sultable transformer and pots £6.00. Send SAE for fuller detalls.
P.C. ETCHING KIT Mk V The best value in etching kits on the board, Ferric Chloride. Eteh reslst pen abrasive cleaner, two minlature drill blts, etchling dish and Instructlons. All for f. 4.95 .

SLIDER POT SCOOP!!!

 Made by Plher, types PL40CP. Sllly prices for superb goodsIIPL40CP-69 $\times 16 \times 9 \mathrm{~mm}, 40 \mathrm{~mm}$ slide ength. 220R, 2 or 10 in only. Price $00+14 p$

COMPONENT PACKS

 K503 150 wirewound resistors, $1 W$-12W WIde range of values. $£ 2 \cdot 00$.$K 511200$ small value poly, mica, ceramlc caps for a few pF to $0.2 \mu \mathrm{~F} \mathbf{\Sigma 1}-20$. $K 518200$ disc ceramic caps. Big varlety of
values and voltages. $£ 1 \cdot 00$.

BARGAIN LIST 13 10 page A4 Ifst with 800 different items, many unusual, all at cut-price-switches relays, pots, R's, C's, connectors, hard ware, semiconductors, meters, displays, packs, paneis, motors etc . etc. And
FREE

£1 BARGAIN PACKS

Each pack £1; any 25 packs £22
K109 16 BC2398 transistors
K103 10 BC546B transistors
K104 18 BC182B transistors
K105 50 1N4148 diodes
$\begin{array}{lll}\text { K } 106 & 18 & 18 \\ \text { BC } 184 \mathrm{~L} \\ \text { K107 } & 18 & \text { BC } 2131 \\ \text { transistors }\end{array}$
$\begin{array}{lll}\text { K107 } & 18 & \text { BC2131 transistors } \\ \text { K108 } & 8 & 2 N 5060 \text { thyrlstors, } 30 \vee\end{array}$
K109 15 BC114 transistors
$\begin{array}{ll}\text { K110 } & 4 \\ \text { KD1 } \\ \text { K111 }\end{array}{ }^{4}$ BD transistors
$\begin{array}{ll}\text { K111 } & \text { A BD132 transistors } \\ \text { K } 112 & 2 \text { BA } 100 \mathrm{~V} \text { rects, wire ended }\end{array}$
$\begin{array}{lll}\mathrm{K} 112 & 12 & 3 \mathrm{~A} \\ \mathrm{~K} \\ \mathrm{~K} 113 & 30 \mathrm{~V} \text { rects, wire ende } \\ \mathrm{K} 113 & \mathrm{DA} 002 \text { rects } 150 \mathrm{~V} 0.5 \mathrm{~A}\end{array}$
Kt14
K
K115 18 SP1218 (2N3702) transIstors
$K 11610$ MPSLO1 NPN 140 V T092
K117 10 BF450 PNP TV IF amp transisto
K 118 16 ME4101 NPN 60 V AF fow nolse
$\begin{array}{ll}\text { K118 } & 16 \text { ME4101 NPN } 60 \mathrm{~V} \text { AF low nolse } \\ \text { K119 } & 10 \\ \text { 2N5401 NPN } 160 \mathrm{~V} \text { To92 }\end{array}$
K120 6 prs 2SD96/2SB496 AF O/P sim to AC128/176
K121 20 TV5 400 mW zeners
K122 10 VR525 $5 \cdot 25 \mathrm{~V} 2 \cdot 2 \mathrm{~W}$ zener

$\begin{array}{lll}\text { K124 } \\ \text { K125 } & 50 & 02 \mu \mathrm{~F} \\ \text { K12 } \\ \text { K }\end{array}$ $K 1261003000 \mathrm{pF} 63 \mathrm{~V}$ polystyrene preformed K127 25 47 4 FF 25 V axlal lead caps $\begin{array}{ll}\mathrm{K} 128 & 25 \\ \mathrm{~K} 129 & \mathrm{~L} \mu \mathrm{~F} \text { 40V do }\end{array}$
$K 13025$ 470R V O. 1 W presets
$K 13110$ VA1086 thermistor
K133 203 way 5A term blocks
$K 13530$ translstors 4 -7 F 10 V radial elecs

K137 $5.18 \mu \mathrm{~F} 100 \mathrm{~V}$ non-polarlsed caps $\begin{array}{ll}\text { K138 } & 30 \frac{1 /}{\prime \prime} \text { coll former with slug } \\ \text { K139 } & 40.025 \mu \mathrm{~F} 50 \mathrm{~V} \text { mylar cans }\end{array}$ $\begin{array}{lll}\text { K139 } & 40 & .025 \mu \mathrm{~F} \\ \text { K140 } & 30.05 \text { do } \\ \text { K141 } & 40 & 0.01 \mu \mathrm{~F} \\ \text { K }\end{array}$ $\begin{array}{llll}\text { K14 } & 40 & 0.01 \mu \mathrm{~F} & 400 \mathrm{~V} \text { axial caps (C296) } \\ \text { K141 } & 40 \\ \text { K142 } & 25 & \text { wlre ended neons std size, 90 }\end{array}$ K142 25 wlre ended neons std size, 90 V
K143 200 squares mica Insulation 25 mm 43200 squares mica Insulation 25 m sq.
IR5 $3 W$ wirewound resistors $\begin{array}{llll}\text { K144 } \\ \text { K145 } & 10 & 1500 \mu \mathrm{~F} & 16 \mathrm{~V} \text { caps-radial }\end{array}$ K146 $26 \mathrm{mntg}_{330 \mu \mathrm{~F}}^{\mathrm{m}} \mathrm{V}$ axiat caps K147 ${ }^{3} 150 \mu \mathrm{~F} 350 \mathrm{~V}$ caps-radial PC mile K148 30 transformer former type X228 $\begin{array}{lll}\text { K149 } & 12 & \text { Ferrlte rod type X } 036 \\ \mathrm{~K} 150 & 10 \\ \text { swiftches }\end{array}$
K151 12 switches type W43
K $125^{\prime \prime}$ red LED's
K152 10 $0.2^{\prime \prime}$ red LED's
$K 153$
$K 154$
15
505
heat slnks, same as G104 K154 15 S pin $180^{\circ} \mathrm{DIn}$ socket, cllp fix
K155 100 metres thin flex ($50 \times 2 \mathrm{~m}$ lengths)
 $\begin{array}{lll}\text { K156 } & 15 & 1 z^{\prime \prime} \text { chassis minto fusehold } \\ \text { K157 } & 12 & 16 \text { pin QIL-QIL IC sockets }\end{array}$ K158 6 SPCO centre of white rocker $K 159 \underset{20}{20} \begin{aligned} & \text { 8witches } \\ & 0.3 \mathrm{~W} \text { presets } \\ & \mathrm{K} \\ & \mathrm{K}\end{aligned}$ K161 $20 \begin{gathered}\mathrm{knob} \\ \mathrm{O} \cdot 3 \mathrm{~W} \text { presets } 2 \mathrm{k} 5 \mathrm{~V}\end{gathered}$
$\begin{array}{llll}\text { K161 } & 20 & 0 \cdot 3 \mathrm{~W} \text { presets } 2 \mathrm{k} 5 \mathrm{~V} \\ \mathrm{~K} 162 & 20 & 0.3 \mathrm{~W} \text { presets } 2 \mathrm{M} 5 \mathrm{~V} \text { with knurled }\end{array}$ K163 $400{ }_{15 R}{ }^{15}$ W $\mathbf{W} 5 \%$ preformed vert mntg
K164 $\quad 50$ resistors
$\begin{array}{llll}\text { K164 } & 50 & 22 p F & \% \\ \text { K165 } & 20 & \text { Sub-miliver mica caps } \\ \text { Seed switch, body } 20 \mathrm{~mm}\end{array}$
K166 $100{ }^{3300} \mathrm{pF} 630 \mathrm{~V}$ polyester PC mntg
PC mntg
K168 50 AA144 diode preformed as abover K169 30 8V2 400 mW zener as K167 K171 25 11V do
K173 12 1.5 $\boldsymbol{\mu}$ F 25 V tant bead caps K174 $120.47 \mu \mathrm{~F} 25 \mathrm{~V}$ tant bead caps K175 $1002000 \mathrm{pF} 210 / 125 \mathrm{~V}$ p/s cans K176 24 150R 0.1W vert presets K117 24 470R D.1W heriz presets K178 244 470R 0.1W vert presets K179 242 k 0.1 W horlz presets K180 242 k 0.1 W vert presets K181 242 k 2 0 0.1 W horiz presets
K185 200 IR IW CF preformed
K185 200 IR Horiz mitg, preformed R's for
K187 18 PE5030 NPN SI T092 transistors.
Vce 35V, Hfe 75
K188 18 F544 PNP Si TO92 translstors
18 F544 PNP SI TO
K189 30 Ne 20 V 649 , Hfe 300 V 0.4 A diodes, pre-

The Mini 20 is an ideal instrument for the constructor. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving or nearly $£ 10$ on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. a.c.V: $10 \mathrm{~V}, \mathbf{3 0 V}, 100 \mathrm{~V}, \mathbf{3 0 0 V}, 1000 \mathrm{~V}$.
d.c.I: $50 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.I: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: 0-1k $\Omega, 10 k \Omega, 100 k \Omega, 1 \mathrm{M} \Omega$.
Movement protected by internal diode and fuse. The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

A드CN

Instruments Ltd.

[^0]
KITS FOR SOUND EFFECTS AND OTHER PROJECTS

P. E. PHASER
An automatic 6 -stage phasing untt with integral osctljator.

includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also nclude a 2 -input mixer stage.

| Text phoslocopy com, PCB \& layout chart KIT 70-2 | $\mathbf{2 1 \cdot 8 7}$ |
| :--- | :--- | Knobs, skts, SW's

Text 70
HW 70
P.E. MINISONIC MK2 SYNTHESISER

A portable malns operated minlature sound synthesiser with keyboard circuits. Although having sltghtly fewer facilitles his designge Formant synthesisers the functions offered by Set of basic component kits (excl. KBD R's \& tuning potssee list for options avallable) and PCBs (Incl. Iayout charts) "Sound Design" booklet KIT 38-25 $\begin{array}{ll}\text { £.80.16 } \\ \text { £1.00 }\end{array}$ P.E. 12A - NORE SEQUENCER

Enables a voltage controlled synthe siser to automatically play pre-programmed tunes of up to 32 pltches and 128 notes long. rograms are keyboard initiated and note length and rhythmic Bastc comps, PCBs and charts | Set of text photocoples | Text 76 | E. |
| :--- | :--- | :--- |
| | £. 36 | | P.E. GUITAR EFFECTS PEDAL

Modulates the attack, decay and filter characteristics of a signal from most atidlo sources, producing 8 different switchble effects that can be further modified by manual controls.
Easic parts, PCB \& chart
KlT $42-69$
Text photocopy Knobs, skts \quad HW $42 \quad$ £. 285
Pophisilcated versatlle fuzz unit including variable controls affecting the fuzz quallty whilst retaining the attack and decay, ind alsuments. proving filtering. Can be used with other electronic

Basle parts, PCB \& chart	KIT $56-3$	$\mathbf{£ 1 1 - 2 2}$
Text photocony	Text 56	.68
Knobs, skts	HW 56	$\mathbf{£ 2 . 2 9}$

P.E. GUITAR SUSTAIN Maintains the natural attack whilst extending note duration,
Basic comps, PCB \& chart
K
KIT.1

K | Knobs, skts | Text | HW 75 |
| :--- | :--- | :--- |
| | 9.9 | |

DEPT EEI4, 22 HIGH STREET, SIDCUP, KENT DAI4 6EH

EE 3-CHAN STEREO MIXER
Full tevel control on left \& right of each channel, and with Basic comps, PCB \& chart Text photocopy KIT 107-1
Knobs, skts \& SW's
3-MICROPOONE STEREO MIXER
Enables stereo live recordings to be
$\begin{array}{ll}\text { Text } 108 & 65 \\ H W-107 & \end{array}$
Enables stereo live recordings to be made without the 'hole The midd'e' effect. Independent control of each microphone.
Basic comps, PCB \& chart
KIT
$\mathbf{1 0 8 - 1}$ $\begin{array}{lll}\text { Text photocopy } & \text { Text } 108 & 55.41 \\ & \text { HW } & \end{array}$
Knobs, skts of sw's
EE HEADPHONE AMPLIFIER
For use with magnetle, ceramle or crystal plck-ups, tapedeck or funer, and for mosi headphones. Designed with RIAA
$\begin{array}{lll}\text { Text photocopy } & \text { KIT 104-1 } & \text { ©9.7 } \\ \text { Knobs } & \\ & \text { Text 104 } & 85\end{array}$
KE AUDIO EFFECTS UNIT HW $104 \quad$ £2.50
A variable siren generator that can produce British \& Amerl-
can police slrens, Star Trek Red Alert, heart-beat monitor
Basic comps, PCB \& chart KIT 105-1 \&4. ह1
Text ohotoc, PCB a chart
Knobs, skis \& switch
A 3 watt mains powered amplifier
Text 105
HW 105
practise or as a test gear monitor. Duifable for instrument
speaker.
Basic
Basic comps.
Text pholoc: PCB \& chart

Text 106	
HW 106	.65
2.02	

Allows audlo signals to be injected into eircults under test
and for tracing thelr contInulity. Includes frequency \& level controls.

Basic comps, PCB \& chart
Text photocpy
Knobs, skts, $s w$'s \& probes
50p for cover up to $\mathbf{E 5 0} \mathbf{E} \mathbf{E}$ for $\mathbf{£ 1 0 0}$ cover etc, pro-rata, must be added to credit card countries are sublect to higher rates.
ADD 75% VAT ADD 75% VAT
(or current rate It changed). Must be added to full total of goods, posi \& handling on all U.K. orders. Does not apply to exports, or to photocoples.
$\begin{array}{lr}\text { KIT 109-1 } & \text { £5. } 80 \\ \text { Text 109 } & .55\end{array}$
$\begin{array}{lr}\text { Text } 109 & .55 \\ \text { HW } 109 & \text { \&3. } 17\end{array}$ MANY MORE KITS
for synthesisers, Rhythm Generators, and other prolects, bla, small, slmple or complex, separallable, plus a range of keyboards, Deparate components and accessories. Details in our lists.

ELEKTOR FUNNY TALKER
Incorporates a ring modulator, chopper and frequency moduand music signals. Basic comps PCB (as publ.)
Text photocopy

KIT 99-1 c9. 80 Text photocopy (as publ.) ELEKTOR FREQUENCY DOUBLER
ELEETOR FREQUENCY DOUBLER
Text 99
HW99
produce an output 1 octave other electronic instruments to produce an output 1 octave higher than the input. Inputs and $\begin{array}{ccc}\text { Baslc comps, PCB (as publ.) } & \text { K1广 } 98-1 & \text { ¢5. } 48 \\ \text { Text photocopy } & \text { Text } 98 & .20\end{array}$

Simple but effectlve substitute for a rotary cabinet. An
Input generator is phase-split and modulated by the music tronlc guitars and fed to 1 or 2 amplifiers. Suitable for elec-

Knobs \& skts	Text 102	E.
KW		
KW 102	$\mathbf{2 . 5 3}$	

P,E. SWITCHED TONE TREBLE BOOS
$\begin{array}{ll}\text { Provides switched selection of } 4 \text { preset tonal responses. } \\ \text { Set of basic components, PCB \& chart KIT } 89-1 & \mathbf{\Sigma 4} .34 \\ \text { Text photocopy } & \text { Text } 89\end{array}$

Set of baslc components, PCB \& chart KIT 91-1 E8.52
Text photocopy
Text 91 P.E. TUNING FORK HW $91 \quad$ £1-22 Produces 84 switch-selected frequency-accurate tones with Set of basic comps, PCB\& chart Keat-note adjusiments. Text photocopy Text 46 £23. P.E. AUTO-WAH UNIT Automatic Wah or Swell sounds with each note played.
Basic comps, PCB \& chart $\begin{array}{llr}\text { Basic comps, PCB \& chart } & \text { KIT } 58-1 & \mathbf{E 1 0 - 1 1} \\ \text { Text photocopy } & \text { Tex } 58 & \text {. } 58 \\ \text { Knobs \& skts } & \text { HW } 58 & \mathbf{8 1 . 2 5}\end{array}$ ELEKTOR CHOROSYNTH
A 2 -Octave Chorus synthesiser with an amazing varlety of mounds ranging from violin to cello and flute to clarinet, extend many others.. Experienced constructors can readily Basic comps, PCBs \& char
Text photocopty
with all U.K. requests for free llst giving TERMS: C.W.O., MAIL ORDER OR luller detalis of our goods. Europe send 35p, COLLECTION BY APPOINTMENT

Guess who builds this great

Logic Probe...YOUIN...E11.92

With this easy-to-build Logic Probe Kit from GSC and just a few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic

Complete, easy-to-follow instructions help make this a one-night project. with the LPK-1, one of the better tools from GSC.

GLOBAL SPECIALTIES CORPORATION

G.S.C: (UK) Limited, Dept. $4 Z$ Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ
Telephone: Saffron Walden (0799) 21682
Telex: 817477.
Everyday Electronics, May 1981

I enclose cheque
PO for $£$
FREE Catalogue
LPK-1 £14.86
Phone your order with Access, Barclaycard
or American Express
Card No.
Expiry date

EDITOR

F. E. BENNETT

ASSISTANT EDITOR
 B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUBEDITOR

S. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

KIngs Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

R. WILLET

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 6762

MAKEUP AND COPY

 DEPARTMENTPhone 01-261 6615

ADVERTISEMENT OFFICES

KIngs Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

 and Popular Features ...
THAIS LOGIC

This month's free gift will round off nicely our eight-part series explaining i.c.s., which concludes in this issue.

An examination of this 24 -page glossary will show, amongst other things, how much of the special vocabulary of electronics is directly attributable to integrated circuits. Clearly these devices are now pillars of the electronic establishment.
Integrated circuits themselves are divided into two main classes, commonly known as linear and digital devices, respectively. The latter class brings us into the field of logic. This is the stuff computers thrive on; but not only computers, for digital techniques are now employed extensively in a vast number of circuits, many of them quite uncomplicated and commonplace. It follows therefore that an understanding of digital counting methods and the manner in which electronic gates (switches) are deplayed to process streams of digits is necessary for all who wish to maximise their appreciation and practical use of electronics.

This is where our new series Introduction To Logic comes in. It will provide a clear-cut guide for the newcomer to this subject, and at the same time be a useful refresher course and handy source of reference for others. Remember though that every instalment is vital to the whole, so don't miss out on a single issue of EE-that's logic, isn't it?

F.M. FOR THE CITIZENS

The Home Secretary's announcemont that a Citizens Band radio service will be authorised sometime in the autumn has been greeted with qualified rejoicing by the champions of this form of personal two -way communications.

The snag for those who have beaten the gun, is that their a.m. equipment will remain illegal in the UK. For while the Home Office has been forced to bow to the popular demand for a frequency of 27 MHz , it has taken into account the real dangers of interference to television reception created by amplitude modulated signals on this frequency, and has therefore plumped for frequency modulation as being the lesser of the two evils from the TVI point of view.
The threat of this nuisance is not going to disappear for a very long time-if at all. Viewers who suffer from picture break-up or interference on sound caused by transmissions from either licensed amateurs or illegal CB operators could find an answer to the problem in this month's article TVI Filters.

Our June issue will be published on Friday, May 15. See page 331 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a - stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee It, and we cannot accept legal responalbility for it. Prices quoted are those current as we go to press.
VOL. 10 NO. 5MAY 1981
CONSTRUGTIONAL PROJEGTS
LIGHTS REMINDER and IGNITION LOCATOR Alerts the driver if car lights are left on by L. J. Privett 308
GUITAR HEADPHONE AMPLIFIER For personal use with stereo headphones by P. Bailey 311
AUDIO TEST SET Part 1: Construction of t.h.d. bridge, audio millivoltmeter and precision oscillator by F. C. Judd 321
PHONE BELL REPEATER/BABY ALARM Sound triggered oscillator operates remote speaker by D. King 335
TVI FILTERS A cure for amateur or CB breakthrough on television by E. A. Rule 338
SOIL MOISTURE INDICATOR Three state monitoring for precise cultivation by J. Blundell 346
gENERAL FEATURES
EDITORIAL That's Logic; F.M. for the Citizens 306
I.C.s EXPLAINED Part 8: Concluding article. Special function i.c.s by O. N. Bishop 314
JACK PLUG AND FAMILY Cartoon by Doug Baker 320
PLEASE TAKE NOTE Three Channel Stereo Mixer, Signal Tracer, Car Actuated Driveway Light, 4-Band Radio 320
SQUARE ONE Beginners' Page: Circuit Board 329
FOR YOUR ENTERTAINMENT Cautionary Tale, New Beginning by Barry Fox 330
INTRODUCTION TO LOGIC Part 1: Counting systems including decimal and binary by J. Crowther 332
SHOPTALK Product news and component buying by Dave Barrington 334
EVERYDAY NEWS What's happening in the world of electronics 342
RADIO WORLD Break Even!, Cable TV, Very h.f. extraordinary! by Pat Hawker G3VA 345
BOOK REVIEWS A selection of recent releases 348
READERS LETTERS Your news and views 350
SEMICONDUCTOR NEWS Some recently introduced discrete and i.c. devices 353
CIRCUIT EXCHANGE A forum for readers' ideas 354
DOWN TO EARTH Visualising Amplifier Operation by George Hylton 356
COUNTER INTELLIGENCE A retailer comments by Paul Young 357
FREE WITH THIS ISSUE GLOSSARY OF I.C. TERMS 24-page booklet

Binders

Binders to hold one volume (12 issues) are available from the above address for $\mathbf{E} \mathbf{4} \cdot \mathbf{4 0}$ (home and overseas) Inclusive of postage and packing. Please state which Volume.

Subseriptions

Annual subscription for delivery direct to any address in the UK: \&10.00, overseas: $\mathbf{8 1 1 \cdot 0 0 .}$ Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2813 Kinge Reach Tower, Stamford Street, Lendon SE1 8LS.
© IPC Magazines Limited 181. Copyright in all drawings, photographe and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or Imitations In whole or in part are expreesly forbidden.

There have been many circuits published in the past for reminding the driver that the car lights have been inadvertently left on, so the author decided to incorporate in his version an extra facility at minimal extra cost and complexity, to make the project a little different.

This unit will give an audible warning if the car lights are on and one or other of the doors that operate the car courtesy light are opened. What also happens whenever the car
door is opened and then closed (conditions for one entering the car) is that a cluster of l.e.d.s light up showing the position of the ignition switch. This is most useful in dark ambient conditions.

The l.e.d.s stay illuminated for a period of time and then switch off automatically. This operates regardless of whether or not the ignition switch is on or off. The circuit to be described here is suitable only for negative earth vehicles.

CIRCUIT DESCRIPTION

The circuit diagram of the Lights Reminder is seen in Fig. 1 together with relevant car wiring. The system is based on a cmos integrated circuit, the 4011 , a quad 2 -input Nand gate, a common and inexpensive i.c.
Two of these gates, IClc and IC1d are connected to form an astable multivibrator which has the feature of being controlled, turned on or off, by an input to each gate, pins 13 and 8 going high or low respectively.

The output of this oscillator is fed through R3 to the base of TR1. This drives a moderately high impedance speaker. R4 is included to limit the power dissipation in TR1 whilst maintaining adequate output volume. Alternatively, R4 can be omitted if a more powerful transistor, such as a BFX87, is used to replace the BC478.

One input to IC1c is held low through the sidelights in the car and the input to ICld is controlled by the courtesy light circuit via the inverter formed by ICla. Both inputs have to be maintained at logic 1 for sustained oscillator output.

Gates ICla and IClb form a short duration timing circuit that is triggered by the courtesy light switch. The input to ICla is held high from the 12 volt supply through the courtesy filament lamp. This produces a low output to feed IC1d pin 8 to inhibit the oscillator. When the courtesy switch is made, this output changes to a low producing a high at pin 8. If the sidelights are also on pin 13 is also high resulting in the oscillator producing its tone in the loudspeaker.

Fig. 1. The circuit diagram for the Lights Reminder and Ignition Locator with relevant car wiring.

using the special spot-face cutting tool or a small drill bit. Make sure that any'swarf produced is cleaned off. Next insert the Veropins followed by the i.c. socket. These will aid the positioning of the remainder of the components.

LINK WIRES

Now connect the link wires followed by resistors, capacitors and semiconductors in this order paying special attention to the polarities of the latter. Do not insert the i.c. in its socket at this stage. In the prototype

The output from ICla also feeds IClb input (connected as an inverter) via Di. Normally pin 4 will be low so IClb output will be high. The l.e.d.s D2 to D4 will thus be off. When the door is opened, pin 4 goes high and C2 charges up quickly. IO1b follows by going low resulting in the l.e.d.s turning on. When the door is next closed, pin 4 returns to low and C2 begins to discharge through ICIb input. After a time set by the value of C2, the voltage across this capacitor drops below the logic high threshold and pin 3 reverts to a high extinguishing the l.e.d. cluster.

The value chosen for C2 produces an l.e.d. on-time of approximately 30 seconds. This should be more than enough time to sort out the right key and insert it into the ignition switch.

D1 is included for two reasons: (1) to limit C2 discharge path to input of IC1b only, and (2) to prevent C2 voltage levels from interfering with oscillator action.

ASSEMBLY

The position of the components on the topside of the $0 \cdot 1$ inch matrix stripboard is seen in Fig. 2 together with the breaks to be made on the underside. Make the required breaks
sleeving was fitted over the link wires as can be seen in the photograph, but this is not essential.

Connect up the off-board wiring using stranded wire-not the solid core type, as this has a tendency to break with vibration as will be experienced in the car. Make secure mechanical joints at the Veropins before soldering.

LOUDSPEAKER

The speaker can be any value between 20 and 80 ohms. The one used in the prototype was the earpiece from an old telephone which gave satisfactory results.

In the prototype this was glued to the lid of the case which had a matrix of holes drilled to allow the sound to escape and be heard. It may be a better idea however to make a small bracket to hold the speaker in place as the vibration it is likely to receive could easily disturb an adhesive connection.

Screw fix the board and the terminal block to the case using shakeproof washers as well. Drill some small holes alongside the terminal block to allow the cables to come through from the board. Take off any rough edges with a larger drill bit by slightly countersinking the holes. Finally connect the wires as shown in Fig. 3 not forgetting the link wire on the terminal block.

Fit the i.c. into the socket the right way round. This is a cmos device so please take the standard precautions. The pins of the i.c. when first purchased are normally slightly out of true and need to be bent inwards to fit the socket easily. Do this on a metal tray or similar connected to
earth. Another quick way of earthing yourself is to run a cable from earth to your watch if it has a metal strap as this gives a good connection. Once completed the board is ready for testing.

TESTING

It is as well to test the unit before installing in the car and tapping into the wiring system. A couple of bulbs and switches and a 12 volt d.c. supply will be required. If no bulbs are available, 1 kilohm resistors could be used in their place.

Connect up according to Fig. 3 and check out its operation for combinations of the two switches. The l.e.d. on-time may be increased by increasing the value of $C 2$ or vice versa if this is not entirely to your satisfaction. When satisfied that the unit is functioning correctly, it may be installed in the car.

No details for fixing the l.e.d. cluster around the ignition switch have been given as this will vary according to the car model and make.

The unit should be positioned in a convenient place inside the car so that the tone can be heard clearly when activated. It is advised that a position not subject to large temperature changes be found, in other words away from the heater fan area and other draughty positions.

Insulated crimp connection will be required to connect to the car wiring system, and the "piggy-back" type will be most convenient allowing two wires to be connected to a terminal without cutting the resident wiring in any way.

Probably the most convenient point to pick up the 12 volt supply is the ignition switch, and of course the sidelight connection to the dash mounted light switch. Piggy-back connectors are required for these.

A "eyelet" connector for connection to the chassis (battery -ve) is also required. The connector type for connecting to the courtesy light switch will be determined after consulting the car wiring diagram for the most convenient take-off point. Use stranded wire for these connections.

The market today offers a huge selection of different amplifiers and "combos" for the electric guitarist, but there seem to be fewer amplifiers that have a headphone facility. Practice amplifiers can be bought with powers of about 5 to 15 watts, and these normally have a socket for headphones, but even these practice amplifiers can be quite expensive.

The author has seen a make of headphone amplifier for guitar practice, but this was retailing at around £30 and this was felt to be too high a price for those simply wanting to be able to practice without disturbing others.

The unit to be described here uses only a few, easily-obtained, components and satisfies the above requirements. It is truly pocket sized, and is battery operated and so is completely portable. It can drive an ordinary pair of stereo headphones to more than adequate volume for practice purposes.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 1 and can be seen to be a simple circuit. The signal from the guitar enters the circuit via SKl and
Cl. SKl, as well as being the input socket is also the on/off switch since it has been wired so that the battery is only connected when the guitar jack-plug is inserted. This avoids a flat battery due to forgetting to switch
the unit off after use, or inadvertently knocking the on/off switch on.

The signal is fed directly into the $741 \mathrm{op}-\mathrm{amp}$ i.c. which in this case has been connected as a non-inverting amplifier, the basic circuit for which is shown in Fig. 2.

Non-inverting simply means that the output signal is in phase with the input signal, that is if the input voltage is positive then the output voltage will be positive too, and the same goes for a negative input voltage. The circuit in Fig. 2 is of a d.c. amplifier of this type, and its gain is dependent on the values of R_{A} and R_{B} by the formula:

$$
\text { Gain }=\frac{R_{\mathrm{B}}}{R_{\mathrm{A}}+R_{\mathrm{B}}}
$$

So if R_{A} is made very small with respect to R_{B} then the gain will fall until it is unity, when R_{A} is zero. Similarly if R_{B} is made very small with respect to R_{A} then the gain will rise until it is the open loop again of the op-amp (usually around 100,000 for a typical 741). Therefore by substituting a potentiometer in place of R_{A} and R_{B}, with its wiper connected to the inverting input of the op-amp, the gain can be made variable.

But this circuit, being a d.c. amplifier, must be coupled by capacitors

Fig. 2. A basic non-inverting op-amp circuit on which the design is based.

The completed prototype amplifier (left) ready for use.

Close up view (right) showing the construction of the prototype circuit board

$O=V E R O P I N S$

Fig. 3. Complete interwiring details between board and case mounted components. Also shows the layout of the components on the tapside of the board and the breaks required on the underside. Self adhesive foam hold the battery securely in position.
at the input and at the output, when it is required to be used in a.c. applications such as this, and when this is done a resistor R_{C} (shown dotted) must be included to d.c. stabilise the amplifier, otherwise it would quickly saturate, that is, the output would become locked hard positive or negative.

Although simple, this type of circuit can drive a pair of headphones to quite high volumes. The gain control allows the unit to be used with all different kinds of electric guitar, since some pick-ups have lower level output signals than others, and these require a higher gain. Resistor R4 simply stops the gain from being too high at its maximum setting since this would cause very severe distortion.

SUPPLY LINES

The positive and negative supplies necessary for this i.c. have been derived from the 9 V battery using the potential divider formed by R2 and R3. This arrangement alone would be unsatisfactory in this application due to the internal circuitry in the i.c. The fact that only a small current is flowing in the divider means that very little current would be available to drive the headphones. This problem is overcome by inserting C2 which makes the divider invisible as far as a.c. signals are concerned.

R5 limits the current drawn from the i.c. thus protecting it, and also limits the voltage swing present across the output when using low impedance headphones thus protecting the headphones.

COMPONENTS

Resistors
R1 $100 \mathrm{k} \Omega$
R2 $8.2 \mathrm{k} \Omega$
R $38.2 \mathrm{k} \Omega$
R4 $11 \mathrm{k} \Omega$
R5 100Ω
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$

Capacitors
C1 $0 \cdot 1 \mu \mathrm{~F}$ polyester
C2, $3 \quad 10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. radial lead type (2 off)

Integrated Circuit
IC1 741 op-amp 8 -pin d.i.I.
Miscellaneous
VR1 100kS carbon lin.
SK1, 2 standard stereo jack
socket (2 off)
B1 9 V type PP3
Stripboard: 0.1 inch matrix, 10 strips $\times 15$ holes; 8 -pin d.i.l. socket; insulated stranded wire and single core stiff wire; knob; plastics case approx. $80 \times 60 \times$ 40 mm .

Finally the amplified signal passes out through SK2, a stereo jack socket which has been wired so that when stereo headphones are used they are connected in series. This also has the advantage that headphones terminated in a mono jack plug can also be directly plugged in and used.

BOARD AND COMPONENTS

The circuit is a simple one and so construction should be straightforward. Since the unit is required to be truly pocket-sized, the circuit board is by necessity fairly small, and while the components are not closely packed in, it should be borne in mind when buying the parts that oversize components may not fit the circuit layout shown. For this reason it is recommended that the two $10 \mu \mathrm{~F}$ capacitors be single ended p.c.b. types or similar rather than large axial electrolytics. If the size of the case being used is unimportant then the layout may be redesigned to accommodate any size of components desired, using a larger circuit board.

The circuit board layout is shown in Fig. 3. First mount the i.c. socket. It is best to use one since this will avoid any damage to the i.c. during soldering due to overheating, and this will make it easier to see where the other components should go. Resistors and capacitors should be mounted next, with particular attention being paid to mounting the polarised capacitors the correct way round. Finally the i.c. can be mounted into its socket.

In the prototype Veropins were used for all flying leads and these made their connection considerably easier. Since the circuit board is small and light no mounting bolts have been used, the board being secured by stiff wire leading to the input and output sockets. If a larger case is used fixing of the circuit board by means of nuts, bolts and stand-offs may be required.

Also, where the input lead length (SK1 to board) is increased beyond a few centimetres screened lead will become necessary, and care should be taken when using unscreened lead to keep the input and output leads apart, thus eliminating any possibility of instability and oscillation.

Sticky pads such as "Sticky Fixers" or "Velcromounts" can be used to hold the battery in position, or else double-sided Sellotape could be used.

CHECKING AND USE

Check all the wiring and also check that the breaks in the copper strips have been correctly made. Then if all seems well the battery can be connected, headphones plugged in, and the unit switched on by inserting a jack plug at the input.

With the gain control advanced slightly a hum should be heard when touching the input with a finger. This should get louder as the gain control is advanced. If this is not so switch off and check all wiring and also check that ICl has been inserted the correct way round. It is worth noting that due to the output socket contact arrangement, if headphones with a mono/ stereo switch are used, the unit will only function when the switch is in the stereo position.

With the unit working, a guitar should now be plugged into it and its volume control turned full on. By increasing the gain the guitar should become audible, getting louder until it becomes distorted when the gain is at maximum. To remove the distortion the gain should be decreased until the signal is fairly clean, then the volume control on the guitar should be reduced to a setting giving maximum volume with minimum distortion. Many guitarists will find the distortion facility desirable especially for use in lead guitar practice.

If there is not found to be enough gain for the guitar being used then a small single transistor pre-amp could be inserted before the i.c. Normally this would not be necessary and the prototype worked well with many different guitars. Alternatively R4 could be reduced in value.

Of course the unit is not limited to use with guitars and could be used with an organ or synthesiser for instance, which had a low-level signal output but no headphone socket. It could even be used between a guitar or other instrument and amplifier (amplifier volume low) to act as a pre-amp or to produce distortion. In either of these cases the lead to the amplifier would be inserted into the headphone socket on the unit.

N THIS concluding article of the series we survey a wide range of digital i.c.s, from the most complex to the simplest of all.

REMOTE CONTROL

Whether we are controlling a television set from the comfort of an armchair, or are controlling the Voyager II fly-by of Saturn from the Jet Propulsion Laboratory, Pasadena, a digital signal stands more chance of being accurately received than an analogue signal.

The all-or-nothing nature of digital signals can survive the rigours of distortion and noise inherent in transmission across the living room or across deep space. Even though the signal may be mis-shapen on arrival it is usually easy to square it up before passing it to the logic circuits in the receiver.

CODING

AND DECODING SYSTEMS

Various systems are in use for coding the commands before transmission and decoding them after reception. In the simplest form a series of pulses is sent, usually preceded by a "start" pulse. Subsequent pulses are either " 0 " or " 1 ", so conveying a binary-coded message. The digital proportional control commonly
used for model radio-control conveys analogue information (for example, required engine speed, or position of rudder) by transmitting pulses of varying length (pulse width modulation, p.w.m.). Naturally, any distortion of the pulses during transmission is liable to distort the pulse length. Fortunately, the operator can usually see the actual response of the model and make compensating adjustments.

PULSE
 POSITION MODULATION

A more recently invented system is pulse position modulation (p.p.m.) and a small family of digital i.c.s has been developed to code and decode the commands. In p.p.m. all pulses are of equal duration. The spacing between pulses is of three fixed and distinctive lengths, see Fig. 8.1. The fact that all lengths are standard makes it simple to reconstitute a distorted pulse train sufficiently well to allow the command to be decoded.
The SL490 i.c. (Fig. 8.2) is able to generate a carrier frequency (for an ultrasonic oscillator, for example) and to modulate this signal with a train of pulses (5 intervals). It can also produce a signal without a carrier for use with infra-red or radio-control systems.

The i.c. is operated by pressing one of up to 21 push-buttons. Ten of these
cause the production of 10 different "program codes." These are decoded by the ML922 decoder causing its four program outputs to go to the corresponding binary coded state. These can be further decoded, for example by the 4028 b.c.d. to decimal decoder that was mentioned last month, to switch on any one of 10 electronic circuits or devices.

Analogue information is not transmitted as such. The i.c. controls up to 3 analogue circuits by transmitting either an "analogue + " or "analogue -" signal for each. At the decoder the effect of these signals is to increase or decrease the voltage appearing at the corresponding three "analogue output" pins. Voltages range from 0 V to a preset maximum, in 32 steps. The analogue voltages may be fed to an operational amplifier for example, or perhaps to an electronic attenuator i.c. (MC3340P) to control the volume from a radio or TV set.
In addition to this function the system has a number of other useful switching actions. One of the chief error-avoiding features of the system is that the SL490 repeatedly sends out code groups for as long as the button is pressed. The ML922 checks each group as it is received and only when two consecutive received groups are identical does it respond. The SL490 can also be used with two simpler decoder i.c.s, the ML928 and

ML929. These respond to codes 00000 to 01111 and 10000 to 11111 respectively, and have 4-bit binary outputs.
These outputs are latched, like those of the ML922, and change only when a new command is received. The ML926 has unlatched outputs; the outputs are active only for as long as one of the 15 codes 00001 to 11111 is being received.

Table 8.1 Truth table for required output from three independent inputs

Inputs \boldsymbol{B}			\boldsymbol{A}
0	0	0	Outputs \boldsymbol{Z}
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

COMPLEX LOGIC

Sometimes we want to perform a complex logical operation, such as that shown in Table 8.1. To do this with logic gates requires a lot of working out and, when it has been done, we need several logic gates with some fairly elaborate wiring. A much simpler solution is to use a data selector i.c.

The 4512 can cope with the problem very easily and you have no need to become mentally tangled with OR, nor, and and nand. Fig. 8.3 shows the connections needed. Think of the

Fig. 8.1. Pulse code modulation: the coded word is 10110 . Pulses are all of equal length at intervals of three related lengths.

Fig. 8.3. Using the 4512 data selector as a complex logic generator.

Fig. 8.2. The SL490, an i.c. which generates p.p.m. groups when a selected push button is pressed.

Fig. 8.4. The scheme of the 4067 analogue switch. This is a 24 -pin package.
inputs to C, B, and A as a 3 -bit binary number; these are used to select one of the data inputs 0 to 7 .

For example 011 selects the third data input. Since this is connected to V_{nD}, the output takes the value 1 . This is the logic for the fourth line of the truth table. Similarly 010 selects input 2, giving a low output, 0 . Instead of working out complex, logic, we simply look at the truth table and connect inputs 0 to 7 to V_{SS} or to V_{DD}, as required. Incidentally, the 4515 has tri-state outputs (see Part 5, February 1981) which allow it to be connected to a data bus.
If we need logic involving four variables, we can use the 4515 and the technique of logic folding, which there is not room to describe here. Alternatively, there is the 4067 which has four "select" inputs ($A B C D$) to select 1 of 16 data lines, see Fig. 8.4.
There are two fundamental differences between the 4067 and 4515. The first is that the 4067 can operate either as a data selector or as a data distributor. The 16 selected lines can be inputs (as in the 4515) or outputs. The selected one of these is switched to a single pin which may be an output (as in the 4515), but can instead be an input. In short, signals can be passed through the 4067 in either direction. A signal on the single line can be distributed to any selected one of the 16 outputs, or the other way about.
The second feature of the 4067 is that it transmits analogue signals
just as easily as digital ones. For the 4515 , outputs and inputs are either 0 or 1. The 4067 can handle these too but can also transmit signals at any other voltage in the range $V_{S S}$ to $V_{\text {DD. }}$ It acts as a 1 -pole, 16 -way switch. This and similar i.c.s which will be described later are known as analogue switches.

Before leaving the topic of complex logic there is one more kind of digital i.c. that should be considered. This is the вом, or read-only-memory; A microcomputer uses very complex logic. It needs a store of instructions telling it what to do at each stage.

These instructions may be stored in coded form (machine code) in its rom and will have been programmed, either during manufacture or subsequently by the user, to give the required combination of outputs for each of the 256 possible inputs. It is as if Table 8.1 had 256 lines, and a 4-bit output column. Although we normally think of a rom as providing the data for controlling microprocessors there is no reason why they should not be employed for complex logical operations in other types of circuit.

TRANSMISSION GATES

One of the features of смоs that distinguishes it from TTL is the transmission gate, see Fig. 8.5. The gate consists or two cmos transistors, one p-channel and one n-channel. When the control input is low, the n-channel transistor becomes non-conducting. At the same time, the gate of the p channel transistor is made high by the inverted control input, so this transistor too becomes non-conducting. The resistance between input and output is exceedingly high, being about $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$, which for all practical purposes is the equivalent of off. When the control input goes high the transistors become conducting and the switch is on. Now the path between input and output has low resistance, between 80Ω and 300Ω depending on the i.c. concerned and the voltage at which it is operating.

An analogue signal applied to either side of this switch appears virtually unchanged at the other side. Here we have a way of switching digital or analogue signals under digital control. Transmission gates are used instead of the conventional logic gates in several logic circuits. For analogue operation $V+$ is usually +5 V and $V-$ is -5 V . Their use in the 4027 $J-K$ flip-flop was described in Part 6.

Fig. 8.6. The 4016 and 4066 quadruple analogue switch i.c. pinouts.

Fig. 8.7. Using the 4066 to make a digitally controlled variable resistor.

Table 8.2 Analogue switches

A set of four transmission gates is available as the 4016 and the 4066 (with lower gate resistance). Each gate has its own control input, and can be considered as a s.p.s.t. switch (Fig. 8.6).
Apart from simple switching operations these i.c.s can be used to build a number of useful sub-circuits. In Fig. 8.7 we see how the 4066 can be used to make a digitally controlled variable resistor. As each control voltage goes high the switch is "closed' so short-circuiting the corresponding resistor. The gate resistances are low compared with the external resistors so the effective resistance of the chain can be varied from zero (about) up to $16 \mathrm{k} \Omega$ in steps of $1 \mathrm{k} \Omega$.
Coupled analogue switches are used in the 4051 to 4053 i.c.s. These are analogue data selectors or distributors (often called demultiplexers or multiplexers). Table 8.2 compares their features. The 4051 is used in the project described at the end of this article.

SPECIAL FUNCTIONS

Apart from the remote control i.c.s described above, all the digital i.c.s mentioned so far in this series have been suitable for a wide range of functions. They have comprised logic gates, flip-flops, counters, registers, latches, decoders and several types of data-switching circuit.
In addition to these there is an equally large range of i.c.s each dedicated to one particular function. The advent of the CMOS transistor with its small size and very low power requirements has made it possible to

Device Type No. 雰	No. of Inputs	Select Inputs	No. of channels	Equivalent mechanical switch
4051	1	$A B C$	8	1 -pole 8 -way
4052	2	$A B$: controls both	4	2-pole 4-way
4053	3	A1, A2, A3; one per unit	2	three independent s.p.d.t.

pack thousands of transistors on one chip. Most of the devices mentioned in this section are examples of the complexity of function that can be realised as the result of such large scale integration (LSI).

PARITY I.C.

An example of one of the least complex of the special-purpose i.c.s is the 4063 magnitude comparator. This accepts two 4 -bit binary numbers A and B as its input and has three inputs, one of which goes high for each of the three possible events, $A<B, A=B$ or $A>B$.

The 4531 parity generator is used to add the extra parity bit to a data word as a check against errors during transmission. It has 12 input pins to receive a data word up to 12 -bits long. Its output is low if the number of " 1 "s in the word is even, or high if the number of bits is odd. Whatever the number of " 1 "s in the data, the parity bit makes the total number of bits even.

The parity bit is transmitted as part of the data word. At the receiving end, another 4531 is used to check that the number of bits is even. If not, an error must have occurred; the state of the output of the 4531 indicates this fact. The 4531 can also generate odd parity bits.

Many examples of LSI are pulse generators of one kind or another. There are the top octave generators used in electronic organs, pianos and synthesisers, the multitude of clock and watch i.c.s and various forms of timer controllers, and the complex sound generators used for sound effects for TV games or for producing the tunes of musical doorbells.

This catalogue of the most elaborate of digital i.c.s leads us naturally to the most complex of all, the microprocessor. In some ways this is not as specialised as the others for, with appropriate programming, it can be made to perform many of the tasks performed by the others. It can handle the flow of data, act as an alarm clock, generate music and sound effects, perform all the most complex of logical operations, including numerical calculations, to mention only a fraction of its abilities. It can be made to appear to do all these things simult aneously!
Yet, in spite of the wonderful things these i.c.s can do, we must not be overawed by them. They all make use of the same basic units-gates, counters, flip-flops and the like-that we have studied in the course of this series. Complex they may be but nothing new by way of electronics or logic is inherent in their make-up or action.

THE 4007
From the heights of LSI and VLSI we turn to the most humble of i.c.s which, besides being a useful one, has (in contrast to the synthesisers and microprocessors) the merit that we can easily memorise its circuit diagram and can readily understand how it works. If you follow what goes on inside the 4007, it will give you insight into the behaviour (and occasional misbehaviour) of its more complicated brethren.
The 4007 contains only six cmos transistors. In Fig. 8.8 they are numbered TR1 to TR6 for ease of reference. Two are paired to make an inverter; the other four are joined as two complementary pairs. These are the building-blocks of an astonishingly wide variety of circuits. The 4007 is often called the "do-it-yourself" i.c. for, within limits, you can make it do more-or-less what you want.

The action of the inverter is easy to understand. Pin 11 is connected to

Fig. 8.8. The internal circultry of the versatile 4007 i.c.
V_{DD}, and pin 9 to V_{Bs}. A high input to pin 10 turns TR6 on, and TR5 off. Pin 12 is thus isolated from V_{DD}, but not from $V_{\text {ss }}$. Potential at pin 12 is pulled down-the output at pin 12 is low.

The gates of the other pairs of transistors are similarly connected, but the other terminals of these transistors are individually accessible. If we need two more inverters, we simply join pin 8 to 13 and pin 5 to 1 , and take our outputs from pin 8 (or 13) and pin 5 (or 1).

Fig. 8.9 shows how we make up a 2 -input nand gate. The terminal connections are 14 to 2,13 to 1 to 5 , and 8 to 4 . When both inputs (pins 6 and 3) are low TR1 and TR3 are on, connecting output (pin 1) to $V_{D D}$ (high).

If only one input is low we still get one connection to $V_{D D}$ so output

Fig. 8.9. Making a 2 -input NAND gate using the 4007 i.c. For simplicity the permanent connections to the substrate of each transistor have been omitted.
remains high. The connection to $V_{\text {ss }}$ is broken at one or other of TR2 and TR4. Only when both p-channel transistors are off and both n-channel transistors are on do we get a complete connection to $V_{\text {ss }}$ together with isolation from $V_{\text {DD }}$. This occurs only when both inputs are high.

Fig 8.10 shows the same connections between gates, but they are laid out to show more clearly how TR2 and TR4 are in series. This circuit has not used the inverter, so when wired like this the 4007 provides both an inverter and a 2 -input nand gate. To obtain a 3 -input NAND gate (but no inverter) we join 1 to 12 to 13,2 to 14 to 11,4 to 8 and 5 to 9 . Readers may care to draw this out, using simplified outlines as in Fig. 8.9, and check that it produces the required function.

Fig. 8.10. The 2 -input NAND gate of Fig. 8.9 re-arranged.

The arrangement of Fig. 8.11 puts TR1 and TR3 in series; TR2 and TR4 are in parallel. The result of this is a 2 -input nor gate. We get a high output only when both p-channel transistors are on, that is when both inputs are low. If an or gate or an AND gate is required, the inverter is used to invert the output from the NOR or NAND gates described above

If an inverter buffer is required, we connect each pair of transistors as an inverter ($8,13,1,5$, and 12) and then wire them in parallel with each other.

As a final example Fig. 8.12 shows how to build a transmission gate. Join pins 1 to 5 to $12 ; 2$ to $9 ; 11$ to 14 ; 6 to $8 ; 8$ to 13 to 10 . TR1 and TR2 provide the inverted control input (see Fig. 8.5). If the control input is high, TR4 and TR5 are on and in parallel. They provide a path between pin 4 and pin 12 in either direction. At the same time TR3 and TR6 are off, isolating pin 2. The reverse occurs with a low control input. This circuit functions as a s.p.d.t. switch. Thus this simple i.c. can often provide that extra gate which is so often unexpectedly required as the design of a

Fig. 8.11. Making a 2 -input NOR gate, from the 4007 for example.

Fig. 8.12. Making a transmission gate using the elements available in a 4007 i.c.
logic circuit nears completion. It is perhaps the least complex integrated i.c. of all those described in this series but this does not make it any the less useful. It helps to remind us that i.c.s are not magic. They are just highly complex arrangements of the very simple electronic devices with which we are all familiar.

MUSICAL BOX

The novelty circuit shown in Fig. 8.13 makes use of the 4051 1-to-8channel analogue switch i.c. described earlier. We use it to switch various resistors into the timing circuit of a 555 timer i.c. (ICA) which is running in the astable mode. The result is that eight different frequencies are obtainable. By suitable choice of resis-
tors an eight-note tune may be played. Pin 7 should be connected to -5 V in the analogue mode, but in this circuit it may be grounded, as shown.

Switching is performed by feeding a 3-bit binary count from the counter (IC2) to the "select" inputs of the switch (IC3). The counter is advanced at the rate of about 1 Hz by the other 555 timer, ICl.

The output from IC4 goes to a crystal earphone; for the benefit of the rest of the family it is advisable to use this while composing tunes. Later, when all is sounding perfect, the output may be connected to an amplifier and loudspeaker.

The values of R3 to R10 should be between about 200Ω and $100 \mathrm{k} \Omega$. To obtain a precise value for fine tuning, it may be necessary to substitute two

Fig. 8.13. The circuit for a CMOS music box.
or more resistors in series for the single resistors shown. Omitting a resistor provides a silent interval. The speed at which the tune is played depends on the values of R1 or C1. The order in which the notes are played depends on the wiring between IC2 and IC3.

As shown in Fig. 8.13 the circuit runs through the notes from 0 to 7 in order, playing each one for an equal length of time, and repeating indefinitely. Crossing the wires between these three sets of pins plays the notes in a different order. Using other outputs gives quite different effectstrills and warbles-particularly if output 1 is used instead of one of the three shown. The result would make a distinctive door alert. This is intended to be a fun circuit and to give scope for experimenting. One could
even try omitting ICl and driving IC2 (pin 10) from the output of IC4 instead!

INTEGRATED CIRCUITS

When building circuits such as the one described above we play with a few i.c.s, trying the effects of connecting them together in various ways.

Each time we bring an i.c. into use we casually add a dozen or even several hundred transistors to our circuit. It is done with no more effort than was made by the early electronics enthusiasts when they added a single valve to their radio sets.
It has been said that the development of integrated circuits has taken the fun out of electronics as a hobby. This series should have demonstrated that such an idea is false. Maybe we
no longer need to build an amplifier from discrete components when we can get one on a chip ready-made and working perfectly. But nowadays the amplifier or the digital counter is the building-block of circuits far more complex and interesting than those that earlier enthusiasts could ever have aspired to build.

Instead of a few basic units-diode, triode, pentode, transistor, resistor or capacitor-we now have literally hundreds of different i.c.s that can be put together in so many fascinating yet purposeful ways.

A second aim of this series has been to conduct the reader through the realms of the i.c. and to explain the properties and potentialities of each of the main types in use today. It is hoped that we have been successful in this attempt.

Three Channel Stereo Mixer

 (February 1981)Elect rolytic capacitors C1, C2, C3, C4, C7 and C10 as shown in Figs. 1 and 2 are connected the wrong way round and should be reversed. However, the circuit may well function satisfactorily as shown, as did the prototype, although component life could be shortened. The labelling for SK1 and SK3 should be transposed. (It relates to incoming signal levels).

Signal Tracer

(February 1981)

Electrolytic capacitor C8 has been drawn incorrectly and should be reversed, the positive going to the emitter of TR3. (This also applies to the circuit shown in Square One, March 1981).

Car Actuated Driveway Light

(February 1981)
An error occurred in the component list regarding the working voltage of capacitor C1 which should have been specified as having a working voltage of 25 V and not 16 V .

There is also a discrepancy between the value of this capacitor shown in the circuit diagram, Fig. 1, and that in the component list. Either value will give satisfactory results but the higher value is preferred

4-Band Radio

(February 1981)

The ceramic filter X1 was incorrectly specified and should read type CFM2455B and replaces the type SFM455B used in the prototype which is now unavailable. The CFM type only has three pins (instead of five as shown).

With this filter C13 is not neccessary and R10 should be reduced to 1.5 kilohm. It is not a symmetrical type and should be fitted into the board so that the end with the cut-away is nearest to TR3 collector.

ear and it is quite possible to construct an audio amplifier which although having the requisite frequency response and power output, may be generating unnecessary distortion because of a wrong value component or a defective transistor or even poor design.

The Audio Test Set described in this article provides facilities for checking total harmonic distortion to
at least 0.1 per cent at 1 kHz , as well as power output, signal voltage output, signal-to-noise performance, frequency response (with a suitable wide range audio signal generator), amplifier input sensitivity and the gain of separate amplifier stages. The use of an oscilloscope is essential for all these measurements.
The unit incorporates a stable 1 kHz low distortion oscillator, a harmonic

Measurement of frequency response and power output alone do not tell the whole story regarding the performance of an audio amplifier. Measurement of total harmonic distortion (t.h.d.) is also highly desirable and in fact essential if one is to be assured that an amplifier is functioning satisfactorily.

Even quite high levels of harmonic distortion are not easily detectable by

Resistors

Resistors					
R1	$2 \cdot 7 \mathrm{k} \Omega$	R24	$820 \mathrm{k} \Omega$	R47	$12 \mathrm{k} \Omega$
R2	$22 \mathrm{k} \Omega$	R25	$100 \mathrm{k} \Omega$	R48	$10 \mathrm{k} \Omega$
R3	$6 \cdot 8 \mathrm{k} \Omega$	R26	$150 \mathrm{k} \Omega$	R49	$1 \cdot 2 \mathrm{k} \Omega$
R4	$3 \cdot 9 \mathrm{k} \Omega$	R27	$10 \mathrm{k} \Omega$	R50	390 ${ }^{*}$
R5	$1 \cdot 5 \mathrm{k} \Omega$	R28	$10 \mathrm{k} \Omega$	R51	$15 \mathrm{k} \Omega$
R6	68Ω	R29	$1 \mathrm{k} \Omega$	R52	$47 \mathrm{k} \Omega$
R7	100Ω	R30	$1 \mathrm{k} \Omega$	R53	680Ω
R8	$2 \cdot 2 \mathrm{k} \Omega$	R31	100Ω	R54	$10 \mathrm{k} \Omega$
R9	120Ω	R32	10Ω	R55	$22 \mathrm{k} \Omega$
R10	$10 \mathrm{k} \Omega$	R33	$4 \cdot 7 \mathrm{k} \Omega$	R56	680Ω
R11	$120 \mathrm{k} \Omega$	R34	$470 \mathrm{k} \Omega$	R57	17.2k $\Omega^{* *}$
R12	$12 \mathrm{k} \Omega$	R35	$150 \mathrm{k} \Omega$	R58	$17 \cdot 2 \mathrm{k} \Omega^{* *}$
R13	$10 \mathrm{k} \Omega$	R36	$220 \mathrm{k} \Omega$	R59	$2 \cdot 2 \mathrm{k} \Omega$
R14	1-2k Ω	R37	$22 \mathrm{k} \Omega$	R60	$1 \cdot 8 \mathrm{k} \Omega$
R15	$5 \cdot 6 \mathrm{k} \Omega$	R39	$22 \mathrm{k} \Omega$	R61	100Ω
R16	$10 \mathrm{k} \Omega$	R39	680Ω	R62	150Ω
R17	$100 \mathrm{k} \Omega$	R40	$27 \mathrm{k} \Omega$	R63	$1 \cdot 2 \mathrm{k} \Omega$
R18	$10 \mathrm{k} \Omega$	R41	$12 \mathrm{k} \Omega$	R64	$10 \mathrm{k} \Omega$
R19	$1 \cdot 2 \mathrm{k} \Omega$	R42	$100 \mathrm{k} \Omega$	R65	$12 \mathrm{k} \Omega$
R20	$68 \mathrm{k} \Omega$	R43	$1 \cdot 2 \mathrm{k} \Omega$	R66	$100 \mathrm{k} \Omega$
R21	$68 \mathrm{k} \Omega$	R44	100Ω	R67	270 ${ }^{*}$
R22	$68 \mathrm{k} \Omega$	R45	$10 \mathrm{k} \Omega$	* Se	ter't
R23	100Ω	R46	120k Ω	**Ma	de up of $15 \mathrm{k} \Omega$
All $\frac{1}{2} W$ carbon film high stability $\pm 5 \%$ and $2 \cdot 2 k \Omega$ resis-					
Potentiometers					
VR1	$25 \mathrm{k} \Omega$ log. carbon				
VR2	$1 \mathrm{k} \Omega$ lin. carbon				
VR3	$10 \mathrm{k} \Omega$ lin, carbon				
VR4	$1 \mathrm{k} \Omega \mathrm{lin}$. carbon				
VR5	$10 \mathrm{k} \Omega$ lin. dual-gang carbon				
VR6	$2 \cdot 2 \mathrm{k} \Omega$ miniature horizontal preset				
VR7	$1 \mathrm{k} \Omega$ lin. carbon				

Semiconductors
TR1-TR8 BC109 non silicon (8 off)
TR9 OC41 pno germanium
TR10 BC109 npn silicon
D1-D4 OA90 small signal germanium (4 off)
D5-D8 W005 50V,1A bridge rectifier

Capacitors

C1	$1000 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C2	$2 \cdot 2 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C3	$0.047 \mu \mathrm{~F}$ C280 polyest
C4	$0.047 \mu \mathrm{~F} \mathrm{C280}$ polyeste
C5	$2 \cdot 2 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C6	$0 \cdot 22 \mu \mathrm{~F}$ C280 polyeste
C7	$2 \cdot 2 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.'
C8	$2 \cdot 2 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C9	$0.02 \mu \mathrm{~F}$ polyester
C10	$0.02 \mu \mathrm{~F}$ polyester
C11	4700pF polystyrene
C12	$0.02 \mu \mathrm{~F}$ polyester
C13	4700pF polystyrene
C14	$2 \cdot 2 \mu \mathrm{~F}$ non-polarised
	polycarbonate
C15	$10 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.

C16 $220 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C17 $1000 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
er C18 $100 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C19 $750 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C20 $10 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
$\mathrm{C} 2110 \mu \mathrm{~F} 40 \mathrm{~V}$ elect. C22 $22 \mu \mathrm{~F} 40 \mathrm{~V}$ elect. C23 $0 \cdot 1 \mu \mathrm{~F}$ C280 polyester $\mathrm{C} 241000 \mu \mathrm{~F} 40 \mathrm{~V}$ elect. $\mathrm{C} 25100 \mu \mathrm{~F} 40 \mathrm{~V}$ elect. C26 $10 \mu \mathrm{~F} 40 \mathrm{~V}$ elect. C27 $0.01 \mu \mathrm{~F} \mathrm{C} 280$ polyester $\mathrm{C} 280.01 \mu \mathrm{~F}$ C208 polyester $\mathrm{C} 291000 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C30 $2200 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.

S1 d.p.d.t. slider
 s.p.s.t. mains toggle SK1 chassis mounting phono
SK2-SK5 insulated screw terminals (2 off red, 2 off black)
SK6 chassis mounting phono
ME1 moving coil panel meter, $100 \mu \mathrm{~A}$ f.s.d. (see text)
T1 mains primary/ $24 \mathrm{~V}, 150 \mathrm{~m} \mathrm{~A}$ secondary
RTH1 glass encapsulated thermistor, type R53
LP1 mains panel neon with integral resistor
CB1 two-way plastic connector block
Metal case, $300 \times 165 \times 125 \mathrm{~mm}$, Bamber Electronics type BC7, or similar; 0.1 inch matrix perforated s.r.b.p. board, one piece 46×34 holes, one piece 43×34 holes, one piece 42×34 holes and one piece 44×34 holes; screened cable for internal interwiring; connecting wire; eight knobs (see photographs for style); mounting brackets; 6BA nuts and bolts for mounting boards; grommet; twin-core mains cable; Veropins.

maximum rated r.m.s. output of an amplifier and this could be even lower than the noise level of some amplifiers.

However, in order to measure distortion to 0.1 per cent the oscillator used for the test signal must itself have a very low distortion, well below the level of measurement limit, otherwise one would be measuring the distortion of the amplifier plus the distortion of the oscillator. The full system specification is set out in the adjoining table.

FOUR SECTIONS

The full circuit diagram of the Audio Test Set is shown in Fig. I and it can be seen that the unit consists of four sections-t.h.d. bridge, audio millivoltmeter, 1 kHz oscillator and power supply.

Fig. 1. Full circuit diagram of the Audio Test Set. The separate sections of the circuit are clearly marked.

The first section, the t.h.d. bridge and amplifier, consists of TR1, TR2 and TR3 with a Wien bridge feedback network that is used to null out the fundamental frequency of 1 kHz when measuring harmonic distortion. The bridge itself consists of the transistor TR1, the variable controls VR2, VR3, VR5 and components C3, R8 and C14.
However, the input signal to the bridge must not exceed lV r.m.s. so an input attenuator VR1 (SET 100 PER CENT) is provided. The minimum input signal that can be used for measurement of t.h.d. is 200 mV . Transistors TR2 and TR3 which follow the bridge circuit are fairly conventional amplifiers and the output from these, which will normally be the residual distortion after the fundamental has been nulled out, is taken via a hum filter and compensator network made up of C9, C10, C12, R20, C11, R21, C13 and R22.

From here signals are taken for measurement of amplitude via S2 to the audio millivoltmeter section. The variable controls VR3 and VR2 in the t.h.d. bridge network are fine balance and coarse balance respectively and

T.H.D. Bridge

Minimum input 200 mV Minimum t.h.d. detectable 0.05\% Mains-hum rejection 26 dB at 50 Hz Circuit distortion compensation 0.5 dB per 1 kHz above 1 kHz Noise factor $50 \mu \mathrm{~V}$

Audio Millivoltmeter
Six ranges, 0 to $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}$, $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$
Accuracy $>1 \%$ of calibration
Input impedance $1 \mathrm{M} \Omega$
Frequency range
10 Hz to $100 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$
Note: an oscilloscope and dummy load are needed to measure t.h.d. and amplifier output. A wide range audio oscillator is also required for checking overall frequency response of audio equipment.

the controls VR4 and VR5 are Fine frequency and coarse frequency respectively.

The function of these is to completely remove the fundamental 1 kHz test signal produced by the oscillator section to leave only the distortion content for measurement. Operation of these controls will be explained later.
The function switch S2 in position 1 selects the oscillator output for checking level, in position 2 selects the output from the t.h.d. bridge when measuring distortion and in position 3 connects the panel terminals to the meter circuit for external use.

AUDIO MILLIVOLTMETER

The audio millivoltmeter section will cater for inputs from less than 1 mV up to a maximum of 100 V (essential for checking high power outputs). The input attenuator network around S3 provides 20dB steps downward from 100 V as in the specification.

The input impedance of the millivoltmeter is approximately equal to the total attenuation resistance which is just under 1 megohm. The first transistor TR4 is in a boot strap circuit to maintain a high input impedance for the attenuator network.

Signals then go via TR5 as an emitter follower to drive the bridge rectifier amplifier TR6 and TR7. The bridge rectifier consists of four germanium diodes D1 to D4 and has a feed-back path to TR6 to set linearity and calibration via the pre-set, VR6. The meter, ME1, calibrated 0-10 has a $100 \mu \mathrm{~A}$ movement.

METER

The type of meter used in the prototype was the RS Components type $259-634$ with an internal resistance of $1,300 \mathrm{ohm}$. The value of the shunt resistor R50 was accordingly chosen so that the meter would show the voltages required and any fine setting could be done with VR6.

However, other types of meter can be used. It would be preferable if one was chosen with an internal resistance as near to 1,300 ohms as possible because this would mean that there would be no need to change any component values.
If you do have to use a meter which has a significantly different internal resistance you may find that you cannot set up the meter reading as described later. In this case you will have to change the value of R50 until full adjustment can be made with VR6.
In this case the easiest method is to replace R50 with a 500 ohm preset and adjust this until the meter performs as it should.

T.H.D. BRIDGE

Fig. 2. Component layout and interwiring for the t.h.d. bridge board. This is board A. bard. This is board A.

AUDIO MILLIVOLTMETER

Fig. 3. Component layout and interwiring for the audio millivoltmeter board. This is board B.

OSCILLATOR AND POWER SUPPLY

The 1 kHz reference oscillator section consists of TR8, TR9, TR10 and associated components which together form a low distortion Wien bridge oscillator with a maximum r.m.s. output of 1 V . The output is maintained at constant level by the use of the thermistor RTH1 in the feedback path between TR10 and TR8.
Resistors R58 and R59 are made up of a 15 kilohm and a $2 \cdot 2$ kilohm resistor connected in series. This is essential to make sure that the frequency of the oscillator is within 10 Hz of 1 kHz . More is said of this when we come to describe the construction of the unit.
The final section consists of the power supply which is quite simple and consists of the transformer T1 with a 24 V secondary (or two 12 V secondary windings wired in series), a bridge rectifier, D5-D8, and reservoir and smoothing capacitors C29 and C30.
The resistor R67 may have to be adjusted to obtain between 23 and 24 V on the positive rail but this will again be dealt with later. There are other points in the circuitry that are marked "see text" and these will also be dealt with in due course.

Because this unit is meant to be an accurate piece of test equipment, it would be inappropriate to use out of spec or surplus devices in its construction. This goes for such things as switches and potentiometers as well as semiconductors.

CIRCUIT BOARDS

Before starting construction it would be a very good idea to study all the diagrams and photographs very thoroughly and familiarise yourself with the front panel layout and controls, and the positioning of the four circuit boards within the cabinet.

The separate circuit boards can be tackled first. Start with the power supply board (board D), then the t.h.d. bridge board (board A), then the audio millivoltmeter board (board B), and finally the 1 kHz oscillator board (board C). Detailed layouts are shown in Figs. 5, 2, 3 and 4, respectively.
On this latter board there are two sets of resistors marked "see text". This concerns R58 and R57. There are two resistors wired in series for each of these circuit references and as explained earlier this is necessary in order to achieve the correct operating frequency.
Each circuit board is built up on 0.1 inch matrix perforated s.r.b.p. board and the component leads are taken off to their respective destinations on the reverse of the board.

Board A is 46×34 holes; board B, 43×34 holes; board C, 42×34 holes, and board D, 44×34 holes.

TERMINAL PINS

To make interwiring easier to follow, all off-board connection Veropins are given a reference. For example, the Veropins on board A are given references TA so the third connection on board A for example would be TA3. This method is followed throughout all the circuit and wiring diagrams.

It may be found easier in final assembly and wiring to have flying leads ready on the circuit boards to reach the appropriate panel components, or vice versa, as the main circuit boards and the controls are quite close together. It is important to use screened leads where shown and to keep all other connecting leads as short as possible. Do not change the position of any of the circuit boards or panel components.

FRONT PANEL

The next job to tackle is the metalwork. The unit is housed in a metal case $300 \times 165 \times 125 \mathrm{~mm}$ and the front panel should be drilled and cut according to Fig. 6. Likewise the chassis and rear panel should be drilled to take the circuit board mounting brackets.

Use the specified case if possible or at least one that will allow you to follow the panel component layout and circuit board layouts that we have shown, reasonably closely. The whole case must be metal to ensure complete screening.

The hole through which the mains cable passes must have a rubber grommet fitted.

The front panel wiring can now be dealt with. A full interwiring plan is shown in Fig. 7. Note that several of the screened leads are connected such that only their inner core is actually wired up at the front panel. This is essential so that earth loops and hence unwanted mains hum is minimised, but at the same time the case is earthed as a safety precaution.

Construction is finished off by interconnecting boards and panel mounted components according to Fig. 2, 3, 4, 5 and 7. Leads must be kept short and the layout should not be rearranged so some judicious fiddling may be involved here.

SUPPLY RAIL

Before applying voltage to the circuits make sure that R67 (board D) is in fact 270 ohms. This may need to be changed slightly in value to obtain a positive rail voltage when all the circuits are operating of not less than 23 V and more than 24 V .

1kHz OSCILLATOR

Fig. 4. Component layout and interwiring for the oscillator board. This is board C .

POWER SUPPLY

Fig. 5. Component layout and interwiring for the power supply board. This is board D.

If the voltage is a little too low, a resistor of between 1.2 kilohms and 4.7 kilohms can be connected in parallel with R67. If the voltage is too high then the value of R67 may have to be changed to 330 ohms, or 270 ohms plus a small value like 33 or 47 ohms in series. The total current drawn from the supply should be 32 mA . The current drawn by each circuit is 22 mA for the oscillator circuit (board C) 6.5 mA for the t.h.d. bridge circuit (board A) and $3 \cdot 5 \mathrm{~mA}$ for the audio millivoltmeter circuit (board B).

SETTING UP

First it is essential to ensure that the 1 kHz oscillator is operating correctly. Set the Function switch S2 to position 1. Set the meter switch (S3) to the 1 V range. Set the oscillator output level switch (S4) to IV and VR7 at maximum. If the oscillator is operating correctly the meter will be reading either just more or less than full scale.

Now adjust the pre-set VR6 until the meter reads exactly full scale or 10. Connect an oscilloscope to the oscillator output socket SK6 and check that the wave form is perfectly sinusoidal. The slightest visible distortion of the waveform would indicate faulty operation of the oscillator.

If all appears well then check the positive voltage rail at terminal pin TD4 which must be between 23 and 24 V . If not, adjust the resistance of R67 as previously described. Check also the total current from TD4 to all the circuit boards which should be 32 mA plus or minus 1 mA .

METER READING

Check once again the meter reading of the oscillator output which should be lV r.m.s. but if this has changed due to any re-adjustment of the positive rail voltage, then further adjustment of VR6 may be necessary. If the oscilloscope is calibrated the peak to peak oscillator output voltage of lV r.m.s. should be 2×1.414 or $2 \cdot 828 \mathrm{~V}$.

Next set the oscillator output LeVEL switch S 4 to 100 mV , still with VR7 at maximum, turn the meter switch, S3, also to 100 mV , upon which the meter should once again read full scale or 10 . Repeat this procedure for an oscillator output of 10 mV with the S3 set to 10 mV to obtain once again full scale deflection or 10 .

Very minor adjustment of VR6 may be necessary to obtain full scale meter readings on the three oscillator output ranges or at least to within one small division of the meter which represents only a very marginal error in readout.

Next month: Measuring harmonic distortion of voltage and power amplifiers.

Fig. 7. Interwiring diagram for the front panel components. Note the use of screened cable for certain connections and the arrangements for connecting up the earth braids.

A
Top row shows the two matrix sizes from the copper side of virgin stripboard; the top (u nclad) side; breaks made along the strips. Lower row shows both sides of 0.1 inch matrix board when fitted with push-fit double-sided Veropins.
B
Other circuit boards available to the construct or. Top left to bottom right shows: three sizes of group board; two versions of tag strip; plain copper clad board for making p.c.b.s; plain insulated board; plain matrix board (unclad) available in matrix sizes 0.1 and 0.15 inch.
C
Project s usually specify a particular size of board, number of strips by number of holes. This will in most cases require cutting from a larger standard size board. D
After cutting, all swarf must be cleared away o therwise bridges across tracks will almost certainly result, causing the completed unit to malfunction. This can be cleaned away using a file or sandpaper.
E
Breaks along the copper strips being made with a tool designed for the job-a spot face cutter. Alternatively a small drill bit may be used. Remove any swarf with sand paper before proceeding.
F
Components are mounted on the top (unclad) side of the board such that component bodies are close to the board. Axial components (resistor and diode shown) should have their leads bent to exactly span their allotted holes.
G
Pushing a component, in this case a diode, into its allotted holes in the board after the leads have been bent. Trim the leads before soldering.
H
The solder is taken to the joint being heated by the iron and should be melted around the contact between lead and strip. Both halves of the joint must be heated before applying the solder.
I
After all the components have been connected, lead out wires (flying leads) can be attached. Tin the ends of stranded wire to produce the equivalent of a solid wire, and then treat as a component lead.
J
Veropins allow a good mechanical joint prior to soldering. Wrap the tinned lead around the pin before soldering. These pins allow off-board components to be connected after the board has been secured in position.

SOME form of "circuit board" is required to hold together all the components in a circuit. This can take many forms from the very simple tag strip approach to the dedicated board known as a printed circuit board (p.c.b.)

The most common circuit board to be found in the pages of Everyday Electronics is stripboard which is also known as Veroboard and referred
to as such in component catalogues
This consists of a perforated board with holes punched on a matrix bf 0.1 inch, and 0.15 inch, with strips of copper bonded to one side.

The strips are used as anchorage points (after soldering) for the component leads, and the strips are cut and interconnected to produce a physical interconnection of the components according to the circuit diagram.

By BARRY FOX

Cautionary Tale

The sad story of Garrard makes a cautionary tale for the British electronics industry, or any sector of British industry for that matter.
Founded in 1915 and independent until a takeover by Plessey in 1960, they were once the jewel of British audio. The company started to fail while under the wing of Plessey. It was progressively reduced in size and finally sold in November 1979 to the Brazilian electronics empire, Gradiente.
It's impossible to say where and when the final rot set in but the whole business of splitting Garrard up, selling off some of its factories and leaving the remaining production lines dependent on outside contractors clearly contributed to their eventual downfall and take over by the Brazilians.
They suffered in the hands of outside suppliers and they found themselves committed to contracts which left them no option but to buy from outside contractors. Once they had to purchase 4,000 turntable platters from Japan at $£ 5$ a time because the local product was faulty and a deadline for orders had to be met. Then a batch of plinths needed re-working before they could be used.

Some firms find it dangerous to try and produce too many components for themselves. But Garrard suffered from relying too heavily on outside suppliers. This is why the company is now moving over to making its own printed circuit boards.
However, Garrard's new motor was designed in collaboration with JVC of Japan. JVC now sells it to Garrard at half the price it would cost to make in England.

Best Buy

Recently I wanted to buy a cheap and cheerful, but solid and reliable, mid-fi gramophone turntable for my teenage children to use. I went to a Comet store and found that by far the best buy was a Garrard SP25 turntable for around £35. It fitted the bill exactly.
Unfortunately there wasn't one in stock. The remaining choice was between a gaggle of Japanese decks, all aspiring to super-fi with very flimsy looking pickup arms. All these decks cost too much and looked as if they wouldn't last five minutes
at the untender mercy of a bunch of teenage kids.

This prompted two questions. How come, if the SP25 still looked the best buy, could Garrard have got into such financial difficulties? And why couldn't I buy one? Talking with Garrards produced some interesting answers.

Since it was first introduced in 1965 they have sold 4 million SP25's. It went from Mark I to Mark VI and was rightly famous.
The jigs and tools for making the SP25 component parts had been repeatedly refurbished and when Plessey (Garrards owner until a few years ago) started selling off their factories, they somehow managed to sell off some of the tooling needed to produce the turntable. So Garrard found themselves buying in parts from a firm who were unfamiliar with how to make them.

This led to a situation where their staff had to teach their suppliers the know-how, for instance how to bake parts in ovens at exactly the right temperature. Faced with this problem and the need to refurbish the tools yet again, Garrard were in a predicament; either invest heavily in refurbishing the tools to produce yet another version or kill it off once and for all.
They knew that if they refurbished and relaunched with a Mark VII there would be a cry of "Oh not the SP25 again, can't you do anything new?" So they announced an end to the SP25. This provoked an outcry from people who said "Why are you killing it off?"
Nothing daunted, Garrard asked the trade for guarantees. If they were to invest in new tools, then they needed firm orders for enough turntables to cover the cost of tooling up.

Even the people in the trade who had cried so loudly about the end of the turntable wouldn't put their money where their mouth was and come up with firm, guaranteed orders. So in Spring 1980 they finally stopped all production of the SP25 and sold their remaining stock to Comet.
The remaining jigs and tools may well be sold to a firm in Yugoslavia that used to buy SP25's in bulk. So it is just possible that Yugoslavia may start exporting them back to the UK. But it's all very "iffy" and the long and short of it is that if you want to buy an SP25 you will have to find one silting in a warehouse somewhere.

New Beginning

The end of the SP25 marks the end of an era. But on a more happy note, an other Garrard era that ended back in 1977 will soon be re-born. There can hardly be a hi-fi enthusiast who hasn't heard of the old Garrard 401 turntable, and there are still large numbers of these still in use.
Like the SP25, production of the 401 began in 1965. It ceased in 1977 and this produced another outcry. But they were unable to respond.
Astonishingly, and no one is quite sure how it happened, half the original tooling for making the 401's was "lost" at the time of the big redundancies that hit Garrard in 1978. They hunted high and low for the tools because there were big orders from Japan. To this day no one has ever found the missing tools.

Was it deliberate sabotage, spite on the part of redundant management and workers or, most likely, was it a general "couldn't care less attitude" on the part of some of the people then in control? No one knows. But Garrard has now re-tooled and plans, before long, to launch a completely new version of the 401. This will be the flagship of the new Garrard line, costing under $£ 200$.

The company sees it as comparable with the best of British hi-fi. Only time will tell whether this enthusiasm is justifled. But it would take a hard heart not to wish them luck with the new 401.

Images

A new type of TV camera made by the English Electric Valve Company of Chelmsford, Essex, literally "sees" with heat. With it firemen can search through a smoke-filled room or it can be used to provide a picture of a house or factory highlighting any escaping heat.

This new "thermal" camera has a TV picture tube which senses temperature instead of light. Objects at normal room temperature radiate in the 8 to 14 micron band and energy of this wavelength is imaged on a thin slice of crystal which develops a pattern of surface charges proportional to the heat radiation absorbed.
These charges are neutralised by a scanning electrode beam similar to that used in a conventional TV camera. The beam produces an output signal which can be used to generate a TV picture.
So far it all sounds stiaightforward, but the signal is proportional to the rate of temperature change, not the actual temperature registered. Normally such a camera can only produce an image on a TV monitor screen when either the object is moving or the camera is panned across a stationary object. Clearly this is of little practical value, especially for firemen or anyone trying to detect hot spots of heat which pinpoint areas of bad insulation in a building.
To produce a continuous image from a stationary object using a stationary camera, a rotating shutter is provided in front of the tube. This chops up the incoming radiation at a frequency of 25 Hz to create a continually changing heat gradient. English Electric say that with an $/ / 1$ lens made from germanium it is possible to resolve images from temperature steps of only 0.15 degrees Celsius.
In some respects the system borrows from Baird's original 1920's idea for a mechanical TV system which used a rotating wheel to scan the imagel

A Selection from our June issue

BURCLAR ALARII 5VSTEII

InEMPEISIUE DARKROOM TIIIER

A comprehensive alarm system with parallel and series loops，and an additional sonic detector channet．

Very simple mains powered circuit which gives visible counting signal for photographic processing．Can also be used for general purpose timing．

Another Great New Series！ Gives you the bare facts on DIODE5 • TRAIISISTOR5 • THYRISTORS －TRIAC5 • OPTO DEUICES．．． and all

This four－part series provides basic operating theory，information on con－ struction and characteristics and ex－ tensive tabulated data for all common discrete semiconductors．

TRPE AUTO START

Suitable for use with most electronic instruments including guitar and organ．Also useful in the recording studio for special effects．

涣 䉿 漁

A battery saving device designed for portable tape－recorders．May be used for dictation obviating the need to start and stop the recorder manually．

JUNE 1981 ISSUE ON SALE FRIDAY，MAY 15

PART 1

ANALOGUE AND DIGITAL PROCESSES

Most technical processes use two ways of gathering information.

(a) Measuring or Analogue Process

In analogue processes measurements are compared with a standard or reference, and are continually changing, showing the state at that particular instant.

example

A car speedometer shows actual speed with reference to m.p.h. at that particular time.

A fuel gauge shows how much fuel is in the tank at that particular time.

(b) Counting or Digital Process

In digital processes separate discrete items or categories are counted, there need be no reference to time.
example
An odometer counts the total miles travelled, the time this was achieved in does not matter.

DIGITAL TECHNIQUES Methods of Counting

The universally adopted counting system is the decimal system where we count in powers of ten. This number ten is called the base, or radix. There is no reason why we cannot count to the base, or radix of any number we wish, such as eight, six, or two.

Whichever base is used for counting, the same principle applies, that is they are all based on powers of the radix. The number of symbols used in the system is numerically equal to the radix.

examples

To the base of ten, (radix $=10$) ten symbols are used 0 to 9 . To the base of eight, (radix $=8$) eight symbols are used 0 to 7. To the base of two (radix $=2$) two symbols are used 0 and 1 . Since most of us deal exclusively in the decimal system, it seems superfluous to indicate that the number is in fact a decimal number. When dealing with several different counting systems however, as one is if involved with computers, the radix of the system must be clearly indicated to avoid confusion and errors.

The way this is done is to spell out after the number the system name or more conveniently add a suffix to the number, equal to the radix.

example

The number 1981 in the decimal system would be written 1981 (decimal) or 1981_{10}. If the system has a radix of 8 , then the number would be written 1981 (octal-see later) or $1981{ }_{8}$. In general, if the radix of this number is ${ }_{r}$, then the number should be specified as 1981_{r}.

THE DECIMAL SYSTEM

In the decimal system of counting, ten symbols are used, 0 to 9. There is no new symbol for ten. If we wish to write ten we use the same symbols but start another column, for example ten is written as 10 .

Since the radix is 10 , and as all systems are based on powers of the radix, then decimal numbers can be arranged in columns of powers of the radix. Thus the number $1,234 \cdot 56$ can be represented as:

Power of 10	10^{8}	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}
Decimal No.	1,000	100	10	1	$0 \cdot 1$	0.01
1,234•56	1	2	3	4	5	6

Thus the number $1,234 \cdot 56$ means

$$
\begin{aligned}
& (1 \times 1000)+(2 \times 100)+(3 \times 10)+(4 \times 1)+ \\
& (5 \times 0.1)+(6 \times 0.01) \\
& =1000+200+30+4+0.5+0.6 \\
& =1234.56
\end{aligned}
$$

Proof that any number to the power of " 0 " equals 1

Let n be the number raised to the power p.
Now $\left.\quad \frac{n^{\mathrm{p}}}{n^{\mathrm{p}}}=1=n^{\mathrm{p}} \times n^{-\mathrm{p}}=n^{\mathrm{p}+(-\mathrm{p}}\right)=n^{\mathrm{p}-\mathrm{p}}=n^{0}$

Counting in different bases

The same procedure as above applies if we use other numbers as bases for counting. Suppose we want to use a base of six. The number of symbols used would be six (0 to 5). There is no new symbol for six, we use the same symbols and start another column.

example

Six is written as 10
Since the radix is now 6, counting to the base of six is therefore based on the powers of 6 . The number $0124 \cdot 30$ can be represented as:

Powers of 6	6^{8}	6^{2}	6^{1}	6^{0}	$\|c\| c\|c\|$	6^{-1}
Decimal No.	216	36	6	1	6^{-8}	
No. to base 6	0	1	2	4	$1 / 6$	$1 / 36$

Thus the number $0124 \cdot 30$ to the base six $\left(124 \cdot 3_{8}\right)$ is equal to the decimal number:
$(0 \times 216)+(1 \times 36)+(2 \times 6)+(4 \times 1)+(3 \times 1 / 6)+$
$(0 \times 1 / 36)=36+12+4+0 \cdot 5=52 \cdot 5$ (decimal) or $52 \cdot 5_{10}$.

Exercises

1.1. Convert the following numbers to decimal:
(a) $123 \cdot 2_{4}$ (b) $613 \cdot 1_{8}$ (c) 510_{6}.

Converting decimal to different bases

To convert decimal numbers to numbers of a different base, keep dividing by the base until there is nothing left, and then read the remainders from the bottom upwards as shown:

example

Convert 26_{10} to a number having a base of 4 .

$$
\begin{aligned}
& \text { 4) } 26 \\
& \text { 4) } 6 \\
& \text { 4) and } 2 \text { over } \\
& \text { 4) } 0 \text { and } 2 \text { over } \\
& \text { 4over }
\end{aligned}
$$

Now read the remainder column, up from the bottom:
Thus 26_{10} is equivalent to 122_{4}
If the decimal number contains a fraction, treat the whole number as above, and then treat the fraction separately.

example

Convert 26.734375_{10} to a number having a base of 4 .
Treat the whole number first by dividing by the base until there is nothing left as above:

Thus 26_{10} is equivalent to 122_{4}.
Now deal with the fraction part by multiplying the fraction repeatedly by the base until it reads zero, recording the numbers that appear to the left of the decimal point. Note that only the fraction part each time is multiplied. Place the decimal point before the first digit obtained by this process as shown:

$$
\left.\begin{array}{l}
0.734375 \times 4=2.937500 \\
0.937500 \times 4=3.750000 \\
0.750000 \times 4=3.000000
\end{array}\right\} 0.233
$$

Reading the numbers to the left of the decimal point from the top as they appear after multiplication shows:
0.734375_{10} is equivalent to 0.233_{4}
Combining the two sections we get:
$26 \cdot 734375_{10}$ is equivalent to $122 \cdot 223_{4}$.

Exercises

1.2. Convert 125_{10} to the base of (a) 4 (b) 6 (c) 8 .
1.3. Convert $72 \cdot 1875_{10}$ to the base of (a) 4 (b) 6 (c) 8 .

Disadvantages of using decimal counting in electrical machines

Electrical machines could be designed to count in decimal.
For example:
10 volts represent ten, 9 volts could represent 9 and so on.
This has the disadvantage of involving too many symbols, so that it becomes unreliable for the following reasons:
(1) A variation of the power supply voltage would cause errors, therefore power supplies would need to be stabilised making them large and expensive.
(2) Components would have to be made very accurate, with very close tolerances.
(3) Components would have to have high stability, so they would not be affected by temperature variations and other such parameters.
(4) Component values could change due to ageing.

Any of the above would cause inaccuracy and unreliability.
If we reduce the number of symbols the system becomes more reliable.

example

If we had five symbols, so that 10 volts represented five, 8 volts represented 4 four, and so on, a variation of 1 volt would reduce the error from 1 to $\frac{1}{2}$ in the final result.

From the electrical point of view the switch is the most reliable piece of equipment. Resistors, coils and transformers have a certain tolerance. A switch on the other hand has no tolerance, it is either ON or OFF with no in-between condition.
Since the switch has only two positions, we now have only two symbols, 1 for ON and 0 for OFF, therefore errors are reduced. As computers and logic circuits use switches (highspeed "electronic" versions) for speed and reliability they must count to the base of two, that means in the BINARY SYSTEM.

THE BINARY SYSTEM

Since we are only using two symbols 0 and 1 , there is no new symbol for two; use the same symbols and start a new column.
example
Two is written as 10
Now the radix is 2 , so the binary system is based on powers of 2 as shown:

Powers of 2^{\prime}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}
Decimal No	32	16	8	4	2	1	$0 \cdot 5$	$0 \cdot 25$
Binary No.	0	0	1	0	1	0	0	1

Thus the binary number 001010.01 means:
$(0 \times 32)+(0 \times 16)+(1 \times 8)+(0 \times 4)+(1 \times 2)+$
$(0 \times 1)+(0 \times 0.5)+(1 \times 0.25)$
$=8+2+0.25=10 \cdot 25$
So the binary number $001010 \cdot 01_{2}=10 \cdot 25_{10}$.

Powers of Two

| $2^{0}=1$ | $2^{7}=128$ | $2^{14}=16,384$ |
| :--- | :--- | :--- | ---: |
| $2^{1}=2$ | $2^{8}=256$ | $2^{15}=r$ |
| $2^{2}=4$ | $2^{9}=52,768$ | |
| $2^{3}=8$ | $2^{10}=1,024$ | $2^{16}=65,536$ |
| $2^{4}=16$ | $2^{11}=2,048$ | $2^{17}=131,072$ |
| $2^{5}=32$ | $2^{18}=262,144$ | |
| $2^{6}=64$ | $2^{12}=4,096$ | $2^{19}=524,288$ |
| $2^{13}=8,192$ | $2^{20}=1,048,576$ | |

Exercises

1.4. Convert the following binary numbers to decimal:
(a) $1101 \cdot 1$ (b) $1001110 \cdot 11$ (c) $100100 \cdot 1$ (d) 11011101111

Converting decimal to binary

To convert decimal to binary, keep dividing by 2 until there is nothing left, and then read the remainder column, up from the bottom as shown:
2) 13
2) 6 and 1 over
2) 3 and 0 over
2) 1 and 1 over
2) 0 and 1 over

Now read the remainder column up from the bottom:
Thus 13_{10} is equivalent to 1101_{2}.
If the decimal number contains a fraction treat the whole number as above, and then treat the fraction separately.

example

Convert 10.75_{10} to binary.
Treat the whole number first thus:
2) 10
2) 5 and 0 over
2) 2 and 1 over
2) -1 and 0 over
2) 0 and 1 over

Thus 10_{10} is equivalent to 1010_{2}.
Now deal with the fraction part by drawing columns thus:

Negative powers of 2 Decimal number	0.5^{-1}	0.25	2^{-2}

Since $0.75=(1 \times 0.5)+(1 \times 0.25)$, then 0.75_{10} is equivalent to 0.11_{2}, or by repeatedly multiplying fraction by 2 as shown earlier.

Combining the two together we get:
$10 \cdot 75_{10}$ is equivalent to $1010 \cdot 11$ binary.

Exercises

1.5. Convert the following decimal numbers to binary:
(a) 62 (b) 1024 (c) $42 \cdot 25$ (b) $51 \cdot 125$

Circuit Board Transfers

Catering for the amateur or professional who wishes to produce "one-off" p.c.b.s, Ace Mailtronix have been appointed st ockists of the p.c.b. draughting transfers manufactured by Alfac and distributed in the UK by Pelltech Ltd.

The etch resist transfers offer a wide selection of symbols including terminals, solid, oval, square and offset pads, together with connectors, curved and straight tracks, transistor symbols and dual-in-line (d.i.l.) pads.

The transfers usually come packed in sheets ($115 \times 105 \mathrm{~mm}$) of five of similar type but Ace Mailtronix are able to offer a mixed pack of six sheets including intro sheet, pads, lines and d.i.l.

Being etch resistant, most amateur constructors will opt for the $1: 1$ scale for direct application on to the copper board. However, for those with photographic reduction facilities a range of $2: 1$ scale transfers are available.
For further information and free catalogue send a stamped addressed envelope (9×4 inches) to Ace Mailtronix Ltd., Dept EE, 3a Commercial Street, Batley, Yorks, WF175HJ.

LCD Panel Meter

Anyone looking for a small handheld instrument case, with a raised viewing window and a top panel to take range switches and sockets or even a small calculat or keyboard, has only to purchase one of the new l.c.d. panel meters from Lascar Electronics to obtain one free.

The new meter is claimed to be the first of a new generation giving at least ten times the battery life of any existing type. A PP3 battery will power the meter for an estimated two years, if operated eight hours a day, seven days a week.
Using I.c.d. watch manufacturing techniques to reduce the meter depth to a minimum, its features include digit hold facility, auto zero, auto polarity and single rail supply of 5 to 15 V d.c. drawing $200 \mu \mathrm{~A}$.

As an evaluation offer (valid until December 31) Lascar are giving away an instrument case with each meter sold. The case accepts the meter, a PP3 battery and allows space for a small circuit board.

The total cost of the meter is $£ 23.51$ including VAT and postage and packing. A data sheet with the meter gives details of ten handheld instruments, including multimeters, thermometer and pH meter.

The LCD Panel Meter is available from Lascar Electronics Ltd., Dept EE, Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex, SS13 1LH.

Bumper Sale

The latest news we have from Home Radio is that they are turning over the whole of their first floor to a giant component sale. The sale, a joint effort with Harversons and G. P. Transformers, will run from April 25 to May 2 at the Home Radio premises at 269a Haydons Road, London, SW19.

Portable Vice

A third hand is always handy in the workshop and the latest vice from Home Radio should be a useful acquisition.

The vice has a G-clamp base enabling it to be fixed to various surfaces. Made from cast metal the vice costs $£ 2 \cdot 50$, plus $37 p$ VAT and £1 postage and packing. Total £3•77.
Talking of a third hand, we mentioned some time ago the Minibench from Absonglen and how we liked its general design.
Well, we have received a letter from a Scottish reader who thinks it is like growing six hands. The following is an extract from the letter.
"The Minibench that Eric got for Christmas has been tremendously useful and versatile. He would be totally lost without it now. As he says, it is like growing another six hands.
"The whole concept and design is great. We would be most grateful if somewhere in your magazine, you might find a small space for recommending it to other electronic folk.
"The only addition that it could perhaps have, though not essential, is a light in-
corporated on the bench close to where you work, for very fine, close-up detailed soldering."

Praise indeed, Further information on the Minibench can be obtained from Absonglen Ltd., Dept EE, The Forge, Staplow, Ledbury, Herefordshire HR8 1NP.

CONSTRUCTIONAL PROJECTS

Very few component purchasing problems should be encountered when seeking parts for this month's constructional projects. It is more likely to be one of personal preference than locating difficult components.

Audio Test Set

Although the construction of the Audio Test Set is quite a large undertaking only a couple of items could cause concern.

If possible the RS type meter called for should be used, but as this is a fairly expensive item any meter with an internal resistance as near to 1300 ohm as possible could be used. If a different meter is used it may be necessary to adjust the value of the meter resistor R50.

The germanium OC41 transistor would appear to be a rare specimen but is listed by some of the advertisers in this issue. The price seems to vary quite considerably. It is possible that the germanium OC44 or OC45 transistors could be used as replacements but they have not been tried in the model. Note that if these are used then the pin outlines will be different.

The case for the unit is not critical and the one used in our model is the BC7 from B. Bamber Electronics, Dept EE, 5 Station Road, Littleport, Cambs. CB6 1 QE.

Phone Bell Repeater or Baby Alarm

The CMOS integrated circuit for the Phone Bell Repeater or Baby Alarm should be stocked by most advertisers and the usual precautions should be taken when handling this device.

If a small moving coil loudspeaker is used for the bell sensor then a step-up transformer with an approximate ratio of 1:40 to 1:80 should be used. The LT700 specified in the article is available from Watford, Maplin and Electrovalue.

Auto Lights Reminder and Ignition
 \section*{Locator}

The loudspeaker warning device specified in the Auto Lights Reminder and Ignition Locator is a telephone earpiece insert.

Practically any small loudspeaker with an impedance of between 20 to 80 ohms could be used provided, of course, it will fit inside the case.

Soll Moisture Indicator

The choice of probe for the Soil Moisture Indicator is not critical and no doubt readers will use their own ingenuity. A pair of metal knitting needles would certainly make reasonable probes, but make sure you remove any protective coating on the needles with some emery cloth.
The suggested f.m. aerial socket for making up the probes should be available from any good audio shop although they seem to be in short supply. Alternatively a 2-pin 5 A plug, sold through Wool. worths stores, could easily be adapted.

PHONE BELL REPEATER Or

BABY ALARM

Arelative with poor hearing first complained that the telephone bell was not as loud as it used to be when she was sitting in the room next to the hall in which the telephone was installed.

Then I was asked if a baby-alarm could be made more cheaply than the proprietary ones.
"After all", the mother said, "we want to know if the baby is yelling, not to listen to every little snuffle and burp!"

Urged on thus, this cheap circuit was designed to produce a tone in a distant loudspeaker in response to a reasonably loud noise input to the microphone-a telephone bell, a fretful infant or even your dog at the front door if there is a suitably placed microphone.

There is no chance of a complaint about eavesdropping on conversations since the circuit consists of a gated oscillator instead of an audio amplifier and an advantage of this circuit is that due to the use of a cmos logic chip the standby or quiescent current is only about 0.5 mA which makes for a very long battery life.
The whole circuit, with suitable adjustment of the sensitivity or threshold control will continue operating satisfactorily as the battery voltage drops during its life from 6 V down to about 3 V .

NAND GATES

The full circuit diagram of the Phone Bell Repeater is shown in Fig. 1. The first of the four nand gates, ICla, is biased by VRI such that the output, pin 3, is on the verge of changing from a "high" or logic 1 down to a "low" or logic 0. Any positive-going increase in the input voltage causes the output of ICla to change to a logic "low", driving the output of IC1b "high" (logic 1).
This only occurs for the brief positive peaks from the microphone and the output of IC1b is used to charge CI via D1. This stored charge is used
to enable the oscillator formed by gates IClc and ICld, causing it to oscillate.

If Cl were not discharged deliberately the tone would continue being generated for too long a time but R4 provides a reasonably swift discharge.

Thus the first peak of sound starts the tone and yet there will still be the typical pause in between the "rings" of a telephone (or the yells of a baby).

SQUARE WAVE

The square-wave output of ICld provides pulses of base current for TR1 which in turn supplies the current drive to the distant loudspeaker. When the oscillator is turned off, the output of ICld is at $\operatorname{logic} 0$, which is virtually 0 V and is less than the 0.6 V required to turn on a base-emitter junction. Therefore TR1 draws zero standby current from the 6 V supply.

The crystal microphone XI may be connected as shown in the circuit diagram as the crystal element is opencircuit to d.c. and does not shunt VR1 and R2. Virtually any crystal insert can be used here.

An alternative input device that might be more available is a small moving-coil loudspeaker used in conjunction with an output transformer from an old radio or TV perhaps. The primary winding is connected in series with the slider of VR1 as shown in Fig. 2. A suitable type of transformer if buying new would be the Eagle LT 700.

Fig. 1. Complete circuit diagram of the Phone Bell Repeater.

A microphone, connected to a sensitive sound

HOW IT WORKS

 operated switch, is situated close by the telephone. When the telephone rings, the microphone picks this up and switches on the oscillator.
The oscillator remains switched on until the sound ceases whereupon it also ceases to operate. So

COMPONENTS

Resistors

R1	$2 \cdot 2 \mathrm{Ms}$	R4	$2 \cdot 2 \mathrm{M} \Omega$
R2	$2 \cdot 2 \mathrm{MS}$	$R 5$	$10 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$	$R 6$	$4 \cdot 7 \mathrm{k} \Omega$

All $\ddagger W$ carbon $\pm 5 \%$
Capacitors
C1, C2 $0 \cdot 1 \mu \mathrm{~F}$ C280 polyester (2 off)
Semiconductors

IC1	4011 CMOS quad 2-input NAND gates
TR1	BFY51 npn silicon
D1	OA202 general purpose silicon

M iscellaneous
S1 s.p.s.t. slideı switch
VR1 $2 \mathrm{M} \Omega$ mini ature linear carbon potentiometer
X1 crystal mi crophone (see text)
LS1 miniature loudspeaker, 15 ohms impedance
B1 6 V battery, four HP7 types in series in special holder (see text)
T1 output tra nsformer, Eagle type LT700 or similar (see text)
Stripboard: 0.1 i nch matrix, size 16 strips by 15 holes; twin-core cable to connect louds peaker; suitable housing for loudspeaker; hardboard and soft wood f or main unit housing, or plastics box if building as baby-alarm; batt ery connector to fasten onto battery holder.

Sion

page 334

Fig. 4. A suggested housing for the unit to be located underneath the telephone. Note that this is designed to be used with a conventional "bell" telephone. It can be completely enclosed by fixing a strip around the edge of the base.

The microphone together with the rest of the circuitry and batteries can be housed in a proprietry plastics box and mounted in some convenient position near the baby.
The loudspeaker is housed separately and located near the parents. It is not really practical to have the microphone mounted alone with the circuit board and batteries at the loudspeaker end because of the long run of microphone cable that would be required to connect to the rest of the circuit.

SETTING UP

When completed and switched on, advance the slider of VR1 towards the positive (R1) end of the variable resistor and the tone will be heard in the speaker. Move the control in the opposite direction until the tone just ceases and the circuit is in its most sensitive state.
If the tone starts for too quiet or small a sound then move VRl slider in the direction of R2 even more such that oscillations start reliably for the bell ringing or child crying.

FEEDBACK

When finally installing the system, care must be taken not to site the microphone and loudspeaker too close together otherwise a feedback loop will be set up.

This will mean that once the oscillator has started it will not shut off until the power is disconnected. I

The problem of interference to television reception caused by nearby transmitters has become a very common one in the UK. It is unlikely at the present time if many homes are more than a matter of hundreds of yards away from a transmitter of one sort or another, either amateur, broadcast, police, taxi or even CB!

In many cases the distance may only be a matter of a few feet or so. The result is interference (TVI) of one sort or another to the reception of the UK u.h.f. TV service.

One way that this problem can be solved is for all television set manufacturers to make their receivers more selective, but this would result in the receivers becoming more expensive and in a price cutting market this could spell death to the manufacturer very quickly.

So receivers tend to get built down to a price and selectivity (as far as the r.f. circuits are concerned) is low on the list of priorities.

Television reception can be marred by nearby transmitters (either licensed amateur or illegal C.B. stations) operating around $27-28 \mathrm{MHz}$.
This article describes simple yet effective cures for such TV interference

HIGH-PASS AND LOW-PASS FILTERS

The difference between a high-pass and low-pass filter is this. A high-pass filter will pass all frequencies above its design frequency and attenuate the frequencies below. A low-pass filter will pass all frequencies below its design frequency and attenuate all frequencies above.

By using both types of filter it is possible to get a very high rejection of unwanted frequencies and prevent these causing interference to the required TV signals.

The low-pass filter is fitted between the transmitter and its aerial system and attenuates any harmonics that may be present in the transmitter output (there are always some).

The high-pass filter is connected into the TV receiver coaxial feeder (close to the actual set) and will prevent the transmitter fundamental frequency getting into the r.f. circuits of the receiver tuner unit. If allowed to get into this part of the receiver
circuit the transmitter signal can overload it and "block" the circuits to the required TV signal.

This "blocking" signal could be very strong because the down-lead of the TV aerial makes a very good vertical aerial at the lower frequencies! Quite often, a high-pass filter is all that is needed to provide a cure, so this type of filter should be fitted before trying anything else. Details for the practical construction of both types will now be given.

PRACTICAL HIGH-PASS FILTER

As a high-pass filter will be needed for each TV receiver affected it should be of simple and cheap construction and the filter described here meets this requirement nicely. Fig. 1 shows the circuit of the filter and a typical frequency response is shown in Fig. 2.

Construction is very simple, a small piece of perforated s.r.b.p. board (no copper strips) measuring approximately $50 \times 15 \mathrm{~mm}$ is used for the base.

The coils and capacitors are mounted as shown in Fig. 3, with a coaxial socket on one end and a short coaxial lead terminating in a coaxial plug at the other.
Keep the wires as short as practical. The resistor is to prevent static buildingup on the aerial lead which could break down the capacitors under certain conditions (storm for example); its actual value is not critical. Anything between 220 kilohm and 1 megohm will do.

Once the filter has been made it should be housed in a piece of plastic tube (NOT METAL) and the ends sealed with Araldite, see photograph.

FILTERS IN SERIES

In cases where the interference is very severe, two of these filters could be used in series, but in this

Fig. 1. Circuit of simple high-pass filter.

Fig. 2. Typical response of the circuit shown in Fig. 1.

The completed high-pass filter with the plastic tube which is fitted over the assembly. The ends are then sealed with Araldite.

(b)

Fig. 3. Construction of high-pass filter (a) top view of perforated s.r.b.p. board showing location of components, (b) underside of board showing wire links and connections to output plug.

SK. 1

HISH-PASS FIITE

(a)

HIGH-PASS FILTER
R1 $220 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ t W carbon
C1, C2 $5 \cdot 6 \mathrm{pF}$ silver mica
L1, L2 see below
PL1, SK2 coaxial plug and socket
Miscellaneous
Perforated s.r.b.p. board $50 \times 15 \mathrm{~mm}$. Short length of coaxial cable. Plastic tube (sleeve) 18 mm internal diameter 65 mm long

COIL WINDING DETAILS
L1, L2 Five turns of 22 s.w.g. tinned copper wire wound over $\frac{1}{8}$ inch diameter former, the former is then removed leaving the coil self-supporting. The turns are spaced equal to the wire diameter.

case the total insertion loss may be too high in weak TV signal areas; however, it is worth a try.

If a masthead TV aerial amplifier is in use, it may require one of these filters at its input. In this case the filter must be made waterproof as it will be exposed to the weather. All external connections (plugs and sockets) must also be waterproof.
together by wrapping the capacitor lead around them, then solder.

The decoupling capacitors are all 82 pF silver mica and one is placed each side of each screen. (In the prototype only a single capacitor of 180 pF was used on one side of the screen, but two capacitors of halfvalue each side of the screen give better attenuation at u.h.f.).
outputs up to 1 kilowatt peak. However, a mis-matched aerial system could cause higher voltages to occur across the filter capacitors and break them down.

S.W.R. METERS

A brief word about the use of standing wave ratio (s.w.r.) meters is

PRACTICAL LOW-PASS FILTER

The circuit of the low-pass filter is given in Fig. 4 and a typical frequency response is shown in Fig. 5.

The filter is built inside a metal box constructed as detailed in Fig. 7. The use of tin plate enables all joins to be soldered, thus making a completely sealed enclosure as far as r.f. leakage is concerned.
Two tin plate screens fitted internally divide the box into three equal sections. These screens are soldered on three sides where they make contact with the box sides, so making a complete seal between each section apart from the centre hole for the coil wire ends to pass through.

Standard SO239 coaxial sockets are used and it is probably best if these are fitted to the end panels before the sheet is bent.

COILS

The details for constructing the coils are shown in Fig. 8 and should be followed exactly, for the coil dimensions are critical. The filter has been designed to start attenuating from approximately 32 MHz and if the coils are not made as shown the cutoff frequency may become lower and start to attenuate the actual transmitter output. This might result in the filter being damaged due to the transmitter output being dissipated within the filter.

ASSEMBLY

The filter components are assembled as in Fig. 6.
First position Ll and L3 and solder their outer ends to the sockets. Then position L3 and secure the coil ends

The high-pass filter

Fig. 4. Circuit of low-pass filter.

Fig. 5. Typical response of circuit shown in Fig. 4.

The earthy ends of all capacitors are soldered direct to the screens as shown. Keep the capacitor leads as short as possible otherwise the ultimate attenuation at u.h.f. will suffer.

Where the coils pass through the screens, make sure that the wire passes through the centre of the holes without touching the screen. The mica capacitors will hold the coils in position once they are soldered in place.

When satisfied that all coils and capacitors are soldered in the correct positions and that no unwanted shorts are present, the lid can be laid over the open side of the box and soldered into position, making a completely sealed unit.

However, until the unit has been tested on a transmitter it is suggested that the lid is held in place by soldering at the sides in three places only, this will enable it to be removed if something is found wrong.

USING THE FILTER

The filter can be used either way around with equal effect. With a correctly matched transmitter aerial system the filter should handle power
not out of place here, since it is not generally known that these instruments can, themselves, cause TVI.

This arises through the diodes used to provide the voltages for indicating the standing wave ratio on a meter. Harmonics of the transmitting frequency are generated by these diodes, and these can cause TVI.
After the aerial system has been checked out for s.w.r. the meter should be REMOVED from the system. If you must have the use of it as an output indicator, then fit it into the system in front of the low-pass filter so that the filter also removes any harmonics generated by the diodes. However, note that the meter cannot be used for s.w.r. measurement when connected in this way.

CONCLUSION

The filters described in this article will greatly reduce or prevent TVI from transmitters operating in the 1.5 to 30 MHz band However, if after fitting them you still have TVI, don't jump to the conclusion that they don't work! It just means that you are getting the TVI from some other source as well.

Fig. 6. The low-pass filter with lid removed. Note the positioning of the components and the soldering points.

Fig. 7. Cutting, drilling and bending details for the sheet of tin plate from which the filter box is constructed.

COMPONENTS

LOW-PASS FILTER
C1-C4 82pF silver mica (4 off)
L1, L2, L3 see below
SK1, 2 SO239 coaxial sockets

Miscellanous

Tin plate for box, see Fig. 7.

COIL WINDING DETAILS

Three coils required, made from $18 \mathrm{~s} . \mathrm{w} . g$. enamelled copper wire. L1, L3, Five turns, close wound, 12.7 mm internal diameter (2 off) L2, Seven turns, close wound, $12 \cdot 7 \mathrm{~mm}$ internal diameter.
The coil ends are bent at right angles to the coils along the axis as shown (Fig. 8). The ends of the coil are cut to a suitable length for the box, each coil fits in the centre of its section of the box.
After winding, the coil length (L) is adjusted to 12 mm ($\mathrm{L} 1, \mathrm{~L} 3$) and 22 mm (L2). This is done by carefully stretching the coil so that a gap exists between the turns, the gaps should be even all along the coil length.
Scrape the enamel from the ends of each coil, ensuring that a half-inch length of clean, bright copper is exposed at either end.

Fig. 8. Coils L1, L2 and L3. (See below for winding information).

LOUI-PDES FILTER

르를

CITIZENS BAND APPROVED - 27 MHz F.M. and 930 MHz F.M. -

Britain is to have a legal citizens band radio service. Mr William Whitelaw, the Home Secretary, announced this recently in a Parliamentary answer to Mr Patrick Wall MP.

It is hoped that the new service will be introduced in the autumn.

The new service will be authorised on 27 MHz F.M. (frequency modulated), and a further frequency will be made available around 930 MHz . Equipment will be required to meet a technical specification, and users will have to buy an annual operating licence.
The "pirate" 27 MHz A.M. (amplitude modulated) equipment currently being used in this country is illegal and will remain so.

Choosing the Frequency
Announcing this new era in public radio communications the Home Secretary went on to say. "The final decision had to take into account the need to introduce a legalised service with the minimum of delay; the risk of interference to radio, TV and other authorised services both in the United Kingdom and in neighbouring countries; the availability of frequencies; and the desirability of adopting an international standard."
"The frequency selected27 MHz F.M.-should give CB enthusiasts the performance they want at about the same cost as illicit equipment but with far less interference to other users. France, the Netherlands and Germany are among those European countries who have legalised on 27 MHz F.M. equipment and the Irish Republic has recently announced its intention to do the same."
"The other frequency proposed - around 930 MHz - is going to be adopted in North

LONDON LIGHTS

A fl million contract from the Greater London Council to update traffic lights at some 50 road junctions has been awarded to Plessey.

Traffic flow and control will be assisted by lights being linked via MPUs to a central control computer.

The first International Tape/Disc Association (ITA) European Home Video Seminar has been rescheduled for October 10 to 12, 1981 at the Palm Beach Club in Cannes, France during the Vidcom ' 81 exhibition.

[^1]> | BLINDFIRE |
| :---: |
| FOR |
| USAF |

> Marconi Blindfire radar systems worth $£ 20$ million are included in the British Rapier low-level air defence missile installations to be introduced at USAF bases in East Anglia. This latest order is hard on the heels of a substantial order for Blindfire from the Swiss govern. ment.
> Rapier air defence systems built by British Aerospace have achieved over $£ 1,000$ million of sales.

America and some European countries, and is seen as being capable of giving a good quality service, especially in towns and cities, with the minimum of interference. It offers the prospects of an international market for British manufacturers."
"Other alternative frequencies, such as 41 MHz and 450 MHz , were reviewed but none was free of interference difficulties or met the other requirements. Existing authorised users of the 27 MHz band, for example, hospital paging systems, may be affected by the Government's decision and the implications for them will be taken into account during the planning period."

Existing Equipment

"Existing illegal 27 MHz A.M. (amplitude modulated) equipment will NOT be legalised. The volume of interference from CB sets using 27 MHz A.M. equipment is increasing, in the last five months alone there were nearly 5,000 complaints of interference to radio, TV and hi-fi which were directly traced to the use of illegal 27 MHz A.M. sets. This represents an increase of about one-third of all recorded complaints of interference from all sources. Emergency services have also been affected."

Equipment Specification
"Specifications for the new F.M. (frequency modulated) equipment will be drafted to ensure that it causes the minimum of interference to other radio users; standards will be set to which manufacturers, importers and assemblers will have to conform."
"The equipment will have to be permanently marked so that a purchaser knows the set he is buying meets these
standards. Such specifications are vital to ensure that other radio services (police, fire, aviation) are not adversely affected."

Licensing

"Users of the new service will have to buy a licence, renewable annually, which will entitle them to use equipment on either frequency."
"Talks are taking place with the Post Office to see if they can issue licences on behalf of the Home Office. It is too early to say what the cost of a licence will be."

Finally a comment from the Minister of State for the Home Office: "We are offering a new service which we hope will provide enjoyment for many people. It will give as good a service as the illegal A.M. equipment indeed some of this is already obsolete. It should soon cost about the same and should cause fewer problems for others."
"The interference which illegal CB equipment is causing to TV reception and emergency services is giving rise to concern, and now that the Government has gone so far towards meeting the wishes of supporters of $C B, I$ hope that we can rely on those with illegal equipment to act responsibly and stop using it'".

Wind Power

The site for Britain's first large scale wind turbine generator is to be Burgar Hill, Orkney.

It will develop three megawatts of power from a $£ 5 \cdot 6$ million "windmill" to be supplied by The Wind Energy Group which is a consortium of Taylor Woodrow, British Aerospace and GEC. It should be in operation by 1983/84.

Scottish Recipe

Addressing 250 US company executives in San Francisco, David Simpson the President of Gould Inc, said "Scotland could produce fifty cents of every dollar earned by US Electronics companies in Europe by 1990."
"Within a decade, Europe's market for electronics will equal that of the US." "While Europe presently consumes 30 per cent of world produc-
tion, $£ 15,000$ million, Euro-pean-based companies produce only $£ 5,200$ million locally.
Speaking at a luncheon hosted by the Chairman of the Scottish Development Agency, he went on to say "US electronics firms which fail to set up an overseas manufacturing operation within the next five years will watch their friends gobble up the market".

_ANALYSIS

SAFETY AT SEA

During World War 2 navies were quick to latch on to the advantages of radar to detect and home-on to enemy surface targets as well as to receive early warning of impending air attack. Radar could also be used as a navigation aid, the outlines of coasts and estuaries being made clearly visible in darkness or fog.

After the war marine radar was quickly introduced to merchant shipping, Its appeal was immediate for in-shore navigation and as an aid to collision avoidance.

Unhappily, early commercial marine radars were often built down to a price, shipowners being reluctant to indulge in what seemed an expensive luxury, Moreover, ships' navigators were inexperienced in the use of radar and often underestimated the limitations of what had been oversold as a solution to their problems.

The outcome of poor equipment reliability, failure to use it correctly, and over-reliance on this new wonder tool (with the result that visual look-outs became slack or non-existent) resulted in a series of spectacular and often tragic incidents. The radar-assisted collision became a standing though sick joke. This was rather unfair because although the radarassisted collisions were well documented following courts of enquiry, nobody really knew how many potential collisions had in fact been avoided by radar.

Several attempts were made to improve marine radar performance and add facilities to make the navigator's task more simple. There were varying degrees of success in automating the radar and introducing prediction of a collision. Such sets were costly and generally fitted only to larger and expensive ships.
The microprocessor with its inexpensive yet powerful computing capacity has now produced an entirely new generation of marine radars providing comprehensive anticollision facilities at an affordable price.

In this category is the Automatic Radar Plotting Aid (ARPA). By using several microprocessors they can keep the radar adjusted to optimum performance on every target whatever the target size and the conditions of rain-clutter or sea-clutter.
They can auto-track the movements of up to 20 other selected ships with their speeds and directions and warn the navigator when any target comes within a pre-set guard zone. They also allow the navigator to experiment with proposed manoeuvres to see how they would affect the situation before carrying them out, they will superimpose on the radar display a map of the approach to a port, and they monitor the whole system for faults.

The ARPA systems are to made a mandatory fit for all new ships of over 10,000 tons from July 1984 and retrofit on older vessels by January 1989.

Brian G. Peck

John Chambers, of the BBC's Engineering Research Department, has won the American Institute of Elec trical and Electronics En. gineers (IEEE) "Outstanding Paper of 1980" award for his paper entitled 'Enhanced UK Teletext Moves Towards Still Pictures".

Infrared intruder detection devices, components for TV night surveillance systems and pyroelectric fire alarm devices will all be on display on the Mullard stand at the 'International Fire, Security and Safety Exhibition and Conference," Olympia, London, from April 21 to 24.

The postponement of the Audio, Video and TV Fair which was to have been held at the National Exhibition Centre, at the beginning of May has just been announced.

Hitachi will start marketing VideoDisc players in the US in June. The players, based on the system developed by RCA, will retail for $\$ 499.95$ (approx £230) and be built at Hitachi's Yokohama plant at the rate of 10,000 a month.

Hobbyists using Black \& Decker "Workmate" portable workcentres will be interested to know that the 10 millionth to be manufactured was recently presented to Ron Hickman, the original designer.

Anglia Television is endowing a Chair in Electronics at the University of East Anglia, Norwich, It is expected that a professor of electronics will be appointed next year.

MAP for Success

The Government Microprocessor Applications Project (MAP) for British industry is enjoying continuing success. The free consultancy service had over 2,300 applications up to the end of last year of which more than 1,600 were approved with grants of up to $£ 2,000$ each.
New applications are run ning at a rate of 25 per week.

New Dish

British Telecom will start supplying customers with small dish satellite aerials for commercial trials this autumn.

To be supplied by Ferranti, the aerials will be used for testing new techniques, devices and for commercial trials in preparation for a new satellite communications service with Europe, planned to start in 1983
As the service is aimed at closer links with Europe, who knows, perhaps the European Parliament would like to vote more funds to British Telecom on top of the recent £142 million donated by UK tax payers?

100K! Here's how you master electronics. the practical way.

This new style course will enable anyone to have a real understanding by-a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to fur ther your career in electronics or as a selfemployed electronics engineer. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other

3. Carry out over 40 experiments on basic circuits.

We show you how to conauct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

4. FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to: -

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

4, Cleveland Road, St. Helier, Jersey, Channel Islands.
NAME
ADDRESS
spend more time, on average, glued to the box. Perhaps the American viewers find it enormously difficult to decide which of all those channels they want to watchor reach a consensus family decision.

Too-complex weapon systems

For several decades, the industry has been fighting against a common bellef that electronics equipment is often un reliable, difficult to use and difficult to repair. The position today is that very often in electro-mechanical equipment such as office copiers, computer peripherals and the like, it is the mechanical parts that give the most trouble.

Semiconductors, large-scale integration, low operating voltages and less heat have all helped to minimise the number of true electronic faults. On average, even a complex colour TV set is unlikely to require servicing more than about once a year, often less, compared to an average of around four to six visits pel year in the early days of colour (it was said in the very early days of American colour that the service technician became virtually a house guest).

But all is not plain sailing in some areas: and the prime reason for this is the staggering complexity of some of the more advanced systems.

In the USA, "horror story" reports have been issued recently about some of the latest weapons systems that seem to have become too complex for the military to use effectively or to maintain in good shape.
"Down time" (the time during which equipment is non-operational) can be alarmingly high and performance in field conditions is often very different from what can be achieved by highly skilled engineers during carefully staged demon-strations-and does not take into account combat stress, fatigue and the fact that service users need so many other skills that they cannot be expected to acquire detailed technical knowledge of the equipment.

Automatic test equipment, nowadays, is often supposed to take all the hassles out of maintaining "modular" equipmentbut the American reports show that the ATEs similarly often suffer from excessive down-time and, even when functional, quite often fail to recognise and identify faults in the equipment they are meant to check.

Small is beautiful

The answer to over-automated, overcomplex technology can be found in the writings of that great advocate of alternative technology, the late E. F. Schumacher of "Small is beautiful" fame. He wrote: "Any third-rate engineer can make a complicated apparatus more complicated, but it takes a touch of genius to find one's way back to basic principles . . . complexity is a kind of disease . . . the more complex a thing is the more it tends to break down and you can't repair it yourself. . . is that a price worth paying so you don't have to turn a handle?"

And the Americans themselves have a telling expression: "KISS-keep it simple, stupid!'

and hence between pin 4 of IC1 and 0 V will be in one of three possible states. If the resistance is high, the l.e.d. will flash on and off as IC1 oscillates.

If the resistance drops, the l.e:d. will either stop flashing altogether or remain on all the time. These three states indicate the moisture content of the soil and may be summarised as follows:

> l.e.d. flashes-soil dry
> l.e.d. glows-soil moist
> l.e.d. off - soil wet

Therefore in use, the plant should be watered only when the l.e.d. flashes or glows and never when the l.e.d. is extinguished.

POWER

The circuit is powered by a 9 V PP3 battery and current consumption is in the region of 15 mA when used. This is reduced to about 6 mA when the soil is wet and D1 is not illuminated giving an extremely long battery life, typically several months.

STRIPBOARD

The prototype model was built on a small piece of 0.1 inch matrix stripboard size 6 strips by 16 holes. The breaks on the underside are made first.
The resistors and capacitors can be mounted next followed by the i.c.

A socket can be used for this if preferred although it should be a low profile type so as to fit comfortably onto the circuit board. The capacitor

Many moisture detectors give a vague indication of moisture content by either a varying audio or visual output, and as such it is difficult to determine whether or not the plant requires more or less moisture.

TIMER CHIP

This circuit however overcomes the above disadvantages and a full circuit diagram is shown in Fig. 1. The 555 timer chip, ICl, is operated in the astable mode running at a frequency of approximately 2 Hz . This is determined by R2, R3, and C 1 . The two probes are connected to pin 4 of ICl and the 0 V rail of the supply.

As pin 4 is the reset pin, a low (0V) potential applied to this pin will reset the circuit thereby ceasing oscillations. However a potential just greater than that required to reset the circuit will either cease oscillations, but still allow the l.e.d. to glow, or enable the circuit to function normally, that is to oscillate

Therefore the circuit is ideally suited as a soil moisture indicator.

RESISTANCE

When the probes are inserted into the soil the resistance between them

By J. Blundell

Fig. 1. Complete circuit diagram of the Soil Moisture Indicator.

Fig. 3. Interior layout of the case and offboard interconnections. Make sure that the battery is positioned such that it does not foul the l.e.d. when the lid is screwed down.

the circuit board
D1

Resistors
R1 820Ω
R2 $10 \mathrm{k} \Omega$
R3 $2 \cdot 7 \mathrm{k} \Omega$

Stap

All $\frac{1}{4} W$ carbon $\pm 5 \%$
page 334

Capacitor

C1 $33 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead

Semiconductors

IC1 555 timer i.c.
D1 TIL220 red I.e.d.

Miscellaneous

S1 push-to-make, release-to-
break switch
B1 9V, PP3 type
Stripboard: 0.1 inch matrix, size 6 strips $\times 16$ holes; plastics case, size $72 \times 47 \times 26 \mathrm{~mm}$; battery clip; flexible wire for probes; brass rod, 2.5 mm diameter; f.m. aerial socket for probes (see text).

C 1 is a tantalum bead type and is necessary because of the restricted space on the board. The full layout is shown in Fig. 2.

CASE

The circuit board together with the battery, l.e.d. and switch are all
mounted in a small plastics box size 72×47 $\times 26 \mathrm{~mm}$. This is clearly shown in Fig. 3. As this particular case does not have moulded slots on the interior the circuit board must be held in place with "superglue."

Of course all off-board connections must be made before the board is finally glued in position. The wires leading out to the probes pass through a hole in the side of the case which has a grommet fitted. It would be a good idea to make these wires out of extra-flexible wire such as that used for the test instriment leads as these will be less prone to breakage in use.

Connections to Sl should pose no problems. Take care when connecting
the diode to the circuit board, refer to the lead polarity diagram in Fig. 3.

PROBES

The probes themselves are made out of two 100 mm lengths of 2.5 mm brass rod. These are mounted in a standard f.m. aerial socket. This socket can be prized open using a screwdriver and the rods inserted in place. The wires are then soldered directly onto the top of the rods.

WET OR DRY

To use the unit push the probes deep into the soil. Press the button, S1, and the l.e.d. will light up or not according to the moisture present. Only if you get no response from the l.e.d. should you water the plant.

The prototype has been in constant use for over a wide range of plants for the past 12 months with absolutely no problems whatsoever. Prior to the building of the unit quite a number of plants were lost due simply to overwatering.

Many people water their plants when the top of the soil feels dry, not realising that it is not the top of the soil that should be moist but the soil at root level.

To test if the unit is working prior to insertion in the soil, press SI whereupon the l.e.d. should flash. I

You may ask, what have the wide open prairies got to

BOOK REVIEWS

TEXAS INSTRUMENTS LEARNING CENTER UNDERSTANDING SERIES

Understanding Calculator Math
Authors Ralph A. Oliva, et al
ISBN 089512016 X

* Understanding Solid State Electronics Authors William E. Hafford, Gene McWhorter; et al ISBN 0895120186
Understanding Digital Electronics Author Gene McWhorter
Hesif ISBN 089512178
Understanding Communications Systems
* Author Don L. Cannon and Gerald Luecke ISBN 0895120356
Understanding Microprocessors
Authors Don L. Cannon and Gerald Luecke ISBN 0895120216
Price $£ 3.50$
Size $210 \times 132 \mathrm{~mm}$, approx 280 pages each Publisher Texas Instruments Inc.

The year is 1840. You're on horseback and you are travelling through this wide plain forming a valley between high hills on each side. Scanning the scene you notice large puffs of smoke rising from one of the highest points on one of the hills.

No, it isn't the intro to a spaghetti western but the start of the first chapter of the Understanding Communications Systems book in this set from Texas Instruments.
do with modern electronics? More than you would suppose, because smoke-signals, like it or not, are a primitive form of communications system and are used here to illustrate basic principles before passing on to modern concepts.

In fact this low-key, humorous approach is used throughout the series often to great effect and it makes the whole business of learning so much more interesting.

Best of the lot in terms of graphics and pretty pictures is the Calculator Math book. You could be forgiven for thinking it was a superior sort of operator's manual for the Texas TI-30 calculator as all the key-strokes refer to this device. However, with a bit of thought you can adapt things to your own two pound Wooley's Wonder!

The rest of the books in the series are a little more serious in approach although an opportunity to drop in the odd cartoon is rarely overlooked.

Understanding Solid State Electronics is adapted from a 12 -hour videotape course and was "created for the reader who wants to understand electronics but can't devote years to study". It concentrates very largely on practical applications rather than the finer points of theory and includes sections on virtually all fields of electronics.

A self-test quiz appears at the end of each chapter so you can see if you really did take in allsthe points you have just read through. This feature also appears in the other three books.

Understanding Digital Electronics, Communications Systems, and Microprocessors all demand a bit more back ground knowledge and a modicum of patience in sorting out the American terminology. In most cases this is little more than a minor irritation-after all didn't the Ameri cans invent solid state electronics way back in 1948 ?

Communications systems are more of a problem because virtually everything from telephones to TV runs on different standards to the UK so this may limit the usefulness of this particular volume'. Still, this doesn't really detract from what is an entertaining and informative series of books.

SED

OHIO SCIENTIFIC COMPUTERS new series 2 Challenger CIP Cheapo 4 K version £202．Ohio $8 K$ version $£ 259$. Special offer：－Superboard 3 whith free power supply and modulator kit and guard band kit glves 32×3 extended display
1200 and 300 baud tape speeds， 50% higher computing speed and 50 Hz con－ version）$£ 159$ the lot．Guard band kit also sold separately $£ 10$ ． 4 K extra ram $£ 16.95$ Case $£ 27$ ．Cassette recorder $£ 17$ ．Cegmon Editor £25．Word processor £10．Display expansion kit 30 lines $\times 54$ characters to superboard TWO $£ 20$ ．

PRINTERS supplied with free interface and word processor for Superboard and
UK101．Seikosha GP80 $£ 225$ ．OkI Microline $80 £ 329$ ．Base $2800 \mathrm{MST} £ 299$ ．
SINCLAIR PRODUCTS only are post ree．SC110 oscillloscope £139，adapto probe $£ 8.05, \times 10$ probe $£ 8.86$ ，carry case E．8．80．pfm200 ¢54．50，adaptor £4，case £1．73，connector kit £11．27．PDM35
£ $32 \cdot 95$ ，adaptor $£ 4$ ，case $£ 1 \cdot 73$ ．dm235 \＄56．50，dm350 £78．50，dm450 £107．95

MEMORIES 2114 450ns E2 15． 4116200 ns £2．83． $4027 £ 1 \cdot 30$ ．All low current．
BATTERY ELIMINATOR KITS 100 ma adlo types with press studs $9 v$ \＆1 79，
 88－30．Stabilized power kits $2 \cdot 18 \mathrm{v}$ A 100 mp £3．12，1－30v TA £S．50，1－30v 2－18v 100ma TL and computer supplies 5 V stabllized 6／7⿳亠丷厂彡2／9v1 A E1－62．
T－DEC AND S－DEC BREADBOARDS －dec $£ 3.79$.
BATTERY ELIMINATORS 3 －way tyoe $6 / 7 \frac{1}{2} / 9 \mathrm{v} 300 \mathrm{ma}$ E 3.50 ． 100 ma radio types with press studs $9 v \quad £ 4 \cdot 95,9+9 \mathrm{y}$
convertor 12 v input，output $\quad \mathbf{2 5}$ ．Car
$4 / 6 / 7 / 1 / 9 \mathrm{v}$ convertor 12

TV GAMES AY－3－8600＋kit E12．98． AY－3－8550＋kit £ $9 \cdot 26$.

SWANLEY ELECTRONICS
Post 45p extra Add VAT except on ectlons marked＊．LIsts 27 p post free． Official and overseas orders welcome．

$\overline{\text { LETTERS }}$

Over Complex?

1 am surprised at the sophistication of some of the circuits published in E.E. these days. I refer in particular to the capacitor discharge unit, Model Railway Points Controller published recently. When one considers the requirements of the unit all that appears to be required is a means of discharging the capacitor without putting a short circuit across the supply, and this can be accomplished very simply by a series resistor in the supply line. The size of the resistor, of cour se, depends on the optimum load on the supply, and of course, on the acceptable delay in reaching full charge on the capacitor.
I have been using a simple circuit for some time where a capacitor of $5000 \mu \mathrm{~F}$ charges through a resistor of 220 Ω. Charging time is approximately two seconds. This circuit can operate four points simultane ously. The charging current is limited to 75 mA on a 16 V uncontrolled d.c. supply and of course this is the load taken from the supply when the points are operated.

The only sophistication I have found acceptable is the insertion of two l.e.ds, with their appropriate series resistors. One, a red one, is put in parallel with the series resistor and glows whilst the capacitor is charging,' indicating "not ready". The other, a green one, is connected across the capacitor and glows with increasing brilliance until the fully charged state is reached indicating "ready". The l.e.d. resistors of course must be of different values, the green one being larger than the red one.
N. Bushell, Pantmawr, Cardiff

The "sophistication" of our circuit allows rapid successive operation of a number of point motors. Mr. Bushell's circuit requires a two-second interval between successive operations. Also, our circuit only applies a short duration pulse per switch operation irrespective of the length of time that the switch is held on whereas Mr. Bushell's circuit applies a similar pulse, but also contains a d.c. component which is applied to the point motor for as long as the switch is held on. However, this is small, 75 mA , and is unlikely to damage the point motor. Mr. Bushell's circuit requires a compromise between recharge time and standing current in the point motor. If this order of delay and standing current is acceptable then the unit will be that much cheaper and easier to build.

Blowing a Fuse

I have read the article about the fuse (In My Class by T. R. de Vaux-Balbirnie). Good information, but my problem is a little bit different. I'have a stereo amplifier. It is a good amplifier but it eats fuses.
It is always the fuse for the loud speakers that blows. The original fuse was a 400 m A (quick blow). I changed it to a 500 mA anti-surge, but it didn't help.

What can I do? I know I have the right impedance on the speakers, and I don't touch the speaker selector, and the volume control is always point zero when I switch it on. What's wrong, and what can I do to make it alright again?
D. Agnani,

Dalby, Sweden
Are you certain that your speakers have the correct impedance and that there is no possibility of an intermittent short circuit between speaker leads or between one lead and a metal part of the amplifier. Short circuits like this frequently occur in plugs and sockets where twisting of leads is possible.

We suggest a double-check by borrowing some suitable speakers from a friend. If the fault persisted then substitute a fuse of value 1A-firstly "quick-blow' then, if necessary "anti-surge". Do not use a fuse with a higher rating than this without checking with the manufacturer since the output stage of the amplifier could be damaged.

No Reply

I am writing to you on account of seeing Mr. Andrew Lord's letter in the February issue of Everyday Electronics in which he said he could not locate the ZN458T reference diode. I also had problems in obtaining the components. I wrote to the address you gave in the February issue and also in an earlier one enclosing an S.A.E. but even though I wrote quite a few times I still have received no reply.
So, I did a bit of investigating around other sources and eventually found a stockist, the address of whom is given below. Why I received no reply from the address you gave us I do not know. I thought that the address of the firm to which I have managed to obtain the components may be useful to other readers: Davian Electronics, 13 Deepdale Avenue, Royton, Oldham, Lancs, OLX 6XD
B. Harris,

Ladywood, Birmingham

Excellent Idea

While reading the February 1981 issue of your magazine I noticed a new feature called Circuit Exchange.
This 1 thought was an excellent idea, but reading deeper into the "Ultrasonic Transmitter-Receiver" article submitted by K. K. Gandaa, I found the equation of the resonant frequency of a parallel tuned circuit as:
$f=2 \pi \sqrt{L 1 \times C}$.
Should this not read:

$$
f=\frac{1}{2 \pi \sqrt{L 1 \times C 2}}
$$

I have been interested in electronics for several years now and EE was the first electronics magazine I bought regularly. Since my first issue of EE I have left school and gone into the electronics industry with a well known radar company.

Thanks EE for many projects, ideas and inspirations.

K. Harris,

Walton-on-Thames, Surrey
You are quite correct, of course, concerning the formula given in the Circuit Exchange article. I apologise for this mistake.

It is always very gratifying to hear from readers (or may be past readers) to learn of the value our contents has bee. to them in their early days in electronics.-Ed.

Neutralising Solution
With reference to the "P.C.B. Solution" letter in your March issue written by J. G. Burch from Southampton. I would point out that it is illegal to dispose of acids and corrosive liquids into domestic drains, even if they are diluted.

Being a photographer (amateur) who processes his own colour prints, I am aware that the bleaching solutions have to be neutralised before being disposed of. The liford Cibachrome System supplies a neutralizer in the processing kit, and it is also available separately at a modest price of about $£ 1 \cdot 05$ which will deal with 5 litres of corrosive solution.

The other substance I believe you could use is ordinary bi-carb. Place just a spoonful in a plastic container large enough to take the used solution, pour the ferric chloride into it and then pour it away.
K. H. Bacon,

South Ockendon, Essex

Disposing of chemical wastes is always a problem but in this case we stand by what we said earlier that it is in order to dispose of highly diluted ferric chloride down what is known as the "foul" drain, that is, the drain into which sink and toilet waste flows. Surface drains, that is drains that dispose of rain water usually found by the sides of roads and paths must not be used.

As to neutralisers, it would be very unwise to mix undiluted ferric chloride with an unknown chemical or even sodium bicarbonate. The resulting chemical reaction would be unpredictable and may well be rather more violent than expected. We do not recommend this course of action.

Who-was-First

I read the article l.C.s. Explained in your February 1981 edition and made the "Who-was-first monitor". However, I found that the indicators took so much power from the outputs (IC2 pins 3 and 4) that there was no power lett to power gates " b " and " d " causing malfunctions.
The solution was to connect two 180 ohm resistors, one in each of the leads of the l.e.ds, to reduce the current consumed.

I am twelve years old and probably one of your youngest readers and I much prefer matrix-board and Veroboard designs to p.c.b. dèsigns.

Wishing you great success,
Philip Summers,
Haywards Heath, Sussex

Now that C.B.'s here

I breathed a sigh of relief when the Home Office at last announced that they would legalise C.B. by about August, on 27 MHz FM . But at the same time I couldn't help wondering what we are letling our. selves in for.

Although I don't own a "rig" myself (yet), I live in an area where there are at least 200 in a 10 mile radius and many of these are finding, their way to school children and are being extensively abused. Let's just hope that the Home Office will propose a licensing system and perhaps even a minimum age of about 16.
S. A. Courtney,

Chipping Campden, Glos,

ADV.ANCE ADVERTISING BARGAINS LIST!
Our FREE Bi-moning list gives detais or bargains arriving or iust
arrived -o often bargains whilch sell out before our advertisement appear - it's an interesting list and it's free - iust send S.A.E. Betow are a few of the Bargains still available.
TRANSMITTER SURVEILLANCE
Tinv, easily hiddien but which will enable conversation to be picked pars and circuit. $£ 2.30$.
RADIO MIKE
Ideal for discos and garden parties, allows complete Ireedom of
movement. Play through FM racio or tuner amp. $£ 6.90$ comp. kit. SAFE BLOCK
Mains quick connector will save you valuable time. Features include
quick spring connectors, , heaw plastic case and auto on and off switch. Complete kit. $\mathbf{E 1 . 9 5}$.
LIGHT CHASER
Gives a brilliant display - a psychedelic light show for discos, par-
ties and pop groups. These have tree ties and pop groups. These have three modes of flashing, wo chase patterns and a strobe eftect. Tot日l output power 750 watts
channel. Comlete kit. Price $\mathrm{f16}$. Ready made up $\mathbf{E A} 4$ extra.
FISH BITE IND:CATOR
Enabies anglers to set up several lines then sit down and read a book Price $£ 4.90$.
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 metres. Based on circuit which
appeared in a recent issue of Redio Constructor. Complete kit in
cludes case materials, six transistors, and diodes, condensers, resistors, inductors, switches, etc. Nothing else to buy if vou have an
amplifier to connect it to or a pair of high resistance headphones. amplifier to c
Pric*
E11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $\mathfrak{f 2 . 3 0}$. Crystal earpiece 65p. High resistance headphones (
Kit includes chassis and front but not case.
RAOIO STETHOSCOPE
Easv to fault find - start at the arial and work towards the speaker - when signal stops you have found the fault. Complete kit E 4.95 . INTERRUPTED BEAM
steady beam of infra-red or ordinary light is bro ken. Main comp ents - relay, photo transistor, resistors and caps etc. Circuit diagram but no case. Pricy $£ 2.30$
OUR CAR STARTER AND CHARGER KIT has no doubt seved many motorists from embarrassment in an emergency you can start car off mains or bring your battery up to full charge in a couple of
hours. The kit comprises: 250 w mains transformer two thours. The kit comprises: 250 w mains transformer, two 10 amp
bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage, whichever suits you best. Price $\varepsilon 11.50+E 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER In case measuring state ampli 3 in \times ined for use as siqnal tracer on GPO cables, etc. With a radio It functions very well as a signal tracer. By connecting a simple coil to the input socket a useful mains caule tracer can be made. Runs on standard 41/2v battery and has input, output sockets
and on-off volume control, mounted flush on the top. Many other uses include general purgose amp cueing amp etc. An Many other bargain at only $£ 1,85$. Suitable 800 hm earpiece 69 p .

FIVE UNUSUAL SWITCHES
For inventors, experimenters, service engineers, students or in fact anyone interested in making electrical gadgets. The parcel
contains: - delay switch -- motor driven switch - two-way and contains: - delay switch - motor driven switch - two way and
off switch - polarity changing switch - and humidity switch. O off switch - polarity changing switch - and humidity switch. Our
regular price for these switches bought sepprately is over $£ 10$, but this month you can have the 5 for $£ 2.50$

MAINS OPERATED CLOCKS

Where can you buy a precision mains operated electric clock for only $\mathrm{f1.25?}$ The answer is from us, but you mus
be prepared to buy 8 at a be prepared to buy 8 at a time. Made for famous cookers. these are for normat 250 volt 50 Hz mains and they still
have the 25 amp timed on and off switches. They are all have the 25 amp timed on and off switches. They are al brand new and stilf in orgigna manufacturer's packing
Don't miss this offer. Send $£ 10$ for 8 today, or $£ 2,00$ for sample one.
275 WATT TRANSFORMER
With normal mains Primary and two secondary windings. The major one being 26 volts at 10 amps, the other being 12 volts at
1 amp. Extremely well made transformer impregnated and varnish amp. Extremely well made transformer impregnated and varnis
ed with a substantial terminal plate on the top. Mede for surface mounting with perforated clamps for fixing along'any edge.
$\varepsilon 8.50+£ 2.00$ post.
WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on a fibre glass coil and then covered with p.v.c. Dozens of uses - around wroter
pipes, under grow boxes in gloves and socks. 23p per metre. pipes, under grow boxes in
Precision movement with a balance wheel and main spring, qoes for 1 hour at one winding - can be used to operate models, delay switches, etc.etc. 75p.
FRUIT MACHINE HEART. 4 wheels with all fruits. motorised and With solenoids for stopping the wheels with a little ingenuity
defy your friends getting the "isckpot". $£ 9.95$. $\uparrow \& 4$ carriage.

MUGGER DETERRENT
arching switch plastic case and battery connecior. Will scare away any
bring help.
$\in 2.50$ compiete
time switch bargain Large clear mains frequency controlled
clock, which will always show you the clock, which will always show you the
correct time tstart and stop switches with the dials. Comes complete with knobs.
E2.50.

3 CHANNEL SOUND TO LIGHT KIT

complete kit paris for a

three-channel
sound to tight
unit controll.
ing over 2000
ing over 2000
watte of light. ing. Use this

you wish butit
is plenty rugged enough for disco work. The unit is housed in an
attractive two-tone metal case and has controls for each channel. attractive two-tone metal case and has controls for each channel and a master on/off. The audio input and output are by $11^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 19.95$ assembled and tested.
REMOTE CONTROL for Sound to Light Systems lours or any other circuit) saves connecting to speaker or amp - kit consists of 1 watt amplijer, crystal mike, case, sundries and diagram. 'Price $£ 3.95$.

LIGHT EXPANDER AND LATCH for Sound to Light, enables 3000 watr oflighting to be controlled bV single channel or each channel and enables lights to be latched on Kit consists of latching relay, control switch, case, sundries and diagram. Price £4.25.
PANEL METERS "AMSTRAD"

We have two types, both approx 40 mm (1 $7 / 8^{\prime \prime}$ square) with modern clear pers
pex tyipe front. Both have sensitivity pex type ront. Both have sensitivity
$0-100 ~ U A$, one has a pointer in the centre and the scale calibrated 3-2-1
$0-1-2 \cdot 3$. The other has the pointer in he normal position and the scale reads 0.5 . The interesting feature of these the scale and pointer seem to fluoresce, giving a very pleasing
ect. Special price of $\mathbf{2 1 .} 6 \mathrm{each}$

THIS MONTH'S SNIP

PUSH BUTTON G.P.O. TELEPHONES
For $£ 25$ lquickly recoverable in saved timel you will improve your image and efficiency with this push
button desk tetephone, ex. G.P.O. thoroughly recon.
ditioned, can be yours in a few days, if you send roday

EXTRACTOR FAN

8 POWERFUL BATTERY MOTORS For models, Meccanos, drills,
remote control planoes, boats, remate contro.
etc.
$£ 2.50$.

SPIT MOTORS

These are powerful mains operated induction motor; with gear box attached. The final shaft is a $1 /{ }^{\prime \prime}$. rod
with square hole so you have with square hole. so you have altern-
ative couplingmethods - final speed ative couplingmethods - final speed
is approx. 5 revs!'min, price $£ 5.50$.is approx. Srevsimin price 55.45 or
Similar motors with final speeds of 80, 100, 160 \& 200 r.p.m. same price

TAPE PUNCH \&
READER for controlling machine toots, etc. motorised 8 bit punch with matching tape reaser. Ex computers, be-
lieved in good working order, any not so would be exchanged. $\mathbf{5 1 7 . 5 0}$ pair. Post .
MINI-MULTI TESTER Deluxe pocket size precision mov. ing coil instrument, Je welled bearings -2000 o.p.v. mirrored scale 11 instant range measures: DC volts $10,50,250,1000$.
$A C$ volts $10,50,250,1000$
$D C$ amps
$0-100$
Continuity and resistance 0.1 meg ohms in two ranges. Complete with test prods and in-
struction book showing how to measure cap. struction book showing how to measure caa
acity and inductance as well. Unbelievable value at only $\mathbf{E 6 . 7 5 + 5 0 0}$ post and insurance.
FREE Amps range kit to enble you to read C current from 0.10 amps, directly on the $0-10$ scale. It's free if you
ourchase quickly, but of you already purchase Quickly, but of vou alread
own a Mini-Tester and would like Own a Mini-Tes
one, send $£ 2.50$.

MULLARD UNILEX A mains ARerated $4+4$ ste
system. Rated. one of the system. Rateod. one of the
finest performers in the
stere stereo field this would almost anyone. In easy to assemble modular form this should sell at about $£ 30$ - but due to a special bulk buy and as an in centive for you to buy this month we offer the sys. tem complete at only 16,25 including V AT and post.
FREE GIFT FREE GIF -buy this month and you will receive a palr of
Goodman's eliptical $8^{"} \times 5^{4}$ speakers to match this amplifier

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily automatically correcting for the lengthen ing or shortening day. An expensive time Switch but you can have it for only $\mathbb{E 2 . 9 5}$. These are new but without case, but we con supply, plastic cases (tbase and cover) Also availabie is adaptor kit to convert this into a normal 24 hr , time switch but with the added advantage of up to 12 on / off's per 24 hrs . This makes an ideal con Troller for the immersion heater. Price of adaptor kit is $£ 2.30$.

DELAY SWITCH

Mains oper ated - delay can be accurately set with pointers knob for periods of up
to $2 \% / 2 \mathrm{~s}$. 2 contacts sultable to 5 witch 10 amps - second conlact opens a few minutes after ist contact. $£ 1.35$.

LEVEL METER

size approximately ${ }^{3 / 2}$ " square, scaled signal
and power but cover easity removable for
rescaling. Sensitivity. 200 UA. 75 p .

STEREO HEADPHONES Japanese made so very good quality 8 ohm impedance، padded, ter plug. E2.99 Post 60 p.

BRIDGE RECIFIER
10 for $£ 2.50$. 100 for $£ 20.00$

PORTABLE
RADIO CASE
Size: $11 \times 8 \times 3 \%$ ins
approx. Made from ply approx. Made from plywood, pleasingly covered.
Suitable for any normal Suitable for any normal
radio circuit. Has studs radio circuit. Has studs
for mounting $5^{\prime \prime}$ speaker and the front is drilled
to take a tuning conden. to take a tuning conden
sor in the centre and normal controls either

LAST MONTH'S SNIP - STILL AVAILABLE And it still carries a free gift of a desoldering pump, which we are currently selling at $£ 6.350$. The snip is perhaps the mostuseful break down parcel we have ever offered. It is a parcel of 50 nearly all different computer panels containing paris which must have cost a least $£ 500$. On these boards you will find over 300 IC's. Over 300 diodes, Over 200 transistors and several thousand other parts, resistars, condensors, multi-turn pots, recifiers, SCR, etc. etc. If you act
promptly, you can have this parcel for only 88.50 , which when you deduct the value of the desoldering pump, works out to just a little over $4 p$ per panel. Surely this is a bargain you shouid not miss! When ordering please add $£ 2.50$ post and $£ 1.27$ VAT.

MAINS MOTORS Precision made a Speed usually 1,400. All have ample spindle length for coupling fan blade pulley, etc. Power depends on stack
$5 / \mathrm{g}^{\prime \prime}$ stack $£ 2.00 ; 7^{\prime \prime}$ stack $£ 2.50 ; 7 / 8^{\prime \prime}$ stack $£ 3.00$; $1^{1 "}$ stack $£ 3.50$; 11/2" stack £4.50. Add 25% to motor cost to cover pos tage, and then add 15% VAT.

YOUR LAST CHANCE FOR THIS BARGAIN 100 iwist drills, regular tool shop price over E50, yours tor only £11.50. With these you will be able to drill metal, wood, plastic, from the tiniest holes in P.C.B. righ

MAGNETIC LATCH
Low vottage (4.-8 volt AC/DC operation)
COMPONENT BOARD
Ref. W0998

This is a modern fibreglass board which contains a multitude of
very useful parts, most important of which are: 35 assorted diodes
and rectifiers including 43 3amp 400 v types (made up in a bridge) 8 and rectifiers including 43 mmp 400 v ivpes (made up in a bridge) 8 transistors type BC 107 and 2 type BFY 51 electrolytic condensers.
SCR ref 2N 5062, 25 Ouf $100 v$ DC and 100 f $25 v$ OC and over 100 other parts including variable fixed and wire wiound resistors. other parts including variable, fixed and wire wound resis
elecrrolytic and other condensers. A real snip at $£ 1,15$.

J. BULL (Electrical) Ltd.

(Dept. EE), 34 - 36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3OU.
J. BULL (Electrical) Ltd - Established 25 years, MAIL ORDER TERMS: Cash with order - please add 60 p to all orders-under $£ 10$, to offset packing, etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

* MPU Section accepts $24,28,40 \& 64$ pin DIL microprocessors
* Auxiliary Areas accept any .3 " or .6 " RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts

The PROFESSIONALS breadboard that BEGINNERS can start on $305 S$ INDUSTRIAL MOULDINGS LID

2 Herne Hill Rd, London SE 24 OAU, England
Telephone 01.7372383
Cables \& Telegrams: LITZEN LONDON 9693
Please send me MPUroBreadBoard(s) at $£ 18.00$
This price includes VAT \& PP, is applicable from March 1981 but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
I enclose a cheque/P.O. to the value of $£$.
Name
Company
Address

Telephone Number

NEW MICROCOMPUTER FAMILY

Microcomputer technology never stands still and one of the latest contenders in this field is the NSC800 family from National Semiconductor. At present this comprises just three chips-a central processor, ram-input/outputtimer, and rom-input/output. Additional memory and other peripheral chips are likely to be announced in the near future.

Design of the NSC800 has been greatly influenced by the popular 8085 and Z80 families and it has the added advantage of being manufactured by a cmos process exclusive to the company. On average the NSC800 will require only half the power of comparable nmos devices and will operate from a wide range of supply voltages.

Looking more closely we can see that the central processor. designated NSC800, is an 8 -bit device with a multiplexed address/data bus and provides on-chip clock generation, interrupt capability and dynamic memory refresh control.
The instruction set runs to 158 commands and two dif-
ferent operating speeds are available, $2 \cdot 5 \mathrm{MHz}$ and 4 MHz .
The RAM device, desig. nated NSC810, combines 128 bytes of memory with 22 individually programmable input/output lines partitioned into two 8 -bit ports and one 6 -bit port. Not content with this, the company have even managed to cram two 16-bit programmable timers onto the chip which can be operated in one of six modes.
The rom i.c. designated NSC830, is a slightly less exotic affair although it still contains 2 K bytes of mask programmable read only memory as well as 20 individually programmable input/output lines.
Putting the system together provides a powerful processing system which at the same time will only consume 100 mW when operated at 5V. The makers claim that this reduction in power consumption "makes the NSC800 a natural choice for many applications especially those requiring a battery power supply."

One of the major factors influencing that choice will be that of cost. Even with volume production the central processor alone will cost at least four times as much as a more conventional device.

SEMICONDUCTOR
 TEST SYSTEM

Before any new i.c. is re leased onto the market and indeed when it is in production, testing is all important. However, with the growing complexity of LSI and VLSI chips this requires rather more than a few voltage checks with a multimeter.

To meet this challenge Tektronix have just released their S-3275 test system, aimed primarily at the manufacturer and design en gineer.

The list of facilities is impressive and offers a wide range of test options but the one feature that makes the whole system work at all is the system software. It is known as Tektest II, version IV and is an English-like self-documenting language. All graphics generated can be easily converted to hard copy form and the network ing option allows the system to be interfaced with any large computer.

DISPLAY DRIVERS

A new range of display drivers has been announced by OKI Electronic Industries. These are designed to inter face directly between the output port of a microcomputer and seven-segment dis plays and turn the BCD code into a hexidecimal display

LOW NOISE AMPLIFIER

In low power amplifiers, noise and reliability of construction are always important, especially with r.f. circuits. A new integrated circuit from Plessey, known as the SL560C, provides 35 dB gain at 75 MHz bandwidth or 14 dB at 300 MHz bandwidth yet still manages a noise figure of less than 2 dB .

The device is made up of three high performance transistors and associated components encapsulated in an 8-pin package. This circuit configuration together with connguration connection points. allows maximum flexibility with a minimum number of external components.

It can be used in common base or common emitter mode or as a 50 ohm line driver and will work with a supply voltage anywhere between $2-15 \mathrm{~V}$ depending on the circuit configuration.

Several devices can be cascaded together and three SL560's will provide a gain greater than 40 dB over a 300 MHz bandwidth when used with a 9 V supply.

L.E.D. ARRAY

L.E.D. displays are ten-apenny these days but providing an array for such things as signal level indicators or vehicle instrumentation is rather more of a challenge.

A new range of l.e.d.s from Impectron has been designed to overcome this problem. The GL series is available in
single form or straight-line arrays containing five or six elements each with a rectangular light emitting face.

The series offers a choice of three colours-red, yellow and green-and one array in the range features four elements in green and two in red. This is very useful for such items as VU meters or level indication in process control circuitry.

LITHIUM
 SUPER-BATTERY

One of the first attractions of semiconductor equipment was its portability and low current consumption. Unfortunately providing even this small amount of energy from an acceptable package has often posed something of a problem. Various solutions have been tried, but the most promising appears to be a new lithium/sulphur dioxide cell manufactured and marketed by Vidor Industrial Batteries.

Compared with other cells this new device, developed from an American design, has a higher operating voltage $(2 \cdot 8 \mathrm{~V})$, higher energy density (up to 30 times greater than for an equivalent carbon/zinc cell), operating temperature range from -55 to 70 degrees Celsius, and ten-year shelf life.

In short this new cell, or "Eternacell" as it is called, is a very high energy, nonrechargeable primary cell designed to replace conventional dry battery systems. Cell designs are available in a variety of sizes from $0 \cdot 5 \mathrm{Ah}$ up to 30Ah and versions are available to harmonise with standard IEC and BS specifications for zinc/carbon cells. Custom built designs can also be undertaken.
Unfortunately, these batteries are only available to industrial and military users but already their advantages are being felt.
Typical of the many applications is a new laser binocular for the army. Conventional battery packs are a back-breaking $5^{1}{ }_{2} \mathrm{~kg}$ in weight. The use of Eternacells brings this down to a more manageable 2 kg .
Of course this power/ weight advantage doesn't come free and the new cells cost roughly six times more than their conventional counterparts in terms of their price per watt-hour.

COBCOOT EBCHANGES

THREE GAMES FOR
 A SUMMER FETE

In June last year we used the 555 timer and CD4017BE in a game at a summer fete. The circuit was similar to that given in your Live Wire Game (December 1980) except:
(a) We did not have the buzzer circuit.
(b) Instead of nine lives we used four lives with the l.e.d.s in series as shown in Fig. 1.

When the circuit was turned on four l.e.d.s were on. Each time the eye touched the wire, number of l.e.d.s on was reduced by one and the game finished when all four l.e.d.s were off.
The advantage of this circuit is that number of l.e.d.s on indicates lives available.

We used the 555 and CD4017BE for two more games and in both of these the 555 was used as an astable vibrator.

Fig. 2 shows the circuit for Who Won the Pomagne. When the switch Sl was pushed on, all the ten l.e.d.s were on because of the low time constant of the astable vibrator.

When switch 1 was released only one l.e.d. remained on. Because of the very high frequency, it is extremely
difficult to predict which l.e.d. will remain on when the switch 1 is released.

Fig. 3 shows the circuit used for Heads or Tails. We used red and green l.e.d.s. The operation is by push-to-make switch Sl as explained for Fig. 2 above.

Mr Balkar,
Welling, Kent

Fig. 1

Fig. 2

Fig. 3

SIMPLE CAPACITANCE INDICATOR

This circuit will provide a useful measurement of the value of capacitors ranging from about $0 \cdot 2 \mu \mathrm{~F}$ to $4,700 \mu \mathrm{~F}$ or even greater. The capacitor
under test is connected into the circuit with crocodile clips carefully observing its polarity.

Press the test button, S1, momentarily and Dl will light. Note the time that it stays alight with a stopwatch or sweep second hand and multiply this by the value given in the table below for the appropriate range setting. This will determine the value of the capacitor.
It is best to start at the highest range (position A) and work down until the l.e.d. stays alight for two seconds or more.

Eddie Ball (age 12),
Liverpool

THESE SPACE INVADERS WILL ALARM YOU-the price won't!

The space invaders are back.
This time right on your wrist!

CA-90 game

The keyboard is effectively divided in half. Any or all of the left hand buttons ($1,2,4,5,7,8$) become AIM and any or all of the right hand buttons become FIRE.

The random digital invaders attack from the bottom right and move across the display. Every time you tap AIM your missile number, displayed top right, progresses by 1 . When your missile number coincides with an invader, tap FIRE and that spaceship will disappear, adding to your score. Since this is a speed game, the earlier The game is over if 3 of the 16 spaceships in an encounter penetrate your defences.

There are 2 stages, each stage having 9 encounters. In stage 1 the game speeds up with each encounter and in stage 2 the invaders attack from a closer position. After stage 2 the game reverts back to the beginning of stage 1 , but the score, which is added and displayed after each encounter, is carried forward.

Depending very much on your skill, one game can last for as much as an hour or more. The highest score so far will be retained in a nonvolatile memory. (This will be erased if the stopwatch function is utilised).

CASIO'S MOST AMAZING WATCH EVER

CA-90 SPECIFICATION

Time: Hours, minutes, seconds, am/pm, day and date. One-touch changeover between 12/24 hour formats.
Calendar: Automatic; day, date, month and year pre-programmed until the year 2002 .
Calculator: 8 digits (7 digits for negatives). Four basic calculations, with constants for,$+ \times$

Alarm: 24 hour reminder alarm, with "alarm on" symbol.
Hourly time signal: Every hour, on the hour. The signal, with display symbol, can be switched on

Stopwatch. Professional $1 / 100$ second stopwatch measuring net, lap and first and second place imes
Dual time: An alternative time (second time zone) can be memorised. Hours and minutes; 12 24 hour format
Tone control: Pitch can be varied in 10 steps.
Game: Additive digital space invader speed game. Dimensions: $46.0 \times 36.0 \times 10.55 \mathrm{~mm}$. Resin case/strap. Metal keys. Stainless steel back Mineral glass face.
ALL THIS FOR
ONLY £24.95 (RRP £27.95)

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back . . . beautifully!

CASIO VL-TONE (VL-1)

Electronic Musical Instrument

 and Calculator
(RRP £39-95)
ONLY £35.95
VL-1 Utiliscs Very Large Scale Integrated circuit advanced technology. This complete 29 -note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves.
Preset sounds: Piano, Violin, Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
Auto play: ONE-KEY or MANUAL playing can be recorded and will be played back in the form of a melody.
Auto rhythm: 10 built-in rhythms, all with variable tempo and volume balance, can be incorporated in manual playing or added to your recording.
Built-in melody: Pre-programmed German Folk Song with rhythm accompaniment Play it anytime and practice tempo changes with the tempo control.
Facilities: LCD numerical display shows pitch, including sharps and programming information. Built-in amplifier and speaker. Output jack. Pitch control.
Calculator: 8 digits, $+,-, x, \div$, square roots, $\%$, constants and full memory, Power source: Four AA size batteries or AC adapter type AD-4160 (price 85) Dimensions: $30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}\left(1 \mathrm{t}^{\prime \prime} \times 11^{\prime \prime} \times 3^{\prime \prime}\right)$.
This compact, battery powered lightweight ($438 \mathrm{~g}, 15 \cdot 4 \mathrm{oz}$) can be played anywhere.

Please order now for May delivery

OTHER CASIOTONE KEYBOARDS

MT-30 Polyphonic, 22 instruments over 3 octaves. Battery/mains (RRP £115) £95 CT-301 Polyphonic, 14 instruments over 4 octaves. 8×2 rhythm accompaniments Vibrato, delayed vibrato. Pitch control. Output jacks. AC only (RRP £285) £245 CT-401 As CT-301 but with Casio Auto Chord for one finger accompaniment. Plays major, minor and seventh chords with bass. Integral sustain and hold. (RRP £345) $£ 295$

ILLUSTRATED CATALOGUE

Send 20 p (postage) for details of CASIOTONE keyboards, CASIO watches and calculators and selected SEIKO watches.

A CLASSIC IN ITS TIME

You don't have to be a highbrow to appreciate the beauty of this clock. Battery powered, it is ideal for office, lounge, kitchen, bedroom, caravan or boat. Compact and lightweight, it can be used as a travel alarm clock or ear clock.

MA-1
ALARM
CLOCK
ONLY
£9.95 (RRP £11 95)

Blue LCD display, as seen on "Tomorrow"s World" 5/3/81. Elimination of polarising filter allows wide angle viewing. Full display of time. Symphonic alarm or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and
 moll" (W. A. Mozart K.550) for about 30 seconds or buzzer for 60 seconds. Three AA size batteries last approx. 15 months. Quartz accuracy.
Dimensions: $43 \mathrm{~mm} \times 115 \mathrm{~mm} \times 76 \mathrm{~mm}\left(14 \times 4 \frac{1}{2} \times 3\right.$ inches $)$.

CASIO'S BEST SELLING WATCHES

AA 81

M1200

W150B

LCD ANALOGUE/DIGITAL ALARM CHRONOGRAPH with countdown alarm.
AA-81 chrome, s/s bracelet $229 \cdot 95$. AA81G Gold plated $849 \cdot 95$. AA-82 All s/s £39-95.
12 MELODY ALARM CHRONOGRAPHS with countdown alarm. M-12 resin case/strap $£ 24 \cdot 95$. M1200 all stainless steel $£ 29 \cdot 95$
100 METRE WATER RESISTANT Alarm chronographs with countdown alarm W100 Resin case/strap $£ 19 \cdot 95$. W150C Stainless steel case/resin strap $£ 25 \cdot 95$. W150B Stainless steel case/bracelet $£ 32 \cdot 50$.

Visualising Amplifier Operation

FACED with the complexity of modern audio power amplifier circuitry the newcomer to electronics may find it hard to get a clear picture of how power is produced and supplied to the loudspeaker. This article shows that for the purpose of visualising how amplifier output circuits work simple "models" using resistances and capacitances and a bit of imagination can be a great help.

Transistor Tap

What is a transistor? A complex device made from specially treated semiconductor materials, of course . . . but for some purposes it can be regarded as the electronic equivalent of a water tap. Turn it on and a cuprent flows. Turn it off and the current stops. It is turned on by driving the base with a small current and like a tap it can be set to any position between fully on and completely off.

Although we don't usually think of the flow of water from a tap as a means of doing useful work it could certainly be used to turn a small waterwheel or a little hydro-electric generator. In the same way, the flow of collector current through a resistance causes work to be done in overcoming that resistance.

Such a resistance ($R L$ in Fig. 1a) is generally referred to as a load resistance. In flowing through it the collector current generates heat. The rate at which this happens is called the power: the higher the power, the greater the heat production. In audio amplifiers we are not interested in producing heat but in producing
acoustic energy, which is what the loudspeaker does when audio-power from the amplifier is supplied to its "voice coil". A loudspeaker is not just a resistance but in one respect at least it has the same effect on the amplifier as a resistance: it absorbs energy.
So for the purpose of visualising how an amplifier works it is reasonable to replace the speaker by a load resistance, even though in a single-transistor stage like Fig. 1a, the real circuit would probably be quite complicated, with the speaker not connected directly but via an output transformer. To the amplifier it still looks very like a simple resistance $R L$.
If the transistor is turned fully on then it offers virtually no resistance itself and behaves more or less like a short circuit from collector to emitter. The current drawn from the battery or power supply Vcc then depends only on the sizes of Vcc and R_{L}.

That is, $k=V c c / R \mathrm{~L}$. But when the transistor is only partly on it does offer resistance. This "collector resistance" is shown in Fig. 1b as r_{c}.

At this point we are going to forget about what actually turns on the tran sistor ($/$ B) and concentrate on the results of turning it on. If the transistor is turned on only to a small extent r_{c} is large and little current can flow. As the degree of turn-on is increased r_{c} becomes smaller and more current flows. So r_{c} is variable between infinity (no current) and zero (transistor fully on).

Using the Model

If a circuit like Fig. 1 b is constructed and $r \mathrm{c}$ varied by hand the meter reading varies accordingly. If $r c$ were varied up and down very quickly, at an audio frequency, and R_{L} were a loudspeaker it would emit a sound.
In a steady state with r_{c} set half way on and left alone RL passes a certain steady current. If $r \mathrm{c}$ is now varied a little this way and that around the half way mark the effect is to superimpose an "a.c. wobble" on the steady d.c. This means that some of the current from the d.c. supply Vcc is being converted to a.c. by the variation of $r \mathrm{c}$.

An audio power amplifier is a circuit which converts d.c. power into a.c. power in this way, that is by varying a resistance at an audio-frequency rate. Of course, the resistance is the r_{c} of a transistor or transistors and it is varied by driving the base with audio-frequency current which is controlled by the input signal from the gramophone pickup or whatever.

Stacked Transistor Output Stages

An alternative arrangement is shown in Fig. 2a. As the wiper contact of r_{c} is moved up towards the positive terminal of Vcc, the capacitance C charges. The charging current flows through RL, or, if you want to be pedantic, electrons flow from the negative terminal of $V C C$ through R_{L} to form a negative charge on the right hand plate of C. This is the same thing as a conventional current flowing the other way, apparently starting at the wiper of r_{c} and flowing into the left hand plate of C and through C and $R \mathrm{~L}$ to "earth" ($-\mathrm{V}(\mathrm{cc}$).

If the wiper is now moved towards the negative end of r_{c}, C discharges (to an extent which depends on how far the wiper is moved) and the discharge current flows in RL. This movement of the wiper at audio frequency generates audiofrequency currents and in flowing through $R \mathrm{~L}$ these produce audio power.

As the wiper is moved upwards the part of r_{c} marked " a " is reduced and the part marked " b " increased. Much the same effect can be obtained (Fig. 2b) by using two separate variable resistances ($r \mathrm{a}$ and $r \mathrm{~b}$) "ganged" in such a way that r_{a} decreases as $r b$ increases.
This two-resistance version of the circuit happens to be one which corresponds to a commonly used amplifier output circuit (Fig. 2c) in which two transistors are "stacked" one above the other. Here TRa corresponds to r_{a} and TRb to rb. The driving circuits (not shown) are arranged to turn one transistor off and the other on, and vice versa.
When TRa conducts C charges. It discharges when TRa is turned off and TRb on. The discharge path is via TRb (and $R \mathrm{~L}$). If TRa is fully off the collector supply voltage for TRb must come from the charge stored in C.
In practical amplifiers the circuit is arranged so that C acquires an average or d.c. charge of half $V_{c c}$. Operation can then be symmetrical, that is the a.c. wobbles can increase or decrease the steady charge on C by equal amounts. This maximises the power output obtainable without severe distortion.

Operating Class

Several modes of operation are poss. ible. One mode is to arrange that no collector current is taken by either transistor when there is no input signal. Any positive-going input signal then turns TRa on while TRb stays off and C charges. Any negative signal does the reverse, allowing C to discharge via TRb.

Fig. 2 Models for push-pull amplifier

This mode is called class-B operation. It has the great advantage that when there is no signal no current is drawn from the battery and no power is dissipated in the transistors.
The main snag is that in practice it is very difficult to get one transistor to turn off at exactly the same moment as the other turns on. If this changeover is not precise some of the audio signal can be missed out and the result can be bad distortion of a kind known as "crossover distortion" for obvious reasons.
To avoid crossover distortion it is possible to arrange for both transistors to conduct all the time even when there is no signal. Power is now wasted and the transistors tend to "run" hot all the time and need extra cooling, but since both transistors are in operation when the signals change from positive to negative crossover distortion is avoided. This mode of operation is known as class-A.

In practice both pure class-A and pure class-B operation is rare. Most practical amplifiers operate in a mode which is
somewhere in between, even though they may be described as class- B in specifications.

The output transistors are biased to pass a small collector current all the time, with no input signal. For small signals the amplifier then operates as class-A and small-signal crossover distortion is avoided.

Large signals are big enough to cut off the collector current of one or other transistor and some crossover distortion then appears, but it is not nearly so bad (to the ear) as the distortion of a pure class-B amplifier.

Push-Pull Drive

We have been talking airily about positive and negative input signals, meaning the positive and negative halfcycles of the audio derived from a signal source such as a gramophone pickup. In fact, however, an output stage like Fig. 2c needs to be driven by a pair of signals one of which is a mirror image of the other;
one going positive as the other goes negative but in other respects (waveform and so on), they are the same.
These "'push-pull" signals are manufactured from the "single-ended" input signal by a "phase-splitting circuit" inside the amplifier. In old transistor amplifiers this was a special "driver transformer" but nowadays the job is done by a transistor circuit.
The most common transistor phase splitters make use of the fact that a positive signal at the base turns an npn transistor on but a pnp transistor off. By using non/pnp "complementary pairs" (transistors with similar gain but opposite polarity) driven by the single-ended signal a push-pull output is obtained.
Low power amplifiers use this trick in the output stage itself, so that it does its own phase-splitting. High-power amplifiers however often use output transistors of the same polarity, as in Fig. 2c, in combination with opposite-polarity driver transistors which do the necessary phase splitting.

Electronics for All

I sometimes think that those of us whose hobby is electronics should stop now and then and count our blessingsl I know of no other hobby that has so much scope. It can be indulged in whatever the weather. Give the enthusiast a few bits and pieces, one or two simple tools and two square feet of the kitchen table, and, not only is he in his heaven, but feels he is almost the equal of geniuses such as Sir Robert Watson Watt, or Dr. Schottky.

All this came to mind because I was discussing quite recently with our Editor the future of Electronics, particularly for the hobbyist, and I think our conclusions are worth noting. We agreed that there was no danger of the hobby diminishing while publications continue to set their present high standards and there are enough retailers to supply the enthusiasts' needs.

It is comforting to note that in spite of one of the worst recessions in the last 60 years, the majority of electronic component retailers have managed to survive. All this led to further speculation as to what a cross-section of electronic constructors consists of.
To some extent I can answer this. While the sex is predominantly male, we haven't got it exclusively to ourselves, and indeed there is no reason why we should have. The fair sex can, and do, shine just as brightly in this hobby as their male colleagues.

On the question of age I can truthfully say that all ages from nine to ninety participate, and the youngsters take to it like ducks to water. The number of elderly and not so elderly, retired people who are turning to electronics as a hobby, is heart-warming.

I must add, in passing, that it makes more work for retailers like myself and my colleagues, usually in the shape of answering the phone to an octogenarian or baby in nappies who want to know what the fourth wire on an AF125 transistor does when only three are shown on the diagram! We accept this cheerfully and hope perhaps there may be a little something more tangible on the end of it.

Another group of people who are taking up electronics are the sick and incapacitated, as this is something they can take on and have a chance to equal or even excel their more active counterparts. As one elderly gentleman said to me the other day "I find it very therapeutic'

Well, I think all in all, this represents a bright picture in a world that at present is rather depressed.

Flying Solar

A few years ago I became very interested in solar cells. I found that on a sunny day they would produce enough current to drive a tiny electric motor and turn a toy windmill, so in my next project I linked together several cells and managed to work a radio with loudspeaker.

At this stage I felt I was only about one step behind Marconil Shortly afterwards I read about a chap in America who had designed an electric car to run on solar cells, and he said he intended to drive it right across America finishing at the White House in Washington in oider to demonstrate to President Carter the need for energy conservation. I smiled to myself as I thought that the journey would take so long that Jimmy Carter wouldn't be in Office when the chap arrived.
However, about a month later I read in an American magazine of a lady, Mrs. Janice Brown, piloting an aircraft driven by solar cells! ! ! The joke was on me. although I was firmly of the opinion that it was a hoax-but no-recently the Observer published photographs and full details of the aircraft.
If you saw this, you may have been struck, as I was, at the likeness of another aircraft in the news in the last 18 months, and you would have been right, because it was designed by the gentleman who also designed the aircraft that was propelled across the channel by manpower. The designer was interviewed about his solar cell aircraft, and he was decidedly frank in saying that as a commercial proposition it is quite useless, but great funl He hopes to fly it from London to Paris next year. May the sun shine on him all the way.

Microwave Detector

I mentioned recently in one of my articles, that I was suspicious of Microwave Ovens, and I still am for that matter. This prompted one of my readers to tell me that his family has one, and he doesn't like eating food cooked in it.
He concludes his letter as follows, "I am sure I may be tricked into eating food out of it, by being cooked in this dreaded creation, and then in a gas one. Is there by any chance, anything which could detect, if or not it has been cooked in one?''। don't know if there is an answer to this one, but I would like to hear from anyone who can help.

Rapid Electronics

Pack No.			Pack No.		
A 10	10 PP3 battery leads	50p	F331	1 BD139 transistor	45p
A 72	103.5 mm jack plugs	80p	F421	1 M J2955 transistor	110p
A73	103.5 mm jack sockets	80 p	F43	578 L 05 regulators	130p
A74A	5 Standard jack plugs	80p	F46A	17805 regulator	70p
A75A	5 Std. jack sockets	90 p	F47A	17812 regulator	70p
A84A	55 pin 180 DIN plugs	70p	F49A	17905 regulator	75p
A85A	55 pin 180 DIN sockets	55p	F53	1 LM 317 T variable reg.	200p
C21	5 Min . slide switches	75p	F54	1 LM 323 K 3 A 5 V reg.	500p
C28	5 Push to make switches	70p	H1I	20 IN4002 diodes	75p
C29	5 Push to break switches	90p	H30	2 W005 bridge rectifiers	45p
C50	208 pin DIL sockets	170p	H60	1001 N 4148 diodes	180p
C51	2014 pin DIL sockets	200p	H73	2 C 106 D thyristors	90p
C52	2016 pin. DIL sockets	220p	J5	100.2 in red LEDs	100p
E10	Resistor kit. 650 resistors $\frac{1}{4} \mathrm{~W}$		J25	100.2 in green LEDs	150p
	10 ea value 4.7 to 1 M	480p	J45	100.2 in yellow LEDs	150p
-	Single potentiometers		J70	200.2 in LED clips	60p
	$5 \mathrm{~K}-1 \mathrm{M} \log$ or lin	35p	J7	100.125 in red LEDs	100p
-	Slide potentiometers. 60 mm		J27	100.125 green LEDs	150p
	travel. $5 \mathrm{~K}-500 \mathrm{~K} \log$ or lín	65p	J47	100.125 yellow LEDs	150p
E26	10100 K min. presets	70p	J72	200.125 LED clips	60p
E31	10 lu 63 V electrolytics	50p	J75	1 FND500 CC display	100p
E33	104 u 763 V radial elec.	50p	K5	5741 op amps.	90p
E34	1010 u 25 V radial elec.	50p	K20	5 CA3140 op amps.	225p
E37	10100 u 25 V radial elec.	75p	K30	5 LM301A op amps.	140p
E44	10 lu 35 V bead tants.	100p	K40	1 LM324 op amp.	50p
E50	100.01 C 280 polyester	50p	K50	1 LM380 2W amp.	70p
E54	100.1 C280 polyester	50p	K75	1 LM3914 LED bar grap	320p
E10	10 BC 107 transistors	90 p	K85	5 NE555 timers	110p
Fll	10 BC 108 transistors	90 p	K90	1 NE556 timer	50p
F12	10 BC 109 transistors	90 p	K100	5 TL081 op amps.	175p
F17	10 BC 214 L transistors	90p	18	54011 CMOS	130p
F27A	5 2N3819 transistors	100p	L9	14013 CMOS	40p
F311	1 BD 131 transistor	45p	L11	14017 CMOS	75p
F312	1 BD 132 transistor	45p	L22	14049 CMOS	45p

All prices include VAT. Please add 50 p postage and packing. Send SAE for our complete catalogue.

Rapid Electronics Limited Hillcroft House, Station Road, Eynsford, Kent

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $£ 10.00$ per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-to-date avaitable and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom. Intruder Alarm, Electronic Organ, Battery Eliminator, Ánemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:
Setray Book Company 11, Aspen Copse,
Bromiey.
OUR 100\% GUARANTEE
Should you decide to return the set atret 10 davs exam.
Kent. BR1 2NZ.
8. ination, your money will be refunded by return of post.

Amount enclosed: $£$

Name:

Address:
I L

HIGH POWER MODULE KITS

SPECIFICATIONS
Max．Output powet
Operating voltage（ $D C \dot{C}$ ）
Loads
Frequency response Measured at 100 watts
Sensitivity for 100 watts
Typical T．H．D．＠ 50 watts 4 ohms load Dimensions The P．E．power amp kit is a module for high power applications－disco units，guitar amplifiers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe in an open circuit condition．A large safety margin Exists by use of generously rated components，re sult．a high powered rugged unit．The PC Board is backprinted，etched and ready to drill for to use Supplied with all parts，circuit diagrams and instructions ACCESSORIES
Suitable LS coupling electrolyic for 125 W ．model f 1.00 plus 25 p p p Suitable LS coupling electrolnic for 200W．model f 1.25 plus $25 p$ p\＆p Suitable Mains Power Supply Unit for 125W．model $\mathbf{\varepsilon 7 . 5 0}$ plus f3．15＇p\＆
Suitable Twin Transtormer Power Supply for 200W，model f 13.95 plus $\mathrm{f} 400 \mathrm{p} \& \mathrm{p}$ ．

30 ＋ 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscourt IV unit in teak simulate cabinet silver finished rotary controls and pushburtons with matching fascia．red mains indicator and stereo jack socket．Functions switch for mic magnetic and crystal pickups，tape and auxiliary．Rear panel features fuse holder．DIN speaker and input sacket $30+30$ watts．AMS $60+60$ watts peak for use with 4 to 8 ohm speakers．Size $143 /$＂$^{\prime \prime} \times 10^{\prime \prime}$ approx

READYTO PLAY $53250 \begin{aligned} & \text { plus } \\ & f 3.80 \mathrm{pt} \text { p }\end{aligned}$

125 WAT MODEL
125 watt MMS
$50-80 \mathrm{Max}$
40.50 4.16 hhms $25 \mathrm{~Hz}-20 \mathrm{Khz}$ 400 mV ＠47K

MULLARD LPT183 STEREO PREAMP
Original listed price over E 5.00 ．Suit able for ceramic and auxiliary inputs．when you purchase 2 power module kits

PRACTICAL

 ELECTRONICS CAR RADIO KIT $\mathbf{f 1 0 . 5 0}{ }^{\text {flus }}$ po p\＆p 2 WAVE BAMD MW LW casy wo buila＂ 5 push button tuming ＂Modern strfing design＂All now unusod compone of watt output＂Rosdy atched \＆punchad P．C．B．incorporates suppression circelits＂Wow with tape ingut socken
All components and instructions to baild the radio，you supply onty the wire and solder．Pre－set tuning with five push button options，black illuminated tuning staie，matching control knobs，one combining on／oft volume and tone－ control，the other for manual tuning．
The P．E．Travelles has a 6 watts outpuL neg ground and an integrated circuit output stage，a Mullard If module LP 1181 ceramic fitter type，pre－aligned and assembled and a Bird pre－aligned pust button tuning unit．Fits easily in or under dashboards．
Suitable stainless steel fully retractable locking aerial and speaker（approx． $6^{\prime \prime \prime} \times 4^{\prime \prime}$ ）is
available as a kit complete $\mathbf{1}$
aver
－Featuring latest SGS／ATES／TDA 2006 10 watt output I．C．＇s with in－built thermal and short circuit protection．
E14．95 Mullard Stereo Preamplifer module plus $\mathbf{\varepsilon} 2.90 \mathrm{p} \& \mathrm{p}$－Attractive ready made black vinyl fínish cabinet plus $£ 2.90 \mathrm{p} \& \mathrm{p}$－Converts to a 20 Watt Disco amplifiet To complete you just supply connecting wire and solder．Features include din input sockets for ceramic cartridge，microphone，tape or cune．．utputs－tape，speakers and headphones．By the press of a mixing The kit incorporgtes a Mullard LP1 183 pre－nier wodule deck mixing．The kit incorporates a Mullard LPI 183 pre－amp module，plus power amplifier assembly kit and mains power supply．Also catured 4 slider ievel controls，rotary bass and treble controls and 6 push button swithes．Siver shas finish pabing ready made black vink Size $9^{\prime \prime} \times 8 \%^{\prime \prime} \times 33^{\prime \prime}$ approx
SPECIFICATIONS Suitable for 4 to 8 ohms speakers．
Frequency response -40 Hz －20K Hz；Input Sensitivity－P．U． 150 mV Aux． 200 mV Mic． 1.5 mV ；Tone controis－Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$ ； Treble $\pm 12 \infty @ 10 \mathrm{KHz}$ ；Distortion－ 1% typically＠ 4 watts；Mains supply -220.250 volts 50 Hz ．
BSR chassis record deck with manual set down and return．
complete with stereo ceramic icartridge．\＆8．50 plusle3．15 complete with stereo ceramic icartridge．$£ 8.50$ pluslif 3.15 ןsep when purchased with amplifier．（Available separately $\mathbf{f} 10.50$ plus $\{3.15 \mathrm{p} \& \mathrm{p}$ ．
8＂SPEAKER KIT． 2 8＂approx twin cont domestic use speakers． $\mathbf{f} 4.75$ per pair plus $£ 1.70$ p\＆p when purchased with amplifier Available separately $£ 6.75$ plus $\mathbf{6 1 . 7 0} \mathbf{~ p \& p}$ ．
STEREO MAGNETIC PRE－AMP CONVERSION KTT All components including P．C．B．to convert your ceramic input on the $10+10 \mathrm{amp}$ to magnetic．$£ 2.00$ when purchased with kit featured above． $\mathbf{8} 4.00$ separately inc．p\＆

3

 Wilmslow

 Wilmslow Audio

 Audio}

THE firm for speakers！

SEND 50p FOR THE WORLD＇S BEST CATALOGUE OF SPEAKERS，DRIVE UNITS，KITS，CROSSOVERS ETC．AND DISCOUNT PRICE LIST

WILMSLOW AUDIO LTD．（Dept：Ee）
35／39 CHURCH STREET，WILMSLOW， CHESHIRE SK9 1 AS
Tel：0625－529599 FOR MAIL ORDER \＆EXPORT OF DRIVE UNITS，KITS ETC．
Tel：0625－526213（SWIFT OF WILMSLOW）FOR HI－FI \＆ COMPLETE SPEAKERS

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big improvement in sound quality from your tape recorder．A full catalogue is available，price 50 p ，which features a wide range of heads for cassette and reel to reel machines，as well as replacement motors，tape transports，etc．

Universal cassette heads to EIAJ standard，hole centres 17 mm apart， 12 mm from head face：

B12．02 Mono record／playback £ 4.62
B24．01 Stereo playback £ 4.62
B24．02 Siereorlp \＆ 7.66
B24．07 Stereor／p for Dolby systems \＆ 9.05

C42RPH20 | Stereorlo sendust head، suitable for chrome \＆ |
| :--- |
| $\begin{array}{c}\text { metal tapes }\end{array}$ |
| 10.67 |

C42RPH04 $\begin{aligned} & \text { Stereo r／p glass ferrite，the ultimate long life．} \\ & \text { high performance head }\end{aligned} \quad £ 13.34$
C42̂RPS 18 Stereo twin gap r／p long life head for record $£ 28.99$
C21ES18 Mono／Stereo erase head \＆ 2.13
C44RPH03 Four channel／track r／p $£ 15.15$
C22ES04 Twinhalf track erase \＆ 5.43
Ex stock deliveries，all prices include VAT．Post and packing 40 p．
MONOLITH electronic products
The Monolith Electronics Co．Lid．，5／7 Church Street， Crewkerne，Somerset TA 18 7HR．Tel： 0460 74321．Telex： 46306 MONLTH G．

ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist. Unique because of its universal interlocking facility meaning you no longer need lots of different boards.

Send now for the uniqueVerobloc.

 Order code 200-21092 G. E4.16p inclusive.| | ANDVEROHAE traditional range OF HIGH GUALTY BOARDS ALSOEX-STOCK. | | |
| :---: | :---: | :---: | :---: |
| der Cood | | Size (mm) | |
| 1) 10-28458 | Microbard | 160×100 | |
| 2) 10-2866H | Microbard | 180×233.4 | |
| 3) 200-21084 | | | |
| 4) 00-2196L | Veroboard | | |
| | | | |

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

FM/AM STEREO TUNER AMPLIFIER CHASSIS
Originally designed for installation into a music centre. Supplied as two separate buile and cesced units which are easily wired together, 240 volts A/C operation. Note Circuit diagram and inter-connecting wirins diagrams supplied,
Rotary Controls Tuning, volume, balance, treble and bass.
Push Button Controls Mono, Tape, Disc, A.F.C., FM(VHF), LW, MW, SW Power Output 7 watts RMS per channel into 8 ohms (10 watts music) Tape Sensitivity output typically 150 mv . Input 300 mv for rated output.
Disc Sensitivity 100 my (ceramic cartridge).
Stereo Beacon Indicator LED or bulb.
Size Tuner-21" $\times 15^{\prime \prime} \times 7 \frac{1}{2}$ " approx. Power amp. $-2^{\prime \prime} \times 7 \frac{1}{2} \times 4 \frac{1}{2} \times$ approx.
Price $\mathbf{1 2 3} \cdot 50+62 \cdot 50$ Postage and Packing.

J.V.C. TURNTABLE CHASSIS

J.V.C. Turntable supplied complete with an Audio Technica ATIO stereo magnetic cartridge.

* 'S' shaped tone arm. \& Belt driven. * Full size 12" platter. * Precision calibrated counter balance weight 0-3 grms). $*$ Damped cueing lever. $\$$ Anti-skate (bias) device. Nylon thread weight. \star Cut out template supplied. Size-12先" $\times 157^{\prime \prime}$ (approx).

Price $\mathbf{£ 2 8} \cdot 50+\mathbf{6 2} \cdot 50$ Postage and Packing.

B. K. ELECTRONICS (Dept. EE)

37, Whitehouse Meadows, Eastwood, Leish-on-Sea, Essex, SS9 5TY. Telephone: 0702527572.

* S.A.E. for componenes list epe
t Official orders welcome.
\& All prices include V.A.T
t Mail order only.
* All items packed (where applicable) in special energy absorbing PU foam

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH POSTAGE 20p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREEI

MNI. 300 t-watt Resistors pre-formed for
P\&C Mtg.
MN2. 200 . AND t-watt Resistors.
MN3. 1001 \& 2 -watt Resistors:
WNA. 50 Wirewound Resistors.
NHS. 100 metal oxide Resistors. $1 \%, 2 \%$
Whd 5%. 12 asstd, potentiometers.
M M7. 25 asstd, skeleton pre-set Resistors. MNE. 50 asstd. Eletrolytic Capacitors. WNE. 100 assid. Ceramic Capacitors. Plte, disc, tub and monolytlc etc.
pactiors. Polyester. Prestyrene. Metalised, Radial and Axial
types.
MN11. 20 asetd, Sllver Mica Capacitors. Mi2.8 Tantalum Bead Capacitors (useful
VMess. 20 assid. Transistors. BC, $2 N$ Serles + Power etc.

- N14. 5 Liohts Diodes.

MN15. 5 Light Sensitive Devices
MNi7. 2 12-volt Relays. Ex nearly new Mulf: 3 Encapsulated Reed Relays. 9-12v. coll, d,-pole and t.-pole. Ex nearly new MN20. 1 240-110 to 12 -volt, 100 ma Transpormer. MN21. 1 240-110 to 24 -volt 100 ma Transformer. M 2 - $2^{\prime \prime}$ Led's with cllos, 4 red, 2 yellow, 2 green.

MN23. 110 assid, screws, nuts, washers, self-tappers etc.
WN24. 100 sestd, emall springs.
MN25. 50 asstd. pop rlvets.
$M N 23.50$ assted. Insulated crimps. MN27. 200 items, grommets, spacers, cable markers, plastic screws, sleeving, MNTaps etc. 20 astd, fuses. $1 \$^{\prime \prime} 20 \mathrm{~mm}$ etc. WN2s. 75 m equipment wire, asstd. colours and aizes. Mins1. 12 asstd. trimmer capacltors, compression film. Alp-spaced ofc.
MM32. 1530 pf Beehlve trimmers.
MN33. 20 coll formers, ceramic, plastic,
reed relay etc.
MM 44.25 min . glass reed awltch. MN35. 10 asstd. switches, togole, sllde, micro, etc. m लि3. 10 ex equipment panel lamps (no rubbleh). and Whono etc.
phsid. audio conneciors. MN3.1 1 PCB with triac control iC datalnc. NN 3. 1 osclilator PCB loads of components (no data).
MN4. 50 Polystyrene Capacitors.
MN42. 10 BC107 Translstork.
WN4. 10 screw fix S.P. C.O. min. slide MN45. 51 .35V. $1,000 \mathrm{~mA} / \mathrm{H}$. Mercury MNSH. $2 \times \mathrm{CA} 723$ voltage regulator.

PLEASE QUOTE NO. OF PACKS WHEN ORDERINE

CHORDGATE LTD.

is FARINGDON ROAD, SWINDON, WILTS. Tel. Swindon (0793) 33877. Retall shop at above addreas.

ELECTRDCIVKİT
 Introducing our new CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a $9 v$ battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2-SOLDERING IRON-contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance

Kit No. 3-ELECTRONICS TOOLS-contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.

SOLDER is included with every kit.

Kit No.		Price
1 (a)	Morning Call plus	
1 (b)	Transistor Tester	\{ $\mathbf{2 5}$.00
2	Soldering Iron	£5.00
3	Electronics Tools	ed. 50
4	Electronic Organ	£3.50
5	Morse Code Trainer and Siren Oscillator	£4-00
6	Light Operated Burglar Alarm	£4.00
7	Buzzer-Aircraft	£3. 00
8	Light and Sound Alarm	£3. 00
9	Lie Detector	£3.00
10 (a)	Lamp Flasher plus	50
10 (b)	Sleep Inducer	
11 (a)	Cat Sound plus	
11 (b)	Night Light Reminder	
12 (a)	Bicycle Horn plus	f.5.00
12 (b)	Electronic Shocker	
13 (a)	Light Sensitive Alarm plus	
13 (b)	Electronic Lamp	25.00
14	2-Transistor Radio	£4.00
15	Morning Alarm	£4.00
16	American Police Siren	£4.00
17	Flashing Dual-tone Horn	£3.50
18	Two-Way Interphone	¢5.00
19	4-Transistor Radio	£5.00
20	Clicker-Helicopter Oscillator	£3.00

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).
Kit nos, 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country-look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomed
Cheque/P.O./Access/Barclaycard (or 23p for fullcolour illustrated literature) to DEPT. EECS.

ELECTRONI-KIT LTD. RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

CHROMATRON|CS

RISCOMP LIMITED

 DIGITAL VOLTMETER MODULE
Fully built and tested, ONLY $\mathbf{E 1 1 . 9 5}_{\text {ع1.79 }}^{\text {vat }}$

- Bards poaitive and negarive voltagas with a senaitivity of 0.999 mV apt Einglo supply between 7812 volts (220 mA)
- Wigh accurcy. 0.1%, 1 digit
* Large bright 3.43" high afficiency displaye
* Eupplita with full data \& applications information

This brand new, quality module manufactured by Autona Limited (who are one of the U.K:s largest module manufacturers) means you can build accurate test equipment mul. timeters, thermometers, etc. easily and at a fraction of the cost of resdy-made equipment.
Full details are provided showing how to measure A.C. voltage. current, resistance and Full details ar
temperature.

- EXPRESS DELIVERY

21 Duke Stree:, Princes Risborough, Bucks. HP17 OAT. (08444) 6326.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

SILICON NPN POWER TRANSISTORS HIGH QUALITYFULLY GUARANTEED			
			(700 aich
Package \& Postage 25p extra. Discounts for larger quantities.			
Trade enquiries invited.			
CWO	SELECTRONIX		me day.
25 Ennerdale Gardens, Wembley, Middlesex HA9 8QY Phone: 01-9049096			

500 MIXED RESISTORS $\mathbf{~} 4 \cdot 00$. 10 different Leds £1.25. Bargains lists 15p. 1920s onward valves, wireless. S.A.E. Sole Electronics, EE. 37 Stanley Street, Ormskirk, Lancs. L39 2DH.

COMPLETE PCBs useful components transistors, i.c.s, potentiometers £l.00 each. S.A.E. D. GARDY, Longwood Montpelier Terrace, Ilfracombe, N. Devon.
TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contaot Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 09454188 . Immediate settlement.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. £l plus SAE. Colour TV Service Manuale on request. SAE with enquiries to BTS, 180 KIny's Ad, Harrogate, N. Yorkshire. Tel: 0423 5888.

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. £6 (with circuits £8). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0698 883334).

SERVICE SHEETS from 50 p and SAE. Catalogue 25p and SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

Software

CARDBOARD COMPUTER: Learn Assembly Language Programming and Computer Architecture. $£ 8.97$ inc VAT. Also Solar Celks, Science Kits, Energy Books, Stirling Engines, Spare Blankets etc. etc. Send 25p for lists. Edencombe Ltd., Dept PM., 34 Nathans Road, North Wembley, Middlesex HA0 3RX.

HAVEN HARDWARE:-S.A.E. for lists. Software cassettes:-Uklol, Superboard (48 x 32). 8 K Mancala, Patience, 4 K invaders:£2.00 each 4 K fruit machine, Solitaire, Towers of Hanoi, Imphexapawn:-2 pro-grams- $£ 2 \cdot 00$. Handware:-Resistors proLow Electrolytics 5p. Keith Purkiss, 4 Asby Road, Asby, Workington, Cumbria.

SIXTY ZX80 PROGRAMS. Listings only £4.95, includes a multitude of games, utility programs, home finance, maths, cheque book, and more in our publication, Zx80 programs. Also includes hints 'n tips, from Sussex Software, Wallsend House, Pevensey Bay, Sussex

Veteran \& Vintage
"SoUNDS VINTAGE"
The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78s, wireless, news, history, reviews,
etc.
Bi-monthly. Annual subscription $£ 6 \cdot 60$
(airmail extra). Send 75p for sample copy.
28 Chestwood Close, Billericay, Essex

ORDER FORM PLEASE WRITE in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

-		-	,
			$\stackrel{\square}{*}$
			\qquad

NAME	Send to: Classified Advertisement Manager
	EVERYDAY ELECTRONICS
ADDRESS	GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford streel, London SEfi gLS. Telephone 01-251 5942
	Rate: 24p per word, minimum 12 wards. Box No. 60p extra.

Abstract

Books and Publications LEARN ELECTRONICS FAST. New, unique, brilliantly simple Tutronik system. Selected by BBC TV. No soldering. 30kwikbuild electronics projects. Speedilearn way to identify components, read circuit difagrams, break the colour code and connect circuits that really work. Kit complete with simple-to-follow instructions, cincuit plans, components in compaot storage wallet. Only $\mathbf{1 1 2 . 9 5}$ plus 95p P\&P UK (P\&P £2.75 elsewhere). Only from Dept. EE, TECHNOCENTRE LTD, 140 Norton Fioad, Stockton-on-Tees 2BG.

owFERS seven years back issues Everyday Electronics mint condition. PEPPER, Knole Road, Wollaton, Notts.

COMPLETE SET OF "EVERYDAY ELEC. TRONICS" November 1971 to April 1981 best offer. Phone Ashton-in-Makerfield 76880 .

OUT OF PRINT Book Service. 17 Fairwater Grove(E), Cardiff. Send S.A.E. for details.

[^2]Z X 80 3K-Byte Ram memory pack, "expandable" half price $£ 25,00$. Phone, 01-668 8753, "Coulsdon".

ELECTRONIC KITS. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. -Send S.A.E. for free catalogue to:- Eastling Electronics (Kits), 64 Hawthorn Road, Winton, Bournemouth.

THE SCIENTIFIC WIRE

COMPANY
PO Box 30. London E.4. 015311568.

ENAMELLED COPPER WIRE				
SWG	1 1b	8 oz	4 ox	20 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69

SILVER PLATED COPPER WIRE
$\begin{array}{lllll}14 \text { to } & 30 & 6.50 & 3.75 & 2.20 \\ 1.40\end{array}$
TINNED COPPER WIRE
$\begin{array}{lllll}14 \text { to } 30 & 3.85 & 2.36 & 1.34 & 0.90\end{array}$
STEREO AMPLIFIERS. 2W output. £3. 85.
Many items available. S.A.E. lists. PANTEK,
STEREO AMPLIFIERS. 2W output. £3. 85.
Many items available. S.A.E. lists. PANTEK, 32 Common Approach, Benfleet, Essex.

moved 54 ONB All enquiries phone T/Wells 31803.

LEARN゙N
 ELECTRONICS WITHOUT SOLDER

Build electronic circuits without soider on a Roden S-Dec contacts and holes into which you plug your components. Suitable for all ages. Can be used time after time. Ideal gltt for students or experimenters. Full Instructions and 2 circuit diagrams with each S-Dec.
Send cheque or P.O. to:
Roden Producls, Dep EEE
Hign March, Daventry.
Northants, NN11 40E. 250

$\mathrm{NO}^{\mathrm{Nong} / a s}$

DOUGLAS тransfoomes from TTIAN

NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK WE GUARANTEE THESE PRICES TO BE UNBEATABLE ANY YTHEFIE

"SPECIAL PRICES" POST £1-50 BAKER LOUDSPEAKERS					
Model	Ohms	Size Inch	Power Wintt	Type	Our
Malor	4, 8, 16	12	30	Hi-FI	${ }_{\text {£ } 12}$
Deluxe Mk 11		12	15	Hi-Fi	£12
Superb	8.16	12	30	Hi-FI	£20
Auditorium	8, 16	12	45	Hi-Fi	£20
Auditorium	8,16	15	60	Hi-Fi	${ }_{6} \mathbf{3 4}$
Group 45	4, 8, 16	12	45	PA	ESO_{12}
Group 75	4, 8, 16	12	75	PA	820
Group 100	8, 16	12	100	PA	¢20
Group 100	8, 16	15	100	PA	£28
Disco 100	8, 16	12	100	Disco	¢20
Disco 100	8,16	15	100	Disco	¢28

DE-LUXE DISCO MIXER. 240V, 4 stereo channels, 2 magnetic, 2 ceramlc/tape, 1 mono mic channel, fwin v.u for panel or desk mounting attractive grained aluminium facla, sllver knobs, $£ 40$. Post $£ 1$. 4 CHANHEL PASSIVE MIXER

MINIMODULENOUDSPEAKERKIT EMI $15 \times 81 \mathrm{in}$. 3 -way Loudspeaker Bafile, 5 in . Bass, 5 in Full assembly instructions supplied. Response 60 to 20,000 c.p.s. 12 watt RMS 8 ohms $810 \cdot 3$ per kit. Two kits c20. Sultable Bookshelf Cabinet غ10.50 each. Post £1.50 GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminlum Arm with stereo ceramlc cartridge and Diamond Stylus, 3-speeds. Manusl and Auto Stop Start. Large. Metal Turntable.
Cueing Device and Pause Control. 22 . Post £2.
METAL PLINTH CUT FOR GARRARD Size: $18 \times 14 \times 31 \mathrm{n}, \mathbf{£ 5 . 0 0}$ Silver or Black finlsh. Post $£ 2$. ISKRA SINGLE RECORD PLAYER \&8 Fitted with auto stop, stereo cartridge. Baseplate. a,c, mains 240 V 3 speed plays all size records. Post £1.
B.S.R. SINGLE PLAYER P170/2 £21.00 3-speeds $11 / n$, aluminium turntable. "slim" arm, cueing ator, adjustable stylus criridge, silver trim, bias compensuspension, 240V AC. Post $£ 2$. play B.S.R. DE-LUXE AUTOCHANGER with stereo cartridge, plays all sipe records. Post \&2 WOODEN PLINTHS CUT FOR B.S.R. E4 Size: $15 \times 15 \times 3 i n$. Teak effect. Post $£ 1$
BSR P200. Belt drive deck, snake arm, cuelng device. 2n. Fo. Post 22.
TINTED PLASTIC COVERS POST £1.50

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS

ع2.95 Post 45|) All parts and instructions with Zener diode printed circult, up to 100 mA or less. Piease state voltage required.
PP BATTERY ELIMINATOR BRITISH Mains stablized power-pack 9 volt 400 mA max, with
overload-cut out, Size $5 \times 34 \times 2 \frac{1}{2}$ in. $£ 4 \cdot 50$. Post 50 ,

BLANK ALUMINIUM CHASSIS, 18 s.w.g, 21 in , sidesi $6 \times 4 \mathrm{in} . £ 1 \cdot 20 ; 8 \times 6 \mathrm{In}$. £1.50; $10 \times 7 \mathrm{In}$. £1.90; $14 \times 9 \mathrm{in}, £ 2 \cdot 50$
$16 \times 6 \mathrm{in} . £ 2 \cdot 40 ; 12 \times 3 \mathrm{in} . £ 1 \cdot 50 ; 16 \times 10 \mathrm{in} . £ 2 \cdot 70 ; 12 \times 81 \mathrm{n}$

HIGH VOLTAGE ELECTROLYTICS

Post 50p Minimum. Callers Welcome Access-Barclay-Visa. Lists 20p. Closed Wed

Radio Components Specialists

337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1685

MAINS INTERCOM

 BATTERIES NO WIRES ONLY $£ 37.99$ PER PAIR
VER
$+\quad$ YAT $£ 5.70$
+
The modern way of instant 2 -way communications Just plug into power socket. Ready to use. Crysta clear communications from room to room. Rang t-mile on the same mains phase. On/off switch Useful as inter-office intercom between office and warehouse, in surgery and in homes.
Also F.M. 2 channel "touch" model $\mathbf{5 5 5} .95$ per pair + VAT $£ 8 \cdot 40+$ P\&P $£ 2 \cdot 15$.
NEW AMERICAN TYPE CRADLE
TELEPHONE AMPL IFIER

£18.95
+VAT
$+\quad$ \& 2.85
\&1. 65
Latest transistorised Telephone Amplifter, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes consult fies. No long waiting, saves time with longversation recording sich, volume control, Con

versation reco P\& 1.65 .

DOOR ENTRY SYSTEM
No house / business / surgery should be without a
DOOR ENTRY SYSTEM in this day and age. The DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unonly if satisfied by pressing a remote control butp which will open the door electronically the invalid, the aged, and busy housewife Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit, cable (4 pairs) 50 ft and wiring diagram. Price $£ 59.95+$ VAT £9.00 + P\&P £2. 25 . Kit with two
phones $\mathbf{£ 6 9 . 9 5 + V A T} £ 10 \cdot 50+$ P\&P £2.45

10 -day price refund guarantee on all $£ .45$
10-day price refund guaramiee on all item
Access and Barclaycard welcome.
WEST LONDON DIRECT SUPPLIES EE 5 69 KENSINGTON HIGH STREE
LONDON, W8 Tel: $01-9375548$

PLEASE MENTION

 EVERYDAY ELECTRONICS
When replying to ADVERTISEMENTS

INDEX TO ADVERTISERS

Absonglen
Alcon Instruments 298
Amtron 298

Audio Electronics 365
B.I.E.T.
$\mathrm{Bi}-\mathrm{Pa}$
B.K. Electronics
B.N.R.E.S.
. ... 352

CB Radio
Chordgate
Chromatronics
E.A.C. Electronics

Electroni-Kit
E.D.A.

Electronize Design
Gemini
Global Specialties ...
Greenweld
304
Home Radio
352
I.L.P. Electronics
intertext (ICS) ... 360, 361
htertext (ICS) .. 298

Magenta Electronics 300, 301
Maplin Electronic Supplies Led,
Marshalls
Monolith

N.I.C.

PM Components
Powell T.
Cov iii
Radio Component Specialists ... 368
Radio TV Components 359
$\begin{array}{lccccc}\text { Rapid Electronics } & \ldots & \ldots & . . . & 358 \\ \text { Riscomp... } & \text {.. } & \text {... } & \text {... } & \text {... } & 364\end{array}$
Science of Cambridge ... 302, 303
Selray Book ...
Swanley Electronics
Teleman Products
Tempus
Titan Transformers

T.K. Electronics	\ldots	\ldots	...	367

Vero Electronics 362

Watford Electronics 297
West London Direct Supplies 368
Wilmslow Audio

DESIGNERS AND HOBBYISTS
 LOOK NO FURTHER!

THE E.A.C. MIGHTY MO IS HERE. It is the latest in sound transducers, comes complete in module form and is ready to use by just connecting into 0.8 to 20 volts D.C. You will get a very loud audio output of around 100 DB at 9 volts D.C. using only 4 milli amps nominal (the secret is in the drive circuit).
Only $£ 3.90$ per unit, plus $15 \%+(60 p p \& p)$.
Further discounts for quantity.
We are also manufacturers of high quality domestic smoke alarms, which have features such as test button, low battery warning. Computer designed Ionization Chamber to eliminate false alarm through draught and winds. Warning sound emitted exceptionally loud. Cover unit can be repainted if desired at any time to suit any decor. Transfers can also be applied,
Special price only $£ 14 \cdot 00$ per unit, VAT included $+(£ 1$ p\&p) We also manufacture commercial models, for prices contact:-

E.A.C. ELECTRONICS

(ADVANCED DESIGNERS AND MANUFACTURERS) 99-103 Clifton Road, Birmingham B12 85R Tel No: 021 449-3850

E.E. PROJECT KITS

Audio Effects Unit Phone Call Charge Jogger Darkroom Controller Bicycle Alarm
Precision Parking Pad Lights Failure Monitor TTL Power Supply Unit Duo-Deci Timer
*TTL Logic Probe
Bedside Radio
Auto Lighting-Up Warning Audio Millivoltmeter Weather Centre (Electronics only) Brakesafe Monitor
Cricket Game
Zener Diode Tester
Signal Tracer
General Purpose Amplifier
Voltage Converter
Autowaa
A.F. Signal Generator Courtesy Light Delay Auto Phase
Auto Phase
Battery Voltage Monitor
Lights Warning System Autofade
*Dual Line Game
Audio Tone Generator
*Pre-tuned 4-Station Radio
Gas Sentinel
Automatic Level Control
Cycle Direction Flasher
Cable and Pipe Locator
Stereo Headphone Amplifier
Doorbell Register
Five Range Current LImIter
Kitchen Timer
Touch Switch
Micro Music Box
Simple Short Wave Receiver
Morse Practice Oscillator
Slide/Tape Synchroniser
Spring-Line Reverb Unit
Mains on/off Timer
Power Supply 3-9V
Loft Alert
Lightcall
Burglar Alarm
Baby Alarm
Opto Alarm
Radio Tuner MW/LW
3-Function Generator
One Armed Bandit
Lights-on Reminder

ZB122	Oct. 80	£12.25	Signal Level Indicator
ZB121	Oct. 80	c6.00	High Impedance Voltmeter
ZB123	Oct. 80	£17.25	Universal Oscillator
ZB124	Oct. 80	¢9. 25	Chaser Light
ZB73	Sept. 80	£3.50	Low Power Audio Amplifler
ZB77	Sept. 80	¢8.75	SImple Transistor Tester
ZB78	Sept. 80	¢9.50	Varicap MW Radio
ZB75	Sept. 80	£8.50	Quiz Referee
ZB76	Sept. 80	£3.25	Touch-on Pilot Light
ZB74	Sept. 80	£14.25	Trailer Flasher
ZB71	Aug. 80	£5.65	Swanee Whistler
ZB70	Aug. 80	£17.75	Electronic TunIng Fork
ZB72	Aug. 80	¢47.50	Power Supply 9V
ZB68	Aug. 80	¢7. 50	Warbling Timer
ZB69	Aug. 80	£14.95	Water Level Indicator
ZB79	July 80	¢5.00	Dolls House LIghts Economiser
ZB80	July 80	¢5.00	Darkroom Timer
ZB81	July 80	¢6. 00	Soldering Iron Blt Saver
ZB82	July 80	£4.75	Voltage Splitter
ZB83	July 80	£19.25	Conference Timer
ZB84	July 80	£20.00	Electronic Canary
ZB85	July 80	¢5. 25	Tremolo Unlt
ZB86	July 80	£19.25	Meter Amplifler
ZB64	May 80	¢4.80	Quad SImulator
ZB63	May 80	¢3.60	Short Wave Converter
ZB66	May 80	£10.25	Electronic Dice
ZB65	May 80	£25.00	Intruder Alarm
ZB67	May 80	£3.50	Shaver Inverter
ZB62	May 80	£14.00	Touch Bleeper
ZB61	April 80	£27.00	Choke Warning Device
ZB60	April 80	¢8. 00	Translstor Tester
ZB59	April 80	£14.50	One Transistor Radlo MW/LW
ZB54	March 80	¢3.75	TIme Delay Indicator
ZB57	March 80	¢15.25	Micro Chlme
ZB58	March 80	£3.60	Llghts Reminder for Car
ZB53	March 80	£4.50	Headphone Enhancer
ZB55	March 80	£12.75	Solid-State Roulette
ZB56	March 80	¢9. 00	1 'm First
ZB45	Feb. 80	£17.00	Continuity Tester
ZB44	Feb. 80	£18.00	Fuzz Box
ZB43	Feb. 80	£6.00	Vehicle Immobiliser
ZB42	Feb. 80	¢11.50	Audio Effects Oscillator
ZB49	Jan. 80	¢22.50	Tele-Tel
ZB48	Jan. 80	¢30.00	Radio MW/LW
ZB47	Jan. 80	£.4.50	Sound to Light
ZB46	Jan. 80	£33.00	R.F. Signal Generator
ZB103	Dec. 79	£6. 25	Guitar Tone Booster
ZB51	Dec. 79	¢5.00	A.F. Signal Generator
ZB40	Nov. 79	£8.50	Quagmire
ZB41	Nov. 79	¢5.00	Tele-Bell
ZB108	Nov. 79	£14.75	Weird Sound Effects Generator
ZB52	Nov. 79	£25.00	Catch-a-Light
ZB33	Oct. 79	£21.00	Chaser Light Display
ZB34	Oct. 79	£4.60	Car System Alarm

* TEACH-IN 80 *

This popular monthly constructional series started in E.E. in 1979 and is a must for beginners to electronics. The sheer simplicity of the whole project experiments lends itself to be made by any beginner young or old. Basic technical principles and symbols explalned in great detail. Start at the beginning with a hobby that could become a worthwhile career, our kit comes complete with all parts as specified by E.E.
List A, B and C £22-50. Monthly reprints from October 1979 available at $\mathbf{4 0}$ peach per month extra or $£ 4 \cdot 50$ for whole series.
*All E.E. project kits supplied with cases except items marked *. All kits come complete with items as specified plus Texas i.c. sockets where required, also veroboard connecting wire etc.
If you do not have the issue of E.E. which contains the project we can supply a reprint at 40 p extra.
Personal callers please ring to check availability of kits.
All prices include post, packing and $\mathbf{1 5 \%}$ V.A.T.

LATE EXTRA

| MINI I.C. RADIO OCTOBER '80 ZB126 | $£ 10 \cdot 35$ |
| :--- | ---: | ---: |
| DUSK/DAWN RELAY OCTOBER '80 ZB125 | $£ 7 \cdot 45$ |
| SOUND TO LIGHT ZB127 NOV. '80 | $£ 19 \cdot 00$ |
| GUITAR PRACTICE AMPLIFIER ZB128 NOV. '80 | $£ 16 \cdot 85$ |
| REACTION TESTER ZB129 NOV. '80 | $£ 10 \cdot 25$ |
| PRECISION TIMER ZB130 NOV.' 80 | $£ 21 \cdot 00$ |
| TRANSISTOR TESTER ZB131 NOV. ' 80 | $£ 8 \cdot 00$ |
| SOIL MOISTURE MONITOR ZB132 NOV. '80 | $£ 5 \cdot 00$ |
| OTHER THAN STATED, PRICES ON APPLICATION. | |

Hours Mon-Friday 9-5.30 p.m. Sat. 9-4.30 p.m.
Callers by appointment only.
Telephone: 01-226 1489

T. POWELL

Advance Works, 44 Walface Road, London N.1.

Visa/Access cards accepted
Minimum telephone Orders $£ 5 \cdot 00$ Minimum Mail Order $£ 1$-00

Make it for α Song!

The New Maplin in Matinée
 Amazing Value For Only

Easy to build. Latest technology - means less cost less components and 80\% less wiring Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing Major, Minor and Seventh chords. Unique walking bass lines with each rhythm Unique countermelody line with each rhvthm Truly amazing value for money.
Full construction details in Electronics \& Music Maker magazine.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive, guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.

กniสpulin

Maplin Electronic Supplies Ltd
All manl to PO Box 3. Rayleigh, Essex SS6 8LR
Telephone Southend (0702) 554155 Sales (0702) 552911

Shops

159.161 Kıng Street, Hammersmith, London W6 Telephone (O1) 7480926 284 London Road, Westcliff-on-Sea, Essex. Telephone Southend (0702) 554000 Both shops closed Mondays

[^0]: 19 MULBERRY WALK. LONDON SW3 6DZ . TEL: 01.3521897 . TELEX: 918867

[^1]: The Maidstone YMCA Amateur Radio Society is holding a Hobby Electronics and Amateur Radio Mobile Rally on Sunday, May 3, 10 a.m. (admission 50p-free parking) at the Sportscentre, Melrose Close, Maidstone.

[^2]: ## For Sale

 NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

 SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, nery. Tele phone Potter Heigham (069-27) 721.

