Easy to build projects for everyone atadencs

thirteen l.e. ats, four carbon resistors, three polarised caps., two digital i.c.s, and a pp-3 in a pear lree.

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices
and a brief description. The kits, modules and specialized RF components. such as TOKO coils, filters etc. are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1). LINEARICS. NUMERICLISTINGS

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for E.E Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Project kits include ALL THE ELECTRONICS AND HARDWARE NEEDED-we have even Included appropriate screws, nuts and I.C. sockets. Each project kit comes complete with ts own FREE COMPONENT IDENTIFICATION SHEET. We supply-you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. IF YOU DO NOT HAVE THE ISSUE OF E.E. WHICH CONTAINS THE: PROJECT-YOU WILL NEED TO ORDER THE INSTRUCTIONS/ REPRINT AS AN EXTRA-45p, each.

LATEST KITS: S.A.E.

OR 'PHONE FOR PRICES

AUDIO RFFECTS UNIT FOR WEIRD SOUNDS. Oct. 80. £ 10 -75
PHONE EALL CHARGE JOGGER. Oct. 0. $\mathbf{\varepsilon 6} \cdot 19$

DUSK-DAWN RELAY. Oct. 80. $58 \cdot 24$ ess mains wire-needs 9 volt power BICYC
BICYCLE ALARM. Oct. $80 . \mathrm{Es}$. 80 less mouning brackets.
RON HEAT CONTROL. Oct. BO. £4.99, DARKRGOM CONTROLLER. Oct. 80. BEDSIDE RADIO. Sept. 80. £15•98. DUO-DECI TIMER. Sept. 80. $£ 13 \cdot 59$ TTL LOCIC PROBE. Sept. 80. e4-41, TTL POWER SUPPLY UNIT. Sept. ELECTRCNIC TOUCH SWITCH. Jan. 78.8233 less case. Jan. 78. £A. 33 less case.
SHAVER INVERTER, Apr. 79. $£ 18.98$.
AUTOPRASE,
f21.41. Rectangular Case.
COURTESY LIGHT DELAY. June 80 . E6. O9. SIGMAL GENERATOR. June 80. £22.54. tangular Case.
G.P. AMPLIFIER, June 80. E6. 80.

SIGNAL TRACER, June 80. $£ 5.50$
ZENER EIODE TESTER, JUN*
CRICKET GAME, Aug. 80. 517.42.
BRAKESAFE MONITOR. AUg.
BRAKESAFE MONITOR. AUg. 80.
£7.81. W7.81.
WEATHE CENTRE, Aug. 80. E73.78
exc. hardwere + wlre tor sensors. exc. hardwere + wire tor sensors.
AUDIO MiLLIVOLTMETER. Aug. 80. ${ }_{4} 17$ STATIGN RADIO. May 80. e13.94
less case.
AUTOFACE. May 80. $£ 9.96$.
LIGHTS WARNING SYSTEM. May
BATTERY VOLTAGE MONITOR
May $80 . £ 4.21$. May 80. £4-21.
AUDIO TCNE GENERATOR. May 80
GAS
GAS SENTINEL. April Bo, £26-32
SPRING LINE REVERB, UNIT, Jan.
MICROCHIME DOORBELL. Feb. 79
ع13.48.
AUTO LEVEL CONTROL. ADCII 80 .
ع7.69.
CABLE \& PIPE LOCATOR. Mar. 80 E3.40 less epll former.
KITCHEN TIMER. Mar. $80 . £ 12.46$.
STEREO HEADPHONE AMPLIFIER Mar. $80 . £ 14 \cdot B 4$. S RANGE CJRRENT LIMITER. Mar. 80 E4. 24.
MICRO MUSIC BOX. Feb. 80 £13.82. Gray Case f3. 83 extra. Fib. $80 . £ 20 \cdot 6$, headphones $£ 3 \cdot 28$.
SLIDE/TAPS' SYNCHRONISER. Feb.
MORSE PRATICE OSCILLATOR.FEb
B0. E3.93.
UNIBOARD BURGLAR ALARM. DEC
79. £5.13.

BABY ALABM. Nov. 79 £8-20
OPTO ALARM. Nov. 79 Es. 77 inc. optlonal ports.
MW /LW RADIO TUNER. Nov. $79 £ 15 \cdot 50$ ess dlal
ONE ARME BANDIT. Oct 79. £18.39. case extra £3-98.
HIGH IMPED
HIGH IMPEDANCE VOLTMETER. CHABER LIEH
CHABER LIEHTS. Sept. 79. £18.95. VARICAP M.W. RADIO. Sept. 79 SIMPLE TRANSISTOR TESTER. LECTRONIC TUNING FORK AUg, 70 E.1.15. Sultable microphone \& plug $£ 1 \cdot 50$ xtra.

WARBLING TIMER. Aug. 79. Ee-25 OV POWER SUPPLY Aug. 79. £.9.94 Inc. ocb. SWANEE WHISTLERAug. 79 £3.19 DARKROOM TIMER, July 79. ©.2.47. TREMOLO UNIT, June 79. £11-26. ELECTRONIC CANARY. June 79. E4.98. LOW COST METAL LOCATOR. Jun 79. 15.44.
former parte extra $\mathbf{£ 5} 5 \mathbf{5 5}$. METER AMPLIFIER. June 79, £4. 32. QUAD SIMULATOR. JURe 79, f.6.25. INTRUDER ALARM. May 1979, E18-71 Lose Ext. Buzzer \& Lamp and Loop ComTHER
THERMOSTAT. 'PHOTO' SOLU TIONS. May 79, £10.02. Les socket, tube TRANSISTOR TESTER April T0 C4.05.
TOUCH BLEEPER. AprlI 79, £. 3.52.
ONE TRANSISTOR RADIO. MAI. 79 with Amplifler \& Headset. Less case
\& 6.93 .
AUDIO MODULATOR. Feb. 79. £1-58 less case and pins.
THYRISTOR TESTER. Feb. 79, E3. 22. ADJUSTABLE PSU. Feb. 79. £24-60 FUZZ BOX. Dec. 78, £6.20.
VEHICLE IMMOBILISER. Inc. PCB Dec. 78, £5-74.
"HOT LINE' GAME, Nov. 78. £4-65 lene case \& rod.
AUDIO EFFECTS OSCILLATOR. NOV 78, £3. 99 inc, board.
FUSE CHECKER. Oct. 78. E1-07.
C.MOS RADIO. Oct. 78. E.39.

TREASURE HUNTER. Oct. 78. $£ 17.80$ less handle a coll former.
GUITAR TONE BOOSTER. Sept. 78 c4. 99 Ine. p.c.b.
SOUND TO LIGHT. Sept. 78. £8.98. FILTER, £9-86
SLAVEFLASH. Aug. 78, £3.20 less SK1 LOGIC PROBE. July 78. £2.53.
N SITU TRANSISTOR TESTER,
June 78. $\mathbf{5 5}$-76.
FLASHMETER, May 78, $\mathbf{5 1 2 \cdot 8 4 \text { less calc }}$ and diffuser
POCKET TIMER. Aprll 78, £2.98. WEIRD SOUND EFFECTS GENERA. TOR. Mar, 78, £4.80.
CHASER LIGHT DISPLAY, Feb. 78, 223.59 Inc. p.c.b. case extra $\mathbf{\text { ej. }}$.21. AUDIO VISUAL METRONOME. Jan. 78

RAPID DIODE CHECK. Jan, 78. E2.34 AUTOMATIC. PHASE BOX. Dec. 77. c9.55 Inc. p.e.b
VHF RADIO. Nov, 77, £14•36.
ULTRASONIC REMOTE CONTROL Nov./Dec. 77. E16.09.
ELECTRONIC DICE, March 77, e4-83.
SOIL MOISTURE INDICATOR. JUne 77. £4.07 Inc. probe. HONE/DOORBEL
77. £8.38.

CAR 日ATTERY STATE INDICATOR. ept. 78. E1-79 less case Inc. PCB. R.F. SIGNAL GENERATOR. Sept. 78 18-17 less case
ADD. ON CAPACITANCE UNIT, Sept. 7. $£ 5 \cdot 99$.

HEADPHONE ENHANCER, Jan. 79 2.60

PAgSIVE MIXER. Ott. 78. £372.
MIC AMP. Dec. 78. £2.80
AUDIBLE FLASHER, Dec. 78. £1:21.

MAGENTA ELECTRONICS LTD. EZ23, 98 EALAIS ROAD, BURTON-ON-TRENT, STAFFS. DE13 0UL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY ADD 35p. P- \& P. TO ALL ORDERS. EIRE BFPO ORDERS ALL PRICIAL ORDERS FROM ${ }^{15 \%}$ SCHOOLS ENC. WELCOMEE MES MUST INCLUDE S.A.E. OVERSEAS: SEND ORDER W. WITH WNTERNATICNAL POSTAL COUPONS WE WILL QUOTE EXACT PRICE BY
 U.K. PRICES - LESS 10% (COVERS V.A.T. REFUND A EXPORT DOCUMENTS PAYMENT: STERLING ORDERS OT U.K. CHEQUE. ENOUIRIES: ENCLOSE 2 INTER-

ELECTRONICS CATALOGUE

80/81 ELECTRONICS CATALOGUE

KITS
Hundreds of lilustrations, product data, circuits, and details
Up to date price list ineluded. All products
are stock Ines for fast dellvery by first
Class Pos!. Send 6×10 位
Class Pos!. Send $6 \times 10 \mathrm{p}$ stamps today for
your copy.
TOOLS
RESISTORS
hardware
CASES

- TWINKLING STARR. E.E. Dec. 79. Christmas decoration. Very effectlve

ADVENTURES WITH ELECTRONIGS By.tom

An easy to tollow book suitable for all ages, ideal for beginners, No Soldering. Uses
an 'S Dec' breadboard. Glves clear Instructions with Iots of pictures. 16 proiectsIncluding three radios, siren, metronome, organ, Intercom, timer, etc. Helps you learn about electronic components and how clrcuits work. Component pack Includes an S-Dec and emp projects
Adventures With Electronics. $£ 1 \cdot 75$.
Component Pack $\mathbf{\Sigma 1 6} \mathbf{7 2}$ less battery.

ADVENTURES WITH MICROELECTRONICS

Same style as above book; 11 prolects based on Integrated circults-includes: dice wo-tone doorbell, electronic organ, MW/LW radto, reaction timer, etc. Component pack includes a Blmboard, 1 plug-In breadboard and the components for the prolects.
Adventures with MIcroelectronlcs $£ 2 \cdot 35$
Component pack $£ 29.95$ less battery.

MICROPROCESSORS

FOR
BEGINNERS exctilng technology. Edueatlonat and interesting with practlcal work. Details In our catalogue or s.a.e. for sheet.

NOV. 80 E.E. KITS

SOUND TO LIGHT Nov. 80. 3 channel. $£ 21 \cdot 26$ inc. etched d drllled PRECISION TIMER Nov. 80. £24.48.

DOING IT DIGITALLY

 A popular educational series for digltalTTL chrcuits (7400 series). Appeared in
E.E. In 12 parts-Oct. 78 -Sept. 79. A E.E. In 12 parts-Oct. 78-Sept. 79. A "TTL Test Bed" is constructed and the series. Experiments Include circults or digltal games, a light detector, a ound operated alarm, a moisture sensor, lmers + a stopclock, binary/digitai lecoders, a dice, etc.
TTL TEST BED KIT £29.98.
ADD ON COMPONENTS FOR EXPERI MENTS £22.73.
Reprints avallable. 45 p each part

> GUITAR PRACTICE AMPLIFIER Nov. 80. £10.98 less case, Standard case £3.58. High quality case £8. 33 SOIL MOISTURE MONITOR Nov. 80. £4.94ine. Drobes. TRANSISTOR TESTER Nov, 80 £9-89 Inc. test leads.

TEACH-IN-80

E.E. 12 part serles. Oct '79-Sept '80. Covers the basics of electronics -lots of practical work. Circuits are built on a plug-in Eurobreadboard, which is built into a wooden console which houses the power supplies, speaker, meter, pots and LED Indicators. The series uses a range of electronic components in the experimental work Including a photocell, I.C.s, transistors etc.
Wooden Console (Tutor Deck) kit $£ 5 \cdot 98$ extra. Includes all the wood, glue, feet and strap handle.
Electronic components, including Eurobeadboard, for the console and the experiments $\mathbf{E 2 5} \cdot \mathbf{4 0}$ (called list $A+B+C$ by E.E.). Reprints available-Parts $1-12,45 p$ each
List 'C' only $£ 2-45$.

TOWERS INTERNATIONAL TRANSISTOR SELECTOR £10.50

ANTEX X25 SOLDERING IRON. 25 W
 HOW TO SOLDER BOOKLET. 12p.

SOLDERINGIRON STAND. £2.03.
SPARE BITS. Small, standard, large
65p each. Handy size. 98 p .
EUROBREADBOARD. E8. 20
LOW COST LONG NOSE PLIERS
LOW COST CUTTERS. $£ 1$-69.
SIREN. 12V. ES.18.
P.C.B. ASSEMELY JIG. £11-98,
P.C.B. ETCHING KIT, 1.98
P.C.B. ETCHING KIT. ©4.98.
MONO HEADPHONES $2 K$

MONO HEADPHONES. 2K Padded
STERED HEADPHONES. 8 ohm.
Padded. £4.29.
HEAT SINK TWEEZERS. 15p.
SOLDER BOBGIN. 30p.
DESOLDER PUMP. E5-98.
CONNECTING WIRE PACK. $5 \times 5 \mathrm{yd}$ colls. 65p.
VERO SPOT FACE CUTTER. £1. 23. VERO PIN INSERTIDN TOOL. 0.1m 1.66. $0 \cdot 15^{\prime \prime}$ £1.67.

RESISTOR COLOUR CODE CALCU. LATOR. 21 p .

MULTIMETER TYPE 2. 20,000 O.D.
MAGENTA glves yOu FAST DELIVERY BY FIRST.CLASS POST OF QUALITY COMPONENTS AND KITS. All products are stock lines and are new and full speciflication. We glve personal servlce and quality products to all our customers-HAVE YOU
TRIED US?

Make sure of your Heathkit catalogue... write now.

 with the world's finest electronic kits - with the Heathkit catalogue.

48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (EE 12), Bristol Road, Gloucester, GL2 6EE.

Please send me a copy of the Heathkit catalogue. I enclose 25 p in stamps.
Name
Address

SPARKRITE X5 is.a hagin performancer i(0) (unahiv netuctive discharge electromic ignition systemin thesigne ed for the alectir mincs D 1 Y world tithas beem treet testerd andiproverin to be itterly retiable Assembly onlytakes 12 herus samedinstallatent of weven less due to the pratented clop oni "asy fitmm Sparkritecircuit elmumates piotiblems of the contact breaker Theres sine misfire cher to contact breaker bousice which iselimpirateret electromically by a pulser suppression circuit which prevents tin cumit firitich if the pomes bounce - rysell at fiegts R PM Comtact breaker burn is themmated by

 chschargurg tos the platus The ime ith -lifies

 Will wotk all reverumters
Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders. THE KII COMPRISESEVERYTHING NEEDED
Die pressect consp Reacly dillect alumumumextriderd
base and heat simk. conl mountukg clips and accossorus All kit components are: yharantex dfor aperixi of 2 years frems date of purchase Fully illustiated assmbly aud ustallatiom mstructions are included Roger Clark the world famous rally driver
 says "Sparkrite electronic ignition systems are the best you can buy.

Electronics Design Associates, Dept. EE 12 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Britain's first com computer kit. The Sinclair ZX80.

Price breakdown
ZX80 and manual: £69.52
VAT: £10.43
Postand packing FREE
Please note: many kit makers quoteVAT-exclusive prices.
You've seen the reviews... you've heard the excitement...now make the kit!

This is the $\mathbf{Z X 8 0}$. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX80 with competitive kits that don't appear with inclusive prices.

'Excellent value' indeed!

For just £79.95 (inc/uding VAT and p\&p) you get everything you need to build a personal computer at home ...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the $Z \times 80$ really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The 2×80 is programmed in BASIC, the world's most popular computer language for beginners and experts alike.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV... link it to an appropriate power source*...and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touch sensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^0] adaptor. Available from Sinclair if desired (see coupon).

The unique and

valuable components of the

Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart fromits exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

The ZX80 owes its remarkable low price to is its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the 2×80 's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines
And Benchmark tests show that the $\mathrm{ZX80}$
is faster than all other personal computers.
No other personal computer offers this unique combination of high capability and low price.

DENSHI KITS-

 SPECIAL OFFER
". . . fun and entertainment
as well as education"-
(EVERYDAY ELECTRONICS mag.)
The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are avallable again, at little more than their 1977 prices
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instructlon manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.

SR-3A KIT

£29.95

$$
\left(16 \frac{1}{2} \times 10 \times 2 \frac{1^{\prime \prime}}{2}\right)
$$

Bulld over 100 projects including 3 -TR reflex radio receiver, 3 -TR radio recelver with RF amplifier, 2-TR reflex radlo recelver, 3 -TR amplifier for crystal mike, 3 -TR amplifier for speaker/mike, 3 -TR signal tracer, Morse Code tralner, 2-TR electronic organ, electronle metronome, electronic bird, electronic cat, electronic siren. electronic oun, 2-TR sleeping ald, high voltage generator, discontinulty warning device, water supply warning device, photoelectric alarming device, 3-TR burglaralarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photoetectric alarming device, Morse Code fralner with sound \& llght, discontinulty warning device with sound \& Ilght, water level warning device with sound \& light, electronic metronome with sound \& light, buzzer with sound \& Ilght, wirel ess mike, wireless telegraph set, wireless discontinulty warning device, wireless water level warning device, wireless water supply warning device, wireless photoelectric warning device atc. etc.

SR-3A de luxe KIT
 £39.95

(illustrated $16 \times 14 \times 3 \frac{1^{\prime \prime}}{}$)
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include batteries, educational manuals, free book, VAT, p\&p (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard (or 20p. for illustrated literature) to DEPT. EE.

ELECTRONI-KIT LTD
 RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

ELECTRONICE

A NEW AND EXCITING HOBBY!! BIG, WELL ILLUSTRATED BOOK Ideal for beginners - gives lots of general information - explains how to build lots of projects Intercom, Rain Alarm, Radios, Organ, Parking Light etc. All parts supplied and can be re-used on special deck provided, so NO SOLDERING is required. Just needs $41 / 2 \mathrm{~V}$ battery.

£17.50 inc. VAT \& Post

Also
ADVENTURES WITH MICROELECTRONICS - Explore the world of silicon chips -

All components \& Deck, £27.95 inc VAT \& Post.
Component Catalogue \& Bargain List 75p

4430 Millbrook Road, Southampton SO1 OHX

interested in ELECTRONICS?
 TRY A ZEDPACKI

COMPONENTS AT A PRICE EVERYONE CAN AFFORD
 Z3 300 mlxed capacitors, most types

100 mlxed electrolytics
Z5 100 mlxed polystyrene caps 26300 mixed printed circuit ¢ 8.95
$c .2 .20$ components $£ 1.95$ 500 mixed printed circult resistors $£ 1.45$ Z8 100 mlxed high wattage resletors, Z9 100 mound etc.
plate caps
21025 assorted pots.
 21220 assorted $\mathbf{v d r}$'s and thermistors Z13 $1 / \mathrm{b}$ mixed, hardware. Nuts, $\begin{aligned} & \text { bolts } \\ & £ 1 \cdot 20\end{aligned}$ self-tappers, steeving, etc. Nuts, $£ 1 \cdot 20$ 214100 mixed, new and marked, full spee.
transistors. Pack Includes:- BC148, transistors, Pack includes:- BC148,
BF154, BF274, BC212L, BC23, BC184L,
 Z15 100 mixed diodes Including:-zener, power, bridge, slgnal, dermanium, sllicon etc. All full spec. $£ \mathbf{8} .9 \mathbf{5}$ Z17 20 1N4003/10D2
 $Z 1925 \mathrm{hIgh}$ voltage puise caps, etc. $£ 1 \cdot 25$ 220.20 assorted switches, includes P/B,
side, togele, multipole, minlature, slide,
reed, etc. TBA800 Audlo I.C. £1 ea. 31 or £2.50. BD181 (78W, 15A, TO3) 3 to E.
12V1.3W ZENERS
2V 1.3W ZENERS
 200μ A Minlature level/batt meters, as fitted to many cassette recorders. ' sop Deluxe FIBREGLASS printed circult
efching kits.
includes 100 sq ins, of copperclad F/G
board. 1 lb terrie chloride, (made for U.S. army to MIL, SPEC.), 1 dalo otch resist pen, abrasive cleaner, etch resist dIsh and
Instructions. OUR PRICE EA.95

To: "GEMINI ELECTRONIC
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8. Please Quote ZED Code. Where shown. Send Cheque or Postal Order, Plus 50p PaP. ZED PACKS now avallable for C. SEND FFC Deptiord Broadway, London, S.E.8.

GUARANTEED LOWEST PRIGES - GUARANTEED QUALITY
 We promise to BEAT any lower advertised price by an extra $2 \frac{2}{2} \%$ - Just send details and your remittance for the lower amount*

Casio and Seiko watches are water resistant and won't drown in the rain. They do not eat expensive batteries. The quality cases won't wear your cuffs away, nor will plating wear off in a few months. Unlike the usual plastic type. the mineral glass face will not easily scratch or mar. The high quality modules have a failure rate at around 1% or less-not 25% or more. They are guaranteed accurate and functions do not interact. Spares and servicing are available after the guarantee expires from UK service departments.

THE ULTIMATE WATCHES

Send 12p for details of these amazing CASIO watches NOW!

With around 40 functions

 LCD ANALOGUE/DIGITAL Alarm Chronograph with countdown Analogue. Independent hours and minutes with synchronous digital seconds. Dual time ability.Digital. Hours, minutes, seconds, day and date.
Stopwatch. $1 / 100$ second to 12 hours. Net lap and 1st and 2nd place. Start/stop and 10 minute signals.
Alarm. For 30 seconds with carousel display.
Countdown Alarm. Normal and net times to 1 hour, with amazing "Star Burst" flashing display.
Time signal. Half hourly and hourly chimes. Tone control. Lithium battery. Light. Water Resist. case. 8.65 mm thick.

AA81
Analoguc
Display

Mineral glass
AA81 Chrome $£ 29.95$
AA81G Gold Plated $£ 49.95$
AA82 Stainless Steel $£ 39.95$

12 MELODY ALARM CHRONOGRAPHS

Countdownalarm. Date memories
Hours, minutes, seconds, am-pm 12 or 24 hour Day, date and month auto calendar. Alarm. 7 melodies, one for each day of the Alarm.
Hourly time signal. With "Big Ben" type tune.
Date Memory. Select either "Wedding March" or "Trinklied" to be played. Birthday and Christmas Memory.
Countdown alarm. From 1 second to 1 hour. After zero, count continues positively. Stopwatch. $1 / 10$ second to 1 hour. Net lap
ete. Picturesque moving display of notes played. Light. Lithium. Glass. Water Resist. cases. M-12 resin, s / s trim. M-1200 all s/s 9.0 mm thick.

$£ 24.95$
$£ 29.95$
for around 40 functions

£19.95

100 METRE WATER RESISTANT

Alarm Chronographs with countdown.
Amazing 5 year lithium battery life. Hours, minutes, seconds, am/pm. day, date and month, 12 or 24 hour. Time is always visable regardless of display mode. Stopwatch. $1 / 100$ second to 1 hour. Net, lap, 1 st and 2nd Start/stop signal. 10 minute signal.
Alarm. Sounds for 30 seconds.
Coundown Alarm. Normal and net times to 12 hours. Start/stop and 10 minute Time
chimes. Signal. Half hourly and hourly Chimes.
not ill All resin. W-150B. All s/s. W-150C A250 As above but with standard water resistant case $£ 24.95$ S220 As above but with dual time in lieu of alarms and chimes
$\mathbf{£ 2 5 . 0 0}$

F300 Sports chronograph (right)

8 digits, hours, minutes, seconds, date and day indicator $1 / 100$ second stop watch; net, lap and 1st \& 2nd place times to 12 hours. Resin case, s/s trim. Water res. Glass. Light. 110QS-37B Metal version $£ 17.95$ F80E Alarm Chronograph (far right) 8 digit display of hours, minutes, seconds, $\mathrm{am} / \mathrm{pm}$ and date. 24 hour alarm, hourly chimes. $1 / 10$ second stopwatch to 12 hours; net lap, 1st \& 2nd place. Resin case/strap. Water resist. Mineral glass. Nightlight.
83QS-41B s/s jacket version $\mathbf{£ 1 9 . 9 5}$

£12.95 £15.95

OTHER CASIO WATCHES. Remember we will BEAT lower prices by $2 \frac{1}{2} \%$.

* Providing the advertiser has stocks and we still make a small profit!

JOIN THE KEYBOARD REVOLUTION!

With the amazing new CASIOTONE 201

A remarkable new concept in electronic keytoard instruments using a totally new technology. Pitch, timbre and harmonics of 29 instruments have been measured, digitalised and stored in electronic chip memory for faithful reproduction. A 4 -sound memory function allows switching between any 4 preselected instruments.

This polyphonic instrument can play fult
chords of up to 8 notes on its 29 white
and 20 black keys spanning 4 octaves.
Vibrato and tone switches. Foot volume
MWW円HITITTM $\%$ and sustain pedal options. Echo jacks. $3 \times 33 \frac{1}{2} \times 9 \frac{1}{8}$ inches. Weight 15 lbs . Black or woodgrain finish. AC only.
ONLY $£ 245$ (r.r.p. ع $^{285)}$

CASIOTONE M-10

Four instruments on the move
Polyphonic playing of piano, organ, violin and flute. 19 white and 13 balck keys span $2 \frac{2}{2}$ octaves. Vibrato switch. $2 \times$ $16 \frac{1}{2} \times 5 \%$ inches. Weight 3.5 Ib . Integral
speakers. O/p jack. Mains/battery. speakers. O/p jack. Mains/battery. ONLY $£ 69$ (r.г.р £79)

THE SPACE INVADERS ARE BACK!

This time right in your pocket. An action-packed speed game that will give you hours of skilful entertainment and chair-gripping excitement. Never another dull spare moment. Also an 11 -note melody calculator, pre-programmed "When The Saints Go Marching In". Full menory, \%. Auto power-off facility.
MG-880 (left)
$1 \times 2 \frac{28}{8} \times 4^{\frac{1}{2}}$
f10.95 (£12.95)
MG-770 (right)
Kiss touch keys
$\frac{5}{83} \times 3{ }^{2} \times 21^{\prime \prime}$
212.95

12 PRE-PROGRAMMED MELODIES

Clock, calendar, 11-note melody maker, calculator, square roots, $\%$. Alarm 1;7 tunes, one for each day. Alarm 2; a fixed tune. Hourly chimes. Date memories; 4 anniversary tunes.
MQ-1200 (below), Desk or bedside. Built-in speaker. Volume control, Nightlight. Powered by three AA batteries $£ 19.95(£ 22.95)$ if $\times 6 \times 24$ inches.

Other Casio calculators, P.O.A. Remember, we will BEAT lower prices by $2 \frac{1}{2} \%$.

SEIKO ALARM CHRONOS FROM £37.50

DFT 048 (left). Alarm, Countdown alarm, hourly chimes, stopwatch to 1/100 second; net lap, 1st \& 2nd. DFT 038100 metre water resistant version. $£ 49.95$ DER 048 Solar powered (right). Weekly programmable alarm, 16 hour interval countdown alarm timer, hourly chimes, 1-100 second
stopwatch.
DER 018100 metre water resistant
version $\quad £ 62.50$
$£ 37.50$ version
$£ 69.95$

$£ 52.50$
DUO DISPLAY Analogue/digital watches from $£ 57.50$
Send 25p for our illustrated catalogue of Casio and Seiko products.

1

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUBEDITOR

S. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

AssISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOADING

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 gL
Phone: 01-261 8873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

R. WILLETS

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY
 DEPARTMENT

Phone 01-261 6615

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

and Popular Features ...

The distinction between electronics and electrics is not always clearly understood. And puzzlement amongst the nontechnical may well increase rather than diminish in the future as these two closely related technologies become more intertwined. For instance, we already have domestic electrical appliances with electronic controll.

To warrant the description "electronic" a circuit or piece of equipmont must depend upon semiconductors or (more rarely today) valves, for its prime function. So an electric toaster remains an electric toaster regardless of the fact that it incorprorates a microchip controller.

A simple example of electrics and electronics working together is the control of filament lamps by an electronic timer-switch. A project of this kind is presented this month in the form of a Tree Lights Flasher. This device has several advantages over the conventional bi-metal strip type of circuit breaker.

For low level illumination, the electric filament lamp has its electronic rivals. Solid state optoelectronic devices such as 7 -segment displays, light emitting diodes and liquid crystal displays are very familiar.

It is thus possible to make a smallscale lighting display that is entirely electronic. Indeed we can see a new art form emerging with the wider use of l.e.d.s to give a special kind of
lustre to petite models or ornaments. Our Table Decoration is an example. This design simulates a miniature tree as an appropriate feature for Christmas time. But given the circuit, any constructor can use his own ideas to create an alternative model for embellishment with the l.e.d.s. it

It is wise to have a game or two up one's sleeve around Christmas time to amuse the youngsters, and others. Childhood memories are likely to be evoked by our electronic version of the old Stone-Paper-Scissors Game.

Then there is Live Wire. Being essentially electrical (but with electronic trimmings!), this game obviously cannot have an equally long ancestry; although, who knows, a primitive form may have provided incidental amusement for Dr Gilbert, Michael Faraday or some other pioneer during their experiments with this new mysterious force.

We hope some of these projects will play a part in your Christmas. You have four weeks, but don't delay.

Our January issue will be published on Friday, December 19. See page 807 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic component for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^1]

VOL. 9 NO. II
DECEMBER 1980

CONSTRUGTIONAL PROJEGTS

LIVE WIRE GAME "Requires a steady hand and sharp eye by E. M. Lyndsell 780
TREE LIGHTS FLASHER Reliable electronic control for flashing rates up to 5 Hz by $A . R$. Winstanley 784
STONE-PAPER-SCISSORS GAME An all electronic version of this popular childrens' game by E. M. Lyndsell 788
TABLE DECORATION Add sparkle to your seasonal festivities by A. P. Donleavy 793
SPRINGLINE REVERBERATION UNIT Gives depth to both recordings and live performances by P. Bond 802
I.C. UNIBOARDS: 1-NO ENTRY INDICATOR To safeguard your privacy by A. R. Winstanley 808
TWO-NOTE DOOR CHIME Uses CMOS devices for long battery life by W. J. Keeley 816
GENERAL FEATURES
EDITORIAL 778
JACK PLUG AND FAMILY Cartoon by Doug Baker 783
COUNTER INTELLIGENCE A retailer comments by Paul Young 787
BRIGHT IDEAS Readers' hints and tips 791
SHOP TALK Product news and component buying by Dave Barrington 792
I.C.S EXPLAINED Part 3: Radio Devices, Voltage Regulators and I.C. Lead-out Chart by J. B. Dance, M.Sc. 796
SQUARE ONE Beginners Page: Connecting wires and cables 810
FOR YOUR ENTERTAINMENT Stereo T.V., memory games by Barry Fox 813
EVERYDAY NEWS What's happening in the world of electronics 814
RADIO WORLD T.V. by telephone, e.m. detection, pictures from space, novice licences by Pat Hawker, G3VA 820
/ CAN'T DO MATHS 2: Damned dots by George Hylton 822
READERS' LETTERS Your news and views 825
PLEASE TAKE NOTE TTL Logic Probe, Audio Effects Unit 825
WORKSHOP MATTERS Additional tools, connecting leads, good housekeeping by H. T. Kitchen 826 829 INDEX FOR VOLUME 9 INDEX FOR VOLUME 9

[^2]

THIS game was designed primarily for amusement at family gatherings, and parties as something to amuse the children but was found to be just as popular with the adults. It could provide entertainment during the forthcoming festive season and perhaps even a Christmas present when ready built or as a kit of parts for the electronic constructor.

NINE LIVES

The idea of moving an eye along a wire from one end to the other trying to avoid the two making contact is not new; however, the "nine lives" addition here is believed to be original. Each touch of the "eye" on the wire sounds a buzzer for a short period and advances a counter one step. This is seen on a string of l.e.d.s on the top panel.

On reaching the last position, your "ninth life" has been used and the game is over. This is signified by the buzzer remaining on until the unit is reset. This is done by moving the eye back to the start position, ready for another attempt.

The unit is powered by a PP3 battery which should have a reasonably long life with moderate use. If
prolonged use is envisaged such as at a fête or exhibition a battery eliminator should be considered for reasons of economy and convenience. This would involve the fitting of a suitable socket to the case to suit the eliminator plug, the former connecting directly in place of the battery clip.
Besides its obvious entertainment value, this game could also have a more serious application in gauging a person's co-ordination, i.e. the bidirectional link through the brain between hand and eye.

CIRCUIT DESCRIPTION

The full circuit diagram of the Live Wire is shown in Fig. 1. ICl is a 555 timer i.c. connected here as a monostable multivibrator. When pin 2 is grounded, i.e. connected to the 0 V rail, even for only an instant, the output at pin 3 goes from 0 V to +9 V for a period determined by the values of Rl and Cl. After this time it returns to 0 V . This time has been set to be about half a second. Pin 2 is grounded when the eye touches the wire.

While the monostable output is high, TR1 is turned on which places almost the supply voltage across WD1, a solid state buzzer. This emits a tone
for as long as the supply is maintained.

The rising and falling of pin 3 level is equivalent to a pulse and this is fed to the clock input of decade counter IC2. Each clock pulse is counted and causes the outputs to switch on the appropriate l.e.d. Thus each time the eye touches the line, the buzzer sounds for a short time and the count is advanced by one.

END OF GAME

This action continues up to the last l.e.d. position, but when this turns on, the high level at pin 11 is coupled to the clock enable, pin 13. While this is low, counting occurs, but when made high, the counting is inhibited. Thus the last position lights and stays alight. Further eye-to-wire contact has no effect.

This high at pin 11 reaches TR1 via buffer R4 and D2, and causes the alarm to sound until reset. Resetting is accomplished by returning the eye to the start end touching it on the phono socket mounted there for this purpose. This takes the reset, pin 15, high, which returns the counter to the ready condition, D3 alight.

Resistor R2 straps ICl trigger, pin 2 , to the positive supply rail making it immune to false triggering from noise spikes etc. R3 affords similar immunity to IC2 reset pin.
CONSTRICTION staris thare

CIRCUIT BOARD

Mast of the components were mounted on a small piece of $0 \cdot 1$ inch matrix stripboard size 18 strips $\times 30$ holes.

As a precaution, IC2, because it is a cmos device, was mounted in a d.i.l. socket to avoid contact with the soldering iron. This is not essential, but advised. Begin by making the necessary breaks on the underside of the board as shown in Fig. 2 including the two board fixing holes. Mount the i.e. socket(s), link wires and other components as shown. Attach sufficient lengths miniature stranded cable to reach the case mounted components when assembled.

The wire leading to the eye should be the extra-flexible type to be found on test leads as this is very light and

Resistors

R1	$220 \mathrm{k} \Omega$	R4
R2	$4 \cdot 7 \mathrm{k} \Omega$	R5
R3	$1 \mathrm{k} \Omega$	
R	$10 \mathrm{k} \Omega$	R6

All $\frac{1}{4}$ watt carbon $\pm 5 \%$

Capacitor

$\mathrm{C} 1 \quad 2 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.

Semiconductors

D1,D2 1 N4148 small signal silicon diode (2 off
D3-D12 THL220 red I.e.d. (10 off)
TR1 BC107 siticon npn
IC1 555 timer i.c.
IC2 CD4017 CMOS decade counterjdlvider

Miscellaneous
WD1 9 V solid state alarm
B1 PP39V
S1 on/off toggle
Stripboard $0 \cdot 1$ inch matrix size 18 strips $\times 30$ holes; 16 -pin d.i.l. i.c. sócket; battery clips for B1; coathanger wire; mounting clips for l.e.d.s (10 sets)optional; flexible wire and paper clip for eye and tead; case, Verobox type 202 21030 K or similar.
durable and will not break as easily as ordinary stranded wiring.
The solid state alarm in the prototype was attached to the circuit board by means of self adhesive foam pads which the author found to be adequate. Insufficient space is available on the existing board layout to use screw fixings for this. Alternatively, the device can be mounted directly to the case by whatever means desired.

PANEL COMPONENTS

The next stage is to drill the fixing holes for the panel mounted components. Retaining clips or glue for the l.e.d.s on the top panel were not found to be necessary as the holes for these were drilled to be tight and friction held. The exact size of the drill will vary according to l.e.d.s obtained. Alternatively clips or glue may be used. Drill two holes in the

Fig. 1. The complete circuit diagram for the Live Wire Game.

Live Wire Game

Photograph above shows an external view of the game. The shape of the wire and loop and also SK1 can be clearly seen.

Fig. 2. Shows the layout of the components on the topside of the stripboard, breaks to be made on the underside and complete interwiring.

The completed prototype prior to the case being screwed together.
case a distance apart to suit the parallel ends of the "Wire" shape. In the prototype this was made from coathanger wire, bent to resemble a Christmas Tree so as to be topical at this time of year.

A phono socket was found to be a convenient method for bringing the reset connection to the front panel around the Wire at the start end, the earth tag being used for this purpose. A screw type terminal block was found to be a suitable clamp for the Wire shape and was mounted to the case side pia threaded spacers. Short lengths of sleeving cover the ends of the Wire to provide non-active or safe regions at the start and finish.

Fit the board to the case and the Wire to the terminal block and then this to the case, not forgetting the connection to be earth tag on the phono socket.

With all the l.e.d.s fixed in position and their cathodes (k) aligned, a busbar can be soldered to the array as seen in Fig. 2 followed by the appropriate lead from the board to each of the l.e.d. anodes. Fix the on-off switch in position and connect to the remaining battery lead and complete the interwiring as shown. A knot was tied on the external lead prior to passing through a small hole in the case end. This is in order in this low voltage wire and prevents any stress at its soldered location on the board.

The eye was constructed from a paper clip formed with a pair of pliers, see Fig. 2. The eye diameter was made slightly larger than the phono socket and this was found to be a suitable size for the Wire tree made from a metal coathanger as mentioned earlier. A piece of coloured tape over the solder connection of the paper clip/lead enhances the appearance and provides a suitable handle for the eye.
It only remains to fit the battery and label the unit as shown in the photographs. A self-adhesive foam pad was used to secure the battery to the case.

PLAYING THE GAME

The object of the game is to move the eye from start to finish without touching the Wire. Each touch will be recorded and signalled by the buzzer sounding for a short time and an l.e.d. illuminating respectively. The number of touches is read from the numeral above the l.e.d. position as shown in the photographs. On the ninth however, the last l.e.d., labelled GAME over, remains lit and the buzzer sounds until reset; the latter occurs when the eye touches the phono socket, or the unit is switched off. I

JACK PIUA \& FATMLY...

BY DOUG BAKER

This lamp flasher has been specially designed for use in conjunction with a standard set of Christmas lights. This unit flashes the lights repeatedly at any desired interval, ranging from approximately five times per second to roughly twice a minute.

Featured in this simple design is a bypass switch which will, if required, override the Flasher and cause the Christmas lights to be continuously illuminated.

At this stage no doubt some readers will be wondering what value a unit like this can have when sets of flashing lights are of course already available on the open market. This is a valid comment, and the answer lies in the fact that the flashing rate of this unit is variable, therefore almost any effect can be obtained, according to your own tastes and requirements.

Furthermore, the bypass switch enables you to revert to continuous illumination should you wish to do so.

Unlike several previous circuits, this design is fully solid state. There are no clicking or clattering relaysinstead a thyristor is used, resulting in totally silent and reliable operation.

CIRCUIT DESCRIPTION
The circuit diagram of the Tree Lights Flasher is seen in Fig. 1. The heart of the design is ICl, a 555 timer i.c. connected as a standard astable multivibrator.

An astable is a circuit which, in effect, produces a steady stream of square waves on its own accord, without the need for a triggering signal.

Here the frequency of the square waves is determined by VRla and VR1b, plus capacitor C2. Resistors R4
and R5 are included as a precaution and they also set the maximum frequency of operation. Note that VRI is a dual-ganged potentiometer.

FREQUENCY
With the values of components shown, the frequency can in theory be varied from about 4 cycles per minute $(0.06 \mathrm{~Hz})$ to about 6 cycles per second (6 Hz). In practice however, components have manufacturing tolerances, so that values slightly adrift from the theoretical figures may actually be generated.

The output square wave at pin 3 drives the gate terminal of CSR1 through attenuator R1 and R2. This is a thyristor which completes the mains voltage circuit to the Christmas lights, causing them to flash in sympathy with the square wave.

The l.e.d. D3 acts as a "repeater" pilot light on the control unit. The bypass switch Sl will, when closed, present a continuous signal to the thyristor gate. The Christmas lights will then illuminate continuously. The presence of D4 ensures that the i.c. will not be damaged by current sinking into the output pin of ICl when S1 is closed.

THYRISTOR
One thing to note is that the thyristor conducts in only one direction. The effect of this is that one half of the mains a.c. cycle is lost as the thyristor will block current in one direction. This is deliberate. In general it is thought that this will increase the life of the bulbs in the chain.

BY A.R.WINSTANLEY

The power for the i.c. oscillator is derived from a standard full-wave arrangement, in which mains voltage is stepped down by T1, rectified by D1 and D 2 and then smoothed by Cl to produce a d.c. output of about 9 V .

In this design, no part of the circuit must be earthed. Only a live and neutral input is needed and no earth will be required.

CASE
The housing used for the prototype of this project is a standard allplastic Verobox type 202-2103G, measuring $188 \times 110 \times 60 \mathrm{~mm}$. A metal or part-metal case should not be used.

The components themselves are mounted upon a $75 \times 50 \mathrm{~mm}$ printed circuit board, see Fig. 2. A glass-fibre p.c.b. is preferred since this has much greater strength thain s.r.b.p.

There is a mixture of both low d.c. and mains a.c. voltages on the board, and so if you etch your own p.c.b., take extreme care as errors or flaws could have unexpected and dangerous results to say the least.
Solder all the components onto the p.c.b. as shown. The majority of parts are polarity sensitive so insert them the right way round. Use an 8 -pin d.i.l. socket to carry IC1. Do not forget to solder in the small link wire. This can be made from 22 s.w.g. tinned copper wire.
On one edge of the box are mounted the l.e.d. D3 (use a panel

Resistors

R1	680Ω
R2	100Ω
R3	560Ω
R4	$4 \cdot 7 \mathrm{k} \Omega$
R5	$4 \cdot 7 \mathrm{k} \Omega$
All $\$ \mathrm{~W}$ carbon $\pm 5 \%$	

Capacitors

C1 $1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial mounting
C2 $15 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. axial mounting
Semiconductors
IC1 NE555 timer i.c.
CSR1 C106D 400 V 4 A thyristor
D1,2 1 N4001 50 V 1 A silicon rectifier diode (2 off)
D3 TIL209 red l.e.d.
D4 1N4001 50V 1 A silicon rectifier diode
Miscellaneous
VR1 $470 \mathrm{k} \Omega$ lin. dual ganged potentiometer
T1 mains primary, 6.0 .6 V 100 mA secondary
S1 single pole, push-on, push-off switch

FS1 1A $1 \frac{1}{4}$ inch cartridge fuse and panel mounting holder.
Case, $188 \times 110 \times 60 \mathrm{~mm}$, Verobox $65-2522 \mathrm{~K}$ or similar; printed circuit board, $75 \times 50 \mathrm{~mm}$; four-way 5A screw terminal block; 8-pin d.i.l. socket for IC1; panel clip for D3; knob; 4BA and 6BA nylon nuts and bolts; twin core 3A mains cable; 3A cable and light gauge wire for internal connections; grommets (2 off).
clip), the bypass switch and the dual potentiometer, which should be fitted with an all-plastic knob.
The other end carries the panelmounting fuseholder (which should be of an approved safety type) and the cable inlet. The mains input cable should pass through a grommet in the case and be fitted with a cable retaining clip so that it will not pull out.

CHRISTMAS LIGHTS

Connections to the Christmas lights are made at a four-way terminal block. The flex from the lights passes through a grommeted hole adjacent
to the fuseholder to the appropriate terminals on the block. The terminal block also carries further connections for the transformer as illustrated.

The interwiring diagram is shown in Fig. 2 and this is largely selfexplanatory. Do not overlook the subsidiary interwiring between the tags of VR1. Use Veropins on the p.c.b. where flying leads are taken off. Make sure that all mains wiring is of an adequate rating. The minimum should be 3A.

All fittings must be bolted down with non-conducting nylon hardware. Do not overtighten the nylon nuts because it is quite easy to strip the threads.

Fig. 1. Complete circuit diagram of the Tree Lights Flasher.

TREE LIGHTS FLASHER

Fig. 2. Circuit board layout and interwiring details. Note that the lights are attached directly to the terminal block. Their cable should be secured inside the case once it has been connected up. If an alternative case is used, this must be an all plastic type.

The completed unit with the lid removed. The circuit board and associated components can be seen quite clearly. At this stage the lights have not yet been attached.

Should you wish to letter the case, do this kefore any parts are fitted down onto the box. Use rub-down dry transfer lettering, and then carefully apply a couple of coats of protective lacquer.

SETTING UP

With construction complete, thoroughly check out all the wiring. Do not connect up the Christmas lights yet, but set VR1 fully clockwise for maximum speed.

Plug the unit into the mains and switch on. The pilot l.e.d. should be flashing rapidly. If it is continuously alight then check whether SI has been closed.

Rotating VR1 gradually anti-clockwise should reduce the speed of the flashing. If this is so then completely unplug the unit and then feed the flex from the lights through the hole in the case, secure the cable and then connect it to the output terminals of the terminal block. Close up the case and then switch on.

The Christmas lights should be flashing at a speed determined by VR1. A slight flickering may just be detectable in some cases. This is unavoidable and is caused by the rectifying action of the thyristor.

The range of speeds available on individual models may not suit the constructor. By replacing C2 it is possible to adjust the general frequency range. Increasing $C 2$ will slow down the flasher, and vice versa. The capacitor value should lie between 10 microfarads and 47 microfarads, but no doubt experimentation will produce the best compromise.

Friendly Dealer

I have, in each of my last two articles, delivered a small homily on ordering componentsand hope that my suggestions have proved useful. Just to wrap up the subject for another year I will only add this.

Your average component dealer is not in it, as a way to riches, as I have said previously, if this were so, he would do better selling fish and chips. He is in the business because he is an electronics enthusiast. It therefore follows that he will help a fellow enthusiast whenever he is able to do so.
Naturally, it is only fair to confine your questions mainly to the supply of electronic components, but if in difficulty don't hesitate to call in your friendly component dealer. You will find he is more helpful than your friendly Bank Manager and he doesn't pop out of the bedroom wardrobe and make a pass at the wife.
I do very occassionally like to mention our problems, if only to justify why we cannot always give the service we would like to. For example, in the last 12 months there has been a growing tendency for our suppliers to put up the
value of the minimum order they will accept.
For several years, many firms have been insisting on a minimum order of $£ 20$ to $£ 25$, but lately, no doubt due to pressure from some of their bright accounting boys, they have pushed it up to $£ 75$ and $£ 100$. Now the poor old dealer who wants a dozen knobs, might stretch a point and go to $£ 20$ or $£ 25$'s worth but $£ 75$ or $£ 100$'s worth is out of the question and the nett result is, that another item disappears from his stock.
I know the accountants can make out a good case for it but I am not yet convinced that it is not a short sighted policy.

Electric Car

We all like to indulge in a little fantasy sometimes and I like to imagine one day opening my copy of Everyday Electronics and seeing a constructional project for an Electric Carl I expect by the time that happens, I shall be driving a medium sized cloud, or be solely dependent on wing power.

Perhaps that is being unduly pessimistic, because already in the States one of the oil companies has developed
a car that will do 55 miles per hour and cover 250 miles at a charge. The running costs should be pennies and with no gear box or clutch, the maintenance costs should be much lower. Within a year the company hope to be turning out 100 units a week and they estimate the potential market as being around 230 million!
The L.E.B. were given the job, a few years ago, of evaluating the Electric Car, admittedly using the old type of lead acid battery, and my brother, who is in communications, had one to try out. He told me it was quite a fun thing to drive and there was no worry about starting on a cold morning or frozen radiators, the acceleration was unbelievable, in fact there was only one thing that he found disconcerting. To reverse you simply pulled out a small knob on the dash board and you could go as fast backwards as forwardsI

Sweeping the Air

I have been doing some research prior to writing an article, on the radios used by prisoners of war, in places like Colditz. I am very fortunate in having a friend in the Imperial War Museum, but while I was intrigued at the ingenuity shown in hiding the illicit receivers (one was hidden in a false broom head used to sweep out the compound, another in a shoe with a false bottom) I was surprised at the construction.

I thought they would be made out of old cocoa tins from Red Cross parcels. Instead, I found they had German valves and transformers in them, which looks as though there must have been a little bribery and corruption taking place.
1 feel sure there are many stirring tales still to be told and in this connection I am still very short on many details, so if any of our readers can help me, i should be most grateful.

resulting in these lamps lighting up on the display panel. If either player for any reason presses two switches this is immediately detected by two of his switch status lights coming on as well as two lamps from LP4, LP5, and LPG being lit.

To produce equal illumination from all lit lamps, the voltage rating of the status lamps is half that of the result lamps. The voltage of the battery may be varied to suit the bulbs obtained and required intensity with their current rating of course less than the maximum current capabilities of the transistors, which for the BC 107 is 100 mA .

CIRCUIT BOARD

A small piece of stripboard size $0 \cdot 1$ inch matrix, 18 strips by 30 holes holds all the diodes, transistors and the resistor. See Fig. 2 for the layout details and the breaks to be made on the underside. As most of these components are semiconductors, care should be taken when soldering them in place as they can be damaged by
the heat from the soldering iron. The link wires should be connected first. Attach suitable lengths of lead to reach the case mounted components.
The case used in the prototype was plastic with a metal lid with dimensions of 160 $\times 95 \times 50 \mathrm{~mm}$, With the lamp holders used, there was little room in the case after assembly, so these dimensions should be regarded as the minimum required.

Shows the completed prototype before final assembly.

LAMPHOLDERS

Prepare the lid to accept the nine lampholders and fit into position and interwire as shown in Fig. 2, Next wire these to the component board. The two cases for holding the pushbutton switches should next be drilled and the switches fitted and interwired.

Connect a suitable length of 7-way cable to each bank of switches and feed the other end into the main case through a small hole drilled halfway along the case side near to the base.

Sufficient length of outer sheath should be removed to allow the wires to be fitted to the component board and lampholders when the lid is removed from the case. Cable fixings are recommended to avoid strain on the wiring when in use. Finally solder on the battery connector and fit the board to the base of the case.

If a plastic case is used no spacers or insulation need be used between board and case when the board is bolted in position. Connect a battery,

Fig. 1. The complete circuit diagram for the Stone-Paper-Scissors Game.

sticky tape or adhesive foam sponge will hold it in place, fit the lid and the unit is ready to play.

TESTING AND PLAY

First of all label all the switches and larnes as shown in the photo-
graph. Check all of the switch status lamps by holding down simultaneously a switch from each player's box in the nine different combinations. Check that the labelling between lamp and switch agrees. Finally check that the result lamps give the right answer for
each of the combinations according to the rules outlined in the opening paragraphs.

The two players should sit opposite each other with the unit between them. Each player should then press one of their switches not letting their opponent see which one has been operated of course. If the win lamp on your side lights, then you have won that particular round.
A PP3 battery will provide power for a moderate length of time with the current drawn by the lamps since this is only required for short lengths of time. For prolonged use, you are advised to use a more substantial battery e.g. a PP6 or PP9 or two 4.5 V bell batteries connected in series. A larger case will be required in these instances. Alternatively, a socket may be fitted in place of the battery clips to enable power to be supplied by a battery eliminator. [

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

DRILLING TEMPLATE

To assist in drilling holes for component leads in p.c.b. boards, I use a piece of Perspex about 5 mm thick with holes drilled at spacings suitable for i.c.s and presets.

Positioning of the Perspex over the copper areas is easy as the p.c.b. pattern can be seen through the Perspex.

During drilling the Perspex is held in place with a spring clamp.
H. G. Hartog,

Maungarati,
New Zealand

COMPONENT STORAGE

There are various ways of storing components, but transistors bring a very big problem since, there are a lot of types and it is rarely found that one has more than five of the same type. These are often difficult to store and locate. I thought that small cases would solve the problem so that the transistors could be stored in drawers or boxes. In looking for an ideal small case I found that the small cases of Instamatic camera flashes are ideal. You just carefully remove the bottom part (which will eventually form the lid) and then remove the used flashes. This can be used as a small case.

Pierre Mallia, Santa Lucia, Malta

L.E.D. HOLDER

Sometimes l.e.d.s are difficult to mount into a display panel. This problem can be simply alleviated by using a rubber grommet as a l.e.d. holder.
The grommet chosen should have an internal diameter slightly less than that of the l.e.d. and is first mounted in the panel in the usual way.

The l.e.d. can then be pushed through from behind and is held tightly. The end result gives a pleasing appearance.

David Hall,
Selby, West Yorkshire

SPEAKER CLOTH

Lately when faced with the problem of what to use as a speaker covering in a small project, I came up with the following solution.

I purchased a new potato sack and cut out a piece. This was then glued in place over the aperture in the case and the speaker glued on top of it.

The end result looked very professional and the sound escapes quite freely through the tiny holes in the fabric.
R. Mountford,

Shaftesbury, Dorset

CIRCUIT BOARD JOINER

I have found an inexpensive way of joining two circuit boards together by using the shells of exhausted ballpoint pens of the disposable type. Start by cutting a slit down the pen case and then simply slide it along the sides of the circuit boards and across the join to hold them together.

Irwan Owen (aged 14),
Cobham, Surrey

By Dave Barrington

Component Buying

Before looking at the first influx of the new seasons catalogues we should like to make a couple of points about component buying.

The majority of constructors obtain their components by mail order. Therefore, the first step should be to obtain at least three or more catalogues from different advertisers.

The charge from these varies from a few pence upwards to approximately one pound. Sometimes the outlay for catalogues is redeemable with component order vouchers.
It is important to study these catalogues as it will help the constructor to familiarise himself with components and typical sizes and values usually stocked. Also, it can save money in the long run.

When ordering from a catalogue always follow any instructions contained therein. Most contain an order form on which the stock number, quantity and price should be entered clearly. To help cut down on the number of mis-directed parcels always print name, address and post code in block capitals.

If an order form is not supplied, always follow the recommendation given in the particular Components List contained in the published article and use types specifled. If in doubt, cut out the list or better still make an exact copy and send this to the advertiser, including the title of the project and issue date it appeared.

Catalogues

We have often used the name of Maplin when recommending a standard for components catalogues and a mail order service par excellence.

For those not in possession of their latest 280 page components catalogue (price £1.16 including post and packing) we strongly recommend you do so. If W.H. Smiths consider it good enough to sell through their shops (price $£ 1 \cdot 00$), it must be better than average.

As a back-up to their catalogue they issue regular editions of a Newsletter/ Price List. This can contain up to 30 pages of latest information on prices, new lines and special bargain offers. To be added to their mailing list cost only 30 p and is well worth the investment.

Another catalogue that is a must for constructors is the Home Radio Components catalogue. Their latest edition contains 80 pages, lists over 2,000 items and costs $£ 1 \cdot 00$ plus 50 p postage and packaging.

Apart from the usual stocks of standard items like soldering irons, printed circuit board kits, semiconductors and cases, Magenta Electronics latest 52 page catalogue contains details of complete kits for many past projects published in this magazine.
Like most of our advertisers they issue separate price lists throughout the year.

Copies of the Magenta 1980/81 Catalogue can be obtained by sending six 10p stamps to Magenta Electronics Ltd., Dept EE, 98 Calais Road, Burton-on-Trent, Staffs DE13 OUL.
If it's tools you are looking for, then the 12-page catalogue from TRI-tronic Marketing Ltd may prove useful.

This catalogue lists an excellent range of side-cutters and pliers. For the constructor they have put together a "basic starter" tool kit in a plastics tool box. Included in the kit is a soldering iron and stand.

Copies of the Electronic Tools and Equipment Catalogue are available free from TRI-tronic Marketing Ltd, 75 Albert Street, Rugby, Warks CV21 2SN.

Coinciding with their move to larger premises, the latest components catalogue from Ace Mailtronix contains over 1000 stock items.
The catalogue is available now, price $30 p$, to mail order customers. This charge is refundable with subsequent orders over £5.-The catalogue is free to callers

Note Ace Mailtronix new address is: Ace Mailtronix Ltd., 3A Commercial Street, Batley, W. Yorks WF17 5HJ.

Late News

We have just heard that Watford Electronics are about to launch their new components catalogue.

This will be a 100 page effort printed on top quality paper and contain over 6,500 of -the-shelf items. The catalogue is lavishly illustrated and expected to sell for approximately 75 p, including postage.

CONSTRUCTIONAL PROJECTS

Springline Reverberation Unit

The one project this month that looks as though it is going to cause most readers component sourcing difficulties will be the Springline Reverberation Unit.
The springline module used in this project is the Maplin XB84F Long Spring Line. Because of its overall physical dimension of 432 mm long it makes any suitable commercial case, to house the circuit board and springline, fairly expensive.
As there seems ample room in the prototype layout for plenty of space saving, one possible answer would be to purchase some aluminium sheet and bend it to form a U-shape chassis; one side forming the front panel and the other the back. The circuit board could be mounted on the front or back panel.
To complete the case, the chassis can be surrounded with a wooder (battens) framework covered with hardboard or veneered plywood.

When ordering the transistor TR1 be sure to specify the L in BC184L. The leadout configuration for the BC 184 is in a different order.

Two Note Door Chime

The next on our list for particular care when purchasing components is the Two Note Door Chime.
It is most important that for IC2 the CD 4011 A (without static protection) be used. The CD4011B is not suitable as the static protection circuits incorporated in this i.c. prevent proper operation of the tone generators.

We have ascertained that Watford Electronics are able to supply the CD4011A.

It is also necessary to use tantalum capacitors where specified in the circuit because of their excellent low leakage factor.

Be extra careful when handling the CMOS i.c.s and only insert them in their sockets when all wiring is completed and the unit is ready for testing.

No Entry Indicator

The first in our new I.C. Uniboards series covering simple integrated circuit (i.c.s) designs is the No Entry Indicator.

Most of the components should be readily available, but the Hekla rocker switch S1 would appear to be only listed by Maplin Electronic Supplies.

Paper-Scissors-Stone Game

Only the push switches called for in the Stone-Paper-Scissors Game are special to this project. These are the Castelo double-pole push-to-make, release-tobreak types stocked by Electrovalue.

Of course, any similar action types may be used but those listed were chosen for their price.

Tree Lights Flasher
All components for the Tree Lights Flasher are standard items and should be stocked by most component suppliers.

Looking through the advertisement pages we see that Micro Circuits are currently offering the C106D thyristor at a special price of 30 p each.

Table Decoration

The integrated circuit used in the oscillator section, ICl , of the prototype version of the Table Decoration is the CD4001AE. As we have been unable to try the B series, with static protection, we strongly recommend that readers purchase a device with the suffix AE as incorrect operation of the oscillator may be experienced with the " B " devices.

The prototype model used the MM74C174, but we have specified the CD40174 as this appears to be more readily available.

Breadboard Exhibition

If you would like to see some of this month's, past and future projects in operation, why not pay us a visit at the Breadboard ' 80 exhibition.

Everyday Electronics will be exhibiting on Stands $J 7$ and $\sqrt{ } 8$. Amongst our displays for the future will be an Ultrasonic Intruder Detector and a Horse Racing Game. -Come and try your luck!

The Breadboard ' 80 show is being held at the Royal Horticultral Halls, Elverton Street, Westminster, London, SW1 from 26 to 29 November.

This article describes the construction of a decoration which uses an arrangement of l.e.d.s turning on and off to provide the attraction. The external design can be altered to suit the artistic taste of the constructor, as can to some extent, the electronic sequence. The electronic part of the project is easy to make, and the finished product can be effective, giving the constructor and his family a novel decoration for the imminent festive season.

CIRCUIT DESCRIPTION

The sequence of events is such that the l.e.d.s turn on progressively in four groups urtil all are lit. The display then extinguishes itself for several seconds after which the l.e.d.s start to light again. The circuitry to achieve this is shown in Fig. 1.

IC2 contains six bistable flip-flops, four of which are used to drive the l.e.d.s. The operation of the flip-flops is as folliows. Each flip-flop has two inputs, a data (D) and a clock ($C K$) input. When a positive pulse arrives at the clock, the output goes to the same state as the data input, e.g. if the data is at $\operatorname{logic} 1$, then the output will also go to logic 1 when the next clock: pulse arrives.

In this circuit the data input of each flip-fiop is connected to the output of the preceding one, with the ex-
ception of the input of the first flipflop in the chain which has its input strapped to the + ve supply rail via R4. Thus as each flip-flop turns on, it provides the logic 1 state to the next
flip-flop data input to turn on with the following clock pulse.
ICl contains four CMOS NOR gates. Two of these gates, ICla, IClb, are connected as an oscillator to provide the

Fig. 1. The circuit diagram of the Table Decoration.

Fig. 3. Means of supporting the circuit board and paper tree using a hollow "tree trunk".

COMPONENTS

Resistors
R1 $1 \mathrm{M} \Omega$
R2 $2 \cdot 2 \mathrm{Ms}$
R3 $1 \mathrm{M} \Omega$
R4 $1 \mathrm{k} \Omega$
All $\frac{1}{6}$ Watt carbon 5%
page 792

Capacitors

C1 $10 \mu \mathrm{f} 10 \mathrm{~V}$ elect
C2 $0.33 \mu \mathrm{f} 10 \mathrm{~V}$ tantalum bead
C3 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors
IC1 CD4001 CMOS Quad dual. input NOR Gate
IC2 CD40174 CMOS Hex D-type flip-flop (or MM74C174)
D1 TIL221 0.2 inch green l.e.d D2-D4 TIL220 0.2 inch red D8-D10\} I.e.d. (6 off)
D5-D7 TIL223 0.2 inch
D11-D13 \int yellow l.e.d. (6 off)
Miscellaneous
B1 9V PP3-see text
S1 on/off miniature toggle switch
Stripboard: 0.1 inch matrix 38 strips $\times 38$ holes circular-see text; 14 -pin d.i.l. socket; 16 -pin d.i.1. socket; battery clip or socket-see text; lightweight stranded wire 22 s.w.g. tinned copper wire: materials for decoration.

Fig. 2. Top shows "development" of cone drawn half-scale with l.e.d.s positioned to give a display half-way round the cone which will appear similar to the display seen on the front cover. The l.e.d.s should be interconnected using lightweight stranded wire for ease of assembly.
The prototype model used a circular board, sawn and filed to shape. Ottrer model shapes may allow a square or rectangular board to be used.
clocking pulses. The period of oscillation is determined by the values of C 2 and R2. The shorter this period, the faster will be the rate at which the l.e.d.s light-up, and also the shorter the total duration of the display. The output from the oscillator, pin 11 ICl, is fed to the clock input of IC2, pin 9. All six flip-flops of IC2 have a common clock.
$\mathrm{ICl}, \mathrm{ICld}$ are connected as a monostable which is used to provide the timing interval between the display turning off and starting again. One input (pin 6) of IClC is connected to the output of the last flip-flop in the chain, Q1. When this turns on the monostable produces a positive pulse at pin 10 which is applied to IClb, and stops it from oscillating. Also at this time the output of IClC goes high and this is applied to the clear pin on IC2 which resets all the outputs of the flip-flops to logic 0 . This turns off the display. The values of R3 and Cl determine this off period. At the end of the monostable pulse, the oscillator starts again, and the sequence repeats.

COMPCINENTS

The voltage drop across an l.e.d. when illuminated will vary according to its semiconductor material. In the prototype, red and green l.e.d.s with a voltage drop of 2 volts and yellow ones having a drop of 2.2 volts were used. Reasonable intensity was produced with a current of about 3 mA .

When using a 9 volt battery, the output voltage level of each flip-flop in IC2 is just over 8 volts when supplying a current of about 3 mA . This therefore sets the number of l.e.d.s that can be wired in series with each flip-flop output to a maximum of four red or green or three yellow types with specifications as stated above. Other varieties are available with different voltage drops so this parameter is inportant.

L.E.D.s

The minimum number of l.e.d.s that can be connected in series must not be less than three in the circuit of Fig. 1 unless a series current limit resistor is included in its group, otherwise IC? may be permanently damaged.

The number of l.e.d.s in the total display may be increased by adding another group connected to the unused flip-flop output (Q2). As well as this, the number of l.e.d.s in each group may be increased by running the system at a higher voltage bearing in mind the restrictions regarding output curreat and l.e.d. voltage drops mentioned earlier. Not more than 1.5 volts should be left to be "dropped" by flip-flop internal output circuitry.

Decreasing the values of Cl and/or R3 will decrease the off time of the

An exploded view of the near completed prototype.
1.e.d.s. However this will also reduce the battery life. With the values given the off period was about 10 seconds.

ASSEMBLY

Begin by mounting the sockets which provide landmarks for the link wires that should be assembled next followed by the other components. Pay attention to capacitor polarities. Do not attach any flying leads for the l.e.d.s at this juncture.

The development of the cone is shown in Fig. 2. This is shown half scale. The position of the l.e.d.s shown here will produce a display similar to that shown in the photographs when the cone is rolled and glued together. You will notice that the display only occupies half the cone surface area. If you want coverage over the whole surface more l.e.d.s will be required otherwise they will be too spaced out. More l.e.d.s may be added as described earlier.

CONE

It is advised that the l.e.d.s are assembled and interwired on the "flat" cone leaving sufficient slack, as shown in Fig. 2. The external surface of the cone should of course be decorated as required before wiring up. Use lightweight stranded p.v.c. covered wire. The l.e.d.s could be glued in place but this was not found necessary on the prototype where the mounting holes were made to be a tight fit.

A lip is formed near the base of the cone to seat the component board.

Two strips of the same paper shaped as shown in Fig. 2 were used for this and were found to be adequate.

When completely interwired, there will be four leads remaining to be connected to the board.
Roll and glue the cone along its joining flap and when set, connect the flying leads to the board.
The two wires passing through enlarged holes in the board to the battery connection should be connected next. They should be fed from below and threaded through the hollow "tree trunk" as shown in Fig. 3.
The tub used in the model shown was from the top from an aerosol can, large enough to accommodate a PP3 battery. Higher capacity batteries may be used, e.g. PP9, PP6 but would demand a much larger tub. Alternatively leads could run to a separate battery housing or a battery eliminator could be employed. This would require a suitable socket fitted to the tub in place of the battery clip.

IN USE

Connect the battery of your choice and switch on. The four groups of l.e.d.s should switch on progressively one group after the other until all thirteen are lit. They will all then go off for about 10 seconds and repeat.

If all is well, the circuit board can be glued in place at the base of the cone, fitting up against the lip on the inside. This will ensure that the circuit board is perpendicular to the axis of the cone.

Should the constructor require a short "off" time and a long "on" time, then the battery consumption would probably be unacceptably high, in which case the unit should be powered by a 9 V battery eliminator.

There are many other possibilities of designs. The display and electronics could possibly be fitted into a commercially produced decoration, or a hanging decoration could be made with a three-dimensional array of the l.e.d.s.

Best effect will be obtained when the decoration is sited in shadow. I

THE integrated circuits used in the signal frequency and in the intermediate frequency stages of radio receivers must be able to operate at much higher frequencies than the operational amplifiers and audio devices we have already discussed. However, many suitable devices are available from most of the large semiconductor device manufacturers.

A.M. RECEIVERS

Most a.m. receiver devices have been designed for use in superheterodyne receivers, but we will first discuss a unique Ferranti device, the ZN414, which can be used in very simple a.m. receivers for local station listening. This device is especially suitable for the beginner; circuits using it have the advantage that no preliminary adjustments are required. The device has been designed for use in the frequency range 150 kHz to 3 MHz -which includes the whole of the medium and long wavebands, but the gain is quite low in the short wavebands.

SIMPLE CIRCUIT

A very simple circuit using the ZN414 device to drive an earphone is shown in Fig. 3.1. The audio output from pin 1 of the ZN414 can supply only a very small current and
therefore the earphone used should have an impedance of not less than 250 ohms or the volume may be inadequate. The inductor L1 is wound on a ferrite rod aerial for long or medium wave reception. A biasing current passes through R1 and L1 to pin 2 of the ZN414.

PRECAUTIONS

The current required by the ZN414 is only about 0.5 mA , but the amplification of the circuit is strongly dependent on the power supply voltage. As the ZN414 provides a gain of about 4,000 times $(72 \mathrm{~dB})$, it is important that the leads to it should be kept as short as possible and that the output decoupling capacitor, C 3 , should be soldered close to the device.

Fig. 3.1. An extremely simple radio receiver for reception in an earphone.

The earthed side of the tuning capacitor (the moving vanes) should be connected to the junction of R1 and Cl. Failure to observe these precautions in any ZN414 circuit may result in instability.

ZN414 WITH SPEAKER

A more complex ZN414 circuit incorporating an LM386 audo amplifier to drive a loudspeaker is shown in Fig. 3.2. The basic ZN414 circuit is similar to the Fig. 3.1 circuit, but D1, D2 and R3 form a simple voltage stabiliser which maintains the voltage to the ZN414 at about $1 \cdot 3$ to 1.4 V . Other audio amplifiers using either an integrated circuit or discrete transistors can be employed instead of the LM386 circuit shown, but the LM386 offers one of the simplest possible circuits.

FERRITE AERIAL

An aerial suitable for the ZN414 circuits is shown in Fig 3.3. Either the medium or long wave coil is used, while the coils may be switched if a two band radio receiver is required. The coils may be fixed with polystyrene cement The tuning capacitor should have a value of 150 to 250 pF .

Fig. 3.4. A circuit using the LM3280, LM1820, μ A 720 or CA3123E devices for a superheterodyne receiver.

Fig. 3is. A ZN414 ferrite rod aerial suitatle for m.w. and l.w. reception.

A.M. SUPERHETERODYNE DEVICES

Integrated circuits designed for use in superheterodyne a.m. receivers are necessarily much more complex than the ZN414, but the high gain and selectivity of the intermediate stages of a superheterodyne receiver enables weak short wave stations to be heard. One well-known a.m. device for superheterodyne receivers is the SGS. ATES TBA651.

Fig. 3.2. A ZN414 circuit including a power amplifier for driving a loudspeaker.

Another type of device is available from various manufacturers as the RCA CA3123E, the Fairchild μ A720 and the National Semiconductor LM1820; the last device has now been replaced by an improved LM3280 device. All of these have provision for a signal frequency stage before the mixer, but other devices such as the RCA CA3088 and the Siemens TCA440 are for use in circuits where the mixer is the first stage.
A typical circuit for the LM3280, LM1820, CA3123E or the $\mu \mathrm{A} 720$ is shown in Fig. 3.4. The signal from the aerial is fed in pin 12; after amplification in the radio frequency stage it appears at pin 13. The circuit incorporating $L 3$ is tuned to the incoming signal frequency which is then passed to pin 1 and hence to the mixer. It is now mixed with an oscillator signal of a frequency determined by the resonant frequency of the $L 6$ circuit so that the frequency appearing at pin 14 (the mixer output) is the difference between the signal and oscillator frequencies. This difference or intermediate frequency has a constant value unaffected by tuning and is fed to the $L 4$ tuned circuit.

The intermediate frequency is coupled into the $L 5$ circuit and is fed via pin 7 to the intermediate frequency amplifier of the device. This provides an output at pin 6 to the output tuned circuit. After demodulation by the diode D1, the audio output is obtained.

The output signal from pin 6 is also coupled via pin 5 to the internal
automatic gain control circuitry which keeps the output level at pin 6 fairly constant by increasing the amplification of weak signals; it thus reduces the effect of fading.

F.M. DEVICES

Incoming f.m. signals have a frequency of the order of 100 MHz and few integrated circuits (such as the SD6000 and the TDA1062) have been made available for use at this incoming frequency. Inexperienced constructors are well advised to purchase a complete frontend, since an extra centimetre or two of wire at such frequencies can greatly affect the performance.

A front-end will provide a 10.7 MHz output and it is easy for constructors to make an integrated circuit intermediate frequency unit to accept the $10 \cdot 7 \mathrm{MHz}$ signal. Quite a number of devices are available for use at the $10 \cdot 7 \mathrm{MHz}$ frequency. For example, the Fairchild $\mu \mathrm{A} 753$ is a good $10 \cdot 7 \mathrm{MHz}$ amplifier and its impedance is matched to the 330 ohm ceramic filters for this frequency.

One of the most widely used demodulator devices is the CA3089 type, but this has to some extent been replaced by an improved version, the CA3189.

A high performance CA3189E circuit is shown in Fig. 3.5. The incoming signal is amplified by TR1 and TR2 and the four ceramic CSFE filters provide the selectivity. The signal then passes to the CA3189 where it is amplified and demodulated.

The device incorporates many features, including provision for an S-meter (signal strength meter) automatic frequency control output, automatic gain control output with the threshold at which the gain control becomes effective being controllable by a variable resistor, and signal muting to silence the receiver as one tunes between stations.

This type of circuit is suitable for high performance receivers in which the use of such an integrated circuit enables a much simpler external circuit to be made than would be possible with single transistors.

Unlike the 3189 , the 3089 devices do not have a variable threshold for the
a.g.c. and the bandwidth of the 3089 devices (25 MHz) is greater than that of the $3189(15 \mathrm{MHz})$, so the 3089 is more prone to instability if the component layout is poor.

The 3189 also has a better muting circuit which operates when the receiver is tuned into one of the sidebands of a signal. The 3189 also employs lower noise internal Zener diodes, but otherwise is basically similar to the 3089. The SGS-ATES TDA1200 device is very similar to the 3089 products.

All of these devices provide an output with a total harmonic distortion of about 0.5 per cent when used in the circuit of Fig. 3.5, but the distortion can be reduced to around 0.1 per cent if a twin-tuned circuit is employed between pins 9 and 10. However, an oscilloscope and wobbulator circuit is required to align the twin tuned circuit for minimum distortion.

STEREO DECODERS

The use of modern phase-lockedloop stereo decoders has greatly simplified the construction and adjust-

Fig. 3.5. A high quality f.m. intermediate frequency amplifier and demodulator circuit.

ment of this type of circuit. The MCl310 was the first device of this type, but improved versions (such as the LM1310E) have emitter follower outputs which provide low output impedance audio signals.
A circuit using the LM1800 device is shown in Fig. 3.6; this device incorporates a hum rejection circuit in addition to emitter follower outputs, but otherwise is like the 1310 types.

The f.m. signal after demodulation is fed into pin l of the LM1800. The resistor-capacitor networks in the pin 3 and pin 6 circuits provide the deemphasis characteristic and the separate audio outputs are obtained from pins 4 and 5; these outputs are each fed to the appropriate amplifier of the stereo system.

STEREO RECEPTION

When a 19 kHz pilot tone is present in the stereo signal, this tone causes the circuit to be switched to the stereo mode whereupon the light emitting diode $D 1$ is illuminated as a stereo indicator If the signal becomes weak so that satisfactory stereo reception is impossible, the circuit automatically switches back to the monaural mode and DI is extinguished. This improves the signal-to-noise ratio by some 20 dB and will often provide a satisfactory monaural signal.

Other stereo decoder devices are available, such as the RCA CA3090AQ which requires an inductor, but operates on the same general principles as the circuit of Fig. 3.6. Very recently an LM1870 device has been
released by National Semiconductor which uses the meter drive output from a 3089 or 3189 device (pin 13) to reduce noise at the expense of the stereo separation during weak signal conditions.

VOLTAGE
 REGULATORS

Integrated circuit voltage regulators are very widely used in many types of electronic equipment, partly because they often offer the ultimate in simplicity. In addition to providing a highly stable voltage output, regulator devices provide an excellent and simple way of reducing mains hum to a very low level. For example, some form of regulator circuit is required in the varicap tuning supply of f.m. and television receivers tuned in this way. In addition, TTL equipment requires 5 V regulator circuits.

Regulator devices are readily available which provide maximum output currents of $100 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1 A at any of the following fixed voltages: $5 \mathrm{~V}, 6 \mathrm{~V}, 8 \mathrm{~V}, 8.5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}$ and 24 V . The 100 mA regulators are mostly marketed in a circular metal transis-tor-type package (TO-39) and plastic (TO-92), but the higher current types are packed in plastic-tab or TO-3 cans for mounting on a heat sink. High currents can be obtained by using
devices which provide outputs of 3A, 5 A or 10 A , but a low current regulator device can be used with external transistors to make a circuit able to deliver a high output current.

Monolithic regulator devices are classified into fixed and variable output types. Fixed regulator devices can be used in very simple circuits to provide the particular output voltage for which each device is designed. It is also possible to obtain other output voltages from fixed regulator devices.

Variable regulator devices provide an output voltage which can be varied by a potentiometer or which can be varied by altering the values of one or more fixed resistors. Variable regulators have the advantage that one can obtain any voltage in a wide range from a single device so that, if one has a stock of a few variable regulators, this will be as useful as a much larger stock of fixed regulator devices for various output voltages.
An additional advantage of the use of variable regulator devices is that their line and load regulation (variation of the output voltage with change in the input voltage and in the output current) is typically some ten times better than in the case of fixed regulators. In their 1980 linear data book, National Semiconductor (one of the largest regulator device manufacturers) state that they see a trend towards the wider use of variable regulators instead of fixed device types.

Fig. 3.7. A simple fixed voltage regulator circuit using the TBA625 series of devices.

Fig. 3.9. A simple current regulator circuit using a voltage regulator device.

This type of circuit has the advantage that if a short develops in the circuits being fed from the regulator, the small current of about 35 mA under short circuit conditions is most unlikely to cause any damage to the devices being supplied with power.

Similar devices are available for outputs of up to about 500 mA with fold back current limiting to about 150 mA . The plastic encapsulated TDA1405, TDA1412 and TDA1415 provide outputs of 5,12 and 15 V respectively and can be fixed to a heat sink by a single bolt. The quiescent current of both these types and the 100 mA types is only about 10 mA when no output current is taken.

THERMAL SHUTDOWN

Another series of regulator devices employs thermal shutdown circuitry instead of fold back current limiting to prevent excessive thermal dissipation from damaging the devices. The Fairchild μ A78M12 and the National Semiconductor LM78L12 are similar 12 V devices which can supply an output of over 100 mA and which incorporate thermal shutdown circuitry. A range of devices for other voltages is available. Further protection is incorporated in high current devices to limit output current to a safe value.

Plastic packaged devices with thermal shutdown circuitry include the LM342 series for currents up to 200 mA , the 78 M and LM341 series for 500 mA outputs and the 78 and

LM340T series for 1A outputs. All are available in a wide range of output voltages.

INCREASING VOLTAGE

The type of circuit shown in Fig. 3.8 can be used with a fixed voltage regulator to provide an output voltage higher than that for which the device is designed. The increase in the output voltage is equal to the voltage across the resistor $R 2$. This extra voltage is equal to the value of R2 multiplied by the sum of the quiescent current I_{Q} and the current passing through $R 1$. If only a small extra output voltage is needed, R1 can be omitted. It is also possible to replace R2 with a Zener diode and to omit R1.

As a typical example, if R1 has a value of 430 ohm and R2 is a 250 ohm variable resistor, the output from a TBA625A regulator device can be set to any value between 5 V and 9 V . Similarly when $R 1=1$ kilohm, $R 2=$ 150 ohms and the regulator is a TBA625B, outputs of between 12 V and 15 V can be obtained. However, the variation in the output voltage is generally much smaller with such a circuit than if a variable regulator device is employed.

CONSTANT CURRENT

Current regulated circuits can be conveniently made using voltage regulator devices. Fig. 3.9 shows such a circuit which delivers a constant output
current which is almost independent of the input voltage and (within limits) of the resistance of the circuit to which the current is fed. The constant current which flows is equal to $I_{Q}+$ $V_{0} / R 1$ where V_{0} is the fixed output voltage of the regulator device used.

DISSIPATION

When using regulator devices, care must be taken to ensure they do not become too hot. Even when a device has internal thermal protection circuitry, it is wise not to rely on this, since the chances of the device failing are much increased if it is allowed to become so hot that the thermal protection circuitry shuts down the output current.

The temperature of high current regulators is controlled by the use of an adequate heat sink, but circuit design can also greatly reduce the problem. If one uses an input voltage which is only a few volts above the required output voltage, the power dissipated in the regulator device will be much reduced.

The input voltage must always be somewhat greater than the required output voltage, or the device will cease to function correctly. The minimum difference between the input and output voltages for correct operation is known as the "dropout" voltage and is usually in the range 1.2 V to 3 V .
Next month. In the final part of our discussion on linear devices, we will look at variable regulator devices, timers, oscillators and phase locked loops.

Device	Code								
Op-Amps				F.e.t.	Amps	TL074 TL081	$\begin{aligned} & x \\ & 0 \end{aligned}$	MC3360 SL414A	
301 A	A, J, R	709	I, s	351	D	TL082	G	SL415A	
308	J, R	725	K	353	G	TL084	X	TBA800	h
318	H, P, Y	741	D, M, T	355	D			TBA810	h
324		747	Q, U	356	M	Mono	Power Amps	TBA820	i
343	M, ${ }^{\text {T }}$	748	A, J, R	357	M	LM380	a	TDA2006	j
344	J, R	1458	B, L	CA3130	F, O	LM383	b	TDA2030	j
348 349	X \times	CA3080	$\mathrm{E}_{\mathrm{V}} \mathrm{N}$	CA3140	F, O	LM384	a		
349 358	${ }_{\text {B }}$ L	3401 3900	V	CA3160	F, 0	LM386	c	Stereo P	wer Amps
ZN459	$\mathrm{C}^{\text {' }}$	4136	W	TL071	D	LM389	${ }_{\text {e }}$	LM378N	
NE531	A, J	TCA220	Z	TL072	G	LM390	d	LM379N	।

OPERATION AMPLIFIERS	A inputisic 2 psupparit infutitic 3 s poutrut SUPPIMFHA 5 OOFFSET MULL	B	C aurfut Earth i: 8 poutput EARTH SUPPLYitic 2 poutrus infurt 3 spoutpur Earth INPUT EARTHC 5 PDECOUPLING	D afsermulifispstace neverticic spourput SUPPIVI-194 5porfset mull
	 neurtar ${ }^{3}$ spourpur suppurtict sporfser mul	c SUPPIY-1C $4 \quad 5$ INPMTB:	H SUPPIVEML 43 FREED COMP	
	K SUPPLY(t)	L	M	N
		a	R	5
T		V	 OUtputaC ${ }^{3}$ 12 ZOUTPAT O outpur ac 4 "hisupryta outpur Bithes 10 hourpur c SUPPIVI-RC? \& PinPut Cl-1	 ineutatitic 12 ineariot suppryitina "Bone ourpur by spourpic
Y	z	POWER AMPLIFIERS		b
c Gain gontrac tol beain contra nputi-lc: 2 perpass NPutitics ebsuppiytit GNDCA 5 万ourput	d			
	i		k	1

Reverberation is the effect produced when sound waves are reflected from several surfaces so as to prolong the original sound. Empty rooms, halls and theatres all have a reverberation time which is related to the surface area of the reflective surfaces within them.
Artificial reverberation can be used to create an illusion of enclosed spaciousness by producing a sound which is identical to that heard in large buildings with several square metres of reflective surfaces, and indeed, a source of artificial reverberation is always a part of modern production studio equipment.

Nowadays, artificial reverberation can be produced by electronic "delay lines" and already analogue devices are available which work on the bucket brigade principle. However, tape loop and spring line reverberation systems are still common.

Although a complete reverberation unit is expensive, the heart of the unit, a spring line, can be obtained for quite modest prices and in a choice of lengths and the project described here shows you how to build a fairly versatile reverberation system based on a commercially available spring line.

SPRING LINE

The spring line, when purchased, comes complete with the transducers necessary for generating and detecting the mechanical vibrations of the spring. The drive coil converts the signals from the source into mechanical vibrations. These vibrations travel along the spring and because they are not completely absorbed at the far end, they create the effect of prolonging the signal applied.
The vibrations are converted back into electrical signals by the pick-up coil and these signals now represent the original sound with reverberation applied. They have to be mixed together with the original signal to produce the desired effect.
The circuitry is responsible for the generation and detection of the spring line signal as well as amplifying and mixing the source signals together. The user of the unit has control over the depth of reverberation and the amount of reverberation mixed with the source signal, and an output volume control is also provided to give adjustment of the level of signal being applied to the succeeding equipment.

The unit has inputs suitable for a low impedance microphone or guitar pick-up, so the unit may be used in conjunction with other stage equipment. The maximum reverberation time is dictated by the length of the spring line and clearly the longer the spring used then the longer the signal takes to decay.

CIRCUIT

The circuitry associated with the spring line is shown in Fig. 1. Low impedance microphones are connected to SK1 which links the source signals to a pre-amplifier stage centred on TR1. This common base stage has a low input impedance and amplifies the low voltage signals from the microphone before subsequent processing takes place.
The auxiliary input socket SK2 is wired so that when it is not used, signals from the microphone pre-amplifier stage are applied to IC1. However, when SK2 is used contacts are opened so as to disconnect the microphone stage and signals fed into SK2 are applied directly to amplifier IC1.

A 741 operational amplifier is used as IC1, and indeed for all of the integrated circuits in this project. This i.c.

Fig. 1. Full circuit diagram of the Springline Reverberation Unit.
is connected as a non-inverting amplifier which has a gain of just under 5 , the gain being determined by the values of R7 and R8.

Part of the output of IC1 is fed to the final stage of the unit where it feeds a direct non-reverberation signal to the mixer amplifier. The output of IC1 also feeds IC2 which forms the spring line drive amplifier.

The second i.c., IC2, is wired in the inverting mode and the setting of VRl (in association with R9) governs the gain of the stage, and therefore the amount of signal applied to the drive coil of the spring line. Potentiometer VR1 is designated DEPTH since as the control is advanced the more the spring line is made to vibrate and produce a greater reverberation effect.

PICK UP COIL

The spring line pick-up coil converts the vibrations from the spring into small electrical signals, and IC3, an op-amp connected in the noninverting mode, amplifies the signals by a factor of about nine. The output of IC3 is the reverberation signal and it is mixed with the output of rci.

The mixture of reverberation and normal direct signal which is fed to the final output is governed by the
setting of VR2, designated reverb mix. The mixing of the two signals takes place in the final stage.

The audio signal is first amplified and then split into two. One path goes to the spring line unit.
Here the signal is amplified and then turned into mechanical vibrations. These are transmitted down the spring, picked up and turned back into electrical signals.
These signals are further amplified and mixed with the other part of the audio input straight from the input pre-amp.
The ratio of modified to unmodified signal determines the amount of reverberation in the final output.

The final i.c. IC4 is wired as an inverting summing amplifier the gain of which is governed by the setting of VR3 which acts as a volume control. The output of the reverberation unit is fed to SK3. Maximum output is quite large and the impedance is low, therefore the unit will be suitable for most amplifier inputs.

The low current drain enables batteries to be used and in fact two are needed to provide the positive and negative supplies for the opamps. The on/off switch is combined with VR3.

STRIPBOARD

The stripboard layout is based on the use of small components (see Fig. 2) and radial type electrolytic capacitors are used. Radial electrolytics have their leadouts from one end of the can therefore allowing the can to stand vertically and occupy less board space.

Construction should start with making the breaks in the copper strips on the reverse side of the stripboard. The components can then be located and soldered in position starting with the resistors, then the other passive components and finally the semiconductors.

Care must be taken here to make sure that the transistor and i.c.s are not overheated during soldering. The use of i.c. sockets would help here.

A full layout of components is shown in Fig. 2, with the leads to ancillary and frontpanel components alphabetically coded. Stripboard pins are used to connect these ancillary component leads to the circuit board. They are not essential but they do make the process of terminating the wires a little easier.

POLARITY

When locating the i.c.s, transistor, and capacitors pay attention to the polarity of their leads. The 741 opamps are eight-pin dual-in-line devices (d.i.1.) and the end where pin 1 is located is indicated by a depression in the package. On some devices pin 1 is marked by means of a recessed dot. The transistor and opamp lead-outs are given on the diagram.

The spring line will have four terminals, two input tags and two output tags, and also a connection to

Interior view of the unit from behind showing the wiring to the front panel components.
the case of the spring line is available. One or both sets of tags will be marked and these should correspond to the drive and pick-up coils.
The drive coil will be labelled "input" and the pick-up coil will be marked as "output". When the spring line is mounted in the case, it is important to check to see that the spring does not touch any object or surface and that it is free to move.

CASE

A large case was used for the prototype reverberation unit since a long spring line was used. The case used in the prototype was a metal one (Norman Rose type TP7), but if preferred a wooden one could be used with a piece of aluminium for the front panel. In any event the case chosen should be large enough to accommodate the spring line used.

COMPONENTS - mand

Resistors

R1	$18 \mathrm{k} \Omega$	R 10	$18 \mathrm{k} \Omega$
R2	$4 \cdot 7 \mathrm{k} \Omega$	$R 11$	$12 \mathrm{k} \Omega$
R3	$56 \mathrm{k} \Omega$	$R 12$	$18 \mathrm{k} \Omega$
R4	$12 \mathrm{k} \Omega$	$R 13$	$150 \mathrm{k} \Omega$
R5	$1 \mathrm{k} \Omega$	$R 14$	$2 \cdot 2 \mathrm{k} \Omega$
R6	$47 \mathrm{k} \Omega$	$R 15$	$2 \cdot 2 \mathrm{k} \Omega$
R7	$18 \mathrm{k} \Omega$	$R 16$	$18 \mathrm{k} \Omega$
R8	$68 \mathrm{k} \Omega$	$R 17$	$18 \mathrm{k} \Omega$
R9	$27 \mathrm{k} \Omega$	$R 18$	$8 \cdot 2 \mathrm{k} \Omega$

Potentiometers

VR1	$100 \mathrm{k} \Omega$ log. carbon
VR2	$5 \mathrm{k} \Omega \operatorname{lin}$. carbon
VR3/S1	$500 \mathrm{k} \Omega \log$. carbon with ganged d.p.s.t. switch

Capacitors
Sishop

$$
\begin{array}{ll}
\mathrm{C} 7 & 0 \cdot 1 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 8 & 0 \cdot 1 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 9 & 4 \cdot 7 \mu \mathrm{~F} 12 \mathrm{~V} \text { elect. radial } \\
\mathrm{C} 10 & 4 \cdot 7 \mu \mathrm{~F} 12 \mathrm{~V} \text { elect. radial } \\
\mathrm{C} 11 & 10 \mu \mathrm{~F} 12 \mathrm{~V} \text { elect. axial }
\end{array}
$$

C1	$100 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial
C 2	$220 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial
C	$10 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial
C 4	$0.1 \mu \mathrm{~F}$ polyester
C	$0.1 \mu \mathrm{~F}$ polyester
C	$4.7 \mu \mathrm{~F}$

C1 $100 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial
C3 $10 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial
$0 \cdot 1 \mu \mathrm{~F}$ polyester
$4 \cdot 7 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. radial

Semiconductors
IC1-IC4 741 op-amp 8 pin d.i.I. (4 off)
TR1 BC184L npn silicon

Miscellaneous

SK1-SK3 0.25 inch mono jack sockets with single break contacts. (3 off) B1, 29 V battery, type PP3 (2 off).
Spring line 355 mm long, Maplin type XB84F or similar; stripboard, 0.1 inch matrix, 58 holes by 16 strips; case, $440 \times 205 \times 125 \mathrm{~mm}$, metal or wood to suit (Norman Rose type TP7 or similar); battery connectors (2 off); control knobs (3 off); interconnecting wire; mounting hardware for circuit board and springline; aluminium strip for battery clip.

Fig. 2. Full board layout and interwiring details. No case is shown as this is determined by the length of the spring line used therefore the controls need not necessarily be positioned as shown. The batteries are held in place by a piece of aluminium bent into an S-shaped bracket. This is also not shown.

Top left shows a close up view of the circuit board. Bottom left shows the inside view of the spring line unit. The spring line drive and pick-up transducers can be clearly seen. Photograph to the right shows the interior of the unit from the front showing the spring line mounted in position and associated wiring.

The circuit board is mounted using stand-offs or paxolin spacers and it is best to terminate the wires to the board before it is finally secured.

The batteries, two PP3's, were secured using a small piece of aluminium strip which was fashioned to clamp the batteries. This clamp was bolted to the case so that the batteries were not able to move. Other methods could be used but if the unit is going to receive some rough handling then the aluminium clamp is recommended.

The control knobs are fixed to the spindles of the potentiometers and a location for the panel lettering can then be chosen. Letraset transfers were used on the prototype with some strips of glossed paper to indicate the function of the unit. The transfers should be sprayed with suitable fixative for protection.

ATTENUATOR

The output of the reverberation unit is variable to a maximum level of approximately two volts. Since the output impedance is low this output will be suitable for a tape recorder, mixer or a main amplifier. Connect medium impedance microphones and guitar pick-ups to SK2 and low impedance microphones to SK1.

These inputs are quite sensitive because of the low level outputs available from microphones and guitars, therefore, it is not possible to connect the output of a tape recorder or mixer to the reverberation unit without first attenuating the signal. An
attenuator for use with such equipment is shown in Fig. 3 and this will reduce a signal of 500 mV to a level suitable for application to the AUX input of the reverberation unit.

Two resistors are required for a mono source and three for a stereo source. The output of the reverberation unit is mono only. The components required for the attenuator are shown at the foot of the diagram.

Fig. 3. The construction of a suitable attentuator lead. Ra and Rb are $560 \mathrm{k} \Omega$ resistors and Rc is $10 \mathrm{k} \Omega$ in value. All are $\frac{1}{2} \mathrm{~W}$ carbon types. Ra is omitted if the input to be attenuated is monaural.

This does not include the plug for the tape recorder or mixer or whatever. A suitable plug will have to be obtained to connect to this equipment.

OPERATION

The operation of the unit will become apparent when used. The DEPTH control determines how much reverberation is produced by the spring. As the control is advanced the spring vibrates more. If the control is advanced too far, and high level signals are being fed into the unit, there is the possibility of distortion appearing at the pick-up coil of the
spring line, which is detected by the ear as a "twang".
The reverb mix control determines the ratio of the reverberation signal to direct source signal. When the control is midway along its travel the output is made to comprise of half reverberation output to half input signal.

The actual amount of reverberation is dependent on the setting of the DEPTH control. If the REVERB MIX control is turned fully anti-clockwise then only direct input signal appears in the output, that is, the input without reverberation.

On the other hand, if the mix control is advanced fully clockwise the output signal from the reverberation spring line is fed to the output, this gives a rather "ghostly" version of the input signal.

The volume control is also used to switch on the unit via its ganged switch and also controls the signal which appears at the output. The battery drain is quite small and should give a few hours continuous use. When the reverberation unit is in use it should not be placed on any surface which vibrates as these vibrations will reach the spring and be reproduced in the output.

NEXT
 МОКТН

uli

 maille

This unit, based on the Doppler effect, will detect movement in its vicinity and alert the user by sounding an audible alarm. Housed in a single enclosure, the device includes exit and entry delays and requires no external wire loops or switches.

PHASER SOUND EFFECT
 LOCIL PILLE GENERATOR SLIDE TIIIER

atiaydioncs

JANUARY 1981
ISSUE ON SALE
FRIDAY, DECEMBER 19

UNIBOARDS

NO ENTRY INDICATOR

This project was designed initially for photographers carrying out their own developing in a domestic darkroom. The unit comprises a small case which is placed outside the door of the darkroom; on the case is a small indicator lamp designated no ENTRY and, by operating a switch within the darkroom, the indicator can be made to flash on and off.
This forms a courteous reminder that developing is in progress and so the darkroom should not be entered. This is a more professional means of keeping people out than nailing a sign to the door or locking it altogether!

Other applications however soon came to mind. By suitably re-lettering the lamp, the device could be used for other purposes. For example, in offices: "Interview in Progress" or "Engaged". Anyone who regularly uses a tape recorder may find this design useful if the indicator is designated "Recording in Progress" or similar. In fact, the device forms a very simple general purpose signalling system.

Batteries have been chosen to power the project. This reduces the complexity and cost of construction.

CIRCUIT DESCRIPTION

As with all designs in this series, a single integrated circuit is used, see Fig. 1. The heart of the unit is ICl , a 555 timer chip. It can be made to perform several functions, including, in its astable mode, turning a load (for example, an indicator lamp) on and off continuously.

When wired as an astable multivibrator (a circuit having no stable state and so oscillating freely), a stream of pulses is produced at pin 3,
the output pin. The frequency, or number of pulses per second, of the output waveform is controlled by three external components, R3, R4 and C2.

Upon initial application of power, C2 will start to charge up through R3 and R4 until the voltage at pin 6 (the "threshold pin") equals two-thirds of the supply voltage. At this point, the i.c. will switch over internally and force the capacitor to discharge through R4 into the "disoharge" terminal, pin 7. When the voltage on this pin has dropped to one third supply, C2 will then charge up again, and then the process repeats itself.

The relatively slow charging and dis. charging action of the capacitor is trans. formed by the i.c. into a very sharp on-off action at the output, where a stream of square waves is produced. The square wave when "high" is almost at 9 V and when "low" about 0 V .

FREQUENCY

By adjusting R3, R4 and/or C2, the frequency of operation can be altered. Here values have been chosen which give an "on" time of about 0.5 seconds and an "off" time of roughly 0.2 seconds, implying a frequency of approximately $1 \cdot 4 \mathrm{~Hz}$. However, the timing components do have manufacturing tolerances, and so this frequency may not be exact. In particular the tolerance on C 2 is quite large.

Connected across the output are two light-emitting diodes, D1 and D2, each with a current-limiting resistor. When the output is high, the l.e.d.s are illuminated, and so the indicators flash on and off. Small l.e.d.s were chosen rather than ordinary light bulbs in order to improve current consumption.
One of the indicators is mounted externally in a separate case and forms the actual no entry indicator, whilst the other l.e.d. is just a repeater lamp which reminds the user that the unit is in operation.

POWER SUPPLY

A $9 V$ rail is derived trom a series of dry batteries. In fact six 1.5 V HP7 cells are wired in series to provide the necessary power supply. This ensures that the device does not flatten the batteries if used regularly. Occasional use only of the Indicator means that a PP3 battery may be employed instead, however.

Capacitor C3 decouples the power supply. As the batteries start to age they will become less able to supply current peaks demanded when the l.e.d.s illuminate. The result is that the supply rail voltage drops as the current drawn increases; this produces ripple.

C3 acts as a reservoir which provides the extra current required to

Fig. 1. Complete circuit diagram of the No Entry Indicator.
maintain stable operation of the flasher. The Indicator is switched on and off at S1.

STRIPBOARD

The circuit can be assembled on a piece of 0.1 inch stripboard measuring 10 strips $\times 24$ holes, see Fig. 2.
Take the stripboard and drill two 6BA clearance holes in the positions shown. Then make all the breaks (ten in all) in the copper strips using a twist drill or a spot face cutting tool.
An 8 -pin d.i.l. socket should be used for IC1, and this should be soldered into place first of all. Continue by soldering in the solid jumper wires.

There are five of various lengths and they can be made from 22 s.w.g. tinned copper wire.
Follow on with the miniature resistors and finally the capacitors. The electrolytic capacitors are polarised and must be orientated correctly. Fit ICl the right way round into the di.i.l. socket: a notch or dot identifies pin l of the i.c.

CASE

The circuit board is encased in a plastic box of dimensions $120 \times 80 \times$ 35 mm . On this box are mounted S1, and also one of the l.e.d.s. The circuit board is bolted on one side of the box using 6BA spacers and hardware.

There is just enough room in the case to accommodate the $9 \mathrm{~V}(6 \times \mathrm{HP} 7)$ battery holder, although if a lowercapacity PP3 battery is used then there is ample room inside for this. Note that a PP6 battery will not fit within the specified box.

A small matching box is used to mount the other light-emitting diode. This box measures $71 \times 49 \times 24 \mathrm{~mm}$, and is connected to the main unit with twin-core flex of suitable length.

FINISHING OFF

The larger case can be lettered as necessary, with the smaller case being labelled no entry or whatever is required. Lettering can be applied with
rub-down dry transfers, and can then be protected with a few coats of aerosol lacquer.

The necessary interwiring is also given in Fig. 2; general - purpose stranded insulated wire can be used. The only point to watch is that the l.e.d. indicators are wired the right way round, and if there is a chance of the l.e.d. connections shorting together, 2 mm p.v.c. sleeving can be employed to eliminate this possibility.

No setting up is required, so once construction is complete, snap on the battery holder and switch on. Both l.e.d.s should be flashing regularly. If this is so the unit is finished and ready for use.

INSTALLATION

The smaller case is positioned at the door (or where required), preferably where sunlight will not fall onto

Interior view of both boxes showing the main unit on the left and the smaller box housing D1 on the right.

Last month we dealt with the art of good soldering. This month we should like to pass on some guide lines on the subject of connecting wires.

WIRES

Connecting wires can be divided into roughly four categories: single-strànd bare; single-strand insulated; multistrand insulated; and plastics covered screened containing one or more insulated strands.

Single strand wire is sized according to the standard wire gauge, s.w.g. (for example, 22 s.w.g.). Multistrand is sized according to the number of strands and the diameter of each strand (for example, $7 / 0 \cdot 2 \mathrm{~mm}$).

Screened cable is used where it is necessary to "shield" one or more insulated strands from possible radiation or interference sources. The "shield" takes the form of a woven wire mesh which surrounds the insulated strands to be screened.

LINK WIRES

Link wires are used on circuit boards where it is not easy to connect one component to another or to connect one section of copper strip to another located some distance away. Also, link wires are used extensively to interwire the pins of integrated circuits.

For link wires on circuit boards use a fairly stiff tinned copper wire. This is bare, single-stranded, copper wire with, in most cases, a special "fluxed" coating for easy soldering and does not oxidise easily. It is always a good idea to rub or scrape the tip of the wire very lightly with an abrasive, such as emery cloth, prior to inserting on the board and soldering. The bending of the link wires is best accomplished with a pair of longnosed pliers.

Available in a vast range of standard wire gauges (s.w.g.), the wire was until recently only sold by weight and came on reels. Now some advertisers, apart from selling reels, offer

kits of wires in various lengths and gauges. However, if you can afford the initial outlay, we have found that the purchase of reels would appear to be a better buy.

For the majority of EE projects 22 s.w.g. wire is most suitable.

SLEEVING

If there is any possibility of link wires contacting with other wires or components and forming a "direct short circuit" then insulating plastics sleeving should be used. This is a thin tube of plastics material which can be cut to the required length and slipped over the wire to provide an electrical isolation from other components and wires.

Sleeving comes in a variety of colours and is often used to form a colour coding system to help in any future fault tracing problems. A typical arrangement would be: brown or red for positive supply leads; blue, "back or green for negative or zero "earth" volt lines; and yellow for short signal leads.

Sleeving is also useful for protecting exposed tags on controls and switches or where two wires are joined together. A separate larger diameter piece of sleeving is cut and slipped over the connecting lead and when the lead is soldered in position the sleeving is simply pushed over the solder joint or over the soldered tag so protecting it from any possible short circuits.

ENAMELLED WIRE

Enamelled wire is single-strand solid copper wire with a thin coating of red or brown coloured enamel for insulation purposes. This is sometimes used for "linking" purposes, particularly for the dense area, but is usually used for winding coils and transformers.
The enamel must be scraped away with a knife or piece of emery paper so that the copper is exposed at the end of the wire. Only the minimum length required to make the soldered joint should be exposed.

INTERWIRING LEADS

The constructor has a choice from two types of interwiring leads for use from circuit boards to remote mounted
components. These are coloured insulated single strand solid wire and coloured insulated multistrand wire.

Where there is the likelihood of vibration or the continuous removal of the board, as in experimental layouts, from its case multistrand wire is the best choice for interwiring components. This is because multistrand wire stands up to regular bending much better than solid wire. It is more flexible.

The only drawback with multistrand is that, being very flexible, it has a tendency to droop onto other components and unless tied or fixed becomes very untidy and makes it difficult to trace particular wires.

Multistrand wire is specified by number of strands and each individual strand diameter. The most popular range for EE projects is $7 / 0 \cdot 2 \mathrm{~mm}$ (7 strands each 0.2 mm diameter).
The solid single strand wire is much easier to route around component layouts and, once bent, will usually stay in position. The use of solid wires should be avoided where there is the possibility of vibration or regular bending of wires as they are prone to snap off under stress.

RIBBON CABLE

A wire which is coming more and more into amateur use is the "ribbon" or "rainbow" cable. This is formed by a number of different coloured plastic insulated wires bonded together to give a flat ribbon or tape appearance.
Available in single strand or multistrand, this wire is ideal for microprocessor based projects and where a light emitting diode display matrix is used.
The cable usually comes in 10 or 20 -way lengths to suit or can be split to any combinations of wires.

MAINS LEADS

Mains cable from equipment is always of the insulated multistrand type and colour coded: brown for live (L) or positive; blue for neutral (N); green and yellow striped for earth (E). The live lead to equipment, usually to a mains transformer, should always be fused via a panel mounted or chassis mounted fuseholder. The rating for the fuse is given in the components list.
Never pass a mains lead through a bare lead-in hole in the side of the case, the results can be disastrous and highly dangerous.

Never, absolutely never, tie a knot in mains cable to act as a strain relief against the inside of the lead-in hole.

The only correct way is to always fit a rubber grommet where the cable enters the case and use a cable/strain relief clamp. Also available on the market is a combined bush which acts as a grommet and clamp.

We now supply the extremely reliable and cost conscious LEADER range of testgear.

- single trace oscilloscopes

E125.00 6170.00
C 215000 La 507A 5 zOMHz 10 mV
180 3085
 LNO $5145^{\prime \prime} 10 \mathrm{MHz} 5 \mathrm{mV}$
tV/radio test gear
$\begin{array}{lll}\text { LSG } & 16 & \text { Signal Generator } \\ \text { LSG } & 23 & \mathrm{FM} \text { Stereo Signal Geiverator }\end{array}$ LCG 392 P PAL B Pattern Gemerator
aUDIO,TEST GEAR

LAG
LAG
120A Auctio Generator

LDM 170 Distortion Meter
LFM 39A Wow/Flutter Meter (Din

general. test gear
LCR 740 LCR Bridge
UVT 32 Fer Transistor Checker
LAT 47 Allenuator
LFG 1300 Sweel/Function Generator
amateur raolo
LOM 815 DIP Meter
LPM 880 R R P Power Meler
LPM 885 SWA Wall Mete

Please send large SAE for special catalogue. All prices exclusive VAT/carriage.

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid: Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

SINCLAIR INSTRUMENTS Digital Multimeter

$$
\text { PDM35 £ } 34.50
$$

" DM235 £ 52.50
DM350 £ 72.50 DM450 £ 99.00
Digital Frequency Meter
PFM200£ 49.80
Low Power Oscilloscope
SC110 £139.00
NEW
TF200 Frequency Meter
£ 145.00
TGF105 Pulse Generator
£ 85.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp £20.09
CE1004 " " £23.43 CE1008 " " £26.30 CE1704 " " £33.48 CE. 1708 " " $£ 33.48$ CPS1 Power Unit £19.52 CPS3 " " $£ 23.52$ CPR1 Pre Amp $£ 32.17$ CPR1S Pre-Amp $£ 42.52$ All Prices + VAT + postage/ packaging
Don't forget! We also carry an impressive range of semi conductors, passive' components, electro mechanical components, tools etc.

PROFESSIONAL TOOLS AT DISCOUNT PRICES

EXAMPLES:-
S.R.B. 18 watt Soldering Iron Bench Stand with Sponge STEADFAST Side Cutters STEADFAST Snipe Nose Pliers TELPRO Wire Stripper/Cutter TELPRO Desolder Pump SPIRIG Desolder Braid

HOME CONSTRUCTORS TOOL KIT, Model HCK-1. Includes: SRB Soldering Iron \& Stand, Desolder Bulb, Desolder Braid, Plastic Tweezers, STEADFAST Side Cutters \& Pliers, Screwgrip Screwdriver, and 125 grams of 18 SWG Solder, all fitted in a Plastic Toolbox with two cantilevered trays IDEAL GIFT AT ONLY £29•60
ALL PRICES INCLUDE
POSTAGE \& V.A.T.
Send for free Catalogue.
TRI-tronic Marketing Ltd 9 BADBY LEYS, RUGBY, WARWICKSHIRE CV22 5RB. Telephone: (0788) 73328.

The modern way of instant 2 -way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range z-mile on the same mains, phase. On/of
Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom, between office and warehouse, in surgery and in homes. P. \& P. £1.85 Also F.M. 2 channel "touch" model $849.95+$ VAT

NEW AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

Latest transistorised Telephone Amplifer, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in calls: leaves, workshop. Perrect the user's hands free to make notes, consult fles. No long waiting, saves time with longdistance calls. On/off switch, volume control, conversation recording, model at $£ 20 \cdot 95$ + VAT $£ 3$ - 15 . P\&P $£ 1$. 25 .

DOOR ENTRY SYSTEM

No house/business/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unmodern way to answer the door in sarety to un-
wanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete di.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock), mains power unit, cable (8-way) fo 50 and wiring diagram. Price Telephone $£ 69.95$ + VAT $£ 10 \cdot 50+$ P\&P $£ 2 \cdot 15$

10-day price refund guarantee on all ttem:s WEST LONDON DIRECT SUPPLIES (EE10) 169 KENSINGTON HIGH STREET.
LONDON, W8

L B ELECTRONICS

Range of new battery eliminators 6 v D.C. 200 mA . minators 6V D.C Astec um1111 E 36 modulators (pull outs). 65p, p/p 25p

SPECIAL OFFER

-5in. LED displays FND 500 full spec. common cathode.

50p, p/p 25p
FULL SPEC. 5 digit • 11 inch DIL package.
-2in. red LEDs.
5 for $£ 1 \cdot 50, p / \mathrm{p} 25 \mathrm{p}$
Til209 red.
12p each
Tantalum capacitors $4 \cdot 7 \mathrm{u}$ at 25 v .
14 for $£ 1, p / p 25 p$
2716 Eprom single rail full spec.
£6.95, p/p 25p
7in. Cable Ties $\quad 50$ for $75 \mathrm{p}, \mathrm{p} / \mathrm{p} 25 \mathrm{p}$ HP 50824 Digit DIL Displays $1 \cdot 1$ or an inch
(CC) $£ 1 \cdot 50$ each, $p / p \mathbf{2 5 p}$

CAPACITORS
1600 UF 10 volt 160 UF 25 volt
One dozen of each \$1-00, p/p 25p 22 way DIL IC Sockets gold-plated

12p each, p/p 25p, minimum order 10 JUST ARRIVED
Brand new Burroughs 96 keyswitch keyboard (Clare Pender Reed). $£ 12$ each, p/p $£ 1 \cdot 50$ Mini-box fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ (approx.) $115 v$ A.C. (brand new). $\quad £ 4.50$ each, $p / p £ 1$ Selection of digital cassette decks, new and used, from £28.

Phone for requirements.
OUT OF HOURS TEL. ANSWERING SERVICE
all prices inclusive of vat \star

* MANY SURPLUS COMPUTER BARGAINNS *
\star ACCESS \& BARCLAYCARD ACCEPTED \star
L B EEERTONIRS
11 HERCIES ROAD, HILLINGDON,
MIDDLESEX UB10 9LS
Tel: UXBRIDGE 55399
OPEN MONDAY-SATURDAY. CLOSED ALL DAY 9.30-6.00 Lunch 1-2.15

ETCH RESIST

TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 4 \frac{1}{2}$ in $£ 3.00$ with all symbols for direct application to P.C. board. Individual sheets 30p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130° (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.

FRONT AND REAR PANEL TRANSFER
 SIGNS

All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12in $\times 9$ in. Price $£ 1$ - 20.

GRAPHIC TRANSFERS WITH SPACER
 ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12in x gin contains capitals, lower case and numerals tin kit or fin kit. $£ 1 \cdot 20$ complete. State size.

All orders dispatched promptly. All post paid.

Shop and Trade enquiries welcome Special Transfers made to order

E. R. NiCHOLLS

P.C.B. TRANSFERS Dept. ET111
46 LOWFIELD ROAD
STOCKPORT, CHESHIRE. 061-480 2179

By BARRY FOX

Stereo Television

There has been much talk lately of stereo sound with television. This is because several Japanese TV stations are now transmitting two channels of sound along with their pictures.
Sometimes the two channels are left and right for stereo music but frequently they are in different languages. In this way a film can be transmitted with the option of a native language soundtrack or a dubbed language soundtrack. Students in Japan use these bilingual telecasts to help them learn foreign languages, expecially English-American.

The electronics firms are also very enthusiastic about stereo television because it has given them the chance to sell a whole new generation of receiversl

Several European countries are also thinking of starting a stereo TV service. Sweden and Germany are for instance well on the road to a full commercial service. Almost certainly, however, Europe will use a different system from Japan.
The Japanese have backed the socalled f.m.-f.m. system and this puts the second channel of sound on a subcarrier which is transmitted piggy-back on the normal sound channel. In other words it's similar to the multiplex system used all over the world to transmit stereo sound on v.h.f. f.m. radio. In Europe, however, the stereo televison system is more likely to rely on two completely separate sound carriers, each transmitted on a slightly different frequency.

Simulcast

In Britain there is unlikely to be any stereo sound, of either system, for many years yet. The BBC is standardised on a clever digital system called "sound-insyncs" for the distribution of TV picture and sound signals between transmitters and studios across the country.
According to this system the TV sound is converted into digital code and packed into the video signal waveform, using the gaps left by the synchronisation pulses. So only a video signal need be distributed. At the other end of the distribution link the digital signals are, of course, "unpacked" from the video
signal and converted back into conventional analogue sound for normal transmission and reception.
Unfortunately, there is only enough room in the video waveform for a mono sound signal. So, obviously, a move to stereo would mean a drastic and expensive re-think by the BBC. And the last thing the BBC can afford at the moment is a drastic and expensive re-think on anything other than absolute essentials. So, for the foreseeable future at least, we shall have to make do with "simulcasts".
A simulcast is a simultaneous broadcast from both TV and radio stations. The television station transmits the colour TV programmes with ordinary mono, single channel sound, and arranges with a friendly radio station to transmit the same sound on f.m. radio in stereo.
The BBC quite frequently offers simulcasts because there is obviously much less of a bureaucratic hassle in linking BBC TV with BBC radio than there is in linking a local commercial radio station with a local commercial TV station. Apart from anything else both the radio and TV commercial stations have to carry the same adverts if they are to run a simulcast. Also it often happens that a local commercial radio station and local commercial TV station cover different areas of listeners. For instance, many people in London who can receive Thames and London Weekend TV will not be able to receive Capital Radio in stereo.

Headphone Viewing

The ideal way to watch a simulcast is to place the TV set halfway between a stereo pair of loudspeakers hooked up to a stereo radio. But this can be terribly inconvenient and quite often the small picture looks wrong when stranded between a widely spread pair of large loudspeakers.

This is where a pair of good stereo headphones comes into their own. You plug the headphones into the output of your stereo radio receiver and wear them to hear the stereo sound while watching the TV screen.

There is, by the way, an interesting compromise between headphone listening
and loudspeaker listening-a chair with loudspeakers built in. The DIY enthusiasts might like to look at the idea. It isn't even a new proposal.

Way back in the twenties there were plans to install cinema seats with a pair of loudspeakers, one on each side of the cinema goer's ears. The pictures on screen would then seemto be accompanied by a binaural surround of sound. Basically, all you do is clamp a pair of good loudspeakers one on either side of an armchair so that the sound from the left loudspeaker goes into your left ear and the sound from the right-hand loud speaker goes into your right ear. In practice it's not quite as easy as that. There are acoustic problems and it isn't all plain sailing to produce a chair that is both comfortable to sit in and will reproduce hi fi sound in glorified headphone fashion.

A couple of years ago a British firm (Sound Seating Systems of Carshalton, Surrey) made a very creditable stab at the problem with the "Nova" chair. The main disadvantage of this chair was its high price. It cost, $£ 1,000$ plus so was out of the price range of most people. But a few well-heeled pop stars are now relaxing in Nova chairs.

Memory Games

During the summer the Sunday Times reported some tests carried out in the USA on training students to remember strings of random numbers. After 230 hours of training, spread over 20 months, one student found he could remember up to 79 digits. Although everyone seemed very excited over this, similar training sessions have in fact been going on in homes all round the world for the last year or so.

The Philips G7000 Videopac computer game can be used with a wide range of solid state cartridges which programme it to play a large selection of games. In fact many of the games aren't really games at all. Cartridge number 7, for instance, offers the choice of a series of mathematical challenges and a memory test called "Echo".
For this test four digits appear on the TV screen and one of them flashes briefly to the accompaniment of an identifying audio tone. The screen then says "your turn" and the operator presses the corresponding number on the keyboard. The screen then flashes two digits and the operator has to type in the same two from memory. Then three digits are flashed.

This goes on and on with the operator having to memorise an ever lengthening string of random numbers i.e. just like those USA tests. You are allowed three mistakes but after the third mistake the game is over and the machine has won.
The maximum possible score is 99 different digits committed to memory. When I borrowed the game for a while a local 16 year old had soon notched up a halt century of memorized digits.
In the atmosphere of a traditional school classroom such a strenuous memory test would be something for children to fear; but package the same test as a TV game and it immediately becomes an entertaining challenge. Electronics manufacturers found out very early that it is the kiss of death to label anything an "educational aid" or "test". But call the same thing a "game" and it will sell like hot cakes.

Everyday News

LIGHT LINKS FOR TOMORROW'S PHONES

OPEN DAY AT BRITISH TELECOM RESEARCH LABORATORIES

By the end of the century homes will be "fibred" to bring a variety of additional services to the telephone subscriber.
Links between the local exchange and the subscriber's premises will be glass fibre strands instead of present day copper wire.

Along these hair thin strands of glass, speech, video and data signals will be transmitted as pulses of light.

This is suggested by British Telecom (part of the Post Office) as a logical and realistic development from the optical-fibre communication systems now entering service in various parts of the country in the trunk routes of the telephone network.

For domestic and business customers, a low cost optical f.m. system operating up to 8 or even 34 M bits is now under active development. Gallium arsenide edge-emitting l.e.d.s are likely to be used as optical power transmitters, rather than more expensive laser devices. At the subscribers premises a simple receiver incorporating a PIN photodiode/f.e.t preamplifier would be used.

High Capacity Systems
Further use of optical fibres is envisaged in high-capacity systems carrying nearly 4,000 calls per fibre pair for use as communications "highways" between cities or under the sea. For this purpose a data rate of 280 M bits/s is being studied, with intermediate repeaters or signal amplifiers inserted in the fibre at intervals of 30 to 50 km . This represents a considerable advance on present 140 M bit systems, with repeater spacings of 8 km and compares very well with the 2 km spacings of repeaters in conventional land coaxial cable links, and with spacings of about 5 km for submarine cables.
To do this monomode fibre will be needed, with a band-
width one hundred times greater than the best multimode fibre. Also, such systems will need to operate at longer wavelengths- $1 \cdot 3$ to 1.6 micrometres instead of 0.85 micrometres-where the loss can be as little as 0.5 dB / km compared to today's $3-5 \mathrm{~dB} / \mathrm{km}$. Lasers will be made from gallium indium/ arsenide/phosphide, and detectors from gallium/indium/ arsenide.

- All this is the outcome of research and development at British Telecom Research Laboratories, Martlesham Heath, Suffolk. Optical-fibre communication systems are just one example of the work undertaken at this leading establishment that was revealed during open days held in September.

More than 3,000 guests from Parliament, industry, the universities, Government Departments, learned societies and other research laboratories had the privilege of seeing "where more of tomorrow's achievements are now in the making for the benefit of telephone users at home and abroad".

Until the 1970s, the Post Office Research Station (as it was formerly) was located at Dollis Hill London. For half a century important work, including during wartime the creation of possibly the world's first electronic computer for helping the Enigma decyphering operation, was performed at Dollis Hill. This tradition is now being continued in the large modern establishment built on a disused RAF Station at Martlesham Heath. Here the central building is a seven-floor laboratory block, planned to

Checking an "optical" fibre with a laser to ensure that any surface micro cracks, due to stretching, have been coated with a silicon resin.
meet the needs of new technologies such as digital switching and transmission, microelectronics and optical fibres.

Martlesham employs nearly 1,900 people of whom 850 are professional engineers or technologists, and 550 tech. nically qualified support staff.

Fibre Causes Hustle In I.C.s
Future developments in optical-fibre systems are dependent upon faster semiconductor logic devices for signal processing. At operating speeds in excess of 100 M bits silicon has its limitations and gallium arsenide (Ga As) is being investigated as an alternative. New ideas in circuit design are also being exploited. For example, Capacitive Coupled Logic ($\mathrm{C}^{2} \mathrm{~L}$) using GaAs Schottky gate depletion mode mesfets (Post Office patented).

This demonstrates very well how the requirements of one advancing technology can spur on new developments in another technology.

British Telecom have of course a long record of achievements in the field of semiconductors, notably the long-life transistors in use in
high capacity submarine cables, which won the Queen's Award for Technology 1972.
The Research Department is currently engaged in the development of prototype fabrication of large scale i.c.s.

Present designs, which make extensive use of computer based design aids, employ a 5 V silicon gate NMos technology and include a general purpose digital filter, to be first used in the SSMF4 signalling receivers of System X local exchanges. The filter contains 8,500 transistors in a silicon chip 5mm square.
The development of a 3 micrometre minimum line width silicon gate nmos technology is now nearing completion and a 5 micrometre line width isocmos process is now being established.
At the laboratories an electron microscope is used for dynamic inspection of complex prototype i.c.s. By a strobing action, the operation of the circuit is slowed down and changes of potential throughout the circuit can be seen by the observer as changes from dark to light in the projected image. Thus

INVESTING IN THE HIGHLANDS

GIM is investing $£ 8.5$ million in expanding its semiconductor plant at Glenrothes. Nippon Electronics of Japan has confirmed Living. ston New Town, Scotland, as the site for its first European manufacturing plant.

The NEC's investment of $£ 40$ million will eventually employ 800 people. Meanwhile the EEC has granted
over $£ 3$ million in regional aid to 14 Scottish-based companies, four of them in the electronics industry.

INMOS Start-up

The British Governmentbacked INMOS company is hoping to start volume production of solid-state 16K memories in the first quarter of 1981 .

Manufacture, however, will be in the United States in a new factory at Cheyenne Mountain, Colorado Springs. The first INMOS UK factory will not be completed until 1982 and a possible second factory in the UK has, as yet, no start date.

" Kinformation Technology

One Minister and one government department should be responsible for co-ordinating government policies towards information technology. This is the main recommendation of a report from the Advisory Council for Applied Research and Development (ACARD) published in September. The report, Information Technology*, which was produced by a working group chaired by Sir Robert Clayton, Technical Director of G.E.C. Limited, describes information technology as "perhaps the most important area of application of microelectronics".
The report states that hardware is available for all needs whereas software is limited by shortage of people to prepare programmes. Another major problem is the attitude of people towards computerised methods. A more favourable climate of public opinion has to be created to win wide acceptance of the new technology.
To remedy the shortage of 25,000 to 40,000 people in the software area, immediate steps must be taken to train suitable personnel in industry. As a long term measure, plans must be made to take entrants from a wide area, and not limited to mathematicians and scientists.

* Available from HMSO bookshops, price $£ 3 \cdot 30$.
any defects in any part of the chip are made visible.

Testing Time For

Components

Reliability and Life-Time Tests of electronic components intended for use in telecommunications equipment is a vitally important activity at British Telecom Research Laboratories.
Three particularly interesting physical causes of failure in i.c.s that are investigated are: electromigration, where the movement of aluminium atoms along a conductor caused by collisions with the conducting electrons can result in voids leading eventually to open circuits; dielec-
tric breakdown; and corrosion, due to absorbed moisture on the chip surface.

Stringent tests are performed on plastic encapsulated semiconductors to ensure a sufficiently high standard amongst these cheap mass produced components. There is increasing pressure for their use in telecoms and other professional applications on account of their greater availability and low cost.

Thick film hybrid micro. circuits are extensively used in telecoms, and because of the varied technologies involved, special tests have been devised to assess potential reliability.

ANALYSIS

THE DOLLAR WATCH

Before the British currency was decimalised the coinage enjoyed a rich vocabulary of slang. The "joey", "tanner", "bob", "half-dollar", "dollar", the "half-quid", the "quid"'. The dollar was so-called because the exchange rate was of the order of four US dollars to the British pound sterling in pre-war days. And, back in 1938, you could buy a serviceable watch for a dollar, that is 25 p by today's nomenclature.

The dollar watch was a little miracle of engineering for the price. About two inches in diameter and a quarter inch thick it was packed with its "works" of mainspring, gear train, balance wheel with its delicate hairspring, its escapement mechanism. Remove the back and you could see the wheels go round. It had a loud re-assuring tick and fitted snugly in the waistcoat pocket.

A real bargain for a dollar. That is until you recall that in 1938 the average wage for a male industrial worker was $£ 3.45$ for a 48 -hour week and the ladies averaged only $£ 1.63$ for their 44-hour stint.

Today, following years of inflation, average incomes are well over 20 times those of 1938. But if we take a factor of 20 as the inflation rate then the dollar watch of 1938 should now cost a ''fiver".

In such relative terms the dollar watch is back. For just under a "fiver" ($£ 4.95$ to be precise) you can now buy the 1980 equivalent. Waistcoats are out of fashion so the package is designed for wear on the wrist with stainless steel strap included in the price.

The old clockwork mechanism is gone, so have the dial and hands. Instead there is a chronometer standard quartz oscillator "movement" and liquid crystal digital readout giving the date as well as time. Daily re-winding is supplanted by a once-a-year change of battery. The comforting audible tick is replaced by an equally comforting visual on-off flash of the colon every second.

The dollar watch explains much of what has happened during the past 40 years. The little miracle of miniature mechanical engineering is displaced by the even greater miracle of microminiature electronic engineering. We have found a better way of making watches. It's a pity that the ancient craft of the watchmaker is fast disappearing but nobody can honestly deny that the new product is far superior for the same price.
An even greater pity is that today's dollar watch is made in the Far East. But that's just another sign of our changing times. Brian G. Peck

> Eddystone Radio, with a long history of making quality short-wave receivers, has now moved into the transmitter business with an initial contract from the BBC to build fifty 1 kW MF broadcast transmitters.

The Central Electricity Generating Board is looking at wind-power as a supplementary form of electricity generation. Early trials would most likely be on a flat inland area with a 100 kW generator but a chain of interlinked 1 MW windmill generators is envisaged.

Semi-Growth

Sources in the US say that the world trade recession will only check, not reverse, semiconductor sales growth. In 1980, for example, growth will only be 14 per cent.

By 1983, however, industry sales will have risen at a compound growth rate of 24 per cent. I.C.s still have the highest growth rate but discretes sales are still growing but at a much lower annual rate.

Some time ago the author was asked to help some elderly relatives who were having some difficulty with their doorbell. The basic problem was that of audibility and the solution seemed to be a strident two-tone door chime that could if required, be easily repeated in other areas of the house.
The chime must of course be reliable and should if possible be battery operated, with a long battery life. Various ideas were considered and finally a simple circuit using two cmos integrated circuits was evolved and it is this circuit that forms the basis of this project.

CHIME

The chime consists of two cascaded 0.5 second timers controlling two tone generators whose outputs are combined to drive a simple loudspeaker output stage. Pressing the door-push triggers the first timer which turns on the 800 Hz tone generator.

After about 0.5 second the timer resets disabling the 800 Hz tone. The action of turning the tone generator off is used to trigger the second timer which turns on the 400 Hz tone generator, again for about 0.5 second. When the second timer resets the 400 Hz tone is turned off, ending the chime sequence.

The unit is self-contained and needs only a suitable door-push to operate it. Experience shows that it is well worthwhile investing in a good quality door-push, especially if it's situation is in any way exposed-the contact plating on cheap switches is very thin and doesn't take long to corrode.

Being totally solid state this chime is triggered by a voltage change which
means there is little or no contact wear on the door-push. With electromechanical chimes, on the other hand, the door-push contacts have to carry current and arcing can occur because of the inductance of the electromagnet windings when the door push is released. The resulting contact wear leads to corrosion and eventual failure.

DUAL MONOSTABLE

The full circuit is shown in Fig. 1. ICl is a 4528 cmos dual monostable connected in cascade to provide the sequential timing pulses. The timing components, R2, C1, R3, C2 have been chosen to give an interval of about 0.5 second. The other i.c., IC2, is a 4011 смоs quad NAND gate arranged
as two simple oscillator circuits to form the tone generators.

The spare input of the first gate in each oscillator is used as a control input and is connected to the Q output of the respective monostable. The remainder of the circuit is a simple output stage to drive the loudspeaker.
It may seem a little strange that the battery is shown permanently connected. This is quite in order as cmos integrated circuits only draw supply current when they are actually changing logic state. Under steady state conditions the supply current is solely due to leakage effects and is of the order of a few microamps.

The best measurement the author was able to make of the chime steady state current was 5 to 10 microamps.

HOW IT WORKS

[^3]During operation the chime draws a peak current of about 10 mA . Experience so far, indicates that battery life for a PP6 is about 12 months. Use of a smaller battery, such as a PP3 is not recommended.

CIRCUIT PRINCIPLES

Before considering circuit operation in detail it is worthwhile looking at the monostables and tone generators. The monostables used in the chime have two trigger inputs, A and B; a clear input, $C D$ and two outputs, Q and \bar{Q}. The logic of the monostable is such that when triggered the Q output goes to logic 1 and remains in this state for a time determined by the external timing components.

The two trigger inputs are designed to respond to "edges", that is they respond to the rate of change of the trigger signal rather than the actual voltage level. Input A is triggered by positive edges, that is a transition from $\operatorname{logic} 0$ to $\operatorname{logic} 1$, whilst input B is triggered by negative edges, or transitions from logic 1 to logic 0.

RESET

A further in put $C D$, is used to reset the monostable if it is desired to terminate the timing sequence. A logic 0 at this input will reset the Q output to $\operatorname{logic} 0$ and the \bar{Q} output to logic 1 . One further aspect of the monostables used in the chime is that they are retriggerable.

This simply means that a further trigger signal applied during the timing period will extend that period. In our application this is something of a disadvantage because pressing the door-push again while the first note of the chime is sounding will extend the period of that note.

To overcome this would involve additional logic and the author feels that the problem is not sufficiently serious to warrant increasing the complexity of the circuit.

LINEAR OPERATION

An interesting property of cmos gates is that they are capable of linear operation in the region where the output changes logic state. If a resistor is connected between input and output it is possible to bias the gate so that it performs as a high gain amplifier. This principle is used in the tone generator circuits.
Two nand gates are cascaded and a resistor is connected between the midpoint and an input of the first gate. A capacitor between this input and the output of the second gate completes the circuit. When the control input is taken to logic 1 both gates go into their linear region, the second gate being biased by the output of the first.

The capacitor provides heavy positive feedback and the circuit functions as a relaxation oscillator at a frequency determined by the time constant of the bias resistor and the feedback capacitor.

COMPLETE CIRCUIT

Finally we can consider the chime circuit as a whole. Initially the Q outputs of the monostables, ICla and IClb are at logic 0 and the Q outputs at logic 1. Both tone generators, IC2a/b and IC2c/d are disabled by their control inputs being held at logic 0 by the respective monostable Q output.
Input A of monostable $2, \mathrm{IClb}$, is held at logic 1 by the \bar{Q} output of ICla. Monostable 2 is not triggered because, as explained earlier, input A

is triggered by a positive transition rather than a steady logic 1 .

Operating the door-push takes input A of ICla to $\operatorname{logic} 1(+9 \mathrm{~V})$. The transition triggers the monostable, output Q goes to logic 1 and \bar{Q} to logic 0 . The logic 1 at Q enables the 800 Hz tone generator IC2a/b and the output from this drives the output transistor via R6. At the end of the timing period ICla resets and disables the 800 Hz tone generator.

Output \bar{Q} goes to logic 1 and this transition triggers IClb via input A. The 400 Hz oscillator IC2c/d is enabled and drives the output stage via R7 to generate the second note of the chime sequence.

At this stage in the chime operation there is no reason why monostable 1 could not be triggered again by inadvertant operation of the doorpush. This would cause the two chime notes to be generated simultaneously giving a rather odd effect, so to prevent mis-operation in this way the Q

Fig.1. Complete circuit diagram of the Two-Note Door Chime.

TWO-NOTE DOOR CHIME

COMPONENTS - -al

Resistors
Resistors
R1 $10 \mathrm{k} \Omega$
R2
R3
R
$100 \mathrm{k} \Omega$
R4
All $\frac{1}{4} \mathrm{~W} \cdot 2 \mathrm{k} \Omega$
carbon $\pm 5 \%$

Capacitors
C1 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead C2 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum bead C3 100 nF polyester C4 100 nF polyester

R5	$18 \mathrm{k} \Omega$
R6	$68 \mathrm{k} \Omega$
R7	$68 \mathrm{k} \Omega$

Semiconductors
IC1 CD4528 CMOS dual resettable monostable
IC2 CD4011A CMOS quad two-input NAND gate
TR1 BC109 npn silicon
Miscellaneous
S1 Single pole bell push
SK1 2.5 mm miniature jack socket
SK2 3.5 mm miniature jack socket
PL1 2.5 mm miniature jack plug
B1 9V PP6 type
LS1 miniature type, eight ohms impedance
T1 miniature transistor output transformer type LT700.
Case, size $188 \times 110 \times 60 \mathrm{~mm}$, Verocase type 202-21031 G, or similar; stripboard, 0.1 inch matrix, 35 strips by 45 holes; battery connector; Terry clip to hold battery; interconnecting wire; nuts, bolts and spacers to mount circuit board and battery clip.
output of IClb is connected to the clear, $C D$, input of ICla.

During the second chime note this output is at logic 0 and so holds ICla in the reset mode preventing triggering. At the end of the chime sequence the clear input is restored to logic 1 and normal operation of ICla can begin when it is next triggered by the door-push.

STATIC PROTECTION

From a practical point of view the only specific component requirement for the door chime is that IC2 must be the suffix " A " version of the 4011 without static protection. The static protection circuits on the inputs of the " B " version prevent the linear mode of operation which is essential for proper operation of the tone generators.

It is also desirable that the timing capacitors, C1, C2 and the output and supply decoupling capacitors, C5, C6 be tantalum capacitors to ensure low leakage current when the chime is inactive. Take great care with the integrated circuits and avoid unnecessary handling, especially IC2.

CIRCUIT BOARD

Construction is straightforward and presents no special problems. Work begins with the component board as this can be completely assembled and tested prior to fitting in the chime case.

Cut the 0.1 inch stripboard to the overall size given in Fig. 2. An easy way to cut stripboard is to score along the adjacent row of holes to cutting edge using a scriber and straight edge -do this on both sides of the board.

Grip the required part of the board firmly on a flat surface such as a table edge. Gently flex the off-cut until it breaks cleanly along the score line. The edge is finished with a file taking particular care no whiskers of copper are left to bridge tracks.

Drill the two fixing holes and using Fig. 2 as a guide, plot and break the copper track in the positions marked. Make certain the track is cut cleanly and all swarf is removed.
The first step in assembly is to fit the i.c. sockets as these provide a handy reference for locating the other components. Next come the wire links, now fit the resistors and capacitors.

Make sure the electrolytics are correctly polarised.

Some makes of tantalum bead capacitors are legended and the positive lead is usually marked with a " + ". Other makes are colour coded. Finally fit the output stage components and terminal pins. The board is now ready for checking and testing.

TESTING

The board should first be checked very thoroughly for mistakes and bad joints. Once you are satisfied all is well a push-button can be temporarily connected. Likewise connect the loudspeaker and finally wire up the battery connector lead making certain that the positive battery lead (red) is connected to the correct terminal. Plug the battery in.

It is likely the chime will sound a partial sequence as the circuit settles down. Press the test button. The chime should now sound a complete two note sequence. If it doesn't work disconnect the battery and check the wiring and assembly again. If nothing is apparent reconnect the battery and do some basic fault-finding.

First check that the voltage on the i.c. supply pins is correct. Next test the monostables by checking that the Q output of ICla goes to logic 1 when the test button is pressed and the the Q output of IClb goes high approximately one second after the button is operated. The tone generators are best tested by removing IC1 and temporarily linking the appropriate control input to the positive supply rail.

CASE

When the chime board has been tested it can be mounted in the base section of the cabinet. This is a standard Verobox type $202-21031 \mathrm{G}$, size $188 \times 110 \times 60 \mathrm{~mm}$, and features knockout keyhole slots in the base for easy wall mounting. Start by sorting out the correct mounting slot to use, cut this out and clean up with a round file. Fit the battery clip at the opposite end of the case such that the battery will lie lengthwise. (See photographs.)

Drill the mounting holes for the component panel and for the doorpush socket SK1. Finally comes the most tricky part of the operation, cutting the loudspeaker slots in the case lid. Slots were chosen in preference to anything else as they are more in keeping with the appearance of the chime.

Mark a 25 mm diameter circle in the position shown in the photographs on the underside of the lid. Draw a horizontal diameter across the circle and mark the positions of the slots. Draw vertical guide lines for each slot and drill a 3 mm hole at the top of each slot. Carefully cut down the slots with an Abrafile in a hacksaw frame

Inside view of the case showing circuit board and wiring to sockets and test push switch.
and finally clean up with a small file.
Available low cost imported small loudspeakers are not generally provided with fixing holes and are intended to be secured in place by small metal brackets hooked over the rim. These are rather fiddling to make and the author would suggest a simple alternative-epoxy adhesive. Although crude, this is perfectly satisfactory provided care is taken to avoid getting adhesive on the cone.

When the loudspeaker is fixed in place the chime can be fully assembled and retested prior to final installation.

INSTALLATION

Installation is straightforward and as mentioned earlier, battery life should be of the order of one year in normal use. The output stage and battery decoupling circuits were included to minimise distortion caused by unwanted feedback effects due to the rise in internal resistance of the battery as it ages.

Change the battery when the chime note becomes distorted to avoid any damage due to chemical leakage from the exhausted battery.

Battery removal is no problem and maintenance is further aided by connecting the door-push to the chime with a miniature 2.5 mm jack socket and plug.

In the prototype chime a 3.5 mm jack socket was fitted to allow connection of a small extension loudspeaker in another room. If you do fit an extra loudspeaker, then the combined impedance of the extension and internal loudspeakers should not be less than 8 ohms. To achieve this you may well have to increase the impedance of the internal loudspeaker to 16 ohms.

A test button was also provided on the unit. Both these facilities are optional and can be omitted if not required.

RADIO WORLD

By Pat Hawiker, G3VA

TV by Telephone

One reason why the video telephonedemonstrated in Germany well over 40 years ago-has remained a dream rather than practical reality is that you cannot send high-quality pictures along a pair of ordinary telephone wires, at least not very far. The high-frequency components of a broadband signal soon get lost and there are problems of phase and crosstalk. But 1 remember in the mid-sixties seeing demonstrations of a German equalising unit that allowed a black-andwhite 405 -line picture to be sent perhaps a mile along a good telephone circuit and come out still looking quite reasonable.
So it was interesting to see at the recent Open Day at British Telecom (Post Office) Research centre at Martlesham, Suffolk some of the work that is still going on in the fleld of limited-bandwidth real-time and slow-scan TV systems. These successfully overcome problems of distortion and crosstalk when used in the local switched telephone network.
A surprisingly effective 313 -line system with a bandwidth of 1 MHz (instead of the 5 MHz of the conventional 625 -line system) can be sent more than a mile over standard telephone circuits without intermediate repeaters: such systems would allow local video telephone calls to be made at very modest charges. A digitally-coded version of this system has a bit-rate of $2 \mathrm{Mbit} / \mathrm{s}$ and could be sent for virtually any distance along the standard pulse-code-modulation circuits widely used on urban junction routes: in effect this would be equivalent to 30 speech circuits compared with the 1,000 speech circuits needed for a full-bandwidth 5 MHz TV signal.
British Telecom are also looking seriously at a whole range of different "slowscan" TV systems in which a series of high-definition still pictures can be sent in times that vary from 2 minutes to 4 seconds per frame. The 4 -second rate ($64 \mathrm{kbit} / \mathrm{s}$) is equivalent to a speech path on System X, the new digital telephone system on which so many hopes of the British Telecommunications industry are based.
This useful research has still to answer one question: when you use the telephone do you war to be seen as well as heard? Sometimes perhaps, but I suspect not very often. Another research establishment noticed that people talking together seldom spend much time watching the speaker's face.

First catch your frog

For centuries, electromagnetic radiation or radio waves in the form of lightning static remained unnoticed and, until a little more than a century ago, unsuspected. But then, in a remarkably short time between about 1885 to 1915, a whole
series of ingenious techniques were developed to detect radio waves and so permit the practical realisation of radiotelegraphy. These included spark-gap detectors, coherers and magnetic detectors, thin-film and capillary detectors, thermal detectors, crystal (semiconductor) detectors and thermionic detectors.

From a recently published book by Dr Vivian Phillips of University College of Swansea, entitled Early Radio Wave Detectors published by Peter Peregrinus Ltd in association with the Science Museum, one can learn how scores of ingenious ideas were developed and tested successfully, only later to sink into obscurity. Contrary to commonly accepted beliefs, the Fleming thermionic diode and the De Forest audion triode made little immediate impact on the scene and the real breakthrough perhaps came with the very sensitive regenerative detector based on the triode developed by Howard Armstrong and others just before World War I. Dr Phillips, however, places the "modern era" rather earlier, about 1910.
It is just as well that some of the ideas did fade away. For example, Lefeuvre's "physiological detector" required the user to find, kill and expose the muscle nerve of a frog (before rigor mortis set in), an idea hardly calculated to appeal to the modern radio listener.

Arthur Isbell, on the other hand, took advantage of our sense of taste. In his system, two small silver electrodes were placed against the tongue and apparently it was possible to read by "taste" morse signals at speeds of 5 to 10 words per minute. Some signals apparently had a "sour stinging taste" and could produce the sensation of toothache, while the listener also experienced an optical sensation of lights dimming with each pulse due to contraction of the irises in the eyes.
If Morse could do that one wonders just what would be the disco-lights effect of hard rock broadcasts!

Pictures from Space

The reception of TV programmes in our homes directly from geostationary satellites 22,300 miles above the equator, with the prospect in "overspill"' areas of being able to watch the programmes of other countries, is an interesting and quite exciting prospect for the not-so-distant future. But, personally, it is not something that ! expect to be able to do as a matter of course for quite a few years yet.
Some of the more sensational forecasts clearly fail to distinguish between what is becoming technically feasible and the long pull still needed before directbroadcast satellites (DBS) are likely to be fully established on an operational basis in Europe. One has still to assess the
problems presented by the need to pinpoint and rectify the fault that caused the Ariane launch failure last May.
A less spectacular but quite significant set-back to DBS has been the premature failure of the two 100 -watt travelling-wavetube amplifiers on the Japanese Yuri (Broadcast Satellite Experiment) spacecraft. This was launched a couple of years ago and initially gave very encouraging results. So far only one high-power TWT amplifier (on board the Canadian Hermes) has survived its full term of life.
This is one reason why there seems a lot in favour of the latest Canadian intention of introducing a new CBC programme channel by using just one relatively low-power satellite transponder and then depending on the very large number of Canadian cable (wire-distribution) systems to deliver the pictures into the homes. At the same time it has shown in current field trials that it will be possible for viewers not on cable systems to pick up the broadcasts direct from the satellite by using aerial dishes of 1.2 to 1.8 metre diameter instead of the smaller 60 cm to one-metre dish contemplated for higher power DBS systems. These large aerials would, of course, be more expensive and more difficult to protect against. wind and snow, but then they would be used only in a few remote homesteads.
Such a system combines the proven effectiveness, low costs and reliability of "distribution" satellites (as used very widely in North America and elsewhere) but is attractive only in those countries where the penetration of multichannel cable systems is very high. In practice the average Canadian viewer on cable already has access to more TV programme choice (Canadian and American) than viewers almost anywhere else in the world.
For many of us the real question is whether more programme choice really means a better TV service: the debate between "broadcasting" and "narrowcasting ${ }^{\prime}$. It will be interesting to see the results of the current Home Office study of the implications of DBS by 1985 or 1990 in the United Kingdom, promised by about the end of this year.

Novice Licences

As somebody who believes that Am. ateur Radio in this country would benefit from the introduction of a third class of licence that would enable newcomers to enjoy some h.f. operating while still studying for the Radio Amateurs Examination and the Morse Test, it is disappointing to learn that the Home Office is showing reluctance even to consider seriously a novice licence.
In Australia, for example, novice licences were introduced a few years ago (about the same time as 27 MHz CB) and today there are some 6,100 full licences, 3,300 "limited" licences for v.h.f. only (equivalent to our Class B licences that do not require a Morse test) and 3,200 holders of the novice licence which has presented far fewer problems to the authorities than the controversial CB facilities. West Germany is the latest country to introduce a form of transistional licence to encourage h.f. operation.
It seems a great pity that the British licensing authorities always seem to be lukewarm towards any extension of non-professional radio.

PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES

MULLARD STEREO PREAMP MODULES AND TWO 12 WATT POWER AMP KITS.

In easy to build form
P.C.B.s backprinted, etched and drilled ready to use.

BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER 5610 ACCESSORIES AND L.S. KIT EXTRA (not available separately)

OIY PACK $12 \times$ power amp kits

 LP $1182 /$ preamp module. suitable for ceramic and auxiliary inputs.OIY PACK $2 \times$ power amp kits LP1184 preamp module suitable for magnetic ceramic and auxiliary inputs. DIY SPEAKER KIT Two $8^{\prime \prime} \times 5^{\prime \prime}$ approx 4 ohm hass.
outpuit stage uses four 115 watt transistors normally only two would be used, result, a high powered rugged unit. The PC Board is backprinted, etched and ready to drill for ease of construction, and the aluminium chassis is preformed and ready to use. supplied with all parts and circuit diagrams.

125 wat power amp kit plus

 ACCESSORIES £1.00 plus 20p p\&p Suitable Mains Power Supply Unit 57 है monAS FEATURED IN PRACTICAL ELECTRONICS october ISSUE

I Can't Do Maths!

jnventing figures was easy. For small numbers you just made one mark for each unit; so 1,2 , and 3 became I, II, and III in the Roman system. For larger numbers this becomes cumbersome, so you invent new symbols.

If you count on your fingers, 5 is a logical number for a new symbol because it is "one handful of ones." So we have the Roman V. Similarly 10 is two handfuls and merits its own symbol such as X .
Roman numerals are cumbersome to multiply and divide with. What is XII times XV? It's easy enough to do the calculation in our numbers, but try to do the same thing in roman numerals and you'll soon get in a mess.
The trouble is that the roman num-ber-system had no symbol for zero. This makes multiplying and dividing very difficult. Perhaps this was the true reason for the decline of the Roman Empire: they just couldn't do the complex arithmetic needed by a highly-organised economy!
The zero is said to have originated in India then spread to the Persian and Arabic worlds. Our number-system is a modified form of the Arabic system. The invention of a sign for zero makes decimal numbering easy. It also leads naturally to decimal fractions. We don't know exactly how the zero-symbol was invented, but a plausible guess is that it arose when some kind of aid was used in counting.

Suppose you are counting the people as they pass one by one through a narrow gate, the ancient equivalent say of a turnstile.
A watcher could record the number of spectators without doing any arithmetic at all, by dropping a pebble into a bag every time somebody went through the gate. This procedure registers the number of people all right but for a big crowd you need an awful lot of pebbles. And although the size and weight of the bagfull give a splendid general impression of the total number they don't, at a glance, give the precise number. For this you have to count the pebbles.

You can imagine the bag being handed over to some ancient accounts clerk. He might count the pebbles into a little box. When he reached 10 he might empty the box but register the "ten" by placing a single pebble into another box. So now there's a "tens" box as well as a "ones" box.

When the "tens" box accumulates ten pebbles it could be emptied and a single pebble put into a "hundreds" box, and so on. In this way the number of pebbles needed to record a large number of people is vastly reduced. Any number up to 9999 can be registered by using at most 36 pebbles.

Moreover, the number can be read off from the number of pebbles in each box. To record it in written form all you need to do is write down the contents of each box in order, starting, say, with the "thousands" box, then the "hundreds" and so on. Thus if there were two pebbles in the "thousands" box and five in each of the others the number must be 2555 .

But if a box is empty you must have a symbol to record this fact, because if you were simply to ignore an empty box you would then record the wrong number. If for example the "hundreds" box were empty, as it would be if the number were 1028, it is no good writing 128. The zero symbol is all-important.

If it's not people you are counting but money, weights, and so on, which can be divided (a pound into pence, a gram into milligrams and so on) the system still works. All you need is to add a box for "tenths", a box for "hundredths" and a box for "thousandths", etc. But now when you write down a number you have to show where the fractional units start.

If you have three pebbles in the "ones" box and six in the "tenths" box you mustn't write down 36, but put some sort of mark after the 3 to show that this is the point where the ones end and the tenths begin. In the English-speaking world we write $3 \cdot 6$, but any sort of agreed dividing mark will do.

In continental Europe a comma is generally used instead of a decimal point. Here, we traditionally use commas to mark off thousands, for example, 58,653 . Since this looks to many foreigners like what we understand by $58 \cdot 653$, scientists have agreed to substitute a gap for the thousands comma, so 58,653 becomes 58653 .

Percentages are easily turned into decimal fractions. Per cent just means "per hundred" and "per" means "divided by". So $12 \%=12 / 100$ which is $0 \cdot 12$. For percentages over 100% you end up with numbers over 1 .

Vulgar fractions like 1_{2} or 3_{4} are turned into decimal fractions by dividing the top number by the bottom number. Normally, it won't go; for example, in ${ }_{4}$, 4 won't go into 3 . But if you turn 3 into 30 tenths it will. You are then left with two tenths and if you turn these into 20 hundredths you can again divide by 4 and this time there is no remainder so the calculation is finished.

In long division, the calculation is:

$0 \cdot 750$
4
$3 \cdot 000$
$2 \cdot 8$
20
20
00

You needn't think about tenths and hundredths, because once the decimal point is inserted at the point where whole numbers cease and fractions begin the process is no different from ordinary long division of whole numbers. If you run out of figures in the number you are dividing (3 in this example), you just add another 0 .

The justification for this follows on from what we were saying about counting into boxes. If the units box contains three pebbles and the tenths, hundredths, and thousandths boxes are empty the number represented by the pebbles can be written, $3 \cdot 000$ with as many extra noughts as you like since all the fraction boxes are empty.

> SINGLE TRACE (uk cip ote e2.50)
> Hm 307-3 $10 \underset{\text { complent }}{\mathrm{mHz}} 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus component Test $\quad \mathbf{1 7 0 . 0 0}$ Col303D $5 \mathrm{mHZ}, 10 \mathrm{mHZ}, 7 \times 7 \mathrm{~cm}$ display $\quad £ 109.25$ SCI 1010 mHZ Battery portable. 10 mV , $3.2 \times 2.6 \mathrm{~cm}$ display, Nieads 67.95 , Mains unit 64.00)
(Optional case $68 \cdot 80$, LBO512A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display $\quad 6195.50$ CSI559A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display $\quad € 198.50$ V151 $15 \mathrm{mHZ} 1 \mathrm{mV} 5^{\prime \prime}$ display $\quad 1241.50$

OPTIONAL PROBES (ALL MOLS)
X1 £6.50, X $10 £ 8 \cdot 50, \times 100 £ 12 \cdot 95, \times 1-\times 10 £ 10.95$
ALL SCOPES NOW WITH FREE PROBE(S)

DUAL TRACE (Uk c/p etc $\varepsilon 3 \cdot 50$)
CSI562A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display
CSIS75 5 mHZ , ImV, $5^{\prime \prime}$ display

misplay
Mains portable (Nicads pack $£ 29.90$)
$\mathrm{Hm} 412-420 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display
plus Sweep Delay
CSI577A $30 \mathrm{mHZ}, 2 \mathrm{mV}$, $\mathrm{s}^{\prime \prime}$ display
CS $183030 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus Sweep
Hm $512-850 \mathrm{mHZ}, S m \mathrm{~F}, 10 \times 8 \mathrm{~cm}$ display, Delay Sweep, I
LB05 1410 mHZ , 5 mV), $5^{\prime \prime}$ display
$V 15215 \mathrm{mHZ} \operatorname{ImV} 5^{\prime \prime}$ display
V $30230 \mathrm{mHZ} 1 \mathrm{mV} 5^{\prime \prime}$ display
$\vee 10230 \mathrm{mHZ} 1 \mathrm{mV} \mathrm{S}^{\prime \prime}$ display
Delay sweep +3 channel display
6244.95 6270.00
629.50 $6287 \cdot 50$
$6323 \cdot 15$ 6.346:15 6399.50 E455-40 6507.15 $6667 \cdot 00$ 6294.00 6326.60
6447.35 6447.35
6799.25

GENERATORS

(UK c/p ©1.75)

RF

\$G402 $100 \mathrm{KHZ}$.30 mHZ with AM LSG16 $100 \mathrm{KHZ}-100 \mathrm{mHZ}(300 \mathrm{mHZ}$ SG2030 $250 \mathrm{KHHZ}-100 \mathrm{mHZ}$ low cost range
ARF 300
$18 \mathrm{HZ}-200 \mathrm{mHZ}$ Low cost range
AUDIO and RF
PULSE $20011 \mathrm{HZ}-100 \mathrm{KHZ}$ $10010.5 \mathrm{HZ}-5 \mathrm{mHZ}$

A range of Signal Generators to cover Audio, RF and Pulsing. Mains operated (TGeerien Battery).
AUDIO (All sine/square)
AG202A 20HZ-200KHZ

$\mathbf{6} 4.40$ LAG26 20HZ-200KHZ 56 AG203 10HZ-ImHZ Sine/Squarer | 665.55 |
| :--- |
| $\$ 69.00$ |
| 150 | 656.50 LAG120A $10 \mathrm{HZ}=1 \mathrm{mHZ}$ (| 120.75 |
| :--- |
| $\left.\begin{array}{l}137.00 \\ \hline\end{array}\right)$ |

c46.95 LEVELL
C76.95 (Battery Portables) ('M' with Meter) 152 SERIES $3 \mathrm{HZ}-300 \mathrm{KHZ}$ Sine/Square TG152D
TG152DM 686.00 TG200D 692.50 TG200DM
f105.00 TG200DMP

SWR/FS AND POWER METERS

Range in stock covering up to PL259 sockets. 250 UHZ watt power. SWR9 Sockers.
SWR/ 35150 mHZ Grid Dip.
SWR SWRSO SWR/Power meter $3+-150 \mathrm{mHZ} 0-1000$ watts 613.95 O/10/100 wates 144 mHZ \& $11 \cdot 50$ 171 As 110 Twin meter plus F/S 50
I $11 \cdot 50$ Plus large range of BNC/PL $259 / \mathrm{Etc}$ leads/plugs/adaptors/connectors always in stock.
I76 SWR Power 5.50 watt
KDM6 Grid Dip $1 \frac{1}{2}-250 \mathrm{mH} 7 € 16 \cdot 60$
$£ 38 \cdot 50$

DIGITAL MULTIMETERS

kaise - sinclair - lascar

HAND HELD

(UK post etc 85p)
TM 352 3t Digit LCD plus PDM35 3 - Digit 16 range LED (no AC current)
ME502 $3 \frac{1}{\frac{1}{2}}$ Digit LED plus LM2001 $3+$ Disit LCD 2 LM2001 $3+$ Digit LCD 2 mp
AC/DC 0.1% $62003+$ Digit LCD 0.2 A AC/DC
Auto range Auto range 6220 As 6200 plus $10 A$ AC/DC 6100 As 6200 plus Cont. test/ 8110 As 6100 plus 10 ACIDC

A range of LED and LCD Bench and Hand DMM's battery operated with optional Mains Adaptors-
some with optional Nicads. All supplied with some with optional

BENCH

PORTABLES

UK cip al 00)

DM235 3才 Digigit LED 21 ranges. OM350 3 $\frac{1}{2}$ Digit LED 34 ranges. AC/DC 10 A .
$\mathrm{TM}_{2 \mathrm{amp}}^{\mathrm{Man}} 3 \frac{1}{2}$ Digit LCD AC/DC
TM351 $3 \frac{1}{2}$ Digit LCD AC/DC
10 amp 10 amp
LM100 3 1 Digit LCD AC/DC 2 amp
DM450 $4 \frac{1}{4}$ Digir LED 34 ranges AC/DC $10 \mathrm{amp} \quad 107.95$ (DM series options: Carry case $\mathbf{6 8 \cdot 8 0}$,
Nicads $£ 7 \cdot 95$, Mains adaptor $£ 4 \cdot 00$.)

FREQUENCY COUNTERS

CSC SINCLAIR

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.
HAND HELD (uk post ote ES5)
$\begin{array}{lll}\text { PFM200 } 20 \mathrm{HZ} \text { to } 200 \mathrm{mHZ} 8 \text { Digit LED } & \mathbf{6 5 4 . 5 0} \\ M A X 50 & 100 \mathrm{HZ} \text { to } 50 \mathrm{mHZ} 6 \text { Digit LED } & \mathrm{C61.00}\end{array}$ $\begin{array}{lr}\text { MAX } 50100 \mathrm{HZ} \text { to } 50 \mathrm{mHZ} 6 \mathrm{Digit} \text { LED } & 661.00 \\ M A X 55030 \mathrm{KHZ} \text { to } 550 \mathrm{mHZ} 6 \text { Digit LED } \mathrm{Cl} 106.00\end{array}$
BENCH PORTABLES
(UK c/p floo)

MAX 100 B Digit LED S HZ to $100 \mathrm{mHZ} \quad 689.00$ $\begin{array}{ll}\text { TF200 } 8 \text { Digit LCD } 10 \mathrm{HZ} \text { to } 200 \mathrm{mHZ} & £ 158.95 \\ 7010 \text { 9 Digit LED } 10 \mathrm{HZ} \text { to } 600 \mathrm{mHZ} & £ 184.00\end{array}$ 2006 Digit 100 mHZ LED buile into 0.002 Hz	to 5.5 mHZ pulse generator
TP 500600 mHZ presealer for TF200	
1377.00	SPC OPTO ELECTRONICS

LOGIC PROBES/ MONITORS

Logic probes indicating high/lowif
etc, states that scopes can miss. All circuit powered for all IC's.

 LMI
Logic monitor
Also in stack range of
kits and breadboards
MINI DRILLS AND KITS
(9-12 Yolt t" chucks)
Small Drill plus 3 collets Small Drill plus 3 collets Medium Drill plus 3 collets Small Drill plus 20 tools
Medium Drill plus 20 tools
Mains Drill
Mains Drill plus 20 tools

MULTIMETERS
(UK post etc 75p)

KRTIO IK/Volt 10 range pocket ATMI/LTI IK/Volt 12 range pocket NHSS $2 \mathrm{~K} / \mathrm{Volt} 10$ range pocket ATt $2 \mathrm{~K} /$ Vols 12 range pocker de luxe
NH56 $20 \mathrm{~K} /$ Volt 22 range pocket YN360TR $20 \mathrm{~K} / \mathrm{Volt} 19$ range pocker ATlo20 $20 \mathrm{~K} / \mathrm{Nolt} 19$ range de luxe plus hfe test

TMK 10 mp DC
TMK 500 Kole 23 range plus 12A DC/Cont. rest
AT20 $20 \mathrm{~K} /$ Volt 21 range de luxe plus A 10 ADC and $5 K V \mathrm{DC}$ de luxe plu AT205 50K/Vole 21 range de luxe plus 10 A DC
$7080 ~$
$20 \mathrm{~K} / \mathrm{Volt} 26$ range large scale, 10A DC plus $5 K V$ AC/DC
AT2050 $50 \mathrm{~K} / \mathrm{Volt}$ IB range de luxe ATus SoKivolt 18 range de luxe ATlus hie test 10 I 21 range de luxe 360 TR $100 \mathrm{~K} /$ Volt 23 range plus hfe

64.50 65.95 66.95

 66.9567.95
610.95
ehecker and $A C / D C 10$ amps

CHOOSE FROM
THE UK's LARGEST SELECTION

Send large SAE
(171/2p UK)
Schools, Companies
etc. free on request.

Newnes

Each book presents a collection of constructional projects, giving details of how the circuit works, how it is assembled and how setting up and troubleshooting problems may be solved. There are eight titles in the series, all at £2.50

Electronic Projects in Music
A.J. Flind 040800391 X

Electronic Projects in Audio
R.A. Penfold 0408003383

Electronic Projects
in Hobbies
F.G. Rayer 0408003545

Electronic Projects in the Workshop
R.A. Penfold 0408003839

Electronic Projects in the Car M. George 0408003863

Electronic Game Projects
F.G. Rayer 0408003790

Electronic Projects in the Home
Owen Bishop 0408003464
Projects in Radio and Electronics Ian R.Sinclair 0408003456

Please send me
I title
1
at $£ 2.50$ each. Find enclosed cheque/postal order 1 for $£$

Name
Address

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many-opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching til you are successiul

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

Pe To: International Correspondence Schools

Dept 268B. Intertext House, London
SW8 4UJ or telephone 622 ' 9911
Subject of Interest
Name
Address
Tel: . Age.

ACE MAll TRONIX LTD Dept EE, 3 A Cormercial St Batiey, W.Yorks. WF975H

THS MONTIISSNIP!

COMPONENTS - Over 1,000 types in stock.
SERVICE - Same day despatch.
QUALITY - All guaranteed products
MAGAZINE PROJECTS - Trouble free
send s.a.e. for priced parts list of EE projects (max 4) stating month and project title.

I enclose 30p* please send catalogue
name
address
refundable with future orders over $£ 5.00$

Calculator for Joggers

I have just completed building the Phone Call Charge Jogger (E.E. October '80) and found it a very worthwhile project to build and use.

With the addition of a cheap Woolworth's "Texet" calculator it is possible to make a meter with a digital readout of cost.

I connected the " $=$ " button to the 9 volt battery eliminator plug inside the calculator enabling it to be used as a normal calculator as well as on the call meter. This was then connected to a suitable relay in place of the lamp. Each time the device is to be used, " $3.5+$ $3.5=$ " has to be entered. The Jogger is then switched on and used as described in the article.
Every time the unit charges up $3 \cdot 5 p$, the calculator will indicate the accummulated amount spent plus an additional 7 p , so this must be subtracted from final total to arrive at the cost of the call.
Each time the device counts the Jogger must be reset. To overcome this a pair of contacts from the relay could be placed across the reset button on the Jogger so when the relay pulls in it pulls out again almost immediately to automatically reset the Jogger.

David Plumb (Age 13),
Enfield, Middlesex
The idea of linking circuits to a calculator for display and basic computation is not original, but nevertheless the application here is a good one. Using a calculator for this purpose does not involve the user in any modifications should the basic unit cost alter. This is carried out by the entry via the calculator keyboard. Also V.A.T. can be accounted for during accumulation. For example if the unit cost is $3.5 p$, then the unit cost including V.A.T. at the present rate equals $4 \cdot 025$, which would be the figure to key in initially.

Mail Order

1 always read with interest Counter Intelligence in EvERYDAY ELECTRONICS, and I should like to comment on Mr. Young's remarks on "Mail Order" in the October 1980 issue.

Of course we know what Mr. Young means by point (1); but as William Caxton could have told him one can't print without a printing press, and type or a block. Moreover I do not myself care for all-block-capitals. I think it looks uncouth, and it prevents one distinguishing the Post Town as requested by the Post Office. (See Postal Addresses and other publications.)

Your point (4) (about allowing for inflation) is surely impractical, or needs amplification. If obeyed as it stands, almost every order would need a cheque in return as change-unless the balance were retained as a tip, and I hardly think you intend that. The thing to do is either to pay by credit card or send a cheque
made out for a maximum amount in words and ask the supplier to fill in, in figures, the actual amount required.

In this way one can cover uncertainty over the amount required for $p \& p$, and also the possibility that some items ordered may be not available. I learned this method many years ago from the Box Office, the Royal Shakespeare Theatre, Stratferd-on-Avon. It saves a lot of trouble on both sides.

Too often mail-order firms send out catalogues which in effect tell lies. One receives a catalogue, picks out a number of attractive lines, and sends off an order. When the parcel arrives a number of items are absent, and the advice note says "not available". Yet in the parcel is a new catalogue or price list offering these very items.
This has happened to me several times, and the inference I make is that the lines were not in stock when the first catalogue was sent out.

> E. F. Good,
> Darlington

Timer Circuits

I am a new reader of your magazine, as I want to know more about i.c.s. Also I bought the October edition as I wanted something like the Phone Call Charge Jogger. featured in it. However I was disappointed to note that this is no more than an $R C$ circuit, not very accurate.
I saw on the accompanying Wall Chart that "Timer" i.c.s are listed, and then found that two of these are used in the Darkroom Controller. But surprise, surprise, that circuit is also no more than an RC circuitI I ask what function is served by the NE555 i.c.? I thought that something better would be possible with an i.c. designed as a timer.

I am looking for a timer with a little more accuracy than the conventional RC delay, without going to the expense and complication of quartz crystal control. Are any other of your circuits more suitable?

I look forward to learning more about i.c.s from your new series and hope you will soon tell me how to select the most appropriate item from the Wall Chart, and how to use it.

> R. Gobbett,

Basingstoke, Hants.
We are sorry to hear that you were disappointed with the Jogger circuitry. This device never claimed high accuracy nor is this demanded for its intended use. Its main function is to alert the subscriber that another unit has clocked up on his bill with the resetting action providing an annoyance or nuisance factor that will helo or jog their memory to this effect. We do not consider the inclusion of a more sophisticated high accuracy timer to have any benefit. In fact the unit would then take that much longer to pay for itself in terms of any savings it may provide.

The 555 timer i.c. employed in the Darkroom Timer is a very accurate timer having little variation with temperature and more important the supply voltage. The properties of the external timing capacitor and resistor will determine the overall accuracy of the timer. Use of highly stable capacitors, and metal flim or oxide resistors will provide an accurate repeatable timing period. The tolerance of these components can be accounted for by means of voltage control to pin 5 (not employed in this project). In fact, voltage control to pin 5 could be used to determine timing periods over a 10:1 range.

Extreme accuracy for such a project is in our opinion not required. After all, the accuracy of a conventional mechanical timer is far less that can be obtained with the 555 timer i.c.
All timers we know of are based on the charging of a capacitor through a resistor even quartz crystal timers. Accuracy is dependent to some extent on the region of the capacitor charge (or discharge) curve that is being monitored. Inaccuracies will arise when the regions near the top of the charge curve are used. This is the case with the Jogger circuit, but not with the 555 where a specific region, that between one-third and two-thirds the supply voltage, is monitored.

Crystal control is not possible for producing long time intervals unless a divider is added to its output which add's considerably to the cost.

The Precision Timer in last month's issue could be the one you are looking for although this is based on an RC circuit, but has integral divider.
Your requirements for help in selecting devices from the Wall Chart has been noted and could be covered in a later article.

U.V. and Glass

Referring to Reader's Letters in your October 1980 edition on the answer to the letter from Mr. Craig concerning p.c.b.s.
Please do not use glass to hold the pattern to the photo-resist board when exposing to ultraviolet rays. Glass is quite opaque to all ultraviolet radiation and the experiment would not work. Better to use nothing to hold the pattern to the coated board or use clips at the edge, outside the pattern.

> W. Smith,
> St. Annes-on-the-Sea,
> Lancs.

We have not to date been able to investigate the u.v. transmission properties of glass, but can report that glass has been used on several occasions by us with successful results. The glass was from a bathroom cabinet shelf. Exposure time was about 20 minutes. Could it be that this glass has special properties regarding u.v. light?

TTL Logic Probe (September 1980)

We apologise for some errors that occurred in Fig. 2. An additional break is required to be made on the underside of the board at location F14. Diodes D2 and D1 are shown reversed. Their anodes and cathodes should be transposed.

Audio Effects Unit (October 1980)

Please note that there should be an additional break at position K8 on the circuit board.

UORKSHOP
 MATTERS

By Harry T. Kitchen

Further additions

Last month we looked at the items required for the basic tool kit so that an active and productive life as an electronics enthusiast could be pursued. This month I want to continue the theme, taking in tools and "bits and pieces" that will both extend our capabilities and make life easier. So where should we spend our hard earned pennies?
Well, perhaps the best place is the last section covered last month: soldering irons and solder. If you have ever picked up a soldering iron by the business end you will have noticed how very hot it was; if it was plugged in, that is! So the very first addition should be a good safe soldering iron stand.
Most manufacturers supply them to suit their irons, but it is quite simple, and much cheaper, to fabricate your own from a piece of sheet aluminium. You need nothing elaborate, just a stand that will protect you and your clothing from the hot bit; at the same time, it must have adequate ventilation so that the iron does not over-heat. A lot depends on the design of the iron you have.
Having protected yourself and possessions from the hot iron, you must now take precautions to protect the components that you will be soldering, and this is not as fatuous as you may at first sight think.

Correct soldering depends upon depositing the correct amount of solder, at the correct temperature, on the component to be soldered. The melting point of even 60/40 solder is far higher than the tolerance levels of most components, unless applied for the absolute minimum amount of time essential for a good soldered joint.

This means that the component must be protected from excessive heat, or more accurately excessive heat applied for an excessive length of time. To do this you need a heat shunt which does precisely that; it shunts heat away from a vulnerable component.

The simplest shunt is a pair of slim nose pliers, but that normally requires the use of three handsl Proper heat shunts cost very little, and though they come in a variety of forms, all those that I have tried work well.

Connecting leads

If you indulge in any form of experimental work, you will sooner or later require, temporarily, to join "something" to "something else". You can string wires about, perhaps soldered at various points, but in my experience a proper set of connecting leads is well worth while making up.

For electronics work you need nothing more than 14/0.076 inch, or in metric, $16 / 0 \cdot 2 \mathrm{~mm}$. Ideally it should be in as many colours as you can find or buy, and a suitable length varies from 12 inches to around 3 feet or their metric equivalents.

At the end of every lead you stick a connector. These can be small and large crocodile clips, 2 mm and 4 mm terminal plugs, the same at both ends, and mixed. You need to arrive at as many permutations as you can; sooner or later you will need them. These can be tidily strung up from hooks attached to the wall or work bench.

Keeping notes

I am sure that I am not the only person with a poor memory. Some of us are worse than others. The moral of this is to keep copious notes of everything you do, no matter how advanced you may be, or confident of your memory.
Sketch out every circuit, note every measurement every calculation. A hard backed A4 ring binder is as good as anything for this as plain, lined, and squared paper can be intermixed. Also keep a note of the date and, if extreme, of the temperature.
Some circuits are temperature dependant, and may not operate properly at extremes; if you have a note of the temperature you may get an inkling to the probable cause. You may well think that the professional, strict way, is a waste of time, but events will almost certainly prove you wrong.

Good housekeeping

"Good housekeeping? The man is mad!" I can hear you exclaim. Not so. Long experience has convinced me that an extension of keeping notes to tidy working is very necessary to achieve high constructional output and maintain domestic harmony, as well as prolonging the life of your tools. Still not convinced? Let me expound further.
It is all a matter of courtesy and common sense. Courtesy where others are concerned means that if you are not master of your own domain you must request permission, and obtain it, before committing acts of vandalism on your electronics components.

While you work away, you must be on the guard for drops of solder which adhere most viciously to carpets, leaving evidence of their presence. Similarly, be on your guard against snippings of wire which fly off like missiles with a mind of their own, and lodge in the most unexpected places. Don't leave the soldering iron where it can burn the table, hence the stand. In short do unto others ...
When you close your constructional activities, you should leave everything nice and tidy, so that you are welcome another time. But where do you put it all, all your myriad bits and pieces? Well, I have found from practical experience that jam jars are invaluable for the impecunious, and these will accommodate most of your components, the larger and heavier excepted.

Jam jars allow you to examine the contents fairly easily, whilst strong cardboard boxes will permit storage of the rest, as well as soldering irons and tools. Tools, though, ought to have their own storage, and here old drawers, cutlery trays and the like come in very useful, for they permit division of the tools to some extent. This division stops the tools knocking around and getting damaged and worn.
If your talents extend to woodwork you can make yourself a made to measure tool box with a compartment for every thing, and really this is the ultimate aim; a proper home for every tool. It has another benefit too, and that is the absence of any tool is soon noted so that it can be rescued.
If you have the necessary cash, then undoubtedly a proper storage system is highly desirable, necessary even, if you have much to store. I have, over several years, acquired a set of inter-locking drawers in three sizes. All come with dividers, and form the most useful storage system for small to medium sized electronics components that I have in my own workshop.

They are certainly, in the long term, far preferable to the individual chest of drawers that one can buy. I have two of these, bought before I discovered the inter-linking drawers, and not only are they dissimilar, but I have seen neither for sale since.

It's so easy and tidy with the Easibind to file your copies away. Each binder is designed to hold approximately 12 issues and is bound and blocked with the Everyday Electronics logo. the Everyday Electronics logo.
Gold letraset supplied for self blocking of volume numbers and years.
Price £4-40 including postage, packing and V.A.T., Why not place your order now and send the completed coupon below with remittance to:IPC Magazines Ltd, Post Sales Dept, Lavington House, 25

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in . . .
 HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphones to video recorders and from radios to electronic organs.
Backed by authoritative articles on developments in the world of Hi Fi , plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1 st November 1980. Price E3.00

If you have difficulty in obtaining your copy order direct from the publishers @ £3.50 inclusive.

ORDER FORM

To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Please send me
copy/copies of the Hi Fi Yearbook and Home Entertainment 1981 @ $£ 3.50$ including postage and packing. Cheque/postal order should be made payable to IPC Business Press Ltd.

Name
(please print)
Address
\qquad

See us on STAND F1 at
LONDON BREADBOARD EXHIBITION
A EXP 650 For microprocessor chips. $£ \mathbf{£ 3 0}$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. £6.30
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts 8,14, 16 and up to 22 pin ICS. $£ 1.60$
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)
\& ITS AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM
SCRATCHBOARD predrilled PCB - £1.32
-BREADBOARD
-MATCHBOARD
EXP 302 which includes three items. Three 50 -sheet
Scratchboard workpads - $\mathrm{E1} .68$
3. EXP 303 which includes three items. Two matchboards and
an EXP 300 solderless breadboard - $£ 8.60$. EXP 304 which includes four items. Two matchboards and
EXP 300 breadboard and a scranchboard workpad - $£ 9.30$

The above prices do not include P\&P and 15\% VAT
TOMORROW'S TOOLS TODAY
CONINENIAI SPRCIALIIES CORPORAIION C.S.C. (UK) Limited, Dept. 4H.
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682. Telex: 817477.

[^4]Continental Specialties Corporation (UK) Limited, Dept, 4H Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex C811 3AQ.

ELECTRONICS

Freepost C Birmingham
B19 1BR
\square ADD 30p Pap -CHEOUE 021.233.2400 $=24$ HR PHONE ANSWERING SERVICE all phices in pence each unless otherwise stateo

GMT ELECTRONICS PROJECTS
FREE-STANDING COMPLETE TELETEXT UNIT - FULL SPEC E199-90
TELETEXT DECODER BOARD + REMOTE HAND CONTROL £135-90 £160-00
teletext compatible tuner and p.S.u. \& 46-90 £ 57-00
teletext Compatible pal encoder + MODulator £ 22-90 \& 35-00
F.E.T.OUTPUT 100W MONO POWER AMPLIFIER MODULE \& 27-50 \& 35-00

X-BAND DOPPLER RADAR ALARM MODULE - MARK II £. $35-90$ \& 44-00
ONE AMP P.S.U. MODULE (SPECIFY 5 OR 12 VOLTS) \& $7-50$ \& $10-00$
SIMULATED INERTIA MODEL TRAIN CONTROLLER \& 22-50 \& 35-00
SIMULATED INERTIA SLOT RACER CONTROLLER
MODEL TRAIN STEAM SOUND SIMULATOR MODULE \quad £ N/A \quad £ $5-00$

CONSTRUCTIONAL PROJECTS

A. F. SIGNAL GENERATOR by E. M. Lyndsell

ALARM, BICYCLE
ALARM, TEMPERATURE
ALERT, EE LOFT
AMPLIFIER, GENERAL PURPOSE
AMPLIFIER, GUITAR PRACTICE
AMPLIFIER, STEREO HEADPHONE ANEMOMETER
AUDIO EFFECTS UNIT by P. Bailey
AUDIO MILLIVOLTMETER by R. A. Penfold
AUDIO TONE GENERATOR
AUTOFADE by S. R. Beeching
AUTO LIGHTING-UP WARNING by K. B. Whapples
AUTOPHASE by E. M. Lyndsell
AUTOWAA by E. M. Lyndsell
BATTERY CHARGER, MODEL CONTROL
BATTERY VOLTAGE MONITOR by A. P. Donleavy
BEDSIDE RADIO by R. A. Penfold
BICYCLE ALARM by M. P. Horsey
BOAT GAS SENSOR
BRAKESAFE MONITOR by O. N. Bishop
CABLE AND PIPE LOCATOR by G. Hollam
CARAVAN GAS SENSOR
CAR AUTO LIGHTING-UP WARNING
CAR BATTERY MONITOR
CAR BRAKESAFE MONITOR
CAR COURTESY LIGHT DELAY
CAR LIGHTS FAILURE MONITOR
CAR LIGHTS WARNING SYSTEM
CAR POWER SUPPLY
CAR PRECISION PARKING PAD
CHRISTMAS LIGHTS FLASHER
COMPRESSOR/EXPANDER, AUDIO
COURTESY LIGHT DELAY by T. R. de Vaux-Balbirnie, B.Sc
CRICKET GAME by D. Kenyon
CURRENT LIMITER, FIVE RANGE
CYCLE DIRECTION FLASHER by R. Partridge
DARKROOM CONTROLLER by S. Ibbs
DIODE TESTER, ZENER
DOORBELL REGISTER by A. P. Danleavy
DUAL LINE GAME by A. Russell
DUO-DECI TIMER by F. G. Rayer
DUSK TO DAWN RELAY
EFFECTS, AUTOPHASE
EFFECTS, AUTOWAA
EFFECTS UNIT AUDIO
EFFECTS UNIT, SOUND TO LIGHT
EFFECTS UNIT, SPRINGLINE REVERB
FIVE RANGE CURRENT LIMITER by F. G. Rayer
FLASHER, CYCLE DIRECTION
FROZEN PIPE ALARM
GAME, CRICKET
GAME, DUAL LINE
GAME, LIVE WIRE
GAME, STONE-PAPER-SCISSORS
GARAGE PARKING PAD
GAS SENTINEL. by A. R. Winstonley
GENERAL PURPOSE AMPLIFIER by F. G. Rayer
GENERATOR, A. F. SIGNAL
GUITAR PRACTICE AMPLIFIER by E. M. Lyndse/I
HEADPHONE AMPLIFIER STEREO
HOME GAS SENSOR
I.C. UNIBOARDS by A. R. Winstonley I: No Enery Indicator
INDICATOR, MAINS FAULT
IRON HEAT CONTROL by A. Sproxton
KITCHEN TIMER by R. A. Penfold
LIGHT DELAY, CAR COURTESY
LIGHTING-UP WARNING, AUTO
LIGHTS FAILURE MONITOR by C. K. Birrell
LIGHTS WARNING SYSTEM
LIVE WIRE GAME by E. M. Lyndsell
LOFT ALERT, EE by S. E. Dollin
LOGIC PROBE, TTL

410 640 12 12 422 706 168
MAINS FAULT INDICATOR by F. G. Rayer MAINS ON/OFF TIMER by A. R. Winstanley METAL LOCATOR
MILLIVOLTMETER, AUDIO
MINI I.C. RADIO by F. G.
MONITOR, LIGHTS FAILURE
MORSE PRACTICE OSCILLATOR by S. F. Gregory 580,718
OSCILLATOR, MORSE PRACTICE
96,262
PHASER 396
PIPE LOCATOR 32
POWER SUPPLY, CAR VOLTAGE CONVERTER 164 420
POWER SUPPLY' TTL
POWER SUPPLY', 9VPRECISION TIMER by M. P Horsey
PRETUNED 4-STATION RADIO by F. G. Rayer20PROBE, TTL LOGIC726
RADIO, BEDSIDE 548RADIO CONTROL SYSTEM by L. Armstrong, H. Dickinson andW. Wilkinson 34, II5, 188, 254
3: The Receiver 34 15
: Proportional Speed Controller
: Proportional Speed Controller 254RADIO, MINIIC658
RADIO, PRETUNED 4-STATION
RADIO, PRETUNED 4-STATION
RADIO, SHORTWAVE 98, 262
REACTION TESTER by O. f. Foldoy 720
636
REVERBERATION UNIT, SPRINGLINE 46, 802
SENSOR, GAS 264
SHORTWAVE RECEIVER by R. A. Penfold 98, 262
SIGNAL TRACER 410
424
SLIDE/TAPE SYNCHRONISER by G. N. Slee 92
744
SOIL MOISTURE MONITOR by A. R. Winstonley 744
SOLDERING IRON HEAT CONTROL 662
SOUND LEVEL CONTROL 700
SPRINGLINE REVERBERATION UNIT by P. Bond 802
SPRINGLINE REVERB UNIT by R. A. Penfold
168
STONE HEADPHONE AMPLIFIER, by R. A. Penfold788SWITCH, VOICE OPERATED350
TABLE DECORATION by A. P. Donleavy 793
TAPE/SLIDE SYNCHRONISER 92
632
TELEPHONE CALL CHARGE JOGGER $12,498,570$
TESTER, REACTION 720
TESTER, ZENER DIODE 432
554
TIMER, DUO-DEC 196, 521
TIMER, PRECISION 726
354
TONE GENERATOR, AUDIO 354
TOUCH SWITCH 736
TREE LIGHTS FLASHER by A. R. Winstanley 784
TTL LOGIC PROBE by A. Wheen 566, 825TTL POWER SUPPLY UNIT by F. G. Rayer
598
TWO-NOTE DOOR CHIME by W. J. Keeley 816
UNIBOARDS by A. R. Winstanley

4: Touch Switch
5: Audio Tone Generator
6: Voltage Converter 420
7: Dusk to Dawn Relay

VOICE OPERATED SWITCH
VOLTAGE MONITOR, CAR BATTERY
WAA-WAA
WARNING SYSTEM, LIGHTS
WEATHER CENTRE by F. C. Judd
WIND SPEED INDICATOR

350
334
415
320
498,570
570

498, 570

ZENER DIODE TESTER by R. A. Penfold
1 WATT AMPLIFIER
422
2 WATT AMPLIFIER
4-STATION PRETUNED RADIO
5V POWER SUPPLY
$9 V$ POWER SUPPLY
12 V to 7.5 VOLTAGE CONVERTER

706
706
316
316
598
598
20
420

GENERAL FEATURES

SPECIAL SERIES

SQUARE ONE $\quad 61,112,182,263,358,437,518,590,639,710,810$
Components 61
Soldering
112
Table Top Operations, Basic Tools 182
Stocking-up: Resistors 263
Stocking-up: Capacitors 358
Abbreviations 437
Ohm's Law 518
Stocking-up: Diodes and Transistors 590
Circuit Boards 639
Soldering 639
710
Connecting Wires
810
134
SYNTHESISERS EXPLAINED by B. H. Boily 54, 134
2-Filters and Phasing
3

TEACH-IN '80 by S. R. Lewis B.Sc. 22, 106, 176, 248, 324, 404,
4-The Diode and Rectification 486, 492, 560

5-Capacitance and Practical Capacitors	22
106	

$\begin{array}{ll}6-\text { Inductors, A.C. Theory, Tuned Circuits } & 176 \\ 7-\text { The Transistor }\end{array}$
176
248
8-Transistor as a Two-State Device 324
9-Transistor as a Linear Amplifier 404
10 Feedback and Oscillators
486
492
12—Field Effect Transistor
560
$\begin{array}{ll}\text { WORKSHOP MATTERS by Harry T. Kitchen } & 278,365,521, \\ 585,670,746\end{array}$
Discipline, Stock Control, Experimental Aids, Leads, Substitution Boxes
Signal Sources
Handling Components
R.F. Signal Sources

Measuring Receiver Sensitivity
365
521
585
Tools for the Workshop
670
Additions and Keeping Notes
746

SPECIAL INSERTS AND OFFERS

MASTER ELECTRONICS

MASTER COMPUTERS

LEARN THE
PRACTICAL WAY BY
SEEING AND DOING

- Building an oscilloscope.
- Recognition of components.
- Understanding circuit diagrams.
- Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and all types of modern computerised equipment.

- Complete Home Study library.
- Special educational Mini-Computer supplied ready for use.
- Self Test program exercise.
- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. - Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology. - Kits for Signal Generators - Digital Meters etc.

Please send your FREE brochure without obligation to:- Name \qquad Address \qquad \qquad \qquad BLOCK CAPS PLEASE	I am interested in :- PRACTICAL ELECTRONICS \qquad COMPUTER TECHNOLOGY \qquad OTHER SUBJECTS \qquad (please state your interest) \qquad \qquad
BRITISH NATIDNAL RADID	ELECTRDNICS SCHDDL
4 CLEVELAND ROAD, JERSEY, CHANNEL ISLANDS.	

SEND YOUR ORDERS TO DEPT. EE12, PO BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST, WARE, HERTS. Tel: 0920 3182, Telex 817861

EXPERIMENTOR BREADBOARDS
FROM
No soldering breadboards. Simply plug components in and out of letter number identified. Nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any siée.
All EXP Breadboards have two bus-bars as an ingegral part of the board. If you need more than two buses, simply snap on 4 more bus-bars with the aid of an EXP 48.
EXP 325 The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 -pin $\begin{array}{ll}\text { IC's. } & \text { ONLY £1.84 } \\ & 48 \mathrm{~mm}\left(1.9^{\prime \prime}\right)\end{array}$
EXP 350270 contact points with two 20 -point bus-bars.

ONLY £3.62
EXP 300550 contacts with two 40 -point bus-
bars.
ONLY £6 61 $152 \mathrm{~mm}\left(6 \cdot 0^{\prime \prime}\right)$
EXP 650 For Micro-processors ONLY £4-14

EXP 48

Over.ONLY £7 25 $152 \mathrm{~mm}\left(6.0^{\prime \prime}\right)$	

All EXP 300 Breadboards mifi and match with 600 series.

ANTEX IRONS

CASES AND BOXES

Vero plastic case box. These boxes consit of top and
bottom sections which include fixings polnts for horizontal mounting PC boards/chassis plates, the horisections are held together by four screws which
through the base and are concealed by
No. Length Width Height
$\$ 170$.

No.	Length	Width	Height	Pric
170	140 mm	40 mm	205 mm	$£ 4$
171	140 mm	75 mm	205 mm	$£ 4.35$
172	140 mm	110 mm	205 mm	$£ 6.8$

INSTRUMENT CASES in two sections vinyl covered
INSTRUMENT CASES in two sections vinyl covered

$$
\begin{aligned}
& \text { top and sides, aluminium bottom, front and back. } \\
& \text { No. Lempth Width Height }
\end{aligned}
$$

ALUMINIUM BOXES made from bright alli, folded construction each box complete with half inch deep lid and screws.
No.

No.	Length	Wldth	Height
159	5t In	2 in	11/in
160	4 in	4in	$1 \frac{1}{2}$ in
161	41 n	2 i in	1 in
162	51in	4 in	1tion
163	$4{ }^{\text {in }}$	2\#in	2 in
164	3 n	2 in	1 in
165	71 n	5 in	$2 \frac{1}{17}$ in
166	8 in	61 n	3 in
167	610	4 in	2 in

SLOPE front alumlum boxes with black vinyl base and sides \& aluminium back, top \&front-strong consfruction

Price
ع0.98
£ 0.98

AUDIO MODULES

AMPLIFIERS

	STEREO PRE-AMPLIFIERS
PA12	Supply vollage $22-32 \mathrm{v}$ input senstivity 300 mv suit: AL10/AL20/AL30
PA100	Supply voitage ${ }^{24-36 v}$ inputs:-Tape, Tu
PA200	Mag P.U., Suit: AL60/ALB0
	Supply voltage $35-70 \mathrm{v}$ inputs:- Tape, Tune Mag P.U. Suil: AL80/AL120/AL250
	MONOPRE-AMPLIFIERS
MM100	Supply voltage 40-65v inputs: Mag. P.U.,
	Microphone Max. output 500 mv .
MM100G	Supply voltage $40-65 \mathrm{v}$ in puts: 2 Guitars,

MISCELLANEOUS	
MPA30	Stereo Magneitc Cartridge Pre-Amplifier- input $3 \cdot 5 \mathrm{mv}$ Output 100 mv £3.76
S.450	
STEREO30	Varicap luned \quad £29.39
ST	Complete 7 watt per Channel Stereo Amplifier Board-includes amps pre.
	amp, power supaly front panel, knobs
BP124 GE100MkII	
VPS30	Complete with sliders and knobs $\quad £ 26.45$
	Variable regulated stabilised power supply 2-30v 0-2 amps
	TRANSFORMERS

2034	1.7 amp 35v suit SPM80
2035	2 amp 55 v
2036	750 mA 17 v suit PS12
2040	1.5 amp $0-45 v-55 v$ suit SPM 120/45 SPM 120155
2041	$2 \mathrm{amp} 0-55 \mathrm{v}-65 \mathrm{v}$ sult SPM 120/55.

20412 amp $0-55 \mathrm{v}-65 \mathrm{v}$ sult SPM $120 / 55$.

2050 SPM120/65v
2050 amp $0-20 \mathrm{v}$ suit Siereo 30
1725 is
ACCESSORTES

139	Teak Cablnet suit Stereo 30, 320 235
140	£8.05
100	Front Panel tor PA100 \& PA200
BP100	Back Panel for PA100 PA200 ¢ ¢ 1.84
GE400FP	Front Panel for on GE 100MKII \quad ¢.2.05
2240	Kit of parts including Teak Cabinet, chassis sockets, knobs to build 15 watt stereo
	amiplifier (Does not include modules) $£ 22$

SPECIAL OFFERS

MINIDRILL $12 y$ hand held battery-operated mini drill. 7.500 r.p.m. Collet chuck. Ideal for drilling printed circuits or model
making. No. 1402 . Complete with two drills 1 . 15 .
$£ 6.33$ TRANSFORMER 240v Primary $0-20 \mathrm{v}$ @ $2 \mathrm{~A}^{\circ}$ Secondary. By removing 5 turhs for each volt from the secondary winding, any voltage up to 20v @2A is obtainable Ideal for the experimenter.
No.2042. ANTEX MLX Soldering Iron. Sturdy 25 watt $50+86 \mathrm{p}$. P \& P with: $4 \frac{1}{2}$ metres of 2 -core cable. Works of a 12 volt battery

METAL FOIL CAPACITOR PAKS
16204-Containing 50 metai loil capacılor like Mullara C280
series-Mixed values ranging from 01uf-2.2uf. Complete

TUNEIN to the new－look

One of the most active of the early amateur YL operators was Barbara Dunn 6YL（later G6YL）． who was involved in monitoring the famous Southern Cross on its transatlantic flight 50 years ago．Ron Ham recounts 6YL＇s achievements

－PW＇TWYNHAM＇ANALOGUE DIGITAL MULTIMETER

Combining two instruments seems an attractive idea－until you want to measure，say，voltage and frequency together．The PW＇Twynham＇is a mains powered multimeter which gives you simul－ taneous analogue and digital readouts for both accuracy and trendwatching．Full instructions are given for making this useful device．

PRACTICAL WIRELESS

December issue OUT NOW 65p

－ 8 EXTRA EDITORIAL PAGES

in the January issue on sale Friday December 5 65p

GロEENWVELロ
443D MILLBROOK ROAD，SOUTHAMPTON SO1 0HX All prices include VAT－just add 40p post．Tel（0703） 772501

COMPONENT CABINET IDEAL FOR THE NEWCOMER TO ELECTRONICS
Contains hundreds of brand new Contains hundreds of brand new
resistors，capacltors，transisiors， diodes and I．C．＇s．All useful values carefully chosen to help the new constructor pursue his hobby wlthout All parts contained of some vital parts bags in a plastic storage cabinet $232 \times 121 \times 165 \mathrm{~mm}$ with 9 drawers into which all parts can be neatly located． If bought individually parts plus case would cost over $£ 50$ but we are offering thls lor ONLY $£ 33 \cdot 95+\mathbf{~} 1 \mathrm{p}$ \＆ p ． Simply send a cheque or P／O for $£ 34.95$
for immediate despatch or immedate despatch．
CONTENTS：
200 ì watt resistors
70 Ceramic Capacitors
70 Mylar Capacltors
50 Polyester Capacitors
56 Electrolytic Capacltors
12 J．C．＇s
${ }_{5} 20$ L．E．S． $\mathrm{D} . \mathrm{s}$
55 Diodes and rectifiers
Altogether 614 components
Plus FREE surprise gift．

This BARGAIN LIST NO．10／11 This 10 page A4 size llst is FREE－just send a SAE for your copy containing gains，many of them lilustrated．Also included is a Catalogue News Shee1， eaturing now lines and price changes．

1981 CATALOGUE
Now in the course of preparatlon，avall－ which will be sent as soon as printed．

EX－COMPUTER PANELS $25272 \times 6 \mathrm{~V}$ reed relays， $6 \times 2 \mathrm{~S} 030$ or 2 S 230 $\times 400 \mathrm{~V}$ rects，＋R＇s．Only 50 p ．
7529 TTL pack－Panels with 2529 TTL pack－Panels with 74 serles on， gates to complex counters． 20 IC＇s El ； 100 IC＇s $£ 4$ ．

COMPONENT TRAY Attractlve yellow tray $285 \times 165 \times 42 \mathrm{~mm}$ with clear hinged lld and movable com－ dividers supplied．As an added bonus，a selection of new surplus components are included，all for the speclal low price of
e $4-35$ ．

BUZZERS \＆MOTORS \＆
2401 Powerful 6 V DC Buzzer all metal construction 50 mm dia $\times 20 \mathrm{~mm} 70 \mathrm{p}$ ． 2402 Miniature type Buzzer 6， 9 or 12 V ， only $22 \times 15 \times 16 \mathrm{~mm}$ ．Very neat 53p． type 32 mm dia $\times 25 \mathrm{~mm} \mathrm{high}$ ，with 12 mm spindle．Only $£ 1$ ．
$Z 459115 / 230 \mathrm{~V}$ ac high torque motor with geared reduction down to 60 rpm ．Sturdy construction， 70 mm dla $\times 20 \mathrm{~mm}$ ．Splndle mm dia $\times 20 \mathrm{~mm}$ long．Only £2． use－single 15A make contact．Coil 25 R．
${ }^{85}$ W890 DIL reed relay－SPCO $2.4 \mathrm{~V}-10 \mathrm{~V}$ 200 R coil．Only $£ 2 \cdot 20$ ．
W847 Low profle PC mntg $10 \times 33 \times 20$ mm 6 V coil，SPCO 3 A contacts． 93 p ．

VEROBLOC BREADBOARD New from vero，this versalle ald for building and testing circuits can accom－
modate any slze of iC．Blocs and be joined together．Bus strios on $X \& Y$ axis－ total 360 connex！on poimts for just $£ 4 \cdot 15$ ．

DON＇T HANG ABOUT！

Latch on to binding posts with the new HPA－ 1 package from CSC．Designed to provide a firm foundation for a variety of electronic interconnections， complete with insulating shoulder washers and mounting nuts．Versatile，too－they accept bare wires，banana plugs， alligator clips，spade connectors． and hook connectors．There are five red，five black posts， 20 insulating shoulder washers and 20 hex mounting nuts．And for large quantity orders， CSC can supply other colours．You won＇t find it a bind to post off the CSC coupon for more details－do it today！ CSC（UK）Ltd，Unit 1，Shire Hill Industrial Estate，Saffron Waiden，Essex CB11 3AO．

TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS GRIMSBY SOUTH HUMBERSIDE MAIL ORDER ONLY
CWO. CHEOUES POS NT C.WO. CHEOUES, POSTAL ORDERS
ALL PRICES INCLUOE 15\% V.A.T.
panteo cincuit boaro types
$0.6 v 0.6 v$

| REF | AMPS | PRICE | P/P |
| :---: | :---: | :---: | :---: | | TTP 4.46 | $0.5 \cdot 2$ | 1.79 | 50 | |
| :---: | :---: | :---: | :---: | :---: |
| TTP | 447 | $0.75 \cdot 2$ | 2.14 | 60 |
| THP | 4 | 10.2 | 2. | | | TPP 447 | $0.75 \cdot 2$ | 2.14 | 60 |
| :--- | :--- | :--- | :--- |
| TTP 449 | 1.0 .2 | 2.36 | 70 |
| | | | | | TTP 449 | $1.0 \cdot 2$ | 2.36 | 70 |
| :--- | :--- | :--- | :--- |
| TTP 450 | $2.08 \cdot 2$ | 2.99 | 85 |
| TTP 451 | 4.18 .2 | 4.57 | 120 | | TPP 451 | $8.18 \cdot 2$ | 2.57 | 120 |
| :--- | :--- | :--- | :--- |
| TTP 452 | $8.33 \cdot 2$ | 5.68 | 120 |

\section*{| REF | AMPS | PRICE |
| :--- | :--- | :--- |
$0 / P / P$ \|				REF	AMPS	PRICE	P/P	
TTP 460	0.30 .2	1.79	50					
TTP 401	0.50 .2	.14			$T P$ TP 461	0.50 .2	2.14	60
:---	:---	:---	:---					
$T T P ~ 463$	0.60 .2	2.36	10		TTP 464	$1.38 \cdot 2$	2.99	85
:---	:---	:---	:---					
TTP 465	$2.77-2$	4.57	120		TTP 465	$2 \cdot 77 \cdot 2$	4.57	120
:---	:---	:---	:---					
TTP 466	$5 \cdot 55 \cdot 2$	5.68	120	}				

Ov $12 v 0 v \cdot 12 v$ | REF | AMPS | PRICE | P/P |
| :--- | :--- | :--- | :--- |

 \begin{tabular}{|l|l|l|l|}\hline$T T P 487$ \& $0.25-2$ \& 1.79 \& 50

\hline TTP 488 \& $0.38-2$ \& 2.94 \& 60

\hline

\hline TTP 488 \& $0.38-2$ \& $2-44$ \& 60

\hline TTP 470 \& 0.50 .2 \& 2.36 \& 70

\hline

\hline TTP $8 .|c| c|c|$

\hline TTP 470. \& 0.50 .2 \& 2.36 \& 70

\hline TTP 471 \& 1.04 .2 \& 2.99 \& 85

\hline

\hline$T T P ~ 472$ \& 2.08 .2 \& 4.57 \& 120

\hline$T T P$ \& 473 \& 4.16 .2 \& 5.68

\hline
\end{tabular} O. $15 \times 0.15 \mathrm{v}$

| REF | AMPS | PRICE | P/P |
| :--- | :--- | :--- | :--- | | REF | AMPS | PRICE | P/P |
| :---: | :---: | :---: | :---: |
| TTP 474 | 0.20 .2 | 179 | 50 | | TPP 475 | $0.30 \cdot 2$ | 2.14 | 60 |
| :--- | :--- | :--- | :--- |
| TTP 47 | 0.2 | 2. | | | $T P P$ 477 | 0.4 .2 | 2.36 | 10 |
| :---: | :---: | :---: | :---: |
| $T T P$ 478 | 0.83 .2 | 2.99 | 85 |

0.24 V 0.24 y

| REF | AMPS | PRICE |
:---:	:---:	:---:		TTP 495	0.13 .2	1.79	50	
TTP 498	0.49 .2	2.14	60		TTP 498	$0.19 \cdot 2$	2.14	60
:---	:---	:---	:---					
TTP 488	$0.25 \cdot 2$	2.36	70		TTP 488	$0.25 \cdot 2$	2.36	70
:---	:---	:---	:---					
TTP	0.520 .2	2.99	85		TTP 500	$1 \cdot 04 \cdot 2$	4.57	120
:---	:---	:---	:---					
TTP $50+$	$2.08 \cdot 2$	5.88	120					

COMPUTER GAMES chess champlon 6 c49.95. Chess challenger 7 \&79. New Atarl videocompuier 8107.

Cartridges V GAMES AY-8550 + klt £9.26. AY-3$8600+$ kit $£ 12 \cdot 98$. Stunt cycle chip +klt
$\mathbf{2 0} \cdot \mathbf{9 5}$, Colour generator klt $£ 9.95$. 20.95, Colour generator $\mathrm{kIt} £ 9.95$.

 E2 50. JC20 AOW EMNATORS BATTERY ELIMJNATORS 3 -way type press-studs 9 v £4.77. $9+9 \mathrm{y}$ £5.99, Car convertor 12 v input. output $4 \frac{1}{2} / 6 / 7 \frac{1}{1} / 9 \mathrm{v}$ BATTERY ELIMINATOR KITS 100 ma radio types with press-studs $4 \frac{1}{2} \mathrm{~V} £ 1 \cdot 64$,
$6 \mathrm{v} £ 1 \cdot 64,9 \mathrm{v} ~ £ 1 \cdot 64,4 \frac{1}{2}+4 \frac{1}{2} £ 2 \cdot 30,6+6 \mathrm{v}$ $\mathrm{Ev}_{2-30,9+9 v £ 2 \cdot 30 \text {. Stabillzed } 8 \text {-way types }}$ $3 / 41 / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma}$ £.3.12, 1 Amp
£ $7 \cdot 80$, Stabilized power kits 2-18v 100 ma
 SWANLEY ELECTRONICS ept. EE, 32 Goldsel. Rd., Swanley, Kent,
ost $35 p$ extra. Prices include VAT unless stated. Offelal and overseas orders welcome. Lists 27p post free, Mall order only

CORED SOLDER WIRE

	10^{\prime}	20^{\prime}	$\frac{1}{4}$ Kilo	$\frac{1}{2}$ Kilo
	coils	cards	reels	reels
18 SWG 60/40	$52 p$	$90 p$	$£ 3.71$	± 6.29
22 SWG 60/40	$35 p$	$55 p$	$£ 3.98$	$£ 6.80$

ALL OUR PRICES ARE INCLUSIVE TRADE ENQUIRIES INVITED

Cash with order to:
CIRCUIT SOLDERS INDUSTRIAL ESTATE THRUXTON AIRFIELD ANDOVER, HANTS.

POPULAR KITS AND PARTS

SUB－MIN MICROPHONE
Slze only $1^{\prime \prime} \times \frac{1}{n}^{\prime \prime} \times 3 / 16^{\prime \prime} s 0$ smali enough for a bugging
TRANSMITTER SURVEILLAMCE
Tiny，easily hidden but which wlll enable conversation to be pleked up with FM radio．Can be made In a matchbox－all electronle parts and circult．$£ 2 \cdot 30$ ．
RADIO MIKE
deal for discos and garden parties，allows complete freedom
SAFE BLOCK
Mains quick connector will save you valuable time．Features Include quick spring connectors，heavy plastic case and auto LIGHT CHASER
Gives a brilliant display－a psychedelic light show for discos， partles and pop groups．These have three modes of flashing，
two chase－patterns and a strobe effect．Total output power 750 watte per channel．Complete kit．Price 太1b．Ready made up chextra
FISH BITE INDICATOR enables anglers to set up several Ines then sit down and read a book．As soon as one has a 6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering $13 \cdot 5$ to 32 metres．Based on cl rcult which inclúdes case materials，six translstors，and diodes，con－ densers，resistors，inductors，switches，etc．Nothing else to
buy，If you have an amplifier to connect It to on a palr of high buy，If you have an amplifier to connec
resistance headphones．Prlce £11．
SHORT WAVE CRYBTAL RADIO
All the parts to make up the beginner＇s model．Price $£ 2 \cdot 30$ ． Crystal earplece 55 p ．High resistance headphonet（give best
resulta）$£ 3.75$ ．Kit Includes chassis and front but not case． RADIO STETHOSCOPE
Easy to fault find－start at the aerlal and work towards the plete kIt E4．es．
INTERRUPTED BEAM KBT
This kit enables you to make a switch that will frigger when a steady beam of Infra－red or ordinary light is broken．Main Circult diagram but no case，Price E．2． 30 ．
OUR CAR STARTER AND CHAREER KIT has no doubt youed many motorists fom en bring your battery up to full charge in a couple of hours．The kit comprises：250w malns transformer，two 10 amo bridge rectiflers，start／charge switch and full instructions．You can assemble this in the evening， box it up or leave it on the sheif in the garage，whichever sults
G，P．O．HIGH GAIN AMP／SIGNAL TRACER．In case
menauring only 5 tin x htin x 1tin Is an extremely high gain （700B）solld state amplifier desioned for use as a signal tracer on GPO cables etc．With a radio It functions very well as a singla tracer．By connecting a simple coil to the input socket a useful malns cable tracer can be made．Runs on
standard $4 t v$ battery and has Input，output sockets and on－off standard 4iv battery and has Input，output sockets and on－off
volume control，mounted fush on the top．Many other uses volume control，mounted flush on the top．Many other uses bargain at only $£ 1 \cdot 85$ ．Suitable 80 ohmn earplece 69 p ． 10 POCKET RADIOS FOR E． 00 These are brand new but have sllght
faults．Most，if not all，should be epairable．
24 ROUND PANEL METERS
All flush mounting through 21＂round hole，with flange makes We 3 wide aoorox．Made to atringent Minigtry specincations． We have the following tyoes in stock，afl are moving coil
unless otherwise stated．MICRO AMPMETER 500 UA－scaled
 mimp．Price E2．30p．DUAL RANGE VOLT METER Scale calibrated $0-10 \mathrm{v}$ and $0-250 \mathrm{v}$ ，Prjce 6.3 .45 p ．©－i MAA ME
imA f．s．d．centre zero，scaled 100－0－100．Price \＆3．45p．
VU METER
Edgewise mounting，through hole size $1 \mathrm{a}^{\prime \prime} \times \mathrm{t}^{\prime \prime}$ approx． bulb for scale illumination，also have zero reset．The scale is not calibrated but has very modern appearance．Price E2． 8 \＆p． BALANCE METER
dgewise mounting 100 UA centre zero．Price £2．30p．
Er＂SQUARE PANEL METER Price £4－03p．
WATERPROOF HEATINO WIRE
to ohms per yard．This is a heating element wound on a flbre glass coil and then covered with p．v．c．Dozens of uses－－
around water plpes，under grow boxes in gloves and socks． around wat
DIAL INDICATOR
As used in tool making and other preclsion measuring op－
erations，the famous John Bull accurately shows differences of 0.1 mm ．A beautifully made prectsion instrument price in most tool shops would be E12－£15．We have a fair quantity， Price is 20 p ．
COMPONENT EOARD Ref．WOANE．
fon a modern fbre glass board which contalns a multitude of very useful parts，most important of which are： 35 assorted diodes and rectiffers including four 3 amo $400 v$ types（made up
In a bridge） 8 translstors type BC 107 and 2 type BFY 51 in a bridge） 8 translstors type BC 107 and 2 type BFY 51
electrolytic condensers，SCR ref．2N 506825 Ouf 100 DCC and $100 u f 25 \mathrm{v}$ DC end over 100 other parts Including varlable，
fixed and wire wound resistors，electrolytle and other con－ fixed and wire wound resistors，
densers．A real snlp at $£ 1 \cdot 15 \mathrm{p}$ ．
FRUIT MACHINE HEART．${ }^{4}$ wheels with all frults， notorised and with solenolds for stopplng the wheela with a 6s．ss＋e4 carriage．
DESOLDERING PUMP
Ideal for removing components from computer boards at well as for service work generally，Plrce \＆
4－CORE FLEX CABLE
While pve for telephone extensions，disco lights，etc． 10
metres \＆2， 100 metres £i5．Other multicore cable In s1ock． MUGGER DETERRENT
A high－note bleeper，push latching switch，plastlc case and
battery connector．Will scare away any villain and bring help battery connector．Will scare away any villain and bring help． Humidity gwit
Amerlcan made by Honeywell．The action of thle device American made by honeywelp．The action of this device
depends upon the dampnems causing membrane to stretch
and trigoer asensitive microswiltch．Very senaltive breathing
 on it for ins
Only E 1.15 ．

MULLARD UNILEX

A mains－operated $4+4$ stereo
system．Rated one of the finest performers in the stereo field thl
would make wonderful gift for almost anyone．In easy－to－
aseemble modular form this should sell at about ese－but du to a special bulk buy and as an
Incentive for you to buy this Incentive for you to buy thls
month we offer the aystem
complete at only t 保 including complete at only E_{16} including V．A．T．and postage．
FREE GIFT－Buy this you wIII receive a pair of $\mathbf{~ c o o d}$ man＇s elliptical $8^{\prime \prime} \times 5^{\prime \prime}$ speakers

EXTRACTOR FANS

Ex－Computer made by Woods of Colches－ ter，ideal also as blower；central heating
systems，fume extraction etc．Easy fixlng systems，fume extraction etc．Easy fixlng
through panel，very powertul 2,500 r．p．m． but quiet running．Cholce of 2 ilzes， 5^{μ}
$\boldsymbol{6 5} 50,6^{\prime \prime}$ \＆ $6 \cdot 50$ ；post $\& 1$ per fan． VENNER TIME SWITCH Mains operated with 20－amp switch，one on and one of per 24 hours repeats dally
automatically correcting for the lengthen－ automatically correcting for the lengthen－
ing or shortening day．An expensive time switch but you can have It for only $£ 2 \cdot \hat{5}$ ．
These are new but without case，but we can supply plastic cases（base and cover）
E1．75 or metal case with window f2－y5． Also available is adaptor kit to convert this into a normal 24 －hour time ewitch but with
the added advantage of up to 12 on／ofis the added advantage of up to 12 on／offs
per 24 hours．This makes an ideal con－

DRILL CONTROLLER Electronically changes speed from approximately power at all speeds by finger－tip control．
Kit includes all parte，case， everythling and fuil Instructlons

3－CHARNEL SOUND TO LIGHT KIT

Complete kit of parts for a three－channel sound to llight unit
controlling over 2,000 watts of Ilghting．Use this at home if controlling over 2,000 watts of Ilghting．Use this at home
you wish but it is plenty rugged enough for Disco work． you wish but it is plenty rugged enough for Disco work． has controls for each channel，and a master on／ofi．The audio Input and output are by $\frac{1}{n}^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection．A four－pin plug and
socket facilitate ease of connecting iamps．Special snip prlce Is ocket facilitate ease of connecting iamps．Special sn
PUNCH TAPE CONSOLES
Complete unlts，mounted on very well built desks．The tape punch and the tape reader are set In the top，below in the cupboard is stored the power units and electronics．The key－
board is separate but plugs in and rests on the top of the desk． This la a s blt paper tape system．The keyboard is a standard computer type using reed switches ASCl1 coded．The key－ board has 72 encoded keys．Offered complete wlth the data，
at only a fraction of original cost，$£ 115$ each + carrlage at at only a fraction of orlginal cost，e115 each＋carrlage at
cost．Used but balieved in good order－any section not so would be replaced．Please telephone betore calling to collect．

TANGENTIAL

HEATER UNIT
A most effielent and quiet run－
ning blower－heater by Solatron－ ning blower－heater by Solatron－
standard replacement In many standard replacement in many
famous name heaters－com－ prises malns Induction motor－ long turbo fan－split heating
element and thermostatic safoty element and thermostatic safety
trip－simply connect to the
malns for immediate heat－ malns for immediate heat－
mount in slmple wooden or metal case or mount direct into
base of say kitchen unit．Price base of say kitchen unit．Price
s． 55, post 1.50 ．Control switch 3 KW Mode to glve $2 \mathrm{kw}, 1 \mathrm{kw}$ ，cold blow or off

8 POWERFUL BATTERY
MOTORS
MOTORS
For models，Meccanos，drills，remote
control pianes，boats，etc． EL ．

MINI－MULTI TESTER

Deluxe pocket size precislon mov－
ing coll Instrument，jewelled
bearings－2000 scale． scaie，
11 instant range measure：
DC volt $10,50,250,1000$ ． DC volt $10,50,250,1000$ ．
AC volts 10， $50,250,1000$ ． DC amps o－100 mA．
Continulty and resistance $0-1$ meg ohms in two ranges．Complete with Test Prods and instructlon book
showing how to measure capaclity and Inductance as well． Uno poet and Insurancly es－75＋
FREE Ampe ranges kit to enable you to read DC current from 0－10 amps，directly on the o－10 ecale．It＇s free If you purchase
quickly but if you already own a mini－tester and would like one，send $£ 2 \cdot 50$ ．

TERMS：Cash with orde
BULK ENQUIRIES INVITED．PHONE：O44－54563．
ACCESS \＆BARCLAYCARD WELCOMED

J．Bull［EEEGTRCAL］Ltd．
 （DEPT．EE12）

34－36 AMERICA LANE， HAYWARDS HEATH SUSSEX． RH16 3QU

IT＇S FREE

Our monthly Advance Advertising Bargulns Lisi glves which oll ourgains arriving arjust anrived－often bargains which inell out botore our advertiement can appear－it＇s

Ines．
SUPER BREAKDOWN PARCEL with free olft of a desold－ oring pump．perhaps the most useful break－down parcel we panels on which you wIII find：over 300 ICs，over 300 diodes， over 200 transistors and many hundred other parts，resistors，
condensors，multi turn pots，rectifiers，SCR etc．oftc．for only £8．50，which when you deduct the value of the desoldering pump，works out to just a little over $4 p$ per panel，$+£ 4 \cdot \underline{27}$ VAT $+£ 2$ post（It＇s alg parcel）．
THIS MONTH＇S SNIP a 3 wave band radio with stereo amplifier，Made for Incorporation in a high－class radiogram， his has quality of output which can only be described 14 superb，it is trush buttons select iong，medium，short and dial llahts for a scale，the pointer being moved by cord drive． The other controls are baiance，volume treble and bass．The chassis is ready built with its own malns power supply．The output la $6+6$ watts．Brand new and in perfect working order．
offered at less than value of stereo amp alone，namely es．
Post £2．0．
SUPER HI－FI SPEAKER CABINETS．Made for an ex－ eensive HI－fl outfit－wllI suit any decor．Resonence free cut－ Dacron，which is thlck and does not need to be stuck in and he completed unit is most pleasing．Colour black．Supplied In pairs，price ef 50 per pair（this is probably lese
original cost of one cabinet）carrlage \＆ E the pair．
OCTOBER／NOVEMBER CONSTRUCTOR＇S SNIP． Mere＇s a super bargain for you． 100 twlst drilla，regular tool here＇s a super bargain our your only Elf ． 50 ．With these you will be able to drill metal，wood，plastic etc from the tinlest holee in P．C．B，rloht up to about $\mathrm{z}^{\prime \prime}$ ．Don＇t mise this snip－ end your order
UNILEX OWNERS Excellent PM speakers，European made， extremely good quality and 15 ohms，the correct Impedence
for the Unllex．Half regular price only $\mathrm{Ez} \cdot 30$ per palr + Et post．
MAINS ADAPTORS Why use expensive batterles－
operate your radios and equipment from the maine．Save operate your radios and equipment from the mains．Save Sinclalr glves $9 v @ 100 \mathrm{~mA}$ M 62.9 ，Altal gives 6 v 7.5 or $-N l x$ glves $12 v @ 750 \mathrm{~mA}-2.5$ ． 9 ．All made up in plastic
cases complete with mains lead．We can also supply Malna Transistor Power Pack Kit for Voltage output anything from 3 v to 16 v up to 300 mA －complete klt with double ENA WELIED COPPER WIRE We stock this on 1 lb reels and まlo reelt．

Thinner gauges are available－we will be pleased to quote
THERMOSTAT ASSORTMENT 10 different thermo－ stats． 7 bi－metal types and 3 liquid types．There are the current stats which will open the 8 witch to orotect devices against overload，short circults，etc，or when fitted say in ront of the element of a blower heater，the heat would frip
the stat If the blower fuses；appliance emperatures，others adjustable over a range of tomperatures which could include $0-100^{\circ} \mathrm{C}$ ．There is also a thermostatic pod which can be immersed，an oven stat，a calibrated boiler tat，finally an lee stat which，fitted to our waterproof heater element，up in the loft could protect your pipes from freszing．
Separately，these thermostats would cost round about
$\$ 15 \cdot 00-$ however，you can have the parcel for $s 2.50$ ．
SUPPRESSOR CONDENSER Made by famous Philipe Company，this is a 3 section condenser．Maln section－ 2 mfd ．ther 2 sections each 5000 P．F．Ideal for suppressing electrical drills and similar devices． 57 p
$250 \mathrm{~V} A C$ motal cased with fixing lug 57 p ．
HIGH VOLTAGE CONDENSERS－ 1 n
$05 \mathrm{mfd} 5 \mathrm{kv}-\mathbf{5 1} \cdot 15$ ． 009 mfd 28 ky ． 2.3 mfd 2.5 kv － $\mathrm{E1} \cdot 15$ ； HIGH VOLTAGE CERAMIC DISC CAPACITORS H7 pf， $68 \mathrm{pf}, 100 \mathrm{pf}, 150 \mathrm{pf}, 220 \mathrm{pf}$－all $£ 10 \cdot 00$ per $100, \$ 1 \cdot 50$
tor 10. AC CONDENSERS in addition，to the normal uses as motor starters，power factor correctlon，etc，these make
very good voltage droppers for worklng low voltage appllances ery good voltage droppers for working low voltage appllances
rom mains．The voltage working guoted Is AC RMS，so these condensers are usually suitable for working on DC at $2 \frac{1}{2}$ times the quoted AC voltape．

 $20 \mathrm{mfd} 275 \mathrm{~V} \mathrm{ct} \cdot 77$
32 mfd 250 V
$\mathrm{E} \cdot \mathrm{sp}$

THIS MONTH＇S NEW KITS

1．STUDENT＇S FIRST MULTI－TESTER KIt contains panel meter， 12 way rotary wafer switch，resistort，rectiner， The multi－tecter，when completed，will measure DC volts 4 ranges，$D C$ current 3 ranges，$A C$ volts 3 rangen，but properiy 2 ranges．The main value of the kit is educational，buppopery 2．MULTI OPTION SOUND PRODUCER Also called sensatonaricen siren，with you can War II Atr for inatance，American Pollce Siren．World War il Atr Raid Alerts，and unlverse of other effects．Some posalble noise box to amuse the kids or to play＇it through your stereo to frighten away the blrds and annoy your neighboursi 4 independentiy adjustable parameters olve
DO YOU USTEN IN BED？ DO YOU LISTEN IN BED？and do you use the tlny
earphone oo you won＇t disturb anyone？These tiny ear－ phones give a very poor quality response－so why not use headphones instead？A special offer thle month－japanese made，padded 8 ohm stereo headphones for only $£ 2 \cdot$ se， Christmas present．
Christmas presen． the radlo should be off．We have time switches，clockwork operated，giving on perlods from 10 minutes to 3 hours， sultable for awltching any electrical device up to 15 amps， radio，stereo，cooker，sunbeds，in fact anything which you
don＇t want left switched on for too tong．We have five models ith on times：0－10 minutes；0－30 minutes；0－1 hour； $0-1$
Control spindle－part rotation would pe part of the time． Control knobe and gradualed socalos are avallable－price © 1 － 15 palr．

0

Wilmslow Audio

THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

```
AUDAX AUDIOMASTER - BAKER
BOWERS & WILKINS CASTLE
CELESTION CHARTWELL COLES
DALESFORD DECCA EAGLE ELAC
EMI FANE GAUSS GOODMANS
HARBETH ISOPHON I.M.F. JORDAN
JORDAN WATTS KEF LOWTHER
MCKENZIE MISSION क. MONITOR AUDIO
MOTOROLA PEERLESS` RADFORD
RAM ROGERS RICHARD ALLAN
SEAS SHACKMAN TANNOY
VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO (oopt Ee)

35/39, CHURCH STREET, WILMSLOW, CHESHIRE.
Tel: 0625-529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

TOP PRIORITY for every

 constructor...

HOME RADIO CATALOGUE

- About 2,000 items clearly listed.
- Profusely illustrated throughout.
- Large catalogue, A. 4 size pages.
- Bargain List, Order Form and Pre-paid Envelope included. Also 2 coupons each worth $25 p$ if used as directed.
- Catalogue fl , plus 50p for post, packing and insurance.

HOME RADIO (Components) LTD
Dept. EE., P.O. Box 92, 215 London Road, Mitcham, Surrey. Phone 01-543 5659

JOIN UP WITH LITESOLD.

New 'L' series irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. New non-roll GRP safety handles. Ceramic and mica insulated elements enclosed in stainless steel shafts.

Fully ear thed with screw connected 3-core leads. Interchangeable, non-seize copper bits.

spare bits $1.6,2.4$ and 4.7 mm . £6.31 including p\&p and VAT. 240 volts standard but also available 12 and volts. Iron only $£ 4.66$ including P\&P and VAT.

MODEL LA12 12 watts

Similar to LC18 but with extra slim shaft and bits for fine work. Fitted with 2.4 mm copper bit and complete with spare bits 1.2 mm and 3.2 mm . $£ 5.58$ including $p \& p$ and VAT. 240 volts standard also available 6,12 and 24 volts. Iron only $£ 4.61$ including $P \& P$ and VAT.

No. 3 SAFETY SPRING STAND for LC18 \& LA12
Complete with sponge and location for spare bits $£ 4.41$ including P\&P and VAT.

MODEL LC18 18 watts
Lightweight, high-performance iron for all soldering from calculators to T.V. sets. Fitted with 3.2 mm copper bit and complete with

LOLA DE-SOLDERING PUMPS Removes solder from pcb joints quickly, with no fuss. Simple * one-handed operation leaves other hand free to hold soldering iron heat source. Needs no external power. Has replaceable PTFE nozzle. Thousands in daily use in major manufacturing companies. Two sizes to choose from.

Lola A 215 mm long $\times 20 \mathrm{~mm}$ dia. £6.89 (including VAT, P\&P)
Lola D 165 mm long $\times 14 \mathrm{~mm}$ dia. £5.03 (including VAT, P\&P)

ELECTRET MICROPHONE IMSERTS with FET Pre-Amp@ $\mathbf{E 1 - s 5}$
500 PLUG AND SOCKET (9 Pin) at 25 p pair.
PLASTIC TRANSISTORS BC 108 or BC at 210 Reel. Carr. paid.
FERRITE RINGS Orange Ext. Dia. I"; Int. Dia, in 8 for 50 p p.
POWERFETS VKIOKM at 40 p each.
MINIATURE AIR SPACEO VARIABLES $250+250+20+20+20 \mathrm{pf}$ @ 75p.
MULLARD SOA TYPE TRIMMERS 4 pf, 10 pf , $20 \mathrm{pf}, 60 \mathrm{pf}$, all 15 p each.
20 WAY IUCAR TAG CONNECTOR at 50 p.
3 GANG VARIABLE CAPACITORS $10+10+10 \mathrm{p}$ at 75p
VHF WIRE ENDED RF CHOKE 30 U.H. 25 to 50 .
VHF WIRE ENDED RF CHOKE $30 \mathrm{U} . \mathrm{H}$. at 25 for 50 p .
50 METRE CRYSTALS $10 X$ Type $3642 \cdot 5$ or 3750 KHz at 40p.
50 OC 71 TRANSISTORS untested for 75 p .
50 BC $107-8$ TRANSISTORS assorted untested for 60 .
3/16" COIL FORMERS with core at 6 for 25 p .
VERNITRON FMA 10.7 MHz FILTERS at $50 \mathrm{p}, 3$ for $\mathrm{E1}$.
VHF-UHFFETS BF 258 C at 4 for 75 p , E304@ 30 p , , 4 for $£ 1$.
OISC CERAMICS
.
2 GANG VARIABLES $250+250 \mathrm{p}$ (500 p) @ 35 p .
MINIATURE CERAMIC TAG STRIPS 12 Way @ 15p, 21 Way @ 20p.

4500 PIV 2 AMP SILICON DIODES @ \&4 50 each.
5 MHz CRYSTALS in $10 x$ Case at 50D each.
POSTAGE STAMP TRIMMERS 10pf, 30 pf , $50 \mathrm{pf}, 500 \mathrm{pf}, 1000 \mathrm{pf}$. All at 15 p each. CERAMIC TRIMMERS 2.5 to $6 \mathrm{pf}, 3$ to $10 \mathrm{pf}, 4.5$ to 20 pf , 6 to 35 pf , 10 to $40 \mathrm{pi}, 10$ to FERRITE BEAOS

 SOLOER-IN FEEO THRU's $6 \cdot 8 \mathrm{pf}, 27 \mathrm{pf}, 300 \mathrm{pi}$, 1000 pf . All 20 p doz
SPECIAL COMPONENTS Resistor 1K 1% Q 5 p, Capacitors 8000 pf 2% @ ${ }^{2}$ p.
 each.
each
HIGH POWER TRANSISTORS 40 Watt SSE or FM, 28 Volt, Type 587 BLY 27 to 70 MHz with data for $\mathrm{E3}$.
MAINS TRANSFORMERS 240 Volt ingut, 24 Volt Tapped at 14 volt 1 amp $@<$
$\mathbf{\& 1} \cdot 30$ (P\&P 25p).
Please add 20 p for post and packing, untess otherwise stated, on U.K, orders under $£ 2$.

J. BIRKETT

RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln LN2 1JF Tel. 20767

AERIAL SPLITTERS

Two way in white box with three black insulated co-ax sockets. Completely made up with two spare co-ax plugs. Price only $\mathbf{~ 1 ~} \cdot 70$ each.

CALLERS WELCOME

Large stock of capacitor, resistors, p.c.b. etching compound, TV valves, loft aerial and co-ax cable.
Open for callers Tuesday. Friday and Saturday morning.

AERIAL AMPLIFIERS

Aerial amplifiers can produce remarkable Improvement on the picture and sound In inge or difficult areas.
B45-for mono or colour this is tunable over complete UHF television band. B11-for stereo or standard VHF/FM radio. B12-for VHF television band $1 \$ 3$.

All amplifiers are complete and ready for use.
Battery type PP3 or 8 B to 18 sy de , next to the set type fitting. Prices $£ \cdot \mathrm{~F} \cdot \mathbf{7 0}$ each.

SIGNAL INJECTORS with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts dc. Complete with leads $£ 5 \cdot 70$ each
All prices include VAT at 15\%. P \& P per order 30p. S.A.E. for leaflets. Access cards.
ELECTRONIC MAILORDER LTD,
Via Bury, Lancs. BLO 9AGT. Tel. Ramsbottom (070 682) 3036

FM/AM STEREO TUNER AMPLIFIER CHASSIS
Originally designed for installation into a music centre. Supplied as two separate built and tested units which are easily wired together, 240 volts A/C operation Note Circuit diagram and intermconnecting wiring diagrams supplied.
Rotary Controls Tuning, volume, balance, treble and bass.
Push Button Controls Mono, Tape, Disc, A.F.C., FM(VHF), LW, MW, SW Power Output 7 watts RMS per channel into 8 ohms (10 watts music)
Tape Sensitivity output typically 150 mv . Input 300 mv for rated output
Disc Sensitivity 100 mv (ceramic cartridge).
Stereo Bellcon Indicator LED or bulb.
Size Tuner- $2 \frac{1}{\prime \prime}^{\prime \prime} \times 15^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{}$ approx. Power amp. $-2^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{2} \times 4 \frac{1}{2}^{\prime \prime}$ approx Price $122 \cdot 00+62 \cdot 50$ Postage and Packing.

J.V.C. TURNTABLE CHASSIS
J.V.C. Turntable supplied complete with an Audio Technica ATIO stereo magnetic cartridge.
t' S^{\prime} shaped cone arm. t Belt driven. t Full size $12^{\prime \prime}$ platter. * Precision calibrated counter balance weight $0-3$ grms). $太$ Damped cueing lever \& Anti-skate (bias) device. Nylon thread weight. * Cut out template supplied Size-124" $\times 157^{\prime \prime}$ (approx)

$$
\text { Price } 129 \cdot 90+£ 2 \cdot 50 \text { Postage and Packing }
$$

B. K. ELECTRONICS (Dept. EE)

37, Whitchouse Meadows, Eastwood, Leigh-on-Sea, Essex, SS) 5 TY. * S.A.E. for components list etc. \quad Official orders welcome. * All prices include V.A.T. * Mail order only.

* All items packed (where applicable) in special energy absorbing PU foam.

ANNDUNCINAG A NIEW SIEIT DIF MBASIIC IEIIEECTIRDN NIICS

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price e10.00 per sot (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitr Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY anthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder' Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:

Selray Book Company
11. Aspen Copso.
romley
Kent. BRi 2 N̄Z

OUP 100\% GUARANTEE Should you decide to raturn the set after 10 days exam. insuion, vour money will be reffunded by return of post.

- Amount enclosed: £

Name:
Address: EE 2

MUSICAL MICRO 24 TUNE DOOR BELL

BUILD THE WORLD FAMOUS CHROMA-CHIME

Give your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play 24 well-known tunes. The kit is simplicity itself for ease of construction. Absolutely everything needed is supplied, including:
\star Resistors, Capacitors,
Diodes, Transistors,
I.C. Socket and all hardware
\star Texas instruments TMS 1000 microcomputer
\star Comprehensive kit manual with full circuit details
\star Ready drilled and legended PCB included

Plays 24 well-known tunes including:
Star Spangled Banner, William Tell Overture, Greensleeves, Rule Britannia, Colonel Bogey, Oh come all ye faithful, plus many other popular tunes.

* No previous microcomputer experience necessary
\star All programming retained is on chip ROM * Fully guaranteed
\star Ideal present any time

-MP0027A Micro-computer chip available separately if required. Full 24 tune spec device fully guaranteed. This unquee chip can be used not only for electronic door chmes. but for other projects requiring musical output Car Horne Musical Boxes Alarme Amusernont Mrictines Puolic Addre
 £4.95: ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-21 DAYS FOR DELIVERY

Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX Telephone (0279)418611
NAME
ADDRESS

EE/I2/80
I enclose cheque/PO value \mathcal{E} or debit my ACCESS/BARCLAYCARD account no.

Signature

GLECTRONIC CAMES

ATARI

SPECIAL PRICE 886 + VAT
SPACE INVADERS

- $6 \cos ^{\circ}$
 $\cdots 4$

HAND HELDS + CARTRIDGES ATARI. ACETRONIC -PRINZTRONIC
RADOFIN - DATABASE etc We keep a full range
Send for carridge tio
Send for cartridge
machine you own

$£ 173.87$ + VAT
Available August 1980 This is the most advanced TV game in the world Expandable niext year into a full microcomputer COLOUR CATALOGUE DETAILS ON ALL THE CARTRIDGES

BRIDGE

COMPUTER

- Plays $1 / 2 / 3$ or 4 Hands
- Problem Mode
- Audio Feedback
- Instant Response
- Auto scorekeeping

CHESS

Send for further details AVAILABLE AUGUST 1980 We specialise in computer chess machines \& stock over 13 different models from $£ 20$ to $£ 300$

BACKGAMMON

COMPUTERS OMAR 1 OMAR 2
CHALLENGER GAMMONMASTER

From $£ 38$ to $£ 108$. Send for further details.

LEISURE

- CHEAP TV GAMES
* TELEPHONE ANSWERING MACHINES
* AUTO DIALLERS
* CALCULATORS
* digital watches
- PRESTEL
- HAND HELD GAMES

MAIL ORDER SERVICE - Free postage \& Packing
TELEPHONE \& MAIL ORDERS - accepted on:
Access *Barclaycard \#American Express *Diners Club
CALLERS WELCOME - at our shop in Welling - Demonstrations daily Open from Gam-5pm Mon-Sat (9am-1 pm Wed)
GUARANTEE - Full 12 months + After Sales Support?
Wel: Oi.301 1111

SILICA SHOP LTD., Dept. EE 12 102 Bellegrove Road

Tel: 01 -301 1111

TELETEXT

RADOFIN
TELETEXT Add on Adaptor
\&173+VAT
24 TUNE DOOR BELL £13.65

VAT

FREE

CATALOGUE
For a tree copy for a ree page of our 32 page catalogue, send $12 p$ stamp to Silica Shop Lt or Telephone or Telep 1111 01.3011111

Circuit prototyping

Now you can get a prototyping block from Vero for building and testing circuits. It is designed to dovetail together to form a continuous 2,54 pitch so you càn put any size of IC on it.
Veroblock is supplied singly but if you fit three together it gives a Eurocard size area for your circuits.
When you've designed your circuit and it comes to building the project don't forget Veroboards are available in a range of sizes and styles to suit every application.
VERO ELECTRONICS LTD RETAIL DEPT. Industrial Estate, Chandler's Ford,

At these sensational prices you can afford to give

CHRISTMAS TIME PRESENTS

Great gifts at giveaway prices. For your family. Your friends. Or yourself.

SEIKO QUARTZ CALCULATOR/ALARM

Only £49.95 + 85p p\&p

Continuous display of hours, minutes, seconds with day, alarm indicators. Optional display: month, date, AM/PM with day indicator. Calculator (16 key) performs arithmetic, percentage, constant and power calculations. 12 hour alarm with AM/PM indication, rings twice a second for 10 seconds, then four times a second for 10 seconds. Display flashes as battery life nears end. Back light. Water resistant. Adjustable stainless steel strap.

MITRAD MD605 QUARTZ LADIES MUSICAL ALARM

 CHRONO Only £ $11.95+85$ p p\&pContinuous display of hours, minutes, seconds. Optional display: day, date, month. Auto calendar. Chronograph with lap timing facilities to $1 / 10 \mathrm{sec}$. 24 hour alarm plays 30 seconds of Beethoven's 'Fur Elise'. Back light. Infinitely adjustable stainless steel strap.

MITRAD MD610 QUARTZ GENTLEMAN'S MELODY ALARM Only $£ 16.95+85 p$ p\&p

Case thickness only 5 mm . Continuous display of hours, minutes, seconds with date and mode indications. 'Running horse' chronograph to $1 / 10$ sec. 12 hour alarm plays 30 seconds of 'Yellow Rose of Texas'. Back light. Infinitely adjustable stainless steel strap.

MITRAD PEN WATCH Only $£ 11.15+85 p$ p\&p

Elegant stainless steel ballpoint pen combined with a quart precision timepiece. The five function LCD watch displays hours, minutes, seconds, month and date and has a computerised four year date memory. In presentation case with spare pen refill.

From the collection of 12 month guaranteed leading make products offered through Mitrad's 7
day distribution systern and backed by Mitrad's own service organisation. For complete product range, ring or write for catalogue. Trade price list available for bulk buyers,

The Premier mail order house specialising in quality products and superior atter-sales care.

To: Mitrad, 68-70 High Street, Kettering, Northants. Please send me:

SUPERSOUND I3 Hi-FI MONO AMPLIFIER ponents throughout. 5 silicon transistors plus 2 power output transistors in push-pull. Full wave rectification. Output approx. 13 watts r.m.s. into 8 ohms. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{do}$. Fully integrated preamplifler stage with separate Volume. Bass boost and Treble cut controls. Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity and tested. with knobs, escutcheon panel, input and and tested. With knobs, escutcheon panel, unput and deep. AC $200 / 250 \mathrm{~V}$. PRICE 18.40 , P. \& P. £ $1-60$. HARVERSONIC MODEL P.A, TWO ZERO
An adyanced solid state peneral purpose mono An advanced solid state general purpose mono ampliGram, etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-amp). Input 1, 15 mV into 47 k . Input $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.). Input 3, 200 mV into 1 meg. suitable for gram, tuner, or tape cic. Full mixing facilities with full range bass a treble controls. All Output socket on rear of chassis for an 8 hm or 6 phel speaker. Output in excess of 30 watts music power Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation $200-240$ volts. Size approx. 12 tin wide $\times 5 \sin$ high \times 7 tin deep.
Special price $£ 29 \cdot 00+£ 3 \cdot 00$ carriage and packing. "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 z^{\prime \prime} \times 141^{\prime \prime} \times 1 \frac{7}{\prime \prime}{ }^{\prime \prime}$ deep. Weight 19 oz . Power handling 20W r.m.s. (40W peak). Impedance 8 ohm ceilings, walls, doors, under tables, etc., and used with or without baffe Send S.A.E. for full details Only $£ 9 \cdot 20$ each + p. \& p. (one $£ 1 \cdot 20$, two $£ 1$. A brand new 22 transistor hi-f stereo amplifler of superior design made by a well-known British manuis supplied new \& tested on a printed circuit panel size approx. $6 \frac{3}{3}^{\prime \prime} \times 44^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \mathrm{h}$. using high grade discrete components. Brief specification: 15 watts r.m.s. per channel $0 / P$ into 8 ohms. (o/p stages fully protected against s / c) $1 / \mathrm{P} 60 \mathrm{mV}$. for *ceramic cartridge. Provision for tape i/p \& o/p. Only requires the addition of a 40 volt @ 2 amp. power supply \& the bass, Circuit diagram \& connection details supplied. Price with edge connectors. Only $£ 9.00+800$ o - Suitable 2 stage pre-amp. for mag. cart. RIAA corrected can be supplied (a) $£ 2.50$ if ordered with amplifier. Suitable components for power supply can be supplied if ordered with ampliffer-mains transfomer,

UNER
$200 / 240 \mathrm{~V}$ Mins ared Solid State FM/AM Stereo Tuner. Covering M.W. A.M. 540-1605 MHz.
bor M.W Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicator Built in Pre-amps with variable Lamp voitage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Will match aimost any amplifier. Size $8 \frac{1}{}{ }^{\prime \prime} w \times 4^{\prime \prime} h$ $9 \frac{t^{2}}{}$ "d approx
LIMITED NUMBER ONLY at $£ 29 \cdot 00+£ 2 \cdot 00$ P. \& P 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly hnished mono-
aural amplifier with an
output of 14 watts from 2 EL84s in push-pull. Super and speech with nepligible and speech with negligible mike and gram allou records and announcements to follow each other. Fully shrouded section wound
 output transformer to match $3-15 \Omega$ speaker and controls, and separate bass - independent volume provided giving good lift and cut valwe line are 2 EL84s, ECC83, EF86 and EZ80 rectifier Simple instruction booklet. 50p + SAE (Free with parts) All parts sold separately. OMLY \&18.40, P. $\& P$ $£ 2.00$. Also available ready built and tested $£ 22 \cdot 50$, P. \& P. $£ 2 \cdot 00$.

STEREO DECODER MK.II
SIZE $1^{\frac{1}{2}} \times 23^{\prime \prime} \times \frac{1}{2}^{*}$ ready built. Pre-aligned and lested for $10-16 \mathrm{~V}$ neg. earth qperation. Can be flted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and Instructons supplied. $£ 7.00$ plus 25 p. P. \& P. Stereo beacon light if required 40 p extra.
Mullard LP!159 RF-IF module $470 \mathrm{kHz} \mathbf{5 2 \cdot 5 0}+$ P. \& P. 40p. Full specification and connection details
supplied. Pye VHF FM Tuner Head covering $88-108$ supplied. Pye VHF FM Tuner Head covering $88-108$
$\mathbf{M H z}, 10.7 \mathrm{MHz}$ I.F. nutput. $7.8 \mathrm{~V}+$ earth. Supplied pre-aligned. with fuil circuit diagram with precision geared F.M. gang and $323 \mathrm{PF}+323 \mathrm{PF}$ A.M. Tuning gang only $£ 3.40+$ P. \& P. 60. D
STEREO MAGNETIC PRE-AMP. Sens. 3mV in for 100 mV out. 15 to 35 V neg, earth. Equ. \pm IdB from 20 Hz to 20 KHz . Input impedance 47 K . Size $1 \mathbf{1 i n}^{\prime \prime}$

HARVERSONIC SUPERSOUND $10+10$ STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first flve level with improved sensitivity. Integral prewer noise Bass, Treble and two Volume Controls. Suitable for us with Ceramic or Crystal cartridges. Very simple 10 modity to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front no extras to buy. Simple step by step insiructions enable any constructor to build an amplifier proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$ Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. t -16 dB . Negative feedback 18 dB over main amp. Power requirements $35 v$. at 1.0 amp.
Fully detailed 8 page construction manual and parts ist free with kit or send 50 p plus large S.A.E.
AMPLIFIER KIT \quad \&14.95 P. \& P. £1-20
POWER PACK KIT $\quad . \quad \mathbf{~ E 6 - 2 0} \mathbf{P}$. \& P. \& $1 \cdot 50$ CABERET SPECIAL OFFER-only $£ 25 \cdot 80$ if all 3 items ordered at one time plus $£ 2.80 \mathrm{p}$ p. \& p .

Also avail. ready built and tested $\mathbf{£ 3 2} \cdot \mathbf{2 0}, \mathbf{P}$. \& P. f2-80 HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of -4 watts per channel into 8 ohm speakers. Using the batest high technology integrated circuit amplitiers with components including rectifer smoothing capacitor fuse, tone control, volume controls, 2 pin din speaker sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size approx. $9 t^{\prime \prime} \times 2$ n" $^{*} \times 1^{\prime \prime}$ max. depth. Supplied brand new \& tested, with knobs. brushed anodised aluminium 2 way escutcheon (to allow he amplifier to be mounted horizontally or vertically) at only $£ 10-40$ plus 90 p P. \& P. Mains transformer with an 70 p P. \& P. if required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice. APPLY TO U.K. ONLY. SEND SAE WITH

PBFHETIN PGHIE MINIATUREDRILLS AND ACGESSORIES for all your modelling needs

A choice of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks drilling, shaping, cutting, polishing etc in the minimum of time There are two types of drill stand, S1 for P1 drill, S2 for all drills, plus all the necessary accessories in a remarkable range that fills every need. Fully illustrated literature is available and will be
gladly sent upon receipt of $9^{\prime \prime} \times 4^{\prime \prime}$ stamped addressed envelope.

See them on STAND No 87 MODEL ENGINEER EXHIBITION Wembley Jan I to 10 1981

Sole UK Distributors PRECISION PETITE LTD 119a HIGH ST. TEDDINGTON, MDX. Tel: 01.977 0878

MAIL ORDER
 PROTECTION SCHEME

The Publishers of Everyday Electronics are members of the Periodical Publishers Association which gives an undertaking to the Director General of Fair Trading to refund moneys sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund moneys owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Everyday Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:- 'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered. 'Classified and catalogue mail order advertising are excluded.

Receivers and Components

DISCOVER ELECTRONICS. Build forty

 easy projects including: Metal Detector, Breathalyser; Radios; Stethoscope; Lie Detector; Touch time-switches; Burglar alarms, etc. Circuits, plans all for $£ 1.50$ includingRREE circuit board. Mail only,
PHOTO/ELECTRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.

HALF-PRICE COMPONENTS. Build up your stocks fast! 200 mixed components, £2.00. 100 mixed resistors, 80 p . 300 mixed capacitors, $£ 2 \cdot 50$. P\&P 40p. E.R.S. Components, 62 Thompson Hill, Sheffield S30 4JU.

MIXED (PRICES INCLUSIVE). One month only. 100 resistors $85 \mathrm{p}, 100$ wirewound resistors $£ 2 \cdot 90,20$ rotary pots $£ 1 \cdot 75,100$ presets $£ 3 \cdot 20,100$ miniature $£ 3 \cdot 20,100$ transistors $£ 3 \cdot 50$, 25 ICs $£ 1 \cdot 50$, 100 diodes £1, 10 l.e.d.s $£ 1 \cdot 25,50$ C280 caps $£ 1,100$ ceramics $£ 1 \cdot 25,100$ elec/caps $£ 3 \cdot 25$, Pocket signal injectors $£ 2 \cdot 85,240 \mathrm{~V}$ 30W soldering irons $£ 3.95,9-24 \mathrm{~V}$ relays $70 \mathrm{p}, 4-12 \mathrm{~V}$ transistor warning devices $£ 1$, Telescopic aerials 65 p, Retractable car aerials $£ 2$, Door chime kits $£ 3$, Door chain burglar alarms $£ 3,240 \mathrm{~V}$ kits $£ 3$, Door chain burglar alarms $£ 3,240 \mathrm{~V}$
record player motors $£ 2 \cdot 25$, Lists 15 p. Valves, Bargains. Early radios. Sole Electronics (EE), 37 Stanley Street, Ormskirk, Lancs L39 2DH.

 20 wire onded Neons $81 \cdot 00$. Small 3 tranelistor Audio

 metert $22.20 . ~ L i s t ~ 15 p . ~ R e f u n d a b l e . ~ P o u t ~ 40 p, ~ o p t l o n a l ~$
\qquad J. W. B. RADIO

2, Barnnold Creacent, Bala, Cheehire. M33 1NL.

CLASSIFIED

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting £6.16 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed ' L loyds Bank Ltd. '" Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.
INTERESTED IN ELECTRONICS? Do you need components, tools, accessories FAST? Yes. Then you need our first class service. Send today for our catalogue 30 p refunded on first order. Lightning Electronic Components. Freepost TAMWORTH, Staffs B77 1BR.

Veteran \& Vintage

> The only magazine for all vintage sound enthusiasts, packed with articles by top writers, covering gramophones, phonographs, 78s, wireless, news, history, reviews, etc.
> Bi-monthly. Annual subscription $£ 6.00$ (airmail extra). Send 75 p for sample copy. 28 Chestwood Close, Billericay, Essex

Software

ZX80 TWO INGENIOUS cricket games of risk. IKZX80 $1-2$ players. Typed programming sheet. Send f1. 50 Ellard, 35 Purlewent Drive, Weston, Bath, Avon.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. \&1 plus SAB. Colour TV Service Manuale on requant. SAE with enquiries to BTS, 100 Ktacis Rd, Harrogate, N. Yorkehire. Tel: 0423658 E .
sERVICE SHETETS from 50p and SAE. Catalogue 25p and SAE. Hamilion Radio, 47 Bohemia Road. St. Leonards, Suscex.

Miscellaneous

BELL BOXES, PVC coated steel, yellow, £7.99. Smoktek self-contained smoke detector, $£ 14.79$. Prices inclusive. Sigma Security Systems, 13 St. Johns Street, Oulton, Leeds LS26 8JT.
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotoka Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2 \cdot 25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.70$ sq.ft. Post/packing 60p. WHITE HOUSE ELECTRONICS, PO Box 19, Castle Drive, Penzance, Cornwall.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

-	-	-	
		- -	
	-		

[^5]| ENAMELLED COPPER WIRE | | | |
| :---: | :---: | :---: | :---: |
| SWG | 1 lb | + 1b | 1 lb |
| 10 to 19 | 2.95 | 1.70 | $0 \cdot 85$ |
| 20 to 29 | 3.05 | 1.75 | 0.95 |
| 30 to 34 | $3 \cdot 45$ | 1.90 | 1.00 |
| 35 to 39 | $3 \cdot 75$ | $2 \cdot 10$ | 1.15 |
| 40 to 43 | 4.95 | 2.75 | 2.15 |
| 44 to 46 | $5 \cdot 90$ | $3 \cdot 50$ | 2.40 |
| FREE WIRE TABLES WITH EACH ORDER INDUSTRIAL SUPPLIES
 102 Parrswood Road, Withington, Manchester 20
 Prices include P \& P in UK | | | |

G.T. TECHN. INFO. SERVICE
 76 Church St., Larkhall, Lanarke. MLE IHE

Any single service sheet $\mathrm{EA}+$ harge SAE
$1,000 \mathrm{~s}$ of sheets/manuale alway in stock
Sole suppilers of all T.V. Repair Systeme
Glant Dlagram Manual for Washing Machines. Single
Repalr Data any named T.V. £5.50 (with clrcults, etc.
 Phone 068t $\mathbf{5 8 3 3 4}$ after 4 p.m.

TUNBRIDGE WELLS COMPONENTE, BALLARD'S, 108 Camden Road, Tunbridge Wells. Phone 31803. No lists, enquiries S.A.E.

THE SCIENTIFIC WIRE COMPANY

PO Box 24, London E.4.
Reg. Omee, 22 Coningeby Cardens. ENAMELLED COPPER WIRE

ELECTRONIC KIIS. Largest range of kits in the UK. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send SAE for free catalogue to: Eastling Electronics (Kits), 64b Hawthorn Road, Winton, Bournemouth.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic tweezers, watch screwdriver, case knife and screwback case opener, Also one doz. assort. push-pieces full instructions and battery identification chart. We then supply replacement batteries you fit them. Begin now Send $\mathbf{6 9}$ for complete kit and get into a fast growing business. Prompt despateh.

BOLSTER INSTRUMENT CO. (EE23) II Percy Avenue, Ashford, Middx., TWI5 2PB

INDEX TO ADVERTISERS

"SPECIAL PRICES" POST $£ 1-50$ BAKER LOUDSPEAKERS					
Model	Ohms	Slza	Power	Type	Our
	4, 8, 16	${ }_{12}$	Watts		Price
Oeluxa Mk II	4, 8, 16	12	15	$\mathrm{Hi}-\mathrm{Fi}$	814
Superb	8,16	12	30	HI-Fi	¢20
Auditorlum	8, 16	12	45	$\mathrm{HI}-\mathrm{Fi}$	$\underline{620}$
Auditorium	8,18	15	80	HI-FI	¢.35
Group 45	4, 8, 16	12	45	PA	¢15
Group 50	4, 8, 18	12	60	PA	¢20
Group 75	4, 8, 18	12	75	PA	£22
Group 100	8, 16	12	100	PA	420
Group 100	8, 16	15	100	PA	82
Disco 100	8, 16	12	100	Disco	¢20
Disco 100	8, 16	15	100	Disco	\$29

Add musical highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner with separate switch forfour channel mono or two channel stereo working DE-LUXE DISCO Mains Model 4 Stereo Channels plue Mike, 2 Vu meters, Meadphone Monitor. £40. Post \&1. MINI MODULE LOUDSPEAKERKIT £10-95 EMI 15×8 inn. 3-way Loudspeaker Baffle, 5 in . Bass, 5 in . Full assembly instructlons supplled. Response 60 to 20,000 c.p.s. 12 watt RMS 8 ohms 810 - 05 per kit. Two kits £2t. Suitable Bookshelf Cabinet £ $5 \cdot 50$ each. Post $£ 1 \cdot 50$ GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceranolc cartrlige Slart. Large Matal Turntable. . Manual and Auto Stop/ Slart. Large Metal Turntable. Cueing Device and Pause
ISKRA SINGLE RECORD PLAYER £8 Fitted with auto stop, stereo cartridge, Baseplate. Slze 11
$\times 8 \pm$ in. Turntable size 7 in . diameter, a.c. mains 240 V 3 speed plays all size records. Post \&\&
B.S.R. SINGLE PLAYER P170/2 £21.00 3-speeds 11 In . aluminium turntable. "slim" arm, cueing
device, stereo ceramic cartridge, sliver trim, blas compensator, adjustable stylus pressure, plays all records, spring suspension, 240V AC. Post $£ 2$.
B.S.R. DE-LUXE AUTOCHANGER
with stereo cartridge, plays all si7e records. Post $£ 2$ £20 WOODEN PLINTHS CUT FOR B.S.R. ©4 Siza: $15 \times 15 \times 31 n$. Teak effect. Post $£ 1$.
BSR DE-LUXE Model Toak Veneered with Hinged METAL PLINTH CUT FOR GARRARD Size: $16 \times 14 \times 31$ n. £5.00 Silver or Black finish. Post $£ 2$. TINTED PLASTIC COVERS POST £1-50
 3iin. E.3. $18 \times 13 \mathrm{x} \times \times 3 \mathrm{in}$. Ef. $18 \times$
$13 \mathrm{z} \times \mathrm{itin}$, with stand-up hinges fy .
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
£2. 05 Post $45 p$
Alparta and instructlons with Zener dlode printed circult, rectiflers and double wound mains trangformer input 200
240 V a.c. Output voltages available 6 or 7,5 or 9 or 12 V u.c. 240 V a.c. Output vol tages available 6 or 7,5 or 9 or 12 .
up to 100 mA or less. Please state voltage reaulred.
PP BATTERY ELIMINATOR BRITISH Malna stabilized power-pack 9 volt 400 mA max. with over

BLANK ALUMINIUM CHASSIS, 18 s.w.g. 21in. sides; $16 \times \sin$. $£ 2 \cdot 40 ; 12 \times 3 \mathrm{in}$. $\mathrm{E1} 1-50 ; 16 \times 10 \mathrm{In}$. $£ 2 \cdot 70 ; 12 \times 8 \mathrm{in}$
 ALUMINIUM PANELS, $18 \mathrm{~s}, \mathrm{w} . \mathrm{g} .8 \times 4 \mathrm{in}$. 33 p 00p; $10 \times 7 \mathrm{in}$. $80 \mathrm{p}: 12 \times 5 \mathrm{in}$. $6 \mathrm{ip} ; 12 \times 8 \mathrm{in}$. $90 \mathrm{p} ; 18 \times 81 \mathrm{n}$
 STOCK $4 \times 2 \times 21 \mathrm{n}$. ES: $00 ; 3 \times 2 \times 1 \mathrm{IN}$. BOP ; $6 \times 4 \times 2 \mathrm{in}$

${ }_{\text {H/350V }}^{\text {Hich }}$	Vo	$8+8 / 450 \mathrm{~V}$	78 p	
$10 / 350 \mathrm{~V}$	5 p	$8+16 / 450 \mathrm{~V}$	$75 p$	0/300V 50p
$32 / 500 \mathrm{~V}$	75p	$16+16 / 450 \mathrm{~V}$	75 p	$100+100 / 275 \mathrm{~V}$ 債p
$50 / 500 \mathrm{~V}$	¢1-20	$32+32 / 350 \mathrm{~V}$	$73 p$	$150+200 / 275 \vee 70 p$
$8 / 800 \mathrm{~V}$	\&1.20	16/500V	65p	$220 / 450 \mathrm{~V} 8 \mathrm{P}$
Post 50p Minimum. Callers Welcome. Access-Barclay-Visa, Lists 20p. Closed Wed,				

Radio Components Specialists

337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1665

WATCHES

 ELECTRONIC, DIGITAL \&

 ELECTRONIC, DIGITAL \& ANALOGUE

 ANALOGUE}

Alarms; Chrono's; Multi function; DIGI-ANA etc. etc.
FREE Christmas Catalogue now available
DON'T BUY your new watch until you have seen the latest METAC collection
The largest range of electronic watches available anywhere.
Our prices are competitive, for example:-
SEIKO DIGI-ANA JET 010
£59.95
SEIKO ALARM-CHRONO £49.95
SEIKO WORLD-TIME
£59.95
SEIKO CALCULATION-ALARM £59.95
CASIO CALCULATOR WATCH AND
CASIO ALARM-CHRONO at large discounts: why pay Casio-fixed high prices. We have the latest models in stock.

BULER SWISS WATCHES from $£ 19.95$

BEL-TIME, OTRON AND METAC OWN-BRAND ALL AT DISCOUNT PRICES
EXAMPLE: We have currently on offer an 8 mm slim, solar, dual-time, alarm, chrono water-resistant to $99 f t$ in stainless steel mineral crystal lens for only £19.95

As with all our products you may examine this watch in your home for 10 days on full money-back guarantee.

POPULAR MODELS: We always stock a good range of the better quality ladies and gents watches. From 5 to 32 functions at prices from £4.95 to £26.95.
With 4 shops plus a mail-order dispatch and service centre METAC is one of the oldest established electronic watch specialists in Britain today.
All our watches are fully guaranteed and backed up by our own well equipped service and calibration centre, and you may visit our shops in:-
LONDON, 327 Edgware Road, London W2.
DAVENTRY, 67 High Street, Daventry, Northants.
NORTHAMPTON, 11 St Giles Square, Northampton. LEICESTER, Omni Centre, 27 Market St., Leicester.
SURPRISE OFFER for the Christmas period; A genuine and generous offer for you when you send for our catalogue.
its free and unusual so send now.
NO MONEY. Just post the coupon today and we will dispatch by return.

METAC CATALOGUE

Post to: 47 High Street, Daventry, Northants.
\qquad

ELEGTROIIUE CATALOGUE ${ }^{181}$

as included FREE with December issue of PRACTICAL ELECTRONICS
It's work-bench size for keeping alongside your favourite journal for instant reference to stock and technical data.

With more to choose from than ever - all the items you have learned to depend on being obtainable from Electrovalue PLUS MANY NEW ONES to bring Catalogue ' 81 bang up to date. The V.A.T. inclusive price list that goes with it will hold for at least 4 months before the next one is issued.
Yes - you will enjoy dealing with Electrovalue - prices are keen-service is tops.

Write, phone or call if you haven't yet got Catalogue ' 81 - and you will receive yours by return. (We pay postage).
AND YOU GET BONUS DISCOUNTS AND FREE U.K. POSTAGE TOO, WHEN YOU BUY FROM ELECTROVALUE.
ELECTROVALUE LTD., (Dept. EE) 28 St. Judes Rd, Englefield Green, Egham, Surrey TW20 OHB. Teiephone: (STD 0784) (London 87) 33603 Telex: 264475

E.E. PROJECT KITS

Audio Effects Unit
Phone Call Charge Jogger
Darkroom Controller
Bicycle Alarm
Precision Parking Pad
Lights Failure Monitor
TTL Power Supply Unit
Duo-Deci Timer
*TTL Logic Probe
Bedside Radio
Auto Lighting-Up Warnin
Auto Lighting-Up W
Audio Millivoltmeter
Weather Centre (Electronics only)
Brakesafe Monitor
Cricket Game
Zener Diode Tester
Signal Tracer
General Purpose Amplifier
Voltage Converter
Autowaa
A.F. Signal Generator

Courtesy Light Delay
Auto Phase
Battery Voltage Monitor Lights Warning System Autofade
*Dual Line Game
Audio Tone Generator
*Pre-tuned 4-Station Radio
Gas Sentinel
Automatic Level Control
Cycle Direction Flasher
Cable and Pipe Locator
Stereo Headphone Amplifier Doorbell Register
Five Range Current Limiter
Kitchen Timer
Touch Switch
Micro Music Box
Simple Short Wave Receiver
Morse Practice Oscillator
Slide/Tape Synchroniser
Spring-Line Reverb Unit
Mains on/off Timer
Power Supply 3-9V
Loft Alert
Lightcall
Burglar Alarm
Baby Alarm
Opto Alarm
Radio Tuner MW/LW
Radio Tuner MW/LW
3-Function Generator
3-Function Generato
One Armed Bandit
Lights-on Reminder

ZB122	Oct. 80	£12. 25
ZB121	Oct. 80	£6.00
ZB123	Oct. 80	£17-25
ZB124	Oct. 80	¢9. 25
ZB73	Sept. 80	£3.50
ZB77	Sept. 80	£8.75
ZB78	Sept. 80	£.9.50
ZB75	Sept. 80	£8.50
ZB76	Sept. 80	£3. 25
ZB74	Sept. 80	£14.25
ZB71	Aug. 80	£5.65
ZB70	Aug. 80	£17.75
ZB72	Aug. 80	£47.50
ZB68	Aug. 80	£7.50
ZB69	Aug. 80	£14.95
ZB79	July 80	£5.00
ZB80	July 80	£5.00
ZB81	July 80	£6.00
ZB82	July 80	£4.75
ZB83	July 80	£19. 25
ZB84	July 80	£20.00
ZB85	July 80	£5. 25
ZB86	July 80	£19. 25
ZB64	May 80	£4.80
ZB63	May 80	E3.60
ZB66	May 80	£10.25
ZB65	May 80	£25.00
ZB67	May 80	£3.50
ZB62	May 80	£14.00
ZB61	April 80	£27.00
ZB60	April 80	¢8.00
ZB59	April 80	£14.50
ZB54	March 80	¢3.75
Z857	March 80	£15.25
ZB58	March 80	£3.60
ZB53	March 80	£4.50
ZB55	March 80	£12.75
ZB56	March 80	£9.00
ZB45	Feb. 80	£17.00
ZB44	Feb. 80	£18.00
ZB43	Feb. 80	£6.00
ZB42	Feb. 80	£11-50
ZB49	Jan. 80	E22.50
ZB48	Jan. 80	£30.00
ZB47	Jan. 80	E4.50
ZB46	Jan. 80	£33.00
ZB103	Dec. 79	E6.25
ZB51	Dec. 79	£5.00
ZB40	Nov. 79	E8. 50
ZB41	Nov. 79	¢5. 00
2B108	Nov. 79	E14.75
ZB52	Nov. 79	¢25.00
ZB33	Oct. 79	£21.00
ZB34	Oct. 79	£4.60

Signal Level-Indicator High Impedance Voltmeter
Universal Oscillator
Chaser Light
Low Power Audio Amplifier
Simple Transistor Tester
Varicap MW Radio
Quiz Referee
Touch-on Pilot Light
Trailer Flasher
Swanee Whistler
Electronic Tuning Fork
Power Supply 9V
Warbling Timer
Water Level Indicator
Dolls House Lights Economiser
Darkroom Timer
Soldering Iron Bit Saver
Voltage Splitter
Conference Timer
Electronic Canary
Tremolo Unit
Meter Amplifier
Quad Simulator
Short Wave Converter
Electronic Dice
Intruder Alarm
Shaver Inverter
Touch Bleeper
Choke Warning Device
Transistor Tester
One Transistor Radio MW/LW
Time Delay Indicator
Micro Chime
Lights Reminder for Car
Headphone Enhancer
Solid-State Roulette
I'm First
Continuity Tester
Fuzz Box
Vehicle Immobiliser
Audio Effects Oscillator
Tele-Tel
Radio MW/LW
Sound to Light
R.F. Signal Generator

Guitar Tone Booster
A.F. Signal Generator

Quagmire
Tele-Bell
Weird Sound Effects Generator
Catch-a-Light
Chaser Light Display
Car System Alarm

ZB36	Oct. 79	£4.50
ZB35	Oct. 79	£14.50
ZB37	Oct. 79	£3.50
ZB4	Sept. 79	E17.50
ZB3	Sept. 79	53.75
ZB2	Sept. 79	£5.50
ZB1	Sept. 79	£8.50
ZB12	Aug. 79	£4.75
ZB10	Aug. 79	£2.00
ZB9	Aug. 79	£3.00
ZB8	Aug. 79	£3.50
ZB7	Aug. 79	£8.90
ZB6	Aug. 79	± 8.25
ZB5	Aug. 79	£5.80
ZB111	July 79	54.50
ZB107	July 79	54.50
ZB17	July 79	£2.50
ZB13	July 79	£9. 25
ZB15	July 79	53. 25
ZB14	July 79	£38.00
ZB19	June 79	£4.50
ZB18	June 79	£10.00
ZB21	June 79	E3.50
ZB22	June 79	¢8.00
ZB25	May 79	£13.75
ZB24	May 79	£13.50
ZB23	May 79	£23.00
ZB26	April 79	£8.00
ZB27	April 79	£3-25
ZB28	April 79	£7.50
ZB100	April 79	£4.00
ZB104	March 79	£7. 25
ZB98	March 79	¢4.00
ZB96	Feb, 79	£12.00
ZB32	Jan. 79	¢4.50
ZB101	Jan. 79	£4.00
ZB95	Jan. 79	£.18-25
ZB105	Jan. 79	¢3.70
ZB115	Jan. 79	E4.30
ZB106	Dec. 78	¢5.00
ZB110	Dec. 78	¢5.00
Z8109	Nov. 78	53.50
ZB94	Nov. 78	£17.80
ZB116	Oct. 78	£7.00
ZB112	Sept. 78	£7.00
Z893	Sept. 78	£20.50
ZB117	Sept. 78	E5.00
ZB119	Aug. 78	£10.00
Z8120	July 78	£9.50
ZB118	June 78	£12-25
ZB113	March 78	E3-50
ZB102	March 78	£6.00
ZB97	Feb. 78	£22.00
Z892	Feb. 78	£4.50

* TEACH-IN 80 夫

This popular monthly constructional series started in E.E. in 1979 and is a must for beginners to electronics. The sheer simplicity of the whole project experiments lends itself to be made by any beginner young or old. Basic technical principles and symbols explained in great detail. Start at the beginning with a hobby that could become a worthwhile career, our kit comes complete with all parts as specified by E.E.
List A, B and C $£ 22 \cdot 50$. Monthly reprints from October 1979 available at 40 peach per month extra or $\mathbf{£ 4} \mathbf{5 0}$ for whole series.
*All E.E. project kits supplied with cases except items marked *. All kits come complete with items as specified plus Texas i.c.sockets where required, also veroboard connecting wire etc.
If you do not have the issue of E.E. which contains the project we can supply a reprint at 40p extra.
Personal callers please ring to check availability of kits.
All prices include post, packing and 15% V.A.T.

LATE EXTRA

MINI I.C. RADIO OCTOBER '8O ZB126
£10. 35

DUSK/DAWN RELAY OCTOBER '80 ZB125

SOUND TO LIGHT ZB127 NOV. '80
GUITAR PRACTICE AMPLIFIER ZB128 NOV. ' 80
REACTION TESTER ZB129 NOV. ' 80
PRECISION TIMER ZB130 NOV. '80
TRANSISTOR TESTER ZB131 NOV. ' 80
SOIL MOISTURE MONITOR ZB132 NOV. '80 OTHER THAN STATED, PRICES ON APPLICATION.

Shop Hours Mon-Friday 9-5.30 p.m. Sat. 9-4.30 p.m.
Telephone: 01-226 1489

T. POWELL

306 St. Pauls Road, Highbury Corner, London N.1.

Visa/Access cards accepted
Minimum telephone Orders £5-00 Minimum Mail Order $£ 1$ © $0{ }^{\circ}$

[^0]: Use a 600 mA at 9 VDC nominal unregulated mains

[^1]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responslbility for it. Prices quoted are those current as we to to press.

[^2]: Back Issumes
 Certain back Issues of EVERYDAY ELECTRONICS are available worldwlde price 80p Inclustve of postage and packing per copy. Enquirles with remittance ehould be sent to Post Lales Department, IPC Magazlnes Ltd., Lavington Houie, 25 Lavington Street, London SE1 0PF. In the event of non-avallabillty remittances will be returned.

 - Not available: October 1978 to May 197.

 ## Binders

 Binders to hold one volume (12 issues) are available from the above addrese for $£ 4.40$ (home and overseas) Inclusive of postage and packing. Please state which Volume. Subscriptions
 Annual subscription for delivery direct to any address in the UK: ©9.00, overseas: $\boldsymbol{E 1 0} \cdot \mathbf{0 0}$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2813 Kings Reach Tower, Stamford Street, London SE1 9LS.
 (1PC Magazines Limited 1990. Copyright in all drawings, photographs and artleles published in EVERYDAY ELECTRONICS is fully protected, end reproductions or imitation in whole or in part are expressly forbidden.

[^3]: A bell push is connected via two monostables to two oscillators.
 When the switch is activated, the first monostable comes on and switches on the first oscillator. After a short period this resets activating the second monostable which turns on the second oscillator.

 After a further short period this also resets and the bell push must be pressed again to restart the sequence.

[^4]: Boxed prices include P \& P and 15\% VAT tick box \square

[^5]: NAME
 Send to: Clas sified Advertisement Manager
 ADDRESS
 EVERYDAY ELECTRONICS
 GMC, Classifhed Advortisements Dept., Room 2337,
 KIng's Reach Tower, Stamford Stoett, London SE1 gLs.
 Tolophone 01-zisi 59iz
 24p per word, minimum 12 words. Box No. 60p extra.
 Company registered in England. Registered No. 5ss26. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

