Easy to bulld projecte for everyone $\square=$



Introducing the latest professional state-of-the-art 31/2-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!


## E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Project kits include ALL THE ELEC. TRONICS AND HARDWARE NEEDED-we have even Included appropriate screws, nuts and I.C. sockets. Each project kit comes complete with Its own FREE COMPONENT IDENTIFICATION SHEET. We supply-you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. IF YOU DO NOT HAVE THE ISSUE OF E.E. WHICH CONTAINS THE PROJECT-YOU WILL NEED TO ORDER THE INSTRUCTIONS/ REPRINT AS AN EXTRA-45p. each.

BED SIDE RADIO. Sept. 80. £15.98. DUO-DECI TIMER. Sept. 80. \&13.59. TTL LOGIC PROBE. Sept. Bo. £4.41. TTL POWER SUPPLY UNIT. Sept. 80. £13. 72

ELECTRONIC TOUCH SWITCH. Jan. 78. $£ 2 \cdot 33$ less case
SHAVER INVERTER. ADr. 79. £1898. AUTOPHASE, June 80. £21.41. Rectangular Case
COURTESY Light delay. June 80. 55.91.
A.F. SIGNAL GENERATOR. June 80.

E22.54.
AUTOWAA. June 80. £21.33. Recta ngular Case.
G.P. AMPLIFIER. June 80. E6. 60 .

SIGNAL TRACER. June 80. $£ 5 \cdot 50$.
ZENER DIODE TESTER. June 80. CRICKET GAME. Aug. 80. E17.42, ERAKESAFE MONITOR. Aug. 80. Weather centre. Aug. 80. £73.78 WEATHER CENTRE. Aug.
exc. hardware + wire for sensors.
AUDIO MILLIVOLTMETER. Aug. 80. AUDIO MILLIVOLTMETER. Aug. 80. E17.86.
STATION RADIO. May 80. 813.94 less case.
AUTOFADE. May 80. 59.96.
LIGHTS WARNING SYSTEM. May LIGHTS WARNING SYSTEM. May
B0. E3. B3.
BATTERY VOLTAGE MONITOR. MATTERY VOLTAGE MONITOR.
aUdIO tone generator. May 80 . E3 35 .
GA' SENTINEL. Aprill 80. £26.32. SPRING LINE REVERB. UNIT. Jan. MICROCHIME DOORBELL. Feb. 79. £13.48.
AUTO LEVEL CONTROL. AprII '80
CABLE \& PIPE LOCATOR. Mar. 80. E3.40 less coll former.
KITCHEN TIMER. Mar. 80, £12-46.
STEREO HEADPHONE AMPLIFIER, STEREO
Mar. 80.
\&14.94.
5 RANGE CURRENT LIMITER. Mar. 80 . E. 24 .

MICRO MUSIC boX. Feb. 80 £13. 82 Grey Case 23.63 extra.
SIMPLE SHORT WAVE RECEIVER. Feb. 80. 220.47 , head phones $£ 3 \cdot 28$.
SLIDE/TAPE S YNCHRONISER. Feb.
MORSE
MORSEE
$80 . £ 3$. 75 .
UNIBOARD BURGLAR ALARM. Dec 79. E4-95.

BABY ALARM. NOV. 79 es 20
OPTO ALARM. Nov: 79 £5.77 inc. optional ports.
MW /LW RADIO TUNER. Nov. 79 ¢ 15 - 50
ess
ONE ARMED BANDIT. OCt 79. E18-39. MIGM最3.98,
HIGH IMPEDANCE VOLTMETER.
CHASER LIGHTS. Sept. 79. £18.95. VARICAP M.W. RADIO. Sept. 79 C8. 98.
SIMPLE TRANSISTOR TESTER. Sept. 79. £6.26.
ELECTRONIC TUNING FORK Aug. 79 extra. Sultable microphone \& plug $£ 1$. 59
LATEST KITS: S.A.E. OR 'PHON

## MAGENTA ELECTRONICS LTD.

 EX21, g8 calais road, burton-on-trent, staffs. DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MA1L ORDER ONLY' ADD 35p. P. \& P TO ALL ORDERS. EIRE \& BFPO ORDERS ADD 35. P. \& Ṕ TO ALL ORDERS.ALL PRCES INCLUDE $15 \%$ V.A.T.
OFFICIAL ORDERS FROM SCHOOLS ETC. WELCOME.
ENQUIRIES MUST INCLUDE S.A.E. OVERSEAS: SEND ORDER WITH WE WILL QUOTE EXACT PRICE BY

WARBLING TiMER. Aug. 79. £6.25 OV POWER SUPPLY Aug. 79. £8.94 Inc. GWANEE WHISTLER AUg. 79 £3. 19 DARKROOM TIMER. July 79. E2،47. TREMOLO UNIT. June 79. E11-26. ELICTRONIC CANARY. June 79. E4-99. LOW COST METAL LOCATOR. June 79.
Handle \&
H.

MET QUAD AMPLIFIER. June 79. E4. 32. QUAD SIMULATOR. June 79. £6.25. Less Ext. Burzer \& Lamp and Loop Com. ponents.
THERMOSTAT. 'РHOTO' SOLU. TIONS. May 79. £16 02. Less socket, tube and orease.
TRANSISTOR TESTER. ADIII 79.
$£ 3.87$. €3. 87
TOUCH BLEEPER. ADIII 79. £3.34.
 AUDIO MODULATOR. Feb. 79. E1.56 luss case and pins.
THYRISTOR TESTER. Feb. 70. E3.03 ADJUSTABLE PSU. Feb, 79. $\mathbb{C} 24 \cdot 60$ Case (horlzontal layout) $E 5 \cdot 21$ extra. FUZZ BOX. Dec. 78. £6-20.
VEHICLE IMMOBILISER. Inc. PCB. "HOT
"HOT LINE" GAME. Nov. 78. £4.65 less
AUDIO EFFECTS OSCILLATOR. NOV
78. E. 31 inc. board. FUSE CHECKER
FUSE CHECKER. Oct. 78. E1-97.
C.MOS RADIO. Oct. 78. E9.39.

TREASURE HUNTER. Oct. 78. £17.86 less handie \& coll former.
GUITAR TONE BOOSTER. Sept. 78. dig Inc. p.e.b.
SOUND TO LIGHT. Sept. 78. E6.98. FILTER. 51 -66
SLAVE FLASH. Aug. 78. ©3. 20 less SK1. LOGIC PROBE. July 78. £2.53.

FLASHMETER. May 78. £12.84less calc and difuser.
POCKET TIMER. ADFII 78. £2.98. WEIRD SOUND EFFECTS GENERA. TOR. Mar. 78. © 4 .61.
 AUDIO VISUAL METRONOME. Jan. 78 A. 93.

RÁPID DIODE CHECK. Jan. 78. £2.34. AUTOMATIC PHASE BOX. Dec. 77. 9.55 Inc. p.c. $b$.

VHF RADIO. Nov. 77. E14.36.
ULTRASONIC REMOTE CONTROL. ULTRASONIC REMOTE CONTROL
Nov./Dec. 77. £16 09.
ELECTRONIC DICE. March 77. £4.83. Electronic dice. March 77. £4.83. SOIL MOISTURE INDICATOR. June 77. $£ 4.07$ Inc. probe.

PHONE/DOORBELL REPEATER. July 7. £6. 38.

CAR BATTERY STATEINDICATOR. Sedt. 78. 11 . 79 less case inc. PCB. R.F. SIGNAL GENERATOR. Sept. 78. ADD-
ADD. ON CAPACITANCE UNIT. Sept.
heAdPhone enhancer. Jan. 79. HEAD
$\times 2.60$.
PASSIVE MIXER. Oct. 78. E3. $72 .^{2}$ MIC AMP. Dec. 78. £2-80.
AUDIBLE FLASHER, Dec. 78. £1-21.

AIR MAIL.

## ELECTRONICS CATALOGUE

Magenta's Catalogue has been carefully designed for Electronics Constructors. Product structor. Catalogue includes ELECTRONIC. COMPONENTS, HARDWARE, TOOLS
CASES, TEST EOUIPMENT. CASES, TEST EQUIPMENT. Details of advertised Items and CIRCUIT IDEAS for you to bulld.
No minimum order-ail products are stock lines. FIRST-CLASS delivery of FIRST-CLASS
components. components.
Send for your copy and see how easy our catalogue is to use. WRITE TODAV enclosing
$6 \times 10 \mathrm{p}$ stamps.

## ADVENTURES WITH ELECTRONIOS Bytom

An easy to follow book sultable for all ages, ideal for beginners. No Soldering. Uses
an 'S Dec' breadboard. Glves clear Instructions with lots of ictures an 'S Dec' breadboard. Glves clear Instructions with lots of pictures. 16 projectsabout electronic components and how clrcults work. Component pack includes an learn and the components for the projects.
Adventures With Electronics. £1-75.
Component Pack $£ 16$ - $\mathbf{7 2}$ less battery.

## ADVENTURES WITH <br> MICROELECTRONICS

Same style as above book; 11 projects based on integrated circuits-includes: dice, wo-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack des a Bimboard, 1 plug-in breadboard and the components for the projects Adventures with Microelectronics $£ 2 \cdot 35$.
Component pack $\boldsymbol{£ 2 9} 95$ less battery.

## EDUKIT MICROPROCESSOR COURSE

## Ideal for beginners-learn the baslcs of computing from scratch, without

 spending a-fortune. Kit is supplied with a comprehensive manual which describes construction, basic theory, initial use, machine code programming, hardware and troubleshooting. An appendix covers. soldering and op codes. Kit uses the Requires a 5 or $6 \mathrm{~V} 0.5 A$ power supply-can be baterles. 20 swltch keypad inctuded EDUKIT, including manual: £40-98.Kit includes socke! for $\mu \mathrm{P}$ only-Set of IC sockets for support ICs: $\mathbf{f 2} \cdot 81$ extra Power Supply Kit-simple kit gives 5 V 0.5 A -includes case and clrcuit details:
E7.98.

## DOING IT DIGITALLY

A popular educational series for digltal TTi circults ( 7400 serles). Appeared In
E.E. in 12 parts-Oct. 78 -Sept. 79. A then used to perform the experiments in the series. Experiments include cliccults for digital games, a light detector, a sound operated alarm, a moisture sensor, timers + a stopclock, binary/digital decoders, a dice, eic
TTL TEST BED KIT E29.98.
ADO ON COMPONENTS FOR EXPERI-
MENTS $£ 22.73$.
Reprints available. 45p each part.

3 BAND S.W. RADIO
Simple T.R.F. Deslgn. Covering most Amateur Bands and Short Wave Broad cast Bands. Fioe controls:-Bandset Bandspread, Reaction, Wavechange and Attenuator. Coli selection is by Wavechange Switch. Use with Headphones or a Crystal earpiece. Kit contalns all the components required, including the P.C. Board \& Case. Instructions are Included with this kit.
KIT: £18.97. Headphones extra £3.28.

## TEACH - IN - 80

E.E. 12 part series. Oct '79-Sept ' 80 . Covers the basics of electronics -lots of practical work. Circuits are built on a plug-in Eurobreadboard, which is buift into a wooden console which houses the power supplies, speaker, meter, pots and LED indicators. The series uses a range of electronic components in the experimental work inciuding a photocell, I.C.s, transistors etc.
Wooden Console (Tutor Deck) kit $£ 5 \cdot 98$ extra. Includes all the wood, glue, feet and strap handle.
Electronic components, including Eurobeadboard, for the console and the experiments $£ 25 \cdot 40$ (called list $\mathrm{A}+\mathrm{B}+\mathrm{C}$ by E.E.). Reprints available-Parts $1-12,45$ p each

## TOWERS INTERNATIONAL TRANSISTOR SELECTOR £10.50

ANTEX X25 SOLDERING IRON. 25 W
SOL 98.
SPARE BITS. Small, standard, large 65peach.
SOLDER.
SOLDER. Handy size. 98p.
EUROBREADBOARD. E6: 20.
LOW COST LONG NOSE PLIERS.
£1.97. COST LONG NOSE P
LOW COST CUTTERS. £1-98.
SIREN. 12 V . E15.95.
P.C.B. ASSEMBLY JIG, £11 98
P.C.B. ETCHING KIT. £4.98.
P.C.B. ETCHING KIT. £4.98.
MONO HEADPHONES. 2 K Padded
Superior

Superior sensitive! £3.28.
STEREX HEADPHONES. 8. ohm.
Padded. EA. 35 .
With probes 5" TYPE 2..20,000 o.D.V
COMPONENTS YOU FAST DELIVERY BY FIRST-CLASS POST OF QUALITY COMPONENTS AND KITS. All products are stock lines and are new and full specifica-
tlon. We give personal service and quality products to all our customers-HAVE YOU
TRIED US?

## Make sure of your Heathkit catalogue... write now:

 electronic kits -with the Heathkit catalogue.

48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and, as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the Heathkit catalogue. Send the coupon today, plus 25 p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (EE (10),
Bristol Road, Gloucester, GL2 6EE.
Please send me a copy of the Heathkit catalogue. I enclose 25 p in stamps.
Name
Address


## First the EuroBreadBoard Now the EuroSolderBoard



Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ( $<10 \mathrm{~m}$ ohms) nick el silver contacts
$\mathbf{£ 6 . 2 0}$ each or $£ 11.70$ for 2

## Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
$\mathbf{£} 2.00$ for set of three ESB's

## And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £ 7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU.
Please send me:-

|  | 1 EuroBreadBoard | $@ £ 6.20$ | $\bigcirc$ |  |
| :--- | :--- | :--- | :--- | :--- |
| or 2 EuroBreadBoards | $@ £ 11.70$ | $\bigcirc$ | Please |  |
| or | 3 EuroSolderBoards | $@ £ 2.00$ | $\bigcirc$ | Tick |
| or $\quad 1$ EuroSolderSucker | $@ £$ | 7.25 | $\bigcirc$ |  |

All prices are applicable from Jan. 1st 1980 and include VAT and PP but add $15 \%$ for overseas orders.
Name
Company.
Address.

Tel, No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing



Please note: many kit makers quote VAT-exclusive prices.
You've seen the reviews ...you've heard the excitement...now make the kit!

This is the $\mathbf{Z X 8 0}$. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX80 with competitive kits that don't appear with inclusive prices.

## 'Excellent value' indeed!

For just $£ 79.95$ (including VAT and p\&p) you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The $\mathbf{Z} \times 80$ is programmed in BASIC, the world's most popular computer language for beginners and experts alike.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV...link it to an appropriate power source*...and you're ready to go.

## Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^0]The unique and valuable components of the Sinclair ZX80.

The Sinclair $\mathbf{Z X 8 0}$ is not just another personal computer. Quite apart from its exceptionally low price, the $\mathbf{Z X 8 0}$ has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{ZX80}$ also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FORINEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

- The ZX80 owes its remarkable low price to -4 its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $Z \times 80$ 's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.) The display shows 32 characters by 24 lines.
And Benchmark tests show that the $2 \times 80$
is faster than all other personal computers.
No other personal computer offers this unique combination of high capability and low price.




Electronic Projects in the Workshop

R.A.Penfold 0408003839

Electronic Projects in Music A.J. Flind 040800391 X

Electronic Projects in Audio R.A.Penfold 0408003383

Electronic Projects in Hobbies
F.G.Rayer $0408003545 \quad £ 2.50 \quad$ lan R.Sinclair $0408003456 \quad £ 2.50$

> Each book presents a collection of constructional projects, giving details of how the circuit works, how it is assembled and how setting up and troubleshooting problems may be solved. There are eight titles in the series:

Electronic Projects in the Car M. George 0408003863
$£ 2.50$
Electronic Game Projects
F. G.Rayer 0408003790
£2.50
Electronic Projects in the Home Owen Bishop 040800346 4 £2.50

Projects in Radio and Electronics
$\bar{T}$ ewnes Technical Books Borough Green, Sevenoaks, Kent TN15 8PH

## CAPACITORS

Mullard Ceramic 63v range 1pF to 10,000 pF E 24 range all at $£ 0.06$ each
Siemens Ceramic 63v B37448/9 .01: .022: .033: .047mF@ £0.06 068: . 1 mF @ £0.08: .22mF @ £0. 11
CSF High Voltage Ceramic Discs
Prices $£ 0.07$ to $\mathbb{£ 0 . 1 8}$ Range
100 pF to 10.000 pF
Voltage range up to 6 Kv .
See catalogue for details.
Comprehensive range Siemens
Layer Polyester Caps: . 001 to
3.3 mF

Prices $£ 0.07$ to $£ 0.63$
See catalogue for details.
Large range of Mullard/Siemens Electrolytic Axial/Radial
Capacitance values 1.0 mF to $10,000 \mathrm{mF}$
Voltage ranges 25 v : 40 v : 63v: 100v:
Prices and types as catalogue Also Mullard C280; Siemens B32231/4 and B32110. All prices net + VAT and postage/packaging

## TOOLS BAHCO

Side Cutter with Bezel.
Side Cutter without Bezel. End Cutter without Bezel.
Vero Metal Shears
Other items as catalogue.

BOXES \& CASES
See catalogue for full range Alluminium boxes 13 sizes.
Rexine Covered boxes 7 sizes, NEW RANGE TMEC CASES Send S.A.E. for details \& types Price range. $£ 14.04$ to $£ 17.00$ ABS PLASTIC BOXES
$3^{\prime \prime} \times 21^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$
$334^{\prime \prime} \times 2 \frac{3144^{\prime \prime}}{} \times 1 \frac{3}{8}{ }^{3}$ ", Prices as
$41 / 2^{\prime \prime} \times 33 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$
$8^{\prime \prime} \times 434^{\prime \prime} \times 3^{\prime \prime}$
BAZELLI INSTRUMENT CASES 5 sizes.
Miscellaneous hardware including
Vero Board: Superstrips:
Vero Breadboard.
Vero boxes (see catalogue for full range).


Card Frames: Fliptop boxes: etc etc.
1980 CATALOGUE
U.K.: 65p post paid
Europe 85 p post paid
Rest of World $£ 1.25$
post paid
Mail order: $01-6248582$


SIX DIGIT COUNTERS
One pulse moves one digitPrice $800-T y p a 2$ for $480.0 C$ or
$115 v A C$ and resstrable 1.35 .

## DOOR MOVING MOTOR

Franco reversible single phase 240v AC motor with gear box pilb. Price $£ 15$ carriage $£ 3$ mainland only

## SIREN OR BLEEPER

American Delta mechanieal fype
works on 6 to $12 v$ to $D C$ or 12 to 24 V AC. Price 75p or ESOO per 100 Electronic Bleeper TH3S emits high pitched wailing note o varying plitch. in red plastlc
case with flxing bracket. 5.00 .


## CASSETTE PLAYER/RECORDERS

With record and playback heads, all electronics, switches
and speaker. Price $£ 9.95$ (surely thls must be the bargaln of and speaker. Price Ey.95 (surely thls must be the bargeln of
the year). Music centre replacement stereo with heads but the year). Music centre
not electronics. £ 14.95.

## FRUIT MACHINE HEART

4 wheels with all frults, motorised and with solenoids for topping the wheels, with a litt!e ingenulty you can defy

## DESOLDERING PUMP

computer boards as well as for
service work generally. Price $£ 6 \cdot 35$.
$\qquad$
4

4 CORE FLEX CABLE
White per for telephone extensions, disco lights etc. 10 metres
$\mathbb{E 2}, 100$ metres $£ 15$. Other multicore cable in stock

## HEADPHONE AMPLIFJER (STEREO)

With volume tone and
balance controlgvoperation.
All made up ready to go.

## MUGGER DETERRENT



A high note bleeper, push latching switch, plastic case and battery connector. Will scare away any villaln and bring help.
$\mathbf{8} 2.50$ complete kit.

## RELAYS

Open type with 2, 10 amp e/o contacts-single screw fixing $1 \cdot 25$ each, please state the coll voltage you require.
HUMIDITY SWITCH
American made by Honeywell. The action of this device depends upon stretch and trigger a sensitive mleroswitch, very sensitive-breathing on it for instance will switch it on. Miero 3 amp , at 250 V a.c. Only E1-15.

## SAFE BLOCK

 Mains quick connector will save you valuable time, Featuresinclude quick spring connectors, hesvy plastle case and
auto on and off switch. Complete kit $£ 1$. $2 s$.

## VERSA DRILL

A 12 volt battery operated power
dilili, not just sultable for printed circult boards but will do all the perform all the functions and operations normally expected of Black \& Decker and other mains.
 drills. Its chuck accepts up to $\frac{t^{\prime \prime}}{t^{\prime \prime}}$ 50 mm . Price appron

## TWIST DRILLS

Preclsion Swiss made-normal price 50 p each 10 diff. sizes covering tr $^{\prime \prime}-\mathbf{t}^{N}$, $£ 1.99$ the lot-don't miss infs

## MAINS SOLENOIDS



MOTORISED DISCO S WITCH
With 10 amp changeove switches. Multi adJust-
able switches are rated a 10 amps. This would pro-
vide. a magniflcent dis vie. a magniflcent dis
play. Fo: mains operating 8 switch model $£ 6 \cdot 25$. 10 3 witch model $£ 7.25$.

## MULLARD UNILEX

A mains operated $4+4$ stereo periormers in the stereo fleld gift for almost anyone wonderful o-assemble modular form this due to a special bulk buy and an Incentlve for you to buy this month we offer the system com

$$
\begin{aligned}
& \text { plete at only } \\
& \text { and postage. } \\
& \text { FREE GIFT- }
\end{aligned}
$$

FREE GIFT--Buy this month and you will receive a pair of

## NEW KITS

5 WAVE BAND SHORT WAVE KIT Bandspread coverin 13.5 to 52 metres. Complete kit includee case, materials,
six transistors and diodes, condensers, resistors, inductors, switches etc. Nothing else to buy, if you have an amplifler to connect it to or a palr of high resistance headphones. Special
price is $514-85$ inc.
SUB-MIN MICROPHONE
 aids but guaranteed. Price $\boldsymbol{E 1} \cdot 50$ TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be icked up widn M radw. Can be made in a matchbox-al electronic parts and circuit. $\mathbf{2 2 \cdot 3 0}$.
RADIO MIKE
Ideal for discos and garden parties, allowa complete freedom
of movement. Play through FM radto or tuner amp \&5.


DRILL CONTROLLER Electronically changes speed rom approximately 10 revs to maximum. Full power at all KIf includes all parts, case everything and full instruction.
Made up model $£ 1.00$ extra
VENNER TIME SWITCH maln* OD erated with 20 amp swltch, one on and one off per 24 hrs. repeats datily automatically correcting for the lengthentlme switch but you can have it for only $\mathrm{E}_{2} \mathbf{2}-95$. These are new but without case, but we can supply plastic cases (base and cover) $£ 1.75$ or metal case wlth window $\mathrm{E}_{2} \cdot 85$. Also avallable is adaptor klt to convert thls Into a
normal 24 hr . time witch but with the added advantage of up to $12 \mathrm{on} / \mathrm{offs}$ per 24 hrs . Thls makes an ideal controller for the Immersion heater. Price of adaptor klt le $£ 2 \cdot 30$.

## THIS MONTH'S SNIP

includes a Free Gift, a desoldering PUMP, the one wo are currentiy selling ef £b-35. The snlp is perhape the most useful breakdown parcel we have ever ofiered, 50 nearly all different computep panele, on
these panels you will find over 300 ICs, over 300 these panels you will find over 300 ICs, over 300
dlodes, over 200 transistors and several thousand other parts, feshators, condensers, multi-turn pots, rectlfers, tic., te. You can have the parcel for only Es 50 which when you deduet value of the desoldaring PUMP, work out iust a LITTLE OVER mise so send your ORDER today. Add $£ 3 \cdot 25$ for Post and VAT.

## SOUND AND LIGHT UNITS

3 CHANNEL SOUND TO LIGHT KIT Complete kit of parts for a three channel sound to light unit controiling over 2000 watts of lighting. Use this at home If you wlah The unit is housed in an atiractive two-to
and has controls for each channel, and a master on/off. The audio input and output are by $\frac{1}{\prime \prime}_{\prime \prime}^{x}$ sockets and three panel mounting fuse holders provide thyrlstor protection. A four pin plug and socket facllitate ease of connecting lamps.
Special snip price $18 £ 13 \cdot 50$ In kit form or $£ 18 \cdot 50$ aesembled and tested.
REMOTE CONTROL for Sound to LIght (ours or any other clrcult) saves connecting to speaker or amp-Kit consista of 1 watt amp
Price $\mathrm{E3} .85$.
LIGHT EXPANDER AND LATCH for Sound to Light enablas 3000 watts of Ilghting to be controlled by single Channe1 or each channel and enables llohts to be latched on. and diansam. Price fi. 25 ay, control switch, case, sundries
SINGLE CHANNEL KIT still available. Price E5-18
DELAY SWITCH
Mains operated-delay can be
accuratelyset with polnters knob
for periods of up to 21 hrs . 2 contacts sultable to switch 10 amps-second contact opens a fow $m$
E 1.50 .


## MINI-MULTI TESTER

Deluxe pocket size precislon
moving coll instrument, jewelled bearings-2000 0.0.y, mirrored
scale.
117 instant ranges measure:DC volts $10,50,250,1000$.
AC volts $10,50,250,1000$
$A C$ volts $10,50,250,1000$.
$D C \operatorname{amps} 0-100 \mathrm{~mA}$.
Continulty and resistance $0-1 \mathrm{mes}$ Come in two rances. Complete with Test Prods and measure capacity and inductance as well.
Snbellevable value only ese.75 +
50p post and insurance.
FREE Amps ranges kit to enable you to read DC curren from 0-10 amps, directly on the o-10 scale. It's free if you purchase quickly but if you already own a mini tester and

TERMS: Cash with order-but orders under E 10 must add 50p to offset packing, etc
BULK ENQUIRIES INVITED. PHONE: 0444-54563
ACCESS \& BARCLAYCARD ACCEPTED.

## J. Bull [EEEGTRICAL] Ltd. (DEPT. EE才) <br> 34-36 AMERICA LANE, HAYWARDS HEATH SUSSEX. RH16 3QU

BURGLAR ALARM CONTROL PANEL
contains labelled connection block, latching relay. tes whole installationable key control switch. Simpllfies the pressure pads and to alarm bell. Price $88 \cdot 00+50 \mathrm{p}$. With
complete diagram.

PRECISION MAINS OPERATED CLOCK
For Only $\mathrm{El} \cdot 50+22 \mathrm{p}$. Sounds unbelievable but that's what
you can have if you send your order right away which have large clear dials were made by the famous smiths Company for use with their domestlc cooker switch and are brand new and gua

15-0.15v@ 2 AMP MAINS TRANSFORMER
wound on separate bobbins with fixing lu pecondary 45p. Post 60 p .

5-0-25v@ 750 mA MAINS TRANSFORMER
Mains transformer C core construction, heavily varnished for dead quief operation. Upright mounting with fixing lugs.

## 5 WATT MID-RANGE SPEAKER 5i"

Price $\mathrm{Ey} \cdot \mathbf{5 0}+\mathbf{4 5 0}$. Post $\mathrm{Ef} 1 \cdot 00$.
OHM TWEETER
Made by Goodmans. $31^{\prime \prime}$ square, $4^{\prime \prime}$ across fixings. Price
$\mathbf{E 1} \cdot 50+22 \mathrm{p}$. Post 30 . ${ }^{2}$.

## PRECISION PARKING PAD KIT as specifled. <br> E2.50. <br> LIGHTFAILURE MONITOR KIT as specified. $\mathbf{5 7} \cdot 50$.

## WATERPROOF HEATING WIRE

As used for electric blankets, etc. This has dozens of other lation are obvlous uses. One unusual use sug poor circucustomer is a 'grow' bag heater. The wire which conslst an element wound on glass fibre then PVC covered has per yard.

TELEPHONE PICK-UP coll attaches by suction to phone body, enabling conversation to be recorded, put through

## TRANSDUCERS

## IGHT CHASER

Gives a brilliant disp arties and pop groupds. These have three show for discos Chase-paterns and a strobe effect. Total output nowe 750 watts per channel. Complete kit. Price $£ 14+\underset{\text { e } 2 \cdot 10}{ }$

PRINTED CIRCUIT KIT
copper plated boards and the chemical for efching the lectronic gadgets which can be made on these board rice $£ 9 \cdot 70+30$ p

MAINS TRANSISTOR POWER PACK to operate transls or radio, cassettes, amplifiers, etc., take the place of any o You can make voltage output anything from 3y to and ot up to 300 mA . Complete kit but no case $\mathbf{E 1} \cdot 75+26 \mathrm{p}$. Case 75 p +

## TELESCOPIC AERIAL

5 sections, $21^{\prime \prime}$ when extended, Nickel plated superior make nut fixing, folds over for FM. Price 55p +15 p

FISH BITE INDICATOR enables anglers to sef up severa lines then sit down and read a book. As soon as one has

6 WAVEBAND SHORT WAVE RADIO KIT
Brandspread covering 13.5 to 52 metres. Based on clrcult which appeared in a recent issue of Radio Constructor Complete kit, Includes case materlals, slx transistors and dodes, condensers, resistors, Inductors, switches, etc to on a pair of high resistance headphones. Special price to get this kit off the ground, le E11- है Ine VAT and postage.

## $3^{\prime \prime}$ EDGEWISE PANEL METER

O. 25 MA moving coll made for the G.P.O. A very useful +38 p . PANEL METER 0.1 mA
Japanese made full vision perspex front, flush mounting

## 12v SUBMERSIBLE PUMP

Our dril pump is useful, but this new one is even more so Just joln if to your car battery, drop If Into the liquid to be
moved and up it comes, no messing about; no priming, etc and you get a very pood head. Sultable for water, paraffin and you get a very oood head. Sultable for water, paraffin
and any non-explosive, non-corroslve liquid, One use if you are a camper, make yourself a shower. Price f6 +90 p . A and length of plastic fubling
E.H.T. MAINS TRANSFORMER with inductance control normal primary, secondary output by our equipment, 3.5 kv
3 mA . E. H.T. voltage can be varled by applylng a DC voltage to the lower normaily unused bobbin. We are not sure how much the voltage may be increased or decreased but using Ex unused P.S.U.'s. Price get a rise or fall of about 50 volts.

## SHORT WAVE CRYETAL RADIO

Al the parts to make up the beginners model. Price $£ 2+30 \mathrm{p}$. Crystal earplece $57 \mathrm{p}+8 \mathrm{p}$. High resistance headphones (give +50 p . Kit includes chassis and front but

RADIO STETHOSCOPE
Easy way to fault find-start at the aerial and work towards the speaker-when slgnal stops you have found the fault. Com-
plete klt $£ 4 \cdot 25+850$.

## NTERRUPTED BEAM KIT

This kit enables you to make a switch that wlli trigoer when a teadybeam of infra-red or ordinary light is broken. Main com-ponents-relay, photo transistor. resiators

## Simply ahead...



## POWER AMPLIFIERS

 sources.

| Model | Output <br> Power <br> R.M.S. | Dis. <br> tortion <br> Typical <br> at 1 KHz | Minimum <br> Signal/ <br> Noise <br> Ratio | Power Supply Voltage | Size in mm | Weight in gms | Price + V.A.T. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY30 | 15 W into $8 \Omega$ | 0.02\% | 100 dB | $\cdot 20 \cdot 0 \cdot+20$ | $105 \times 50 \times 25$ | 155 | $\begin{aligned} & \mathrm{f} 6.34 \\ & +95 p \end{aligned}$ |
| HY50 | $\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$ | 0.02\% | 100 dB | -25-0-25 | $105 \times 50 \times 25$ | 155 | $\left\|\begin{array}{c} £ 7.24 \\ +£ 1 \\ +\quad 1 \end{array}\right\|$ |
| HY120 | 60 W into $8 \Omega$ | 0.01\% | 100 dB | -35-0. +35 | $114 \times 50 \times 85$ | 575 | $\left[\begin{array}{c} \mathrm{f} 15.20 \\ +\mathrm{f} 228 \end{array}\right.$ |
| HY200 | $\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$ | 0.01\% | 100 dB | -45 0- +45 | $114 \times 50 \times 85$ | 575 | $\left\|\begin{array}{c} £ 18.44 \\ + \\ +277 \end{array}\right\|$ |
| HY400 | $\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$ | 0.01\% | 100 dB | $-45-0+45$ | $114 \times 100 \times 85$ | 1.15 Kg | $\begin{gathered} \mathbf{£ 2 7 . 6 8} \\ +£ 4 \quad 15 \end{gathered}$ |

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all modets $100 \mathrm{~K} \Omega$
Frequency response-all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

## POWER SUPPLY UNITS



ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's - in the other, for larger PSU's, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times \mathrm{HY} 6$ or 6 $\times$ HY6.6 £4.50 + £ 0.68 VAT
THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS
PSU 36 for 1 or 2 HY 30 's $\mathbf{~} 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU60 with toroidal transformer for 1 HY $120 \quad £ 9.75+£ 1.46$ VAT
PSU 70 with toroidal transformer for 1 or
2 HY 120 s $\quad £ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 \& 13
with toroidal transformer for
1 HY 400 or $2 \times \mathrm{HY} 200$ £ $23.02+£ 3.45$ VAT
aVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

# this time with two 

 new pre-amps

## HY6 mono HY66 stereo

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. Youexpect even better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY66|for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$ HY66190 $\times 20 \times 40 \mathrm{~mm}$ Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU -3 mV Mic-selectable $1-12 \mathrm{mV}$ Allothers 100 mV Tape $\mathbf{0} / \mathbf{P}$ - 100 mV Main O/P $=500 \mathrm{mV}$ : Frequency response - D.C to $100 \mathrm{KHz}-3 \mathrm{~dB}$

## HY6

£5.60

+ vat 84 D
£10.60
+ VAT $E 1.59$
Connectors included
86 Mounting Board
$78 p+12 p$ VAT
B66 Mounting Board $99 p+15 p$ VAT

■ LOw DISTORTION - Typically 0.005\%



## NO QUIBBLE 5 Year guarantee 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE freepost Service - see below

* ALL U.K. ORDERS DESPA TCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stampenvelope - wepay postage onallletters sent tousby readers of this journal.


ELECTRONICS LTD.


## ELEETRITIVKKit DENSHI KITS SPECIAL OFFER


". .. fun and entertainment
as well as education"-
(EVERYDAY ELECTRONICS mag.)
The SR-3A kit (over 100 circuíts) and the SR-3A de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices

Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.

## SR-3A KIT

£29.95

$$
\left(16 \frac{1}{2} \times 10 \times 2 \frac{1^{\prime \prime}}{2}\right)
$$

Bulld over 100 prolects including 3-TR reflex radio recelver, 3-TR radlo recelver with RF amplifler, 2-TR reflex radlo recelver, 3-TR amplifier for crystal mike, 3-TR amplifier for speaker/mike, 3-TR slgnal tracer, Morse Code trainer, 2-TR electronic organ, electronle metronome, electronlc bird, electronic caf, electronic siren, electronic gun, 2-TR sleeping aid, high voltage generator ${ }_{\text {d }}$ discontinulty warning device, water supply warning device, photoelectric alarming device, 3-TR burglasalarm, 3-TR water supply warning device, 3-TR water level warning deyice, 3-TR photoelectrle alarming device, Morse Code tralner with sound \& IIght, dlscontInulty warning device with sound \& llaht, water level warning device with sound \& llght, electronle metronome with sound $\&$ light, buzzer with sound $\&$ light, wireless mike, wireless telegraph set, wireless dlscontinulty warning device, wireless water level warning device, wireless water supply warning device, wireless photoelectrle warning devlce etc, etc.

## SR-3A de luxe KIT £39.95

(illustrated $16 \times 14 \times 3 \frac{1^{\prime \prime}}{}$ )
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices include batteries, educational manuals, free book VAT, p\&p (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard (or 20p. for illustrated literature) to DEPT. EE.

## ELECTRONI-KIT LTD <br> RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

0

## Wilmslow Audio

## THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

```
AUDAX AUDIOMASTER BAKER
BOWERS & WILKINS CASTLE
CELESTION CHARTWELL COLES
DALESFORD DECCA EAGLE ELAC
EMI FANE GAUSS GOODMANS
HARBETH ISOPHON I.M.F. JORDAN
JORDAN WATTS KEF LOWTHER
MCKENZIE MISSION MONITOR AUDIO
MOTOROLA PEERLESS RADFORD
RAM ROGERS RICHARD ALLAN
SEAS SHACKMAN TANNOY
VIDEOTONE WHARFEDALE
```

WILMSLOW AUDIO (Iophes)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Tel: 0625-529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS


COMPUTER GAMES Chess champlon 6 Sensory chess challenger 8 £109. Atarl dV GAMES AY-3-8550 eocs 14 -85. TV GAMES AY-3-8550 + kit $£ 8.26$. AY-3-8600

+ kit $£ 16 \cdot 09$. Colour generator kit $£ 9-95$. TRANSFORMERS $6-0-6 \mathrm{~V}$ 100ma 80 p . 1ta $£ 2 \cdot 60.9-0-9 \mathrm{~V} 75 \mathrm{ma} 80 \mathrm{p}, 1 \mathrm{a} £ 2 \cdot 40$, 2 a £3-94. 12-0-12 V 100 ma 99 p , 1a £2.90. IC AUDIO AMPS wlth peb. JC12 6W 2.08. JC20 10W £3.54. aATTERY ELIMINATORS 3-way type $677 \frac{1}{2} / 9 \mathrm{~V} 300 \mathrm{ma}$ as 14.100 ma radio type with convertor 12 v input, output $4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{v}$ 800 ma £2.76.
BATTERY ELIMINATOR KITS 100 ma radio types with press-studs $4 \frac{1}{3} \mathrm{E1}$-49, 1.92 . $3 / 4+1 / 6 / 7+/ 9 / 12 / 15 / 18 \mathrm{v}$ 100ma $£ 2.60$, if Amp £6.50. Stablized power kits $2-18 \mathrm{~V} 100 \mathrm{ma}$ £2.60, 1-30V 1A £6.75, 1-30V 2A £12.10. convertor $6 / \frac{1}{2} / 9 \mathrm{~V}$ 1A $£ 1 \cdot 35$.
SWANLEY ELECTRONICS Oept. EE, 32 Goldsel Rd., Swanley, Kent. post 35 p extra. Prices include VAT uniess stated. Lists 27p post free. Mall order only.


## - TECHNICAL BOOKS

Comprehensive and selected range by well-known authors and publishers Constructors projects in electronics, radio and audio. Reference and text books. YOU NAME IT-WE HAVE IT—OR WILL GET IT

SOME NEW BOOKS FROM OUR LISTS
Electronic Projects in Audio (Penfold) $\mathbb{2} \cdot 50$
Projects in Radio \& Electronics (Sinclair) $\mathbf{1 2 . 5 0}$
Electronic Projects in Music (Flind) $£ 2 \cdot 50$

* *SPECIAL—Everything you need to know to become a radio amateur$Q$ and A Amateur Radio (Judd) $\mathbb{1} 1.75$
* BOOKS MAILED Ist CLASS * SAME DAY AS ORDER RECEIVED

PRICE INCLUDES P and $P$ ITH CASH, PO OR CHEQUE WITH ORDER
Send only two 12p stamps for fully detailed catalogue and price list.

## Z. L. COMMUNICATIONS (3)

35 Burnt House Road, CANTLEY, Nr. NORWICH, Norfolk NRI3 3RT Tel. FREETHORPE 821 Local STD 049-370-9 a.m.-5 p.m. only

# WE HAVE ALL THE NEW ATARI ${ }^{*}$ VIDEO GAME PROGRAM ${ }^{\text {m }}$ CARTRIDGES． 

## ATARI 886 in

$$
\|_{\mathrm{H}}^{\text {rual }}
$$

## GLEGTRONIC GAMES

ATARI INTELLIVISION MATTEL CHESS


SPECIAL PRICE £86 ＋vat

SPACE INVADERS

## คัた

H．

鳥 鳥

HAND HELDS＋CARTRIDGES ATARI．ACETRONIC PRINZTRONIC
RADOFIN OA We keep a tull rang
Send for cartridge

Avaifable August 1980 This is the most advanced TV game in the world． Expendable next year into a full microcomputer． COLOUR CATALOGUE AVAILABLE WITH DETAILS ON ALL THE CARTRIDGES
BRIDGE


COMPUTER Plays $1 / 2 / 3$ or 4 Hands Problem Mode
Audio Feedback ＊Instant Response ＊Auto scorekeeping
DRAUGHTS


COMPUTER
＊Solves Problems Rejects illegal moves 2 level machine £43＋VAT 4 level machine £77．78＋VAT


Send for further details．
COMPUTERS
NEW RANGE AVAILABLE AUGUST 1980 We specialise in computer chess machines \＆stock over 13 different models from BACKGAMMON


COMPUTERS
OMAR 1
OMAR 2
CHALLENGER GAMMONMASTER

From $£ 38$ to $£ 108$ ．Send for further details．

## LEISURE

＊CHEAP TV GAMES
＊TELEPHONE ANSWERING MACHINES
＊AUTO DIALLERS
＊CALCULATORS
＊DIGITAL WATCHES
＊PRESTEL
＊HAND HELD GAMES


RADOFIN TELETEXT Add on Adaptor
$£ 173+$ VAT


## FREE

CATALOGUE For a free copy of our 32 page catalogue，send a $12 p$ stamp to a 12 p stamp Ltd Silica Telephone 01.3011111

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms. but it is now avalable in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignition incorporating a power integrated circuit (special selection) electronic variable divell circuit (maximises spark energy at all speeds). pulse processor (overcomes contact breaker problems). Coil governor (protects coill) Long burn oufput Negative earth only. Compatible with all rev. counters. C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July 79. A high energy
capacilive discharge ignition incorporating a high output short circuit proos inverter top grade Swedish output capacitor, pulse processor circuit, transcient overioad protection. Fast risé bidirectional output ideal for fuel injection, sports carburation, oily engines. Compatible with most rev counters. (Low cost adaptors available for rare cases. Application list enclosed with each kit. Note Vehicles with Smiths? Jaeger rev counters code RVI on dial will require adaptor type TCII. What's in the kits. Surefire's own precision anodised aluminium extruded case. P.C. mounted security changeover switch, static timing hight. Special selection Motorola semi-conductors. Capaciors, resistors etc. selected after 5 -years experience. Glass fibre pcb, solder complete down to last washer
Fully illustrated comprehensive instructions and full technical back up service.

Suretron Systems (UK) Ltd
Dept. EEIO Bayer Buildings, Lower Bris
Tel: Bath $(0225) 332317$

Name
Address
'Phone order whth Access/Barclaycard
Quantity
VAT and $P$ \& $P$ inc
required

| ES200: $\mathrm{Neg} \pm$ | £17.95 f11.95 |  |
| :---: | :---: | :---: |
| C300: Pos | £ I795 £15.95 |  |
| C300: Neg | £1795 f15.95 |  |
| Tacho Adapt. TC1 | £ 3.90 |  |

lenclose $f$


## TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PH́ONE TODAY FOR FREE BOOKLET


To: International Correspondence Schools

Dept Z268 Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel:
Age: .....

## LK1 OSCILLOSCOPE

Solid state circuitry; D.C. coupled; 7 cm . dia. tube; $Y$ input $0.3 \mathrm{v} / \mathrm{cm}$.to $50 \mathrm{v} / \mathrm{cm}$.; X input 1 volt $/ \mathrm{cm}$.; 1 v .and 10v. cal. signals; response to 1 MHz ; Time base ranges to $8 \mu \mathrm{~S}$ per cm .; Size $230 \times 130 \times 190 \mathrm{~mm}$. Wt. 2 Kg . Operates from 110 volt or 220/240 volt A.C. High quality kit complete with carrying case.
£130.00

## LK3 HOME COMPUTER

Ideal simple computer for beginners. Microprocessor has 8 bit data bus and 12 bit address bus. Ready programmed ROM has 4 K bits. RAM of $0.5 \times 8 \mathrm{k}$ bits fully addressable. 8 digit LED display. Hexadecimal read out. Hexadecimal keyboard. Re-set switch and single shot facility. Power supply kit included. Provision for cassette and V.D.U. operation. $£ 190.00$
LK5 DIGITAL ELECTRONIC TECHNIQUES
Experiments carried out on a P.C. board, size $190 \times 150 \mathrm{~mm}$ covering operational amplifiers; integrators; basic logic circuits; NAND, NOR gates; Flip-Flops; Multivibrators; clock generator; 4 bit comparitor feed back; analoque switching; building simple digital meter circuits; Timer.
Note:- for full benefit with this kit a C.R.O. is desirable although circuits can be built without one.


## LK4 AUDIO GENERATOR

Covers 10 Hz to 100 kHz in four switched stages. Variable voltage output.
Distortion below 0.02\%. Sine and square wave output. Ideal for HI-FI work and as signal tracer.

$$
£ 40.00
$$

## LK6 LOGIC DEMONSTRATION PANEL

Basic introduction to computer technology; AND and OR gates; NOR and NAND; Data line selector; Truth tables; AND and INVERT gate; Half and Full Adder; Latches; Flip-Flops; Shift register; Binary coded decimal counter. Over 16 experiments are performed with panel. Battery operated.

## £70.00



LK7 ANALOGUE TEST METER
Basic multi range test meter kit with 20,000 ohm/volt sensitivity. Ranges Ranges: D.C. and A.C. volts $0-5,0-25$, $0-100,0.500 ; 2.5 \mathrm{kV}$.
D.C. $0-5 \mathrm{~mA}, 0.500 \mathrm{~mA}, 0-50 \mu \mathrm{~A}$

Resistance 0-50K; 0-5M. Size $150 \times 75$ $\times 50 \mathrm{~mm}$.


## LK8 SHORT WAVE RECEIVER

A simple 3 stage short wave only radio receiver for the amateur. Very good selectivity and sensitivity and will give hours of enjoyment. Simple to construct by people of any age.
£25.00


To:- LERNAKITS, 4 Cleveland Road, Jersey, Channel Islands. (Est. 40 vears)



Keelmoor Ltd is a company which has been established for a long time - we supply the products you have often bought from other companies. Our precision watches and electrical goods are renowned for their superb quality and reliability.
We differ from other companies in that we import direct world-wide - that difference is passed on to you at unbeatable prices. You receive the goods faster and we provide a service and no catch guarantee of which we are justly proud.
We employ experts world-wide whose job it is to seek out products of the highest quality at the lowest possible prices. Illustrated here is just a tiny selection of our comprehensive range. Just compare these items with those seen elsewhere - we are confident the prices will amaze you. You can save $£ 5$ SS's.

## GENTS 5 FUNCTION LCD



This is the foundation of our range and is ideal for the man requiring the basic functions of hours, minutes and seconds, with month and date. A backlight is included and the stainless steel strap provided is fully adjusted to suit any size of wrist. Guaranteed for one year, this watch represents fantastic value at only
£4.95p

ILLUSTRATED BELOW IS THE LADIES 5 FUNCTION LCD. This watch has the same time and auto calendar functions as the basic gents model described above, together with backlight and adjustable strap to suit the daintiest of wrists. It's compact, pleasing appearance makes it a very practical day watch andit is also often used for boys and girls. Available in black or white face.
These are just a few of our fantastic offers remember. A free colour catalogue is pỏsted with every $\mathbf{~} 5.95$ p order.


FULLY GUARANTEED
We must emphasize all these items are fully guaranteed for one year. All electronic goods come complete with demonstration batteries which cannot be guaranteed. New batteries are available for only 60 p .


GENTS LCD
ALARM WATCH This modet represents fantastic, incredible value for money. The 6 digit display continuously shows hours, minutes and seconds, or may be changed at will to hours, minutes and date. Its effective alarm is extremely useful and may be set to any time within a 24 hr . period. In addition, there is an alarm indicator, 4 year calendar and snooze repeater.

BARCLAYCARD
AND ACCESS
CARD
WELCOME.
SEE COUPON.

## HERE IS THE AMAZING

 12/24 HOUR ALARM/CHRONOGRAPH

From Watches to Clocks, from Calculators to Radios, from Binoculars to Tool Kits KEELMOOR is the name for the right quality at the right price. Your personal catalogue will tell you more-free with every order.


## LADIES QUARTZ LCD DRESS WATCH

This attractive ladies model with the standard 5 functions of hours, minutes, seconds, month and date has literally sold in tens of thousands. Available in gold or silver colours with ‘sugar coated' finish. Please state first and second choice of square, round or oval design.

## THE ULTIMATE GENTS LCD CALCULATOR/ALARM WATCH

If you want a watch from the top end of the market this is the one for you. Full calculator functions plus memory and percentage are combined with time and alarm functions to make this item an outstanding buy. Manufactured in Japan at the same factory that produces models for probably the most famous name in the watch business, this device represents sheer quality at an unbelievable price. Comes complete with backlight and button operating tool carried in the strap clasp. We advise you to order quickly whilst stocks last.


WE ARE PROUD TO INTRODUCE THE AMAZING MELODY ALARM CHRONOGRAPH


ACTUALLY PLAYS

## THE YELLOW

 ROSE OF TEXASbut as you can see FROM THE DETAILS BELOW THIS CHRONOGRAPH IS NO MERE NOVELTY
Today's technology has produced this fine watch which incorporates a musical alarm which plays a complete verse of 'The Yellow Rose of Texas.' Other functions included are as for model number 1 .

## £14.95p

NEW TO OUR RANGE, WE COMBINE PRECISION AND STYLE IN THIS-THE SUPER SLIM GENTS 5 FUNCTION CHRONOGRAPH


JUST TO GIVE YOU AN IDEA OF THE ULTRA SLIMNESS OF THESE WATCHES WE HAVE ILLUSTRATED A SIDE VIEW OF THE SUPERSLIM DIGITAL BELOW, WE HAVE ELABORATED ON SOME OF THE TECHNICALITIES:-
These watches need no special functions to make them stand out in a crowd - their slimness serves that purpose. If you've been put off digital quartz watches in the past because you require an ultra-slim design, now is the time to change. Is equipped with standard 5 functions and backlight.
£9.95p

## MAINS DIGITAL ALARM CLOCK



A very practically sized mains operated digital alarm clock - this item is extremely well finished and looks equally at home by the bedside or in the living room. With snooze/repeater alarm you could not even buy the components to build your own for this price. Available at the amazingly low price of only
88.95p

AND FINALLY, WHAT MUST BE THE ULTIMATE IN SQUEEZING A QUART INTO A HALF PINT POT! THE INCREDIBLE MINIATURE LCD TRAVEL/ALARM CLOCK


As you can see from the photograph abovethis device is tiny and yet it continuously displays hours and minutes with auto calendar and night light. Invaluable for the busy traveller or simply for use in the modern home, it comes complete with its own travelling case and can easily be carried in top pocket or the smallest of handbags. It has even got a stand for upright position on table, shelf or sleeping compartment. An unusual gift to yourself or others at onlv \$10.95

Every order dispatched by return, and is sent by recorded delivery. That is Keelmoor's Promise To You.


Please send me the items indicated in the boxes below. I understand that if $I$ am not completely satished, I may return the goods undamaged within I5 days and my
 TOTAL AMOUNT $=5$
NaME Mrs. Miss.Ms.Mr
ADDRESS

Ienclose a cheque/PO to KEELMMOR LTD
Or charge iny Access $\square$ or BARCLAYCARD $\square$ (ick as applicable)
No
No
The advertisements to watch for quality precislon at the right price. All goods dilepatched by return.

Freepost C
B19 1BR 021-233.2400 $=24$ HR PHONE ANSWERING SERVICE
C.MOS


## GMT SELL P.A. EQPT.



## SEND A LARGE S.A.E. FOR OUR FLOG LIST \& OTHER INFO.

| MAINS TRANSORRMRS OTOM Coode <br> per allal to give wide voltage cance |  | Mantic Boxer - Bost Induavial Mouldings <br>  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Crmo Troo Conerruction 235 |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| 20 Va - Cump True Conerrection 3 B |  | ${ }^{\text {L5M ws }}$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\begin{aligned} & 0.175 \mathrm{~V}, 0.175 \mathrm{~V} \\ & 0.20 \mathrm{v} .0 .20 \mathrm{v} \end{aligned}$ |  |  |  |  |
|  |  |  |  |  |
| VERO ELECTRONICS PRODUCTS |  | SWITCHES |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  <br> 5 Susb To Make. Mormenkery |  |  |
| veomre wera (2) 100pect |  |  |  |  |
| 1 necroones sils |  |  |  |  |
| nut retex xin |  | ONe Aw rowe sumr movit kri. |  |  |
|  |  | ONE AW rowe sumy |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |  |  |

# KITS FOR E.E. PROJECTS 

AUTOFADE
VARICAP RADIO
TRANSISTOR TESTER
4.5TATION RADIO (No Case)

MORSE PRACTICE OSCILLATOR
WARBLING TIMER
MODULATED TONE GENERATOR
ELECTRONIC TUNING FORK
MICRO MUSIC BOX
UNIBORAD BURGLAR ALARM
UNIBORAD BUR
KITHEN TIMER
LIGHTS WARNING SYSTEM
BATTERY VOLTAGE MONITOR
SIMPLE S.W. RECEIVER
SIMPLE S.W. RECEIVER
INTRUDER ALARM
AUDIO TONE GENERATOR
DUAL LINE GAME (No Case)
GAS SENTINEL
5 RANGE CURRENT LIMITER
CHASER LIGHT
SHORT WAVE CONVERTER
UNIBOARD TOUCH SWITCH
FUNCTION GENERATOR
OPTO ALARM
AUTO-LEVEL CONTROL
CYCLE DIRECTION FINDER
All above kits include parts as describ
AIRECTION FINDER
All above kits include parts as described
onnecting wire ond coses where applicable.

| (ZB66) | May 80 | ¢10.25 |
| :---: | :---: | :---: |
| (ZBI) | Sept 79 | c8. 50 |
| (Z82) | Sept 79 | 65.00 |
| (ZB62) | May 80 | 614.00 |
| (Z843) | Feb 80 | 66-00 |
| (ZB5) | Aug 79 | 65.80 |
| (ZB50) | Dec 79 | E3.50 |
| (ZB7) | Aug 79 | 18.90 |
| (2B45) | Feb 80 | ¢17.00 |
| (ZB57) | March 80 | $\underline{6} 15 \cdot 25$ |
| (ZB51) | Dec 79 | 65.00 |
| (ZB55) | March 80 | ¢12.75 |
| (ZB47) | jan 80 | E4.50 |
| (ZB63) | May 80 | 63.60 |
| (ZB64) | May 80 | 64.25 |
| (ZB44) | Feb 80 | ¢18.00 |
| (ZB23) | May 79 | 123.00 |
| (ZB67) | May 80 | 63.50 |
| (Z865) | May 80 | $625 \cdot 00$ |
| (Z861) | April 80 | $\underline{27.00}$ |
| (ZB53) | March 80 | 64.50 |
| (ZB4) | Sept 79 | ¢17.50 |
| (ZB25) | May 79 | 613.75 |
| (Z856) | March 80 | 69.00 |
| (Z852) | Nor 79 | C25.00 |
| (2841) | Nov 79 | 45.00 |
| (Z860) | April 80 | 68.00 |
| (ZB54) | March 80 | t3.75 |
| (Z859) | April 80 | ¢14.50 |

TEACH-IN '80
New to electronics? Then start at the beginning. All electronic components for construction of Tucor Deck and Teachiln experiments during the first six parts of the series.

Lists $A$ and $8 \quad E 20 \cdot 00$
Lisr $C$

## ALL PRICES INCLUDE V.A.T.

BARCLAY/VISA/ACCESS CARDS ACCEPTED. MINIMUM TELEPHONE ORDER $\mathbf{6 5 . 0 0}$.

## T. POWELL

306, ST. PAUL'S ROAD, LONDON N.I.
TELE: 01-226 1489.
SHOP HOURS: MON.-FRI. 9AM-5.30PM. SATURDAY 9AM-4.30PM


## WATIORD ELECTRONICS <br> 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND <br> MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

ALL DEVICES ERAND NEW, FULL SPEC. AND FULLY QUARANTEED ORDERS P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL WELCOME. PRP ADD 30 P TO ALL ORDERS UNDER K10-00. OVERSEAS ORDERS VAT Export orders no V.A.T. Applicable to U.K. Cusiomers only. Unless stated otherw We elock many moreltome. It pays to visit us. Weare situated behlnd Watford Football 8 aturday $3.00 \mathrm{am}-\mathrm{E} .00 \mathrm{pm}$. Ample Free Car Parking epace avallable.
POLYESTER CAPACITORS: Axlal lead type (Values are in $\mu$ F

1000V: $10 \mathrm{nF}, 15 \mathrm{n}, 20 \mathrm{p}$; 22n 22p: 47 n 26p: 100 n 42p; 470 n
POLYESTER RADIAL LEAD CAPACITORS (250V)
POLYESTER RADIAL LEAD CAPACITORS (250V)
10nF, $15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}, 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 330 \mathrm{n} \left\lvert\, \begin{aligned} & \text { RECTANGULARLEDB } \\ & \text { Red Green or Yellow }\end{aligned}\right.$ 13p; 470n 17p; 680n 19p; 1 $\mu \mathrm{F}$ 22p; $1 \mu 530 \mathrm{p}$; $2 \mu 23 \mathrm{p}$.
ELECTROLYTIC CAPACITORS: (Values are In $\mu$ F $500 \mathrm{~V}: 1050 \mathrm{p} ; 47$ 76p; 250V: $100 \mathrm{6p}$ :
63V $0.47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8,9 \mathrm{p} ; 10,15,22,11 \mathrm{p} ; 47,32,5014 \mathrm{p} ; 63,10027 \mathrm{p} ; 50 \mathrm{~V}$ $63 \mathrm{~V} 0.47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2.5,3 \cdot 3,4 \cdot 7,6 \cdot 8,9 \mathrm{p} ; 10,15,22,11 \mathrm{p} ; 47,32,5014 \mathrm{p} ; 63,10027 \mathrm{p} ; 50 \mathrm{~V}$
$100,220,25 \mathrm{p} ; 47032 \mathrm{p} ; 100080 \mathrm{p} ; 4 \mathrm{~V} ; 22,3,9 \mathrm{p} ; 10012 \mathrm{p} ; 220030045 \mathrm{p} \cdot 4700115 \mathrm{p} ; 35 \mathrm{~V} ; 10$,

 $220099 \mathrm{p} ; 40 \mathrm{~V}: 4700130 \mathrm{p} ; 400092 \mathrm{p} ; 330098 \mathrm{p} ; 2500,220090 \mathrm{p} ;$
$110 \mathrm{p}: 25 \mathrm{~V}: 15000195 \mathrm{p} ; 6400 \mathrm{iz0p} ; 4700100 \mathrm{p} ; 3000$ 35p;2200 60 p.


## MYLAR FILM CAPACITORS


MINIATURE TYPE TRIMMERS

COMPRESSION TRIMMERS

POLYSTYRENE CAPACITORS 10pF to 1 nF Ip: 1.5 nF to 10 nF 10 p . SILVER MICA (Values In DP) 3-3,
$4-7,6-8,10,12,18,22,33,47,50,68$,



CERAMIC CAPACITORS: 30 V
0.5 pF to 10 FF 4 p ; 22 n to 100 n 7 p.
EURO BREADBOARD E5. 20






SWITCHES M Puah to Make $15^{p}$ Non-Locking $25^{0}$ ROCKER: SPST on/off 100A 250V ROCKER: illuminated DPST
ROTARY (ADJUSTABLE STOP) 1 pole p 2-12 way $2 \mathrm{p} / 2-6 \mathrm{~W}, 3 \mathrm{p} / 2-4 \mathrm{~W}$, 4p/2-3W. 43p ROTARY: Malns 250 V AC, 4 Amp


DIL 8 OCKET8 (Low Profle - Texas) | LM323K 625 TBA625B 95 |
| :--- |
| JACKSON8 VARIABLE |

## CAPA Dillcon

$\begin{array}{lll}\text { Dilicon } & 0 \quad 2 \text { 365pF } \\ 100 / 300 \mathrm{pF} & \text { 205p } \\ \text { slow motlon }\end{array}$ $\begin{array}{llll}500 \mathrm{pF} & 250 \mathrm{p} & \text { Drlve motion } & \text { 450p } \\ 61 \text { Ball Drive } & 00 & 208 / 178 & 395 \mathrm{p}\end{array}$ 4511DAF 145D nötión with slow
ditve 410p
Dial Drlve 4103
 $\begin{array}{llll}\text { Drum } 54 \mathrm{~mm} & 59 \mathrm{p} & 2550 \mathrm{pF} & 250 \mathrm{p} \\ 0-1.365 \mathrm{pF} & 325 \mathrm{p} & 100,150 \mathrm{pF} & 335 \mathrm{p}\end{array}$


| DENCO COILS | RDT2 | 120 p |
| :--- | :--- | :--- |
| 'DP'VALVETYPE RFC5 | 120 p |  | Range 1 to 5 Bl ., RFC $7(19 \mathrm{mH}) 133 \mathrm{p}$

Rd.. YI. Wht. 106 p IFT 13. $\begin{array}{llll}\text { R-7B.Y.R. } & \text { 95D } & \text { t6: } 17 & 17 \text {; } 110 \mathrm{p} \\ \text { 1.5 Green } & 130 \mathrm{p} & \text { IFT } 18 / 1.6 & 116 \mathrm{p}\end{array}$





## EDITOR

## F. E. BENNETT

## ASSISTANT EDITOR

B. W. TERRELL B.Sc.

## PRODUCTION EDITOR

## D. G. BARRINGTON

## TECHNICAL SUBEDITOR

## S. E. DOLLIN B.Sc.

## ART EDITOR

R. F. PALMER

## ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

## D. J. GOODING

## EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

## ADVERTISEMENT MANAGER <br> R. SMITH <br> Phone: 01-261 6671

## REPRESENTATIVE

N. BELL WOOD

Phone: 01-261 6865

## CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

## MAKEUP AND COPY <br> DEPARTMENT

Phone 01-261 6615

## ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

# Projects...Theory... 

## and Popular Features ...

The busiest season for constructors is now upon us and we open this new season with an eight-part series I.C.s Explained. The first four parts will be devoted to linear devices, the remaining four to digital i.c.s.

That's not all. As back-up, we are giving every reader a specially arepared chart Guide To Popular Linear I.C.s-free with this issue.

In general, electronics is becoming more and more to mean microelectronics. This is as evident in the constructor's field as elsewhere. The integrated circuit upon which microelectronics is based has risen to a position of paramount importance in designs for the home constructor. In quantity used, the ic. already tends to be on parity with the transistor, which used to be the key active component in the average circuit.

Anyone who was building electronic circuits before the ic. came on the scene will appreciate the tremendous changes this device has brought about during the course of the last decade. Electronic circuit design has been transformed-and greatly to the advantage of the constructor. An ic. takes little more time and effort to solder in position than a transistor yet it introduces an increase in actual operational circuitry of 10 to 10,000 times, or even more, compared to that built around a single discrete transistor.

Integrated circuits are produced in great variety. They can be broadly
divided into two classes: linear and digital. They range from comparatively simple devices incorporating, for example, a single operational amplifier or a set of logic gates, right up to those large-scale integration devices such as microprocessors which form the heart of complete computing systems-and which have recently been caught in the glare of large-scale publicity as harbingers of a new technological and social revolution.

Many of the available integrated devices are of immediate interest and usefulness to the constructor. Our new series will identify some of the most important i.c.s and explain their functons and provide suggestions for their use in practical circuits.

Those who are unfamiliar with the integrated circuit (or microchip-to use one of the popular names for this device) are recommended to read first the scene-setting article Introducing Microcircuits. This will prepare the ground for our series I.C.s Explained.

We hope a large number of new recruits will "join-up" this autumn and so swell the ranks of electronics constructors. It's a grand hobby, and it keeps you up with the technological times!


Our November issue will be published on Friday, October 17. See page 645 for details.

## Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

## Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibillty for it. Prices quoted are those current as we go to press.

VOL. 9 NO. 9OCTOBER 1980
CONSTRUCTIONAL PROJECTS
AUDIO EFFECTS UNIT Versatile unit for creative sounds by P. Bailey ..... 628
PHONE CALL CHARGE JOGGER Money saver for subscribers by T. R. de Vaux-Balbirnie ..... 632
UNIBOARDS: 7-DUSK-DAWN RELAY Light sensitive switch by A. R. Winstanley ..... 636
BICYCLE ALARM Sound protection against thieves by M. P. Horsey ..... 640
MIN/ I.C. RADIO A handy personal receiver by F. G. Rayer ..... 658
IRON HEAT CONTROL Safeguards the bit and components by A. Sproxton ..... 662
DARKROOM CONTROLLER Accurate enlarging timer by S. Ibbs ..... 664
GENERAL FEATURES
EDITORIAL ..... 626
SHOP TALK Product news and component buying by Dave Barrington ..... 635
IN MY CLASS Sir explains by T. R. de Vaux-Balbirnie ..... 638
SQUARE ONE Beginners Page: Circuit boards ..... 639
COUNTER INTELLIGENCE A retailer comments by Paul Young ..... 644
EVERYDAY NEWS What's happening in the world of electronics ..... 646
INTRODUCING MICROCIRCUITS Meet the silicon chip by J. B. Dance, M.Sc. ..... 648
I.C.s EXPLAINED Part 1: Operational Amplifiers by J. B. Dance, M.Sc. ..... 652
READERS' LETTERS Your news and views ..... 656
JACK PLUG AND FAMILY Cartoon by Doug Baker ..... 656
RADIO WORLD "The Open Channel" by Pat Hawker ..... 657
BRIGHT IDEAS Readers' hints and tips ..... 668
PLEASE TAKE NOTE Cricket Game, Autophase ..... 668
DOWN TO EARTH Keeping things in proportion by George Hylton ..... 669
WORKSHOP MATTERS Measuring receiver sensitivity by H. T. Kitchen ..... 670
free Wallchart With this ISSUE guide to popular linear i.c.s

[^1]


WVith the ever increasing cost of commercially produced electronic sound effects units, it is becoming increasingly economical for the electronics hobbyist to construct his own.

The unit to be described basically reproduces siren tones, but with careful manipulation of the controls, it can produce a whole variety of sounds. It can be built for a fraction of the cost of a ready made unit, and could be of use in home movie-making, tape recording, plays and discos.

## OSCILLATOR PRINCIPLE

The circuit is based on the NE556 i.c. This is a "dual timer" i.c. and contains two NE555 timers in one 14
pin d.i.l. package. In this application both of these timers have been connected as astable multivibrators using basically the conventional circuit shown in Fig. 1, which shows the circuit for just one half of the 556.

When the power is first applied, capacitor $C_{T}$ starts to charge up towards $V_{\mathrm{cc}}$ via $R_{\mathrm{A}}$ and $R_{\mathrm{B}}$. This continues until the voltage on $C_{T}$ reaches ${ }_{2}^{2} V_{\mathrm{CC}}$ at which point the threshold or, pin 2 senses this and switches on the discharge path, pin 1 , which was formerly in a high state, to ground potential thus effectively grounding the junction between $R_{\mathbf{A}}$ and $R_{\mathrm{B}}$. This allows $C_{T}$ to discharge to ground via $R_{\mathrm{B}}$. But when the voltage on $C_{T}$ falls to ${ }_{3} V_{\text {cc }}$ the trigger input, pin 6 senses this
and drives pin 1 high again, thus allowing $C_{T}$ to charge up again towards ${ }^{2}{ }_{3} V_{\text {CO }}$ at which point the whole discharging process repeats itself. This charging/discharging of $C_{T}$ will repeat ad infinitum with the $C_{T}$ voltage varying between ${ }^{1}{ }_{3}$ and ${ }^{2} V_{c c}$.

Each time $C_{T}$ is charged the output, pin 5, is driven high thus providing a pulse waveform. Thus by making $R_{B}$ a variable resistor, and giving $R_{A}$ and $C_{T}$ set values, we have a variable frequency oscillator.

## MODULATING VOLTAGE

An additional feature of the NE556 is that the oscillation frequency can be varied using a control voltage. This is shown in Fig. 1 as a modulating voltage $V_{M}$ being fed into the control voltage pin, pin 3 . This varies the width of the output pulses, while leaving the spaces between them constant so effectively varying the frequency. The higher the voltage fed to pin 3 the lower the frequency.
So if we have an audio frequency oscillator and we use low frequency waveforms to modulate its pitch via its control voltage input, then we can produce a variety of siren type sounds; the particular siren type dependent on the modulating waveform's shape. This is the principle of the unit described below.

## CIRCUIT DESCRIPTION

The complete circuit diagram of the Audio Effects Unit is shown in Fig. 2. The low frequency oscillator is built around ICla , half of the 556 i.c. Cl is the timing capacitor and is charged via R 2 and $\mathrm{R} 3+\mathrm{VR} 1$. It is discharged via R3+VR1. The frequency range at the high end is limited by R3, but the frequency range can still be varied from about $0 \cdot 72 \dot{\mathrm{H} z}$ to about 12 Hz .

The mode of operation is selected by S1 and this determines the shape and type of modulation signal sent to the audio oscillator. The switch positions are summarised as follows.

Position 1: S1a is not connected to anything; Slb is connected to the


Fig. 1. Circuit diagram of basic astable multivibrator using one half of a 556 timer i.c.


Fig. 2. Complete circuit diagram for the Audio Effects Unit.
low frequency oscillator output; S1c is not connected to anything. Thus a square wave is fed to the audio oscillator causing it to alternate between two tones.

Position 2: Sla is not connected to anything; Slb is connected to the emitter of TR1 which has been set up as an emitter follower (buffer) for the voltage on Cl so producing a ramp waveform that is the charge/ discharge curve of Cl ; Slc is unconnected. Thus a roughly triangular wave is fed to the audio oscillator causing it to glide between two tones.

Position 3: Sla is connected to Dl which is thus connected across R3 and VR1. This has the effect of causing C1 to charge quickly via R2 and VR1; S1b is unconnected; S1c is connected to the collector of TR2. This is switched on and off by the low frequency oscillator output and so, since the output is a series of short pulses, TR2 switches the audio oscillator on and off by shorting out its timing capacitor for short intervals. Thus the audio oscillator produces a pulsed, steady tone.
Position 4: Sla is connected to D1 as before; S1b is connected to TR1 which in this case is producing a reverse sawtooth wave due to the action of DI on the charging times; SIc is connected to TR2 as before so as to switch the audio oscillator off during the charging of Cl . Thus the audio oscillator produces a tone which rises steadily, stops and then rises again starting from its original pitch.

## AUDIO OSCILLATOR

The audio oscillator is built around IClb section of the 556 and its frequency is variable via VR2 with R6 setting an upper limit.

This oscillator works in exactly the same way as the low frequency section described above, but has only one waveform, a square wave taken from its output at pin 5 , and it can be manually adjusted over a frequency range of approximately 32 Hz to 4 kHz .

The purpose of R 8 is to limit the current drawn from the output which . although it can source or sink well over 100 mA , can easily be damaged by a short across the output when VR3 is at full volume.

This resistor also allows the output to directly drive a miniature loudspeaker of virtually any impedance without damage. In the prototype an eight ohm miniature speaker was used but other values should work equally well.

The output is via a switched jack socket and it has been arranged such that the internal speaker is normally on but is disconnected by the entry of a plug in the output socket. Either the socket or the speaker could be omitted if not required.


## CASE

The prototype unit was housed in a two-part metal case size $200 \times 125 \times$ 50 mm which had a removable vinyl covered top which was held in place by two screws. This gave a pleasant, smart, compact appearance, but any other metal or plastic case would do just as well providing it had room for the battery and the speaker, if one is being used.

Four small self-adhesive feet or similar should be fixed to the underside of the case to stop it sliding about during use.

The case, once drilled, can be lettered using Letraset or similar rub-down lettering and then given a protective coat or two of clear varnish. The type sold in aerosols is ideal for this.

If a loudspeaker is fitted inside then it is advisable to drill holes in the case to allow the sound to escape.

## CIRCUIT BOARD

The majority of the components are mounted on a piece of 0.1 inch


A low frequency oscillator based round a simple timer i.c. produces square waves at frequencies between about 1 Hz and 12 Hz . These are : processed to produce different control waveforms.
A second timer i.c. is wired to provide a voltage controlled audio oscillator and the waveforms derived from the first oscillator are fed to its control input to provide a wide range of special sound effects.


Completed Audio Effects Unit showing wiring to front panel controls.


Finished unit with top cover removed showing suggested positioning of the battery, circuit board and loudspeaker.

Fig. 3. Component layout on the stripboard together with details of breaks to be made along the copper strips on the underside of the board.





Fig. 4. Interwiring for the offboard components and wiring details to the circuit board.
matrix stripboard size 15 strips by 31 holes. There should be no constructional problems with the circuit board but be careful not to leave out any of the breaks in the copper strips.

The component layout and interwiring are shown in Figs. 3 and 4. First of all mount the resistors and capacitors then the diode and the two transistors. Although the i.c. is not of the delicate cmos type a socket would be an advantage in easing replacement of the i.c. should this become necessary, and also it avoids the possibility of overheating during soldering.

Soldercon pins were used in the prototype but a 14 pin d.i.l. socket would do just as well. When soldering the diode and the transistors, care should be taken not to overheat them and it is recommended that a heatshunt should be used.

## WIRING UP

To ease the job of connecting flying leads to the circuit board, single ended Veropins could be used and in this case the pin should be pushed through from the copper side so that its head comes up against the strip it is to be soldered to. After soldering the pin, the wire should be wrapped around it and then soldered in place.

The circuit board in the prototype was mounted on the base of the box

using 6BA bolts with nuts to suit, and 10 mm plastic spacers.

Be careful when wiring up the rotary switch and follow the layout diagram in Fig. 4 to avoid confusion.

The speaker, if used, can be fitted in place using Araldite or a similar adhesive and applying it around the metal edge of the speaker, being careful not to get any on the cone.

The battery in the prototype was secured using a double-sided selfadhesive pad, but double-sided tape or a suitably bent metal strip could be used instead.

## TESTING AND USING

Check that all the components have been inserted the right way round especially the i.c. If all seems well, then with the range and rate controls at around mid-position, the mODE switch in position 1 and the

## 



Miscellaneous
S1 3-pole, 4-way rotary switch
S2 s.p.s.t. toggle
SK1 standard mono switched jack socket
LS1 8 ohms, miniature moving coil loudispeaker
B1 9 V type PP3
Stripboard, 0.1 inch matrix 15 strips by 31 holes; metal case $200 \times 125 \times 50 \mathrm{~mm}$; 14 pin d.i.I. socket for IC1; four knobs; stranded wire for interconnections; battery connector; 6BA nuts bolts and spacers (2 off each).
volume control at maximum, switch on.
A two-tone sound should be clearly heard from the loudspeaker or amplifier (whichever is being used). If nothing can be heard switch off immediately and recheck all the wiring particularly the wiring to the volume control because this may have been reversed. Check also to see if the battery is flat.

Assuming that the unit is working now turn the mode switch to position 2. The sound should now waver about a steady pitch. If this is functioning correctly, modes 3 and 4 can be similarly checked; position 3 should give a beeping sound, and position 4 should give a whooping sound.

## IN USE

If these tests are successful then the unit is operating correctly and is ready for use. The unit has a wide range of applications as a soundeffects source since it can produce many different sounds.

Some control settings have been given in Table 1 for producing a small variety of effects and these can obviously be modified by experimentation with the controls. Note that to produce the canary effect the RaNge control should be moved quickly back and forward about a position near the maximum setting.

Finally, if. a louder sound is desired than is obtained using the given component values then the value of R8 may be reduced providing that the total value of R8 plus the speaker impedance (with VR3 at maximum volume position) is kept above about 80 ohms.

This is to avoid drawing too much current from the output of ICl, since if this is done then permanent damage may occur.

Also, if any alteration to R8 is to be made, bear in mind that the louder the sound from the speaker, the more current there is being drawn from ICl, and consequently the more current is being drawn from the battery, and a larger battery may be required to give reasonable life.
With the component values shown, a PP3 battery and an 8 ohm speaker, the prototype provided a good volume and the battery lasted for many long periods of use.


WITH telephone bills flowing freely again, many readers must be examining ways of saving money. Rather than to cut down on the number of calls, choosing the best time of day and eliminating gossip can do a great deal to reduce telephone bills. The circuit described here is a very simple and cheap affair which gives an indication when a fixed sum, presently $3 \cdot 5$ p when the call is dialled on your own phone, has been spent.

It has a built-in "nuisance factor" in the form of a button which is pressed to reset the circuit and to initiate a further timing period. Of course, direct connections to the telephone system are prohibited so savings will only be made with the goodwill and co-operation of the user who may choose not to switch the unit on in the first place!

It is probable, however, that members of the family will not be setting out to waste money-they just need a simple jog to remind them of the mounting cost.

There are commercial instruments which "clock up" the cost digitally. There have also been published designs for similar sophisticated circuits which use advanced techniques to give an accurate account of the
cumulative cost. These are excellent but tend to be expensive. A cynic might suggest that it would take years to recover their cost in terims of the savings achieved.

By contrast, the present design is cheap and very simple to construct. It does not boast accuracy and uses a simple lamp to indicate when the time is up.

## USING THE JOGGER

The device is used in the following way. Before the call is made the correct time period is selected according to the distance and the time of day. At the present time there are four distance factors-Local (L), Medium Distance (a), and Long Distance (b). The fourth is a Channel Islands charge and, with apologies for those making calls to these parts, this is not included.

The charge system allows for three rates according to the time of dayPeak, Standard and Cheap. With three distance factors and three time factors there should be nine possible call times available for the 3.5 p unit. In fact, there are only eight as two of them coincide. Nine positions have been included for convenience and the possibility of later non-coincidences. The various periods are set out in

Table 1 below but further details may be obtained from the Telephone Dialling Codes booklet supplied to subscribers by the Post Office.

TABLE 1: Time in seconds obtained for $3 \cdot 5$ p as a function of call distance and time of day. This applies to calls dialled on your own phone. V.A.T. is to be added to the total cost.

| Distance Time | $\begin{aligned} & \text { (L) } \\ & \text { Local } \end{aligned}$ | (a) Up to 56 km | (b) <br> Over <br> 56 km |
| :---: | :---: | :---: | :---: |
| PEAK Mon-Fri | 120 | 30 | 10 |
| $\begin{aligned} & \text { 9am-1pm } \\ & \text { STANDARD } \\ & \text { Mon-Fri } \\ & \text { 8am-9am } \end{aligned}$ | 180 | 45 | 15 |
| 1pm-6pm CHEAP <br> All other times | 480 | 180 | 60 |

The selection of these times could be made by using nine separate switches or by a 9 -position rotary switch. The author, however, used the cheap alternative of nine miniature sockets and a plug on a wandering lead which could be placed in the appropriate position. The plug will normally be left in the most frequently used socket.


Fig. 1. The complete circuit diagram for the Phone Call Charge Jogger.

With the correct selection made, the unit is switched on. When the call is established, the reset button is pressed momentarily. When the first $3 \cdot 5$ p has been used the panel light will come on. To monitor further $3 \cdot 5$ pence worth the reset button is pressed as required. For local cheap rate calls there will be little nuisance value as the intervals will be 8 minutes or so but for the more expensive calls the nuisance factor will be much greater and the mounting cost demonstrated in quite a frightening way!

## CIRCUIT DESCRIPTION

The circuit (Fig. 1) consists of two high-gain transistors TR1 and TR2 connected as a "Darlington pair" which produces a very high gain transistor equal to the product of the individual gains. When the circuit is switched on, C1 charges up through one of eight resistors selected by the control panel. The rate of charge will depend on the value of the resistorthe higher the value the more slowly will the capacitor charge. At a certain point the voltage across Cl will be sufficient to turn on TR1. This turns on TR2 which causes the panel lamp to illuminate. The push-button switch S2 is used to discharge C1 and initiate another timing cycle. It will be noted that the on-off switch is placed in the negative battery line. This is necessary because this switch is also used to discharge C1 whilst the unit is "off."

## COMPONENTS

Electrolytic capacitors like Cl are a necessary evil in this type of circuit. Any particular component is unlikely to have its nominal value and the manufacturer's tolerance is typically -25 per cent to +100 per cent. In
fact it is likely to be well within these limits. All the same, some capacitors could lead to quite significant diferences in the timing periods.

On testing, if this is found to be the case, then the easiest course of action is to re-specify the unit cost i.e. the time bought for, perhaps, $2 p$ or 4 p instead of 3.5 p. The latter unit was originally chosen because the Post Office base their calculations on this at present!

One point to watch is that a newly purchased capacitor or one which has been stored for a long period is likely to be deformed to some extent. It should be found that the time intervals settle down to steady values after a few operations. It is normal for the lamp to come on slowly, especially for the long time intervals.

The timing resistors $\mathrm{R} 1-\mathrm{R} 9$ in the circuit diagram can be cheap carbon components with 10 per cent tolerance. In theory, better results would
be obtained, especially in the long term, by using more expensive resistors with 5 per cent or better tolerance.

In terms of cost the benefit would not be worthwhile and in practice the cheap type worked satisfactorily with reasonable accuracy.

As well as buying a good quality component for Cl , it is necessary to buy good transistors. Cheap "out of spec" transistors may have insufficient gain to work properly in the circuit.

The panel light for the prototype was just a lamp pushed through a rather tight hole with direct soldered connections. This saves cost but some constructors will wish to improve the appearance of the panel by using a proper lampholder.

A cheap plastic box was bought for the prototype but there are generally boxes lying around the house which could be used. The size of this box


## COMPONENTS

Resistors

| Resistors |  |  |
| :--- | :--- | :--- | :--- |
| R1 $270 \mathrm{k} \Omega$ | See |  |
| R2 $68 \mathrm{k} \Omega$ |  |  |
| R3 $22 \mathrm{k} \Omega$ |  |  |
| R4 $390 \mathrm{k} \Omega$ |  |  |
| R5 $100 \mathrm{k} \Omega$ |  |  |
| R6 $33 \mathrm{k} \Omega$ |  |  |
| R7 $1 \mathrm{M} \Omega$ |  |  |
| R8 $150 \mathrm{k} \Omega$ |  |  |
| All +W carbon $\pm 5 \%$ |  |  |

Capacitor
C1 $2200 \mu \mathrm{~F} 15 \mathrm{~V}$-elect.
Transistors
TR1, 2 BC108 silicon npn (2 off)
Miscellaneous
S1 push-to-make, release-to-
break button switch
S2 s.p.d.t. slide switch
LP1 6 V 60 mA m.e.s. bulb
SK1-9 1 mm panel mounting sockets (9 off)
PL1 1 mm plug
B1 9 V type PP9-see text
Tagpanel 10 -way miniature; case, plastic size $150 \times 75 \times 50 \mathrm{~mm}$, Simbox type BIM 2005/15 or similar


## PHONE CALL CBRRGE JOGGR



Fig. 2. Shows the method of assembly and interwiring where the case lid is used for mounting all components. Note the link wire on the tag-board. This method is not critical and may be readily changed to suit other case dimensions. The lamp can be mounted in a holder to improve the appearance.
will determine the kind of battery which will be used. It would not be wise to use a small battery like a PP3. This would not give good service. If a larger 9 volt battery like a PP9 could be fitted into the box then this would be a good choice. An alternative would be two 4.5 volt "flat" cycle lamp batteries connected in series. These can be placed separately in the box and manoeuvred into position. It should be noted that the panel lamp is a $60 \mathrm{~mA}(0 \cdot 06 \mathrm{~A})$ type. A higher cur-
rent rating like 200 or 300 mA is not advised.

## WIRING UP

The components in the prototype were all secured to the lid of the case as seen in Fig. 2. Begin by drilling the holes to suit these components and their fixings and fit these to the lid with the exception of the tag-panel, and wire up as shown.
The resistors are connected to the correct socket (see Fig. 2) at one end


The completed prototype ready for connecting to the batteries and installation in the case base.
and the other ends are hooked around a common busbar and securely soldered. The ends leading to the sockets must not touch one another -if they cannot be routed in such a way that this will not happen then the wire ends should be protected by means of sleeving. Insulation stripped from wire of suitable diameter makes excellent sleeving.

The rest of the circuit was built on a small piece of tag-panel to the layout shown in Fig. 2. It is in no way critical, however, and constructors may use tagboard or other boards which may be available. Secure the completed tag panel to the lid and complete the interwiring.

Attach suitably terminated leads to form the battery supply leads and connect to the battery of your choice (see above). With PL1 connected and plugged into SK3 (long distance peak call) the lamp should light after 10 seconds from turning on at S2. Pressing S1 should cause the lamp to extinguish to come on again after a further 10 seconds.

Repeat and check times for all the other positions to see that they agree with Table 1. If so, the unit can be fitted in the case and the top panel labelled as shown in the photograph, and protected from the effects of fingermarks.

After initiating the family in its use it just remains to wait for reduced bills!


## Soldering Iron

With the new season upon us many of our readers must be taking stock of their workshop tools and components and making a shopping list of requirements for the months ahead.

Top priority must be the soldering iron. Is the bit still serviceable? Does it handle well? is the iron rated correctly? Most important, should the selection of bit sizes be changed or added to?

There are many irons to choose from at widely differing prices. Choice will obviously be dictated by the amount of money you can afford but we recommend you purchase the best possible. A little extra outlay now will more than pay for itself over the years. Most of our advertisers carry fairly large ranges and stocks of irons and will be only too pleased to offer advice.

For most work encountered in Everyday Electronics an iron rated between 15 and 25 watts should be adequate. For bit sizes we would suggest a selection of 2,3 and 4 mm preferably of the latest Iron plated type, for long life. A good choice is the Litesold range manufactured by Light Soldering Developments Ltd., and the Midget range from S. \& R. Brewster Ltd.

Try to choose an iron that is lightweight, weil balanced, easy to handle and has an adequate length of mains cable, Some irons are fitted with lightweight flexicable that will not "pull" on the iron when in use.

Some irons come complete with a protective stand. If this is not included we strongly recommend the purchase of this item as it will save many a burnt cable and other disasters through careless or forgetful use.

If you decide to purchase and use an iron without a stand we suggest you choose one with a built-in hook or "antiroll collar" so that when placed on the work surface the iron bit stands proud of the worktop.

At the top end of the market there are what is commonly known as "solder stations". These are usually made up of a low voltage temperature controlled iron, ideal for delicate work, an integral stand, with a wiping sponge for cleaning the iron
tip and a mains derived low voltage, via a transformer, supply.

The use of the transformer isolates the fron bit from the mains which can be essential in some MOS work.

## Solder Station

One such thermostatically controlled station is the new version of the Antex TCSU1.

The soldering station is provided with either the miniature CTC 40 watt iron or the XTC 50 watt model. Both irons are fitted with burn free cable terminated with 5 pin DIN plugs for connection to the 24 volt supply from the station.

Thermocouples sense the bit temperatures which is kept at a preset level (between 65 and $420^{\circ} \mathrm{C}$ ) by a slide control on the front facia of the stand. A range of three iron coated bits are included which are a slide fit on the stainless steel shafts of the irons. A removable sponge tray is also included.

A particular feature of the TCSU1 is the inclusion of an anti-static earth socket to help protect MOS devices from damage. Also, by employing zero switching such evils as magnetic fields and spikes are claimed to be eliminated.
Further details, price and stockists can be obtained from Antex Electronics Ltd., Dept EE, Mayflower House, Plymouth, Devon.


The Antex TCSU1 soldering station.

## Catalogue

It is claimed that over 400 new product lines have been added to existing ranges in the new Verospeed Autumn ' 80 components catalogue, which just by glancing through we can well believe. Printed circuit board mounting rotary switches, batteries and chargers, test leads, cases and integrated circuit sockets are just some of the ranges that have been extended.

Two features of this excellent 114 -page catalogue which appeal are the inclusion of two pages of "Bargain Basement" items and, more important, the inclusion of all prices against each entry (less VAT). It is hoped that all prices will be held for the period of the catalogue, until January 1981.

Copies of the Verospeed Autumn ' 80 Catalogue can be obtained from Verospeed Ltd., Dept EE, Stansted Road, Boyatt Wood Industrial Estate, Eastleigh, Hants S05 4ZY.

## CONSTRUCTIONALPROJECTS

## Call Charge Jogger

A double-pole double-throw slide switch should be used for the Off/On switch in the Call Charge Jogger as this is the more commonly stocked item. The rest of the components for this project are readily available.

## Midget Radio

The compression trimmer capacitor C2 called for in the Midget Radio is stocked by Home Radio (Components) Ltd. The spindle for this trimmer is made specially for Home Radio.

The aerial coil used in the prototype model was MW 5FR from Cenco (Clacton) Ltd., This aerial coil, and the transformer, can also be purchased from Home Radio, Maplin and Watford Electronics.

The t.r.f. radio i.c. ZN414 is available from most component stockists as are the rest of the components for the radio.

## Darkroom Timer

The only item likely to cause any concern in the Darkroom Timer is the small biased toggle switch. This is available from Watford Electronics and is listed in their "miniature" toggle switch range.

The relay used is the common miniature "continental" type carried by most advertisers. This may be supplied with more than one set of contacts but only one set need be wired in circuit.

## Bicycle Alarm

Although the prototype Bicycle Alarm used a reed switch and coil it was felt that a relay would be more suitable. Any relay with a coil resistance of 150 ohm or greater and capable of operating at 9 V will suffice. The miniature continental relay with an 185 ohm coil is capable of operating down to approximately 5.5 V and would seem useable here.

The Delta bleeper alarm from J. Bull (Electrical) Ltd,, gives off a most piercing sound and at 75 p each seem to be most reasonable. However, any 6 to 12 V d.c. buzzer can be used.

## Audio Effects Unit

We cannot forsee any buying problems for the Audio Effects Unit. Note when ordering components that two log. (log. arithmic) potentiometers are specified as you may find you are supplied with all linear types.

## Dusk--Dawn Relay

Readers should have no difficulty in locating components for the Uniboard: Dusk--Dawn Relay. The relay used is the common miniature continental type rated at 12 V 185 ohm coil with 2 -pole changeover contacts rated as required.

## Iron Heat Control

We do not expect any purchasing, problems for the Iron Heat Control. The triac for this circuit is available from Home Radio for the sum of 75 p, including postage and packing.

We have been informed that Home Radio are also able to supply all parts, including the case.


## DUSK-DAWN RELAY

THis article describes the construction of a device which illuminates a lamp automatically as the night approaches. This three-transistor design operates a changeover relay when the amount of light falling onto a photocell has reached a defined level.
The circuit is powered from a 9 volt rail and whilst this could be derived from dry batteries, the unit described here has been designed to operate from the 9 Volt Power Supply which appeared in Part 3 of this series.

## CIRCUIT DESCRIPTION

The circuit diagram of the Dusk-toDawn Relay is shown in Fig. 1. Lightdependent resistor PCC1 is remotelylocated and detects the ambient light level. Together with R1 and VR1 (the sensitivity control), the l.d.r. forms a potential divider, so that the voltage at the base of TRI is dependent upon the amount of light falling onto PCC1.

During the daytime the resistance of the l.d.r. is low-in the order of 20 ohms-and so the voltage at TR1 base is high; conversely as night-time approaches, the resistance of the ORP12 increases, so lowering the voltage at TRI base.

TR1 and TR2, together with associated resistors, form a circuit configuration called a Schmitt Trigger. This circuit is designed to suddenly switch over at a predetermined setting even though the input signal (i.e. the voltage at the base of TR1) may change over only very slowly.

This snap-over action makes the circuit ideal for operating a lamp when the ambient light level is slowly reducing. The Schmitt Trigger functions as follows.

Consider a night-time situation where the resistance of PCCl is high -say 500 kilohms or so (although it could be considerably higher). Assuming that VR1 is set to midway, the voltage at the base of TR1 works out at only 150 mV . This means that TR1 must be off since the base needs to be 650 mV more positive than its emitter for the device to switch on. TR2 is therefore permitted to switch on as base current is able to flow through R2. A voltage then develops across R3 (and also R4); this effectively reverse-biases the base-emitter junction of TR1 and this component remains firmly biased off.

## INCREASING LIGHT LEVEL

As the resistance of PCCl falls (the ambient light devel increasing) the voltage at TR1 base will rise until TR1 starts to switch on.
At this point, the collector of TR1 falls, taking TR2 base with it. The effect of this is that TR2 starts to turn off. In so doing, the emitter of TR2 is sent to 0 V , as is TR1 emitter. This increases the forward bias on the base-emitter junction of TR1, so enabling TR1 to switch on harder.

As it does this TR2 is forced to switch off even further, thereby causing TRl to conduct more. This regenerative action, once started, causes TR1 to switch on hard very rapidly, with a consequent switching out of circuit of TR2.
This is the action of the Schmitt Trigger: a very gradual change in the resistance of the l.d.r. results in the circuit "snapping over" very quickly.

As night-time approaches once more, a reverse avalanche takes place resulting in TR1 switching off and TR2 conducting.

TR3 is a pnp transistor coupled to the collector of TR2 by R5. When TR2 is on, TR3 is also conducting. This operates RLA, the contacts of which complete the mains circuit to the lamp. Diode D1 also illuminates, signifying that the relay is operating. TR3 serves as a power output stage which prevents loading of the basic Schmitt circuit.

The ratings of the relay contacts must be carefully observed: the specified relay will switch mains loads of up to 3 A ( 750 watts), and this should satisfy most domestic applications.


## CIRCUIT BOARD

The circuit is built onto a standardsized piece of 0.1 in matrix stripboard measuring 10 strips by 24 holes. The 1.d.r. and power supply are connected by means of two $3 \cdot 5 \mathrm{~mm}$ jack sockets. The Dusk-to-Dawn Relay unit itself was housed in a plastic box which measured $150 \times 80 \times 50 \mathrm{~mm}$.

If desired, there is no reason why the power supply cannot be housed in the same case. A larger case than specified may then be required.

Component layout on the circuit board and complete wiring details are shown in Fig. 2. Two 6BA clearance holes are drilled to take the supporting hardware, and then the circuit board is assembled in the normal manner. Take care regarding the orientation of the transistor leads: do not overheat them and ensure that D2 is soldered in the right way round.

Complete the low-voltage wiring using stranded connecting wire as shown. The l.e.d. is mounted on the front panel using the special mounting clip normally provided with it; the relay can be secured in place with a piece of double-sided adhesive foam.

Basic interwiring is also shown for the mains circuitry. In this respect it is important that the soldering to the relay tags is of a high quality. Also mains connecting wire of the appropriate specification (3 amps at 250 V ) must be employed.

The photocell was soldered to a small piece of tagstrip and twin core flex terminated in a 3.5 mm jack plug was used to connect this to the main unit, see Fig. 2.

Setting up comprises simply adjusting the preset, VR1 to about midway and then repositioning it if necessary until the desired switching point is achieved with the l.d.r. sited in its operating position.

## COMPONENTS

Resistors
R1 $5.6 \mathrm{k} \Omega$
R2 $15 \mathrm{k} \Omega$
R3 $68 \Omega$
R4 $630 \Omega$
R5 $3.3 \mathrm{k} \Omega$
R6 680 $\Omega$
All f W 5\% carbon

## See

page 635

## Semiconductors

TR1, 2 BC108 npn silicon (2 off) TR3 BFX88, BFX30 or 2N2905A pnp silicon
D1 TIL220 light emitting diode
D2 1 N4148 silicon
PCC1 ORP12 light dependent resistor

Miscellaneous
VR1 22 kilohm miniature horizontal preset
RLA 12 V relay, coil resistance 185 ohm Continental with 3 A 250 V c.o. contacts
SK1, 23.5 mm jack sockets, (2 off)
PL1 3.5 mm lack plug.
0.1 inch stripboard, 10 strips $\times 24$ holes; case-BIM2005/15; l.e.d. clip; twin-core flex; tagstrip; mains wire; stranded hook-up wire; 6BA hardware.

## Approx cost Guidance only $\$ 4.00$ excluding case



Fig. 1. The circuit diagram of the Dusk-Dawn Relay unit. The power supply may be from battery or the 9 V Power Supply Unit featured earlier in this series.


The partially assembled prototype requiring connections from the relay contacts to the lamp and 240 V a.c. mains.


Fig. 2. The layout of the components on the topside of the stripboard, breaks to be made along the copper strips on the underside and wiring up to the off-board components. Also shows 240 V a.c. mains connections to the controlled lamp via the relay contacts. The contact arrangement will vary between relay types and should be verified before connection. Seen fight is the method used for mounting the light dependent resistor.

RICHARD was choosing a switch for his new project. Looking through the pages of the catalogues, he thought that it would be easy. Unfortunately, he just became increasingly confused. The easy part was the cosmetic one deciding on a rocker switch rather than the toggle variety. It was the contact current ratings which really confused him so he came along for advice.
"I could understand it if there was just one figure given for the current rating", he said in dismay-"but there are two; one for a.c. use and one for d.c. Apart from that, there is a different figure given for switching current and carrying current. To top it all, there is a warning to de-rate in the case of inductive loads-I feel like giving up!"

Though confusing I told him that these ratings must not be taken lightly. To exceed one could seriously reduce the life of the switch. Some manufac turers do give only one current rating and although this seems easier it can lead to misuse.


I explained that at the instant of the contacts "breaking" a spark is produced. This tends to burn the contacts. If a.c. is used the spark tends to go out as the current falls to zero on each half cycle. With d.c. the spark will only go out when the contacts move too far apart to support it. This usually takes longer. For
this reason, switches usually have a bigher a.c. rating than for d.c. Some switches are not recommended for d.c. use at all because the contacts do not move fast enough.

I went on to say that where coils form part of the loadchokes, transformers, motors, and so on, then larger sparks could be expected. It would then be wise to halve the rating at least.

His point about current carried and current switched was interesting. With the contacts "made" the current could be allowed to rise significantly above the "switched" value.
I rounded off our talk by telling him that switches are better mechanically than they are electrically. With no load, a switch will give far more operations before it fails than on full load. Here, burnt contacts will limit its life.

Although it may cost more, a switch should be generously rated. Good quality switches have an inbuilt "safety margin" which cheap ones might not and I warned Richard not to buy a dubious component.

COMPUTERS AUDIO RADIO MUSIC LOGIC TESTGEAR CB GAMES KITS

## COMPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS Royal Horticultural Halls Elverton Street wimumeme. Westminster London SWl November 26-30 1980 <br> Send to: Advance Tickets, Modrnags Ltd 145 Charing Cross Rd, London WC2H OEE It's all at Breadboard '80 <br> This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard! <br> All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard ' 80 .



## STRIPBOARD

ooking at the constructional articles in Everyday Electronics, the newcomer will discover that most projects are built on pieces of stripboard. This is a plastics board with copper strips on one side, and perforated with holes, at 0.1 inch intervals. This is a popular method of construction, and is recommended to the beginner.

The size of board used for a particular project is expressed in terms of number of strips and number of holes. For example, "Stripboard: 0.1 inch matrix 25 strips x 18 holes." Refer to Components Lists for further examples.

This board, also known under the proprietary name Veroboard, is available from most component stockists in a variety of sizes. The board can be cut to any required size with a small hacksaw or jewel saw. The smallest size supplied is 10 strips $x$ 24 holes. This is adequate for many smaller circuits, as is demonstrated by our Uniboards Series.

In all our constructional articles we provide (1) a circuit diagram (2) a diagram showing the layout of all components on the top side of the

stripboard and - usually - (3) an underside view showing any breaks that have to be made in the copper strips. Though where the number of breaks involved is small, they may be indicated in (2) by an " $X$ " enclosed in a circle. Breaks are easily made, using a drill bit and rotating by hand, or there is a special tool for this purpose which can be obtained from retailers (Fig. 1a).

In these diagrams, the strips are given a letter reference and the holes are numbered. This facilitates location and co-relation of connection points at both sides of the board.

It is usual to mount all components on the board, except those that happen to be too large physically, and certain items such as controls and switches which need to be mounted on a front panel or on the top of the enclosing case.

Flexible wiring is used to connect such components to the appropriate points on the board. All such interwiring is usually illustrated in the diagram.

## PRINTED CIRCUIT BOARD

Other methods are also used for mounting circuit components. Printed circuit boards are commonly used for mass produced commercial equipment, and this same technique has been in wide use amongst private constructors for many years. One does of course have to get familiar with
the technique and then practise, to achiever good results.
A wiring pattern, unique to a particular circuit, is produced as a copper image on a plastics board by an etching or masking process. This operation can be undertaken by the individual and special kits for making printed circuit boards (p.c.b.s) can be purchased from certain advertisers.
(A detailed article describing the procedure will appear in a future issue of Everyday Electronics.)

## PLAIN PERFORATED BOARD

Another quite simple and popular method is the use of plain perforated plastics board-this is like stripboard minus the strips.

Special terminal pins (Veropins), tapered to give good fit, are pushed into the appropriate holes in the board to provide anchoring points for components. The snag is that connecting wires have to be soldered between pins to make all the necessary link-ups, in the absence of copper strips (Fig. 2).

All the above mentioned methods of assembling circuit components will be found amongst EE Projects, from time to time. The newcomer should study these constructional articles, noting particularly the layout diagrams.
Since every component and every connection is clearly shown, the "nonelectronic" person can go ahead with confidence and build up one of the simpler projects according to these diagrams. Knowledge of exactly how the circuit functions is not essential, for this purpose.

Once a small project has been tackled and successful results obtained, the newcomer will be additionally inspired to learn more about circuit theory and there will always be articles and features in EE to help explain the basics of electronics, both theoretical and practical.

Good luck, all you new constructors.


Fig. 1(a). Using the special tool to make breaks in copper strip. (b) Terminal pins shown in stripboard; these are more commonly used with plain perforated board however.
Fig. 2. (below) Underside of plain perforated board showing connecting wires between pins.
Fig. 3. (right) Printed circuit board (actual size), top and underside views.




Brcycles are becoming increasingly expensive, and the ease with which they can be stolen is a major problem for every cyclist. A simple, inexpensive yet effective device was therefore needed to protect a bicycle against the thief, or "joy rider".

As with all alarm systems, care must be taken to ensure the alarm cannot be triggered accidently (if the bicycle fell over for instance), and it was decided to use a fairly conventional wire link system to disable the cycle.

More uniusual is the owner's method of de-activating the alarm. Instead of the usual key and lock switch; a less expensive and more novel method was devised using a miniature jack plug "coded" with a suitable resistor.

The alarm is then "tuned" to recog. nise this resistor, the jack plug replacing the key.
The alarm cannot be de-activated using a metal object instead of the jack plug, as the resistance is clearly incorrect. Of course, the alarm could be defeated by a dishonest person, with a knowledge of electronics, armed with the correct equipment, who happens to want to steal a bicycle protected by this particular device.
This combination is thought to be unlikely!

## OPERATION

The alarm is operated as follows. When not in use, the wire link,
actually screened cable, is connected via the 3.5 mm jack plug. To set the alarm, the 2.5 mm "key jack" is plugged in, the 3.5 mm plug removed, looped through a wheel (or better still, a nearby fixed object), and replaced in its socket. The key jack may now be removed and the alarm is set.
If the wire link is removed or cut, the alarm will sound and cannot be silenced by replacing the link. The only way the alarm can be silenced is by using the key jack.
To de-activate the alarm, the key jack is inserted, the link removed from around the wheel and plugged in again. The key jack is now removed to avoid unnecessary current drain.

## CIRCUIT DESCRIPTION

Since the alarm will be set continuously, current consumption is a major consideration. The circuit is therefore based on a cmos integrated circuit, the CD4011. This consists of four NAND gates, each with two inputs.
With the component values indicated, current consumption is less than one microamp with the link plugged in, and rises to about 1.5 mA during the short periods when the key jack, PLl/Rl, is used. The current will of course be much higher if the alarm is triggered, but this should not happen often
The circuit is in two sections (see Fig. 1). Gates $a$ and $b$ of ICl are wired through presets VR2 and VR1 respectively. If the key jack is missing, the inputs at gate a will be low; and its output logic 1 .
The inputs into gate $b$ will be logic 0 at pin 5, and logic 1 at pin 6, and its output logic 1. Assuming the presets are set correctly, as described later, if the key jack socket is shorted, the inputs to gate a will be logic 1 , and its output 0 .

The inputs to gate b will now be logic 1 at pin 6 , and logic 0 at pin 5 resulting in its output being at logic 1.

## KEY JACK

Thus the output from gate b will be high whether the key jack socket SKI is open, or shorted. If, however, a resistance of say 1 kilohm is connected via the key jack, the presets can be arranged so that the potential from preset VR2 maintains the input to gate a low, but the potential from preset VR1 is sufficient to cause an input to pin 5 at logic 1. Since pin 6 is now high as well, the output of gate $b$ falls to zero.

To summarise, if the key jack is unplugged or shorted the output from gate $b$ is at logic 1. If a key jack plug containing the correct resistance is used, the output from gate b is at logic 0 .

This output is fed to gate c, such that a zero output from gate $b$ will ensure that the output of gate $c$ is at $\operatorname{logic} 1$, regardless of the state of its other input. This in turn will ensure that the output from gate d is zero, and the alarm cannot sound.

If the key jack is removed, or shorted, the output from gate c is now dependant upon its other input. This is arranged with R2 and R3 as a potential divider, such that the input to pin 9 is logic 1 , if the loop connected via SK2/PL2 is removed, and logic 0 , with the loop connected.

Thus if the loop is connected pin 9 will be low and the alarm cannot sound. Removing the loop will cause pin 9 to rise to logic 1, and with both inputs to gate chigh, its output will be zero, and the output of gate $d$ will be high.
Diode D1 will maintain pin 9 at logic 1 even if the loop is replaced, and therefore the alarm can only be silenced by using the key jack.

## WARNING DEVICE

The output from gate d is fed to TR1 via R4 and this in turn operates a relay with diode D2 to protect the transistor. The relay will allow virtually any type of warning device to be used, providing its power requirements are within the limits of the relay contacts and battery.
The prototype used a reed relay, driving a "solid state buzzer", a small device, with a very loud sound! How. ever virtually any small relay will do. Its resistance should be higher than 150 ohms, and it should be able to operate on nine volts.

## x $\operatorname{sen} x+3$

HOW IT WORKS


A solid state bleeper is connected via a relay to a logic switch. To maintain this switch in the "off" position a loop must be maintained or a special key inserted in the appropriate socket.
The latter consists of a specific resistance which keeps a potential divider balanced such that the logic gating system keeps the switch off.
If the loop is removed or an incorrect resistance inserted the switch will move to the "on" position and the alarm will sound.


## CIRCUIT BOARD

The circuit is arranged on $0 \cdot 1$ inch matrix stripboard, measuring 20 strips by 25 holes (see Fig. 2). Begin by making breaks in the copper track where shown, ensuring that all traces of lose copper are removed. An i.c.

Fig. 1. The complete circuit diagram for the Bicycle Alarm.

socket is essential, and this should be soldered into place, followed by the wire links, ensuring enough space is left for the presets.

The other components should now be soldered into place, finishing with the transistor which together with the diodes and electrolytic capacitor, should be the correct way round.

Next the battery leads, relay connections and jack sockets can be connected. The wire link is connected as shown in Fig. 2. Good quality screened cable is suggested, since although the outer screen is not used, it is the most difficult to cut and rejoin.

A potential thief would not know that only the inner core was in use, and whilst it would be possible to devise a cunning system to enable both inner and outer cores to be used, using extra i.c. gates, the extra circuitry would not seem justified.

The inner core is joined to location B4 on the stripboard, and terminates at the 3.5 mm jack plug. At this stage the board should be carefully inspected for bridged tracks, dry joints and faulty component positions.

CMOS I.C.
If all is well, the i.c. may be removed from its protective packaging and, without touching its pins placed into its socket. Make sure it is inserted correctly. This may well be the most difficult operation of the project! Static electricity on your body, especially if wearing man-made fibres, or if standing on a nylon carpet, may possibly damage the i.c. if the pins are touched.

Finally the key jack is constructed, using a 2.5 mm jack plug, fitted with a suitable resistor. A 1 kilohm type is suggested, although alternative values in the same region could be tried. Careful setting of the presets can make the circuit fairly selective.


Fig. 2. The layout of the components on the top side of the board and on the right, the breaks to be made along the copper strips on the underside. Note the use of single-sided Veropins for connecting board to other


## THE CASE

Some thought must be given to the case as several factors must be taken into account that are not normally considered. The case must be large enough to house the battery, circuit board and bleeper. It must be strong enough not to invite tampering, be watertight, and not easily opened, except by the owner to very occasionally change the battery.

The prototype was fixed under the saddle, in such a way that it would be very difficult to remove. Although a metal case was used originally, one with rounded corners is far more appropriate.

The container used in the prototype was not weather-proof and had sharp protruding corners. Obviously this would be a great disadvantage and we would recommend a plastic or diecast box with rounded corners instead. Suitable types would be the Bimbox type BIM 2005/15 or a Verobox type $202-21030 \mathrm{~K}$.

This can be sited in any convenient place on the cycle using $U$-clamps or alternatively fixed securely in the saddle bag with the wire loop protruding from the side.

Having decided which way it will fit to the cycle, the case should be drilled underneath to allow the sound from the bleeper to penetrate. Care must be taken not to allow rain to enter the case, and the hole for
the wire link should also be drilled at the base. The jack sockets are mounted at the rear.

## ASSEMBLY

The parts are then assembled inside using any convenient method. In the prototype "superglue" was used to mount the bleeper and relay, and small selfadhesive rubber feet (cut in half) were used to mount the circuit board and create a battery compartment.
Finally the case is fitted to the cycle as securely as possible. Extra security may be obtained by means of a microswitch wired in series with the wire link, and arranged so that any attempt made to undo the case, opens the switch, and triggers the alarm.

As a final precaution against rain entering via the $2 \cdot 5 \mathrm{~mm}$ socket (which is left for long periods without a jack plug in place), a small piece of acetate sheet or similar material may be glued just above the socket, so


The completed alarm showing the fixing brackets and the "key and wire loop jack plugs in position.
that it hinges over the opening.
A final word of warning: ensure that when riding the cycle, the wire link is safely stowed away so that it cannot foul the wheel.

## SETTING UP

Turn preset VR2 fully clockwise. Remove the link, and plug in the key jack. Connect the battery and observe the relay (or bleeper if connected). Adjust preset VR2 until the relay is

## COMPONENTS

Resistors

| Resistors |  |
| :---: | :---: |
| R1 | $1 \mathrm{k} \Omega$ |
| R2 | $10 \mathrm{M} \Omega$ |
| R3 | $1 \mathrm{M} \Omega$ |
| R4 | $4.7 \mathrm{k} \Omega$ |

All $\ddagger$ W carbon $\pm 5 \%$

## Potentiometers

VR1 $10 \mathrm{k} \Omega$ miniature horizontal preset
VR2 $10 k \Omega$ miniature horizontal preset

## Capacitor

C1 $100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
Semiconductors
IC1 CD4011 CMOS quad 2-input NAND gate
TR1 BC184 npn silicon
D1, 2 1N4148 small signal silicon diode (2 off)
Miscellaneous



The loop shown in position, securing the bicycle to the tree together with a conventional chain security system. The Bicycle Alarm is mounted securely to the saddle bag.
just off, that is bleeper not sounding. Remove the key jack. The relay should now switch on.
Next short circuit the key jack socket, and turn preset VR2 anticlockwise slowly until the relay just
switches on again. If the short circuit is removed, that is the key jack socket is left open circuit, the relay should remain on. The relay should only switch off when the key jack is inserted.

Having become familiar with this procedure, more accurate and selective settings can be achieved by using a higher resistance than one kilohm instead of an open circuit, and a resistance lower than one kilohm instead of the short circuit.

Now that the presets are set. plug in the key jack and connect the wire link. Remove the key jack. The relay should remain off. Removing the link should activate the relay. If the link is replaced, the relay should remain on due to the action of diode D1. The only way it can be deactivated is by replacing the key jack.

## TROUBLE SHOOTING

If the circuit does not perform correctly, check again for bridges, dry joints, and incorrect breaks in the tracks. Check the positions of all the components and if all is well use a voltmeter to check the voltage actually reaching the i.c. (positive pin 14, negative pin 7).

With both presets turned fully clockwise, and neither jack inserted, pin 3 should be high (nearly 9 V ), pin 4 high, pin 10 low (about zero), and pin 11 high. If the key jack is inserted and the presets turned fully anti-clockwise, pin 3 should be low, pin 4 high, pin 10 low and pin 11 high.

Next turn preset VR2 fully clockwise, and VRI fully anti-clockwise. Insert the key jack only. Pin 3 should be high, pin 4 low, pin 10 high and pin 11 low. Finally connect the loop wire. This should have no effect on the previous readings. However if the key jack is withdrawn, pin 3 should still be high, pin 4 high, and pin 11 low. (The voltage at pin 10 should not be measured, as in so doing, its state may well be changed.)

These tests should locate the faulty section of the circuit. If all the readings were satisfactory, the fault must lie in R3, TR1, or the relay circuit. Having found the problem, and cured it, do not forget to reset the presets as described earlier.


## Mail Order

Continuing my remarks on the subject of the purchase of components by Mail Order, I would like to make some further suggestions. I will assume that you have equipped yourself with four or five reputable catalogues, and you are ready to start.

If you have studied them sarefully you will have noted particularly what each one does not stock, or in what areas choice is limited. You will now be in a position to say that you will order transistors from dealer $A$, variable capacitors from dealer pewel so on. Now, you can commence senting out your orders.
. the risk of repeating myself I will make the following points.
(1) Always print your name and address clearly in block capitals.
(2) If the items in the cataiogue have catalogue numbers, be certain to quote them.
(3) If the firm sends you their order form, make sure you use it.
(4) Make sure you send the correct money and its not a bad idea to allow a little extra for inflation.
Many firms work on a fixed rate of postage, and the way to make this work in your favour, is to send one large order, instead of several small ones

Remember that in to-day's economic climate most of us are operating with the minimum of staff, and the sort of thing that depresses us, is the customer who writes in and says, "In 1975 in Everymans Electronics, there was a circuit for a Super Burper, please quote me for all the parts". The poor old dealer knows it will give him at least forty minutes work, and he will also probably discover during his investigations that there is at least one vital part that is no longer available.

It is: therefore, quite obvious he is wasting his time. Even if this is not the case, the chances are, that the customer will
probably decide that it is too dear and change his mind.

## Delivery Time

How quickly can you expect your goods once you have posted your order? If we assume you write your order on Sunday afternoon, it will be collected Monday and your supplier might have it by Tuesday. If he is really efficient, and has every. thing in stock, he might get it out the same day, but he probably cannot afford first class post, so it will probably arrive at your home Thursday or Friday.

I have, of course, assumed a set of ideal conditions, which do not always apply. If you are a real enthusiast, and I am sure you are, if only in the making, none of this will worry you, because you will plan ahead all the time.

First of all you will get together all the parts for project number one, and then while you are building this, you will select project number two, and begin ordering the parts for this. Unless you are very unlucky, you will have assembled all you require for project two, before you have finished project one.

I think it is worth while mentioning here that many firms will grant credit facilities which means you can order your requirements by telephone, a time saver.

I would like at this juncture to tell our many friends in Southern Ireland, that since they detached their currency from ours, we have to pay 70 p on each cheque or postal order, they send us, to have it wieared by the English Banks. If therefore i: eve:vo £1.35 made up of two Irish Postal Ordeis, and if i try and cash them, I wind up minus five pencel


## PRECISION TIMER

High accuracy over long periods of time. Separate controls for setting hours and minutes. Can be used with bleeper as a reminder; or with a relay as automatic time switch.

## REACTION TESTER

Indicates the individual's response time to randomly triggered l.e.d.s. Makes an excellent game for two or more players.

There will be a great demand for our November issue so order YOUR copy well in advance. See your NEWSAGENT NOWI

## OPEN TO COMMENT

The latest chapter in the fiery debate on the need for a UK Citizens Band radio service (CB) was given added fuel with the publication recently of the Government's Green Paper Open Channel-a discussion document.

The message from the document is clear, the Government is in favour in principle of the introduction of a personal short range radio system in this country provided certain conditions can be met.

The Home Office is recommending a frequency allocation somewhere above 928 MHz to achieve minimum interference problems.

## Frequency Allocation

Why 928 MHz ? After careful studies the document says "that the 27 MHz band used for CB abroad and for illegal transmissions in the UK is inappropriate for this country. This is because the band is already allocated to legitimate uses, such as hospital paging systems and model control. Moreover, other services such as broadcasting, emergency services communications, old people's alarms and aircraft landing system outside the band can also be affected by illicit 27 MHz use."

The paper went on to state that in addition to the rising demand for use of the spectrum, there are other constraints on frequency policy grounds. "We must take into account our international obligations when choosing a frequency, and it would be useful if we could choose one with at least some prospect of international standardisation".
Great importance is stressed in the timescale that a suitable frequency can be allocated to the Open Channel. Although it has been suggested that the redundant 405 -line television service, bands $41-68 \mathrm{MHz}$ and $174-216 \mathrm{MHz}$, could be used it points out that it will be some years, probably 1986, before any other services can be located here.

Equipment used should have a range of 15 km ( 10 miles) in open countryside, but obviously in built-up city areas the range would be considerably less - probably down to "line-of-sight" ( 3 to $5 \mathrm{~km})$. For social services such as car to car in traffic jams,
ship to shore from small pleasure boats and between groups of climbers and walkers this should prove adequate. Hand portable equipment should be capable of communications over 1 to 2 km in large cities.

The document concludes that the only suitable frequency band is in the new mobile radio allocation around 900 MHz . The United States and Canada are giving serious considerations to setting up an up-market range to its existing service, and authorities in Western Europe are also strongly interested. This would give British manufacturers a chance to export.
If a frequency above 928 MHz were selected, interference could be kept to a minimum, since there would be no direct frequency relationship between the Open Channel service and the television services, although this frequency may still cause interference to some users of TV and hi fi equipment.

The Government are going to look further into the problems of frequencies before making a final decision.

## Controls

The document proposes that there should be close technical control of manufacturers of Open Channel transceivers to ensure high standards of manufacture.

It also proposes that users should pay an annual licence fee to operate certified sets. As the system would have to be self financing the cost of the licence would probably be related to the present amateur radio licence fee, presently £6. 40 .

## Summary

The Government is, in principle, in favour of the introduction in the UK of a freely available personal twoway radio communication to be known as Open Channel. This would be of limited range and rather different from what is thought of as "citizens band" radio in other countries.

The discussion paper is intended to help people to understand what Open Channel would involve and to balance its benefits and
drawbacks and would like to receive readers comments.

Copies of Open Channela discussion document, can be obtained from the Officer in Charge, Home Office Supply and Transport Branch, Royston Road, Caxton, Cambs CB2 8PN.

All comments should be sent by 30 November 1980 to the Radio Regulatory Dept, Home Office, Waterloo Bridge House, Waterloo Road, London SE1 8UA.


#### Abstract

All aspects of CB Radio, so popular in Germany, were discussed during this years Hobby Electronics Show " 80 held in Stuttgart, West Germany. (To date we have not received their final findings.)

This years exhibition for practical electronics and microcomputers had a special "Action Centre" where visitors were able to see displays of amateur radio, CB radio, tape/slide synchronisation and special model railway exhibits. During the past year radio controlled cars and model ships controlled by microprocessors have come to the fore and these were strongly represented.


## HOME COMPUTERS

The purchase by Lasky's of Micro-digital of Liverpool has brought Lasky's into the home computer parket. Apple computers, distributed by Microdigital, will be retailed through Lasky's 40 UK stores and backed up by Microdigital's programming experience.

## INMOS LIVES

Inmos is to get its second $£ 25$ million tranche for the establishment of a UK microelectronics plant for highvolume memory products.
The Inmos preference for the plant to be sited in Bristol near their technology centre has been overruled, and the new factory is expected to be built in South Wales and to provide 2,000 new jobs over the next three or four years.

## AWARD FOR FLOWERS

An award that will annually mark the contribution of one engineer to telecommunica tions science and engineering was launched by British Telecom recently.

Called the Martlesham Medal, its first recipient was Dr. Tommy Flowers, the man who invented Britain's and possibly the world's first computer and the acknowledged father of electronic switching.

The award, to mark outstanding achievement in telecommunications, will be presented annually to former or present members of British Telecom.
The much heralded 64 K RAM is finally available to the general market. Crellon Electronics Ltd, a leading electronic component distributor, hold an advance stock of the Motorola MCM6665L25.


a verbal warning by synthesise
speech of an impending fault an will be able to keep a record of the servicing. (The microprocessor is an i.c., albeit a rather complex and lar
ger device than the more common ger device than the more common
place i.c.)
The great advantage of the use of integrated circuits is that they enable complex circuits to be made in a
small volume at much lower cost than would be possible using separate transistors, diodes, resistors and capacitors. Integrated circuits have
already had a great effect upon our already had a great effect upon our
lives, but the impact will be still lives, but the impact

INSIDE THE I.C.
Inside its protective package an silicon chip on which a large number of individual electronic component (transistors, diodes, resistors and capacitors) have been fabricated by
automated
photographic
masking techniques. Thus a single monolithic integrated circuit can contain most cuit to perform a certain purpose cuit to perform a certain purpose.
Unfortunately it is not possible to fabricate certain components on a
BY J.B.DANCE M.Sc

## introducing

## WHAT'S IN A WORD

The uninitiated may well be confused by the jargon surrounding electronics. A striking example is the term Silicon Chip, and its aliases, as employed by the media.
So et us clarity the terminology before anything else.
During the past twelve months or so, much publicity has been given to one of the chief marvels of electronic technology. This is and incorporating a complete circuit. It is popularly referred to as a Silicon Chip, Microchip or Microcircuit, or sometimes more simply as just "the chip". All these terms are apt, but in technical circles these devices are commonly known as Integrated Circuits. Integrated circuit is generally abbreviated to "I.C." In text this appears as i.c., while in circuit diagrams and component lists IC (capitals), for example: IC1, IC9

NTEGRATED circuits are widely use in all types of modern electronic large numbers in computers, in modern electronic telephone ex changes and in almost all professional military and space vehicle equipment Extensive use is also made of inte grated circuits in the consumer equip ment we meet in everyday life, such machines, watches, electronic camera shutters, record player circuitry, radio and television receivers and in ancil lary television equipment such as
teletext, Prestel, television games and computer displays.
It is certain that new designs of car will contain more integrated cir
cuits. The more expensive vehicle will include microprocessor control of nany functions; indeed, the micr
$\qquad$


1. A silicon chip containing the
2. A silicon chip containing the
complete circuit for a 16 -bit microprocessor, on a wild daisy. (Ferranti)
3. Microcircuits allow automatic aperture size. (Ferranti)
4. A single i.c. with few externa components
calculator.
5. Final stages of the Ferranti ULA (top) interconnect mask (right) committed ship. (Ferranti)
alicon chip. For example, it is not possible to make capacitors of even a so when such a capacitor is required, a connection is brought out from the chip to a suitable external capacitor. Similarly inductors are not made on a chip, so oxternal inductors must be me like.
In addition, user-interactive components such as loudspeakers, light citors and variable resistors must be external to the chip.
Strangely enough the microscopicy small circuit on a silicon chip is usually considerably more complex than a similar circuit designed for the same application using separate or
discrete individual components. This is because the cost of incorporating a ew extra components on a silicon chip is negligible when averaged out
over the large number of integrated ver the large number of integrated
ircuits of that type which the manu-facturer-expects to sell. It makes ound economic sense to add extra
"on-chip" components if this will "on-chip" components if this will component which cannot be fabricated on the chip.
Although we have been talking
about silicon chips (from which all about silicon chips (from which all cated), it is interesting to note that
integrated circuit manufacturers have integrated circuit manufacturers have
great hopes for the future of devices employing gallium arsenide chips.

MAIN ADVANTAGES
One of the main advantages of
ntegrated circuit technology is that all of the connections within the chip are made quite automatically by photographic masking techniques sideration in these days of high labour costs when the expense of wiring up an electronic circuit using
discrete components is very high. In addition, the connections made automatically inside an integrated circuit are very reliable over the life-
time of the device-far more reliable than the connections made by a person using a soldering iron.
Although it is true that external connections have to be made to an
integrated circuit with solder in the normal way, the numbers of these connections is very small compared with the number of connections made
automatically inside the device. Thus the failure rate in equipment due to
the failure of an external soldered the failure of an external soldered connection is very low.
The constructors of squipment can save a great deal of space through the use of integrated ircuits, since the numerous compo-
ents in each of these devices are nents in each of these devices are
included on a single chip. This is a vital consideration in such varied

applications as space vehicles and
COST
It is very expensive to set up the masks and equipment required to produce a new type of integrated
circuit, but once the production line is in operation the cost of producing each additional device of that type is extremely small. Thus the cost of a mated sales volume In practice one fin
In practice one finds that many of at prices only about two imes that of a cheap transistor in spite of the fact that they contain perhaps a hundred components. Comeven tens of thousands of devices on a single chip are naturally more expensive, but are very cheap for the job they can do.

PACKAGING
Each silicon chip must be enclosed in a suitable package to prevent ture or dust and to facilitate external connections. Some of the cheapest integrated circuits are supplied in
dual-in-line packages which consist of dual-in-line packages which consist of
a black plastic body with connecting pins on each side of the body bent pins on each side of the body bent side of the body give rise to the name dual-in-line (d.i.l.).
Circular metal can packages with wire connections caming from the
base are also common. The wires of base are also common. The wires of
this transistor-type package are arranged in a circle and in some case
these are preformed to be these are preformed to be d.i.l. Various other type of package are
also employed, for example, when a also employed, for example, when a
device must be able to dissipate a high power level, a package which

## Police Fire Change

One of the effects of new frequency allocations folmo
ing last year's World Admin
俍 strative Radio Conference is
that broadcasting on v.h.f. is
to be exp to be expanded up to 180 MHz .
Britain's polioe and fire Britain's polioe and fire
service radio will now have
to be re-equipped for new to be re-equipped for new
wavebands at an estimated
cost of $£ 50$ million at today's prices. The programme, how
ever, will not start until new ever, will not start until near
the end of the decade as the the end of the decade as the
new
are not effective ullocations


Due to expansion of busi. ness and increase of per-
sonnel Transam, the com.
puter specialists, have moved puter specialists, have moved
to new premises opposite the M n new premise opposite the
Ministry of Defence at $59 / 61$
. Theobalid R Road, London WC1
Production of the Production of the Triton
and Tuscan computers will be increased with TCL software,
a subsidiary of. Transam, a subsidiary of . Transam,
expanding its own activity to include more empha


Mullard Ltd, have supplied video games development system to Century Electronics of a major games develop. - ment facility which has been
set up by Century Electrontes set up by Century Electronies
representing an initial invest-
ment of around representing an initial invest-
ment of around 60,000 over
the next six months.

Infrared Security A new type of coded
identity card is used on the and security-access equipp-
ment. It uses a coded filter layer embedded in the card
which responds to an infrar wed beam of light. an infra-
red
It is claimed the the It is claimed that the card
is far more tamperppoof and
diffcult to is far more tamper-proof and
diffcult to to
the manicate than he magnetically code
now in common use.

Telematics Telematics is a new word
for the 1980 and beyond. It
has been coined to describe has been coined to describe
the convergence of telecommunications, computers and related equipment as in the
electronic office, electronic mail and electronic information systems.
The telemati the biggest and fastest growth potential for the
future.

## GLOBAL RADIO

| obal radio cover, which | users in the UK will now be |
| :---: | :---: |
| ill enable ships anywhere in | able to reach ships in the |
| the world to contact the | Indian Ocean via |
| mainland, is now possible |  |
| rough a new arrange |  |
| made by British Tel |  |
| with the Japanese telep | equipped with Marisat global |
| authority. | satellite communica |
| The ar | equipment. Any of |
|  | ships can be telephone |
| system which provides com- | nn |
| munications with | distortion |
| ugh satellites. It means | nven |
| at telephone and telex | transmission. |

## Licences Cancelled

 Radio-controlled model and metal detector hobbyists will no egulations exempting users are introduced by the Govern nent wit hin the next few monThis does not absolve in any way the 150,000 users of
metal locators'cable finders from the need to obtain per metal locators/cable finders from the need to obtain per
mission to enter, search and dig land' and to keep off pro mission to enter, search and aites wh treasure hunting.

ANALYSIS
THE SPOKEN WORD
It must be nearly 50 yers Golden Voice nearly 50 years ago that the Girl with th
a competition among the many housands of telephone operators then employed. She had the
distinction of recording the time at intervals for the whol 24 hours for the GPO Talking Clock, a sensation at that period. People used to dial TIM (there were letters as well as ully modulated voice with precise diction. At London's Heathrow Airport this old-established
principle is being revived in a new application called
Automatic Ver Automatic Volmet, a continuous weather-reporting service
transmitted by radio for the benefit of pilots and navigators. Existing Volmet services at ane mait mar airports throughout
the world use live announcers, all speaking Eng lish which is the world use live announcers, all speaking English which is
the international language for air traffic. As may be imagined there are many and varied accents
the
which frequently lead to diffuculy in comprehension. How sensible, then, to introduce a "standard" Volmet voice
world-wide, which would soon become familiar to aircrew
of all nationalities.
The voice of Automatic Volmet is that of Colonel John The voice of Automatic Volmet is that of Colonel John
West, Iately of Her Majesty' Royal Signals. There was no
competition to discover this new Golden Voice. He just competition to discover this new Golden Voice. He just Mappened to be on the spot as marketing manager of the
Military Communications Divisision of Marconi Space and
Defence Systems who designed Automatic Volmet. Defence Systems who designed Automatic voimet.
Nonetheless, all agree that his voiece is well matched to the
application. He has recorded all the sitandard meteorological Nonetheless, all agree that his voice is well matched to the
application. He has recorded all thie standard meteorological
Phrases, words and figures which have been digitized and phrases, words and figures which have been digitized and
stored in a computer memory so that any combination can be selected at will for transmission.
The Heathrow system mallows
The Heathrow system allows. weather reports from
selected groups of airports to be transmitted simultaneously selected groups of airports to be transmitted simultaneously
over four radio channels. The weather data arrives by telex over four radio channels. The weather data arrives by telex
and is automatically converted by the equipment to a number
code which controls the voice output from the computer memory, thus provididg automatic and instant up-date of
the Volmet transmissions without human intervention. Note that Automatic Volmet uses a real voice, that of John West. It could be argued that a a really slick uppot-o-date system sholitd ispense with an old-fashioned human voice and
use artificially generated synthesized speech. This may yet come when clarity and vocabulary are adequate. But for the lime being the John West voice is the best solution and far
superior to the "Donald Duck" sound so common in present

I note, however, that Texas Instruments who pioneered aid four years ago are now releasing chips to other manufacturers and have embarked on a massive development programme for exploitation of solid-state speech technology So we may reasonatly expect that before long we hobby
will be using the technique in construction projects.
Brian $G$. Peck

can be bolted to a heat sink is employed. In many cases the same basic integrated circuit is made available in various types of package.

## SOCKETS

Sockets are readily available for dual-in-line devices and somewhat less readily available for circular metal can type devices. Although the cost of using a socket is comparable with the cost of the cheaper inte grated circuits, the constructor will find that it is much easier to change devices when a socket is employed than when a dual-in-line device has been soldered directly into a circuit board.

However, great care should be taken when inserting or removing devices from sockets or damage can occur. Insertion and extraction tools are available for this. Devices can be easily removed from a socket by in-
serting a thin screwdriver blade under each end of the body of the device in turn so as to lift it gently out of the socket. If any pins of the device are bent, they should be carefully straightened with forceps and pliers.

## LINEAR AND DIGITAL

Most integrated circuits can be conveniently classified as either linear or digital types.

Digital devices usually employ binary logic in which the voltage or current at each point in the circuit can have only one of two possible values at an instant. Calculators and electronic watches are examples of products using digital circuits.
Linear integrated circuits operate with voltage and current levels of any value between certain limits. For example, the output of a power amplifier driving a loudspeaker can

5. A "slice" of silicon containing
many identical i.c.s.-the chips. (Plessey)
6. One of the many stages in the i.c. manufacturing process. Protective clothing is worn in a clean room. (Plessey)
7. Some of the more common packages for encapsulating low power i.c.s.
8. Audio power amplifier and voltage regulator power packages, most with means for easy connection to heatsinks.
9. The common ZN 414 radio i.c. showing connection between chip and the device leadouts. (Ferranti)
have any voltage or current level up to a certain maximum value. This output voltage is proportional to the voltage at the input of the amplifier, so if the output voltage is plotted against the input voltage, a straight line or linear graph is obtained. This is the reason why circuits such as power amplifiers are known as linear devices.

The circuit designer has a vast array of linear devices from which he can select the type most suitable for his needs. Some manufacturers offer thousands of linear products. Linear devices are used for voltage regulation, in timing circuits and in many types of consumer circuits for radio and television.

However, the operational amplifier or "op-amp" is probably the best known of all linear devices. Audio amplifiers are a type of op-amp designed for a specific purpose.


OPERATIONAL amplifiers were originally high gain amplifiers operating down to zero frequency which were used in analogue computers to perform mathematical operations, such as addition, integration, etc. Discrete components were used in the early operational amplifiers, but nowadays it is far easier and cheaper to employ an integrated circuit.

Modern operational amplifiers are used for a very wide variety of purposes, although the name operational amplifier is still retained. They are best regarded as gain blocks. The cheapest operational amplifiers are readily available at some tens of pence, but some high performance "instrumentation amplifier" types are priced at tens of pounds.

The purchaser of an operational amplifier can use it in circuits without knowing about the details of its internal design; this is the type of approach we shall adopt.

## EARLY DEVELOPMENT

The first linear monolithic device was marketed about 1962, but the first device with a reasonably high performance was the Fairchild $\mu \mathrm{A} 709$ which was introduced in 1965. This device is still a fairly well-known operational amplifier which is available from most of the large semiconductor manufacturers.

Linear devices are therefore little more than fifteen years old-but what an impact they have made in recent years! Initially linear devices were expensive and strange to circuit designers, but they are now very common.

## BASIC CIRCUITS

Operational amplifiers have a very high voltage gain, typically of the order of $50,000(94 \mathrm{~dB})$; this open loop voltage gain ( $A_{\text {voL }}$ ) is measured with no feedback applied. In practical circuits the gain is reduced by employing a negative feedback loop, this


Fig. 1.1. The basic inverting operational amplifier circuit. Power supply lines have been omitted for clarity.
reduced gain being called the closed loop voltage gain.
The advantage of using a high gain amplifier with the gain reduced by negative feedback is that the properties of the circuit, including the gain, depend only on the values of the external components and not on the performance of the amplifier itself which will vary from device to device.

## INVERTING AMPLIFIER

A basic inverting operational amplifier circuit is shown in Fig. 1.1, the operational amplifier itself being represented as a triangle on its side with the output at one of the points. The word "inverting" means that the output is in opposite or anti-phase with the input; in other words, as the input becomes more positive, the output becomes more negative and viceversa. For simplicity, the power supply connections to the amplifier are not shown in Fig. 1.1.

There are two inputs to the opera tional amplifier itself, the one marked "+" being the non-inverting input and the one marked "-" being the inverting input. As the signal input is fed to the inverting input in Fig. 1.1, the output is out of phase with the input

If the input voltage to R1 rises by a very small amount say $V_{i}$, this will tend to raise the voltage at the inverting input and the output voltage
therefore falls. This fall in voltage is fed back through R2 and tends to cancel the increase in the input voltage which produced it.

The gain of the amplifier itself is extremely high and therefore the fall in the output voltage, $V_{0}$, will be large enough to almost cancel the rise in voltage at the input of the amplifier. Thus the input of the amplifier remains virtually at earth potential and is known as a "virtual earth" point.

## GAIN

The impedance at the two inputs is so high that they take hardly any current. A current therefore flows from the input through R1 and R2 to the output. As the potential of the
close to earth potential and the above reasoning will then be invalid.
Ideally $R 3$ should be approximately equal to the value of R1 in parallel with $R 2$ so as to minimise the effect of the small amplifier input currents flowing in the resistors. The input resistance of the circuit is almost exactly equal to the value of R1, since the right hand side of this resistor remains at about ground potential.

## THE 741

The type 741 operational amplifier device is suitable for use in this type of circuit, typical component values for various voltage gains being shown in Table 1.1. It should be noted that the bandwidth (the frequency at
amount which we will call $V_{0}$. Part of this latter rise is fed back to the inverting input. The inverting and non-inverting input voltages must rise by almost equal amounts or the difference between them will be multiplied by the very high gain of the 741 device and cause a large change in the output voltage.

The voltage fed back to the inverting input is equal to $V_{0}$ multiplied by $R 2 /(R 1+R 2)$, since $R 1$ and $R 2$ form a normal voltage divider. Equating the two input voltages gives

$$
V_{\mathrm{i}}=V_{0} \frac{R 2}{R 1+R 2}
$$

Hence,

$$
\text { Gain }=\frac{V_{0} R 1+R 2}{V_{1}}=\frac{R 2}{R 2}=1+\frac{R 1}{R 1}
$$



input is nearly zero, the current passing through R1 is ( $V_{i} / R 1$ ) and the current through $R 2$ is ( $V_{0} / R 2$ ). These two currents are approximately equal, since the amplifier input takes little current.
Hence
and

$$
\frac{V_{i}}{R 1}=\frac{V_{0}}{R 2}
$$

$$
\text { Gain }=\frac{V_{0}}{V_{\mathrm{i}}}=\frac{R 2}{R 1}
$$

Thus the gain of the whole circuit is determined by the ratio of these two resistor values. Indeed, one of the advantages of this type of amplifier is that the low frequency gain remains constant and can easily be adjusted by choosing suitable values of R1 and R2.

The gain of the amplifier itself should be much greater than the closed loop gain of the circuit or the inverting input will not remain very
which the gain reduces to one half of its low frequency value, a measure of the maximum useable frequency) decreases with increasing gain. This type of circuit may be employed as an audio amplifier or for other purposes within its frequency limitations.

Both positive and negative power supply lines are required when the 741 is used in this type of circuit. Normally $\pm 15 \mathrm{~V}$ supplies are used, but if lower supply voltages are employed, the maximum swing of the output voltage is more limited.

## NON-INVERTING AMPLIFIER

In the operational amplifier circuit shown in Fig. 1.2, the input voltage is applied to the non-inverting input of the 741 device. The output is therefore in phase with the input. Initially we will ignore VR1.

If the input voltage rises by a very small avount $V_{1}$, this will cause the output voltage to rise by a small

If $R 1$ is much larger than $R 2$, the gain is approximately equal to $R 1 / R 2$.

This type of circuit has a much higher input impedance than that of Fig. 1.1. Ideally the impedance of the input source should equal R1 in parallel with $R 2$ in order to minimise gain errors due to the amplifier input currents.

## PINNING

The pin connections for the 741 shown in Fig. 1.2 are for the 8 -pin dual-in-line package or for the circular metal (TO-99) package. This device is also available in a 14 pin dual-in-line package with a different pin numbering.

The potentiometer VR1 connected between pins 1 and 5 allows the quiescent voltage at the output to be adjusted to zero. Typical component values are shown in Table 1.2 for various gain values.

## THE 709

The 741 device contains a 30 pF capacitor formed on the silicon chip which reduces the gain at high frequencies and ensures stability. However, the earlier 709 device does not have this internal capacitor and external capacitors must be used to provide "frequency compensation" and stability.

A typical inverting amplifier using the 709 is shown in Fig. 1.3; it may be compared with the basic 741 circuit of Fig. 1.1. The pin numbers shown are for the 14 -pin dual-in-line encapsulation, but the 709 is also available in a circular metal can (T0-99) and an 8 -pin d.i.l. package with different connections.

## FREQUENCY COMPENSATION

The components C3 and R4 provide input frequency compensation, whilst C4 provides compensation in the output section of the device. The component values may be selected as in Table 1.3 for various values of the circuit gain. It should be noted that the bandwidth obtainable at high gain is considerably greater than with the 741 circuits.
The 741 device includes protection against short circuiting of the output by a circuit which limits the output current to about 25 mA . The resistor R5 is included in the output of the Fig. 1.3 circuit to limit the 709 output current, since there is no short circuit protection in this device. There are no provisions for the adjustment of the offset voltage in the 709 in the way VR1 is used in Fig. 1.2.

Small capacitors C 1 and C 2 are included in the power supply lines in Fig. 1.3 to provide high frequency decoupling. They should be used in
all operational amplifier circuits in addition to the electrolytics in the power supply unit. Although the electrolytics provide a high capacitance for low frequency decoupling, they have a high inductance and do not provide satisfactory decoupling at high frequencies. C1 and C2 should be mounted close to the integrated circuit.
The power supply for the Fig. 1.3 circuit may be $\pm 15 \mathrm{~V}$, in which case outputs of up to about $\pm 14 \mathrm{~V}$ may be obtained. Smaller supply voltages may also be used when smaller output voltage swings are satisfactory.
be only a fraction of a millivolt or the output will approach one of the supply line voltages. Even if the two inputs are joined to ground, the output voltage of a practical amplifier is not zero. The difference between the input voltages required to make the output voltage zero is known as the input voltage offset; it is typically a few millivolts.

## SENSITIVE MICROAMMETER

A simple and instructive use of the 741 device involves its use as a sensitive microammeter. The circuit of

Table 1.3 Gain and bandwidth for the circuit in Fig. 1.3.

| Gain <br> Factor | $(\mathrm{dB})$ | R 1 <br> $(\mathrm{k} \Omega)$ | R 2 <br> $(\mathrm{k} \Omega)$ | R3 <br> $(\mathrm{k} \Omega)$ | R 4 <br> $(\mathrm{k} \Omega)$ | C 3 <br> $(\mathrm{pF})$ | C 4 <br> $(\mathrm{pF})$ | Bandwidth <br> $(\mathrm{kHz})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 10 | 5 | 10 | $1 \cdot 5$ | 5000 | 200 | 450 |
| 10 | 20 | 10 | $9 \cdot 1$ | 10 | 1.5 | 500 | 20 | 700 |
| 100 | 40 | 10 | 10 | 1000 | $1 \cdot 5$ | 100 | 3 | 600 |
| 1000 | 60 | 1 | 10 | 1000 | 0 | 10 | 3 | 300 |

The input voltage swings should be limited to $\pm 5 \mathrm{~V}$ at the device inputs. A high or low input voltage to the 709 can cause the output to "latch up" and not return to its normal value when the input voltage is removed, but this cannot occur with the 741 .

## COMMON MODE

If an input signal is applied to both the inverting and non-inverting inputs, it will have a relatively small effect on the output voltage; this type of signal is known as a common mode input, as opposed to the normal differential input which is applied only to one of the inputs.
It should be noted that the voltage difference between the two inputs can

Fig. 1.4 provides a full scale deflec tion for an input current of $1 \mu \mathrm{~A}$. The potentiometer VR1 sets the zero of the scale when the input current is zero.

When a current of $1 \mu \mathrm{~A}$ flows into the input of the circuit and passes through R1, it will develop 1 mV across this resistor. This 1 mV is amplified by the gain of the circuit, namely, by $R 2 / R 1=200$ to produce an output voltage of 200 mV . If the combined resistance of the meter and VR2 is 2 kilohm, the current passing through the meter will be $100 \mu \mathrm{~A}$ and a full scale deflection will be obtained.

## INVERTING MODE

The amplifier is used in the inverting mode and therefore if pin 2 be-


Fig. 1.3. Using the 709 op -amp as an inverting amplifier. External "compensation" components are required for stability. These are not required on the 741 since compensation is built-in.


Fig. 1.4. A practical microammeter circuit based on the 741 op-amp... Provides full scale deflection on the meter when $1 \mu \mathrm{~A}$ flows through R1.

comes more positive, the output becomes more negative, which explains why the meter is connected with its negative side to pin 6. If desired, however, a centre reading $100-0$ $100 \mu \mathrm{~A}$ meter may be used for measuring input currents which flow in either direction.

The two diodes D1 and D2 protect the meter against overloads. Similarly diodes may be placed across the resistor R1 to protect the 741 input circuit.

This circuit can be calibrated by feeding a current of $1 \mu \mathrm{~A}$ into it and
adjusting VR2 for a full scale deflection. Such a current can be obtained by using a supply of exactly 10 V and connecting it through an accurate 10 megohm resistor to the input.

This same circuit can be used as a meter having a full-scale deflection of 1 mV .

## POWER SUPPLIES

The circuits described require balanced power supplies. Ideally these should be stabilised at +15 V and at
-15 V , but two 9 V batteries may be used. It is always wise to connect $0.01 \mu \mathrm{~F}$ capacitors from each of the power supply lines to ground to reduce the chance of instability; these capacitors should be wired directly across the operational amplifier connections using wire which are as short as possible.

Next month. Part 2 of this series will continue with a discussion of other amplifier devices, including those used for practical audio circuits.


Fig. 1.5. The circuit diagram for a simple Baby Alarm using a 741 op-amp. The microphone needs to be a crystal type. This circuit can also be used as a high impedance sensitive amplifier. (Previously published in EE November, 1979).



Fig. 1.6. The circuit diagram for a Fuzz Box sound effects unit for guitar based on a single 741 type op-amp. (Previously published in EE December 1978).


# LETTERS 

## Patterns On Film

Will you please advise me on a problem 1 have concerning the making of printed circuit boards. I am unsure of the exact way to go about it. I know 1 can get the patterns (transfers), the board with an all-over coating of resist and the ferric chloride. I am also aware of ink resist pens to be applied direct to the board. The problem is that I had the idea that one could transfer the pattern to the board by some sort of photographic process, but I do not know how to go about this.

I dare say that I have missed an article on this topic in E.E.
F. A. Craig

Maidstone, KENT
Photographic means for producing p.c.b.s is just one of the many options available to the home constructor and detailed descriptions of the various methods are published from time to time in the pages of E.E. Such a feature is likely to appear in the near future.

What is required here is an actual-size master of the p.c.b. pattern on film or transparent paper, for example tracing paper. This can be realised with the aid of rub-down transfers on the film (or paper) which is laid over the actual-size pattern appearing in the article, and copied. Long or intricate interconnections are best produced with p.c.b. tape or Indian ink.

The finished pattern is placed on top of the photo-resist coated board and held flat to this by use of a piece of plate glass for example, and then exposed to ultraviolet light for between 5 and 10 minutes. The action of the u.v. light on the resist is to soften the exposed areas and make them soluble in a developer (sodium hydroxide solution) leaving exposed the regions of copper to be etched in the normal way.

Photography can also be used to reproduce the pattern on film by "taking a picture" of the pattern and having the negative enlarged and reversed (black on white) to the required size.

## Spurious Alarm

I have recently completed the construction and installation of the Intruder Alarm published in the May 1979 issue of EVERYDAY ELECTRONICS. Having made this circuit for elderly relatives, I now find myself in the embarrassing position of being told by them that the alarm is being triggered on after it has been set at night when the bedroom light is switched off prior to their retiring for the night. At all other times the alarm functions perfectly.
Can you offer an explanation for this and possibly a remedy?
J. R. H. Hunter

Eastwood, NOTTS
A number of constructors of this project have experienced similar false triggering, but not, we hear, as a result of lights being turned off (or on) but have traced the triggering time to co-incide with the turning on or off of refrigerators, deep-freezers and washing machines. This could be due to the voltage spikes that are produced when inductive loads, such as the electric motors in these appliances, are turned on or off.
If the Intruder Alarm is on the same "loop" as one or more of these household items, then these voltage spikes can find their way along the supply line into the Alarm and to the gate of the thyristor in this circuit causing it to turn on.

These spikes can be induced in other loops in the building if the loops run parallel for any appreciable distance. If possible the Alarm should be plugged into a loop not containing any of the above appliancesalthough this may not be possible in modern houses. You will need to experiment, trying different sockets around the home. In Mr. Hunter's case, it could be that his lighting wiring runs parallel with that to the socket powering the unit.
It was a constructor who found a remedy for this and informed us. Two additional capacitors are required: a $0.1 \mu \mathrm{~F}$
mounted across the terminal block, positions 5 and 6 , and a $2 \cdot 2 \mu \mathrm{~F}$ connected across pins 1 and 2 of SK1, positive to pin 2 completely eliminated false triggering of this nature.

## Contact Please

I am a fifteen year old electronics fan looking for pen friends all over the world.

I correspond in German and English and these are some of my hobbies: Programming Ti calculators, 1 possess a Ti58C, and I am active in short wave listening (SWL).
If any readers would like to contact me my address is:

Christian Munker,
V. Ketteler-Strasse 50,

5060 Bergisch Gladbach 2,
West Germany.
Christian Munker West Germany

## Electronics Club

1 recently visited GB on an invitation of an English town band. We even had the great honour to play exclusively for Queen Elizabeth II in Buckingham Palace.
I am interested in musical engineering and bought the June/July 1980 issue of EVERYDAY ELECTRONics for the Autowaa and Autophase effect units.
I just want to correct one mistake in the abbreviations list (p.437.) concerning the use of "DIN".

DIN does not mean Deutsche Industrie
Nummer (German industry number).
DIN is equivalent to ASA (have a look on camerasl) and means Deutsche Industrie Norm(en) (German standard(s) of industry) generally used with a following number, for example DIN45 500 (Hi-Fi Equipment).
I have founded a constructors club for electronic instruments, including musical and synthesiser projects. We also exchange cassette recordings with our ideas on (in German). There is now a section concerning personal computers.

We would be grateful to hear from any similar clubs in Great Britain. Please write to Manfred Bertuch, Werneweg 58, D-4400 Munster, West Germany.
W. Habermeh

West Germany

(...AND MARCH STRAIGHT IN AND TELL THE COMPUTER YOU INSIST ON A RISE!


By Pat Hawker, g3va

## Companionship

Back in 1976, after looking at CB in the United States and just when the lobby for it was beginning to build up in the UK, I wrote: "The Home Office Radio Regulatory Division should surely be encouraged to explore how modern two-way radio systems could be extended to the public domain for such purposes as traffic information and "companionship" and for the original concept of assisting the private citizen in the conduct of his personal affairs or business activities.

On the other hand there is a strong argument for firmly channelling the hobbyist into amateur radio, where he belongs, with its self-training and technical investigations, possibly by provision of temporary "novice" or "beginner" licences, but with a built-in incentive to progress to the standard licences. Shortrange radio has reached the stage where the public at large can benefit by the facilities it provides-is it not time that the UK licensing authorities recognise this?"

Since then, CB in the States has passed its peak (and the industry is now losing rather than making money); the British amateur radio examination has become "multiple-choice" with a much higher pass-rate; illegal 27 MHz operation is widespread (though not so much as some claim) and this indeed forms part of its appeal to some enthusiasts; and the CB lobby has grown vocal and respectable.

## Open Channel

On August 5 , the Home Office finally published its 14 -page "Open Channela discussion document" (available free of charge from: Officer-in-Charge, Home Office, Supply and Transport Branch, Royston Road, Caxton, Cambridge CB2 8PN-is it a coincidence that the Post Code should be CB?). Comments are invited by November 30.

There is however little reason to suppose that Open Channel (the name the Government prefers) will be with us legally for many months to come. Not the least because of the considerable problem presented to industry by the need to develop equipment for the proposed, unexpectedly high, frequency band of around 928 MHz .

It is this ultra high frequency that has caused the proposals to be coolly received by many enthusiasts. Yet, in many respects, the Home Office document (and the additional information revealed at the press conference by Mr Timothy Raison, Minister of State for Home Affairs) are worthy of careful consideration, and are by no means as illiberal or as restrictive as some commentators would have us believe.

Indeed, frequency apart, the proposals come near to meeting those 1976 suggestions of mine. The aim clearly has been
to produce a system that would cause minimal interference to the public's reception of radio and television broad. casts; minimal interference to other users of the radio spectrum (including public and private communications systems, radio amateurs, etc); yet not ruling out any of the "fun" or socially-useful elements of CB.

What is proposed is a band about 1 MHz wide, representing a nominal forty 25 kHz wide channels or twenty 50 kHz -wide channels and a licence requirement (hopefully under £10 per annum) but without any official call-signs. Equipment will not need to be formally "týpe approved" (a process that adds considerably to the cost of normal business radio) but makers would certify that it was in accordance with a Home Office technical specification (not yet formulated); otherwise there would be minimum restriction on, or supervision of, the use made of the facilities.

On the other hand, if Parliamentary time permits, the Wireless Telegraphy Acts may be modified to make it illegal to sell (or advertise for sale) equipment for the 27 MHz band, and the Home Office intend to continue to endeavour to enforce the existing regulations against 27 MHz operation (and the import of 27 MHz equipment).

## Range

The document acknowledges that lower frequencies have been advocated, including not only 27 MHz but also around 225 MHz and 450 MHz . It does not consider the recent suggestion that a channel in Television's Band I ( 41 to 68 MHz ) should be used when the 405 -line service finally closes, but in any case this is not due to happen until about 1986.

The document argues strongly that the lower frequencies could and would give rise to interference problems, either with existing 27 MHz service (radio paging and radio control of models) or with services, including television on nearby or harmonic frequencies. This is indisputable, although some would argue that the assessment of the risks involved for 225 or 450 MHz is rather over-stated.

It admits that 928 MHz would normally provide only "line-of-sight"' range and that in city streets hand-portable or vehicle-to-vehicle range would often be restricted to under a mile. Reference is made to various tests which indicate that this high frequency is capable of providing an effective mobile radio service. Indeed it could be argued that amateur results on a considerably higher frequency $(1300 \mathrm{MHz})$ show that under some circumstances (temperature inversions, etc) Open Channel contacts over hundreds of miles should be possible, while hill-top to hill-top ranges should be considerable even under normal conditions.

## Cost of Service

The most telling argument against 928 MHz is the economic one. Current u.h.f. power transistors (or alternatively varactor frequency multiplier chains) capable of providing say 5 watts output at this frequency, with crystal-controlled stability, are not far short of being "state of the art" and cost prohibitive-and all such devices can easily be destroyed.

If the Home Office is prepared to accept (at least for an initial period) self-excited 'super-regenerative" type equipment, cost could be kept to reasonable proportions. Another possibility might be the development of mass-produced low cost SAW (surface-acoustic-wave) oscillators although that still leaves the problem of power amplification.

For the Australian CB allocation at 250 MHz , Philips developed a 5 -watt mobile transceiver with frequency synthesiser. This design (modified for the UK amateur band at 432 MHz ) is sold in the UK by Catronics for about £250 (including VAT). It would be difficult (some would say "impossible") to produce an equivalent 928 MHz unit even for a larger market without significant extra cost. In other words it might be realistic to expect an Open Channel mobile unit at a cost of say $£ 300$ to $£ 400$, with extra care also being needed in such matters as coaxial plugs, sockets and cables.

Would this price Open Channel out of the market? There is some evidence that some illegal 27 MHz units, selling at say $£ 100$ to £150 overseas, have been changing hands in the UK at prices not unlike that indicated for Open Channel.

## Not a Shamateur band

The Home Office make it clear that they want to avoid creating a shamateurtype band: the document states categorically: "If an individual wishes to use sophisticated equipment to communicate over long ranges and make international contacts, he should become a licensed radio amateur by taking the appropriate examination.'

The frequency of 928 MHz is being considered for auxiliary CB purposes in the USA, Canada and some other countries. The flaw in this argument is that any narrow-band equipment for 928 MHz is almost bound to be "sophisticated". In 1947 the USA initiated CB in the band 460 to 470 MHz but little use was made of CB until 27 MHz was authorised in 1958.
Using 928 MHz would be a challengebut it is to be hoped that the Home Office proposals will be given serious consideration and not just dismissed as unrealistic. It is very unlikely that the Government will ever be persuaded to legalise 27 MHz CB in the UK.


THe radio described here is pocketsized with internal ferrite aerial and speaker. There is space available in the case to fit a socket to suit an 8 ohm earpiece if this is required. This was not included on prototype.

In order to accommodate the 38 mm diameter speaker, standard 9 V battery, and other items in the small case, the number and size of com-
ponents must be kept small. Building then presents no particular difficulty.

## CIRCUIT DESCRIPTION

The circuit diagram appears in Fig. 1. The well-known ZN414 i.c. is used which has a series of r.f. amplifiers, detector, and a.g.c. and needs few additional components. The ferrite rod winding L1 is tuned by the com-
pression trimmer C 2.
RF input to IC1 is at 2 , with audio output at 1, and feedback via R1. The output load resistor $\mathbf{R} 2$ receives its supply from the potential divider R3, and R4 with VR2. The latter allows setting for optimum results.
The supply should be between $1 \cdot 2 \mathrm{~V}$ and 1.6 V but it is found that an unnecessarily low voltage reduces sensi-

Fig. 1. The complete circuit diagram for the Mini I.C. Radio. The optional earpiece socket SK1 is not included on the prototype.

tivity, while if the voltage is too high instability tends to develop. Should VR2 be omitted, R3 should be 3.9 kilohm, but there is then no means of adjusting operating conditions in this way

Audio signals are routed via C4 to the volume control VR1. This control is necessary as otherwise it is possible to overload the following amplifier section with strong signals. Transistors TR1 and TR2 form a simple but high gain amplifier, d.c. stabilised by feedback via R5. TR2 drives the speaker through the midget transformer T1.

## NOTE ON COMPONENTS

All components should be readily available. The case is in fact made from two Vero cases from the General Purpose Plastic Box range with the lids not being used. The remaining two halves were held securely together by means of "oval" nails pushed into the lid fixing holes. This allows easy access to the inside of the radio for battery replacement.

Due to limited space within the case small-sized components are required, in particular the capacitors. C4 and C6 are required to be tantalum types, and the remaining electrolytics should be as small as possible. The transformer is the type usually used in push-pull circuits and has a ratio $6+6: 1$, the centre-tap being unused.

L1 is a ready-wound medium-wave winding provided also with a base coupling coil, and as the latter is not required here the few turns of this coil are unwound and removed. The MW5FR as supplied has a 5 inch long ferrite rod. This must be cut to be 2 inches long. C2 is a compression trimmer fitted with a ${ }^{1}{ }_{4} \mathrm{in}$. dia spindle to allow tuning via a knob.


## CIRCUIT BOARDS

Two circuit boards are used in this design, and each have components mounted on both sides. The smaller board accommodates the external controls and is secured to the larger by a small right-angled bracket.
The larger board sits between the two halves of the case and held in position by these and the "oval" nails.

Prepare the larger board, 18 strips $\times 27$ holes. The corners needs to be rounded exactly following the shape

## COMPONENTS

Resistors R1 $100 \mathrm{k} \Omega$
R2 $470 \Omega$
R3 $3.3 \mathrm{k} \Omega$
R4 $680 \Omega$
All 4 W carbon $\pm 5 \%$
Potentiometers
VR1 $5 \mathrm{k} \Omega$ miniature enclosed pre-set-knob operation type
VR2 $1 \mathrm{k} \Omega$ miniature horizontal skeleton pre-set

## Capacitors

C1 10 nF disc ceramic
C2 250pF compression trimmer with spindle (Home Radio)
C3 $0.1 \mu \mathrm{~F}$ polyester or ceramic
C4 $0.47 \mu \mathrm{~F}$ tantalum bead
C5 $4.7 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C6 $0.47 \mu \mathrm{~F}$ tantalum bead
C7 20 nF disc ceramic
C8 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C9 $100 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
Semiconductors
IC1 ZN414 t.r.f. radio i.c.
TR1 BC109 non silicon
TR2 BC108 non silicon


Miscellaneous
S1 miniature s.p.s.t. toggle
L1 m.w. aerial coil type MW5FR including a ferrite rod (Denco)
T1 miniature push-pull output transformer type LT700
LS1 8 ohm miniature moving coll loudspeaker about 38 mm diameter
Stripboard: 0.1 inch matrix 27 holes $\times 18$ strips, 18 holes by 7 strips; case Vero type 202.21025K General Purpose Plastic Box (2 off-see text); control knob; PP3 battery clips.
of the case and holes drilled to align with the fixings. Also make the cutouts to allow VR1 and C2 to project through the larger board, the bracket fixing holes and the breaks along the copper strips on the underside.

Begin construction with the smaller board making the necessary breaks along the copper strips (as shown in Fig. 2a). The stripboard positions holding S1 and VR1 tags will need
to be enlarged. Fit these and C2 to the board and cut C2 tags short. Remember to attach a small bracket to the board via C 2 fixing stud/nut. Bolt the two boards together.

## CASE PREPARATION

Take one half of the case and drill holes so that C2 spindle, S1 and VR1 can pass through. The large board



Fig. 2a. The layout of the components on the topside of the stripboard. Only a small section of the loudspeaker has been drawn for clarity. The cone of course faces out of the page. Nofe the small bracket holding the controls fitted to the second smaller piece of stripboard, details of the latter shown at the top of diagram.


Fig. 2b. The underside of the stripboard showing breaks to be made and position of the components mounted directly to the copper strips. The aerial support is held in place by an elastic band or cord which also secures the ferrite rod in place.

End elevation of the circuit board showing components mounted on both sides, with the smaller board fixed in place.


Fig. 3. Modification to be made to Fig. 2b to include an earpiece socket.



The completed prototype circ,uit board prior to installation in the lower half of the case. The fixing for the trimmer capacitor holds the L-shaped bracket to the smaller board.


Final stage of assembly. The battery sits on the copper side of the stripboard and held in place by double-sided adhesive foam. This also insulates the battery case from the board.
should lie flat on this section of the case.

Accurate positioning of the holes can be simplified by drilling them a little smaller, then enlarging with a round file, adjusting the position meanwhile if necessary. C2 and VR1 spindles should clear the holes. S1 hole should be a close fit. Later, one nut is put inside the case on S1, and one on outside, to help hold this part of the receiver secure.

Drill a grid of small holes in the case where the speaker will finally sit, about 3 mm in diameter.
When the finished receiver is assembled, the components in Fig. 2a, with speaker, fit permanently in one half of the case. A small piece of card is glued between the speaker and the board. This will press the speaker against the front of the case. The speaker is fitted to the circuit board, so that this can be checked or tested easily as a unit.

The reverse side of the board (Fig. 2b) carries the ferrite aerial, and leaves space for the battery. So only
the case back need be removed to replace the latter.

## COMPONENT ASSEMBLY

Component layout on the top side of the board and inter-board wiring is seen in Fig. 2a. Carry out assembly and check that components and connections will be clear of the speaker. The latter should not be fitted until all the wiring is finished. It is then cemented to the folded card (see above), which is, in turn, cemented to the circuit board, with cone upwards to be beneath the holes in this half of the case.

If there is any free space between the speaker and case, when fitted in this way, cut a piece of card to go between the two, with a hole to match the speaker cone, and fit (glue) this inside the case. If wished, there is space for an earphone jack socket on the end of the case.

The remainder of the components are mounted on the underside of the circuit board as shown in Fig. 2b.

Side view of the completed circuit board showing in detail the method used for mounting the aerial and its support.


A small block of wood with groove is cut to raise the ferrite rod about 6 mm above the board. With the ferrite rod/coil assembly in place (elastic or cotton round the rod and through holes of the board will secure the rod) connect the wire ends of L 1 to $\mathrm{C} 2 / \mathrm{ICl}$ pin 2 and $\mathrm{R} 1 / \mathrm{Cl}$.

Finally attach PP3 battery leads, feeding through the slot as shown. The shaft of C2 may need to be shortened to allow the small tuning knob to be close to the case end.

## ADJUSTMENT

Band coverage can be modified to some extent by moving Ll on the ferrite rod. A suitable position should be found with Ll level with the end of the rod.

Initially have VR2 set at about midway. Later, VR2 can be adjusted so that a high resistance meter shows about 1.3 V across C 5 , or so that instability does not arise at any tuning position of C2. VR2 may be reached by drilling a clearance hole in the board, beneath VR2 for a narrowblade screwdriver, or it can be set before fitting either part of the case.

Note that the case should be present for proper loudspeaker reproduction, and that it is necessary to turn VR1 back, with strong signals, to avoid overloading and distortion.
The case sections, with board, fit together with the four metal pins (nails) in the corner holes. To change the battery, the back section only is removed, and this is best done by inserting a knife or similar tool so that the back can be lifted away. Foam adhesive tape can be used to hold the battery in place or a thin piece of foam sponge between battery/board, and battery/case will achieve the same result.


Asoldering iron will become unnecessarily hot when there is some delay in making joints, and these are usually small so that not much heat is carried away. This causes damage to the bit, and also increases the danger of harm to circuit boards or components. The controller described here is particularly intended to avoid these difficulties.

In use, the heat controller is placed in series with the iron, and is adjusted for the temperature required.

## CIRCUIT DESCRIPTION

The circuit diagram for the Iron Heat Control unit is seen in Fig. 1. Control is obtained by use of a triac, CSR1. Current at mains voltage is fed to the iron element through the triac. This device is normally in the off state, where it exhibits an open circuit. When it receives a trigger on its gate terminal, the triac turns on (short circuit) for the remainder of the half-cycle in which it was triggered.

Thus by choosing the point at which triggering occurs one is able to select the power delivered to the iron and
hence the temperature of its bit. In the circuit of Fig. 1, the triggering point is controlled by the charging time of Cl via Rl and VR1. When the voltage level across Cl reaches the striking voltage of the neon LP1, the neon lights and passes current into the gate of CSR1 turning it on. Thus, the iron bit temperature is controlled by the setting of VR1.

For maximum heat, the triac conducts for virtually the whole of the a.c. cycle. To reduce heat, the triggering angle is reduce ${ }^{\text {, }}$ and the triac is then conducting for only a part of each half cycle, so that average power to the iron falls.

With this circuit, the neon was found preferable to a diac, and it also acts as a panel indicator showing that power is on for the iron. When the neon is not lit, no power is available.
Current is drawn from a mains plug receiving power from the usual outlet, and the iron is in turn connected to the controller. Note that the earth conductor $E$, and neutral $N$, run without interruption from the mains plug and cord to the iron circuit. The triac control is placed in the Live ( $L$ ) conductor.

Fig.1. The complete circuit diagram of the Iron Heat Controller.


## ASSEMBLY

No circuit board is required in the construction. Some of the components are mounted on the metal front panel of the case and point-to-point wiring employed. The prototype used a standard panel neon with integral limiting resistor. This must be removed. Pull off the neon cover, unsolder and take away the resistor, and solder the free neon lead to the holder tag.

The arrangement of the components on the case lid is shown in Fig. 2. The triac used in the prototype and shown in Fig. 2 has an isolated body which is bolted directly to the metal panel. This also acts as a heat-sink for CSR1. If other non-isolated body types are used, a mica washer with insulating bush (es) should be used.

Stud, TO-3 and TO-66 types are not suitable because at least one terminal would be exposed, but the flat plastic packages are, such as the TIC206D and the TIC226D. These have their metal tabs connected to one terminal and should thus be fitted with mica

## COMPONENTS

## R1 $10 k \Omega 1 \mathrm{~W}$ carbon $\pm 10 \%$ VR1 $500 k \Omega$ lin. carbon

CRS1 ECC704 or other mains/3A triac (see text.)
C. $\quad 0.022 \mu \mathrm{~F}$ plastic or ceramic LP1 panel neon without limiting resistor (see text)
Tag-typeterminal strip, 3 -way with extended mounting tag; case, plastic with metal lid or all metal (see text), size approx. $115 \times 75 \times$ 50 mm used in prototype; control knob; mains cable; rubber grommets (2 off); 6BA. fixings.

## Approx cost

Guidance only 22-50 (see page 655)
washer/bush. Precautions should also be taken to keep its terminals clear of the case.

Note that the panel is earthed via one of the tags on the terminal strip by the earth conductor of the mains cable. This is essential.

The mains cable runs from a 3-pin plug fitted with a 2 A or 3 A fuse. If a non-fused plug is to be used, a panel fuseholder should be added and fitted to the case. It passes through a grommet in the back of the case. Earth and Neutral leads are soldered directly to the $E$ and $N$ tags of the tag strip. Live runs directly to mtl of the triac.

Take the plug off the soldering iron cable, and pass the flex through the front grommet; $E$ and $N$ conductors connect to $E$ and $N$ at the terminal tag strip, and $L$ to mt 2 of the triac. Take care to follow the correct $E, N$ and $L$ connections.
The assembly was fitted into a plastic case. A metal case can be used and earthed with the panel.

## IN USE

To test the unit an a.c. voltmeter may be clipped to the $N$ and $L$ tags of the tag strip. Rotation of VR1 should give a smooth control of voltage, from about 50 V minimum up to nearly the full mains voltage.

For average small intermittent work with a 15 W to 25 W iron, a setting of about 150 V should prove to be satisfactory, but this can of course be adjusted as found best in practice.

HOW IT WORKS


Mains voltage is applied to the power switch which is either a short or open circuit. The mains is also used to derive a pulse from the variable delay network in order to trigger the power switch on, i.e. from open to a short circuit.

The position of the trigger pulse with respect to the mains zero crossing point determines the amount of power delivered to the soldering iron. Thus, very early triggering in the half cycle yields maximum power whereas very late triggering gives minimum power to the iron.

The shaded regions in the "switched" main cycle are proportional to the power delivered.

## MODIFICATIONS

Due to the way in which the circuit operates, maximum power setting of VR1 provides a little under the full mains voltage. This slight reduction was not found of any importance. It is easy to fit a small mains type toggle switch to the panel for maximum or full power, if wished. This switch should be connected from $L$ of the mains cord to $L$ of the iron cir-
cuit, thereby eliminating (short circuiting) the triac when it is closed.

In use, no troublesome interference was noticed, this being in part due to the low power. Various forms of interference suppression are available such as a 22 nF 550 V capacitor with a 22 ohm ${ }^{1} 2 \mathrm{~W}$ resistor in series, from mt 2 to mt l of the triac. A similar capacitor from $L$ to $E$ may also be used.


Above shows completed panel of the prototype; (below) finished unit.


Fig.2. Layout of the components on the case lid and complete interwiring details.

By far the most useful piece of equipment in a photographic darkroom is a timer for the enlarger. Using this, a high standard of accuracy can be guaranteed, and good quality photographs depend on high standards.
The large majority of photographers prefer to use a test strip technique to establish the right exposure, rather than using an enlarging meter. This is because a meter is dependent on standard light values, which are almost impossible with different negatives, of different subjects, on different films, taken at different times.

The project here described provides a versatile, accurate enlarging timer that not only controls the safelight as well as the enlarger (to make initial focussing and framing easier) but includes a red l.e.d. that produces a very short pulse of light every second.

This makes standardisation of test print exposures very simple. The circuit is relatively easy to construct, very reliable, and has eased life considerably for the author.

## THE CIRCUIT

The full circuit of the Darkroom Controller is shown in Fig. 1. It can
be seen that this consists of two NE555 timer i.c.s. The first one, ICl, is wired as a monostable and timing is initiated by grounding pin 2.

This causes capacitor C2 or C3 to start charging up and pin 3 to produce a high output thus activating the relay.
When the charge on the capacitor has reached two thirds of the supply voltage, the i.c. rapidly grounds pin 7 thus discharging the capacitor and taking pin 3 "low" again.
The time taken for all this to happen depends on the value of the capacitor and the setting of VR1. The particular values chosen for this pro-

Fig. 1. Complete circuit diagram for the Darkroom Timer.

ject give a timing range from zero to about fourteen minutes.

If we wish to keep pin 3 high all the time then pin 2 should be kept at ground potential. The switch S1 is provided for this purpose.

## RELAY

The relay connected to pin 3 of IC1, has one set of change-over contacts and these are wired into the live lead of the enlarger and safelight.
In normal conditions the enlarger is off and the safelight is on, but when the relay coil is activated the contacts change over and the enlarger comes on and the safelight goes off.

There is also a further switch, S5, to override the relay contacts connected to the safelight.

## TIMING SIGNAL

The second timer IC2 is provided to give an accurate timing signal. Here we have a 555 i.c. connected in the astable mode. The time period is set by C4 and the VR2, R4, R5, D3 combination and should be adjusted

so that D4 flashes on and off at the rate of one short pulse every second. This must be a red l.e.d. as this is the colour that most photographic papers are least sensitive to.

## 

Resistors

| R1 | $22 \mathrm{k} \Omega$ |
| :--- | :--- |
| R2 | $470 \Omega$ |
| R3 | $47 \mathrm{k} \Omega$ |
| R4 | $680 \mathrm{k} \Omega$ |
| All $\ddagger W$ carbon $\pm 5 \%$ |  |

Potentiometers
VR1 $1 \mathrm{M} \Omega$ carbon linear
VR2 $1 \mathrm{M} \Omega$ miniature vertical preset
Capacitors
C1 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polyester type C280
C2 $5 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C3 $150 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C4 $1 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C5 $\quad 0.01 \mu \mathrm{~F}$ polyester type C280
C6 $1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
Semiconductors
IC1, 2 NE555 timer i.c. (2 off)
TR1 BC109 npn silicon
D1-D3 1N4001 or other low power silicon diodes (3 off) "
D4 TIL220 red I.e.d.
D5-D8 1N400150V 1A silicon diodes (4 off)
Switches
S1 s.p.d.t. toggle, centre off with one pole biased off
S2 push-to-make, release-to-break switch
S3 s.p.d.t. miniature toggle
S4, 5 s.p.s.t. miniature mains rated toggle (2 off)
Miscellaneous
T1 mains primary with 12 V 100 mA secondary
RLA miniature 12 V relay, 185 ohms coil resistance with one set of single-pole changeover contacts.
SK1, 2 three pin Bulgin mains socket type P650 (2 off)
FS1 5 A cartridge fuse and panel mounting holder
Stripboard, 0.1 inch matrix, 24 strips by 48 holes; sloping front case $171 \times 121$ $\times 37 \mathrm{~mm}$, Verocase 202-21033A or similar; knob; five amp mains cable; interconnecting wire; 6BA nuts and bolts for fixing transformer and circuit board.

page 635

£11 ${ }_{\text {exclusuding }}^{\text {ces }}$


Fig. 2. Circuit board component layout on the topside, details of breaks to be made in the copper strips on the underside and all interwiring to off board components.


Arrangement at the rear of the case showing positioning of the lights and enlarger plugs and sockets.


The sloping front cover half of the case lifted clear to show positioning of the circuit board, transformer and relay. When completing the final wiring to front panel controls and rear sockets make sure that all leads áre long enough to facilitate the removal of front section of the case.

©
The finished prototype circuit board for the Darkroom Timer. The relay wiring may differ according to type finally selected. Low profile integrated circuit sockets may be used in place of the Soldercon pins if preferred.

The switch SI deserves, some comment. It is a single-pole, doublethrow type and is biased to the centre "off" position on one of the poles. This means that it can be left in the "on" position if pushed say up, but cannot be left in the "on" position if pushed down but reverts to the centre "off" position as soon as finger pressure is released.

## CASE

- The prototype was housed in a sloping front box, size 171 x 121 x 37 mm . The Verocase number 202 21033A would be ideal although any similar case would suffice. Drill the front panel and mount all the switches. The rest of the components can then be mounted in position as
in Fig. 2 and when interwiring is complete, calibration and checking should be carried out.


## CALIBRATION

The preset VR2 should first be adjusted until D4 flashes at a rate of precisely 1 Hz . Having done this we can then proceed to calibration of the main timing circuit.

Accuracy of calibration for the main timing control VR1 will determine the final accuracy of the timer, so it is best to take care to set the two ranges properly (using pencil marks). Check that all the controls are working.

With the Safelight switch set on relay, and the relay activate switch (S1) used in the push-to-make mode,
the light should go out, and the enlarger come on for the timed period.
This period can be terminated at any time by the cancel button. Moving the relay activate switch to the unbiased position (CONTINuous) should make the enlarger turn on continuously, and the Safelight switch S5 should turn the safelight on continuously independent of the relay.



Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

## SOLDERING AID

During construction of the TTL Test Bed (October 1978) I found that the Soldercon pins were inclined to break away from their frame when every second one was bent up in order to fit alternate pins on the stripboard. You were then left with a lot of loose pins.


I found that by using a "Bulldog" paper clip it made an excellent holder while you soldered the pins in position. A small size "Bulldog" clip will hold six pins while you solder them in position, see diagram.

I also use these paper clips while soldering 14 pin and 16 pin i.c.s in position. I find they make an excellent heat shunt as the tension of the clip ensures good contact with each of the pins.

Jerry Murphy, Eire

## POLYSTYRENE L.E.D. MOUNTING

I have on occasions been confronted with the problem of mounting single l.e.d.s onto the facia panels of projects. Bearing in mind the cost of specialised holders I have come up with the idea of mounting a small piece of polystyrene (e.g. ceiling tile) behind the panel and using the gripping action of the polystyrene to hold the components.
D. E. Kingston,


## SIMPLE PROBE

I have made the Continuity Tester, which was published in the January issue of Everyday Electronics. I have found that commercially made probes are not cheap, so I have devised a simple substitute. This can easily be made from the contents of a "spares box".

A nail with the point filed away is the basis of the probe, see diagram. A length of suitable wire is then taken with about 25 mm of copper exposed. The area that is to be soldered is cleaned, then "tin" the clean area of the nail with a hot soldering iron. The solder should remain if the surface is clean enough.


The exposed end of the wire is wrapped around the tinned area of the nail and then soldered. When the joint is cool, it is covered with an appropriate colour of insulating tape or plastic insulation sleeving. The remaining end of the wire should then be taken to a plug or equipment.

This is only a low voltage probe, it should not be used for mains voltages.
J. Moulder (Age 13), Dumgoyne, Scotland.


The underside wiring of Board B is incomplete, the common ${ }^{*}$ connections to ground of resistors R10 and R12 being omitted. The completed wiring is shown: above.

There are some unused sections (gates and flipflop) in i.c.s IC4, IC6 and IC9. As these are CMOS devices, the unused inputs should be strapped to the appropriate power supply rail. If this is not done, the i.c. may become very hot and possibly overheat and be damaged. As result excessive current will be drawn from the supply making battery powered systems uneconomical.
:- The unconnected pins should be connected as follows: IC4 pins 8, 9, 10 and 11, IC6 and IC9 pins 8, 9,12 and 13 to the OV supply rail.

Autophase (June/July 1980)
An additional break on the underside of the stripboard is required at location C16, ", ", ",



## Keeping Things In Proportion

ODD looking numbers abound in electronics. Why do resistors and capacitors have values like 27 ohms and 560 p F? Why not have a nice round numbers like 30 and 600? Why do so many test meters these days have scales of 0 to $31 \cdot 6$ ? In this article the odd numbers are found to be rather less odd than they first appear but still not quite without mystery.

Let's take those multimeter scales first. When I was a lad meters had scales 0 to 10,0 to 100 , and so on. Some had intermediate scales as well but these were always simple multiples of the basic 0 to 10, etc. My old Avometer, for instance, has scales of 0 to 100 and 0 to 400 and the same scale divisions serve for both. But 0 to $31 \cdot 6$ ? Neverl

The choice of this odd-looking intermediate range, 0 to $31 \cdot 6$, is quite sensible. It springs from a commendable anxiety to minimise one kind of error. This is the "reading error" which stems from the fact that the human eye cannot make very fine discriminations of the position of a pointer. Practical meter scales seldom have more than a hundred small divisions because it is difficult to read markings if they are spaced too closely. Experience shows that at normal viewing distances and with average eyesight a hundred small divisions is the practical limit.

## Limits

This has a direct bearing on the accuracy obtainable from a pointer type of indication. I'm not thinking of the accuracy of the meter itself, but of the eye's ability to make use of it. Let's assume that the meter itself is absolutely accurate. Even so, the eye can only read off what it says to within certain limits. This is what then fixes the achievable accuracy.

Let's assume that a meter can be read to the nearest small scale division A meter scaled 0 to 100 V can then be read to the nearest volt. If the true voltage is 99.5 V but you read this as

99 V or 100 V the reading error is 0.5 V which is an error of one half of one per cent and for most purposes is perfectly tolerable.

But if the voltage were 10.5 V and you read it as 10 V or 11 V the error, still only half a scale division, now amounts to 5 per cent, which may be serious.

## Best Compromise

The answer, of course, is to switch to a lower voltage range. If the meter has a 0 to 20 V range then each small division is now worth 0.2 V , and if you read 10.6 V instead of the true 10.5 V the error is under 1 per cent. However, with scales of 0 to 20 V and 0 to 100 V you are still in trouble with a voltage like 21 V , which is of scale for the 20 V range but still quite low down on the 100 V range. An error of 0.5 V at 21 V is about 2.4 per cent. Given that a meter can have one intermediate range between its 0 to 10 and 0 to 100 ranges, what is the best compromise for accuracy? That is what range value gives, on average, the smallest reading errors?

## Thirty-one Point Six

The answer is 0 to $31 \cdot 6$. This figure is arrived at because it bears the same proportionate relation to both the other ranges. Actually 31.6 is only an approximation. My pocket calculator says the true figure is $31 \cdot 6227766$. Let's call it 31.6 for shortl If you multiply 10 by $3 \cdot 16$ you get $31 \cdot 6$. It's less obvious that if you then multiply the 31.6 by $3 \cdot 16$ you get 100 . And if you start with a lowest range of 0 to 1 and go on multiplying by $3 \cdot 16$ you end with ranges which go: $1,3 \cdot 16,10,31 \cdot 6,100,316,1000 \ldots$. etc. By turning to the next lowest range when the pointer lies too low on the scale for accuracy you can now always reduce your reading error to less than a third of what it was.
The meter manufacturer must now print two basic scales, 0 to $31 \cdot 6$ and 0 to 100, since the same markings can't be used for both. But all the voltage and current ranges can share these two scales. If the meter also has an ohms scale and a decibels scale the total is still only four scales so the dial is still relatively uncluttered and easy to read. Moreover the only mental arithmetic required is simple multiplication or division of the scale numbers by 10,100 , or 1000 . With scales like 0 to 10,0 to 20, and 0 to 50 you get into difficulties with mental arithmetic when faced with the problem of deciding what the true voltage is when the pointer is at say 33 on the 0 to 100 scale but the meter is actually set to its 0 to 50 V range. I do, anyway.

## Constant Proportion

Mind you, there are cases when this principle of forming a set of ranges by multiplying by a constant factor like $3 \cdot 16$ (which is the square root of 10 , by
the way) can't be applied. A common example is the measuring oscilloscope. This has a ruled graticule over its screen and only one set of rulings can be used since two lots, superimposed, would be confusing to the eye. You are stuck with a single scale and have to use intermediate ranges which fit it. This leads to sets of ranges like 0 to 10, 0 to 20, 0 to 50, 0 to 100...... etc., where each range is roughly twice the previous one. In other words you apply the constant proportion principle as nearly as you can but compromise by sacrificing true constancy to convenience in reading.

## Component Values

The same basic principle gives rise to those odd-looking component values, like:
$10,12,15,18,22,27,33,39,47,56$, $68,82,100,120 \ldots$.etc.
It may seem more reasonable to use a range like $10,20,30,40$, but this gives a very poor selection of values at the low end. If you needed 15 pF but all you could buy was 10 or 20pF you'd have to settle for an error of $5 p F$, which is 33 percent. The 10, 12, 15, 18 series is designed so that this "selection error" is never more than about 10 per cent anywhere in the range. To ensure this, each successive value is greater than the last by the same percentage, about 20 per cent in this case.

This series is called E12 because there are 12 standard values before the same basic numbers start repeating, or in other words there are 12 values per decade. (In the series printed above, the 10 marks the start of one decade and the 100 the start of the next.) For greater choice there is also an E24 series with 24 values per decade and an E48 with 48, but E12 is by far the commonest with component stockists.

Actually the traditional E12 values given above are not quite right. My pocket calculator tells me that each value should be $1 \cdot 211527659$ times the previous one. Using this figure and rounding off the answers gives the series:

10, $12 \cdot 1,14 \cdot 7,17 \cdot 8,21 \cdot 5,26 \cdot 1$, $31 \cdot 6,46 \cdot 4,56 \cdot 2,68 \cdot 8,82 \cdot 5 \ldots \ldots$
While most of these correspond with traditional E12 when taken to two significant figures there are a few in the middle which don't. Thus the traditional 33 should really be 32 which is nearer to $31 \cdot 6$. (Yes, it's the magic number 31.6 againl) Similarly the traditional 27 should be 26 and 39 should be 38. I don't know why the traditional values are wrong. Perhaps some knowledgeable reader will tell me. But the errors are too small to have much effect on the usefulness of the series. The maximum selection error is still only a shade over 11 per cent (and occurs when what you need is 24.5 and what you have to settle for is 22 or 27 ).

By Harry T. Kitchen

## Receiver Sensitivity

Last month we looked, rather briefly, at dummy aerials and the necessity of using cables of the correct impedance. I mentioned the importance of e.m.f. and p.d. and it is important to have a good understanding of all these factors if one is going to be involved in precision measurement as opposed to simply connecting an oscillator or signal generator (sig-gen) to the receiver and hoping for the best.
For measuring the sensitivity of receivers it is essential that the sig-genforget the simple oscillators-shall deliver an accurately calibrated output voltage, the source impedance of which should match the source impedance of the aerial with which the receiver is normally used, though this is normally the same as the imput impedance of the receiver.

At the frequencies that most of us are likely to be involved in, receivers are regarded as voltage sensitive, and their sensitivities are generally specified in appropriate terms; for a given a.f. output (in milliwatts) the receiver sensitivity in microvolts is quoted. But Europe, including the UK, differs from the USA.
European practice is to state the sensitivity in terms of source e.m.f. available via the specified source impedance. The receiver impedance, and hence the p.d. developed across it, is generally unknown. In the USA it is customary for the p.d. to be developed across a matched load to be quoted. In essence the two methods are the same provided they are suitably qualified: $15 \mu \vee$ e.m.f. or $7.5 \mu \vee$ p.d.

## EMF and PD

We can now look at e.m.f, and p.d. in some detail. Bear in mind that there is little difference apart from terminology, and that either can be used provided it is made clear which, and that the two are not mixed in any way.

The generator is usually represented as a source voltage in series with its own internal resistance; the pictorial method is to show the source as a circle containing a sine wave symbol, in series with a resistance, the whole being contained within a rectangle. Two leads, sometimes with arrows to show direction of current, connect to the receiver's input impedance, represented by a resistance, sometimes labelled as $R_{1}$.

If the attenuator is calibrated in terms of e.m.f., as most are, it means that the source resistance appears in series with the e.m.f. and must be allowed for whilst measurements are made. If a matched receiver input resistance is involved, what happens? We have, in effect, two series resistances with the output taken from their junction, and therefore only half the e.m.f. will appear across R1, giving us the example quoted earlier, i.e. $15 \mu \vee$ e.m.f. or $7.5 \mu \vee$ p.d.

If $R_{I}$ is very much higher, say is infinite, then no voltage will be "lost" across the source resistance, and e.m.f. will equal p.d. If $R_{l}$ is very low, most of the voltage will be "lost" across the source resistance and e.m.f. will greatly exceed p.d. Hence, the necessity of keeping the two units separate.

## Source Impedance

The source impedance of generators is specified, and with the required accessories is typically 50 or 75 ohms , and is single ended, with one side connected to earth. If a floating output is required, with neither end connected to earth, but with a centre tap that is, then the output impedance is commonly 300 ohms. Load resistances, or impedances to be precise, of 50 ohms, 75 ohms and 300 ohms will result in the p.d. being half the e.m.f.

However, the input impedance of a receiver is not precise, nor is it fixed, but varies with frequency. When measuring receiver sensitivity at widely differing frequencies it is quite possible to obtain erroneous results if the input impedance is not compensated for. This is commonly achieved by a "dummy" aerial interposed between the generator and the receiver and ist fairly effective from 150 kHz to around 30 MHz .

Another common source of error is to use connecting cables of varying impedance to connect generator to receiver. What happens is that voltage standing waves are set up and, in very simple terms, we get sum and difference effects, so that at times the standing wave aids the signal and at others it tends to cancel it.

In short, you disregard generator source impedance, receiver input impedance, and cable impedance at your perill

## Generator Efficiency

The generator efficiency is not constant but decreases with increasing frequency. Some method is essential for feeding the attenuator with a constant signal. This is frequently achieved by varying the oscillator supply voltage; increasing it causes the oscillator to oscillate more vigourously and so compensate for the increase in frequency.

This setting up of output voltage is most commonly effected by monitoring it with a thermocouple type meter. A thermocouple is substantially unaffected by frequency being a heat operated device, and the meter carries little more than a pre-set mark to which the pointer is adjusted by the "Set R.F." control.
Essentially very simple and reliable, the system has just one drawback: if the output terminals are short-circuited together, at maximum output on the attenuator, the thermocouple can be destroyed
by the excess current that is caused to flow. Most high quality generators are inhibited such that maximum output can only be selected after a special catch has been disengaged.

## Variable Modulation

Variable depth of modulation is essential for checking detector distortion in receivers. The oscillator can be directly modulated, but it is preferable for an intermediate, or buffer, stage to be modulated, as this reduces the amount of f.m. in the signal. The a.f. oscillator will work at 400 Hz or 1 kHz , but should be capable of being disconnected from the circuit so that a plain unmodulated, or c.w. (continuous wave) signal is possible.
External modulation should be possible as this extends greatly the usefulness of the instrument. The depth of modulation can be only properly checked on an oscilloscope and is outside our terms of reference; we must, perforce rely on the manufacturer if we lack a 'scope.

## Conclusions

There is rather more to sig-gens than meets the casual enquirer, and it has been possible to do no more than arouse the potential user's interest, and caution, in the belief that this will encourage him to carry out further, more detailed, research. Returning, briefly, to e.m.f. and p.d., it should have been mentioned earlier that some very high quality a.f. generators are aiso so calibrated, and therefore the loads applied should be considered very carefully before relying on in-built attenuators and output meters.

"Is your Bert making any headway with
electronics now?"


MITRAD LM40 Four button gentleman's alarm. Continuous display of hours, minutes and seconds plus selectable month, date, day. PM flag. Alarm, settable anywhere in 24 hour period, is activated for full 60 seconds. Back light. Closely woven adjustable stainless steel strap. Case thickness 10 mm . £ 9.95 + 85p p\&p.
MITRAD LM62 Gentleman's dual time alarm chrono. Incorporates leading make module. Continuous display of hours, minutes and seconds with a number coded day, AM/PM, alarm setting and the secondary time indication. Chronograph ('running horse') to $1 / 10 \mathrm{sec}$. Freeze, split and lap modes. Alarm, settable anywhere in 24 hour period, is activated for full 60 seconds. Dual timing facility. Fully adjustable closely woven stainless steel strap. Case thickness 10 mm . £ $13.95+85$ p p\&p.
MITRAD LM73 Gentleman's memory calendar alarm chrono. Programmed to year 2009. Continuous display of hours, minutes and seconds with optional display modes of hours, minutes and date, or calendar and month with flashing Sunday flags. Selectable month. Alarm mode indicated by flashing bill, settable anywhere in 24 hour period, activated for full 60 seconds, provided with 10 minute snooze facility. Chronograph has 12 hour capacity with split and lap mode facilities: first 30 minutes run as minutes, seconds and $1 / 100$ seconds, thereafter hours, minutes and seconds. Back light. Adjustable stainless steel strap. Case thickness 11 mm . $£ 17.95+85 \mathrm{p}$ p\&p.

# MITRAD 

MITRAD, LM75 Five function LCD gentleman's watch with quality chrono look. Continuous display of hours and minutes plus selectable month, date, seconds. Auto calendar. Back light. Stainless steel strap. Case thickness 8 mm . $£ 5.95+85 \mathrm{p}$ p\&p.
MITRAD LM105 Five function LCD ladies watch. Continuous display of hours and minutes with pulsating seconds. Selectable month, date, seconds. Auto calendar. Fully adjustable closely woven stainless steel strap. Case thickness 7 mm . In silver only. £6.95 + 85p p\&p.

## MITRAD LM39 Ladies auto LCD dress watch.

Continuous display of hours, minutes and (pulsating) seconds. Month and date with auto calendar. Back light. Integral watch and strap with sugar frosted finish in gold or silver. Spring clip clasp for comfortable fit. Case thickness $8 \mathrm{~mm} . £ 10.25+85 \mathrm{p}$ p\&p.
All watches are supplied with presentation case and full working instructions. This is a representative selection from the callection of 12 manth guaranteed watches offered through Mirrad's 48 hour distribution system and backed by Mitrad's awn service organisatian. For complete product range, ring or write for catalogue. Trade price list available for bulk orders.

The premier mail order house specialising in quality products and superior affer-sales care.



LIST: Send stamped addressed envelope with all U.K. requests for free list glving
fuller detalis of our goods. Europe send 350 , other countries send 75p, or equivalent in internatlonal reply coupons

TERMS: C.W.O., MAIL ORDER OR COLLECTION BY APPOINTMENT (TEL: 01-302 6184)


## MAINS INTERCOM <br> NO BO WIRES ONLY £37.99 PER PAIR +VAT \&5.70

 The modern way of instant 2-way communications. Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range $\pm$-mile on the same mains, phase. On/off switch.Volume control, with 'buzzer' call and light indicator. Useful as intersoffice intercom, between office and warehouse, in surgery and in homes. P. \& P. \&1.85 Also F.M. 2 channel "touch" model $£ 49.95$ +VAT £7.50 + P\&P £1-95.

£18.95
+VAT $£ 2.85$

+ P\& $£ 1.25$
Latest transistorised Telephone Amplifer, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate iwo-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for conference
calls: leaves the user's hands free to make notes, consult files. No long waiting, saves time with longconsult files. No long waiting, saves time with long-
distance calls. On/off switch, volume control, condistance calls. On/of switch,
versation recording, model at $£ 20.95+$ VAT $£ 3 \cdot 15$.
- 

DOOR ENTRY SYSTEM
No house/business/surgety should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to unwanted callers. Talk to the caller and admit him
only if satisfled by pressing a remote control button only if satisfled by pressing a remote control button
which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit, cable (8-way) fo 50 and wiring diagram. Price Teleph + AT\&5

10-day price refund guarantee on all item.s WEST LONDON DIRECT SUPPLIES (EE10) visis

169 KENSINGTON HIGH STREET,
LONDON, W8

## Godespesed \#sertronics

P.O. BOX ${ }^{23,}{ }^{34}$ SEAFFIELD ROAD, COPNOR, SOUND EFFECTS PCB SOUND EFFECTS PCB brand new, made for spaceman roy. Gives 5 spaceman sounds and flashing
LEDTs.
Speaker
Sor

 non-mutiplexed. Witts, common eathoce, 4 digit
 Modern IO function with full memory. Most repairable

 plastic, 0.006" thick. Any size cut, from I sq, inch to max size of 19 ins, bv 250 feet. Onle 3 per souare
inch. PUSH BUTTON SWITCHES Sprin toaded
in Momentry action) wich 1 no. contact. 15 so each. KEY CALCULATOR KEYBOARDS (f)ot MULTMMETER I.C. MM M330 i.c. to build 4t disit
 each. PROFESSIONAL CONTROL KNOBS
Slider control knols.
Kits
5 or
mm
 Colack wiequired coloured cap (state cap colour requires))'
 kno above bet has phared nut ocver around base of
knob. State cap colour reauired 27p each. Colours available, black, red green. blue. yellow, grey and white. \& DIGIT Led drent lay yellow, grey and
 LED WRISTWATCH DISPLAYS small, bright displays for led. Wristwatches. With data, 95 l each
or 2 for 41 . 50 . Note : this display is housed in a 'le pless flatpack' seyte packaze and requires some
fairly fine soldering. QUALITY ACK SOCKETS Mono 25 p each stereo 30 D each. LM555 TMEE 1.C. Wirh apilications bookler 25 e each. STATIC


 -1" digits common cathode Lars You to test. TRANSFORMERS 10 cathode Tensistror radio 1.E. Trans | Yormers. Al |
| :--- |
| 10 for 5 . |

SATISFACTION GUARANTEED ON ALL ITEMS OR FULL CASH REFUNDED NEW CATALOGUE (NOO B) NOUN AVALL. POST AND PACKING PLEASE ADD
(OVERSEAS
ORDERS ADD
A. A

## L B ELECTRONICS

Range of new battery eliminators 6 v D.C. 200 mA . 95p each, p/p 35p Astec um1111 E 36 modulators (pull outs). 65p, p/p 25p

## SPECIAL OFFER

-5in. LED displays FND 500 full spec. common cathode.

50p, p/p 25p
FULL SPEC. 5 digit 11 inch DIL package.
5 for $£ 1 \cdot 50, p / p 25 p$
2 in , red LEDs.
12p each
TIL209 red.
10peach
Tantalum capacitors 4.7 uf at 25 v .
14 for £1, p/p 25p 2716 Eprom single rail full' spec.
£9.95, p/p 25p

## JUST ARRIVED

Brand new Burroughs 96 keyswitch keyboard (Clare Pender Reed). $\quad £ 12$ each, $\mathrm{p} / \mathrm{p} £ 1 \cdot 50$ Mini-box fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ (approx.), $115 v$ A.C. (brand new). $\quad £ 4 \cdot 50$ each, p/p £1 Selection of digital cassette decks, new and used, from £28.

Phone for requirements.

* All Prices inclusíve of vat $\star$ * many surplus computer bargains * * ACCESS \& BARCLAYCARD ACCEPTED *


## L B ELECTRONICS <br> 11 HERCIES ROAD, HILLINGDON,

 MiDDLESEX UB10 9LS Tel: UXBRIDGE 55399OPEN MONDAY-SATURDAY. CLOSED ALL DAY WEDNESDAY.
-30-6.00 Lunch 1-2.15


| SINGLE TRACE (uk cip etc 22 . |  |
| :---: | :---: |
| $\mathrm{mHZ}, 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus |  |
| $303 \mathrm{D} 5 \mathrm{mHz}, 10 \mathrm{mHz}, 7 \times 7 \mathrm{~cm} \mathrm{~d}$ |  |
| SC 11010 mHZ Battery portable, 10 mV , <br>  |  |
| $\underset{\substack{\text { Leos } 124 \\ \text { Probee }}}{ } 10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display (plus FREE |  |
|  |  |

OPTIONAL PROBES (ALL $M$ MELS)

DUAL TRACE (Uk c/p otc 63.50) $\begin{array}{ll}C S 1562 A & 10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime} \text { display } \\ \mathrm{Hm} 312-820 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm} \text { display } & 6244.95 \\ 6287.5\end{array}$ CSI5世SA $20 \mathrm{mHZ}, 5 \mathrm{mV}$ ' ${ }^{\prime \prime}$ " display display
 CSI352 $15 \mathrm{mHZ}, 2 \mathrm{mV}, 7.5 \mathrm{~cm}$ display, Battery Mains portable (Nicads pack $299 \cdot 90$ )
$\mathbf{H m ~ 4 1 2 - 4 ~} 20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display plus Sweep Delay
CSi577A $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display CSI $57230 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plus $V$ ideo CSi830 $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus Sweep $\mathrm{Hm}_{5} \mathrm{H}_{2}-850 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ display, CSI572 $30 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plus Video Delay 6287.50
6323.15 6283.15 $6346 \cdot 15$ E399. 50 6399.50
6455.40 6472.65 $6507 \cdot 15$ 6667-00 L B0514


SWF/FS AND POWER METERS
 Range in stock covering up to
150 mHZ and up to IK watt power. PL259 sockets. 250 UHZ Grid Dip. SWR9 SWR/S $3-150 \mathrm{mHZ}$
SWR50 SWR/Powermeter $\quad \mathbf{~} 9.50$ $3 \frac{1}{2}=150 \mathrm{mHZ} 0.1000$ watrs $£ 13.95$ 110 SWR/Power $1 \frac{1}{2}=144 \mathrm{mHZ}$ f $11 \cdot 50$ 171 As 110 Twin meter plus $\mathrm{F} / \mathrm{S}$ Plus large range of BNC/PL259/etc leads / plugs / adaptors / connectors always in stock,
176 SWR Powe 176 SWR Power FS $1 \frac{1}{2}-144 \mathrm{mHZ}$, 5.50 watt
KDM6 Grid Dip $1 \frac{1}{2}-250 \mathrm{mHz} \in 16 \cdot 60$
$£ 38 \cdot 50$

## FREQUENCY COUNTERS



Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.

HAND HELD (UK postetect $85_{\text {P) }}$ PFM200 20 HZ to 200 mHZ 8 Digit LED $£ 54.50$ MA $\times 50100 \mathrm{HZ}$ to 50 mHZ 6 Digit LED E61.00 MAX 55030 KHZ to 550 mHZ 6 Digit LED $£ 106.00$

## BENCH PORTABLES

(UK c/p $\mathrm{El} \cdot 00$ )
MAX100 8 Digit LED 5 HZ to $100 \mathrm{mHZ} \quad \mathbf{6 9 . 0 0}$ TF200 8 Digit LCD $J 0 \mathrm{HZ}$ to $200 \mathrm{mHZ} \quad £ 166.75$ 7010 A 9 Digit LED 10 HZ to $600 \mathrm{mHZ} \quad \quad 6175.00$

## LOGICPROBES/ MONITORS

Logic probes indicating high/low,
Logic probes indicating high/low,
etc, states that scopes can miss. All
 $\begin{array}{lll}\text { LP3 } & 50 \mathrm{mH} \text { H logic probe } & \mathbf{E 5 5 . 9 5} \\ \text { LPI } & 10 \mathrm{mHZ} \text { logic probe } \\ \mathbf{E 3 5} 50\end{array}$
 LP2 $1 \frac{1}{2}$ mHZ logic probe $£ 19.95$
LMI
Logic monitor
$\$ 33 \cdot 00$ Also in stock range of Protoboard
kits and breadboards.
MINI DRILLS AND KITS
(9.12 Volt $t^{\prime \prime}$ chucks) Small Drill plus 3 collets
Medium Drill plus 3 collet Small Drill plus 20 tools Medium Drill plus 20 tools Mains Orill
Mains Drill

MULTIMETERS
(UK post etc 75p)
 KRTIOI IK/Volt 10 range pocket
ATMI/LTI IKNolt 12 range pocket NH55 $2 \mathrm{~K} / \mathrm{Volt} 10$ range pocket ATI $2 \mathrm{~K} / \mathrm{V}$ oit 12 range pocket de luxe NN360TR 20 K 22 range pocket plus hfe test V ols 19 range pocket plus hfe test
AT $102020 \mathrm{~K} /$ Volt 19 range de luxe plus hife test
$7081 \mathrm{SOK} / \mathrm{Volt}: 36$ range plus TMK500 $30 \mathrm{~K} /$ Volt 23 range plus 12A DC/Cont. test 10 ADC and 5 KV DC de luxe plus AT205 $50 \mathrm{~K} /$ Vote 21 range de luxe $708020 \mathrm{~K} / \mathrm{V}$ olt 26 range large scale, $10 A D C$ plus $5 K V A C / D C$
AT2050 $50 \mathrm{~K} / \mathrm{Volt} 18$ range de luxe plus. hfe test
A $210100 \mathrm{~K} /$ Volt 21 range de luxe
360 TR $100 \mathrm{~K} / \mathrm{V}$ olt 23 range plus hie 64.50
65.95 65.95
67.95 67.95
610.95 \&ì. 95

### 416.95

619.95

## £21. 50

### 621.95

624.95

### 626.95

## E28.50

$£ 29.95$
$\$ 34.95$

## CHOOSE FROM <br> THE UK's LARGEST SELECTION



## AUTUMN SALE!!

ANOTHER CLEARANCE OF BARGAINS FROM OUR OVERFLOWING WHAREHOUSE. MAKE YOUR CHOICECUT OUT WHOLE COUPON-MARK NO. OF PACKS REQUIRED IN BOX.
MINIATURE FM TRANSMITTER KIT
(no case). Transmits up to 500 yds . to any FM radio. All components for completion. (This item is not licensable for use in UK) MINIATURE FM RECEIVER KIT (no case). Receives FM Transmissions 88-108 MHz approx. All components for completion.
MULTIMETER BARGAIN-Essential tool of any experimenter. $20,000 / \mathrm{V}, 5-1000 \mathrm{~V}$ DC/ $\mathrm{AC}, 50 \mathrm{uA}-500 \mathrm{~mA}$. $10 / 10 \mathrm{~K}$, plus unique builtin oscillators for $465 \mathrm{KHz} \& 1 \mathrm{KHz}$-includes protective case and test leads.
TV GAME CHIP BARGAIN-Last few hundred AY3-8600 colour chip by G-I.
Ball \& paddle, tennis, hockey, soccer, squash, practice, grid ball, basketball, two page data sheet incl.

## BATTERY/CALCULATOR CHARGER

PACK. Giant purchase of bankrupt stocks. Two different chargers/eliminators for UK mains voltage-various outputs.

Two for £3. 25
NEW!! MONITOR AIRCRAFT etc. with this excellent handheld VHF RECEIVER (also tunes MW). Extending rod aerial.
SOLDER SUCKER-Cheapest offer ever of these handy tools. (Rubber bulb type) Limited stocks to clear.
RECHARGEABLE PP3 NICKEL CADMIUM CELL. (Think what it costs you to keep buying PP3's!!!) These will recharge up to 400 times, saving $£ £ £ s$.
(Special charging instructions supplied).

* Or if bought with our Airband Radio (6) £12. 50 pair!!
COMPONENT CLEARANCE PACK. May consist of pots, sliders, indicators, plugs/ sockets, wire, resistors, capacitors, IC chips, TV parts-our choice, as even we don't know what we have in our vast stock!
FREE OFFER All orders over $£ 3$ receive resistor calculator card FREE!
OFFER LIMITED TO UK MAINLAND ONLY.
(Prices include Post \& Packing \& VAT). Allow 21 days for delivery.
Arrow Electronlcs Lid. Leader Housh, Coptfold Rd. Brentwood, Essex CM14 4BN
Please print clearly and give your postcode and post with cheque, postal order or càsh to:


## ARROW ELECTRONICS LTD. <br> LEADER HOUSE, COPTFOLD ROAD, BRENTWOOD, ESSEX CM14 4BN

OR you may collect at our shop (open 9-5 Mon.Sat. Closed PM Thursday).
NAME:
ADDRESS:

POSTCODE:

USEFUL MAINS TRANSFORMER 240 Volt Input. Output 43 Volt $50 \mathrm{~mA}, 11$ Volt £3.90(P\&P £1-20).
SILICON PNP TO3 TRANSISTOR 60 VoIt 10 Amp $2 N 3789 @ 55 p$
SILICON NPN TO3 TRANSISTORS BDY 57120 Volt 25 Amp @ £ 100 Volt 15 Amp @ 80 p , 2 N 5039120 Volt 20 Amp $60 \mathrm{MHz} @$ 玉it•15, 2 N 6354150 Volt 10 Amp 80 MHz @ £1 15, 2N 6496150 Volt $15 \mathrm{Amp} 60 \mathrm{MHz} @ £ 1$
ELECTRET MIKE INSERTS with FET PRE-AMP @ £1.85.
HOUSE CODED TTL I.C'S 7400, 7410, 74L00, 7453, 7430. Al! at 6 for 50 p 50 BC 107.8-9 METAL TRANSISTORS Assorted untested for 60 p . 200 ASSORTED $\frac{1}{2} .+$ WATT RESISTORS Assorted for 75p. 25 AF 117-118 TRANSISTORS Untested for 60 p .
50 AC 128 TRANSISTORS Branded but untested @ 60p
50 PLASTIC TRANSISTORS Untested @ 60p.
MINIATURE VARIABLE CAPACITORS AIF Spaced $250+250 \mathrm{pf}$ ( 500 pf ) @ 85p. WIRE WOUND POTENTIOMETERS 2 Watt $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 4$ Watt 100 K . All 30 p each.
MINIATURE TRANSISTOR TRANSFORMERS Input types: Impedance Ratio 100K to $1 \mathrm{~K} @ 35 p$. Ratio 150 K to $1 \mathrm{~K} @ 35 \mathrm{p}$, Ratio 20 K to $1 \mathrm{~K} @ 35 \mathrm{p}$. 10 K to $2 \mathrm{~K} @ 35 \mathrm{p}$. Output types: $250 \mathrm{~mW} 1-2 \mathrm{~K} 108 \mathrm{ohms}$ @ 35 p .250 mW 500 ohm to 8 ohm @ $35 \mathrm{p}, 500$

2N 2484 Equivalent to BC 109 WITCHES SPCO @ 50 p each
PLASTIC TRANSISTORS BC
6 to 12 VOLT MINIATURE RELAYS SPC 549 @ 15p, 6 for $65 p$.
500 METRE OF PVC CABLE 13 Strands- 019 at $£ 10$ reel.
DISC CERA'MICS 01uf 500 v ,w., O5ul 500 v .w. Both 20 p doz
DISC CERAMICS 1uf $30 \mathrm{v} . \mathrm{w}$. . $1 \mathrm{uf} 63 \mathrm{v} . \mathrm{w}$., $22 \mathrm{uf} 6 \mathrm{v} . \mathrm{w}$. All 5 p each
CERAMICTAG STRIPS 12-way @ 15p, 21-way @ 20p.
COMPRESSION TRIMMERS 10pf. 30pf. 50pf, 100pf. 500pf. All at 12 p each. R.F. SIGNALTRANSISTORS 2N 918 @ 25p. AF $239 @ 50 p, 2 N 5179 @ 50 p, 2 N$ $5180 @ 50 \mathrm{p}$.
ERIE MINIATURE REDCAP 01 uf $100 v . w$. DISCS @ 5p each.
$\frac{3^{\prime} "}{13}$ COIL FORMERS With Core @ 6 for 25 p .
HC6U CRYSTALS $1396.50,1403.35 \mathrm{KHz}, 19.06 \mathrm{MHz}, 20.006,32.2222,33.33333$, $36 \cdot 2222,36 \cdot 66666,36 \cdot 6667,37,37 \cdot 7777,38,38 \cdot 1481.38 \cdot 3331,38 \cdot 88889,39 \cdot 6667,39 \cdot 7037$ $39 \cdot 7407,39.7778,40,40 \cdot 037,40 \cdot 074,40-11111,40-1481,40 \cdot 2222,40-2963,40 \cdot 3333$, $44 \cdot 3 \cdot 45 \cdot 7,45 \cdot 9,46 \cdot 1,46 \cdot 5,46 \cdot 612,46 \cdot 7,48 \cdot 3,50 \cdot 1 \mathrm{MHz}$. All at 50 p each.
GLASS WIRE ENDED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KH}$
GLASS WIRE ENDED CRYSTALS $28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 29.75 \mathrm{KHz}, 31.5 \mathrm{KHz}$. All
10 X CRYSTALS $8010 \mathrm{KHz}, 8950 \mathrm{KHz}$. Both 40 p each
VHF POWER TRANSISTORS with data BLY 97175 MHz 4 Watt 24 Volt (i3) $£ 3$. UHF ty ue BFR 64470 MHz 12-24 Volt 4 Watt @ $£ 3$ each.

Please add 20p for post and packing on U.K. orders under £2. Overseas postage charged at cost.

## J. BIRKETT <br> RADIO COMPONENT SUPPLIERS

## 25 The Strait, Lincoln LN2 1JF Tel. 20767

$\square$

A choice of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks drilling, shaping, cutting, polishing etc in the minimum of time. There are two types of drill stand, S1 for P1 drill, S2 for all drills, plus all the necessary accessories in a remarkable range that fills every need. Fully illustrated literature is available and will be
gladly semt upon receipt of 9" x 4" stamped addressed envelope.
See them on STAND No 87 MODEL ENGINEER EXHIBITION Wembley Jan I to 10 198I


Sole UK Distributors PRECISION PETITE LTD
119a HIGH ST. TEDDINGTON, MDX. Tel: 01.9770878


## PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT

output stage uses four 115 watt transistors normally only two would be used. result, a high powered rugged unit. The PC Board is backprinted, etched and ready to drill for ease of construction, and the aluminium chassis is preformed and ready to use. Supplied with all parts

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES


MULLARD STEREO
PREAMP MODULES
AND TWO 12 WATT
POWER AMP
KITS.
In easy to build form
P.C.B.s backprinted. etched and dilled ready to use.

## BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER 80.0 ACCESSORIES AND L.S. KIT EXTRA (not available separatelv)

DIY PACK $12 \times$ power amp kits LP1182/preamp module, suitable for ceremic and auxiliary inputs.

DIY PACK $2 \times$ power ampkits LP1184 preamp module suitable for magnetic ceramic and auxiliary inputs.

DIY SPEAKERKIT Two 8" $\times 5^{\text {" approx }}$ 4 ohm bass.

at time of purchase of Bargain Packs

## 12 + 12 WATT AMPLIFIER <br> K|T NOTE: tor use with 4108 ohms speakers.

 With up- to the-minute features. To compiete you iust supply screws, connecting wire and solder, Fartưres include din inpu sockers for ceramic carridge, microphone, appe or uner Outpurs-lape, speaks a 24 watt mono disco amplifier with deck mixing The kit incorporates a Mullard P 1183 pre-amp module plus 2 power amplifier assembly vits and mains power supply, Also featured 4 slider leval controls, rotary bass and treble controls and 6 push button switches Siver finish fascia panel with matching knobs. Easy to assemble teak simulate cabinet and ready made metal work For futher information instructions are available price 50 p . Free with kit
NOTE:
for use with 4 to 8 ohms speakers.
for use with 4 to 8 ohms speakers. plus $£ 2.55$ p\&p

## BSR chassis

record player deck with manual set down and return complete with stereo ceramic
 purchased with amplifier available separately $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.75$ p\&p TWO WAY SPEAKER KIT. 2 Phillips 8" approx speakers $£ 4.75$ per stereo pair plus $£ 1.50$ p\&p when purchased with amplifier available separately $£ 6.75$ plus $£ 1.50$ p $\&$ p.
ALSO AVAILABLE Stereo magnetic preamp conversion kit all components including P.C.B. to conven your ceramic input on the $12+12$ amp to magnetic. $\mathbf{£ 2 . 0 0}$ when purchased with kit featured above. $\mathbf{£ 4 . 0 0}$ sepàrately inc. plep.

## OFFER! SAVE MONEY by purchasing $12+12 \mathrm{amp}$ kit, BSR record deck and speaker kit together for only £25.50 p\&p $£ 4.50$

## PRACTICAL ELECTRONICS CAR RADIO KIT

(Constructors pack 7)


- Easy to build * 5 push button tuning

Modern styling design *All new unused components - 6 watt output * Ready etched \& punched P.C.B

Incorporates suppression circuits "Now with tape input socket
All the electronic components to build the radio, you supply oniy the wire and solder as featured in the Prectical Electronics March issue. Features: Pre-set tuning with five push button ogtions. black illuminated tuning. scale, with matching rotary control knobs, one, combining on/oft volume and tone-control, the other for manual tuning. each set on wood simulated fascia. The P.E. Traveller has a 6 watts output, neg ground and incorporates an integrated circuit output stage. a Mullard IF module tP1181 ceramic filter type. pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The radio fits easily in or under dashboards.
Complete with instructions.

> CONSTRUCTORS PACK 7A
> Suitable stainless steel fully retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$ ) is $\mathbf{f 1} 95^{\text {per pack, }}$ avaikable as a kit complete $\mathbf{£ 1 . 9 5}$ p\& $£ 1.00$ Pack 7 A may only be purchased at the same time as Pack 7 NOTE: Constructor's pack 7A NOIE: Constructor's pack 7 A
sold complete with radio kit
$\mathbf{1} \mathbf{5 . 2 0}$
including p\& p. EATURED PROJECT IN PRACTICAL ELECTRONICS.


## 30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holder. DIN speaker and input sacket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size $143 / 4^{\prime \prime} \times 10^{\prime \prime}$ approx.

Ready to play $£ 32.900_{\text {dur }}^{\text {and }}$


323 EDGWARE ROAD, LONDON W2 2IA HIGH STREET, ACTON W3 6NG ACTON: Mail Order only, No callers ALL PRICES INCLUDE VAT AT $15 \%$ All items subject to availability. Price correct at 14/8/B0 and subject to change without notice

For further information send for our instruction booklet nOTE: $\quad 20 p$ plus stamped addressed envelope.

BSR Manual singleplay record deck with auto retum and cueing lever. Fitfed with stereo ceramic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco use.

## $f 12.25$

 PHILLIPS RECORD PLAYER DECK GCO37 Hi fi record player deck. 2 speed. Size approx $15 \%^{\prime \prime} \times 12 \%^{\prime \prime}$ damped cueing, auto shut-off, belt dill dive with floating sublthassis to minimise acoustic feedback. Complete with GP401 stereo magnetic cartridge-LIMITED STOCK UNBEATABLE OFFER AT£27.50

## BARGAIN OFFER!!



## ARISTON PICK UP



Brushed aluminiou fascia and rotary controls. Size appfox $14^{\prime \prime} \times 4^{\prime \prime} \times 101 / 4$. Five vertical slide controls, master volume, tape leverl, mic level, deck level, PLUS INTER DECK FADER for perfect graduated change trom record deck No. 1 to No. 2, or vice versa. Pre tade level controls (PRL) lets YOU hear next disc betore fading it in. VU meter monitors output level.
$£ 76.00$
Output 100 watts RMS 200 watts peak.
50 WATT MONO DISCO AMPLIFIER
Size appox $13 \pi^{\prime \prime} \times 51 /^{\prime \prime} \times 63 / 4^{\prime \prime} .50$ watts ims. 100 watts peak
output. Big features include two disc inputs, both for ceramic cartridges. tape input and microphone input. Level mixing controls firted with integral push-pull switches. Independent bass and treble controls and master volume.
$£ 30.60$
plus 53.20 g 8 ip

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb solid state audio ampliter. Brand new components sistors plus 2 power ratput transistors in push-pull. Full wave rectification. Output approx. 13 watts r.m.s. into 8 ohms. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm$ 3db. Fully integrated pre-amplifier stage with separate Volume Bass boost and Treble cut controls. Suitable for 8 -15 ohm peakers. Input for ceramic or crystal cartridge. sensitivit and tested, with or funs output. Supplied input and output plues. Overall size escutcheon panel, $3^{\prime \prime}$ high $\times 6^{\circ}$ wide $\times 7 \frac{1}{2}$ " deep. AC 200/250V.PRICE $£ 18 \cdot 40$, P. \& P. £1 $\cdot 60$.

## HARYERSONIC MODEL P.A. TWO ZERO

 An advanced solid state general purpose mono amplifer suitable for Public Address system, Disco, Guitar, Gram, etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-amp). Input 1.15 mV into 47 k . input 2 , 15 mV into 47 k (suitable for use with mic. or gram, tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into tandard jack sockets on front panel. Output socket n rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised $200-240$ volts. Size approx. i2tin wide $\times 5$ in high $\times$ 7 in deep. Special price $\mathbf{8 2 9} \cdot \mathbf{0 0}+£ 3 \cdot 00$ carriage and packing."POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 t^{\prime \prime} \times 144^{\prime \prime} \times 1 \frac{1}{10}{ }^{\prime \prime}$ deep. Weight 19oz. Power handling 20W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without banic. Send S.A.E. for full details.

STEREO MAGNETIC PRE-AMP. Sens, 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Input impedance 47 K . Size $11^{\prime \prime}$ $\times 2 \ddagger^{\prime \prime} \times{t^{\prime \prime}}^{\prime}$. $83 \cdot 20+22 \mathrm{p} P$. \& P .
$200 / 240 \mathrm{~V}$ Mains oper-
 ated Solid State FM/AM Stereo Tuner. Covering KHz VHF/FM ${ }^{\mathbf{K y}}{ }^{\mathbf{8 8}-108}$ MHz
MHz .
Built-in Ferrite rod acrial for M.W. Full AFC and AGC on AM and FM. Stereo Beacon Lamp Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage Will match almost any simplated Teak finish cabinet. $9 \frac{1}{2}^{\circ} \mathrm{d}$ approx.
LIMITED NUMBER ONLY at $\mathbf{2 2 9 \cdot 0 0}+£ 2 \cdot 00$ P. \& P. 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monoaural amplifier with an EL84s in 14 wats from 2 EL84s in push-pull. Super eproduction of both music hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match 3-15 0 speaker and 2 inder controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet. 50D + SAE (Free with parts). All parts sold separately. ONLY $818 \cdot 40$, $P$. \& $P$. $\mathbf{£ 2} \cdot 00$. Also available ready built and tested $\mathbf{\Sigma 2 2} \cdot 50$. P. \& P. £2 00 .

STEREO DECODER MK.II
SIZE $11^{\prime \prime} \times 2 \frac{1}{7 \prime}^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ ready built. Pre-aligned and ested for $10-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied. $\$ 7.00$ plus 25p. P. \& P. Stereo beacon light if required 40p extra.
Mullard LP1159 RF-IF module $470 \mathrm{kHz} \quad \AA 2 \cdot 50 \quad+$ P. \& P. 40p. Full specification and connection details upplied
Pye VHF FM Tuner Head covering $88-108 \mathrm{MHz}, 10 \cdot 7$ MHz I.F. output. $7.8 \mathrm{~V}+$ earth. Supplied pre-aligned, and $323 \mathrm{PF}+323 \mathrm{PF}$ A.M.Tuning gang only $\mathbf{8 3} \cdot 40+$ P. \& P. 60 p.

VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in . wide. Our price $\mathbf{2 2} \cdot \mathbf{3 0}$ yd. length. P. \& P. 70D Der yd. (min. 1 yd.). S.A.E. for samples.

HARVERSONIC SUPERSOUND 10 + 10 STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 ransistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise evel with improved sensitivity. Integral pre-amp with bass, Treble and two Volume Controts. Suitable for use with Ceramic or Crystal cartridges. Very simple to cluded. Output stage for any speakers from 8 in is ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifter to be proud of. Brief specification: Power output: 14 watts r.m.s. Der channel into 5 ohms. Frequency response $\pm 3 \mathrm{~dB} .12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV int Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx to -16 dB . Negative feedback 18 dB over main amp Power requirements 35 v at 1.0 amp Overall Size $12^{\circ} \mathrm{w} . \times 8^{\prime \prime} \mathrm{d}$. $\times 24^{\prime \prime} \mathrm{h}$.
Fully detailed 8 page construction manual and parts list free with kit or send 50p plus large S.A.E. AMPLIFIER KIT
AMPLIFIER KIT . . .. £14.95 P. \& P. £1-20 Magnetic input components 33p extra)
 SPECIAL OFFER-only $\mathbf{£ 2 5 \cdot 8 0}$ if all 3 items

Also avail. ready built and tested $\mathbf{2 3 2}$ 20. P. \& P. f2.80. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the built in short term thermal overload protection. All components including rectifler smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets a 5 pin din tade rec./play socket are mounted on the printed circuit panel, size approx. $91^{\prime \prime} \times 24^{3 \prime} \times 1^{\prime \prime}$ max. depth. Supplied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only \&10. 40 plus $90 p$ P. \& P. Mains transformer with an 70p P. \& P. If required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENQUIRIES.

## JOIN UP WITH LITESOLD.

New 'L' series irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. New non-roll GRP safety handles. Ceramic and mica insulated elements enclosed in stainless steel shafts.

Fully earthed with screw connected 3-core leads. Interchangeable, non-seize copper bits.

spare bits 1.6 .2 .4 and 4.7 mm . £6.31 including p\&p and VAT. 240 volts standard but also available 12 and 14 volts. Iron only $£ 4.66$ including P\&P and VAT

## MODEL LA12 12 watts

Similar to LC18 but with extra slim shaft and bits for fine work. Fitted with 2.4 mm copper bit and complete with spare bits 1.2 mm and 3.2 mm . $£ 5.58$ including p\&p and VAT. 240 volts standard also available 6,12 and 24 volts. Iron only $£ 4.61$ including P\&P and VAT.

No. 3 SAFETY SPRING STAND for LC18 \& LA12

Complete with sponge and location for spare bits $£ 4.41$ including $P \& P$ and VAT.

## MODEL LC18 18 watts

Lightweight, high-performance iron for all soldering from calculators to T.V. sets. Fitted with 3.2 mm copper bit and complete with

## LOLA DE-SOLDERING PUMPS

Removes solder from pcb joints quickly, with no fuss. Simple one-handed operation leaves other hand free to hold soldering iron heat source. Needs no external power. Has replaceable PTFE nozzle. Thousands in daily use in major manufacturing companies. Two sizes to choose from.


Lola A 215 mm long $\times 20 \mathrm{~mm}$ dia. £6.89 (including VAT, P\&P)
Lola D 165 mm long $\times 14 \mathrm{~mm}$ dia. $£ 5.03$ (including VAT, P\&P)

## PRIME COMPONENTS LOW PRICES




## I enclose cheque/PO value £ <br> or debit my ACCESS/BARCLAYCARD account no.

## Signature

## INTERESTED IN ELECTRONICS?

## TRY A ZEDPACK!

 COMPONENTS AT A PRICE
## EVERYONE CAN AFFORD

Z1 300 mixed $\frac{1}{3}$ and $\frac{1}{2}$ watt resistors $£ 1 \cdot 50$ $\begin{array}{ll}\mathrm{Z2} & 150 \mathrm{mixed} \\ 200 \\ \text { mixed } \\ \text { and } \\ 2\end{array}$ watt resistors $£ 1 \cdot 50$
Z4 100 mixed electrolytics
25100 mixed polywtyrene Z
Z8 300 mixed printed circult
${ }_{27}$ components 300 mixed
$27{ }_{100}^{300}$ mixed printed circult resistors $£$ 28100 mixed hlgh wattage resietors
 plate maxed
plate caps
z10 25 assorted pots.
s. cer
 Z12 20 assorted ${ }^{2}$ $Z 13$ 11h mixed hardwarmistors $\Sigma 1 \cdot 20$ Z13 ith mixed hardware. Nuts, bolt
self-tappers, sleeving, etc. self-tappers, sleeving, etc.
214 100 mlxed, new and marked, full $\$ 1 \cdot 00$ transistors. Pack includes:-- BC148, transistors. Pach includes:- BC148,
BF154, BF274, BC212L, BC238, BC184L, MEO412 and, or lots of slmilar types Z15 100 mixed diodes including:-zener, power, bridge, signal, germanlum
silicon etc. All full spec,
$£ 4 \cdot 95$ 1620 N N4148
$\begin{array}{ll}Z 16 & 20 \\ \text { 1N4148 } \\ Z 1720 & \text { N } 4003 / 10 \mathrm{D} 2\end{array}$
Z1820 assorted zeners, 1 wat and 4001
$\mathbf{Z 1 9} \mathbf{2 5}$ high voltage pulse caps, etc. $£ 1 \cdot \mathbf{5 0}$ $Z 1925$ high voltage puise caps, etc. $£ 1.25$
ULTRASONICTRANSDUCERS. trans mitter and receiver. 40 KHz .14 mm dlam,
TBA to0 Audio I.C. £i ea. 31 or $£ 2 \cdot 50$ BD151 (78W, 15A, TO3) 3 to $\mathbf{1} 1$ or $£ 2 \cdot 50$. 12V 1-3W ZENERS 10 for Eq
 $209 \mu \mathrm{~A}$ Miniature level/baty. meters, as fitted to many cassette recorders. sop otching kite
Includes 100 Bq ins. of copperclad F/G board. 1b terric chioride, (made for U.S army to MIL, SPEC.), 1 dalo etch resist pen abrasive cleaner, etch resist dish and
Instructlons.
OURPRICE $£ 4.95$

TO: "GEMINI ELECTRONIC COMPONENTS"
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8. Plesse Quote ZED Code. Where shown. Send Cheque or Postal Order. Plus 50p PaP. ZED PACKS now avaltable for Callers at 50 Deptford Broadway, London, S.E.8.

1 b of FeCl . £1.25. 51b. $\mathrm{c5}$.
50 sq. ins. single sided board.
150 . double sided board.
Dalo pen.

UHF, Translifiors T,V. TUNER with slow motion drive, AE.skt and leads 81.95 06 Minlaluro reed awithes. P/B SWITCH BANKS These cost a fortunel Were made for arious music centres. Includes Indepenmulti poie e/o etc. Can be modifled. Can't be repeated. 3 Banks for $\mathbf{E 1}$. KNOBS for Swltch Banks 10 for $\varepsilon$. Chrome or spun aluminium finish.

> MINIATURE MAINS TRMSFORMERS

Top quality. Split bobbln construction will give $4 \cdot 5 \mathrm{~V}-0.4 \cdot 5 \mathrm{~V}$ at 250 MA . $11^{\prime \prime} \times 11^{\prime \prime}$ $\times 1 \mathbf{1}^{\prime \prime}$, all sorts of uses. ONLY 90p
 70 p .3 for $11 \cdot 50.2,200 \mu \uparrow 40 \mathrm{v} .30 \mathrm{p}, 3$ to $51 \cdot 50.4,700 \mu \mathrm{t} 40 \mathrm{v}$. 80 p .3 for $£ 2$.
Don't Let Your Environment Dehydrate
You!
Membrane haft, $250 \mathrm{~V}, 3.75 \mathrm{~A}$. contacts. Ideal for reenhouse 3.75A Contacts. Ideal for offices etc. Bulld your heated homes. or alarms. Fractlon of orioinal cosite or 3 for $£ 2$. Fraction of original cost 30p


USHRANSISTOR
for UHF Television (Decca Brad figonda chassis) 5 P/B Type (one for tuning. Only $£ 2.50$

ALTERNATOR RECTIFIERS Make lovely 80 amp bridges. Ideal for High Power Battery Chargers. Type AAFI. Set of 4 (2 neg. case + 2 pos. case) £2.

Special Purchase enables us to offer Mullard C2s0 Polyestor Capa citors (Liquorice Allsorts) at the E15 for 1000 . These consist of factory clearance lots i.e. spillages, floor sweepings, cosmetic "ejects etc. Also Mullard miniature electrolytics 100 mixed
£1.50. 1000 for
ع10. Pack of each
\&3. 1000 of emeh E10. Pack of each E 3 . 1000 of each
E 30 .



678 DEPT EE10, PO BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST., WARE, HERTS. TEL: 0920 3182. TELEX: 817861



## TOP PRIORITY for every

 constructor...

## HOME RADIO CATALOGUE

- About 2,000 items clearly listed.
- Profusely illustrated throughout.
- Large catalogue, A-4 size pages.
- Bargain List, Order Form and Pre-paid Envelope included. Also 2 coupons directed.
- Catalogue f1. plus 50 p for post, packing and insur-
ance.

HOME RADIO (Components) LTD.,
Dept. EE., P.O. Box 92, 215 London Road, Mitcham, Surrey.




ACE MALTRONIX ITD Dept. EE, $3 A$ Cormiercial St. Batey, W.Yorks. WF175HJ

## THISMONTHSSUN!

COMPONENTS - Over 1,000 types in stock.
SERVICE - Same day despatch.
QUALITY - All guaranteed products.
MAGAZINE PROJECTS - Trouble free
send s.a.e. for priced parts list of EE projects (max 4) stating month and project title.

| name | I enclose $30 \mathrm{p*}$ please send cataiogue |  |
| :--- | ---: | ---: |
| address |  |  |
|  | "refundable with future orders over $\mathbf{£ 5 . 0 0}$ |  |



## MASTER ELECTRONICS MASTER COMPUTERS



LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope.
- Recognition of components.
- Understanding circuit diagrams.
- Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Complete Home Study library.
- Special educational Mini-Computer

Testing and servicing of Radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and all types of modern computerised equipment.

supplied ready for use.

- Self Test program exercise.
- Services of skilled tutor available.


## MASTER THE REST

- Radio Amateurs Licence. - Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. Semi-conductor technology. - Kits for Signal Generators - Digital Meters etc.



OUR MIN-SELEECTION PONTTS THE WAY!
EXAMPLE ONE - SOLDERING IRONS


## EXAMPLE FOUR - CAPACITORS BY SIEMENS

Polyester 7.5 mm PCM
$1,1.5,2,3 \cdot 3,4,7 n F, 10,15,22,33,47 n F$ zp each. $0.1 \mu 12 \mathrm{p} \cdot 0.15 \mu 15 \mathrm{p} .0 .22 \mu 18 \mathrm{p}$ $.33 \mu 21$ p. $0.47 \mu 27$ p. $0.68 \mu 34$ p. 10 mm PCM $1 \mu 37 \mathrm{p}$.
$1 / 4024$ p. 1/100 15p. 2-2/25 24p. 2 2/6315p. 4.7/16 24p. 4.7/60 15p. 10/25 15p.
$10 / 4018 \mathrm{p} .22 \cdot 25$ 18p. $22 / 4018 \mathrm{p} .22 / 63$ 19p. $47 / 1018 \mathrm{p} .47$
$47 / 6320 \mathrm{p}$, up to $1000 / 16 \mathrm{~V} 36 \mathrm{p}$, then 100025 V 49 p , ef c .
Also full supporting range of other ceramic; plastic and electrolytle caps.
EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM

| Single gang lin or log Twin gang lin orlog |  |  | 34 p | (Twin types stereo matched)Slider knots |  |  | $\begin{aligned} & 10 p \text { each } \\ & 12 p \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 93p |  |  |  |  |
| Mono slider lin or log |  |  | - 836 p | Presets lin, horiz, or vert. |  |  |  |
| Twin slide | in or lo |  |  |  |  |  |  |
| EXAMPLE SIX - RESISTORS |  |  |  | NOWIN STOCK <br> I.L.P. TOROIDAL |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | TRANSFORMERS |  |  |  |
| AND A |  |  | UCTOR |  | HIS LIST IS BUT A FRACTIDA F WHAT WE CARRY |  |  |
| 1 N914 | ${ }_{6 p}$ | 40673 | 99p | CA140E | 46p | OC36 | 51.18 |
| 1N4007 | 9 p | 555 | 340 | E1110 | 92p | T28000 | £.1.20 |
| 1N4148 | $5 p$ | 556 | 88 p | E1210 | 92 p | TIP31A | 52 p |
| 1N5402 | 19p | AC128 | 36p | LM301AN | 35p | TIP32A | 52p |
| 2N1599 | £1.01 | AC176 | 67 p | LM324N | 67p | TIP41A | 69 p |
| 2N2369A | 24p | AD136 | £.4.25 | LM380N | ¢1.14 | TIP41C | 74p |
| 2N3055 | 81 p | AD149 | ¢1.01 | LM3900N | 78p | TIP42A | 89p |
| 2N3702 11 | 11 p | AD151 | 40p | MJE2955 |  | iP42C | 74 p |
| 2N4443 | ¢1.78 | AD162 | 52p | MJE3055 | E1.00 | TIP2955 | 69 p |
| 2N4444 | ¢2-28 | AF127 | 43p | MPSA12 | 42p | TIP3055 | 69p |
| 2N4991 | 72p | AL102 | E1-84 | MPSA63 | 44p |  | 40 p |
| 2N5457/9 | 45p | BA379 | 29p | OA47 | 14p | WO2 | $35 p$ |
| 4OHF40 | ¢2:25 | B8103 | 43p | 0 OA90 | 8p | ZN425E | ¢ 4.49 |
| 40361 | 49p | B8104 | 70p | OA91 | 8 p | ZTX107-9 | 14p |
| -40362 | 75p | B8105 | 37 p | OA202 | 16p | ZTX300 | 14 p |
| 40636 | ¢1.69 | C106D1 | 52p | OC29 | £1. 23 | ZTX500 | 16p |

PRICES AND V.A.T. All prices quoted here include V.A.T. for U.K. orjarg. Overseas buyers deduct $10 \%$ when ordering.
POSTAGE For orders up to $\mathbf{5 5} \mathbf{7 5}$ value (U.K.) please add 40 p for $\mathrm{p} / \mathrm{p}$. If over, orders sent post tree In U.K. Overseas orders sent at cosil (Min. 40. ).
DISCOUNTS $5 \%$ allowed on most net items if order value exceeds $£ 11 \cdot \mathbf{5 0}, \mathbf{1 0} \%$ if order value exceeds $\mathbf{£ 2 9}$. Quantity discount prices on most components.
ELECTROVALUE LTD., Dept. EE/10, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: Egham 33603 (STD 0784, London ET). Telex 264475. Northern Branch (Personal Shopper
chester M19 1NA. Phone (061) 4324945 .

## SEE HOW YOUR JOBS MEASURE UP WITH THIS

 MULTI-PURPOSE


Craftsman's Kitchen How a beautiful character kitchen was designed and constructed in pine.


Semi-Elliptical Hall Table A 'must' for the craftsman who loves a challenge.

Seventeenth-Century Yew Chest A reproduction from a classic museum piece.


Lincolnshire Wheelbarrow A traditional barrow made using the original methods.



## EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the and of an EXP MB.
EXP 325 f 1.60 The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 pin IVs. Has 130 contact points including two 10 point bus-bars.


EXP 350 ES. 15 Specially designed for working with up to 40 pmin IC perfect for 3 \& 14 pin ISs.
Has 270 contact points including
two 20 point bus-bars.
EXP 300 £5. 75 The most widely bought bread-board in the UK With 550 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to $6 \times 14$ pIn DIPS. Use this breadboard with Adventures in Microelectronics.

EXP 600 £6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600


EXP 650 £3.60 Has 6 ' centre
spacing so is perfect for


MICROPROCESSOR applications


EXP 4B £2.30 Four
more bus-bars in
'snap-on' unit.

"
The above prices are exclusive of P\&P and $15 \%$ VAT

## THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately
CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) LTD Dept. 4PP

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21682 Telex: 817477

## by Number o 9 <br> Available from selected stockists ELECTRONICS BY NUMBERS <br> No. 7 DIGITAL DICE

Roll the dice - the electronic way! The digital dice gives you an instant score randomly chosen from 1 to 6 , every time you press the button. No losing this under the table!
No. 8 QUIZ MASTER
Play your own 'Sale of the Century'! Up to four contestants pit their wits; the first one to get the answer lights up his 'win' light. and stops anybody else from having a go. No. 9 MOVING TARGET GAME Test your reactions! A moving 'line of light' travels along from left to right, over and over again. You've got to 'fire' at just the right moment to score a hit, Fun for all the family!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;


You will need: One EXP 300 or EXP 350 breadboard, 15 silicon diodes,
6 resistors, 6 Light Emitting Diodes.
Just look at the diagram, Select R 1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects, 7,8 and 9 , simply take the coupon to your nearest CSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.
If you missed projects, 1, 2 and 3 , or 4, 5 and 6 , please tick the appropriate box in the coupon.

## PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.


PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT E9.20


PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy. PROTO-BOARD 100 KIT £11.80


"SPECIAL PRICES" POST EI-50 BAKER LOUDSPEAKERS

| Model | Ohms | Slat | Power | Type | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major | 4, 8, 16 |  | 30 | Hi- | ${ }_{\text {Price }}$ |
| Deluxe Mk II | 4, 8, 10 | 12 | 15 | Hi-Fi | $E 14$ |
| Superb | 8, 16 | 12 | 30 | $\mathrm{Hi}-\mathrm{Fi}$ | $\ldots 20$ |
| Auditorlum | 8, 16 | 12 | 45 | Hi-Fl | $\pm 20$ |
| Auditorlum | 8, 16 | 15 | 60 | HI-FI | c29 |
| Group 35 | 8, 16 | 12 | 40 | PA | $\underline{12}$ |
| Group 45 | 4, 8, 16 | 12 | 45 | PA | $¢ 15$ |
| Group 50 | 4, 8, 16 | 12 | 60 | PA | ¢20 |
| Group 75 | 4, 8, 16 | 12 | 75 | PA | ¢22 |
| Group 100 | 8, 16 | 12 | 100 | PA | $\mathrm{EL2}^{26}$ |
| Group 100 | 8.16 | 15 | 100 | PA | $\underline{5}$ |
| Disco 100 | 8, 16 | 12 | 100 | Disco | ¢26 |
| Disco 100 | 8, 16 | 15 | 100 | Disco | E25 |

4 CHANNEL MIXERS E8.00
Add musical highllghts and sound effects to recordings. WIII mix Mlcrophone, records, tape and tuner with separate controls Into single output. 8 volt battery operated with switch for four channel mono or two channel stereo working. MINI MODULE BAFFLE KIT 10-95 EMt $15 \times 8$ inf. 3 -way Loudspeaker System, 5in. Bass, 5in. MIdde, 3 in. Twester; 3-way Crossover \& Ready Cut Baffle. Full assembly instructlons supplied. Response 60 to E20. Suitable Bookshelf Cablnet $\mathrm{Es} \cdot 50$ each. Post ei $1 \cdot 50$


SINGLE RECORD PLAYER
Fitted with auto stop, stereo cartridge. Baseplate. Slze 1 $\times 8$ in. Turntable size 7 in . dlameter, a.c. mains 240 V 3 speeds plays all size records.
c9. 95
NEW ESR SINGLE PLAYER E26.00 Model P182 3-speeds flared aluminlum turntable. " S ' shaped arm, cueing device, stereo ceramic cartridge. B.S.R. DE-LUXE AUTOCHANGER with stereo cartildge, plays all sire records. Post £2 $£ 2$ WOOD PLINTHS CUT FOR B.S.R. £ Slze: $16 \times 14 \frac{1}{z} \times 3$ jin. Toak Veneered. Post $£ 2$ METAL PLINTH CUT FOR B.S.R. OR GARRARD
Size: $16 \times 14 \times 3 i n, £ 4.50$ Silver or Black finish. Post $£ 2$. TINTED PLASTIC COVERS ALL POST £2 Slzes: $141 \times 12!\times 3$ in, $\mathbf{E 3} \cdot 50,16 \times 14 \times 31 \mathrm{in} \mathrm{EC}$.
151
$\times 131$
 $18 \times 13 \times \frac{1}{4} \times 3$ in. with stand-up hinges 57 . R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS

E2.95 Post 45p
All parts and instructions with Zener diode printed circuit, 240 V a.c. Output voltages avallable 6 or 7,5 or 9 or 12 V d.c. up to 100 mA or less. Size $3 \times 2 \mathrm{i} \times 1 \mathrm{iln}$.
Please state voltage required.
Please state volage requlred.
PP BATTERY ELIMINATOR BRITISH Mains stabilized power-pack 9 volt 400 mA max. with over load cut out. Size $5 \times 3 t \times 2 \mathrm{it} \mathrm{in}, \mathbf{£ 4} \cdot 50$. Post 50 p .


BLANK ALUMINIUM CHABSIS, $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 2 H In sides.
 $16 \times 6 \mathrm{in}$. E1-55; $12 \times 3 \mathrm{in}, \mathrm{El} \cdot 20 ; 16 \times 10 \mathrm{in}$. $\mathrm{Ez} 2 \mathbf{2 0} ; 12 \times 8 \mathrm{in}$. E1.70.
3p: $10 \times$ NIn PANELS, 18 s.w.g. $6 \times 4 \mathrm{in}$. 24 pi $8 \times 8 \mathrm{in}$. Pp; $14 \times$ in. 54 p; $12 \times 5 i n .50 p i 12 \times 8 i n .70 p i 16 \times$
 ALUMINIUM BOXES, MANY OTHE $\times$ Sin 25 PI . IN TOCK $4 \times 2 \times 21 \mathrm{n}$. E1, $00 ; 3 \times 2 \times 1 \mathrm{in}$, $20 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{n}$. E1.30; $8 \times 6 \times 3$ in. £2.10; 9
$£ 2 \cdot 50 ; 12 \times 8 \times 3$ in. $£ 3.00$.
HIGH VOLTAGE ELECTROLYTICS

| $8 / 350 \mathrm{~V}$ |  |  | 75 |  |
| :---: | :---: | :---: | :---: | :---: |
| $16 / 350 \mathrm{~V}$ | $45 p$ | $8+16 / 450 \mathrm{~V}$ | $75 p$ | $32+32 / 4$ |
| $32 / 500 \mathrm{~V}$ | 75p | $16+16 / 450 \mathrm{~V}$ | $75 p$ | $100+100 / 275 \mathrm{~V}$ |
| $50 / 500 \mathrm{~V}$ | ¢1.20 | $32+32 / 350 \mathrm{~V}$ | 75 | +100/25 |
| 8/800V | ¢1. 20 | 16/500V | $65 p$ | $0 /$ |

Rapid Mail Order 50p. Callers Welcome: Access-Barclay-Visa. Lists 20p. Closed Wed.

## Radio Components Specialists

337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1665

## Is THE ULTIMATE WATOH strom

JET 010 ANALOGUE/DIGITAL

## ALARM CHRONOGRAPH

A superbly styled analogue watch only 7.5 mm thick (approx) with a multifunctional digital display.
ANALOGUE
Independent hours and minutes, with sweep second hand.
DIGITAL
Time: Independent 6 digit display of hours, minutes and seconds with $\mathrm{am} / \mathrm{pm}$ indication ( 12 hour system), or 24 hour readout. Calendar: Alpha day and date with automatic adjustment. Alarm: The 24 hour alarm sounds for 60 seconds. 12 or 24 hour readout with alarm set symbol continuously displayed.
Chimes: The hourly signal, with symbol, can be switched on or off. Stopwatch: Measuring net times from $1 / 100$ second to. 1 hour. Dual time, countdown and accumulation function availability.
Stainless steel case and bracelet. Hardlex glass. Shock and water resistant. Antj-magnetic. Approx 2 year battery life. 12 month world-wide guarantee. This state-of-
Wherart watch is destined to become a
thassic.
ther


## SPECIAL SUMMERTIME OFFERS

Excluding new models illustrated
A further


ALL our normal discount prices for ALARM, ALARM CHRONOGRAPH and CALCULATOR watches

OFFER CLOSES SEPTEMBER 30th 1980 SUBJECT TO AVAILABILITY

Send 25p for our illustrated catalogue and save fifs!

## SEIKO'S NEW SOLAR ALARM CHRONOGRAPHS



Water resistant case withstands splashing, etc.
£52.50
PRICE inclu
number to:
PRICE includes VAT, P \& P. Send your cheque, P.O. or phone your ACCESS or BARCLAYCARD

## THMTPUS

Tempus (Dept. EG)
FREEPOST, 164-167 East Road
Cambridge CB1 1BR. Tel. 0223312365
Interval countdown alarm timer Weekly programmable alarm
Comprehensive display of hours, minutes, seconds, day, date and month.
The 24 hour alarm can be programmed to ring on any day or days of the week. The hourly chimes can be switched on or off. The interval alarm timer can be set for any period of time up to 16 hours, and is repetitive until switched off.
The stopwatch measures net, lap and 1st \& 2nd place times from $1 / 100$ second to 20 minutes, then in seconds to 12 hours, the upper display indicating lap times and the lower display total time. Stainless steel case and bracelet. Hardlex glass. Approx. 7 year battery life. 6 solar panels. 12 month worldwide guarantee.


100M WATER RE-
SISTANT. Suitable
for swimming, etc.
$£ 69.95$


## CLASSIFIED

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £6.16 per single column centimetre (minimum $2 \cdot 5 \mathrm{~cm}$ ). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed '"Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

> Receivers and Components Ditcover electronicl, Buld forty eary project Including: Metal Detector; Breathalyser; Radios; Stethoscope; Lie Detector; Touch time-switches; Burglar Alarms, etc. Circuits, plans all for $£ 1.50$ including FREE circuit board. Mali only. RIDLEY PHOTO/ELECTRONICS, Box 62, 111 Fockspark Road, Uckfield, Sussex.

> TURN YOUR SURPLUS capacitors, transis tors, etc. into cash. Contact COLES-HARD ING \& CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

## NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-moltter-Receiver Kit. Only $\mathbf{£ 1 2 . 9 5}$ plus 35p P. \& $\mathbf{P}$.
'Brain-Freezo' "em with a MINI-STROBE Blectronlcs Kit, pocket-sized 'lightning flashes', varl-speed, for discos and parties. A mere $£ 5.95$ DRI 35p P. \&P. Experiment with a psychedelic WIth the BIG EAR sound-catcher; ready-made multi-function modules. $£ 6 \cdot 85$ each plus 35 p multi-funct P. \& $P$.

LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS
4 CUNLIFFE ROAD, STONELEIGH
EWELL, SURREY. (E.E.)

100 DIODES 85p. 50 transistors 95p. 10 switches 90 p . 10 Leds $£ 1 \cdot 15$. All mixed. Lists 15p. Sole Electronics, E/E, 37 Stanley Street, Ormskirk, Lancs L39 2DH.



```
8"}\times\mp@subsup{8}{}{\prime\prime}\times\mp@subsup{7}{}{\prime\prime}\textrm{El}10\mathrm{ .10Panel with 40 assorted 74 series I.C.s &1-60.
20 wire ended Neons $1.00. Small 3 transistor Audio
&1\cdot60.7Hbs assorted components &3.75.3 assorted M.C.
meters £2.60. List 15p. Refundable, post 40p,optlonal
insurance 20p.
J. W. B. RADIO
2, Barnfield Crescent, Sale, Chemire. M33 iNL.
```

ONE TTL LOGIC PROBE £2•20. V. Casesa 44 Villers Street, Leamington Spa, Warwickshire.

## Miscellaneous

PRINTED CLRCUITS, Make your own simply, cheaply and quickly! Golden Fotoka Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. £2.25. Developer 35p. Ferric Chloride 55p. Clear Acetabe sheet for master 14p. Copper-clad Fibre-glass Board approx. lmm thick £1.70 sq.ft. Post/packing 60p. WHITE HOUSE ELECTRONICS, PO Box 19, Castle Drive, Penzance, Cornwall.
ELECTRONIC KITS. Largest range of kits in the UK. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send SAE for free catalogue to: Eastling Electronics (Kits), 64b Hawthorn Road, Winton, Bournemouth.

## DIGITAL WATCH BATTERY REPLACEMENT KIT



These watches all require batrery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic tweezers, watch screwdriver, case knife and screwback case opener, Also one doz. assort. push-pieces, full instructions and battery identification chart. We then supply replacement batteries -you fit them. Begin now. Send 19 for complete kit and get into a fast growing business. Prompt despatch.

BOLSTER INSTRUMENT CO. (EEI9)
II Percy Avenue, Ashford, Middx., TWI5 2PB
TUNBRIDGE WELLS COMPONENTE, BALLARD's, 108 Camden Road, Tunbridse Wells, Phone 31803 . No lists, enquiries S.A.E.

## G.T. TECHN. INFO. SERVICE <br> 76 Church St., Larkhall, Lanarks, MLs 1HE

Any single service sheet $\mathrm{E}+\mathrm{l}$ large SAE
1,000 s of sheets/manuals always in stock
Sole suppliers of all T.V. Repalr Syatems
Glant Diagram Manual for Washing Machines. Single
tubs/twin tubs/autos.....................only E13.50 tubs/twin tubs/autos........................only $£ 13 \cdot 50$
Repair Data any named T.V. $£ 5 \cdot 50$ (with circults, etc. Repair Data any named T.V. $\mathbf{5 5} 50$ (with circuit
\&7.60). SAE for newsletter, bargaln offers, etc. Phone 048e

SUPER SLIM LCD digital quartz gents/ ladies modules and watches from 5-8 functions with one year guarantee direct from manufacturer and exporter: Hony Electronics Watch Co., P.O. Box 78587, Mongkok Post Office, Hong Kong. Cable: 'HOANICY' Telex: 37643 HONIE HX.

| ENAMELLED COPPER WIRE |  |  |  |
| :---: | :---: | :---: | :---: |
| SWG | 1 lb | $\underline{16}$ | $\pm 1 \mathrm{lb}$ |
| 10 to 19 | 2.95 | 1.70 |  |
| 20 to 29 | 3.05 | 1.75 | 0.95 |
| 30 to 34 | 3.45 | 1.90 | 1.00 |
| 35 to 39 | 3.75 | $2 \cdot 10$ | 1.15 |
| 40 to 43 | 4.95 | 2.75 | $2 \cdot 15$ |
| 44 to 46 | $5 \cdot 90$ | $3 \cdot 50$ | $2 \cdot 40$ |
| FREE WIRE TABLES WITH EACH ORDER <br> INDUSTRIAL SUPPLIES <br> 102 Parrswood Road, Withington, Manchester 20 <br> Prices include P \& P in UK |  |  |  |



## THE SCIENTIFIC WIRE COMPANY

## PO Eox 53, London 集. 4.

Reg. Omee, 2 Conlngtby Sardens.

|  | ENAMELLED | COP | WIR |  |
| :---: | :---: | :---: | :---: | :---: |
| SWG | 1 ib | 808 | 408 | 208 |
| 10 to 29 | $3 \cdot 10$ | $1 \cdot 86$ | $1 \cdot 10$ | - 80 |
| s0 to 34 | $3 \cdot 50$ | 2.00 | $1 \cdot 15$ | - 00 |
| 35 to 30 | $3 \cdot 95$ | $2 \cdot 38$ | $1 \cdot 34$ | '08 |
| 40 to 42 | $5 \cdot 10$ | 2.97 | 2.28 | 1-42 |
| 44 to 48 | 6.00 | 3. 80 | 2.80 | 1.01 |
| 47 | 8.87 | 5. 32 | 3.19 | 2.60 |
| 48 to 49 | 15.96 | 0. 58 | $6 \cdot 38$ | 3-60 |
| EILVER PLATED COPPER WARE. |  |  |  |  |
| 14 to 22 | $5 \cdot 30$ | 3.03 | 1-85 | 1.20 |
| 24 to 30 | 6.50 | 3.75 | $2 \cdot 20$ | 1-40 |

Reg office 29 Coningeby Gardens.

## RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LISTS. $£ 1.45$ FOr Booklet 'Nickel Cadmium Power', plus catalogue. Write or call, Sandwell Plant Lid, 2 Union Drive, Boldmere,
Sutton Coldfeld, West Midiands. $021-354$ 9764, Or see them at TLC, 32 Craven Street, Charing Cross, London WC2.

## Situations Vacant

INDUSTRIAL ELECTRONICS: Are you an electronic wireman/tester or prototype wireman? Have you had an apprenticeship followed by at least 5 years practical experience? If so we can offer Jou employment as an instructor with good promotion opportunities and pensionable 'security at Bristol and Swindon Skillcentres. Starting salary $£ 6,000$ p.a. rising by two increments to $£ 7,110$ p.a. For more information contact Miss A. Curran MSC TSD, 11 Park Place, Clifton, Bristol. Telephone Bristol 20661.
INDUSTRIAL ELECTRONICS: Are you an electronic test technician or service mechanic? Have you had an apprenticeship followed by at least 5 years recent practical experience with a manufacturing or servicing organisation? If so we can offer you employment as an INSTRUCTOR, with good promotion opportunities and pensionable security, at Gloucester, Bristol and Swindon Skillcentres. Starting salary $£ 6_{8} 000$ p.a. ris ing by two increments to $£ 7,110$ p.a. For more information contact Miss A. Curran MSC TSD, 11 Park Place, Clifton, Bristol. Telephone Bristol 20661.

## Wanted

WANTED: ELECTRONIC COMPONENTE, Redundant Stock, Test Equipment, Tools, Machines, Hardware; Factories cleared. Immediate cash decision. Contact: Mr. Quirk, "Q" Services Electronic (Camberley) Ltd, 29 Lawford Crescent, Yateley 871048, Camberley, Surrey.

# Service Sheets <br> BELL'S TELEVISION SERVICE for service sheets on Radio. TV etc. £1 plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 100 King'e Rd, Barrogate, N. Yorkahire. Tel: 042355885. <br> ERRVICE SHEETS from 50p and SAE. Catalogue 25p and SAE. Hamillan Radio, 47 Bohemia Road, St. Leonards, Suaver. 

## For Sale

NEW BACK ISBUES of "EVERYDAY ELECTRONICS". Available 75p each Post Free, open PO/Cheque returned if not in tock. BELL'S TELEVISION SERVICES 190 King Rond, Harrogato, Yorkshlre. Tel: (0423) 65885.

MULLARD LP1164 AM/FM IF. MODULES guaranteed unused $£ 1.50$ inc. PP, CWO. SAE lists. Tennex Limited, Stock Road, Industrial Estate, Southend, Essex.

## Educational

COURSES-RADIO AMATEURS EXAMINA. TION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC home study course. For details of this, and other courses (GCE professional examinations etc), write or phone: THE RAPID RESULTS COLLEGE, Dept JR1, Tuition House, London SW19 4DS. Tel: 019477272 (Careers Advisory Service).

## Services

EPROM PROGRAMMING SERVICE. FOT
types:-2708, 2704, 2716. Dual rail.
And 2508, 2758, 2516, 2532. Single rail.
Please telephone Uxbridge 59130.

## Veteran \& Vintage

## "SOUNDS VINTAGE"

The only magezine for all vintage sound enthuslasts, packed with articies by top writers, covering gramophones, phonographs, 78s, wireless, news, history, reviews, stc. Ei-monthly. Annual subserlption \$6.00 (Airmail extra). Send 75p for sample copy.
28 Chesterwood Close, Blilericay, Essex.

## PLEASE MENTION

EVERYDAY
ELECTRONICS
When replying
то
ADVERTISEMENTS

## MAIL ORDER ADVERTISING

## British Code of Advertising Practice

Advertisemente In this publication are required to conform to the British Code of Advertising Practice, In respect of mall order advertisements where money ls pald In advance, the code requires advertisers to fulfll orders within 28 days, unless a longer delivery perlod is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded, Please retaln proof of postage/despatch, as this may be needed.

## Mail order <br> Protection Scheme

If you order goods from Mall Order advertisements in $t$ his magazine and pay by post in advance of delivery, EVERYDAY ELECTRONICS will conslder you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(t) You have not recelved the goods or had your money refunded; and
(2) You write to the Publisher of EVERYDAY ELEC. TRONICS summarising the situation not earller than 28 days from the date you sent your order and not later than two months from that day,
Please do not walt untII the last moment to inform us, When you write, we will tell you how to make your claims and what evidence of payment is required.
We guarantee to meet clalms from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or Ineolvent.
Tha guarantee covers only advance payment sent in diract response to an advertisement in thls magazine not, for example, payment made in response to cataloguse etc, received as result of answering such advertisements. Classified advertisements are excluded.

## 7 HUGHENDEN ROAD, HASTINGS, SUSSEX. TN34 3TG

 Telephone: Hastings (0424) 436004
## ELECTRONIC COMPONENTS





## J.V.C. TURNTABLE CHASSIS

J.V.C. Turntable supplied complete with an Audio Technica ATIO stereo magnetic cartridge.

* 'S' shaped tone arm. \& Belt driven. $\$$ Full size 12 " platter. \& Precision * Anti-skate (bias) device. Nylon thread weight. * Cut out template supplied Size-12 ºn $^{\prime \prime} \times 15 \frac{?^{\prime \prime}}{\prime \prime}$ (approx).

Price $£ 29 \cdot 90+£ 2 \cdot 50$ Postage and Packing.


## B. K. ELECTRONICS (Dept. EE)

37, Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex, SS9 5TY t S.A.E. for componenss list etc. $\quad$ Official orders welcome. * All items packed (where applicable) in special energy absorbing PU foam.

## INDEX TO ADVERTISERS



[^2]解


## Mk III FM Tuner series

The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience - a preview copy may be purchased for $£ 1.00$ Mark III A series 'Reference series' tuner modules Mark III B series 'Hyperfi' modules, with switched

IF BW, pilot cancel decoder
£198.95 inc
A matching synthesiser unit will be made available later this year, and can be retrofitted to either version. All versions include digital frequency readout/clock VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSU output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

## Power Amplifier $\begin{aligned} & \text { Style and performance - with } \\ & \text { belt and braces } P S U \text { design }\end{aligned}$

After a couple of preview comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mk III tuner. Well, it's out at last - complete with twin toroidal PSUs for comfortable 80W RMS per channel, over 100 W peak, but limited by thermal shutdown of the HMOS. $10 \mathrm{~W}-100 \mathrm{~W} \log$ LED output peak indicator, DC offset protection and switch-on pause relay. AC or DC input coupling, direct or relay protected output terminals. The works.
Only one version of this item: Complete kit ....... £178.25 inc. Carr. £5.
Preamplifier
More features and facilities, thanks
to DC switching and control design Previewing the most somprefiensive auoio preamplifier yet..... DC switching of 7 inputs, plu two tape in/outs. 2 low pass, 2 high pass active filters, geni.ine volume related loudnesss. 1dB
channes matching, with DC volume, balance bass and treble channes matching, with DC wolume, balance, bass and treble controls. Suitable for bus/remote
control, tape dubbing, switched monitor etc. $80 d B S / N+$, THD $-75 d B$ or betrer. Plugatle PU equalization boards, :one control override. Price for complete unit about $£ 149$ ex VAT

## LW-MW-SW-SW DC tuned and switched

91072. All switching of bands by a single pin to gnd. Varicap tuned, with LO output for synth. MW/LW version or MW/LW plus 1 or 2 SW bands VHF Tunerheads
Europes largest stock range for broadcast and communications. Probably also the world's also supplied in the region 30220 MHz

Pilat Cancel PLL Stereo decoders
9443782
Again, Europe's widest range of stereo decoders incluading pilot cancel PLL types. The pic shows $26 / 38 \mathrm{kHz}$ filtering and muting preamp decode

## Switched bandwidth FM IF strips



Broadcast FM IF strips for all occasions, including the new 911225 with diode switched narrow filter option, uitra linear phase ceramic filters, $84 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and $0.04 \%$ THD ( 40 kHz deviation). Plus usual things like AGC, AFC, dev, mute, leve Also the 7230 . Also the 7230 hyperfi series - as the 911225 , but with slope controlled AFC tha Various digital frequency displays
The World's largest range of receiver DFMs is now joined by the DFM7 (shown) and L shaped version of the DFM3 with remote display mount connect or possibility. 1 kHz SW resolution with 455 k Hz
10.7 MHz offsets 100 Hz res up to 3.9999 MHz VHF to 299.99 MHz in 10 kHz steps: f 4175

## Semiconductors



FOR COMPLETE LISTINGS
SEE OUR NEW PRICELIST

## POWER MOSFETS <br> ROWER MOSFETS 100 W PA's made simple

## Components

## Crystal Filters


of output devices and drivers that ought to revolutionise opinions . Hitachi have developed a rang
of then
 complista sets of parts, modules and now the new completat PA system (see above).
2SK133 120 N-ch 100W MOSFET f6 33 $\begin{array}{lllll}\text { 2SK } 133 & \text { 120v N-ch 100W MOSFET } & \text { f6.33 } & \text { 2SJ48 Pch complement }\end{array}$ $\begin{array}{lllll}\text { 2SK } 135 & 160 v & \text { N-ch 100W MOSFET } & \text { E7.29 } & \text { 2SJJ5 Pch complement }\end{array}$ PA101B Kit for 100W MOSFET PA less Heatsink £16.10. (£23 inc heatsink/bkt) ULTRA LOW NOISE PU PREAMPLIFIER

## The HA12017 is the last word in PU preamps, and general low noise audio design

 It is an SIL IC, with 86 dB S/N in RIAA configuration, 10v RMS output capability, $0.002 \%$ typ THD at $10 v$ RMS output (imagine the overload margin !!). It comfort the art beyond diccer circit designs in terms of price/periormance, and takes the art beyond the TDA1042's capabilities. (Replaces HA1457) $£ 1.80$ each - or an RIAA applications PCB with two ICs for $£ 5.75$. Complete with Rs\&Cs $£ 9.95$Radio Control ICS $\begin{aligned} & \text { We have various RC ICs, including NE544 } \\ & \text { NE5044, and two new ones from }\end{aligned}$
$\begin{array}{lll}\text { KB4445 } & -4 \text { channel dig.prop. FM TX IC. } 30 \mathrm{~mW} \text { out (amplifyable) } \mathfrak{£ 2 . 3 0 \mathrm { inc }} \\ \text { KB4446 } & -4 / 5 \mathrm{ch} \text {. dig. prop FM RX IC. Suits KB4445 or RCME syt. } £ 2.65\end{array}$ KB4446 $-4 / 5 \mathrm{ch}$. dig, prop FM RX IC. Suits KB4445 or RCME syst. $£ 2.65$.
KB4445/6 pair: $£ 4.75$. New 8 page data shet $35 p+$.
CMOS, LPSN゙TTL, TTL, MPU: Listings in the new pricelist.

Most CMOS is available in fow volume - also LPSN. Standard

Things like ICM7216B, ICL8038, 8080A, 6800P, 2708, NE555, NE556, etc

## Coming Soon. Contain yourselves, RF fans I Not vet ready for SSB transceiver system : 10 kHz to 1000 MHz !!

A modular VLF to UHAF SSB TX/RX sysiem at last. With the correct first mixer, the basic PCB and RF PA for TX OP. 0.2 LV basic sensitivity in HF. TyD cost for HF synth SSB RX will be Less than E200. Add an RF PA for full TRX for another £50. Ses ons in our foyer, and marval.
$10.7 \mathrm{MHz} \quad 25 \mathrm{k} \mathrm{Hz}$ Channel spacing 8pole $121 / 2 \mathrm{kHz}$ 2.4 kHz SSB

Monolithic dual roofing filter
34.5 MHz
7.3 dB loss, 80 dB stopband HF first filter in synth. RX
RC XTALS FM pairs (no spilts)
USB/LSB Xtals for 10.7 SSB filter


Piezo Sounders
The latest thing in electro-acoustic efficiency. 1 mA of drive from CMOS will give an SPL of 83dB 10v RMS drive from CMOS uses 3 mA for 100 dB SPL at $4.8 \mathrm{kHz}(88 \mathrm{~dB}$ at 1.65 kHz$)$ The data sheets shows various drive circuits, and give full consumption etc. 1 off 44 p inc. 100 off 28.75 p ( 25 p ex vat

## Keyboard switches and caps

From the world's most widely used switch manufacturers. ALPS - come the biggest and best range of keyswitches, and data entry keyboard switches. The SCM81101 is shown here, with the KTS 2-part cap (with clear top, to enable easy fitting of your chosen legend. Other types are SCM81101: 17p KT5 : 16p - or 29p/pair

LCD CLOCKS LCD DVM

Clock suse $\uparrow$ T.5v at $15 u A$ oni
DVM

CM161: 7 mm LCD 12/24hr, alarms etc $£ 11.44$ each CM172: 13 mm , 12 hr , alar ms , timer etc $£ 14.32$ each CM174: $13 \mathrm{~mm}, 12 \mathrm{hr}$, $\mathrm{min} / \mathrm{sec}$ stopwatch $£ 14.32$ ea DVM 176: ICM7106 based LCD 31/2digit £22.36 each


## WHAT's NEW at AMBIT

NEW PRTCELST/SHORTFORM:28 pages, FOC with A5 SAE pse

## POWER MOSFET APPLICATIONS

 HANDBOOK by HITACHIEveryigyou hhidkn ab

Bigger print than our recent one page list and vast'ly extended
1.50 get this firs
51.50 each or free with pairs of HMOS
and the PA101B.

* Excellent metered parking
* Close to Hammersmith Underground Station for Piccadilly, District \& Metropolitan Lines
*Bus no's $260 \cdot 266 \cdot 704 \cdot 27 \cdot 91$ $267 \cdot 230$ stop outside


## Opens Tuesday 16th September, 1980

 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)

Stereo Cassette Tape Deck
Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only $£ 39.95$. Order as XY36P (Cassette Recorder Kit)

## Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action'on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) f99.50 +f 2.50 carriage All cartridges available including:

| Space Invaders (AC26D) | 629.95 | Adventure ( $\mathrm{AC}^{2} 2 \mathrm{Y}$ ) | ¢23.95 |
| :---: | :---: | :---: | :---: |
| Indy 500 (AC248) | [34.50 | Skydiver (AC13P) | ¢16.95 |
| Chess (81evels) (AC28F) | - 34.50 | Breakout (ACO5F) | ¢16.95 |
| Golf (9holes) (AC18U) | ¢16.95 | Sior Racers (AC 19V) | ¢16.95 |
| All Sea Batte (AC018) | ¢16.95 | Programming (AC27E) | £34.50 |
| Space War (AC02C) | ¢16.95 | Olympics (ACO4E) | ¢16.95 |
| Brain Games (AC16S) | ¢16.95 | Street Racer (AC 140) | ¢16.95 |
| Outlaw (AC03D) | ¢16.95 | Keyboards per pair (AC | ¢11.96 |

[^3]


[^0]:    *Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

[^1]:    Back lssues
    Certain back issues* of EVERYDAY ELECTRONICS are available worldwide price 80 p Inclusive of postage and packing per copy. Enquirles with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

    * Not available: October 1978 to May 1979.


    ## Binders

    Binders to hold one volume ( 12 issues) are available from the above address for $£ 4 \cdot 40$ (home and overseas) inclusive of postage and packing. Please state which Volume.
    Subscriptions
    Annual subscription for delivery direct to any address in the UK: $£ 9.00$, overseas: £10.00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613 Kings Reach Tower, Stamford Street, London SE1 9LS.
    ©IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions op imitations in whole or in part are expressly forbidden.

[^2]:    Published approximately the third Friday of each month by IPC Magazines Ltd., Kinge Reach Tower, Btamyord 8t., London 8 E1 gLs. Printed in Rngland by Index Printers Lith, Dungtable, Reds. Sole Agente
     or otherwine diaposed of by way of Trade at more than the recommended selling price thown on cover, excluding Eire where the sejling price is subject.to ot thePublinhera irat given, be leat, resold, hired ont

[^3]:    Post this coupon now for your copy of our 1979-80 Catalogue price 70 p Please send me a copy of your 280 page catalogue. I enclose 70 p (plus $46 \mathrm{p} \& \mathrm{p}$ ) If | am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $\mathbf{£ 1 . 3 5}$ or ten International Reply Coupons I enclose £1.16

    Name
    $-1=$
    Address
    -

