Easy to build projects for everyone APRIL 80 50p

CUARO AOAME:L
 CAS bSJMS

New 'L' series irons, designed to latest safety standards. Outstanding performance, lightweight and easy maintenance. New non-roll GRP safety handles. Ceramic and mica insulated elements enclosed in stainless steel shafts. Fully earthed with screw connected 3-core leads. Interchangeable, non-seize ironcoated bits.

MODEL LC18 18 watts

Lightweight, high-performance iron for all soldering from calculators to T.V. sets. Fitted with 3.2 mm bit and complete with spare bits $1.6 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and 4.7 mm . £9.78 including P \& P and V.A.T. 240 vol ts standard but also available 12 and 24 volts.

MODEL LA12 12 watts

Similar to LC18 but with extra slim shaft and bits for fine work. Fitted with 2.4 mm bit and complete with spare bits 1.2 mm and 3.2 mm £8.15 including P \& P and V.A.T. 240 volts standard, also available 6, 12 and 24 volts.

No. 3 SAFETY SPRING STAND for LC18 \& LA12

Complete with sponge and location for spare bits £4.41 including P \& P and V.A.T.

JOIN UP WITH LITESOLD.

C35S CORDLESS SOLDERING IRON
Built-in rechargeable batteries and twin spotlights. Heats in seconds. Solders safely anywhere. Complete with mains charger, sponge, 3 different tips and serewdriver. Best of its kind available.
£26.06 including P \& P and V.A.T.

TRANSISTOR TESTER

Tests and identifies PNP or NPN devices both in or out of circuit. Two selfoidentifying leads, using coloured LED indicators, self-powered by PB3 battery $£ 23.93$ including Battery, P \& F and V.A.T.

Order direct at these special mail order prices. Leaflets giving full information available on request from:
Light Soldering Devalopments Limited, Dept. E.E. 97/99 Gloucester Road, Croydon CRO 2DN Telephone: 01-689 0574 Telex: 8811945

Safe 100 watt instant-heat, trigger operated tool. Heats and cools in seconds. With spotlight. For difficult or large joints, and shaping plastics. Ideal domestic and workshop tool. Complete with 2 spare tips, spanner, solder

LIGHT SOLDERING DEVELOPMENTS LIMITED

ELECTRONIC BOOKS

Ref.
120
200
202
207
209
218
221
222
224
225
226
227
RCC
BP1
BP7
BP1
BP32
BP4
BP4
BP5
BP5
BP5
BP5
BP 61
PIer
DIL
8 p
14

BOYS BOOK OF CRYSTAL SETS
HAND BOOK OF PRACTICAL ELECTRONIC MUSICAL NOVELTIES HANDBOOK OF IC EQUIVALENTS AND SUBSTITUTES
PRACTICAL ELECTRONIC SCIENCE PROJECTS
PRACTICAL STEREO AND QUADROPHONY HANDBOOK BUILD YOUR OWN ELECTRONIC EXPERIMENTERS LABORATORY 28 TESTED TRANSISTOR PROJECTS
SOLID STATE SHORT
50 CMOS IC PROJECTS
A PRACTICAL INTRODUCTION TO DIGITAL ICS
HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS RESISTOR COLOUR CODE DISC CALCULATOR
BP1 FIRST BOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES BP7 RADIO AND ELECTRONIC COLOUR CODES AND DATA CHARTS BP14 SECOND BOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES BP32 HOW TO BUILD YOUR METAL AND TREASURE LOCATORS BP43 HOW TO MAKE WALKIE-TALKIES
BP48 ELECTRONIC PROJECTS FOR BEGINNERS
BP56 ELECTRONIC SECURITY DEVICES
BP37 HOW TO BUILD YOUR OWN SOLID STATE OSCILLOSCOPE 50 CIRCUITS USING 7400 SERIES ICs
P59 SECOND BOOK OF CMOS ICS PROJECTS
BPG̣1 BEGINNERS GUIDE TO DIGITAL TECHNIQUES
Please add 20p p\&pper book. No VAT on books. Send SAE for full list of Babanl Books

OPTO-ELECTRONICS

Red Leds Dlsplays				
$0 \cdot 125$	13p	DL707 130p	TIL311	600
$0 \cdot 2^{\prime \prime}$	14p	DL747 240p	TIL321	120p
Green		FND500110p	TIL322	120p
0.125."	18p	FND507110p	3015 F	200p
0.2 "	20p	ORP12 90p		
Clips	3 p	2N5777 45p		

EXPERIMENTOR BREADBOARDS No solderling sultable for DIL ICs EXP 300 (up to 5×14 pin)
EXP600 (up to $1 \times 40 \mathrm{pln}$) EXP350 (up to $2 \times 14 \mathrm{pln}$) PROTO BOARDS SOLDERLESS BOARDS
Socket Strips/Bus Sirlps/BInding Posts mounted on sturdy base plate
PB 6×14 pln DiLICs

VAT Rate, Please add 15% to your total
Parase gend SAE for full IIst.
CALLERS WELCOME MON-FRI 9.30-5.30
$\begin{array}{ll}\text { MON-FRI } & 9.30-5.30 \\ \text { SAT } & 10.30-4.30\end{array}$

TECHNOMATIC LTD

17 BURNLEY ROAD, LONDON NW10
(2 minutes from Dollis Hill Tube)
Tel. 01-452 1500
TIX, 922800

MAGENTA ELECTRONICS LTD.

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Prolects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Project klts include ALL THE ELEC. TRONICS AND HARDWARE NEEDED-we have even included approprlate screws, nuts and I.C. Sockets. Each project kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply-you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED.BATTERIES NOTINCLUDED. IF YOU DO NOT HAVE THE ISSUE OF E.E. WHICH CONTAINS THE PROJECT-YOU WILL NEED TO ORDER THE INSTRUCTIONS/ REPRINT AS AN EXTRA-39p, each.

MICRO MUSIC BOX
Grey Case $£ 3.63$ extra.
Grey Case £3.63 extra. Feb. 80 £ 13.82. SIMPLE SHORT WAVE RECEIVER. Feb. 80, £20.47, head phones 23.28 .
SLIDE/TAPE SYMCHRONISER. Feb. 80. E10.46.
MORSE PRATICE OSCILLATOR. FEb. 80. £3.75.

UNIBOARD BURGLAR ALARM. DEC. 79. £4.95.

LiGHTCALL. Dec. 79. £8. $\mathbf{6 0}$.
OPTO ALARM. Nov. 79 £5-77 Inc.
optional ports.
MW /LW RADIO TUNER. Nov. $79 £ 15.50$ less dial.
3 FUNCTION GENERATOR. Nov. 79
£14.4e less pointer, case extra $£ 7 \cdot 18$. ONE ARMED BANDIT. Oct 79. £18 39. case extra £3.98.
HIGH IMPEDANCE VOLTMETER. Oct. $79 . £ 15 \cdot 87$.
LIGHTS ON REMINDER. Oct. 79. £4.85. CHASER LIGHTS. Sept. 79. E1t 95.
VARICAP M.W. RADIO. Sept. 79. KARICAP M.W. RADIO. Sept. 79.
BIMPLE TRANSISTOR TESTER. SIMPLE TRANSISTOR TESTER. ELECTRONIC TUNING FORK Aug. 79
e9.15. Sultable microphone o plug $£ 1 \cdot 59$ extra. WARBLING TIMER. Aug. 79. \&E-25 V POWER SUPPLY Aug. 79. £9.94 Inc. gw. SWANEE WHISTLER AUg. 79 £3. 19 £3.36. ON PILOT LIGHT VOLTAGE SPLITTER. July 79. e3.41, DARKROOM TIMER, July 79. £2.47. WATER LEVEL INDICATOR. JUIY 79. E4.60.
TREMOLO UNIT. JURe 79. £11 26 . ELECTRONIC CANARY. June 79. \&4'99. LOW COST METAL LOCATOR. June Handle \& coll former parts extra es. 55.
METER AMPLIFIER. June 79, \&4.32. METER AMPLIFIER. June $79, ~ £ 4 \cdot 32$.
QUAD SIMULATOR. June $79 . £ 6 \cdot 25$. OUAD BIMULATOR. June 79. $£ 6.25$.
INTRUDER ALARM. May 1979. $£ 16 \cdot 7$. NTRUDER ALARM. May 1979. £16.71. HORT WAVE CONVERTER. May 79 EIS.38 inc. cases. 'PHOTO' SOLU. TIONS. May 79. fis-02. Lees socket, tube And grease. INVERTER. Aprli 79, E14.46. TRANBISTOR TESTER. AprII 79. ¢3.87. CH ELEEPER. AprII 79. £3.34. ONE TRANSISTOR RADIO. Mar. 79. with Ampllffer \& Headeet. Less caso. TIME DELAY INDICATOR. Mar. 79. VEREATILE POWER SUPPLY. Mar. 70. £

AUDIO MODULATOR. Fgb, 79, £1 36 lings case and plns.
LW CONVERTER, Feb. 79. Es. 48 . THYRISTOR TESTER. Feb, 79, £3.03. ADJUSTABLE PSU. Feb, 79. £24.60. Cabe (horlzontal layout) E5.21 extra.
LIGHTS REMINDMR. Jan. 79. E4.64. CONTINUITY TESTER, Jan, 79. £5-02. FUZZ BOX. Dec. 78. £5.53. Inc. PCB, VEHICLEX IMMOBILISER.
Dec. 78. §5.74.
'"HOT LINE'GAME. Nov, 78. E4. 65 less case \& rod.
AUDIO EFFECTS OSCILLATOR. NOV. 78. E^{3-81} inc. board,

FUSE CHECKER. Oct. 78. £1-97.
C.MOS RADIO, Oct. 78. £9.39.
lesi handie \& coll former Oct. 78. £17.86
GUITAR TONE BOOSTER. Sept. 78.
E4.09 Inc. p.c.b.
SOUND TÓ Light. Sept. 78. $£ 6.98$.
SOUND TO LIGHT. Sept. 78. £6.98.

LOGIC PROBE. JUly 78. £2.53.
IN SITU TRANSISTOR TESTER. June $78,65-76$.
VISUAL CON
VISUAL CONTINUITY CHECKER. June $78 . £ 3.72$ Inc. probes.
FLASHMETER. May $78 . £ 12$ s less calc
and dIfluser.
POCKET TIMER. AprlI 78. £2.98.
WEIRD SOUND EFFECTS GENERA. WEIRD SOUND EFFECTS GENERA.
TOR. Mar. 78, \& CHASER LIGHT DISPLAY. Feb. 78.
£23.59 Inc. p.c.b. case extra $£ 5 \cdot 21$. £23. 59 Inc. p.c.b. case extra $\$ 5 \cdot 21$.jan. 78
AUDIO VISUAL METRONOME. £4.93.
RAPID DIODE CHECK. Jan. 78. £2.34.
AUTOMATIC PHABE BOX. Dec. 77. AUTOMATIC PHABE BOX. Dec. 77 E. 55 Inc. p.c. B
VHF RADIO. Nov, 77. $£ 14.36$.

ULTRASONIC REMOTE CONTROL. Nov./Dec. 77. £16.09.
TREASURE LOCATOR. Oct. 77. £10.81 case extra, es 33. Less handle, etc. ELECTRONIC DICE. March 77. EA- 83.
SOIL MOISTURE INDICATOR. JU 8OIL MOISTURE INDICATOR. June PHONE/DOORBELL REPEATER. July 77. E8. ${ }^{38}$ CARTERY BTATE INDICATOR. Sept. 78. £1. 79 less case Inc PCB.
R.F. SIGNAL GENERATOR. Sedt. 78. R,F: SIGNAL GENERATOR. Sedt. 78. TRANSISTOR TESTER. Oct. 77. £7.18
Case extra £3.97. ADD.ON CAPACITANCE UNIT. Sept. 77. £5.99.
A.F. SIGNAL GENERATOR. AUg. 78 CATCH-A-LIGHT. Mar. 78. 88.04.
CARSYBTEM ALARM, Feb. 78. ©s. 10. CAR SYBTEM ALARM, Feb. 78. ©s. 10.
HRADPHONE ENHANCER. JAn. 79. +2.60.
PAB8IVE MIXER. Oct. 78. £3-72.
MICAMP. Dec. 78, £2.
MIC AMP. Dec. 78. E2. 18 .
AUDIBLE FLASHER, Dec.
AUDIBLE FLASHER, Dec, 78. £1/21.

LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

LOW cost

METAL LOCATOR

COMPLETE KIT WITh HANOLE COIL CoRMER SCREWS oitc. EEEGTRONIC Oit seaprait Eliccrionvic a CASE 3 BAND S.W. RADIO Simple T.R.F. Design. Coverlng most cast Bands. Flve controls:-Bandset, Bandspread, Reaction, Wavechange and Attenuator. Coll selection is by Wavechange Switch. Use with Headohones or a components required, Including the P.C.

Board \& Case. Inatructions are Included with thls kit. Headphones extra £. $\mathbf{~ K . 2 8 .}$

MARCH 80 KITS

CABLE \& PIPE LOCATOR. $£ 3.40$ less STEREO HEADPHONE AMPLIFIER $\$ 1494$
DOORBELL REGISTER. £3-39 5 RANGE CURRENT LIMITER. S4-24. KITCHEN TIMER. $\mathbf{5 1 2} \mathbf{4 6}$.
UNIBOARD TOUCH SWITCH. EE. 65 .

MAGENTA glves you FAST DELIVERY BY FIRST CLASS POST OF OUALITY
COMPONENTS GKITS. All praducts are stock Ilnes and are new i full apecincation COMPONENTS a KITS. All products are stock llnes and are new a full poecincailon US?

MAGENTA ELECTRONICS LTD ER15, 98 CALAIS ROAD, BURTON.ON.TRENT, STAFFS., DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI.
 OFFICIAL ORDERS FROM SCHOOLS , UNIVERSITIES ETC. WELCOME. MAIL ORDER ONLY.
 ALL PRICES INCLUDE 15% VAT ADD 35p POSTAGETOALL ORDERS. ALL ORDERS SENT FIRST CLASS ENQUIRIES MUST INCLUDE S.A.E

1980 ELECTRONICS CATALOGUE

Magenta's Cataloguw has boen carefully designed for E.E. Readers. Product Data and lliustrations make the Magenta the constructor Catalogue includes Electronic Componente, Hardware Cases, Toole, Test Equipmont, detalls of advertised Items and Clrcult Ideas for you to bulld,
No minimum ordér-all products are stock
Ilhes. First class dellvery of first class

EUROBREAD BOARD. E6.20.

LOW COST LONG NOSE PLIERS
LOW COST CUTTERS. EI ge.
SWING STORAGE DRA WERS 55-98. MULTIMETER TYPE 3100,000 o.p.v. with transistor tester ranges ع39'95.
WIRELESS INTERCOM 2 STATION £42.95.
SIREN. 12V E5.95.
P.C.B. ASSEMBLY JIC. £11•98.
P.C.B. ETCHING KIT. £4.98.
A.M.FF.M. AIRCRAFT BAND POR TABLE RADIO $\$ 10 \cdot 95$.
WIRE STRIPPERS \& CUTTERS $£ 2.21$. ULTRASONIC TRANSDUCERS. $\mathbf{C 5} 50$ palr.
P.A. MICROPHONE colled lead \&
swlich $£ .68$. switch 54 -68.
STEREO MICROPHONE PAIR £10.95. MULTIMETER TYPE 1. 1,000 O.p.V. with probes. $2^{\prime \prime} \times 3 \frac{t^{\prime \prime}}{} \times \mathrm{i}^{\prime \prime}$. \&. 1.98 .
MULTIMETER TYPE 2, 20,000 O.p.v. and probes. $5^{\prime \prime} \times 3 \frac{1}{z^{\prime \prime}} \times 1 \frac{1}{\prime \prime}^{\prime \prime}$. £14.25
F.M. INDOOR AERIAL. 57D.

TELESCOPIC AERIAL. $120 \mathrm{c} . \mathrm{m} . £ 2.38$ TELEPHONE PICK-UP COIL. 72 p . CRYSTAL MICROPHONE INSERT 58p.
SPEAKERS MINIATURE. 8 ohm 64 ohm 88 p .80 ohm £1-28
PILLOW SPEAKER. 8 ohm 98 p .
CROUND SPEAKER. 8 ohm, 5W. ©2.21 CABINET SPEAKER. 8 ohm SW. ${ }^{5}$ RE-ENTRANT HORN SPEAKER sohm S.W. Horn dla. 5t", e5-27. EARPIECES. Cryatal 4ip. Magnelle 18p. 8 SETHOSCOPE ATTACHMENT. Fits our arpleces $89 p$.
BUZZER. 6V 82p. 12V 45p.
MONO HEADPHONES. 2K. Padded. Superlor. Sensltive, EJ-28.
STEREO HEADPHONES. 8 ohm.
Padded, £4-35.
components. Seno lor your copy and se9
how easy It is to use the Magenta Cata-
logue! Write today enclosing $6 \times 10 \mathrm{p}$ stamps.

FEB.APRIL NEWSHEET- Send large S.A.E. Automatically Included with catalogues and orders. Keens you up to date with Magenta and Includes extra circuit Ideas.

INTERCOM, 2 Stallon. Desk. £7.48.
MICROPHONE DYNAMIC. 600 ohm. ENTISTS MIRROR

ROR. Adjusfable, E2-44. JEWELLERS EYEGLASS, 61 Ofp TRIPLE MAGNIFIER. \&1.63.
HAND MAGNIFIER. $3^{\prime \prime}$ Lens. $\mathbf{~} 3.43$
SPECTACLE MAGNIFIER. CIIps on to spectacle frame, 44.65
LLUMINATED MAGNIFIERS. $1 \frac{1}{\frac{1}{\prime \prime}}$ lens 1.10. $3^{\prime \prime}$ lens © $\mathbf{2}$. 98.

POCKET TOOL SET, 20 plece. ¢4. 09. SCREWDRIVER SET. Six plece. E2.18. Q. MAX PUNCH. \&" £2.98. 1" £3.06. DRILL 12 V . Hand
Stand E 5 iz . Hand oif stand use. E10.95.
CAPACITANCE BUBSTITUTION BOX. Nine values, $100 \mathrm{pF}=0.22 \mathrm{uF}$. $£ 2.9 \mathrm{I}$. QUICKTEST. Malns connector. $\mathbf{8 7} \mathbf{3 6}$. PLUG IN POWER SUPPLY. 6. 7.5.9V d.c. 300 mA . E 4.05 .

SPRINGS-SMALL. 100 Assid, EI• 08 CROC CLIP TEST LEAD SET. 10 lead. with 20 clips. TRADITIONAL STYLE BELL. 3-aV. NDERDOME BELL. 4.60

BELL. 4-10V. Smart. Din. F.M. TUNER CHASSIS. $88-108 \mathrm{MHz}$. oV d.c. £g. 49.

MORSE KEY. High speed. ©4-2\%.
PANEL METERS. $60 \times 45 \mathrm{~mm}$. Modern tyle. $50 u \mathrm{~A}, 100 \mathrm{uA}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d.c. 5. 98.

NIGHT LIGHT. Plug type. EI-08.
CONNECTINO WIRE PACK. $5 \times 5 \mathrm{yd}$. colls. 55p.
ERO SPOT FACE CUTTER. 41-21, VERO PIN INSERTION TOOL. O.1" E1-66.0.15 Ki 67
RESISTOR COLOUR CODE CALCU.
LATOR. 21p.

ADVENTURES WITH ELECTRONICS by Tom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. Uses an 'S Dec' breadboard. Gives clear instructions with lots of pictures. 16 projects-including 3 radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S Dec and the components for the projects.
Adventures With Electronics £i.75.
Component Pack $£ \mathbf{\$ 6 . 7 2}$ less battery

TEACH IN 80

E.E. SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. Alt top quality components as specified by Everyday Electronics. Our kit comes complete with FREE COMPONENT IDENTIFICATION SHEET. Follow this educational serles and learn about electronics-Start today LIST A \& B components $\mathbf{£ 2 2} 95$ also available LIST.C (parts 7-12) £2.45. All orders sent by FIRST CLASS POST. Our kit contains all these parts:LIST A \& B: METER, BREADBOARD, TRANSFORMER, LEDS, POTENTIOMETERS, SWITCHES, SPEAKER, PLUGS, SOCKETS, BATTERY CLIPS, WIRE, CABLE, FUSES, FUSE-HOLDERS, KNOBS, RESISTORS, PHOTOCELL, DIODES, CAPACITORS.
CASE WOODWORK KIT $£ 5.98$ extra. Complete kit for tutor deck woodwork, contalns all the softwood, hardboard, ramin. panel pins, adhesive, screws, feet, strap-handle, and fixings. Cut to size and ready to assemble.
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS
ANTEX $\times 25$ SOLDERINGIRON 25W £4.98
SOLDERING IRON STAND SPARE BITS. Small. Standard, Large. 65 p each
SOLDER. Handy size 78p.

DESOLDER BRAID 69p HOW TO SOLDER BOOKLET

HEAT SINK TWEEZERS 15p.
SOLDER BOBBIN 30p
DESOLDER PUMP £6.98

Mlévac
 ELECTRONICS \& TIME CENTRES

QUARTZ LCD
11 Function
Slim Chronograph

min $1 / 101 / 100$
6 digit, 11 functions,
Hours, mins., secs., day
date, day of week,
$1 / 100$ th, $1 / 10$ th, secs.
$10 \times$ secs., mins.
Split and lap modes.
Back-light, auto calendar
Only 8 mm thick.
Stainless steel bracelet and back.
Adjustable bracelet.
SAME DAY DESPATCH.
M3 Price includes POST \& PACKING

QUARTZ LCD

Ladies Day Wat
Hours, mins., secs., day,
Hours, mins., secs., day,
date, back light, auto date, back light, auto calendar.

Fully adjustable bracelet. Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
Silver or Gold

HANIMEX Electronic LED Alarm Clock
Features and Specification
Hour, minute display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with on/off control. Display flashing for powe loss indication. Repeatable 9-minute snooze. Display bright/dim modes control. Size: 5.15 $\times 3.93^{\prime \prime} \times 2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$.

M13

Price only E10.20

Price only
M15 E7.95
Price only £9.95
Also available: Also available:
SOLAR CHRONOGRAPH M9 Price $£ 11.95$

P.\&P. included
ded
d

QUARTZ LCD
Ladies Cocktail Watch
Beautifully designed with a very thin bracelet.

Hours., mins., secs., day, date, backiight and autocalendar Bracelet fully adjustable to suit slim wrists. State Gold or Silverfinish. Only $25 \times 20 \times 6 \mathrm{~mm}$

QUARTZ LCD

 5 FunctionHours, mins., secs., month, date, auto calendar, back light, quality metal bracelet. 6 mm thick

Mains operated. Thousands sold!

M1 SAME DAY

QUARTZ LCD
ALARM
with Snooze Alarm

6 functions plus Ala Conference signal,
5 minute snooze alarm, Conference signal sounds 4 secs, before main alarm to give advance warning and an option to cancel. Snooze sounds 5 mins. after main alarm and is always preceeded by the conference signal.
SAME DAY DESPATCH
Price only
E9.95
M4 Price includes POST \& PACKING

QUARTZ LCD
ALARM CHRONOGRAPH
with $12 / 24$ display

Hours, mins, secs, day of week. Month, date, day of week, alarm. hour, mins., a,m./p.m. 24 or 12 hour display mode. Alarm test. Chronograph, lap time, stop watch $1 / 10$ secs.
M16 Price includes POST \& PACKING

METAC GUARANTEE

All METAC products carry 12 months guarantee and we also refund your money if not satisfied with our goods or service in the first 10 days.
METAC's well equipped service centre minimises service delays. Please note, we do not delay your order to clear cheques.
Telephone your order using
Barclaycard/Access
Number on on
 01-723 4753

4 hour answering service

WHOLESALE MAIL ORDER
Send for our trade price list and order
details. Sell our products to your
friends and earn yourself
£ff's

NEW 24 HOUR DESPATCH SERVICE
METAC have opened a new even faster Mail Order and Service Centre at DAVENTRY. Orders received before $3.30 \mathrm{p} . \mathrm{m}$. will be despatched same day.

VISIT OUR ELECTRONIC TIME CENTRES AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGES IN BRITAIN

LONDON

327 EDGWARE ROAD. LONDON W. 2
Telephone: 01.723 4753

DAVENTRY
67 HIGH STREET,
DAVENTRY, NORTHANTS.
Tel: 03272 76545/77659

NORTHAMPTON
ST. GILES SQUARE, NORTHAMPTON
(Opens 1st February, 1980)

QUARTZ MELODY Alarm Chronograph incredible watch 34 Functions Count-down Timer 浐部	CASIO CHRONO 950S - 32B Stainless steel case, water resistant to 66 feet. Hours, mins., secs., am/pm, year, month, date, day. Auto calendar, Pre-programmed until the year 2029, 12/24 Range 7 hours, $1 / 100 \mathrm{sec}$, (Mode) Net time/lap-time/ 1st - 2nd place times. Dusi time function. Accuracy 15 secs. per month. Battery life approx. 4 years. Price only M22 22 Same day despatch. €23.95	CASIO F-200 Sports Chrono Attractive Mans watch in black resin with mineral glass. Hours, mins., secs., am/pm. Month, date, alpha-numeric day. Autocalendar set 28 th Feb. Stopwatch working range 1 hour, units $1 / 100 \mathrm{sec}$. Mode, Net Time/lap/ time/1st - 2nd place times. Accuracy approx. 15 secs. per month. Battery 12 months. Price only M24 SAME day despatch.
\square 5 independent working modes, day of week in English, French or German. (Just select the one you like). Hours, mins., secs., Price only day, date, countdown alarm, E19.95 dual time zone, $1 / 100$ th sec. st and 2nd place times ist and 2nd place times. POST \& PACKING M30 SAME DAY DESPATCH.	CASIO ALARM CHRONO 81CS - 36B Hours, mins, seci., dey, and elso day, month and colender, 100 th sec. chronogrsph to 7 hourn. Nat time hap/hime/1st sind 2 nd place times. User optionsl $12 / 24 \mathrm{mr}$. display, 24 Alsm. User optional, hourly chime, Becklight, minersi ghast, trainiest atest, Water resistant to 100 tt? Battery life $\begin{array}{ll} & \text { Price only } \\ \text { M25 } \\ \text { M20. } 4 \text { vearra } \\ & £ 35.95\end{array}$	CASIO F-8C 3 year battery life Hours, mins., secs., am/pm, date, day. Auto calendar set 28th February Accuracy 15 secs. per month. Battery life approx. 3 years. M36 SAME DAY DESPATCH. $£ 10.95$
SEIKO CHRONOGRAPH Hours, mins., secs., and day of the week. Month date and day of the week. Stopwatch display Hours., mins., secs., up to 12 hours (mins., secs. $1 / 100$ secs. up to 20 minutes). Lap timing. Continuous time measurement of two competitors. Stainless steel, mineral glass. E39.95 \qquad \qquad \qquad including \square -	SEIKO ALARM CHRONOGRAPH With WEEKLY Alarm, Hours, mins., secs., month, date, day. am/pm. Weekly alarm - can be set for every day at designated time, e.g. 6.30 am on Monday, Wednesday and Friday. Alarm set time displayed above time of day. Full stopwatch functions, laptime, split etc. SAME DAY Price only DESPATCH. $£ 79.95$ M10 \qquad including 4 hour despatch centre), FREEPOST, 4	SEIKO DIGI-ANA CHRONOGRAPH TIME AND CALENDAR FUNCTION Analog part display Hour mins, secs. Digital part display: Hour, mins., secs., date, day and colon. Calendar-month date, day, stopwatch - Hour, mins., secs., 1/100 secs. LAP/ STOP and stop marks. Counter.function. Time and calendar setting function. SAME DAY DESPATCH. £79.95 M62 \qquad including POST \& PACKING 7a High Street, Daventry, Northants.
Please send me \qquad I enclose P.O./Cheque value Barclaycard/Access No. \qquad Name \qquad Address \qquad	PLEASE COMPLETE BOTH COUPONS FROM: METAC ELECT 67 HIGH STREE Name \qquad Address \qquad \qquad \qquad	ONICS \& TIME CENTRE, EE.4.80, DAVENTRY, NORTHANTS. \qquad \qquad \qquad

U.K. RETURN OF POST MAIL-ORDER SERVIGE ALSO WORLD WIDE EXPORT SERVIGE

R.C.S. LOUDSPEAKER BARGAINS $30 \mathrm{hm} .6 \times 4 \mathrm{in} .51 \cdot 50.7 \times 4 \mathrm{in} £ 1 \cdot 50.8 \times 5 \mathrm{in} . £ 2.50 .8 \mathrm{in}$. $81.80 .81 n .21 .61 .6$ $18 \mathrm{ohm} .6 \times 4 \mathrm{ln} . £ 1-50.7 \times 4 \mathrm{in} . £ 1.50$. $5 \mathrm{ln} . £ 1 \cdot 50$. $81 \mathrm{ln} . £ 2 \cdot 60$. $101 \mathrm{in}, \pm 3.121 \mathrm{In}$. $£ 4.10 \times 6 \mathrm{in}, \pm 3 \cdot 50$:

LOW VOLTAGE ELECTROLYTICS $1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$. $500 \mathrm{mF} 2 \mathrm{~V} 5 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} .50 \mathrm{~V} 47 \mathrm{P}$; 1200 OF 76 V 80 p $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 420 \mathrm{mF} / 500 \mathrm{~V} \mathrm{E1} \cdot 30$. 2500 mF 50 V 62 p ; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 3300 mF 63 V E1. $20 ; 4700 \mathrm{mF} 63 \mathrm{~V} \in 1 \cdot 20 ; 2700 \mathrm{mF} / 76 \mathrm{~V} £ 1$. $5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 78 \mathrm{~V} £ 1.75$.
high Voltage electrolytics
$\begin{array}{ccc}8 / 350 \vee 22 \mathrm{p} & 8+8 / 450 \vee 50 \mathrm{p} & 50+50 / 300 \vee 50 \mathrm{p} \\ 16 / 350 \vee 30 \mathrm{p} & 8+16 / 450 \vee 50 \mathrm{p} & 32+32 / 450 \vee 75 \mathrm{p}\end{array}$
 $50 / 350 \mathrm{~V} 80 \mathrm{p} \quad 32+32 / 350 \mathrm{~V} 50 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ MANY OTHER ELECTROLYTICS IN STOCK SHORT W AVE 100pf alr spaced gangable tuner, 95p CERAMIC, 1 FF to 0 O. 01 mF , 5 p. SIIVER MICa 2 to 5000 pF , 5 p .

 SUB-MIN MICRO SWITCH, 25 . SIngle pole change OV TWIN GANG, $385+3850$ F sop: 5000 F slow motlon 75 p . 120 F TWIN GANG, 50pi 365p TWIN GANG, 75p. TWIN GANG 25pf slow motion 95p
NEON PANEL INDICATORS 250V. Amber or red 30p. ILLUMINATED ROCKER SWITCH. SIngle pole. Red 65p RESISTORS. 10Ω to 10 M . 1 W, tW, $1 \mathrm{~W}, 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}$, 10p. Ditto 5\%. Preferred values 10 ohms to 10 meg., sp. RELAYS. 12 V OC 95 p .6 V DC E5D. 240 V AC 95 p . BLANK ALUMINIUM CHASSIS. $6 \times{ }^{4}$-95p: $8 \times 8-$ E1. 5 : $16 \times 10-E 2.20$ ANGLEALI $B \times 1 \times 1$. 20 .
 14×9. 9 P; $12 \times 12-61 ; 16 \times 10-61 \cdot 16$.
PLASTIC AND ALI BOXES IN STOCK. MANY SIZES EG Black plastic construction box with brushed alumintum

TAPE OSCILLATOR COIL. Valve type. 35 p .
BRIDGE RECTIFIER 200V PIV $\frac{1}{3} \mathrm{amp} 50 \mathrm{p}$. 4 amp E1-50 TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p. PICK-UP CARTRIDGES ACOS GP91 E2.00. GP94 E2. 50 SONOTONE STAHC DIamond EJ.75. Magnetic ET WIRE-WOUND RESISTORS 5 walt, 10 watt, 15 watt 13p.

BAKER
50 WATT
AMPLIFIER
£65

Superlor quality Ideal for Hails/PA systems. Disco's and Groups. Two Inputs with Mixer Volume Controls. Master
Bass, Treble and Gain Controls. 50 watts RMS. Three loudspeaker outlets $4,8,16 \mathrm{ohm}$. AC. 240 V (120V avallable). Blue

BAKER 150 Watt AMPLIFIER 4 inputs $£ 85$, ORILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to bulld klt. Controis up to 480 watts $A C$ mains. $\begin{aligned} & \text { Post } 350 \\ & £ 3 \cdot 25\end{aligned}$ STEREO PRE-AMP KIT. All parts to bulld thls pre-amp. 3
Inouts for hlgh medium or low galn per channel, with volume inputs for high medlum or low gain per channel, with volum
control and P.C. Board. Can be ganged to make
$£ 2.95$ multi-way stereo Board.

Post 35p
£2•95

R.C.S. SOUND TO LIGHT DISPLAY MK 2

Complate hit of-parts with R.C.S. printed clrcult. Three

 channels. Up to 1,000 watts each. Will operate from HIl Fi and all Dlsco Amplifiers.Cabinet extra
$£ 4.50$. Post 500 $\quad \mathbf{£ 1 8} \begin{aligned} & \text { Post } \\ & 500\end{aligned}$
200 Watt Rear Reflecting White Light Bulbs ideal for Dlisco Llights. Edison Screw 75
12 for 27.50 . Post 300 per order.
MAINS TRANSFORMERS Posi ${ }^{250} 0-0-250 \mathrm{~V} 70 \mathrm{~mA}, 6.5 \mathrm{~V}, 2 \mathrm{~A} .53 .4$ $350-0-350 \mathrm{~V} 150 \mathrm{~mA}, 5-3 \mathrm{~V} 4 \mathrm{~A}, 5 \mathrm{~V} 2$
 220 V 45 mA .6 .3 V 2 3 amp E2. 2 HEATERTRANSFORMER $\mathrm{B}, 3 \mathrm{~V}$, amp $\mathrm{E} 1.50 . . .3 \mathrm{amp}$ E2. GENERAL PURPOSE LOW VOLTAGE. Tapped output

 $10-\mathrm{o}-10 \mathrm{~V} 2 \mathrm{mo}$ $17 \mathrm{~V}-0-17 \mathrm{~V}, 2$ and
2 amp $0.5,8,10,16 V^{2}, 1 \mathrm{amp}$ $9 V, 0$ amp
$150-15 \mathrm{~F} 2 \mathrm{mp}$ 30 V .2 amp
 20V', 1 amp $20 \mathrm{~V}-0.20 \mathrm{~V}, 1 \mathrm{amp}$
$30 \mathrm{~V}-0.30 \mathrm{~V}$ ${ }_{2}^{20} 18 \mathrm{~V}, 6 \mathrm{amp}$ a $20+18 \mathrm{~V}, 6 \mathrm{amp}$, ea
$12-0.12 \mathrm{~V}, 2 \mathrm{mp}$ $30 \mathrm{~V} .14 \mathrm{amp} E 3.50$ $28 V^{7}, 1 \operatorname{amp}+28 \mathrm{Vi} \mathrm{am}$

BAKER SPEAKERS $\underset{2150 \text { Pont }}{\substack{\text { Pont } \\ \hline}}$ "STAR SOUND" GROUP 45-12
 121 n . 45 watt 4,8 or 16 ohms.
 GROUP 75-12
 121n. 75 W professlonal model. $4,880.16$ ohms Respon
 With aluminlum presen
 £29
 100/12
 GROUP 100-15
 £35
 5 in .100 watt
 A. and Group Gear.

E.M.I. $13 \frac{1}{2} \times$ 8in SPEAKER SALE! With tweeter. And crossover. $£ 9.95$ OW. State 3 or 8 ohm.
15W model 8 ohms Bass unlt.
GOODMANS 20 Watt Slze $12 \times 101 \mathrm{n}$. 4 ohms.

Post 19
$\mathbf{~} 10.95$ Hi-FI Bass unlt GOODMANS TWIN AXIOM 8 Sin. 8 ohm Hi-FI Twin Cone
Speclal unit
$£ 9.95$
750

R.C.S. MINI MODULE HI-FI KIT 15×8 in 3-way Loudspeaker System, EMI 5in, Bass 5in, Middle 3in. Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to $20,000 \mathrm{cps} 12$ watt RMS. 8 ohm. 110.95 per kit
Two kits $£ 20$.
Postage E1. Each kit.

RADIO COMPONENT SPECIALISTS

Price	Type
£0.21	BD178

74 SERIES TTLICs

Type
7473
7474
7475
7476
7480
7481
7482
7483
7484
7485
7486
7489
7490
7491
7492
7493
7494
7495
7496
74100
74104
74105
74907

CMOS ICs

Type Price				
CD4000 $¢ 0.16$	CD4015 $£ 0.94$	CD4026 $£ 1.38$	CD4043 21.01	CD4070 $£ 0.20$
CD4001 ¢0. 23	CD4016 $£ 0.49$	CD4027 ¢0.58	CD4044 $£ 0.94$	CD4071 ¢0. 20
CD4002 10.18	CD4017 $£ 0.94$	CD4028 10.78	CD4045 £1.61	CD4072 £0.20
CD4006 £1.06	CD4018 $£ 0.98$	CD4029 $¢ 0.98$	CD4046 £1.50	CD4081 $£ 0.20$
CD4007 $¢ 0.20$	CD4019 10.48	CD4030 20.55	CD4047 £1-00	CD4082 $£ 0.25$
CD4008 ¢ ¢ 1 - 06	CD4020 $£ 1.04$	CD4039 $£ 2.30$	CD4049 £0. 55	CD4510 £1.27
CD4009 ¢0. 32	CD4021 $£ 0.94$	CD4035 £1.38	CD4050 $¢ 0.55$	CD4511 £1.44
24010 80.55	CD4022 $£ 0.94$	CD4037 $¢ 1.09$	CD4054 ¢1. 27	CD4516 $£ 1 \cdot 18$
CD4011 50.23	CD4023 50.28	CD4040 £1. 01	CD4055 £1. 15	CD4518 £1-15
CO4012 50.22	CD4024 50.75	CD4041 $£ 0.87$	CD4056 $£ 1.55$	
CD4013 ¢0.48	CD4025 EO .	CD4042 ¢0.83	CD4069 £0.	

BRIDGE RECTIFIERS

SILICON 1 amp			SILICON 2 amp		
Type 50 vMS	${ }_{\text {NRI }}{ }^{\text {BRI }} 50$	Price	Type	No.	Price
50V RMS	BR1 50		50 V RMS	BR2 50	£0.52
	日R1 100	E0.25	100v RMS	BR2 100	£.0.55
200V RMS	BR1 400	¢0.29	$200 v$ RMS	BR2 200	£0.60
400 V RMS	BR1 400	C0.41	4000 RMS	BR2 400	c.0.67
SILICON 10 amp			SILICON 25 amp		
Type	No.		Type	No	Price
50 V RS	BR 1050	\&1.73	50 V RMS	BR25 50	E2-19
2004 RMS	BR10 200	E1. 96	200v RMS	BR25 200	£2.53

DEPT. EE4, PO BOX 6, WARE, HERTS. Tel: 0920-3182 Visit our NEW shop: 3 BALDOCK ST., WARE, HERTS. Telex: 817861

No. Type
No7
107
FM Indoor RIbbon Aerlal
1133.5 mm Jack plug to 3.5 mm Jack plug length 3.5 mm Jack plug to 3.5 mm Jack plug lengih
1.5 m
5 OH DIN plug to 3.5 mm Jack connected to plns 3 \& 5 length 1.5 m
5 pln DIN plug to 3.5 mm Jack connected to pins $1 \& 4$ length 1.5 m Car aerlal extenslon screened insulated lead, Fit mains conneckel AC mains connec!!ng !ead fo rcassette record 5 pin DIN phono plug to stereo headphone. Jack sockei
$2+2$ pIn DiN plugs to stereo Jack socket with attenuatlon network for stereo headphones,
120 Car stereo connector. Varlable geometry plug to fit most car cassettes. 8-track cartridge and combination unlts. Supplies wlth Inlined fuse power lead and instructions
6.6 m Colled Gultar Lead Mo
1236.6 m Colled Gurtar 3 pin DIN plug to 3 pIn DIN plug. Length 1.5 m 5 pIn DIN plug to 5 pIn DIN plug. Length 1.5 m 5 pIn DIN plug to Tinned open end. Length 1.5 m
5
pln DIN plug 10
4 Phono Plugs. All colour coded. Length 1.5 m
5 pIn DIN plug to 5 pin DIN socket. Length
1295 pin DIN plug to 5 pin DIN plug mipror Image. 130 Lengt DIN
$130-2$ pin DIN plug to 2 pIn DiN Inline socket. 1315 pin DIN plug to 3 pIn DIN plug $1 \& 4$ and 3 \& 5 Length 1.5 m
1322 pin DiN plug to 2 pin DIN socket. Length 10 m 1335 pin DIN plug to 2 Phono plugs
1345 pIn DIN plug to 2 Phono sockets

- Connected pins 3 \& 5. Length 23 cm

1355 pin DIN socket to 2 Phono plugs 136 Connected plns 3 \& 5 . Length 23 cm . Black, length 8 m
178 AC mains lead for calculators, etc.

HAS 5 AM :0, 6				
INSTRUMENT CASES In two sections vinyl covered top and sides, aluminium bottom, front and back.				
No.	Length	Width	Height	Pric*
155	Sin	51 ln	2 n	C1.73
156	11 n	8 in	31 n	C2.92
157	6 in	43in	$1 \mathrm{l} \mid \mathrm{n}$	E1. 79
158	9in	5 $\frac{1}{4}$ n	2tin	22.43

struction each bor complete with halfolnch-deep Ifd and struction
screws.
No.
 SLOPE front aluminlum boxes with black vinyl base and sides \& aluminlum back, top \& front-strong construction easily

Terms cash with order. Gheques/Postal Orders made payable to Bi-Pak at above address.
BARCLAKCARD

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUB-EDITOR

S. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

KIngs Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY
 DEPARTMENT

Phone 01-261 6615

ADVERTISEMENT OFFICES

KIngs Reach Tower
Stamford Street
London SE1 OLS

Projects... Theory...

and Popular Features ...

x

The theme this month is Safety First!
Over the last few years gas has become the most popular source of energy for domestic users. In the form of propane, gas is also widely used in caravans and boats.

Leakage of gas through badly made connections or defective pipes is an ever present hazard particularly in occasionally used installations such as the holiday home or boat. There can be unsuspected dangers lurking in permanent dwelling places, as well, especially where the property is old and still has the original gas mains installation.

Many users of gas will welcome a device that gives warning if an accumulation of gas builds up. The nose is not always a dependable sensor and certainly not as sensitive as the solid state device which is the "nose" element in our Gas Sentinel.

The electricity mains supply also receives some of our attention this month. It is not always safe to assume that the mains supply outlets have been correotly wired during installation. Sadly many cases come to light where the live and neutral connections have been reversed and sometimes the earth connection omitted.

When moving into a property, the new occupier would be wise to check all outlets with our Mains Fault Indicator prior to plugging in any electrical equipment. This valuable gadget
is extremely simple and costs little to build.
From domestic establishments, fixed, floating or parked, let us now move outdoors and venture into another danger area-the road. And immediately we find a serious deficiency.
The motorist has his direction indicators, and rarely has to resort to hand signals. Most motorcyclists are similarly equipped. This leaves the push-cyclist practically alone, amongst all wheeled vehicle users, without the convenience and protection of illuminated signals to indicate his intentions to other road users.

This is something the cyclist can easily rectify for himself by building our Cycle Direction Flasher. Precise mechanical arrangements and installation details will depend upon the particular model of cycle, but the system described should be adaptable to individual needs without difficulty.

Safety First! The practicality of projects such as these, which enable the home oonstructor to help safeguard life and property, is one reason why electronics has become a great and worthwhile hobby.

Our May lssue will be published on Friday, Aprll 18. See page 261 for detalls.

Readers' Enquirles

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured In EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
All reasonable precautions are taken to ensure that the advice and data glven to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsiblity for lt. Prices quoted are those current as wo go to press.

GONSTRUCTIONAL PROJECTSCYCLE DIRECTION FLASHER Extra safety for the cyclist by A. Partridge236
AUTOMATIC LEVEL. CONTROL Compressor/expander for recording and disco work by P. W. Bond 242
EE RADIO CONTROL SYSTEM Part 6: Battery Charger and System Fault Finding
by L. Armstrong, H. Dickinson and W. Wilkinson 254
GAS SENTINEL Guard against gas leaks in the home, boat or caravan by A. R. Winstanley 264
MAINS FAULT INDICATOR Rapid safety check for your mains outlet sockets by F. G. Rayer 274
aENERAL FEATURES
EDITORIAL 234
THE ADVENTURES OF TANTY BEAD Cartoon by Matthew A. Reed 240
SHOPTALK Retail news, products and component buying by Dave Barrington 241
BOOK REVIEWS A selection of recent releases 246, 280, 282
FOR YOUR ENTERTAINMENT Breaking a monopoly, cordless telephone and X-ray time by Adrian Hope
FOR YOUR ENTERTAINMENT Breaking a monopoly, cordless telephone and X-ray time by Adrian Hope 247 247
TEACH-IN '80 Part 7: The transistor by S. R. Lewis, B.Sc. 248
BRIGHT IDEAS Readers' hints and tips 262 262
PLEASE TAKE NOTE Morse Practice Oscillator, Simple S.W. Receiver 262
SQUARE ONE Beginners Page: Stocking up, resistors 263
JACK PLUG AND FAMILY Cartoon by Doug Baker 263
EVERYDAY NEWS What's happening in the world of electronics 272
COUNTER INTELLIGENCE A retailer comments by Paul Young 275
RADIO WORLD A commentary by Pat Hawker 276
WORKSHOP MATTERS Discipline in the workshop by Harry T. Kitchen 278
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of by Anthony J. Bassett 281

Back Is ues
Certaln back Iseues* of EVERYDAY ELECTRONICS are avallable worldwlde prlce 70 p Incluslve of postage and packing per copy. Enquiries with remittance fhould be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 2s Lavington Street, London $8 E 1$ OPF. In the event of non-avallablity remittances will be returned.

- Not avallable: October 1978 to May 1979.

Binders
Einders to hold one volume (12 issues) are avallable from the above addrese for $\mathrm{E} 4 \cdot 10$ (home and overseas) incluslve of postage and packing. Please state which Volume.
Subscriptions
Annual subseription for dellivery direct to any addrese in the UK: £9.00, overseas: f10.00. Cheques should be made payable to IPC Magazines Ltd., and sent to foom 2813 King Reach Tower, Stamford Street, London SE1 9L8.
(s)IPC Magaxines Limited 1980. Copyrlght In all drawings, photographs and articles oublished in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or In part are expressly forbidden.

WHEN riding a bicycle along the road being seen is as important as seeing. This is especially so at night. Another requirement is for the driver of the car behind to know of your intention to turn left or right.
Although there is an obvious need for turn indicators in this situation, few blcycles are fitted with them. The project preseated here fills this gap.
The circuit is based on a 555 timer 1.c. generating a square wave which flashes one of the two lamps accordIng to the setting of a switch. Because of Its 200 mA source ability it was deodded that the I.C. was capable of driving the lamps drectly although the bulbs used here have a slightly lower voltage rating than the battery to obtain Increased brightness of the bulbs.

CIRCUIT DESCRIPTION

A 555 timer $1, c$, ICl is wired as an astable multivibrator wheh forms the heart of this crrcuit (see Fig. 1).

When power is applied to the ctrcult capactor Cl charges-up through external resistors R1 and R2. A voltage comparator on the chlp sets a flip-fiop in the 1.c. when the voltage on the capadtor reaches $2 / 3$ supply voltage.

At this point the transistor in the output stage (connected to pin 3) is driven high by the filp-flop and the capacitor begins to discharge through another resistor. As the voltage on the capactor passes below $1 / 3$ supply
voltage another comparator resets the flip-flop (pin 3 goes low) and the cycle begins again. The square wave thus produced is available at pin 3.

In the circuit for the Cycle Direction Flasher R1, R2 and C1 have been chosen to give a flash-rate of about $0.5 \mathrm{~Hz}-30$ flashes per minuteapproximately the rate of a car direction indicator.
The square wave from the 1.c. is linked to one pole of $S 1$. This switch is of the centre-off variety and when It is put Into elther of its on positions the square wave passes to the appropriate lamp which then pulses in sympathy with it.

The second pole of this switch applies power to the circuit whenever it is moved to elther of its "on" positions.

CIRCUIT BOARD

Commence construction with the clrcult board. This consists of a plece of 0.1 Inch matrix stripboard 12 strips by 13 holes. A single mounting hole is frrst drilled in the position shown In Flg. 2. Remember to clean off any copper swarf from the edges with emery paper.

Fig. 1. Clrcult dlagram for the Cycie Dlrection Flasher,

Next, cut the copper strips as indicated in the diagram, using a spot face cutter or a hand-held twist drill.
Assemble the board beginning with the links and then the resistors, capacitor, and i.c. in that order, using a minimum of heat and solder for the i.c. in particular.

Use Veropins for external connections to the board.

DIECAST BOX

Next prepare the box to take the circuit board, wires and switch. It is recommended that a diecast box be used here as these are more easily sealed against the elements than most plastics boxes.
It is best to drill one hole each for the five wires entering the box rather than one large hole as the entry points will later be sealed with epoxy resin. A bunch of wires will be more likely to come loose than a single wire.
Fix the circuit board in place using nuts, bolts and spacers, and seal the screw holes with epoxy resin. Flying leads or Veropins should be soldered to the board prior to fixing it into the box.

Wire the leads from the board to the switch and complete the interwiring of the circuit board and switch within the box.

TERMINAL BLOCK

One of the 5 -way terminal blocks, TB1, is then mounted outside the box according to Fig. 2 with short wires leading to it from the box and longer ones to the indicator unit at the rear of the cycle.

In this way a larger box will not be needed and the epoxy seal of the wires will not need to be broken if the box has to be removed. The connections to the terminal block should not be duly affected by the weather if it is mounted upside-down.

INSTALLATION

Mounting the box, battery and indicators onto the bicycle poses some problems. The box should be positioned on the handlebars or somewhere on the main frame where the switch is accessible.

Fixing the box in place is most easily accomplished by the method pictured in Fig. 3. Twin holes are drilled in the lid in which screws are placed with the heads inside the box. The lid is then held onto a member of the bicycle frame by a pipe-clip fitted over the screws and fastened with nuts and shakeproof washers.
If you have the appropriate equipment, you could of course tap the holes and mount the screws the other

Fig. 2 (above). Interior of the control unit showing the circuit board layout, board mounting and interior wiring.

Fig. 3 (left). View of the rear of the control unit showing fixing bracket.

Layout of components inside the control unlt.

COMPONENTS

Resistors
R1 $10 \mathrm{k} \Omega$
R2 $33 \mathrm{k} \Omega$
R3 220Ω
All $4 W$ carbon $\pm 5 \%$
Capacitor
C1 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ elect
Semiconductors
IC1 NE555 timer i.c.

Miscellaneous
S1 d.p.d.t. centre-off toggle
LP1,2 3.5V 150 mA M.E.S. bulbs
and panel lampholders (RS 565 -
226) (2 off each)
$81,2,31 \cdot 5 \mathrm{~V}$ SP11 type cell (3 off) TB1,TB2 5 -way screw terminal blocks (2 off)
Stripboard, 0.1 inch matrix, 13 holes $\times 10$ strips; diecast metal box: set of PP9 battery connectors; single screw terminal block: id inch plastic pipe; 90 degree eibows (2 off) i cllps (2 off): piece of wood for back plate; plastic end caps (2 off); 4 BA nut, bolt and spacer; interconnecting wire.

The box mounted on the handle-bars contains an electronic oscillator and a switch: the unit at the back contains the direction indicator lights and batteries. When the rider wishes to turn left or right he can indicate his intentions by moving the selector switch to the left or right position.
This has the effect of connecting power to the circuit from the batteries and routing a square wave which switches from full battery voltage to zero at a frequency of 0.5 Hz (that is, turns on and off once every two seconds), to the appropriate rear bulb.

Starting off with the positive connection, the end cap (which can be anything from a standard part to a plastic pill box) is drilled so that the battery connector stud protrudes through the hole. Small holes are also drilled in this to take the wires from the right lamp holder and the positive contact.
The positive clip from a set of PP9 battery connectors is glued in position in the end cap and a length of wire is soldered to the connector. Then the whole is glued into the end of the tube forming the centre section of the assembly.

The negative battery cap is prepared in much the same way but instead of gluing it in position, a loop of wire is passed through two holes and knotted as this is to be used as a draw wire when battery replacement becomes necessary.

FINAL ASSEMBLY

Final assembly can now be started by first passing the wires of one of the bulb holders and that from the battery positive contact through the holes in the positive connector end cap. The common wire from the left lamp holder is then passed
way round. In this instance waterproofing is achieved with four fibre washers between the clip and the lid, and the screw heads and the clip.

INDICATORS

Turning now to the indicators, these are built up from $1^{1_{4}}$ inch plastic waste pipe and fittings and the whole assembly is seen in Fig. 4.
This unit houses the indicator lamps LP1 and LP2, and also the batteries and is designed to bolt onto the back of the cycle above the rear mudguard. Some experimentation may be necessary as there are bound to be differences between different machines.

Referring to Fig. 4, assembly should start by soldering a piece of wire about 50 mm long onto each tag of the lampholders. If these wires have different coloured insulation this will be a great help in identifying them later on.
The lampholders are then glued in position in the elbows using "super glue" making sure that only the rear milled ring is glued and not the front retaining ring, see Fig $4(a)$. This front ring must be free in order to get at the bulbs in the lampholder.

BATTERY HOLDER

The next stage is to assemble the battery holder. Basically this consists of the centre tube with caps at each end holding the contacts and some foam packing to ensure a tight fit.

CYCLE DIRECTION FLASHER

Completed control unit with terminal block glued to side.

CYCLE DIRECTION FLASHER

Layout of components on the circuit board.

The wooden mounting block to which the rear indicator unit is attached and the clips used to secure it to the bicycle frame.
through the negative connector end cap and joined to the common wire of the other lampholder using a single screw terminal connector block.

The remaining wires are then passed back through the negative connector end cap and all the cables are brought out through a hole in the middle of the tube. The three
batteries are next pushed into the tube, positive terminal first. The negative connector end cap and the foam packing can now be inserted in position and the elbows pushed tightly onto the ends of the tube. They should not be glued as they will need to be removed in order to change the batteries.

The connecting wires are terminated on the painted wooden mounting block with the other 5 -way screw terminal block (TB2). The assembly needs now to be fitted with clips/ clamps to secure it to the bicycle frame. In the prototype plastic snap fixing pipe clips were employed to securely position the assembly on the saddle stem.
As cyanoacrylate glue is used throughout the usual precautions for this sort of adhesive must be followed.

TESTING

When all wiring is completed the unit may be tested. Connect the battery (observe correct polarity) and the lamps if not already connected.

Moving Sl into either on position should cause the appropriate lamp to flash. If you wish to adjust the flash rate, change R1. Change R2 to change the length of time the lamp stays on for each flash.
Any malfunctions are most likely due to a flat battery, incorrect switch wiring, or wrongly orientated components.
Finally, when the unit is operating properly, seal the box completely. The switch is sealed with a rubber washer on the outside of the box.

Ensure that all wires to the box are sealed with epoxy resin, likewise with any screws in the box and lid. Sealing the lid is achieved by setting the lid flange in a liberal amount of non-hardening elastic caulking compound. Finally the switch is weatherproofed by covering with a rubber cup.

The Adventures of Tanty Bead

By Dave Barrington

Storage Cabinets

As this month's Square One concentrates on components, it seems appropriate to mention two new portable component storage cabinets..
A cabinet ideal for the storage of such items as resistors, transistors, i.c.s, capacitors, grommets and most small items is the latest product from Sumico.
Measuring $254 \mathrm{~mm} \times 203 \mathrm{~mm} \times 165 \mathrm{~mm}$, the cabinet is made from strong plastic and has 15 "see-through" drawers with drawer dividers. The top of the cabinet incorporates a recessed carrying handle.

A feature of the cabinets is that they can be interlocked together to form a semi-permanent system for the workshop. For further details of stockists and prices readers should write to Sumico Ltd. Dept EE, 7 Clarence Road, Clare, Sudbury, Suffolk, CO10 8QN.

The Partfolio 200 "cube" available from Toolrange Ltd., is an unusual folding component tray system which offers up to 30 separate compartments.

Rather like a collection of multi-shelf. letter trays linked together, the cube when opened out extends to 800 mm but when closed forms a 200 mm cube, with carrying handle.
The system is supplied with compartment dlviders and labels. Each individual tray measures $195 \mathrm{~mm} \times 95 \mathrm{~mm} \times$ 40 mm and has divider slots to enable different size compartments to be made up.

The Partiolio 200 is priced at $£ 17.50$ plus VAT and is available from Toolrange Ltd., Dept EE, Upton Road, Reading, RG3 4JA.

Toko transducers from Ambit.

Piezo Ceramic Buzzer

A range of probably the smallest piezo ceramic sound transducers we have come across is now available from Ambit International. Being so small, not much larger than a 10 pence piece, these Toko transducers will make perfect hidden warning buzzers for simple alarm projects.
The buzzers are available as unmounted discs or encapsulated in plastic with mounting lugs. Operating from fairly low voltages one of the range, type PB-2720, needs as little as 1 mA drive current.
Suggested application and drive circuits is included in the product data which is available along with the devices from Ambit International, Dept EE, 200 North Service Road, Brentwood, Essex, CM14 4SG. No price was available at the time of going to press.

CONSTRUCTIONAL PROJECTS

We cannot foresee many component buying problems this month but one or two special items need further mention.

Gas Sentinel

The main item on our list is the Gas Sentinel and as far as we are aware the gas sensor transducer is only available from Watford Electronics, the main distributor for these devices. We understand that they are also prepared to supply a complete kit of parts for this project.

The components list calls for a mains transformer with a secondary rated at 9 V 1 A . However, the prototype unit used a tran sformer with two 9 V 400 mA secondaries wired in parallel and is available from Watford Electronics as type 182.

Cycle Direction Flasher

The only item likely to cause any concern in the Cycle Direction Flasher is the plastic end caps. These are available from Home Radio (Components) Ltd., PO Box 92, 215 .London Road, Mitcham, Surrey, CR4 3HD.

The plastic elbows and tubes should be available from most DIY shops.

As far as we have been able to ascertain, the 3.5 V 150 mA bulbs appear to be only available from Maplin Electronics.

No problems should be enountered in obtaining components for the Mains Fault Indicator, the Auto Level Control or the Radio Control Charger Unit.

Finally, we include a list of components suppliers for the last six parts, including this month's experiments, for the Teach-In 80 series.

Fifteen drawer component cabinet from Sumico.

SUPPLIERS OF KITS FOR TEACH-IN 80

These kits contain all items specified by Everyday Electronics (see below) but excluding batteries.

LIST A see October, 1979, page 634
LIST B see October, 1979, page 640
LIST C see April, 1980, page 253
All component requirements for the Teach-In 80 Series are covered by these three Lists.

LIST LISTS
C $A, B \& C$
SUPPLIER
Bi-Pak, Dept. EE, P.O. Box 6, Ware, Herts.
$£ 2.55 \quad £ 18 \cdot 00$
Electrovalue Ltd., Dept. EE, 28 St. Judes
Road, Englefield Green, Egham, Surrey.
Greenweld Electronics Limited, 443 Millbrook
Road, Southampton.
£2.75 £24.90

Home Radio, 234-240 London Road, Mitcham,
Surrey.
£3.00 £24.25
£7.50 £29•00
Magenta Electronics Limited, 98 Calais Road, Burton-on-Trent, Staffs.*
$£ 2.83 \quad £ 25.43$
A. Marshall (London) Limited, Kingsgate

House, Kingsgate Place, London NW6 4TA £4.03 £25.50
T. Powell, 306 St. Paul's Road, Highbury

Corner, London N.1.
£2.50 £22.50
All prices quoted are inclusive of VAT, postage and packing.
*Can also supply woodwork etc. for Tutor Deck, see advertisement.

This project describes the operation and construction of a simple, but very effective, automatic level controller or ALC. The device allows signals from a nominated source to be kept at a fixed volume when feeding a tape or amplifier system.

To appreciate the need for such a unit it is necessary to consider what happens when one makes a recording using a microphone feeding a tape recorder which has a manual record level adjustment.

When the recording is being made the level control must be adjusted to maintain correct modulation of the tape. Very loud sounds which occur could produce unpleasant overload distortion when the tape saturates magnetically. Then, on the other hand, very quiet sounds can be lost in the hiss of unmodulated tape if measures are not taken to increase the recording level.

Similar volume variations are experienced when using a public address or a discotheque microphone. The ultimate object of any of these systems is that information must be conveyed with the least disturbance to intelligibility, and the ALC helps to achieve this.

PRINCIPLE OF OPERATION

The fundamental requirement of the ALC is that it must increase the amplification applied to low level signals and reduce the amplification applied to high level signals. The response of an ALC circuit in relation to a normal linear amplifier stage is shown in Fig. 1.

It can be seen that with the ALC connected the level of the input signal can vary quite considerably whereas the output level range is quite restricted.

The effect of reducing gain applied to high level input signals is called compression. And the opposite effect of increasing the
gain applied to the lower level signals is called expanding.

The unit described here performs both of the above operations so it could be called a compressorexpander (frequently called a compander). However the professional companders have many facilities which are required for use in broadcasting and recording studios. This unit cannot match these, but it performs the basic operation at low cost.

Fig. 1. Shows response curve of ALC in contrast to a linear gain amplifier.

A block diagram of the ALC and the circuit elements which are used to obtain the compression and expansion effects described above is shown in Fig. 2. It will be seen that a closed loop control system is employed, which means that the input of the system is controlled as a result of the output of the same control system.

The gain element is a single stage transistor amplifier which has negative feedback-negative
feedback is a method of controlling the gain of an amplifier by feeding back a portion of the output such as to oppose the original signal. As more output voltage or current is fed back to the input of the amplifier the net gain is much less than normal, and the opposite is also true. The less feedback applied then the higher the gain of the amplifier stage.

The amount of feedback is variable and made dependent on the drain to source (channel) resistance of a field effect transistor. The channel resistance is dependant upon the voltage between the gate and source terminals of the f.e.t. What results is a simple voltage controlled amplifier.

CONTROL VOLTAGE

To control the gain the output signal must be continuously monitored. An a.c. signal for gain control is derived through a buffer amplifier which then drives the a.c. to d.c. converter which comprises a pair of diodes D1 and D2 which form a voltage doubler circuit. The output from the circuit is a voltage, the value of which is proportional to the output signal level. The d.c. voltage would normally be changing all the time with the output signal but a storage capacitor allows an approximate average value to be obtained.
The actual storage time controls the time taken for the voltage controlled amplifier to restore to its maximum. In the prototype the

value of the storage time is controlled by a potentiometer in order to make the device suitable for various applications.

The source signal can be fed to a fixed low level input mic input, e.g. low impedance microphone, and the higher level signals can be fed to the higher level auxilliary (AUX) input which is connected to a variable attenuator. This control avoids the possibility of the device continuously compressing.

CIRCUIT DESCRIPTION

The complete circuit diagram is shown in Fig. 3.

There are two inputs to the circuit as described but the circuit is so arranged that the level control is not connected when the low level input is used. This avoids unnecessary signal loss. This is achieved by wiring of the break action contacts of the low level input jack, SKl.

Under no signal conditions the f.e.t drain-to-source resistance has a low value of only a few hundred ohms and this with the low reactance of C3 shunts R3 thereby removing the a.c. feedback path for the amplifier. The amplifier stage consists of TR2 and its bias components, and with the feedback virtually removed the gain of the amplifier if fairly high.

Output from TR2 is fed to a second amplifier, TR3, which feeds
a.c. signals to the a.c. to d.c. converter. Diodes D1 and D2 form a rectifier and voltage doubler, and the output appears across C9. The value of this voltage is directly proportional to the amplitude or "loudness" of the source signal
and is negative with respect to the zero volt rail. This negative voltage is applied to TRI gate terminal. The more negative the gate voltage the higher the drain-to-source resistance becomes, thereby having less shunt effect on
Resistors

COMPONENTS-…

R1	$1 \cdot 5 \mathrm{M} \Omega$
R2	$6.8 \mathrm{k} \Omega$
R3	$3.9 \mathrm{k} \Omega$
R4	$1.2 \mathrm{k} \Omega$
R5	$47 \mathrm{k} \Omega$

Potentiometers
VR1 $25 \mathrm{k} \Omega$ log. law VR2 $1 \mathrm{M} \Omega$ carbon lin. law
Capacitors

C1	$33 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 2	$3.3 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C 3	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 4 to C6	$8 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. (3 off)
$\mathrm{C} 7,8$	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. (2 off)
C9	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

Semiconductors
TR1 2N3819n-channel f.e.t.
TR2, 3 BC109 silicon npn (2 off)
D1, D2 1 N914 small signal silicon (2 off)

Miscellaneous

S1 single-pole on/off toggle
SK1 switched jack socket
SK2, 3 mono jack sockets (2 off) or other sockets to suit equipment B1 9V PP3
Stripboard: 0.1 inch matrix size 19 strips $\times 31$ holes; connector to suit B1;4BA fixings; case: aluminium/vinyl clad steel size $152 \times 114 \times 44 \mathrm{~mm}$; screened cable; control knobs (2 off); connecting wire.

Fig. 3. The complete circuit diagram of the Automatic Level Control.

R3, increasing its negative feedback so reducing gain.

If the input signal falls to a low level, the voltage at the negative plate of C9 decays through VR2 and R10. The result is to restore the gain of TR1.

The time taken for the gain of the amplifier to restore is known as the recovery or release time. It is related to the discharge of C 9 and if the parallel resistance is reduced C9 will discharge quicker; VR2 allows this time to be varied from a few milliseconds to a few seconds.

CONSTRUCTION

The prototype was intended to be a general purpose unit for use with anything and everything where such a device would be advantageous. The case used was fairly small but large considering the circuit simplicity, and readers may wish to use the circuit board alone and mount the device in the case of the equipment for which it was built. If this is so, VR1 and VR2 can be replaced by preset type potentiometers.

The components are mounted on a single piece of stripboard; Fig. 4 shows the layout of the components on the topside of the board. There are no breaks to be made on the underside.

The board as shown is mounted using a single fixing hole with a thick insulated washer to isolate the board from the case. When mounting the components observe the correct polarity for the diodes, electrolytic capacitors and in par. ticular the transistors.

Begin construction by mounting the resistors and capacitors followed by the semiconductors. Novice constructors are advised to use a heatshunt on the legs of the semiconductors to avoid thermal damage. Attach suitable lengths of flying lead to reach the chassis mounted components. Note that screened lead is used for some connectors.

 HOW IT WORKS

Electrical signals developed in the microphone are passed to the tape recorder via a low gain amplifier. The resulting amplifier output level is sensed by the automatic gain control circuitry which adjusts the gain of the amplifier in the required manner. Low level microphone signals are boosted whereas high level signals are subject to attenuation. In this way low level signals do not become overshadowed by inherent noise in the mic. system and high level signals are prevented from overloading the tape input which would otherwise cause distortion.

Prepare the case to accept the sockets, switch and potentiometer, secure these in place, and then wire up according to Fig. 4.

The prototype was designed for general purpose usage and the inputs were all standard jacks but by drilling the appropriate sized holes DIN, phono or banana sockets may be used.

Perhaps for the most versatile unit a selectable combination of sockets could be devised. Many microphones and guitars are connected to amplifiers and auxillary equipment by means of standard mono jack plugs and so SK1 could
be a jack socket whereas the auxilliary input, SK2, would be a DIN or phono.

The completed unit was mounted in a commercially available case with a black vinyl lid. This gave the unit a neat appearance. The battery requirement is furnished by a PP3 and the use of double sided adhesive tape provides adequate support.

TESTING AND USE

Connect a microphone, low output type to SK1 or high output type to SK2, and the output of the

AUTOMATIC LEVEL CONTROL

Fig. 4. Shows the layout of the components on the topside of the stripboard. In the prototype no breaks in the copper strips were found necessary around the single fixing-hole. Also shows full interwiring between board and case mounted components.

unit to an amplifier input. A headphone output facility on the amplifier will be particularly useful and would eliminate possible positive feedback during the setting up.
With the unit switched on speak into the microphone. It should be possible to shout and whisper without hearing any distortion.

By turning the release time control fully anticlockwise the gain of the unit will restore to its
maximum in a very short time. This will be perceived by an increase in background noise level.
If these results are not obtained then the wiring will have to be checked, particularly check for solder bridges on the circuit board. The 0.1 inch matrix stripboard is prone to short circuits through solder blobs bridging adjacent strips and care must be taken when soldering.

For high level signals SK2 input must be used and the attenuator adjusted to allow an undistorted output to be obtained.

For use with a tuner to record a programme onto tape, the high level input is used, and VR2 should be set to its midway position. This setting will prove to be adequate for both music of the pop and light variety and for talks and chat shows. However, where the music is much slower the recovery time can be much longer, which is achieved by advancing VR2 clockwise.

The input attenuator VR1 must be set to avoid excessive compression which will be evident by output volume reduction as the input reaches a high level.

A more compact version has proved particularly useful for the author when connected to the microphone circuit of a portable tape recorder. Then when the tape recorder was used for interview work, no adjustment of the microphone level was needed and the ALC was able to cope with the differing voice levels. For this type of application the unit needs a fast recovery time, i.e. VR2 fully anticlockwise.

BOOK REVIEWS

TELEVISION \& RADIO 1980
\(\begin{array}{lll}Price \& £ 2 \cdot 50 \&
Size \& 230 \mathrm{~mm} \& 190 \mathrm{~mm}\end{array}\)
Publisher Independent Broadcasting Authority
ISBN 0900485345

ONCE again its a pleasure to read the "behind the scenes" stories of our independent television and radio services.

This year's edition gives a fairly concise guide to the many aspects of programming, technical developments and advertising controls; i.e. code of practice on what's acceptable and unacceptable material and details of better viewing and listening.

The handbook must be one of the very few publications that has not increased in price from last year and retained the same number of pages (224) and abundant illustrations. Unfortunately, the printing and visual appearance does not measure up to the high standards set by previous editions. However, the 1980 edition is still very good value for money.

Perhaps this criticism is a bit harsh and may be due to the growth in local broadcasting and trying to pack a "quart into a pint". Maybe, with the increasing growth and interest in local radio it's time a separate book dealing solely with radio was issued.

It seems paradoxical that having just read the section on their plans and optimisms for the 80 s , comes news that the proposed launching of the new channel may be delayed due to lack of funds.
D.G.B.

ELECTRONIC PROJECTS INDEX No. 21978

Compiler Price Size
Publisher £1.30 $297 \times 210 \mathrm{~mm} 48$ pages (Paperback) North Tyneside Metropolitan Borough Council, Libraries and Arts Dept., North Shields, Tyne and Wear ISBN 0142-1565

THIS is a guide to constructional projects published during 1978 in 16 well-known magazines which in total cover practically the entire field of di.i.y. electronics. It carries on (in the same style and format) from Electronics Projects Index 1972-1977 published at the beginning of 1979.
Projects are listed under 36 headings: an extensive list of subjects which itself is quite revealing as to the wide extent of electronics applications.
Individual entries give magazine title, issue and page numbers, then brief details including component complement and usually the form of construction e.g. P.C.B., Veroboard.
The largest section is Measuring and Test Instruments with 127 individual items listed, runners up being Music Effects and Musical Instruments (50 projects), Amplifiers (40), Automobile (37), P.S.U. (37), Games (34). Other subject groupings including Alarms, Calculators, Locks, Metal Locators, Receivers, Timekeeping, run to 30 or less projects each.
If this predominance of Test Gear and P.S.U. articles truly reflects the general demand, one is lead to the conclusion that the electronics constructor is essentially serious-minded and puts his working tools and instruments before all other kinds of projects.
F.E.B.

By ADRIAN HOPE

Breaking a Monopoly

The Post Office monopoly is now finally crumbling. Shortly after Sir Keith Joseph's historic statement promising a new era of freedom and enterprise for U.K. telecommunications, the Post Office issued a press release which was surprisingly not extensively reported. "From next year'", reads the press release "customers will be able to buy as well as rent telephone answering machines".
Until now, of course, anyone wanting to install a machine to answer their telephone and record messages has had to rent one from a Post Office approved supplier. These machines are remarkably complicated beasts. I know; I once bought a couple of ex-rental machines.

Over the last year, all manner of relatively inexpensive, but very efficient and electronically simple answering machines have been coming in from the USA either in traveller's suitcases or by bulk import for open sale in the increasing number of shops now offering "illegitimate" telephone gadgetry. It was a foregone conclusion that once the government had decided to chip away the Post Office monopoly telephone answering machines would be the first gadgetry to become legitimate for subscriber purchase and connection.

The government aims eventually to replicate the USA situation where the telephone company's monopoly ends at the front door, just like the gas, water and electricity supplies. But it will take time to make such a wholesale change and the use of "illegitimate" subscriber owned telephone answering machines is now so widespead that it's the obvious place to start with a change.

In some parts of the country the Post Office has already been recommending local suppliers of USA equipment when subscribers enquire about teleph one answering machines. The Post Office has put on a brave face about the official volte face over answering machines, claiming that rentals were previously required "so that the machines could easily be traced for modification when necessary" and that it's "progressive developments in the manufacture of these machines' ${ }^{\prime \prime}$ that have made possible a change in attitude. But the writing is now on the wall. Perhaps, appropriately, the new scheme comes into operation after April 1, 1980.

Cordless Telephone

However, despite misleading publicity to the contrary, for the foreseeable future, you will not, repeat not be able to use cordless telephones. Advertisements have recently been appearing in the national press offering a cordless phone which is "easy to install",

The publicity material which is sent off to anyone who writes in for further details claims that "Following more press announcements on Sir Keith Joseph's plans for the Post Office services, we are giving you a great opportunity to be one of the first people to take advantage of this exciting new technology . . . our phones are easy to install and are completely compatible with the British system."
The cordless 'phone being offered for sale (at around £250) may well be easy to install and may well be completely compatible with the British telephone system, but it relies for its cordless connection on a radio link that is 100 per cent illegal under our old friend the Wireless Telegraphy Act 1949. This, of course, is the law which makes the use of CB sets illegal. The penalties for using a radio cordless telephone are in fact the same as for using a CB walkie-talkie: up to $£ 400$ fine and/or three months in jail.
In the USA such cordless 'phones are, like CB, legal. Moreover, there is no ban on importing them into the UK provided of course duty and VAT is paid. This is because those on sale in the UK work on the $1 \cdot 6-1 \cdot 8 \mathrm{MHz}$ and $49 \cdot 8-49 \cdot 9 \mathrm{MHz}$.
In an effort to curb the spread of CB, a 1968 modification to the W.T. Acts outlawed the importation of 27 MHz transceiver equipment. But this does not prevent the import of equipment operating on other frequencies. There is also nothing to prevent the advertisement or sale of such equipment.
But the acts do make it illegal to use such transceivers in the UK. What's more the Post Office can object to the connection of any unauthorised equipment to a subscriber's line, and if necessary disconnect at the exchange.
So although importing, advertising and selling a radio link wireless telephone is legally in the clear, the poor customer who pays his honest $£ 250^{\circ} 00$ is in anything but clover. He stands to have his telephone cut off by the Post Office and be fined and jailed into the bargain.

Incidentally, the public files of the British Patent Office reveals that one of the British Post Office's main suppliers, STC is now working on an infra-red linked cordless telephone. This will be both legal and much more secure in use.
Whereas a wireless link spreads signals at least 100 yards around the system and so enables anyone in that area to eavesdrop on telephone conversations (incidentally it also gives officialdom an easy opportunity to detect illegal use) the infra-red link won't stray outside the wall of the user's home.

X-ray Time

Until a few years ago radiographers, who operate the X-ray examination equipment in our hospitals, grew tired of reassuring patients that there was no need to remove their wrist watches before examination. Now they are growing tired of saying just the opposite.
Many British hospitals are posting notices advising X-ray patients to remove their watches before examination. The turnaround dates back to a warning letter published in a medical journal.

Although ordinary mechanical hourand minute-hand watches are unaffected by X-rays, it seems that the same may not be true of electronic watches. There have now been several reports of digital watches stopping while the wearer is being X-rayed. Sometimes they start again. Sometimes they don't. In one case a watch simply skipped an hour.

A leading watch manufacturer quizzed on the problem has confirmed that the CMOS chips used in a digital watch certainly can be affected by high levels of radiation, and also intense magnetic fields. In some cases the chip recovers and in others simply stops working. But the simple truth is that no one really knows whether the relatively low levels of radiation used in hospitals for routine examinations are, or are not, significant.

Tests carried out have also been inconclusive because there are any number of different types of electronic watches, all with different thicknesses of shielding metal around the chip. Also there are all manner of different medical X-ray techniques, all involving a different dose on the patient's wrist.

Play Safe

The manufacturer acknowledged that "there is still" somewhat of a grey area in CMOS technology" and it may well be years before enough incidents have been correlated to give a clear picture of the true situation. In fact, now that hospitals are "playing safe" and advising patients to remove their watches, we shall probably never know.

Similarly, we shall probably never now know whether there was any real basis in the suggestion of a tew years ago that high level X-ray inspection equipment at airports presented a risk to electronic equipment. The airlines have also "played safe" and there is now hardly an airport left in the world which uses high dosage baggage inspection equipment.

Anyone who constructs electronic prototype equipment, whether for a hobby or for business, would however be well advised to keep all chips well clear of X-ray radiation (and strong magnetic fields) until the matter is resolved.

T${ }^{\mathrm{HE}}$ transistor is undoubtedly the single most important device in electronics today. Although its actual operation is only fully understandable with a knowledge of advanced physics, we do not need to know exactly what is going on inside a device in order to make use of it.

The term transistor is today used to refer to many different types of device. There are bipolar transistors, field effect transistors (f.e.t.s.), unijunction transistors and many others. Each has its own special characteristics and is particularly suitable for specific applications.

The type of transistor with which we will be concerned in this part of the series is the bipolar type, the most common type of discrete transistor.

THREE TERMINALS

All of the devices that we have looked at so far were relatively simple to understand since they had only two terminals. Any current entering. one terminal could only leave by the other terminal.

The first noticeable fact about transistors is that they have three terminals, so current entering any terminal could appear at either of the other terminals or, in fact, both.

To make any sense of transistors we must be quite sure
which terminals we are referring to, and to this end each is given a special name. The problem of lead identification on real transistors is complicated by the fact that there is a multitude of different packages in which the transistor chips themselves are mounted and enclosed.

Each type of transistor (by which we mean chip not package) has a unique code number ($0 C 71$, $\mathrm{BCl} 08,2 \mathrm{~N} 3055$, etc) but different manufacturers may put the same type of chip in different packages.

The diagram in Fig. 7.1 shows the lead identification for some

Fig. 7.1. (a) and (b) show the circuit symbols for npn and pnp transistors respectively. (c) and (d) show the lead identification for two common types of translstor package. The packages are seen looking at the leads.
common transistor packages but, be warned: if you come across a transistor serial number that you have not met before, the only certain way to identify the leads is to check with published data, either in the form of transistor data books or tables which quite often appear in electronics magazines or, if this proves unsuccessful, direct from the manufacturer's own data.

The three leads are labelled emitter (e), collector (c), and base (b) and we must always make sure that the transistor is connected with these leads in the right place or damage could be done.

GERMANIUM AND SILICON

There are two main types of material from which transistors are fabricated. The early transistors used germanium, a brittle white metal which is quite rare. Today's technology is centred around silicon, a non-metal with chemical properties quite similar to carbon. It soccurs naturally in abundance as silica (of which sand is the impure form).

The advances in recent years have been in ways of purifying the silicon and of growing very precise crystals. Whilst germanium transistors are still used to some extent in specialist applications, silicon is now used almost exclusively.

Silicon transistors have the advantage that they are much less prone to a destructive process known as thermal runaway which can destroy a transistor if the circuitry around it is not carefully designed.

The problem is that the leakage currents through germanium transistors could be quite high and these leakage currents increase dramatically with temperature. Since the increased current caused heating of the transistor there was a vicious circle (or, to give it its technical term, positive feedback) which eventually destroyed the device through overheating.

In silicon transistors the leakage currents are virtually negligible and so the heating effect which they produce are not of any importance.

The higher leakage currents through germanium also meant
that the circuitry around them was slightly more complicated, which is another factor in favour of silicon.

The symbol for the transistor (see Fig. 7•la and b) does not distinguish between the two types of transistor and so one must refer to transistor data to determine the material from which a particular transistor is made.

PNP AND NPN

If we look at the diagram showing the internal construction of a transistor we will find that it is like the diode we looked at earlier with a p-n junction but another oppositely doped section has been added on the end.

The oppositely doped section can be added at either end (Fig. 7.2) thus producing two types of transistor: npn and pnp. The symbols for these two types is different, the arrow on the emitter lead being reversed.

It might be thought that simply adding another junction to the first would simply form a double diode as indicated in Fig. 7.3 and, up to a point this is so. If the emitter lead is left open circuit and the base-collector terminals only are used then we would have something that appears exactly like a diode. Similarly if the collector is left open circuit then the baseemitter behaves like a diode.

The interesting and useful thing is that when the base-collector junction is reverse biased then the forward current through the baseemitter junction is able to control the current through the collector. But not only does the base current control the collector current, we also find that only a tiny base current is needed in order to control quite large currents through the emitter.

So far the description has used fairly vague terms like "through" rather than "into" or "out of" and this is to keep the description applicable to both $n p n$ and pnp transistors.

CURRENT AMPLIFIER

To sum up the operation of a transistor in one sentence we could say that a small current flowing into the base of a transistor controls a much larger current flowing into the collector. To put it

Fig. 7.2. The doping of the various sections of npn and pnp transistors. The arrows indicate the flow of conventional current through the two types when operated in their normal modes. In real transistors the base layer is very thin in relation to the collector and emitter sections.

Fig. 7.3. When viewed in isolation the base-emitter and base-collector sections of a transistor appear as diodes. it is when the base-collector junction is reverse blased and the base-emitter is forward biased that the transistor becomes interesting.
another way: the transistor is a current amplifier.
If we look back at the symbol for a transistor we see that the emitter lead has an arrow on it. This arrow indioates the direction of flow of conventional current when the transistor is used in its
normal operating mode. The direction of the arrow is used to differentiate between the $n p n$ and pnp types of transistor.
When one looks back at circuits from say fifteen years ago one finds that nearly all of them were built using pnp transistors. Today there is an overwhelming preponderance of $n p n$ transistors with pnp types only occurring occasionally. The change is not simply due to fashion it reflects changes in manufacturing technology.

CURRENT GAIN

Since no current can "disappear" inside the transistor all current entering the device must appear as current leaving it. Thus we can say that the emitter current (that is current leaving the transistor) must equal the sum of the base and collector currents (those entering the transistor). Using mathematical notation :

$$
I_{\mathrm{e}}=I_{\mathrm{b}}+I_{\mathrm{o}}
$$

where I_{e} is the emitter current, I_{0} the base current and I_{c} the collector current.
What can we deduce from this starting point? If the base current is zero (as will be the case when it is left open circuit) then the emitter current will be the same as the collector current. If the collector current is zero (collector open circuit) then the based current will be the same as the emitter current.

Some typical transistor packages (all to scale) with identification of leads or pins. The TO3 package is used for high power transistors, all other examples are small signal transistors.

There are two ways in which the emitter current can be zero: either $I_{\mathrm{c}}=-I_{\mathrm{b}}$ (the same current flows into the base and out of the collector) or both collector and base current are zero.

Let us connect up an actual circuit on the Tutor Deck to see exactly how the transistor (type $\mathrm{BCl} 08)$ behaves

The circuit is shown in Fig. 7.4 and it will be seen that we have connected the emitter of the transistor to the 0 V line and put a meter in the collector circuit which then goes up to +18 V . In the base of the transistor we have a resistor which can be connected to the 18 V line by pressing the switch $S 2$.

When the switch is not pressed we see that the current through the collector is virtually zero. The only current that is flowing is what is termed the "leakage current" and, for the BCl 108 , it can be taken as negligible.

When the pushbutton is pressed we see that the meter swings well over indicating a current into the collector of about two to 16 mA . How much current was flowing in the base when this current was flowing in the collector?

BASE CURRENT

To work out the base current to a fair degree of accuracy we can make a few assumptions. The baseemitter junction is in effect a forward-biased silicon diode.

In the section of this series on diodes we noted that the forward voltage drop across a silicon diode never exceeded about 0.7 V . In fact, the assumption is perfectly valid for the transistor base-emitter junction.

Now 0.7 V is under five per cent of the supply voltage of 18 V so ignoring it will only introduce a five per cent error. The base current is therefore given (approximately) by the supply voltage divided by the base resistor (R1). This works out to be $18 \mu \mathrm{~A}$.

What we have been measuring is perhaps the most important characteristic of the transistor: its d.c. current gain. The current gain is defined as the collector current divided by the base current and it is given the symbol $h_{F \%}$ or sometimes β.

$$
h_{\mathrm{PE}}=\frac{I_{\mathrm{c}}}{I_{\mathrm{b}}}
$$

PART 7 QUESTIONS

7.1. The arrow on the transistor symbol is on the:
a) emitter
b) base
c) collector
7.2. The gain (hFE) of a transistor is quoted as being 100. What is collector current at a base current of $10 \mu \mathrm{~A}$:
a) $10 \mu \mathrm{~A}$
b) $100 \mu \mathrm{a}$
c) 1 mA
7.3. The collector current in a transistor is measured as being 10.4 mA whilst the emitter current is 10.6 mA . What is the $h_{\text {FE }}$ of the transistor:
a) 104
b) 52
c) 53

Now this figure depends to some extent on the collector current inquestion and tends to be lower at very low and very high currents than it is at medium currents. The terms "low", "high" and "medium" will vary from transistor to transistor, medium being between 1 and 10 mA for the BC108.

The manufacturer's data states that $h_{\text {PE }}$ can vary between 110 and 800 which is a very wide range. See if the transistor on which you are making the measurements falls within this range.

If we return to the first equation that we derived we can eliminate one of the terms, namely I_{0} and get the emitter current in terms of the base current and $h_{\text {PE }}$.

$$
\begin{gathered}
I_{\mathrm{e}}=I_{\mathrm{c}}+I_{\mathrm{b}} \\
I_{\mathrm{e}}=\left(h_{\mathrm{FE}} \times I_{\mathrm{b}}\right)+I_{\mathrm{b}} \\
I_{\mathrm{e}}=\left(h_{\mathrm{FE}}+1\right) \times I_{\mathrm{b}}
\end{gathered}
$$

What this is saying is that the emitter current will be only different from the collector current by the magnitude of the base current and, since this is so small, it will be difficult to measure any difference between the two.

To check that the emitter current is as predicted, it might be thought that it is simply a matter of moving the meter to the emitter lead of the transistor, but doing this introduces a complication into the circuit which it is important to appreciate.

The meter itself (if by "meter" we take to mean the meter and its shunt resistor in parallel) has
7.4. $\mathrm{P}_{\text {tot }}$ (max) for a transistor is quoted as being 500 mW . When the collector to emitter voltage is 2.5 V what is maximum current that can be taken through the collector:
a) 200 mA
b) 500 mA
c) 100 mA
7.5. If I_{c} (max) is 150 mA and $h_{\text {FE }}$ is $110-800$ what is the maximum base current that should be fed into the transistor assuming there is no limitation on the collector current:
a) 1.367 mA
b) $187.5 \mu \mathrm{~A}$
c) 1 mA

PART 6 ANSWERS

6.1. b) 6.2 c) 6.3. c) 6.4 . b) 6.5 . a)
a resistance and thus any current that flows through it will produce a voltage drop by Ohm's Law. When it is placed in the emitter lead the emitter current which we are trying to measure will produce a voltage drop which effectively reduces the voltage across the base resistor R1.

We are expecting an emitter current of about 10 mA so what will be the voltage drop across the meter at this current? By application of Ohm's Law we find that it will be about $0 \cdot 1 \mathrm{~V}$. Fortunately this voltage is very small and it can again be ignored in comparison with the total voltage across the meter, transistor and base resistor (see Fig. 7.5).

As before, virtually no emitter current flows when the base is open circuit. When the button is pressed the reading on the meter should be indistinguishable from the previous reading, confirming the calculations.

CONFIGURATIONS

What we have looked at in the previous section are the two most commonly used transistor configurations. They are given the names "common emitter" and "common collector" respectively. The adjective "oommon" is used to describe the terminal whose voltage is fixed either by connecting to the power supply rail or to some other invariant voltage.

EXPERIMENT 7.1 : COLLECTOR V. BASE CURRENT

Components needed: BC108 transistor, $10 \Omega+W$ resistor, $1 \mathrm{M} \Omega+\mathrm{W}$ reslstor.

Fig. 7.4 (a)
Fig. 7.4 (b)
Fig. 7.4. (a). Circuit of Experiment 7.1 and (b) the layout of the components on the Tutor Deck.

The circuit for this experiment is shown in Fig.7.4a and the layout on the Tutor Deck in Fig.7.4b.
The meter on the Deck Itself can only measure current in the order of a few hundred microamps so a 10 ohm resistor (called a shunt resistor) is placed in parallel with it so that the resulting meter-resistor combination appears to be able to measure much higher currents.

Depending on the full scale current of the meter and its internal resistance, the effective full scale reading of the meter will vary but if both of these are known then the full scale current is given by

$$
I=\frac{R_{\mathrm{m}} \times I_{\mathrm{fsd}}}{10}+I_{\mathrm{fsd}}
$$

A typical $100 \mu \mathrm{~A}$ meter has an internal resistance of around 1700 ohms giving a full scale reading of just over 17 mA .

Note that the meter reads virtually zero when the base is open circuit.

EXPERIMENT 7.2: EMITTER CURRENT V. BASE CURRENT

Components n eeded: as above

This is a repeat of the previous experiment except that the meter has been moved to the emitter lead of the transistor. See text for further description of this circuit. The clrcuit ls shown In Fig.7.5a and the layout on the Tutor Deck in Fig.7.5b.

Fig. 7.5 (a)

Fig. 7.5 (b)
Fig. 7.5 (a). Circuit of Experiment 7.2 and (b) the layout of the components on the Tutor Deck.

Components needed: BC108 transistor, $100 \mathrm{k} \Omega+\mathrm{W}$ resistor, $2 \cdot 2 \mathrm{k} \Omega+\mathrm{W}$ resistor, $220 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$ resistor.

Fig. 7.6 (a)
Fig. 7.6 (b)
The circuit for this experiment is shown in Fig.7.6a and the Tutor Deck layout in Fig.7.6b.
Use the scale which we produced for the potentiometer in association with the $100 \mathrm{k} \Omega$ potentiometer on the Tutor Deck. The meter is used in this circuit as a voltmeter since a resistor has now been placed in series with it. The full scale reading of the meter will correspond with $220 \mathrm{k} \Omega \times \mathrm{I}_{\mathrm{fs}}$ (or about 22 V for a $100 \mu \mathrm{~A}$

Fig. 7.6 (a). Circuit of Experiment 7.3 and (b) the layout of the components on the Tutor Deck.
meter). The internal resistance of the meter is not important here as it will be small in comparison with the $220 k \Omega$ resistor.

Note down the meter readings for various settings of the potentiometer scale. These readings do not have to
be in volts, they can simply be in meter divisions; we are really just acquiring some figures for comparison with the next experiment. However, knowing that the meter is reading 22 V full scale gives a feeling for the sort of voltages we are looking at.

EXPERIMENT 7.4: VOLTAGE AMPLIFICATION (EMITTER RESISTOR)

Components needed: as above

Fig. 7.7 (a)
Fig. 7.7 (b)
The circuit of the next experiment is shown in Fig.7.7a and the layout in Fig.7.7b. This is very similar to the previous experiment but this should not mislead you into believing that the circuit behaves in the same way.
Taking a few meter readings for different settings of the potentiometer soon reveals that this circuit is much "better behaved" than the previous circuit in that the output tends to follow the setting of the potentiometer much more closely than in Experiment 7.3.

Fig. 7.7 (a). Circuit of Experiment 7.4 and (b) the layout of the components on the Tutor Deck.

The third configuration "common base" where the base is held at a fixed voltage and the collector current is used to control the emit-
ter current is not often encountered and so will not be described here.

VOLTAGE AMPLIFICATION

We have seen how the transistor can be used to amplify a small current, but often we are more interested in amplifying small voltages. The first thing that we must do is convert the voltage that we wish to amplify into a current so that this can be fed into the base of the transistor.

The simplest way is to put a resistor of the appropriate value in series with the input voltage. This is possible but one must be very careful to make sure that whatever the input voltage, the transistor is operating as it should. We shall examine this problem in more detail when we look at the transistor as a linear amplifier.

To convert the output current into a voltage is much less of a problem although one must be clear about what effect this has on the operation of the transistor.

Fig. 7.6 shows a resistor (R2) inserted in the collector lead of the transistor. The meter has now

ADDITIONAL COMPONENTS FOR PART 7 ONWARDS (LIST C)

Resistors
2 off 330 ohm 2 off 220 kilohm 2 off $2 \cdot 2$ kilohm 2 off 470 kilohm 2 off 22 kilohm 1 off 1 megohm
2 off 68 kilohm
All \ddagger W carbon $\pm 20 \%$

Capacitors

2 off	$0.01 \mu \mathrm{~F}$ polyester
3 off	$0.022 \mu \mathrm{~F}$ polyester
2 off	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ (or higher)
,	electrolytic, axial lead

Transistors
4off BC108 npn silicon bipolar
1 off \quad BC178 pnp silicon bipolar 1 off 2N3819 n-channel f.e.t.

Integrated Circuits
1 off CA3140 linear MOS f.e.t. operational amplifier
1 off CD4024 (or HEF4024 or MC14024) CMOS 7 -stage binary counter
For details of suppliers of the above components see Shop Talk (page 241)
been moved out of the circuit and acts as a voltmeter since it has a series resistor. We are now using a potentiómeter to vary the base current of the transistor.

Note how the meter reading varies as the potentiometer is varied. The great trouble with this circuit is that the results will vary according to the gain of the transistor. In an actual circuit it would be very awkward if the gain of the transistor had to be selected for the circuit to work properly.

In Fig. 7.7 the resistor has been moved to the emitter. It turns out that the circuit behaves much more predictably now-we have somehow made the spread in gain of the transistor much less important. This is because we have produced what is called an "emitter follower" circuit. This will be examined more closely in Part 9, but you might try working out what is going on in this case.

TRANSISTOR DATA

Table 7.1 shows transistor data as might appear in a catalogue. What do all the terms mean and why have these in particular been chosen?

The first column is the type of the transistor to which the following data refers. Only three are shown here, two low current type, one $n p n$ and one $p n p$, and one power transistor.

The next column shows the material from which the transistor is made and whether $n p n$ or $p n p$.

The next column gives a quick guide to any special features of the transistor, if there are any. The first two are simply general-purpose types with nothing special about them, whilst the 2 N 3055 is a high power type.

The next column gives a power rating of the transistor and is designated $P_{\text {tot max }}$. This is the total power that can be dissipated by the transistor without damage.

Now, the base current is usually very small as compared with the emitter or collector currents and the emitter and collector currents only differ by the base current.

The power dissipation of a transistor can thus be approximated by multiplying the voltage from collector to emitter by the current into the collector.

$$
\left.P_{\text {tot }}=V_{\mathrm{ce}} \times I_{\mathrm{c}} \text { (approx. }\right)
$$

Thus the voltage across the collector to emitter times the collector current for a BC108 should not exceed 360 mW .

This does not imply that the current through the collector can be 360 mA if the collector to emitter voltage is $1 V$ as there is a limitation on the collector current and this is given in the next column headed $I_{c \text { max }}$.

The next column is headed $V_{\text {ceo max }}$ and this is read as the maximum collector to emitter voltage that the transistor can withstand with the base open circuit. This voltage is important as it limits the power supply rail which can be used with the transistor. It effectively says that a BC108 cannot be used with a voltage rail of more than 20 V unless special precautions are taken.

The next column is the maximum reverse voltage that the baseemitter junction can withstand without damage, assuming the collector is open circuit. Note that it is quite low and does not vary much between low current transistors such as the BCl08 and high power transistors like the 2 N 3055 .

In linear circuits one would not usually expect that voltages large enough to reverse bias the baseemitter junction will ever exist but in switching circuits one quite often finds large reverse voltages being potentially generated.

The column headed $h_{\text {FE }}$ gives the d.c. current gain of the transistor. The BCl08 and BC478 both have very high gains whilst the power transistor has a much lower gain.

The last column gives a frequency (f_{t}) for each transistor which is that at which the gain of the transistor drops to unity.

It is an unpleasant fact of life that the gain of transistors drops off as the frequency of the applied voltage is increased.

Next month we will look at the use of transistors as switches.

IN this sixth and final part to the series we provide full details for the construction of the battery charger, which will be used to re-charge the Nicad batteries used in the transmitter and receiver, and also describe the setting up of the pulse width now that all the system equipment has been covered.

As with all projects of this size, there will be some constructors who will have problems of some form or other therefore information has been included to try and point the constructor towards the area where the fault may lie.

BATTERY CHARGER
 CIRCUIT

The charger unit described here for charging the batteries is of the constant current type, the circuit is given in Fig. 6.1.
The secondary of the mains transformer Tl provides 15 V which is
rectified by the bridge circuit composed of diodes DI-D4. The output is smoothed by Cl and the resultant 20 V d.c. applied to two separate constant current transistors TR1, TR2.
If we consider the transmitter section, the Zener D5 provides a reference voltage with Rl supplying the current through it. If D5 is 4.7 V
then the emitter of TRI is 0.7 V below this at 4 V , therefore this voltage across R2 will define a current through the emitter. With R2 being 82 ohms the current is approximately 50 mA .

This current as well as flowing through the batteries undergoing charge (via PLI) also flows through

Fig. 6.1. Circult of the battery charger.

 plug wiring.

Fig. 6.2. Circuit board (a) p.c.b. pattern, actual size (b) component layout on other side of board.

COMPONENTS

BATTERY CHARGER

Resistors

Resistors	$2 \cdot 2 k \Omega$	$\pm W \pm 5 \%$
R1	22Ω	$+W \pm 2 \%$
R2	82Ω	$+2 k \Omega$
R3	$2 \cdot 2 k \pm 5 \%$	
R4	180Ω	$W \pm 2 \%$
R5	150Ω	$\frac{1}{2} W \pm 2 \%$

Capacitor
$\mathrm{C} 1 \quad 220 \mu \mathrm{~F}$ electrolytic 25 V

Semiconductors

TR1, 2 2N3053 non (2 off)
D1-4 ZS170 or similar 0.5A rectifier (4 Off)
D5, 7 BZY88C4V7 4-7V Zener (2 off)
D6, 8 TIL220 l.e.d. (red) with mounting clips (2 off)

Miscellaneous
PL1 DIN plug 3.way
PL2 Plug-socket 2-way (SLM)
S1 Miniature s.p.d.t. switch
T1 Mains transformer. 0.240 V primary: 0.15 A 200 mA
Samos Case $100 \times 65 \times 50 \mathrm{~mm}$ (West Hyde). TO5 heatsinks (2 off). Grommet $\frac{3}{32} \mathrm{in}$. (2 off). Grommet $\frac{1}{4} \mathrm{in}$. internal dia. meter. Connecting wire
the series l.e.d. D6 which acts as an indicator to show that the batteries are in fact charging.
A similar circuit arrangement is provided for the receiver section. Here alternative charging currents are provided for by adjustment of TR2 emitter resistor. With S1 in the "High" position, R4 is in circuit, but when S1 is set to "Low" R5 is inserted in parallel with R4, thus reducing the effective emitter resistance. The "High" position current is 50 mA , to suit 500 mA and 600 mA cells. The "Low" position current is 22 mA to suit 225 mA and 300 mA cells. The receiver battery is connected via PL2.

Remember that when charging the current goes into the positive side of the cell so the positive side of the battery is connected to the +20 V line whilst the negative side goes to the l.e.d.

CHARGER CONSTRUCTION

The charger construction is relatively simple and straightforward. The components for the p.c.b. should be inserted in their corresponding positions according to Fig. 6.2, and then the wires can be attached. The wires to the l.e.d.s, switch and transformer come off the component side whilst the outputs to the batteries come from the copper side.

The lid for the case is drilled as in Fig. 6.3 after which the l.e.d.s, switch and grommets can be inserted, making sure that the clips are used to hold the l.e.d.s in place.

Two holes should be drilled in the case base for the transformer, dependent upon its size, together with a hole in the case side large enough to accept the large grommet for the mains cable.

The plugs for the transmitter and receiver battery packs are attached as in Fig. 6.3 with the receiver plug having a length of sleeving over the soldered joints (see inset). When wiring up the switch make sure that it is connected correctly for the "High" and "Low" currents.

TESTING

When construction is completed, one last overall check is always worthwhile. Plug the unit in and with the multimeter set to the 100 mA d.c. range connect across the output pins of the DIN connector and the meter should read around 50 mA . Then check the receiver side and the currents should measure 50 mA on the "High" range and 22 mA on the "Low".

If no current flows check the polarity of the l.e.d.s as these can be easily inserted the wrong way round. When the meter is connected and current flows the l.e.d.s should

TABLE 6.1
CHARGING TIMES

Capacity (mA H)	Charging Current	Flat	3 hrs. use	2 hrs. use	1 hr. use	
225	22 mA	14	12	10	5	2 Servo's + Rx
300	22 mA	18	12	10	5	2 Servo's + Rx
500	50 mA	14	10	8	4	2 Servo's + Rx
500	50 mA	14	14	10	5	4 Servo's Rx
600	50 mA	18	14	10	5	4 Servo's + Rx
500	50 mA	14	10	8	4	Tx
600	50 mA	18	10	8	4	Tx

light up and on the receiver the "Low" range should produce an intensity slightly lower than for the "High" range.

LENGTH OF CHARGE

Charging is usually carried out for a specified period of time dependent upon the capacity of the cells. Table 6.1 gives a rough guide to charging time against the state of charge, that is how long the battery has been used for and battery capacity. Although in the transmitter and receiver we recommend the use of 500 mA cells the other capacities are included for completeness and
because they are readily available to the modeller and may be purchased instead.

As seen from Table 6.1 we have given these recommended charging times for when the batteries are only partly discharged. These can be used regularly. However it is strongly recommended that at least once a month the batteries are given a full discharge followed by a full recommended charging period to ensure the life of the cells. It should also be pointed out that at the charging ourrents involved no damage is done to the cells should they be left on longer than the periods specified.

TABLE 6.2b
TRANSMITTER FAULT FINDING CHART
If there is plenty of r.f. present but no modulation the following chart may be of some use. All voltages are with respect to ground.

Short b \& e of TR6	r.f.	TR6 faulty
	continues	
r.f. disappears		
Remove short on TR6 Short b \& e on TR1	r.f.	TR1 faulty
	continues	
Check voltage IC3 pin 13	\checkmark low	R15 faulty
$\begin{aligned} & \text { approx. } \\ & 1 \cdot 2 \mathrm{~V} \end{aligned}$		
Check voltage IC3 pin 10	V high	R20 faulty
$\begin{aligned} & \text { approx. } \\ & 6.8 \mathrm{~V} \end{aligned}$		
Check voltage IC3 pin 5	V high	R13 faulty
$\begin{aligned} & \text { approx. } \\ & 1 \cdot 2 \mathrm{~V} \end{aligned}$		
Check supply and connections to all sticks		

SETTING UP PULSE WIDTH

The procedure to be described here (as mentioned in the final paragraph of Part 2) is for those constructors who have no access to an osclloscope nor have any other R.C. equipment to make use of.

Up to this stage the constructor should have tuned up the transmitter and the receiver as described in Parts

2 and 3 and all that remains is to set up the pulse width. This is done by first choosing a servo and by removing the potentiometer body to find out where the wiper is and to mark its position on the output disc.
Now replace the pot body and rotate the output disc by hand so that the wiper is in the middle of the pot
track, and so has an equal distance to rotate in either direction to reach the end of the pot track.

With the sticks in the neutral position on the transmitter, plug the servo into the receiver and with both transmitter and recelver on, the servo should now rotate to some position at either side of its centre position. By adjusting VR7 (on the transmitter) the servo can be made to come back to this central position.

TABLE 8.2a
TRANSMITTER FAULT FINDING CHART
If it is not possible to tune VC1 and VC2 to get r.f. then the fault could be In one of many places. The foliowing sequence may be of some assistance. All voltages are with respect to ground.

TABLE 6.3
RECEIVER FAULT FINDING CHART

SYMPTOM	CURE
1. ICI pin 2 voltage low	(a) caused by shorted track (b) C5 faulty or incorrect polarity (c) check value of R1 (d) IC faulty or incorrectly inserted
2. TR1/2 emitter voltages incorrect	(a) too high-either collector/base short on track or faulty transistors(s) (b) too low $\}$ suspect R8 or more probably a but(5) O.K. $\}$ base/emitter short in TR1 or TR2
3. Can IF transformer T3 low volts	(a) D1 incorrectly wired or faulty (b) C11 incorrectly wired or faulty
4. TR1/2 collector at low or 0 volts	(a) $\mathrm{T} 1 / \mathrm{T} 2$ windings open circuit
5. A.G.C. supply (collector of TR3) low or at 0 volts	(a) D2 faulty or incorrectly inserted (b) TR3 faulty
6. TR3 base greater than 0.6 V	(a) D2 faulty or incorrectly inserted
7. TR4 collector low or 0 volts	(a) D3 faulty or incorrectly inserted (b) TR4 faulty
8. TR4 collector very high	(a) check value of R13 (b) both TR5 and TR6 faulty
9. TR6 collector low	(a) check base TR5 is +1.3 V approx. If not check position, value and polarity of D3, R11 and C15. (b) TR5 faulty

TABLE 6.4
SERVO UNIT FAULT FINDING CHART

SYMPTOM		FAULT	CURE
Servo hunts from side to side	(a) (b) (c) (d)	Pot connected wrong way round Poor wiper contact Dirty or damaged pot C2 wrong value or faulty	Swap round connections to pot ends (A \& B in Fig. 4.5) Remove pot body and very carefully bend the wiper contacts up Remove pot body and remove any signs of dirt DO NOT remove the lubricating grease on the surface. Inspect for damage and replace if necessary Replace C2
Servo rotates continuously	(a) (b) (c)	Pot connections wrong way round One of the pot connections open circuit R3 or R6 wrong value or open circuit	As (a) above Re-solder both ends of each pot wire Check and replace as required
No movement from the servo at any time	(a) (b)	Open circuit power leads Motor connections open circuit or both shorted to case	Re-solder to connector and p.c.b. Check connections
Servo glitches at switch-on then no further movement	(a) (b)	input lead open circuit C1, or C3 or R1 faulty	Check connection Replace components
Servo moves in one direction only	(a) (b)	Blown output transistor Shorted connection to motor case or across p.c.b. gap	Replace transistor Remove short
Servo overshoots its intended position	(a)	R4 or R6 too high value or open circuit	Check components and if O.K. lower value to $250 \mathrm{k} \Omega$ or even $220 \mathrm{k} \Omega$ if overshoot is bad

By moving the relevant stick the servo should move giving a TOTAL movement of between 90 degrees with only full stick movement, and 90 degrees with full stick and trim movement. All the other servos will react in a similar fashion, however these do not have to be taken apart as only this first servo is used to set the gear up.

FAULT FINDING

The faults to be described are the more common ones to be expected, generally from poor soldering rather than from faulty individual components. Obviously not all component faults can be described. However if you do suspect a component then the best advice would be to find someone who has access to an oscilloscope and practise your "crawling" to seek help.

The faults we have mentioned have been encountered during the development of the prototype, and its predecessors, and with duplicate systems that have been built by colleagues and friends of the authors.

If you do suspect a fault the first thing to do is to switch off and check the p.c.b. again. Feeling for a hot component is always a good start, then when all possible visual checks have been carried out make use of the fault finding tables.

There is one table for each individual part of the system, that is transmitter, receiver, servo and speed controller then one general table for the system as a whole.
Constructors who already have a R.C. system of some sort should make use of this to help locate faults. For example, use your transmitter with the E.E. receiver to check that the E.E. receiver is O.K.

RECEIVER FAULT FINDING

Should the receiver take excessive current (normal current about 12 mA) when connected to a $4 \cdot 8$ volt supply, there are four possible causes:
(1) Shorted track on p.c.b.
(2) Short in wiring or wiring loom to plugs etc.
(3) Capacitor Cl 6 faulty or incorrectly inserted
(4) Decoder IC2 faulty or incorrectly inserted.

The rest of the circuitry is isolated from the supply by the 100 ohm resistors R1 and R2 and any shorts after these resistors will show up in the d.c. voltage measurements as described in the receiver article (Part 3).
If however the receiver tunes up as described and the d.c. voltages are correct but the receiver will not drive a servo, the most likely cause is that the sync pulse from the transmitter is

not long enough to enable the sync pulse detector in the receiver to reset the decoder IC2.

The waveforms can be checked on an oscilloscope if one is available which will show that the collector of TR6 remains low all the time and that no sync pulse is present.

Whether a scope is available or not, try reducing R11 to 68 kilohms or shunt the present R11 with say 150 kilohms to obtain the same effect. This enables Cl5 to charge up more quickly, thus allowing the use of a shorter sync pulse.

Note: Whilst pulses appear at TR4 collector, capacitor C15 is discharged by each pulse via D3 thus ensuring TR5 remains off and TR6 on.
During the sync pulse time, Cl 5 charges up via R11 until sufficient voltage is available at TR5 base to turn it on. When TR5 turns on, TR6 turns off and its collector rises to +4.8 V thus resetting the decoder IC2.

If the sync pulse is too short Cl5 does not charge up sufficiently to turn on TR5, and hence TR6 collector remains low and no resetting of decoder IC2 occurs.

If this does not work and an oscilloscope is not available, try the following d.c. measurements with the transmitter on and in close proximity to the receiver.

INTTIAL MEASUREMENTS

Collector TR3-typically +1V d.c.
under strong signal conditions).
Collector TR4-typically +4.2 V d.c.
Collector TR6--typically +2 V d.c.
If TR6 incorrect, switch off transmitter and check the sync pulse detector as follows:
Base TR5- +1.3 V approx.
Collector TR6-- +4.5 V approx.
Short out TR 4 collector to emitter.
Check TR5 base-less than 0.6 V -if not, D3 faulty or incorrectly wired.
Check TR6 collector-1V approx.-if not suspect TR5/TR6.
If the receiver voltages are incorrect but the board has no solder shorts, the possible faults are listed in Table 6.3 (note-transmitter off).

Table 6.4 continued

Servo sluggish
(a) TR3 or TR2 or both wrong way round
(b) R2 or C5 wrong value R4 or R6 too low in in value
(c) Motor or gearbox tight in its movement

Turn round transistors and replace Check values and change if required

Replace motor if it is a fauit, Grease gearbox (silicon grease only) and tighten screws carefully and not too tight

TABLE 6.5
SPEED CONTROLLER FAULT FINDING CHART

SYMPTOM		FAULT	CURE
Notor runs but relay falls to changeover		Monostable pulse width wrong Relay drive faulty	(1) Adjust VR2 (8) Check connections around timing components R4, R5, C3. (1) Check by shorting c \& e of TR5 or TR4 to establlsh which is faulty
Relay changes over but motor fails to run Neither relay or motor work		Relay contacts faulty Motor faulty Motor drive faulty Drive battery flat Battery connections faulty No Input signal to chip	(1) Clean and adjust contacts (2) Check connections to contacts (1) Check by disconnecting motor from speed controller and trying it on a battery (1) Check by shorting c \& e of TR6 or TR7 to establish which is faulty (1) Recharge (1) Check and reconnect (1) Try another channel on receiver to see if recelver is faulty (2) Check wirlng to plug (3) Check connections around C1 and pln 14 of IC
Motor runs in both directions at full speed but never stops		No deadband Drive transistor short circuit collector-base or collector-emitter Pre-drive transistor short circuit collector base or collectoremitter	(1) Check deadband capacitor C4 (1) Check by shorting b-e of TR7. If motor continues then TR7 faulty (1) Check by shorting b-e of TR6. If motor continues then TR6 faulty
Motor runs in both directions at high speed but has a stationary position control stick		Expansion circuit faulty	(1) Check expansion capacitor C5 (2) Check expansion resistors R3 in particular and potentiometer VR1
Motor runs in "reverse" for forward movement of the control stick on transmitter	(a)	Pulse width change opposite from that required o avoid excessive drain the transmitter and sp ovement of the vehicle ntroller is de-energised	either (1) Reverse stick plug in transmitter or (2) Reverse connections to the motor NB-DO NOT REVERSE DRIVE BATTERY POLARITY* on the drive battery it is better to set eed controller such that the direction of is forward when the relay in the speed

TABLE 6.6
OVERALL SYSTEM FAULT FINDING CHART

SYMPTOM	Transmitter	AREA OF FAULT Receiver	Servo	CURE
One servo not functioning in one channel only	Open circuit lead or incorrectly wired plug or socket	Open circuit lead or incorrectly wired socket		Check wiring
	Pot wiper open circuit on stick assembly			Using a meter on resistance range check that pot functions. If not then remove pot body and bend wiper in the case of the cermet pot
	Connection between SK1 and IC1 open circuit			Check soldering and using meter check the offending resistor (R4-R10)
One servo not functioning on any channel			Fault on individual servo	Refer to servo chart
No movement of any servo on any channel	Crystal not fitted or damaged	Crystal not fitted or damaged		Insert or replace cyrstal
	Wrong crystal i.e. receiver crystal in transmitter	Wrong crystal		Change around crystals
	No transmitter output due to poor tuning	Poor tuning of receiver		Run through tuning-up procedures again
	Incorrect wiring of channel plugs	Incorrect wiring of output leads	Incorrect wiring of plugs	Could be due to wiring the first plug or socket wrong from which the rest were copied, so check the wiring again

SOME FINAL POINTS

Having now completed the system with all parts functioning correctly it is now worth mentioning a few points in connection with the use of the equipment.

If you have used the Nicad batteries, always keep them well charged. In the case of dry batteries, carry a spare set around with you so that you are never stuck on a Sunday or an

Fig. 6.4. Typical servo linkages.
evening with a set of flat batteries. If you do not intend to use the equipment for a long period remove the dry batteries in case they leak and ruin the inside of the case.
The receiver should always be properly looked after and always mounted in foam rubber to absorb the shocks of bumps and crashes whether installed in boat, car or aircraft. With boats a watertight compartment is always useful. If you do have a bad crash check the equipment properly before you use it again, and in the case of the receiver giving it a tune-up will do no harm.

SERVO LINKAGES

In the previous parts, mounting and positioning details have been outlined to give the newcomer an idea how to install the equipment. However, it must be borne in mind that the servos are very precise in their movement so always give them good linkages to the control function they are going to operate.

The ideal linkage, whether it is a pushrod, plastic "snake" or closed linkage, should have no slack in it, yet should not be tight enough to put a strain on the servo. These three types of linkage are shown in Fig. 6.4.

With these few hints we conclude, hoping that you have many enjoyable hours with your equipment, with as few mishaps as possible. Good luck and good flying, boating and driving.

PRE-TUIED 4-5TATION RRDIO

At.r.f. radio to receive Radios 1,2,3 and 4. These four stations are switch selectable thus eliminating the need for a tuning dial. Incorporates a loudspeaker.

50LID-5TRTE DURL LIIE CAIIE

Pit yourself against this electronic game playing computer.
This analogue device uses a transistor/ resistor matrix to work out the best position to try and block your move and win the game by completing a line.

LICHTS UARIIIL SVSTEII

This unit will sound a buzzer or flash a light to remind you that your lights are on when the ignition is turned off. Requires no setting or cancelling of switches. Includes a parking facility.

A very simple project designed to keep an "eye" on the state of your car battery. Fitted to the instrument panel, this unit will give continuous readout of battery voltage.

MAY 1980 ISSUE ON SALE FRIDAY, APRIL 18 Price 50p

ONE-DAY COURSE FUNDAMENTALS \& APPLICATIONS OF

AT THE ALDERMANBURY HALL, THE INSTITUTE OF CHARTERED INSURANCE, LONDON EC2.
Tuesday, Aprll 15 1980, 9.00-5.00p.m.
Designed for technicians, hobbyists and other potential users who have a knowledge of electronics yet need a good basic introduction to microprocessors and how to apply them in their own particular fleld.

The course will provide a basic understanding of the principles of operation of microprocessors, their architecture, programming and some simple applications.

Organised by Interprojects Ltd., in association with Everyday Electronics and the Society of Electronic and Radio Technicians.

COURSE FEE

The fee of $£ 48 \cdot 00$ plus $£ 7 \cdot 20$ VAT includes technical notes, morning and afternoon coffee and buffet luncheon.

A limited number of places have been reserved for Everyday Electronics readers at a special fee of $£ 38.00$ plus $£ 5 \cdot 70$ VAT. Applications should be made without delay on the form below.

To: INTERPROJECTS LTD. (DEPT. EE), 29 CHURCH STREET, LONDON N9 9DY Tel:01-8036896

Please reserve one place for me at a special reduced fee of $£ 38 \cdot 00$ plus $£ 5 \cdot 70$ VAT

I enclose a cheque for
(BLOCK LETTERS PLEASE)
NAME
ADDRESS \qquad

Date

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

HAND HELD CASES

When recently faced with the problem of housing a transmitter for an ultrasonic remote control system, I found a very cheap, simple and attractive solution to the problem. This could be useful for many hand held projects.

A short length of 11_{4} inch diameter grey plastic waste water pipe was used in my project (there are other sizes) to hold at one end a PP3 bbattery held in place with foam plastic, with the circuit board, push button switch and the transducer at the other end. These were held in place with a more rigid foam plastic (the type sometimes used for packing i.c.s) and secured with Araldite. The case appearance can be further improved by the use of transfer lettering or paint.

Denis Williams,
Llandudno,
Gwynedd.

CHANGING REED SWITCH ACTION

Reed switches have "normally open" contacts; "normally closed". types are unobtainable whilst changeover are not too easy to obtain and are much more expensive.

With reed coil switches it is possible to reverse normal action. All that is required is to put a suitable magnet outside the coil to cause the reed contacts to close. Current through the coil will now cause the reed switch to open. If it does not work one way, reverse the polarity of the current flow in the coil.
A. R. Smith,

Wallington,
Surrey.

Morse Practice Oscillator

(February 1980)
Note that capacitor C1 should be connected to point B15 and not A15 as shown in Fig. 2.

Simple S.W. Receiver

(February 1980)
We apologise for the following errors which appeared in the diagrams for the Simple S.W. Receiver.
In Fig. 3 from pin 1 of the coil holder the flying lead should go to 19 on the circuit board and not $\mathrm{H9}$. The flying lead from pin 4 should go to C1 alone and an extra flying lead should come from pin 3 to $E 9$ on the circuit board.
Fig. 4. Annotations SK1 and SK2 should be transposed. The flying lead from C1 should go to L1 pin 4 only.
Fig. 5. The flying lead from position E9 should be labelled L1 pin 3, not L1/C1. Capacitor C2 on board should be marked C5.

STOCKING UP

Every constructor accumulates a E stock of components in a surprisingly short space of time. But when starting in this hobby, the question usually arises what kind of components should one obtain to form an initial stock.
Resistors, capacitors, transistors and diodes-these are the mainstay of electronic circuits. A carefully selected collection of such components will be a valuable working stock to draw upon whether for building projects or performing experimental "lash-ups".
This month we suggest a range of resistors that the new constructor should purchase.

The resistors listed in Table lare values that are most frequently encountered when building electronic circuits. They will satisfy possibly 75 per cent of needs.
A small number of additional components will usually have to be purchased to complete the complement of a given project. However with the majority of parts already in stock, construction work can often

be started on whilst awaiting the arrival of the additional "specials".

Some retailers offer discount rates for quantities of such small items as resistors and capacitors. This is another good reason for purchasing a fairly large selection.

The quantities against each type of component are the minimum it is suggested the new constructor should obtain. If resources permit, it would
be wise to multiply all these quantities by a factor of two or even five, say.

CARBON RESISTORS

The cheapest kind of fixed value resistor is made of a carbon composition, or a carbon film. Physical size depends upon the wattage rating. Quarter watt resistors will suit many requirements. They measure about 8 mm in length and have a diameter of about $2 \cdot 5 \mathrm{~mm}$.
For our initial stock 1_{2} watt resistors (which measure about 10 mm by 3.5 mm diameter) might be the better choice. This size resistor can of course be used perfectly safely whenever ${ }^{1} 8,1_{4}$ or ${ }^{1} 2$ watt is actually called for in the Component List.

Carbon resistors do not have precise ohmic values, but are available with various percentage tolerances of the nominal value. For most purposes 5 per' cent resistors are ideal, and are readily available. (Higher tolerance resistors, such as 10 and 20 per cent, are also in fact suitable for many applications.)

TABLE 1
CARBON COMPOSITION OR CARBON FILM RESISTORS $\frac{1}{2} W \pm 5 \%$

Ohms									Qty	Ohms	Qty
10	1	12	1	Ohms	Qty	Ohms	Qty	Ohms	Qty	Ohms	Qty
100	2	120	1	150	1	18	1	22	1	27	1
1 k	2	$1 \cdot 2 \mathrm{k}$	2	$1 \cdot 5 \mathrm{k}$	2	1.80	1	220	2	270	1
10 k	5	12 k	1	15 k	2	18 k	1	$2 \cdot 2 \mathrm{k}$	2	$2 \cdot 7 \mathrm{k}$	1
100 k	2	$\cdot 120 \mathrm{k}$	1	150 k	1	180 k	1	220 k	2	27 k	2
1 M	1	$1 \cdot 2 \mathrm{M}$	1	$1 \cdot 5 \mathrm{M}$	1	$1 \cdot 8 \mathrm{M}$	1	$2 \cdot 2 \mathrm{M}$	1	$2 \cdot 7 \mathrm{M}$	1

DICN PIDA \& FInN1Y...

BY DOUG BAKER

WELL, HOW ABOUT THIS RATHER EXPENSIVE ONE SIR? IT GIVES THE HOURS MINUTES SECONDS, MONTHS, DATE, DAY AND THE exact time widen the next INSTALMENT IS DUE TO BE PAID.

MANy types of gas or fumes, if released and allowed to accumulate, are insidious killers; consequent explosions from large concentrations can wreck property and cause many thousand pounds worth of damage.

A small investment on this project could well prove to be money well spent. Whilst this device obviously cannot prevent leakages arising, it will detect the presence of a surprising variety of fumes and vapours, as well as common smoke, and will then relay a warning signal well before any dangerous accumulations can build up.

The unit has been designed to be flexible in its application and use. It can be either battery or mains powered.

GAS DETECTED

The Gas Sentinel will detect the presence of domestic gas (methane) and Calor Gas (propane) the latter making it eminently suitable for use in boats and caravans when operated from a battery supply. Also, carbon monoxide, a constituent of smoke, will trigger the alarm giving the unit the additional feature of being. a fire detector. However, large volumes of smoke are required to trigger the alarm.

REMOTE SENSING

Because the actual sensor is located remotely to the main unit, this means that the sensor can be mounted right in the heart of potential trouble spots (e.g. next to propane cylinders, alongside the gas cooker/fire) whilst the main unit and alarm can be positioned in any convenient place.
The Gas Sentinel employs a solidstate gas sensor device which makes the construction of a low-cost and easy-to-build gas detector a reality for the amateur enthusiast.

THE SENSOR
The sensor used in this project is from the TGS family. The family types differ in operating voltage as well as sensitivity to individual gases. Of these sensors, type TGS813 is used in this application. A diagram showing details of this appears in Fig. 1.
The TGS813 comprises a resin housing measuring 10 mm high by 17 mm diameter (excluding terminal pins). In the top of the housing is a very fine mesh window, with a smaller mesh window in the base. Standoffs are moulded into the underside, allowing gas and smoke to pass through the sensor.

Inside the housing is the sensor element, consisting of a ceramic tube with a semiconductor-material coating. Electrodes are taken from the sensor to terminal pins. The sensor is heated by a filament inside the

Fig. 1. Various details of the TGS 813 gas sensor.
tube; the increased temperature of the semiconductor improves the sensitivity and response time of the unit.

Connections for the electrodes and filament are taken to six external pins in the base: the sensor must always be used in conjunction with a special socket to which wires may be soldered. The base connections for the device are also given.

For practical purposes, pins 1 and 3 can be considered to be joined together, as can pins 4 and 6.
The maximum permissible circuit voltage is 24 V , and the filament is rated at 5 V 130 mA . Fig. 2 shows how the resistance of the semiconductor element alters with varying concenrations of several gases. The sensor will also respond to accumulations of smoke.

CIRCUIT DESCRIPTION

The circuit diagram of the Gas Sentinel is shown in Fig. 3. Here two

Fig. 2. Graph showing the variation of sensor resistance with concentration of different gases reaching sensing element.

HOW IT WORKS

Gas or other toxic vapours reaching the sensing element in the sensor affect its conductivity and causes the voltage level into the comparator to change. When this passes the set reference level, the comparator output turns on the latching electronic switch and sounds the alarms. The alarms continue to sound even if the gas concentration reduces, until manually reset.

The gas sensor itself requires a 5 V 150 mA supply for its heater filament, and this is provided by IC1, a 5 V 500 mA regulator fed from the 12V rail. The p.c.b. layout has been devised to suit the μ A78M05UC voltage regulator, so if an alternative type is considered the lead-out configuration must conform exactly with that shown.
In the mains version, the 12 V supply is unregulated, and in reality measured only $10-11 \mathrm{~V}$. The voltage available at the alarm output sockets was only 10 V . So if this outlet is used to drive a relay, ensure that it operates at 10 V .
Diode D9 indicates that power is being applied to the circuitry and should of course be on all the time that the unit is in use, whether mains or battery supply.
SGS1 is the gas sensor. Its resistive semiconductor element, R_{g}, forms a potential divider with R^{2}. As R_{s} decreases, due to an increased concentration of ambient gas levels, the voltage at SGS1/R2 junction will be reduced.
This voltage is referred to the inverting input (pin 2) of IC2, an operational amplifier conneoted as a simple comparator. A variable resistor VRI determines the voltage at the non-inverting input (pin 3) of the comparator, and this voltage can be adjusted by rotating VR1 as necessary.

COMPARATOR ACTION

The output voltage of the comparator depends upon the inputs at pins 2 and 3 of IC2. If the voltage at pin 3 exceeds that at pin 2 then the output goes high, being at a voltage almost equal to the positive supply rail. Similarly the output goes low if the two input voltages are reversed.

By varying the setting of VR1, the switching point of IC2 can be adjusted. The effect of this is to alter the sensitivity of the circuit, so that the alarm will sound at a required gas or smoke concentration.
Once pin 6 goes high-the sensor having detected gas at the necessary triggering level-then the Level indicator diode D6 will illuminate to show that the ambient gas level has reached a value determined by VR1. The l.e.d. will extinguish once the level drops again.
When the comparator output switches high, this is fed via attenuator R4 and R5 to the gate terminal of CSR1 causing the thyristor to turn on.
This device normally assumes a high resistance blocking state between anode and cathode, but will be triggered into a conductive state when a suitable signal is received at the gate.

Once conducting, the thyristor completes the circuit to the alarm l.e.d. and this illuminates.

LATCHING ACTION

The alarm l.e.d. will continue to glow even if the output of IC2 falls and D 6 extinguishes. This is due to the latching action of the thyristor. The main characteristic of a thyristor is that once it is triggered into conduction, it will remain in this state until it is reset.

It can be reset by several methods. If power is removed temporarily from the circuit, once switched back on again it will resume its blocking state. Another means of resetting the thyristor is to short the anode to cathode. This is accomplished by temporarily closing S2. Once opened again, the thyristor will resume its high resistance state, unless a trigger signal is present at the gate in which
case the device will conduct once more.

Connected in parallel with the ALARM indicator is a miniature audible warning device, WDl. This consumes only 15 mA when operating, and provides an audible indicator that the gas level being monitored by SGSl has reached the required alarm level.

Provision has been made in this design for an external alarm to be connected at SK3 (+) and SK4 (-). This must be rated at 12 V 500 mA maximum (see later), and can take the form of a lamp, buzzer, relay, or combination of these.

If a relay is used, an e.m.f. suppression diode is required to short out any high reverse voltages which tend to appear across the relay coil just after power is removed from the relay; D8 accomplishes this.

CONTROLS

Switch S2 has a dual function. Apart from resetting the thyristor as described earlier, it will also complete the circuit to the alarm. If closed, therefore, it will cause the alarm to operate, and this is useful in testing the external alarm set-up. S2 is a biased (spring-loaded) type so that it is normally open.

The muTE switch S3, if opened, silences the internal audible warning device WDl, and also removes power from the external alarm. This is necessary if the gas level is high for a long period of time.

Under these circumstances, the thyristor cannot be reset at S 2 until the gas level drops because a constant triggering signal is present at CSRl gate.

One could switch off the Gas Sentinel altogether, but this will not tell you when the gas level has dropped to below the triggering level. The most convenient course of action is obviously just to silence any audio alarms by opening S3. This will disconnect the external alarm

Rear view of prototype showing inlet/outlet sockets, fuse and internal alarm.

D6 to extinguish before resetting the alarm completely at S2. Switch S3 can then be closed once more. In practise this is a very neat solution.

The mute switch comes in handy when initially switching on the unit. During warming up, the resistance of the sensor temporarily drops to a low value (2 to 3 kilohms). The opamp detects this and triggers the alarm. The mute switch, if opened while sensor is warming up, will prevent any audio alarm sounding unnecessarily. Warming up, on the prototype, takes about 30 seconds, and the sensor is ready for use once the level l.e.d. has extinguished, the alarm has been reset and S3 has been closed.
The l.e.d., D5, fitted to the remote sensor case should always be illuminated when the unit is switched on. This shows that voltage is being applied to the filament of the sensor.

PRINTED CIRCUIT BOARD

A professional finish, coupled with higher reliability, is achieved by using a p.c.b. to carry the complete circuit. This also makes for easier construction, and helps to ensure that the circuit will work first time.

The Gas Sentinel circuitry is very neatly accommodated in a Verobox Series II Casebox type 2066. This measures $155 \times 92 \times 52 \mathrm{~mm}$. It has one aluminium front panel which slots into a moulded bezel-type surround.

Any other plastic or metal case of suitable dimensions can be employed, but the specified box lends itself to compact construction and a professional appearance.
The remote sensor is mounted with its socket on a small Verobox type 1413E. This particular case measures $72 \times 47 \times 25 \mathrm{~mm}$ and is moulded in black ABS. Again, any other suitable box can be used. Details of construction of this are given later.

Straight-on view of completed unit.
as well as WD1, but D7 will remain alight. Then the user should wait for

P.C.B. COMPONENT
 ASSEMBLY

Construction should commence with the printed circuit board. This is shown full size in Fig. 4a. There are a few points to watch concerning what should otherwise be a straightforward assembly procedure. The layout of the components on the top side of the board is shown in Fig. 4b.

If the battery version is to be built, the bridge rectifier should be omitted and the battery supply wired up as indicated in Fig. 4c. Note the value of Cl .
IC2 is an 8 -pin di.i.l device and to make later replacement easier, should this prove necessary, it should be mounted in a suitable d.i.l. socket. This also prevents thermal damage arising during soldering.
The bridge rectifier specified here is a VM18 400 V 1A type. This is encapsulated in a 4 -pin di.i.l. package. Do not attempt to adapt a d.i.l. socket for use here, but solder it straight in, observing the d.c. polarity markings. Any other 1A type can be used if it is physically compatible with the p.c.b. It may be possible to bend the leads of the cheaper W005 device to make it fit the p.c.b., but ensure

COMPONENTS - -

Resistors

R1	220Ω	R5	820Ω
R2	$5.6 \mathrm{k} \Omega$	R6	680Ω
R3	680Ω	R7	680Ω
R4	$12 \mathrm{k} \Omega$		
All	fW carbon $\pm 5 \%$		

Capacitors

C1 $\quad 150 \mu \mathrm{~F} 12 \mathrm{~V}$ elect. (battery version) $2200 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. (mains version)

C2 $\quad 1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C3 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polyester type C280
Semiconductors
D1-D4 VM18 1 A 400 V bridge rectifier (mains version) -see text.
D5 TIL220 red I.e.d.
D6 TIL223 yellow l.e.d.
D7 TIL220 red l.e.d.
D8 1N4001 silicon diode
D9 TIL221 green l.e.d.
IC1 $\quad \mu$ A78M05 5 V 500 mA voltage regulator i.c.-see text
IC2 741 differential op-amp 8 -pin d.i.l.
CSR1 C106D 4A 400V thyristor
SGS1 TGS813 semiconductor gas sensor (Watford)
Miscellaneous
VR1 $22 \mathrm{k} \Omega$ standard size preset potentiometer
S1 s.p. on/off toggle (battery version)
S2 d.p.d.t. sub-miniature toggle (mains version)
S3 s.p.c.o. sub-miniature biased off toggle
S3 s. s.c.o. sub-miniature toggle
FS1 1 A 20 mm fuse
SK1 TGS 6-pin socket
SK2 3-pin DIN socket
SK3 4 mm insulated (red)
SK4 4 mm insulated (black)
PL1 3-pin DIN plug to suit SK2
WD1 $\quad 12 \mathrm{~V} 15 \mathrm{~mA}$ audible warning device
T1 mains primary $/ 9 \mathrm{~V} 800 \mathrm{~mA}$ (or 1 A) secondary or two 9 V 400 m A secondaries wired in parallel [latter, type 182 Watford] (mains version)
Printed circuit board: $66 \times 50 \mathrm{~mm}$; 8 -pin d.i.l. socket for IC2; 3-core miniature mains wire (connection to remote unit); mains cable (power to unit); small rubber grommet; nuts, bolts, washers; aluminium for IC1 heatsink; cases: Vero series II Casebox ($65-2066$ A) (mains unit), Vero type 301 (74-1413-E) (remote unit); lens clips for panel l.e.d.s 2, red, 1 green, 1 yellow, self adhesive cabinet feet (4 off); 20 mm panel mounting fuseholder.

Fig. 4a. The master pattern of the p.c.b. underside shown full size. The black areas represent the copper remaining after etching.

Fig. 4b. The layout of the components on the top of the p.c.b. and wiring details to off-board components.

Fig. 4c. Shows modification to board layout, fuse and onoff switch for battery version.

Fig. 5. Dimension and drilling details for the regulator heatsink.

Fig. 6. Drilling information for the front panel, shown actual size for the specified case. Can be used as a template and/or front panel label.
that none of the leads can short circuit. The VM18 was used simply to make the p.c.b. copper track design slightly easier.
It is extremely important that the electrolytic smoothing capacitor Cl is soldered in the right way round. A radial lead (p.c. mounting) type is used, and the negative lead-out is clearly marked. Similarly, the tantalum bead capacitor has its polarity clearly marked, and this must be observed.

VRI is a standard-sized preset, and not the more usual subminiature component; the one used on the prototype has a plastic knob fitted which helps in adjusting this control.
Care needs to be taken to ensure that the semiconductors are not overheated during soldering. A small heatsink used on the lead being soldered will help prevent any damage arising. Also, note the base connections for ICl and CSR1. A chamfer on the plastic case identifies the output of the regulator and thyristor gate respectively.

ICl is best fitted with a small heatsink as seen in Fig. 5 to help dissipate heat generated by the regulator. The heatsink does not require a mica insulation kit. C1 and ICl are located closely together, but there should be enough clearance between the two. Note, however, that the heatsink is pointing to the perimeter of the p.c.b. and indeed overlaps it.

Check the completed printed circuit board for dry joints, reversed polarities of components, and adjacent tracks which may inadvertently have been abridged with solder.

CASE COMPONENTS

Construction can proceed with the case. With this design, some care needs to be exercised to ensure that everything is going to fit into place. For example, the positioning of the p.c.b. within the case in relation to the switches on the front panel is very important. The components on the circuit board must not touch any of the wiring to the switch tags.

Drill the aluminium panel as illustrated in Fig. 6, and after this the panel may be lettered as desired.
As usual, use small rub-down lettering and then spray on two or three coats of protective lacquer. Take care not to get dust or fluff on to the varnish while it is drying. Alternatively, Fig. 6 may be cut out or copied and glued to the front panel. Now fit the front panel mounted components.

Before finalising the location of the p.c.b. within the case, it would be better to experiment with its position in relation to the mains transformer and assembled front panel. Similar care should be taken to make certain that the transformer will not touch any other parts once the case is closed up. The transformer used in the prototype had dimensions $50 \times 42 \times 44 \mathrm{~mm}$. Also it had two 9 V 400 mA secondary windings that were connected in parallel. In the diagrams, the secondary has been shown as a single winding having a current rating equal to 800 mA .

The completed control unit with top removed to show the close density of components.

On the bottom half of the case at the rear is mounted the 3 -pin DIN socket, fuseholder and mains cable inlet; this last hole should have a grommet fitted.

On the top half at the rear there are the two 4 mm sockets (SK3 and SK4) plus the audible warning device. The two sockets must clear the transformer completely when the case is fixed together. WDI requires a small hole nearby to enable the leads to pass through to the terminals of SK3 and SK4.

INTERWIRING

There is quite a lot of interconnecting, to be carried out, and Fig. 7 gives details; 3 amp mains wire is suitable for the mains interwiring.

The earth input from the mains is connected to the metal bracket of TI with a solder tag under one of the transformer mounting bolts. The front panel is similarly earthed by placing a larger solder tag under one of the toggle switch nuts. The metal body of the DIN socket should also be earthed: an earth terminal tag may already be fitted to the socket, and this can be used.

The remainder of the wiring can be carried out with general purpose flexible hook-up wire. Try to use as many different colours as you can, in order to make subsequent checking and tracing easier.

Insulate any connections with p.v.c. sleeving as required. This is especially true of any mains voltage connections.

Readers may have noticed that the appearance of the front panel was improved by using "lens-clips" of the appropriate colour to mount the light-emitting diodes. Also, the rather small tangs of the toggle switches were made more manageable, and more attractive, by employing coloured push-on plastic caps.

REMOTE SENSOR UNIT

The final part of construction is the remote sensor unit; Fig. 8 gives all necessary details. The socket for the sensor requires an 18 mm diameter hole to be cut: as this hole will still be visible once the socket is bolted in from behind, the cut-out should be as perfectly round as possible if a pleasing appearance is to be maintained.

In fact a perfect hole can be çut in the ABS plastic case using a Q-Max chassis cutter.
A cable length of 5 metres has proved successful, but it is anticipated that much greater lengths can effectively be used. Miniature 3-core mains cable is suitable for this.

It would be possible to mount the sensor on the main unit itself, thereby dispensing with the need for a remote unit. In this case, you would need to ensure that there is adequate clearance behind the socket once the unit was closed up, and the sensor would need to be mounted on top of the casebox.

A remote sensor, however, enables it to be positioned exactly as required, whilst the control unit can be in some other more convenient position (e.g. the bedside table).
Check over all wiring before proceeding to the next stage.

TESTING AND SETTING UP

Insert IC2 into its socket if you have not already done so. Also plug the sensor into its socket on the remote unit (either way round will do).

The unit should not be plugged into the mains during these tests.

Before switching on, try to test that the completed model is earthed correctly. Using an ohmeter on a low ohms range, check:
(i) The resistance between the earth pin on the mains plug and transformer mounting bracket registers a very low resistance.
(ii) Similarly check that the front panel is correctly and soundly earthed.

Set VRI to middle position and S3 to mute (i.e. S3 open). Plug in and switch on. The green POWER ON l.e.d. should light, as should D5 on the remote unit.

After a few seconds the level and ALARM l.e.d.s should suddenly illuminate at the same time. This is perfectly in order and is attributable to the sensor warming up. This should be accompanied by the temperature of the sensor cell slowly rising.

Presently the lever indicator should extinguish, leaving the ALARM l.e.d. on. Close S3; this should cause the audible warning device to sound. Then operating S2 (TEST/RESET) should silence the buzzer and extinguish D7 (alarm).

Pressing S2 again should then operate the alarm circuitry once more, this time in the test mode.

One method of testing the sensor (without gassing yourself) is to pour a little lighter fuel or petrol on to a cotton wool pad and place this near to the sensor cell. Depending on the setting of VRI, the alarm should be triggered and the level l.e.d should illuminate.

The Gas Sentinel should then be operated for a few hours to make sure that everything is in order.

Over a period of about one week the sensitivity control, VRI, should be adjusted until the desired level of sensitivity is obtained. The reason for the extended period of adjusting is that false alarms may initially be given because, for example, very high levels of cigarette smoke may trigger the alarm. This tendency should eventually be cured by altering the setting of VRI accordingly until maximum sensitivity without false alarms is attained.

LOCATION OF THE SENSOR

The gas sensors are affected by changes in humidity and ambient temperature. It is important therefore to position the remote unit away from direct heat (e.g. radiators, fires, lights, etc.) and also away from steam.

In use it is advisable to check occasionally to see that the mesh window of the sensor has not become blocked with dust or dirt, as this will impair its performance. Do not clean the mesh with any liquids or aerosols.

The life of the sensor is claimed to be approaching ten years under normal operating conditions. Should replacement prove necessary, this will be signified by much poorer response of the unit to the "lighter fuel" test mentioned above. Replacement of the gas sensor is a simple matter.

Youcant beat The System
 The Experimentor System ${ }^{\text {TM }}$ - a quicker transition from imagination

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.
We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.32$.

There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardim (where they're printed) to Matchboardiм (where they're silkscreened onto the component side) and always know where you are.

When you want to save time and energy, you can't beat The Experimentor System.

1. ExP-300PC, which includes one item - A Matchboard pre-drilled PCB	2. Exp-302, which includes three items Three 50-sheet Scratchboard workpads £ 1.68

3. ExF-303. which includes three items Two Matchboards and an EXP. 300 solderless breadboard	4 ExP-304. which includes four trems - Two Matchboards, an EXP-300 breadboard and a Scratchboard workpad
¢8.60	¢9.30

CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) Limited,

Dept.4W Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682 Telex: 817477.

Everyday News

ELECTRONICS MAKES THE HEADLINES

At the BBC External Services the script of newn storles, talks and features (some 30 million of them in a year) are now distributed electronically to more than 200 outlets in Bush House, the London headquarters of the BBC's Overseas broadcasting.

The broadcasters, journalists and translators in the 38 different language sections at Bush House no longer have to wait, sometimes up to two hours, for the scripts to be copied and delivered by hand. Now they can get their stories in seconds from a visual display unit (VDU) or a printer, in their office.

At the heart of the Electronic Distribution System (EDS) are two mini-computers and an array of disc storage units. The scripts are written into the system on 64 VDUs in various parts of the building.
There are 39 VDUs in the central newsroom where journalists dictate their stories to copytakers who type them into the system. Once a story has been written, the journa lists can instruct the computer to direct it to specific language sections and, shortly after, it will be printed in their individual offices.

The System

For the technically minded, the EDS is controlled by two General Automation 16/440 mini-processors. Both are in continuous operation and receive the same input, but only one of them provides any output. When a fault occurs, the standby processor is ready to take over immediately.

Each processor is asso ciated with a 2 -megabyte fixed-head disc and a 24-megabyte disc-pack drive. New material entered each day is "dumped" onto magnetic tape and later transferred to microfiche for archival storage.

Each of the 137 VDUs distributed around the building can undertake full text

editing, but only those in the news, talks and features areas are free to amend the stories in the central store. Hard copies can be demanded from 85 medium speed, 120 characters per second (c.p.s.), Lear Siegler 200 printers and 36 low speed

10c.p.s., Transtel printers.
The system can accommodate individual talks of up to half an hour, or about 5,000 words. A single story can take as many as 15 "pages" on a VDU, with each page accommodating up to 2,048 characters.

Pay-TV

The Home Secretary, Mr William Whitelaw, MP, announced in the House of Commons that a consultation letter was being sent out inviting comments from both broadcasting authorities, film and cinema representatives and other interested parties on pay television pilot schemes over cable systems.
In reply to a written question from David Mudd, MP, the Home Secretary said on the basis of comments received he would then decide the circumstances and conditions in which subscription television might be authorised. He invited written comments by May 31 and said that in addition to those organisations specifically consulted, he would be pleased to receive comments from any other organisations or individuals who would like to send them.

ELECTRONICS FOR TEACHERS

A four-day (March 31-April 3) and a one-week (July 14 to 18) course on Basic Electronics and Electronic Applications for Teachers is being run by Salford University. They are also offering a series of microprocessor courses from April 14 to 18.

For full details of all courses available, contact The Administrative Assistant (Short Course), Room 110, Registraur's Dept, University of Salford, Salford M5 4WT.
The Department of Electrical Engineering Science at Essex University will be holding its annual Electronics Summer schools for teachers during July 7 to 11. Three courses will be run simultaneously.

For further details contact the University of Essex, Department of Electrical Engineering Science, Wivenhoe Park, Colchester CO4 3SQ.

If you are one of those lucky people who happens to own an Apple Computer System and always had a yearning to write and play back your own synthesised music, then the latest plugin cards from Microsense Computers Ltd are for you.

Known as the ALF Music Synthesiser, the plug-in cards allow you to write your own synthesised music and play
it back through your hi fi.
The traditional music staves are displayed on the video monitor or TV screen and, using paddle controls, you simply enter each note directly onto the staves. Adjustment by pitch, envelope, decay, sustain and volume all within the full piano range of eight octaves (24 notes per octave) can be made.

Field tests of a viewdata system start in West Berlin and Dusseldorf this year. First reports indicate that the Germans are showing much greater interest than the British have shown for the BPO's Prestel equivalent.

Comput-a-horse

The French state-owned horse-racing betting organisation is to install several thou sand betting terminals in cafes and bars throughout the country. These will enable punters to place their bets right up to the "off".
-ANALYSIS

FADED IMAGE

The decade of the 1960s was one of glory for electronics. The transistor and microelectronics had arrived to pave the way for all sorts of technological miracles such as communications satellites and the ultimate triumph of the first men on the moon and their safe return to earth.

But microelectronics could be applied in other ways and at the start of the 1970 s electronics started hitting the headlines in an entirely different way. In 1972 the news of "dirty tricks", the attempted electronic bugging of the Watergate building in Washington was the start of the biggest political upset for years

By the late 1970s the microchip, the latest electronic miracle, was already being branded as "a menace". And in the first month of the present decade there was uproar over the revelation that the British Post Office has a modern centre for phone-tapping

The new British phone-tapping complex has been represented as particularly sinister simply because it is modern. It is said to have a capacity (not actual usage) of 1,000 lines which is not very many for a population of 55.8 million using 22 million telephones. But, horror of horrors, worse is to come. It is alleged that tape transports are voiceoperated, that individual callers can be electronically recognised through their voice-prints, and that conversations can be automatically printed out in hard copy.

If true, then the Post Office Engineering Department deserves congratulations. How splendidly efficient compared with old-fashioned methods of shorthand writers with earphones clamped over their ears, chain-smoking while waiting for calls. If eavesdropping is necessary in the interests of the community (and it always has been) the new and better method is no more sinister in principle than the old.

There is plenty of room for debate on the microchip. But, apart from purely technical merits, not on the chips themselves. How they are applied is a human problem. The chip itself is neutral and harmless.

Brian G. Peck

CB NEWS

The British authorities are delaying any decision on authorising $C B$ radio for the time being, contenting themselves with the announcement that whatever future decisions are made, 27 MHz operation will be out, thus diseotraging potential users from wasting their money buying equipment for that band.

Meantime, the Irish Gov ernment has banned CB radio and warned both dealers and the public that illegal usage will lead to prosecutions.

A National Committee for Legalisation of Citizens Band Radio has been formed in an effort to focus attention on the growing numbers of people calling for the introduation of CB in the UK.

The new National Committee, under the chairmanship of Lewisham councillor Theo Yard, will pool together the efforts of CB clubs around the UK. Theo Yard commented, "Our aim is the establishment of a legal CB system in the UK as soon as possible."

SINCLAIR STRIKES AGAIN!

Clive Sinclair, of pocket calculator and microtelevision fame hit the headlines again last month when his firm, Sinclair Research, announced the arrival of their new baby-the $\mathbf{Z X 8 0}$ personal computer.

This "pint-sized" machine (it is small and light enough to be carried in your brief-case) is a powerful, full facility computer and costs under £100; the kit is $£ 20$ cheaper. This remarkable price has been made possible by the dramatic
 reduction in component count, a tenth of most other comparable performance computers by application of new design techniques, a super ROM and touch sensitive keyboard. The keyboard has single-stroke keyword entry which eliminates the need for much tiresome typing. The ZX80 plugs into a standard TV (to produce a black-onwhite display) and is powered by an external 9 V supply via a suitable mains adaptor.

MICRO SHORTAGE HITS RETAILERS

Next time you try to order certain i.c.s you may be in for a surprise. A recent survey of some of the larger component retailers has revealed a considerable shortage of logic devices, especially in the CMOS and 74LS ranges. Prices and deliveries are uncertain and the inevitable black market is blossoming.

This shortage of microchips is not particularly new nor is it confined to the retail end of the market. However, semiconductor users supplied through electronics industry distributors (and this includes most retail outlets) are hardest hit. Delivery times of six to nine months are not uncommon and some retailers are still waiting for January shipments.

The enormous increase in demand for computer based products has, to some extent, taken the industry by surprise and has contributed greatly to the present shortage in production. Companies placing orders for "safety-first" reasons have also been criticised.

There is, however, some comforting news for the hobbyist. Component shortages tend to move in cycles and many suppliers believe it is only a matter of time before the i.c.s become plentiful again. Whether this is true or not, only time will tell, but it is significant to note that major companies such as ICL remain concerned about future supplies.

CURTAIN CALL

Poland is now the 91st country which Britain's phone users can now dial direct.

One of the places that can be dialled direct is the 16th century royal capital of Krakow where Pope John Paul was cardinal archbishop.

Over 15,000 calls a month are received from Poland and about the same number are made from Britain.

Golden Oldies for Video

The RCA company has acquired 12 classic Charlie Chaplin films and five NBC specials, including "Victory at Sea", for its catalogue of video disc programmes. They also have an option on the original 26 episodes of the World War II television epic.
Some 300 titles are planned in the first year after the RCA "SelectaVision" video disc appears on the market in the early part of 1981.

A standard mains outlet has L (Live), N (Neutral) and E (Earth) sockets. Power for appliances is obtained from the L and N sockets, but the Neutral is at low potential relative to earth, so L and N will not be interchangeable. The Earth is used to ground the metalwork of appliances, or act as a conductor for fault current which will result in the Live circuit being interrupted.

When an appliance is correctly connected by means of a 3-core cable, maximum safety is obtained for the user. Short circuits from L to N, or L to E, will result in the fuse in the live (L) circuit blowing or operation of a trip, so that the appliance is not dangerous to handle.

Proper protection is not obtained if L and N circuits are reversed at the outlet, or Neutral or Earth omitted. The fault indicator plug described here shows the situation when wiring is correct at the outlet, and also four fault conditions. Some of the latter, and especially an omitted earth, can be dangerous for the user.

CIRCUIT AND OPERATION

The circuit diagram for the Mains Outlet Fault Indicator is shown in Fig. 1. The neons LP1 and LP2 receive current through their series limiting resistors R1 and R2. Resistor R3 is from L and N in the plug to allow a path to LP2 in case of an "open circuit Neutral".

When the plug is inserted into a mains outlet socket, a correctly wired output will pass current via R1 to illuminate LP1; LP2 remaining off. An output with the Live

Fig. 1. Circuit diagram for the Mains Fault Indicator.

Fig. 2. Layout of components and wiring.

COMPONENTS

Resistors
R1, 2, $3270 \mathrm{k} \Omega$ or $330 \mathrm{k} \Omega$ to suit neons (3 off)
$\pm W$ carbon $\pm 5 \%$
Miscellaneous
LP1, 270 to 90 volt wire-ended neons (2 off)
FS1 2A or 3 A fuse
Standard flat pin 13A type plug
Approx cost 30.90

Guidance only
20.90 (see page 241)
lead disconnected (open circuit) will be obvious by both LPl and LP2 failing to light.

If the Live and Neutral mains wiring have been reversed this will allow current, via R2, to illuminate LP2; LP1 remaining off. A complete lack of an earth connection will be indicated by both neons being alight, current flowing via R1, LP1, LP2 and R2.

If an open circuit Neutral is present current will pass through R1 to LP1, and R3 and R2 to LP2. In this condition both neons will be illuminated.

The only correct indication is LP1 ON and LP2 OFF, see Table 1. Any other indication means that the outlet must be fully investigated, by a qualified electrician, before using it.

PLUG ASSEMBLY

A standard flat pin 13A plug is used to house the components and the positioning and wiring is shown in Fig. 2. Grip a stout wire in the E terminal of the plug and solder one end of both neons to this. Twist one end of R1 and R3

Mains Fault Indicator with cover removed. One end of R3 should be covered with insulating sleeving to avoid shorting to the heavy gauge wire.
connecting leads together, and fold over to give more grip, and secure with the L terminal. Similarly secure R2 and R3 at the N terminal. Resistor R1 is then soldered to LP1 and R2 to LP2.

To avoid any possibilities of short circuits when wiring, particularly to the heavy gauge earth wire, it is recommended that the leads from the neons and one end of R3 (N terminal) be insulated with plastics sleeving.

Keep the neons about as high as the fuse, with electrodes horizontal. Fit a 2 A or 3 A fuse. The

Front cover of the plug showing viewing windows and suitable lettering indicating lamp state for correct conditions at outlet.
flexible cord securing grip is removed and the mains cable inlet hole blocked with a wooden plug cemented in.
Drill viewing holes about 6 to 9 mm in diameter directly over LPI and LP2 in the plug cover and cement pieces of transparent material over these holes inside the cover before replacing it.

TESTING

The fault indicator can be tested by inserting it in a socket which has a 3 -core cord and plug, and simulating the faults listed in the operating conditions table at the plug. Remove the plug from the wall outlet before removing its cover or changing connections to it.

Table 1: Operating Conditions

OUTLET	LP1	LP2
Gorract		
(Current via R1 to LP1)	ON	OFF
Live open circuit (No current to LP1 or LP2)	OFF	OFF
Land N reversed		
(Current via R2 to LP2)	OFF	ON

No Earth
(Current via R1, LP1, LP2, R2)
$\begin{array}{lll}\text { Noutral open circut } & \text { ON } & \text { ON } \\ \text { ON } & \text { ON }\end{array}$ (Current via R1 to LP1, and via R8 and R2 to LPR)

To test outlets, insert the plug in the usual way. Only LP1 should light. In other cases a qualified electrician should look at, test and correct the circuit or plug connections, as necessary.

If the indication is correct at a wall outlet but not when an extension lead is added for remote use, connections at the extension plug and socket need to be examined. I

Yes Dearl

I have just been watching a film called "The Stepford Wlves". For the beneft of those of you who do not know the story, it is about a quiet American town in the backwoods, where all the men have disposed of their wives and replaced them with exact replicas. Externally they are identical to the originals, but inside they are all wires, chips and various other electronic devices.

They are, needless to say all very beautiful but have the advantage that they can be programmed to enjoy housework, and always do their husbands slightest bidding without argument. It set me thinking, "an unusual occurrence", and I thought just imagine this happening. You could build your own dolly bird, make her beautiful, curvaceous, like any film star and she would hurry to obey your slightest whim.
I was just about to write to Everyday Electronics to ask when they were going
to publish an article, on how to construct your very own sweetle pie, when wiser thoughts prevailed. Would I really prefer this lovely pneumatlc creature that hasn't the word "No" in her vocabulary to my present model, who, when I say I can't take her out, trles the effect of bouncing crockery off my head?
Such is the perversity of human nature, that I know in advance the answer would be "No". That I think is the weakness in the story. I think it could have been made into a hilarious comedy with all the models going wrong and running amok but the producers tried to treat it seriously and it wouldn't stand up to such treatment. However, it left me wondering if one day all this may be feasible, if so । shall look at electronics with renewed interest.

Mail Order

Now, before I'm reminded that I am not employed as a film critic, let me hurriedly return to my brief. I was most annoyed to see the postal rates put up
yet again. We absorbed the last one without passing the increase on to our customers but there is a limit, after which we have no option but to try and recoup some of the increase. I feel it is particularly hard on the electronic constructors, who are dependent on mail order for so many of their supplies
The only advice I can offer, is to take advantage of suppliers offering a fixed postal rate, as many of us do, and send fewer, but larger orders. I belleve some retailers actually offer to send goods post free, if the order Is over a certaln value.

A Good Connection

My regular readers may recollect that about two or three years ago I was very scathing about the fact, that the good old Bulgin P73 Mains Socket was suddenly condemned, by the madarins of the common market as unsafe. Consequently Messrs. Bulgin had to derate it from 250 volts a.c. down to 50 volts d.c.
I was therefore delighted when I saw that a well known and respected component supplier, had found a way round it. In the preamble to the description they simply say "These plugs are not suitable for making external mains connections to equipment for domestic use as defined in The Electrical Equip. ment (Safety) Regulations 1975". After which they proceed to rate them as before at 250 volts a.c. at 5 amps .

This means that you and I can carry on using them in the same way as before, and a good thing too, because when all is said and done, the P73 is a very useful and robust mains connector.

RADIO WORLD
 By Pat Hawker, gзva

Long-range VHF

Almost everyone who listens at all regularly on v.h.f.-broadcast or amateur stations-soon becomes aware of the marked extension to the distances over which signalstravel during "tropospheric" weather conditions; and also (during summer months in the UK) during the seemingly random "Sporadic E" conditions. Fresh light on both these phenomena has been reported recently.

The presence of water vapour at heights up to about $6,000 \mathrm{ft}$ combined with the existence of a "temperature inversion" (i.e. the air becoming warmer instead of cooler with increasing height) results in the bending and ducting of v.h.f. signals. Such conditions occur often in periods of fine warm anticyclonic weather and also during the misty days of late autumn and spring.

A good 'tropo opening' is regarded as bad news by broadcast engineers since it brings a big increase in the number of complaints of "patterning" on TV pictures or break-through of foreign languages on sound; but the same conditions are warmly welcomed by amateurs who find they can then make contact with stations as much as four times farther away than in "normal" conditions. On 144 MHz British amateurs have made contacts of some $2,000 \mathrm{~km}$; and on 432 MHz up to about $1,500 \mathrm{~km}$ although these distances are exceptional.
Much less known is the fact that tropospheric ducting is not confined to v.h.f./ u.h.f. signals but can also enhance ground wave signals on frequencies between $20-30 \mathrm{MHz}$ (and possibly sometimes even on much lower frequencies). It has been shown that over a 235 km sea path, signals may become as much as 20 dB stronger than normal when there is super-refraction or tropospheric ducting.

At the other end of the frequency scale, at $10,000 \mathrm{MHz}_{\text {, }}$ sea-path ducting has enabled British amateurs to span the distance from St. Ives, Cornwall to Portpatrick, Scotland using extremely low power (a few milliwatts). This was achieved in August 1976 but it has had a rather unexpected result: with an "over 500 km " record achieved, enthusiasm for further tests appears to have declined and the 10 GHz "record" has now passed to Italian amateurs who last year exceeded 600 km in the more favourable Mediterranean climate where super ducts form more readily than in our turbulent weather.

The other phenomenon, Sporadic E , is at last becoming more fully understood. Amateur observers and scientists over the past two years have produced fairly positive evidence linking Sporadic E with tiny metallic particles from burned out meteors and meteorites.

These particles become caught up in wind shears in the upper atmosphere, some $50-60$ miles above the Earth, becoming lonised from the action of the Sun to form highly reflective layers that
descend slowly as the day progresses. This has the effect that signals from about 20 to 100 MHz (and occasionally extending as high as the 144 MHz amateur band) can be received at good strength over distances up to about 1,000 miles.
Sporadic E layers thus seem to be basically metallic and are not layers of ionised gases as are the other layers of the ionosphere on which short-wave propagation depends.

3D for TV?

With many engineers in many countries working on ways in which television broadcasting could be extended, there is still doubt as to the most likely outcome. One possibility is the introduction of a second sound channel with better "separation" than is possible with the conventional pilot-tone stereo system used for sound radio.

The second channel could be used for stereo, or as a second-language channel, or possibly even as an additional radio broadcast channel. For instance some engineers believe we could consider using the line sync periods for carrying sound since it is now possible to build receivers with very stable line oscillators that need only an occasional sync pulse to keep in step with the studio cameras.
Then again, there is still interest in the idea of three-dimensional (3D) television which would give a better illusion of solidity, particularly if this could be achieved without the viewer having to wear special coloured glasses. In a recent English-language broadcast from Radio Moscow it was stated that 3D TV is being studied in Leningrad and has already been introduced for closed-circuit applications in order to provide better remote-handling instruments in nuclear plants. But apparently 3D TV for the home is not being given priority, although it was claimed that one such system had been tested some years ago and had proved to be quite effective for black-and-white pictures but attention has now turned to colour.
A number of inventors have described 3D TV systems in the UK but I do not feel there is much chance of any of these being adopted in the foreseeable future.
Another idea being proposed is multifocus photography in connection with TV film cameras, and a computer-aided system with digital processing was described recently at the National Film Theatre. Those of us present at that meeting came away disappointed that no firm evidence was presented to show that these ideas have reached the stage where real results can be demonstrated or what, even if the system proves technically feasible, would be the cost of introducing such a process.
A big advantage would be that the viewer would not have to change his set, as for most other possible innovations.

Radiophone services

Citizen's band was originally introduced in the USA to appeal to people who, having no special technical interest in radio communication, nevertheless felt a need to have two-way communication facilities in their vehicles; in fact a sort of - poor man's London Radiophone service.

The Post Office system, of course, has many more features than CB and is tied in with the normal telephone service. "Selective calling" techniques mean that a user is alerted to receive only calls specifically intended for his "number" and the use of various automatic channelling systems and multiple base stations is all intended to provide a first-class, if rather expensive, public service throughout the London area

How effective is the system at present? Can a user, who will have paid some $£ 1,500$ for equipment from one of the three "approved" manufacturers, pays about £15 a quarter to the Post Office plus 25p per call, be reasonably sure of receiving and making calls whenever he wants to?

It would seem, from a report by lan Priest, G8PML in the newsletter of the UK FM Group (London) that the system works-but only "with a lot of luck and a great deal of difficulty". Outgoing calls from mobiles seem reasonably easy; the main problem is that the system tends to become overloaded at some times of the day and then the user, when called, finds he cannot seize a free channel, sometimes for as long as 20 minutes or soby which time his caller is likely to have given up and rung off.

The answer would seem to be that the Post Office needs much more "channel space" in other words a bigger chunk of the radio spectrum; and again that would allow them to reduce the two years or so "waiting period" for would-be subscribers. But is this practicable? One has the feeling that with any reasonable number of channels, the extra subscribers would soon be experiencing similar problems of overload.

Radio Antarctic

The Racal Company tells me that more than 100 tonnes of equipment and sup-plies-including high-frequency radio equipment-is being flown over the Antarctic permafrost for members of the Transglobe Expedition in the mountains of the Borga Massif.

The expedition, which recently arrived in the Antarctic under the leadership of Sir Ranulph Fiennes, will camp for the Antarctic winter before pushing on to the South Pole and then on round the world by its polar axis. The expedition by six men and one woman will last some three years using Land Rovers, an adapted trawler and powered sledges.

The radio network is being established at a cost of some $£ 130,000$. Much will depend on the skill of Giles Kershaw who will make the airlift in a light aircraft. The company say "Should anything go wrong the members of the team would be left without adequate supplies during the worst part of the year. One hundred per cent reliable radio communications are essential."
Radio communication near the Poles is often very far from being reliable due to the difficult propagation conditions, so we had better keep our fingers crossed.

You will not be too late

For moat of the beroa ins lise ied in the newatetter reppinted below, even though 11 is our JAN/FEB lasue, bocauza tha part of the nowssend us an order this month and az an axtra inducament we will send you Our MAY/JUNE nows/etter directly It is perinted, which is usually about two months bafore 11 can appoer in th/s magazine.

ERVICEANAN' SNIP Is something which probably every one of our readere could usefully use, even though he may already have ons or more of the expensive kind, we
refer to the "Safe Block" as used for quick hook-ups to the refer to the "saie Block as used for quick hook-ups to the
malns. Wo offer a completo kit to make a anfo block-hat all usual features, fuse, spring grip for wires, automatscally switches of when you make connection, tough rugged plastlc outer case. Price of klt $\mathrm{Ez} \cdot{ }^{20}+37 \mathrm{p}$.
Brandspread covering 13.5 to 32 metresio KIT
Brandspread covering $13 \cdot 8$ to 32 metroe. Based on circult
which appeared In a recent lase of Radio Constructor Comolete kit, Includes case meteriais, six traneistructor diodes, condensers, realetors, Inductore, awltches, ote.
Nothing elee to buy, ly you have an amplifer to connect it Nothing else to buy, If you have an amplifier to connect it to on a palf of high realatance headphongs. Special price CONBTRUCTOR's 8 NIP
clamp and is In fact a normal trans pormer . This has fxing \&2.80. We are offering this at only E1 Including postag and VAT and for good measure we are Including free plane and diagrame for two very popular Items. 1. Sound to light adaptor. 2. Whistle op, ewitch. Secure this bargain by order
THIS ONTH'S AMPLIFIER ENIP
This ls a stereo amplifier rated output 8 watts por channel. Complete and with tone control panel. Unused but plense expect to have to rectlfy soms small fault. We understand
these were made for a high clases music centre and hope to these were made for a high class music centre and hope to ARE YOU A BIG BOLDER UEER?
If so, you will be interested to know we can cupply Ersin on half kg reels. Price ef $50+$ Eit. 27 . AEMOTE Control of your sound to light, no direct connec-
tion to amp or speaker. KIt includes made up amplifler, ton to amp or speaker. KIt includes made up amplifier
microphone, case switch, etc. BS .sit +2 p . microphone, case switch, etc.
ew TUBULAR ELIAENTs
Brate-encased with beaded flex ends. Standard feplacement Tn most absopption type refrigerators, but also dozens of
other uses, alring cupboard heater, atc. Price fi. 7BW FLAT METAL CABED ELENENT
 $21^{\text {" }}$ wide, and ls about $1^{\prime \prime}$ thick-very useful for contact heat-
Ing. Price $5 \mathrm{sp}+140$. BLOWER-EXTMACTOR
Thie can be elther depending on how you mount it. We famous Smlth Company. The air comes mover, made by the ts blown out through an oblong side outtot. One use le as a solder flux fume extractor, saves inhaling this nasty stuff. Another ute ls as a draft reducer. Blow up polythens tubing with this and the polythene will expand into the gaps and so peduce draft and heat lose, Other uses, cooling, hot alr
digtribution, cooking smell removing, etc. We have 4,000 of the fans. Price E250 per 100 plus VAT and carriage. Sample quantities Es. $60+$ \&5p, post $81 \cdot \omega$.
HEAVY DUTY MICROBWITCH
For machlnes and other places where they may be exposed to dust and grit. The opening shaft is rubber encased and
the switch metal, cased. Price \&i.so +22 p . Notict W. the altch metal, cased. Pice \& $1 \cdot 50+$ 22p. NOTI: We
have over 100,000 microswitches in stock covering 50 or
 BURGLAR ALARM CONTROL PANEL
Contain labelled connectlon block, latching relay, teat switch and removable key control witch. Simpliffes the whole astaliation, all you have to do in to take wires to
pressure pads and to alarm bell. Price $\mathrm{Es} \cdot 00+50 \mathrm{p}$. With complete dlagram.

For only $\mathrm{Ei}^{1} \cdot 50+22 \mathrm{p}$. Sounde unbellevable but that's what you can have if you eend your order right away. The clocke Which have large clear dials were made by the famous Smithe brand new and guaranteed.

Mains fransformer, upright mounting primary and secondary
wound on eeparate bobbln with fxing lugs. Price $\& 3+$ Malns transformer C
Malns transformer C core constructlon, heavily varnished for
dead quitot operation. Upright mounting with fixing lugs.
Price 25 WATT MID-RANEE SPEAKER St"
Made by Goodmans so there's none butt
Made by Goodmans so there's none better, 4 ohm coll. POM TWEETER
Mado by Goodmans. $31^{\prime \prime}$ equare, $4^{\prime \prime}$ acrose fixinge. Price $\mathrm{E1}-30+22 \mathrm{p}$. Post 30 p .
ROTARY OLENOID
As most customers know we have sol enolds of the normal We have now acquired some which have a rotating actlon. D.C. operated, A chaft which comes out of the centre, rather IIke a motor pindle, travele approx. 90°, Prlc
, amp changeover with a centre off standard size clip fixing for many rockere. Speclat bargain this month, 10 for $\mathrm{E2} \cdot \mathbf{0 0}$ + 3.p. motors
$\$ 0 \mathrm{hz}$. good mounting, ex-computers but tested, 230-240v 50 hz good length spindle, mostly
es. 50 each + e1. 27 + carrlage 2.50 .
WATERPROOF HEATINC WIRE
As used for electric blankets, etc. This has dozens of other applications-tn gloves or socke for people with poor circucustomer is a 'grow' bag heater. The wase suggeated by a of an element wound on glass fibre then PVC covered has
a resiatance of 60 ohms per yard. The price is $20 \mathrm{p}+3 \mathrm{p}$ a reslatance of 60 ohms per yard. The price is $20 \mathrm{p}+3 \mathrm{p}$
per yerd.
TLLEPHONE PICK-UP coll attaches by suction to phone body, enabling conversation to be recorded, put through amp, or headphonen. Prlce ह1 +15 sp . TRANEDUCER8

PLEASE NOTE: The " + " sion after the amount shows the amount V.A.T, The postage, If quoted, is based upon the amount the article costs to cend If it forms papt of a please cend an addItional 50p. BARCLAYCARD \& ACCESS WELCOMED. Phone 01-688 1833.

PANEL METERE AMD INETRUMENTS

2t" ROUND PANEL METERB
All flush mounting through $21^{\prime \prime}$ round hole, with Mange
makes item $3^{\prime \prime}$ wide approx, Made to stringent Ministry
apecificetlon. Wo have the folfowing types in tock all apecificatlons. Wo have the following types in atock, all are

 Hp. AMPERE METER Hot wlre, sealed 0-9 amp. Price fluth mounting this has Internal resalator for the 10 v range censitive 20k per volt movement. Made for G.P.O. 80 obviously very good. Price \&ilen + 4sp.

- 1 MA PANEL METER
$Q^{\prime \prime}$ equare made by Slfam for Ferrograph for peak level Indicatlon, so reads rloht to left-1 milliamo i.s.d.. ecaled INETRUMENT PANEL METER
b a very senaltive m.c. $\times 4 t^{\prime \prime}$ f.e.d, in 7.6 microA which 0000 ohms. Polnter has. a fight to loft movement and there Is a mirrored scale callbrated $\cdot 1,-2,3 \ldots 2$ to 0^{2}, finishing with the Infinity slgn. The meter could be used for resistance Tndications or the seafe could be replaced quite easily. eupply at in. in +Ef .es. Limited quantity only.

Oblong alze $24^{\prime \prime} \times 2 j^{\prime \prime}$ approx. made by Slam for Vortexion,
internal rea. 1400 ohme. Twin scale top reade $0-100$, bettom -1 MA 240° PAO Cl . Pree Es +45 p .
-1 MA 240° PANEL METER
front and $41^{\prime \prime}$ deale Instrument alze approx. 4t" square at the callbrated $0-7$ and it was Intended to be used as rev. counter. Price from the maker would we feel sure be about \&2s. Our
 instrument
interested.
VU METER
Edgewlse mounting, through hole alze $11^{\prime \prime} \times 1^{\prime \prime}$ approx.
These are 100 micro amplis.d, and fitted with Internapprox bulb for scale liluminatlon, also have zero reset. The scale

BALANCE METER

dewise mounting 100 UA centre zero. Price $\mathrm{Lz} \cdot \mathrm{et}+\boldsymbol{T H}_{\mathrm{p}}$. I- BQUARE PANLL METER

CARGE PANEL MOUNTINE MOVING COIL METER 12e $5^{\circ} \times$ 4" 200-0-200 UA. It has 2 alily easy job to reset the polnter to the lett-hand zero position and thus obtaln a 0/400 UA movement. Mado by Sangamo
GALVANOMETER 7-0-7 UA f.s.d.
high senaltivity (0.3 UA per divielon). Size approx exem $21^{\prime \prime} \times \mathbf{Q}^{*}$. Pricesiz+E1. 8.
ACOS "O" METERE
For use with transducere and accelerometers. These are precielon Instrument. They measure ' G ' In three ateps, Price $£ 12+81 \cdot 10$.
CHARGE-DISCHAREE PANEL METER made for $\mathrm{military}_{50-0-50}$ so of good quallity. Fitted with shunt this reade $50-0-50 \mathrm{amp}$, hole size $2^{\prime \prime}$ dia. with flange for flueh panel mounting. Price E2. $50+34 p$.
O-10V DC MOVINE COIL PANEL METER
Another military model fianged for fush panel mounting dding a sefles resistor, Price $\mathbf{\Sigma}_{2} \cdot 00+30 \mathrm{p}$. 6-100 UA
Fine moying coll Instrument soaled Into glase case, mounte flush through $21^{\prime \prime}$ dia. hole and we supply this complote with mountlng flange. Price es. $\cdot 0+45 \mathrm{p}$.
In beautritily made teak cases, slze $8^{\prime \prime} \times 81^{\prime \prime} \times 51^{\prime \prime}$, the sort of Inetrument we used at school. Vory clear mirrored ecale
reads AC $0-150 v$. Callbrated at $1200-2000$ cpe. Price $815+$

In case made of tough plastle. Very clear mirrored seale 4" SQUARE PANEL MOUNTING moving coll movement with scale for multi-range test meter made for the Taylor Electric Co., a fruly beacutiful Instrument with mirrored scale, buliding a 80,000 o.p.y. multi-tester then thise is your chance PrICECAEDE StP. ANEL METER
O-25 MA moving coll made for the G.P.O. A very useful Ez.50 +3 es. HIOH DCC CURRENT PANEL METER
32° dla. 240° scale, made for G,P.O., new and unused. Avall-

 ES.00 + 75 P.
$4 "$ dia. ceale $0-4,000$ amp: AC at 60 HZ , Price $£ 12 \cdot 00+\$ 1 \cdot 20$.
40 KV PANEL PaKV PANEL METER
Panof mounting instrument olves very clear readings of

100k In, approximately \& watt rating as used in many T.V
recelvers, makers Ref. $7802412-00051$. Sultable for fine contro of resistance in general circultry. Price 40p + ©p.
 these at such a low price that they can' be used as T.V. aerial sockets only. Price 10 for $E 1+15 \mathrm{p}$.
sTEREO HEADPHONE LEAD
Black curly 10it approx. terminations, tereo jeckplug one
end-miniature two pin pluge on other. Price sep +7 p .

J: BULL (EEECRYCA) LTD

(Dept. E.E.), 103 TAMWORTH RD., WEST CROYDON, SURREY Tel: 01-688 1833

COMPONENT EOARD
Ref. Woops. Thle ies modern fibreglase board which contalise a multitude of very usetul parte, most Important of
which are: 35 assiorted diodes and rectinars Inciudine four 3 amp 400 v types (made up In a bridges), 8 tranalstors type
BC 107 and 2 type BFY 11 , olectrolytle condencers. BC 107 and 2 type BFY 51, olectrolytle conden efse, SCR
2N5000/E2 100 D DC and 100 u 25v DC, and over 100

SUP层R2N3035

Transistor RCA se3s0, in our experience thia does all the 3058 can do but does it better, wo have good otock of these, price sep +7 .
SPImAKER CABINETS
 Special price to bulk buyers.

gry submere ible PUMP

Our dril pump is usaful, but this naw one is even mope ao moved and up It comes, no mes, drop it into the llauld to be and you got a very good head. Sultable no priming, ste. and any non-exploalve, non-corposive llquid. Oner, palam free olft, firat 100 purchrself a shower. Price Eit + eip. A and length of plastle ELECTRICAL BNIP
Sill avallable, parcel of M.E.M. white flugh 13 amp sockets,
switches, etc. Total rotail value over \&sy + VAt switchee, etc. Total retail value over £5 + VAT for only 18 amp S. sockete with neons, 14 power (20 emp dot owlehe and spurs some with neons), 20 single ganged owltehes two-way and Intermediate switches and super free gift (worth ©3). It not collecting please add e2. 25
E.H.T. MAINE TRAN\&FORMER wIth Inductance control, normal primary, secondary output by our equipment, 3.8 ky
3 mA . E.H.T. voltage can be variad by apolylng DC . to the lower normally unused bobbln. We are not sure how much the voltage may be incroased or decreated but uning ol volt battery we seem to gett a rise or or foll of about so volts.
Ex unused P.s. Ex unused P.S.U.'
ARMY is BET:
ARMY of made for and
fow or there in used in the Second World War, we have a
 TANOENTIAL HEATERS
Made by Solatron, these are replacemente in many popular heaters, alternatively, they require only a simple caee of
could be fitted into the bottom of alta At present both 2K and 3K modele are In ulock bookease.
 Heater control switch enabiling full post it healf heat or cold blow and connectlon data. Price $78 p+12 p$.
RECORD PLAYER MOTORE
AE fitted to Magnavox, B.S.R., Garrard, etc. 2 pole motore
 to some tape recorders) $82+30 \mathrm{p}$, post 40p per motor. Ap Interesting polnt about these motors Is that often when you
have to fit a replacement, the stator (the part with the winding on) can usually be replaced separately, thic often makes the replacement posalble as most rotors have an and cap which Is apecial as It Is stepped to facilitate speed change
DOOR SWITCH
Neat tubular pattern for latting Into door frame. All you have la a changeover dia. hole and chisel out for the fixing. The circult, Price $50 \mathrm{p}+7 \mathrm{P}_{\text {. }}$ MICROSWITCH
CROUZET SKELETON MICR
Crouzet Ref, 319/C. Thie is changeover switch with un mps stackable and very MINI DECADE THUNB WHELL SWITCH
 ewltch. Matt black with while floures- oold plated break
before make contacte. Price 75p +12 p . bofore make contacte.
ROCKER SWITCH
Double pole 13 amp 250 y for hole size $1 \mathrm{I}^{\prime \prime} \times \mathrm{I}^{\prime \prime \prime}$, white with nickel plated surround. DOT Ref. $82 / 631$ Price 3Sp + ip.
Low ToROUE MICROsWITCH LOW TORQUE MICROSWITCH
Can be operated by alr flow, colns or other amsll welghte
so they have many applications-SPDT so they have many applications-SPDT ellyer contacte
rated at 250 v 5 e expected life of $10,000,000$ operations. Price LiGHTPDEPENDENT RESISTOR ORP12
A cadmlum sulphide i.d.r. with clear end window-resistance reduce as ight increases, dark resictance 1 meg plus, sunight resistance 100-200 ohme. Pric
WU: MINI TRIMMING POT
Wire leads sult $\cdot 1$ matrix board-top adjuating avallable in
following values: 10 ohms, $10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 200 \mathrm{k}, 250 \mathrm{k}$, 500 k and 1 meg. Price 4sp +7 fp .
MULTITTURN POT
$1{ }^{1 \prime \prime}$ cermet-20 turn metal cases with three leads for p.c.b.-multi-contact wiper onsures minimum nolse and excellent
stability-slipping clutch end stop, one value only at present

230 v or 115 v maine driven, $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. approx, at $50 \mathrm{Mz} 60 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
 ablefrom front or rear, this is extromely powerful, in fact the Writer could not atop it by hand. Pr
Hepivy DUTY mains RELAY
With three clo 15 amp contacts-fitted with plastic dust
cover, this has push on tags for quick connections. Price Wover, this has push on contacte-fitted with plastic dust
cover MAIN OPPERATED WATER PUMP
Most readers will know that we stock the Jabsco drill pump whill 22.25 , but due to rise short portable drille, the price this to an 110 rpm motor, mounted them on a matel chasels and offer thie as a general purpose pump. It is suitable for most liquids and certainly for water and will lith the liquid
MINI-MULTI TESTER

By Harry T. Kitchen

Discipline

"What", you may well ask, 'has discipline to do with our workshop?', A great deal as I intend to explain if you read on.
Most of us are gullty of a lack of discipline in our lives, and this can insinuate itself Into our hobby unless we make a determined effort to maintain some form of discipline. Such an effort is well-worth while since it enables us to make the most of our limited time; this increased efficiency manifests itself as improved output, and hence pleasure.
Discipline begins with keeping a clean, tidy workshop. Let us now explore the extension of discipline to the keeping of records of your activities, particularly if you are well advanced, and hence have more to forget. Remember that memory is a most unreliable assistant-well, mine is, to be honest.

Note Carefully

Notes of your experiments, of circuits built - successfully or otherwise - will prove invaluable since you can learn from your own mistakes by back-tracking, as a source of future inspiration, guidance, and as a means of easing trouble-shooting if necessary. A good stout A4 sized note book is not expensive, and is large enough to record most circuit details; if the circuit is too large, it is usually possible to break it down into sections.
Record also all relevant calculations, however elementary, all voltages and currents, the effects of circuit changes, in shorteverything. By doing so you will build up an invaluable diary of your workshop activities. In time it is quite possible that you will be able to guide others who may be struggling or have done something wrong in their constructional activities.

You should aiso keep a record of ideas for future action, matters that you have read about, and so on. It is debatable whether you should use two note books, one for current projects, the other for future projects. It depends on your ambitions and the scale of your activities. I personally use two such note books; one an A4 for current work, the other an A5 in which I make notes of articles that I think that I may wish to refer to later.

Stock Control

In an earlier article I covered the purchasing of components. If your activities are modest, then you will probably have no problem keeping an eye on your stocks. If on the other hand you are into constructional work in an ambitious way, then it. is worth thinking about some form of "stock control", as this will enable you to check on your existing stock and to update it if necessary.
Again, a note book is handy and you can allocate pages to different components and the quantity in stock. As the stocks are used up you alter the quantities until
a time arrives when re-ordering is necessary. I would suggest that re-ordering is effected before you actually run out of any component.

This method also has the advantage that it high-lights components that are much used, as well as those that are littleused or used not at all.

Experimental Aids

Under the somewhat non-committal heading of experimental aids come all sorts of things that are difficult to classify, are perhaps unheard of outside professional circles, but which make the life of the experimenter that bit easier. These can be either home-made or bought-out.

An extremely useful piece of equipment is the old-fashioned "bread board", literally a piece of board onto which all the components were attached as best possible. A modern equivalent that I myself used was a piece of s.r.b.p. board onto which turret tags were rivetted at intervals of $\frac{1}{4} \mathrm{in}$. Components went on one side, connections on the reverse.

A similar board could be built using 0.1 in matrix plain, pierced, board using Vero pins or similar. The ultimate, manufactured version, is the T-Dec and its variants, and exceedingly useful 1 find them, though I do on occasion find myself short of room and wishing for another board to slot in.

Breadboards

Breadboards, home-made or manufac tured, provide you with the facility of trying out circuits before plunging into the traumas sometimes associated with building a circuit untried. This applies particularly to home-grown circuits, since you have the facility of changing components with relative ease.

Breadboards have one or two snags, though, and it is as well to consider these. The circuit, or rather the components comprising it, is strung out somewhat, and this is unavoidable to some extent.
With r.f. or high gain circuits feedback may be a problem. Also, the final layout, be it p.c.b. or matrix board, may not have quite the configuration that it had whilst strung out on the bread board; you may now have feedback that you didn't with the bread board.

Connecting Leads

A usefui adjunct to the bread board is a. set of connecting leads. These take various guises, but are in essence varying lengths of connecting wire, typically 14/ 0076 or its metric equivalent, with crocodile clips, banana plugs, and the like to terminate them.

Large and small croc clips, large and small banana plugs, in all possible combinations; you will need them all, so useful are they for connecting to power supplies, meters, other boards, and so on.

Substitution Boxes

Resistance and capacitance substitution boxes seem to have gone out of fashion, yet I wouldn't be without mine. Built many years ago, the resistance range covers 100 hms to 10 meg ohms in six swltched decades using the normal E12 range of $\frac{1}{2}$ watt 5 per cent carbon film resistors.

The capacitance box covers from $0 \cdot 1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$. Up to $2 \cdot 2 \mu \mathrm{~F}$ the capacitors are polyester; over thai electrolytic; voltages cover 400 V (polyester) to 16 V (electrolytic).

Such boxes are not by any means difficult to build, nor expensive.

Switching offers resistor/capacitor values and their multipliers. For instance, the basic resistance range covers 100 hms to 91 ohms, the next is 100 hms to 9100 hms and so on, with one switch selecting the value, the other the multiplier. Similarly with the capacitance box.

The latter is of somewhat less use, certainly on the electrolytic side due to the wide tolerance of such capacitors, typically -50 per cent to +100 per cent. Below $0 \cdot 1 \mu \mathrm{~F}$ stray capacitance tends to nullify the usefulness. Even so, a capacitor substitution box serves as a very usefui "pointer"' towards the required value.

Restrictions

In using such boxes, it is essential to remember that resistors have wattage restrictions, capacitors voltage restrictions. What this means is that you must not gaily place them in positions where the makers of the resistors and capacitors did not intend them to go.
Do so and you may be amazed at the amount of smoke a resistor exudes, or the amount of foil in an electrolytic capacitor!

"I'll try this silic and chips I've heard so much about"

TRANDAM

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

TRITON

COMPUTER

 SYSTEM.Designed for ease of construction and flexibility. Kits come complete and all components and software are availabla separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to sysiem building. Powerful and easy to use system monitors - a range of languages avallable. Firmware is Eprom based and upgrading from one level to the next is easy.

- L5.2 with 1.5 k monitor 2.5 k basic $\mathbf{~} 294.00$ - L7.2 with $2 k$ mon $8 k$ extended basic $\mathbf{~} 409.00$ - L8.2 4k ed/mon 20k res pascal £611.00 - L9.2 CP/M disc based system - 8k ram card kit (21141) - 8k eprom cards (EXCL 8-2708) - Motherboard expansion 8 siot - Trap-res assm/edit eic (8-2708) - Transam BO80 bi-dir printer - TVM 10 video monltor 9" - Eprom prog (270B) kit

SEND FOR OUR CATALOGUE FOR FULL DETAILS OF TRITON FEATURES

P.O.A.

897.00
831.00 ع31.00 $\mathbf{8} 0.00$
$\mathbf{£ 8 0 . 0 0}$ +585.00 879.00 $\mathbf{E 2 8 . 5 0}$

TCL PASCAL - CP/M COMPATIBLE
A standard Pascal compiler avallable on resident (20k) Eprom based configuration or avallable to run unde CP/M on 8 disc plus dacumentation. CP/M version £90.0.
-P.O.A. \quad TCL Pascal Manual and specification $\mathbf{E 8 . 5 0 .}$

W/WRAP AKTE		0118 cts		bil Pluas		DILSWITCHES	
801L	020	8011	0.14	14016	0.40	4 HL	1.20
140:1	0.35	1401 L	0.11	18014.	0.05	7016	1.71
18 DLL	0.48	18012	0.17	3 cote		801 L	1.80
18015	0.60	18 DLL	0.24	14015	1.30	18 w 21F**	4.01
${ }_{2} 401 \mathrm{~L}$	0.52	200 L	0.27	18016	1.50	24w ZIF*	0.20
28012	0.74	24011	0.30	24016	2.00		
40 DIL	0.81	28011	0.36	End IMseftiow fonce			
		48012	0.60				

COMPUCOLOR II-FULL COLOUR

 - Built in 5 tour crt display - Built in $5+$ disk - 16 k extended basic in rom - 71 key keyboard - detached - R5232 + 50 pln bus - 8ik user RAM - fully expandable
S100 DISC CONTROLLER £195 Plus DOUBLE DENSITY As used on Triton. Fully bult
will drive $8 \times 8^{\prime \prime}$ or $8 \times 58^{\prime \prime}$ drives. will drive $8 \times 8^{\prime \prime}$ or $8 \times 5 t^{\prime \prime}$ drives.
Single or double sensity. Works with ail Shugar compatible
With al Shugart compatible
drives. Uses the 1791 chlp
drives. Uses the 1791 chlp
on boord crystal - CPU Independent

DPS. 1 MAINFRAME - PASCAL SYSTEM

ITHACA S100 BOARDS PASCAL/Z build
your own Pascal Micro Devalopment systom. IEE-5100 bus system using DPS 1 mein-frame ASSEOMBLE PASCAL/Z on $8^{\prime \prime}$ disc Complete system
E2910.00

WE STOCK THE FULL RANGE OF $\$ 100$ CARDS AND ACCESSORIES

8k Static RAM board (450 ns) 899.00
Bk Static RAM board
250 ns) 280 cpu board (2 MHz) 280 cpu board (4 MHz) 2708/27 16 EPROM board Prototype.board (bare bogra)
Video display board ($84-18$. 128U/L Ascu) Oisc controller board K2 disc operating system ASSEMBLE/Z Macro Assm PASCAL/Z compiler
PASCALZ CP/M 16 k Static RAM

MULTIWAY CONNECTORS

INBUULTION PEACIME		$\begin{aligned} & 35 / 70 \\ & 38 / 72 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 4.74 \end{aligned}$	कु1 Nixisy	
20 wayplug	2.30				
26 way plug	2.70	40/80	5.00		
34 way plug	3.30	43/86	5.50		
50 wryplus	4.00	50/100	5.0		
20 way stre	3.40	COLD. 150 PITCH			
	4.00 400		126		
34 wit itt	4.00	$\begin{aligned} & 0 / 2 \\ & 10 / 20 \end{aligned}$	1.50)	8
30 way skt	8.00	12/24	2.00		π
EDGE COMW PCE		15/30	2.20		
C0LD. $1^{\circ} \mathrm{PITCH}$		18/38	2.30	-	in
$22 / 4$	3.20	22/4	2.15		
25/50	3.40	28/56	3.30		
28/58	3.10	36/72	3.10		
30/60	4.15	43/88	4.10	84 way DIN mais 64 wiy OIN femele	$\begin{gathered} 2.50 \\ 4.50 \end{gathered}$

VISIT OUR SHOWROOM

WE ALSO STOCK:- a comprehensive range of books and magazines, VERO products including S100 and Eurocard and Wire Wrap
equipment. Weller soldering equipment, Riboon Cables, tools, equipment. Weller soldering equipment. Ribbon Cables, tools.
tapes, dikettes, connectors and or Tool range. Systems continuously on display in our showroom

CRYSTALS		4MHz	2.10	F8 (3850)	1.50	
100k	3.00	4.43 M	1.00	8080A	0.33	
200k	3.70	5 MHz	2.70	8809	24.00	
1 MHz	3.00		2.70	280	1.00	
1008k	3.60	7 MHz	2.70	280A	15.00	
1843k	3.00	7.168M	2.50	80854	12.95	
2 MHz	150	${ }^{8} \mathrm{MHz}$	2.70	8502	1.00	
2457k	3.05	10 MHz	2.70	SCMP 11	10.00	
3276k	2.70	10.7M	2.70	8802	13.15	

TRANSAM COMPONENTS LTD, 12 CHAPEL STREET, LONDON NW1

BOOK REVIEWS

ELEMENTS OF ELECTRONICS-BOOKS 1, 2 and 3

Author
F. A. Wilson

Price
Size Publisher ISBN £2. 25 each

Bernard Babani
0900162821 (Book 1)
$180 \times 108 \mathrm{~mm} 200$ pages (approx.) each

090016283 X (Book 2)
090016284 X (Book 3)

NE of the latest additions to electronios eduoation literature is this set of books, described by the publishers as an "on going series of books aimed at the absolute beginner"

The uiltimate aim of the series is to enable anyone to have an inexpensive but comprehensive introduction to modern electronics although on the evidence of the first three volumes you would have to wade through nearly three books of theory before you even approached modern electronic techniques.

That apart, volume 1 gives a good grounding in basic eleotrical theory which is later expanded to include a.c. theory in Book 2. The electronios proper really starts in Book 3. Entitled "Semiconductor Technology", it concentrates on transistor theory although there are also short sections on logic i.c.s. and op.amps.

Generally speaking, presentation is quite good although it is let down from time to time by poor drawing and inconsistencies in the text that didn't ought to be there book of this kind.

QUESTIONS AND ANSWERS-

 INTEGRATED CIRCUITSAuthor
Price
£1-55
Publisher
ISBN
R. G. Hibberd
165×110112 pages
Newnes Technical Books
0408.004665

THE concept of presenting information in question and answer form is not new. A great number of educational aids and instruction manuals have been written in this style with varying degrees of success and this book certainly ranks amongst the more convincing.

In any publication of this sort the selection and order of questions is all important and here R. G. Hibberd has apparently been very successful.

Each question prepares the reader for the next (with one or two exceptions), and the accompanying artwork is particularly crisp and clear especially for the small page size.

The book, which is not in fact new but a revised edition of an older publication, answers a number of general questions on i.c. technology as well as more specific points on the separate chip families-linear, mos, digital, bipolar, etc. There are new sections on cmos, nmos, and vmos technologies and microprocessors are looked at for the first time.
s.E.D.

Do something PRACTICAL about your future.
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs. Now, the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer.

You risk nothing! We promise to get you through your chosen course-or, refund your fee!

So, join the thousands who have built a new future through home study Engineering courses.

Aldermaston Court. Dept. TEE 51 Reading RG74P乍.
NAME (Block capitals please)
ADORESS
Other Subjects POSTCODE__ AGE _-_ Member of ABCC
Accredited by CACC

CORED SOLDER WIRE

	10^{\prime}	20^{\prime}	t Kllo	$\frac{1}{2}$ Kllo
	coils	cards	reels	reels
18S WG	$52 p$	$90 p$	$£ 3.80$	$£ 4.95$
22 SWG	$35 p$	$55 p$	$£ 4.15$	$£ 5.35$

ALL OUR PRICES INCLUDE P/P \& V.A.T. TRADE ENQUIRIES INVITED

Cash with order to:

CIRCUIT SOLDERS LIMITED
INDUSTRIAL ESTATE
THRUXTON AIRFIELD ANDOVER, HANTS.
C\& G Elect. Technicians C \& G Elect. Installations Telecomms. Technicians Exams Television Servicing Radio Maint. \& Repairs (BIET) Pract. Radio \& Electronics

Plus over 60 other home study courses.

\section*{The Extra Ordinar Experiments of Proiessor Evnest
 by Anthony John Bassert
 |n Last month's issue, the Prof. left

his visitors Tom, Maurice and Bob, trying to solve the problem of what happens to the trigger-points of a Schmitt trigger when control potentiometers are used to move the two trigger-points closer together until the point of zero hysteresis is reached, and passed. Maurice has been tackling the problem by mental concentration and deductive reasoning.

MENTAL APPROACH

After some careful consideration of the factors involved, Maurice announced:
"As the controls are adjusted to give less and less hysteresis, the circuit will respond to smaller and smaller signals, until eventually as the point of zero hysteresis is approached, it should become possible for the circuit to be triggered by really minute signals. It seems to me that the sensitivity of the circuit would approach infinity, and its behaviour would also come to approach that of an "infinite gain amplifier".
"Prof., is it really possible to obtain such a high performance from such a simple two-transistor circuit?
"I think that Bob is in the process of finding out-and he is certainly looking very excited about it".

PRACTICAL APPROACH

Whilst Maurice had tackled the problem mentally by use of reasoning, Bob had used a practical

Fig. 1. Experimental Schmitt trigger circuit.
approach and built up a special experimental Schmitt Trigger circuit (Fig. 1).
He set VR3 so that its wiper was near to the end of the track conneoted to the emitter of TR1, and VR2 so that its wiper was near to the collector of TR1. Now by connecting a multimeter to indicate the voltage at the collector of TR2, and moving the wiper of VRI back and forth a few times, Bob found the two trigger points.
At one point of adjustment of VRl the collector voltage of TR2 suddenly became high (about 9 volts) and at the other point it suddenly fell to about 3 volts. A guitar signal fed to the input from a pre-amplifier sounded very harsh and crackly at first, but as Bob carefully adjusted VR2 so that the trigger-points came closer together, there came a point where a less crackly but intensely "fuzzy" sound was produced.

\section*{HELIUM BALLOON RADIO

HELIUM BALLOON RADIO AERIAL

At one point of adjustment of VR1 and VR2, the circuit became very sensitive to the slightest vibration of the guitar strings, and also began to pick up radio signals, so I decided to test it as a radio receiver. I launched the Prof's. Helium Balloon Radio Aerial.
"Wow, Bob, What's that?" Tom asked.
"Look outside, Tom you'll see it", Bob replied.
"It is a long piece of aerial wire carried up by a gas-filled balloon. With this it is easily possible to receive a wide range of radio frequencies, and I thought that, with a sensitive receiving circuit it might be possible to receive radio signals from space".

As Bob manipulated a tapped tun-ing-coil and a tuning capacitor a huge variety of radio signals could be heard from the loudspeaker of the audio amplifier, but he could not tell Maurice which of these signals might have come from outer space!

PASSING POINTS

"What I still would like to know" Maurice told Bob, "is what exactly happens when you adjust VR2 so that trigger points coincide, then pass each other?"
"That's easy," Bob replied. "The Schmitt trigger effect disappears and the circult becomes a high-gain
amplifier. As the wiper of VR2 approaches closer to the positive supply connection, the gain becomes lower and lower. By adjusting the wiper of VR1, two points can still be found; these are the positive saturation points of the amplifier beyond which it will not amplify any further in a positive direction, and the negative saturation point beyond which it will not amplify any further in a negative direction.
As VR2 is adjusted back down towards the point of zero hysteresis or backlash the gain rises and the two saturation points approach closer together until a point of very high gain is reached, and as VR2 is adjusted beyond this, two trigger-points appear, and we have our Schmitt effect again!"

HIGH GAIN

"It is fascinating to think that you can obtain enormously high gain from a couple of cheap transistors in such a simple circuit!" The Prof. observed, and whilst Bob and Maurice were contemplating the possibilities of this for all sorts of oscilloscopes, amplifiers and signal detectors, the Prof. walked off with the electric guitar which Bob had been using to test his Schmitt trigger fuzz circuit!

A few moments later their contemplations were interrupted by some extraordinary guitar sounds which, al-
though very fuzzy, seemed to be also extraordinarily rich and full in tonal character.

SPLITTER BOX

It was Tom, playing the guitar through a number of fuzz boxes all at once. The guitar was plugged into a signal splitter box from which a number of jack leads took the signal to the various fuzz boxes, each of which was plugged into a different amplifier.

There were both valve amplifiers and transistor amplifiers, so that "valve sound" was mixed with "transistor sound" and together with the different effects of the various fuzz boxes this contributed to the extraordinarily rich and full sound of the guitar which Tom was happily playing.
"Now with many fuzz box circuits the main problem is circuit noise. They produce just the sound the guitarist wants whilst he is playing, but during any pause or quiet spot in the music a loud hiss can be heard. This can be remedied by a circuit known as a "noise drive gate" whose function is to act as an attenuator, preventing the passage of this annoying hiss when the guitarist is not playing.

Fig. 2. Noise drive gate circuit.
The attenuator circuit will open its "gate" to let the sound through whilst the guitarist is playing, then quickly shut it again to cut out the hiss when he is not playing. Many commercial noise-drive gates are expensive, but here is a circuit (Fig. 2) which can easily be built in a very small space and will fit into most fuzz boxes. The control input of the noise gate is derived from the first or second pre-amplifier stage of the fuzz box; a suitable connection point can easily be found on most fuzz boxes, usually at the collector of the transistor.

From this control input signal the circuit, after adjustment of the sensitivity control, will very rapidly detect whether or not the guitar is playing, and the attenuator circuit then quickly either shuts off or lets through the signal."

To be continued

BOOK REVIEWS

ELECTRONICS-LEVEL 3

Author	B. F. Gray
Price	$£ 4 \cdot 95$
Size	$215 \times 140 \mathrm{~mm} 201$ pages
Publisher	Longman
ISBN	0582411351

Ask any student what he wants out of a textbook and he will probably tell you that it should be clearly written, well set out, contain few irrelevancies and of course be inexpensive. In an already overcrowded market such as educational publishing, mistakes can be very costly, although in this case the author has avoided most of the major pitfalls.

This is the last in a series of three electronics texts and is written specifically for students studying the TEC Level III Electronics syllabus. However other readers who are fascinated by the theory behind many of their favourite projects need not be put off, as good presentation and a well thought out text make even the more extreme parts palatable.

Topics covered include f.e.t.s, voltage amplifiers, noise, feedback, oscillators and op-amps, and the book closes with a chapter on the ubiquitous microprocessor. Worked examples are included at all stages and only a rudimentary mathematical knowledge is assumed.

MICROPROCESSORS FOR HOBBYISTS

Author	Ray Coles
Price	$£ 2.95$ (Limp Covers)
Size	$230 \times 155 \mathrm{~mm} 85$ pages
Publisher	Newnes Technical Books
ISBN	0408004142

THis is a very good introduction to the microprocessor, that chip which yesterday was an esoteric subject but is now part of everyday technology. It is based on a series of articles published in Practical Electronics three years ago-and one of the first comprehensive popular technical accounts of the microprocessor to be written for the non-professional.

It says much for Mr Coles early perceptivity of (1) the microprocessor's potential power and influence and (2) the bewilderment this new development would cause to non-experts that his text is just as fresh and relevant today. It deserves the more permanent form and the chance to reach an even wider readership that this new presentation now affords.

The MPU chip, programming techniques, and peripheral chips are explained. Then come sections on home computers and software which will be valuable to the wouldbe computer owner. The extensive glossary explains those buzz terms peculiar to the world of microelectronics and computing.

Written primarily for the electronics enthusiast, the book will also be of assistance to the non-electronics person who is interested in computing but wishes also to obtain an insight into what lies behind the keyboard.

Cnos		4020	100p	4060	1200
		4022	100p	4066	50p
		4023	20.	4068	20.
		4024	50p	4069	200
4001	20p	4025	20p	4070	20p
4002	20p	4027	45p	4071	20p
4007	20p	4028	85p	4072	20p
4009	40p	4029	850	4081	200
4011	20p	4040	110p	4093	50p
4012	20p	4041	85.	4510	80 p
4013	35p	4042	80.	4511	90.
4015	80p	4043	95p	4518	80.
4016	30p	4046	110 p	4520	80 p
4017	65p	4049	45p	4527	900
4018	Hop	4050	45p	4528	90p

OPTO

PCBS

VEROBOARD

Size in.	0.1 in .	0.15	Vero
2.5×1	14 p		Custer 80p
2.5×3.75	450	$45 p$	
2.5×5	54p	54p	Pin insertion
3.75×5	64p	64 p	
3.75×17	205p	185p	
Single sided			
pins per 100	40p	400	
Top quality sided. Size 203	$\begin{gathered} 4 \text { ube gaz } \\ 203 \times 95 \end{gathered}$	ass coope	board. Single each.
'Dalo' pens.	75p еа		

RESISTORS
 Carbon film resist
 low noise 5%.

$\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 1 \mathrm{p} & 0.9 \mathrm{p} & 0.8 \mathrm{p}\end{array}$ $\begin{array}{llll}0.25 \mathrm{~W} & 1 \mathrm{p} & 0.9 \mathrm{p} & 0.8 \mathrm{p} \\ 0.5 \mathrm{~W} & 1.5 \mathrm{p} & 1.2 \mathrm{p} & 1 \mathrm{p}\end{array}$ Special development Jacks conslsting of | 10 of each value from 4.7 ohms to 1 Meg |
| :--- |
| (650 res) $0.5 W ~$ |
| 7.50 . 0.25 W E .70 . | ohm (650 res) 0.5 W £7.50. 0.25 W £5.70. METAL FILM RESISTORS

Very high stability. low noise rated at 1/aw 1\%. Available from 51 ohms to 330 k in E24 series. Any mix $100 * 1000+$ $\begin{array}{llll}0.25 W & 4 \mathrm{D} & 3.5 & 3.2\end{array}$ POTENTIOMETERS
Presep vertical or horizontal 1000 hms -
Rotary 5K-2M2 Lag or Lin single. $\quad 6 \mathrm{2p}$ Rotary 5K.2M2 Log or Lin double 80p Slide 60 mm travel 5K.500K Log

Suitable knobs for above with coloured caps in red. blue, green, grey, yellow and black. Rotary controls $14 p$ each. Slide type $12 p$ each

INEAR		LM308	60p	NE531	98p
		LM324	45p	NE555	23p
THIS IS ONLY		LM339	45p	NE556	60p
		LM348	90p	NE567	100p
A SELECTIONI		LM377	170p	RC4 136	100p
709	$35 p$	LM378	2300	SN76477	230p
741	16p	LM380	75p	TBA800	70p
747	450	LM381	150p	TBA810S	100p
748	30p	LM382	120p	TBA102	620p
7106	850p	LM3900	50p	TL081	45p
CA3046	55p	LM1458	35p	TL084	125p
CA3080	70p	LM3909	65p	ZN414	80p
LF356	800	LM3911	100p	ZN425E	390p
LM301AN	26p	MM57160	590p	ZN1034E	200p

TRAMSIS		8 B		TIP32C TIP2955 TIP3055	$\begin{aligned} & 80 p \\ & 65 p \\ & 550 \end{aligned}$
		BC548	10p	ZTX107	14p
AC127	17p	8CY71	14p	ZT $\times 108$	14p
AC128	16p	BCY72	14p	2T $\times 300$	16p
AC176	18p	BD131	35p	2TX500	16p
AD161	38p	BD132	35p	2N3053	18p
AD162	38p	8D139	35p	2N3054	50p
BC107	8 p	BD140	35p	2N3055	50p
BC108	8 p	BFY50	15p	2N3442	1350
BC108C	10p	BFY51	15p	2N3702	8 p
BC109	8 p	BFY52	15p	2N3704	8 p
BC109C	10p	MJ2955	98p	2N3706	9 p
BC147	7p	MPSA06	20p	2N3819	15p
BC148	7 p	MPSA56	20p	2N3905	8p
BC177	14p	TIP29C	60p	2N3906	8p
BC178	14p	TIP30C	70p	2N5459	32p
BC182	100	TIP310	65p	2N5777	50p
8C182L	$10 p$	DIODES			
BC184	$10 p$	1 N914	3p	1N4006	6 p
BC184L	$10 p$	1N4148	2p	1N5401	13p
$8 \mathrm{BC212}$	10p	1 N4002	4p	BZY88ser.	r. 80
BC212L	10p	ITT product ${ }^{\text {a }}$ (1.40/100.			
BC214L	100	1 N4148	f. 1.	0/100.	

STEVENSON Electronic Components

SPRING SPECIALS

Set of 4 AA (HP7) Rechargeable Cells

500p 450p
PP3 Rechargeable cell
Pack of 10 miniature slide switches . . . 160p 120p
Pack of 10 push to make switches . . . 150p 120p
Pack of 10 push to break switches . . . 200p 150p
Murata Ultrasonic Transducers, per pair . 350p 300p Resistor Development packs.
10 off, each value from 4.7 ohm to $1 \mathrm{M} 1 / 4 w$. 570 p 500 p
1/2w 750p 650p
Polyester Development packs.
5 off, each value from 0.01 to 3 u 2 . . . 620p 520p
Preset Potentiometer pack
5 off, each value 100 ohm to $1 \mathrm{M}, 65$ presets 395p 305p Ceramic Development pack
10 off, each value 22 pF to $0.1 u F, 310$ caps. 505p 525p

LED pack, 10 off
each type 0.2 Red, green, yellow
350p 300p
Pack of 10 CA3080 Transconductance amps. 7005 620p
Pack of 10 LM301AN Op. amp. 260p 230p
Pack of 10 LM380N 2W Audio Amp . . 750p 620p
LM380 +LM381 and data 235p 180p
Pack of 3 LM3909 LED flasher 185p 150p
Pack of 10 TL081 Jfet Op. amp. 450p 320p
MM57160 Stac. Timer + data 600p 550p
SN76477 Sound generator + data . . . 240p 200p
Pack of 2 ZN414 AM chips 160p 130p
SS-2 Breadboard 1085p 990p
Expo Reliant Drill 665 p 570p
Expo Titan Drill 1030p 920p
Drill stand for above1200p 1100p
Pack of 82708 Eprom 4720p 4500p
Pack of 82114 Ram LP 300ns3125p 3000p
Pack of 84116.
4660p 4300p

SWITCHES

TOGGLE
Subministure togole. Rated at 2A
SPST 52p. SPDT 62p. DPDT 69 p. Standard type. Rated at 1.5 A SPST 34p. DPDT 48p.
SLIDE
Miniature
Standard
DPDT
DPDT 150 each

ROTARY

Available in 4 pole 3 way, 3 pole 4 way, 2 pole 6 way, 1 pole 12 way

43p each
Key operated switch
380p each
Miniature push to make
$15 p$ each
Rockers rated at 10A. SPST 32p each SPDT 42p each

	unscreened	screened	socket
2.5 mm	9p	13p	$7 p$
3.5 mm	90	14p	8 p
Standard	16p	300	150
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
	7p	socket	socket
3 pin	11p	9 p	140
$5 \mathrm{pin} 180^{\circ}$	$11 p$	10p	140
$5 \mathrm{pin} 240^{\circ}$	13p	10p	16p

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuiss, Red \& black Plugs: 6p each Sockets: 7p each
4mm PLUGS AND SOCKETS
Available in blue, black, green, brown, red, white and yellow. Plugs: 11p each Sockers: 12p each PHONO PLUGS AND SOCKETS
Insulated plug in red or black
Screened plug
Single socket.
$9 p$
$13 p$ 10 p

CAPACITORS

gh qualty foil type. 63 working, 5% tol.
22pf ro 10001
8p each
TANTALUM BEAD
$4.7,6: 8,10 \mathrm{uF} @ 25 \mathrm{~V}$
$16 p$
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
POLYESTER
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$
$0.15,0.22 \ldots 7 \mathrm{p}$
$0.33,0.47$
0.68
.OuF
17p
CERAMIC
22pF to 1000pF and 6 sert tron 1500 F 0.047 uF

MINIATURE TRIMMERS
Miniature film type, in 1.4pF-5pF, 2pF-22pF, RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$ \qquad 50

200 each

We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd, Bromley, from Mon-Sat, 9 am 6pm (8pm on Weds and Fridays). Special offers always available We also provide an express telephone order service. Orders received before 5 pm . are shipped same day. Contact our sales office now with your requirements. TEL: 01-464 2951/5770.

Quantity discounts on any mix TTL, CMOS, 74 LS and Linear circuits: $100+10 \%, 1000+15 \%$ Prices VAT inclusive. Please add 50 p for P \& P
no charge for orders over $£ 15$. Official orders no charge for orders over 215 . Official or
wetcome, All prices valid to April 1980.

BARCLAYCARD
\& ACcESS WELCOME
Mail orders to: STEVENSON (Dept EE)

The NEW Marshall's 79/80 calalogue is just full of components
 and that's not all. . .
 ... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
 These include Audio Amps, Connectors, Boxes, Cases. Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs, LEDs. Multimeters, Plugs, Sockets, Pots, Publications. Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers Voltage Regulators, etc., etc.
 Plus details of the NEW Marshall's 'budget' Credir Card. We are the first UK component retailer to offer our customers our own credit card facility
 Plus - Twin postage paid order forms to facilitate speedy ordering.
 Plus - Many new products and data.
 Plus 100 s of prices cut on our popular lines including I. Cs, Transistors, Resistors and many more.
 If you need components you need the new Marshall's Catalogue
 Available by post $65 p$ post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

 Rotail Soles: London: 40 Cricklewood Broadway, NW2 3ET. Tel: $01-4520161 / 2$. Also 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-3324133. And Bristol: 108A Stokes Crots, Bristol. Tel: $0272426801 / 2$.

DO YOU EVER WISH YOU HAD A FEW MORE HANDS?
 YOU KNOW WHAT IT'S LIKE WHEN YOU'REABOUT TO START THATNEW PROJECT - ARMED WITH A NICELY HOT SOLDERING IRON IN ONE HAND, THE SOLDER IN THE OTHER, YOU SUDDENLY FIND YOU'VE NO HANDS LEFT TO HOLD THE CIRCUIT BOARD AND COMPONENT, LET ALONE THE HEAT SINK.

Experience a new freedom with

A twist of the clamping control nut and the Board is held securely. The jaws can then be flipped across so that

THE MINIBENCH* elther side of the board is accessible at will. Flexible arms terminating in crocodile clips hold components and In addition an arm can be provided to hold a magnifying lens to reduce the strain on those valuable eyes of yours.
Provision is made for the fitting of up to four flexible arms if required.
POST COUPON TODAY TO-
Messrs, ABSONGLEN LIMITED, THE FORGE, STAPLOW COTTAGE, STAPLOW, LEDBURY, HEREFORDSHIRE HR8 iNP.

Please supply Minibench	@ $£ 13.95$ each
Flextble Arms with Clips..............	(@) £4.25 each
Flexlble Arms with Lens	(@) £5.25 each
Postage and Packing	£1-50
Cheque/Postal Order enclosed for $£$.	
Name	
Address	

MIDLAND TRADING CO

GENTS FRONT BUTTON ALARM

 thick.£1325

LADIES SUGAR COATED

LATEST TECHNOLOGYI Constant display of hours, mins, secs, weekday and snooze alarm indication. A further two optional display modes are available. One being the calendar and month, which can be increased or decreased to give the appropriate month of the year. A $1 / 100$ th sec chronograph with split and lap mode facilities is built into the watch with a 12 hour capacity. Also a 24 hour alarm with a 10 minute snooze function is standard to the watch. Backlight and adjustable stainless steel strap.

OUTSTANDING VALUE £19.95

Abstract

LATEST STYLEI Constant display of hours, mins, secs, am/pm. Weekday and alarm play of hours, mins, secs, am/pm. Weekday and alarm indication. A further two optional display modes are available. The watch comprises of 7 digits. 12 function and is programmed to the year 2009. The alarm can be set to any time within 24 hours and operates for 30 seconds. Backlight and a closely woven adjustable stainless steel strap, finish the watch off with a really superb sleek look. Only 8 mm

GENTS MULTI MELODY CHIME ALARM CHRONOGRAPH

latest technologyI Constant display of hours, mins, secs. Weekday, date and month, with mode and chime indication display. A musical alarm is built in and can be set to any time within 24 hours, once activated playing the tune "Oh Suzzana". Two further alarm systems are built in (i) 24 hour alarm and (ii) count down alarm. The watch can be set to chime on every full hour, and a 1/100th sec chrono with split and lap mode facilities is standard. Can be switched off. The face is finished in mineral glass. Backlight and infinite adjustable stainless steel strap.

VERY SPECIAL $£ 19.95$

GENTS CHRONOGRAPH

PROBABLY THE BEST LOOKING Chrono on the market. Constant display of hours, mins, secs, with am/pm indication. Also month, date and weekday indication. $1 / 100$ th and $1 / 10$ th sec with split and lap mode facilities. Backlight. Closely woven adjustable stainless steel strap.

SPECIAL $£ 8.95$

LADIES COCKTAIL

ELEGANCE AND STYLE for the Lady with a discerning taste. In Gold or Silver finish with matching adjustable bracelet. Constant display of hours and mins, with month, date, secs. Auto-calendar and backlight.

VERY SPECIAL PRICE $\mathbf{f 1 0 . 5 0}$
! ZETRON! WHERE RELIABILITY, STYLE AND ELEGANCE REALLY COUNT
! ZETRON!

PHONE OR WRITE FOR FULL COMPREHENSIVE CATALOGUE ON THE COMPLETE RANGE OF WATCHES WE OFFER.
HUGE DISCOUNTS AVAILABLE for bulk buyers,
Trade Lists on application.
P/P per item 75p which includes insurance.
Cheques or PO's should be made payable to:
MIDLAND TRADING COMPANY, and sent to (Dept. EE)
58, Windmill Ave, Kettering, Northants, NN16 8PA.
(0536) 522024

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads. 500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nick el silver contacts
$£ 6.20$ each or $£ 11.70$ for 2

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to Euro BreadBoard pattern.
Four 2.5 mm dia fixing holes.
$£ 2.00$ for set of three ESB's or

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin |C's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only $£ 7.25$ including VAT \& PP

Snip out and post to David George Sales,

Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7. Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU.
Please send me:-

	1 EuroBreadBoard	$@ £ 6.20$	\bigcirc	
or 2 EuroBreadBoards	$@ £ 11.70$	\bigcirc	Please	
or	3 EuroSolderBoards	$@ £ 2.00$	\bigcirc	Tick
or	1 EuroSolderSucker	$@ £ 7.25$	\bigcirc	

All prices are applicable from Jan. 1st 1980 and include VAT and PP but add 15\% for overseas orders.
Name
Company
Address.

Tel. No
Please make cheques/P.O. pavable to David George Sales and allow 10 days for cheque clearance and order processing

24 TUNE DOOR CHIMES

DOOR TUNES E17 13 . F VAT

Waddington's Videomaster announce a docrbell that doesn' go Brringgg, Ding Dong ar Bazm, Insiead it plays 24 differenı classical and popusar tunes II will play the fune you select for your mood, the season or the visiror you are expecting to cail. Door lunes is not only greas fun and a wonderful ice breaker, but is also very functionally and beautifully designed to enhance your home. There is something for Christmas. something for your continental vistors of your relations from the siartes, and even something lor the Oueen. Door tunes is essy to instill and has seperate controls for volume, tone and rempo.

T.V. GAMES

PROGRAMMABLE E29.50 + VAT

 COLOUR CARTRIDGE T.V. GAME.The TV ganne can be compared to an audin casserte deck and is programmed ro play a multiude of difterent games in COLOUR, using verious plug-in carridges. At long last a IV game is sveliable which will keep pace with improving lechnology by allowing you to extend your fibrafy of games with the purchase of additional carriidges as new games are developed. Each canridge contains up to sen diflerent action games and the first carridge containing ten spors games is inciuded thes with the console. Dither carrídges are currently avallable to engble vou to play such 'games as
Grand Prix Motor Racing Super Wipegut and Sinnt Rider. Grand Prix Motor Racing, Super Wipeout and Sinnt Rider. Further cartidges are to be released later this year, induding Tank Bartie, Hunt the Sub ond Target. The console comes complete with two temovable forstick
plaver controls to enable you to move in all four directions player controls to enable you to move in all four directions lupidownsighulefil and buit into these joystick controls are beveral difficulty potion switches, Other fegtures include dipital sconing and colour coding an scoris on screen lifalke sounds are coloursmited coding on scores and bails. Litlike sounds are transmitued trouge
simulating the actual game being played simuiating the sctual game being played Manutactured by Waddington's Videonaster and

EXTRA CARTAIDGES
ROAD RACE - EAB7 + VAT
Grand Prix motor racing with gear changes, cr ish noises SUPER WIPEOUT - 9.17 + VAT
diftarent games of blasting obstacies off the screen STUNT RIDER - E12.16 + VAT

10 Game COLOUR SPORTSWORLD P2250 + VAT.

CHESS COMPUTERS

STAR CHESS - $65509+$ VAT. using your own TV to display the board and pieces Slar Chess is a new absorting game for two playets, which with interest and excite all ages. The unit plugs into the berial socker of yout TV set and displays the boord and pieces in
full calour for back and full calour for black and whisel on your TV screen. Based on the moves of chess It adds even more excitement and
inferest to the game. For those who have never plaved Miferest to the game. For those who have never plaved. Shess for the experienced chess piayer these are whale new dimensions of theredimatiry and chanta added new dimensions of unpredictability and chancs added to The strategy of the game. Not only can pieces be taken in exchange rocket fire with is spponents. The unit cames comple'e with a tree t日V mains adartor, tull insiuctions and twelve months guaraniee

CHESS CHALLENGER $7-285.65+$ VAT PLAY CHESS AGANST THE COMPUTER The sryish, compaci, porrable console can be set 10 play al seven different leveis of ability from beginner to expert includng "Mate in wo" and "Chess by mart". The compurter will only make responses which obey miternationai chess incluted as on passant, and promoting a pawn are a possibla to enter any given problem from magazines of nowspapers or alternaively establish yout own boaro position and watch the computer react. The postions of all pieces can be verified by using the computor memony recal bution.
Price inciudes unit with wood grained housing, and Staunton design chess pieces. Campuner plays black or white and aganst isell and comes complete with a mains acaptor and 12 momhs guarantee.
OTHER CHESS COMPUTERS IN OUR RANGE INCLUDE: CHESS CHAMPION 6 LEVELS $647 \cdot 39$ + VAT CHESS CHALLENGER - 10 LEVELS E138.70
BORIS-MULTI-LEVEL TALKING DISPLAY $6163.04+$ VAT

ELECTRONIC CHESS BOARD TUTOR $\{17$ 17 A special bulk purchase of these amazing chess reaching machines enables us to offer them a1 ondyc 17.47 less than halt recommended tetail price. The elecironic chess turior is a simple battery operatad mactine that cen aciuslly leach anyone to play chess and improve thair game nigh up to chempionstip level. This machine is not anly tor tora beginners but also for established piayers wanting to play better chess Unil contains the atectronic chessboatd with 32 chess pieces, a 84 page explanatory booklet and a set 0 . at progressive programme cards including 6 beginners cards, 16 check mate postions, 9 miniture gan.es, openings, 3 end ganles, 28 chess problems and 2 master games.

DRAUGHTS COMPUTERS

[^0]

Choose the World's finest kits.

Superb value. Building electronic kits is an enjoyable and very rewarding pastime.

And with Heathkit, it's also an easy way of making a wide range of useful electronic devices from doorbells to microcomputers, from car main tenance products to test equipment.

Top quality. Heathkit kits not only give you the pleasure of 'doing it yourself' but also the satisfaction that every kit is of the highest quality.

The step-by-step instructions, compiled by experts, make it easy for beginners and 'old hands' alike. And with Heathkit's excellent after sales service complete success is guaranteed. After all, 13 million kit builders over the last 34 years can't be wrong.

Excellent choice. To find the best kits, all you need is the Heathkit catalogue.

It contains detailed specifications of our comprehensive range to aid you in your selection.

Send for your copy today. Or if you're near our showrooms in Tottenham Court Road, London or Bristol Road, Gloucester, just call in and browse around.

Britain's first com

A complete personal computer for a third of the price of a bare board.

Also available ready
assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.
The Sinclair 2X80 changes all that. For just $£ 79.95$ you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!
And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source *.. and you're ready to go.

Your $\mathbf{2 X 8 0}$ kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU).
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3 K bytes extra RAM chips. (Chips also available see coupon.)

[^1]
Two uniqueand valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.
The unique Sinclair BASIC interpreter... offers remarkable programming advantages:

- Unique 'one-touch' key word entry; the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The 7X80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26. - Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with

22 standard graphic symbols.

- All characters printable in reverse under program control.
- Lines of unlimited length:

...and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 96 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately-purchase

Fewer chips, compact design, volume productionmore power per pound!

The ZX 80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer, because the ZX 80 's brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.)

To all that, add volume production - and you've that rare thing: a price breakthrough that really is a breakthrough.
The Sinclair ZX80. Kit: £79.95. Assembled: $£ 99.95$. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only $£ 99.95$.

Whether you choose the kit or the readymade, you can be sure of world-famous
Sinclair technology - and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488.

14 HOP BA WES Tel: Ba	UN ATE THI te 6	STR., AN 631371		ITS HERE after repeated requests We now have avallable a quantity of OHIO SCIENTIFIC SUPER BOARD II COMPUTER KITS. place $£ 220$ each include 4 extra 2114 memories.												TERMS: C.W.O. No Min, 15p P \& P. ACCESS \& BARCLAYCARD ACCEPTED Min. £5 Post \& Packing 25p. GOVERNMENT, SCHOOLS, COLLEGES ORDERS ACCEPTED Send or Phone for Catalogue.					
CMO		40		28		N	S		N	LS	N L	LSN		UDIO			L. 747 £ 1.50				
4000	8p	4050		28p	7411	15p	p	7490	29 p		74198 95p			M38	60p		ND 3590	CAPAC	CITOR	-	
4001	12p	4052		45p	7412	15p		7491	49p		74221 99p			N76003	190p		85p each or	ELEC	OLY	RA	AL
4002	12p	4053		$45 p$	7413	15p	30p	7482	29p		74367 99p	45p		N76013	130p		e7.50 for TEN				
4004	250p	4066		32p	7414	45p	65p	7493	28p	40p				N76023	130p						
4006	70 p	4089		20 p	7416	16p		7494	69p		REGULATO	ORS		N76033	190p		4148 1.3p		16 V	40 V	3 V
4007	12p	4071		15p	7417	24p		7495	45p	62p				BA800	70p		8. 1	Values			
4008	45 p	4081		16p	7420	10p	16p	7496	48p		723	25 p		BA810S	90 p	1N	1002 3p	1uF	3p	3p	3p
4009	25 p	4082		17p	7426	15p		74100	79p		78 M			BA820	${ }_{88} \mathrm{p}$	1 N	1003 3.5p	2.2uF	3p	3p	3p
4010	$26 p$	4507		48 p	7427	15p		74107	19p	32p	7805			DA1022	600p		10005 -p	$3 \cdot 3 \mathrm{FF}$	3p	3p	3p
4011	13p	4511		55p	7430	10p	16p	74121	22p		7812	50p					N4007 5p	4.7uF	3p	3 p	3.5p
4012	12p	4512		65p	7432	12p	18p	74122	35p		7815	55 p		1			5402 10p	10uF	3p	3.5p	4.5p
4013	28 p	4515		195p	7437	12p	20p	74123	35p	55p	7824	50p		P				22uF	3p	4 p	5.5p
4014	55 p	4519		42p	7438	13p	25p	74125	30p	40p	LM323	375p		80	69		ESISTORS	33 u	3.5p	4.5p	5.5p
4015	50 p	4522		70p	7440	12p	22p	74126	29p	40p	LM323 LM340K	37		80 A	611		1W 5\%	47uF	4p	5 p	6.5p
4016	$24 p$	4526		70 p	7441	52p		74132	44p	60 p		75p		300	67		0.8p each	68uF	6.5p	7 p	7.5p
4017	48	4528		70p	7442	26p	45p	74141	49p					880			0+ 0.55p	100uF	$4 \cdot 5 \mathrm{p}$	8 p	9 p
4018	45p	4529		70p	7443	42p		74150	53p		LIN			80P10	66.75			150uF	7p	9 p	11p
4019	25 p	MC14	409	099p	7444	42p		74151	39p	19p		56 p					OLYEST	220 uF	6p	10p	14p
4020	50p	MC14	419	295p	7445	42p		74153	45p	49p	709	25p		SEM	5 :		Y	330uF	7.5p	14p	16p
4021	50 p	74C15		80 p	7446	42p		74154	65p	120p	710	35p		102	78 p		O01 to -0022uF2p	470uF	8p	18p	20p
4022	$45 p$	All pr	rices		7447	46p	68p	74156	39p	78p	711	30p		102L	$\mathrm{c}_{1} 1$		27 to.039uF 2p	680 F	11 p	20p	25p
4023	12p	includ	de V.	A.T.	448	42p	48 p	74157	39p	45p	712	75p		114L	≤ 4.90		47 to -082uF 21p	1000uF	12p	21p	34p
4024	45p	BUFF	ERED		7450	13p		74161	49p	75p	720	50p		044			FF \& 12uF 3p	2200 uF	22p	42p	
4025	12p	types	on r	quest	7451	13p	20p	74163	49p	79p	741 (8 or 14)	15p		116	¢6.50		UF\& 18uF 4tp				
4026	99p	accor	ding	to our	7453	13p		74164	55p	75p	747	60 p		ROMS			2uF \& 27uF 5p				
4027	25 p	stock	posi	on.	7454	13p	18p	74165	59p		748	30 p		702A			34F \& 39 uF 6p	TRAN	ISTO	$8:$	
4028	45p				7460	13p		74166	61p		CA3046	55p		708	¢5.75		7uF \& -56uF 9p				
4029	60 p	TTL:			7470	${ }^{28 p}$		74175	55p	58p	CA3130	90 p		716	818		11p		Standard		C
4030	20 p		N	LSN	7472	$24 p$		74176	49p		LM301	$26 p$		7585	¢15			TIP 29	27p	30p	40p
4033	${ }^{80} \mathrm{p}$	7400	9p	14p	7473	18p	28 p	74180	${ }^{60 p}$		TL084	95p		HARA	TER		OW PROFILE	TIP 30	32p	35p	40p
4034	150 p	7401	10p	14 p	7474	19p	$25 p$	74181	125p		LM3900	40 p		ENERA	TORS		IL SOCKETS	TIP 31	32p	35 p	$41 p$
4035	50 p	7402	10 p	14 p	7475	25p	40 p	74182	45p		LM1458	35p		13	$\varepsilon 5$		pin 7.5p	TIP 32	38 p	40p	45p
4037	${ }^{90} \mathrm{p}$	7403	10p	14 p	7476	25p	30p	74190	69p	78p	NE555	22 p		ARTS			pin 9.0p	TIP 41	50 p	52p	58p
4040	55 p	7404	10p	$14 p$	7480	35p		74191	69p	90p	NE556	50p		R16028	63	16 p	pin 10.0p	TIP 42	45p	48 p	59p
4041	45 p 40 p	7405	13p	18p	7481 7482	${ }^{\text {60p }}$ 4p		74192 74193	55p	69p	NE565 NE568	75p				Sol	der con pins				
4043	30p	7407	24p		7483	45p	58p	74194	55p		NE567	100p			9 p			2N3054			33p
4044	50 p	7408	10p	14 p	7485	${ }^{60 p}$	${ }^{68 p}$	74195	48p	60p	LM382	110p		Green	11p		enerator for	BC108			7 p
4046	75p	7409	10p	18p	7486	20p	30 p	74198	49p	78p	CA3080	68p		ellow	11p		ARCH project	BC107			7p
4048	50p	7410	10p	14p	7489	99p		74197	49	O	CA31	68		+ Less	10\%		¢2.20	BC184L			5p

CTSER 500	EFFECTO AMD	$\therefore P$ PR
PHONOSONICS DEPT EE83, 22 HIGH STREET, SIDCUP, KENT DAI4 6EH		
PE, GUITAR EFFECTS PEDAL	MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD.WIDE MARKET.	P.E. TUNING FORK Produces 84 swltch-selected frequency-accurate tonea with an LED monitor clearly displaying beat-note adjustments.
signal from most sudio sources, producing 8 different switeh- \quad Power Supply comps, PCB \& chart KIT 46-反		
	崖 automatic 8 -stage phasing unit	
Basic parts with panel switches KIT $42-2$ K5.55 PCB \& layout chart PCB 42A E1.57	Set of basic comps, PCB \& chart KIT 88-1 Text photocopy \&10.14	A simple 4-octave frequency comparitor for use with gyn-
xt photocopy ${ }^{\text {a }}$	ELEKTOR PHASI	
P.E. Chlsitcated versatile fuzz unit including variable controls	includes manual and automatic control over the rate	
affecting the fuzz quality whilst retaining the attack and include ${ }^{\text {a-input mixer stage. }}$ decay, and also providing filtering. Can be used with other		
	Sef ot basic components PCB	P.E. DYNAMIC RANGE LIMITER
Set of basic compone	Text photocopy	t of basic components, PCB \& chart KIT 62-1 $\quad \mathbf{6 5} \cdot 03$
Text photoco	P.E. PHASING	R
GUITAR FREQUENCY		
Set of basic components, PCB \& chart KIT 74-1 EA.97		-
P.E. GUITAR SUSTAIN Provid		
Maintalns the natural attack whilst extending note duration. Basic comps, foot switches, PCB \& chart KIT 75-1 £5.64 $\begin{array}{ll}\text { Basic comps, panel switches, PCB \& chart KIT 75-2 } & \text { \&4-08 } \\ \text { Text photocopy }\end{array}$	Ser of basic components, PCB \& chart KIT $89.1 \quad 23.02$	
	Text photocopy 78	
	P.E. SMOOTH FUZ	Power Supply comps, PCB \& chart KIT $6-2 \quad 85.15$
	Set of basic components, PCB \& chart KIT 99-1 ¢5.04	Text photocopy 19
Can be controfled manually or by integral automatic control. Set of basic components. PCB \& chart KIT $51-1 \quad$ E3.e9	TREMELO UNIT	P.E. DIscostrobe
	A silahtly modifled	4 -channel sound-to-light controller also giving sequential,
P.E. AUTO.WAH UNIT Automatically Wah or Swell sounds with each note played, Basic comps, foot switches, PCB \& chart KIT 58-1 CB. 43Basle comps, panel switches, PCB \& chart KIT $58-2$ E5-31 $\begin{array}{l}\text { Bext photocopy }\end{array}$	Set of basic components, PCB \& chart KiT 54	
	A sllighty modifled version of the original P.E. unit.	PCB \& layout chart
		Text photocopy
		for synthesisers. Rhythm Generators, Electronic Planos and
P.E. THREE-CHANNEL SOUND-TO-LIG A simple sound-to-light controller.	P.E. MICROPHONE PRE-AMP Includes preset gain-control to match most microphones.	
Sot of basic components, PCB\& chart KIT 52-1		other prolects, big, small, simp plus a range of keyboards, separate components and accessories. Details in our IIsts.

COMPONENT SETS incl all necessary res, caps, s/cs, pots, t /formers. Hardware incl, but most can be bought separately. ,
 ADD: POST \& HANDLING . k. orders; under $E 5$ add 25 p , under $\mathrm{Ez2}$ add 50p, over $\begin{aligned} & \text { ezo add } 75 \text {. Recommended } \\ & \text { insurances analnst postal mishaps: add }\end{aligned}$

 countries are sublect to hlgher rates.
ADD 15% VAT
or current rate if changed). Must be added to full total of goods, post \& handling on all U.K. ordera. Does not apply to exports, or to
photocoples.

LIST: Send stamped addressed envelope TERMS: C.W.O., MAIL ORDER OR with ail UK.K. requests for free list giving COLLECTION BY APPOINTMENT
 international reply coupons

The pack contains all the electronic components to build the radio, you supply only the wire and solder as featured in the
Practical Electronics March issue The P E Travellerfs March issue
The P.E. Traveller features pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs, one, combining on/off volume and tone-control, the other for manual tuning, each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output, negative ground and incorporates an integrated circuit output stage, a Mullard IF module LP1181 ceramic filter type, pre-aligned and
assembled and a Bird pre-aligned push button tuning unit Complete with instructions. Complete with instructions.

\square
323 EDGWARE ROAD, LONDON W2. For Personal Shoppers Only,
2IA HIGH STREET, ACTON W3 6NG. Mail Order Only. No Callers.

Men-Sat 9.30am-5.30pm

Clased Thursday

NEW

$12+12$
AMPLIFIER KIT
An opportunity to build your own 12 watts per channel stareo amplifier with up-to-the-minute features. To complete you just supply screws
connecting wire and solder Featuras includedin connecting wire and solder. Featuras include din input sockets for ceramic cartridge, mictophone, tape ar tuner, Outputs--rapa, spaakers and
headphones. By the press of a bution it transtorms int a headphones. By the prass of a bution it transtorms into a 24 watt mono LPI 183 pre-amp module plus 2 pong. The kit incorporates a Muilard Leatured 4 slider module, plus 2 powsr amplifier assembly kits. Also button switches. Silver finish foscia panal with trebla controis and 6 push button swithes. Silver finish foscia panel with matching knobs. Easy to
assombie teak simulate cabinat and ready made metal work. For further assombie teak stmulate cabinet and fady made meis work fo
information instructions are available prica 50 . Free with kit.

50 WATT MONO
DISCO AMP
£ 30.60
$p \& p 12.70$
Size approx. $133 / /^{\prime \prime} \times 51 / 4^{\prime \prime} \times 63 /{ }^{\prime \prime}$
50 watts rms. 100 watts peak output. Big features include Two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.

(

20×20 WATT STEREO AMPLIFIER pusthbur ons with maish hing tesceia, reed malins indicitator and stero jack socket. Runctions swith tor mic magnetic and crystal pickups, tape wneer and auxiliery. Rear aznel featules tuso holdet, DiN speakty and input sockets 20×20 wans
 indudes a bulk in four channol sterite iound lecility.

+1 LP $182 / 2$ Stereo pre ams ourpur power audio amp modules, OUR PRICE
$p+p \in 1.00$
5 5.00 PACK 22×1 P1 173 1Ow RMS output power autio amp modules inputs. illus. OUR paice $\mathbf{E 7 . 6 5} \mathrm{p}+\mathrm{p}\{1.00$
ACCESSORIES Suitable mains power supply pars, consisting of ma mes transformer, bridge rectifier, smoothing capacitor and sat ol ot at ary siefeo conirols for rivet
volume and baience. \qquad £3.00
Two Way Speaker Kit Camprising of two 8"" $5^{\prime \prime} 5^{\prime \prime}$ approx. 40 hm bass and two $3 / h^{\prime \prime} 15$ ohm mid -4ange tweeter with woo cross over capacitors. AVAILABLE ALSO TO PURCHA SERS
OF THE $10+10$ AMPLFEFAKI

323 EDGWARE ROAD, LONDON W2 21 A HIGH STREET, ACTON W3 6NG ACTON: Mail Order only, No cellers
ALL PAICES INCLUDE VAT AT 15\%
Al 1 tems subject 10 availability. Price corract at
1.2 .80 and subiect to change without notice. All enquires Stamped Addressed Envelope.
NOTE: Persons under 16 years not served without parent's authoriseation
HiFi ricord player deck, belt driva complote with GP401 magnetic
cartridg - LIMITEO STOCK. $£ \mathbf{2 7 5 0}$ cartridge-UMITEO STOCK. $\mathbf{£ 2 7 . 5 0}$ complete
UNBEATABLE OFFER AT

BSR P200
$\begin{aligned} & \text { Beit drive chassis turntable } \\ & \text { unit } \\ & \text { Sina }\end{aligned}=0.50$
Shumipautomatic, cueing davice. pace [2.6al to suit. 6 Magnetic Cartridge \qquad - M Menual sungle play ciurn and curing level, tite with stereo eramis cantutge 2 spaeds mith 45 sem anade adaptsa idealiy suted for home or disce ust 5 ? 9 plap ounaract 12.255^{21275}

BARGAIN OFFER
Ariston pick-up arm
manufactured in Japan. Complete with headshell. Listed price over f 30.00

OUR $£ 11.95$ PAICE P+P $£ 2.50$

SUPERSOUND 13 HI-FI MONO AMPLIFIER supero solid state audio amplifier. Brand new components throughout. 5 silicon transistors plus 2 power output
Iransistors in push-pult Iransistors in push-pull.
Full waverectiftation. Output approx. 13 watts r.m.s. into 8 ohms. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm$ 3 db . Fully integrated pre-amplifer stage with
separate Volume. Bass oosst and Treble cut controls. Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready buit and tested, with knobs, escutcheon panel, input and output plugs. Overall size 3 high $\times{ }^{6}$ wide
$\times 7 \frac{1}{2}{ }^{\prime \prime}$ deep.AC $200 / 250$ V.PRICE $£ 18 \cdot 40$. P. \& P. £1 35 . HARVERSONIC MODEL P.A. TWO ZERO An advanced solid state aeneral purpose mono ampliier suitable for Public Address system, Disco, Guitar, Gram. controlled inputs (each input
 controlled inputs (each input has a separate 2 stage pre-amp). Input 1.15 mV into 47 k . nput $2,15 \mathrm{~m}$ into 47 k (suitable for use with mic. or gram. tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation $200-240$ volts. Size approx. 12 in wide \times Sin high x
7 tin deep.
Special introductory price $£ 29 \cdot 00+£ 2.75$ carriage and Dacking.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 \frac{1}{\prime \prime}^{\prime \prime} \times 144^{\prime \prime} \times 17^{\prime \prime}$ deep. Weight $190 z$. Power handling 20 W r.m.s. (40 W peak). Impedance 8 ohm
only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on onllings, walls, doors, under tables, etc., and used with or without baffe. Send S.A.E. for full details.
Only $£ 8 \cdot 80$ each + D. $\&$ D. (one $£ 1 \cdot 00$, two $£ 1$
Only $£ 8 \cdot 80$ each + D. \& D. (one $£ 1 \cdot 00$, two $£ 1 \cdot 25$) Now a vailable in $9^{\prime \prime}$ round version. 10 watts RMS 60 Hz 20 KHz (one 72
P. \&P. (one
P. \& P. (one 72p. two 82p).

STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\neq 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Indut impedance 47 K . Size $1 \mathrm{~B}^{\prime \prime}$

OLID STATE AM'FM TUNER $200 / 240 \mathrm{~V}$ Mains operated Solid State FM/AM Stereo Tuner. Covering
M.W. A.M. $540-1605$ M.W.
KHz
KHF
A.M.
VH
\$40-1605
$88-108$ KHz
MHz. Buith-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Stereo Beacon Lamp Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max olp Voltage $600 \mathrm{~m} / \mathrm{V}$ RMS into 20 K . Simulated Teak finish cabinet. Will match a
912"d approx.
LIMITED NUMBER ONLY at $£ 29 \cdot 00 \perp £ 1 \cdot 65$ P. \& P. 10/14 WATT HI-FI AMPLIFIER KIT A stylishly finished monoaural amplifier with an
output of 14 watts from 2 output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer 10 match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet. 50p + SAE (Free with parts).
All parts sold separately. ONLY ${ }^{\text {E18.40. P. \& P. }}$. A1. 55 . Also available ready built and tested $\mathbf{2 2} \cdot 50$, P. \& P. £1.55.

STEREO DECODER MK.II
SIZE $1 \frac{1}{2}^{\circ} \times 2 \frac{1}{7}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ ready built. Pre-aligned and tested for $10-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied. 27.00 plus 22p. P. \& P. Stereo beacon
Mullard LP1159 RF-IF module $47 \overline{0 \mathrm{kHz} \quad \AA 2 \cdot 50}$ P. \& P. 22D. Full specification and connection details Supplied. MHz I.F. output. 7.8 V + earth. Supplied pre-aligned, with full circult diagram with precision geared F.M. gang and 323PF $+323 P F$ A.M. Tuning gang only $23 \cdot 40+$ P. \& P. 40D

VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app, 54 in . wide. Our price $\mathbf{\$ 2} \cdot 30$ yd. length.
P. \& P. 55 D per yd. (min. I yd.). S.A.E. for samples.

HARVERSONIC SUPERSOUND $10+10$
RSONIC SUPERSOUND
STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the frst five stages on each channel resulting in even lower noise level with improved sce and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modity to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed ircuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts boltsno extras to buy. Simple step by step instructions proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$ Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to $-16 d B$. Negative feedback $18 d B$ over main amp.

Overall Size $12^{\prime \prime} \mathrm{w} . \times 8^{\prime \prime} \mathrm{d}$. $\times 24^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E.
AMPLIFIER KIT .. $\quad \$ 14.95$ P. \& P. 88p (Magnetic input components 33p extra)
 SPECIAL OFFER—only $£ 2 \dot{5} \cdot 80$ if all 3 items
SPECIAL OFFER-only $\mathbf{~} 25 \cdot 80$ If all
ordered at one time plus $£ 1 \cdot 40 \mathrm{p}$. \& p.
un after sales service
Also avail. ready built and tested $\mathbf{5 2 \cdot 2 0 , P}$ \& P. f1• 65.
HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of $3-4$ watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplitiers with built in short term thermal overload protection. All components including rectifer smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets \& 5 pindin tape rec./play socket are mounted on
the printed circuit panel, size approx. $9 t^{*} \times 27^{\prime \prime} \times 1^{\prime \prime}$ max. depth. Supplied brand new \& tested, with knobs. brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $\mathbf{£ 1 0} \cdot \mathbf{4 0}$ plus 55p P. \& P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2 \cdot 15+$ 44 DP . \& P. if required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE; P \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENQUIRIES.

ANNDUNICIING A NEW SIETI dif basilic EILECTIRDNNICS

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price cas.se per sot (we pay the postago).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This serise has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable exparience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostabie Timer, Metal Locator, Gaigar Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Swltches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:
Selray Book Company
60 Hayes Hill
Eromloy
BR2 7HP
DUA Tロロ\% CUARANTEE Bhould you docide to return the ant atror 10 days exam.
Ination, your money will be rofunded by raturm of post.

Amount enclosed: $£$
Name:
Addren:

 SR19
 $3 / \mathrm{S}^{\prime \prime}$ COIL FORMIN with core at 8 for 23 p . SUBMMNATUN 10pt AIR BPACED TRIMMER at 20p each. 50. EC 187A-1 TANBISTOR untented Go cop.

 10. PUsH SUTTOM BANKS assortod lest knobs for
 21. 10 AMP BTUD MOUNTIMG BLICONDIODES untested for M_{p}.
 $63 v, w$, . 22 uf br.w., all at 5 p each.

SMALL ELECTROLYTIC CAPACITORs WIre onded 5000uf, 15v.w., © 20p each, 1000u1 10v,w., © 3 for 20p, 100uf $25 v, w$. ©Ce 10p each.
200 nEsisTORE 1, it WATT. Assorted valuee for 78p.
MINIATURI TRANSIETOR TRANEFORMERS Input Types, Impedance eatio

 wip oach.
VHF WIRE ENDIO MIMIATURI R.F. CHOKES $10 \mathrm{HH}, 30 \mathrm{uH}, 330 \mathrm{uH}$. All at 7p taeh. VHF,
OUAL GATE MOS FITS LIKB 4esp a 3p, 4 lor si. 10
OUAL GATETUOE FITE CAP 100 vow., DISC
MINIATURI POLYESTER CAPACITORE IUf BJv.w., © Ap, A.7uf Bs v.w., ©
 eharged at cout.
J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoin LN2 1JF Tel. 20767

I Address \qquad
\qquad

E8R4
Block Caps. Please
Post now, without obligation to:
British National Radio \& Electronics School.
P.O.Box 156, Jersey, Channel Lsles

No previous knowledge is necessary. - Just clip the coupon for a brochure

Simply ahead.. ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new
generation of modular units. I.L.P. professional design principles remain
- the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance.

These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as
those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into Ω	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	$240 \mathrm{~W} \Omega$	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ into 4 Ω

Load impedance - all models 4.16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response-all models $10 \mathrm{~Hz} \cdot 45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU 30

PSU 36
PSU 50
PSU 70
PSU 90
PSU180
$\pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps $£ 4.50+£ 0.68$ VAT for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT with toroidal transformer for 1 or
2 HY120's $£ 13.61+£ 2.04$ VAT with toroidal transformer for
1 HY200 £13.61+£2.04 VAT
with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

* ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or
credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.
fREEPOST 3 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

```
Please supply
```


Total purchase price E

| enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

ND QUIBBLE 5 YEAR GUARANTEE
7. DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

ELEGTROALUE

> Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay postage in U.K.)

IT'S A GOOD DEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.
5\% on orders, list value
5\% £10 or more
10% on orders list value £25 or more.
Not applicable on Access or Barclaycard purchase orders.
- We pay postage
in U.K. on orders list value £5 or over. If under, add 30p handling charge.
- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.
- We guarantee
all products brand new, clean and maker's spec. No seconds, no surplus.
- Appointed distributors for SIEMENS, VERO, ISKRA, NASCOM and many others.

OUR NEW CATALOGUE No 10

Full 128 pages. Thousands of items. Improved classification for easier selection. Valuable working information, lllustrations. Separate quick-ref price list.

EEEGTROVALUE LTD

HEAD OFFICE (Mail Orders)

28(A) St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.
NORTHÉRN BRANCH (Personal Shoppers Only)
680 Burnage Lane, Burnage, Manchester M19 1NA
Phone: (061) 4324945.

INTERESTED IN ELECTRONICS? TRY A ZEDPACK!

COMPONENTS AT A PRICE EVERYONE CAN AFFORD
$\begin{array}{ll}Z 1 & 300 \text { mixed } \frac{1}{2} \text { and } \frac{1}{2} \text { watt resistors } £ 1 \cdot 50 \\ Z 2 & 150 \text { mixed } 1 \text { and } 2 \text { watt resistors } £ 1 \cdot 50 \\ Z 3 & 000 \text { mixed capacitors most tyoes }\end{array}$ Z3 300 mixed capacitort, most types

25100 mixed polystyrene
300 mixed printed circuit components

$28 \quad 100$ mixed hioh wattage resist $\$ 1$

29100 mixed
plate caps
21025 assorted pots.
$\begin{array}{lll} \\ Z 1125 & \text { assorted pres. } & \text { £1.20 } \\ \text { £1.50 }\end{array}$ $\mathbf{Z 1 2} 20$ assorted vrests, skeleton etc. $\mathbf{£}$

1400 (E2.60
214100 mixed, new and marked, fult spec.
transistors. Pack includes:- BC148 transistors. Pack
BF154, BF274, BC212L, BC238, BC184L;
MEO412 and, or lots of similar fypes
215100 mixed diodes including:-zener Dower, bridge, slgial, germanium silicon etc. All' full spec.
$Z 1620$ 1N4148
$Z 1720$ iN4003/1002
21720 1N4003/1002 1 \&1
Z18 20 assorted zeners, 1 watt and 400 mw
Z20 6 BR100 diac.
E1. 50
E1
$\mathbf{2 0 m m}$ antisurge fuses. 630 ma
$800 \mathrm{ma}, 1 \mathrm{a}, 1 \cdot 25 \mathrm{a}, 1 \cdot 6 \mathrm{a}, 2 \mathrm{a}, 2 \cdot 5 \mathrm{a}, 3 \cdot 15 \mathrm{a}$. 12
of one type E1. 100 of $£ 7$.
ULTRASONICTRANSDUCERS. transmitter and recelver. $\mathbf{4 0 K} \mathbf{H z} .14 \mathrm{~mm}$ diam, E3.95 pair
Deluxe FIBREGLASS printed circuit etching kits.
Includes 100 sq ins. of copperclad F/G army to MIL, SPEC.) 1dalo etch resist pen abrasive cleaner, etch resist dish and instructions. OURPRICE E4.95 $200 \mu \mathrm{~A}$ Miniature level/batt. mefers, as
fitted to many cassette recorders. 90 p

1 b of FeCl . $\mathbf{£ 1} \cdot \mathbf{2 5}$. $51 \mathrm{~b} . £ 5$.
150 sq. Ins. single sided board. double sided board Dalo pen.

UHF, Transistors T.V. TUNER with slow motion drive, AE.skt. and leads $\mathrm{EA}_{1} \cdot 95$ oo Miniature reed switches.

P/B SWITCH BANKS

These cost a fortunel Were made for various music centres. Includes independent and interdependent latehing types mulft pole c/o etc. Can be modified. KNOBS for Switch Banks 10 for $£ 1$ KNOES for spun aluminium finish

MINIATURE MAINS
TRANSFORMERS Top quallity. Solit bobbin constructlon ili give $4 \cdot 5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at $250 \mathrm{MA} .1^{\prime \prime} \times 1$ 1000 uf, 100 V , Radial, $1 \frac{1}{2 \prime \prime}^{\prime \prime} \times 2^{\prime \prime \prime}$. ON L. 20 70 p .3 for $£ 1.50$.
Don't Let Your Environment Dehydrate
Buy our Honeywell Humidity Controller. Membrane actuated, very sensltive, $\mathfrak{l}^{\prime \prime}$ shaft, $250 \mathrm{~V}, 3.75 \mathrm{~A}$ Contacts. Ideal for greenhouses, centrally heated homes.
offices etc. Build your own humddifiers or alarms, Fraction of original cost 90 p oa, 3 for $\mathbf{E} 2$.

Special Purchase enables us to ofer Mullard C280 Polyester Capacitors (Liquorice Allsorts) at the inbeatable price of $£ 2$ for 100 mixed. 15 for 1000 . These consist of factory.
clearance lots l.e. spillages, foor sweepings, cosmetic rejects etc. Also Mullard miniature electroIytice 100 mixed $E 1.50$. 1000 for E10. Pack of each $£ 3.1000$ of each £30.

TO: "GEMINI ELECTRONIC COMPONENTS"
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Please Quote ZED Code. Where shown. Send Cheque* or Postal Order. Plus 40p P\&P. -Schools etc. SEND OFFICIAL ORDER

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities oden to you. Study in your own home, is your own time and at your own pace and if you are sfud

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools
Dept T268 Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address \qquad
Tel: Age:

Now Casio give you TIME TO SOLVE YOUR PROBLEMS

IT HAD TO HAPPEN! Casio, world leaders in high quality calculators and watches combine their talents to bring you the incredible

C-80 CALCULATOR WATCH

(With finger-touch keyboard)

- Hours, minutes, seconds, day, am/pm; And day, date, month auto calendar pre-programmed to the year 2009.
- 8 digit calculator. $6+2$ digits on double display.
- Professional 24 hour stopwatch function; measuring net lap and 1st \& 2nd place times to $1 / 100$ second on double display.
- Dual time (24 hour display). Nightlight.
- Mineral glass face. Water resistant, Black resin case and strap. Dimensions $44.9 \times 35.8 \times 10.2 \mathrm{~mm}$
* 12 months battery life from two UCC 391 silver oxide

Only $£ 24 \cdot 95$

(R.R.P. £29.95)

STAR BUYS FROM CASIO

81QS-35B Alarm Chronograph
Stainless steel. Mineral glass. Water resistant 5 YEAR BATTERY Hours, minutes, seconds, day; And day, date. month and year. 12 or 24 hour display. 24 hour alarm, hourly chimes. Stopwatch from 1/100 second to 7 hours; net, lap and 1st and 2nd place times.

$(£ 34-95) \quad £ 29.95$ Similar to illustration
 F-80 Alarm Chronograph Black resin case. Mineral glass. Water resistant 3 YEAR BATTERY Hours, minutes, seconds, date am/pm; or hours, minntes, alpha day, date am/pm. 24 hour alarm, hourly chimes.
Stopwatch from $1 / 10$ second to 12 hours; net, lap and 1st \& 2nd place. Nightlight. Only £19.95
95QS-36B Chronograph Stainless steel. Mineral glass. Water resistant 5 YEAR BATTERY Hours, minutes, seconds, am/pm and day (12 or 24 hour). Dual time (12 or 24 hour). Day, date, month and year calendar Stopwatch from $1 / 100 \mathrm{sec}$ to 7 hours; net, lap and 1st \& 2nd place times.
Only $£ 19.95$

111QS-34B
Superbly finished chrome plated case. Mineral glass. Water resistant.
Conmprehensive display. Hours, minutes, seconds am/pm, day and date Button for nightlight. Only $\mathbf{1 1 4 . 9 5}$
F8C. Black resin cased version. $£ 10.95$

NEW CALCULATORS

Melody 81.11 note melody maker (£24.95) £22.95
Musical alarms (two), countdown timer, hourly chimes. Stopwatch from $1 / 10$ second to 12 hours; net, lap, 1st \& 2nd pl. Calculator with full memory, $\%, \sqrt{ }$ $5 / 16 \times 4 \frac{1}{2} \times 24^{\prime \prime}$
1 year batteries

Melody 71
(£24.95) $\quad \mathbf{2 2} .95$
As above but only one alarm $3 / 16 \times 3 \frac{1}{5} \times 24^{\prime \prime}$

MQ-12
As ML-71 but without music. Full month calendar display 1 year batteries $3 / 16 \times 3 \frac{2}{8} \times 2 \frac{5^{n}}{}$
£19.95 (£21.95)

AQ-2200

Clock with permanent display of full calendar. Alarm alarm timer, hourly chimes. Stopwatch from $1 / 10$ second to 12 hours; net, lap, 1st \& 2nd pl. Calculator with full memory, $\%$, 1 year batteries $\frac{9}{32} \times 2 \frac{5}{8} \times 4 \frac{1}{4}$ (£21.95) £19.95

New Scientific

FX-81

30 scientific
functions, Pi , cube
roots, six levels 0
4000 hours battery
life $(2 \times \mathrm{AA})$
$\frac{3}{4} \times 3 \times 5 \frac{7}{8}$ ins.
£12.95 (£14.95)

TS4 Calculator Alarm
Hours, minutes, seconds day; And day, date month, am/pm. Alarm (2 tones), hourly chimes, 8 digit calculator with constants, delta $\%$, Water resistant. 2 year battery with hatch. Approx. 9 mm thick (+ keys 0.5 mm)
Only $£ 79.95$

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied inćluding I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be bullt in about 3 hours!
- Runs off 2 PP3 type batteries.
- Fullv Guaranteed

* Save pounds on normal retail price by building yourself.
TMS 1000 N - MP0027A Micro-
\%omputer chip available separately if
required. Full 24 tune spec device

supplied with data sheet and fully
guaranteed.

New low price only f4. 95 inc. p\&p

R/C MODELLERS - LISTEN FOR THE C.B. MENACE

 GET A 27 MHZ MONITCR* Audibly confirm your channel's clear.
* Tunes over whole 27 mhz model band. (CB)
* Recelves normal broadcast AM/FM
bands as well.
* Sensitlve with telescopic aerial.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver
notonly provides an Invaluable service, chocking your channel and TX, but checking your chranel and receptlon gives normal broadcast
whan you heed it as well.
Cotiting less than a decent Servo, you'll
find it cheap and reassuring Insurence!

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7 -21 DAYS FOR DELIVERY
Chromatronlcs, Riverway, Harlow, Essex.

Please send me:
 TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX
 NAME

ADDRESS

I enclose cheque/PO value $£$ or debit my ACCESS/BARCL.AYCARD account no

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the
 language of the small computer and the, most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation.
Book 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problemn definition.
Book 3 Compilers and interpreterṣ: loops, FOR....NEXT, RESTORE; debugging; arrays; bubble sorting: TAB.
Book 4 Advanced BASIC: subroutines; string variables; files; complex programming; examples; glossary.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.
Book 1 Ocral, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems.
Book 2 OR and AND functions; logic gates; NOT. exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions, karnaugh mapping; three state and wired logic. Book 3 half adders and full adders; subtractors; serial and paraliel adders; processors and ALU's; multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive - OR teedback counters; ROMS and RAMS
Book 5 Structure of calculators; keyboard encoding: decoding display data; register systems; control unit; program ROM; address decoding
Book 6 CPU ; memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming, assemblers; computers; executive programs; operating systems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded, without question, on return of the books in good condition.

Please send me

.Computer Programming in BASIC (4 books) @ $£ 7.50$
...Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £15, DEDUCT £2
I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£ .$.
or please charge my Access/Barclaycard/Diners Club etc. account no.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eirel send a bank draft in sterling drawn on a London bank, or quote credit card and number.
Name
Address

Cambridge Learning Enterprises, Unit 89, Rivermill Site, FREEPOST. St. Ives, Huntingdon, Cambs PE17 4BR England.

STARCHASER4000 THE NEW FOUR CHANNEL LIGHTING CONTROLLER

 4 channels 750W each O over 1000 different sequ-ence patterns and effects 3 alternative sound triggers
A.G.C. O simulated strobing O zero reference triac firing © superb TUAC quality and reliability $\mathbf{\Sigma 1 1 9 . 0 0}$ inc.VAT.

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER - 4LSM 1

- RCA 8A Triacs * 1000W per channel * Switched master control for sound operation from $1 / 2 W$ to 25W * Speed control for fixed ate sequence from 8 per minute to 50 per second * Full logic integrated circuitry with optical isolation for amplifier protection.

3 CHANNEL AUTO SOUND TO LGHT - AFL 6
£17.50 *RCA 8 Amp Triacs * 500W per channel * 2 channets flip flop, 1 channel sound to light * Fully automatic via built in mic * No connection to amplifier necessary.

STOP PRESS!

NOW AVAILABLE - THE FANTASTIC NEW TUAC STEREO AND MONO MIXERS. Send for details.

TJAC Ltd., 121 Charlmont Road, SW17. T키: 01.672 3137/9080 PZICE INCLUDES VAT. P+P FREE
TO ORDER BY POST. Make cheques/P. O.s payable to TUAC LTD, or quote Access/Barclaycard No. and pest to TUAC LTD. 121 Charlmont Road, London SW17 9AB. We accept telophone orders from Access/Barclaycard Malders. Phone 01-6729080.

110 IC timer projects for the home constructor

Jules H. Gilder

* Covers in detail the basic operation of the 555 timer IC that will enable you to design your own circuits using this device
* Divided into three sections describing the basic modes of operation as a monostable device, astable device and logic element
* Descriptions of applications include timer-based instruments, automotive applications, alarm and control circuits, and power supply and converter applications

1980

\mathbb{N} (ewnes Technical Books

[^2]GREENWELD
443D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices Include VAT-Just add 40p post. Tel (0703) 772501

COMPONENT CABNET
 IDEAL FOR THE NEWCOMER TO ELECTRONICS

Contalns hundreds of brand new reslotors, capacitore, translstora dlodes and I.C.'s. All usoful values,
carotully chosen to help the new carofulyy chosen to help the new finding himeelf short of some vital parts! All parte contalned In clearly marked bage In a plastlc storage cabinet $232 \times 181 \times 185 \mathrm{~mm}$ with 9 drawere Into which all parts can be neatly located, If bought indluldually parts plus case
would cost over $\& 47$ but we are offerling this for ONLY E34.85 + Ei \& \& 0 Simply send a cheque or P/O for C 32.95 for immedlate despatch.
CONTENTS:
$200 \ddagger$ watt reslators
Wire wound realstors
Ceramle Capacitor
Mysar Capacltora
Electrolytic Capacitors
Transietors
I.C.'E
L.E.D.'

58 Diodes and rectifers
Altogether 614 components.
Price Includes current catalogue and Greenweld pen for reorderlng suppiles.

PC ETCHING KIT MK If Now contalns 20089 . Ins. copper clad realat'on, abraslve cleaner, two minlature drlll bite, etching dish and Inatructions. \&4. 95

KITS OF BITS FOR EE PROJECTS

We supoly pats for nearly all EE of this month's, and prevlous articles, please send SAE.

VEROBLOC BREADBOARD New from Vero, thls versatlle ald for modate any slze of IC. Blocs and be jolned together. Bus strips on X \& Y axls-

VU METERS

V002 Twin type. 2 meters $40 \times 40 \mathrm{~mm}$ and drlver board, supplled with clrcult and connexion data, $£ 3 \cdot 50$.
003 New type, just in. Twin type moulded in one piece. $80 \times 40 \mathrm{~mm}$ (no driver board but sultable cireult supplled). $£ 2 \cdot 50$.

THE NEW 1980 GREENWELD

CATALOGUE
FEATURES INCLUDE:

- 60p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Pald Envelope
- Priority Order Form

VAT Inclusive prices PRICE 40p + 20p POST WIRE \& FLEX
Solid core-Ideal for breadboards otc
$50 \times 2 \mathrm{~m}$ lengthe many assorted colours, total 100 m for $£ 1-30$. Flex packs $-5 \times 5 \mathrm{~m}$ lengthe of multistrand thin flex, Ideal for wirlng up circults.

EX-COMPUTER PANELS 2528 Pack of boarde contalning 100 ' translitors. Only $£ 1 \cdot 30$.
2529 TTL pack-Panels with 74 eerles on together with code sheet. From almple gates to com
$100 \mathrm{IC}^{\prime} \mathrm{E}$.

COMPONENT TRAY
Attractlve yellow tray $285 \times 165 \times 42 \mathrm{~mm}$ with clear hinged lid and movable comdividers supplled. As an added bonus, a eelection of now supplus components are included, all for the special low price of c3. 95.

INVERTER
Prepare for the Power Cutsl Ready bullt Inverter, 24 V DC $290 \times 55 \times 37 \mathrm{~mm}$ in Clrcult supplled. Only $\mathbb{E 2} \cdot 00$.

VEROCASE SALEI! 3 popular sizes of verocase at drasof thelp standard range ($75-1411$ otc.) but are Iñ GREEN and have been dlscontinued by Vero. We have purchased thel entire stock and Type No ${ }_{21051} \quad{ }^{\text {Sine }}$
$\begin{array}{ll}21051 & 180 \times 120 \times 65 \mathrm{~mm} \\ 21052 & 154 \times 85 \times 60 \mathrm{~mm}\end{array}$ $\begin{array}{ll}21052 & 154 \times 85 \times 60 \mathrm{~mm} \\ 21053 & 125 \times 65 \times 40 \mathrm{~mm}\end{array}$ Price
$£ 2.30$
$£ 1.75$

VERO OFFCUTS
Packs of 100 sq Ins of good slze pleces Packs of 100 sq Ins of good size
ahout $4 \times 3^{\prime \prime}$ in the following types: K511 $0.1^{\prime \prime}$ copper clad...............e2-0 Also pleces $24 \times 1^{\prime \prime}-10 / £ 1 \cdot 20$, $100 / \mathrm{ES}$ $17 \times 37^{\prime \prime} \times 0.1^{\prime \prime}$ sheets $-101 £ 17 \cdot 50$

BUZZERS \& MOTORS \& RELAYS
Z401 Powerful 6 V DC Buzzer all metal Z401 Powerful 6 V dC Buzzer all metal
construction 50 mm da $\times 20 \mathrm{~mm} 70 \mathrm{p}$, only
$Z 402$ Minlature type Buzzer 6,9 or 12 V , $22 \times 15 \times 16 \mathrm{~mm}$. Very neat 53 p . 2450 Miniature 6 V DC motor, high quallty type 32 mm dla $\times 25 \mathrm{~mm}$ hlgh, with 12 mm
$2459115 / 230 \mathrm{~V}$ ac hlgh torque motor with geared reduction down to 60 rpm . Sturdy constructlon, 70 mm dla $\times 20 \mathrm{~mm}$. Spindle 6 mm dla $\times 20 \mathrm{~mm}$ long. Only $£ 2 \cdot 00$. W882 Heavy duty 12 V relay, ldeal for car
use-single 15 A make contzct. Coll $25 R$. Use-
85p.
W890 W890 DIL reed relay-SPCO $2.4 \mathrm{~V}-10 \mathrm{~V}$ 200R coll. Only £2. 20 .
mm 6 V coil. SPCO 3 m contacts. 33 p .

TEACH IN 80

We are again supplying all parts required tor this major series which started last October. The price for all the Tutor Deck parts is £19:50. Also supplied without breadboard for £13.50. The price for the additonal components required for Parts $1-6$ is $£ 2.00$ and Parts $7-12$ is £3.00. All prices include VAT and Postage. Reprints of parts 30p per month

TRANSFORMERS
Continuous
Ratings ${ }_{15 \%}^{+ \text {VAT }}$

30 VOLT RANGE
Pri 220/240 sec $0-12-15-20-24-30 \mathrm{~V}$ Voliapes availiable 3, $4,5,6,8,9,10$,
$12,15,18,20,24,30 \mathrm{~V}$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$ Volta
12,15
or 15
Ref

SOLID STATE DIGITAL QUARTZ
CH
Hour, minute splay day AM/PM constan display.
Press button for month date, day dlsplay. lighting by press button. 4, hour mode reading if required (uselul for Chronograph to $1 / t 0$ th $\mathrm{sec} .+$ lap time + alarm.
stainless steel adjustable bracelet
ع15.50 inc. VAT 50p P \& P.

Amps 12 OR 24 V OR ${ }^{12-0-12 \mathrm{~V}} \mathrm{Prl}^{220-240}$ volts				
Rel	12 V	24 V	Price	P\& P
111	$0 \cdot 5$	0.25	2.42	0.52
213	$1 \cdot 0$	0.5	2.90	0.90
71	2	1	$3 \cdot 86$	0.90
18	4	2	4.46	1.10
85	0.5	$2 \cdot 5$	6.16	1.10
70	6	3	- 98	$1 \cdot 10$
108	8	4	8.18	$1 \cdot 31$
72	10	5	8.93	$1 \cdot 31$
116	12	6	0.84	1.52
12	16	8	11.79	$1 \cdot 37$
115	20	10	15.38	$2 \cdot 39$
187	30	15	19.72	2.38
226	60	30	40.41	O.A.
TEST METERS P\& P \& 1.1515% VAT				
AVO \% MK5 \%1.50				
AVO 71 [38.00				
AVO 73 (30.70				
AVO MM5 minor $\quad 35.95$				
We	ger			76.25

bined audolf test oscllator at 1 KHz and 465 KHz . AC/DC to 1000 volts. $D C$ current to 500 mA , resistance to $1 \mathrm{~K} \Omega$, Size $180 \times 97 \times$ $40 \mathrm{~mm} . £ 8 \cdot 50$ P \& P. $£ 1 \cdot 00$, VAT 15%
SCREENED MINIATURES PrImary 240 P

1
1
1
1
1
1
1
2
7
A
A
A
A
B
4
t
4
4

Ref	Amps	Price	P\& P
102	0.5	3.75	0.90
103	1.0	- 37	$1 \cdot 10$
104	$2 \cdot 0$	7.88	9-31
105	3.0	9. 42	$1 \cdot 57$
106	4.0	12.82	1.75
107	5.0	16.37	1.99
118	8.0	22.29	$2 \cdot 39$
119	10.0	27.48	O.A.
109	$12 \cdot 0$	32.89	O.A.
MAINS ISOLATORS (Screened) PM $120 / 240 \mathrm{SeC} 120 / 240 \mathrm{VCT}$			
Ref	\checkmark V	Price	P\&P
${ }^{-97}$	20	$6 \cdot 34$	$0 \cdot 91$
149	60	$7 \cdot 37$	140
150	100	$8 \cdot 38$	1-31
151	200	12.28	$1 \cdot 31$
152	250	14.61	$1 \cdot 73$
153	350	18.07	$2 \cdot 12$
154	500	22.52	$2 \cdot 47$
155	750	32.03	O.A.
158	1000	40.92	O.A.
157	1500	56.52	O.A.
158	2000	67.99	O.A.
159	3000	95.33	O.A.
- Prl 0-220-240V Sec 115 or 240V.			

.52
.37
.39
.39
A. 91.50
33.00
50.70
3.95
3.25 n-

Primary	240V
$\mathbf{2} .83$	
$\mathbf{3 . 1 4}$.80
2.35	.44
$\mathbf{2} .19$.44
3.05	.85
3.88	.90
2.19	.44
2.88	.37
3.08	.90

Barrie Electronics Ltd.
 3. THE MINORIES, LONDON ECBN 1R TELEPHONE: $01-488$ 3316/7/8
 Nearest Tube Stations: Aldgate \& Liverpool $\mathbf{S t}$.

FM/AM STEREO TUNER AMPLIFIER CHASSIS
Originally designed for installation into a music centre. Supplied as two separate built and tested units which are easily wired together. Note Circuit diagram and inter-connecting wiring diagrams supplied.
Rotary Controls Tuning, volume, balance, treble and bass
Push Button Controls Mono, Tape, Disc, A.F.C., FM(VHF), LW, MW. SW. Power Output 7 watts RMS per channel into 8 ohms (10 watts music) Tape Sensitivity output typically 150 mv . Input 300 mv for rated output Disc Sensitivity 100 mv (ceramic cartridge).
Stereo Beacon Indicator LED or bulb.
Size Tuner- $27^{\prime \prime}<15^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime}$ approx. Power amp. $-2^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{} \times 4 \frac{1^{\prime \prime}}{}$ approx. Price $\mathbf{6 2 2} \cdot 00+62 \cdot 50$ Postage and Packing.

I.V.C. TURNTABLE CHASSIS
J.V.C. Turntable supplied complete with an Audio Technica ATIO stereo magnetic cartridge
\star " S ' shaped tone arm. \star Belt driven. \star Full size $12^{\prime \prime}$ platter. \star Precision Nylon thread Price $629.90+$ 62.50 Postage and Packing.

B. K. ELECTRONICS (Dept. EE)
37. Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex, SS9 5 TY.
S.A.E. for components list etc. $\quad \therefore$ Official orders welcome.
A. All prices include V.A.T. ※ Mail order only

* All ifems packed (where applicable) in special energy absorblng PU foam.

SAVE OVER $\mathbf{£ 2 . 5 0}$ WITH OUR SPECIAL OFFER

 recommended $420^{\circ} \mathrm{C}$ soldering fron

EE SPECIAL PROJECT KIT

Designed originally for logic wiring applications, it is now accepted and used extensively throughout industry, education and research. ROADRUNNER is used by hobbyists, students, technicians, designers and engineers to carry out:-

* PCB REPAIRS
* ANALOGUE BREADBOARDING
* SIMPLE LOGIC WIRING-PROJECTS
\star COMPLEXINTERCONNECTING OF MICROPROCESSORS,
MEMORIES ETC.

E.E. OFFER KIT CONSISTS:-

1 pencil, 1 project PCB. Wire Distribution Strips and adhesive, 4 bobbins of wire for colour coding-Logle wiring, and one bobbin of tinned copper wire-PCB repair and analogue breadboarding.

Send large SAE for further detalls on ROADRUNNER productsbut remember, th/s offer closes MAY 1 st/l

prices Include p \& p \& VAT

MTE TIMS Audio

THE firm for speakers!

SEND 30P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

WILMSLOW AUDIO (Dept. Ee)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc, at 5 Swan Street
Speakers, Mail Order \& Export $0825 \mathbf{5 2 9 5 9 9} \mathbf{H i - F i} 0625526213$

-

Receivers and Components

100 DIODES 85p, 50 Transistars 95p, 10 switches $90 \mathrm{p}, 10$ Leds $£ 1 \cdot 15$. All mixed. Lists 15p. SOLE ELECTRONICS, E/E, 37 Stanley Street, Ormskirk, Lanos L39 2DH.
Amps a-81-23. 900 small Componente. Trane, Dlodes
rofundable. Post 40 p . Ineurance add 15 p .
J.W.B. RADIO
2 Barnfeld Creseent, Eale, Cheohire M33 1NL

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLESHAMDING \& CO, 103 South Brink, Wisbech, Cambs, 0945 4188. Immediate settlement.

NO LICENCE EXANS NEEDED

To operate this miniature, solid-state Trans-mittor-Receivor Kit. Only E10-95 plus 25p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Electronica Kit, pocket-sized 'lightning fashes', vari-speed, for dincos and parties. A mere $£ 4-75^{\prime}$ vari-apeed, for 25p. P. Experiment with a psychedelic plus $25 \mathrm{P}^{\text {P. }}$ \& P. Experiment with a psychedelic WREAM LAB, or pick up faint speech sounds With the BiG EAR sound-catcher, ready-made P. \& \mathbf{P}.

LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS
4 CUNLIFFE ROAD, STONELEIGH
EWRLL, SURREY. (E.E.)

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting f5.00 per single column centimetre (minimum $2 \cdot 5 \mathrm{~cm}$). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics. Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-2615942).

QUALITY ELECTRONIC COMPONENTS AT LOW PRICES Write or telephone for free pamphlet to:
 HARRISON BROS. dept e.,
 P.O. Box 55, Westcliff-on-Sea, Essex. SSO 7LQ. Tel: Southend-on-Sea 32338

100 ASSORTED COMPONENTS 115p, 100 assorted resistors 75 p .100 assorted capacitors 150 p . P\&P 25p. SAE for catalogue. dURRANTS, St. Mary's Street, Shrewsbury, Salop.

DISCOVER ELECTRONICB. Build forty easy projects including: Metal Detector; Breathalyser; Radios; Stethoscope; Lie Detector; Touch time-switches; Burglar Alarms, etc. Circuits, plans all for $£ 1 \cdot 50$ including FREE circuit board. Mail only. RIDLEY PHOTO/ELECTRONICS, BOX 62, 111 Rockspark Road, Uckfield, Sussex.

DIGITAL WATCH BATTERIES, any sort 75p each. Send SAE or 15p with number or old battery to Disclec, 511 Fulbridge Road, Werrington, Peterborough PE4 6SB.

[^3]

EVERYDAY ELECTRONICS P.C.B.'s

Professional quality glass fibre, Fry's roller tinned and drilied Dec. 79 R.C. Transmitter $£ 4.4$ Dec. 78 R.C. Transmit
Fob 80 R.C. Servo set of
Silide/Tape. Sync.

PROTO DESIGN

14 Downham Road, Ramsden Heath, Billericay, Essex CM11 1PU.

DON'T
 GET ALARMED
 ABOUT RISING CAR THEFTS GET ALARMED

WITH HARVELEC
The new all electronic car alarm.
Entry timer-user selectable between 20 and 60 seconds, confuses would be thieves.
Exit timer-flxed at 60 seconds, allows leisurely exit.
Alarm timer-fixed at 150 seconds, ensures battery is not run down while car is left. Sensitive battery change detector, sets alarm from courtesy light, ignition, radio, etc.

* CAR IMMOBILISATION *

EAR SPLITTING ALARM $*$

* ACCESSORY PROTECTION $*$

Suits all 12 -volt -ve. ea. systems Incredible Ineroductory price
(HORN, CONTROL UNIT \& SWITCH)

C-MORE

of your battery condition and charging rate with this fantastic little device.

* EASY DASH MOUNTING $*$ t EASY READ RED/YELLOW DISPLAY + \star FOREWARNS OF EXPENSIVE ELECTRICAL TROUBLE + 66.62 inc. VAT \& $p \& p$

YOU MAY TRY EITHER DEVICE ON YOUR OWN CAR WITH THE CONFIDENCE OF OUR IO DAY MONEY BACK ASSURANCE.

HARVELEC (Dept. EE)

Formby Avenue, St. Helens Merseyside, WAlO 3NW Regd. in UK. No. 2395248.

RECHARGEABLE BATTERIES

TRADE ENOUIRIES WELCOME

FULL RANGEAVAILABLE. SAE FOR LISTS. \&1-25 for Bookell, Nackei Cadmium Power" plus catalogue. Write
or candwell Plant Lid, 2 Union Drive, Boidmare Sutton' Coldfeld, Weat Midiands.021-354 9764. Or see them at TLC, 32 Craven Street, Charing Crose, London WC2.

AERIAL BOOSTERS
Improves weak VHF Radlo and Televiaion
reception.
B45-UHF TV, B11-VHF Radio. B11A-2 B45-UHF TV, B11-VHF Radio. B11A-2
metres. For next to the set fitting. Price 86. SIGNAL INJECTOR
A complete range of A.F. and R.F. Fro quencies up to the UHF Band. Price $\mathbf{£ 5} \cdot 00$ S.A.E. for leaflets-Access.

ELECTRONIC MAILORDER LTD,

$$
62 \text { Bridge Street, }
$$

Ramsbottom, Bury, Lancs. BLO AG.

DIGITAL WATCH BATTERY REPLACEMENT KIT

11 Perc

LEARN ELECTRONICS THE EASY WAY Build: amplifiers, oscillators, detectors testers, flashers, metronomes, etc., more than 25 projects, with our multi-kits, complete manual supplied. Send $£ 15 \cdot 00$ to: MAJOR OAK SERVICES, 33 Lillian Avenue London W3.

NI-CAD BATT. packs. Contains 9-AA cells, 5 sub c cells (1AH) Mains charger $£ 9.50$. p.p. E.D.S. 66, Brook Lane, Warsash, Southampton.
TUNBRIDGE WELLS COMPONENTS,
BALLARD'S, 108 Camden Road, Tunbridge Wells. Phone 31803. No lists, enquirles S.A.E

INDEX TO ADVERTISERS					Litesold 225	
A bsonglen Lid.	\cdots 284	Magneta Electronics Maplin Electronic Supplies Ltd.				$\begin{aligned} & \quad 227 \\ & \text { Cover iv } \end{aligned}$	
Ace Mailtronix 304						
A.J.D.	 286	Marshall A. 284	
Ambit				Cover iii	Meca . . Menocrest	.	\cdots	.	.. 290	
					 304	
					Metac ..	\cdots	..		228-229	
Barrie Electronics	\cdots	.. 300	Mldland Trading				. 285	
Bi-Pak	232-233	Monolith	\cdots	280	
BIET 280						
Birkett J. 292						
BK Electronics 300	Phonosonics 290	
B.N.R.E.S. .	.	\cdots	\cdots	.. 293	Powell T. Precision Petite 304	
Brine Assoc. 301		Cover ii	
Bull J.	\cdots	\cdots	\cdots	.. 277						
Butterworth 299	R\&T.V. Components .. Radio Components Specialties					
									$\begin{array}{ll}\text {. } & 291 \\ \text {.. } & 230\end{array}$	
Cambridge Learning Chromatronics Circuit Solders Continental Specialties	 298	Radio Components Speciaities					
	 298						
		\cdots	.	.. 280	Science of Cambrid	idge	.	.	288-289	
		Corp	oration	.. 271	Selray Book Co. 292	
					Stevenson C. N. 283	
Electronic Design Asso Electrovalue. .			\cdots	.. 226	Swanley Electronics		.	-•	304	
		 296						
				Technomatic 226		
George Sales, David		 286	Tempus T.K. Electronics	.	-	.	.. 297
Gemini		$\begin{array}{ll}\text {. } & 296 \\ . . & 300\end{array}$..		\cdots	.	.. 230	
Greenweld	\cdots				Transam Components TUAC	 279	
							..		299	
Harversons .. Heath-Kit .. Home Radio			.. \cdots .	$\begin{array}{ll} . & 292 \\ . & 287 \\ . . & 301 \end{array}$	Vero Electronics	\cdots	.. 287	
I.L.P. Electronics intetext (ICS)		\cdots		$\begin{array}{r} 294-295 \\ . . \\ \hline \end{array}$	Watford Electronics West London Direct Supplies Wilmslow Audio		 231	
							 303	
								.	301	

RANDOM ELECTRONIC EASY DICE

Self Assemble $£ 4.50$
Ready Built $£ 5.45$
Roll Out Model £5.95
inclusive vat.
ADD 25p. POSTAGE PER DICE
SUPER VALUE!

CLOCK ALARM KIT
FULL INSTRUCTIONS

£12.95 + 25p. p+p
T.V. GAMES B/WHITE £8.95+25p. p+p

24 TUNE ELECTRONIC DOOR CHIMES

 £14.50 + 25p. p+pCALCHEC EDUCATIONAL CALCULATOR £2.25+25p.p+p

ORDER FROM

Menorcrest Electronics Ltd.
1Hatton Court
Ipswich Suffolk
Tel: 0473-210151/2

KITS FOR E.E. PROJECTS

SLIDE TAPE SYNCHRONISER
VARICAP RADIO
TRANSISTOR TESTER
ONE ARMED BANDIT
MORSE PRACTICE OSCILLATOR
WARBLING TIMER
MODULATED TONE GENERATOR
ELECTRONIC TUNING FORK
MICRO MUSIC BOX
DARK ROOM TIMER
UNIBORAD BURGLAR ALARM
SIGNAL LEVEL INDICATOR (stereo)
UNIBORAD $9 V$ POWER SUPPLY
TREMOLO UNIT
ELECTRONIC CANARY
SIMPLE S.W. RECEIVER
INTRUDER ALARM
ELECTRONIC DICE
MAINS ON/OFF TIMER
BABY ALARM
LOFT ALERT
CHASER LIGHT CONVERTER
TOUCH BLEEPER
FUNCTION GENERATOR
OPTO ALARM
POWER SUPPLY 9V
SWANEE WHISTLER
REVERB UNIT

(ZB42)	Feb 80	C11.50
(ZBI)	Sept 79	68.50
($\mathrm{Z} \mathrm{B2} 2$)	Sept 79	45.00
(Z833)	Oct 79	C21.00
(2B43)	Feb 80	<6.00
(ZB5)	Aug 79	45.80
(ZB50)	Dec 79	63.50
(2B7)	Aug 79	68.90
($2 \mathrm{B45}$)	Feb 80	$\bigcirc 17.00$
(ZBI7)	July 79	22.50
(2B51)	Dec. 79	15.00
(ZB36)	Oct 79	C4. 50
(2847)	Jan 80	C4. 50
(ZB18)	June 79	¢ 10.00
(Z819)	June 79	44.50
(ZB44)	Feb 80	C18.00
(ZB23)	May 79	¢23.00
(ZB24)	May 79	$\underline{C 13.50}$
(2B48)	Jan 80	630.00
(ZB40)	Nor 79	18.50
(2846)	Jan 80	63300
(2B4)	Sept 79	617.50
($2 \mathrm{B25}$)	May 79	[13.75
(ZB27)	April 79	63.25
(2B52)	Nov 79	<25.00
(ZB41)	Nov 79	45.00
(ZB6)	Aus 79	C8. 25
(ZB8)	Aug 79	63.50
(ZB49)	Jan 80	<29.00

All above kits include ports as described in articles l.e. veroboard, i.c. sockets connecting wire and coses where applicable.

TEACHIN '80

New to electronics? Then stert the beginning. All alectronic components for construction of Tutor Deck and Teach=In esporiments during the first $\begin{array}{ll}\text { six parte of the series. Llsts } A \text { and } B \quad \text { L20.00 } \\ & \text { List } C \text { an }\end{array}$

ALL PRICES INCLUDE V.A.T.
BARCLAY/VISA/ACCESS CARDS ACCEPTED. MINIMUM TELEPHONE ORDER [5.00.

T. POMVELL

306, ST. PAUL'S ROAD, LONDON N.I. TELE: 01-226 J489.
SHOP HOURS: MON.-FRI. 9AM-5.30PM. SATURDAY 9AM-4.30PM

HEWRIRE RADO MGIUTY ©

Choosing the products to advertise each month can be quite a task at AMBIT since we tend to introduce at least one new line per week. So it is nearly impossible to say all we would like in this space - other than to bring you as far up to date as possible with current events. The major medium for finding out about what we have to offer is our unique catalogue system, and we ask that you invest in a copy of parts $1,2 \& 3$ since many questions we are asked can be readily answered by reference to these.
Each part costs 60 p, or $£ 1.60$ for all three current editions.
We are also launching a new and greatly elongated version of our PRICE LIST which now includes a large number of quantity listings, and many items not previously listed. The new style price list is a quick reference short form to our general catalogues - available FOC with a large (A4) SAE please.
As a result of the soaring price of oil - and the subsequent huge increases in the cost of wax for Mr Tom Jackson's famous moustache, the Post Office have increased their charges (Feb. 4th). Accordingly, our standard cover charge has been increased to 35 p per order (CWO).

COMPDNEITF

DIGITAL FREQUENCY READOUTS / SYNTHESISER SYSTEMS
Ambit has the biggest range of digital frequency readout systems for various applications in Broadcast and Communications. Prices range from $£ 18.50$ for a complete AM/FM broadcast frequency display (kit of DFM2). Most are detailed in the latest catalogue
TUNING SYNTHESIZERS are also heavily featured, and we offer our first complete system covering MW/LW/SW2 and FM based on Hitachi parts. The unit is retrofittable to voltage tuned radio systems - and will shortly be incorp orated in a complete tuner project. Cost for the synthesiser will be circa f_{40} A versatile communications system based on the new Mullard 2 IC system is nearing completion, together with 16 station CMOS memory and optical shaft encoder system with fast tune facility. Synthesiser circa $\mathbf{f 7 0}$, memory f 50 .
Latest semiconductor news:
CMOS, TTL and LPSN TTI are in stock (ask for our OSTS price leaflet). Some of the very popular types are still "difficult" but we have things like 4011s, 4017s at the time
of writing.
RADIO ICs

RADIO ICs..-interesting developments here, we now have the Mitachi MA11225 and the HA12412 ultra high specification members of the CA3089E family. The PLESSEY SL1600 CA3089E includes the SL6600 high performance PLL NBFM IF and detector. $\begin{array}{llllllllll}\text { CA3089E } & 2.11 & \text { HA1197 } & 1.61 & \text { SO6000 } & 4.31 & \text { SL } 1610 & 1.84 & \text { SL1626 } & 2.80\end{array}$ $\begin{array}{llllllllll}\text { HA1137W } & 2.53 & \text { CA3123E } & \text { 1.61 } & \text { TDA4420 } & 2.59 & \text { SL1611 } & 1.84 & \text { SL1630 } & 1.86 \\ \text { HAA1072 } & 3.09 & \text { MC1330P } & 1.38 & \text { SL1612 } & 1.84 & \text { SL1640 } & 2.17\end{array}$ $\begin{array}{lrlllllllll}\text { HA11225 } & 2.47 & \text { TBA651 } & 2.53 & \text { MC1350P } & 1.38 & \text { SL1613 } & 2.17 & \text { SL1641 } & 2.17 \\ \text { HA12412 } & 2.81 & \text { TDA1090 } & 3.51 & \text { KB4412 } & 2.24 & \text { SL1620 } & \mathbf{2 . 5 0} & \text { SL6600 } & \mathbf{4} .31\end{array}$ $\begin{array}{llllllllll}\text { HA12412 } & 2.81 & \text { TDA1090 } & 3.51 & \text { KB4412 } & 2.24 & \text { SL } 1620 & 2.50 & \text { SL6600 } & \text { 4.31 } \\ \text { KB4420 } & 1.95 & \text { TDA1220 } & 1.61 & \text { KB4413 } & 2.24 & \text { SL1623 } & 2.80 & \text { SL6640 } & 3.16\end{array}$ | TBA120S | 1.15 | TDA1083 | 2.24 | KB4417 | 2.53 | SL 1624 | 3.77 | SL6690 | 3.68 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| KB4406 | 0.80 | TDA1062 | $\mathbf{2 . 2 4}$ | MC3357P | 3.16 | SL1625 | 2.50 | MC1496 | 1.44 | TRANSISTORS: New lower prices. wider range, large stocks. Also the world's lowest noise aud sorts of other devices. Our 3SK51 MOSFET replaces the $408 \times X$ and 40673 families.

 $\begin{array}{lllllllll}\text { BC } 307 \text {-8-9 } & 0.092 & \text { 2SAB72A } & 0.207 & \text { 2SC2547E } & 0.391 & \text { 2SK55 } & 0.368 & \text { BF224 }\end{array}$ $\begin{array}{llllllll}\text { BC413-5 } & 0.115 & \text { 2SD666A } & 0.345 & \text { 2SA1085E } & 0.391 & \text { 2SK168 } & 0.402 \\ \text { BF274 } & 0.207\end{array}$ \begin{tabular}{lllllllll}
BD414-6 \& 0.126 \& 2SB646A \& 0.345 \& 2SK133 \& 6.32 \& 3SK51 \& 0.62 \& BFT95

\hline

 $\begin{array}{lllllllll}\text { BC546-556 } & 0.138 & \text { 2SD7760 } & 0.52 & \text { 2SJ48 } & 6.32 & \text { 3SK60 } & 0.667 \text { VN66AF } & 1.092 \\ \text { BC550.560 } & 0.138 & \text { 2SB720 } & 0.52 & \text { 2SK 135 } & 7.29 & \text { BF960 } & 1.426 & \text { 2N4427 }\end{array}$

BC550.560 \& 0.138 \& 2SB720 \& 0.52 \& 2SK 135 \& 7.29 \& BF960 \& 1.426 \& $2 N 4427$

BC639.640 \& 0.265 \& 2SC2546E \& 0.368 \& 2SJ50 \& 7.29 \& 3SK48 \& 1.426 \& $\mathrm{J176}$

\hline
\end{tabular}

RADIO CONTROL: A special section for all RC fans. New and exciting stuf KB4445/KB4446: complete 4 channel RX/TX dig.prop IC pair RF\& control in one 4.75pr NE5044 : Signetics versatile 7 channel encoder, suitable for mixing etc. $£ 2.14$ ea NE544 Signetics famous servo driver IC $£ 2.07$ MC3357P as used in RCME design $£ 3.16$ ea AMBIT RCRX4 - RCME FM system compatible, complete RX kit with box/connector and AMBIT design screened front end with 27 MHz ceramic filter $\mathbf{E 1 6} .10$ \{kit| XTALS: FM pairs $£ 3.74$ (no splits) TX is fund. $1 / 2$ op frequency, RX 3 rd OT -455 kHz
AM pairs $£ 3.57$ (no splits. Both 3 rd OT iypes, again RX if at 455 kHz

The new MK III FM tuner sitting under the Dorchester multiband $A M / F M$ tuner multiband $A M / F M$ tun

MODULE NEWS
We are at last able to quote for quantities of our modules, following a program of standardization and revision to speed manufacture and test The following types are the results of the standardization program
UM1181 5 varicap MOSFET input VHF band 2 tuneshead 911225 A High Pertormance FM IF system, with switcherl BW 911225 B Single BW filters. single iuned detector
91072 A DC tuned and single nole switched MW LW tune
91072 B As type ' A ' but with either SW1 or SW2 band
Combined LW/MW tunet, with FM IF detectar section $£ 15.90 \mathrm{nc}$ 92242 B As 92242 A but with $5 \cdot 90 \mathrm{MH}$, SW section $\quad \mathbb{E} 34.00 \mathrm{inc}$ All are supplied housed in screened metal cases $97 \times 56 \times 24 \mathrm{~mm}$. with alt connections along a single edge. suitabie for verticle or horizontal mounting.
Previously advertized units are still available aithough there may have been some price changes in the tatest edition of the Price List (Date Feb, 80) A separate leafle: covering the new range of modtles is available from Apfll 80, with an A4 SAE please.

NEW LINE: ALPS switches and rotary potentiometers. With a general catalogue that's over
3 inches thick, we cannot begin to offer a comprehensive list of what we can offer but we are 3 inches thick, we cannot begin to offer comprehensive list of what we can offer but we are
already stocking the keyboard switches, keyswitches, pushbutton switches etc. In particular, the al ready stocking the keyboard switches, keyswitches, pushbutton switches etc. In particular. the
pushbutton switches really put all others in the shade Ischadow? when it comes to quality and pushbutton switches really put all others in the shade Ischadow? when it comes to quality and
price. A special new shorform is being prepared land may be ready when you read this). All the potentiometers and switches you could ever need from a single source. Keypad switches cost as
little as 15 ea (1 off), with a range of two part caps for easy ledgending. You must see the shortorm catalogue (30p) and our new pricelist for full details of this huge range of componen

AMBIT SHOP NOW OPEN

We are gradually getting our caller sales area sorted out,
with displays of the products on offer and a browsers corner to sit and study data/catalogues. Call in next time
you are in the area OMPUTER CAPABILITIES COMPUTER CAPABILITIES Ambit has been keeping a low profile on the subiect of the MPU and its applications. Interestingly enough, the first project we offer with MPU content does rather daft game, or looking like an enormous calculator. Our MPU facility and expertise is now for hire on a fully

Kevboard swit SCK41505

typ 6 m ops
23p each (1.24)

NEW LINE: DC/OC+AC converters for fluorescent displays. TOKO CPS series

GENERAL INFORMATION
Ambit stocks the following ranges of components for ex stock volume delivery: SIGNAL COILS, CERAMIC,
MECHANICAL and CRYSTAL FILTERS. RADIO ICS for AM/FM/SSB TOROID CORES FOR RADIO and EMI FILTER CIRCUITS, INDICATING AND PANE
METERS, AUDIO ICS. RF TRANSISTORS. FETS METERS, AUDIO ICS. RF TRANSISTORS. FETS PASSIVE DBMs (like MOIO8 etc). IC SOCKETS LEDS, TRIMMER CAPS, SWITCHES, KEYBOARD SWITCHES. TUNERHEADS. IF AMPS. AM RADIO MODULES. etc etc

NEW LINE : DVM176 the definitive ICM7106 LCD DVM module. $\mathbf{3}^{3}$ digit $£ 22.37 \mathrm{ea}$ CM161: LCD $12 / 24 \mathrm{hr}$ alarm clock/day/date/backlight (eq. RS 308.499) 7 mm digits E 11.44 each

STEP INTO A NEW WORLD WHEN YOU DISCOVER
 กทีP Un

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project. Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Send the coupon for your copy

and STEP UP TO MAPLIN SERVICE

now

Post this coupon now for your copy of our 1979-80 catalogue price 70p.
Please send me a copy of your 280 page catalogue. lenclose 70 p (plus $46 \mathrm{p} \mathrm{p} \& \mathrm{p}$). If lam not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $\$ 1.35$ or ten International Reply Coupons. I enclose $\$ 1.16$.

[^4]
ก1สคLIT

ก1®pull
ELECTRONIC SUPPLESLTP
All mail to:
P.O. Box 3, Rayleigh, EsSex SS6 8 R.

Telephone: Southend (0702) 554155 .
Shop: 284 London Road, Westclif-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.

[^0]: CHECKER
 2 LEVELS $£ 43.00+$ VAT CHALLENGER 4 LEVELS 680.00 + YAT The dsaughts comiputer enablés you to sharpen your skills, irfprove your game, and play whenever you wen. The compunes incorparates a sophisticaled, reliable, decisionmaking nucrop rocessor as its brain lits high level of thinking ability enables it to respond with its best counter movence or defence and change plaving dificuly levels al onence or detencp and change plaping amiculfy levels al recall. Machine does not permil ilegal moves and can solve ser probiers Compurer comes complere with instrucions meins adapator and iwelve months guarantee

 ## FOR FREE BROCHURES - SEND S.A.E

 For FREE ilustrated brochures and revews on TV and chess games please send a stamped addressed envelape, and staie
 To order by telephone please quore your namie, addiess and AccessiBarcleycard number Postage and Packing FAEE
 AJD DIRECT SUPPLIES LIMITED, Dept. EE 4102 Bellegrove Road Welling, Kent DA16 30D. Tel: 01-303 9145 (Dayl 01-850 8652 IEvenings)

[^1]: *Use a 600 mA at. 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon)

[^2]: *If you are not famifiar with previous books in this series for the home constructor, write to the publishers for a free colour brochure of all their hobbyist books

[^3]: Service Sheets
 SERVICE SHEETS from 50 p and SAE. Catalogue 25p and SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.
 BELL'S TELEVIGION SERVICE for service sheets on Radio, TV etc. $£ 1$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 180 Kine's Rd, Harrogate, N. Yorkshre. Tel: 042355885.

[^4]: AODRESS

