Easy to bulld projects for everyone

 y. Exponc

Iron out the little problems...

Go where no man has gone before. Pilot your own starship. Trek for light years. Penetrate the boundaries of the galaxy, but beware the gravity of a strange sun. Blast alien spaceships before you run out of missiles or fuel.

THE NEW WORLD
OF HOME
ENTERTAINMENT

Become a gunslinger in the Old West. Plan your strategy before the big showdown, but make sure you do not run out of bullets. Take cover behind a cactus or moving stagecoach, or you will end up on your back.

Tank Battles, Stunt Cycle, Tennis, Football, Ice Hockey, Spitfire, Mastermind, Robot War, Noughts and Crosses, Gridball, Nim.

Educate yourself and your children by solving basic maths quizzes set by the computer. Get the answer wrong and watch your T.V. screen become the school blackboard while the computer shows you the correct answer.

Breakout, Car Racing, Shooting, Volleyball, Basketball, Air and Sea Battle, Space War, Blackjack, Drag Race, American Baseball.

THIS IS JUST A SAMPLE OF THE GAMES THAT YOU CAN SEE AT

 The First Specialist T.V. Game Shop - PRICES FROM $£ 10$ to $£ 170$
5ILIEDC EHIP

The people that put respectability into TV Games

SINCLAIR PRODUCTS*
Microvision TV E172. PDM35 227.25. Mains adaptor $£ 3.24$. Case $£ 3$, 25. Sokv probe s15:85. DM235 £47.50. Rechargeable battery units $£ 7.95$. Adaptor/ 249-95. Cambridge prog calculator E13.15. Prog Mbrary E2.85. Mains adaptor $£ 3-20$. Enterprise Programmable Calculator Esi.95.
S-DECS AND T-DEC ES-44, U-DeCA
 adaptors with sockets $\mathrm{E2} \cdot 14$.
CONTINENTAL SPECIALITIES
PROOUCTS*
 £6.80. EXP850 £3.85. EXP4B £2.48. PB6
£9.94. PB100 E12.74. LM1 £30.-39. LP1 E33-43. LP2 E43-44.
TV GAMES
send sae for data. AY $3-8500:-$ chip E4. 95 , economy kit 54 . Tank battles;-AY-3-8710 chip $\mathbf{~} 5 \cdot-90$, economy kit $E 7-05$.
Stunt cycle:- AY-3-5760 chip $85 \cdot 90$. economy kit $85: 60$. 10 game paddle 2 chip AY-3-8600. economy kit $£ 1230$. Racing car chip AY-3-s663 + economy Rife kit $£ 4-95$. Colour generator kit ET-50,
MAINS TRANSFORMERS
$6-0-5 \mathrm{~V}$ 100raa 79 p , $1 \frac{1}{2} \mathrm{a}$ £2.35, $6 \cdot 3 \mathrm{~V} 1 \frac{1}{3} \mathrm{a}$
 1a $£ 2-49.13 \mathrm{~V}$ za $95 \mathrm{p} .15-0 \mathrm{~F}$. 5 V fa $£ 2.79$. $30-0.30 \mathrm{~V}$ 1a $5.3 \cdot 59$.
JC12, $1 C 20$ AND JCSO AMPLIFIERS A range of integrated circuit audio amptifiers supplied with free data and
printed circuits. SC 12 6 watts Ef-60. 3 C20 10 watts $£ 2.95$. JC4020 watts $£ 2.95$. Send sae for free data on our range of matching power and preamp klts.
FERRANTI ZN414
IC radio chip E1.05. Extra parts and pcb ior radio
free data.
PRINTED CIRCUIT MATERIALS PC etching kits:- economy sf 70, standard $\mathrm{E3} 32.82$. 50 ins p.c.b. 40p. $1 \mathrm{lb} \mathrm{FeCl} \mathrm{\Sigma l}^{1 \cdot 05}$. Etch resist pens:Y/anolns or 1 mm 20 p each. Etching dish 83p. Laminate cutter 75p.
BI-PAK AUDIO MODULES
Send sae for data. S450 tuper 223 -55. AL60 £4.86. PA100 E95.71. SPM80 A4-47. BMT80 $85-25$. MK60 $£ 38-74$.
Stereo $30 £ 20-12$.

BATTERY ELIMINATORS
3-way models with switched output and 4 way mult-lack: $-3 / 4 \frac{2}{2} / 6 \mathrm{~V}$ fooma 22.71. $6177 / 9 \mathrm{~V} 300 \mathrm{ma}$ \&2.95. 100 ma radio models same size as a PP9 battery with press stud connectors. 9V E.3-35. 6V £3.35. 41 V $\mathrm{E} 3.35 .8 \mathrm{~V}+9 \mathrm{~V}$ £4.50. $5 \mathrm{~V}+$ 6 V £4.50. $4^{\circ} \mathrm{V} \mathrm{V}+4 \frac{1}{\mathrm{~T}} \mathrm{~V}$ £4-50. Cassette recorder mains unit $7 \frac{1}{2} V 100 \mathrm{~ms}$ with 5 pin din plug £3-35. Car convertors 12 V de input. Output gV 300 ma ef 50 . Output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{ma} \approx 1-50$. Output $3 / 4 \frac{1}{2} / 6$; 7 部 $/ 9 / 12 \mathrm{~V} 800 \mathrm{ma} £^{2} 2.50$.
BATTERY ELIMINATOR KITS
Send sae for tree leaflet on range. 100 ma radio types with press stud connectors.
 E2.50. $6+6 \mathrm{~V} ~ \$ 2 \cdot 50$. $9+9 \mathrm{~V}$ \&2.50, Cassette type $7 \frac{1}{2} 100 \mathrm{ma}$ with din plug
E1-90. Heavy-duty 13 way types $4 \frac{1}{3} / 6$ I E1-90. Heavy-duty 13 way types $4 \frac{1}{1 / 6}$ $7 / 83 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 amp
$\mathrm{E4-65}$. 2 Amp $£ 7-25$. Transistor stabi-
 $9 / 12 / 15 / 18 \mathrm{~V}$ 100 ma $\leq 3 \cdot 20$. 1 Amp $\mathrm{Ef} \cdot 40$. Variable voltage stabilized models. ${ }_{2}-18 \mathrm{~V}$ 100ma $£ 3.60$. $2-30 \mathrm{~V} 1 \mathrm{~A}$. 56.95. dc input Outnut $977 / 5 \mathrm{~V}$. Amp stabl lized Ef 95 .
BULK BUY OFFERS
Minimum purchase 53 any mix from this section. IN4148 14p. IN4002 3.6p. 72314 dil 43 p . AC7EO2SN exact equiv, of SN75023N with improved heat sink 85 p . Plastic equivs. of popular translstors:$\mathrm{BCl074.7p}$. BC109 4.7p, BCY 71 4-9p, ECY 72.4 .7 p , fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cart-
fidge $-25,-5,1,2,3,5 \mathrm{Amp}$. Quickblow type 1p. Antisurge type 3.4p. Resisfors $5 \% \mathrm{E} 1210$ ohm to 10 M . $\frac{1 \mathrm{~W}}{\mathrm{~K}} \mathrm{O} .3 \mathrm{p}$. 1W 19 p . Polyester capacitors 250 V , 01 , $022,033,047 \mathrm{mf} 2.7 \mathrm{p}, 015 \mathrm{mf} 1-5 \mathrm{p}$, $0.33 \mathrm{mf} 2.5 \mathrm{p}, 0.47 \mathrm{mf} 4: 8 \mathrm{p}$. Polystyrene capacitors E12 63 V 15 to 10,000 pi $2 \frac{1}{2}$ p. Ceramlc capacitors 50 V E12 220 f to $1000 \mathrm{pt} 1-7 \mathrm{p}$. E5 1500 to 33000 pf i. 7 p . 47000 of $2 p$. Electrolytios $59 \mathrm{~V}, 47$, 1 $5 \mathrm{p} .33,47,100 \mathrm{mft} 8 \mathrm{p}$. 2200.330 mf . 5 p 470 mf ifp. 1000 mf 10p. Zeners 400 mW E24 2V7 to 33 V 6.1 p . Preset pots sub minlature o-1W horiz or vert 100 to 4 M 7
$\mathrm{E}-8 \mathrm{p}$. Potentiometers : W $4 \mathrm{K7}$ to 2 M 2 6-8p. Potentiometers iW 4 KK to 2 M 2
log or lin. Single 26p. Dual 75 p .

SWANLEY ELECTRONICS

DEPT. EE, 32 Goldsel Rd., Swanley, Kent BRs sEz
Mail order only. Please add 30 p to the total cost of order for postane. Prices others. Oficial credit orders welcome.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advancage of the many opportunities pace and if you are studying for an examination ICS quaramec coaching pace and if you are studying for an examin
until you are successfut.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET

[^0]To: International Correspondence

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND MAIL ORDER, CALLERS WELCOME. Tel. Wattord $40588 / 9$

vat

ALL DEVICES ERAND NEW, FULL SPEC, AND FULIY GUARANTEED ORDERS PO.S OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS' OFFICIAL ORDERS ACCEPTED, TRADE AND EXPORTINQUIRY

Export orders no VAT. Applicable to U.K. Customers only. Unilese stated otherwise,

We stock many more items. It pays to visif us. We are situated behind Watford Football Ground. Nearest Underground/BR Station: Watiord High Sireet

DIN

2 PIN Loudspk
 CO-AXI
 assorted colours
 WANDER $\begin{array}{r}2 \mathrm{~mm} \\ 3\end{array}$

 A

JACKSONS VA

CAPACI
Dlelectric
$100 / 300 \mathrm{FF}$
500/300 pF
500 pF
51 Ball Drive
5iv/DAF $115 \mathrm{p}^{*}$ mótion with slow
Dive 4103
$\begin{array}{lll}\text { Dial Drive } 4103 & \text { motion drive 325p } \\ 611361 \quad 650 p^{\circ} & \text { C804-5pF } 10.15\end{array}$
$\begin{array}{llll}\text { Drum } 54 \mathrm{~mm} & 30 \mathrm{p} * & 25.50, \mathrm{pF} & 175 \mathrm{p} \\ 0.1-365 \mathrm{pF} & 245 \mathrm{p} & 100,150 \mathrm{pF} & 215 \mathrm{p}\end{array}$
$\begin{array}{lll}0.1-365 p \mathrm{~F} & 245 \mathrm{p} & \mathrm{H} \cdot 3 \times 310 \mathrm{pF} 495 \mathrm{p} \\ 00.2365 \rho \mathrm{~F} & 275 \mathrm{p} & 00.3 \times 25 \mathrm{pF}\end{array} 430 \mathrm{p}$

DENCO COILS RDT2 92 p
DP' VALVE TYPE RFC 5 chokes 91 p

VEROBOARD $\begin{array}{cc}(0.1 & 0.15 \\ \text { (copper clad) } & 0-15 \\ \text { (plain) }\end{array}$

pit of 35 pins
Spor face cutter
Spot face cuttor

飺 \square

 ROCKER: (black) on/out
ROCKER: Illuminated (white)
Lights when on: $3 A 240 \mathrm{~V}$
ROTARY: (ADJUSTABLE STOP) 1 polel ROTARY: Mains 250 V AC, 4 Amp 8 pin 10p; 14 pin 12p; 66 pin 13p; $18 \operatorname{pin} 20 \mathrm{p} ;$
$20 \operatorname{pin} 27 \mathrm{p} ; 24 \operatorname{pin} 30 \mathrm{p} ; 28$ pin $42 \mathrm{p} ; 40 \operatorname{pin} 55 \mathrm{p}$

DIODES	ZENERS	SCRst
AA119 15	Range $2 V 7$ to	Thyristors
AAZ115 15	39 V 400 mW	$1 \mathrm{~A} 50 \mathrm{~V} \quad 38$
BY100 24	Pp each	1 A 100 V
BY126 14	Range 3 V 3 to	1 A 200 V
BY127 14	33V. 173 W each	$\begin{array}{ll}14400 \mathrm{~V} & 52 \\ 1 \mathrm{~A} 600 \mathrm{~V} & 70\end{array}$
CRO 157	NOISE	5 A 100 V 32
OA9 75	N5J 150	5 A 300 V 35
OA4T 12	25J 150	5 A 600 V 43
OAIO 12	*BRIDGE	8 A 300 V 48
0 O79 12	RECTIFIERS	$8 \mathrm{Ca500V}$ V85
OAB1 15	(olastic case)	$\begin{array}{ll}8 A 500 V & 85 \\ 12 A 300 V & 59\end{array}$
OA85 12	$1 \mathrm{~A} / 50 \mathrm{~V} \quad 20$	12 A 500 V 92
OA90 6	$1 \mathrm{~A} / 100 \mathrm{~V} 22$	BT105 $\quad 150$
OAS1	1A/200V 25	C106D 38
OA95	$1 \mathrm{~A} / 400 \mathrm{~V} \quad 29$	TIC44 25
OA200	$1 \mathrm{~A} / 600 \mathrm{~V} 34$	T1C45 45
OA202	$2 \mathrm{~A} / 50 \mathrm{~V} \quad 35$	
IN914 ${ }^{\text {IN }}$	2A/100V 44	TRIACS ${ }^{\text {a }}$
N(N001/2 ${ }^{\text {N }} 5$	2A/200V 48	3 A 100 V
IN4003* 6	$2 \mathrm{~A} / 400 \mathrm{~V} 53$	$\begin{array}{ll}3 A 200 V & 49 \\ 3 A 400 V & 50\end{array}$
IN4004/5*6	2A/600 V 65	3A400V 50
[$\mathrm{N} 4006 / 7$ \% 7	$4 \mathrm{~A}_{1} 100 \mathrm{~V} 72$	8A400V 64
	4A/200V 75	8 BA 800 V 108
$3 \mathrm{~A} / 100 \mathrm{~V} \%$	$4 \mathrm{~A} / 400 \mathrm{~V} 79$	12A100V 60
18	$4 \mathrm{~A} / 600 \mathrm{~V}$ 105	12 A 400 V 70
$3 \mathrm{~A} / 400 \mathrm{~V}$ 大	$4 \mathrm{~A} / 800 \mathrm{~V} \quad 120$	${ }^{16 \mathrm{~A} 100 \mathrm{~V}} 189$
20	$6 \mathrm{~A} / 100 \mathrm{~V} 73$	16 A 254800 V 295
A/600 V $*$	$6 \mathrm{~A} / 200 \mathrm{~V} 78$	
	$6 \mathrm{~A} / 400 \mathrm{~V}$	
38	BY164 35	DIAC*
$6 \mathrm{~A} / 600 \mathrm{~V} 50$	VM18 DIL 40	ST2 25

Abstract

DAWES ELECTRONIC

121 Dawes Road, London SW6 Tel 013813975

All prices are inclusive V.A.T. please add 20 p . P \& P. Minimsm $£ 3$-00 orders.

Transistors		BC338	9 p .	BD650	93p	2N2221	20p	4013	
$8 \mathrm{Cl107}$	11p	BC413	${ }_{80}$	BD677	75p	2N2221A	22p	4017	76
BC107B	12 p	BC414	${ }^{8} \mathrm{p}$	BD678	75 p	2 N 2222	22p	4020	80 p
BC508A	110	BC415	8 p	BD679	$78 p$	2N2368	24 p	4022	70 p
BC188B	12p	BC416	8 p	8D680	78 p	2N2222A	23 p	4023	16 p
BC108C	11p	BC516	23p	厚167	24 p	2 N 2369	24 p	4024	54 p
BClogs	$11 p$	BC517	20p	BF173	$25 p$	2N2369A	24 p	4025	18 p
8 Cl 109 C	12p	BC546	5p	BF177	$35 p$	2 N 2484	22p	4027	39p
BC114	3 p	BC547	6 p	BF184	33p	2 N 2904	22p	4030	39 p
8 Cl 40	47p	BC548	6 p	85185	33 p	2N2904A	24p	4042	60p
BC141	480	BC549	6 p	BF194	23p	2 N 2905	28p	4042	600
BC147	12 p	BC5S0	6 p	BF185	23p	2N2905A	28p	4069	
BC143	8 p	BC557	6 p	BF198	10 p	2 N 2906	$24 p$	4079	${ }_{18 \mathrm{p}}$
BC149	9 p	8C558	8p	BF197	10p	2N2907	$21 p$	4040	55p
BC157	11 p	BC559	6 p	BF198	17p	2N2907A	22p		55p
$8 \mathrm{C158}$	11 p	8 C 560	sp	BF199	17p	2N3019	30p		
BC159	110	8 C 635	14p	BF240	17 p	2 N 3904	6 p		250
BC160	21 p	BC636	15p	BF241	17p	2 N 3906	6 p	308	75p
8 C161	$21 p$	8C637	15p	BF245	47 p	2 N 4402	6 f	311 H	44p
BC16\%	9 p	8C638	15p	日F254	11 p	2N4404	6 p	312 H	225 p
BC168	8 p	8C639	16p	8F255	49p	MJE2355	68 p	324	134 p
BC169	$9 p$	BC640	17p	$8 \mathrm{B255}$	47 p	MJE3055	88p	340 K	45 p
BC170	8 p	BD109	$75 p$	BF363	47 p	2N3054	77 p	380	40 p
BC171	8p	8D115	43p	BE440	29p	2 N 3055	50p	387	35p
BC172	8 p	BD127	68 p	BF44	29 p	2 N 3055 P	77 p	709 C	13p
8C173	$8 p$	BD128	52 p	BF450	18 p	M 32501	142p	723	3 p
BC174	9 p	BD135	35p	BF451	15\%	MJ3001	135 p	727	38 p
BC17	12 p	8D136	36 p	BF457	41 p	MJ4031	281 p	733	42 p
BC178	12p	BD137	37p	BF458	43 p	MJ 4034	284p	739	48 p
BC179	12 p	$8 \mathrm{BD138}$	37 p	BF459	51 p	2N2906A	22p	741	23p
BC181	13 p	BD139	37 p	8 8FW11	90p			474	35 p
BC182	8 p	BD140	35p	BFW12	90p	Diodes		7812	60 p
BC183	8 p	B0142	62 p	BFW16	147p	BY127	19p	7815	40 p
$8 \mathrm{Cl184}$	8 p	$8 \mathrm{BD175}$	45 p	BFW30	147 p	BY133	${ }^{235}$	7812	60p
BC209	19p	BP178	46p	BFW92	63 p	BY187	150 p	7918	45 p
BC212	8 p	BD179	47p	BFX89	75p	BY209	${ }_{6} 125 \mathrm{p}$	1129	75p
$\mathrm{BCO13}^{\text {B }}$	8 p	8D180	54 p	BFY90	132 p	BY255	23p	3501	120p
BC214	9 p	BD235	51 p	BRY39	63 p				
BC237	6 p	BD236	51 p	BRY56	${ }_{6}^{630}$	Zeners $4 w$			
BC238	Ep	BD237	51 p	BU105	120 p	3.3/33V	10p		
8 C 239	6 p	8D238	51 p	BU114	154p	IN914X10	40 p		
8 C 251	8 p	8D433	45p	BU126	135p	[N316 $\times 10$	50p		
8 C 25	8 p	BD434	45 p	84205	194p	IN4148×10	25 p		
BC257	3 p	BD435	31 p	BU208	199p	IN4001	3p		
BC251	23p	BD436	51p	BU209	212p	1N4004	4 p		
8C264	40 p	80437	54 p	8U310	145 p	IN4007	5p		
BC301	35p	8D438	57p	BU311	145p				
BC302	32 p	BD439	58p	BU526	220p	CMOS			
BC303	37 p	BD440	58 p	2N1613	21 p	4000	14 p		
8C304	38 p	BD441	99p	2N1711	22 D	4001	44p		
BC307	6 p	BD442	105p	2 N 1893	25 p	4002	140		
BC308	69	BD512	399p	2 N 2102	25 p	4006	80p		
BC309	8 p	80522	475 p	2 N 2218	22 p	4009	18p		
$8 \mathrm{BC327}$	8 p	BDE45	89p	2 N 2218 A	$25 p$	4010	28p		
BC328 BC337	8 p	BD846	39p	2N2219A	23 p	4011	14 p		

New Style Elegant Instrument-
Cases in anodised aluminium
black vinyl top and bottoms. Gives
a protessionai finish to your
assemblies.

Type	Width	Height	Price	Type	Width	Height	Price
A	83"	$3^{\prime \prime}$	4.72	F	$16 \frac{1}{1 /}$	$4 \frac{1}{2}$ "	8.89
B	$12^{\prime \prime}$	$3^{\prime \prime}$	$5 \cdot 97$	G	$8 \frac{3}{4}$ "	$6^{\prime \prime}$	6.85
C	161/ ${ }^{\text {n }}$	$3^{\prime \prime}$	7.68	H	$12^{\prime \prime}$	$6^{\prime \prime}$	$8 \cdot 38$
D	$8 \frac{10}{}{ }^{\text {¹ }}$	4 ${ }^{\prime \prime}$	5.62	1	$16 \frac{1}{2}{ }^{\prime \prime}$	$6^{\prime \prime}$	10.42
E	$12^{\prime \prime}$	4 ${ }^{\prime \prime}$ "	$7 \cdot 00$	-	depth 9 "	ple	did 80 p

$5 / 25 \mathrm{Mhz} 2$ Channel OSCILLOSCOPE Kit
Build this kit for $£ 85 \cdot 00$ later you can take the unit up to 25 Mhz complete kit or parts S.A.E. for IIst. (assembled $£ 150$)
$\frac{1}{4} \mathrm{Ghz}$ Counter Kit.
Build this kit for £120 or less a professional 250 Mhz counter send S.A.E. for list.
(assembled £180)

Dorachime.The 8Fune Door Chime Kit at $£ 12 \cdot 50+$ P\&P

REMINDER The Daram Electronic Hobbies Catalogue is now available. FREE SoundsSimply Wonderful
(Offer cioses 31st January 1979)
If yourare the sort of person who delights in nevel possessions, this will appeal to you

Ready to surprise your visitors as their fingers press the bell-push are 8 tunes, stored in Dorachime's micro-circuitry. You can switch between them as you like, merely with a movement to the Tune Select control. Tempo control speeds of slows the music to suit your mood Ranging from Greensleeves' to 'Sailors Hompipe'. the selection has been carefully made to ensure you have something appropriate for every visitor:

The effect on your quests is both stanning and amusing, It is worth the price of the Dorachime, for instance, if just once your bell can play O Come all Ye Faithful' to surpise your friends at Christmas.
You can see the possibilities
Tectinologically advanced
You may have read in the prestige national press of the research effort currently devoted to micro computer chips. The Dorachime is a musical revelation of its progress.
it produces, from its powerful little loudspeaker, notes similar in value to a miniature electric organ.

Blends with amy decor
Many ordinary door chimes are bullky, even unsightly. The Dorachime measures a trim $5 \%^{\prime \prime} \times 3 / 2^{\prime \prime} \times 1 /^{\prime \prime}$ and its smart white lines will biend sweetly with any colour scheme. Easily assembled in a couple of hours using a soldering iron, small sorewdiver, pliers and wire cutters. Orier now. Guarantee of Satisfaction.

Send the coupon immediately. Your Dorachime will be delivered within 21-28 days. If you are not completely satisfied you may retum your purchase within 30 days ior a fill refund.
Doram Electronics Ltd, PO Box TR8, Wellington n Electrocomponents Group Company

A1 Greensleeves
B1 God Save The Queen
-C1 Rule Bntarnia
Di Land of Hope and Glory
Et On Come All Ye Faithful
F1 Oranges and Lemons
-G1 Westminster Chimes
H1 Sailor's Hompipe
*These tunes play longer if the push button is kept pressed.
MADE IN ENGLAND
You can comect the Chime in seconds to your existing bell circuitry, the only things needed to comilite are two standard PP3 (P) batteries; wiring and bell pusth

Parsoaal Shoppers EDGWARE ROAD LONDON W2 Tal: 01-723 8432. 9.30 am- 5.30 pm . Half day Thursday. ACTON: Mail Order only. Ne callers GOODS NOT DESPATCHED OUTSIDE UK

THE NEW EUROBREADBOARD

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.

Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance $<10 \mathrm{~m}$. ohms)
Easify removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At $£ 5.80$ each The EuroBreadBoard is unique value for money At f 11 for 2 The EuroBreadBoard is an muispensavie design aid. Snip out and Post
David George Sales, rlo 74 Crayford High Sc., Craylord, Kent, DAI 4EF

David George Sales
r/o 74 Crayford High Street,
Crayford, Kent, DA1 4EF.

> Please send me 1 EuroBreadBoard @ $£ 5.80 \square$ Please or $\quad 2$ EuroBreadBoards @ $£ 11.00 \square$ Tick
(All prices include VAT and P.P., but add 15% for overseas orders).

Name.

Company.
Address.

Tel. No.
Please make cheque/P.O.'s payable to David George Sales
the MIGHTY MIDGETS

From your Local Dealer or Direct from Manufacturers
SR. BREMSTERL

86-88 Union St-Plymouth PL13HG TeI: 075265011 TRADE ENQUIRIES WELCOME

NEW!
BUILD-IT-YOURSELF TEST GEAR KIT
BASIC SERVICING INSTRUMENTS WITH EASY STAGE BY STAGE BUILDING INSTRUCTIONS-IDEAL FOR THE AMATEUR

MULTI RANGE TEST METER

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

> New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts $/ \mathrm{cm}$

--.-SEND NOW FOR FREE DETAILS
 To LERNAKITS, P.O. Box 156, Jeisey.

Name
Address

EIECTROVILIEE Buying
 If you have bought from us before, you will know juse how large and varied our stocks are. For those who have yet to know, we give up-to-date informetion and prices on the most important itema we carry. These advertieemsits will appear important rotstion in five journsls - E.T.1. Elektor, Practical Wireless,
 Practical Electronics and Everyday Electronics, so that the complete series will be avaitable esch month. In this way, no THETter which journale you read, BY DETACHING AND SAVING THESE PAGES, YOU WILL HAVE A VALUABLE AND COM PREHENSIVE MONEY SAVING CATALOGUE. Next month
 Section5

HARDWARE/SOLDER TOOLS

POT CORES

FERRITES
BOOKS
tatest price list of all ranges free on

VERO PRODUCTS

VEROBOARD	
2.5 48p	
$5^{\prime \prime} \times 25^{\prime \prime}$. . . ${ }^{\text {a }}$	
$5: \times 3.75$	
$5^{\prime \prime} \times 3.75^{\prime \prime}$. . . . 62 p	
$8.45 \times 1.5 \times 5$	
DIP-BOARD $£ 2.24$	
VQ Dip-Board	91 p
24.wayplug in 3 91 p	¢2.20
32 -way $£ 2.40$	
EURO Dip-Board	E3.5
0.1 " matrix unclad.	
$3.75 \times 2.5{ }^{\prime \prime} 31 p 5 \times 3.75^{\prime \prime} 50 p$	
EURO Board	89p
$0.15^{\prime \prime}$ metrix, copper clad	
$3.75 \times 25^{\prime \prime} 36 p 5^{\prime \prime} \times 25^{\prime \prime} 50 \mathrm{p}$	
$375 \times 375^{\circ} 50 \mathrm{p} \times 3.75^{\circ}$	
$67 \mathrm{p} .8 .45^{\circ} \times 1.5^{\prime \prime} 53 \mathrm{p}$	
5×3.4.	
PIN INSERTION TOOLS	
(0.1 matrix)	E1. 10
No. PITS for 0.052 ${ }^{\circ}$ pins	
(0.15* matrix)	
SPOT FACE CUTTER	
Suitable for any matrix	$81 p$

TERMINAE PINS

Not made by Vero
.040 dia for 0.1 matrix per
10035 p per 500 £ 1.15
0.052 dia for 015 matrix per
10040 p (Both lypes double

VEROBOX STANDARD

VEROBOX BOXES

High Impact polystyrene light grey top, dark grey bottom section

$\begin{array}{lllll}2514 \mathrm{~F} & 100 & 50 & 25 & \mathrm{H} \\ 251.64 \\ 25100 & 50 & 40 & £ 1.88\end{array}$
 $\begin{array}{lllll}2516 G & 100 & 50 & 40 & £ 1.88 \\ 2518 \mathrm{H} & 120 & 65 & 40 & \mathbf{E 2} 07\end{array}$

$\begin{array}{rrrrr}2518 H & 120 & 65 & 40 & \mathbf{£ 2 . 0 7} \\ 25201 & 150 & 80 & 50 & £ 2.35 \\ 2522 \times & 188 & 110 & 60 & £ 3.13\end{array}$
VEROBOX CASES
Constructed from ABS materia! light grey top \& dark grey bottom section. Anodised ati. front and rear panels Internal guides for PC

Type
12371

Type	L	H	D	
12371	154	40	85	$\mathbf{£ 2 . 5}$
12380	154	60	85	$\mathbf{8 2 . 8 2}$
1239 K	154	80	85	$\mathbf{8 3 . 3}$
1410 d	205	40	140	$\mathbf{8 3 . 5}$
14110	205	75	140	$\mathbf{8 3 . 9}$
1412 K	205	110	140	$\mathbf{5 5 . 1 2}$

SLOPING FRONT PLASTIC CASES

The 1798 k has white top and grey bottom section, the 2523 E has light grey top and dark grey bottom section.
Both have anodised aluminium panels.
$\begin{array}{llllcl}\text { Type } & \text { W } & \mathrm{H} 1 & \mathrm{~Hz} & \mathrm{D} & \text { Price } \\ 1798 \mathrm{~K} & 171 & 38 & 75 & 121 & \mathbf{~ 4 . 1 9}\end{array}$ $\begin{array}{rrrrrr}1798 \mathrm{~K} & 171 & 38 & 75 & 121 & £ 4.19 \\ 2523 \mathrm{E} & 220 & 52 & 100 & 156 & £ 6.36\end{array}$
19* CARD/FRAME CASE SYSTEM accepts plug-in modules and standard European size circuit boards:
Light blue with natural anodised aluminium end plates.
Type liem
3841 L Case
3842F End plate angles for:
$3843 \mathrm{~A} 8^{\prime \prime}$ Module
3844 G 4 Module
3845 B 2 Frontranel
3846 H 1" Front panel
3979 K Board for module
1034 E Veroboard, clad
1041 J DIP board
0267H 31 -way plug
0258C 31 -way socket
EUROCARD CONNECTORS
2876064 -way plug
2874C 64 -way socket
et

NEW ANOTHER SPECIAL FROM ELECTROVALUE
NASCOM
E ARE NOW NATIONAL DISTRIBUTORS FOR

MEET US AT BREADBOARD '78-STAND B8
Post Orders \& Communications to Dept. EE12

SWITCHES
ERG Dual in Line
Ore pole change over SDC. One pole change over SDC. 1 42p
Two-SDC2. 78p 3-SDC3. £1.08 Two-SDC2. 78p 3-SOC3. £1.08
On Oft 2 pole SOC2 42 p 4 pole SDS4 75p. 6p SDS6 E1.08. 8 p SDS4 75p. 6p
SDS8 £1.32.
Multiple $-1 \mathrm{p} / 8$ way DS $16 A 1-8$

Multiple - 1 p/8 way DS $16 A 1-$
$99 p$ 2p/ $4 W$ DS 16 A2.4 E1.08
ROTARY MAINS
WAVECHANGE
Lorfin CK series. MBB contacts
$\begin{array}{ccc}12 \mathrm{~W} & 37 \mathrm{p} & 1 \mathrm{p} \\ 6 \mathrm{~W} & 37 \mathrm{p} & 2 \mathrm{p} \\ 4 \mathrm{~W} & 37 \mathrm{p} & 3 \mathrm{p}\end{array}$
$3 W$ 37p 4p
ROTARY SWITCH KIT TYpe RA
6 wafers $60 p$
RA Wafers
RA Wafers BBM $\quad 68 \mathrm{c}$
RA Watert $1 P 12 \mathrm{~W}, 2 \mathrm{~W} . \mathrm{W}$
3 p 4 W .4 P 3 W

RA Shorting wafar, MBB
Rotating open-circuit6p

PUSH BUTTONS

Standard Size
SSP10, $250 \mathrm{~V} 3 \mathrm{Aa.c}$.
push on push oft
panel hole 0.5
SSP1
SSP11 as SSP10
push to make
Sub-Miniature 250 V O 5 A a 5 p
8531 push to make $\quad . . .62$ 8533 push 10 break

CASTELCO RANGE 250 V 1 A

a.c
0.376 hole with long white fixing ring unless otherwise ordered. No 2644 SP make
No 3244 DP make
No 3244 DP make
No 2648 SP break
No. 3248 DP break
No. 2834 SP on loff
No 3234 DP on oH
No. 4434 as 3234 thit 30 p
suctions reversed
No, 4444 as 3244 but swith
sections reversed
green, blue white or pink essch 1p
TOGGLE $250 \mathrm{~V} 1.5 \mathrm{Aa.c}$
to1 1C SPST 1016 C SPDT
1019 C SPDT 409 centre-off 409 DPDT
Sub-Miniature 250 V 2 A a .c
S 7101 SPDT
S7 7201 SPDT
S7203.DPDT
S7203-DPDT
centre-off
S7205 DPDT biased 84p
each side
S7207 DPDT biased ….. $£ 1.20$
one side
57211 SP 3 -way
S7301 3PDT
S74014PDT
$E 1.51$
E1.10

MICROSYITCMES SPDT
SSUO1 button, lever or: roller 85p
TIME SWITCHES (Smit TIME SWITCHES (Smith 5) For electrical use 13A ra
IMERSET for wired-in
situations, 2 on \& 2 off actions per
day E11.60N Otherwise as Imerset £10.95N

[^1]TEAR OUT AND TAKE GOOD
REMEMEERTOLOEANO NEXT MONTH SADVERTISEMENT TO ADD TOIT
OUR COMPUTER-ADEEO SERVICE
TAKES GOOD CARE OO YOUR
ORDER NO MATIER HOW LAR
OROER NO MATIER HOW LARGE

ELEGTROVALUE LTD
28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW2O OHB
Telephone Egham 3603 Telex 264475
Northern Branch - 680. BURNAGE LANE

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUBEDITOR

T. J. JOHNSON G8MGS

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOADING

EDITORIAL OFFICES

Kings Reach Tower, Stamford Street, London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

V. PIER

Phone: 01-261 6727

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6727

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKEUP AND COPY DEPARTMENT

Phone 01-261 6035

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory ...

and Popular Features ...

Taking into account the large numbers now participating in this hobby it must be a fair assumption that the majority of home constructors operate on what might be termed a modest level, that is to say they derive ample satisfaction through building small or medium sized low cost projects and items of equipment. The average constructor we reckon builds a couple of such projects or so each month as the fancy or need of the moment dictates. Typically, each project will take a few evenings or a weekend to complete.

Everyday Electronics serves the requirements of this great band of enthusiasts who want to make use of modern technology for their own parposes, yet without excessive or total committal of either their spare time or spare cash to this one area of interest.

Having said that we know there also exists an appreciable number of constructors who are deeply absorbed in electronics and who are quite willing to devote the maximum time and effort possible in pursuit of what is, for them, a main leisure activity.

Requests reach us from time to time from representatives of this "minority." Overall, what they ask for is the occasional heavyweight project -something they can get their teeth into, a meal as distinct to a snack or a "starter." Well these requests have not fallen upon unsympathetic or unheeding ears, and after careful deliberation we now launch a major pro-
ject series warranted to satisfy the most ravenous constructor. We refer to our 2020 Tuner Amplifier.
This comprehensive hi-f equipment will appeal to those who desire a major building job to tackle during the coming winter months. In the Twenty-twenty we offer them an ambithous and worthwhile project that should give much enjoyment, evercise their practical skills and broaden their experience during its construelion; and be a lasting source of satisfaction and pleasure upon its completion. But we do emphasise that this is a project for the experienced constructor.

To return to our "average" construetor, previously defined, who represents the majority: we are sure the Twentytwenty opening article will provide interesting and instructive reading between those practical sessions occupied in building the Fuzz Box, the Mini-Module or whatever else takes your immediate fancy from our enticing assortment of projects listed on the facing page. In any event do carefully preserve your copies of EE, for who knows, you may be tempted by the big one ere the series has run its course.

Our January issue will be published on Friday, December 15. See page 865 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
Telephone enquiries should be limited to those requiring only a brief reply. We cannot undertake to engage in discussions on the telephone, technical or otherwise.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

CONSTRUCTIONAL PROJEGTS

VEHICLE IMMOBILISER Protection for your car by G. D. Southern
850
850
FUZZ BOX A music effects unit for the pop group by E.M. Lyndsell 854
MINI-MODULE: 3-MICROPHONE AMPLIFIER For the newcomer (and others) by George Hylton
862
862
WATER LEVEL ALERT A simple solution to the overflow problem by A. R. Winstanley 866
EE2020 TUNER AMPLIFIER Part 1: Introduction and technical description by E. A. Rule 872
AUDIBLE FLASHER An add-on warning to your car indicators by B. N. Ryerson 883
GENERAL FEATURES
EDITORIAL 848
SHOP TALK New products and component buying problems by Dave Barrington 857
DOING IT DIGIT ALLY Part 3: TTL clock and latch by O. N. Bishcp 858
JACK PLUG AND FAMILY Cartoon by Doug Baker 863
SQUARE ONE Beginner's page. Buying components; Soldering 864
FOR YOUR ENTERTAINMENT Paging systems-2
869
869
EVERYDAY NEWS What's happening in the world of electronics 870
BRIGHT IDEAS Readers' hints and tips 880
COUNTER INTELLIGENCE A retailer comments by Paul Young 884
CROSSWORD No. 10 by D. P. Newton 884
RADIO WORLD A commentary by Pat Hawker G3VA 886
BOX IT Making your own cabinets by George Hylton 889
WORKSHOP MATTERS Fuses by Harry T. Kitchen 893
INDEX FOR VOLUME 7 894

[^2]

EVERY day an average of 62 cars are stolen in the area where the author lives. It is claimed that at least 94 per cent of these cars are returned to their legal owners in due course. The majority of cars stolen are used by members of the community for joy-riding or late-night transport. Some of the cars returned have been driven to a remote area and accessories removed from them before the vehicle was abandoned.

The unit to be described here will offer some protection against theft by automatically immobilising the ignition system of the vehicle each time the ignition is switched off. Its degree of protection is far greater if the device is used with an electronic ignition system, especially one of the contactless type. With a conventional ignition system, the first thing a car thief will attempt is to bypass the ignition switch of the vehicle with a lead from the battery to the ignition coil.

With a contactless electronic system the above link will not have any effect and the car thief will have to find and eliminate the isolation system. This delays the
thief further and as time is usually at a premium, it should prove to be an adequate deterrent.

One of the main advantages of the immobiliser is that no hidden switches or links are required When the ignition is switched off, the engine is immediately immobilised. If the ignition is switched on again the engine will not start.

In order to start the engine the correct accessory switches must be operated before the ignition is switched on. If the ignition is switched on first before the relevant accessory switches are operated, the ignition system will still remain immobilised. So there is no point in a car thief switching the ignition on and then searching for a sequence of accessory switches.

CIRCUIT DESCRIPTION

The complete circuit is shown in Fig. 1 and for the purpose of the following explanation, resistor R3 is considered to be open circuit.

When capacitor C1 is discharged, the initial charge current will be at a maximum value, whereas when it is fully charged, the charge current will be at a minimum value, typically just adequate to overcome leakage losses. The charging circuit for the capacitor is via diode D8, resistor R4 and the parallel combination of resistor R5 with the base/emitter junction of transistor TR2.

Thus when the ignition is switched on, capacitor C 1 will commence charging and transistor TR1 will tend toward saturation. The speed of transition from cut off to saturation will be limited by the inductive value of the relay coil.

At approximately 10 to 15 milliseconds after the closure of the ignition switch, the relay contacts will close. Once the contacts have closed, the base current for transistor TR1 is supplied from the positive line via the relay contacts, diode D9 and resistor R4, thus "latching" the circuit. The time

Fig.1. Complete circuit diagram of the Vehicle Immobiliser.
constant of the charging circuit for capacitor C1, via diode D8, resistor R4 etc is far longer than the operate time of the relay, thus allowing the relay to operate and "latch".

Now it can be seen that if the capacitor is charged in a shorter period than the operating time of relay RLA1, the relay will not operate.

TRUTH TABLES

With reference to the Truth Table, Fig. 2a., assume that inputs A1, A2 and A3 equal to + 12 V and Cl is discharged. The " 0 " level in the truth table is considered to be 0 volts and the " 1 " level is considered to be the battery voltage of the vehicle. From the Truth Table it can be seen that the part of the circuit consisting of diodes D4, D5, D6 and resistors R1 and R2 together with transistor TR1 and resistor R3 form a NOR gate. Thus when all inputs are equal to 0 , the collector voltage of TR1 will be high, equal to 1.

From the second Truth Table, Fig. $2 b$ it can be seen that the circuit consisting of diodes D1, D2, D3 resistor R3 and the collector/ emitter circuit of TRI form an AND gate. Thus when inputs A1, A2 and $A 3$ are equal to 1 , the output voltage at point F will be equal to 1.

To demonstrate the overall operation of the circuit, consider a case where the brake light
circuitry is connected to input A1 as illustrated in Fig. 3a with all other inputs left disconnected.

When the ignition is switched on, capacitor Cl is charged via resistor R3, diode D1, and the filaments of the lamps, providing the brake light switch is open. Thus the capacitor is charged before the relay can operate, so the ignition will remain disabled even though the ignition switch is on.

If the authorised driver now realises his/her mistake, the ignition switch would be switched off and the correct sequence of switching attempted. However, this would still not operate the relay because capacitor Cl would still be charged. To overcome this problem a further diode has been added to the circuit, D7

When the ignition switch is switched off, a discharge path is provided for capacitor C1 through external loads, for example the vehicle's ignition system via diode D7.
Now if the ignition is switched off, the brake light switch closed and the ignition switched on again, the ignition system will function correctly. When the brake light switch is closed before the ignition switch is switched on, the charging path for CI is now via diode D8, resistor R 4 etc , so the relay can operate.

Similarly if inputs A1, A2, A3, B2 and B3 are open circuit and for instance the screen-wash pump

Fig?2a. Truth Table for a Nor gate.

(b)

Fig.2b. Truth Table for an AnD gate.

Fig.3a. Illustrating the operation of the circuit when using an " A " input.

Fig. 3 b . This time a " B .' in in tis being used to illustrate the operation.

HOW IT WORKS

The circuit consists basically of a timing circuit with two different time constants. the longer of the two is adequate to allow a relay to operate Once operated the relay is held on by a simple latching circuit.
Consider the case where the inputs A and B are low, or C or D high The capacitor will begin to charge via R_{a}, the AND gate and the lamp. This constitutes the short time constant and is too fast for the relay to operate. Now if A and B are high (switch S operated and lamp on) and C and D low, the capacitor will now charge via R_{b} and is the longest time constant. The relay will now have sufficient time to operate, and thus connect power to the ignition circuit.
In practice one or more inputs as the example shows, are connected to various accessories, such that a certain combination will enable the ignition circuit
motor circuit is connected to B1, as shown in Fig. 3b capacitor Cl can charge via resistor R3 and the collector/emitter junction of transistor TR1, if the washer switch is off. However, if the washer switch is operated before (and during) the operation of the ignition switch the capacitor will again charge via diode D8, resistor R4 etc, and the relay will latch thus allowing the ignition system sto operate normally.

ACCESSORIES

It should be noted that the "A" inputs are for accessories which have a switch connected to the ignition switch line, whereas the "B" inputs are for accessories with a switch connected to earth.

Thus the circuit can be inhibited by only one accessory switch as in Fig. 3, or by several, thus utilising its multiple inputs. For instance, a seat belt warning system could be connected to one of the inputs, with the brake light circuit to another.

So unless the driver, and front seat passenger if present has his/ her seat belt on and has operated the brakes before the ignition switch is switched on the engine will remain immobilised. This illustrates how the device could be used as a safety feature as well as an anti-theft engine immobiliser.

Care should be exercised at this stage, in the selection of a suitable input connection, because on certain makes of car, the starter motor cannot be re-engaged until the ignition switch is firstly moved to the off position and then switched on again. This means that the engine will be immediately

COMPONENTS

Resistors
R1 -10 k
\(\begin{array}{ll}R2 \& 1.8 \mathrm{k} \Omega
R3 \& 100 \Omega
R4 \& 10 \mathrm{k} \Omega\end{array}\) See
R5 $\quad 1 \cdot 8 \mathrm{k} \Omega$
page 857
All $\frac{1}{2} W$ carbon film $\pm 2 \%$
Capacitors
C1 $10 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
Semiconductors
TR1 BC107 silicon npn
TR2 BC107 silicon npn
D1 to D9 1N4148 silicon (9 off)
D10 1N4002 rectifier
\section*{Miscellaneous}
RLA Relay: 185 ohm coil with single pole contacts to suit load. (RS type 348 908); Printed circuit board as described; connecting wire; small aluminium box if required.

immobilised and the correct starting sequence will have to be applied. The worst case condition for this would be if the engine cuts out when the vehicle is on the move.

Use of the brake light switch in this situation could be somewhat hazardous. In the average car there are many other alternatives including for instance, the screenwash circuit, headlamp flasher, etc.

Fig.4. Printed circuit board required. In the prototype the relay is mounted on the board using an epoxy glue.

Construction is simplified by the use of a printed circuit board
which carries all the components and wiring. The layout of the board is shown in Fig. 4 which is reproduced full size.
One method of making the board is as follows. First, either photocopy or trace the copper pattern, position the tracing on the copper side of the board and mark with a sharp pointed tool, the position of the connecting holes. Remove the paper, thoroughly clean the board
and draw in the rest of the copper pattern with an etch resist pen. Once dry the board can be etched in the normal way.

Once etched and the board checked for any errors, the components can then be mounted. Here again the layout is shown in Fig. 4. It should be noted that the layout is not critical and can be varied to suit, although a good strong finish is required, hence a printed circuit board.

Good quality connecting wire can be used to connect to the various accessories, and Fig. 5 and Fig 6 show the many possibilities on two popular cars. The top two circuits of each set of drawings relate to " B " inputs, whereas the arrangements below relate to " A " inputs. When wiring to the car accessories the manual applicable to the make of car should be consulted.

INSTALLATION

The author's prototype circuit board was mounted inside the box of his electronic ignition system. The system used was basically a Bi-Pak kit but had been modified to provide space for the additional board and wiring.

A second unit was then built and fitted into a small aluminium box which was then installed in the engine compartment. If this method is used the box should be positioned away from heat and the weather.

The gain of this arrangement is controlled by the feedback network VR1, R3 and R2 and is equal to

$$
\frac{\mathrm{VR} 1+\mathrm{R} 3+\mathrm{R} 2}{\mathrm{R} 2}
$$

Thus minimum gain is approximately nine and maximum gain approximately 92 . However, the input signal never actually receives this boost for the anti-parallel diode arrangement comes into play and limits any amplified excursion, positive and negative going, to about 600 millivolts (the voltage drop across a forward biased silicon diode).

With this limitation on amplitude, it appears that the setting of VR1 has little effect. This is not so, for this control determines the rate of climb up to the clipped level or the rise time as it is called.

This time is inversely proportional to the harmonic content, i.e. the faster the rise the more harmonics produced resulting in a harsher tone; VR1 therefore controls the "depth" of fuzz.

It is apparent from the gain figures quoted that some signals will not reach the clipping levels; those below 6 mV for maximum VR1 and those below 60 mV for minimum setting of VR1. This is intentional to allow a gradual reduction in "fuzz" as the input signal decays naturally, being a smooth transaction from fuzz to no-fuzz.

Use is made of the industry standard op-amp type 741 which is used in a non-inverting configuration.

Input to the unit is at SKl a stereo jack socket wired to complete the d.c. power circuit when

Fig. 1. The complete circuit diagram of the Fuzz Box.

The complete circuit diagram of the Fuzz Box is shown in Fig. 1.

Fig. 2. The layout of the components on the topside of the board and the breaks to be made along the copper strips on the underside.

Photo of the completed prototype board.

Fig. 3. The positioning of the components and board within the case showing complete wiring up details. Note the connection to the body of VR1 to "earth" the case.

the input jack is inserted. The signal then passes to the op-amp via d.c. blocking capacitor C1. Resistor Rl sets the input impedance at 100 kilohms which should suit most guitars and electronic organs.

The resulting signal from the op-amp is reduced in amplitude by the potential divide action of R6 and R7, giving an attenuation factor of approximately four. Thus the maximum output signal via C3 available for inputting to an amplifier is about 150 mV . This level will be maintained during the period of clipping (fuzz) and will then decay naturally to zero.

The 741 requires a split supply and this is derived by the potential divide action of R4 and R5 producing ± 4.5 volts with respect to the op-amp reference line which is decoupled by C2.

A foot-switch S1 is incorporated to allow the unit to be readily bypassed when desired.

The prototype unit was built using a piece of 0.1 inch matrix stripboard size 13 strips $\times 21$ holes and mounted horizontally in a diecast aluminium Bimbox type 5003/ 13 by use of special adaptors. This eliminates the use of fixing screws on board or case.

The layout of the components on the topside of the board is shown in Fig. 2. Make the breaks on the underside and then assemble the components as shown. It was not thought necessary to mount ICl in a socket as this is quite a robust device. However the usual care should be exercised when soldering this and the diodes in place.

Attach the flying leads including the battery connector and then proceed with drilling the case. The layout of the components in the case is not critical.

With the components positioned in the case, attach the adaptors to the board and slot in position and wire up according to Fig. 3. Screened lead was used in the prototype for input/output connec-

COMPONENTS

Resistors	
R1	$100 \mathrm{k} \Omega$
R2	$1.2 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$3.3 \mathrm{k} \Omega$
R7	$1 \mathrm{k} \Omega$

All $\frac{1}{4}$ watt carbon film $\pm 10 \%$
Capacitors
$\mathrm{C} 1 \quad 0.1 \mu \mathrm{~F}$ plastic or ceramic
$\mathrm{C} 2 \quad 10 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C3 $\quad 0.1 \mu \mathrm{~F}$ plastic or ceramic

Semiconductors

IC1 741 operational amplifier 8 pin d.i.1
D1, D2 1 N4148 or similar silicon diode
Miscellaneous
SK1 standard stereo jack socket
SK2 standard jack socket
S1 s.p.d.t. successional action foot-switch
B1 9VPP3
VR1 100 kilohm carbon lin.
Stripboard: 0.1 inch matrix is strips $\times 21$ holes; PP3 battery clip; Bimbox aluminium diecast box type 5003/13; Bimadaptors for holding board; knob for VR1; connecting wire.
tions as can be seen in the photograph but this is not essential as the case is earthed via VRI framework. Insert and connect the battery and secure the lid.

The lid forms the base of the Fuzz Box. If the lid is fitted with self-adhesive rubber feet, this will prevent the unit slipping when in use.

IN USE AND TESTING

The box is to be situated between the musical instrument and amplifier. Inserting the input jack plug turns on the unit.

Set VR1 fully clockwise. On playing your musical instrument the sound emanating from your speaker will be fuzzed or clean, depending on the setting of S1. Assuming it is the latter, depress S1 and fuzz should be heard. Playing and turning VRI anticlockwise should reduce the "depth" of fuzz.

No volume control was found to be required on the author's prototype as resistors R6 and R7 were tailored to give the required balance between fuzz and no-fuzz for the author's guitar. Assuming the initial output signal from the guitar before decaying is 60 millivolts, then switching from no-fuzz to fuzz by S1 will boost the amplitude by 8 dB during the fuzz period.

If other boost factors are required change the value of R6 and

R7 or both to suit your requirements. This combination could be replaced by a log. potentiometer to give continuously variable output level.

Unless sub-miniature potentiometers are used, if a volume control is incorporated, a larger case than specified will be required.

Battery drain is low and a PP3 should provide many hours of use. A Duracell battery will allow even longer periods between battery changes.

The case specified and used by the author has a durable grey enamel finish and thus required only socket and control lettering to complete the unit. Letraset with spray-on protective varnish was found satisfactory for this. I

Shop Wive
 By Dave Barrington

Calculators

With so much "hysteria" in the media lately about silicon chips (microprocessors) and their possible impact on our future way of life, people tend to forget that the electronic calculator is a prime example were they have been used and accepted, without any fuss, into our everyday life. In fact, the range, popularity and versatility of these machines is so wide that any new additions are now taken for granted.

Two new additions we should like to mention which highlights the latest trends are the T1-2550-IV from Texas and the Casio ST-24 Time Card.
Featuring a built-in instant replay facility allowing the user to check back on the last 20 entries, the $T 1-2550$-IV is obviously aimed at the accountant/ student and could be used in place of some of the more expensive paper printout calculators.
The calculator is a general purpose hand-held type with the normal addition, subtraction, multiplication and division functions together with percentage and sign-change keys and full-function memory. The machine uses an 8 -digit vacuum fluorescent display, with a floating decimal point (adjusts its position in the readout automatically) and negative sign, plus overflow error indication.
The replay facility, which operates with up to 20 steps, is activated by pressing a single key. The playback key allows the user to check through calculations step by step and any necessary corrections made by keying in the new entry and pressing the "equals" key. This saves re-entering the entire program.
The TI-2550-IV operates from a rechargeable battery pack and an a.c. adaptor/charger is included in the recommended retail price of $£ 29.95$ (inclusive of VAT).

For the busy executive, travelling salesman or the housewife, the Casio ST- 24 Time Card could be classed as the latest "state-of-the-art" in the current craze for the credit card size of small calculator. Not content with a miniature machine they have incorporated a time/stopwatch with alarm setting facilities, ideal for those important meetings and elapsed time when leaving the car parked to make calls or do some shopping.

The calcutator section is a fourfunction type with the usual standard facilities including. memory and percentage.

The 24 hour timer has two kinds of alarm setting: straightforward alarm setting for a single specified interval, or to sound repeatedly at predetermined intervals. In both cases, capacity of the timer is from a few seconds up to 23 hours, 59 minutes, 59 seconds. A countdown is possible as the display shows time remaining before alarm is due.
Operating modes for the stopwatch are normal start/stop, lap timing, or first/second place timing. Indication is to one-tenth of a second up to 10 hours, or to one second beyond 10 hours. Use of calculating facilities does not affect function of alarm timers or stopwatch.
The Casio ST-24 Time Card is supplied in a leatherette pouch with a separate compartment for credit or business cards, and has a recommended retail price of $£ 24.95$ (including VAT). For addresses of nearest stockists readers should write to Casio Electronics Co. Ltd., Dept EE, 28 Scrutton Street, London EC2 A 4TY.

Beginners Kit

Designed with the very young in mind, the Tutronik Timesaver System introduces the total beginner to the very fundamentals of electronics. A "course" of 30 different circuits is provided, covering a wide range from a simple series circuit to a novel police siren.
Each circuit is accompanied by an instruction sheet giving essential information on what components you need, what you have to do, how and why the circuit behaves as it does. Throughout the course experimentation is encouraged. Written in an easy to follow language, sometimes distractingly lighthearted, every detail is
covered to ensure the beginner does not go astray.

An unusual type of breadboarding system using the actual circuit as the wiring diagram, and plastic screw terminals to hold the component leads is used throughout. Rather disappointingly components are not provided. Full details from: Technocentre, Dept EE, 54 Adcott Road, Acklam, Middlesbrough, Cleveland.

Constructional Projects

This month there should be no difflculties with component availabilities except possibly the major constructional project, EE2020 Tuner Amplifter, which we shall deal with separately.
The relay for the Ignition Immobiliser should be able to handle the current requirements of the ignition circuit. In the prototype the relay used had two sets of contacts wired in parallel.
For the Water Level Alert a 35Ω 40 mm diameter loudspeaker can be used in place of the Post Office earpiece. If any difficulties are experienced with the rocker switch $S 1$ this can be ordered from Maplin as a "Hekla Switch".
There should be no problems with the rest of the constructional articles in this issue.

2020 Tuner Amplifier

The EE 2020 Tuner Amplifier is larger than our usual run of projects, and so it follows that the components used add up to an impressive list. Yet because of the large quantity of similar components called for, the constructor should be able to purchase many items at especially favourable rates.
Capacitors should be of the kind as specified in the Bulk Components List; this is to ensure suitability for mounting on the printed circuit boards. This is particularly important in the case of electrolytic capacitors. Here RS Components types have been specified. In most instances a voltage rating of 63 V is stated. This is higher than actually needed in the 2020 circuit and lower rated capacitors of an alternative make may be used provided the physical dimensions and the lead spacing are as the RS types specified.
The r.f. unit and some related parts are obtainable direct from Ambit Ltd, 2 Gresham Road, Brentwood, Essex. This firm can also supply the special multi-turn potentiometers for varicap diode tuning.
The pushbutton switches specified are marketed by both RS Components and ITT, under these firms own stock numbers (see Bulk Components List).
Readers should note that manufacturers such as RS Components and ITT (and Mullard and Texas) do not supply to individuals. But their components are readily obtainable from distributors and retailers who cater for the retail market.

OOMNE II IIGITALILI

By O. N. Bishop

PART

LAST month we used the NAND gates of a 7400 i.c. to build a NOT gate and a bistable. These two logic elements, as well as the NAND gate itself, are often required in building logic circuits that it is useful to have them ready-wired on the patchboard. On the Test-Bed these elements are permanently wired in, the form of IC3, see Figs. 3.1 and 3.2 .

FAN-OUT

Each of the inputs of these elements has a single input pin and each output has a pair of output pins. Though each input of a logic gate can receive its input from only one source, the output is able to be connected to several other gate inputs. The number of inputs that may be connected to an output is known as the fan-out of the output. Here we provide pins for a fan-out of two, since this is as many as we shall normally need. However, most outputs have a fanout of eight loads.

These circuits have already been tested when building the Test-Bed, but it is a good idea to test them again. This time you know a little more of what you are doing.

With the supply pin P34 connected to be +5 V line first test the nand gate. Connect the output V26 or V28 to l.e.d. D7 at location V40. The l.e.d. should be dark (off) but should light when either of the input pins at S 25 or T 25 are grounded to one of the pins on strip N, the $0 V$ rail.

Unconnected inputs of a NAND gate are effectively "high" so there is no need to connect them to the positive rail for testing. You can easily check this by linking one of the inputs to ground and
noticing no change in the state of the l.e.d. when the other input is connected to one of the pins on $\operatorname{strip} L$, the +5 V rail.

Fig. 3.1. The three basic elements contained in IC3 with pin locations for inputs and outputs on the Test-Bed.

To test the not gate, connect one of the not outputs, pins V34 or V36 to one of the l.e.d.s, e.g. U43 for D8. The l.e.d. remains dark when the input is unconnected (effectively "high") or connected to strip L. The l.e.d. lights when its input, pin U33 is grounded (connected to 0 V rail).

Finally to test the bistable: connect each bistable output to an l.e.d. e.g. pin S36 to U49 and R28 to U40. One l.e.d. should light and the other remain dark. When the appropriate input pin Q24 or Q33 is briefly grounded, the l.e.d.s change state.

A TTL CLOCK

Compare the circuits shown in Fig. 3.3 with the bistable circuit of Fig. 3.1c. Their similarity suggests that they may behave in a similar way-for example, they can both alternate between two opposite states. The bistable changes state when one of its inputs is grounded. The clock circuit changes state automatically after a fixed period

Fig. 3.2. The positioning of IC3 on the Test-Bed showing input and output pinning.
of time. Suppose that it has just changed to the state shown in Fig. 3.3a. The output of G1 (gate 1) has just gone high (as indicated by the shading) and the l.e.d. at its output has just come on.
The sudden increase in output voltage raises the voltage of both sides of capacitor Cl to a "high" level. Both inputs of G2 are now high (remember the unconnected input is effectively "high") so its output goes "low". This lowers the voltage of both sides of C2; G1 now has one "high" input and one "low" input, so its output is "high". The circuit has the state indicated in Fig. 3.3a. Why is it not stable in this state?
For the answer to this question, look at R1. This has a high voltage at one end and is grounded at the other. A current I flows through R1, as indicated by the arrow. As current flows, the voltage on one side

Fig. 3.3. The circuit diagram of a TTL Clock. It alternates between state (a) and state (b). The shaded regions of the circuit indicate "high" voltage.
of Cl falls and finally reaches a "low" level that acts as a "low" input to G2.

Now the output of G2 suddenly goes high; D2 lights; the voltage on both sides of C2 is raised; G1 now has two "high" inputs; its output goes low and D1 is extinguished; the voltage on both sides of Cl is lowered. We have reached that stage shown in Fig. 3.3b. The circuit remains in this state while a current flows to ground through R2; as soon as the voltage has fallen low enough at the input to G1, the circuit reverts to the state
of Fig. 3.3a and the cycle repeats.
The clock circuit is unstable (we call it an astable multivibrator) in either of its states. The length of time it remains in either state depends on how long it takes for the voltage on one side of each capacitor to fall from "high" to "low". This time depends on the values of the capacitors and resistors involved.

With high capacitance and high resistance a small current flows and gives a relatively small rate of change in voltage, resulting in a long period of time in each state.

EXPERIMENTAL TTL CLOCK

We shall now observe the operation of this circuit which is redrawn in its more common form in Fig. 3.4 is shown wired up on the Test-Bed in Fig. 3.5. The clock should change state approximately every 5 seconds. In other words, it takes 10 seconds to complete its cycle of operation, from the time D7 comes on to the time it comes on again. We say the clock is oscillating or vibrating at 0.1 Hz .

Different value capacitors will produce different frequencies. If capacitors with a value of $0.47 \mu \mathrm{~F}$ are substituted, the l.e.d.s glow at about half their normal intensity but no flashing can be detected. The frequency is so great that the eye cannot follow.

To prove that the clock is really working connect a crystal earpiece across one of the l.e.d.s and the 0 V rail. This is done easily with two pairs of leads terminated in crocodile clips. You will then hear a note of about 400 Hz (around the same pitch as middle A on a musical instrument).

We have been calling this circuit a clock, but it is simply the equivalent of the pendulum or balance wheel that is used to regulate the speed of mechanism of an ordinary mechanical clock; it is an astable multivibrator.

In a clock there are gear wheels, hands and a dial to indicate the time, which is related to the number of times the pendulum has swung to and fro. Similarly we can connect further logic circuits to the

Fig. 3.5. The layout of the components on the Test-Bed for the circuit shown in Fig. 3.4. Experiment with different values for the capacitors and use a crystal earpiece for observing high frequency oscillations. The earpiece can be wired across either of the l.e.d.s.

TTL clock to count the number of times it changes state and so allow us to measure elapsed time. We shall return to this idea later in the series.

A clock or oscillator is a vital piece of equipment when testing logic circuitry and has been included in the Test-Bed on the internal component board. Three pairs of capacitors are fitted, any one of these pairs being selected by front panel switch S2. The output from this clock is available at
pins $D 14,16$ and 18 on the TestBed.

LATCH

The output of a latch is identical to its input, but at any moment the output can be "frozen" or "latched" and then remains in the state that it was in when latched, even though the input may subsequently change.

Part of the latch circuit consists of a bistable discussed last month. In Fig. 3.6 the bistable in this cir-
cuit is drawn in a slightly different manner to that shown before, comparison with Fig. 3.1c shows that the connections are identical.

The bistable changes state when a low input is applied to it from one of the nand gates. To find out how these work we shall use the NAND gate and NOT gate wired in IC3 on the Test-Bed; the remaining NAND gate is supplied by a further 7400 (IC1) inserted in a socket on the Test-Bed. We shall first examine the outputs from the two

Fig, 3.6(a). Circuit of the front section of a "latch" circuit to observe the outputs which form the inputs to the remaining bistable section to be added later.

Fig. 3.6(b). The circuit diagram of a complete "latch" being driven by the in-built clock and outputs observed by means of l.e.d.s connected to the outputs.

Fig. 3.7. The layout of the components and interwiring for the circuit of Fig. 3.6(a). For the circuit of Fig. 3.6(b) amend this layout according to the text.
nand gates, see Fig. 3.7 for connection details.

USING THE IN-BUILT CLOCK

Connect wire E to the +5 V rail, strip L. Now connect wire A alternately to the +5 V rail and to the 0 V rail and observe how the outputs change. Instead of changing wire A back and forth between +5 V and 0 V , make use of the inbuilt clock. Connect wire A to clock outputs ($D 16$) and set the clock to low or medium frequency. The clock output automatically alternates between +5 V and 0 V , which can be observed by connecting another clock output pin to l.e.d. D9. You can now concentrate on watching the l.e.d.s.
Repeat your observations after having removed wire E from +5 V and connecting it to 0 V . Then return E to +5 V and note what happens.

You will find that when E is "high" the l.e.d.s go on and off in time with the changes in clock outputs; always one lamp is on and the other off. When E is "low", both lamps are on all the time. This means that there is no "low" output, so a bistable connected to the outputs of the NAND gates will not change state. This is just what we need for a latch circuit, so the next step is to add the bistable.

Disconnect the output wires from l.e.d.s D7 and D8 and run them to the bistable input terminals instead (Q25 and Q33). From the bistable output terminals ($R 26$ and S34) run wires to D7 and D8. This
completes the latch circuit with two outputs-one following the input, and the other the inverse of the input.

Test this circuit to see the effect of first making E "high" and then making it "low." Run the clock at medium frequency and see if you can ground wire E at just the right moment to latch the circuit with D7 lit and the other dark. With a certain amount of skill you can do this, but with the clock rumning at a high frequency it is entirely a matter of chance-equivalent to tossing a coin for "heads" or "tails".

This provides an idea for a simple project that can be built from three 7400 i.c.s two l.e.d.s a few resistors and capacitors, with
a push-button for grounding E. This can be wired up on a small piece of circuit board and mounted in a small plastic case. Depending on whether the capacitors give you medium or high frequency operation, you have either a game of skill or a heads-and-tails gambling machine that could be fun at parties, or help raise money at the local fête.

A latch facility is very useful when experimenting with logic and this same circuit has been incorporated in the Test-Bed. It appears on the lower board with input and output terminals on the top board. The wire labelled E in Fig. 3.7 can be grounded by means of a front panel switch.
(To be continued)

Photograph of the interwiring on the Electronic Test-Bed for the circuit in Fig. 3.6(b).

(in) 18 Fhathom..

 and featuring a variety of building methods.

3

THIS microphone amplifier is really a general-purpose amplifier for small audio voltages. It has a high input impedance and a gain which is adjustable from about 20 to a maximum of over 1,000 , by means of a preset potentiometer.
The amplifier is designed for dynamic microphones of medium to high impedance. The prototype worked well with a popular type of microphone whose impedance can be set to either 600 ohms or 50 kilohms.

THE CIRCUIT

The circuit is a conventional twostage amplifier of the type once known as a "d.c. feedback pair". TR1 is operated at a low collector current to minimise noise. Overall negative feedback via R3 sets the gain, in conjunction with the preset potentiometer VR1. Gain is maximum when VR1 is minimum.
For the moderate gains, which are all that is needed in practice, the gain is very nearly R5/VR1 so if it is known in advance of building the circuit just how much gain is needed it is possible to use the appropriate value of VR1 in the form of a fixed resistor. For example if a gain of 100 is required VR1 should be $1 \mathrm{k} \Omega$.
The input impedance varies with the gain but at low to moderate gains

Fig. 1. The circuit of the microphone amplifier. The encircled numbers (1 to 10) are common connecting points on the tag strip, see Fig. 2. The small inset diagram shows how a step-up transformer can be used to suit a low-impedance microphone.
it is likely to be in the region of $200 \mathrm{k} \Omega$. It cannot exceed $330 \mathrm{k} \Omega$ because of R1 which is connected across the input as far as audio signals go, since its lower end is "earthed" via C3 to audio frequencies.

Because the input impedance is quite high it is possible to use a lowimpedance microphone (for example 30 ohms) and a step-up transformer to increase the signal voltage. The inset diagram shows how to connect a transformer with a hum-reducing "balanced" input winding.

The maximum output voltage before overloading is about 2 V peak and the output impedance is fairly low. However the amplifier should not be used to drive loads of less than about $10 \mathrm{k} \Omega$ or output will be severely restricted.

C2 is a radio frequency bypass capacitor to attenuate any r.f. signals accidentally fed in via the microphone cable. These can cause "breakthrough" of radio programmes into audio circuits.

CONSTRUCTION

Since this kind of amplifier is designed for low-level signals hum can be a problem and a metal screening box is needed. The input must also be capable of screening; the microphone used with the prototype had a screened lead which terminated in a jack plug so a suitable jack socket was fitted to the screening box.

Obviously, other types of screened input socket may be needed for other types of microphone or signal source.

The main part of the circuitry can be accommodated on a tag strip. With this type of construction the components are soldered to a simple tag strip with the solder tags in a straight line. Interconnections are made with insulated wire.

This is a relatively cheap form of construction as tag strips cost only a few pence and can often be salvaged from old equipment and cleaned up for re-use. It is not a type of construction which has much use for highfrequency circuits because it is rather hard to avoid accidental couplings between input and output, which cause r.f. instability. But it is usually all right for audio.

DESIGNING TAG STRIP LAYOUTS

If you design your own tag-strip component layouts a fairly careful pen-and-paper design is needed to ensure that the circuit will fit an available tag strip. To begin with, you should study the circuit diagram and mark each connecting point with a number (as in Fig. 1). Points which are connected directly to one another by plain connections count as one and the same point and are given just one number. (The "earth line" is a typical example.)

The present circuit has ten such connecting points which means that at least ten tags will be needed. In practice it usually turns out that a few extra tags are needed because of the physical limitations of the components, whose leads can only span a limited distance. A typical case is the preset "pot" VR1 which must be firmly soldered to two adjacent tags: (with some types of "pot" three tags may be required).

The resulting layout bears little relationship to the layout of the symbols on the circuit diagram; this may make fault-tracing tedious so tagstrip construction is perhaps best restricted to simple circuits.

When a finished tag strip circuit is fitted into a metal box provision must be made to hold it away from the metal to prevent short circuits. In the prototype long fixing bolts were used; stand-off spacers were slipped over the bolts to hold the tag strip well clear of the metal. These stand-offs were cut from the barrel of an old ball-pen.

BOXING

The screening box must be substantial enough to withstand repeated pluggings-in of the microphone. A small aluminium case is suitable and is easily drilled to take the input socket, etc. The prototype was built in a "Norman" case Type AB9, which

Fig. 2. Interior of completed unit. Certain components (R2, C5, TR1 and TR2) have been swung away from their normal position in this drawing for clarity. Encircled numbers on a tag strip correspond with those on the circuit diagram.
measures about $100 \times 70 \times 40 \mathrm{~mm}$ and accepted the 12 -way tag strip comfortably.

The type of output connection is not crucial and can be chosen to suit the needs of the user. Some type of multi-way socket is possible: the connections needed are power supply positive, live output and common (earth) so a three-way connection (or two plus "earth") is needed.

SCREW CONNECTOR BLOCKS

For the prototype the leads were brought out through small holes and taken to a strip of screw-terminal connectors (of the type sold in electrical shops and sometimes called a "chocolate block" from the colour of some makes).

The plastic kinds of chocolate block (which are usually made of transparent polythene these days) are easily cut into convenient lengths with a sharp knife. This kind of output connector can be used for either
permanent or temporary connections and is easily adapted to quick hookups with croc-clip leads by fitting short pieces of thick bare wire to the terminals.

USING THE AMPLIFIER

The only adjustment needed is to set VR1 to suit the microphone. (It is assumed, of course that there will be a volume control elsewhere in the complete audio system of which the amplifier forms part.) For this reason VR1 should be positioned so that it is easily accessible when the lid is removed. It can then be adjusted while the microphone is in use.

If for some reason a higher gain than normal is needed VR1 should be given a lower value. (Presets down to about 100 ohms are readily obtainable.) However it should always be remembered in audio work that it is a good rule to use the lowest gain that will do the job in hand.
Next Month: Continuity Tester

JICK PIDA \& FITHIY...

BY DOUG BAKER

IN the two previous sQuare one articles we have talked about the materials used to assemble circuit components and the essential tools for constructors; and we have had a look at the three most significant and widely used electronic components, the resistor, the capacitor, and the transistor.

Now it is time to consider putting these items together-that means soldering. But first of all we have to obtain our components.

BUYING COMPONENTS

If you are lucky, there may be an electronic component shop in your town or within easy reach. But it is a fact that the majority of constructors obtain their components by mail order. A look through our advertisement pages will show many retailers who operate a mail order service (some of these do also have retail shops for personal shoppers).
The first step should be to obtain two or three or more catalogues from different advertisers. The charge made for catalogues varies, from a few pence upwards to a $£ 1$, and reflects the size of the publication, the range of stock described, the technical detail included, and the amount of illustrations. A small collection of retailer's catalogues will prove a most valuable source of reference.

Component retailers include those who offer a very wide, nearly comprehensive, range of electronic components and those who specialise in a more restricted range of particular items. In the course of time, the constructor finds himself dealing with both kinds of retailers.

Studying these catalogues will make you famliar with components and the typical sizes and values usually stocked.

When ordering from a catalogue, do follow carefully the retailer's instructions; quote appropriate catalogue or stock number for each item and use the order form if one is provided. In the absence of any particular instructions from the supplier, describe the
required components in the same manner as in our Components Lists (see any EE Constructional Projects).

SOLDERING

The essence of practical circuit building is soldering. This is the tech-nique-some will call it an Art-of permanently joining together two or more wires or metal parts so that a good electrical contact is made. The joint must be (1) sound mechanically, and (2) it must form a very low resistance path.

While a soldered joint might appear to satisfy (1), it could fail on (2). This is where the ART of soldering comes in.

The two surfaces to be joined must be clean and free from grease. The wire leads of resistors, capacitors, and transistors are pre-tinned and no other preparation is normally required for brand new components.

Insert the component leads into the appropriate holes in the circuit board. Check once again the correctness of the connections by referring to the component layout diagram and/or the circuit diagram.
Make each lead mechanically secure by bending its protruding end to a slight angle with a pair of thin-nosed pliers. Fig. la.

Switch on the soldering iron. Wait about 15 seconds and then touch the end of a piece of resin core solder to the tip. If the solder runs instantly over the bit surface, the iron is sufficiently hot for work. Fig. 1b.

Well "tin" the iron bit with molten solder (a thin covering-NOT a pool) then apply the bit to the point of contact of the lead strip and at the same time apply the solder. Solder should flow almost immediately. As soon as the immediate area of connection is covered with molten solder quickly remove first the solder and then the iron. Fig. 1c.

Take care not to disturb the leads or components at any time during this operation, or for a few seconds after the iron has been removed. A good reliable joint will have a bright lustre. A bad (possibly "dry joint") will have a dull surface.

PRACTISE IS ESSENTIAL

Before working with actual components knock a few copper panel pins into a block of wood. Practise tinning the tops of these pins. Next hook short lengths of thin tinned copper wire (of about 22 or 24 s.w.g.) around these pins, squeeze tight with thin-nosed pliers; and solder.

NEXT MONTH
 IICHT reminiler

For forgetful drivers. Emits a loud twotone warning when the lights are on and ignition off. Includes a useful parking over-ride facility.

COMTIIUUITY TESTER

Our latest Mini-Module is a useful piece of test gear. Easy and inexpensive, of course.

HI FI HERDPHONE EnHPIILER

An extremely simple circuit device that gives an additional dimension to two-channel sound.

our 50LID-STATE ROULETTE CRME"

Bring the excitement of the casino into your own home with this electronic version of the No. 1 sport in Monte Carlo. The Unit has a full thirty-seven position wheel and table.

Water Level Alert
 No doubt we have all at one

 time or another been somewhat unpopular with the other members of the household because all of the available hot water has been consumed by a certain person whilst taking a bath!Possibly one of the safer ploys here is to ardently deny using up the hot water and blame the inherent inefficiency of the water heating system, but somehow this does not seem to work.
Whilst the device to be described would not indicate how much hot water is left it will tell you in no uncertain terms when to let up on the taps, and thus hopefully keep the peace.

A specially designed sensor is placed inside the bath, and when the rising water touches the sensor, an alarm tone sounds. At this point you should turn off the taps or continue to draw water at your peril! On a slightly more serious note though, its main use, of course, is to enable the user to run a bath and leave it unattended, the alarm sounding when the water has reached the required level.
improved. After all, the appearance of a unit which is to be used in a domestic environment is important.

It is recognised that Veroboardtype sensors, where the water bridges adjacent strips of copper, thus sounding the alarm, are quite cheap and effective, but their appearance is none too pleasing and the actual construction does not make them suitable for use in the bathroom. On the other hand, custom designed printed circuit board sensors look very pleasing, but it is reckoned that not too many people have printed-circuit etching facilities.

One of the design criteria, therefore, was to come up with a water level sensor which could be assembled out of readily available materials, but which was quite cheap, durable and most of all attractive.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Water Level Alert appears in Fig. 1.
When water bridges the two probes, Cl charges up very quickly and turns on TR1 and TR2, which form a high-gain transistor switch. Each npn transistor requires the base to be about 0.6 V more positive than the emitter for the device to switch hard on.

Thus when the base of TR1 is at 1.2 V both transistors will switch on. The emitter current of TR1 becomes the base current of TR2, and so only a very tiny current is required in the base of TR1 to switch TR2 hard on.

Fig. 1. Circuit diagram of the Water Level Alert.

Integrated circuit, ICl and its associated components form an astable oscillator, and power is applied to this when TR2 switches on. The output, pin 3, is differentiated by C2 and LS1 which converts the rough square wave into a positive and negative spie.

The system is housed in two plastic boxes. The first measures $100 \times$ $50 \times 25 \mathrm{~mm}$ and forms the probe; the second measures $110 \times 60 \times$ 30 mm and carries the electronics.

PROBE

The construction of the probe unit is illustrated in Fig. 2. Two 2BA threaded brass rods are used, each 150 mm in length, and these are boited to the case so that two 130 mm probes protrude outwards. Connections to the rods are made by using a couple of 2BA solder tags, and a length of single core screened cable connects them to the other case. Note how R1 is included in the sensor unit.

DRAINAGE

Finish off the sensor by lettering it as necessary. Then glue two end pieces onto the ends of the brass rods. This will prevent the rods from scratching the bath enamel, and it will further enhance the appearance. Two plastic caps from some discarded Biro refill tubes were used on the prototype.

If water does manage to get into the sensor case, it will accumulate inside at the bottom and eventually short the probes, sounding the alarm tone. To counter this, a series of 1 mm holes are drilled near the bottom of the back panel to allow the water to drain away. The use of brass rods in the manner described has resulted in a quite attractive and very strong probe unit.

Component layout for the alarm circuit board.

Resistors	
R1	$1 \mathrm{k} \Omega$
R2	560Ω
R3	$22 \mathrm{k} \Omega$
R4	$4.7 \mathrm{k} \Omega$

	Capacitors		Semiconductors
C1	$0.22 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum	IC1	NE555V timer i.c.
C2	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.	TR11	BC508C npn silicon
C3	$0.22 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum	TR2	ZTX 300 npn silicon

See
SnO
R11
Miscellaneous
LS1 35 ohm earpiece (or similar moving coil loudspeaker approx. 40 mm diameter)
S1 single pole, single throw rocker switch
page 857
B1 9V PP3 battery
Stripboard 0.1 inch matrix 23 holes by 9 strips; clip to suit battery; two 150 mm lengths of $2 B A$ studding; 2BA hardware; 8 pin socket to suit IC1; length of screened cable; piece of aluminium speaker grille; one plastic case $100 \times 50 \times 25 \mathrm{~mm}$, one plastic case $110 \times 60 \times 30 \mathrm{~mm}$; epoxy glue; connecting wire.

ALARM UNIT

The remainder of the circuit is built on a small piece of stripboard 23 holes by 9 trips. These dimensions allowed the circuit board to be retained by the guides in the case, and a different size (and layout) could be used if necessary, to suit the type of case purchased by the constructor.
The stripboard arrangement and other wiring is shown in Fig. 3. During construction, make certain that the capacitors are soldered in the right way round. Tantalum capacitors are used for Cl and C 3 because of their small size, but they are very polarity sensitive.

It is recommended that an 8 pin d.i.l. socket is used with IC1. This will prevent damage being caused to the NE555 through excessive heating during soldering.

In particular observe the orientation of the transistor leads.

Drill the larger case to take the on/off switch and cable entry from the sensor. A 30 mm cut-out was
made for the loudspeaker. A small piece of aluminium mesh was stuck inside the case over the cut-out, and then the earpiece was fixed over this using epoxy glue. Finally letter the case as necessary and apply a coat of clear protective lacquer.

With both cases completed, and all interconnections made, thoroughly check out the circuit board for mistakes. Look out for reversed polarities of components, whiskers of solder bridging adjacent strips, etc.

If all is well, connect the battery and switch on. Bridge the probes with a finger and thumb, this should cause the alarm to sound. Release the sensor and the tone should cease.

The device is now completed and ready for use. The probe can be stuck inside the bath using double-sided adhesive strip. The main unit should be positioned where it can be heard with the bath running.

By ADRIAN HOPE

Last month we looked at paging but left unmentioned the important matter of the transmission frequencies used.
Inductive systems, relying on a closed loop running round the site to be paged, operate on a frequency of between 16 and 150 kHz , often around 35 kHz . But closed loop induction is inflexible and can't possibly serve a large site, for instance a sprawling factory or airport. So radio systems must be used on many sites, the transmission power being very carefully calculated and controlled to ensure that the paging signals do not stray off site.

The power involved can be remarkably low; the whole of London airport is paged with just a two-watt transmitter. Only occasionally will on-site powers reach 5 watts.
Radio transmission is, of course, also used for public paging. In London, the Post Office uses nine transmitters each of a hundred watts. Their aerial patterns overlap so the receivers have to be carefully designed to ignore phasing errors. This isn't too difficult because the signals being transmitted are in digital code rather than analogue speech. But clearly there is unlikely ever to be city area paging with speech.

Wave lengths

Now, the actual wavelengths. In Britain legitimate on-site walkie-talkie paging systems are split between u.h.f. and v.h.f. the speech is sent out from control on u.h.f. (at around 458 MHz) and speech back to control comes in on v.h.f. (around 161 MHz). The Post Office Radio Paging, bleep-only digital system also operates on v.h.f., at around 150 MHz .

But the majority of on-site bleep systems are on 27 MHz and hospitals are by a special dispensation allowed in emergencies to transmit real or synthesised speech as well as bleeps on this frequency. Return speech, that is from the bleeped doctor, is again on

161 MHz . In fact return speech, whether in response to a message sent out on an inductive loop on 27 MHz or on 458 MHz , is always on the 161 MHz band in the UK.

Citizen Band

Finally does that frequency 27 MHz ring any bells with you? It should, because it's the frequency on which most Citizens Band walkie-talkies operate. If CB on 27 MHz were to be legalised in the UK, it would effectively cripple the hospitals of England overnight, by jamming their bleep and emergency speech communication systems. This, more than anything else, confirms that if we do get CB in the UK it won't be on 27 MHz .

Ultrasonics

Although the Home Office and Post Office together strictly regulate any transmissions (whether of bleeps, speech, radio control or anything else) their terms of reference leave some methods of transmission unregulated. Thus although it is illegal to remotecontrol a television or Hi-Fi System using modulated radio waves, it is quite legal and legitimate to remotecontrol using modulated sound waves.

For obvious reasons the sound waves used for remote-control are ultra-sonic, that is of too high a pitch to be heard by human beings, and more and more domestic systems are now using ultrasonic remote control.

The only snag is that some people, especially very young children, and most animals can hear frequencies inaudible to the average middle-aged engineer. So ultrasonic controls are not welcome in all households. This is why another type of control-infra red, is becoming popular.

The Post Office and Home Office only have powers to regulate radio transmission and the infra red band comes next to the radio bands in the electro-magnetic spectrum. It is in fact sandwiched between visible light
and the very highest radio frequencies as used for radar. Infra red beams can be used not only for remote contro but high quality speech transmission as well.

There are already conference systems and cordless HiFi headphones that rely on modulated infra red as the unseen connecting link, and very good they can be. The only snag with infra red links is that they are, like visible light, directional. Whereas a radio aerial can send out control signals in virtually all directions, at the same time, an infra red transmitter has to be aimed fairly accurately at the receiver.

Light Links

Another type of link that falls outside the Post Office and Home Office regulations is the light link. In practice this usually means laser links and it is possible to carry very high fidelity audio, and even video, signals by modulating a laser beam. The beam can either be carried along optical fibres, and thereby round corners, or can be beamed direct like a pencilthin searchlight.

Bugging

Already laser links are being used to replace hard wire electrical links in some situations (for example; for security against fire, interference or illegitimate tapping) and for the most part they involve the use of optical fibres.

Clearly it is for the most part unsatisfactory to carry messages via a direct laser beam travelling in space from A to B. But there is however one case where direct laser beams are used as links and that is in the rather shady area of bugging.

However shady the area may be, laser beam bugging devices come outside the wavelength regulations and have already been openly advertised for sale to the public through the press.

The beam from a low power laser is aimed at a window of a room to be bugged. The window will be vibrating to a minute extent in sympathy with whatever speech is going on in the room and the laser beam is so angled on the window surface that it reflects back to the source where there is a light detector.

The reflected beam carries an exact replica of the window vibrations and on demodulation produces an exact reproduction of the speech in the room. Perhaps fortunately such systems can be defeated. For one thing the beam is fairly easily visible, especially if you wear polarising spectacles.

For another thing it is possible to muffle the sound reproduced by drawing curtains across the window or confuse the sound by playing a radio set close to the window pane.

Everyday News

About 75 per cent of military communications are carried out on f．m．at very high frequencies（v．h．f．）．Yet under tactical conditions in the field，the local terrain may make v．h．f．communication difficult，or impossible．

A major breakthrough by Plessey is likely to overcome the direct－line－of－sight＂problem＂and so have a major
impact in battlefield v．h．f．communications．This new concept in radio technology，Groundsat，provides common－ channel automatic repeater facilities for both the command post and soldiers on the battlefield using an un－manned station which operates on the same frequency．
Groundsat is no larger than a conventional man－pack radio．Whilst being carried to a position for deployment it may be used as a conventional v．h．f．f．m．manpack radio． Once deployed in position Groundsat works entirely un－ attended and can be easily hidden．Groundsat only goes into operation on demand．The radio operator can summon Groundsat to his aid by simply depressing his press－to－ talk switch twice．

Unlike conventional rebroadcast stations which require the use of several different frequencies to avoid inter－ ference，Groundsat allows reception and transmission of messages simultaneously on the same channel．

In military operations the Command Post and the detachments can take full advantage of hollows for concealment and protection，while reliable communication is assured through the unattended relay station Groundsat deployed on a nearby hillside．

During field demonstration in hilly terrain witnessed by EE a 100 mW Groundsat relay station sited on a hill per－ mitted good communication to be maintained over a distance of 3 to 4 kilometres between base and mobile stations．Whereas from the same locations direct contact with the base was impossible，even when using a higher－ powered packset with 20 W output．At the relay site the two vertical rod aerials placed 18 metres apart were unobtrusive and apparently were not adversely affected by nearby trees．
The Ministry of Defence has expressed the view that Groundsat will have great potentials and has ordered equipment for field tests by the Army．

Space for
 Communications

The United Kingdom was the 16th nation to sign up as a partner in the European Communications Satellite （ECS）project．The satellite is expected to be launched in 1981 and will be used for trials until 1983 when a second，standby，will be launched and the service will commence．Design aim is for 12，000 telephone channels and two TV channels which can all be used simultaneously．
Each nation＇s cash con－ tribution is proportional to the estimated use of the satellite．Britain＇s share is 15 per cent，equal with France，the largest con－ tributors．The estimated over－ all cost of the project is not revealed．As well as the satel－ lites，in geostationary orbit
over the equator，it is expected that a network of at least 15 major earth stations plus six TV－only smaller dishes will be installed．

Marine Links

Increased use of satellites has in no way diminished the need for submarine cables which are also used to con－ tain the international com－ munications explosion．New cables are currently being laid between Eastbourne and St Valery－en－Caux，France， and between the Norfolk coast and Denmark to expand the Nordic service to Den－ mark，Norway，Sweden and Finland．
Each will carry 4,000 simul－ taneous telephone channels and the repeaters，of which 108 will be used in the Nordic link，will use the latest type 40 long－life transistors developed by the British Post Office．

An experimental fibre optic data communication link 550 metres long has been in－ stalled at a puip mill in Sweden．It links a micro－ computer－based remote ter－ minal to a central computer．

MACS on the way

> ＂Early next year＂is scheduled for the introduc－ tion of Motorola Advanced Computer System（MACS）． MACS is the 16 －bit micro－ computer which will be developed into a micro－ computer family＂．
> The single－chip central pro－ cessor will have 70，000 devices packed into the same size as present MPU chips and will have ten times the throughput of the original Motorola M6800 MPU．It is forecast，in fact，that MACS will exceed the periormance of many of today＇s mini－ computers－on a single chip！

PERSONAL ＂SHRINK＂

The microcomputer soft－ ware people，Petsoft，have just released a new catalogue of over one hundred busi－ ness，educational and applica－ tions programs for the Como－ dore PET home computer，in－ cluding the long awaited Microchess program（ $£ 14$ ）．
One program from the new range which is already causing a stir is＂Eliza＂， which simulates a consulta－ tion with a psychiatrist．The program runs on the stan－ dard 8 K PET，and is believed to be the first conversation simulator available in UK．
铬 核 胫

The popular PET micro－ computer is now being assembled in the UK at Eaglescliffe，Commodore Busi－ ness Machines（UK）Ltd fore－ casts that production in the UK will reach 250 units a week by the end of the year．

In Camera

Five independent TV com－ panies in the UK have now joined the shopping list for Marconi Mk IX family of colour TV cameras intro－ duced to the market last April．

Biggest single order came from Granada Television， Manchester，for 27 cameras valued at over $£ 1$ million． Eighteen are for studio use and nine portables for outside broadcasts．The other four users are Scottish TV，Tyne Tees，Anglia TV and Southern TV．

Marconi have also been busy supplying new medium wave transmitters for the big programme wavelength re－ shuffle due this month （November）．Of 24 new transmitters，each of 50 kW output，eleven were con－ tracted to be installed and operational by mid－November and the remainder during next year．

World First

The IBA－developed system of digital video recording， claimed to be the most advanced system yet demon－ strated，is being taken up by two of the world＇s leading VTR（Video Tape Recording） manufacturers，and negotia－ tions are at an advanced stage with several others．
Agreements have been signed between the Indepen－ dent Broadcasting Authority and Bosch Fernseh（Robert Bosch Ltd）and Sony Broad－ cast，representing major broadcast engineering com－ panies with headquarters in West Germany and Japan respectively．
Under the agreements IBA engineers will provide full know－how and technical advice on the world＇s first digital system capable of pro－ ducing colour television pic－ tures on one inch magnetic tape at tape speeds of under ten inches per second．

Back To School

Our Photograph shows the Speak \＆Spell microprocessor learning aid from Texas that was mentioned in these pages last month．
The learning aid is aimed at helping children to spell and pronounce over 200 basic vocabulary words and has been developed with the guidance of leading educa－ tors．The aid helps children learn by letting them hear， see and spell a word；keying in the correct answer scores points，incorrect gives a＂try again＂readout．

Further news from Texas is the announcement that their popular maths learning calculator＂Little Professor＂ has been reduced in price to £11．50 including VAT．

The Sinclair 2－inch Micro－ vision TV is used as the basis of a video monitor，now avail－ able as either a stand－alone portable unit with internal batteries or as a panel－ mounted unit．

Picture resolution is stated to be 325 lines and used as a data terminal the unit can resolve up to 40 characters per line， 24 lines．
谋 㕠 雠

Atomic Surveillance

The new nuclear power stations being built at Hartlepool and Heysham will have TV surveillance for remote handling of irradiated fuel in the underwater storage ponds．

The submerged cameras will be in stainless steel waterproof casings which also contain the remote focus and iris controls．

RANDOM TIME

It seems likely that Texas Instruments will be first in the field with the 64 k random access memory （RAM）．Samples are expected to be available to the trade this month（November）and production quantities should be available soon afterwards．

－ANALYSIS

VERY WELL，THANK YOU！

The silicon chip and，by implication，the whole of elec－ tronics has experienced this year an unprecedented barrage of popular publicity，much of it adverse．Instant opinions， mainly from the technologically illiterate，have even sug－ gested that the chip，harmiess in itseif，is inherently evil and that its widespread application can do nothing but harm． Well，we must all form our own judgements．Almost anything you can think of can be put to use for good or bad．
There is one application of electronics；however，on which there should be no disagreement that the outcome is wholly beneficial and that is in health care．Medical electronics is now fully established as a specialist branch of the electronics industry．
It all started before the chip，in the valve era of the 1930° s， with radio diathermy for the relief of aches and pains．It was in those days too，that advances in valve technology allowed the development of high－gain low－noise amplifiers to detect and amplify to a useable level the feeble electrical impulses then only suspected to be generated in the brain，the heart， and in other parts of the human frame．
Electronics soon became a powerful ally in medical research and in the relief of human suffering．What a revolution！ Remember that for three hundred years medical science had， as its best tool，only the optical microscope．The advent of the electron microscope，infinitely more powerful，revealed tissue structures and other tiny details，perhaps imagined but never before actually observed．
Similarly with X－ray technology，much refined since Rontgen＇s discovery of X－rays in 1895，but still with inherent defects in its application until Hounsfield＇s brilliant concept in 1967 which led to the first clinical trials of the EMI Scanner in 1971 and world－wide adoption since then．
The solid－state era and component miniaturisation made possible the first body implants．The first endoradiosondes （＂radio pills＂）for measuring internal temperatures and pressures．Later，the cardiac pacemaker which has prolonged the lives of countless people，keeping them actively involved in affairs rather than confined to home or hospital．
No operating theatre today is complete without its battery of electronic instruments to display and record parameters like respiration，temperature，heart rate．CCTV allows students to observe every detail of surgery in colour close－ up，although at some distance away．
Intensive－care wards have elaborate patient monitoring systems with recorders and alarms which respond to the slightest change in physical condition．And the electro－ encephalograph（EEG）is a most valuable tool both for re－ search and treatment of mental disorders．

Electronics has transformed the practice of＂conventional＂ medicine and surgery．Now I note with some interest it is also penetrating the areas of＂fringe＂medicine．A Racal company is supplying $£ 15,000$ worth of special panel meters to a West German medical supply company for inclusion in electro－ acupuncture equipment．Even this ancient Chinese science can apparently benefit from an electronic up－date．
Electronics and the silicon chip which it is now based will remain a good friend，whatever the critics say．Many of us have cause to thank the contribution of electronics when greeted with＂How d＇you do？＂and being able to respond with a heartfelt＂Very well，thank youl＂．

Brian G．Peck

EE2020 TUNER A

 HI-FI SERIESTHE EVERYDAY ELECTRONICS 2020 TUNER AMPLIFIER is primarily intended for the more advanced constructor who would like to build a quality stereo equipment at a cost well below that of a commercial unit of similar performance.

The total outlay for components and materials will be in the region of $£ 90$ £120 for the completed project.

All components are readily available and no special equipment is needed for setting up or alignment. The amplifier section has been designed for $20+20$ watts output, which, together with a very sensitive f.m. radio section will provide top quality signals under almost any conditions.

Included in the amplifier section are separate controls for bass, treble, volume, balance, high and low frequency filters, and tape monitoring. There is provision for adding a quadraphonic decoder or perhaps a graphic equaliser at a later date.

The tuner section uses the latest techniques including a mosfet r.f. stage, band pass coupling, varicap tuning, separate oscillator with automatic frequency control (d.f.c.), ceramic i.f. filters, quadrature discriminator and a phase lock stereo decoder. Five preset stations are provided in addition to manual tuning.

This may seem a large project to undertake, but in fact, any one who can solder properly and follow the step by step instructions should be able to produce a tuner amplifier equal to those available commercially at a much higher price. The secret of success is to take each section in turn and look upon it as a project in its own right. Thus, instead of one mammoth project, treat the 2020 as a series of small ones.

This is a practical project and no technical knowhow is required other than to be able to follow the diagrams and instructions. Don't rush the construction, take your time, carefully checking each completed section and you will finish up with a tuner amplifier with which you can justifiably be proud to say "I built it myself".

GENERAL DESCRIPTION

The EE 2020 Tuner Amplifier is assembled on a metal chassis consisting of a base plate and front and rear panels.
All operating controls appear at the front panel; input and output sockets and terminals are located on the back panel. Complete enclosure can be effected by means of a simple wooden case or "sleeve", and details will be provided for the construction of such a case:
Most of the electronics are assembled on printed circuit boards. There are five p.c.b.s in all. This arrangement is most convenient for the construction, and enables the work to proceed by instalments in an orderly fashion, section by section.
The plan of the 2020 series of articles is as follows:
Part 1 Introduction, Specification, Circuit Diagrams and Technical Description. Bulk Components List.
Part 2 \& 3 Construction of the p.c.b.s and Individual Component Lists.
Part 4 Construction of Chassis
Part 5 Assembly within the Chassis and Inter-unit Wiring
Part 6 Setting Up and Operation

BULK COMPONENTS LIST

All resistors, potentiometers, capacitors, semiconductors and pushbutton switches required are listed below. This will assist the constructor to obtain the advantages of bulk buying.

Fully detailed Components Lists for each sub-section will accompany the p.c.b. and component layout diagrams to be published in the next two articles.

All miscellaneous items including hardware and material for the chassis will be specified in the appropriate parts of this series.

CIRCUIT DESCRIPTION

An overall view of the EE 2020 Tuner Amplifier System is given in the block diagram Fig. 1.1. Apart from showing the electronic organisation, this block diagram broadly indicates the physical arrangement: the subdivision of the whole into easily
manageable sections, each built on a printed circuit board. These boards are designated A, B, C, D and E.
Interconnections between boards are made via terminal pins. These are shown as open circles on the circuit diagrams Fig. 1.2a and Fig. 1.2b and each has a unique identification. Following " T " the second letter indicates the board; TA1, TE8 and so on. The useful function provided by these terminal pins will become apparent when the practical building work is in hand.
Where the circuitry is duplicated for the left and right stereo channels, terminal pins are marked in all layout and wiring diagrams with an additional letter "(a)" or "(b)" signfying left or right channel respectively. For example, TB9a, TB9b. The circuit diagram however shows only one channel (" a " or "left") and all terminal pins which are duplicated are shown with a suffix "a".

Beyond the stereo decoder IC2 and $u p$ to and including the Power Amplifier stages the circuitry divides into two identical channels. Only one channel (" a " or "left") is shown in the circuit diagrams, but the second is an exact replica of that shown. All these additional components are fully accounted for in the component lists and in the detailed layouts for the appropriate p.c.b.s.

In all these lists and diagrams duplicated or "twinned" components are distinguished by the suffix ("a") for left hand channel and (" b ") for right hand channel.
In the circuit diagrams Fig. 1.2a and Fig. 1.2 b one channel only is shown, and all the components in these areas can be considered as having the suffix ("a") (for example, R41(a) and TR5(a)), although only a few components, such as the pushbutton switches and the phono sockets, have actually been so labelled in Fig. 1.2a and Fig. 1.2b.

R.F. SECTION

In any hi-fi receiver system one of the most important parts is the radio frequency (r.f.) section. Radio signals can range in strength from a few microvolts in a fringe area, to perhaps a hundred millivolts or more close to a transmitter. The weaker signals
must be amplified without adding any noise or distortion (as this could not be removed later) to a suitable level for the mixer stage, and very strong signals may need to be reduced in level to prevent overload of the mixer.

A range of signal levels from 1 microvolt to 100 millivolts is a working range of 100 dB and in some locations signals of over 1 volt could be encountered (a range of 120 dB). Should the r.f. sections fail to handle this range of signal levels, then cross modulation and other undesirable effects could take place.

Under practical conditions, there would be more than one signal presented to the r.f. section at any one time and another important requirement is r.f. selectivity. The r.f. section must select the wanted signal and reject all the others. In general the more tuned circuits before the mixer stage the higher the r.f. selectivity.

The selected signal is mixed with a local oscillator signal to produce the intermediate frequency (i.f.), the difference between the two, at which all further processing of the signal takes place. As a narrow bandwidth (250 kHz approximately) is used in the i.f. amplifier to pravide good adjacent channel selectivity the local oscillator must be very stable in frequency, otherwise the resulting i.f. signal would drift out of the i.f. pass band and distortion of the signal would result.
For the Everyday Electronics 2020 tuner amplifier it was decided to use a commercial r.f. section and the unit selected for this is the excellent TOKO EF5600U. This uses a dual gate MOSFET r.f. amplifier with automatic gain control and is capable of handling signals over a range from 0.8 microvolts to well over 100 millivolts. It has four varicap tuned circuits before the mixer which provide a very high degree of r.f. selectivity-with over 90 dB of rejection at the image and other unwanted frequencies being obtained.

[^3]
SPECIFICATION

AUDIO SECTION

Power Output (both channels driven) into 8 ohm load $20+20$ watts r.m.s.
Power Bandwidth at $-1 \mathrm{~dB}: 20 \mathrm{~Hz}-20 \mathrm{kHz}$
Harmonic distortion at rated power:

at 10 kHz	0.24%
at 1 kHz	0.18%
at 40 Hz	0.10%
at 1 watt	0.16%

Damping Factor: 40

Rise Time: Power Amplifier only	$5 \mu \mathrm{sec}$
Overall	$7 \mu \mathrm{sec}$
Stability	unconditional

Frequency response:

Power Amplifier only -1 dB	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Overall: Aux inputs $\pm 1 \mathrm{~dB}$	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Disc inputs RIAA $\pm 1 \mathrm{~dB}$	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	
itivity		
mV	Overload	Impedance
mV	2.5 V	$1 \mathrm{M} \Omega+200 \mathrm{pF}$
mV	-	Hum/Noise
mV	110 mV	$50 \mathrm{k} \Omega$ approx.

* For ceramic or crystal pickup ** For magnetic pickup Tape Output: 90 mV
Tone Controls:

$$
\begin{array}{ll}
\text { Bass } & \pm 15 \mathrm{~dB} \text { at } 70 \mathrm{~Hz} \\
\text { Treble } & \pm 15 \mathrm{db} \text { at } 14 \mathrm{kHz}
\end{array}
$$

Filters:

Input	Sensitivity	Overload	Impedance	Hum/Noise
Aux $(1+2)^{*}$	90 mV	2.5 V	$1 \mathrm{M} \Omega+200 \mathrm{pF}$	-68 dB
Tape	90 mV	-	$50 \mathrm{k} \Omega$ approx.	-67 dB
Disc**	4 mV	110 mV	$47 \mathrm{k} \Omega$ approx.	-67 dB

HF (See curves) -3 dB at 4.5 kHz LF (" ") -3 dB at 26 Hz

RADIO SECTION

Frequency range $88-102 \mathrm{MHz}$
Sensitivity 1 HF 30 dB (EMF) S/N 50dB
Ultimate signal/noise
Harmonic distortion at 100% 1 kHz modulation
Image rejection
Repeat spot (F1 + $\left.\frac{1}{2} 1 F\right)$
Capture ratio
Selectivity $\pm 400 \mathrm{kHz}$
Signal strength meter range
Mute signal level

Mono	Stereo
$1 \cdot 6 \mu V$	
$2 \mu \vee$	$20 \mu V$
72 dB	69 dB

A.F.C. Hold \pm
". Pull in \pm
0.3%
$-100 \mathrm{~dB}$
$-100 \mathrm{~dB}$
2 dB
60 dB
$1 \mu \mathrm{~V}-100 \mathrm{mV}$
$0.5 \mu \mathrm{~V}$
45 kHz
1 MHz
500 kHz
GENERAL
Headphone Jack mutes loudspeakers and couples phones to Power Amplifier output
Cost to make, between $£ 90-£ 120$.

Board A

I.F. AMPLIFIER

The main job of the i.f. amplifier is to provide selectivity, remove unwanted impulse noise and any other amplitude modulation (a.m.) on the signal. The f.m. detector is included in this section, which as well as converting the frequency modulated signal to audio, provides control voltages for automatic frequency correction (a.f.c.). Automatic gain control (a.g.c.) voltage for the r.f. stage is also obtained from the i.f. amplifier section.

A single integrated circuit ICl provides all these functions except selectivity, which is obtained by using two 10.7 MHz ceramic filters $\mathrm{F} 1, \mathrm{~F} 2$, which do not require alignment.

IC1 is the RCA CA3198E, a later version of the CA3089. This is a monolithic integrated circuit that provides all the functions of a f.m. i.f. system. It includes a three-stage amplifier/limiter with level detectors for each stage, a double-balanced quadrature detector and a low distortion audio amplifier which features a muting circuit. It also has a programmable delayed a.g.c. for the r.f. section. An output voltage with a log. law is available to drive a signal strength meter, ME1, which will show a useful range of inputs from 1 microvolt to 100 millivolts when used with the EF5600 r.f. unit.

An a.f.c. voltage is provided and this is further amplified by transistors TR1 and TR2 so that it can be operated in conjunction with the main varicap tuning voltage. This method ensures that all the r.f. circuits remain correctly tuned to the required frequency. (The other method of only applying a.f.c. voltage
to the oscillator tuned circuit can cause loss of sensitivity due to mistracking of the r.f. tuned circuits with that of the oscillator.)

A single coil L1 is used with the quadrature detector and provides a low distortion signal to the audio section of the IC1. A double-tuned circuit would give lower distortion, but special equipment would be needed to correctly align the two coils-the single-coil circuit can be simply adjusted using the tuning meter.

The output from the audio section (pin 6) IC1 is at the correct level for feeding into the stereo decoder.

STEREO DECODER

The stereo decoder is designed around the Texas Instruments SN76115AN phase lock loop stereo decoder IC2.

The composite audio signal from IC1 is fed into IC2 at pin 2. IC2 demodulates the audio difference information from the 38 kHz subcarrier contained in the composite audio signal. The 38 kHz subcarrier is regenerated using an internal 76 kHz oscillator phase locked to the pilot tone, the internal oscillator requiring no inductors. The level of the 19 kHz pilot tone in the composite signal is detected and used to automatically switch a stereo/mono switch.

The stereo beacon lamp D1 is switched by a signal appearing at pin 6.

Channel 1 (left) signal appears at pin 4 of IC2 and is fed via C18 to a two-stage low distortion amplifier TR3, TR4.

This provides some amplification and also the correct matching for the low-pass stereo filter F3. This filter removes any unwanted 19 kHz and 38 kHz signals produced by the decoding process and prevents these beat-
ing with a tape recorder bias oscillator. If this happened, recordings from stereo radio would be almost impossible due to unwanted whistles.

Channel 2 (right) signal appears at pin 5 of IC2 and follows a similar route as Channel 1 to the second input of F3. The circuitry between IC2 pin 4 and F3 involving TR3, TR4 and associated components is thus duplicated-appearing between IC2 pin 5 and the second input of F3, although not shown in the circuit diagram.

In all component lists and layout diagrams duplicated components are distinguished by the suffix " a " for left hand channel and " b " for right hand channel.

The two outputs from F3 are fed to their respective pushbutton switches S13a (Ieft hand channel) and S13b (right hand channel) located on Board B.

Only a single preset potentiometer (VR2) requires adjustment to set the correct frequency of the phase lock for optimum stereo separation.

VARICAP TUNING

The varicap diode circuit consists of two main sections: the manual tuning and the pre-set tuning.

The 14.5 V stabilised d.c. supply from the power supply module provides the voltage required for tuning. This supply is fed in via TA3 and applied via R28 to the top end of the manual and preset potentiometers, VR3 to VR8 inclusive. The bottom ends of these potentiometers go via the preset VR10 to earth. VR10 is used to set the voltage at the bottom end of the potentiometer to exactly $3 \cdot 2$ volts.

The a.f.c. control circuit is connected to the junction of R28 and the top ends of the tuning potentiometers.

As the current through TR2 varies due to the a.f.c. voltage from the i.f. section it will cause the voltage at the end of R28 to vary and correct any tendency to drift or errors in tuning, by changing the actual voltage supply to the varicap diodes.

This change in voltage is of course arranged to be in the correct phase. If the tuning voltage goes higher the varicaps will adjust to a lower capacity and therefore the frequency of the tuned circuits will go higher. This change will cause the i.f. frequency to also go higher which will mean that the detector will be off tune. A voltage will occur at its output which will increase the current through TR1 and TR2 and in turn cause the voltage drop across R28 to increase thus lowering the varicap voltage and off-setting the original increase. Similarly with the reverse process.

L.E.D. TUNING INDICATOR

The output of each potentiometer goes to a pushbutton switch and any one can be selected for use. In order that the presets can be correctly adjusted to a wanted station it is necessary to provide some means of showing the correct turning point. An op-amp, IC3b, is used for this. One input of the op-amp is connected to the manual tuning potentiometer VR3 and the other input is connected to the selected preset. The output of the op-amp goes to two l.e.d.s connected in parallel but with reverse polarity and these are connected to
a d.c. supply exactly half the supply rail voltage of the op-amp.
If both inputs of the op-amp are equal, the output will be exactly half of the supply voltage and in theory neither l.e.d. will light up. (In practice some unbalance may cause one to light). Now, by first tuning the manual control to the required station and then selecting a preset, at the same time keeping the manual tune button pressed, the voltage from each will be fed to opposite inputs of the op-amp. Adjusting the preset until the l.e.d.s go out (or just change over) will mean that the preset voltage is the same as the manual tuning voltage and that the pre-set is tuned to the same station.
The l.e.d.s will show if the preset is high or low in frequency relative to the manual tuning potentiometer. Final adjustment is made using the tuning meter as an indicator.
Preset VR9 is provided to adjust the offset voltage of IC3.
The other half of the dual op-amp, ICJa, is used to isolate the r.f. unit from the varicap tuning so that its loading effect does not cause inaccurate settings of the presets. It also provides a low impedance drive voltage for the varicap diodes in the r.f. unit.

Board B

CONTROL UNIT

The lower half of Fig. 1.2a is now to be described. All circuitry in this area is, in reality, duplicated, although
only one channel is shown in the diagram.

Apart from the small bottom left corner section (which is the Pick-up Pre-amplifier) the whole of this lower portion of Fig. 1.2a is the Control Unit. All this circuitry is assembled on Board B, except for the four variable controls and the phono sockets which are mounted on the front and rear panels respectively.
Two auxiliary inputs are provided, SK2 and SK3. Either of these may be used with a crystal or ceramic pick-up as their high input impedance of 1 megohm would provide a reasonable match. These inputs are also suitable for any other signal source whatever its output impedance, providing that the signal is approximately 90 mV .
A disc input is provided at SK4 (see Pick-up Pre-amplifier).
The output from the pick-up preamplifier, along with the AUX inputs from the FM tuner section go to the pushbutton input selector switches $\$ 9$ to S13 inclusive. All unselected inputs are shorted to earth.

After the required input has been selected it goes to the first stage in the control unit, comprising TR5 and TR6. This is a boot-strapped two-stage amplifier with a high amount of negative feedback. The stage gives around 8 dB of gain and has a 1 megohm plus 200pF input impedance and low output impedance.

Following this stage are the highand low-pass filters. These are active filters giving approximately 12 dB / octave slopes. The active stage uses

Fig. 1.2a. Circuit diagram of the 2020 Tuner Amplifer: r.f. and i.f. stages; a.f. preamplifier, control and switching stages.

SEMICONDUCTORS

 Transistors| Type | Qty | |
| :--- | ---: | ---: |
| BC182L-TO5 silicon npn | 10 | |
| BC212L-TO5 silicon pnp | 13 | |
| BC384L-TO5 silicon npn | 16 | |
| BFY51 | silicon npn | 2 |
| TIP33A | silicon npn | 2 |
| TIP34A | silicon pnp | 2 |

NOTE

Type BC384L-TO5 is a very low noise transistor and has been used throughout the receiver to standardise on types. Type BC184LTO5 may be used instead with a slight increase in noise.

Most transistors used in the equipment have the suffix TO5. This means that the leads are preformed by the maker to the TO5 pin circle. If devices with a different suffix (or none) are obtained it will be necessary for the constructor to form the leads to suit the TO5 configuration before using.

Diodes

Type	Qty
1N4001 silicon rectifier 1A	4
TH209 l.e.d., red	2
TH211 l.e.d., green	1
BZY88C 12V Zener, 400 mW	1
Integrated Circuits	
Type	
CA3189E f.m. i.f. system	
(RCA)	
SN76115AN stereo decoder	
(Texas)	
SN72747 dual op-amp.	1
μ A723 voltage regulator	1

PUSHBUTTON SWITCHES

Description
2-pole changeover
(RS type 338-434)
4 -pole changeover
(RS type 338-636)
4-switch latching assembly (RS type 338-254)
6 -switch latching assembly (RS type 338-614)

R. F. UNIT		
R. F. Unit	EF5600	
Stereo Filter	BLR3107N	
Choke	$220 \mathrm{~K} / 22 \mu \mathrm{H}$	
Coil	KACSK 586 HM	
Tuning Meter	906	
10.7MHz filters CFSE/SFE $10 \cdot 7$		
(2 off)		
(Available from Ambit Ltd.)		

FIXED RESISTORS
$\frac{1}{4}$ W 5% High Stability Carbon Film

Value	Quantity
47Ω	1
100Ω	2
270Ω	3
330Ω	1
470Ω	2
820Ω	4
$1 \mathrm{k} \Omega$	23
$1 \cdot 5 \mathrm{k} \Omega$	3
$2 \cdot 2 \mathrm{k} \Omega$	3
$2 \cdot 7 \mathrm{k} \Omega$	7
$3 \cdot 3 \mathrm{k} \Omega$	2
$3 \cdot 9 \mathrm{k} \Omega$	7
$4 \cdot 7 \mathrm{k} \Omega$	14
$5 \cdot 6 \mathrm{k} \Omega$	8
$8 \cdot 2 \mathrm{k} \Omega$	6
$10 \mathrm{k} \Omega$	10
$15 \mathrm{k} \Omega$	9
$18 \mathrm{k} \Omega$	2
$27 \mathrm{k} \Omega$	4
$33 \mathrm{k} \Omega$	3
$39 \mathrm{k} \Omega$	4
$47 \mathrm{k} \Omega$	5
$82 \mathrm{k} \Omega$	2
$100 \mathrm{k} \Omega$	17
$120 \mathrm{k} \Omega$	2
$150 \mathrm{k} \Omega$	4
$180 \mathrm{k} \Omega$	2
$220 \mathrm{k} \Omega$	2
$330 \mathrm{k} \Omega$	10
$470 \mathrm{k} \Omega$	2
$1 \mathrm{M} \Omega$	4
$\frac{1}{2} \mathrm{~W} 10 \%$ carbon	
Value	Quantity
$2 \cdot 2 \Omega$	1
$1 \mathrm{~W} 5 \%$ Carbon	
Value	Quantity
$1 \mathrm{k} \Omega$	2
$2 \cdot 5 \mathrm{~W} 10 \%$ Wirewound	
Valve	Quantity
$0 \cdot 22 \Omega$	4
W	4

25W 10\% Wirewound RS type 157-588
Value \quad Quantity
100Ω

POTENTIOMETERS

Open Skeleton Presets,
Miniature Horizontal Mounting
(RS type 184/5)

Value	Quantity
$2 \cdot 2 \mathrm{k} \Omega$	2
$10 \mathrm{k} \Omega$	4
$47 \mathrm{k} \Omega$	2

Open Skeleton Cermet Presets, Miniature Horizontal Mounting RS type 185-432

Value	Quantity
$10 \mathrm{k} \Omega$	1

Ganged Potentiometers $\pm 20 \%$, Tracks Matched To 2dB (RS type 161/162)
Value \quad Quantity
$100 \mathrm{k} \Omega$ log. law 1
$100 \mathrm{k} \Omega$
Lin. law 2
Single Potentiometers $\pm 20 \%$
Value
$100 \mathrm{k} \Omega$
$220 \mathrm{k} \Omega$

Multi-turn Potentiometers, Special Log. Law For Diode Tuning
(Ambit type AB47)

Value	Quantity
$100 \mathrm{k} \Omega$	5
CAPACITORS	
Disc ceramic, low voltage	
Value	Quantity
$0.01 \mu \mathrm{~F}$	5

Polyester, Mullard type C280

Value	Quantity
$0.001 \mu \mathrm{~F}$	2
$0.047 \mu \mathrm{~F}$	7
$0.1 \mu \mathrm{~F}$	2
$0.22 \mu \mathrm{~F}$	8
$0.47 \mu \mathrm{~F}$	2

Polystyrene 5% or better; or sub-miniature Plate Ceramic

Value	Quantity
68 pF	3
470 pF	5
3300 pF	2
100 pF	5
15 pF	2
22 pF	2
5600 pF	2
4700 pF	1
Polyester 5%	
Value	Quantity
$0.015 \mu \mathrm{~F}$	2

Electrolytic, Printed Circuit type

Value	Quantity
$2 \cdot 2 \mu \mathrm{~F} 63 \mathrm{~V}$	22
$4 \cdot 7 \mu \mathrm{~F} 63 \mathrm{~V}$	2
$10 \mu \mathrm{~F} 63 \mathrm{~V}$	11
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	1
$100 \mu \mathrm{~F} 16 \mathrm{~V}$	5
$220 \mu \mathrm{~F} 63 \mathrm{~V}$	3
$47 \mu \mathrm{~F} 63 \mathrm{~V}$	3
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	2

Electrolytic, Single-ended

Value	Quantity
$4700 \mu \mathrm{~F} 63 \mathrm{~V}$	1
$2200 \mu \mathrm{~F} 63 \mathrm{~V}$	2
Electrolytic, Double-ended	
Value	Quantity
$47 \mu \mathrm{~F} 63 \mathrm{~V}$	2

two transistors TR7, TR8 with a bootstrapped input to provide a high impedance load for the low-pass filter. Hundred per cent negative feedback is used to keep distortion to a negligible level.

The low impedance output goes to the following tone control stage, which uses a Baxandall circuit with voltage amplifier and emitter follower stages TR9, TR10. Some high frequency roll-off is introduced to limit the frequency response above 20 kHz as this helps prevent transient intermodulation distortion by ensuring that the rise time of the control unit is longer than that of the power amplifier.

The output from the tone control stage is fed to the balance control VR13, and to the tape output and tape monitor switch S16. The tape monitor switch selects either the output from the control unit or tape. As the tape input goes directly from this switch to the power amplifier, the tone
controls and filters do not operate on tape replay. However, they are operated on tape record. This method enables a tape to be corrected during recording and means it can be replayed on any amplifier with a flat frequency response.

From the tape monitor switch the signal goes via the "pre-amp out" "main amp in" link to the volume control VR14, which is a dual-ganged potentiometer matched to within 2 dB , and ensures a balanced output over a wide range of control settings.
The signal then goes to the power amplifier input. See Fig. 1.2b.

Board C

PICK-UP PRE-AMPLIFIER

A disc input of 47 kilohms impedance is also provided and this will match most magnetic cartridges available at the present time. Its sensi-
tivity is 4 millivolts with an overload limit of 110 millivolts, i.e. approx. 29 dB . Pick-ups rated at more than 4 millivolts $/ \mathrm{cm} / \mathrm{Sec}$ may need an external attenuator. As the noise level with reference to 4 millivolts is 67 dB a full dynamic range of some 96 dB is available. Using a pick-up rated at around 1 to 2 millivolts $/ \mathrm{cm} /$ sec should be about optimum to make full use of the excellent dynamic range available.
The magnetic pick-up pre-amplifier (TR11 to TR13) uses a differential input configuration. This isolates the pick-up from the effects of any feedback used for R1AA equalisation and enables an almost pure resistive load to be obtained. RIAA equalisation is obtained with an $R C$ network in the negative feedback path and this method ensures low distortion as well as the correct RIAA frequency response. The distortion of the magnetic pre-amplifier alone, is less than 0.1 per cent.

Fig. 2b. Circuit diagram of the 2020 Tuner Amplifier: Power Amplifier and Power Supply stages.

Board D

POWER AMPLIFIER

The power amplifier section of the 2020 is of a well known Texas Instruments design and was chosen because of its excellent performance and reliability. The circuit forms the top half of Fig. 1.2b.

The input signal from the volume control VR14 is fed in at TD1 and applied via a low pass filter comprising R82, C46, which helps prevent radio frequency interference (r.f.i.) and also helps prevent transient intermodulation distortion.

The input stage consists of a longtailed pair TR14, TR15. This arrangement offers the following advantages: (a) Excellent temperature stability on the d.c. level of the output midpoint voltage, since any changes in the base emitter voltage of transistor TR14 due to temperature changes will be cancelled by a similar change in the base emitter voltage of transistor TR15. Also since resistors of similar value are used in the input and feedback paths connected to the bases of the two transistors, any changes in base current requirements of the transistors due to temperature changes produce almost equal off-sets on the two sides of the circuit and prevent any drift of the output midpoint.
(b) A high impedance input to both sides of the long-tailed pair allows a smaller value capacitor to be used to decouple the negative feedback circuit. Transistor TR18 is an addition to the original Texas circuit. This provides electronic smoothing of the supply line to the early stages and reduces supply line ripple to a neg-
ligible level. It also reduces "switch on" thump as the output voltage from TR18 is only able to increase slowly due to C52 having to charge up, which in turn causes a slow build-up of the mid-point voltage.

Preset VR15 sets the current through the input transistor which in turn sets the mid voltage point of the output transistors. VR16 adjusts the quiescent current.

Both d.c. and a.c. negative feedback is applied to the base of TR15. The action of the circuit is that the d.c. level of the output mid-point changes until the base voltages of the transistors TR14 and TR15 are equal. If the mid-point voltage tends to rise (say) then the base voltage of TR15 will also tend to rise, this will increase its collector current and hence decrease the collector current of TR14. This reduces the collector current of TR16 reducing the voltage drop across R93 and corrects the tendency of the mid-point voltage to rise.

The a.c. feedback applied to the base of TR15 takes the same path as the d.c. feedback, but in this case C49 in effect shorts out R90. The total amount of a.c. feedback is approximately 40 dB . As the input long-tailed pair is a subtractive arrangement the feedback signal can be said to be subtracted from the input signal.

A full description of the power amplifier circuit is given in the Texas Instruments book "High Fidelity Audio Amplifier Circuits".

Board E
 POWER SUPPLY

The power supply section is shown in the lower half of Fig. 1.2b.

A toroidal type of mains trans-
former is used; this has advantages of the virtual absence of an external magnetic field as well as a low physical profile. The two $0-20 \mathrm{~V}$ secondaries of T1 are connected in series to provide $0-40 \mathrm{~V}$. This feeds a full-wave bridge rectifier D4-D7. The d.c. output from the reservoir capacitor C58 is fed to the power amplifier via fuses FS2 and FS3. Output from C58 also goes to stabiliser circuit TR23, TR24.
A series pass transistor TR24 is used as an emitter follower to provide the stabilised supply. The emitter of TR24 is held at 25 V by the action of the regulator transistor TR23. The preset potentiometer VR17 controls the current through TR23 which in turn adjusts the voltage on its collector to the required 25 volts. Any variation in output voltage is fed back via VR17 to the base of TR23 and the negative feedback action will correct and maintain the voltage to that set by VR17. The 25V stabilised supply is taken from the emitter of TR24 to TE5.
To ensure that the voltage to the varicaps is stable enough for varicap tuning a μ A 723 voltage regulator IC4 is used to provide the required 14.5 volts. Input to the voltage regulator IC4 is from the 25 V stabilised line. The 14.5 V regulated output is fed via an emitter follower TR25 to TE9. This double stabilising ensures complete freedom from drift due to mains or supply voltage fluctuations.
The 14.5 V line also supplies the pick-up pre-amplifier, the double stabilising ensuring complete decoupling from the power amplifier supply rail and preventing hum and noise entering the pre-amplifier.

To be continued

Billirin Iikn

SLEEVING

Those little sticks with cotton wool on each end are these days most useful for the electronics enthusiast. When mother has finished doing incredible things to baby with "Q Tips" or "Cotton Buds", to name a couple of brand names, salvage them, cut the ends away, and presto, 60 to 70 mm of stiff sleeving-for free.

Even some ice lollies have plastic tubular sticks, so through the summer you can also keep plenty of sleeving in stock whatever the weather-you can ignore the flavours and choose the colour stick that suits your current project!

And don't forget your own electronics bench-Ersin Multicore solder size 5 dispenser has 80 mm of transparent plastic tubing inside.

K. Croft,
Broadstairs,
Kent.

PLUG CONVERSION

I have devised a very simple method of using a 2.5 mm earpiece with a 3.5 mm socket, thus solving a very old problem.

Take a 3.5 mm plug and remove the barrel, cut the connectors to a length of 3 mm . Now take a 2.5 mm socket, cut off the part shown and solder two thin wires to the contacts. Now screw the socket into the barrel, and solder the wires to the plug contacts.

Finally screw the barrel onto the plug. It is important to ensure the connecting wires are long enough to allow for the twisting they will experience when the barrel is screwed on.
A. R. Jones,

Loughborough,
Leicestershire.

SEMICONDUCTORS TRANSISTORS 74 SERIES TILICs

$5-1$
烏

位

58-1

 Pice Tyoo
 เทํํ

 TRIACS

$\begin{aligned} & 2 \mathrm{amp} \\ & \text { Volts } \\ & 1200 \\ & 200 \\ & 400 \end{aligned}$	$\begin{gathered} \text { TO5 Case } \\ \text { No. } \\ \text { TR12/100 } \\ \text { TR12a, } 200 \\ \text { TR12a/400 } \end{gathered}$	$\begin{aligned} & \text { Price } \\ & \text { £0.31 } \\ & 80.51 \\ & E 0.74 \end{aligned}$	10 Amp Volts 100 400	TO48 Case No. IR110a/100 TR100a/200 TR100a/400	$\begin{aligned} & \text { Price } \\ & \text { E0.77 } \\ & E 0.92 \\ & E 4.92 \end{aligned}$
	TOSE Case No. TR16a/100 TR16a/200	Price E0.51 E0. 72	10 Amp Volts 400 BR100		Case Price E1-12

ORDERING
Do not forget to state
order number and your name and address.
V.A.T.

Add 121% to prices marked
8% to those unmarked litems marked t are zero rated.
mate
P \& \mathbf{P}

BI-PAK CATALOGUE
NEW EDITION NOW AVAILABLE
Send for your copy of our revised catalogue
and price list NOW! it contains 127 pages and price list NOW! it contains 127 pages
packed with Ilterally hundreds of semiconduc-
tors, BI-KiTS audio modules.

ONLY 65p POST FREE
DEPT. EE.12, P.O. BOX 6, WARE, HERTS.
SHOP 18 BALDOCK ST., WARE, HERTS.
AT OPEN 9 to $5.30 \mathrm{MON}-\mathrm{SAT}$.

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc Also courses in Television; Transistors; Radar; Computers, Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-a mateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156. Jersey, Channel Islands.

NAME
ADDRESS

Get kitted out for winter.

Heathkit electronics kits are perfect for the winter evenings. There are hundreds of things you can make yourself, with easy-to-follow instructions to guide you.

There are kits for the home or car, and there's a whole range of computers and peripherals too.

Send the coupon now.

Tb: Heath (Glousester) Ltd. Dept.
Bristol Road, Gloucester, GL2 6EE,
Please tick the literature you want and include the appropriate amount in postage stamps. पHeatikit Catalogue only (enclose 20p). $\square 16$ page . Computer Brochure only (enclose 20p).

IName
Name
Address

IN MANY cars on the roads there is no indication, save just a bulb, to alert the driver that his indicators are working correctly. This simple add-on unit to be described here does just that by emitting a loud click with each flash of the indicators.

CIRCUIT DESCRIPTION
The unit is simplicity itself in operation, and the circuit diagram is shown in Fig. 1. Each time the warning lamp receives a pulse from the flasher unit, part of it is passed to C1. This capacitor

Fig. 4. Circuit diagram of the unit. The wiring shown inside the dotted box is the existing car wiring.
charges up, in doing so it will produce a loud click in the speaker.

In the interval between pulses the capacitor is discharged through R1, ready to charge up again on the next pulse.

CONSTRUCTION
As there are few components, point to point wiring is used. First of all decide where to mount the the speaker. A position somewhere behind the dashboard is suitable, and it can be mounted with glue, or metal brackets. The capacitor and resistor are both mounted on the speaker in some convenient position and glued in place. The diagram of Fig. 2 shows the components opened out for clarity.

Leads long enough to reach the flasher unit and a convenient point on the car chassis are connected as shown.
Some experimenting may be required to find suitable values for the capacitor and resistor to give

COMPONENTS
Resistor

$$
\text { R1 } 220 \Omega \quad \frac{1}{4} W \pm 10 \%
$$

Capacitor
C1 $470 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
Miscellaneous LSt 8 ohm 50 mm speaker Connecting wire.

a resonably loud click, and so as not to load the flasher unit. The values given should prove suitable in most cases.

The unit has been installed in the author's car for some time now and does its job effectively. It is always audible and the click is less offensive than some electronic whine.

Fig. 2. Wiring details. The speaker can be mounted in any convenient position behind the dashboard. All wiring is point to point using stranded connecting wire. For positive earth systems, reverse the polarity of C 1 .

OST of us scribbling chaps are fascinated by etymology, and when a few months ago I was asked by the Editor of The Educationalist, if I would write a series of articles on "Learning Electronics" the first thing I did was to find out exactly what the word meant. I quote "Electronics is a branch of Electrical Engineering dealing with the theory, design and application of apparatus based on the flow of electrons outside ordinary conductors in which Ohm's laws is valid".

Fifteen years ago that was an apt description, but the term is now used so widely that it would appear, that, "The tail is wagging the dog" and it would not suprise me, if future scholars reverse this definition and say "That Electrical Engineering is a branch of Electronics".

Setting a New Course

I was delighted to read in the Sunday Times recently, that if the appropriate
examining board approves there will be a new O-level course in electronics tried out in schools this year. I quote "The experiment reflects growing concern that schools are failing to prepare children for a world in which electronics will dominate part of their lives".

It appears that of the 40,000 children in London who took C.S.E. only 461 took a paper in electronics which is just over 1 per cent. One lecturer said that in his opinion children should be given plenty of electronic projects to build as an aid to their learning. He can say that again, and 1 would add also, make Everyday Electronics compulsory reading.

In The Bag

One sees a lot of amusing things happen if they stand behind a counter all day. Normally it is my staff who man the front line, but occasionally
on a busy day 1 get pressed into service.

I remember several years ago when we had one of those Mullard Valve Testers and on a Saturday it was quite usual to have a line of customers each with a bag full of valves to be tested. The explanation was simple enough. The night before the telavision had broken down. So next day off would come the back, out would come all the valves and they would come to us to help find the culprit.

We had to get rid of it in the end as it was too time consuming. So their next ploy was to make a list of all the valves in the set (any number up to 20) come in and buy a complete new set. They would then go home and find the trouble by a process of elimination, come back on Monday morning with nineteen valves and expect you to take them back and refund their money! No wonder some of us wound up on the analyst's couch! Needless to say we soon squashed that one tool
Even so 1 still find it hard to keep a straight face when someone comes in with a small paper bag and tips the contents out on the counter and says "Have you anything like that?" "That" usually being something that was originally a half-watt resistor, charred to a cinder and in about four pieces.
Being a whimsical chap, I would dearly love to have some burnt and broken resistors, so 1 could whip one out, present it to the customer, while saying "Yes certainly Sir, here you are!"

EE CROSSWORD No 10

 BY D.P.NEWTON
CLUES ACROSS

1 Storm fear is potentially a changer (Anag.)
5 A tiny morsel
6 Sin without the nineteenth letter
7 His physical laws are very forceful
9 Way beyond the usual vibration rate
10 Senior citizen
12 Better than half-wave rectification
13 A reverse rail which tells untruths
15 A.C. waveform left its autograph
17 To use up
18 Half an insulator
20 Repaired
21 The head blanked out the tape
24 A mite out of a transistor
25 Electrical snakes?
28 Less and yet more than none
29 The males are in the omen
31 Wet, short-life oscillations
32 A wizard in every dozen
33 Once a radio call of extreme distress

34 Oscillations which are not quite with it in a rectangular sort of way

CLUES DOWN

1 Devices for inducing electrical resonance
2 An expensive punishment from a nife cell (Anag.)
3 Not off
4 Ohm gives us a short wait (Anag.)
5 Reverse the lead for a fair one
8 Lathe waste, clipped a bit
9 Singularly a transistorised join
10 Mismatching might reduce it
11 A flattish sort of transistor?
14 A mains repair turned down?
16 Crack the signal
18 Two speakers who sound things out in depth
19 A handy unit
22 Mighty small
23 One-track mind devices
26 Some can't make them meet

27 Dad's old cutting tool? 30 Get the bird from EBC

32 A NOR gate does not give us the option
Solution on page 886

Complete the Circuit at Breadboard '78

Lektrokit have made sure that, no matter how often you go'round the exhibits at Breadboard '78, you'll keep coming back to Stands D8 and D9. "Completing the circuit" every time.

Because Lektrokit-as only Lektrokit could-have combined their vast array of components with those of AP Products inc to bring you the most comprehensive
range of breadboarding and testing devices on earth.
Nowhere else at Breadboard '78 will you see everything you're likely to need all in one place, all in one go, and at the right price.

If you can't get to Breadboard '78 contact us for more details and the name of your nearest Lektrokit dealer and take a look at how much you can get for how little.

Lektrokit Breadboards

FROM $£ 3.25$, inc $p \& p$ and VAT
Hole for hole, top value! Lektrokit Breadboards are modular, so they can be linked together to form any size. With a pitch of 0.1", even the smallest
breadboard-217L-can accept 8, 14, 16 or 18 pin Dil devices. You just take a component, choose a hole, and pushit in.

Model No. Contacts Price, each

$217 L$	170	$£ 3.25$
$234 L$	340	$£ 5.75$
$248 L$	480	$£ 6.65$
$264 R$	512	$£ 6.65$
$264 L$	640	$£ 8.32$

(All prices include packing, postage and VAT)

Lektrokit Super Strip SS2

ONLY $£ 11.05$ inc $p \& p$ and VAT Super Strip accepts ALL DIP's-as many as nine 14 -pin at a time- and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG.
Super Strip has 840 contact points. combining a power/signal distribution systern with a matrix of 640 contacts in groups of 5 . Distribution system has eight bus-bars, each with 25 contact points.

Lektrokit IC Test Clips

FROM $£ 3.08$ ine p \& p and VAT
Eleven models, from TC-8 to TC-40 to fit all DIP sizes. Prices from $£ 3.08$ for the TC-14, £3. 25 for the TC-16, etc.

Test clip grips IC's without slipping or shorting between pins-makes testing IC's on boards easier, aids removing and inserting DIP's without darnage. Each IC pin can be brought up to a convenient contact post for test leads or probe connections.

Lektrokit All-Circuit Evaluator FROM $£ 12.53$ inc p \& p and VAT

"ACE" in the hole for home constructors and project builders who do things faster and easier! No laying out circuit diagrams, printed circuit boards, soldering everything together, trouble-shooting, making mods, then chucking it and starting the whole time-consuming business all over again!

With ACE, you just plug in components and make connections with ordinary 22 -gauge solid wire. No soldering. You can build any working project complete, as fast as you could lay out a circuit diagram before.

Seven ACE models altogether-with from 728 to 3,648 contacts. IC capacity (all
 14 -pin DIP's) from 9 to 36 . Buses from 2 to 36 . Posts from 2 to 4 . Prices from $£ 12.53$ including packing and postage and VAT.
Lektrokit's policy is the right product, whatever the project, at the right price. And it's backed by a nationwide network of retailers.
Send for the name of the dealer nearest you-plus a FREE full-colour catalogue.
And, if you can, see and try out the great Lektrokit range at Breadboard 78 - from Nov. 21 to Nov. 25 at Seymour Hall, Seymour Place, London.
Write to:- LEKTROKIT LTD., London Road, Reading, Berks. RG61AZ, Or send coupon. To Lektrokit Limited, London Road, Reading, Berks, RG6 1AZ. Tel. Reading (0734) 669116/7 Please send me the name of my nearest Lektrokit dealer-plus FREE catalogue.
Please supply the following (list items required)
I enclose P.O./cheque for E
(Allow 28 days for delivery. All prices above include packing, postage and VAT).

RADIO WORLD

By Pat Hawker, gзva

SOME years ago an American telecommunications expert told an international audience of engineers that they should concentrate less on exotic new systems and more on "POTS"-the Plain Ordinary Telephone Service. The subsequent history of the attempt to establish the Picturephone video-telephone service served to prove his point.

International Broadcasting Convention

At the recent IBC78 at the Wembley Conference Centre I could not help being reminded of "POTS" but this time translated as the "plain ordinary television \& sound" services. So many of the sessions seemed to be taken up with optimistic accounts of complex new systems that have yet to establish that they are what listeners and viewers really want.

Of course, it is entirely right and proper that the broadcasting organisations should be looking ahead and investigating new systems, but at the same time they need to make sure that they give equal or greater weight to those developments which could and should improve their "ordinary" services.
At IBC78, for example, little or no attention was paid in the technical sessions to the electronic news gathering (ENG) revolution that has taken over news operations in the States while still bogged down in the UK. On the other hand, who now really believes that s.s.b. (single-sideband) broadcasting is likely in the next decade? Or that wideband multiplexed p.c.m. (pulse code modulation) digital sound broadcasting is really going to occupy the v.h.f. channels when they are vacated by 405 -line television? Or that there will be a dedicated network of traffic information stations in the near future.

And should people be developing medium-wave station identification systems that, if adopted, would make it impossible ever to implement mediumwave a.m. stereo?

The slow growth of Teletext is an ever present reminder of the chicken-and-egg situation of advanced microelectronics: prices drop only when there is mass-demand, but massdemand can hardly develop while prices are high. Optional Teletext subtitling could be a boon to hearingimpaired viewers-but then so could a
simple electrically-isolated output socket for headphones, and there are still precious few of these (although some firms can supply headphone adaptors for those who require them).

The Phase-locked Goldfish

Surround-sound and quadraphony appeal to many enthusiasts but has been described as likely to benefit initially only "a minority of a minority of a minority" on the grounds that even today v.h.f./f.m. reception attracts only a minority of listeners and stereo broadcasting only a minority of those.

Indeed one of the fundamental problems in audio is that nobody has yet unravelled all of the mysteries of the deceptively simple ear. For instance there are two crucial phenomena that cannot be explained satisfactorily: directional hearing and sound analysis. Nobody can really account for the capability of some people to distinguish pitch so accurately.
Surprisingly it seems possible that the solution to this particular mystery may emerge from current studies of the common goldfish. Work at the Loyola University of Chicago suggests that frequency discrimination may in part stem from a natural form of "phase-locking" in the nerve fibres of auditory system: if this proves really to be the case then a natural extension of the theory may help crack wide open the long-lasting mysteries of how we detect an off-pitch performer.

Down-to-earth satellites

Paradoxically one of the new developments at IBC78 that seemed welcomely down-to-earth was the future application of space satellites to broadcasting. The Japanese NEC/ NHK 12 GHz domestic receiver with its compact dish aerial that can even be set up indoors was there to be examined; so was the IBA transportable "up-link" 14 GHz station with 2.5 m trailer-mounted dish that enabled ITN to put out a newscast from Wembley via the OTS satellite stationed above Africa.

In the conference sessions the detailed plans for the Arab 2.5 GHz community system (which should be operational by the early 1980s) were unfolded. Domestic satellite systems for television and sound distribution are already in full operational use in Canada, the USSR and the USA.

But it was disappointing to find that many of those directly concerned with planning space broadcasting seemed to have so little knowledge of the alternative "aerostat" systems based on tethered balloons carrying aerials and transmitters at heights up to about $20,000 \mathrm{ft}$. A number of such systems are currently planned in Africa and Asia, although there have apparently been a series of teething troubles that have delayed their operational use. But basically the technique seems a good one.

Sunspot joys

The high level of sunspot activity expected over the next few years gives the radio amateur and short-wave listener a rare (and possibly even unique) opportunity to sample longdistance reception and transmission on h.f. in their most satisfying form. Not only during the long hours of darkness when signals on 14 and 15 MHz can be expected to come through rather than fading out but also the outstanding daylight reception possible on the 26 MHz broadcasting band (which may one day be used for satellite sound broadcasting), the crowded 27 MHz citizen's band direct from the United States and above all on the wide open 28 MHz amateur band.

In good conditions even low-power stations with simple aerials can come through from thousands of miles away as though they were local stations. By the end of September good signals were coming through from Asia and North and South America and conditions should peak around November and then again around February and March, 1979. I find myself working many of the Russian "RA" prefixes which represent "technician v.h.f." licences and cannot be heard on the bands below 28 MHz .

Crossword No. II-Solution

15-240 Watts!

HY5

Preamplifier

The HYS is a mono hyorid amplifer deally sulted for all applications. All common inps functions (mag Cartridge, funer, eic) are catered for internally. The desired function is ach inp: and fone circuits werely switch or direct connection to the appropriate pins. The internal volume is compatible with all ., L. P. power amplifiers and power supplieters (notincluded). The AY5 is compatibie with all 2.L.P, power amplifiers and power supplies. To ease construction and FEATURES: Completo pre-amplifier in single pack-Multion

- Low distortion-High overlond-Two simply combined for stereo equalization-Low nols APPLICATIONS: Wi
SPECIFICATION: Hi-Fi-Mixers-Disco-Guitar and Oigan-Publicaddress
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV : Ceramic Pick-up 30 mV : Tuner 300 mV ; Microphone 10 mV :
Auxiliary $3-100 \mathrm{mV}$; input impedarice 4 . Tks at 1 kH Auxilary
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm ar 100 Hz ,
DISTORTION.$~$ $.1 \%$ at 1 kHz . SionalNoise Ratio 68 di B
OVERLOAD. $38 d 8$ on Magnetic Pick-1p. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$
Price $\mathrm{E}_{6} \mathbf{2 7}+78 \mathrm{p}$ VAT PRP free.

15 Watts into 8Ω

25 Watts into 8Ω

HYI2O
60 Watts into 8Ω

HY200
120 Watts into 8Ω

HY400
240 Watts into 4Ω

POWER SUPPLIES

The HY3e is an exciting New kit from LL. P. It features a virtually indestructible 1.C. with shor capacitors, mounting kit, together with easy to follow constructik, P.C. board, 4 resistors, 6 This amplifier is Ideally sulted to the beginner in audlo who wishes to use the most luctions technology availabie, FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to
Butid. ApP
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifierSPECIFICATSO
OUTPUT POWER 15W R.M.S. into 8a: DISTORTION 0.1\% at 1.5W
SUPPLY VOLTAGE 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$

Price $26-27+78$ P VAT PEP free.

The HY50 leads 1.L.P's total integration approach to power amplifier design. The amplifier ast three years the amplifier has with the simplieity of no external compo one of ing the eliable and robust High Fidelity modules in the World extent that it must be one of the most FEATURES: Low Distortion-In.ales in the World. components
SPECIFICATIONS: INPUT SENSTIVITY 500 my -Low power disco-Gultar amplifier
OUTPUT POWER 25 W RMS into 39 IIVITY 500 mV
PEANCE $4-468$ DISTORTION 0.04% at 25 W SUPPLY VOLTAGE -75 V SIZE FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-30 \mathrm{cB}$.
Prlce E8 $18+6 \mathrm{~F}=02$ VAT P\&P free 5025 mm
Price 58 is + fy 02 VAT P\&P free
The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements inciuding load line and thermal protection this amplifier sets a now standard in modular design.
FEATURES: Ver, low distortion-integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High qualitydisco-Public eddress-Monitor amplifier-Guitar and SPECI
SPECIFICATIONS
OUTPUT FOWER GOW RMS Into 8 Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W SIGNALINOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\frac{1}{\text { SizV }}$ SE 11450.85 mm

Price $£ 19.01+£ 1.52$ VAT P\&P free

The HY200 now improved to glve an output of 120 Watts has been designed to stand the mos rugged conditions such as disco or group while still retaining true $\mathrm{Hi}-\mathrm{Fl}$ periormance. FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsin' APPLICRTIONS: HI-Fi
SPECIFICATIONS
INPUT SENSITIVITY
OUTPUT POWER 120W RMS into 8Ω LOAD IMPEDANCE $4-18 \Omega$ DISTORTION $0-05 \%$ at 100 W SIGNALINOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $\mathbf{\Sigma 2 7} \cdot \mathbf{9 9}+\mathbf{x 2} \mathbf{2 4}$ VAT P\&P free
The HY400 is ILL.PIs "Big Daddyr of the range producing 240 W into $4 \Omega 1$ it has been designed power levels a cooling fan is recommention. Th the amplifier is to be used at continuous high of the family to fead the market as a true high power hiffidelifludes all the qualities of the rest FEATURES:
components.
APPLICATIONS: Public address-Disco-Power slave-Industrial
SPECIFICATIONS
at 1 kHz POWER 240W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION $0-1 \%$ at 240 W SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE \pm INPUT SENSITFVITY 500 mV SIZE 11410085 mm Price $238-61+83.09$ YAT P\&P free.
PSU38 suitable for two HY30's $\mathbf{E 6} .46$ plus 89 P VAT. P/P free: PSU50 suitable for two HY50's £8-18 plus £1.02 VAT. P/P free SUso suitable tor one HY200 $215-19$ plus $£ 1-21$ VAT. P/P free. $81 \varepsilon 0.48+80.06$ VAT VAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONIGS LTD., GROSSLAND HOUSE, NAGKINGTON GANTERBURY, KENT, CT4 7AD.
> I.L.P. ELECTRONICS LTD.,

> CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.
> Tel: (0227) 64723.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

Small cabinets for electronic equipment are easily and cheaply made from readily-available materials. They can also be improvised from other containers, such as tobacco tins, or electricians' switch boxes. Of course, if you wish you can purchase one of the many standard plastic and metal cabinets which can be obtained from components stockists. -But it's not the same as building your own!

This article deals with the cheapest home-constructed and improvised cabinets, suitable for the smaller types of equipment, up to the size of a portable radio.

HARDBOARD

The common hardboard is the cheapest do-it-yourself cabinet material, and one of the easiest to work with. It is often obtainable from timber merchants and do-ityourself shops as "offcuts", with the advantage that quite narrow strips, down to about an inch wide, are still quite useful for small cabinet construction but generally go cheaply in the shops because they are too narrow for most household jobs.
Hardboard has no grain and is easily cut with a wood saw. If kept dry it is an excellent insulator and can be used for circuit boards. (the "outdoor" variety of hardboard, which is waterproofed with an oily substance, is even better.)

GLUING

Small hardboard boxes can be made simply by gluing pieces of hardboard together at the edges (Fig. 1). It is easiest first to cut the top, bottom and end pieces and glue them to form a short openended "tube". Front and rear panels can be added later. Alternatively, you can make a "tray" by
starting with the back panel and gluing four sides to it.

Almost any type of adhesive can be used but a good general-purpose type is the so-called "impact" adhesive, available as Evo-Stik Impact Adhesive or Dunlop Thixofix. The instructions on the tube tell you to coat the mating surfaces with the glue then let them dry for about 15 minutes, then press them together, whereupon they stick.
The trouble with this method is that it is difficult to make any adjustments once the surfaces are brought into contact. You may find it easier just to let the surfaces get tacky then bring them together, when they can still be slid over one another. Used this way the glue needs to be left to dry for a few hours but this is advisable anyway.

FINISHES

Hardboard has a rough side and a smooth side, and you can use it "rough side out" or "smooth side out" according to taste. The ordinary non-oiled kind can be tinted with a dye or coloured ink, and the rough side gives a more even colour. The smooth side can be covered with "Fablon" adhesive plastic film which is available in a variety of decorative finishes.

If you want to paint hardboard it will suck up the paint like blotting paper unless you give it a coat of "size" first.

Hardboard is also available with a decorative plastic film bonded to one or both surfaces. Plain finishes are good for front panels, and the lighter colours can be marked with waterproof ink for calibrating controls.

It is often advantageous to use a front panel of a thinner material than hardboard, which can be too thick to accommodate some
switches and potentiometers. Aluminium sheeting and laminates such as Formica are best suited for front panels.
To make the front panel easily removable stick small pieces of square-section wooden beading to the inside of the box to provide pillars to insert screws through the front panel, Fig. I.

THIN-WALLED BOXES

When the entire box is to be made of Formica or some other thin-walled laminate sheeting this cannot be glued by its own edges because there is just not enough width to the edges to give a strong join. So use corner braces. These are just bits of square-section beading ("moulding") which costs about 3 p per foot (or 10 p per metre) from timber merchants.

Quarter-inch (6 mm) square beading is suitable for small cabinets and three-eighths inch (9 or 10 mm) for larger ones. (Other shapes of beading such as quadrant or halfsquare may look better but they provide less target area for fixing screws.) A suitable construction is shown in Fig. 2.

CUTTING LAMINATES

The best method of cutting the laminate sheets is with a hacksaw or a tenon saw but the professional way is the score-and-snap method. This is rather like glass-cutting, but a lot easier.

The line of cut is marked with a deep scratch through the decorative surface and the material is then snapped along the score mark.

There is a standard type of scoring knife designed for the job. It is made by fitting a hooked blade, called a Stanley scoring knife blade, to one of the same maker's Type 199 handles. (These are the handles which also accept the ubiquitous trimming knife blades, which are NOT suitable for scoring laminates.)

A deep scratch is made by repeated scoring along the line of cut, which must be straight and must go right across the sheet from one side to the other. The scored sheet is placed on a firm, level surface, with the scored (decorative) side up. The piece to be cut away is then bent upwards along the score mark while the rest of the sheet is pressed down on the level surface. Eventually it breaks, often with a loud crack.

The broken edge may be a bit rough but can be smoothed of with glass paper or a file. Once you have learned the knack (preferably by practising on scrap material) is becomes very quick and easy.

METAL BOXES

The two-ounce square tobacco tin is a godsend to the electronics enthusiast since it is big enough to house many small circuits and to provide screening as well (see our Mini Module series).

More clumsy and heavy, but still useful, are the galvanised steel "boxes" used to mount switches in walls. Lids (front panels) can be cut from aluminium sheeting which, like Formica and hardboard, is also obtainable as cheap offcuts.
Metal cabinets are useful for audio circuits where the signals are small, since if earthed they then screen out stray mains voltages which can cause hum. Note that they are of no use for
radio receivers with ferrite rod aerials because they screen out the radio signals as well!

INPUTS AND OUTPUTS

Many cabinets require connections to the outside world. Mains leads should be brought in through holes fitted with rubber grommets to prevent chafing of the insulation. Inside the box the mains flex should be- anchored firmly by means of a clamp or clip, preferably insulated. If the cabinet is of metal it should be connected to the Earth lead of a three-core mains cable (usually coloured with green and yellow stripes in the UK).
Where signals are taken into or out of the cabinet and standard plugs and sockets are not available several makeshift types of leadthrough connectors can be used. When the panel is metal these lead-throughs must be insulated. Fig. 3 shows a cheap and simple way to do this.

With hardboard panels, pins or screws can be driven straight through. Laminate board is rather too thin to hold pins firmly and in any case holes must be drilled in it to allow the pins to pass. It, too, can be thickened up by sticking strips of hardboard behind it.

Ordinary bolts can also be used as lead-throughs, fixed by a nut on each side of the panel. Earth-tags on the inside make handy soldering points.

FIXING CIRCUIT BOARDS

It is often tempting to use the back of the panel or the bottom of the box as a "breadboard" for mounting components. In many cases, however, it is better to construct the circuit on its own separate board so that it can be removed for servicing or modification. Some method of holding it in place is then needed. Fig. 4 shows two simple but effective arrangements.

Our new 1978 catalogue lists a whole range of metal cases to house all your projects. And we've got circuit boards, accessories, module systems, and plastic boxes - everything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VISIT US AT BREADBOARD STAND E6 VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

4) For a merry musical Christmas an electronic musical door chime which can play 24 different tunes!

Greensleeves
God Save the Queen
Rule Britannia*
Land of Hope añd Giory
On Come Ail Ye Faithful
Dranges and Lemons
Westminster Chimes
Sailor's Hormpipe
Beethoven's Fate Knocking-
The Narseillarse
Mozart
Wedding March
Cook House Door
The Stars \& Stripes The Stars \& Stripes Beethoven's Ode to toy
William Tell Overture
Soldiers Chorus
Twinkle. Twinkle Little Stor Great Gate of Kiev
Marysand
Deutschland uber Alles Bach
Colonel Bogie
The Loralke
-These tunes play longer if the push buttonis kept pressed

* A great introduction to the fascinating world of micracamputers.
* Save pounds on normal retail price bybuilding yourself.
The CHROMA-CHIME is exclusively designed by

ChROMATRONICS
 River Way, Harlow, Essex

ToCHROMATRONICS, River Way, Harlow, Essex, U.K.
Please send \square Chroma-Chime Kitsat 15.95 each including VAT and post and packing PLEASE USE BLOCK CAPITALS

Name
Address

lenclose cheque/PO value $£$ or debit my ACCESS/BARCLAYCARD account No.

Signature
N.B. The CHROMA-CHIME is also available, fully assembled, price $£ 24.95$ inc VAT and post and packing. Please allow 7-21days for delivery.

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio amplirec. Brand new components hroughout. 5 siticon tran transistors in push-pull Full wave rectification Output approx. 13
watts r.m.s. into 8 ohms. Frequency response 12 Hz 30 KHz 土 3 db . Eully integrated separate Volume Bass boost and Treble cut controls Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 my for fupplied ready built and tested, with knobs, escutcheon panel, input and output plugs. Overal size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7 I^{\circ}$ deep. AC 200.250 V $\frac{\text { PRICE \&15-00. P. \& P. \&I } 20}{\text { HARYERSOMIC MODEL P.A }}$ TWO ZERO
An advanced 50 lid state genera purpose mono amplifier suitablc for Public Address system
 Disco, Guitar, Gram, erc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-
amp). Input $1,15 \mathrm{mv}$ into 47 k . Input $2,15 \mathrm{mv}$ into 47 k . amp). Input $1,15 \mathrm{mv}$ into 47 k . Input $2,15 \mathrm{my}$ into 47 k . 200 mty into 1 mep. suitable for gram, tuner, or tape etc 200 my into 1 meg, suitable for gram, tuner, or tape etc.
Fall mixing facilities with full range bass \& treble controls. All imp its plag into standard jack sockets on front pancl. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation 200 240v, size approx, $12 \pm$ W. 5 h. 71
 P\&P. 20p. Full spec. and connection details supplied Pye VHF/FM Tuner Head covering $88-108 \mathrm{MiHz}, 10,7$
M / Hz lF output. $7-8$ Volt + earth. Supplicd pre MiHz lif, output. $7-8$ volt + earth. Supplicd preFM gand and $323 \mathrm{Pf}-323 \mathrm{Pf}$ A.M. Tuning gang only 23. 15 P. L R P . 35 p .

STEREO DECODER for $9-16 \mathrm{~V}$ neg, earth operation. Can be fitted to almost any FM VHF radio or toner. Srereo beacon light can be fitted if required. Fuil details and instructions (inllusive of hints and tips) supplied. $\mathbf{x 6 - 0 0}$ plus 20 p .
P. \& P. Stere beacon light if rejuired 40 p extra.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

$200 / 240 \mathrm{~V}$ Mains operated Solid State FM AM Stereo Tuner. Covering
 MHz ,
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM Stered Beacon Lamp Indicator. Built in Pre-amps with variable output voltage RMS into 20 K Simplated Teat finish cabinct Will match almost any ampliffer. Size $84^{\prime \prime} w \times 4^{\prime \prime} h \times$ LIMITED NUMBER ONLY at $£ 28 \cdot 60-£ 1.50$ P. \& P MAINS TRANSFORMER
Pri. $0 \cdot 110$ and 240 . Sec -28 v at 1.8 amps. Also tapped

10/14 WATTHI-FI AMPLIEIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL 845 in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15$, speaker and 2 independent volume controls, and separate bass and treble controls are provided giving EF86 and EZ80 rectifier. Simple instruction booklet 25p - SAE (Eree with parts). All parts sold separately ONLY £14.50 P. \& P. $£ 140$. Also available rcady built and tested $£ 19.00$ p. \& P, £I 40 .
"POLY PLANAR* WARER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $113^{\circ} \times 141^{\circ} \times 16^{\circ}$ deed. Weight 1902 , Power handing 20 W r.m.s. (40 W pcak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details.
Only $£ 8-40$ each - D. © p. (one 90 p , two $\mathrm{f} 1-10$)
Now available in either $8^{\text {n }}$, round version of $41^{\circ}-8$ rectangular. 10 watt, RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ}$ is 25
P. \& P (one 65 p , two 75 p) STEREO MAGNETR PRE-AMP. Sens 3 ml I in for 100 mV out. 151035 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Input impedance 47 K

2^{*} PLASTIC CONE HF TW

HARVERSONIC SUPERSOUND 10 + 10 STEREO AMPLIFIER KIT
A really firss-class Hi-Fi Stereo Amplifier Kit. Ulses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise Bass. Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied inciuding drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front no extras to buy simple step by step instructions enable any constructor to build an amplifier to be proud of Brief spocification: Power output: 14 watts r.m.s. Der channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into 1 M : Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$, Bass boost approx. to $\pm 12 \mathrm{~GB}$. Treble cut approx. to -16dB. Negative feedback 18 dB over main amp. Power requirements 35 v , at 1.0 amp .
Fully detailed 7 page construction manual and parts Fully detailed 7 page construction manual and parts
list free with kit orsend 25 p plus large S. A.E. list free with kit or send 25p plus large
AMPLIFIER KIT A.E.
\&i3 50 P. \& P. 80 p (Magnetic indut components $33 p$ extra)
POWER PACK KII
\&5 50 P. \& P. $95 p$ $\begin{array}{ll}\text { POWER PACK KIT } \quad . \quad & \text { e5-50 P. } \\ \text { CABINET }\end{array}$
SPECKAL OFFER-only $£ 23-75$ if all 3 items ordered at one time plus \&1. 25 p. \& p.
Also avail. ready built and tested $831-25$. P, \& P. £1-50.
HARVERSONIC STEREO 44
A solid state stcreo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers, Using the built in short term thermal overlaad protection. All components including rectifier smoothing eapacitor, fuse, tone control, volume controls. 2 pin din speaker sockets \& 5 pin din tape rec. Dlay socket are mounted on the printed circuit panel, size approx. 92. 27 27 max, depth. Supplied brand new af tested. Wrth anoost the amplifier to be mounted horizontally or vertically tat only $\mathbf{i} 9-00$ plus 50 p P. $\&$ P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at en 50 + $40 p$ P \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp. 45 w , output ready built and tested e8-50+£1-40 P. \& P. Also HSL 'FOUR' amp-
lifler kit. $£ 8 \cdot 00+$ f1-40 P. \& P.

Open 9.30-5.30 Monday to Friday. $9.30-5$ Saturday. Clozed Wodnesday.

PLEASE NOTE: P \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENOUIRIES.

All prices and specifications correct
at time of press and subject to glteration without notice.

BUILD A SYNTHESISER!

Using Devitron (Reg'd)

 PROFESSIONAL MODULESOver 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!
THIS is the Catalogue you need to solve your component

The finest components cataiogue yet published.

- Over 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Nearly 1,000 Illustrations.
- Bargain list sent free.
- At $£ 1-25$ incl. p. \& p. the catalogue is a bargain.

Send the coupon below now
HOME RADIO (Components) LTD. Dept. EE, $234-240$ London Road. Mitcham, Surrey CR43BD
POST THIS COUPON
with cheque or P.O. for $\$ 1.25$

UORHSHOP

 MATTERS

 MATTERS}By Harry T. Kitchen

The Great 13A Fuse Fallacy

The flat pin 13 -amp plug has been the standard British domestic plug for a number of years, and whilst the concept is a laudable one, the realisation of that concept leaves much to be desired. The concept was, of course, that the user of the plug fitted a fuse appropriate to the equipment in use, up to a maximum of 13 amps , and if necessary a fuse having a much lower rupturing value could be fitted, so affording the maximum protection to the equipment being protected.
So much for the concept, but what of the realisation? The realisation was the sale of plugs already fitted with a 13 -amp fuse, with no thought of the equipment to be protected, and certainly with no thought of giving advice to the hapless user, who cheerfully fitted the plug onto anything and everything, and thereby, albeit quite innocently, created potential hazards to life limb and properity.
Now why should a 13 -amp fuse be a hazard?

In order to answer this, we have to ask the question: "what is a fuse and why is it fitted, and where?" The answer is that a fuse is a specially designed weak link placed in series with any circuit to protect that circuit and the user should the current exceed a specified value. And this is where the conceptual realisation of the $13-\mathrm{amp}$ plug has so dismally failed, in my opinion, because the equipment may not draw 13 amps , and in many cases will draw significantly smaller currents.
Let us return, momentarily, to the 13-amp plug, and consider its implications. Now we know that the total consumption of any equipment is the wattage, and the wattage in turn is given by multiplying the current drawn by the voltage applied. Conversely, the current drawn can be calculated by dividing the wattage by the voltage, and the voltage can be calculated by dividing the wattage by the current.
The nominal mains voltage in the UK is 240 volts, within a tolerance decided by the CEGB, but the actual tolerance can be greatly influenced by the loading on the "spur" and upon the time of day or evening. For example, 1 live in the country, and my own mains voltage drops quite significantly when all the neighbourhood ladies, bless ' em , are indulging their culinary prowesses! To continue: 13 amps times 240 volts gives a wattage of 3,120 ,
and that, if you care to think about it, is a lot of expensive wattages.
How often do you cheerfully consume 3,120 watts? An electric fire, going flat out, will approach this figure, but what else that you have, that is portable, that is not an electric cooker, consumes so much electricity? Precious little l'll warrant. Think about it for a moment, and if necessary do a few simple sums about the electrical or electronic equipment that you use, and when you've done so you will see the utter fallacy of selling 13 -amp plugs complete with 13 -amp fuses; in my book it ought to be a criminal offence.

Rules of Thumb

There are regulations which, if one cares to study them, and perhaps more important, if one can understand the legalistic jargon, will outline the precise measures to be adopted. Such pedantic accuracy is by no means essential, and a few simple rules of thumb will enable all equipment to be fused such that the maximum of protection can be obtained.

The first rule of thumb is to use a fuse value no larger than is necessary, the value being calculated by dividing the wattage by the voltage.

Here we come up against a practical difficulty, that of obtaining suitably rated fuses; the lowest current rated fuse is the 1 -amp fuse, and here we are talking strictly of the 13 -amp plug itself. So, perforce, we must use a 1 -amp fuse even if the calculated current is significantly lower, and this value will be perfectly safe.

However, mains surges, or equipments having higher current consumptions than calculated, or fuses having a lower rupturing current than marked, may cause the fuse to blow, even though there is no actual fault in the equipment. It is therefore prudent to add a contingency allowance to the calculated rating, and a value between 50 per cent and 100 per cent is normal. So if your calculated current is, say, 1 amp, use a fuse of $1 \frac{1}{2}$ amps or even 2 amps. But no higher.

An Exception

An exception to the rule involves inductive, capacitive, or tungsten circuits, where for a finite time a current greater, or much greater, than calculated flows, and then reduces to the calculated value.

The surge current for inductive and capacitive circuits will depend on the inductance or capacitance present, but it is interesting to note that, with car bulbs at any rate, the filament resistance when cold is approximately one eleventh the hot or working temperature, and so for a finite time the current is eleven times that calculated. Fortunately, that time is measurable in milliseconds, and one does not have to use fuses uprated by a factor of eleven! A factor of three or four times is adequate for domestic lighting.

Anti-surge Fuses

With inductive or capacitive loads, the only method of fusing that is likely to be effective all round is that of using anti-surge fuses which will withstand an increased load for a finite time, typically ten times rated current for a period of 10 milliseconds to 20 milliseconds. Such fuses will withstand the initial surge of current, but will still blow, usually with time to sparebut not always-so be careful if the current exceeds the nominal value for an appreciable period of time.

Fusing equipment is essential, and the above maligned 13 -amp plug, which let me repeat is fundamentally sound in concept, may very well prove to be better than nothing at all. But the margin of safety is so much greater when just a little time is taken to work out a few simple maths, and then use the fuses most appropriate to the application.

Until the authorities see fit to ban the sale of plugs complete with 13 -amp fuse and also offer concrete and simple advice on choosing the most appropriate fuse, it is up to the intending user to help himself. Its very simple and well worth while.

[^4]
ELECTROONIKS VOUME 7 TMOEX

SEPTEMBER 1977 TO DECEMBER 1978

(Sixteen issues following introduction of larger format)

Pages	Issue	Pages	Issue
$1-48$	September	$417-472$	May
$49-96$	October	$473-528$	June
$97-144$	November	$529-584$	July
$145-192$	December	$585-640$	August
$193-248$	January	$641-704$	September
$249-304$	February	$705-768$	October
$305-360$	March	$769-840$	November
$361-416$	April	$841-904$	December

CONSTRUCTIONAL FEATURES

A.C. METER CONVERTER by R. A. Penfold282
ADD-ON CAPACITANCE UNIT by R. A. Penfold 32
A.F. SIGNAL GENERATOR by F. G. Rayer 622
AIR FRESHENER. ELECTRONICALLY CONTROLLED 804
ALARM. CAR SYSTEM 256
ALARM. ROOF RACK 368
AUDIBLE FLASHER WARNING by B. N Ryerson 883
AUDIBLE VISUAL METRONOME by M. E. Theaker 200
AUDIOTEST. THE 12
AUTOMATIC PHASE BOX by E. M. Lyndsell 154
AUTO NIGHTLIGHT by A. R. Winstanley 536 536
BACK-UP. DYNAMO 14
BATTERY STATE INDICATOR by W. B. Jones 654
BLEEPER. FLASHER 24
BOOSTER. TONE 648 648
CAPACITANCE UNIT. ADD-ON 32
CAR SYSTEM ALARM by P. W. Bond 256
CATCH-A-LIGHT by R. A. Penfold 332
CHASER LIGHT DISPLAY by J. McBride 276
CHECKER. FUSE 72
CHRONOSTOP by R. W. Coles and B. Cullen 612
CODE SCRAMBLER by O. N. Bishop 226
CONTINUITY TESTER. PROBELESS 109
CONTINUITY TESTER. VISUAL 516
CONTROLLER. TRAIN 64
COMBINATION LOCK by T. J. Johnson 798 798
C-R SUBSTITUTION BOX by P. G. O'Neil 320
DIODE CHECK. RAPID 232
DISPLAY. CHASER LIGHT 276
DYNAMO BACK-UP by R. Everson 14
EE IOOW POWER SLAVE by E. M. Lyndsell 504
EE TELEPLAY STUNT CYCLE by C. Cary 444
EE 2020 TUNER/AMP by E. A. Rule Part One 872
EFFECTS GENERATOR. WEIRD SOUND 348
ELECTRONIC TEST BED. TTL 725
ELECTRONIC TOUCH SWITCH by R. A. Penfold 204
ELECTRONICALLY CONTROLLED AIR FRESHENER by D. Warwick 804
EMERGENCY LIGHTING by M. Hughes 170
ENLARGER TIMER by R. A. Penfold 76 131
FIND THE PAIR by F. G. Saddler
FIND THE PAIR by F. G. Saddler
FLASHER BLEEPER by T. R. de Vaux-Balbirnie 24
FLASHMETER by R. A. Penfold 424
FUSE CHECKER by A. R. Winstanley 721
FUZZ BOX by E. M. Lyndsell 854
GENERATOR. A.F. SIGNAL 622
GENERATOR. R.F. SIGNAL 668
HAZARD WARNING SYSTEM
by T. R. de Vaux-Balbirnie 160
HOT LINE by P. J. Homer 786
HUNTER. TREASURE 714
INDICATOR. BATTERY STATE 654
IN SITU TRANSISTOR TESTER by R. A. Penfold 486
LEAD TESTER. MONO/STEREO 263
LIGHT. CATCH-A 332
LIGHT DISPLAY. CHASER 276
LIGHTING. EMERGENCY 170
LIGHT. SOUND TO 676
LOCK. COMBINATION 798
LOGIC PROBE by P. W. Bond 568
LOW COST LOUDSPEAKER ENCLOSURE by J. Smith 288
MAINS DELAY SWITCH by A. R. Winstanley 394
MAINS TESTER by I. C. May 430
METRONOME. AUDIBLE/VISUAL 200
MONO/STEREO LEAD TESTER by M. Simpson 263
M.W. MINI by A. J. Crighton 596
740
MW/LW RADIO by R. A. Penfold
536
NIGHTLIGHT. AUTO 455

CONSTRUCTIONAL FEATURES-continued

PHASE BOX. AUTOMATIC
PHOTOFLASH SLAVE UNIT by R. A. Penfold POCKET TIMER by O. N. Bishop
PORTABLE RADIO. V.H.F154PORTABLE RADIO. V.H.F18
POWER SLAVE. EE IOOW125
504PROBELESS CONTINUITY TESTER by C. I. Mair
PROBE. LOGIC109
PROBOPHONE by D. C. Jenkins 568
8
QUAGMIRE by O. N. Bishop 556
RADIO. MW/LW 740
RADIO. SHORT WAVE
RADIO. SHORT WAVE 542
RADIO V.H.F. PORTABLE125
RAPID DIODE CHECK by R. Dudley 232REMOTE CONTROL SYSTEM. ULTRASONIC
Part One 104
Part Two176
R.F. SIGNAL GENERATOR by F. G. Rayer 668
ROOF RACK ALARM by T. R. de Voux-Bolbirnie 368
SHORT WAVE RADIO by F. G. Rayer 542
SIGNAL GENERATOR. A.F. 622
SIGNAL GENERATOR. R.F. 668
SLAVE FLASH by R. A. Penfold 592
SOUND EFFECTS GENERATOR. WEIRD
348
348
SOUND TO LIGHT by I. R. W. Barnes 676
STUNT CYCLE. EE TELEPLAY
TELE-BELL by F. G. Rayer 480
TESTER IN SITU. Rayer 780
TESTER. IN SITU TRANSISTOR
TESTER. IN SITU TRANSISTOR 486
430TESTER. MONO/STEREO LEAD
TESTER. PROBELESS CONTINUITY 263
TESTER. TRANSISTOR 84
TESTER. VISUAL CONTINUITY 516
THE AUDIOTEST by D. W. Easterling 312
TIMER. ENLARGER 76
K 402
ER by D.S. Gibbs and I. M. Shaw 648
TRAIN CONTROLLER 204
TRANSISTOR TESTER by D. J. Stephenson
TREASURE HUNTER by N. Hunter 71464
TREASURE LOCATOR by F. G. Rayer 58
TTL ELECTRONIC TEST BED by O. N. Bishop 725
ULTRASONIC REMOTE CONTROL SYSTEM Part One 104 by R. A. PenfoldVEHICLE IMMOBILISER by G. D. Southern 849
V.H. 125
VISUF.L CONTINUITY TESTER by A. Sproxton 516
WATER LEVEL ALERT by A. R. Winstanley 866

GENERAL FEATURES

DOOK REVIEWS	22, 275, 281, 571, 667
BOX IT	889
BRIGHT IDEAS 20	$\begin{aligned} & \text { 6. } 115,172,242,290,351 \text {, } \\ & 4,490,744,756,822,880 \end{aligned}$
COUNTER INTELLIGENCE by	$\begin{array}{ll} \text { Young } & 63,224,296, \\ .611,652,750,814,884 \end{array}$
CROSSWORD by D. P. Newton	$\begin{aligned} & 343,384,429,484,547, \\ & 611,667,747,814,884 \end{aligned}$
EE SPECIAL REPORT	
CRYSTAL SET	753
ELECTRONIC DOORBELL	292
ELECTRONIC MULTIMETER	682
ELECTRONIC WORKSHOP	236
WONDERBOARD	820

EDITORIAL $\quad 6,56,102,152,198,254,310,366,422,478$, $534,590,646,712,778,848$
EVERYDAY NEWS $338,406,458,514,566,620,674,738$,
810,870

JACK PLUG AND FAMILY by Doug Baker 39,81, 130, $224,296,351,412,454,495,575,610,693,750,803,863$ PLEASE TAKE NOTE:
Automatic Phase Box December 1977 412
Capacitance Unit September 1977 412
Chaser Light Display February 1978
C-R Substitution Box March 1978 429
EE loow Power Slave June 1978 546
Enlarger Timer October 1977 113
Fish Attractor June 1977
44
4,89
Fuzztone July 1977
429
Mains Delay Switch April 1978 429
546
Physics is Fun November 1977 180
Probophone September 1977 113
Quagmire July 1978 628,696
Soil Moisture Moniter June 1977 44, 89
Teach-In '78 Part Six March 1978 412
Teach-In 78 Part Seven April 1978 429
The Audiotest March 1978 429
Touch Switch July 1977 44
Treasure Locator October 1977 113
V.H.F Portable Radio November 1977 180
RADIO WORLD by Pat Hawker G3VA $748,812,886$
READERS LETTERS $27,89,130,275,347,372,454,513$$632,680,754,825$
SHOP TALK by Brian Terrell 13, 67, 108, 174, 207, 262
by Dave Barrington $433,485,547,595,653,720$790. 857SQUARE ONE $19,83,112,173,220,291,340,752,789,864$

SPECIAL FEATURES

ABBREVIATIONS 221
AIRPORT RADAR by G. A. G. Brooke 344
BRAIN ON A GRAIN by S. McClelland Part One 434 492
BRITISH ARMY EQUIPMENT EXHIBITION 629
FEMININE LOGIC? by Julie Hurst 405
IMPLANTABLE MEDICAL ELECTRONICSby S. McClelland

DOING IT DIGITALLY by O. N. Bishop
1 Introduction to Logic, AND. OR and NOT gates
2 Investigating the 7400
3 TTL Clocks and Latches
734858
DOWN TO EARTH by George HyltonMains Hum and Earth44
Beat Frequency Oscillator 180
Negative Resistance 299
Measuring Low Resistance 354
When is a Capacitor not a Capacitor? 41
Measuring Impedance 464
Analogue or Digital 576
Super Conductivity 635
Show Time and Response Time 694
Gain and Decibels 760
Making use of the Doppler Effect 832
FOR YOUR ENTERTAINMENT by Adrian Hope Video Cassettes 40
Multitrack Master Tapes 82
Hi Fi Journalism 113
Linear Motors. Teletext Paging System 159
TV Games, Video Recording, Film Loops and Telephone Lines 215
Shocking Affair, Magnetic Driver and Explosive tune 267
Pioneers in Audio 331
Close Shave and Mains Frequency 383
Videotape, Passive Switch, Identi-Chips and Light Help 4 491Video at the Summit, Compatability Check
$\mathrm{H}_{\text {all }}$ Effect, Effective Resistance, all charged up 572
Mains Frequency Variations, Buzz-Phrases 606
Matter of Distortion 664
Development of Microwaves 724
Paging Systems- 796
-2 869
MINI-MODULE by George Hylton
1 Passive Mixer 746
2 Audio Effects Oscillator 818
3 Microphone Amplifier 862
PHYSICS IS FUN by Derrick Daines Shocking Coils 23
NO-FLASH FOR YOUR POLAROID CAMERAby R. H. Marco565
POWER SLAVES IN ACTION by E. M. Lyndsell 553
RADIO ASTRONOMY AT CAMBRIDGE
by S. McClelland 28
THE OSCILLOSCOPE by $\mathrm{J} . \mathrm{Smith}$ 18
TV GAMES by N. Hunter Part One 683
WHAT DO YOU KNOW 35. 66, 172

SPECIAL SERIES

Diode Logic 90
A.C. Measurement 114
Voicing Circuits 222
PROFESSOR ERNEST EVERSURE by Anthony J. Bassett Electret Microphones 42
Response Curves 135
Quantisation 184
Radiaesthetic Preamplifier Part One 240
Part Two 294
Dowsing 352
The "Thing" 460
The VOX AC30 Amplifier 520
Colouration 574
Automatic Bias 627
Crossover Distortion 692
Reforming Capacitors 757
WORKSHOP MATTERS by Harry T. Kitchen
830
830
Planning out your workshop
Planning out your workshop 893
YOUR CAREER IN ELECTRONICS by Peter Verwig
Selling Components 36
Is there a spot for you in this ever expanding industry? 237
TEACH-IN' 78 by George Hylton
1 Introduction 68
2 Module Construction 116
3 Resistance, Capacitance and Module Construction 164
4 Ohm's Law, Timing Circuits 208
5 Impedance, Resonance, Inductance and Amplifiers 268
6 Conductance, Matching, Gain 324
7 Valves, F.e.t.s and Transistors 374
8 Power. Waveforms, Amplifier module 436
9 Radio, Modulation, Receivers 496
10 Logic Circuits 548
11 Power Supplies and Transducers
11 Power Supplies and Transducers 598 598
12 Maths and Measurements
12 Maths and Measurements
659
End of Term Questions and Answers 662, 663

SPECIAL INSERTS AND OFFERS

SOLDERING IRON SPECIAL OFFER
November 1977 March 1978
April 1978
POPULAR CIRCUITS-8 page supplement May 1978

AVOMETER COMPETITION
September 1978

HANDY GUIDE
October 1978
CONSTRUCTORS GUIDE TO HARDWARE-
8 page supplement
November 1978

VARIABLE CAPACITORS With Direct Drive， $5 p f=75 p, 10 p f$ af $75 \mathrm{p}, 30 \mathrm{pf}$ is 85p； 50 pf on $50 \mathrm{p}, 125+125 \mathrm{pf}$ a $55 \mathrm{p} .100+200 \mathrm{p}$ is $53 \mathrm{p}, 250+250+20+20 \mathrm{pi} \pi 55$ p， $500+500$ pf 何 60 p，with S．M．Drive． $250+250+25+25+250$ F id $75 \mathrm{p}, 365+365+$ 65pf im 66p． $10 X$ CRYSTAL $100 \mathrm{KHz}+1 \mathrm{MHz}$ with CMOS Calibrator Circuit $/ 682$. SOLDER－IN FEED THRU＇s 6 ：8pt，300pf， 1000 pi All at 20 p doz，if ${ }^{\prime \prime}$ COIL FORMERS With Core 6 for 25 p ，$\frac{1}{2}$＂COIL FORMERS With Can as 3 for 10 p .285 KHz CD 4007 al $10 \mathrm{p}, \mathrm{CD} 4011 \% 10 \mathrm{p}, \mathrm{CD} 4020 \& 50 \mathrm{p}, 4029 \mathrm{a}: 60 \mathrm{p}$ ．VHF FETS 3310 m 20 p $2 N 3819$ Type 6 for 75 p， 40673 Type ब 33 p ．

MINIATURE ROTARY SWITCHES 2 Pole 4 way $\propto 20 \mathrm{p}, 3$ Pole 3 way it 40p， 1 Pole 10 way 2 Bank ii 40p． 100 MINIATURE DIODES CV 9637 Preformed Leads a 50 p.

RCAI．C．I．F．CA 3011 SO 50p
3 PIN PLUG AND SOCKET LIKE RS EUROPEAN TYPE with 2 Metres of Cable at 75 pair， 200 ASSORTED $\div 1, \frac{1}{3}$ w，RESISTORS $\% 75 p .50$ ZENER DIODES 2 Watt Assorted Untested © 57p．
MULLARD SEMI－AIRSPACED TRIMMERS $10 p 1$ if $15 p, 20 p \mathrm{f}$ i4 $15 p$
VHF TETFER TRIMMERS 10pf đَ 18p，DAU TRIMMERS 9pf is 10p，38pl oil 10 p 45 pf （3） $10 \mathrm{p}, 125 \mathrm{pf}$（a） $12 \mathrm{p}, 140 \mathrm{pf}$ 视 15 p ．

100 ASSORTED C230 CAPACITORS for 57 p． 2 GHz STRIPLINE NPN TRAN－ SISTORS in Eq．MIDGET ROTARY SWITCHES 1 Pole 24 way 4 Bank ${ }^{\text {EI }}$ ． $\forall H F$ AERIAL FILTER with BNC SOCKET Box size 3 ． $5^{\prime \prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$ at 55p each． 50 ELECTROLYTIC CAPACITORS Assorted if 57p． 50 BC 107－8－9 TRAN． SISTORS Assorted Untested © 57p，50 AC128 TRANSISTORS Branded but Un－ tested＠57p． 50 VARI－CAP DIODES LIKE BA 102 Untested io 57 p． 6 PIN DIN PLUG AND SOCKETS（ ${ }^{\circ} 25 \mathrm{p}$ pr． $3^{\prime \prime}$ Dia．by $3^{\prime \prime}$ Long RIBBED CERAMIC COIL FORMERS 35 ．FINNED HEAT SINK For Two Plastic Power Transistors ic 75p P\＆P 15D）． 50 TUBULAR TANTALUM CAPACITORS for Ef． 30 ASSORTED 10XAJ CRYSTALS 9 E1．10． 20 ASSORTED FT 243 CRYSTALS a £1．50． 20 ASSORTED FT 241 A CRYSTPLS 这 6110 ．MINIATURE MYLAR CAPA－ CITORS Ofuf 50 viw ， 1 uf $50 \mathrm{w} . \mathrm{w}$ ，both 20 p doz． 10 AMP S．C．R＇s 100 PIV \＆25p 400 PIV（a） $50 \mathrm{p}, 800$ PIV 60 p ．LM 380 AUDIO I．C，with various circuits if 80 p 800 MHz NPN STRIPLINE TRANSISTOR BF 362 \＆ 25 p ．
fuf 25 v w．ELECTROLYTIC CAPACITORS 6 for 25 p．SPECIAL 3 GANG MINIATUPE VARIABLE CAPACITOR $25+25+25 p f$ is 75 p ．
MAINS TRANSFORMERS 240 voit Input．Type 1,24 volt Tapped at 14 volt 1 amp a）Ef 30 （P\＆P 25p）．Type 2，22－2－22 volt 500 mA if $\Sigma 1-60$（P\＆P 25p）．Type 3,45 volt 6 amp is $£ 4 \cdot 50$（P\＆P 95p）．Type 4,20 volt 2 amp Twice 10 volt 1 amp Twice 9 § $£ 4.50$ （PaP 95D）．Type 5， 45 volt 2 amp 45 volt 500 mA \＆ 83 ． 50 （PaP 85p）：
400 mW GOOD UNMARKED ZENERS $3 \cdot 6 \mathrm{v}, 6-8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}$ ， $30 v$ ． 33 v ， 36 volt．All at 10 for 40 p ．

Pleaseadd 20 p for post and packing，unless otheraise stated；on U．K，orders under E ． Overseas ordiers at cost

J．BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait，Lincoln LN2 1JF Tel． 20767

EHBOWASONOE Electronics

56 FORTIS GREEN RD．，MUSWELL HILL，N10 3HN TELEPHONE：01－883 3705

OUR LATEST

CATALOGUE

CONTAINS FREE 45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS＋BOARDS， MEMORIES，TTL，CMOS，ICs，PASSIVES，ETC．，ETC．

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS	TIMER	RED LED
741	555	TIL209
		（INC．CLIP）

5 for
4 for
10 for
£1．00
$£ 1.00$
£1．00
VAT INCLUSIVE PRICE＋25p P．\＆P．

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH $£ 5.00$ OR MORE，CONTAINS CIRCUITS，PIN CON－ NECTIONS AND DATA（ $35 p+$ SAE IF SOLD ALONE）

ACE MAIITRONIX LTI
Dept．Tootal Street
Wakefied WYorksinire WFis）Watch this space for future kits！

COMPONENTS

The ACE 2nd edition illustrated catalogue shows a considerably enlarged range of components，modules，＇Elekits＇．Many PRICE REDUCTIONS from edition one．Component range includes CAPACITORS，HARDWARE，CASES，LED＇S，VEROPRODUCTS RESISTORS，RS COMPONENTS，TRANSISTORS，DIODES SCR＇s，IC＇s（Linear，ITL，CMOS，Audio），SWITCHES，PLUG SOCKETS，BOOKS，TRANSFORMERS，TOOLS，SPEAKERS AND TEST EQUIPMENT．TYpical VAT inclusive prices：－

LED＇s RED ．．．．．．15p	2N3055 ．．．．．．54p
LED＇s GREEN ．．．．25p	2N3702／3／4／5 ．．．．11p
8－pin IC SKT ．．．．．15p	2N3819 ．．．．．．．．24p
AC126 ．．．．．．．．．20p	OA90／91．．．．．．． $7 p$
AC128 ．．．．．．．．27p	IN4148．．．．．．．．．4p
BC107／8／9．．．．．．．13p	IN4001．．．．．．．．．．5p
BC177／8／9．．．．．．．19p	WO4 ．．．．．．．．．25p
BC182／3／4L ．．．．．．11p	Zener BZY88 ．．．．．12p
BC212／3／4L ．．．．．．11p	741 8－pin．．．．．．．22p
BC547／8／9．．．．．．．13p	555．．．．．．．．．．．．35p
BC557／8／9 ．．．．．．．15p	4001 ．．．．．．．．20p
BCY70／71．．．．．．20p	7400 ．．．．．．．．．15p
BFY50／1／2 ．．．．．．23p	7490 ．．．．．．．．．62p
OC71．．．．．．．．．16p	Push sw．．．．．．．．．16p
TIS43．．．．．．．．．35p	Slide toggle ．．．．．．19p
ZTX107／8／9．．．．．．14p	W／C switches ．．．．．．54p
2N2926G ．．．．．．13p	0．25 CF Res．．．．6p

COMPONENTS FOR＇EE＇PROJECTS

Component lists with prices available for all＇$E E^{\prime}$ projects from October 1977 onwards．Send s．a．e．stating project and month of publication（max． 4 projects per s．a．e．）．
TEACH－IN－78 KIT
£16．00
DOING IT DIGITALLY TEST BED ．．．．．．．．．．．．．．．．．．£19．95
Components for first six parts f 2.50 all prices incl．VAT and $p+p$ ．
SEND 30 D FOR THE ACE TLLUSTRATED CATALOGUE WHICH INCLUDES FULL LIST OF COMPONENTS，KITS AND READY－MADE MODULES．30P REFUNDED WITH FIRST ORDER OF \＆5 OR MORE．
NAME
ADDRESS

GREENWNELD

443 Millbrook Road Southampton SO1 DHX Tel:(O703) 772501

Alf prices quoted include VAT. Add 25p UKBFPO Postage. Most orders des: patched on day of receipt. SAE with enquiries please. MINHMUM ORDER VALUE 21. Official arders accepted from schools, etc. (Minimum invoice charge e5). Export. Wholesale enquiries welcome. Whole
Surplus zomponents always wanted.

THE NEW 1978-9

 GREENWELDcatalogue

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE $30 \mathrm{p}+15 \mathrm{p}$ POST

KITS OF BITS

FOR THIS

MONTH'S EE

PROJEGTS

FUZZ BOX
All parts including die cast box $£ 4.00$
WATER LEVEL ALERT
All components inc. earplece, vero,
studding, cable and 2 boxes $115 \times 15 \times$ studding, cable and 2 boxes $115 \times 75 \times$
36 mm . EJ 95 (without boxes $£ 2.75$)
VEHICLE IMMOBILISER
All parts including relay but not PCB
MICROPHONE AMPLIFIER
All compartments including case and hardware $=2200$
E.E. $20+20$ TUNER

AMPLIFIER
We can supply all parts required excep: the components for the RF unit for approx
E40. Send SAE for detaifed list.

CAR FLASHER

the three components required for jus: 80p
AIR-FRESHENER KIT
See our half-page ad, elsewhere in this issue for details.

NOTE: A more detaited list of parts supplied in these and other kits is available on receipt of a SAE
Kits of last month's prolects still available.

"DOING IT DIGITALLY"

This new series which started last month s bound to be a bio success. We supply complete set of parts (as we did for last years' Teach-in series) for Just $\mathbf{\Sigma 1 9 - 7 5 +}$ E1 post for the Electronic test Bed, and e2. 75 for additional parts required for

The GREENWELD

Amplifier Kit
Ideal for the beginmer to make, this kit is ampleie right down to the last screw! Thesty constructed on the PCB provided,
the 4 transistor circult will give $2 W$ outou from a crystal cartridge. Battery version E1.75, or with transformer for mains

PC ETCHING KIT MK III
Now contains 200 sq, ins. copper clad reard, 110. Ferric Chioride, DALO etchdrill bits, etching dish and instructions. £ $8 \cdot 25$

> BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

\star SAVE ON TIME-No delays in waiting for parts to come or shops to open!
\star SAVE ON MONEY-Bulk buying means lowest prices-just compare with others!
\& HAVE THE RIGHT PART-NO guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARREE DEVICESSENT BY RETURN
INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors, 5%. 10 of each value 22 pF to 1000 pF . Total 210 . ${ }_{6}^{23} 35$
K002 Extended range. 22 pF to $0.1 \mu \mathrm{~F}$. 330 values. ± 4.90
Kalues. Polyester capacitors, 10 each of these $\begin{array}{lll} \\ 0.068, & 0.1, & 0.15, \\ 0.22,02, & 0.33, & 0.47 \mu F, 110\end{array}$ altogether for $\mathrm{E4}: 75$
K004 Mylar capacitors in 100 V each all values from 1000 pF to $10,000 \mathrm{pF}$ Total 130 for E3-75
K005 Polystyrene capacitors. 10 each value from $10 \rho \mathrm{~F}$ to $10,000 \mathrm{pF}$. E12 series 5% 160 V . Total 370 for $£ 12 \cdot 30$. 10 each of the following: $0.1 \quad 0.15 \quad 0.22,0.33$ each of the following: $0 \cdot 1,0 \cdot 15,0 \cdot 22,0 \cdot 33,0 \cdot 41$,
$0.68,1,2 \cdot 2,3-3,4 \cdot 7,6 \cdot 8$, all $35 \mathrm{~V} ; 10 \cdot 25$ $15 / 16$ 22/16, $33 / 10$ 47/6 100/3. Tołal 170 tants for E14: 20
K007 Electrolytic capacitors 25 V working smail physical size. 10 each of these popular values: $1,2-2,4-7,10,22,47,100 \mu \mathrm{~F}$.
Kibos Extended range, as above, also including 220, 470 and $1000 \mu \mathrm{~F}$. Total 100 for $\mathbf{5 5} \cdot 90$
K021 Miniature carbon film 5% resistors, CR25 or similar, 10 of each value from 102 K022 Extended range 850 resistors rom $1 R$ to 10 M 天8-30
K041 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 of each value from 2.7 V to 36 V . K042 As above but 5 of each value $£ 88-70$

TRANSFORMERS

All mains primary: $12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA} \quad 85 \mathrm{p} ;$
$100 \mathrm{~mA} \quad 85 \mathrm{p} ; 1 \mathrm{~A} \quad \mathrm{E} 2.50 .6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$ 85 p . ${ }^{13} \mathrm{~A} \mathrm{~A} \mathrm{E} 2 \cdot 40 . \quad 9-0.9 \mathrm{~V} \quad 75 \mathrm{~mA} 85 \mathrm{p}$; 1 A E2-10. Muititapped type 0-12-15-20-24.
 20 V a 300 mA twice $£ 2 \cdot 50 ; 12 \mathrm{~V}$ a 250 mA

REAYS
W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ W847 LOW profile PC mitg $10 \times 33 \times 20 \mathrm{~mm}$
6 V coll, SPCO 3 A contacts. 83 p Wa32, Sub. min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ Coil DPCO 2 A contacts $£ 1 / 15$
W701 5 V SPCO 1 A contacts $20 \times 30 \times 25 \mathrm{~mm}$ W701 5 V SPCO 1 A contacts $20 \times 30 \times 25 \mathrm{~mm}$ Only 58p
W817 11 pin plug in relay, rated 24 V ac, ut works well on 8 V D. Contacts 3 pole W819 12V 1250 R DPCO 1A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$. min plug-in type $72 p$ W838 50 V ac (24 V DC) coll. 11 pin plug in Wpe. 3 pole c/o 10A contacts, Only $35 p$ 3 sets 10A clo contacts. £1-20 Send SAE for our relay list-84 types listed and illustrated.

HEAT SINK OFFER

Copper TOS sink 17 mm dia $\times 20 \mathrm{~mm} .10$ for
$40 \mathrm{p}: 100$ for $\$ 3: 1000$ for $£ 25$
POLYTHENE SHEET
Size $36 \times 18^{\prime \prime} 200 \mathrm{~g}$. Hundreds of uses around the home. 100 sheets for $£ 1-50$.

Your Circuits

It's crazy to build, unbuild, construct and destruct your circuits on expensive "Breadboards". Now very economically on WONDERBOARD, you plug you components into one side of the board, the wires into the other, and you install the finished circuit in your equipment. They're like PC boards, but no soldering (which is enemy No. 1 of prototypes). Change any wire or component any time without disturbing others. Up to six interconnecting wires and one component lead into one multicontact. WONDERBOARDS accept all IC's from 4 to 60 pins and discrete components too.

Reliable? They conform to applicable sections of USA Military Standard MIL-A. 46146 and are used by the US Navy. You can't ask for better. WONDERBOARDS the universal board for equivalents of single-sided, double sided, plated-thro' hole, and multilayer printed circuits.

"Small Wonder"

12 IC DIL-14 capacity
(Equiv. No. tie-points 1302)
£2.80

All prices include VAT and P\&P. Send cheque or postal order to:-

> CHARCROFT ELECTRONICS LIMITED
> Charcroft House, Sturmer, Hsverhin, Suffolk CES 7XR Telephone Haverthil (0440) $5700 \quad$ Telex. 817574

See us at BREADBOARD 7821 st-25th November 78
Seymour Hall, London W1. Stand F10

LOOK! Here's how you master electronics. the practical way.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory:

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.
 As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

4. Free Gift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

cREENWELD Electronic Air Freshener Kit

This novel kit contains everything you need to make one of the most advanced air fresheners of its kind. Styled to take its place in any room in your home and do its job quietly and unobtrusively.

ONLY $£ 7.95$ + 55p POSTAGE \& PACKING

The automatic timing circuit switehes on a fan for a few seconds at regular intervals to send an odour neutralising fragrance into every comer of your room.

The kit includes components for EITHER a 4 or 15 minute timing circuit, miniature D.C. motor and moulded parts in high impact styrene to provide an easily maintained, elegant appearance.

As featured in Nov issue of EE

Send To
GREENWELD ELECTRONICS 443, MILLBROOK ROAD SOUTHAMPTON SO1 OHX

Please send me with $4 / 15$ minute timer at $f 8.50$ (inc. p. \& p.)
KIT INCLUDES A SUITABLE GEL FRESHENER FREE
1 enclose a cheque/P.O. for $£$
payable
to Greenweld Electronics. NAME
ADDRESS

TAMTRONIK LTD
 217. Toll End Road. TIPTON. West Midlands DY4 OHW

Mag issue	Project	Ref	PCE	Comp. Pack	Hardware Pack	Case	Total
Jan. 78	Audio Visual Metronome Touch Switch	E001 E002	75^{65}	$\begin{aligned} & 1.89 \\ & 1.06 \end{aligned}$	$2-17$	79	5.50 1.80
	Code Serambler	$\begin{aligned} & \text { EOO2 } \\ & \text { E003 } \end{aligned}$	$\begin{aligned} & 74^{\circ} \\ & 81 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 2.78 \end{aligned}$	$1 \cdot \overline{50}$	45	5.54
	Rapid Diode Check	E004			48		
Feb. 78			80*******	1.32 1.26	$\begin{aligned} & 1 \cdot 71 \\ & 1.61 \end{aligned}$	1.65 79	5.48
	Lead Tester Chaser Light Display	$\begin{aligned} & \text { E006 } \\ & \text { E007 } \end{aligned}$	1.75	$8-19$	$\begin{aligned} & 1.61 \\ & 6.79 \end{aligned}$		19-88
	A.C. Mefer Converter	$\begin{aligned} & \mathrm{E} 007 \\ & \mathrm{E} 008 \end{aligned}$	1.75 ${ }^{\circ}$	8-74	1.38	1.65	19.88 $5 \cdot 37$
Mar. 78	Audio Test (2 p.c.b's)	E009	1.74*	7.05	5.98	-	14.78
	E.R. Substitution Box	E010		3.48	3.98 2.70	- 99	8.32 8.42
	Catch-a-Light	E011	82\%	2.85 2.71	1.17	279	5.29
Apr. 78	Roof Rack Alarm	E013	60^{*}	1.52	1.71		3.83
	Mains Delay Switch	E014	94^{*}	1.71	7.68	$2 \cdot 15$	12.48
	Packet Timer	E015	$60=$	1.45	96	45	3.48
May 78	Flash Meter	E016	75**********	3.15	6. 40	79	11.09
	Power Pack	E019	70^{*}	1.32	1-45	2-24	5.71
Jun. 78	Insitu Transistor Tester	E021	$\begin{array}{r} 1 \cdot 00^{\circ} \\ 65^{+} \end{array}$	1-22	2.44	79	10.59 $5 \cdot 10$
	S.W. Receiver-Teach-In	E022	5-75	2.61	-		2.61
	Power Slave	E023	1.75	-			1.75
	Visual Continuity Tester	E024		56	1-86	1.65	$4 \cdot 09$
Jul. 78	Auto Night Llight Short Whe Pade	E025	85^{*}	3.17 5.05	3.32	2.05	9.38
	Short Wave Radio Quagmire	E025	$1.40{ }^{*}$	5.05	2.81 1.24		$7 \cdot 86$ 7.39
	Logic Probe	E028	$50 *$	- 92	45	79	2.66
Aug. 78	Slave Flash	E029	55°	2.17		45	2.72
	M.W. Mint Radio Audio Frequency Signal Generator	E030	$\begin{aligned} & 50^{\circ} \\ & 85^{\circ} \end{aligned}$	2.08	1.75 1.41	45 2.40	4.78 12.41
	Audio Frequency Signal Generator	E031					
Seyt. 78	RF Signal Generator	E033	-	13.24	2-58		15.82
	Sound to Light	E034	75	1-82	$2 \cdot 53$	$\begin{array}{r}79 \\ +35 \\ \hline\end{array}$	5.14 4.06
	Car Battery State Indicator	Et36	65°				1.62
Oct. 78	CMOS Radio	E037	1.45*	3.28	3.05	$2 \cdot 54$	10.32
	Fuse Checker Treasure Hunter	E033	1-25	$\begin{array}{r} 49 \\ 4 \cdot 86 \end{array}$			14.02
Nov. 78	Audio Effects Oscillator Water Lovel Alert	E042	70^{*}	1.31 1.25	30 45	79 1.58	1.40 3.98
	Combination Lock Hot Line Game	E045	2.55*	$4 \cdot 35$	8.50	2.08	\$7.48
	Hot Line Game	E046	$75 *$	1.60	$2 \cdot 82$		4-57
Dec. 78	Car flasher warning	048			ces availabla		
	Fuzz Box	049			on		
	Innition Immobiliser Mint-Module Micro Amp	050			request.		
	Mint-Module Micro Amp	051					

(DEPT. E.E.)
Tel: 021-557-9144

TTL ELECTRONIC TEST BED Full kit £21-50

Additional components for first six parts only $£ 3.00$
BOTH KITS (special price)
£24. 20
Price include VAT and P \& P

PLUS -Special Free Offer with every Test Bed Kit purchased 50 Asst. IW carbon resistors
10 Asst. Capacitors
Voucher worth 50 p for next purchase.

CHRONOSTOP
Aug 78 EE32
Complete Kit including
CASE with Screen printed facia
PCB with screened component
layout
ullassembly instructions
RICEINC. VAT and P \& P.
A. Kit with a professional finish Part kits avallable on request.

TELE-TEL METER
Nov 78 EE44
Complete Kit including
PCB with screen printed facia fayout
Full assembly instructions
PRICE Inc. VAT and P \& P
An optional extra Display and Drive Inc, components is available at $£ 2 \cdot 75$.

OVER 150 KITS NOW AVAILABLE for projects from EVERYDAY ELECTRONICS; HOBBY ELECTRONICS \& EIECTRONICS TODAY INTERNATIONAL. TRADE \& EDUCATIONAL ENQUIRIES WELCOME,
Please send S.A.E. for details, naming kit and kit ref, and free Catalogue P.C.B's designed to E.E. circuit specifications.
VISIT OUR SHOP AT

CRESCENT RADIO LTD.

1, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHONE O1-888 3206 "FLIP"' VERSION OF TWO-UP OR ODDS AND EVENS. We supply a complete kit of parts which includes a strong case and attractive front panel to give the tnished game along assembly instructions appearance.
are supplied.
"If you can solder you can make this "If you can solder you can make this great game." An ideal first project to introduce you to eiectronics.
Not only will "FLIP' start you on a great hobby but you will own a game
which will amuse you and your friends which will amuse you and your friends.
for hours.
POST FREE! COMPLETE KIT: $£ 5 \cdot 25+8 \%$ VAT

FERRIC CHLORIDE
Anhydrous ferric chloride in double PRCIE, os poly packs
PRCIE: 65 p per $16 .+8 \%$ VAT
HEAVY DUTY XOVER
2 WAY 80 OHM
A 2 way 8 ohm H / D Xover suitable for L/S systems up to 100 watt.
Fitted with screw terminals for input and a three position 'HF LEVEL' switch which selectseither Flat, -3 dB or -6 dB .

ONLY $E 3 \cdot 00+8 \%$ VAT
A CRESCENT 'SUPERBUY' Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $54^{\prime \prime \prime}$ (diagonally).

ONLY $\$ 5 \cdot 00+12 \frac{1}{2} \%$ VAT
TELESCOPIC AERIAL $+12 \frac{1}{2} \%$ VAT Il section telescopic aerial.
Extended length: 1 metre ($39 \frac{1}{2}$ ")
Fully closed: $135 \mathrm{~mm}\left(5 t^{\prime \prime}\right)$
Fixing: nut and bolt fixine through recess at base of aerial.

ONLY 75p EACH:

LOUDSPEAKERS + $12 \frac{1}{2} \%$ V.A.T.
$2 \frac{1}{\prime \prime}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm
90p
(please state impedance req.d) $2 z^{\prime \prime}(60 \mathrm{~mm})$
2 In $^{\prime \prime}(70 \mathrm{~mm}) 8$ ohm (limited stocks) 60 p
(limited stocks)
60 p $2^{\prime \prime}$ " 70 mm) 8 ohm (limited stocks) 60 p $5^{\prime \prime} 8 \mathrm{ohm}$ Ceramic $\quad 8^{\prime \prime}$ "ELAC 8 ohm 15 W dial 8" "GOODMANS" 'Audiom 8PA" $80 \mathrm{ohm} \mathrm{15W}$ Wudiom 8PA $£ 4.95$ $7^{\prime \prime} \times 4^{\circ} 80 \mathrm{hm} 4 \mathrm{~W}$ $\begin{array}{r}62.95 \\ 62.00 \\ \hline\end{array}$
LOUDSPEAKERS + 8\% YAT. $12^{\prime \prime}$ "McKENZIE' 8 ohm 75W Bass $12^{\prime \prime}$ "MCKENZIE" 8 ohm 75W dual eone 12 " "MCKENZIE" 8 ohm 75W general purpose
¢18.37
3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
1000W lighting per channel, max. This 3 channel sound to lighe unit is housed in a robust metal case, with a sensitivity control for each charnel instructions supplied. S.A.E. for spec. instructions supplie. S.A.E. for spec.
sheet. ONLY $E 20.00+8 \%$ VAT

MINIATURE TOOL SET

A 20 pc. Tool Set, precision made from quality industrial forged steel. Contents: I swivel handle, 3 screwdrivers 1.5 to 3.5 mm ., 2 Philips type screwdrivers, 1 awi, 3 Allen keys 1.5 to 2.5 mm ., 5 sockets 3 to 5 mm ., 5 hex. keys 4 to 6 mm . Supplied in plastic case. Our price: only $£ 3.25+8 \%$ YAT.

BARCLYCARD 'P\&P' ORDERS UP TO 55, Add 30p

VISA ORDERS E5-610, Add 50p
All orders over $f 10$ post free!

Personal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N13. ALSO. 13 SOUTH MALL, EDMONTON GREEN, EDMONTON.

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 i n \times 5 i n$. Price $£ 7.50$ per set (we pay the postage).
Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and haif tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,
Order now:
Selray Book Company
60 Hayes Hill
Bromley
BR27HP

QUR TDIO\% GUAARANTREE Should you decide to return the get ather 10 dys exam-
instion, vour money will be refunded by return of post, 5 ination, vour money will be refunded by return of post,
Amount enclosed: E

Name:

Address:
EE10

Miscellaneous

RESISTORS 1 W 5\% 2R2-2M2 (E12).

10 each or more of each value 90p/100. 100 assorted, ou mixture 75p/400. C60 cassettes in library cases 30p each minlature relays $17 \times 30 \times 28 \mathrm{~mm} 600 \Omega$ coil 4 sets change over contacts 50 p each.

Prices include V.A.T. Add 10% postage.
SALOP ELECTRONICS. 23 Wyle Cop, Shrewshury.
bell's television service for service sheets of Radio, TV etc. El plus SAE Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 55885.

SAVE TIME on PCB drilling. Steel jig for dils, presets only FIFTY PENCE POST PAID. W. L. Hampson, 221 Hodges St., Wigan

ENAMELLED COPPER WIRE				
Swg	1 Ib	8 oz	4 oz	2 oz
$14-19$	2.40	1.20	.69	-50
$20-29$	2.45	1.60	-82	-59
$30-34$	2.60	1.70	.89	.64
$35-40$	2.85	1.90	1.04	.75
Inclusive of p\&p and VAI. SAE brings Catalogue				
of copper and resiscance wires in all coveriags.				
THE SCIENTIFIC WIRE COMPANY				
PO Box 30, London E4 9BW				
Reg. Office: 22 Coningsby Gardens				

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

 FHL RANGE AVAULABLE S.A.E FOR LISTS. E1.00 for booklet "Nicks Cadnum Power". Write o call, 2 Union Drive, Boldmete, Sutton Coldfield, WestMidiands. 021-354 9764 . Or set them at TLC, 32 Craven Street, Charing Cross, London WCR

AERTAL BOOSTERS improve weak VHF radio and television reception, price 55. SAE for leaflets, Electronic Mailorder Ltd. Ramsbottorn, Bury, Lancashire, BL0 9AG.

TUNBRMGE WELLS COMPONENTS BALLARD'S, 108 Camden Road, Tunbridge Wells, Phone 31803. No lists, enquiries S.A.E.

For Sale

NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 60p each Post Free open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

ELECTRONIC KITS-SAE for new cata logue, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Sussex.

Wanted

GOOD PRICES for recent Electronics Computing/Radio books and magazines, Projects, Theory, etc. Details to: HART, 41 Lutton Place, Edinburgh.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets e4.50, request free circuit diagram. Stamp brings details unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkshire.

Service Sheets

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and s.a.e. Catalogue 25 p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex
ALL GOODS TOP QUALITY, NEW AND TRAN-

MAGENTA ELEGTRONIOS ITD

EkIM BRCALAIS ROAD, BURTON-ON-TRENT, STAFFS, DEB OUL RHONE

E.E. PROJECT KITS

Make is YOUR No. 1 SUPPLIER of KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of paris to enable you to construct E.E. prolects. Appropriate hardware-nuts, screws, I.C. sockets are included. Each project kit comes complete with its own FREE COMPONENT IDENTIFICATION SHEET. We supply-You construct.

FUZZ BOX Dec. $73,24: 36$ inc, case.

VECHILE IMMOSILISER Dec. $78,23 \cdot 77$ Wase extra $71 p$
WATER LEVEL ALERT. NOV. 78. HOT LINE"
HOT LINE" GABE. Nov. 78. £3.83 uDIo EFFEC
AUDIO EFFECTS OSCILLATOR. NOV. SUBSCRIBERS
SUSSCRIBERS TELF TEL METER. FUSE CHECKER. Oct. 78. £1-40 inc.
Case. REASURE HUNTER. OCL 78. 214-20 inc. cases less handle \& coil former.
R.F. SIGNAL GENERATOR. Sept. 78 15. 30 less case.

GUITAR TONE BOOSTER. Sept. 78. SOUND TO IGHT
SOUND TO LIGHT. Sept. 78, £5-77 FILTER. 乏1-25,
SLAVEFLASH. Aug. 78 , E2. 66 inc, case SLAVE FL.ASH. Aug. 78 , $22^{\circ} 66$ inc, case A.F. SIGNAL GEN. Aulg. 78 , A8-
Case extra $\hat{i} 2-59$ less dial materials. LOGIC PROBE. July $78 . E 2 \cdot 29$ inc. case QUAGMIRE. July $78, \pm 7 \cdot 31$ less case PINSITUTRANSISTORTESTER. dune 8. £4-49 inc. case

VISUAL CONTINUITY CHECKER. une 78.22 .
TELE BELL. June 78. £10-14 case extra FLASHMETER. May 78. £8:67, case extra P1.25
POCKET TIMER. April 78, $22-82$ inc.

WEIRD SOUND EFFECTS GENERATOR. Mar. 78. $23 \cdot 64$ inc case.
CATCH-A-LIGHT. Mar $78 . \quad £ 4.36$ case extra £1-34. Switch cases 47p. each.
CHASER LIGHT DISPLAY. Feb. 78. AUDIO VISUAL METRONOME. Jan. RAPID DIODE CHECK. Jan. 78. \&4-97 d. Case.

AUTOMATIC PHASE BOX. Dec. 77 . 29-45inc. p.c.b. \& case.
VHF RADIO. Nov. 77. £ 11.06 Inc. case. ULTRASONIC REMOTE CONTROL. Nov./Dec. 77. \&13-22 Inc. cases.
TRANSISTOR TESTER. Oct. 77. $6 \cdot 34$ case axtra $£ 3 \cdot 35$.
TREASURE LOCATOR. Oct. 77. £8-77 case extra $22 \cdot 32$. Less handle a coll ELECTRONIC DICE. March 77. §4-09inc. case.

SOIL MOISTURE INDIC TOR. June PHONE/DOORBELL REPEATER. July 7. $£ 4 \cdot 92$ inc. case.

SHORT WAVE RECEIVER. Aug. 77. $210 \cdot 88$ case extra ह1:25
FUZZTONE UNIT. July 77. E5 68 less case
ADD-ON CAPACITANCE UNIT. Sept

GIL PRICES INCLUDE VAT AND FIRST CEASS ROST. APD 15p TO ORPERS UNDER E5, COPIES OF ERE CONSTRUCTIONAL ARTICLES 39p CATALOGUE-SEND 3×3 STAAMPS.

TEACH - IN - 78

COMPLETE KIT £14.50

 INCLUDES FREE COMPONENTIDENTIFICATION CHART. TEACH-IN REPRINRLL 12 PARTS AVAILABLE.

1979 ELECTRONICS

 CONSTRUCTORS CATALOGUEHAVE YOU GOT YOUR COPY YET? MAGENTA'S NEW CATALOGUE INCLUDES MANY NEW PRODUCTS - CAREFULLY CHOSEN FOR EVERYDAY ELECTRONICS READERS. PRODUCT DATA AND ILLUSTRATIONS MAKE THE MAGENTA CATALOGUE AN INDISPENSABLE GUIDE FOR CONSTRUCTORS, FULLY INCLUSIVE PRICES RIGHT NEXT TO THE PRODUCTS MAKE ORDERING EASY. NO MINIMUM ORDER - ALL PRODUCTS STOCK LINES. FIRST CLASS DELIVERY OF FIRST CLASS COMPONENTS. SEND FOR YOUR COPY AND SEE HOW EASY IT IS TO USE THE MAGENTA CATALOGUEI
WRITE TODAY ENCLOSING $3 \times 9 \mathrm{~F}$ STAMPS.

MULTIMETER TYPE , $1,1,000$ 0.0.v.

 ANTEX X25 SOLDERING IRON 25 W . dideal for electronics $z 3.95$.

SOLOERING IRON STA

ST3 51.55 .

HEAT SINK TWEEZERS. 13p.
DESOLDER PUMP, Easy to USe $25-98$.
SIGNAL INJECTOR, $24-98$.
SIGNAL INJECTOR. 24 -98.
DENTISTS MIRROR. Adjustable 乏1-70.
JEWELLERS EYEGLASS. 930.
JEWELLERS EYEGLASS. 93 p .
TRIPLE MAGNIFIER. E1
BUZZER. $6 V 740$. 12 V .
F.M. INDOOR AERIAL, 49p

TELEPHONE PICK-UP COIL. 65 p. SPEAKERS. Miniature of ohm 59p. 64 Ohm 85 p .80 ohm £1-15. EARPIECES. Crystal 38p. Magnetic 15p. STETHOSCOPE ATTACHMENT fits our earpleces 58p. MONO. 2K Padded HEADPHONES. MONO. 2 K Padded
SUperior Sensitive. $£ 2.98$.
HEADPHONES. STEREO. 8 ohm. INTERCOM, 2 STATION. E5.95, CABINET SPEAKER. 8 ohm 5 watt F.M. TUNER MODULE-feeds a amplifier with scale \& pointer $£ 8-35$.

DOING IT DIGITALLY

New Series-complete kit or separste parts IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quality components as specified by Everyday Electronics. Our kit comes complete with FREE TTL and COMPONENTIDENTIFICATION CHART. Follow this educational series-start today-and learn about digital electronics. SEND E22-95 lor the TTL TEST BED. 23.75 for ADDITIONAL COMPONENTS (6 months).

TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE－AMPLIFIERS

CPR 1－THE ADVANCED PRE－AMPLIFIER
The best peramolifier in the U．K The superiority of the CPR 1 is probably
 high slewing rate ensures．lean ton，oven with high output artridgos tracking
heavily modulated fecords．Common－mode distortion is eliminated by an unusual heavily modulated records．Common－mode distortion is eliminated by an unusual
deergn．R．liA．A．Is accurate to 1dB；signal to noise ratio is TodB relative to derg．RU．A．As accurate to $1 d \mathrm{~B}$ ；signal to nois
35 mV distorion $<005 \%$ at 30 d B overioad 20 kHz ． Following this stage is the flai gainibalance stage to bring tape，tuner．etc．wr
 T．H．D． $20 \mathrm{~Hz}-20 \mathrm{~Hz} \times 008 \%$ at any level．F．E．T．muting．No controls are gted．
Thereis no provision tor tone controis．CPR size is $188 \times 80 \times 20 \mathrm{~mm}$ ．Supplvio be $=12$ voris．
MC 1－PRE－PRE－AMPLIFIER
Suifable for nearly all moving－coil cartridges．Sensitivity $70 / 170$ uv switchable on the p．c．b Thus module frings signals from the now pooular low oulput
moving－coil cartridges in to 3.5 mV （Typicat signal required by disc inputs）．Can be powered from a gV battery or from our REG 1 fegulator board．
REG 1－POWER SUPPLY
The requlator module．REG 1 provides $15-0-15 \psi$ to power the CPR，and MC 1 Ht can be used with any of our power amp supplles of our small transformer TR 6
The powes amp kt will accommodate it．

POWER AMPLIFIERS

 amps satistactorily for quite some time．We have a reputation for the highes quality at the lowest prices．The power amp is availabie in five tyoes，they all

 load safely：sonsitvity 775 mV （ 250 mV or 100 mV on request）size $120 \times 80 \times$
25 mm ．

POWER SUPPLIES

We producu suitable power supplies which use our superb TOROIDAL transformers onfy 50 mm hig whth a 120－240 primary and single boll fixing（includes capacitorslbridge rectifier）

POWER AMPLIFIER KIT

The kit includes all metalwark，heatsints and hardware to house any two of our power amp modules plus a power supply．It is contemporarily styled and its quality is consistent with that of our other品品dence in amprehensi

POWER AMPLIFIER MODULES CE $60860 \mathrm{~W} / 8$ ohms $35-0 \cdot 35 \mathrm{v}$ $\begin{array}{lll}\text { CE } 1004100 W / 4 \text { ohms } 35-0-35 \mathrm{~V} & \text { E19 } 22 & \text { PRE－AMPS } \\ \text { CE } 1008100 \mathrm{~W} / 8 \text { ohms } 45-0.4 \mathrm{~V} & \text { £23 } 22 & \text { These are }\end{array}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0 \cdot 45 \mathrm{~V}$ 迤 $\mathrm{E} 29-12$ TOROIDAL POWER SUPPLIES CPSifor2x CE 608 or 1 CE 1004 CPS2 for $2 \times$ CE 1014 or $2 / 4 x$ CE 608 ．

```
CE 1704
``` CP 1704 CPS4 tor
CPS5 for
CPS6 for CE 1703 ． HEATSINKS Medium duty， \(50 \mathrm{~mm}, 2^{\circ} \mathrm{C}\) W \(1.4^{\circ} \mathrm{C} / \mathrm{W}\) power． 100 mm Discolgroup． \(150 \mathrm{~mm}, 11^{\circ} \mathrm{C} \mathrm{W}\) Fan， 80 mm ，state 120 or 240 v ． Fan mounted on two drilled
100 mm heatsinks． \(2 \times 40^{\circ} \mathrm{C} / \mathrm{W}\) \(65^{\circ} \mathrm{C}\) max．with two 170 W THERMAL CUT－OUT， \(70^{\circ} \mathrm{C}\) ．

These are avail able in two ver－ sions－one uses standard compo－
nenis，and the other（the S）uses
MO sesistors where necessary and tantalumeapa citors：
CPRI CPRL
CPRIS CPRIS
MCl MCIS．．． POWER 2294
\(\begin{array}{lll}\text { E2．20 REGI ．．．．E6－75 } \\ \text { E2 } 85 & \text { TR6．．．．．．．．．．E15 }\end{array}\) BRIDGE DRIVER，BDI
ObTain un to 340 W

E29－16 amps and this
\＆1 90 module 801 £5 10

CRIMSON ELEKTRIK
IESTAMFORD STREET，
Leicester．Lei 5NLL
Tel：（0533） 537722

All grices shown are UK only and include VAF and oost．COD 90p extra £100 limit Export is no problem，please write lor specific quote．Send targe SAE of 3 International Reply Coupons：io detailed information．

Distributor：－
MINIC TELEPRODUCKTER
BOX 12035：5－150 12 UPPSALA12，SWEDEN：

 LONDON，W8 6SN．O1－937 3548

\section*{HAVE YOU DONE IT LATELY！}

\section*{Fita new tape head and transform the performance of your tape recorder}

\section*{HIENTITITM}

QUALITY REELTO REEL AND CASSETTE TAPE HEADS

Please enclose 20p P\＆P with order

Full Catalogue 25 p
ayback \(£ 9.84\)
B12－01 mono cass，plassette glass／ferrite recordio cass．playbk．£2．80
A28－05 stereo 8tk cartridge \(£ 1,80\) E12－09 stereo／mono cass．erase \(£ 1.80\)
\(5 / 7\) Church St，Crewkerne，Som．Tel．（0460） 74321

\section*{INDEX TO ADVERTISERS}

Ace Mailtronix
Amtron 902
Antex Cov 11
Bi－Pak
881
Birkett ］
B．N．R．E．S．
846， 882,899
Boffin Projects ．．．．．．．．． 902
Brewster S．R．．．．．．．．．． 846
Bull）．
Charcroft Electronics ．．．．．． 898
Chromatronics ．．．．．．．．． 891
Chromasonics
897
Crescent Radio
901
Crimson Electronics
904
David George Sales
\begin{tabular}{lrr}
Dawes & \(\ldots\) & \(\ldots\) \\
Delta & \(\ldots\) \\
Dewtron Electronics & L \\
Doram & \(\ldots\) & \(\ldots\) \\
E．D．A． & \(\ldots\) \\
Electroni－Kit & \(\ldots\) \\
Electrovalue & \(\ldots\) \\
Felstead Electronics \\
Furama Electronics \\
Greenweld & \(\ldots\) \\
Grimsey Electronics \\
Harversons \(\ldots\) & \(\ldots\) \\
Heath－Kit & \(\ldots\) & \(\ldots\) \\
Home Radio．．． & \(\ldots\) \\
l．L．P．Electronics & Ltd． \\
Interext（ICS） & \(\ldots\) \\
Letrokit Ltd． & \(\ldots\)
\end{tabular}

844
903
892
844
842
901

\section*{847}

903
902
898， 900
902
892
882
892
887
842
885
\begin{tabular}{|c|c|c|}
\hline Magenta Electronics & & 903 \\
\hline Maplin ．．． & & Cov IV \\
\hline Marshall A．．．． & & Cov III \\
\hline Metac & & 891 \\
\hline Monolith Electronics & & 904 \\
\hline Radio Book Service & & ．． 903 \\
\hline Radio \＆TV Components & & ．．． 845 \\
\hline Salop Electronics & & 903 \\
\hline Sandwell Plant Ltd． & & 903 \\
\hline Scientific Wire Co．．． & \(\ldots\) & 903 \\
\hline Selray Book Co． & \(\ldots\) & 901 \\
\hline Silicon Chip & ．．． & 841 \\
\hline Swanley Electronics & & 842 \\
\hline Tamtronik ．．． & & 900 \\
\hline TUAC & & 898 \\
\hline Vero Electronics & & 891 \\
\hline Watford Electronics & & ．． 843 \\
\hline West London Direct Sup & & \\
\hline
\end{tabular}

West London Direct Supplies
904

\title{
Come and geet a great deal Call in and see us 9-5.30 Mon-Fi 9-5.00 Sat Tel orders on credit cards \(\$ 10 \mathrm{~min}\). \\ Trade and export enquiries welcome
}
A. Marshall (London) Ltd. Dept. EE Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4 TA. Tel: \(01-6240805\). Retail Sales London: 40-42 Cricklewood Bdwy, NW2 3ET. Tel: 01-452 0161/2. Telex: 21492. London: 325 Edgware Rd., W2. Tel: 01-723 4242. Glasgow: 85 West Regent St., G2 2QD. Tel: 041-332 4133. Bristol: 1 Straits Pde., Fishponds Rd., BS16 2 LX. Tel: 0272 654201.

\section*{everything for the modern D.I.Y. electronics enthusiast and more.}

Build a mini-computer with our microprocessor Kit. Features: 48 different instruction types: 256 bytes of read/witite memory (more are easity added) microprocesscr can address up to 65.536 etc. (X891Y) \(258-74\)
20 -key keyboard for use with above (in place of teletype) (XB92A) f65-97 Both kits with detalled instruction books, See our newsletters for detalls of additional
RAM's. tri-state interfecing chips, number-cruncher RAM's. tri-state interiacing chips, number-cruncher
and standard cassette tape-recorder interface to store and standard cassette tape-recorder interface to store
your programmes. (All prices laclude V. A.T. and p\&D).

Shop: 284, London Road. Westcliff-on-Sea, Essex```

[^0]: ILS Schools

 Dept 8268 Intertext House, London
 SW8 4UJ or telephone 6229911
 Subject of Interest
 Name
 Address

[^1]: GOODS SENT POST FREE U.K.
 value if under add 27 p . handling
 charge.
 *ATIRACTIVE DISCOUNTS O
 CW 0 orders - -5% where list
 value is over f.10 10% where
 value is of $: 25$
 -TOP QUALITY MERCHANDISE -ALL BRAND NEW
 GUARANTEED

[^2]: Back issues of EVERYDAY ELECTRONICS June 1977 onwards (October to December 1977, January to March 1978 NOT available) are available worldwide at a cost of 60 p per copy inclusive of postage and packing. Orders and remittance should be sent to: Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF.

 Binders for Volumes 1 to 7 (state which) are available from the above address for $£ 2.85$ inclusive of postage and packing.
 (9) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.
 All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^3]: T and T Electronics
 Our author has been engaged in research and development in the Hi Fi field for the last 30 years, and has been responsible for many commercial products.

[^4]: "When you come home, will you carry on making your special gadget that minimises the risk of accidents in the home?"

