## Easy to bulld projects for everyone

 - =ctionlesA NIICIOPROCESSOR


710nnomit.
HLUULUULHLL


## Simple projects A. I: MODULITUI:

 THYRISTOR TESTER
## NO

 LONG WAVE? THEN BUILD OUR
## GOIUERTOB

## Iron out the little problems...



CTE 35 watl-

The TCSUl soldering station with the XTC50 watt - $24 / 26$ volt soidering irron or the CTC 35 watt-soldering iren for pin point precision and exceptionalily fast recovery time. We have put at least twice as much power into irons which are already well known for good recovery time The temperature control stops them from over-heating the "fail-safe" electronic circuit provides protection even if the themocouple fails TCSU soldering station $£ 38.10 \times$ TC and CTC itons $£ 14.85$ inclusive of VAI and $P \& P$.

Model SK3 Kit Model SK4 Kit
 With the
model
$\times 25 / 240$
general
pundose irod
and the $S T 3$
stand this
kit is a must
for every
toolikit in the
home. Priced
at E6.21
inclusive of
VAT and
P\&P $\begin{array}{ll}\text { inclusive of } & \text { bits, a coil of solder a heat sink } \\ \text { VAT and } & \text { anda oookethow to soldet Priced } \\ \text { P\&P } & \text { at } £ 6.48 \text { inclusive of VAT and P.\&P }\end{array}$ A jeneral purpose iron also with a ceramic and steel shatt to give you toughness comoined win near-perfect insulation. Fitted with $1 / 8$ bit and priced at $£ 4.37$ inclusive of VAT and $P$ \& P. Range of 4 other bits availabie.
Model MLX Kit
The soldering iron in thiskitcan be operated from any ordinary car battery It is fitted with 15 feet tlexible cabie and battery clips. Packed in a strong plastic erivelope ft can be left in a car, a boat or a caravan ready for soidering in the field, Price E4.83 inclusive of VAT and P\&P

## Model SK1 Kit

This kit contains a 15 wat miniature soldering iron, complete with 2 spare


## ...with Antex

The ANTEX multi purpose range of soldering equipment is fast becoming a must for every home. Built with precision for long life, each iron is fully tested and guaranteed.
ANTEX soldering irons are made in England to strict local and international standards of safety.
Our name for reliability is spreading from all over Europe to U.S.A. to Japan and to many other countries.

Mayflower House, Armada Way
Plymouth, Devon. Tel: 0752 67377/8 Telex: 45296

Stocked by many wholesalers and retailers or direct from us if you are desperate.


Antex Lid. Freepost. Plymouth PLI 18R Tel. 075267377

## WATFORD ELECTRONICS <br> 35 CARDIFF ROAD, WATFORD, HERTS, ENGLAND

## MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

ALL DEVICES BRAMD NEW, FULL SPEC. AND FULLY GUARANTEED ORDERS DESPATCHED BY RETURN OF POST, TERMS OF BUSIMESS: CASH/CHEOUE
P.OE OR BANKERS DRAFT WITN ORDER. GOVERHMENT ARD EDUCATIONAL INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRAOE AND EXPORT INQUIRY
WELCOME. PGP ADD $30 \mathrm{p}^{\circ}$ TO ALL ORDERS UNDER E10.60. OVERSEAS ORDERS POSTAGE AT COST, AIR/SURFACE. Send 50 p (plus 25 p pap) for our cataiogue.
WAT Export orders no VAT. Applicable to U.K. Customers only. Unless stated otherwiss
We atock many moro itema. It pays to visit us. We are aituated behind Watford Football Ground. Feareat Underground/ER Station: Watfora High Street.
Saturday $9.00 \mathrm{am}-6.00$ pm. Amplo Free Car Parking apace available.
POLYESTER CAPACITORS: Axia! lead type (Values are in $\mu \mathrm{F}$ )
$400 \mathrm{~V}, 0.001,0.015,0.002,0.003 \mathrm{7p} ; 0.0047,0.008,0.01,0.015,0.018 \cdot 9 \mathrm{p} ; 0.022,0.033$, 10p:

 ELECTROLYTIC CAPACITORS: Axial lead type (Values are in SF) 300V: 10 40p; 47 85 p ;
$250 \mathrm{~V}: 10065 \mathrm{p} ; 63 \mathrm{~V} 0 \cdot 47,1 \cdot 0,1-5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8.8 \quad 10,15,22 \mathrm{~g} ; 47,32,5011 \mathrm{p} ; 68,10027 \mathrm{p}$ $250 \mathrm{~V}: 10065 \mathrm{p} ; 63 \mathrm{~V} 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,47,6 \cdot 8,8 \quad 10,15,223 \mathrm{p} ; 47,32,5011 \mathrm{p} ; 65,10027 \mathrm{p}$
$50 ; 1 \cdot 7 \mathrm{p} ; 50,100,22025 \mathrm{p} ; 47050 \mathrm{p} ; 1000 ; 40 \mathrm{~V}: 22,33,9 \mathrm{p} ; 1004 \mathrm{p} ; 220065 \mathrm{p} ; 330062 \mathrm{p} ; 470064 \mathrm{p}:$
 $330,47014 \mathrm{p} ; 1000,150020 \mathrm{p} ; 220034 \mathrm{p} ; 10 \mathrm{~V} ; 100 \mathrm{fp} ; 64010 \mathrm{p} ; 100014 \mathrm{p}$.
TAG-KND TYPE: $70 \mathrm{~V}: 200094 \mathrm{p} ; 4700$ \$21p; $50 \mathrm{~V}: 10,000255 \mathrm{p} ; 40 \mathrm{~V}$ : $15,000450 \mathrm{p} ; 25 \mathrm{~V}: 470048 \mathrm{p}: 220037 \mathrm{p} ; 325 \mathrm{~V}: 200+100+50+100 \mathrm{rs0p}$.

## TANTALUM BEAD CMPACI- POTENTIOMETERS

TORS $35 \mathrm{~V}: 0 \cdot 1 \mu \mathrm{~F}, 0.22,033,0.47$
$0.68,1-0,2 \cdot 2 \mu \mathrm{~F}, 3,4,7,6825 \mathrm{~V}$
$1.5,1020 \mathrm{~V}: 1.516 \mathrm{~V}: 10 u \mathrm{~F}=13 \mathrm{p}$ esc 47, $1004 \mathrm{pp} .16 \mathrm{~V}: 22 \mu \mathrm{~F}, 33,6 \mathrm{~V}: 47$
$68,100,3 \mathrm{~V}: 68,100 \mu \mathrm{~F}, 20 \mathrm{p}$ each
MYLAR FLLI CAPACITORS 100V: $0.001,0.002,0.005,0.01 \mu \mathrm{~F}$, gp
$0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$
BIMIATURE TYPE TRIMMERS $\begin{array}{ll}2-5 \cdot 5 \mathrm{pF}, \mathrm{a}-10 \mathrm{pF}, 10-40 \mathrm{pF} & 22 \mathrm{p} \\ 5-25 \mathrm{pF}, 5-45 \mathrm{pF}, 60 \mathrm{pF}, 88 \mathrm{pF} & 30 \mathrm{p}\end{array}$ COMPRESSION TRIMMERS $3-40 \mathrm{pF}, 10-8$
$100-500 \mathrm{pF}$ POLYSTYRENE CAPACITORS 10pF to 1 nF Ip; 1.5 nF to 47 nF 10p. SILVER MICA (Values in $\rho F) 3-3$,
$4-7,6-8,10,12,18,22,33,47,50,68$, $45,82,85,100,120,150,2209 \mathrm{p}$ each
$250,300,330,360,390$ $\begin{array}{ll}\text { 250, 300, } 330,360,390, & \text { 18p each } \\ 600,820, & \\ 1000,1800,2000,2200 & \text { 20p each }\end{array}$ $1000,1800,2000,2200$
CERANIC TRIMMER
CAPACITORS CAPACITORS
2-7p., 4-15pF, 8-25pF, 8-30pF 20p

## SOLDERCON PI

100


OPTO
ELECTRONICSx
LEDs plus clips
TIL209Red

 CO-AXIAL (TV)

## PHONO

| $\begin{array}{l}\text { Phsorted colours } \\ \text { Metal Screaned }\end{array}$ | $\begin{array}{c}9 p \\ \text { 92p }\end{array}$ |
| :--- | ---: |

EANANA $\frac{4 \mathrm{~mm}}{2 \mathrm{~mm}} \underset{\substack{11 \mathrm{p} \\ 10 \mathrm{p}}}{ } \frac{12 \mathrm{p}}{10 \mathrm{p} 3-\mathrm{w}}$

## WANDER ${ }^{2}$ ?mm

 Sachesirs Vh

## RIABLE

 - Sill Silizat
 $\begin{array}{lll}\text { Drum } 54 \mathrm{~mm} & 30 \mathrm{p}^{*} & 100,150 \mathrm{pF} \\ 0.1-365 \mathrm{pF} & 245 \mathrm{p} & 1.3 \times 310 \mathrm{pF} 485 \mathrm{p}\end{array}$


DENCO COILS RDT2 92p
DP VALVETYPE RFC5 chokes 91p




VEROBOARD * $\begin{array}{ccc}0.1 & 0.15 \\ \text { (copper clad) (plain) }\end{array}$

## 

## The Ratest art mnoration from Sparlhrite <br>  <br> the quickest fitting CLIP ON <br> capacitive discharge electronic ignition in KIT FORM <br> - Smoother running <br> Instant all-weather starting <br> Continual peak performance <br> Longer coil/battery/plug life <br> - Improved acceleration/top speeds Optimum fuel consumption <br> Sparkrite $\mathrm{X4}$ is a high periormance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3$ mins. <br> Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high. R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, oid, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuir incorporates a voitage regulated output for greatly improved cold starting. The circuiz includes built in static tirning light. systems function light, and security changeover switch. All kits fit vehicles with Coil distributor ignition up to 8 cylinders. <br> THE KIT COMPRISES EVERYTHING NEEDED <br> Die pressed epoxy coated case. Ready drilled, aluminium extruded base and hear sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transtormer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg, or pos. earth and fully illustrated installation instructions. <br> NOTE - Vehicles with current impuise tachometers (Smiths code on dial RV1) will requite a tachometer pulse siave unit. Price 23.85 inc. VAT. post $\&$ packing Electronics Design Associates, Dept. EE2 <br> 82 Bath Street. Walsall, WSI 3DE, Phone: (9) 514791

Electronics Design Associates,
Dept. EE 2 82 Bath Street, Walsall. WS1 3DE. Phone: (9) 614791

## Name

Addiress

Phone your order with Access or Barclaycard
Inc. YAT. and PP. (U.K, only.)

| OUANTITY REO'D. |  |
| :--- | :--- |
| KIT £16.65 |  |
| TACHO PULSE £3.85 |  |
| SLAVE UNIT \&3. |  |

Send SAE if brochure onik required.
Ienciose chequel PO 's tor
$E$
Cheaue No.
PLEASE STATE POLARITY POS OR NEG EARTH.


ROOM THERMOSTAT
 WINDSCREEN WIPER CONTROL
Vary speed of your wiper to suin
conditions. All parts and instrucMICRO SWITCH BARGAINS Rated at 5 amps 250 V . Ideal to make a
switch panel hor a calculatorand for dorens vintch panel hor a calculator and for dozens ans and
of other applications. Parcel of 10 (woo

## RADIO STETHOSCOPE

 Easiest way to faulf find, traces. signal stops you've found the faul:. Use it on Radib, TV, amplifer, anything, Kithcomprises transistors and parts inclucomprises transistors and parts including pro
$\epsilon 395$

MULTISPEED MOTORS


## 12 V MINIATURE RELAY

> sets of change over contacts. The operated with two thit relay is its heavy lead out wires; these provide adequate support and therefore the relay needs no fxing; on the other hand there is a fixing boll protruding through one side so if you wlsh you can fix the relay and use its yery strong lead outs to secure circuit com. ponants-an expensive relay but we are offering it for only 87p each. Don't miss this exceptional bargainl

## EXTRACTOR FAN

 Ex computers-made by Woodsof Colchester. Ideal for fixing
through panelthrough panel-reasonably quiet
funning-very Dowerful 2500 running-very
nom. Choice


## mains relays



With triple 10 amp changeover contacts-
operating coil wound tot 230 V a chassis

BURGLAR ALARM ITEMS

| Clircuit ree on appolication |
| :--- |
| Trigger mats |
| $4^{4} \times 18^{\prime \prime}$ |

Relay 24 volt
Alarm Eeil 24 voit
Reset. Switch, ordinar
Wire-too metres

Being in a plastic tube it is very easy to
break up the battery into separate cells similare these for radio control and

PP3 PP9 REPLACEMENT
Japanese msoe ectifier and smoothed outputos 9 V sult wabl

## SWITCH TRIGGER MATS

switch on with slightest pressure. For burglar alarms, shop doors, etc. 24 in , $\times 18 \mathrm{in}$. $£ 2 \cdot 50$.
13 in . 10 in . 1.95 .

## MAINS TRANSISTOR PACK

Pesigned to operate transistor sets and amplifers. Adiust:
 ormer, rectifier, smoothing and road resistor, condensers
nd instuctions. Real stio et only Et. 95 .


DRILL CONTROLLER Electronically changes speed
from approximately 10 revs to maximum. Full power at all speeds by finger-tip control
Kit includes all parts, case, Made up model £1:00 extra

## 8 POWERFUL

## BATTERY MOTORS



ROTARY PUMP
seff priming, ponable
elf priming, portable, fits drill pr el ric motor pumps up to 200 gallons pel
depending upon revs. Virtually uncorrodable, ise to suck water, ovi,
petrol. fertiliser, chemicals, anything

SHORTWAVE CRYSTAL SET


DELAY SWITCH Mains operated-delay can be ac periods of up to $2 \frac{2}{2 r s}, 2$ contacts
suitable to 5 witch 10 amps-second contact opens tew minutes after 1 st
contact 95 p. contact $95 p$.

## 25A ELECTRIC PROGRAMMER



MULLARD AUDIO AMPLIFIERS

power, output $£ 1-59$
Model $1132-10$ watts power output $£ 3.94$
Model
Model $1132-10$ watts power output $£ 3.94$
Model 11772 W power output $£ 2.25$
Model EP9000 \& watt power putput $£ 2.90$
TANGENTIAL HEATER UNIT

> A mostefficient and ouiet running blower-heater by Solatron-same
blower-heater by Solatron-same
type as is fitted to many famous
name heaters-Comprises mains
iduction motor-long turbo fan

- split 2 kw heating element and
-split 2 kw heating element and
thermostatic safety trip-simply
connect to the matins for im
connect to the mains for im
mediate heat-mount in a simple
wooden or metal case or mount
direct onto base of say kitchen
direct onto base of syy kitchen
unit-price \&4 95 post $£ 150$
control switch to give 2 kw . 1 kw ,

| extra. |
| :--- |
| case with control switch |
| 12.00 |

## THERMOSTATS

$$
\begin{aligned}
& \text { Refrigeration } \\
& \text { cantllary } \& 1.62
\end{aligned}
$$

Limpet Stat must be mounted in close contact caliorated $80^{\circ}-180^{\circ} \mathrm{F}$ in amp contacts \&1. 62 . Appliance Stat fix like a volume control15 amp contact $30^{\circ}-80^{\circ} \mathrm{E} \mathrm{85p}$.
ditto but for high temps \&1. 25 .
Over Stat-w
Wall Mounting by Satchwelt whth Serson and capilary 85p
23.00
$£ 2.16$
SOUND TO LIGHT UNIT Add colour or white light to you
amplifier. Will operate 1.2 or 3 lamps maximum A50W
to work. \&9 95.
 MINI-MULTI TESTER Amazing deluxe pocket size
precision moving coll instrument jewelled bearings- 1000
opv-mirrored scale. 11 instant ranges mea DC volts $10,50,250,1000$ DC amps $0,50,250,1000$ ohms.
Complete with insulated probes. leads, battery, circult diagram:

Unbelievabie value only $£ 650+50$ p post and Insurance. FREE Amps ranges kit enable you to read DC current from
$0-10$ amps. directly on the $0-10$ scale, it's tree if you purchase luickiy but if you already own a mini fester and would lik $\geqslant$ one

TERMS: Cash with order-but orders under $£ 6$ must add 50p BULK ENOUIRIES INVITED PHONE: 01-688 1833.
J. BULL (ELECTRICAL) LTD
(Dept. P.W.), 103 TAMWORTH RD. CROYDON CR9 15G

## IT'S FREE

Dus monthly Advance Advertising Bargains List gives
details of bargains arriving or fust arrived-often bargains which sell out before our advertisement can appear-it's are a teresting of list and it's free-iust send S. A. E. Below
are Bargains still available from orevious
Lines.
Telephone Ringing Mains Unit Ratter novel unit 85 it not only
reduces mains to 50 . to 25 Hz , this frequency gives correct ringing note for trequency
These bell Compleaty enclosedede for the GPO so opviousty are first class.
to mount on the wall or stand on a shelf: Price £3.20.
Talephone Extension Bellg in bakelite wall box, these will save
you missing calls when vou are olit you missing
Price e3.16.
Variable Mains Supply A bench mounting unit which contains an solation trarsformer for salety and a 2 anmp variac for adan-
tability. With this you will be able to get continuously variable mains supply from zero to full voltage at 2 amps. A real time
seving device, price only $£ 20-75$. saving device price only $£ 20-75$.
Anawering Machines still
Answaring Machines stil available as last months newsletter
but supplies are going down repidly and this may well be your las chancu to acquire one of these.
A very large purchase this month enables us 10 uffer a range of
radio items. You will find the prices wilt Cassette Recorder/Player Japanese of Hong Kong made, etc, also sockets ior siop/start, miccophane earphone and lead
for mains as these operate from mains or HP1 batteties E12-50. Six Transistor Pocket Radios Medium wave only but with
Radio 2 and Radio 4 charging places, Medium wave is all the Radio 2 and Radio 4 changing plates, Medium wave is all the
average listener will wagt in the future. These little radios would make a lovely git for a chito. Modern design and is popular
molours. please state proterred colour and give an altarnative price ori ply f1-50,
AM/FM Radios
AM/FM Radios There's no doubt that FM does give better
reproduction in good areas so a more adult miember of the fant reproduction in good areas so a more adultmember ot the fam y
will be pleased with one of these The gnes we hive are in
leatherette cased and leatherette cases and are batterv/mains radios having the mains medium wave and VHF with optional AFC. Price $\mathbf{\Sigma 6}$.75,
8 Track to Cassatte Adaptors Cartridges see ooing Dut of popnumbers and cover practically every field of sound entertainment Cassettes can be played in 8 track if you have an adaptor We of-
fer these adaptors complete in carring case and the price is onl £8.50.
Soft Toy Radios Not necessarily only for the younger member of the family as these are soft and cute and have universa; appeal
Dolls, poodles. elephants and robbit? at the bottom where the radio firs: Medium wave only, working from PP3 batteries, Whern ordering please state preference and it
possible give an alternative $£ 4.50$. 5 Band Porsable. A very impressive radio in black imitation Trocodile case, size approx- 12 in , Wide, 7 in thigh and 4 in , deep.
This hme metal embelished carrying handie and a pullout chrom
plated FM aevial, covers the following bands AM 535 to 1605 KHz. FM 88 to 108 MHz weather band 162.5 MHz and it has logging scale This battery/mairs rudio has the buit in mains uni
aiso serves as a charger if you use rechargeable batteries. The mains leard with plug tucks away in its own compartment anothe
feature is a dial indigator which stows state of barteries A re
snip at 10 . 50 snip at $₹ 10.50$.
been designed towar Unit made for Aiank Radio. This unit has 12 car battery it provides a relitable sowree of stabilisod voltag oversal of connections also against excessive car battery voltag if used sensibly, It uses a negative earth circuit but it will operat in a positive earth car providing the instument being $p$
connected to the cor chassis. A real bargain at $\mathbf{\Sigma 2 - 2 0}$.
Extension Speaker Cabinsta A new delivery of these enables smaller onges f1 1 in. $\times$. 8 in. $\times 4$ in. approx.) at $£ 1.95$. Post $£ t .00$ and we have a larger one with a stiver finish size approximatoly
$12 \frac{1}{2} \mathrm{in} \times 9 \mathrm{in} . \times 5$. in Price of this is $\mathrm{£1}-69$, post ET .50 . If you can cal and collect these cabinets you can save yourself the quit considerabie postage and you oniy nsve to buy a fow to get a dis-
count as well. The quantify discount for these is a speacilitre rat
$25 \%$ it quality (made for Rannk Audio Systemsi the grill material है
Stide Switch Bargain Double pole changeover standard size with go
Six Digit Counter Mains operated. 1 pulse mpues counte
through ane digit, not tesottable but all you hive to do is to through one digit, not resottable but all you hove to do is to maka Be Prepared For possible blackouts and Interruptions in elec
tricity suoply this winter! Hove some ernergency fighting neativy We still have the floorescent ourfits for operating 12 in tubes from post complere with a 21 in tubo. Stereo Car Spoakers usual type in neat compact ent
the rear shelf of the car. 8 ohms 5 Watt $£ 5.50$ per pair
Blespers $6 / 12 \mathrm{~V}$ bavery or tuansformer operated, ideal for using Alarms. These give a loun shriti note. American made by Delta 2.08 + 8 p . Large quantities avallable

Most Usaful Timar Up to 12 anjofts per 24 hours is what you
can get from the Venner time switch if you fit our adsptor. The shortest anfor off time is one hoor but you can wse any combina-
tians of on/off to make up the 24 hours. An obvious use for this is to control immersion heaters these are real current consumers and even though the therroostass are working properly, Veriners are all capable of 20 amp switching. There are of course many other applications for the time switch, which you will remumber in its basic form follows the sun switching on ar dusk
and oif at dawn. Price E 3.24 plus 50 p post for switch with adaptor, extra for plastic case £1.08 or metal case $\mathrm{f2.16}+16 \mathrm{p}$
Safe Soilstat For growers who use soil heating on benches economies can be made by using a thermostai but if mains voitage equipment is used then the thermostat must be enclosed
in a waterproof and earthabie contsiner. We can now suppiy this sion heatar Type thermostrat but for soill heating you want one at $£ 3.20$.
Motorised Light Flasher We can offer two motorised units both
capable of 2080 W of light Ouf capane and the 2 second flasher changes every 2 seconos.s. Either type E6.40.
Frightaning Fusl Bills cpald lose some of their sting if you fit
double glazing but even if the fuel bill does not come down much yoo wid have a more comfortable home less draughts, etc, made using nigid PVC sheetings. We have this, it is as clear us
glass and firtually as everlasting. It la easy to fit as you con

 order 20 sa ft for $£ 1.05$ post
onger lengths price negotiable

# GREENWELD 

## 443 Millbrook Road Southampton SO1 DHX Tel:(O703) 772501

All prices quoted include VAT. Add 25o UK/BFPO Postage. Most orders des. 2i. Oflicial orders accepted from schools, etc. (Minimum invoice charge 25 ). Export Wholesale enquiries welcome. Wholesale list now available for bona-fide traders Whoiesale enquiries welcome. Whole
Surplus components always wanied.

## THE NEW 1978-9

GREENWELD

## catalogue

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices

PRICE $30 \mathrm{p}+15 \mathrm{p}$ POST

## KITS OF BITS FOR THIS MONTH'S EE PROJECTS

## MICROCHIME

All parts as specified excluding I.C.-
E5.60(1.C. 85 extra)

## ADJUSTABLE P.S.U.

Parts for this prolect will cost approxi--
mately $£ 18-00$ exciuding case. Send SAE mately $\Sigma 18-00$ excfuding case. Send SAE

## TREASURE HUNTER

 SOUND UNITAll parts including case as listed are suppled except
as two separate ware not included. $\approx 4$ :65.

## CHOKE WARNING

 DEVICEAll parts as specified (no case)-£3:80.

## AUDIO MODULATOR

 switchbox hardboard pins and screws. switchbE1.35.

## LONG WAVE

 CONVERTER All parts less box as specified for $\$ 3 \cdot 65$,
## THYRISTOR TESTER

 All components and hardware asspecified- $82 \cdot 50$.

## 20/20 TUNER AMP

Send SAE for detailed list, all semiconductors, resistors, capacitors, pots
and switches for $\varepsilon 48.50$. and swiches lor 248.20. - Please note, prices for kits of parts are based on advance Information from EE, we can supply.

## "DOING IT DIGITALLY"

This new series which started October 1978 is bound to be a ble success. We supply a
complete set of parts (as we did for losi complete set of parts (as we did $£ 1$ tas E1 post for the Electronic Test Bed, and E2.75 for additional parts requited for first 6 parts

## The GREENWELD

Amplifier Kít
Ideal for the beginner to make, this kit is complete right down to the last screwl Easily constructed on the PCB provided.
the 4 transistor circuit will give 2 W output from a crystal cartridge. Battery version \&1.75, or with transformer for mains operation $£ 3 \times 95$

PC ETCHING KIT MK III Now contains 200 sq. Ins. copper clad
board, 11 b . Ferric Chioride, DALO etchboard, ind Fen, drili bifs, eiching dish and instructions. §4-25

## BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops so open.
* SAVE ON MONEY - Bulk buying means lowest prices-just compare with others.
* HAVE THE RIGHT PART-NO guesswork or substitution ALL PACKS CONTAIN FULL SPEC. BRAND NEW MARKED DEVICES SENT BY REIURN
INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors, 5\%. 10 of each value 22 pF to 1000 pF . Total 210 . K3.35 Extended range. 22pF to $0-1 \mu \mathrm{~F}$. 330 K002 Extended range. 22pF to
values E 4 so
K003 Polyester canacitors, 10 each of these Values sest
K003 Polyester capacitors, 10 each of these
values: $0.01,0.015,0.022,0.033,0-047$, values: $0.01,0.015,0.022,0.033,0.047$,
$0.068, \quad 0.1=0.15,0.22,0.33,0.47 \mu \mathrm{~F}, 110$ altogether for $£ 4.75$
K00a Mylar capacitors, min 100 V type. 10 each all values from 1000 pF to 10,000 p K005 Polystyrene capacitors. 10 each value from 10 pF to $10,00 \mathrm{ppF}$, E12 series $5 \%$
160 V . Total 370 for $12 \cdot 30$ 160 V . Total 370 for $£ 12 \cdot 30$
K006 Tantalum bead capacitors. 10 each of the following: $0.1,0-15,0-22,0.33,0.47$,
$0.68,1,2 \cdot 2,3-3,4-7,6 \cdot 8,211$
$35 \mathrm{~V} ; 10 / 25$ $\begin{array}{lll}15 / 16 & 22 / 15 & 33 / 10 \\ 47 / 6 \\ 100 / 3 .\end{array}$ tants for $\mathrm{f} 34-20$
K007 Electrolytio
K007 Electrolytic capacitors 25 V working small physical size. 10 each of these pop-
ular values: $1,2.2,4.7,10,22,47,100 \mathrm{HF}$. Total 70 ior $E 3.50$
K008 Extended range, as above, also Including 220, 470 and $1000 \mu \mathrm{~F}$. Total 100 fo £5-90
K021 Niniature carbon film $5 \%$ resistors CR25 or similar. 10 of each value from $10 R$
to $1 M, ~ E 12 ~ s e r i e s . ~ T o t a l ~$
60 resistors, $£ 6.00$ K022 Extended range, total 850 reslstor
 etc. 10 of each value from 2.7 V to 36 V etc.
Egt serles. Total 280 for $£ 15-30$
K9 42 As above but 5 of each value $£ 8 \cdot 70$


## TRANSFORMERS

All mains primary: $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 85 \mathrm{p}$; $100 \mathrm{~mA} .95 \mathrm{p}: 1 \mathrm{~A} \quad \leq 2 \cdot 50.6-0-8 \mathrm{~V}$, 100 mA 35 p ; ${ }^{11} \mathrm{~A}$, $22 \cdot 40$. $9-0-9 \mathrm{~V}$. 75 mA . $85 \mathrm{p} ; 1 \mathrm{~A}$
22 Muititapped type $0-12-15 \cdot 20-24$.
 $24 \mathrm{~V} 5 \mathrm{~A} \pm 7 \cdot 50 ; 0-22 \cdot 34-41 \mathrm{~V}$ 4A E7.50;
20 V . 300 mA twice $52 \cdot 50: 12 \mathrm{~V}$ twice $£ 2 \cdot-90$

## RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$
 W817 in pin plug in relay, rated 24 V ac,
but works well on 6 V DC. Contacts 3 pole co rated $10 \mathrm{~A}, 95 \mathrm{p}$ ) coll, 11 pin plug in type. 3 pole c/0 10A contacts, Orly $85 p$ 3 sets 10A cio contacts. ह1-20
W877 $675 R \quad 12-27 \mathrm{~V}$ DPCO 23
W877 675R 12-27V. DPCO $23 \times 20$ 10 mm sealed can $86 p$.
W 880
230 V alc
W83e 230 alc DPCO 10A contacts, W830 200R $6-12 \mathrm{~V}$ DP
10 mm , sealed can 88 p
10 mm , sealed can 88 p . $23 \times 20$ Send SAE for our relay list-84 types listed and illustrated.

HEAT SINK OFFER
Copper TO5 sink 17 mm dia
$40 \mathrm{p} ; 100$ for $\Sigma 3 ; 1000$ for $£ 25$
POLYTHENE SHEET
Size $36 \times 18^{\circ} 2009$. Hundreds of uses
around the home. 100 sheets for $£ 1 \cdot 50$. Box of 1500 for £18

## CRESCENT RADIO LTD.

1, St. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4S]. PHONE 01-888 3206


Push button heads or tails. Complete kit and full instruction supplied.
A pocket game.
Easy to buld and greas
Kit price- $55-25+8 \%$ VAT. Post free CR Allo DESOLDERING PUMP

## ONLY $£ 6+8 \%$ VAT

High suction pump with automatic ejection. Knurled, anti corrosive casing Teflon nozzle

## HEAYY DUTY XOVER

2 WAY 8 OHM
A 2 way 8 ohm HID Xover suitable fo L/S systems up to 100 watt.
Fitted with screw terminals for input and a three position 'HF LEVEL' switch which selects either flat, -3 dB or- 6 dB $\frac{\text { ONLY } \& 3.00+8 \% \text { VAT }}{\text { A CRESCENT }}$
Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeaker.
loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 \mathrm{th}^{\mathrm{n}}$ (diazonaily)

## ONLY $\$ 5 \cdot 00+12 \frac{1}{8} \%$ VAT

TELESCOPIC AERIAL $+12 \frac{1}{2} \% V A T$ Il section telescopic aerial. Extended length: 1 metre ( $39 \frac{1}{\prime \prime}^{\prime \prime}$ ) Fully ciosed: 135 mm ( $5 \Psi^{\prime \prime}$ ) Fixing: nut and boit fixing through recess at base of aerial

ONLY 75p EACH

LOUDSPEAKERS + $12 \frac{1}{5} \%$ V.A.T
$2 \frac{1}{4}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm
(please state impedance req'd) 2 n $^{\prime \prime}(60 \mathrm{~mm}) 8$ ohm (limited stocks) 60 $5^{2 \prime} 8$ ohm Ceramic ( 70 mm ) 8 ohm (ited stocks) 60 8 " "ELAC" 8 ohm ISW dual cone 8" "GOODMANS" "Audiom 8PA 8 ohm 15W
$\times 4^{\prime \prime} 8$ ohm 4W \&4-95
LOUDSPEAKERS + $8 \%$ VAT
$12^{n}$ "MCKENZIE" 8 ohm 75 W Bas
$\leqslant 23.62$
12" "MCKENZIE" 8 ohm 75 W gonera purpose $\begin{array}{r}\text { gonera } \\ \text { il8.37 } \\ \hline\end{array}$

## 3 KILOWATT PSYCHEDELIC

 LIGHT CONTROL UNIT1000W lighting per channel, max. This 3 channel sound to light unit is housed in a robust meral case, with i.e. Bass, middle and treble. Full instructions supplied. S.A.E. for spec sheet. ONLY $£ 20 \cdot 00+8 \%$ VAT CRLVI $\quad 12 \mathrm{y}$ DRILL

612.00 Uefere craser
$8 \%$ VAT BRITISH MADE "Versadrill", 12 volts DC. Compact battery operated power tool, sufficiently powerful to perform all the operarions associated with 240 v drills. Dimensions:-
$150 \times 50 \mathrm{~mm}$ (dia.)
$150 \times 50 \mathrm{~mm}$ (dia.)
BABGEYCART 'P\&P' ORDERS UP TO 65, Add 30p
VISA ORDERS $£ 5-£ 10$, Add 50 p
All orders over $£ 10$ post free All orders over $£ 10$ post freel
Please add YAT as shown. S.ease add YAT as shown.
 .A.E with Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N13.
ALSO. 13 SOUTH MALL, EDMONTON GREEN, EDMONTON.

|  <br> Min. Order are $12.5 \%$. |  |  |  |  <br> -TBAB10S 105 <br> W/W <br> Resistors <br> $\begin{array}{ll}2 \cdot 5 w_{1} 15 w & 10 \\ 5 w_{1} 10 w & 3\end{array}$ <br> Antex <br> Sofdering <br> tron <br> C-240v 15 w <br> E3:60 <br> BargainPaks <br> +eak f <br> 100 Gen. Pur- <br> type) <br> cept thase mar ustrial enquirie <br> 8AF. Tel. 05 | pose Transistors including BC149, 2N3703 etc. $\quad 25: 00$ <br> Pak 2 <br> 20 Transistors including 3D115, <br> BD695A, etc. £5. 50 <br> Pak 3 <br> 100 mixed <br> W/W Resistors including $2.5 \mathrm{w}, 5 \mathrm{w}, 10 \mathrm{w}$ etc. $23-50$ <br> Pak 4 <br> 100 on 74 series with preformed pins including 7410,7430 letc. 84:00 <br> ked * which es welcome. <br> 533609391 |
| :---: | :---: | :---: | :---: | :---: | :---: |



NO BATTERIES NO WIRES保 ower sooket. Ready for use. Eryatal clear ommuncations from rnom to roow. Hage - mile on the same malnx phass. On/off switch. between office and warehouse in surgery and in ONLY S32"g9 PER PAIP


Latest improved transintarised Telephone Ampliner with detuched
plug-in speaker. Placing the reciver on to the cradle activates a switch for Immeitate two-war conversation withodt holdink the andset. Many people can lister at
time. Increases efficiency in the office, shop and surgers. Perfect for "onderence" calls:Iesves the user's hinds free to make notes, consult
files. No lons waitling, savex time files No lonk waithg, savev time
with long-distance calle, Onfoin

 LOADON, W8 68N. 01-887 5548

# 100K! Here's how you master electronics. ....the practical way. 

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

## 1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscopel This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

## 2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other


## 3. Carry out over 40 experiments

 on basic circuits.We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

## 4. FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.


Post now, without obligation, to:-

## BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156, Jersey, Channel Islands.
$\qquad$
ADDRESS

## Ot's M.M.MONTERT So

## 74 SERIES TTL IC'S

|  |  <br>  <br>  <br>  |
| :---: | :---: |
|  <br>  <br>  व4m Mnchaill |  <br>  <br>  |
|  <br>  <br>  <br> $80888888582888-1$ | A-A - <br>  Gínob A |
|  |  <br>  <br>  <br>  |
|  <br>  $0.000-04-N-0600$ |  |
|  <br>  |  <br>  |

## THYRISTORS

| No. THY1A 50 | I Amp | 50 volt | T05 | 18 p |
| :---: | :---: | :---: | :---: | :---: |
| No. THY1A 400 | 1 Amp | 400 volt |  | 32p |
| No. THY3A/50 | 3 Amp | 50 voit | T064 | 25p |
| No. THY3A/200 | 3 Amp | 200 volt | T064 | 32 p |
| No. THY3A/400 | 3 Amp | 400 volt | T064 | 40 p |
| No. THYGA/50 | 5 Amp | 50 volt | T066 | 25 p |
| No. THY5A/400 | 5 Amp | 400 volt | T066 | 40 p |
| No. THY5A600 | ${ }_{6}^{5}$ Amp | 800 volt 400 volt | +1026 | 50p |

TRIAC

| DIACS |  |  |
| :---: | :---: | :---: |
| ${ }_{\text {BR }}^{1 / 100}$ | V4, 13 equt D32 each | 12 p |

## BOOKS BY BABANI

|  |  | Normal Price | $\begin{aligned} & \text { Safe } \\ & \text { Price } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| BP6 | Engineers \& Machinists Reference Tables | £0.40 | £0.36 |
| BP14 | Second Book of Transistor Equivalents \& Substitutes | 51.10 | 2.0.98 |
| BP22 | 79 Electronic Novelty Circuits | £0.75 | 20.68 |
| BP24 | 52 Projects Using 10741 for equlvalents | $£ 0.75$ | £0.68 |
| 8P28 | Radio Antenna Handbook for Long Distance Reception \& Transmission | £0.85 | 20.77 |
| BP27 | Giant Chart of Radio Electronic Semi-conductor and Logic Symbols | £0.60 | £0.54 |
| BP32 | How to Bulld Your Own Metal \& Treasure Locators | 20.85 | £0.77 |
| EP34 | Practical Repaic \& Renovation of Colour TV/s | £0,95 | £0.86 |
| 8 835 | Handbock of IC Audio Preamplifier \& Power amplifier construction | £0.95 | C0.85 |
| BP36 | 50 Circuits Using Germanium, Silicon \& Zener Diodes | ¢0.75 | \$0.68 |
| BP37 | 50 Prolects Using Relays SCR's and Triacs | 21.10 | £0.99 |
| 8P39 | 50 (FET) Field Effect Transisor Prolacts | £1.25 | E1.13 |
| BP40 | Diqital IC Eqpivalents \& Pin Connections | ¢2,50 | £2.25 |
| BP41 | Linear IC Equivalents \& Pin Connections | 22.75 | £2.48 |
| BP42 | 50 Simple LED Circuits | 80.75 | £0.68 |
| BP43 | How to make Walkie-Taikie | 21,25 | £1.13 |
| BP44 | 1 le 555 Timer Prolects | ¢.1.45 | E¢.31 |
| BP45 | Projects on Opto-Electronics | E1. 25 | E1.13 |
| BPS6 | Radio Circuits using ic's | 21.35 | 21.22 |
| 8, 47 | Mobile Discoteque Handbook | £1,35 | \$1.22 |
| BP48 | Electronic Projects for Beginners | 81,35 | 21.22 |
| BP49 | Popular Electronic Projects | £1.45 | E1.31 |
| BP50 | IC LM3900 Projects | E1.35 | E1.22 |
| 8P55 | Radio Stations Guide | £1.45 | £1.31 |
| BP160 | Coll Design \& Construction Manual | 20.75 | 880.68 |
| BP202 | Handbook of Integrated Circuits (ICs) Equivalents a Substitutes | 20.75 | 20.88 |
| BP205 | First Book of Hi-Fi Loudspeaker Enclosures | 80.75 | 20.68 |
| BP213 | Electronic Circults for Model Railways | £0. 85 | 80.77 |
| BP215 | Shortwave Circuits a Gear for Experimenters and Radio Hams |  | 80.77 |
| BP216 | Electronic Gaduets \& Games | $\pm 2.85$ | E0.77 |
| BP217 | Solld State Power Supply Handbook | $\pm 0.85$ | 80.77 |
| BP221 | 28 Tested Transistor Prolects | ¢0.95 | $E 0.86$ |
| BP222 | Solid State Short Wave Recelvers for Beginners | 20.95 | ${ }^{2} 0.85$ |
| BP223 | 50 Profects Using IC CA3130 | ¢0.95 | 50.86 |
| BP224 | 50 CMOS IC Projects | E0, 85 | £0.88 |
| BP225 |  | ¢0.95 | E0.86 |
| BP226 | How to Build Advanced Short Wave Receivers | 81,20 | E1.08 |
| BP227 | Beginners Guide to Building Electronic Projects | ¢1. 25 | 81.13 |
| BP228 | Essential Theory for the Electranics Hobbyist | £1.25 | 21.13 |


| Micorporating a short circait protection and current limiting: |  |
| :--- | :--- |
| Voitage Regulation |  |
| Regulated Current | 230 V |
| Ac Invut Maximum | $0-2 \mathrm{~A}$ |
| Eiminates the use of batteries and thus saves $f$ 's-can be used time and time again |  |

## $\begin{array}{ll}16201 & 18 \text { Eiectrolytics } \\ 16202 & 18 \text { Electrolyics }\end{array}$

4.7 $\mu \mathrm{F}-10 \mu \mathrm{~F}$ 1620318 Electrolytics $\quad 100 \mu \mathrm{~F}-680 \mu \mathrm{~F}$ All 3 at SPECIAL PRICE of $£ 1.20^{\circ}$

| 16160 | 24 Ceramic Caps | $22 \mathrm{pF}-82 \mathrm{pF}$ |
| :--- | :--- | :---: |
| 16161 | 24 Ceramic Cops | $100 \mathrm{pF}-390 \mathrm{pF}$ |
| 16162 | 24 Ceramic Caps | $470 \mathrm{pF}-3300$ | $\begin{array}{lll}16162 & 24 \text { Ceramic Caps } & 470 \mathrm{pF}-3300 \\ 16163 & 21 \text { Ceramic Caps } & 4700 \mathrm{pF}-0.047\end{array}$ All 4 at SPECIAL PRICE of $f 1.60^{*}$

RESISTOR PAKS

\section*{| Order NQ. |
| :--- |
| 16213 |
| 16214 |
| 16215 |
| 16216 |
| All 4 at |}

$\begin{array}{ll}601 \mathrm{~W} & 100 \text { ohm } 820 \mathrm{ohm} \\ 60 \frac{1}{2} \mathrm{~W} & 1 \mathrm{~K}-8.2 \mathrm{~K} \\ 60 \frac{1}{2} \mathrm{~W} & 10 \mathrm{~K}-82 \mathrm{~K} \\ 60 \frac{\mathrm{~W}}{}\end{array}$
All 4 at SPECIAL PRICE of $£ 1.60^{\circ}$
$\begin{array}{lll}16217 & 401 \mathrm{~W} & 100 \mathrm{ohm}-820 \mathrm{ohm} \\ 16218 & 40 \pm \mathrm{W} & \mathrm{O}\end{array}$
$\begin{array}{lll}16218 & 40 \pm W & \text { IW } 8.2 \mathrm{~K} \\ 16219 & 40+W & 1 \mathrm{~K}-8.2 \mathrm{~K}\end{array}$
$\begin{array}{lll}16219 & 40+\mathrm{W} & 1 \mathrm{~K}-8.2 \mathrm{~K} \\ 16220 & 40 \frac{1}{2} \mathrm{~W} & 100 \mathrm{~K}-820 \mathrm{~K}\end{array}$
All 4 at SPECIAL PRICE of $£ 1.60^{\circ}$

## 

$\quad$ RE
Positive
No. MVR7805
No. MVR7812
No. MVR7816
No. MVR7818
No. MVR7824
Negative
No. MVR7905
No. MVR7912
No. MVR7915
No. MVR7918
No. MVR7924
HA723CT099

REGULATORS


## SPECIAL OFFER!

 UNTESTED
## SEMICONDUCTOR PAKS

Code $\mathrm{No}^{\prime}$ 's stiown below are giveri as a guice to the type of device. The devices themselves are normally No. 16130

No. 16130

| No. 16130 | 100 Germ Gold bonded diodes like OAd7 |  |
| :---: | :---: | :---: |
| No. 16131 | 150 Germ Point contact diodes like OA70/81 | 40p |
| No. 16132 | 100200 mA Sil diodes. like OA200 | 40p |
| No. 16133 | $15075 \mathrm{~m} A$ Sid. Fast switching diode like IN4148 | 40 p |
| No. 16134 | 50750 mA Sut top hat Rects. | 40p |
| No. 16135 | 20.3 amp Sil , stud Rect. | 40p |
| No. 16136 | 50400 rtw Zeners D.O. 1 case | 40 p |
| No. 16137 | 30 NPN Plastic trans like BC107/8 | $40 p^{\circ}$ |
| No. 16138 | 30 PNP Plastic trans, oike BC177/8 | $40 \mathrm{p}^{*}$ |
| No. 16139 | 25 NPN trans, like 2 N697 2N1711TO39 | 40p |
| No. 16140 | 25 PNP trans. like 2N2905 TO39 | 40p |
| No. 16141 | 30 NPN trans. like 2N706 7018 | 40 p |
| No. 16143 | 30 NPN Plastic trans. fixe 2N390 | $640{ }^{\text {p* }}$ |
| No. 16144 | 30 PNP Plastictrans like 2 N3905 | $40 p^{*}$ |
| Nos 16145 | 30 PNP Germ, vans. like OCl | 40p |
| No. 16147 | 10 NPN ro 3 Power trans. like 2N3055 | 80p |


|  | 1.C. SOCKET PAKS |  |
| :---: | :---: | :---: |
| Na. 566 | $11 \times 8$ pin Dit Sockets | £1.00 |
| Na. S 67 | $10 \times 14$ pin DIL Sockets | £1.00 |
| No. 568 | $9 \times 16$ pin DIL Sackets. | £1.00 |
| No. 569 | $4 \times 24$ pin DIL Sockets. | \$1.00 |
| No. S 70 | $3 \times 28$ pin Dil Sockets | £1.00 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| MATCHED PAIRS OF PNP GERMANIUM MED. POWER TRANS |  |  |  |
| NKT30 NKT302 NKT304 |  | $\begin{aligned} & \text { HFE } \\ & 30-100 \\ & 50-150 \\ & 30-100 \\ & 30.150 \end{aligned}$ |  |
| From U.S.A. by DINDY SCREW CASED LOW NOISE CASSETTES |  |  |  |
|  |  |  |  |

Order No. s53 10 for $£ 3.50^{*}$
HEAD-CLEANING
CASSETTE 45p each
AUDIO AMPLIFIER
RETURN OF THE AL2OA
By popular demand - this useful 5 watt RMS Power
Amplifier is offered at the re-introductory price of
Amplifier is offered at the re-
$\mathrm{f} 2.75^{\circ}$-Hook-up data supplied


## Sane provime casin

## SPECIAL OFFER! <br> COMPONENT PAKS

,

 40
40
40
40
40
40

|  | 80.20 |
| :---: | :---: |
|  | ¢0.0.1: |

## POTENTIOMETERS

Slider 40
Order N .
Order No.

$\begin{array}{lll}16193 & 6 \times 22 K & \text { LIN Single } \\ 16195 & 6 \times 47 \mathrm{~K} & \text { Lingie }\end{array}$

Slider 60 mm TRAVEL

WIREWYUND
590 Wircwound Poss Linear 1 Wat:
rating Mixed usefyl values 5
CARBON TYPES
Car Radio wo Dual Switchen
Car Radic wpe Dual switched Pot
P.C. mounting
100 K Linswitched
2.5 K Lin

## DUAL POTS P.C. MOUNTING

$\begin{array}{ll}\text { Smm Shaft } \\ \$ 92 & 4 \times 100 \mathrm{KLin} \\ \$ 93 & 4 \times 100 \mathrm{KLog} \\ 16173 & 15 \text { Rotary Pot Assorted }\end{array}$
16173 15 Rotary Pot Assorted
16186 25 Presets Acgorted Values
$\mathrm{f1.00}^{\circ}$
$\mathrm{E1.00}^{\circ}$
$4.00^{\circ}$


## TRANSISTORS

BRANO NEW - FULLY GUARANTEED

|  |  |  |  |  |  |  |  |  | 硣 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIODES


LINEAR I.C.'s

| TBA800 | ¢0.75* | UAC711 | )0.25* | UA748 | £0.28* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TBA810 | £0.85* | UA703 | E0.20 | 72558 | ¢0.45 |
| TBA820 | £0.65* | 741 P | £0.18* | MCI3IOR | £1.25 |
| LM380 | £0.80* | 72741 | 10.20 | 76115 | £1.25* |
| 4M381 | £1.25* | VA741C | £0. 20 | NE555 | ¢0.22 |
| 72709 | 80.20 | 72747 | £0.55* | SL414A | 17.80* |
| U4709 | f0. 20 | 748 P | f0.28* |  |  |

ZN 414 RADIO CHIP 75*
OPTOELECTRONICS

| Displays |  | 2nd Quality Led Paks |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a - - | $\begin{aligned} & 60.70 \\ & 21.50 \\ & £ 1.55 \end{aligned}$ | No. 1507 10 Assorted Colours \& |  |  |  |
| No. 1510707 LED Display No 1511747 LED Display No. 1512727 DisalleD Display |  |  |  |  | ¢0.75 |
|  |  | $\begin{array}{ll} \text { No, S122 } & 10 \times .125 \\ \text { No Sied } \\ \text { No } & 103 \end{array}$ |  |  | £0.60 |
|  |  |  |  |  | $\pm 0,60$ |
|  |  |  |  |  |  |
| LED's |  | $\begin{aligned} & \text { No. } 1500 / .125 \\ & \text { No. } 1508 / .2 \end{aligned}$ | . 125 | 5 for | f0.12 |
|  |  |  |  | £0.15 |
| No. S120. 125 Bright Red $\mathbf{0 . 0 9}$ |  |  |  |  |  |  |
| No. S121, 212 Bright RedNo. 1502.125 Green | 20.12 |  |  |  |  |
|  |  | Fairchild FPE100 |  |  | £0.50 |
| No.1505.2 Green | £0.12 |  |  |  |  |



| 0.S82 Clear 2 illuminating Red E0.10 | $\begin{aligned} & \text { No. } 1514 \\ & \text { No. } 576 \\ & \text { No. } \$ 835 \end{aligned}$ |  |
| :---: | :---: | :---: |
| P.O. RELAYS |  |  |
| S85-2 Off Post Office relays 40p* | $\mathrm{Na} . \mathrm{S77}$ | Neon Indicator Lamps 230V A.C State Colour (Bed, Amber and Green.) <br> 25 p each |
| BATTERY HOLDERS |  |  |

Order No. 202 take $\mathrm{o} \times$-HP/s each 10p
EX. G.P.O.IMICROSWITCHES

CABLE CLIPS

## ORDERING

Minimum postage and packing for Sale Orders $£ \mathbf{£ 0 . 5 0}$ PLUS any further postage as stated as per this Saic Advertispment
Qverseas Orders - ADI exta for Air-mal
V.A.T.

Please ADD V.AT- as inllows SEND FOR YOUR BI-PAK CATALOGUE 65 p post free.

## I.C.

INSERTION EXTRACTION TOOLS O/N 2015
30p each
$\left(\begin{array}{l}-0 \\ 0\end{array} \sqrt{-2}\right.$ A
DEPT. EE2, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE HERTS.

## EDITOR

F. E. BENNETT

## ASSISTANT EDITOR

B. W. TERRELL B.Sc.

## PRODUCTION EDITOR

D. G. BARRINGTON

## TECHNICAL SUB-EDITOR

T. J. JOHNSON G8MGS

## ART EDITOR

R. F. PALMER

## ASSISTANT ART EDITOR

P. A. LOATES

## TECHNICAL ILLUSTRATOR

D. J. GOODING

## EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

## ADVERTISEMENT MANAGER

V. PIER

Phone: 01-261 6727

## REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6727

## CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

## MAKEUP AND COPY DEPARTMENT

Phone 01-261 6618

## ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

## Projects...Theory ...

## and Popular Features ...

For the majority of our fellow countrymen, the big technological discovery of 1978 was the silicon chip. One day last June the Government became aware of the infinite power of this tiny package. Earnest ministerial pronouncements plus feverish activity by the Department of Industry and the setting up of a national microelectronics company alerted the national media. By the autumn silicon chip (alias silicone) was the new phrase buzzing up and down the country.

All this was rather amusing to students of electronics. After all, constructors had been living with and making practical use of silicon chips for close on 10 years. What is sometimes referred to as a technological revolution has really been a continuing process, ever since the transistor went into production. But a major breakthrough undoubtedly occurred with the achievement of embodying within a single chip the central part of an electronic computer, which we now know as a microprocessor.

The microprocessor has unleashed electronic computing capability in such a compact and convenient form that any limit to its ultimate application cannot be visualised. Small computers for use in the home and school, as well as for professional people and small businesses, are already available. What is more, minicomputers can be built by constructors. Thus a new growth area for the amateur
enthusiast is opening up
Home or hobby computing will attract those who have a yen for compiling programs and who revel in grappling with the kind of higher intellectual problems that are grist to the computer CPU.

With all that is happening in the field of small computers it is important to realise that microprocessors do not limit their application to these machines. Far from it. For the microprocessor is going to play an ever increasing role in electronics generally. Preprogrammed by the manufacturer to perform one specified routine, the "dedicated" microprocessor chip is a component to be reckoned with, in home constructor circles no less than in industry. We can expect the opportunities for the amateur to widen thanks to this device. Inwardly highly complex but externally simple to build, micro-processor-based projects will be exciting and revealing in the functions they provide.

This month's microprocessor-based Microchime musical door bell is an appropriate project to herald in the New Year. A year that is full of promise for the electronics enthusiast, that we are confident.


Our March issue will be published on Friday, February 16. See page 91 for details.

## Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

Telephone enquiries should be limited to those requiring only a brief reply. We cannot undertake to engage in discussions on the telephone, technical or otherwise.

## Component Supplies

Readers should note that we do not supply electronic components for building the projects featured In EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
GONSTRUGTIONAL PROJECTS
LONG WAVE CONVERTOR FOR 4 Tune in to Radio 4 on 1500 metres by F. G. Rayer ..... 74
EE MICROCHIME A 24-tune musical door bell using a microprocessor chip by Robin Palmer ..... 77
MINI-MODULE: 5-AUDIO MODULATORS For the newcomer (and others) by George Hylton ..... 86
GENERAL PURPOSE POWER SUPPLY Fully variable up to 20 volts and 1 ampere by F. G. Rayer ..... 93
EE2020 TUNER AMPLIFIER Part 3: Construction of Boards B and D by E. A. Rule ..... 100
THYRISTOR TESTER A simple and useful tool by P. C. O'Neil ..... 108
TREASURE HUNTER SOUND ADAPTOR Add sound to your Treasure Hunter metal locator by N. Hunter ..... 113
GENERAL FEATURES
EDITORIAL ..... 72
DOING IT DIGITALLY Part 5: Counting and the binary system by O. N. Bishop ..... 82
FOR YOUR ENTERTAINMENT Computer Sound, Home Computers and Computer Language by Adrian Hope ..... 85
SQUARE ONE Beginner's page. Electrolytic capacitors ..... 88
BREADBOARD '78 REVIEW A report from the constructors own exhibition by Terry Johnson ..... 89
SHOP TALK Guidance on component buying by Dave Barrington ..... 92
COUNTER INTELLIGENCE A retailer comments by Paul Young ..... 92.
JACK PLUG AND FAMILY Cartoon by Doug Baker ..... 97
EVERYDAY NEWS What's happening in the world of electronics ..... 98
RADIO WORLD A commentary by Pat Hawker G3VA ..... 104
BRIGHT IDEAS Reader's hints and tips ..... 107, 116
PLEASE TAKE NOTE Solid State Roulette ..... 107
CROSSWORD NO. 12 by D. P. Newton ..... 107
BOOK REVIEWS A selection of recent releases ..... 117
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of, by Anthony J. Bassett ..... 118
DOWN TO EARTH Pot's law-logarithmic and linear by George Hylton ..... 120

[^0]
# LONG WAVE CONVERTOR 



Iyou have a radio in use which does not include long waves, you cannot receive Radio 4 on 200 kHz or 1500 metres with it. The single transistor convertor described here overcomes this.
Its purpose is to receive Radio 4 on 200 kHz and change this frequency to one falling in the range 490 to 550 kHz , so that it can be tuned in near the low frequency end of the medium wave band.
being the oscillator coil. Capacitors C5 and C6 determine the oscillator frequency.

In all cases L1 will be tuned to 200 kHz , trimmer C 2 being adjusted for best reception of Radio 4.

The difference between this frequency, 200 kHz , and the frequency of L2 determines the new frequency at which Radio 4 will be found. For example, if L2 is tuned to 700 kHz , the difference is $700-$
$200=500$, so Radio 4 will be tuned in at 500 kHz on the medium wave band. Similarly, if L2 is set at 800 kHz , Radio 4 appears at 600 kHz .

As trimmer C6 is adjusted, the spot on the medium wave tuning scale of the receiver where Radio 4 is heard will move up or down the scale. It is essential to set C6 so that Radio 4 comes at a position where a normal medium wave station is not heard.

The range obtained with C6 only is 490 to 550 kHz , but the signal can be shifted to a frequency higher than 550 kHz by slightly unscrewing the core of L2.

## OUTPUT LOOP

The signal from the convertor is then coupled to the m.w. radio by means of an output loop, L3.

This is twelve turns of thin insulated wire, 25 to 32 mm in diameter. Its ends are about 150 mm long, and go to the pins on the board.

The loop is placed under or behind the receiver, or on one side, as found to give a satisfactory signal input to the receiver. It can be secured with adhesive tape if necessary.

Coupling into the receiver depends on the internal layout of the latter. It may be possible to make use of an internal aerial coupling winding and socket. An alternative is a small loop of a few turns under or behind the radio. For specialised or older receivers operating from an external aerial, the loop can be near the aerial lead, or coupling can be by a 22 pF capacitor from point $A$ on the circuit to the receiver aerial socket.

## CIRCUIT DESCRIPTION

The circuit diagram of the Long Wave Convertor is shown in Fig. 1. Coil L1 is the ferrite rod winding, tuned to 200 kHz by means of the parallel capacitors C1 and C2. Capacitor C3 couples the signal to the base of TR1, which functions as a self-oscillating mixer. coil L2



Fig. 1. Complete circuit diagram of the Long Wave Convertor.


## LONG WAVE CONVERTOR

FOR 4


Fig. 2. Wiring details for the unit, showing top and underside. Note how the ferrite rod is held in place using cotton. A small cut-out is required on the matrix board to clear the switch. If a larger case is used then this will not be necessary. The board was not fixed down, being held in place by the battery and lid.


Complete wiring details for the convertor is shown in Fig. 2. When mounting coil L2, note that pins 1 and 2 are closer together than pins 2 and 3, and must be mounted this way. It is necessary to enlarge the holes in the board to accommodate the tags and fixing lugs.

A piece of wood about 6 mm thick is placed under the ferrite rod, which is held with adhesive and cotton through the board. Coil L1 is the long wave section of an easily obtained aerial with the medium wave section removed. Take care to identify the outer ends 1 and 3 , and the tap, lead 2 correctly.

## ADJUSTMENTS

No results will be obtained until L1 is tuned to 200 kHz , and L2 is set to a frequency to suit the receiver.

Initially place L1 about 5/16 in from the end of the rod, and screw C2 nearly fully down. Once

Radio 4 has been received. set C2 for best volume. If necessary, slightly move L1 on the rod, and secure it with adhesive when it is found that C2 allows correct tuning. They should then be left set for best volume.

Rotate the core of L2 until it is about $1 / 16$ in below the top of the coil. Tune the medium wave receiver to somewhere in the range 490 to 550 kHz , and rotate C6 slowly until Radio 4 is heard. Small adjustments of C6 will move Radio 4 as found on the m.w. radio, so C6 must be set so that Radio 4 appears at a spot where m.w. signals are not heard. This will generally be easy during daylight hours, but must be checked after dark when more signals are present. Leave L1 and C2 as they are, but adjust C6 very slightly and re-tune the receiver as necessary. If it is wished to tune above 550 kHz , unscrew the core of L2 slightly, as required.

## IN USE

To change from ordinary m.w. reception to radio 4 , switch on the convertor and tune to the position on the scale that you have arranged shall be used. No further trimming is needed, as tuning is with the m.w. radio in the usual manner.


## COMPONENTS

Resistors
R1 $18 \mathrm{k} \Omega$
R2 $15 \mathrm{k} \Omega$
R3 $2 \cdot 7 \mathrm{k} \Omega$
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$ page 92

Capacitors
C1 100pF 5\% silver mica
C2 120pF compression trimmer
C3 JOnF ceramic
C4 20 nF ceramic
C5 250 pF $5 \%$ silver mica
C6 60pF compression trimmer
C7 50nF ceramic
Semiconductors
TR1 BF195 npn silicon

## Miscellaneous

L1 Ferrite rod aerial, type MW/LW 5FR
L2 TOC 1 oscillator coil
L3 coupling loop (see text)
S1 miniature single pole slide switch
B1 9V PP3 battery
Matrix board 0.15 inch, $26 \times 13$ holes; battery connector; small plastic case $127 \times 60 \times 38 \mathrm{~mm}$ or similar; cotton thread; small piece of wood; connecting wire.

Remember it is essential to bring Radio 4 up at a spot on your turing dial where m.w. transmissions are absent. It is also helpful to arrange coupling from the loop so that Radio 4 is strongly received with the volume control on the receiver only turned up a little.

Although essentially the convertor is an outboard unit, intended to be used with one of many different radios, there is no reason why it cannot be used as a "dedicated" device.

To do this, the component board can be made smaller if necessary to fit inside the radio, the ferrite aerial being mounted in any convenient position within the case. The on/orf switch can be mounted as required in a convenient position. Alternatively it may be possible to use switches already in the radio to perform this function.

Whatever method is chosen, however, the convertor will allow you not to miss your favourite Radio 4 programmes, whatever the "Beeb" do with the frequencies from now on!


By R. D. Palmer, b.sc.

## M|CROCHIME

COокноиSE
B COOKHOUSE D HORUS (FAUST)
SOLDERS CHUR
WLLLAM TELL OVERTURE RED FLAG/MARYLAND/TANNENBAUM THE STARS \& STRIPES $b d$ BEETHOVEN TM SO ODE TO JOY(9th) TWINKLE LITTLE STAR

Music playing computers have been about for quite a few years. Man has been devising machines which will perform music automatically for well over 600 years! Of course until the development of electronics all such automat were entirely mechanical. Some were highly successful, remember the Pianolla and the Barrel Organ?

In the 1950's there were some of the valved, killowatt gobbling monsters of the age programmed to do tuneful party pieces. Until comparatively recently only a few people had used this technique for any practical purposes, principly due to the extravagant cost and size of "mainframe" computers.

## ECONOMICAL REALITY

Now, with the advent of the microprocessor and the further advance of being able to integrate on a single chip both the processor and the necessary rom, ram and I/O input output interface circuitry to make a one-chip computer, the use of this trick becomes an economic reality.

## SINGLE CHIP MICROCOMPUTER

The first single chip microcosmputer to go into really large scale production (several million units to date and still going strong) is the Texas Instruments TMS1000.
This device has a four-bit ALU, a 1024 word masked programmed ROM 8 -bit wide making 8192 bits of permanent storage and a 256 -bit RAM organised as $4 \times 16$ four-bit words. There are four input lines and two lots of outputs totalling 19 lines.
The control circuitry is driven from an on-chip clock oscillator. The frequency of this is set by means of an external resistor and capacitor. These components set the speed at which the system executes each instruction. When the oscillator is running at 400 kHz each instruction takes $15 \mu \mathrm{~S}$ to perform. There are 43 different instructions in the chip's repertoire altogether.

Now outwardly, this chip would seem a bright little beastie! But unfortunately it's not. Compared with most 8 -bit microprocessors such as
the 8080 or 6800 etc., it's very dim. However, this silicon dunce really scores high when you look at its relative cost compared to its much more accomplished cousins.
In a system for a dedicated function (that is, specifically programmed to do one set of tasks only, like the Microchime) the costs may be only one tenth. This is mainly due to the fact that nearly everything is on the same chip and you only need a few external comporents to make it work.

## PROGRAM DEVELOPMENT

The instructions provided by the TMS1000 are fairly rudimentary, which means the programmer has

to work overtime to execute trivial routines. The program development work must be done on a much bigger minicomputer since it is virtually impossible to write machine code and try it out on the device itself. The power of the minicomputer or mainframe gives the designer many resources to overcome the apparent shortcomings of the microcomputer.

Once all the development work has been completed the programmer's source program is put through a cross assembler. This is a special program which converts the original source which is a fairly ledgible form, to pure binary "object" for the TMS 1000 's ROM.

At this point in the development work can be checked by simulation on a big machine pretending to be a TMS1000. This can be somewhat labourious as it means going over literally yards of print out.

## A MORE PRACTICAL METHOD

A more practical and usual method is to use the binary object program directly, either by feeding in a punched tape version of it into a TTL model of the TMS1000 called an HE-1 or alternatively
"blowing" the program into a PROM. The PROM can then be used with a special version of the chip called the SE-1 which has no internal rom. Thus a nearly perfect model of the final hardware can be checked in the proposed circuit of the eventual product. This must be thorough since even a tiny modification to the object code once it is committed to a mask is both an expensive and time consuming operation.

A copy of the final binary object in the form of a punched tape is sent off to the chip manufacturer together with a cheque for the equivalent of an arm and a leg! The tape is processed by yet another computer to produce an output to a digitally controlled mask cutting plotter.

Unlike a fully custom chip, the microcomputer only needs one mask to customize the internal rom pattern. The large scale mask is then reduced in scale by the usual precision photographic step-and-repeat processes down to chip size. This mask forms one of the set used to manufacture the chips.

Once a few trial sample devices have been made using the custom mask, these can be tested in the product circuit. Provided they are

Fig. 1. Circuit diagram of the Microchime.

proven 100 per cent, then large scale production may begin.

This is how Chromatronics of Harlow, Essex developed its processor for the. World's first microcomputerised Door Chime after over two years work. The first model, the "Chroma-Chime" made use of the full capability of the chip to play 24 tunes with variable volume, tempo and timbre. The EE Microchime uses the same chip but with a simplified circuit to keep down the number of external components. The full type number for this dedicated chip is TMS1000NMP0027A.

## TUNE GENERATION

Basically all the tunes in the chip repertoire have been encoded into a digital binary form for storage in the rom. For example, in a tune the note $\mathrm{C}=0001, \mathrm{D}=0010, \mathrm{E}=$ 0011 ; similarly the length of each note is enclosed for example, semiquaver $=0001$, quaver $=0010$, crotchet $=0100$, and so on.
Approximately 700 of the roms "words" are used for music storage, the remainder are used for the operating program to select, decode and play the tunes.
The frequency of each note is determined by a timeline loop which counts a precise number (according to the note in the tune) of the machine cycles from the master clock oscillator. Each time the loop is completed an output from the chip is toggled to produce a square wave voltage. Since each note synthesised as a predetermined number of machine cycles, they cannot go out of tune with one another whatever absolute frequency the clock is running at.
The overall pitch of all the notes is then set by the clock, so it must remain stable throughout the execution of all the tunes. The timing for the duration, each note is set by an external time constant (RC) connected to an input pin. This is used to interrupt the synthesis loop routine to move one to a new note in the tune.

## CIRCUIT DESCRIPTION

The microchime circuit (Fig. 1) is powered by two 9 volt batteries B1, B2, connected in series, giving 18 volt total output. Being standard p-mos technology the chip ICl needs a fairly high voltage to operate, but it can work at below 14 volts, allowing for battery run

down. Since the internal mos f.e.t. transistors are negative in polarity (i.e. their sources connected to the positive rail, $+V_{\text {ss }}$ ) it is a good idea to regard the positive rail from the battery as common.

In the quiescent state there is no bias to the base of TR3, hence it is off. The function of this transistor is to turn the power to the chip on and off in order to save wasting power when the system is not playing a tune.

When the door push S2 is closed, the base of TR3 is biased via R8 and it turns on (saturated). Power is then applied to pin $4\left(V_{\mathrm{dd}}\right)$ via RI to drop the voltage slightly; pin $20\left(V_{s s}\right)$ is connected directly to the positive line. The clock timed by C2 and R6 starts immediately at about 400 kHz . At this point the program starts, and after clearing all its resistors ready for action turns on its R10 output at pin 3. This holds on TR3 via R4, so that it does not matter if the door push is released in the middle of a tune.

## TUNE SELECTION

Next, the program turns on in succession each of the outputs R0 to $R 7$ to test the position of the Tune Select switch S1. The 24 tunes are arranged to be in three banks of eight. Thus, the position of the link (A, B or C) sets which bank is to be played. The connection between one of the $R 0$ to $R 7$ outputs and one of the K1 to K4 inputs is detected by the program.
(If there is no connection it will simply do nothing but scan R0-R7 until there is).

This input data is used to address the correct tune in the ROM.

## EXECUTION PHASE

The tune playing algorithm now comes into operation and the first note synthesised. Outputs 06 and 07 drive R3 with a square wave at a frequency between 550 Hz and 200 Hz . This is current amplified by emitter follower TR2 which feeds the loudspeaker LS1. R5 limits the current so as to not overdrive the speaker. If the speaker impedance is below 50 ohm, R5 must be increased to 100 ohms. The value of R5 can be increased anyway if the volume needs to be reduced. For example, to 220 or even 470 ohms.

As the note is played, Cl charges up via R2 plus VR1 the Tempo control. When the voltage reaches about -3 volts (ref. $+V_{\text {ss }}$ ), input K4 senses and the program turns on R9 (pin 2) for a short period. TR1 saturates, discharging C1. This cycle repeats a number of times (between 2 and 16) depending on the length of note being played.

Then the program selects the next note and so on.

When the end of the tune is encountered by the program it turns off the output R10, turning off TR3 and shutting down the system.


There are no special restrictions concerning arrangement of components on the circuit stripboard. However, the use of a socket or soldercon socket strips is recommended for ICI, as the chip is sensitive to damage by static electricity. The chip should be handled by the body only-without touching the pins-and only be inserted in its socket after all the soldering has been completed on the board. Incidentally, no damage would be done should the i.c. be inserted backwards-it just would not work.

For convenience, the Microchime is built into a small twotone ventilated Verobox. This provides a very neat unit, but is a little restricting regarding the component layout and loudspeaker size. An alternative would be a hand-crafted, genuine tree wood, polished cabinet if you're good at that sort of thing. (Chromatronics can supply not only the chip but a purpose-designed, plastic case and p.c.b., etc., if you really would like to make construction easy.)

A hole must be drilled in the top of the Verobox for the switch S1, and also a number of small holes, closely grouped, to provide an aperture for the loudspeaker.

## COMPONENTS



All $\frac{1}{4} W$ carbon, except where otherwise stated.
Potentiometer
VR1 $100 \mathrm{k} \Omega$
VR1 $100 \mathrm{k} \Omega$ miniature skeleton preset
Capacitors


Semiconductors
TR1 BC182, BC172, or BC108
TR2 BC327, BFR61, or ZTX550
TR3 BC18, BC172, or BC108
IC1 TMS1000N-MP0027A-
CS107-01 micro-
computer
(Available from Chroma-
tronics, River Way,
Harlow, Essex. $£ 4.95$
inclus.)

## Miscellaneous

$\forall$ LS1 $50-90$ ohm speaker 57 mm ( $2 \frac{1}{4}$ inch) diameter
S1 1-pole 8 -position rotary
S2 Push-to-make 1-pole. switch
Two-way terminal block, p.c.b. mounting type. Stripboard Neroboard 0.1 matrix 25 strips $\times 49$ holes. Terminal pins. Verobox $65-2525 \mathrm{~F}$. Two 14 -way soldercon socket strips (for 1C1). Knob to suit S1. Two PP3 battery connectors. Two PP3 batteries.


Fig. 2. Top view of circuit board with all components fitted and showing connections to Tune Select switch S1 and loudspeaker LS1.

Fig. 3. Underside of stripboard showing all breaks in copper tracks and soldered connections.



## CHOICE OF REPERTOIRE

Selection of tune repertoire is made by the positioning of the lead from S1 rotor. This lead should be soldered to pin M2, L1 or K2 as desired.

The tunes available are:

## LINK A (pin M2)

1. Oh Come All Ye Faithful
2. Oranges and Lemons
3. Westminster Chimes
4. Sailor's Hornpipe
5. Land of Hope and Glory
6. Rule Britannia
7. God Save The Queen
8. Greensleeves

LINK B (pin L1)

1. Soldiers Chorus (Faust)
2. Twinkle Twinkle Little Star
3. Great Gate of Kiev
4. Red Flag/Maryland/Tannenbaum
5. William Tell Overture
6. Beethoven's Ode to Joy (9th)
7. The Stars \& Stripes
8. Cook House Door

LINK C ( $\operatorname{pin}$ K2)

1. Mozart
2. Colonel Bogie
3. Wedding March (Mendelssohn)
4. The Lorelei
5. Toccata in D Minor (Bach)
6. Deutschland Uber Alles
7. The Marseillaise
8. Beethoven's "Fate Knocking"

## 1. No sound whatsoever

(a) Check the supply paths via TR3. When the pushbutton is pressed, the voltage from $c$ to $e$ of TR3 should go from nearly full battery volts to less than 0.5 V (saturated condition).
(b) Check the chip supply current ( 4.5 to 8.5 mA ) by measuring the voltage across R1. This should be between 2 and 3 volts. If it is higher, but below 4 volts, then substitute a lower value for R1, for example 270 ohms.
(c) If the chip current is correct, check the output drive circuitry TR2, R3, R5 and the loudspeaker.
(d) Check the clock timing components R6 and C2. If you have an oscilloscope the waveform at pins $18 \& 19$ is triangular and at a frequency of 300 to 400 kHz . If the frequency is too high, the chip will not operate properly and an additional capacitor of 10 pF must be added in parallel across C2.
(e) If the connection between the $R 0$ and $R 7$ pins and $K 1$ to $K 3$ input pin via the selector switch Sl is not made, the chip will draw a continuous current and not play any tune.

## 2. Makes only a click sound

(a) Check C2 and R6 ( see $1(\mathrm{~d})$ ).
(b) Check connections at pin 10 and 11.
(c) Is ICl the right way round in its socket? (unlikely to damage it, but not recommended).

## 3. Plays seemingly random notes

(a) Is the voltage across the chip between 14 and $17 \cdot 5$ volts? (measured whilst the pushbutton contact is held closed). If not, check batteries, TR3 and see $1(a)$.
(b) See 1 (d).

## 4. Plays a continuous note

(a) Is Cl the right way round, or short circuited?
(b) Check TR1 and R1, VR1.

One of the screw lugs on the bottom should be removed, leaving a slot to accommodate the door push lead when the top of the box is in position.

## CIRCUIT BOARD

First prepare the underside of the stripboard by making the breaks as indicated in Fig. 3. Four screw-fixing holes should be made at the corners of the board, to align with the bushes incorporated in the bottom panel of the case.

Referring to Fig. 2, proceed to mount the components.

Mount the soldercon sockets (two 14 -way strips), solder each individual socket to the stripboard. Do not remove the connecting strip from the top of the sockets at this stage.

Mount the two-way terminal block, and then the potentiometer VRI (note one end of the track goes to an "isolated" hole in the stripboard). Mount the transistors, resistors (note vertical arrangement of R7) and capacitors (note
polarity). Fit all link wires as shown in Fig. 2, using insulated wire.

Fit the five terminal pins (at K2, L1 and M2; and at U24 and V26. Wire up the switch SI to the stripboard using 8 leads, each 6 inches in length (preferably different colours to aid tracing).

Solder two 6 inch leads to the loudspeaker, and solder the other ends to terminal pins at U24 and V26.

Wire up the two PP3 battery connectors to the stripboard: $\mathrm{B} 1+$ to U27, B1 - to U30, B2 + to U29, and B2- to R26. The two batteries are secured to the board by a pair of rubber bands.

Fit the loudspeaker and the switch S1 to the case. The loudspeaker can be secured by a small amount of glue applied to its rim, at point of contact with case.

Connect the leads from the door push S2 to the terminal block.

## MICROCOMPUTER CHIP

The microcomputer chip IC1
may now be taken from its protective packing. Do not handle this device unnecessarily, and then by the body only. Check that the "pins" are true and straight. If not, they may be carefully bent with long-nosed pliers. The two rows of pins are usually splayed out very slightly wider than the mounting holes in the i.c. socket. If this is so, gently push the i.c. down edgeways on the flat of the pins on to a hard surface, such as a wood or Formica work top.

Fit the microcomputer chip ICl into its socket, right way round as shown in Fig. 2. Carefully align all the pins over the sockets, then push firmly down into position. The socket connecting strips can now be removed. This is done by gripping between a pair of pliers and easing gently to and fro until the strip parts company from the socket.

Fit the circuit board into the bottom part of the case, and secure with four screws.

#  

AST month we saw how flip-flops can be cascaded to act as digital dividers. This month we begin with a close look at the 7490 i.c. which contains four flip-flops, three permanently wired in series.

## COUNTER/DIVIDER IC

The 7490 i.c. contains a readycomnected series of flip-flops and associated control gates and connections, see Fig. 5.1. There are actually two dividers (or counters) in this i.c.
(1) Flip-flop A: Clock input at pin 14; $\bar{Q}$ output at pin 12 (Note: there is no $Q$ output). This single stage divides input frequencies by two.
(2) Flip-flops $B, C$ and $D$ : Clock input to $B$ at pin $1 ; Q$ outputs at pins 9,8 and 11. This divides input frequencies by five.

Inspection of Fig. 5.1 shows that the method of connecting the three flip-flops is different from that suggested previously. Can you work out how it operates? If not, do not worry -just accept for the moment that it does operate.

Flip-flop $D$ is of slightly different type, a SET-RESET flip-flop. If when the clock goes low, its set ( $S$ ) input is high, $Q$ goes high; here the $S$ input is fed from an AND gate. If the reset ( $R$ ) input is high, $Q$ goes low at the next falling clock pulse.

The flip-flops can be reset to zero by applying high input to both of pins 2 and 3, and low input to one or both of pins 5 and 6. A high input to both of pins 5 and 6 sets the outputs to read " 9 " on the binary scale ( 1001 ). If one or both of pins 1 and 2 and one or both of pins 6 and 7 are low normal division (or counting) occurs.

## TEST-BED

Insert a 7490 i.c. in a socket on the Test-Bed patchboard, and make the connections indicated by Fig. 5.2. The four outputs are taken to the four in-built l.e.d.s which we shall designate $D, C, B$ and $A$ from left to right. Joining the output of flip-flop A (pin 12) to the input of flip-flop $B$ (pin 1) connects all four flip-flops in series, giving a divide-by-10 circuit.


Fig. 5.1. Pinning details for the 7490 integrated circuit showing a series of flip-flops and control gates. Note the supply connections of pins 5 and 10. Also shown below is the counting sequence table.

Alternatively we can consider it as a 10 -stage counter, counting from zero (0000) up to nine (1001) see Table 5.1. You can now observe the counting sequence and the effects of various inputs to the reset circuits, as outlined above. When conducting this experiment set the clock to its lowest frequency.
You can also disconnect pins 1 and 12 , and use the dividers separately.
Problem: Fig. 5.3 shows that there are two ways of connecting the two dividers. Both of these arrangements divide by 10 , but what is the difference in their action? Try it and see (answer (1)).

## LOGIC LEVELS

The inputs and outputs of TTL circuits can assume either one of two levels, "high" or "low". They do not operate with "in-betweens". In logical operations performed with these circuits, "high" usually corresponds to "true" and "low" correpsonds to "false". In mathematical operations,
"high" corresponds to " 1 " and "low" to " 0 ". Of course, there is no basic difference between logic and mathe-matics-mathematics is a logical process, and we can represent familiar mathematical operations by logical statements.

For example, one row of the multiplication table can be stated as follows:
statement $A: x=5$
statement $B: y=7$
statement C: $x y=35(x$ times $y)$
Table 5.1. counting sequence table for the 7490

| Count | Output |  |  |
| :---: | :---: | :---: | :---: |
|  | $D$ | $C$ |  |
| $B$ | $A$ |  |  |
| 0 | 0 | 0 |  | 0 | 0 |
| :--- |
| 1 |

## 



Fig. 5.2. Wiring connections on the Test-bed for investigating the action of the 7490.

The logical statement connecting these is:

If $A$ and $B$, then $C$.
The and truth table tells you when $x y$ does equal 35 and when it does not equal 35 , given various values of $x$ and $y$. Later we shall see how logic gates can be used to perform arithmetical operations.

The advantage of designing gates to work with only two input and output voltage levels is that they need relatively few components to give a reliable and rapidly acting gate. The operation of the gates is unaffected by small voltage fluctuations or by the small voltage pulses or spikes that inevitably find their way into circuits. In short, they are reasonably immune to noise in the system.

The "high-low" idea presents no problems for logical statements; any statement is either true or false. But for mathematical work we are limited to only two values, 0 and 1. This means that we are forced into using a counting system that employs only these two numbers.

In everyday life we are accustomed to using the decimal system, which has ten numbers, 0 to 9 . From this we use the "hundreds, tens and units" convention to write a row of digits with which we can represent quantities far larger than 9.

For example, if we write the digits 4869, we mean:

$$
\begin{array}{rr}
4 \times 1000= & 4000 \\
\text { plus } 8 \times 100= & 800 \\
\text { plus } 6 \times 10= & 60 \\
\text { plus } 9 \times \quad 1= & 9 \\
\text { Total } & =4869
\end{array}
$$



Fig. 5.3. Two ways of connecting the elements of a 7490 to produce a divide by-ten stage.

Reading from right to left, each digit in the number is the multiplier of a power of 10 , beginning with $10^{\circ}$, and increasing the value of the index figure by 1 at each step.

With TIL we have only 0 and I to use, so are limited to the binary system. For example, if we write 1001100000101, we mean:

$$
1 \times 4096=4096 \quad\left(4096 \text { is } 2^{12}\right)
$$

plus $0 \times 2048=0 \quad$ (2048 is $2^{\text {II }}$ ) plus $0 \times 1024=0$ plus $1 \times 512=512$ plus $1 \times 256=256$ plus $0 \times 128=0$ plus $0 \times 64=0$ plus $0 \times 32=0$ plus $0 \times 16=0$ plus $0 \times 8=0$ plus $1 \times \quad 4=4$ plus $0 \times 2=0$ plus $1 \times \quad 1=1$

$$
\text { Total }=\overline{4869}
$$

In the table the calculations are in the decimal system, but if you read the right hand column of figures from top to bottom, you have the binary number that is being converted to decimal. If you read, down the right-hand column of figures, you can see that the binary number is based on successive powers of 2 .

Calculators and computers work in the binary system, but people work in the decimal system. If we want to do a calculation using the number 4869 , it would be tedious to have to convert it to 1001100000101 before entering in the calculator. Errors would be common. Yet the calculator's arithmetical circuits can not work on a number in decimal form as it stands. We need a coder to convert numbers of the decimal system, as entered on a calculator keyboard, into the binary system, so that they can be handled by the arithmetical circuits. Later we


Fig. 5.4. A diode matrix arranged to produce a binary output for numbers up to nine.

shall need a decoder to convert the final answer back to decimal system again, ready for it to be displayed and read by the human operator.

## KEYBOARD CODING

A convenient method of coding is to use a network of conductors, linked by diodes, Fig. 5.4. The switches S0 to S9 are the push-button keys. In Fig. 5.4, S6 is shown depressed, giving the output 0110 from the four output terminals DCBA (taken in that order). It is possible to buy ready-made keyboards and sliding or rotary switches which are constructed to give binary output according to which key is pressed, or which position the switch is set to, but it is more instructive to
make up one of your own, as in Fig. 5.5. The keys are made from wire paper-clips and drawing-pins. Ten of these are for coding the numbers 0 to 9 . The other four keys are "function" keys that we shall use later when operating a simple calculator circuit.

Construction of the keyboard presents no problems, once the correct position for bending the paper-clip has been found by trial. It is advisable to use a heat-sink when soldering in the diodes. To use the keyboard, connect its terminals to $V_{c c}$ and to the four inbuilt on the test-bed. Press the keys one at a time and read the figure " 1 " for a glowing l.e.d. and " 0 " for a dark l.e.d., from left to right, in numerical order.

## Answers

(1) (a) The sequence is 0000,0001 , 0010, 0011, 0100, 0101, 0110, 0111, 1000,1001 and then back to 0000 , etc. This represents the binary form of numbers 0 to 9 ; the output is suitable for counting.
(b) The sequence is $0000,0001,0010$, 0011, 0100, 1000, 1001, 1010, 1011, 1100 and then back to 0000 , etc. This gives the binary form of numbers 0 to 4 followed by 8 to 11. This is not suitable as a counting sequence.

In this sequence the $D$ output (figure on extreme left) is low for five counts and high for five counts, giving a symmetrical waveform. But in (a) the $D$ output is low for eight counts and high for only two, an unsymmetrical waveform. This circuit is therefore the better one for frequency division.

To be continued

Fig. 5.5 (above and below). The home made binary keyboard constructed from drawing pins and paper clips.




By ADRIAN HOPE

## Computer Sound

The American loudspeaker firm Acoustic Research has recently devoted a great deal of time, energy and expense into programming a computer to research the behaviour of loudspeakers in a room. It's easy to overlook the fact that just about the worst place you can listen to a loudspeaker is in a room, because the sound from the speaker is reflected off the walls, floor and ceiling to create a complex of boosts and cuts at some frequencies of the reproduced sound.

The crucial point to remember is that if two sound waves of the same frequency mix, for instance one coming direct from a loudspeaker and the other reflecting off the wall, they will cancel when out of phase and add together when in phase. This is what produces the boosts and cuts at some frequencies. In each case exactly what happens depends on where the loudspeaker is positioned and where the listener sits, because waves will be cancelling at one listening position in the room and boosting at another.

The Acoustic Research computer program was intended to analyse the behaviour of loudspeakers in just about every conceivable room situation. Some fascinating results have come out of this study. For instance it turns out that not only is a room just about the worst place to listen to a loudspeaker (we would all do better to live in a field) but the centre of a room is the worst place of all because it is half way between all the walls and thus the position where all the wall reflections will meet and cancel or boost.

Also, although there is great enthusiasm in the hi fi world at the moment for using equalisers to cut or boost the sound from an amplifier to "tune it" to the room, this can be expensively dangerous, If room
cancellations are eliminating a bass frequency at the listening position, boosting the amplifier at that frequency won't help-it will simply push more power into the loudspeaker, which will still be lost in the room, and the loudspeaker coils may well burn out.

## Home Computers

Acoustic Research have now transferred some of their laboratory computer programs onto compact cassette tape for use with portable computers which their engineers are taking round the world for "audio clinics", usually at hi fi shows. The portable computers used to go under the trade name Apple (computer words are called "bytes", get it?).

An ordinary TV set is used as the computer display and a room of virtually any shape or size can be drawn on the screen, with the loudspeakers and listening position patched in accordingly. The computer then reads out the acoustic problems the listener will suffer. Another listening position can then be tried.
If you are visiting an audio exhibition at which Acoustic Research is demonstrating, it is a good idea to measure your room before you go as you may have a chance to punch your room dimensions into the computer. When you think of the man-years needed to write such a program, you can understand why AR guard those tapes more than a little carefully.

The Apple computer is remarkably cheap, between one and two thousand pounds, and must be regarded as one of the advance guard of the new generation of cheap home microprocessor computers.

An interesting problem arose when AR first demonstrated it in England. Because the computer is designed as an essentially domestic gadget, with programs fed in from cassette
tapes through domestic cassette machines, it was thrown into confusion when Acoustic Research fed in their tape program using a sophisticated hi fi tape deck.

The computer program is stored on tape as a stream of pulses which are equivalent to audio square waves. The hi fi machine first used by Acoustic Research reproduced the square waves with too much fidelity, and caused ringing in the input circuits of the computer which failed to program. But as soon as a cheaper cassette machine, less able to reproduce square waves with fidelity, was used it was all systems go.

Incidentally, one of the programs on tape was for fun only. A Star Wars game with the operator able to pit his wits against a computer program to shoot down space fighters as in the last reel of the film.

## Computer Language

Thanks, no doubt, to the grand old British tradition of incompetence at other peoples languages, English is now becoming a world standard. It is already the international language used by airline pilots.
l've noticed over and over again when visiting firms in foreign lands that it's assumed right from the start that if there is even one English speaking visitor present, that language will be spoken throughout; irrespective of what other nationalities are present. I have several times, for instance, been shown round German electronics factories alongside Italian and French journalists who have had to make notes in their own language from explanations given to them in English by a German engineer.Heaven knows how it finally looks in print.

The continuing move towards world standardisation on the English language is well instanced by current computer trends. The new breed of microprocessors and home computers receive their instructions through a typewriter keyboard with the instructing words entered in "basic" language. This is perhaps best described as mid-Atlantic pidgin English.

So what is happening on the Continent, I wondered? When, as we are promised, microcomputers become an every day part of family life, will for instance German hausfrauen need also to learn pidgin English to put their central heating, larder stock and overdraft under computer control?

I went to the horse's mouth, checking with Advanced Micro Computer GmbH , a subsidiary of the German giant Siemens AG. The answer is yes. There is no translation for "basic" expressions. So in future EnglishAmerican will become the Continental standard for domestic computers.
In this respect, at least, Britannia still rules the electronics world.


Handy "Beginner" projects based on simple circuits and featuring a variety of building methods.

## 5



Modulators are devices which allow one signal to control another. In audio work they are often used to produce special effects such as tremolo and the intermodulation of voice and music.

A modulator can be "balanced" or "unbalanced". A balanced modulator is one which has no output at the input frequency but produces only new frequencies. An unbalanced modulator allows some of the input frequency to pass through unchanged. If the modulator is balanced for one input but not for the other it is "single balanced"; if for both signal and control frequencies it is "double balanced".

The two audio modulators in this Mini-Module are strictly speaking unbalanced types. However, they work in such a way that very little of the control frequency reaches the output, so for most purposes they can be considered to be single-balanced.

## PRINCIPLE

The operating principle is very simple (Fig. 1). The modulator is a voltage divider formed by $R_{1}$ and $R_{2}$. If $R_{2}$ is fixed the circuit is merely an attenuator. But if $R_{2}$ is varied at a fast rate any audio signals which enter at the "IN" terminals are subjected to a rapidly fluctuating attenuation. This is all that modulation means in the present case.

To make a rapidly-varying $\mathbf{R}_{2}$, a transistor is substituted for the resistor (Fig. 2). The transistor can be turned on and off as rapidly as necessary by applying a control voltage to its base. Note that no power supply is needed.

To form an effective attenuator the transistor must have a low resistance to any voltages applied to its collector, i.e. to the input signals as opposed to the control. The collector resistance of a transistor is normally high but falls to a few tens or hundreds of ohms when the collector voltage is very low, or zero as here.

The collector resistance is only low, of course, if the transistor is switched on at its base. If switched off it is
very high. When driven hard by its control frequency the transistor alternates between a very low resistance state and a very high resistance state.


Fig. 1. Modulator principle.


Fig. 2. Using a transistor as the variable resistance.


Fig. 3. Fade-in by varying the control voitage.


Fig. 4. Fade-in by sliding the transistor into circuit.

The effect is to "chop" the input signals by alternately attenuating them and letting them pass. The amount of attenuation depends on the size of $R_{1}$ compared with the "on" resistance of the transistor. If $R_{1}$ is $10 \mathrm{k} \Omega$ and the "on" resistance is $100 \Omega$ then the input signal is attenuated about 100 fold.
There is often no need to build $R_{1}$ into the modulator circuit. The source impedance of the input signal is often about the right size to act as $R_{1}$. This means that the circuit can still act as a modulator even when the input is applied to the output terminals instead of the input terminals.
This can be very useful when modulation has to be added to some existing audio circuit because all that then needs to be done is to run two leads ("OUT" and " $E$ ") into the existing circuit. All the rest can be outside it.

Note however that the modulator must be connected to a point where the signal level is not less than about 100 mV . It is also necessary to avoid connecting it to a circuit with negative feedback as the feedback will try to prevent modulation from taking place. In many cases a blocking capacitor will be needed to prevent d.c. from entering the input terminal.

## CONTROL OPTIONS

There are also two ways of effecting control. It is usually desirable to be able to fade the modulation in and out at will.
One way is to provide an adjustment for the control input (Fig. 3). Modulation does not begin until the voltage at the base of the transistor reaches about 500 mV . If a few volts of control signal are available a variable potentiometer (of the kind used for volume control) enables the amount of modulation to be increased from zero to virtually 100 per cent.
The other option is to apply plenty of control signal all the time and use a potentiometer to slide the transistor into circuit (Fig. 4). There is not much to choose between the two control
methods and in the prototype module one of each kind is included.
Although we have been talking about using a control voltage, in practice it is better to use a current. In the actual module the voltage is turned into a current by inserting a high resistance in series with the base.

## CONSTRUCTION

The final circuits (Fig. 5 and Fig. 6) are as discussed, with the addition of a blocking capacitor at the control input. No blocking capacitor has been included at the signal input but one can easily be added if required. A value of 10 to $100 \mu \mathrm{~F}$ should be suitable but the polarity and working voltage will have to be selected with reference to the circuit to which the modulator is to be connected.
Input impedance is about $10 \mathrm{k} \Omega$ to both signal and control inputs.


Fig. 5. Modulator 1 practical circuit (derived from Fig. 4)


Fig.6. Modulator 2 practical circuit (derived from Fig. 3)

## Components

## Resistors

| Resistors |  |  |
| :--- | :--- | :--- |
| R1 $10 \mathrm{k} \Omega$ | R4 | $10 \mathrm{k} \Omega$ |
| R2 | $10 \mathrm{k} \Omega$ | R5 |
| R3 | $100 \mathrm{k} \Omega$ |  |
| All carbon, $5 \%$ | tol. $\frac{7}{4} \mathrm{~W}$ |  |

## Potentiometers

VR1 50k $\Omega$ carbon track log
VR2 $10 \mathrm{k} \Omega$ carbon track log

## Capacitors

C1 $47 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $47 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
Semiconductors
TR1, TR2 BC108 npn transistor (2 off)

## Miscellaneous

Electrical double-switch box. Plastic-surfaced hardboard. $\frac{3}{4}$ in. coppered hardboard pins. Two knobs.


Fig. 7. All components are assembled on the hardboard panel (as shown above). Note the earthing wires which should be clamped between the metal case of each potentiometer and the panel, and the loop made over one panel screw hole to effect bonding to the metal case when the fixing screw is fitted.

Since few components are needed there is no difficulty in circuit building. They can be mounted on a tag strip or supported in the wiring.

The prototype was housed in a box whose bottom and sides were provided by a standard electrician's item. This was a $1^{1}{ }_{2}$-inch metal double-switch box and its normal use is to be buried in the wall to hold a pair of flush mains switches.

The overall size is about $130 \times 70 \times$ 35 mm deep. No lid is provided because the switches form one, but their fixing holes can be used to secure a home-made lid or panel.

## PANEL AND TERMINALS

For the prototype a panel was made from plastic-surfaced hardboard, cut to fit tight inside the box. Using a non-conducting panel like this means that screening is incomplete since only the rest of the box can be earthed (an earth point is provided by the makers inside the box). At the correct signal level of above 100 mV complete screening is unlikely to be necessary.


Fig. 8. Feed-through terminals made from coppered hardboard pins.

A non-conducting panel is easy to equip with feed-through terminals. Those in the prototype are the cheapest imaginable: $\overline{3}_{4}$-inch coppered hardboard pins. To prevent them from pulling out or being pushed into the box wrap a few turns of bare wire round the shanks where they enter or emerge from the hardboard and solder onto the pins to form locking rings. Naturally any other sort of terminal may be used as an alternative.

When wiring up it is useful to anchor some of the components to the panel with a spot of glue. (But if you use a metal panel don't attach the transistors; the "can" of the BCl08 is "live" (connected to the collector).

## Next Month: Versatile Power Supply




AST month resistors and capacitors were discussed. So far as the latter are concerned, we only covered nonpolarised capacitors. Now we continue with a look at that important variety of capacitor, the electrolytic.

## POLARISED CAPACITORS

The electrolytic capacitor is a polarised type of component. Its two leads or terminals are clearly marked positive ( + ) and negative ( - ). It is essential that these capacitors are fitted correct way round into the circuit.

Circuit diagrams emphasise the special nature of electrolytics by showing one "plate" in open outline, this being the positive side; the other plate is blacked in (as for nonpolarised capacitors) and is the negative side.

Always carefully examine electrolytic capacitors and be sure the leads or tags are properly recognised before connecting up.

## VOLTAGE RATING

Next of importance is the voltage rating. This must be as specified in the components list, and will have been selected because it closely matches the actual voltage that will be experienced in the particular circuit.

It is safe to use an electrolytic capacitor with a voltage rating slightly higher than specified. But on no account should an electrolytic capacitor with a lower voltage rating be used. Breakdown of the capacitor is possible under such circumstances. Since "breakdown" usually means a dead short through the capacitor, the consequences may be serious.

Electrolytic capacitors are widely used in the power supply sections of electronic circuits, where the normal operating voltages are equal to or in excess of the a.c. mains supply. Thus observation of this point is most important.

## LARGE VALUES

The great feature of electrolytic capacitors is the very large values of capacitance they provide in comparatively small physical volume. Values

##  BEGNNERS



Fig. 1. Aluminium foil electrolytic capacitors. The can is usually negative, but not always. Can sometimes enclosed with plastic sleeve. (a) single-ended, tags. (b)(d) double-ended, axial lead-out wires. (e) Single-ended, p.c.b. type, radial leadout wires. (e) Single-ended, p.c.b. type, radial lead-out wires, for direct mounting on printed circuit board.
such as $8 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 2,200 \mu \mathrm{~F}$ and $4,700 \mu \mathrm{~F}$, and even higher, are normal.

Electrolytic capacitors do not offer a perfect barrier to direct current (d.c.), but a very small "leakage current" normally flows through this type.

The electrolytic capacitor also offers some "resistance" to the passage of a.c. That is why a small value nonelectrolytic capacitor is sometimes seen connected directly across an electrolytic capacitor whose value is probably several thousand times greater. This non-polarised capacitor provides a low reactance (resistance)
path to alternating voltages, such as audio and radio frequency signals.

## THIN OXIDE FILM

These two "defects" of the electrolytic capacitor are due to the nature of its construction and its "chemical action". However such defects are greatly outweighed by the advantages of the very large capacitance values possible.
The secret of a large capacitance lies in the formation upon an aluminium foil of an extremely thin insulating film. This film takes the place of the conventional dielectric material (mica, paper, ceramic or plastic) in non-polarised capacitors.

The electrolytic capacitor is actually an electrolytic cell containing a chemical solution. The aluminium foil is the "anode" or positive side of this cell. The oxide film is produced through chemical action during manufacture caused by the application of a voltage. When in use the capacitor requires a similar voltage to be applied across its terminals in order to maintain the essential film and thus its function as a capacitor.
It will now be appreciated why electrolytic capacitors have a "shelf life," and have to be treated with rather more respect than the nonpolarised variety.

## TANTALUM CAPACITORS

Most electrolytic capacitors are of the aluminium foil variety, as described above. There is however another type of electrolytic capacitor which uses the metal tantalum.

Tantalum (although more costly) has many advantages over aluminium resulting in extremely small electrolytic capacitors with improved performance, especially at high and low temperatures. Generally they do not operate at voltages in excess of 35 V .

Tantalum capacitors are commonly available in the form of small "beads". Typical values are $0.1 \mu \mathrm{~F}, 0.47 \mu \mathrm{~F}$, $6 \cdot 8 \mu \mathrm{~F}, 68 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$.

Whenever these type of polarised capacitors are specified, it can be assumed there is a very good reason for this, and other kind of capacitors should not be used as substitutes.


Fig. 2. Solid tantalum bead electrolytic capacitors. (a) value, voltage and polarity printed on body. (b) and (c) two styles of colour coding. Positive lead is always on the right when capacitor is viewed as shown, i.e. with lettering or multiplier spot towards one.


Breadboard ' 78 sounds a rather misleading name for an exhibition, brings to mind a crowd of Bakers showing how to make bread. Something like "Aladdin's cave", or "Pandora's Box" would be a more apt title considering the amount of "goodies" on sale.
On a more serious note, Breadboard ' 78 which took place between the 21st and 24th November, has been described as "An exhibition showing the many and varied aspects of home constructing". And this was the impression one obtained.
From simple prototyping boards to a sophisticated sound to light display to a mini home computer, all showed what could be accomplished by the home constructor.
Undoubtedly a few of the exhibitors were mainly interested in selling odds and ends, which probably gave the casual visitor the impression that the show was just one large "junk" sale. However it was not until one wandered through and delved deeper that this impression was revealed as being far from the truth. And you really did need to go deeper to appreciate the significance of the exhibition.

## CROWDS AND DECIBELS

We went along on what we thought would be a quiet day-Thursday in fact. However from the time we arrived to the time we left, the crowd was remarkably like that at Euston Station during the rush hour. It gave the visitor an idea what it would be like to be a sardine in a can!
On a first casual wander round we saw many of our regular, and perhaps a few soon-to-be, advertisers, all apparently enjoying the wealth of such a vast crowd. There were a few of what we could term "commercial" companies: that is those who do not aim their sales at the hobbyist, but rather to the wholesaler.
In this context we noted a lack of famous household names, Philips, Sony etc, but there again the show was aimed at the home constructor rather than the consumer.
One aspect about the exhibition that would be noticed by visitors, especially those with sensitive hearing, was the extreme level of noise, ranging from weird space age sounds to loud pop music.

It was certainly a lively show.
As the exhibition was intended mainly to show the varying construc-
tional methods available to the home constructor, we decided to concentrate our attentions in this area. Consequently we never had time to go round all the stands, and regretfully a few had to be left out of our inquisitive wanderings.

## CIRCUIT BUILDING AIDS

Most readers are of course conversant with the standard methods of construction; stripboard is just one, but many do not realise the advantages of the various breadboarding techniques.


Examples of Euroboard.


## Experimenter breadboards from CSC.

Many examples were on show, notably Wonderboard which was described in our November issue. The examples on show were certainly complex, containing many i.c.s, and so rather put our Combination Lock to shame!

Although Wonderboard is intended for the more permanent circuit, there are many occasions where a great deal of prototyping needs to be done. Following this concept there are many companies who have obviously seen the light, not to mention the money, and have taken the plunge into producing prototyping systems.

Those actually exhibiting, although there must be many more, included; Continental Specialities who demonstrated their range of Proto-Boards, similar in appearance to the widely acclaimed S-Decs but far more flexible; AP Products Inc. who showed a completely new-to-the-UK range of ACE (all circuit evaluator) breadboarding kits; Boss Industrial Mouldings Ltd, displaying their range of Bimboards, as well as many cases and other hardware. And last but not least, O.K. Machine and Tool Ltd who had a very wide range of systems. Many used a system known as wire wrapping-perhaps a new idea to many home constructors, but equally at home under the one name of "Breadboarding".

So you've proved your circuit, how about a printed circuit board? In the past the home constructor had great difficulty in producing a first class board, but from Mega Electronics comes a complete kit for making printed circuit boards and front panels easily and cheaply.


The kit is complete in every detail, and being reasonably priced will make a worthwhile addition to the hobbyist's workshop.
Circuit board finished? How about housing your pride and joy? Here again Breadboard comes to the rescue by bringing the constructor right up to date with the many ways of housing your project.

## HI TECHNIQUES

Advanced technology was featured prominently in the form of microprocessors, minicomputers, electronic musical instruments and TV games. Judging by the great interest shown in minicomputers it seems the home constructor is now on the verge of giving up transistors and moving into the complex world of Bytes, Buses and Basic!


Two examples of S-Decs.

An innovation from the Nearbear Computing Store, "Bearbugs", enables the novice to learn how computers work by actually building a minicomputer in easy stages. This is always a far easier way of learning than wading through a great pile of literature.

The "bags" are based on the popular 6800 cPU , and come complete in every detail. Although they are self-contained, they are to some extent dependent on others, so unless one has a deep pocket this is not for you.

TV games were in abundance, the range of different games available being almost unlimited-a far cry from the original ping-pong concept. Many were of the self-contained ready to use type, others were kits you build yourself. In a similar vein were the many light shows being demonstrated. Some were commercial, but the vast majority were examples of what the home constructor could achieve. Especially noteworthy was the Chromascope demonstrated by Chromatronics. it creates wonderful "wallpaper" patterns on your colour TV.

## MAGAZINES SHOW PROJECTS

Many of the magazines devoted to the home constructor interest were in attendance, exhibiting past, present, and future projects. Again, in keeping within the theme of the show,
many were showing examples of constructional techniques, as well as demonstrating the apparent ease by which projects could be made to look professional.

The Roulette game, the Combination Lock (disguised as a safe!) and the Hot Line on the Everyday Electronics stand gave many a visitor a frustrating time. We had several winners who cracked the combination, representing great odds in actually doing so. We hope those who were successful will enjoy their one year FREE subscription to EE.

## BARGAINS GALORE

For those who went to the exhibition just to be on th. lookout for a bargain, they were certainly rewarded; l.e.d.s selling for less than 10 p , and packs of resistors for less than 50 p were something not to be missed.

As well as the recognised "junk" on sale, including surplus equipment, new components of every description could either be bought or ordered to be delivered at a later date. Some had a special "Exhibition Only" price tag, representing a considerable saving. The bookworm was not overlooked, BiPak doing quite a nice range in beginners and advanced technical books.

In such a short space we could not hope to cover all the products on the stands, the following is just a small example of what was there-and what could be at next year's show: aerials, amplifiers, boxes, breadboards, computer kits, floppy discs, high power audio systems, knobs, oscilloscopes, soldering equipment, tuners, v.d.u.s, video games, synthesisers and light shows, ad infinitum.

## BIGGER AND BETTER

Over 10,000 enthusiasts and dealers visited the show. The organisers are to be congratulated on putting on such a good exhibition. Let us hope that next year's will be even bigger and better. So we'll let the organiser's, Trident Exhibitions, have the final word: "In view of its success, Breadboard ' 79 will have to be moved to a bigger venue next year."


Proto-Board and the Design Mate 2 function generator.



A portable "instant" electronic workshop with tools, power supplles and test equipment for design work in logic (TTL and CMOS), audio, r.f. etc.

## LABCEITRE

## OnE-TRAIISISTOR RADIO

## CRR DIRECTION IIDILCATOR



# plus MIICROPROCE550R BRSIT5 Part 1 

A 6 Part Series that simply and lucidly gets to the heart of the "silicon chip revolution" everyone is now talking about. ESSENTIAL READING
. . IT CONCERNS YOUR FUTURE

## axeydayncs



By Dave Barrington
For those readers who do not feel capable of making their own printed circuit boards for the EE2020 Tuner Amplifier we understand that Proto Design are offering a complete set of boards for the sum of $£ 10 \cdot 95$, including post and packing.

Apart from the guide lines given in part one there should be no component problems with this months article.

## Power Supply Unit

A good source of power is a prime requisite in any workshop and the General Purpose Power Supply should prove very popular.

The only problems we can foresee are the transformer and meter availability. The transformer specified should be available from our advertisers, however if another type is used make sure if it will fit inside the case.

The meters used in this project were the Japanese SEW types but these may prove difficult to obtain. Provided the meter ratings and similar dimensions are available any other type may be used (see Waiford Electronics LSQ range).

The aerial, oscillator coil and trimmers for the Long Wave Convertor should be available from most of our advertisers. These components are certainly listed in the Home Radio, Watford Electronics and Greenweld catalogues. Of course, you can always write direct to Denco for details of nearest stockists.

The Thyristor Tester and the Mini Module use commonly available components and constructors should not experience any difficulty purchasing components.

The "add-on" Treasure Hunter Sound Adaptor is the result of requests
from readers for some form of audio indication of buried objects for the original project published in our October 1978 issue.

There should be no problems in obtaining components for this project.

## Microchime

Just a few pointers regarding the construction of the Microchime.

The same rules apply to microprocessors as those often mentioned in past pages about the care when handling integrated circuits, i.e. extreme care should be exercised when handling and avoid touching the pins as the device is susceptible to damage by static electricity. The microprocessor should only be inserted after all soldering has been completed.

The Verobox specified in the article was specially chosen to take the circuit board, batteries and speaker with very little room for adjustment for other components. However, there is no reason why a different case could not be used as wiring is not critical.

For those readers who do not wish to shop around, a complete kit of parts, including case, printed circuit board and microprocessor chip, can be obtained from Chromatronics, Dept EE, River Way, Harlow, Essex.

the back was removed the electronics were hidden by a piece of thick fibre board stuck into place with Araldite and written across it in large letters the warning "Removal of this protective cover may cause damage to the unit", Detective Young having decided that the only damage that might be caused by removing this cover, was the shattering of his illusions, immediately prized off the cover. As I suspected the total value of the parts to make one of these, would come to about three or four pounds I Nuff said!!

Those of us who were fortunate enough to be present at a recent Radio Industries Club Luncheon were also treated to a facinating lecture by James Burke. Fixed to the bottom of everyone's coffee cup was a tiny chip of silicon five millimeters square. James Burke told us that it contained 5,000 transistors. The mind boggles, but from what I read this is only the beginning and they are already talking of accommodating far larger numbers on a similar sized chip.

No wonder one of my colleagues, barely half my age said to me, the progress of electronics is too fast for me, it has already left me behind! There is no need to be despondent about it, it is obviously going to develop into a specialists world and we can only hope that the outcome of these marvels will bring some lasting tangible benefit to mankind.

## General Purpose



THis power supply will provide up to 20 volts at one amp, so will operate most of the items likely to be used by the electronics enthusiast. These will possibly include radio receivers, amplifiers, and all sorts of experimental and other electronic projects. The power supply can also be used to run model motors or trains within its rating, or for the trickle charging of accumulators, model lighting, or booster charging of dry cells. It can thus be expected to pay for itself in due course.

The same circuit can be adopted with various mains transformers and meters, as will be explained later, and this may allow items to hand, to be brought into service, thereby reducing expense.

The supply is fully adjustable, has excellent regulation, and is automatically protected against overloads or short circuits.

## CIRCUIT DESCRIPTION

The full circuit diagram of the Power Supply is shown in Fig. 1. Transformer T1 has a low voltage
secondary, and rectification is by the four diodes, D1 to D4. Output from these passes to the reservoir and smoothing capacitor C1. Direct current for the later parts of the circuit is obtained from Cl.

Switch Sl is the mains switch, and the neon, LPI is to show when mains power is on. The transformer fitted is an easily obtained multioutput component, and the rectifiers are connected to the OV and 19 V taps, to give a final output of up to about 20 V .

If other transformers are used, the voltage across Cl , after rectification, should not exceed 30 V . Lower secondary voltages, such as 12 V , will naturally reduce the maximum output voltage, but will often be adequate for most equipment. A transformer with two or three 6.3 V windings would provide 12.6 V or 18.9 V with the windings connected in series in correct phase.

The secondary current rating must at least equal the maximum current required, and the circuit is designed for 1 A .

## REGULATOR

Integrated circuit ICI forms the regulating part of the circuit and is a positive voltage regulator. Negative or inverting feedback is


Suppose for a moment that the power supply is set to give an output of, say, 10 volts. In this state the series pass transistor, TR1, is biased sufficiently on for this voltage to appear at the output.

This is accomplished by means of the potential divide network consisting of R2, VR1 and R3, the wiper of the voltage control being fed back to the inverting input of ICI (pin 6).

If a load is now connected across the output, the immediate action is for the voltage on VR1 wiper to reduce. This decrease in
voltage causes ICI to increase its output to TR1 causing it to conduct more heavily, and restore the potential at VR1 wiper to its original value to maintain a 10 volt output at the emitter of TR1.

When the load is removed, the voltage fed back to pin 6 increases. In turn the i.c. output reduces causing TRI to conduct less until the voltage on VR1 wiper is restored.

In practice this "pulling" and "pushing" happens very fast, faster than it does to explain it, with the result that the final output maintains a very stable level-the "ripple", the variation between the "pull" and "push", being within a few millivolts.

## CURRENT LIMITING

Current limiting is achieved by VR2 which can limit the current from a maximum of one amp to as low as 50 mA . Thus even a short circuit on the output can cause no damage to the power supply.

The output is finally taken to the output terminals via S2, which allows complete isolation of the load from the supply. Capacitor C4 filters any noise induced on the supply lines.

Although not shown on the circuit, a series combination of a resistor and light emitting diode can be connected across the out-
put to give an indication that the d.c. supply is on.

The power supply is fully metered, ME1 measuring the d.c. voltage at the output, and ME2 the current taken by the load. Those used were SEW type MR38P which are seldom seen nowadays in suppliers catalogues, but should be available from old stock. It should be noted that the metal work for the power supply was dimensioned using these types of meters, if other types, either smaller or larger are used then the sizes must be varied accordingly.

## METERS

Ideally the meters should read 0 to 20 volts f.s.d. for ME1, and 0 to 1 amp for ME2. These can be purchased correctly scaled, but it is more likely that constructors will already have meters to hand, and these can be used instead. The voltmeter, MEI could be a milliameter with a series resistor, R4.

This resistor can have a value of one kilohm per volt for a $\operatorname{lm} A$
meter; which means a resistance of 20 kilohms for the meter to read 20 volts, or 200 ohms per volt for a 5 mA meter, which is four kilohms to read 20 volts. The formula for calculating this "multiplier" resistor is simply:
$R_{\text {MULTIPLier }}=$
$\frac{\text { Voltage to be measured }}{\text { Current rating of meter }}$ (Kilohms)
For the current meter ME2, a direct reading meter can be used. If however a meter of greater sensitivity than one amp f.s.d. is used it can be shunted with resistance wire.

The value of this resistor is calculated from the following equation:

$$
R_{\mathrm{SHUNT}}=\frac{I_{\mathrm{m}}}{I-I_{\mathrm{m}}} \times R_{\mathrm{m}}(\mathrm{Ohms})
$$

Where $I_{m}=$ Current rating of meter, $I=$ Maximum current to be measured, and $R_{m}=$ Resistance of meter.

As the value of the shunt may be rather small, and quite possibly will be difficult to measure an alternative is to find the shunt by trial and error. To do this connect a 500 mA load, such as a six watt 12 volt bulb and a test meter set to read one amp in series across the output. Solder a short length of resistance wire across the meter terminals.

Fig. 1. Complete circuit diagram of the General Purpose Power Supply.


Adjust VR1 from a low voltage until the test meter reads 500 mA . If ME2 reads too high, shorten the resistance wire. If it reads too low, lengthen the wire to increase the resistance. With a few trials ME2 can be made to read correctly.
Switch of the mains each time the shunt is being changed.


## CASE DETAILS

An attractive and inexpensive case can be made from three $152 \times$ 100 mm flanged Universal Chassis members for the front, bottom and back. These are held together with 4BA mounting hardware as supplied with these parts.

A cover is necessary to protect the user and power supply. This can be made from a piece of sheet metal of 22 s.w.g. or similar. The overall size is $408 \times 152 \mathrm{~mm}$ and is finally bent into a " U " shape. This is relatively easy if the metal is not too stout and if gripped firmly when bending. It is fixed to the main chassis using self tapping screws which screw into the flanges on the Universal Chassis members.

## CIRCUIT BOARD

The diagram in Fig. 2 shows the stripboard layout for the rectifier part and regulator part of the circuit. Make all the breaks shown not forgetting those which isolate the metal mounting bracket and then wire the diodes followed by the resistor and capacitors. The i.c. is left to last. Be extra careful with the i.c. as many of the leads are splayed out more than normal, and if forced can break away from the body. A socket cannot be used here for this reason.

The flying leads can be wired either direct or by the use of Veropins. Colour coding of the wires will be an advantage at this stage if for instance, at a later date fault finding is necessary.

## FRONT PANEL

Next to be wired can be the front panel. Drilling details for this is shown in Fig.3. Note that

The main chassis frame members. The power transistor TR1 is seen mounted on the rear panel. The circuit board is mounted vertically close to the output switch S2. It would be a good idea to insert a piece of plastic or polythene sheet between S2 and the circuit board to avoid any possibilities of "short circuits. The cover for the unit is simply a "U" shape which is fitted over and fixed with self tapping screws.

the hole sizes depend on whatever type of meter you have. If other larger types are used then obviously a larger front panel, hence a larger overall case needs to be used. It is best therefore to obtainthe meters first and make the case accordinly.
It will be easier to dismantle the three sections of the chassis when wiring up the front panel, remembering to leave connecting wires long enough to reach the rest of the circuit. Wiring details for the front panel is shown in the overall diagram of Fig.4.

## BOTTOM AND REAR

Whatever type of transformer you have chosen needs to be fixed as near to the back as possible so as to clear the front panel components. The completed circuit board can also be mounted on the bottom panel using the small bracket as detailed in Fig.2. The fuse holder is also mounted at this stage.

The rear panel has only one component mounted on it and this is the power transistor TR1. This needs to be isolated from the chassis, and is accomplished using

## 

Resistors
R1 $39 \Omega$
R2 $8 \cdot 2 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
R4 Meter multiplier (see text)
R5 Meter shunt (see text)
All $\frac{1}{2} \mathrm{~W}$ carbon $\pm 5 \%$
Potentiometers
VR1 $10 k \Omega$ lin. carbon
VR2 $1 \mathrm{k} \Omega$ lin. carbon

Capacitors
C1 $3300 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $0.1 \mu \mathrm{~F}$ polyester
C3 47pF polystyrene
C4 $0.01 \mu \mathrm{~F}$ polyester

## Semiconductors

TR1 2N3055 silicon npn
IC1 CA3085 positive voltage regulator
D1 to D4 1 N 4004 silicon rectifier

## Miscellaneous

LP1 240 V mains neon with integral resistor
ME1 0 to 20 volt meter, $60 \times 48 \mathrm{~mm}$ front (see text)
ME2 0 to 1 amp meter, $60 \times 48 \mathrm{~mm}$ front (see text)
S1 s.p.s.t. toggle switch
S2 d.p.d.t. toggle switch


SK1, 24 mm sockets ( 1 off red, 1 off black)
FS1 3 amp fuse with chassis mounting holder
T1 240 volt mains transformer, secondary as required rated at 1 amp. Type MT104AT (Home Radio) was used in prototype which had a 19 V secondary. (See text)
Stripboard 0.15 inch matrix 10 strips by 20 holes; aluminium $20 \times$ 20 mm ; Universal Chassis fianged members $152 \times 100 \mathrm{~mm}$ ( 3 off); 22 s.w.g. sheet metal for cover, bent into a " $U$ " shape, overall dimensions $408 \times 152 \mathrm{~mm} ; 4 \mathrm{BA}$ and 6 BA hardware as required; insulating kit for TR1; two small round knobs; four rubber feet; length of mains cable; connecting wire.
 tion kit.


The completed circuit board. Note the small L-shaped mounting bracket.
a mica insulating kit as shown in Fig.5. When mounting the transistor be sure to position it so that it will clear the mains transformer, otherwise a short circuit may occur and cause a great deal of damage.

Four holes each 15 mm in diameter are also drilled in the rear panel, two near the top above the transformer, and two at the bottom. The three separate sections can then be bolted together before testing.

## IN USE

Before switching on, the usual checks should be made to ensure that no errors have crept in. Be extra cautious with this design to look out for short circuits, particularly around the rectifier part of the circuit board and transistor. An ohmeter set to its low resistance range should show no indication at all when connected between the chassis and the case of the transistor. Take time over this test as mistakes at this stage can be very expensive!
If all seems well the mains lead can be plugged in, fit a one amp fuse in the plug, and switch on. The neon should at once light, and depending where the controls are set an indication may be seen on the voltmeter.
Adjusting the voltage control, VR1 should allow the wanted voltage to be set on the meter. The range obtained on the prototype was just over zero to just over 20 volts. Depending on the transformer used the voltage can be lower or higher.

## CURRENT CONTROL

Set the required voltage on the meter and connect the power supply to a load, turn the current control fully anticlockwise and switch on S2. The voltmeter will still show an indication but the current meter will show zero. Slowly turn the cURRENT control clockwise and note the reading increases also. When further rotation of the control produces no further increase in the reading


Rear of the front panel showing interwiring between components.
turn the control back to the point where the reading stopped.

The current control is now set so that no further increase in the current will take place. The load and power supply in this state are now fully protected. For example if the load goes short circuit the power supply will limit the current thus protecting the load as well as the supply. Under fault conditions such as this the voltage reading will remain the same, but the current will fall to almost zero. There is a slight leakage current on a full short circuit but this can normally be ignored.
Once practice has been gained at using the controls the power supply will become a most useful instrument in the constructors workshop.

## JICK PIUR \& FirIIY... by doug baker



# Everyday News 

## BRITAIN'S DESIGNERS OF TOMORROW

## Electronics feature in three of six prize winning ideas in national competition for schoolchildren

## But Minister says-Overall response a little disappointing



David Crosbie, from Dulwich College with the Skinner Box.
The printed circuit board assembly jig designed by Leslie Brookes, Shaun Gallagher, Dennis Oliver, Raymond Pearce and Ian Sperry from the Drayton School, Banbury.


The 1978 winners of the Design Council GEC Schools Design Prize were announced at the Royal Institution London on November 21. This is the second year of the annual award scheme, which is open to secondary schools and aimed at encouraging pupils to turn their bright ideas to practical use. It is sponsored by The General Electric Company Limited.

In his introductory speech before the official prize giving ceremony Mr. L. Huckfield M.P., Parliamentary Under Secretary of State, Department of Industry, emphasised the need for closer interface between indusiry and schools. Quality of design is all important in the drive to sell abroad, and we must encourage the generation of ideas by schoolchildren. Their contributions can be most valuable. While complimenting the winners of this year's competition, the Minister also said the response was a little disappointing: more than 6,000 secondary schools were initially contacted; 200 schools showed interest, and only 50 finally participated.

Two prize-winning designs involve the use of electronic circuitry, and one other is an aid for p.c.b. assembly. Brief details of these three designs follow.

## Improved "Skinner Box"

To help the biology department at Dulwich College in their work in establishing a conditioned reflex in a mouse, David Bruce Crosbie (aged 16) devised an adapted "Skinner Box". He designed an electronic system to provide the mouse with its reward when it made a correct response. The animal must learn the correct response to the two lights in the box and touch a narrow ledge when either of the lights come on in order to release its reward.

## P.C.B. Assembly Jig

A printed circuit board jig that will make the soldering of components an easier and cheaper operation for small firms has been designed by a team of five pupils (aged under 16) from Drayton School, Drayton Road, Banbury, Oxon. The novel feature is a foam-filled lid which holds the components securely in place when the frame is reversed for soldering operations. (For speed of production in industry, component leads are pre-cut to suitable length and pushed through the p.c.b. holes without any final bending to lock components in position).

## Sunshine Recorder

By using a two-cell system, with one cell monitoring direct sunlight the other monitoring ambient or scattered sunlight, Neil Duncan Hunt (aged 16) of Brentwood School, Essex, was able to record the hours of sunshine more accurately than with a traditional Campbell-Stokes recorder.
Neil designed the electronic sunshine recorder entirely in his own time. He hopes it can be developed for use in researching the possibilities of harnessing solar energy. - The other three prizewinning designs were for animated roadsigns, music calculators for teaching musical theory; and geometric dominoes for blind children.

Neil Hunt, from Brentwood School with the Sunshine Recorder.


## -ANALYSIS

In the old days (in electronics this can be as recently as ten or fifteen years ago) semiconductor manufacturers were able to hand-test transistors as they trickled off the production line. Then, as production methods improved and the trickle became a torrent, so the unit cost of production lessened until there came a time when the cost of testing them first became equal to, and then exceeded, the cost of producing them.
This crazy situation was soon remedied by the development of automatic test equipment. Then came the integrated circuit which, because of its additional complexity, again put test cost ahead of production cost. So it was back to the drawing board to design more advanced test gear which could do more tests faster. I.C.s in computers were now controlling test sequences for testing i.c.s. Chips testing chips.
Today we have LSI in the form of memories and MPUs of such complexity that it is impossible to test them other than with automatic high speed testers. Impossible? Yes! If you sat down with a multimeter and other appropriate test gear, measuring each possible parameter and writing it down on a test sheet, working eight hours a day, you could spend your whole life on a single chip and still not have tested it fully.
In fact so complex are today's advanced chips that even using the most sophisticated automatic testers it is only possible on a commercial scale to test up to a certain "confldence factor" which indicates that the chip should function properly in most applications.

What can be done for testing semiconductors can also be done for other circuits. So, in the past decade a new ATE (Automatic Test Equipment) sector of industry has been born making testers not only for i.c.s but also for printed circuit board assemblies, cableforms, complete equipments, and missiles and other weapons systems. ATE has grown in importance so that it now has its own literature (and jargon!), its own trade exhibitions, and its own specialist breed of ATE engineers working in companies solely devoted to designing and manufacturing ATE of various types.
Early ATEs were based on large computers. Then came the mini and now the MPU is taking over. Even when it is possible to test an assembly or an equipment in the old-fashioned way it is generally quicker and cheaper to use ATE with unskilled or semiskilled operators. With diagnostics, if something is wrong the ATE prints out how to put the fault right.

You're right if you say this is another example of soulless automation. But without chips testing chips some things would be impossible, others far more expensive to buy

Brian G. Peck

## On Fire

Fairchild's 9440 Microflame 16 -bit 10 MHz microprocessor has made its European debut. It is claimed as bringing full minicomputer capability on a single microprocessor chip. Software support system is Fire (Fairchild Integrated Real-time Executive).
Microflame II, a secondgeneration system, is already in development and should hit the market in mid-1979. Other "hot" names in Microflame are Spark, Firebug and Blaze, all being configurations of the system.

The 1979 All-Electronies Show to be held in London's Grosvenor House Hotel open ing on February 27 is fully sold out with over 200 stands taken by exhibitors.

## SAILING

Operation Drake, the two year voyage for young people commemorating Sir Francis Drake's circumnavigation of the globe 400 years ago, will use three Racal v.h.f. manpacks and four pocket two-way radios to keep the young explorers in touch during land-based exploration trips.

## GRANTED

The Science Research Council is granting $£ 316,000$ to Edinburgh University to rebuild and up-date the University's silicon diffusion plant used for research and instruction.

The plant was recently renamed the Wolfson Microelectronics Institute and enjoys an income of $£ 200,000$ a year from industry and government research projects.

## MPU COMPETITION

The manufacturer of Prestige kitchenware is offering prizes for designs for the microprocessor in the kitchen.

Ideas should be for a piece of kitchen equipment making maximum use of a MPU either in storage, preparation, cooking or serving food, or with information processing such as storage and retrieval of cooking recipes.

## Double Viewing

The UK's largest maker of colour TVs, Thorn Consumer Electronics, is to double its investment in automated processing in its factories. The plan is to invest $£ 13$ million in an attempt to equal or surpass the techniques used by Japanese competitors who hold some 10 per cent of the UK market.

## WRITER OF THE YEAR

In recognition of his contributions in the audio/video field, the 1978 Audio Writer Award has been won by Barry Fox.

Better known to our readers as Adrian Hope, he is one of the most prolific freelance writers on audio, video and patents. Paying particular attention to detail and research, he writes for the majority of audia and video pubications and is the author of two books, one on Inventions and the other on Audio.

Sponsored by BASF United Kingdom, the award, a silver tuning fork and $£ 300$, was presented by Charles Macfierras, the international conductor.



## EE2020

THIS month the remaining two printed circuit boards are covered. These are board B-Control Unit and board D-Power Amplifier.

Full component lists and full-size p.c.b. patterns are included.

It is strongly recommended that only Grade 1 Fibreglass be used for the p.c.b.s.

## Drilling details:

(a) normal component holes 1 mm .
(b) pushbutton switches, preset potentiometers, and terminal pins 1.2 mm .
(c) board fixing 4 mm .

The procedure given last month should be followed when assembling components on these boards. The eight pushbutton switches must be fitted to board B before other parts are mounted. Full details appeared last month, see Fig. 2•7.

## TRANSISTORS

Transistors type BC182L, BC212L and BC384L are encapsulated in TO 92 epoxy packages, with the three leads "in line", see Fig. 3.5b.

For use in the 2020 Tuner Amplifier, a special version of these transistors with the suffix "TO 5" is recommended. Devices so coded are supplied with their leads "cranked" to give the standard TO 5 configuration, see Fig. 3.5a. They are suitable for direct fitting in the appropriate holes in the p.c.b.s.

If devices without the TO 5 suffix are obtained it will be necessary to "form" the leads to conform to the TO 5 arrangement before assembling on the boards.

## COMPONENTS 省

## BOARD D

Resistors R82a,b
R83a,b
R84a,b
R85a,b
R86a,b
R87a,b
R88a, b
R88a, b $15 \mathrm{k} \Omega$
R89a,b $820 \Omega$
R92a,b
R93a, b
R94a,
R95a,
R96a, b
R97a,
R98a, b
R99a,b $\quad 0.22 \Omega 2.5 \mathrm{~W}$ wirewound $10 \%$
R100a,b $\quad 0.22 \Omega 2.5 \mathrm{~W}$ wirewound $10 \%$ Ri01a, $1 \mathrm{k} \Omega 1 \mathrm{~W}$
R91a,b $82 \mathrm{k} \Omega$
All $\frac{1}{2} \mathrm{~W} \pm 5 \%$ high-stability carbon film, except where otherwise stated (2 off throughout)

## Potentiometers

VR15a,b 47kS horizontal mounting miniature skeleton preset RS type 184/5 (2 off)
VR16a,b $\quad 2 \cdot 2 \mathrm{k} \Omega$ horizontal mounting miniature skeleton preset RS type $184 / 5$ (2 off)

Capacitors
C46a,b
C47a,b
$10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C50a,b $220 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C51a, b T00pF polystyrene
Unless otherwise stated, all electrolytics (elect.) are the small single-ended p.c.b. type. (2 off throughout)
*Mounted on main chassis

## Semiconductors

$$
\begin{array}{ll}
\text { TR14a,b } & \text { BC182L/TO5 npn silicon } \\
\text { TR15a,b } & \text { BC182/TO5 npn silicon } \\
\text { TR16a,b } & \text { BC212L/TO5 pnp silicon } \\
\text { TR17a,b } & \text { BC182L/TO5 npn silicon } \\
\text { TR18,b } & \text { BC18L/TO5 npn slicon } \\
\text { TR19a,b } & \text { BC212L/TO5 pnp silicon } \\
\text { TR20a,b } & \text { TIP33A npn silicon } \\
\text { TR2a,b } & \text { BC182L/TO5 non silicon } \\
\text { TR22a,b } & \text { TIP34A pnp silicon } \\
\text { T2 off throughout) } \\
\text { *Mounted on rear panel }
\end{array}
$$

| Socket |
| :--- |
| *Sk9 |
| Phones 3-pole chassis |
| jack socket Maplin |
| type HF92A |

*Mounted on front panel

## Printed Circuit Board

D $114 \times 114 \mathrm{~mm}$ (see Fig. 3.1)


Fig. 3.2 (left). Board $D$ of the 2020 Tuner Amplifier: top view showing components in position. NOTE: one side of R101a, b goes to TD2, not to TD3 as shown in the circuit diagram Fig. 1.2b.

## EE2020

Fig. 3.1 (left). Board D of the 2020 Tuner Amplifier: underside view showing printed circuit (full size).


## COMPONENTS 受哀爵

## BOARD B



Resistors
R41a，b $1 \mathrm{M} \Omega$
R42a，b $330 \mathrm{k} \Omega$
R43a，b $100 \mathrm{k} \Omega$
$R 44 a, b \quad 1 k \Omega$
R45a，b 1k $\Omega$
R46a，b $\quad 1.5 \mathrm{k} \Omega$
R47a，b $\quad 4.7 \mathrm{kS}$
$\mathrm{R} 48 \mathrm{a}, \mathrm{b} \quad 47 \mathrm{k} \Omega$
R49a，b $18 \mathrm{k} \Omega$
R50a，b $\quad 39 \mathrm{k} \Omega$
R51a，b $27 \mathrm{k} \Omega$
R52a，
R53a，b
R54a，b
R55a，b
R56a，b
R57a，b
R58a，$\quad 270 \Omega$
$R 59 a, b \quad 8 \cdot 2 k \Omega$
R60a，b $39 \mathrm{k} \Omega$
R61a，b 5.6 kg
R62a，b $\quad 2.7 \mathrm{k} \Omega$
R63a，b $\quad 8.2 \mathrm{k} \Omega$
R64a，b $470 \mathrm{k} \Omega$
R65a，b $27 \mathrm{k} \Omega$
R66a，b $10 \mathrm{k} \Omega$
R67a，b $2.7 \mathrm{k} \mathrm{\Omega}$
R68
$100 \Omega$
R69a，b $\quad 15 \mathrm{k} \Omega$
R112a，b 330k $\Omega$
All $\frac{1}{4} \mathrm{~W} \pm 5 \%$ high－stability carbon film （2 off throughout，except R68）

## Potentiometers

＊VR11 Bass $100 \mathrm{k} \Omega$ dual gang，linear
＊VR12 Treble $100 \mathrm{k} \Omega$ dual gang，linear
＊VR13 Balance $100 \mathrm{k} \Omega$ single gang linear
＊VR14 Volume $100 \mathrm{k} \Omega$ dual gang，log．
＊Mounted on front panel

## Capacitors

C23a，b $\quad 2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect
C24a，b $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C25a，b $10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C26a，b $\quad 0.22 \mu \mathrm{~F}$ polyester
C27a，b $\quad 0.22 \mu \mathrm{~F}$ polyester
C28a，b 470pF polystyrene
C29a，b 470pF polystyrene
C30a，b $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C31a，b $2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C32a，b 68pF polystyrene
C33a，b $\quad 2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C34a，b $0.047 \mu \mathrm{~F}$ polyester
C35a，b 0．047pF polyester
C36a，b 3300 pF polystyrene
C37a，b $10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C38a，b 22 pF polystyrene $5 \%$ or sub－ miniature plate ceramic
C39a，b $10 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
C66 $47 \mu \mathrm{~F} 63 \mathrm{~V}$ elect．
Unless otherwise stated，all electrolytics
（elect．）are the small single－ended p．c．b．
type（2 off throughout，except C66）．


Fig．3．3．Board B of the 2020 Tuner Amplifier：underside view showing printed circuit（full size）．


Fig. 3.4. Board B of the 2020 Tuner Amplifier: top view showing components in position.


Fig. 3.5. Lead-out details for all transistor types used in the 2020 Tuner Amplifier.

Pushbutton Switches

| ushbutton Switc |  |  |
| :---: | :---: | :---: |
| S9 Mono |  |  |
| S10 Ac |  |  |
| S11 Aux 2 |  | 2-Pole changeover |
| S12 Disc |  | RS type 338-434; |
| S13 F.M. |  | [ IT type 44012R |
| S14 L.F. filter |  | (8 off) |
| S15 H.F. filter |  |  |
| S16 Tape |  |  |
| One 4-switch |  | ching assembly (for |
|  |  | pe 338-254; 1TT type |
| 4401 |  |  |

Sockets
SK2a,b Aux 1
SK3a,b Aux 2
SK5a,b Tape Out
SK6a,b Tape In
SK7a,b Amplifier Out
SK8a,b Amplifier in

> phono socket single-hole: chassis mounting RS type $477-848$
> (12 off in all)

## Semiconductors

TR5a,b BC384L/TO5 npn silicon
TR6a,b BC212L/TO5 pnp silicon
TRTa,b BC384L/TO5 npn silicon
TR8a,b BC212L/TO5 pnp silicon
TR9a,b BC384L/TO5 non silicon
TR10a,b BC384L/TO5 npn silicon
(2 off throughout)

Printed Circuit Board
B $210 \times 96 \mathrm{~mm}$ (see Fig. 3.3)

NOTE: Correction to Part 2, page 38.
A $242 \times 96 \mathrm{~mm}$ (see Fig. 2.1)
E $115 \times 57 \mathrm{~mm}$ (see Fig. 2.5)

See Bulk Components list (page 878) and individual components lists for full designation of all transistors. Connection details are given in Fig. 3.5.

## OFF-BOARD COMPONENTS

Components marked with a asterisk are mounted on the main chassis assembly. Full details of all metalwork will be given next month.

To be continued

# RADIO WORLD 

By Pat Hawker, G3va

Clarity and Air Traffic Control

THE relatively poor clarity of some civil aircraft radio systems (at least to the outsider) is becoming a matter of concern to some communications engineers. An American, Richard G. Davaney, has on several occasions recently tried to raise this life-anddeath issue publicly and asks "Why is this state of affairs tolerated and never mentioned or cited as a problem?"

He claims that tapes from the 1978 San Diego air disaster were completely unintelligible to the average listener, adding that when they were used on television "it was necessary not only to have someone repeat the conversations, but also to print an overlay of sub-titles . . I cannot believe these scarcely understandable communications are not at least partly responsible for accidents and near-misses."

Certainly mis - understood radio messages appear to have played a tragic part in the world's worst airdisaster in the Canary Islands in 1977, apparently brought about by a misunderstanding or mis-hearing of the instructions from the control tower.

## Broadcast Receivers

In contemplating the change of BBC Radio 4 to $200 \mathrm{kHz}(1500 \mathrm{~m})$ in this column last October, I suggested that interference might prove a more serious problem than had been anticipated, due to such questions as radiation from television receivers. This indeed seems to have happened plus a further problem that few foresaw: "image" (second-channel) spurious responses on a considerable number of receivers to the 1152 kHz Independent Local Radio stations and particularly LBC in London.

It is a simple matter of mathematics: if you have a receiver with an intermediate frequency of around 475 kHz then, if the set is tuned to 200 kHz there will tend to be a response to any station on $200+(2 \times 475)$ or 1150 KHz , resulting in an audible beat with 1152 kHz , or if very near to the ILR station, breakthrough of the programme material. Curiously, this should have similarly resulted in interference from the old frequency of 1151 kHz to Radio 2, yet apparently there were few complaints. May be all former Radio 2 listeners had
receivers with either better pre-mixer selectivity or with intermediate frequencies safely below about 470 kHz . One answer, of course, is to re-align the i.f. of receivers suffering interference.

## Better Receivers

One result of the reshuffle of the frequencies is that many people have suddenly become aware of the relatively poor design of the front-ends of many m.f./l.f. broadcast receivers. It was not always so. At one time many ingenious designs with bandpass circuits providing pre-mixer selectivity of a high standard, variable i.f. bandwidth, push-button and motorised tuning were all part of the broadcast receiver scene.

As others have pointed out, it is a fallacy to believe that medium-wave a.m. reception is inherently secondclass, much inferior to v.h.f.ff.m. reception. Apart from some limitation of dynamic range, the present deficiencies are largely man-made, often stemming from the megawatt approach to external broadcasting on m.f.

There are a number of ways in which we could significantly improve the ability of receivers to reject interference. One such system would be the use of binaural synchronous detection which exploits the coherent nature of the two sidebands as compared with the non-coherent interference. Less complex would be the practical development of homodyne, direct - conversion broadcast receivers.

Satisfactory (although complex) techniques for synchronous detection for a.m. signals were put forward over 20 years ago by J. P. Costas and still turns up from time to time, most recently in "IEEE Transactions on Consumer Electronics" (August 1978) by Hudson, Castle and Krauss. This design uses two type 561 integrated circuit phase-lock-loops but unfortunately also requires some closetolerance phase-shifting components.

One suspects that synchronous demodulation for broadcast receivers will never become popular until someone produces an integrated circuit chip that does the whole thing and makes it as simple as the common diode demodulator. But more the pity!

## Hair-pins and HF Radio

A name that has long been associated with a high standard of short-wave receivers and components is Eddystone. But few of those who have used the firm's equipment know that it all started when women began to cut their hair shor in the period following the end of World War I.
The Eton crop, the bob and the shingle meant a falling demand for those now almost forgotten wire hair-pins. This was a disturbing trend for the Birmingham costume-jewellery firm of Jarrett, Rainsford and Loughton who had a factory geared up to turning out six tons of hair pins each week. It was in fact G. Stratton Loughton who in 1922 took this part of the firm into the radio business as one of the companies associated with the old British Broadcasting Company.

The competition was intense and some five or six years later Harold Cox and Arthur Edwards changed the emphasis from medium to high frequencies. This soon resulted in such sets as the Eddystone AllWorld Four which in its "ant-proof" aluminium die-cast case brought pleasure to many tea and rubber planters-and in doing so helped to pioneer the concept of "tropicalisation" of radio equipment.
Later Eddystone helped pioneer police v.h.f. radio providing an emergency communications network for the London police just a few weeks before the outbreak of war in 1939. The company suffered severely in the blitz and were forced to move into the old West Heath Lido or "The Bath Tub" where it became perhaps the first radio company ever to operate from a swimming pool.

Much later, in the mid-sixties, Eddystone became and has remained a fully-owned subsidiary of The Marconi Company on its long trek from hair-pins to high-grade h.f. receivers.

## Sunspots and Weather

Many short-wave listeners and radio amateurs have long compared the daily variations of the ionosphere, due to sun spot activity, with the everchanging British weather. But is there really a link? During the past century more than 1000 articles have been published which either claim or refute correlations between solar activity and some feature of terrestrial weather or climate.
But it is only relatively recently that investigations do appear to reveal at least some definite sun-weather signals: for example the 22 -year solar magnetic cycle does appear to be linked with a regional drought cycle; while the mini-ice age of the Maunder Minimum ( 1645 to 1715 AD) linked a long cold period with a period of remarkably low sunspot activity.

## The professional scopes you'vealways needed. <br> When it comes to oscilloscopes, you'll have to go a long way to


equal the reliability and performance of Calscope
Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.
The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A $3 \%$ accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.
The price $£ 219$ plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity Price E 162 plus VAT.

## CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,
Kingsgate House
Kingsgate Place.
London, N.W.6.

Audio Electronics,
301 Edgware Road, London W.2.
Tel: 01-724 3564
Access and Barclay card facilities
(Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3 Rayleigh, Essex. Tel: 0702715155 Mail Order

EH12, 98 CALAIS ROAD, BURTOHZOH-TRENT, STAFFS. DEI3 DUL. PHONE 2423. 82535

## E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER of KITS and COMPO. NENTS for E.E. Projects. We supply carefully aelected sets of parts to enable you to construct E.E. proiects. Appropriate hardware-nuts, screws, I.C. sockets are Included. Each profect kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply-You construct.

CHOKE WARNING DEVICE, Feb. 79 45.05 case 71 p

AUDIO MODULATOR. Feb. 79. E1-44 less case and pins.
LW CONVERTER. Feb. 79. £3.98 case $81-25$.
THYRISTOR TESTER. Feh. 79. 22.98 Inc. case.
ADJUSTABLE PSU. Feb. 79. 218-98 Case (horizontal layout) $£ 3.54$ extra. ROULETTE. Jan, 79, \&16-99 less case IM FIRST. Jan, 79, £3.06 less cases. LIGHTS REMINDER. Jan. 79. \&3:50 inc. case.
CONT. TESTER: Jan. 79. $\mathbf{2 2} \mathbf{2 6}$ less MIC AMP. Dec. 78. $£ 2-19$ inc. case. FUZZ BOX Dec. 78. £4.36 inc. case. VEHICLE IMMOBILISER DEC. 78. $23-77$ case extra 71 p .
WATER LEVEL ALERT. Nov. 78. $24 \cdot 77$ inc. cases.
"HOT LINE" GAME. Nov. 78. E3-83 less case $\&$ rod.
AUDIO EFFECTS OSCILLATOR. NOV. 78. $22-75$ Inc, board ai case.

SURSCRIBERS TELE TEL METER.
FUSE CHECKER. Oct. 78. £1.40 inc.
C.MOS RADIO. Oct. 78. . 2755 Inc. case. TREASURE HUNTER. Oct, 78, $£ 14 \cdot 20$ inc. cases less handie \& coll former.
GUITAR TONE BOOSTER. Sept. 78. es. 13 inc. case and p.c.b.
SOUND TO LIGHT. Sept. 78. 25-77 Inc. case.
FILTER, £1-25.

SLAVE FLASH. Aug. 78. $£ 2 \cdot 66$ inc, case less SK1.
LOGIC PROBE. July 78 . $£ 2.28$ inc. case IN SITUTRANSISTORTESTER. June 78. 24-49 inc. case.

VISUAL CONTINUITY CHECKER june 78. 22.96 inc, case \& probes.
FLASHMETER. May 78, £8.67, case extra ع1-25
POCKET TIMER. April 73. 22.82 inc. case.
WEIRD BOUND EFFECTS GENERA TOR. Mar. 78, £3.64 inc. case,
CHASER LIGHT DISPLAY. Feb. 78. £19.78. inc. p.c.b. case extra £3.54.
AUPIO VISUAL METRONOME. Jan. 78. et 17 inc. case.

RAPID DIODE CHECK. Jan. 78. $£ 1 \cdot 97$ inc. case.
AUTOMATIC PHASE BOX. Dec. 77 29.45 inc. p.c.b, \& case.

VHF RADIO. Nov, 77. $£ 11.06$ inc. case. ULTRASONIC REMOTE CONTROL Nov./Dec. 77. £13-22 inc. cases. TREASURE LOCATOR. OCt. 71. 88.77 case extra $£ 2-32$. Less handle a coil former
ELECTRONIC DICE, March 77. E4-09 inc. Case
SOIL MOISTURE INDICATOR. JURE 77. $£ 2.89$ inc. case and probe.

PHONEJDOORBELL REPEATER. July 77. $£ 4-92$ inc. case.

SHORT WAVE RECEIVER. Aug. 77 CAR BATTERY STATE INDICATOR Sept. 78. $21 \cdot 54$ less case inc. PCB.

ALL RRICES INCLUDE VAT AND FIRST CLASS POST. ADD T5D TOORDERS UNDER:25, COPIES OF EIE. CONSTRUCTIONAL ARTICLES 39p. GATALOCUE - SEND $3 \times 9 \mathrm{ST}$ STAMPS.

TEACH - IN - 78
COMPLETE KIT E14.50 INCLUDES FREE COMPONENT IDENTIFIGATION CHAR TEACHIN REPRINTS 39p. EACH PART ALL 12 PARTS AVAILAELE
 ALL I2 PARISAVAILABLE.

## 1979 ELECTRONICS CONSTRUCTORS CATALOGUE

HAVE YOU GOT YOUR COPY YET? MAGENTA'S NEW CATALOGUE INCLUDES MANY NEW PRODUCTS - CAREFULLY CHOSEN FOR EVERYDAY ELECTRONICS READERS. PRODUCT DATA AND ILLUSTRATIONS MAKE THE MAGENTA CATALOGUE AN INDISPENSABLE GUIDE FOR CONSTRUCTORS, FULLY INCLUSIVE PRICES RIGHT NEXT TO THE PRODUCTS MAKE ORDERING EASY. NO MINIMUM ORDER - ALL PRODUCTS STOCK LINES. FIRST CLASS DELIVERY OF FIRST CLASS COMPONENTS. SEND FOR YOUR COPY AND SEE HOW EASY IT IS TO USE THE MAGENTA CATALOGUEI
WRITE TODAY ENCLOSING $3 \times$ BP STAMPS.


TELEPHONE PICK-UP COIL 65 . TELEPHONE PICK-UP COIL 65p.
SPEAKERS. Miniature 8 ohm 59 p . 6. SPEAKERS. Miniature 8 ohm 59p. E
ohm $85 p, 80$ ohm $E 1-15$. EARPIECES. Crystal 38p. Magnetic 15p STETHOSCOPE ATTACHMENT fits our earpleces 58p. HEADPHONES. Superior Sensitive. $£ 2.98$. HEADPHONES. STEREO. 8 ohm *3.85.
NTERCOM. 2 STATION. £5.95. NSTRUMENT SCREWDRIVER SET precision screwdrivers with blades from 8 mm to 3.8 mm . E1-98. NIC 600 OHM CASSEITE TYPE with 3.5 mm fack plug and plastic desk stand. ©1-25

## DOING IT DIGITALLY

New Series-complete kit or zeparate parts IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quality components as specified by Everyday Electronics. Our kit comes complete with FREE TTL and COMPONENTIDENTIFICATION fronics, Our kit comes compieie with FREs-start foday-and learn about digital electronics. CHART. Follow this educational series-siar for ADDITIONAL COMPONENTS ( 5 months).


## A COMPLETE KIT FOR THE E E MICRO CHIME



This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!


## only $£ 8.95+55 p$ p\&p

## TMS 1000N - MP0027A Micro-

computer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $£ 4.95$ inc. p\&p (Only present 24 tune repertoire currently available.)

## New price for the original

 CHROMA-CHIME 24 tune mode!! Due to the fantastic success of this product right across the World we are able to offer it at$$
\text { only } £ 9.95+75 p \text { p\&p }
$$

Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet * All semiconductors
* All R's \& C's * Loudspeaker
* Switches \& pots * Socket \& Hardware
* Fully detailed kit manual

ALL CHROMATRONICS PRODUCTS
SUPPLIED WITH MONEY BACK GUARANTEE
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK NAME
ADDRESS $\qquad$

## l enclose cheque/PO value $\mathcal{E}$

 or debit my ACCESS/BARCLAYCARD account no|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Signature
-
GHROMATRONICS


## PCB ALTERNATIVE

I have formulated a method which combines the versatility of stripboard with the neatness of printed circuit boards. The idea is to drill holes in a Blob Board according to the p.c.b. diagrams given.

All one has to do then, is to wire the components to the nearest "pad" and where they do not exist wire links can be used. In my opinion this produces a neat looking board. A further advantage is the tracks on Blob Board are already pretinned, making soldering far easier.
R. Reid, Northants


When cartridge fuses of the ceramic type have "blown", and the metal caps removed a very cheap stand off, insulated pillar, or spacer is the net result.

A small battery holder for two penlight, HP7 batteries can be made from a matchbox. Four brass paper stud fasteners are used. The two at one end are joined together, and the other two then form the positive and negative terminals. The cover is then slid on, to provide a neat inexpensive battery box.
C. Sear, Cardiff, S. Glamorgan.

## TRACK CLEANER

When cleaning up the flux and solder threads from 0.1 inch stripboard, I have always used a fine toothed junior hacksaw blade. The set of teeth just fit the space between the tracks, and it is a very simple matter to draw the blade gently along, leaving behind completely clean recesses between tracks.

Rev. J. H. Hart, Liverpool.

## PLEAS TAKE NOTE

SOLID STATE ROULETTE (January 1979)
We would like to apologise to readers for some errors that have appeared on the circuit diagram (Fig. 1) for the Solld State Roulette.
The value of resistor R4 should be 10 ohm and not as shown.
The pin numbering of gates G7C and G7d of $1 C 7$ should be transposed. The diode matrix or "wheel" (D7-D43) is shown incorrectly.
The correcf circuit layout for G7C, E7d and dlode matrix (D7-D43) is shown below.
The wiring diagrams Figs. 2104 are shown correctly.


## ACROSS

3 Aerial network.
5 Not very hard-wearing?
7 Hi-fi characteristic achieved by Dolby (2,4).
9 Original places of supply.
10 Large pile.
11 Chaotic material.
12 The means of circuit adjustment, generally.
13 Technique for the growth of transistor crystals, partly in a taxi.
15 As far as circuit boards are concerned, this is no picture.
17 Sub-atomic particle.
18 Projectile emitter but usually of electrons in our business.
19 His pace is slow.
21 Appertaining to heat.
22 A catching ring, in part.
23 Periphery.
24 Not on top.
DOWN
1 A computer type.
2 Frequent relationships between waves.

3 Doping part of eleven across.
4 Line about which a body rotates.
5 Amorphous form of a resistive conductor.
6 Reaction with a fact to give a fragment.
8 Barely but more than observing in a regular, repetitive way.
10 A waxy base for a chip.
12 River-bed station?
14 Registered invention.
15 Partly learned and welldeserved.
16 Upset green-tea for electrical creation (Anag.).
18 Naturally occurring crystal with semiconducting properties.
20 To tick over lazily.
21 Pipe with picture properties.
22 Short wave to begin with. Solution on page 117


# INPIHITR Hitlit By P. C. O'Neil 

AN INDISPENSABLE TESTER FOR QUICK GO-NO GO TESTS ON A VARIETY OF THYRISTORS

THYRISTORS, or to give them their proper name, controlled silicon rectifiers, c.s.r. for short, are becoming more and more popular in circuits and are being used in many instances to replace relays.

The thyristor works on the principle of acting like an infinite resistance between the anode and cathode in both directions. Yet when a small trigger current is applied to the gate terminal, it behaves like a rectifier, allowing current to flow easily in one direction, but acting like a high resistance to reverse current.


The purpose of this unit is to test the amount of gate current needed for it to become conducting and also to indicate if it is either short circuit or open circuit.

## FUNCTION

The unit is very simple to operate. A suspect thyristor is connected to the unit via the three test leads, noting the correct connections. The only controls are S2, the on/OFF switch, S1 the SHORT circuit test, and VR2 the gate or trigger current control. Preset VR1


Fig. 1. Circuit diagram of the Thyristor Tester. The thyristor under test is shown dotted.
is used to correct tolerance errors on VR2.

Power is applied to the unit, and SI depressed. If the light emitting diode illuminates, the diode is short circuit and should be discarded. If the l.e.d. does not come on, VR2 is rotated slowly, until a point is reached where it does illuminate. The amount of gate current needed to switch or trigger that particular thyristor can then be read off the scale.

## CIRCUIT DESCRIPTION

The circuit diagram of the Thyristor Tester is shown in Fig. 1. The first part of the circuit is a simple voltage regulator comprising TR1, R2 and Zener diode D2. These together produce 5 volts at the emitter of TR1. This regulator was thought necessary in the event of an ageing battery. The 5 V output will remain stable, whereas an ageing battery will produce a lower voltage thus altering the calibration marks on the scale.

The second part of the tester actually tests the thyristor. Using the value specified for VR2, the gate current can be altered from 20 milliamps to 100 microamps. It thus covers all the likely currents needed.

Push switch S1 is a push to break type. When this is depressed, it


Fig. 2. Complete wiring details for the unit, In the prototype the small piece of stripboard was not fixed down, being suspended only by the wiring. Alternatively one edge could be glued onto the side of the case. When mounting VR1 some manipulation of the leads are required to fit as shown. It would be advisable to use different coloured connecting wires for the test leads.

## COMPONENTS <br> (miza

Resistors
R1 $390 \Omega$
R2 $470 \Omega$
Both $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$

## Potentiometers



Components mounted on the stripboard. No breaks are required in the copper strips.

Fig. 3. Full size scale as used for the prototype. Note that although the size will be correct, the markings will not necessarily be so.

Semiconductors
TR1 BC107 npn silicon
D1 TIL209 red l.e.d
D2 BZY88C $5.6 \mathrm{~V} \quad 400 \mathrm{~mW}$ Zener

## Miscellaneous

S1 push-to-break release-
to-make push switch
S2 s.p.s.t. toggle
B1 9V PP3 battery
Stripboard 0.1 inch matrix 10 strips $\times 12$ holes; small plastic case $80 \times 60 \times 40 \mathrm{~mm}$ or similar; battery clip for B1; three small crocodile clips; small rubber grommets ( 3 off); small pointer knob for VR2; material for scale; flexible and standard connecting wire.
cuts off all gate current to the thyristor. If the l.e.d. remains alight, the anode/cathode section is short circuit. If the l.e.d. fails to light at all, then there are two possibilities:

1. The c.s.r. is open circuit. No current can flow in any direction.
2. The c.s.r. requires a gate current greater than 20 milliamps. However, this is unlikely, and the device can be considered as useless for experimental work and be discarded.


The main part of the circuit is constructed on a piece of 0.1 inch matrix stripboard having 10 strips by 12 holes. There are no breaks to be made on the board, and this together with the remainder of the wiring is shown in Fig. 2.

No drilling details have been given for the case as they depend on a large extent what size is used. The prototype had overall dimensions of $80 \times 60 \times 40 \mathrm{~mm}$, and this seems a reasonable handy pocket size.

As the test leads are subject to a great deal of flexing, they should be of thick multistranded wire. Remember to fit grommets in the case to prevent any wear on the leads. The test leads are fitted with small crocodile clips.

If one wishes a small transistor socket can be fixed to the front panel thus making life easier when testing the small T05 type thyristor.

## SCALE

To some extent the calibration points on the scale shown in Fig. 3 could vary from one model constructed to another. For this reason it is better to individually calibrate each scale, although as a last resort the markings given can be used.

For accurate calibration a voltmeter and ohmeter are required. The accuracy of VR2 depends to some extent on, (a) its tolerance and (b) the setting of the preset


Fig. 4. Examples of thyristor leadouts expected to be encounted in normal work. These are only representative, so check with manufacturers data for latest information.

VR1. Let us asume that VR2 has 100 per cent accuracy and VRI is set to $250 \Omega$ and VR2 is zero.

Ohm's law tells us that;

$$
I=\frac{V}{R}=\frac{5}{250}=20 \mathrm{~mA}
$$

Thus we have our first calibration point.

If now VR2 is set to its maximum value of $47 \mathrm{k} \Omega$, again ohm's law tells us;

$$
I=\frac{V}{R}=\frac{5}{47250}=0.00010582
$$

or approximately $105 \mu \mathrm{~A}$. This gives us our last calibration point.

The remainder of the points can then be worked out and marked accordingly.

Alternatively, known working thyristors can be used to give the likely gate currents encounted in most instances.

## IN USE

The Thyristor Tester is very simple to use. Select the thyristor



## Lektrokit Super Strip SS2

Only $£ 11.05$ inc. $\mathrm{p} \& \mathrm{p}$ and VAT
Super Strip accepts all DIP's-as many as nine 14 -pin at a time-and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG. And no soldering. Super Strip has 840 contact points, combining a power/signal distribution system with a matrix of 640 contacts in groups of 5 . Distribution system has 8 bus-bars, each with 25 contact points.

Lektrokit Breadboards and Bus Strips
From $£ 3.25$ inc $p \& p$ and VAT
The modular, solderiess system! Breadboards that link together for any size, any configuration. With pitch of $0.1^{\prime \prime}$ to accept all IC's. Just take each component, choose its hole and push it in.

| BREADBOARDS |  | BUS STRIPS |  |  |
| :--- | :---: | :--- | :--- | :--- |
| Model | Contacts | Price, each | Model | Price |
| 264L | 640 | $£ 8.32$ | $212 R$ | $£ 1.78$ |
| 248 L | 480 | $£ 6.65$ | $209 R$ | $£ 1.62$ |
| 234 L | 340 | $£ 5.75$ | $206 R$ | $£ 1.45$ |
| 217 L | 170 | $£ 3.25$ |  |  |
| (All prices includep \& p and VAT) |  |  |  |  |


Seven ACE models from $£ 12.53$
-all prices inc $p$ \& $p$ and VAT
Just plug in components and make connections with ordinary 22-gauge solid wire. No soldering. Build any working project complete as fast as you could lay out a circuit diagram before.
ACE 200-K (728 contacts: $£ 12.53$ ) and ACE 201K (1,032 contacts: $£ 16.75$ ) come in kit form.
Lektrokit's policy is the right product, whatever the project, at the right price. And it's backed by a nationwide network of retailers.
Send for the name of the dealer nearest you-plus a FREE full-colour catalague.
Write to:- LEKTROKIT LTD., London Road, Reading, Berks. RG6 1AZ. Or send coupon.


## LEKTROKIT

"EDUCATIONAL KITS OF EXCEPTIONAL QUALITY"

(AUDIO magazine)



## THIS IS A POWERFUL RADIO RECEIVER!

The same kit is also 150 other different actual working projects e.g.:


Radio Recelver, Transmitter, Amplifier, Audio Generator, Signal Tracer \& Injector, Continuity Tester, Telegraph Photoradio Receiver, Radio Receiver/Microphone Mixe
Hiluminometer, Voltmeter. Ammeter, Sound Level Meter, Onmmeter, Diode \& Transistor Tester, Transparency Indicator
Etc.. Etc. Etc., Eto.

The above is just a selection of the circuits avallableyou can also design your own circuits with these superb new Denshi-Gakken "EX" construction kits.
No previous experience of electronics is required but you learn as you construct and have a great deal of fun too. The kits are completely safe for anyone to use.
Kits are complete with very extensive construction manuals PLUS Hamlyn's "All-Colour" 160 page book "Electronics" (free of charge whilst stocks last).
ALL KITS ARE FULLY GUARANTEED. Addon sets (to increase the scope of each kit) are available, plus spares and accessories as required. 150 PROJECT KIT $£ 39.7560$ PROJECT KIT $£ 25.75$ 120 PROJECT KIT $£ 33.75$ 30 PROJECT KIT £ $£ 8.95$ 100 PROJECT KIT £29.25 15 PROJECT KIT £ $£ 6.75$

> Prices include educational manuals, free book, VAT, p \& $p$ (in the U.K.).
> Written Guarantee, list of Low-priced Books for the Electronics Hobbists, introduction to the British Amateur Electronics Club.
> Callers at 20 Bride Lane will be very welcome. Trade and Educational enquiries invited.
> Cheque/P.O./Barclaycard/Access No. (or 14 p for illustrated literature) to DEPT. EE.

ELECTRONIEKIT LTD.
20 BRIDE LANE LUDGATE CIRCUS, LONDON ECAY 8DX(01-353 6430)

## WATFORD ELECTRONICS

35, CARDIFF ROAD, WATFORD, HIRTS, ENCLAND. MAIL ORDER CALLERS WEL COME. Tel: Watford $40588 / 9$ Send S.A.E. for descriptive leaflet.
VAT please add $8 \%$ to all kits. P \& P 30 p on orders under $£ 1000$.
ENJOY YOURSELF! Build a 'SUNDAY KIT' this weekend

American Patrol FM101K Siren Kit * illus. $\quad \$ 7 \cdot 70^{\circ}$

Electronic Bird Kit FM102K £6.20*

Dawn Bird Kit FM103K £6.90*
Water Detector Kit FM104K
*illus 26.20*

Cycle Fiasher Kit FM105K * illus.
©6.45*
2 Diode Buzzer FM107K Time Kit E6.50*

Photo Electric FM108K

## Switch

Flashlight \& Mini FM109K Lighthouse Kit 26.20*

Mini Electronic FM111K
Organ
$\mathbf{5 7 . 9 5 *}$

$7^{\prime \prime} \times 9^{\prime \prime} \times 1 \frac{3{ }^{\prime \prime}}{4}$ ULTRA QUALITY HIGH POWER $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ New D.C. Coupled Design AMPLIFIERS

Featuring-Electronic Short Open and Thermal Qvetload Protection. Briaf Spec.- Input Sensitivity 0.775 v. R.M.S. 10 .D.B./at 25 K Ohms. Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ T.H.D. at full power $0.1 \%$. Hum and Noise- 100 dB Relative full output.
T.D. 500300 W into 2 Onms. 220 W into 40 hms 140 W into Power supply P.S.300. 230:00
T.D. 150 150W into 4 Ohms. 100 W into 8 Ohms......................... $£ 28.25$ Power supply P.S. 150 .118-50
T.D. 15060 version 60 W into $80 \mathrm{hms}, 40 \mathrm{~W}$ into $150 \mathrm{hms} . . . . . . . . \mathbf{£ 1 7 . 7 5}$ Power supply P.S. 60 E15:50 Note-P.S: 300 will drive 2.T.D. 150 amplifiers All output ratinys are A.M.S. continuous sine wave output

## TO ORDER EY POSI

Mske cheques/P.O.s psyable to TUAC LTD., or quate Access/Barclay Card No. EWe accept holders phone orders 01-672 9080).
post to
TUAC LTD, 121 CHARLMONT ROAD, LONDON SW $179 A B$.
Send stamp for our free 36 page catalogus of LIGHTING \& AMPLIFIER MODULES, eic.

## Treasuro Thuiter



ANUMBER of readers have stumbled upon a disadvantage of meter-indicating metal detectors such as the E.E. Treasure Hunter, and that is, the inability of the operator to sludy the meter and see where he or she is going at the same time. To overcome this problem an add-on audio unit which will drive a small loudspeaker has been designed. This unit produces two different tones, one indicating a ferrous material and the other indicating a nonferrous material.

## CIRCUIT DESCRIPTION

The circuit diagram for the addon unit is shown in Fig. 1. The input voltage to the circuit is the meter drive voltage that appears at pin 6 of ICI in the original circuit of the Treasure Hunter. Fig. 1 page 715 in the October 78 issue. This voltage is compared by comparators IC1 and IC2 to a
reference voltage set by VR1.
When the input voltage exceeds this reference level, by an amount determined by the setting of VR2a, the output of ICl goes to +9 V and causes the astable multivibrator composed of TR1 and TR2 and associated components to start oscillating. The output of the multivibrator passes to an amplifier formed by TR1 and TR2 which drives a loudspeaker. The volume is controlled by VR3.

When the input voltage falls below the reference voltage by an amount fixed by VR2b the output of IC2 goes to +9 V , but is attenuated by R3 and R4 thereby causing the multivibrator to oscillate at a lower frequency.

If the input voltage is within the threshold window set by VR1 then neither comparator output goes to +9 V and so the astable will not oscillate i.e. no tone is produced in the loudspeaker.

## CONSTRUCTION

Most of the components are mounted on a printed circuit board. The full-size master pattern is shown in Fig. 2. There is nothing critical about this layout and indeed the unit could be constructed on stripboard if desired.

With reference to the layout of the topside of the board in Fig. 2 , begin by inserting the passive components, the resistors and capacitors, and then taking note of the polarities mount the diodes D1 to D3. Next the i.c.s can be inserted, again taking careful note of the correct orientation. It is adviseable to use a heatsink on the leads of the transistors and diodes when soldering and use sockets for the i.c.s.

Having mounted resistors R1 and R2 directly on to VR2, the controls and loudspeakers can be wired as shown.

## WIRING TO MAIN BOARD

Attach sufficient lengths to reach the main Treasure Hunter board. The type of connection between the two units will be a matter of choice e.g. soldered connections, jack plug/socket, banana plugs/


Fig. 1. The complete circuit diagram of the Treasure Hunter Sound Adaptor.

sockets etc. The take-off point from the main board is shown in Fig. 3. The final casing is left to the constructor but can employ the same fixing as the main case i.e. plastic pipe clips bolted to one face and the interconnecting wires fed up through tubing forming the frame.

## SETTING UP AND USING

With the two boards interconnected and sensitivity control set


Fig. 3. Take-off points from the main Treasure Hunter circuit board.

## COMPONENTS

Resistors

| Resistors |  |  |  |
| :--- | :--- | :--- | :--- |
| R1 | $47 \mathrm{k} \Omega$ | R7 | $56 \mathrm{k} \Omega$ |
| R2 | $47 \mathrm{k} \Omega$ | R8 | $10 \mathrm{k} \Omega$ |
| R3 | $33 \mathrm{k} \Omega$ | R9 | $33 \mathrm{k} \Omega$ |
| R4 | $33 \mathrm{k} \Omega$ | R10 | $10 \mathrm{k} \Omega$ |
| R5 | $10 \mathrm{k} \Omega$ | R11 | $10 \mathrm{k} \Omega$ |
| R6 | $56 \mathrm{k} \Omega$ |  |  |
| All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 10 \%$ |  |  |  |

## Potentiometers

VR1 $47 \mathrm{k} \Omega$ lin. vertical preset
VR2/S1 $47 \mathrm{k} \Omega+47 \mathrm{k} \Omega$ lin. carbon dual-ganged with switch
VR3 $100 \Omega \log$.


## Semiconductors

TR1, 4 BC109 silicon npn (4 off)
D1, 2 1N4148 or similar silicon diode (2 off)
D3 BZY88C $4 \cdot 7$ volt 400 mW Zener
IC1,2 741 operational amplifier 8 pin di.l. (2 off)

## Miscellaneous

LS1 miniature 8 to 35 ohm moving coil loudspeaker Printed circuit board size $80 \times 33 \mathrm{~mm}$; knobs to suit VR2 and VR3 (2 off); connecting wire; case; pipe retaining clips; 4BA fixings.
to minimum, switch on the detector and unit and allow it to settle down. Turn VR2 fully clockwise and adjust VRI until the oscillator frequency just changes. Turning VR2 slightly anticlockwise should make the oscillator stop and nothing will be heard in the loudspeaker. When a tone is being produced in the loudspeaker, clockwise rotation of VR3 will increase the volume.

Normally the loudspeaker is silent but whenever the meter is deflected left or right from midposition a high or low frequency tone, respectively, is generated. The amount of deflection necessary before the audio unit sounds is adjustable by means of the poteniometer VR2. These facts should enable the operator to discriminate between small and large deflections and also between ferrous and nonferrous metals.


EMI SPEAKER BARGAIN Stereo plir 350 kit Systerc consists of $13^{\prime \prime}$＊
$8^{\prime \prime}$ approx wooter with rolled surtound $2^{\prime / /^{*}}$
apprax．Autax，Iweeler，crassover components apprax．Autax tweller，classover components
and circuit diagram．Frequency response 20 Hz to 20 KHz Power handing 155 watts fiMs 20 watts max， 8 ohim impedance．

f14．95Per stereopair
$+f 3.40 \mathrm{p} \& \mathrm{p}$
C As ahove but complete with all wootiw Size approx $\left.20^{\prime \prime} \times 11^{\prime \prime} \times 99^{\prime \prime}\right)^{\prime \prime} \quad £ 28.00 \begin{aligned} & \text { Per stereo pain }\end{aligned}$


BSR Mamal Sinale eplay retum and cuveing lever titted with steren return and cuveing lever，thted with stereo
ceramic catridge 2 speeds with 45 －p．m． spindle adapior ideally sutred tom home discouse
OUR PRICE
$\mathbb{E} 10.95$
TURNTABLE BARGAINS FOR PERSONAL SHOPPERS GARRARD S6SB Deck $£ 26.95$

GARRARD SP25 MkiV Deck $\mathbf{£ 2 6 . 9 5}$ with Shuse head $£ 25.95$

## BARGAINS FOR PERSONAL SHOPPERS

## portabie

STERED
RADIO CASSETTE RECORDER UNREPEATABLE

 15015 VOLT MAINS TRANSFORMER． $21 / 2$ amp．
ESB Record auta deck on plinth waith
stere o cartridge ready wired
LED 5 function men＇s figital watch
stamless steel finish
CCD 5 tuinction men＇s digital wotch
staniess steel Sinish £2．50

LCO 8 Fanction CHRONOGRAPH men＇s digital watch stainless steel finish POCKET CALCULATOR．With LEQ display memory and per $£ 11.95$

AM／FM DIGITAL CLOCK RADIO Accurate 4 Bigit Electronic Clack with＂蔀＂ED display：Bizer and snooze timer

## £11．95

125 Wat Power Amp Modüle


Mains power supply for above unit
1.95
mUSIC CENTRE CABINET with hingeo miol acryic top，thishied in natural taak vene is．
size 30\％＂$\times 14 s^{\prime \prime} \times$ 74＂approx 15.95

MULLARD 8 uilt power supply
decca dc inoe Stereo Casseme PC． ．
compiete with switch osclilior coils and
rape：heads
DECCA 20 w Stereo speaker kit comunsing
$28^{\prime \prime}$＂apprax bass units $+233{ }^{\prime \prime}$ approx－
weeter ine crossovers
VIDEOMASTER＇Super Score TV Game
pistot mains operation
PORTABLE RADIO／CASSETTE RECORDER，AM／FM with clork
LW，MW．SW．VHF mains／battery operation
7．TAPE TRANSPORT Mechonism－a se ． 18.95


[^1] AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE PRICE $\varepsilon_{2}=$ ATOVER（～1

PER PACK SEEOUR PRICES


PACK $1.2 \times$ LP 1173 10w．RMS output power audio amp miodules，+1 LP1182／2 Stereo pre amp for ceramic and auxiliary input $\underset{\substack{\text { Yinput } \\ \text { OUR PRICE } \\ p+p \\ f 100}}{5} 405$ PACK $2.2 \times$ LP1173 10w．RMS output power audio amp modules＋1 LP1184／2 Stereo pre amp for magnotic，ceramit and auxilisry inputs HIIS． $\begin{gathered}\text { QUAPRICE } \\ p+p F 1.00\end{gathered}$ \＆7．45

ACCESSORIES
Suitable powersupply partsincluding mains transfarmer，rectifier，smoothing and output capacitors．
i 1.00 p 1.95

Recommended set of rotary stereo controls comprising BASS，TREBLE： VOLUME and BALANCE 95p


GARRARD BARGAIN 86 SB MKII LIST PRICE $\mp 9$ ORO 0
anmax $£ 39.95$
Belt drive， 2 speed turntable module with plinth and cover．


$20 \times 20$ WATT STEREO AMPLIFIER Viscount iv unit in teak wimisher cahinet siver tascia with àluminivin rofary controls／pushbuttons，red mains indicalor and stareb fack socket Functions switch for mic，magnetic and crystal pickups． tape tuner and auxiliary．Rear panel features two mains putiets
OiN sneaker and input sockets olus fuse $20 \times 20$ watts RMS OIN speaker and input sockets plus fuse $20 \times 20$ watts RMS $40 \times 40$ watts peat For use with 8 to 15 atim
speakers $\quad \mathbf{2 9 . 9 0}$ specIAL OFFER － $22.50088^{2}$
FOR PERSONAL SHOPPERS ONLY
FREE 4 dimensional steree sound adaptor，when purchasing the $20 \times 20$ Viscount amplitier

## $30 \times 30$ WATT AMPLIFIER IN KIT FORM

Eor the experienced canstructor complete in every detat，sam peak For use with $4-15$ ohms speakers $£ 23.00$ without cabinet $£ 29.00$ complete with cabinet． $18 \& p 2.50$ in aach case
$\mathbf{£ 2 3 . 0 0}$＋ 22.50 （NOTE Cabnet not $£ 29.00$ f250 without catinet ${ }^{\text {pap }}$ available sequrately．）complete with cabioet
SPECIAL OFFER
Somplete with $30 \times 30$ WATT AMPLIFIER IN KIT Compere WITH SPEAKERS
2 Goodmisn compact 12 bass woolers with crppego s2e 14.001 Gauss magnet 30 watt Rus fanding +3 ，apprax tweeters and ctossowers
$£ 49.00$
BUILT AND READY TO PLAY
39.00

目四诃
323 EDGWARE ROAD，LONDON W2 21B HIGH STREET，ACTON W3 6NG ALL PRICES INCLUOE VAT AT $12 / 3 / 2$
All items subject to availabiity．Price correct
1.12 .78 and subject to change without notice

50 WArt MOMD DISCO AMP £29．95 P\＆P 12.50 Size approx


50 watts rms ． 100 watts peak output．Big features include two disc inputs，both for ceramic cartridges，tape input and microptione input Level mixing controis fitted with integral push－pull swithes independent bass and treble controls and master volume． SPECIAL OFFER．The above 50 watt amp plus 4 Goodmans Type $8 P 8$ speakers．Package price $\mathrm{I} 45.00+14.00$ P\＆P．

## $70: 100$ WATT

## MONO DISCO

14,4 apprax． 101
Brushed alummum
tasia and rotary controls
Five vertical shade coptrols mastervilume
tape lezel miclevel deck level PLUSINIER DECK FADER for perfect graduated change fram record jeck No，it Ne 2，or vize verss Pre fade level contral 10 watt 157 （RfL）iets YgU bear next disc betore fading pir w 0.4 .00 Oufpat 100 watts AMS200 watts peak．．． 100 watt $£ 65$


Parsonal Shoppers EDGWARE ROAD LOMDON W2 Tel： $01-7238432.9 .30 \mathrm{am}-5.30 \mathrm{pm}$ ．Half day Thursday．ACTON：Mail Order only．Mo callers GOODS NOT DESPATCHED OUTSIDE UK


Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.
Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance ( $<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At E5.80 each The EuroBreadBoard is unique value for money At E 11 for 2 I he Eurobreauboard is an muispensalie design aid.


David George Sales

r/o 74 Crayford High Street,

Crayford, Kent, DA1 4EF.

Please send me 1 EuroBreadBoard @ £5.80 $\square$ Please
or 2 EuroBreadBoards@ $£ 11.00$
Tick
(All prices include VAT and P.P., but add 15\% for overseas orders).

Name
Company.
Address.


## RAWLPLUG POST

Mounting posts used for mounting component boards are often expensive, an alternative which I have used consists of using plastic rawlplugs. The cylindrical types, purchased in one inch lengths are the best ones to use. The drawing shows how simply this can be achieved using round-head wood screws.
This idea can be further adapted to make a terminal post by using appropriately sized bolts which pass through the rawlplug. A solder tag can then be fitted underneath and a nut on the top.
K. Burgess,


Bracknell, Berks.

## PLASTIC CIRCUIT COVER

When building or checking circuits, particularly the latter, I have found it very useful to place the circuit diagram in a plastic LP cover.

As a project is assembled, the components may be checked off by tracing over the circuit diagram with a felt tipped pen. This allows the diagram to be followed without marking it. The plastic cover is easily wiped clean with a damp cloth afterwards.
M. G. Roberts Leicester.

## WINE CORK KNOB

When building a project I often find that I need to spend a lot of money on elementary components such as control knobs. I then came up with an idea which uses cheap plastic wine corks.

Take a cork and cut off the threaded section, fill the stopper part with Blu-Tak, lining the hole with adhesive as this is done. Now take the threaded section and cut a small section from the end. Cut a small reotangular hole in the middle, and glue it over the hole in the stopper. When it is dry, fill the hole with glue and insert the components spindle. Once dry the stopper can be painted as desired.
J. C. Light, Marlow, Buckinghamshire.


## AVO MULTIMETER COMPETITION

A list of prize winners will appear next month. All five winners have already been notified by post.

BEGINNER'S GUIDE TO TAPE RECORDING Author
I. R. Sinclair

Price
Size
22.95

Size $\quad 185 \quad 120 \mathrm{~mm} 167$ pages
Publisher Newnes Technical Books
ISBN 0408003308

N THIS informative book the reader is taken right back to the beginning of the story where the basics are fully explained in easy to follow terms and straight-forward diagrams.
The following chapter takes a long and detailed look at microphones, the various types, sensitivities and impedances as well as directional properties (introducing polar diagrams simply). At this point some basic mathematics appear but only to enable a deeper understanding of the problems involved when connecting the inputs and outputs of various equipments or microphones without introducing distortion.
Throughout this well written and on the whole clearly illustrated book (a few illustrations seem out of place and poorly drawn), the reader is given a precise account of what goes on within modern machine systems; the advantages and disadvantages of reel-to-reel, cassette, 8 track, ELCassette, Dolby; and the different tapes availablemany of them making a nonsense of the peak indicator/ recording level indicator or even the VU meter, fortunately the problem is not left there and a course of action is clearly given to help avoid bad recordings.

No owner of a tape recorder can be accused of not experimenting with microphone positions as we all learn from our mistakes, so it is good to find a book full of useful facts but also providing sound basic instruction on the importance of knowing your own equipment, the sensitivity of the microphone, using the best (recommended) tape for your particular machine and then finally leading into the more advanced techniques involving mixers, editing, tape/slide synchronising, film sound and nature recording. In other words, a good buy.
D.J.G.

```
LIVING WITH COMPUTERS
Authors Barry Blackely and Robert Lewis
Price £3.50
Size 225\times200mm 88 pages
Publisher Wayland
ISBN 0850782147
```

THe emphasis is on the first word, for this is not a technical account of computers but a collection of simply told, interesting stories about people and how they are affected by computers in ordinary everyday life. These stories explain the role of the computer in widely different areas of modern society, such as hospitals, airlines, police, supermarkets and in engineering.

This book is written for children of 10 years upwards. They are going to have to live with computers even more than their parents. Their whole future will be governed and influenced by these technological juggernauts so it is certainly not premature for the 10 year old boy or girl to strike up an acquaintance with computers as useful instruments. That is the purpose of this book, and it does this well, in easy to follow text backed by copious photographic illustrations.

## ELECTRONIC PROJECTS INDEX 1972.1977

$$
\begin{aligned}
& \text { Compiler M. L. Scaife } \\
& \text { Price } £ 1 \cdot 50 \\
& \text { Size } \quad 297 \quad 210 \mathrm{~mm} 113 \text { pages } \\
& \text { Publisher North Tyneside Metropolitan Borough } \\
& \text { Council, Libraries and Arts Department } \\
& \text { ISBN } \quad 0906529018
\end{aligned}
$$

THERE is building up a tremendous literature in applied electronics. Projects described in constructors' journals such as Everyday Electronics have a long life. That is a satisfying and rewarding fact for authors and publishers alike.

The quest for a design one vaguely remembers seeing in print a year or maybe more ago is a familiar experience. Enquiries to the EE editorial office and back numbers department testify to the truth of this.

So the fruits of painstaking research by Mr. Scaife will be warmly received. This compilation lists over 2500 projects that have appeared in 10 well-known magazines over a five-year period. The projects are arranged in 36 groups making the search for particular circuits straightforward. Brief details against each entry include a useful component count which gives the reader a quick means of essaying complexity and probable cost of the project.

```
ADVENTURES WITH ELECTRONICS
Author Tom Duncan
Price &2.50
Size 250 . 190mm 58 pages
Publisher John Murray
ISBN 0719535549
```

An excriting and appealing title and the contents live up to the promise. Good layout, large type and the bonus of two-colour printing help the clarity, especially of the component assembly diagrams. It is undoubtedly a fine first book for the budding constructor.

But one important fact not revealed in the title is that all the projects are built on S. Dec. So the book is actually a user's manual for this proprietary breadboard.

The book opens with a good explanation of the function of the more common components and other information on basic matters. After some simple circuits using a lamp and battery then a diode and finally a transistor, come 15 useful projects which become progressively more advanced; for example, a parking light, rain detector, burglar alarm, electronic organ, radio's and a timer.

If practical use is to be made of these circuits, they can of course be rebuilt in a permanent form using normal construction methods.

Crossword No. 12-Solution


## The Extra ordinar Experiments of Proiessor Eversure <br> by Anthony John Bassett

BOB and the Prof. are about to add a built-in valve-tester to an audio amplifier type VOX AC30.
Bob was very curious about the valve-tester and had a lot of questions for the Prof:
"What does it consist of?" he asked, "How is it used to test valves? Why does it need to be built-in to the amplifier? Why not have a separate valve-tester which could be carried around and used to test valves from various amplifiers?"
These were only some of the questions which he asked the Prof.

## SELECTOR SWITCH

"The valve-tester will consist basically of a small milliammeter or microammeter, a 12 -way single pole rotary selector switch and a few resistors," the Prof. told Bob.
"It will test the valves by measuring the cathode voltage of each. The selector switch will be used to connect the cathode of the valve being tested to the meter by way of the resistor. Here is a suitable meter."
The Prof. showed Bob a small re-cording-level meter of the type used on cassette recorders. The scale of the meter was not numbered, but divided into a number of coloured segments.
"Because the various valves operate with different cathode voltages a different value of resistor is used for each, and preset potentiometers may be used where a suitable value of fixed resistor is not available. The idea is to use a resistor which will cause the meter needle to move to the middle of the green sector of the scale when the cathode voltage is correct. Then as the valve cathode loses its emission, the meter needle will move down to the red sector, and finally to the black.
"The valves with the worst emission can be detected rapidly by rotating the selector to test each valve in turn, and it can then be quickly seen which has deteriorated the most."

The Prof. drew a simple sketch (Fig. 1.) to demonstrate the basic idea of the valve tester.

## WORKING PRINCIPLE

"Here is how it would work with one valve," he told Bob, "so in this diagram the selector switch is not shown, but components inside the dotted line are parts of the meter circuit. One terminal of the meter is connected to the amplifier chassis, zero volts. The other terminal receives a current from the valve cathode by way of the meter-divider-resistor and the trimming-preset-resistor.
"The magnitude of the current depends upon the cathode voltage, and upon the combined resistance of the divider resistor, the trimmer preset resistor, and the resistance of the meter itself.
"If the correct value of meter divider resistor can be found, a trimmer may not be needed. But usually it is best to use a preset resistor of a value smaller than that


Fig. 1. Basic principle of testing a single valve. The coloured areas of the meter indicating the condition of the valve.
of the divider resistor, in order to make final adjustments to the meter reading. Otherwise the meter may read in the red or black segment, or even off-scale, when the voltage is correct, and this could be very misleading."
"The circuit seems so simple and inexpensive," remarked Bob, "I am surprised that this type of builtin valve tester is not used more often in amplifiers."
"Probably because until recently meters have been such expensive items" said the Prof.
"But in recent years, with the advent of low-cost cassette recorders, mass-produced record-level meters have become available at low prices and can now be bought for about $£ 1.00$ or sometimes less. Of course they can be pressed into service for many alternative purposes where accurate figures are not needed-just an indication is enough. So maybe in future more valve amplifiers will have their own built-in valve testers!"
"Why should the tester be builtin, Prof?" asked Bob. "I would have thought that a separate portable valve-tester would be a good idea!"
"There are such things, of course, Bob, but because they have to cater for a large range of valves, thousands of different types, they are big, heavy, complicated and expensive, and often more prone to failure than the amplifier itself. Our simple built-in circuit has none of these disadvantages because it only has to cope with a small number of valves."

## OTHER FUNCTIONS

"Can the built-in tester be used to test other things besides the valves?" Bob wanted to know. "In the AC30 amplifier it seems that every position of the 12 way switch will be in use, but in simpler amplifiers there would be spare switch positions but it seems a shame to waste them if other functions can be called up easily."
"Yes Bob," the Prof. replied. "The various h.t. voltages could be tested by using high-value divider resistors of suitable voltage, and one position of the switch might be an audio output meter or overload indicator. This could be done very easily by means of a small rectifier diode in series with another divider resistor." The Prof. began another sketch (Fig. 2.).
"This shows a tester circuit in-


Fig. 2. Extending the usefulness of the built-in tester by adding a rotary switch to test other valves. A position for monitoring output power is also shown.
corporating an h.t. test audio output indicator positions. By switching to h.t. test we know whether the h.t. supply is present and correct. This is a very useful test, because if there is no h.t. or if the h.t. voltage is very low, all the other valve test positions would read as if faulty when in fact the valves might be satisfactory but unable to operate and give good test indications due to lack of h.t.
"So if there is no h.t. test position on the rotary switch and all the valves read low, the h.t. supply is to be suspected!
"The audio output indicator facility may also be very useful, especially where the speakers are in separate cabinets. If no sound is heard from the speakers when the amplifier is operated, a quick look at the meter will usually be very helpful in tracking down the cause.
"If the meter gives an indication but no sound is heard, this indicates a fault in the speakers, or their connecting wires.
However, if the meter gives no reading, this usually indicates a fault in the amplifier or in the audio source. A short-circuit between the speaker wires can also give a low or zero meter reading, and this can be checked by disconnecting the speaker wires from the amplifier and testing at low volume."
"Prof. I am amazed at how useful a simple indicator meter and a
few components can be, especially when, by means of a selectorswitch, it can be used to keep tabs on so many functions! I think that multi-function indicators of this type can be tremendously helpful and should be used more often in equipment!

## TRANSISTOR EQUIPMENT

'I suppose that such indicators can also be used for multi-purpose functions in transistor equipment!"
"Yes of course, Bob, even more so. However, the meter in such circuits is often replaced with a solid-state or liquid crystal display, which may vary in complexity from the simple on/off warning lamp, through bar line indicators which give the impression of a moving bar or a line of lights, to digital and graphic displays as used on calculators, computers and the head-up displays on aircraft viewscreens.
"Now the display on one of my computer viewscreens, for instance, is indicating to me that one of my latest experimental gadgets is nearly ready; and as I know that you are interested in the behaviour of electron beams, lasers, charged particles, ion beams, and all sorts of modern developments to do with space-travel and spin-off technology, perhaps you would care to join me in my preliminary assessment of this new device which the robots have just constructed for me! It's over there".

To be continued

## GEORGE HYLTON brings it down

## Pots Law

AREADER, finding that one of the components specified in a recent article was a $1 \log$ law potentiometer", asks for an explanation. Here it is.
The log law pot was, would guess, the result of one of the earliest encounters between electronic engineering and human psychology. Not the kind of psychology symbolised by the psychiatrist's couch but the experimental kind, one of whose concerns is to measure how a human being perceives the world around him.

Hearing is one form of perception and it is the peculiarities of hearing which are responsible for the evolution of the $\log$ law potentiometer, otherwise known as a volume control.

## Wire Wound

To get into the subject let's think about how pots are made. We'll stick to the round, rotary type for the purpose of this article: Some of the earliest were wirewound pots.

To make one you took a long thin oblong strip of insulating material and wound it with insulated resistance wire, making a long flat coil. This was then bent into a circle, Fig.1. and mounted on some sort of base or holder. A sliding contact on a rotary shaft was then fitted to form the moving contact. The insulation was scraped of the wire where the slider touched it, allowing contact to be made along the edge of the sirip.

Wirewound pots are not used nowadays as volume controls because as the slider jumps from turn to turn of the resistance wire it is apt to make unwanted noises. Also, and perhaps more important, wirewound pots are expensivel In the modern volume control the wound strp is replaced by a ring of msulating material on whose surface is deposited a thin
layer of carbon, which forms the resistive "track". But the wirewound pot will do to illustrate my point.
If an input of 200 mV is applied to such a pot and the slider turned up from zero, Fig.2. The output voltage increases steadily. The more the shaft is turned the greater the output. The output is in fact proportional to the angle through which the shaft is rotated, as shown by the upper line on the graph. I've assumed that the shaft can turn through 200 degrees to keep the arithmetic easy. In practice most pots turn through about 270 degrees.

As you can see, turning through 100 degrees gives an output of 100 mV and through 200 degrees, 200 mV . The output is in exact proportion to the angle. Every change of one degree gives a change of one millivolt. If the shaft is turned steadily the output increases steadily.

## Linear Pots

Just what is needed for a volume control, you might think. But it isn't.


Fig.1. Typical construction of a wire wound potentiometer.

Linear pots are most unsatisfactory as volume controls, and this is a linear pot because its graph is a straight line. If you use a linear pot as a volume control you'll find that as you turn up the volume from zero there is at first a very rapid increase then, as you go on turning, the control has less and less effect.
In fact, over the second half of its travel it might just as well not be there for all the difference it makes.

Why? This is where the psychology comes in. It's natural to suppose that halving the voltage halves the volume. Actually this is not so. Halving the voltage has a good deal less effect than that on the volume.
Looking at the graph again, suppose the slider is at 40 degrees. The volume is at a certain level. To reduce it 40 per cent you have to halve the length of track below the slider. That is, you turn it down to the 20 degrees point. A change of 20 degrees has reduced the volume 40 per cent. Now turn the volume up to maximum, that is to the 200 degrees point. To reduce volume
by 40 per cent you now have to turn down by 100 degrees.

So a change of 100 degrees at this end of the track produces the same effect on volume as a change of only 20 degrees at the other end.

This explains the very sudden increase in volume from a linear pot as it is turned up from zero. Near zero, a tiny change in the angle is all that's needed for a 40 per cent increase in volume. Near the high end, the same sort of tiny increase has virtually no effect at all.

## Graded Tracks

What is needed is a track whose resistance increases slowly at first then more and more rapidly as the maximum is approached. The nearest thing to this with a wirewound pot is to wind the first section with low resistance wire, the middle with medium resistance wire and the rest with high resistance wire. There will be some rather abrupt changes as the slider passes the joins between sec-


Fig.2. Typical curves obtained by using linear and logarithmic pots.
tions but the ear is not very sensitive to these.

## Carbon track

With a carbon track it is possible in theory to "grade" the carbon to produce just the right smooth increase in resistivity.

In practice, carbon pots with "tapered" tracks seem to be produced in sections, like the tapered wirewound one l've just described, which is why there are abrupt changes in their resistance as the shaft is turned instead of the required constant rate of increase. But it doesn't seem to matter.

The curved lower line of the graph shows how the output should increase to produce the desired steady changes of volume. The curve shows a doubling of output for every 40 degrees of rotation, except near minimum where the desired increase is hard to achieve. It is only one of an infinite number of possible curves, you could double for every 10 degrees, say, if necessary.

# ELECTROVILUE Buying 

## IMPORTANT ANNOUNCEMENT <br> With completion of our present series of itemised advertisements, we announce release of our new catalogue, CATALOGUE No. 9-completely revised, enlarged and best yet. SEND FOR YOUR FREE COPY NOW TO DEPT. EE792.

## Section2 <br> Catalogue No. 9 <br> now Ready

 CapacitorsQuantity prices available except for MDC.



R1524
$28 \cdot 0 \times$
RI524
$28.0 \times 17.8 \mathrm{~mm}$
330
$390,470,500$
560,680
820,1000
2200
3300
4700
R2032
$35.6 \times 23.0 \mathrm{~mm}$
1500,1800
2200,2700
3600,3900
4700,5000
6800
$8200,10,000$ MIXED
DIELETRIC, M.D. 600 V
0.1 $0.001,0.0022$ $\begin{array}{ll}0.0047 & \\ 0.0120 \mathrm{p} & 0.022 \\ 0.1 \text { 27p } & 0.22 \\ \text { POLYESTER }\end{array}$ POLYESTE
Mullard C280
$0.01,0.015$ Mullard C280
$0.01,0.015$
0.022 $0.033,0.047$
0.068 0.1
0.15
0.22
0.33 0.33
0.47
$0.68,1.0$
$1.5,2.2$

## POLYESTER

## Mullard 334 or Siemens

 B32234 series as ayailabl 100 V0.047

| 0.047 | * |
| :---: | :---: |
| 0.068 | $\theta$ |
| 0.1 | 6 |
| 0.15 | © |
| 0.22 | 6 |
| 0.33 | 9 |
| 0.47 | * |
| 0.68 |  |
| 1.0 |  |
| $2 \cdot 2$ |  |
| 4.7 |  |
| 6.8 |  |
| 250 V |  |
| 0.01 | 3 |
| 0.015 |  |
| 0.022 |  |
| 0.033 |  |
| 0.047 | 9 |
| 0.1 | © |
| 0.68 |  |
| 0.82 |  |
| 1.0 |  |
| $2 \cdot 2$ |  |
| 400 V |  |
| 0.01 | - |
| 0.015 |  |
|  |  |

Axial
Siemens 832231 series $\mu \mathrm{F}$ voles 0.01630 0.015630 0.022630
0.033
0.047
0.250 $\begin{array}{ll}0.033 & 400 \\ 0.047 & 250 \\ 0.047 & 400\end{array}$ 0.047400
0.047630 0.06825


All orders and
Dept. EET92.

- GOODS SENT POST FREE U.K. WITH add 27 p handling charge.
- ATTRACTIVE DISCOUNTS on C.W.O mail orders- $5 \%$ where list value is over
$\mathrm{f} 10 ; 10 \%$ where lise value is over $£ 25$.
TOP QUALITY MERCHANDISE-ALL GUARANTEED.
V.A.T.-Add $8 \%$ to value of order. For items marked $\%$, add $12 \frac{1}{2} \%$.

For ACCESS or BARCLAYCARD orders, just phone or write your number. No discoune allowable on credit card orders.

[^2]
## You knowit's easy with Heathkit. <br> Heattikit self instruction electronics courses are

## Electronics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
DC electronics.
$A C$ electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

## NewKits

Line printer.
Dual floppy disc.
Dual trace 5 MHz and 35 MHz oscilloscopes.
Memory expansion for digital trainer. 2M hand held transceiver.
complete, low-cost learning systems. All you need is the will to leam and the Heathikit courses will teach you at your own pace.

It's easy because thie courses are based on step-by step programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to leam the easy "handson" way with the optional Heathkit experimenter trainers

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home, in educational establishments and BARCLAYCARD in industry throughout the world You'll find it easy too. Full details are in the Heathkit catalogue together with hundreds of kits you can bulld yourself; for the home, car and wotkshop.

Send for your copy now.

 Gloucester GL 26 EE. Please send the items / have ticked. $\square$ Heathkit catalogue (enclose 20p in stamps). $\square 16$ page computer brochure (enclose 20p in stamps).
$\qquad$
$\qquad$ Address EE2/79

NB. If you are already on the Heathkit mailing list then you will automatically recerve a copy of the latest Heathkit catalogue without having to use this couporn. Registered in England, tumber 606177.

## TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advanrage of the many opportunities open to you. Study in your own home, in your own time and at your own
pace and if you arc studying for sn examination ICS guarantee coaching batil you are successful.

City and Guilds Certificates:
Telecommunications Technicians Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET


To: International Correspondence Schools

Dept D268 Intertext Housc, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel:
Age:

## 15-240 Watts!

The HY5 is a mono hybrid amplifier ideally sulted for all applications. All common inpu either by a multi-way switch or direct connection to the appropriate pins. The internal yolue and fone circuits merely require connecting to external potentiometers (notincluded). The HY5 is compatible with all l.L.P. power ampliffers and power supplles. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: Complete pre-amplifier in single pack-Muiti-function equalization-Low nolse Low distortion ah over
APPLICATIONS: Hi-Fi-Mixers-Disco-Guitar and Organ-Publlc address
SPECIFICATIONS:
INPUTS, Magnefle Pick-up 3 mV ; Ceramic Pick-up 30 mV : Tuner 100 mV ; Microphone 10 mV : Auxiliary $3-100 \mathrm{mV}$ input impedance $4-7 \mathrm{k} \Omega$ at 1 kHz .
OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S.
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz , Bass $\pm$ at 100 Hz .
OVERLOAD. 38dB on Magnetic PIck-up. SUPPLY VOL
Price $£ 6-27+78 \mathrm{p}$ VAT P\&P free.
The HY30 is an exciting New kit from I.L.P. If features a virtually indestructible l.C. with short circuit and thermai protection. The kit consists of I.C., heatsinx, P.C. board, 4 resistors, capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally sulted to the beginner in audlo who wishes to use the most up-to-date technology avairable:
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifleraudio oscillator.
SPECIFICATIONS:
OUTPUT POWER 15W R.M.S. into 8R: DISTORTION 0.1\% at $1.5 W$
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 18 V$.
Price $\mathbf{\Sigma 6} 27+78$ P VAT P\&P free.
The HY50 leads LL.P's total Integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no externat components. During the past three years the amplifier has been refined to the extent that it must be one of the mos FEATURES.
FEATURES: Low DIsfortion-Integral Heatsink-Only five connections-7 amp output tran sistors-No external components
APPLICATIONS: Medium Power HI-Ft systems-Low power disco-Guitar amplifier SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT ROWER $25 W$ RMS into $8 \Omega$ LOAD IMPEDANCE $4-16 \Omega$ DISTORTION $0.04 \%$ at 25 W SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.

SIZE 1055025 mm
Price $\mathbf{\Sigma 8} 18+\mathrm{ET}_{1} \cdot 02$ VAT P\&P free
The HY120 is the baby of L.L.P:s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-ctions-NO external components
organ

## SPECIFICATIONS

NPUT SENSITIVITY 500 mV
OUTPUT POWER $60 W$ RMS into $8 \Omega$ LOAD IMPEDANCE 4-16 DISTORTION $0.04 \%$ at 60 W SIGNALINOISE RATIO 900 B FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $+35 V$
SiZE 1145085 mm
Price $519-01+$ I1-52 VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true Hi-Fl performance.
FEATURES: Thermal shutdown-Very law distortion-Load line protection-Integral heatsink -No external components
APPLICATIONS: Hi-FI-Disco-Monltor-Power slave-Industrial-Public Address SPECIFICATIONS
NPUT SENSITIVITY 500mV
OUTPUT POWER 120W RMS Into $8 \Omega$ LOAD IMPEDANCE 4-16ח DISTORTION 0-05\% at 100 W SIGNAL/NOISE RATIO 98dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $527-99+$ E2-24 VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into $4 \Omega 1$ It has been designed or high power disce address applications. If the amplifier is to be used at continuous high power leveis a cooling tan is recommended. The amplifier incudes all the qualties of the rest of the family to
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
APECICRTIONS: Publicaddress-Disco-Powar slave-Industrial
OUTPUT POWER 240W RMS into $4 \Omega$ LOAD IMPEDANCE $4-16 \Omega$ DISTORTION $0.1 \%$ at 240 W SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price $£ 38 \cdot 61+£ 3 \cdot 09$ VAT P\&P free.

PSU36 suitable for two HY30's $\mathbf{\Sigma 6 - 4 4}$ plus 81 p VAT. P/P iree.
PSU50 sultable for two HY50's $£ 8 \cdot 18$ plus £1-02 VAT. P/P free
PSU70 suitable for two HY 120 's $£ 14-58$ plus 81 - 17 VAT. P/P free
SU90 suitable for one HY200 £15-19 plus £1-21 VAT. P/P iree. B1 $£ 0.48+£ 0.06$ VAT.


TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

## I.L.P. ELECTRONIGS LTD., CROSSLAND HOUSE, NAGKINGTON GANTERBURY, KENT, GT4 7AD.

> I.L.P. ELECTRONICS LTD., crossland house, nackington, CANTERBURY, KENT, CT4 7AD. Tel: (0227) 64723.

Tel: (0227)
Read No. 1032830.

Please Supply
Total Purchase Price
1 Enclose Cheque $\square$ Postal Orders $\square$ Money Order $\square$ Please debit my Access account $\square$ Barclaycard account $\square$ Account number Name and Address


# Electronics. Make a job of it... 

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 Y EARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

## Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

## British National Radio \& Electronic School <br> P.O. Box 156. Jersey, Channel Islands.

NAME
ADDRESS

MINIATURE VARIABLE CAPACITORS $25+25+25 p f$ @ 75 p.
SUB-MINIATURE TANTALUM CAPACITORS $4-70 f 10 \mathrm{v} . \mathrm{w} .66$ for 25 p .
TRANSISTORS BC 548 or BC 549 at $10 \mathrm{p}, 6$ for 50 p .
DAU TRIMMERS 2 to $9 \mathrm{p} f$ © $10 \mathrm{p}, \mathrm{B}$ to 45 pf \& 10 p , o to 125 pf (21 12p, 8 to 140 pf (3) 15 p . POSTAGE STAMP TRIMMERS 10pf of 10p, 30 pf , $910 \mathrm{p}, 1000 \mathrm{pf}$ ig 10p. VERNITRON FM 410.7 MHz FILTERS 解 $50 \mathrm{p}, 3$ for E1.
50 AC 128 TRANSISTORS Branded but untested 19 57p.
Iuf $25 \mathrm{v} . \mathrm{w}$. ELECTROLYTICS @ 6 for 25 p .
10 AMP S.C.R.'s 100 PIV 27p, 400 PIV \& $50 \mathrm{p}, 800$ PIV (10) 60 p .
MULLARD SOLID DIELECTRIC VARIABLE CAPACITORS $195 \div 80 \mathrm{pf}$ is 40 p . COIL FORMERS $1^{3} 6^{\circ}$ dia, with core a 6 for 25 p.
MCMURDO 8 PIN PLUGS कi 20p, 8 PIN SOCKETS के 20p, COVERS \& 15 p 20 PHOTO TRANSISTORS AND DARLINGTONS Assorted uritested in ef. ELECTRET MICROPHONE INSERTS with FET PRE-AMP ig E1.85.
10 ASSORTED PUSH BUTTON BANKS less knobs for $£ 150.30$.
200 RESISTORS Assorted $\frac{1}{2}$, $\frac{1}{2}$ watt for 75 p.
 MEU 21 (1) 22p, MU 4894 Q 22p, $4 J D 5 E 29$ (g) 22p, TIS 43 Type \& 20 p .
 (a) 85p, $125+125 \mathrm{pi}$ (ag $55 \mathrm{p}, 100+200 \mathrm{pf}$ \&ive. $55 \mathrm{p}, 200+200+25+25 \mathrm{p}$, 555 p . With S.M.

65 p .
MINIATURE ROTARY SWITCHES 2 Pole 4 way $20 \mathrm{p}, 1$ Pole 10 way 2 Bank MINIATURE ROTARY SM
(3) 40p, 3 Pole 3 way 240 p .
LM 380 AUDIO I.C. with circuits @ $80 p$.
50 ASSORTED 2 WATT ZENER Untested 55 57p.
50 VARI-CAP DIODES LIKE BA 102 Untested in) 57p.

 each.
 6 , $21-30$ (PaP 25p). Type 2, 22-0-22 volt 500 mA a $81-50$ (PAP 25p). Type 3,45 volt 690 MHz FREQUENCY 8 DIGIT COUNTER ES15.
IN 4148 SILICON DIODES 10 for 40 p .
DIE-CAST ALLOY BOXES Size $6^{\prime \prime} \times 3 \frac{3}{c}^{\prime \prime} \times 2^{\prime \prime}$, $£ 1 \cdot 15$.
800 MHz T PAGK NPN TRANSISTORS BF 352 is 25 p each.
ELECTROLYTIC CAPACITORS Screw Terminais. $680 \mathrm{uf} 160 \mathrm{v}, \mathrm{w}$. $14120 \mathrm{p}, 3,300 \mathrm{uf}$


50 BC 107-8-9 TRANSISTORS Untested 9\% 57p.
HC .8 CH CRYSTALS $40 \mathrm{MHz}, 44.3 \mathrm{MHz}, 45 \cdot 9 \mathrm{MHz}$, $46.5 \mathrm{MHz}, 46 \cdot 7 \mathrm{MHz}, 48-3 \mathrm{MHz}$, $50 \cdot 1 \mathrm{MHz}$. All at 50 p each.
3 PIN PLUG AND SOCKET like R.S. European type with 2 metres of Cable (a) Please add
cost. orders under ening Oviseas postage at

## J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767


Your soundest connection in the world of components
Dept EE2, 56 Fortis Green Road, Muswell Hill, London N10 3HN Telephone: 01-883 3705


# IOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK 

-WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

## STEREO PRE-AMPLIFIERS



CPR 1
CPR 1-THE ADVANCED PRE.AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overioad margin is a superb A0dB, this together with tho
high slewing rate ensures ciean lop, even with high output cartridges tracking heavily moduated ensures ciean lop, even with trigh output cartidges tracking design. R.LA.A. Is accurate to 1dB, signal to noise ratio is 70 dB relative to Fotlo: distoction < $005 \%$ at 30 dB overload 20 kHz
to power amp stage is the flat pain ibalance stage to tring tape, tunet, etc, Up ThiD. $20 \mathrm{~Hz}-20 \mathrm{KHz}$ 008\% at any level. F.E.T. miling. No controis are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to
be $\pm 15$ volts.

MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 170 \mathrm{uV}$ switchable moving-coil cartiduges up 10.35 mV tivpical diso inguts). Can he powered from a $29 V$ battery or from our REG II regulator board.

REG 1-POWER SUPPLY
The regutator module, REG 1 provides 15-0.15x to power the CPR 1 and MC 1 1t Can be used with any of our power ampo supplies or our-small transformer TR 6
The power amp kit will accommodate it.

## POWER AMPLIFIERS

it would be pointless to list in so smail a space the number of recording studios oducational and goverrmentestablishments, etc. Whio have been using CRIMSON quality at the lowest prices. The power amp have a reputation for the highes have the same specification: T.H.D. typically $01 \%$ any power 1 kHz 8 B ohms
 load safely: sensitivity 775 mV (250mV or 100 mV on request); size $120 \times 80 \times$ 25 mm .

POWER SUPPLIES
We aroduce suitable power supplies which use our superb TOROIDAL transiommers only 50 mm high

## POWER AMPLIFIER KIT

The kit includes all metaiwork, heatsinks and hardware to house any two of our power amp modutes plus a power supply, it is conternposarily styled and its quality is consistent with that of our other products. Comprethensi
fidence in a few hours.


POWER AMPLIFIER MODULES CE $60860 \mathrm{~W} / 8$ ohms $35-0.35 \mathrm{v}$ © $£ 66$
 $\begin{array}{ll}\text { CE } 1008100 \mathrm{~W} / 8 \text { ohms } 45-0-45 \mathrm{v} & \text { Ez3 } 22 \\ \text { CE } 1704170 \mathrm{~W} / 4 \text { ohms } 45-0.45 \mathrm{v} & \text { E29-12 }\end{array}$
 TOROIDAL POWER SUPRLIES CPS1 for $2 \times$ CE 603 or 1 CE 1004 \$14 47 CPS 2 for $2 \times$ CE 1004 or $2 / 4 x$ CPS3 for $2 \times$ CE 1008 or: CE 1704 CPS4 for 1 - CE 1008 CPS5 for $1 \times$ CE 1708. CE 1708 . HEATSINKS Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{Cl}$ W.
Medium
power, $1.4^{\circ} \mathrm{C} / \mathrm{W}$. Discolgroup, $150 \mathrm{~mm}, 1.1^{\circ} \mathrm{ClW}$ Fan, Bomm, state 120 or 240 v ... Fan mounted on two drlied
100 mm hoatsinks. $2>4^{\circ} \mathrm{CW}$ 100 mm heatsinks, 2 ? $4^{\circ} \mathrm{CWW}$.
$65^{\circ} \mathrm{C}$ max with fwo 170 W THERMAL CUT-OÜT, $70^{\circ} \mathrm{C}$

## POW

 CIT $£ 32.40$ PRE-AMPS These are avail sions-ane ver standard uses rents, and the other cthe s) usesMO where resistor and tantalum necessary citors. CPRIS. \&23 49 POWER SUPPLY TRE … BRIDGE DRIVER, BDI Obtain up to 340 W £29 16 amps and this
£ 190 module BDI $\mathbf{E 5}$ to


CRIMSON ELEKTRIK
IESTAMFORD STREET,
LEICESTER. LEI GNLL
Tel: (0533) 537722

All prices: shown are UK orly and include VAT and post. COD 900 extra 2100 limit. Export is no prodiem, pleas write tor specific quote. Send large SAE of Iniemational Reply Coupons for detailed information

## PROTO DESIGN

14 DOWNHAM ROAD, RAMSDEN HEATH, ESSEX

## Printed circuit boards for E.E. projects

Ready drilled and tinned in Grade 1 fibreglass EE2020 TUNER AMPLIFIER
$£ 10.95$
Complete set of 5 boards
Boards also available individually:
Board A $£ 3 \cdot 67$; Board B $£ 3 \cdot 27$; Board C $£ 1 \cdot 10$; Board D $£ 2 \cdot 14$; Board E $£ 1 \cdot 15$.

| PROJECT | PCB | COMPONENTS <br> QASE |
| :--- | :---: | :---: |
| Automatic Phase Dec 77 | 1.00 | 8.20 |
| Tone Booster Sept 78 | 1.00 | 4.50 |
| Fuzz Box Dec 78 | 0.70 | 5.20 |
| Treasure Hunter Oct 78 | 1.40 | - |
| Vehicle Immobiliser Dec 78 | 1.00 | - |

ADD 25 p for postage and packing on all orders under $£ 10$

## EE SOLID-STATE ROULETIE

## DESIGNER APPROVED KIT

Complete set of electronic components including full-size coloured printed wheel

## MAIL ORDER ONLY

Complete set of electronic components


Distributor:-
"MINIC TELEPRODUCKTER BOX 12035: 5-750 12 UPPSALA 12, SWEDEN"


PRICES
Inc.VAT


Easy build introduc tion to electronics. Many hours of enjoyment.
NOW AVAlLABLE!

The new range of easy build kits complete with simple to follow instructions. Battery powered (not supplied). With case. \% BURGLAR ALARM \% ROULETTE * BICYCLE SOUND FLASHER * WATER LEVEL ALARM \%SIREN \% BLINKER *TIME SWITCH Many others in preparation - included in full ACE catalogue - send S.A.E. for

I enclose $30 \mathrm{p}^{*}$, please send catalogue.
Name Address $\qquad$


## Books and Publications

SIMPLIEIED TV REPAIRS Full repair instructions individual British sets $£ 5.00$, request free circuit diagram. Stamp brings details unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkshire.
 WORLD RADIO TV HANDBCOK 7978 Edition.






PRICESINCLUDE POSTAGE \& PACKING


## Service Sheets

SERVICE SHEFTS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25 p and s.a.e. Hamilton Radio, 47 Bohemia Road, St, Leonards, Sussex.

BELL'S TELEVISION SEZVICE for service sheets of Radio, TV etc. £1 plus SAE Colour IV Service Manuals on request SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 55885.

## Record Accessories

STXLI for Hi-Fi, Music Centres, II list free for SAB. Also cartridges, leads, accessories. Details-Felstead Electronics (EE) Longley Lane, Gatley, Cheadle, Ches, SK8 4EE.

## Tapes

C60 CASSETHIE TAPES in library cases $32 p$ each. POST PAID. Send your order to: A. W. \& J. M. West, 56 Frankwell Drive, Coventry CV2 2 FB .

## For Sale

NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 60p each Post Free, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

ADVANCE 0525A dual beam oscilloscope unused, a gift at £95. Mr. R. Simmonds, 229 Cardill Road, Newport, Monmouthshire.

## SMALL ADS

The prepaid rate for classified advertisements is 16 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 4-40$ per single column centimetre. All cheques; postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subiect o the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their conse. quences

## Miscellaneous

## RECHARGEABLE BATTERIES

> TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. S.A.E, FOR LISTS $£ 1.00$ for booklet "Nickel Cadmium Power". Write or call. 2 Union Drive, Boldmere, Sutton Coldfield, West Midlands. 027-354-9754. Or see them at TLC, 32 Craven Street, Charlng Cross, London WC2.

AERIAL BOOSTERS improve weak VHF radio and television reception, price $£ 5$. SAB for leaflets, Electronic Mailorder Lta., Ramsbottom, Bury, Lancashire, BL0 9AG.

TUNBRIDGE WELLS COMPONENTS BALLARD'S, 108 Camden Road, Tunbridge Wells, Phone 31803 . No lists, enquiries S.A.E.
SINGLES / HOLDAYS / HOUSEPARTIES. Friendship introductions. Free details Christian Friendship Fellowship, Dept. B94, Edenthorpe, Doncaster (SAE)

## THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E. 4 . Reg. Office, 22 Coningsby Garden

| SWG | $116$ | 8 oz |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 10-19 | 2.65 | 1.45 | -75 | . 60 |
| 20-29 | $2 \cdot 85$ | $1 \cdot 65$ | -90 | 70 |
| 30-34 | 3.05 | 1.75 | 1.00 | 75 |
| 35-40 | 3-40 | 1.95 | 1-15 | 84 |
| 41-43 | 4.55 | 2.55 | 1.95 | 1.30 |
| 44-46 | 5.05 | 3.05 | 2-15 | 1.70 |
| 47 | 8.00 | $5 \cdot 00$ | 3.00 | 1.80 |
| 48 | 15.00 | 9.00 | 6.00 | 3-30 |
| SILVER PLATED COPPER WIRE |  |  |  |  |
| $14 \times 16$ | $4 \cdot 50$ | $2 \cdot 25$ | 1.44 | 90 |
| 20 \& 22 | 5.00 | $2 \cdot 85$ | 1.74 | 1.06 |
| 24 \& 26 | 5.70 | $3 \cdot 31$ | 2.00 | 1.22 |
| $28 \& 30$ | 6.67 | 3-86 | $2 \cdot 35$ | 1.44 |

Prices include $P$ \& $P$ and $V A T$.
SAE brings list of copper \& resistance Wires. Dealer enquiries invited.

Resistors $\frac{1}{4}$ W $5 \%$ 2R2-2M2 (E12). 10 each or more of each value $90 \mathrm{p} / 100$. 100 assorted, our mixture $75 \mathrm{p} / 100$. C60 cassettes in library cases 30 p each. Miniature relays $17 \times 30 \times 28 \mathrm{~mm} 600 \Omega$ coil 4 sets change over contacrs 50 p each. Prices include Y.A.T. Add $10 \%$ postage.

SALOP ELECTRONICS
23 Wyle Cop, Shrewsbury

## Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC home study course. For details of this, and other courses (GCE, professional examinations etc), write or phone:- THE RAPID RESULTS COLLEGE, Dept. JRI Tuition House, London SW19 4DS. Tel: 01 9477272 (Careers Advisory Service) or phone for a prospectus only ring 01-946 1102 ( 24 hr recording service).

## Receivers and Components

DISCOVER ELECTRONICS. Build forty easy projects fincluding: Metal Detector; Wireless Transmitter; Breathalyser; Radios; Stethoscope; Lie Detector; Touch timeswitches; Burglar Alarms, etc. Circuits, plans all for $£ 1-29$ including FREE circuit board. Mail only. RIDLEY PHOTO/ELECTRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.

21b ASSORTED COMPONENTS $£ 3 \cdot 60,3^{1}{ }_{2} 1 \mathrm{lb}$ £1.95. Small Audio Amplifiers. 3 Transistors equivalent to AC128, OC72, with circuit, 3 for $£ 1.300$ small components, Transistors, Diodes $£ 1 \cdot 50$. Wire ended Neon's 7p, 20 for £1. No postage. List 15 p refundable. Insurance add 15p. J.W.B. RADIO, 2 Barnfield Crescent, Sale, Cheshire M33 INL.

FULL SPEC COMPONENTS. Brand new no surplus. $9 p$ for list. TERO, 109 Clitheroe Road, Sabden, Blackburn, Lancs.

GRADE 1 semiconductors, passives, hardware, + security. Immediate service: Texas 1N4148 £1-50 per 100; RCA. CD4001/11 18p. -RCA. 7418 pin dil. El per 5. -555 E1 per 4 CEEH. PC. housings 60p. Capacitors, resistors, keyswitches, Texas IC. Sockets, control-panels, SAE brings complete catalogue: CEH Audio-Visual (c). 48 Whistler Road, Tonbridge, Kent.

## COMPONENT PACKS

```
500 Resistors d. i, Iw
100 Resistors, \frac{1,}{2},\frac{1}{2}, Iw
50 Resistors }\frac{1}{4},\frac{1}{2},1
25 Resistors W'W Wound
25 Capacitors Polyester
10 Micro Switches Ex Equip.
20 Diodes
10 Transistors BC 107/8/9
10 Pre-set concrols
4 Mulij-way R/Switches
4 Multi-way R/Switches
loo Rubber Feet
20 Capacitors 047%ffd (280)
10 Red L.E.D.5
4ClClad Boards 4""}\times\mp@subsup{3}{}{\prime\prime
25 yds. Hook-up wire
5 DIL Sockets 16 pin
                                    .70
L2 2N3055
Prices inc. VAT. Add 20%p P& 
Durrants (Components Service)
9 St. Mary's Street, Shrewsbury.
S.A.E. for component catalogue.
```


## NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state
Transmitter-Receiver Kit. Only $£ 9-75$ plus 25p P\&R.
Brain-Freeze' 'em with a MINI STROBE Kit, pocket-sized lightning flashes, vari-speed, for discos and parties. A mere $54-10$ plus 20 p P\&P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $£ 5 \cdot 00$ each plus 20 p P\&P.
LOTS MORE! Send 20p for lists.
Prices include VAT.

## BOFFIN PROJECTS <br> 4 CUNLIFFE ROAD, STONELEIGH <br> EWELL, SURREY. (E.E.)



SIZES: WATCHMAKERS 4 inch; INSTRUMENT MAKERS $4 \frac{1}{2}$ inch British-made precision box-jointed hand tools with insulated handles, each tool packed in an attractive pvc wallet.
Only $£ 3.85$ each OR any 3 tools FOR ONLY $£ 10.80$ inc P\&P
C.W.O. to QUINTON TOOL SUPPLIES, Dept. E.E., 52 Grayswood Park Road, Birmingham B32 1HE

## Clef Kits



Designer approved quality kits for Electronic Musical Instrument Construction.
JOANNA 72 \& 88 PIANOS Six and $7 \frac{1}{4}$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design. A new physical layout has been adopted to simplify construction.
P.E. STRING ENSEMBLE The only kit available to the proven A. J. Boothman Design for this versatile String Machine. Sent S.A.E. to:

## Clef Products (Dept E.E.)

16 Mayfield Road, Bramhall, Cheshire SK7 1JU.
113a $52-35.6-3 \mathrm{vy} 13 \mathrm{c}$ 51-89, $9-0-9 \mathrm{y} 75 \mathrm{ma}$
$74 \mathrm{p}, 1 \mathrm{a} \pm 2,2 \mathrm{a} £ 2 \cdot 60$. $12-0-12 \mathrm{v} 100 \mathrm{ma} 90 \mathrm{p}$
IC AUDIO AMPS with pcb IC12 5 V
$\begin{aligned} & \text { E1. 60. JC20 } £ 2.95 \text {. JC40 20W E2.95. } \\ & \text { BATTERY ELIMINATORS 3-way }\end{aligned}$
BATTERY ELIMINATORS 3 -way
$\begin{aligned} & \text { type 6/7diky } 300 \mathrm{ma} \text { £2-95. } 100 \mathrm{ma} \text { radio } \\ & \text { type with press-studs } 9 v .33 \cdot 35,9+9 \mathrm{v}\end{aligned}$
$\begin{aligned} & \text { type with press-studs } 90 ~ £ 3 \cdot 35,9+9 \mathrm{v} \\ & \text { e4.50. Stabilized type } 3 / 6 / 7 \mathrm{M}: 9 \mathrm{v} ~ \\ & 400 \mathrm{ma}\end{aligned}$
\&5-40. 12v Car convertors $3 / 4 \pm / 6 / 7 \frac{1}{2} / 9 \mathrm{v}$
s00ma 22.50 .
BATTERY ELIMINATOR KITS Send
sae tor data. 100 ma radio types with
Stabilized power kits 2-18v 100 ma \&3-60.
Car convertor $87 / \frac{1}{3} 19012,51,35$.
S-dec s3-17, t-dec E4-02, U-deca
S-dec su- 54, decb 26.73 . 16 dil adaptor
£2.14. exp300 $26 \cdot 21$, exp 350 £3.40,
exp 650 e3 89 , exp4b 52,48 .
$\begin{aligned} & \text { BI-PAK AUDIO MODULES } 5450 \\ & \text { E23.55. AL60 E4-85. DA100 } 515 \cdot 58 \text {. }\end{aligned}$
£20. 12 .
SWANLEY ELECTRONICS (Dept. EE)
$\begin{aligned} & 32 \text { Goldsel Rd, Swanley, Kent } \\ & \text { Post } 30 \text { extra. Prices Include VAT. }\end{aligned}$

> SINCLAIR PRODUCTS TV UK model f89-95. PDM35 Mains adaptor 8324 . Case 8325. §49-45. Rechargeable £96-50, Dy225 Mains adaptor £3;70. Enterprise Prop Calculator $£ 2195$. Cambridge Prog Caloulator £13-13. Prog Library $£ 3-45$.
Mains adaptor $£ 3.45$. Mains acaptor 23.45 .
> COMPONENTS send sae for full list,
1lb FeC1et-05. Dalo pen 73 p .80 sq . ins. pcb 55p. Laminate cutter 75 p . Small dral 20 p . ZN414. Ef - 05 , pcb and extra parts for radio 83.85 , Case 21,1 N4140 1.4p. 1N4002 $2 \cdot 9 \mathrm{p} .72329 \mathrm{p}$. 741 15p.
NE555 23 p . bc182b, bci83b, bci84b, bc212b. bc213b, bc214c 4.5p. Plastic equivs bc107, bc109 4-8p. IW 5\% E12 resistors 10 R to 10 M 1 p . 0.3 p for 50 of 22 mf 5 p , $100 \mathrm{mi} .6 \mathrm{p}, 1000 \mathrm{mf} 10 \mathrm{p}, 1500 \mathrm{mf}$ (PC) $3-4 \mathrm{p}, 10 \mathrm{v} 2 \mathrm{mf}$ \& $7 \mathrm{D}, 1000 \mathrm{mf} 5 \cdot 1 \mathrm{p}$ 2200 mf 6p. Polyesters $250 \mathrm{v} 015,-068$, 1 mi 11p. Ceramics 50v E6 22 pf to 47 n 2p. Polystyrenes E2v E12 topl to $10 \mathrm{n} \mathrm{3p}$. TV GAMES Sand to 33v 7p. AY $-3-8500+$ kit $88-95$. AY- $-3-8600+$ kit Stunt Cycle battles chip + kit £ 13 . 95 . kite4.95. TRANSFORMERS $6-0-6 y \quad 100 \mathrm{ma}$ 74p,


Our new 1978 catalogue lists circuit board accessories for all your projects - DIP sockets, pins standoffs, cable clips, hand tools. And we've got circuit boards, module systems, cases and boxeseverything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956


B24-RP stereo cassette glass/ferrite record/playback $£ 9.84$
B12-01 mono cass. playbk. £1.60 B24-p1 stereo cass. playbk. £2.80 A28-05 stereo 8tk cartridge £1.80 E12-09 stereo/mono cass, erase $£ 1.80$

5/7 Church St, Crewkerne, Som. Tel. (0460) 74321

## HAVE YOU DONE IT LATELY!



## TAMTRONIK LTD ( ${ }^{\text {PRFT }}$ )

217, Toll End Road, TIPTON, West Midiands DY4 OHW TEL:021-557-9144

## Printed Circuit Boards \& KITS for EE projects



A Vero-board(s)
E Printed Circuit Boardi(s)
C With screen printed component layout
D Tag strip
E AL Resistors, potentiometers, capacitors, Semi-conductors
esistors, potentiometers, capacitors, Semi-
dit with exclusions-please ask for detalls
dfor transistor sockets andior saldercon pi
H Hardware includes Switches, Knobs, Lamps \& Holders, Fuses a Holders, Plugs \& Sockets, Microphones, Transformers, Speakers, Meters, Relays. Terminal Blocks, Battery Connectors, etc. BUI excludes nuts, bolts, washers, connecting wire, Batteries and special miscellaneous items.
I As H but with exclusions-Please ask for detalis
$\frac{1}{M}$ Suitable Case(s)
M Suitable Case with Screen printed facla.
N Full kit to magazine specifled standards
$\mathbf{P}$ Kit with professional fish incorporating ail prime features includ ing screen printed PCB and case where appropriate

## Doing-it-Digitally TTL ELECTRONIC TEST BED

Complete kit E040<br>£20. 65<br>Components for

first 6 parts E041 $£ 3.60$ (including additional components)
BOTH KITS
(special price) $£ 24.00$

TELE-TEL
Nov. 78
neter A kit with a professional finish CASE with screfensional printed facia shotar to magazine brovision for \& digit. An aluminium subfacia panel is also prohole centres to allow access to preset potentiometers.
PCB designed to incorporate 3rd digit faclitity and is
screen printed for ease of screen printed for ease of
Basle kit $(2$ digits) $)=19-50$
$(3$ digits $)$
$\leqslant 22 \cdot 25$

## BARGAIN CORNER

$100 \times 1$ w 1 k carbon resistors 30 p $0 \times 1 \mathrm{w} 5 \% 1 \mathrm{k} 5$ resistors 10 p $10 \times 1 \mathrm{w} 5 \% 7 \mathrm{k} 5$ resistors: $\quad 12 \mathrm{p}$ $10 \times 1 w 5 \% 100$ resistors: 12p $10 \times 6 \mathrm{w} 5 \% 350 \mathrm{R}$ wirewound 50 p $10 \times 47 \mathrm{H} 10 \mathrm{y}$ Axial Elec. Caps 25 p
I $\times 10 \mathrm{k}$ lin Rotary potentiometer
Plug in mains PSU
$3 \mathrm{y} / 6 \mathrm{vig} / \mathrm{y} / 12 \mathrm{y} D C$
300 mA suitable for
calculators \& T.V. Games $\mathbf{\& 2}-99$

## CHRONOSTOP

Aug. 78 - Ref. E032
SPLIT 8 TAYLOR lap timirs modes plus normal startistop operation.
A kit with a professional finish inciuding
CASE with screen printed acia

PCB with screen printed component layout
Full Assembly Instructions
PRICEINC. VAT E29-20
TAMTRONIK Lid, aim to offer to Everyday Electronics readers, the opportunity to purchase kits for a wide range of projects at competitive prices. For SOME projects it is not possibie to supply a kit including ALL components therefore, to avoid alsappointiment, we recommen that you send a S.A.E. requesting kit detsils before purchasing. where necessary to lncorporate current modifications or to make valid substitution for temporarily unavallable components.
The compiling of electronic kits is a difficult exercise since demand is unpredictable and the walting time ior delvlery of some electronic component stocks/s aften engthy. The majority orne setice from component stocks held, but when ordering you shouid be prepaked to allow at least ten days, and up to one month, for us to complete your order upon receint of your ordec, acknowledgement will be mace by rell post within 48 hours detailing our control number for that transaction in case of any enquity please quote thia number

Kits can be supplied excluding P. C.B's and for case. Send SA E for details naming


## INDEX TO ADVERTISERS

| Ace Mailtronix | $\ldots$ | $\ldots$ | $\ldots$ | 125 |  |
| :--- | :---: | :---: | :---: | ---: | ---: |
| Antex | $\ldots$ | $\ldots$ | $\ldots$ |  | Cov II |
| Bi-Pak | $\ldots$ | $\ldots$ | $\ldots$ | 70, | 71 |
| Birkett J. | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 124 |
| B. N.R.E.S. | $\ldots$ | $\ldots$ | $\ldots$ | 69 | 106 |
| Boffin Projects | $\ldots$ | $\ldots$ | $\ldots$ | 124 |  |
| Brewster S.R. | $\ldots$ | $\ldots$ | $\ldots$ | 66 |  |
| Bull J. | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 67 |
| Chromasonics | $\ldots$ | $\ldots$ | $\ldots$ | 124 |  |
| Chromatronics | $\ldots$ | $\ldots$ | $\ldots$ | 106 |  |
| Clef Projects | $\ldots$ | $\ldots$ | $\ldots$ | 127 |  |
| Collier McMillan | (B.I.E.T. | $\ldots$ | $\ldots$ | 66 |  |
| Crescent Radio | $\ldots$ | $\ldots$ | $\ldots$ | 68 |  |
| Crimson Elektrik | $\ldots$ | $\ldots$ | $\ldots$ | 125 |  |
| Durrant Radio | $\ldots$ | $\ldots$ | $\ldots$ | 126 |  |


| E.D.A. <br> Electroni-Kit <br> Electrovalue | . $\ldots$ $\ldots$ | $\begin{array}{r} 66 \\ 112 \\ 121 \end{array}$ |
| :---: | :---: | :---: |
| George Sales, David Greenweld | $\ldots$ | 116 68 |
| Heath-Kit ... Home Radio.. | $\ldots$ | 122 122 |
| I.L.P. Electronics Ltd. Intertext (ICS) | $\ldots$ | 123 122 |
| K \& A Distributors | $\ldots$ | ... 68 |
| Lectrokit Led. | $\ldots$ | ... 11 |
| Magenta Electronics <br> Maplin <br> Marshall A. <br> Monolith | $\cdots$ $\cdots$ $\cdots$ $\cdots$ | $\begin{array}{r} 105 \\ \text { Cov } 1 \mathrm{~V} \\ \text { Cov } 111 \\ \ldots \quad 127 \end{array}$ |

E.D.A. 66
ectroni-Kit21
George Sales, David ..... 16
Heath-Kit ..... 122L.P. Electronics Ltd23
lncrexi (ICS)68
Lectrokit Led. ..... 11
MaplinCov IV
Cov 111
Monolith

# Marshalis ${ }_{\text {satanc }}\langle M\rangle$ <br> A．Marshall（London）Ltd，Dept：EE，Head Office mail order：Kingsgate House，Kingsgate Place，NW6 4TA．Tel： 01 － 6240805 

 Retail Sales London：40－42 Cricklewood Broadway，NW2 3ET．Tel：01－452 0161／2．Telex：21492．London：325 Edgware Road，W2．Tel：01－723 4242 Glasgow： 85 West Regent Street，G2 2QD．Tel：041－332 4133．Bristol： 1 Straits Parade，Fishponds Road，B516 2LX．Tel： 0272654201.TRANSISTORS

## $\mathrm{N}_{\mathrm{N}} \mathrm{N}^{2}$

$2 N 699$
$2 N 706$
$2 N 706 A$
$2 N 768$
$2 N 718$
2N718
2N718A
2NT20A
2N722
$2 N 727$
2N214

## 2 N 2 N 2 N

2NNe29
2N929A
2N929A
2NS30
2N930A
$2 N$ N30A
2N1889
2N1890
2N1890
2N1893
2N2102
2N2192
2N2193A

| 2N2194A | $0 \cdot 45$ | 2N2926 |  |
| :--- | :--- | :--- | :--- |
| 2N 2 2053 |  |  |  |
| 2N 2195 | 0.40 | 2N |  |

LINEAR CIRCUITS

\section*{| CA3018 | 0.75 | LMa78N | $2-40$ |
| :--- | :--- | :--- | :--- |
| CA3018A | 1.10 | LM379S | 4.25 |
| CA3020 | 2.20 | MM380N8 | 0.95 |}


\section*{| CA3020 | $2 \cdot 20$ | LM380N8 | 0.96 |
| :--- | :--- | :--- | :--- |
| CA3020A 2.50 |  |  |  |
| LM380N141－08 |  |  |  |}

CA3028A 0.50 LM380N141－
$\begin{array}{llll}\text { CA3028B } & 1.25 & \text { LM381N } \\ \text { CA3030 } & 1.50 & \text { LM382N }\end{array}$
CA3030A 2.20 LM382N
CAS038A $4 \cdot 10$ LM385N

| CA3045 | $\mathbf{1} 55$ | MM387N | $\mathbf{1 1} 10$ | NE555 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LM38N | 1.00 | N 555 |  |  |


| CA3046 | 0.77 | LM 2888 N | 1.00 | NE555 |
| :--- | :--- | :--- | :--- | :--- |
| CA3048 | 2.45 | 1.00 | NE558 |  |
| CM 702 C | 0.81 | NE |  |  |


|  | CA3052 | 1.78 | LM702C |
| :--- | :--- | :--- | :--- |
| CM | 0. |  |  |
| CA 3080 | 0.85 | 0.7 |  |
| LM7098 | 0.5 |  |  |

CA3080A 2
CA3088B
CA3090Q
CA3130
LM301 ：
LM308N ：
LM309KC
LM $309 K C 1$
LM317K 3 ．
LM313N 2
LM32015 2
LM320112 2
LM320124 2
LM320P121
LM320P154
LM323K 6
LM340115 0.88
LM340124 0 － 88
LM341P5 0.80


| LM341P280－80 | LM1850N | 1.98 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { LM348N } & 0.95 & \text { LM3301N } & 0.90 \\ \text { LM358N } & 0.60 & \text { LM } 3302 \mathrm{~N} & 0.55\end{array}$
$\begin{array}{llll}\text { LM360N } & 3.00 & \text { LM3401N } & 0.55 \\ \text { LM37CN } & 3.30 & \text { LM3900N } & 0.68\end{array}$

| $L M 371 H$ | 2.35 | LM M3905N | 1.15 |
| :---: | :---: | :---: | :---: |
| LM350K | 6.45 | LM 3909 N | 0.78 |
| LM |  |  |  |


LM347N

2 N 3390
2N3391
2N3391


2N3905
2N3906

| 0.18 | 2N5086 |
| :--- | :--- | :--- |
| 0.18 | $2 N 5087$ |


| 18 | 2 N55087 | 0.30 | $2 N 5107$ |
| :--- | :--- | :--- | :--- |
| 55 | $2 N 5083$ | 30 | $2 N$ |


| 0.30 | $2 N 5107$ | 0.45 | AD161 |
| :--- | :--- | :--- | :--- |
| 0.30 | $2 N 6108$ | 0.55 | AD1 162 |
| 0.30 | $2 N 6109$ | 0.55 | AF106 |
| 0.30 | $2 N 6111$ | 0.49 | AF109 |


| 0.45 | AD161 |
| :--- | :--- |
| 0.55 | AD162 |
| 0.55 | AF106 |
| 0.49 | AF109 |


| 0.55 | AD162 |
| :--- | :--- |
| 0.55 | AF106 |
| 0.49 | AF1 | AD162

AF106
AF109
BC107
BC107A
BC107B
BC108
BC108A
BC108B
BC108C
BC109
BC109B
BC109C
BC140
BC141
BC147
BC147B
BC148
BC148B
BC148C
BC149
BC149C
BC157A
BC158A
BC158B
BC159A
BC159B
BC160
BC161
BC167
BC167B

 C168C
C169B
C169C
C177
C177A
C178
C178A
C178B
$C 179$
$C 179 A$
$C 179 \mathrm{~B}$
C179C
$C 182$
C182A
$C 182 B$
$C 182 L$
$C 182 L A$
$C 182 L B$
$C 183$
$C 183 A$
C183B
C183C
C183L
C183LA
C183LB
C183LC

 $B C 184 L C$
$B C 212$
$B C 212 A$
$B C 212 B$
$B C 212 L$
$B C 212 L$
$B C 212 L B$
$B C 213$
$B C 213 A$
$B C 213 B$
$B C 213 C$
$B C 213 L$
$B C 213 L$
$B C 213 L B$
$B C 2131$
$B C 214$
$B C 214 B$
$B C 214 C$
$B C 214 L$
$B C 214 L$
$B C 214 L$
$B C 2378$
$B C 238 A$
$B C 238 B$
$B C 238 C$
$B C 239 B$
$B C 239 C$
$B C 257 A$
$B C 258 B$
$B C 259 B$
$B C 300$
$B C 301$
$B C 302$


 00000900000000000000000009000000
引今名
 BD139
BD140
BD181
BD182
BD183
BD187
BD235
BD236
BD237
BD238
BD239A
BD 239 C
BD $240 A$
BD240C
BD241A
BD241C
BD242A
BD242C
BD243A
BD243C
BD244A
BD244C
BD245A
BD245C
BD246A
BD246C
BD433
BD434
BD435
BD436
BD437
BD438
BD529





LEDS＋OPTO
SIEMENS

BDisplays 7 seg LEDS Red Gr Yell $\begin{array}{lllll}\text { com anode or cath Small } 3 \mathrm{~mm} & 18 & -19 \\ \text { Red } & \text { Large } 5 \mathrm{~mm} & 20 & 20\end{array}$ $8 \mathrm{~mm} \mathrm{HT} \quad £ 1.50$ Extra bright $40 \quad 40$ 10 mm HT 5155 lired LD271 $\begin{array}{llll}18 \mathrm{~mm} & \text { HT } & £ 1.65 & \text { Opto coupler }\end{array}$

CONVERT TV SET TO V．D．U．
The new CRT control chip from Thomson CSF SFF96364 Convert your FV set into an eiectronic V．D．U．－ 16 lines 64 characters，requires RAM，character generator \＆little card．Full cursor control． 5 volts TTL compatible，line erase，full card includes UART，Modem，char，gen etc． comp video out from encoded
chlo $£ 17 \cdot 20$

## NATION WIDE SERVICE

| Crystals | Meters |  |
| :--- | :--- | :--- |
| Valves | Tools |  |
| Chokes | Sprays | For all |
| Knobs | Presels | EE |
| Cables | Neons | Proiects |
| Fuses | Heatsinks |  |
| Cases， | Indicators |  |

DIL SKTS
Low profile IC skts
8 pin $150 \quad 22$ pin 30 $\begin{array}{ll}8 \operatorname{pin} 15 p & 22 \operatorname{pin} 34 p \\ 14 \operatorname{pin} 16 p & 24 \operatorname{pin} 35 p\end{array}$ $\begin{array}{ll}16 \operatorname{pin} 18 \mathrm{p} & 28 \operatorname{pin} 45 \mathrm{p} \\ 18 \operatorname{pin} 27 \mathrm{p} & 40 \operatorname{pin} 55 \mathrm{p}\end{array}$ FULL RANGE DF Capacitors Diodes Resistors Cables
PlugsiSkts Cases $\begin{array}{ll}\text { Meters } & \text { in our new } \\ \text { Clocks } & \text { catalogue }\end{array}$
NATB Meters

## $\star$ MAIL ORDER $\star \quad 3 \frac{1}{2}$ DIGIT PANEL METER KIT <br> Quick service on all orders，please add 40 p Tel orders on credit cards f10 minimum． <br> ET <br> － <br> LCD Display．Batt．operated Contains all components required for construction plus PCB．Auto vero extremely versatile and accurate－easy assembi <br> 

TTL

\section*{| 74ES153NO－ |
| :--- |
| 74 LS 154 N |} | $74 L S 155 N 1-20$ | 74 C 192 N |
| :--- | :--- | :--- |
| $74 \mathrm{LS} 156 \mathrm{~N} 1-20$ | 74 Cl 195 N |

## 74 74 74

## 74

## SPECIALIST CONSUMER NEW CATALOGUE

Stocking Distributors Officially Appointed

NATIONAL TEXAS MULLARD SIEMENS SESCOSEM

VERO ANTEX ELECTROLUBE SIFAM ARROW HART 48 PAGES

Our new 1979 catalogue is now available－contains all you need and more－packed with over 8,500 items with lots of new products and ideas．New enlarged 48 pages with special offers，discounts and data．Available from any branch at 50 p post paid or 40 p to callers．

TRIACS plastic pack 400v TO220


## CLOCK MODULES DIGITAL

 Buittand tested－requires onlyswitches and transformer to IR complete madules
MA1002H 24 hr 5in display
MA1010E 12 hr 84in display
MA1010G 24 br 84 in display
CAR CLOCK MODULE
MA1003 Buill Tested 12 V supply and four－digit
module．Crystal controlled．Data Sheet $50+$



[^0]:    Back issues of EVERYDAY ELECTRONICS June 1977 onwards (October to December 1977, January to March 1978 NOT available) are available world= wide at a cost of $60 p$ per copy inclusive of postage and packing. Orders and remittance should be sent to: Post Sales Depariment, IPC Magazines Ltd.; Lavington House, 25 Lavington Street, London SEI OPF.
    Binders for Volumes 1 to 7 (state which) are available from the above address for $£ 2.85$ inclusive of postage and packing.
    (8) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.
    All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    ## $\rightarrow \rightarrow$

    AM／FM STEREO
    TUMER AMPLIFIER CHASSIS COMPLETE
    Ready built Besigned in a slim form for compact inoternitaliation Rotary Controls Voi Qin／OH，Bass，Treble Belance
    Push Buttons for Gram，Tape：VHF，MW，IW and 5 button cotary
    selection switch
    Power Output 5 watts per channel Sine at $2 \%$ THD into 150 tm watts speech and nust
    Tape Sensitivity Playbatx $400 \mathrm{O} \mathrm{V} / 30 \mathrm{~K}$ OHM for max ourput fecord FM．signal Frequency Rabne（ fom 25 KHz （ $150 \mathrm{mV} / 100 \mathrm{~K}$ ）deviation Ma signal Frequency Range Auciol 5 arero 13 KHz within $\pm 10 \mathrm{~B}$
    
    
    240 Volts $A C$ Complete with Circuit diagram．
    $£ 19.95{ }^{p} £ 2.5$

[^2]:    Every effort is made to ensure accuracy of information at time of going to press. Prices charged are those showing in our current price list.

