An exciting hobby.... for everyone

everyday ${ }^{\text {ack }}$ electronics

Partable SHORT WAVE Receiver

Get a great deal from
 Marshall's

A. IMARSHALL (LONDON) LTD. DEPT. E.E

LONDON T^{40-42} Cricklewood Broadway, NW2 3ET
GLASGOW-85 West Regent Street, G2 200

NEW CATALOGUE 77

2ND EDITION FOR AUTUMN OVER 8,000 LINE ITEMS
Plenty of New Products and Ideas 35p POST PAID (25p to callers)

QUALITY TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS etc.

7400	0.21	7411	0.2	743	0.3	7451	0.21	748	1.1	7495	0.78	74145	1.06	74164	1.3	74188	$2 \cdot 0$
	0.21	74		743	0.55	745	0.21	7882		749	1.03						
7402	0.21	7413	0.51	7438	0.55	7454	0.21	7483	1.33	7497	4.60	74151	111	7416	1.70	74490	
740	0.21	7414	1.80	7440	0.21	7460	0.21	7484	0.85	7410	1.15	74153	1.11	741			
74	0.26	74		7441		7470	0.46	7485		7410	0.43	74154		74175			
7405	026	7417	- 11	7442	0.78	7472	0.38	7486	0.41	74118	0.98	74155		741		74193	1.62
7406	0.74	7420	0.21	7445	1.35	7473	0.43	7490	0.11	74119	1.10	74157	0.98	74180	17	74196	1.17
7407	0.74	7423	-39	74		7474	0.43	491		7412	0. 5	74160		7182		74197	$1 \cdot 17$
	29	7425	39	747	1.17	7475	0.58 0.51	7492	0.61 0.61	${ }_{74123}$	0.45 0.58	74162	1.11			719	93
	0.29	74			1.17 0.27	7476	0.51 0.45	7493 749	0.61 0.74	74123 74141		74162 74163	1.41	778185	$2 \cdot 16$	71	.

VEROBOARD

COPDERBACKED BOARD $\begin{array}{llllll}25^{\prime \prime} \times 17^{\prime \prime} & 1.54 & 3.75^{\prime \prime} \times 17^{\prime \prime} & 1.98\end{array}$ Spot Face Cutters 74p pki. 36 pins 36

SOLDERING EQUIPMENT

 Spare tlpe \& element available
Multicore solder dilapenser

CLOCK MODULES

Burt and ested-regures only swiltche and transiormer to complete. 12 or 24 hr
 MA1002H $24 \mathrm{hr} 5^{\prime \prime}$ display MA1010E $12 \mathrm{hr} \cdot 8^{\prime \prime}$ "display

CAR CLOCK MODULE

MA1003 Bullt Tested 12 v supply 4 digll module

MAINS TRANSISTOR PACK

Dedraed to operato tranamior reta and amplisers （olese D working）．Taked the plisce of any of the following battaries：PPI，PPI，PP4，PP8，PP7，PP9 and othero Kit comprines：madn tranaformer reetifer，smoothing and sl－40 VAT Condensers and

SOUND TO LIG HT UNIT

Add colour or white light to your amplifer．Wit operste 1,2 or 3 box all ready to work． 17.95 plua 95 p VT A Potage．

MICRO SWITCH BARGAINS

RADIO STETHOSCOPE

arral from serial to apesker，when Ignal stope fou＇ve found the ampliger，anjthing．Complete Eit comprines iwo apecial traphiatori and all parts in－ aludity probe lube plece，fas，twin atetho－tet Intead of
earplece． $11 \cdot 00$ Vat
MULTISPEED MOTORS

MAINS RELAYS
With triple 10 amp chatageover con－ volt－ACerating chatl mound for mounting，one crew fixlng，ex unused equipment 00p each， 10 for 96 poat and VAT
telescopic aerials
for portable car radio \＆ tranamitier．Chrome plated－ in sections，extends from 7 it
47 In ． $60 \mathrm{p}+18 \mathrm{p}$ Pont VAT KNUCKLE

EXTRACTOR FAN
Chasns the air at the rate of
10,000 cuble foet per bour． guitable for kitchens．bath－ pooms，inctorles，changing rooms， olc．It＇s so quiet it can hardly be beard，Compot，sf＂caelay comprise motor，fan bladea malne connector and axing brackets．©5－25 Including pont VAT． Monthy Ilat avallable free，send

BLACK LIGHT

At uned in disco＇s and tiage effecta ete．－virtually no and ough eto－we over maina B．L．Lampa， 175 watt pluge into ans lomp holder requires no choke or control gear price $17.00+95$ poit and VAT or for glamorislag tube with itaster，choke lamp holds，etc．ull for 34.60 post

NEED A SPECIAL SWITCH

M

MULLARD UN

 A malni opernted th +4atereo syitem．Rated one otereo syltem．Reted one
of the ineat performer in the stereo teld thla would make a Foaderfal it tor almose any one in easy－to－ tosemble modulat form and complete with a palr of
 Goodruane apeakere this should sell at sbout sat－but due to a apecia！bulk buy and as an incentive for gou to buy
the month wo offer the ayutem complete at only 81400 thle month we ofter the ay＂

SHORTWAVE CRYSTAL SET

Although this unea no bathery
diven really arialag
given really atrasing reoulta．You of rathone ovep the $18,28,29 \mathrm{Ja}$ ， metre bands．KIt containa chasio －cryotial earphone s6p including VAT and postafe．

DISTRIB UTION PANELS

beach or lab． $4 \times 18 \mathrm{mmp}$ tandard is smp fused plagi and on／or filtch mith soon warolag light．Sup． plied complete mikn feet ot
dex cable．Wired up ready to work．2s－76，vit a poor
25 A ELECTRIC PROGRAMMER Learn in your sieep；Have radlo playlig and ketile
moling an vou wakn willeh on lishte to wad of
 otrudery－have a－arm houne come home to．All these and many other thloge you can do programmer．Clock by famous maker with 15 amp．on／ofit milteh．8witch－ou time can be net aywhere to iny on dp to hours．Independent minute memory jogner．A besuliul unit．Tree asel 81.50 extra

WINDSCREEN

WIPER

CONTROL
Vary upeed of your miper to ult conditione all parts and instructions to

THIS MONTH＇S SNIP Breekdown Pareen－four ununed，made ror computor unit，containing most
uatel computora，and these com－ putoris unilke those from most com－ pator panel，have mire ends of uasble iength．The trandiltore far inglance have leadi over $1^{\prime \prime}$ loors－lbe diodea
have approx
List ot the najjor componenta io as follows：－17 asoorted tranistors－ 38 asoorted diodee－ 00 amorted relitora and an muiltpla piuge or as hook up boarda for experimental or quickly changed circuite（note we can supply the rocket board，which were made to recelve theme unis），The price of thit tour undes parcel is 11 including V．A．T．nod poot Conalderably hat than ralue of the ranisLa or dioden

MOTORISED DISCO SWITCH
With air 10 amp obange－ over owitches．Multi aljurtable switchen are
rated at to amp each ao
 provide magnificent dilplay．For malne oper－ stug \％ 28 poit \＆V AT Pald Ditto gitwh tiog DITTO BUT
BWITCH ES－76 POBT

8 POMERFUL B ATTERY MOTORS

For models，Meccano＇s，drills，remot

ROTARY PUMP
Self priming，portable，Ate drill or lectric motor，pumpe up to 200 allont per hour depondia upon reva．VIrtunily uncorrodable， une to suck water，oll，petrol． ertlliser，chemicais，anything 18.00 Pont Pald．

TERMS：
Caah with orter－but orders under is mut andd 50 p to offet packlig etc． BULK ENQLIRIES INvited．PHONE：OI－กAッ 183

J．BULL（Electrical）LTD
 （Dept．EE）， 103 TAMWORTH RD． CROYDON CR9 ISG

IT＇S PREEI

Oup monthly Advance Advertioint Bargaing Llat given detalle of bergains arriving of juet arrivedyarton baraint whichert can appar－it an arer our edvertine llit and ie＇s frecelust ennd s．A．D．Below are few of the Eercaine estil avellable frem prevlouilines．
Didta！Thumbrheel Ewitah．Black face flugh panel mountlog，face alse approx． $8 t^{" E} \mathrm{I}^{m}$ ．White diglta 10 posistons 0．9．These cas be itacled edsemioe to any quastity．The right hand and left hand ende have pro jection for 8BA axing to the panel．Prioe left－hand and right hand and iwitchea 81.60 each $+12 p$ ．Intermediate witcher $11 \cdot 25+10$ p．
Melps Tranatorizer upright mounting with top tegboard primary 0－115，210，240，two necondarle 115 volt
 tais Trsnatornet，primary o－110，187，150， 180220 Becondarien（1）． 0 ， 10 （2） $2 \cdot 67$, （ 8 ） 0.220 v ．Pitted primary $4.80+20 \mathrm{p}$ ．Port $40 \mathrm{p}+3 \mathrm{p}$
Three Dirit Conster，resettable 12 volt coll，tuah panel mounting black with white digts，ex new equipment 1176
Beed Reley
w
Reed Relsy with double wound coll 12 voled one coll will close the read switch． 12 volts on the other coll will open the cuprent is oppoaling or sasistige．Price id $50+12 \mathrm{p}$ Poot $20 \mathrm{p}+2 \mathrm{p}$ ．
Relay，Clare Elllote 670 ohm．Coll aealed In metal can alse
 Dest Instromapi tase with aloping front，overall sise of bloping front $1 A^{\prime \prime}$ wlde and $5^{\prime \prime}$ lonet Mounted on heavy bame for atablite base alze $4^{\prime \prime} \times 4^{\prime \prime}$＂ith gez lock．The beavy base is eastly removed it not reguired．The average depth below aloping panel $5^{\prime \prime}$ approz．Price $11.50+12 p$ ． Poat $50 \mathrm{p}+4 \mathrm{t}$ ．Note the aloping tront Will be oupplled with each of these canea but thin already has quite a lot of holes in it，however，it is a simple matter to cut and bend new \sim～
Einonde $\mathrm{f}^{\prime \prime}$ Malas Battery TV＇s for apares，these are leas tubes and less fanobs and will have one or two other parta
mising but in the main are complete and worth having mising bat in the main are complete and worth having them．Price \＄8．80 +44 p．Pont $\mathrm{fl} 1.00+121 \mathrm{p}$ ．
Romember 7089．We are rapidiy ranniag out of this and if you have not put apy into atock then thls could well be Cartiage $22.50+20 \mathrm{p}$ ．
Engine Revolotion Counter，Thie ie en－Alr Miniatry itefn， beautitully hiade．As a revolution counter it to driven by a dexible obaft acid having a permanent magnet deld the voltage output would be dependent apon the speed．Of courge it will also rua es a low voltage D．C．motor and its apeed will be dependent upon the applied voltare．This Ia duatproof and aimost waterproof so it will atill run in
adverse conditiond．One polnt bowever，fo there are no adverse conditions．One polnt bowever，If there are no we have not been able to find a supplier，so you will buy Without brumes．The Alr Mindatry ref．number of the motor is $6 \mathrm{~A} / 7 \mathrm{~A} 3$ ．Wio would like to hear from any custo－ mer who mist thit during ble service career and who knows of a poailble soarce of bruahes．Price $8200+16 p$ ．Pont 40 p ．+4 p ．
Hend Battary Chargor In nent plastic case size $4^{\prime \prime}$ 天 3$\}^{\prime \prime}$ x $2 \ell^{\prime \prime}$ approx with malin linput lead and charging output
lead terminated with din plug．This te a dual output lead terminated with din plug．This te a dual output
oharger but ccratalng aneful malng tranaformer which oharger but ccataing uneful malne tranaformor which
makes it easily edaptable for many voltage cell．If not wanted ana oharger could very eanlly be rebuilt so a power unit for recelver or other device．The platicic case has a neon Indieator．Price 部－ $50+20 \mathrm{p}$ ．Poet $40 \mathrm{p}+4 \mathrm{p}$ ． Fanel Meter． $24^{\prime \prime}$ made for Alr Malatry unused but atorage aolled 90 mA moving coll offered it a low price but thene bave loone glases whlch will want regluelng．Price El． 80 +12 p ．Pont $20 \mathrm{p}+2 \mathrm{p}$ ．
Garrard 4 Fole Notor，probably mede for record pleyer or tape recorder，this ts $140 \mathrm{v} 40 \cdot A 0$ cycle．We do not know the Garrard ret，no but the figure 12 It preased on the bottom bearing cover．Prlce $5860+25 p$ ．Poat $30 \mathrm{p}+{ }^{4} \mathrm{p}$ ．
simmerstat by gunvic for 2500 watua Buavic ret $230707 /$ Simmeratat by Bunvic for 2800 watis Bunvic ret 230707 ／
 Epproz． $2 t$
$20 \mathrm{p}+2 \mathrm{p}$ ． 5 mithe Time and set swith． 15 amp normal mains operated device intended tor use whith coorers，etc，．Which and for and up so one period of 4 hours．A very neat flan fronted Inatranient with centre control lnob aise approxi－ mately if＂$\left.~ 81\right|^{\prime \prime}$ I $2^{\prime \prime}$ deep．The 8 miths＇ref No．C87400． One obvious ume la for awitching on your heating as hour of so before yot come bome so you come hon
house．Price $8 \mathrm{gr} 50+20 \mathrm{p}$ ．Poit $30 \mathrm{p}+8 \mathrm{p}$ ．
Fhah Erate is the name we have given to our lateat diceo IIght diaplay because it is a rnadom flasher and lo Fery motorised itud iwitch，meter control switch，aoti upark capa， 8 lamp holderi，connecting wire and wiring diagran． Price $15+40 \mathrm{~g}$ ．Poit $60 \mathrm{D}+6 \mathrm{p}$ ．
Car Caseetce Pawar Eit．Thly han a stablised output of $6 \mathrm{v}, \mathrm{gv}$ or 12 v －ithla filt conalate of tranaintore－zener，diode and all realetcas：and condenser：cane，and data price ts only 8280 including poit and VAT．
Earclar Alarm－The heert of many of thene is a in Intra red beam operaled awitch－sand we offer a blt to make this witch complete with relay from latching and sounding counting light of dark switching etc，but consiata of photo cell－reley all reniotore and condenmer and constructional datn only en．es including port mad VAT
tmergency Liaht．Worka from malme but avtomatically switchea to buttery should mains fall－with this your place never whil be in darkneas－uses PP9 battary（not supplied）otherwiae complete kit Fith data 88.30 in－
oluding poit and VAT．Well or celling mounting case oluding poitt
el．50 extra．

LATEST TITLE in The Beginner's Guide Series

Beginner's Guide to Audio

by IAN R. SINCLAIR

Covers the working principles of devices ranging from the microphone to the louspeaker and examples of the electronic circuits which are used. Starting with the behaviour of sound waves the text continues with chapters on microphones, pickups, preamplifiers and amplifiers and loudspeakers.
CONTENTS : Sound and recording. Replay and Reception. Voltage amplifiers. Equalisation, filtering and tone controls. Output stages. Loudspeakers. Recording and reproduction systems. Index.
April 1977
192 pages
E2. 75
Other Beginner's Guides in Electronics: Beginner's Guide to Electronics -Squires \& Deason. Beginner's Guide to Radio - King. Beginner's Guide to Transistors - Reddihough \& Sinclair.

ORDER NOU

ORDER NOW from your bookseller or in case of difficulty from BUTTERWORTHS, Borough Green, Sevenoaks, Kant TN 15 8PH

DeC-IT and BLOB-IT

S.DeC No simpler way of learning circuit construction. S.DeC No quicker way of getting a circuit working. S-DeC Simply plug components in, no soldering.
S-DeC Try, test, prove eircuit working.
50 Blob-Board Transfer your working circuit, component by component, to the 5D Blob-Board.
50 Blob-Board No cutting or drilling of contact rails. LOW, LOW price.
S.DeC-IT And Blob-IT Low price numbered contacts. quick circuit try-outs, test components before soldering. large working area, assess competative circuit layouts, test parts of circuits. Reusable.

S-DeC + control panel + 9 Project instruction book + Free 5 D Blob-Board $£ \mathbf{£} .25+£ 0.40$ Post and V.A.T

5D 8lob-Boards, Pack of 3. with complete instructions,

Available from all good component stockists.
PB Electronics (Scotland) Lid. 57 High Street, Saftron Walden, Eseex C810 IAA.

EnSol Invictus Detectors Limited

The makers of the famous Viking and Probe detectors bring you... THE SID DETECTOR KIT

Enjoy one of the world's most exciting hobbies with this high quality metal detector. Use it to search for gold, silver coins, jewellery and other valuable articles. The kit is simple to assemble and contains the latest in electronics and design features. It's performance is comparable with detectors costing up to twice as much. The kit includes all components, circuit board speaker and aluminium frame incorporating search head with Circuit diagram \& instructions (Included faraday screen

£14:00
 65p P\&P

Mail Orders to:81 Moorgate Street Blackburn. Lancs. 025462561 \& 664789 Showroom: 3 Sudell Cross, Blackburn, Lancs. 025456917

SPECIAL OFFER FOR READERS

£18.50
inc VAT
$+£ 1 \cdot 45$
P\&P\&i

- AM/FM Radio Alarm Clock (AC 220-240v only) - 24-Hour Clock
- High Quality White ABS Case
- Push-button Mode Selection

Sieep Delay Control
Illuminated Clock \& Radio Scale

- Alatm with Buzzer and/or Music

All Chrome Control Knobs
Complies with BS415 (1972) Safety Requirements
Each Unit Fully Inspected Before Despatch
Guaranteed for One Year
Please send cheque or postal order to:

D. \& D. POWER SUPPLY CO. LTD.
 79 LOWFIELD STREET, DARTFORD, KENT

PLEASE ALLOW 90-14 DAYS FOR DELIVERY
PLEASE ALLOW YO-14.DAYS FOR DELIVERY
CALLERS WELCOME MONDAY-FRIDAY $9-5$, SATURDAY $9-1$

Cpirhritiamka Capacitive discharge electronic ignition kit

* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkr.te Mu. 2 is a high performance, high quality copacitive discharge, electronic ignition system in klt torm. Tried, tested, proven, relisble and conplete. It can be assembled fo iwo or three hours and fitted in 15/30 nins.
Beceuse of the superb design of the sparkrite circuit it completely eliminetes problems of the contaci breaker. There is no mistire due to contac: breater bounce which is ellminated electronically by a pulse suppresion circult which prevents the unit tiving it the points bounce open a nigh R.P.M. Conlact breake burn is ellminated by reducing the current to about $1 / 50$ th of the norr. It will perform equaliy well with new. od, or even badly pltted pointu and is not dependent upon the awall itme of the contact breakers for recharging the system. Sparkrite incorparates a short circult protected inverter which eliminates the problems of SCR lock on and. therefore, eliminates the possibility of blowing the transistors or the SCR. Most cepacitive discharge ignitions are not completely foolprool in this resbectl. All kits tit vehicles with coil/diptributor igntion up to 8 cyli nders.
THE EIT COMPRISES EVERYTHING NEEDED
Resdy srllled pressed steel case coand in matt black epoxy resin, ready drilled jase and heat.sink, 100 quality 5 year guaranteed transtor mer and components. cables, coil connectors, printed circuit board, nuts bolts, sllcon grease. full instructions to make the kit negative of positive earth. and 10 page installation instructions
OPTIONAL EXTRAS
Electranic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventlonal ignition for performance comparlsors, static timing atc. and will also sw ten the ignition off completely as a security devlce. includes: switch zonnectors. mounting bracker and instructions. Cables excluded. Also awilable RPM limiting control for dasnboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Cryston tuning and fitting service - Dhone (0922) 33008.

PRICES INCLUDE VAT, POST AND PACKING.
IMPROVE PERFORMAMCE \& ECONOWY NOW
Note-Vehiclea with current impuls, tachometers (Smithe code on dial RVI) plli require a tachometer pulse slave unit. E]- $\mathbf{2 5} \mathrm{Inc}$. V.A.T. D \& D .
E.D.A. 32 BATH STREE WALSALL, WSI SDE.

Cuick installation
no angine modifleation

Electronics Design Associates, Dept., EEB
82 Beth Streat, Walsall, WS 1 3OE. Phome (0922) 33662
Name ...
Address ..

I encloes cheque/PO

Send SAE If brochure oniy required.

B. BAMBER ELECTBONICS

Dept. EE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 10E Telephone: ELY (0353) 860185 (2 lines) Tuesday to Seturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

HED LEDs (Min trpe) for 70p.

VIDICON SCAN COILS ITrmeator trpe. but no Now.
FULL MAMOE OF EEMNARDE/RABANI ELEC THOWICS BOOKE IN STOCK. SAEFFOR UST
WEW FOR THE VHF CONETRUCTON. A range of tuned cricuits on formery with elugs and screening
come. Fiequencies quoted sep sppoximete, and range can be grearth entencied by uning verving cipecitonge con be
peralile
Type SA 20 . tousce. Cumpr mpel. Trpe SB 38 to 50 MHa I with fink windingl' Trpe SC 7010100 MHa (with hind winding).
Trpe SO 136 to 175 MHz (with linit winding) Trpe SD 136 to $175 \mathrm{MHz}^{\text {(with }}$ lin
 Treo MB 22 to 32 MHa (whion 33 pt nited in peraliel). Trpe MC 25 to 35 MHy iwtien 33 ot Anred in perraliol. Type MD 38 to 50 MHz (when 33 p firted in paralis). TYpe ME 45 to 80 MHz (when 330f fried in peralel). 30 pl virieble fitted in perailei.

PLAETIC PROSECT EOXES with screw on lioe in blaci ABSI whin brom inmorte
Trpe NB2 3 lin $\times 2 \neq \mathrm{in}$. a 1 in 50 p eech保
MULLAND asaz e5v stanaluen vacves Brind Newl 70p eech or 2 to $\mathrm{E} 9,20$. TO3 uronsentor inguberor mete. 10 for $\boldsymbol{\omega O p}_{\mathrm{p}}$. NUT EPANNER BETS - SPIGALUX
 $10 \mathrm{~mm} 24-50$.
IIOV NEONS, SCWEW-IN-TYPE, 4 for E0P. 4HAN XTAL PACKE (10 asported ntuls betwoen $4 \mathrm{MHz}_{2}$ and BMHz). our enlection onty. If Pact. miniatume pliens. migh quality Crwaemt mace in USA E4. 38 + VAT 136 ol. IDE CUTTE AE. Migh quality. C3. 70 \& VAT 30

MAGNETIC DEVICES PHOQRAMAMEA害. ConWin I fully edqustuble cams and 9 chenop over. mieroswitchee inted appron 1 A at 240 VACl Needs alow-
motion motor to drive (not suppliad). Ideal tor diaco
 esch.
GAMRAMD SY DC MINIATURE MOTOAS, TYDe
 $1 \mathrm{th}^{2}$ high with 2 mm woindie. Brend New.
sicicon нian vourace mectifi BY185 (now) 35 kV 2.5 mA il sech, BYi4O (e) quipl 12 sV 2.5 mA 46 p ench
QUANTE-KTAL CONTNOLLED CLOCMS, 9
GUANTE-XTAL CONTHOLLED CLOCXE, 9 t 2^{2}. depth of unit approar 2^{2}. Not in cotwer unit only imisert modern spetestrce. black toce with whtie mintring 12 hr with mecond hand, und red hour and minule hande (Couts over (40 to produc

14 DIL REED RELAY'S, 5 to $12 \mathrm{VDC}, 460$ onm coil Oesigned to work directiv from TTL Looic. Singh Pote Chenge over. Contect ratinge 28V IA 3 W E1.78 eoch
special offen
TTARPHONE MIOM BANO AF DC DOARDS with convertion dete for matime hito a good 2M Converter. (All that is reeded: 1 stal. 7 clape. 2
 Onc/Multipiter. Nl on one PCE moppon, wize os ह1) ent connectione. $9 V$ OC supply. ACC Icen be iet fxad bept, or RF gain control) Ant input. If output tworke trom fow MHI to over 30 MHz). All Brand Now.
gorry, sold Owf. B $\$ \times 20$ (VMF OsciMult), 3 for $\$ 00$. ac 100 (metar cant, 4 for 50 p . PBC108 Iotestic BC100). 5 for $80 p$. BFY5 1 Tramastors, 4 for 500. PNP sudio type PO5 Trimesiators 12 tor 24 p BF 152 (UHF smp/mizer), 3 tor 800 2N3819 Fon 3 for 60 BC148 NPN SILCON. 4 tor EOp GCY3 SNP SLLUCON. 4 tor Th

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

```
SMALL MAINE SUPPAESBONS lomell Chowen.
didey for
PERSPEST TUNED PAMELS (for FM Bend 2 turent
martod B8-10BNMz and Chennaly 0-70. clear
numbowe, rev: blecked ouk, menert modem sppapmence.
PLUOSAMD SOCKETS
N-Trpe Pluge 50 ohm, s0p each, 3 for E1.to.
PL259 Plugs (PTFE). 
lol
SOLDER SUCKERS (Plunger Trpe). Suandero
Model. 24.50. Started Mader. 14.96. Spere Nourias
oop acch
WELLEN SOLOEMINGIRONS
EXPEMT. Buih-in-wpoulight Aluminetoe work Piato 
grip with fingertip ingoen. High etteiency cogper
EXPEAT SOLDEN GUN E100D ce.00.
EXPEMT SOLDER QUN KIT lmpars bita, cone. atc)
<12.90.
NFW MARESMAM RANGE OF SOIDERINO
InONS.
S1150 15W 240V c3.00
S1250 25W 240V C3.e0.
51400 40W 240v &4 20.
S125DK25W 240V, bita arc. KIT C4.mo.
SENCH 12V VErion SI25-12 25W 12V CJ.a0.
man lrons ez.38.
Spere Bity MT9 for 15W/ SOp. MT5 lor 25WM 45p.
ALLPPICES, EXVAT.
TCP2 TEMPE LATUAE CONTHOLLEDIROM
T*mperature controlied tron and PSU. E27 & VAI
(I2.4e).
spanE TIPS
Trpe CC wngle fort. Type K double fat tree tip. Trpe P
Voryfon tip IT mach VAT (Bq
TV PLUGS AND SOCKITS
N Plugs (maut mpa), 5 for s0p
TV Lime Connectors (beck-10-buck nocineta). 4 for BOp.
Prowee add 12&% YAT.
```


VALVE BARGAINS

Any 5-54p, 10-E1-00, 50-14. 50. Your choice from the list below.
ECC82, EF80, EFI83, EFIB4, EH90, PCF80, PCF802, PCL82, PCL84, PCL85, PCL86, PCL805, PCL84, PCL85, PCL86, PCL805,
PL504, PYBI/800, PYB8, 30PLI4. PL504, PYR1/8
6F28, PFL200.

Colour Valves-PLSOB, PLS09. PLSI9, PY500/A. All tested. 35p each.

Tolevision Aerial Splitters 2-way, inside type- $\quad \$ 1.50$

AERIAL BOOSTERS

Aerizl boosters can produce remarkable improvementa on the picture and sound. in fringe or difficult areas. BII-For TH stereo and standard VHF/FM radio.
812-For the older VHF television-Please state chan. nel numbers.
B45-For Mono or colour this
covers the complece UHF Television band.
All boosters are complete with battery with Co-ax plugs \& sockets. Next to the set fitting. \&4. 20

Press Button UHF Tuners-4 Button Transistor-British made--2.50 each.

250,000
 Capacitor Clearance Sale

ALL MULLARD C280 AND C28I RANGE OF POLYESTER FILM CAPACITORS 250 AND 400 VOLTS WORKING. VERY GOOD MIXED SELECTION OF VALUES FROM - $01 \mu \mathrm{f}$ TO $1.5 \mu \mathrm{f}$.

PRICE $100-\mathrm{f} 1 \cdot 50,500-17.00,1000-612.00$
ALL PRICES INCLUDE VAT. P\&P 30p PER ORDER. PLEASE SEND UNCROSSED P.O. OR CHEQUES FOR RETURNING IF WE ARE OUT OF STOCK OF CAPACITOR BARGAIN PACKS. EXPORTS WELCOME AT COST

ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS. Tel. Rams. (070 682) 3036

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you.. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching untll you are success!ul.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
PC To: International Correspondence Schools
Dept 710J Intertext House. London
SW8 4UJ or telephone 6229911
Subject of interest
Name
Address

SOLDERLESS BREADBOARDING-DECS

The famoue DEC System of Solderlase Breaboarding Is ideal for both the young and more mature efudente of Elactronic Englnearing as it enables circultit to be fried and tested without the use of soldering and becaute of the epecish is - itremely usefut for the Circult Decigner who wiohes to axperiment with and perfect his clicult quichly yet economically
S-DEC (Model PB11)
This, the moet popular Board, in dealoned solely for the use of diacrete componente and it particularly useful for beslc oducational purposes
(No. of Contacte: 70)

T-DEC (Model P821)
Thie Board allowe 2 TOS or 1 DIL. IC Station to be used and so le primarlly intended for dlecrete worh or for Hnear IC applicetion where conniderable numbere of diecrete componente may be required
(No, of Confects ; 200)
ofinter
of
of

μ-DEC 'A' (Model PB31)
The μ-DEC 'A 't apeclelly designed for ane of uwe with IC'e modete diecrote components with autl fecillty. (No. of Contacts: 208) 1 of $28 \cdot 17$
of $28 \cdot 8$

μ-DEC 'B' (Model PB41)
The μ-DEC 'B' If for similar usee es μ-DEC 'A', but has two 16 lead IC soctets as part of the Board. (No, of Contecte; 200)

DEC ACCESSORIES

36 DiL adaptor (w/lh socket) PBoes
10 TOS adaptor (with socket) PBO7R
Double ended laeds (iet of ion) PB102 1 mm pluge (eet of ten) Pas

CRESCENT RADIO LTD.

144166 HIGH ROAD LONDON N22 6EJ :88-3206

(also) 13 8OUTH MALL, Edmonton, N. 9 803-1885 MAIL ORDER DEPT. 1 st Michaels Terrace Wood Green London N22 48J Phone 8:8-4474

P0. Fithon

PPI © Freched 3, $41,6,71,9$ and 19 volt $900 \mathrm{~m} / \mathrm{s}$. With on/ois awhtoh and
 5 mm 0 0nx -
Ideal tamter for ererybody intereatad to clectronles. Welshing Jem than 100 gramtnes and only 60 mm y 24 mm y
 $200 \mathrm{v}, 1,1,000 \mathrm{v}, ~ D C$ currept: $0.1 \mathrm{goj/m}$ $0-100 \mathrm{~m} / \mathrm{A}$, Realetance: 0-180K ohm. FIDEE S5 + VAT 8\% "C100" 100 WARTAEPALiLes All bullt and tested. monnted on a plato slumintum obemia which mese
 mount into a cabinet of your oholes. Four Controlled Inpate, Manter Vol ume, Troble, Middle and Base Controle. o/C protected outpat, for Disoo, Muslo
 GHoap. +81 . 00 carr. $+8 \%$ VAT.

DidyIc Chloxine
Anhydrous ferric obloride to donble

ABA PLAETIO BOE
Kandy boze for construotion profeots. Moulded artrualon ralla for P.Q. or hanale panele. Fitted with Imm tront anale
 $1006=100 \mathrm{~mm} \times 7 \mathrm{~mm} \times 47 \mathrm{~mm}=4.4$
$1007=160 \mathrm{~mm} \times 124 \mathrm{~mm} \times 80 \mathrm{~mm}=4$. . $022=107 \mathrm{~mm} \times 88 \mathrm{~mm} \times 48 \mathrm{~mm}=$

 New High Quallty High Power Twenter No form of cromover network 10 rt . quired as low frequenoy volteges simply Specification:
Specisication:
Prequency Reaponse: 8.8KEz to $2 a k i z \pm 3 d b$. (Iaput $4 V$ rom Pink RMB Input Yoltent 100 db) Max, condinuous Minimum Berles 1W.
Welght: 68 cm . (9.25 os .)
Pabe! Cut Oat: 76 mm dis. (8 ln)
81 Ie: $88 \mathrm{~mm} \times 85 \mathrm{~mm} \times 78 \mathrm{~mm}$
Rating: Depending on conceotions up
to low approx.
Price: $18.00+8 \%$ vat,
 Three Chaupal Bam, Mddie, Treble. Eson ahagnel bee its owl Juat conneot the in pat of this ronit to the loudspeaker tarminale of an apoplifer and comonot three 260 V up to 1000W lampe to the oatput terminale of the ualt, and

 2f oam ar BABaAIf Plan Nor A plantic box with mivulded clumaion ralle for PC or front plate fitted with four toonews (all cupplied). sIfE (internal) $01 \mathrm{~mm} \times 81 \mathrm{~mm}$ x 28 mm
=28mm
UK. CARR. All prices are excluding VAT. Please
50p unless otherwise add to each item the VAT rat in-
steded dicated to all ordert
ACCESS AND BARCLAYCARD ACCEFIED tated dicated to all order ACCESS AND BARCLAYCARD ACCEPTED

The hite are aultable both for tha beginner to gain a wide practical underatanding of electronict and for the more experlenced to

Ilustrated ta the SR-4ADX hit-over 150 different aciual working prolecte can be bullt, diamentled and rebuilt any number of times. plue eny elrculte of your own design

Eeh component is beatifully encapsulated in transparen plastic, engraved with its olacironic symbol. No solity forovided nvolved with any wit and yourget including educatione The kita are complete novery respech Neidio.

This fo the moet practical and eflective way to loarn about lectronice-the hite ara alto firstciate testing kite for laying-ou and testing new circulte quickly, There le no denger whatsoever In the use of these kite.

Adthon kite and spares are avalluble too, to Increase the ecope of ent kit if required.

B-3A-over $\mathbf{1 0 0}$ experimento-rado recelvers, transmititere implifert, microphones, larme, morse code, electronic birds, cate, sirens, oroans, infercoms, metronomet, photosisctric cell

3R-3ADX-over 105 experimente-similarto SR-3A plut ophis ticaled control panal and soler cell circuite, etc. E 33.45 COMPLETE

BR-4ADX-over 150 experiments-similer to SR-3ADX plue Relay and Multi-meter circults-mmeter, volimeter, rabistance meter weter purity -, Ion concentration -, volume - outpu

PRICES INCLUDEVAT, P\& P, MANUALS, EATTERIES, olc. NOTMINO ELSE TOPAY-FANTABTICVALUE for MONEY.

Educational and Trade enquirlos welcomed.
Pertonal callera walcome
CHEQUE/P.O. (or 11 p for illustrated iterature) to: DEPT. EE
ELECTRONI-KIT LTD., 20 Bride Lane,
Ludgate Circus, London, ECAY 8DX
Tel: 353-6430.

everyday
 electronics

SCOPE FOR INNOVATION

Most projects featured in our pages are custom designed for a single definite application. Such dedicated projects are illustrated in this month's issue by the Exposure Unit, the Audio Peak Level Indicator and the Portable Short Wave Receiver

There is the other kind of project which has, potentially, a number of uses and cannot be dogmatically tied to just one application. This month we have an example in the Motor Controller. Possibly the greatest appeal of this circuit will be found amongst radio-controlled model fans. This motor controller was indeed originally designed for use in a model motor boat. But the advantages of electronic control for small power dec. motors will stir the imagination of others apart from the model fraternity, and so we expect this design to be pressed into service in a number of very different ways.

News of any novel and interesting applicatins of this particular circuit will be welcomed. Any ideas that might find wider appeal amongst our readers will be considered for publication. This is one way by which we all help further the use of electronics. It is in fact really the story of electronics-for often an original requirement is met by developing a design, and subsequently this very design is turned to additional good use in totally different fields of application.

Our September issue will be pubilshed on Friday, August 19. See page 373 for details.

BACK NUMBERS

We are happy to announce that the Back Numbers Service has now been restored. Full details are given on page 357 .

After a closure of this service for some five years, we know this news will be welcomed by readers. We have always understood and sympathised with the frustration felt by regular readers who, for some reason or another, had been deprived of a particular issue of the magazine; likewise with new readers joining us shortly after the commencement of a series such as T'each-In, who naturally wished to obtain the few previous issues containing the opening parts of the series.

One note of caution needs to be given though. Exceptional demand could quickly exhaust the available stocks for any given month. Therefore we do urge that the Back Numbers Service be seen as an emergency back-up. It is still wise to place a definite order with your local newsagent, bookshop or component store.

Knowing what is planned for the coming months, we are sure you will be most annoyed to miss even just one single issue!

EDITOR F. E. Bennett - TECHNICAL EDITOR B.W. Terrell B.Sc. TECHNICAL SUB-EDITOR T. J. Johnson G8MGS ART EDITOR J. D. Pountney - P. A. Loates - K. A. Woodruff

ADVERTISEMENT MANAGER D. W. 8. Tilleard - P. Mew

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 6 NO. 8
AUGUST
1977

CONSTRUCTIONAL PROJECTS

PORTABLE SHORT WAVE RECEJVER Simple design to tune the short wave bands by R. A. Penfold 352
MOTOR CONTROLLER Varies the speed of a d.c. motor by G. Ruddick 358
AUDIO PEAK LEVEL INDICATOR Eliminates distortion when recording by R. A. Penfold 374
EXPOSURE UNIT Gives direct reading in light values by D.l. fraser $\mathbf{3 7 7}$

GENERAL FEATURES

EDITORIAL 350
READERS' LETTERS Your news and views 356
BOOK REVIEWS A selection of recent releases 357
BACK ISSUES ANNOUNCEMENT 357
DOING IT DIGITALLY Part II Model railway systems by O. N. Bishop $\mathbf{3 6 2}$
SHOP TALK New products and components for constructional projects by Brian Terrell 367
YOUR CAREER IN ELECTRONICS Review of the current opportunities by Peter Verwig 368
FOR YOUR ENTERTAINMENT Batteries and telephones by Adrian Hope 371
PHYSICS IS FUN Self Induction by Derrick Daines $\mathbf{3 7 2}$
JACK PLUG AND FAMILY Cartoon 379
FAULT FINDING Part 4 Using a multimeter by Douglas Vere $\mathbf{3 8 0}$
BRIGHT IDEAS Readers' hints and tips 384
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of by Anthony J. Bassett 385
DOWN TO EARTH Operational amplifiers by George Hyton 388

LETTERS, BINDERS AND BACK NUMBERS

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles should be addressed to: The Editor, those concerning advertisements to: The Advertising Manager, at the address shown opposite.

Binders for Volumes 1 to 6 (state which) are available for E2.10, including postage from Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF.

Back numbers of Everyday Electronics are now available,
see page 357.

Wbile there is no doubt that for serious short wave reception a receiving station equipped with a good aerial system is required, a lot of fun can be obtaine from a simple S.W. receiver using only a telescopic antenna. Also a surprising number of transmissions, including some from quite distant stations, can be received using such a set up.

This article describes a simple two transistor regenerative receiver that will provide a strong output to a pair of high imppedance headphones or a crystal earpiece. It requires no aerial other than its built in telescopic one.

The frequency coverage is approximately 5.0 to 17.5 MHz in one range. The set has been mrimarily designed for broadcast bands reception, and the five most popular of these bands are included in its coverage. These are the $49,41,31,25$, and 19 metre bands.

CIRCUIT DESCRIPTION

The circuit diagram of the receiver is shown in Fig.l. The primary winding of L 1 and C 2 togather form the tuned circuit of the receiver. Variable capacitor C 2 is, of course, the usual tuning control. In order to obtain a suficiently strong signal from a talescopic aerial, a very "tight" coupling is needed between the tuned circuit and the aerial.

This is obtained in this circuit by simply connecting the aerial direct to the non-earthy end of the tuned circuit.

These signals are effectively coupled into the low input imppedance of TR via the secondary winding of Ll and the dec. blocking capacitor C3. Transistor TR1 is used as a regenerative detector, and it is used in the common emitter amplifying mode. L2 forms the r.f. load for TR1, and R2 is it's a.f. load. Resistor R1 is the base bias resistor.

This type of regenerative detector depends upon the fact that the current gain of a transistor varies with the level of the collector current. This causes TRI to amplify positive going half cycles slightly more than megalive going ones. This gives a rather inefficient form of rectifcation, and provides the required detection.

FOR GUIDANCE ONLY
 ESTIMATED COST OF COMPONENTS excluding VA.T.

57.50 excluding case

REGENERATIVE ACTION

Positive feedback is fed from TR collector to the tuned circuit via the third winding on Ll and Cl . Variable capacitor Cl enables the amount of feedback to be controlled. This use of positive feedback is usually termed regeneration, and is also sometimes called reaction.

Regeneration has two main functions to perform. First, by recycling some of the signal the gain of the circuit is significantly increased. The second effect of regeneration, and an equally impportant one, is that it increases
the selectivity of th Selectivity is the abilit ceiver to pick out on many closely space missions.

The regeneration will boost signals at or ne centre of the receiver' much more than those away from the centr selectivity quite marked

AUDIO OUTPUT

Capacitor C4 filters o at the output of the defector the remaining af. signal is fed to the base of TR 2 via C5. Transistor TR2 is used as a high gain common emitter amplifier and has base bias resisto R3 and collector load resistor R4. The output signal from TR 2 collector is fed to the output socket by way of the d.c. blocking capacitor C7.

The output of the receiver is quite strong and is more than adequate to drive any high impedance phones or earpiece. It is even sufficient to drive a pair of eight ohm stereo headphones, but the use of a single low inpedance earpiece is not reconmended.

Capacitor C6 rolls of the upper frequency response of the output
circuit. of a reone of transnaturally to the response ing well and it set's
any r .
.

\square

Fig. I. Complete circuit diagram of the Portable Short Wave Receiver

HOW IT WORKS

Radio frequency signals from the transmitter are induced in the aerial and applied to the resonant circuit. This circuit allows a particular frequency, depending on the setting of the tuning capacitor, to be applied to the next stage whilst effectively blocking all other frequencies.

The amplifier design allows amplification of radio frequency signals, detection and audio frequency amplification. Some of the r.f. in this stage is fed back to the input via a reaction control which aids the selectivity of the receiver. The output from the first amplification stage is coupled to an audio frequency amplifier suitable for connection to a pair of headphones.

stage, and this gives an improved signal to noise ratio and prevents instability due to the high frequency feedback between TR1 and TR2.

CONSTRUCTION

A ready made $150 \times 74 \times 47 \mathrm{~mm}$ plastic a.b.s. box makes a suitable case for the set, and this is readily obtainable. Any other box of a similar size should be suitable, but it must not be sig. nificantly smaller on any dimension as there might then be inadequate space to accommodate all the components.

The front panel layout used for the prototype is shown in Fig.2. It is strongly recommended that this layout be as closely adhered to as possible, and this is also the case for the general layout of the set. There is not a great deal of excess space inside the case, and deviating from this layout could make it impossible to fit all the parts into the cabinet.

Also, changing the layout could cause instability or a loss of performance if the constructor is not absolutely sure what he is doing.

Capacitor C2 has a rather unusual fixing and it is fastened to the front panel using three short 4BA screws. A home made paper template can be used to help mark the positions of the holes on the panel.
To make this, simply make a hole of about 7 mm diameter in

Partable
 Sllll (O) 1π

Close up view of the circuit board
Fig. 2. The drilling details for the front panel. It is recommended that the dimensions be strictly adhered to.
(Below) Dimensions for the coil mounting bracket.

Fig. 3. Complete wiring diagram of the receiver.

The circuit board has no breaks on the underside. It is mounted in the case as shown, using the connecting wires as the support. Ensure therefore, that they are of the solid type, rather than stranded wire.
the centre of a small square of paper, and then thread this over the spindle of C2. Press it over the front of the component and then use the point of a pencil to punch three holes in the paper, one over each mounting hole in C2.

Use countersunk screws to mount C2, and make sure that these do not penetrate more than about 1 mm through the front of this component. If they should penetrate too far they could jam the capacitor. If necessary, use some washers or short spacers over the screws to reduce their penetration.

MOUNTING THE COIL

The coil is mounted on the front panel above S 1 and Cl , and a simple bracket must be constructed for this purpose. It is made from approx. 20 s.w.g. aluminium and details of this bracket are shown in Fig.2.

The threaded part at the top of the coil fits through the hole in the bracket, and a plastic mounting nut is supplied with the coil. The bracket is glued to the front panel using a high quality adhesive.

AERIAL MOUNTING

The telescopic aerial is mounted on the extreme right hand side of the outer casing. The method of mounting may have to be varied from that described here, as not all aerials have a 4BA threaded portion at the bottom. A little initiative must be used here.

If the aerial used is one of the many that has a length of 4 BA thread at the base, it is simply mounted by drilling a

Components = =

Resistors

$R 1$	$150 \mathrm{k} \Omega$
$R 2$	$3.3 \mathrm{k} \Omega$
$R 3$	$2.2 \mathrm{M} \Omega$
$R 4$	$5.6 \mathrm{k} \Omega$

All resistors $\ddagger W$ carbon $\pm 10 \%$
Capacitors

Capacieors ${ }^{\text {a }}$		
Cl	25 pF air-spaced va	ype (804)
C2	365pF air-spaced	type 'O')
C3	$0.01 \mu \mathrm{~F}$ polyester	
C4	$0.01 \mu \mathrm{~F}$ polyester	
C5	$0.22 \mu \mathrm{~F}$ polyester	See
C6	$0.01 \mu \mathrm{~F}$ polyester	
C7	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	
Semiconductors		
TRI	BFI84 silicon npn	
TR2	BCIO9 silicon npn	

Inductors
LI Range 4T blue (Denco transistor useage coil)
L2 10 mH ferrite cored r.f. choke (Repanco type CH4)
Miscellaneous
SI single-pole single-throw toggle switch
SKI $\quad 3.5 \mathrm{~mm}$ jack socket
$\mathrm{BI} \quad 9 \mathrm{~V}$ type PP3 or similar
AEI telescopic aerial 1.2 metres long
Plastic case $150 \times 74 \times 47 \mathrm{~mm}$; stripboard 0.15 inch matrix 6 strips by 7
holes; B9A valveholder for LI; battery connector; high impedance headphones or earpiece; piece of 20 s.w.g. aluminium $65 \times 16 \mathrm{~mm}$; one large and one small control knob; connecting wire; solder; small rubber feet (4 off).
hole fractionally larger than the diameter of the aerial in the top of the case at the appropriate spot. A 4BA clearance hole is drilled immediately below this in the base of the case.

The base of the aerial is taken through the hole in the top of the case and then a solder tag is mounted on the bottom of the aerial with a 4BA nut being used to hold it in position. The 4BA thread is then taken through the hole in the bottom of the case and a 4BA nut is used to secure the aerial to the case.
Four small cabinet feet must

Internal photograph showing the positions taken up by the coil and circuit board.
then be glued to the bottom of the case.

WIRING

Several of the components are wired up on the coil. It is not advisable to solder direct to the pins of the coil as the plastic coil former will melt. Instead a B9A valveholder is fitted over the coil base and the connections are made to this.

If the mounting bracket of the holder should get in the way at all, it can be prised or cut off.

All the wiring of the receiver is shown in Fig.3. Start by connecting the six components that are mounted on the coilholder. This will probably be easier to accomplish if the valveholder is temporarily removed from the coil.

STRIPBOARD LAYOUT

The audio circuitry is wired up on a 0.15 inch pitch stripboard panel having 6 strips by 7 holes. This is cut down from a larger piece of board using a hacksaw and then the various components are wired in. There are no breaks in any of the copper strips.

Next the wiring to the controls, battery clip, and headphone
socket is completed. The component panel is positioned just below Cl and Sl , and it is this wiring that provides its support. For this reason it is best to use single core rather than multistrand wire, and in either case it should be p.v.c. insulated. Keep this wiring reasonably short and direct.

Finally, complete the wiring by connecting in the lead between C2 and the aerial. It is preferable to use a flexible multistrand wire here.

USING THE RECEIVER

As supplied the adjustable core of Ll is screwed right into the coil. This should be unscrewed so that about 10 mm of metal screw thread is protruding from the top of the coil. Current consumption is only about 2.5 mA , and many months of normal usage will be given using a PP3 battery. There is a space for this next to Sl , on the extreme left
hand side of the case.
Two of the controls are quite straight forward, S1 being the on/off switch and C 2 the tuning control. Capacitor Cl is not a volume control, and must be carefully adjusted for really good results to be obtained.
When initially testing the set start with the aerial fully extended and the reaction control well backed off (the two sets of vanes almost fully unmeshed). Adjusting C2 will probably result in a few stations being heard, and gradually advancing Cl should increase the number of stations and the volume from the headphones.

If Cl is advanced too far the set will oscillate, and this will be heard as a whistle from the phones as the set is tuned across a station. Both sensitivity and selectivity will be at a maximum with the reaction control set just below the threshold of oscillation.

The reaction will need slight readjustment every time the
tuning control is significantly altered if the set is to be maintained at optimum sensitivity.

Often it may be found that with the aerial fully extended a strong signal on a band tends to blot out weaker signals that are just either side of it. This is due to the loading effect of the aerial on the tuned circuit causing reduced selectivity, and is the price one pays for the tight coupling that must be used between the aerial and the tuned circuit.

Usually reception of the weaker stations can be improved by reducing the length of the aerial slightly. This reduces the loading on the tuned circuit and gives increased selectivity, but will result in some loss of signal strength.

After a little experience has been gained using the receiver it should be possible to receive stations from all over Europe, and occasionally from much further afield.

Earth Leakage

Could you tell me if you have plans for publishing a circuit for an efficient "earth leakage protector" for use with high power amplifiers as used on stage by guitarists and other musicians.

As you know there have been fatal accidents on numerous occasions, and as the father of a performer, this matter has worried me for some time. I realise there are devices now being fitted in clubs etc. but these tend to be extremely expensive.

I feel that many of your readers would welcome publication of a fail-safe device which could be a life-saver.
W.S. Russell, Merseyside

[^1]If the live mains lead comes in electrical contact with chassis or other oppliance earthing point, then the fuse should blow. This does not happen when there is a foulty earthing system and here the result is that the chossis and everything connected to it becomes live which usually includes such things as guitar pick-up covers and bezels, me:al strings and fitments, metal jack plug casings, chassis fixing screws etc, and touching these parts gives a nasty and sometimes fotol electric shock.
It is the responsibility of the appliance user to ensure thot his/her equipment is earthed as for os the earth pin on the mains plug. This applies especially to exposed metal parts/fitments mentioned above. It is the responsibility of the proprietor of the premises to ensure that the electric wiring, and in particular, the earthing system, is tested regularly to ensure that the circuit breakers (fuses) will operate satisfactorily under fault conditions.

To return your question, regrettably we have no plans to publish on earth leakage protector at present but are pleased to inform you that such a device has recently been published in our sister magazine Practical Electronics, July '77. With this device in the event of a suggestion of earth leakage, the user is isoloted from the mains.

Fan Mail

I am writing to congratulate you on your fantastic magazine. I have been getting your magazine since the end of 1974 and I am so pleased with it that I
am gradually aquiring all the back issues through second hand book shops.

I have just been reading your first is sue and the purpose of your magazine. I think you have done a splendid job with carrying out that purpose and th rough your magazine I have had much enjoyment of my hobby of electronics.

It is the only magazine that I know of that caters for the beginner and hobbyist.

An absolutely first class magazine. Keep up the good work.

Brian J. Rimmer, Rotorua, New Zealand

Thank you for your letter and for the kind remarks you make concerning this magazine. Naturally, all of us are delighted to receive such fovourable comments, and it is exceptionally pleasing to hear from overseas readers such os yourself. I was interested to leorn that you are currently engoged in acquiring all the back numbers through secondhand bookshops. I suppose this could become another hobby-hunt the past issues of EVERYDAY ELECTRONICSI

We shall continue publishing a varied selection of projects which are relatively inexpensive and uncomplicated. Also, regular feotures dealing with the theoretical and practical ospects of this hobby. So I think you can be assured of an interesting selection of articles in future months. Ed.

book|lilhervews

Electronics Fault Diagnosis

Author lan R. Sinclair

Price: $£ 2.75$ (U.K. only)
Size $215 \times 140 \mathrm{~mm}, 108$ pages paperback
Publisher Fountain Press
ISBN 0852425309
$M^{\text {ANY constructors at one time or another have }}$ - built a piece of equipment which refuses to work first time, whether it is a simple audio amplifier or a complex digital circuit. In order to have the equipment functioning again it is necessary to fault find on the circuit. Fair enough assumption, but how do you start? Firstly by reading this book.

Although no step by step instructions are given, to trace a fault, it does give the reader something else. A chance to exercise his grey cells. Throughout the eight chapters, the accent has been to present various circuits together with a table of typical voltage readings under normal working conditions and a few voltage readings under fault conditions.

It is up to the reader first to ascertain the correct set of normal readings and then by working through the circuit to deduce the fault from the remaining sets. A comprehensive explanation of the circuit is given, and by using this information the fault should be found.

Topics covered include: power supplies, oscillators, amplifiers, timing circuits, and digital circuits. The last section covers the answers and includes an explanation of the components most likely to cause the fault.

Certainly an interesting book written in an unusual manner, and is sure to be helpful to those who need to fault find.

An excellent book suited especially to readers who have finished Everyday Electronics' two series: Doing it Digitally and Fault Finding. T.s.s.

50 Projects Using Relays SCRs and Triacs
 Author F. G. Rayer, T.Eng.(CEI), Assoc.IERE
 Price $£ 1 \cdot 10$

Size $180 \times 108 \mathrm{~mm}, 102$ pages paperback
Publisher Babani Press
ISBN 0859340406
When first reading this book, it seemed highly unlikely that so many different circuits could first impressions were wrong the SCRS. However most impressive and well thought range included is The booksive and well thought out.
The book is divided into three sections, circuits using relays, scrs, and triacs. The range covered is vast and would need a great deal of space to describe. The following are just an example: soundoperated switch, model train controller, rain alarm and a relay timer.
One disadvantage of the book is the lack of constructional details, the circuits are however fairly straight forward and should not prove too difficult to the average constructor.
T.J.J.

Practical Repair \& Renovation of Colour TV's Author Chas. E. Miller

Price 95p

Size $180 \times 108 \mathrm{~mm}, 79$ pages paperback
Publisher Babani Press
ISBN 0859340376
A subject dear to most people, is the saving of money. Any idea of saving even pennies, is very welcome indeed. For an initial outlay of something like $\mathrm{E40}$, an old TV may be purchased and repaired almost like new. It must be realised that in most cases a great deal of work, and extra cash needs to be spent before the TV is in a working condition.

This usually means that most sets have been written off by the dealer as "B.E.R." (Beyond economical Repair) and are mostly in a very sorry state.

Nevertheless for those who are willing to "have a go" the results more than justify the time and money involved.
Throughout the book, examples of the most common faults and the methods of solving them are given. It is assumed therefore that the constructor has at least a basic knowledge of colour TVs and most certainly of black and white.
The remaining chapter and the two appendices are taken up by describing suitable test equipment which may be constructed, as well as giving a run down on the spares likely to be needed.

Written by an author, who for many years has been a regular contributor to "Television" magazine, and highly experienced in the field of TV servicing.

[^2]
(e) Back Numbers

We are pleased to announce that the Back Numbers Service has now been reinstated and will operate from the issue dated June 1977.

This and subsequent issues of Everyday Electronics will be available at the inclusive price of 60 p per copy. This includes inland/ overseas postage and packing.

Orders should be addressed to: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Cheques and postal orders should be made payable to IPC Magazines Limited.

A limited supply of earlier back issues is also available. Requests with appropriate remittance, should be sent to the above address. In the event of non-availability, remittances will be refunded.

This project was devised for use in the author's radio control model boat system. When fitted in the model boat and used with a radio control receiver and servo system it can provide an inexpensive means of controlling the speed and direction (forwards and backwards) of the craft which was powered by a low voltage d.c. electric motor.

The use of the controller, though, is not limited to the model area. It could also be used to rotate a roof, loft or indoor aerial for best reception results, as will be discussed later. Another application that springs to mind, but which will not be dealt with in this article is in model railway systems.

CIRCUIT DETAILS

The complete circuit diagram of the controller is shown in Fig. 1. The type of motor fitted to the author's model had a field winding and this was placed across the supply rails and the armature supply polarity and magnitude controlled by the circuitry. The circuit is not limited to this type of motor as the more readily available permanent magnet type can be used. In this case, there are only two corrections to the motor and any reference to the field winding should be ignored.

The direction of rotation of the armature and its speed will depend on the voltages at points A and B. These in turn are depen-
 supply rail, VR1b wiper moves towards the negative rail.

For midway setting of VR1 a/b, all transistors are off-not con ducting. The voltage at point A will be equal to that at B and so the motor will be stationary.

If the potentiometer is rotated so that VRla wiper becomes more positive, a point will be reached where TRI is biased on and so the potential at A in.

creases (moves in a positive direction). Simultaneously TR4 starts to conduct and point B goes more negative. There is a potential difference across Ml and it should rotate at a fixed speed. Further rotation of VR1 causes the motor speed to in crease.

If the potentiometer is now rotated in the opposite direction, it similar amount, then TR3 and TR2 conduct and the potential at B is greater than that at A and so the motor rotates in the opposite direction.

To cause the motor to rotate through a specific angle, then the potentiometer should be rotated in the desired direction and then returned to the midway position first just before the angle of rotation is reached. Alternatively Sl can be switched off after this period has elapsed. Remember that the further the control is turned, the faster the motor rotates.

Motor Controller
 FOR SERVO SYSTEMS, MODEL BOATS AND ROTATABLE AERIALS etc.

By C.RUDDICK

The value of the potentiometer is not too critical, say any value between 1 and 2.5 kilohm. The only problem with higher values being a larger "dead area" in the centre position (motor stationary) and the consequent lack of fine control over the remainder of the travel since the number of ohms per degree of turn is greater. Hence the wiper will need to be closer to the end of the travel before sufficient current flows into the bases of the conducting transistors to start the motor.

Resistors R1 to R4 have been included to limit the maximum base current to a safe level.

CONSTRUCTION

The prototype unit was constructed on a piece of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium sheet as shown in Fig. 2 using point-to-point wiring. The size of this panel, $120 \times 85 \mathrm{~mm}$ was found to be adequate for the motor used in the prototype and should be suitable for 12 V motors rated at up to 5 A . For higher rated motors additional heatsinking will be required and the tran. sistors, especially TR2 and TR4,

Fig. I. Complete circuit diagram of the Motor Controller. As mentioned in the text, different types of motors may be used. In this case the field windings (shown as a coil) may be omitted.
will need to be replaced by higher power types.
If the unit is to be fitted inside a boat or other model, then no case is likely to be required. If used for other applications, the panel could form the front or top of a case. It might be a good idea to remove the potentiometer and switch from the aluminium panel with the remainder of the components fitted inside a ventilated case.

This unit is based on the fact that the direction of rotation of a d.c. electric motor can be changed by interchanging the connections of the motor to the power supply. Also the speed of rotation of the motor is proportional to the voltage applied to the motor up to its rated level.
In the Motor Controller, the speed is controlled by an electronic attenuator and rotational direction can be set by electronic switches S1 and S2. With the attenuator set midway, S1 and S2 occupy their 'open circuit' positions as shown. If the attenuator is rotated clockwise, S2 switches to connect the motor to the positive supply line, while at the same time S3 is caused to switch to the negative supply line. This causes the motor to rotate. Further advancement of the attenuator control increases the motor speed. If the attenuator is rotated in an anti clockwise direction past the midway point, S2 switches to connect the motor to the positive line and S1 connects it to the negative line. Thus the motor rotates in the opposite direction.

Whatever case arrangement is chosen, the most important aspect of the construction is the mounting of the four transistors. This is shown clearly in Fig. 3 and should be strictly adhered to.

Fig. 3. Mounting details for the four transistors.

Use of heatsink compound or silicon grease is recommended. This should be applied to the surfaces between transistor case/ mica washer and mica washer/ aluminium panel. Stout wire rated at $5 A$ or more should be used to wire up the components.

MODEL BOAT SYSTEM

When used as a speed controller in a model boat system, the potentiometer will be turned, via reduction gearing, by a separate low voltage electric motor operated from a radio control servo link. A suggested arrangement is shown in Fig. 6.

The position of VR1 sets the speed and direction of the propulsion motor M1. When a change in speed or direction is com-

Motor Controller

Fig. 2. Wiring diagram for the Motor Controller. This is mounted on a sheet of aluminium, which also acts as the heatsink

Fig. 4. Suggested arrangement for rotating a t.v. aerial.

Fig. 5. Typical method of mounting the aerial mast. The two metal spars make contact when the aerial is pointing north.
manded, this signal is processed by the receiver and causes the servo to operate followed by M2 rotating clockwise or anti-clockwise. This is transmitted through the gearing to VR1 which in turn causes the propulsion motor speed to increase or decrease as required.

Stops are required on VR1 gear wheel to operate microswitches S2 or S3 to prevent VR1 being turned too far. This is achieved by placing the normally closed microswitches in series with the supply to the motor, and positioned to become open circuit on contact with the stops.

In the absence of a command signal, S4 is returned (by the servo) to its midway position thereby leaving VR1 set and the craft moving at a constant speed.
Changeover switch 54 can be a standard d.p.d.t slide switch fitted with a rod (through its operating button) to the servo.

ROTATING AERIAL SYSTEM

For those wishing to rotate their t.v. or radio aerial to obtain best reception, and those in a position to receive from several transmitters (different directions), can use this unit to rotate their roof, loft or even indoor aerial whilst remaining seated in front of the t.v. set. A suggested arrangement is shown in Fig. 4.

In this application, the unit will be mounted in a ventilated case positioned close to your most comfortable armchair, and wires running to the aerial drive motor. Reduction gearing between motor shaft and aerial mast is required to reduce the strain on the motor and to allow even finer speed control.

A suitable aerial rotation speed is one revolution per minute. By noting and fixing the position of VR1 for this speed (in both directions), the angle swept by the aerial will be proportional to the time that Sl is turned on.

The total sweep angle should be limited to about 360 degrees i.e. one revolution to prevent the aerial cable from getting tangled. This can be indicated by a lamp on the front panel being illuminated when the limits are reached. The approach direction will be apparent from the setting of VR1. This safety factor requires a third wire from the unit

Resistors
RI 100Ω
R2 100Ω
R3 100Ω
R4 100Ω
Ail IW carbon $\pm 10 \%$
Potentiometer
VRI I kilohm dual-ganged lin. carbon or wirewound ? ?
Semiconductors
TR1, 3 2N3T72 silicon npn (2 off)
TR2, 4 OC35 germanium pmp (2 off)
Miscellaneous
Bi 6 to 12 V (capacity to suit motor employed)
SI on/off type toggle or push-to-make
MI Any d.c. motor operating on 6 to 12 V requiring up to 5A (see text) Aluminium mounting panel (heatsink, see text); TO3 mica washers (4 off); insulating bushes for transistors (8 off); heatsink compound; solder tags (6 off): 6BA fixings; 5A terminal block, 6-way; 5A connecting wire; control knob (not required for model boat application); case to suit (not required for model boat application); gearing; drive motor for VRI (not required for aerial application); spars and bracket for aerial mast.

to the base of the aerial mast connecting to a spar, clamped to, but insulated from the mast, see Fig. 5. A second flexible spar needs to be positioned in a known direction, say north, such that when the two spars are aligned, they make contact. Thus when the lamp lights, you know the aerial is pointing north.
In use, switch Sl should be operated only while the panel lamp is unlit. When the lamp
lights, VR1 must be changed to the opposite mode. If VR1 is set for $1 \mathrm{rev} / \mathrm{minute}$, then any direction may be computed easily with the aid of a wristwatch fitted with a second-hand.
No doubt many ingenious applications will be dreamed up by readers to suit their personal requirements, especially in the field of model control. We would be interested to hear of any unusual applications.

Fig. 6. Model boat system. The changeover switch $\mathbf{S 4}$ is a type which has a centre of position. The servo is normally avallable from a model shop. Make sure when purchasing, that an operating bar is also bought.

at methods of using digital circuits to control model railway systems.

RAILWAY SYSTEMS

Digital integrated circuits can be very useful for controlling model railway systems. It is possible to arrange for electrically operated points to be altered, signal lights to be changed and the power to the train to be switched on and off as required.

The changes can be made to happen to a pre-arranged plan which is built into the system. The integrated circuits work so quickly that they can easily change points in good time even when a train is approaching at high speed.

It is not possible to give precise instructions on how to connect i.c.s. to a particular model railway for so much depends on the railway system concerned and what is required of it. Below are presented some ideas for various parts of the system and some examples of how to put the parts together to make a working system.

As usual it is best to start in a small way so that the knowledge
gained by practical experience can be used to build up the system in easy stages.

POWER SWITCHES

Power switches (as described in Part 5) play an important part in most of the controlling circuits. They are capable of switching power to points, signal lamps or the engine itself.

Sometimes a double supply is required for operating points which means using two power switches. These must be connected so that their positive output is common to both circuits. They can be operated from the same battery supply. If the points will operate on six volts, then the same battery can be used for powering the integrated circuits and the points. The wiring for such a circuit is shown in Fig. 11.1.

When switch Sl is on, power is applied to terminals A and C of the points and they move one way. When switch $S 2$ is on power is applied to terminals C and B, and the points move the other way.

The circuit must not allow Sl and S2 to be on at the same time. It must allow both to be off, for the coils of the points will get very hot if power is

Fig. 11.1. Block diagram showing how a system using power switches can be constructed to operate a pair of electrically operated points.

PROTECTION DIODES

The points are switched by electromagnets-devices consisting of a large number of turns of wire on a metal core. The current through the wire produces a large magnetic field in the core which attracts a piece of metal connected to the points.

When current to the coils is switched off, the collapsing magnetic field produces a large voltage across the ends of the coil. This voltage is very short-lived but can be of a magnitude capable of destroying a transistor.

The diodes are placed so as to conduct this voltage thus protecting the transistors. It is a wise precaution to use diodes -ike this whenever the power switches are used to operate any sort of electromagnetic device such as points, relays, electric buzzers or bells.

The design of the switch described above is suitable for most model railways. It can be used to switch one or two pairs of points at the same time. If three or more are to be switched in one go then an even higher power transistor such as the 2 N 3055 will be necessome explanation.
sheet will do for each (Fig. 11.3b).

The design assumes that the points will be operated from a 12 volt supply as is usual with model railways. Instead of the 12 volt battery shown, the output from the 12 volt transformer can be used (the d.c. output, not the a.c.). The i.c.s. and the controlling circuits must be powered separately by the usual 6 volt battery.

Connection of the power switches to the points is shown in Fig. 11.4. The diodes across the loads are essential and need

The heatsinks need not be large as long as the switches are operated for very short periodsjust long enough to switch the points. A strip of aluminium

Table II.I: Truth Table of Fig. II. 2

Inputs		Outputs	
A^{\prime}	B	A^{\prime}	B^{\prime}
L	L	L	L
L	H	L	H
H	L	H	L
H	H	L	L

fig. 11.3. Construction of the points controller on a piece of stripboard. The wiring shown is for points requiring a 12 V supply. The transistors require heatsinks for safe operation and small strips of aluminium bolted to the transistors metal faces as at (b) are all that is necessary.
(b)

Fig. II.4. Circuit of the power switches suitable for operating points. The diodes are necessary to protect the transistors from the high voltages produced by the point coils as current is switched off.

INPUTS TO THE I.C.s

The switching of points, operation of signal and station lights, electrically operated crossing gates and also the engine can all be controlled by i.c. circuits, but what inputs do the i.c.s require?

Apart from general inputs causing the i.c.s to take over or give up control, the i.c.s may need data on the position of the train. There must be some kind of device that can tell where the train is-sometimes it might also be useful to know in what direction the train is travelling.

To tell where the train is a light operated switch can be used. For fast moving trains, the phototransistor type may be essential, but for slow-moving trains or long ones that take half a second or so to pass a point on the track, the cheaper ORP12 type can be used.

For best results there should be a lamp on the opposite side
of the track, but often the light from a distant room light or windows will be sufficient (except when someone walks between the light and the light operated switch .

Another way of arranging things is to have the light operated switch below the baseboard on which the track is mounted. A small hole must be bored through the baseboard and track -usually 5 mm diameter is sufficient. No special lamp is then needed as light reflected from the ceiling will be adequate. The latter method is the neatest in many ways as it is almost invisible; Fig. 11.5 (a) and (b) illustrates the two methods.

TRACK LAYOUT A

A track layout which can be controlled electronically is shown in Fig. 11.6. Points A are manually operated and are placed near to the train controller. Points B on the far side of the layout are

Fig. II.5. Two methods of using photocells to detect the presence of the train. In (a) the light operated switch is mounted on one side of the tracks and the lamp on the other; (b) is more elegant with the photocell mounted under the baseboard, light entering through a small hole drilled in it.
to be automatically controlled by i.c.s.

Two light operated switches are needed (which could share a single lamp-if a lamp is used), and one power switch using BD131 transistors. The controller operates points A and controls the direction of travel of the train.

If the train approaches points B along line X, it triggers the light operated switch on that line, the output of which goes high (assuming an ORP12 type is used-if a phototransistor type is used then a 7400 i.c. is necessary to invert the output. The output can be taken directly from an ORP12 type switch to one input of the power switch and from there to a pair of contacts on the points. Choose the pair that will make the points change so as to accept the oncoming train.

Provided that the train does not approach the junction too fast, the light operated switch will have time to respond and switch points. The other light operated switch on line Y is connected to the other input of the power switch which is connected to the other points terminals.

Thus if the train is brought down line Y the points will switch to accept the train. If the train approaches the points from line Z it will then pass along line X or Y depending on which way the points were last switched.

If the layout has signal lamps, the power supply to these can be connected to the power supply to the points so that the correct sig. nal lights are displayed.

We will now look at a com. pletely automatic layout-all the controller has to do is to stop and start the train.

Fig. I I.6. Track layout A. Points A are manually operated and are placed near to the operator.

TRACK LAYOUT B

The second layout requires only one light operated switch, one power switch and two sets of electrically operated points. The layout is shown in Fig. 11.7.

The points L and M are wired together so that when the input A of the power switch goes high, the points will switch to lines W and Y; and when input B goes high they change to lines X and Z.

The light operated switch is operated by a train on line W or on line X. The output from the light operated switch which goes high when a train comes along W or X is passed to a 7413 Schmitt Nand (Part 7) which in verts it and gives a clear cut pulse suitable for operating the next stage which is the clock input of a J-K flip-flop. The outputs of the flip-flop go to the power switch. A block diagram of the circuit is shown in Fig. 11.8.

The sequence of events is as follows:
(1) The train is at station A, the flip-flop is cleared, Q is low, \bar{Q} is high and so the points are switched to lines X and Z.
(2) The train is started by the controller.
(3) As it goes along W it triggers the light operated switch whose output goes high, the output of the nand goes low and the flip-flop changes state (J and K are permanently high. Output Q now goes high and the points are switched to W and Y.
(4) The train now travels on to the main oval and round it, along line Y until it approaches points L along X. At this stage the light operated switch is triggered again. The flip-flop is wired to change state each time so the points switch again to X and Z.

The train continues around the oval past points L but when it gets to points M it is routed along line Z to station B where it must be stopped by the controller.

Thus the effect of this fairly simple i.c. control system is that the train leaves station A goes round the oval one and a half times and then branches off to station B.
If the train is reversed, without resetting the flip-flop it will go back along the same route.

Make sure that the light operated switch is far enough from points L to allow the rear end

Fig. 11.8. Block diagram showing how the control board in
Fig. 11.7. is constructed. The Schmitt is used to "clean up" the output of the light operated switch.
of the train to clear the points before they are switched.

This type of circuit does all the points switching, leaving the operator in the role of train driver.

One snag of this circuit is that because one output or the other of the flip-flop is always high, one of the coils of the points is always energised. This is a waste of power and can lead to overheating. Thus the circuit should not be used for long periods.

PULSE GENERATOR

What is really required for the above system is a brief pulse to the points each time the flip-flop changes state. This pulse producer between the flip-fiop and the power switch must act for long enough to allow the points
to be pulled across then switch off.
The problem did not arise with the first circuit as the output of the light operated switch was aigh only as long as the train was passing it. Here we have one or other of the coils energised the whole time-unless a pulse generating circuit is used. Such a circuit was described in Part 7 and with a resistor of about 270 ohms and a capacitor of about $47 \mu \mathrm{~F}$ a suitable pulse is produced.

With the pulse generator in use the points signal cannot be used to operate signal lights. If this is required then a separate circuit without pulse generators is needed. In Fig. 11.9 a block diagram of the system is shown with the pulse generators included.

Fig. 11.9. The addition of two pulse generators ensures that the points are not supplied with power continuously.

AUTOMATIC ROUTE
 SELECTOR

As with many logic circuits, things can get quite complicated when more complex systems are planned. Sometimes the simpler systems are the most satisfactory.

To finish with, here is another simple system which can be built. It has no light operated switches but rather more logic circuits.

The idea of this circuit is that the route the train is to travel is selected by simply pressing a button. The logic sets the points and all the operator has to do is drive the train. With sets of signal lamps linked to the points, this could be an interesting system to build.
The layout is shown in Fig. 11.10. There are four stations and three points. The operator has four keys (the keyboard of Part 7 can be used), one for each station. The key of the station at which the train is standing is pressed and at the same time the key corresponding to the destination. The points are then set for the correct route.
The only journey that cannot be set is from A to B or B to A

Components = =

Power Switch

Resistors
RI, R2 Ik』 $\ddagger \mathrm{W}$ carbon $\pm 5 \%$ (2 off)

Semiconductors

$$
\begin{array}{ll}
\text { D1, D2 } & \text { IN4001 (2 off) } \\
\text { TR1, TR2 } & \text { BD13I silicon npn (2 off) } \\
\text { IC17402 }
\end{array}
$$

Miscellaneous
$0 \cdot$ I in stripboard 12 strips $\times 20$ holes
Strips of aluminium $50 \times 10 \mathrm{~mm}$ (2 off)
Track Layout A
Light operated switches (2 off)
Electrically operated points (I off)
Power switch (I off)

Track Layout B

Light operated switch (I off)
Electrically operated points (2 off)
Integrated Circuits
Pulse generators (2 off)
Power switch (I off)
IC17413 Schmitt NAND gate
IC27473 J-K flip-flop
Track Layout C
Electrically operated points (3 off)
Integrated Circuits
Pulse generators (6 off)
Power switches (3 off)
ICI7402 (2 off)

Fig. II.IO. Track layout C. Here the rouse is selected by the operator before the train is started. Each set of points can take one of two positions as indicated by $X 1, X 2, Y \mid$ etc.

Table II.2: Point settings for journeys selectéd

Journey (or return)	A	${ }_{B}^{\text {Keys }}{ }_{C}^{*}$	D	XI	Points $X 2 \mathrm{YI}$	$\begin{aligned} & \text { Energised } \\ & \text { Y2 Z1 } \end{aligned}$	Z2
A to C	L	H L	H	H	L H	L	H
A to D	L	H H	L	H	L H	L H	L
B to C	H	L L	H		H H	L L	H
B to D	H	L H	L		H H	L H	L
C to D	H	H L	L	any	\% L	H H	L
* L = key pressed							

(b)
(a)

Fig. II.II. Circuitry required to decode the settings of the keyboard into inputs to the power switches for the points.

Fig. II.12. The complete circuit of the controller for Fig. II.10 using two 7402 i.c.s. All the outputs must go to pulse generators (six off) and then to power switches.
for that involves a change of points during the journey. To allow for this a light operated switch is needed between points X and Y to reverse the points after the train has passed. This is possible and not too difficult but the reader is left to work out the details.

In planning the circuit the various routes are written out as a table, showing what keys are to be pressed and what point settings would be required. This is seen in Table 11.2.

On looking through the table we see that X1 is always high when A is low, and low when A is high; $X 2$ is, of course, the reverse so the circuit is very simple, see Fig. 1l.11a.

Journeys involving station B
simply require points X to be the opposite way to journeys involving A so an input from key B can be added to the same circuit (remember A and B cannot be pressed at the same time).

The inputs for points Z are also easy- Zl is high for any route involving D (Fig. 11.11b).

Output Yl is high except when both C and D are pressed so we use a NOR gate as in Fig. 11.11c. The complete circuit is shown in Fig. 11.12.

The inputs are from the keyboard, the common rail of which is connected to negative. When two keys are pressed indicating present position and destination their lines are grounded and the outputs from X1, X2, Y1, Y2, Z1, and $Z 2$ take the values needed to
operate the points.
These outputs should each go through a pulse generator and then to the power switches. Thus six pulse generators and three power switches are needed.

The five gates used in the logic above will need two 7402's (or one 7402 and one 7400) and the pulse generators will need three 7400's making a total of five i.c.s altogether. These are all cheap but the wiring is quite a long job.

If a bit more routing with no extra electronics is desired try making some of the power switches operate two or more sets of points.

By the way if it is essential to go froin A to B go from A to C first, then from C to B ! Bon voyage.

By Brian Terrell

New products and component buying for constructional projects.

H^{\prime}OW DO YOU buy your components? Do you buy them as and when you need them or do you draw from a stock of standard components and need only buy the special items then required?

Getting it together

How does one go about getting together a useful set of components for building projects?

There are several ways to start stocking and one is to take advantage of the component packs being offered by advertisers in this magazine from time to time. A vast range of packs are on offer, including resistors, capacitors, potentiometers, semiconductors, and lots more.

The final method of collection to be mentioned here is by ordering a few extra components (intended solely for stock) when you are buying components for projects in hand. If you need to order say two 10 kilohm resistors and one 47 kilohm resistor. increase your order to six 10 kilohm resistors and three 47 kilohm ones. Just for good measure, buy one or two values between these, say, 33 kilohm and 22 kilohm-pocket money permitting of course.

In this way you will slowly but surely build up a stock of components that you have used in the past and are sure to need again. Don't forget solder, wire and component board-you can't do much without these.

This Month's Projects

There are only six components required to build the Exposure Unit this month, but each warrants a mention. The resistors called for are t watt types, chosen by the author for their small phyical size. If you are not restricted to a small size, use any wattage size above that stated that are available. For those who are determined to build the circuit into their camera (I wouldn't myself these low wattage resistors (and even smaller) are available from Electrovalue, 28 St. Judes Road, Englefield Green. Egham, Surrey. A momentary-action microswitch is listed but any switch available can be used if space is not limited.

The meter used by the author carried no type number, so we chose an inexpensive type with similar dimensions. Resistor values for RI and R2 were calculated based on the chosen type, listed in the Maplin catalogue as "edgewise level meter" page 84. Other meters can be used with revised resistor values.

There are many different light dependant resistors available, and any can be used. Check the sunlight
-esistance and modify circuit values accordingly. The resistance can be measured with a standard multimeter set to ohms.

The remaining component, a 1.2 volt battery should be available from most chemists-Boots are sure to have one.
The type of motor required for the Motor Controller (if this has to be purchased) will depend on the application that the constructor has in mind. The circuit can cope with ratings up to 12 volt 5 amps d.c., and should suit most modellers' needs. Electric motors of this type should be available from craft modelling shops, who will also be able to supply gearing.

The modelling motor is not suitable for the rotating aerial application, as the rotational speed is very high. A much slower motor is desirable which together with the controller will be able to reach the recommended I rev/minute. A suitable motor may be found at the car-breakers from those used to power windscreen wipers, fan blowers, electric fuel pumps etc. Try to find out its current consumption before buying. Remember it must be about 5A or less.
One final point, for the aerial application a heavy duty battery such as that used in a car will be required. alternatively: a mains power supply can be used instead.

Most of the components required for the Portable S.W. Receiver are easily obtairable. If you experience difficulty in obtaining the Denco coil and its B9A biase, they can be obtained direct from Denco (Clacton) Ltd., 357/9 Old Road, Clacton-on-Sea, Essex COIS 3RH.

The aerial used in the prototype was a five section telescopic one. A suitable type is available from Maplin and ordered as "telescopic aerial 4 ft ".

All components for the Audio Peak Level Indicator are available from many sources and should present no buying problems.

SYSTEMS ENGINEERING

EVEN a casual glance at the situations vacant columns in the press reveals that there is not only a vigorous demand for systems engineers but also, where salaries are quoted, that a systems engineer can command a very good income.

Systems engineering is not for the beginner. This will become clear as you read on. But if you are taking up a career in electronics it is probable that at some stage of your training you might be attached to a systems engineering team to get first-hand experience. But even if you spend your whole working life in a development laboratory, or on testing, or as a field engineer or in a dozen other categories of employment you will certainly come into contact with systems engineers and should know something of their work and their problems.

WHAT IS SYSTEMS ENGINEERING?

Let's start from fundamentals with a box of electronic components. Resistors, capacitors, transistors, integrated circuits, connectors. These are all made by component manufacturers to meet the demands of equipment designers and manufacturers. The components are specified and purchased by the equipment people to secure an end result which, for example, might be an assembly called an audio amplifier.

The audio amplifier will be built to meet a desired specification. For a certain voltage input it will provide a certain power output. The specification will set down the limits of distortion permissible in the amplifying pro cess and there will very likely be some signal processing circuits to boost or attenuate certain frequencies and some form of gain

Students from Morocco learning the rudiments of ATC on a radar control simulator ot IAL's School of Air Traffic Control.
control. It may have two channels of amplification to provide stereo facilities, or even four channels for quadraphonic reproduction

We can now see emerging that very familiar central piece of a hi fi system. It may be a very complicated piece of equipment with its volume, bass, treble, and balance controls and perhaps a rumble filter and certainly switches for a variety of inputs. But it is still only a piece of equipment which can do nothing by itself. It needs input equipment such as a pick-up, or magnetic tape, or a radio, and output equipment in the form of loudspeakers. When all these items are assembled together we have a hi fi system.

Many electronic hobbyists have, perhaps unwittingly, been systems engineers. They scan the catalogues, compare specifications and price, buy all the items separately and build them into a system. It's great fun but you need to know what you are doing.

The overall system will work effectively only if the individual equipments in the system are interfaced correctly in respect of input and output impedance matching.

Anyone who has gone through the process will know that there is an enormous number of possible permutations of equipment and that it is quite easy to make costly mistakes.

An insurance against making mistakes is provided by a complete systems package already fully engineered and matched and often supplied in a single cabinet called a "music centre". All you need to do is to plug into the mains and connect a couple of speakers supplied with the equipment and you're in business.

Of course the purchase of a music centre is not so much fun for the person who likes tinkering about, but if you just want to be entertained by records or tapes or radio without bothering with technicalities then the purchase of an engineered system can be the wisest buy.

PROFESSIONAL ELECTRONICS

Let's now look at the same principle applied to professional

British-built Skynet II military communication satellite, a system itself within the Britlsh global military communications system.

Nimrad maritime reconnoisance aircroft crew trainer which reproduces reallstically all the navigation, target acquisition and attack systems on the real aircraft. The Nimrod is now being redeveloped to carry the British Airborne Early Warning (AEW) system.
electronics. For the audio amplifier lets substitute a central processor as the heart of a computer system: As with the audio amplifier, the central processor by itself can do nothing. It, too, needs its input and output equipment, called computer peripherals, and these need to be interfaced into a workable system.
Again the possible permutations are endless and the choice of suppliers is very wide. And whereas you will have your hi fi system in a single room, a computer installation may have terminals in other areas of the building where it is installed or remote terminals at various parts of the country or even overseas, all demanding data transmission links.
Let us take another case, that of an air defence system. This will generally involve a whole chain of radar stations, a com-
munications network and a weapons system which may be a mix of interception aircraft, surface-to-air missiles and antiaircraft guns, all co-ordinated through a large computer complex and can cost hundreds of millions of pounds.

Or take an international project such as satellite communications. A proposed satellite system to succeed the present Intelsat IV system was jointly put forward by one of the bidders for the contract as a consortium of 17 different companies in 10 coun tries, each responsible for one or more sub-systems with an overall systems co-ordinator.

SYSTEMS, LARGE AND SMALL

Systems can be comparatively small and relatively simple such
as an office intercom system, or very large and costly and demanding entirely different levels of skill in design. If we look around the world we find that some countries have engineering skills and some haven't.
If we take the case of an air defence system, countries like the United States and Britain, France and West Germany to name but a few obvious ones, have the skill and the engineering capacity to build their own and make it work.

But if, for example, we go to the Middle East or most African countries and South America, systems engineering skills are either absent or in very short supply. Going back to our example of the hi fi system, the same principle applies. Those who have the skills can engineer a system using a wise choice of individual items of equipment. Those who haven't

This high-grade receiver would ance have been regarded as a major system in its own right. Todoy it is a building. block, one of many in a complex system.

A progrommable data logger by Fluke. This Is the sort of instrument that might be specified by a systems engineer or an industrial automation system. It can scan and record up to 60 different inputs in the form shown, up to 1,000 inputs with ancillary equipment.

These special quality tape recorders by Rocal-Thermionic are merely equipment modules for systems engineers, in this cose those specialising in systems or recording and analysis of seismic dato.

Part of the control console and, through the window, the antenna of the satellite earth terminal in Bahrain. Part of a world telecommunications network, it was built by Marconi and is operated by Cable \& Wireless.
the knowledge and experience will do better by buying a music centre as a complete package. At least they know it will work to a given standard for a given price.

In recent years a number of countries with low engineering skills have become remarkably rich. The best examples are the oil producers, but other countries fortunate enough to have large commodity reserves such as copper are also getting richer.
Such countries are in a rapid state of development and modernisation. They are spending the money on schools, hospitals, airports, telecommunications networks and other capital projects. One day they will acquire the skills to undertake such major operations but in the meantime they are natural customers for complete systems packages. So complete, in fact, that the packages are called turnkey projects.

TURNKEY PROJECTS

A turnkey project is one where a main contractor undertakes every aspect of the work down to the last detail. Let us take a simple example where there is a need for a telecommunications network between, say, the capital city and three newly developing townships.

A company undertaking the project would first of all study the projected growth of the new townships to determine the ultimate traffic capacity required dur: ing the next 10 or 20 years. Initially the system would have a low capacity but would be cap-
able of expansion to meet the expected demand. It will also be designed to be integrated into the existing network.

With the requirement now defined the next stage would be to determine the best method in terms of reliability and economics within the framework of routing of the network. Cable or radio, or a combination of the two, will depend on the distances involved and the terrain. There will have to be site surveys. A pair of suitably located mountain peaks may be ideal for a microwave link.

When it is decided how the job will be done there is the detailed work of ordering the equipment and interfacing it into a system.
In a turnkey project the main contractor is responsible for everything. This will include employing architects to design the buildings, building contractors to build them, generally using local labour, and electrical contractors for wiring. The technicians who will be classed as installation and commissioning engineers will install and test the network and obtain acceptance from the customer.
But the contract almost certainly will not stop at this stage. Some operating staff will have had training during the constructional stages but in many cases the main contractor will keep his own engineers on site for a year or two while further training of local staff takes place. In some cases the main contractor will undertake the operation and management for unlimited periods.

The turnkey project also may include the design, building and equipping of maintenance workshops.

Many such contracts have unusual features. In countries were the political situation is unstable there will be a requirement for security protection with intruder alarms and other measures to discourage saboteurs.

There are frequently climatic problems, and irregularity in power supplies which may need something special in standby and emergency generating plant to keep the system operational. In remote areas there may be siting constraints because there are no roads. How do you transport heavy equipment over cart tracks? Load-lifting helicopters have eased this burden.

A systems planning office is thus a very busy place demanding many levels of expertise and enormous responsibility. Even small mistakes can be very expensive, especially on overseas projects.

An installation engineer held up for a week because of a silly thing like wrong plugs and sockets has a hotel bill of over E80 a night for a bed in the only hotel in Riyadh, Saudi Arabia. His firm not only has to foot the hotel bill but also his meals, his laundry, his overseas allowance and his salary.

EXAMPLE

A good example of systems engineering is the contract re

Continued on page 387

By ADRIAN HOPE

SINCE writing on nickel-cadmium rechargeable batteries. I have become increasingly disillusioned with their cost-effectiveness at domestic level.

For instance, the cells of two rechargeable electric razors I have used over recent years have needed replacement long before any other working part. A rechargeable flash gun was the next to fail despite loving care. One interesting suggestion is that nickelcadmium cells work better in industrial situations, where they are treated rough with brutal discharge and recharge, more than at home with leisurely trickle charge and discharge.

Buying dry cells is not only becoming increasingly expensive, but is also fraught with pitfalls for the unwary. Apart from the leak risk previously mentioned, ordinary zinc carbon dry cells have a limited shelf life. So be very wary about buying bargain offer dry cell batteries. If they are old stock they will almost certainly let you down. And never ever buy such batteries in bulk and keep them in the cupboard at home, because by the time you need them the chances are they will be useless.

As a general rule, try always to buy dry cells from supermarkets or busy shops that have a fast turnover, so that what you buy is likely to be fresh stock.

Rechargeable Cells

An interesting new development of an old idea in batteries comes from Pulsar Developments Limited of Marlow. Bucks. Pulsar are importing into the UK some rechargeable batteries which, like car batteries, work on a lead acid principle but, unlike car batteries, are completely spill-proof. The electrolyte in these cells is in solid gel form, that is to say a paste round the electrodes, which is no more likely to spill than the paste from an ordinary
dry cell. So they can be used on their side, upside down, or in any other position.

Of course, one of the ironies of modern technology is that although scientists have put Man on the moon, recorded colour TV on a disc similar to a gramophone record, and flown passengers at Mach two, no one has yet cured the common cold, photosynthesised carbohydrates as efficiently as grass does every day, or really improved on the age old lead-acid battery principle.

Although solid gel lead-acid cells have previously been available, these new batteries from the States are special, in that they are dimensioned to be exact replacements for existing batteries. For instance the EP640 is a direct replacement for a standard lantern dry cell. At E7. it costs seven times the cost of a dry cell, but can be charged and re-used an average of 300 times, using either a trickle or a 12 volt car battery with a series resistor.
It can also deliver up to 15 amps for short periods, which of course no dry cell can ever do. What I shall now be interested to see is whether Pulsar or others widen the range of solid leadacid rechargeables, for instance producing versions suitable for portable tape recorders which gobble up dry cells at a truly horrifying rate.
According to an independent specialist in the field with whom I talked, the only disadvantage of a lead-acid gel battery is that it's plates can be fairly easily damaged by physical impact, e.g. if the battery is dropped. This is why the military stick to ni-cad cells.

Touch Telephones

In the USA when you dial a number on the telephone, you generate a series of differently pitched notes, like short musical whistles, which are
sensed by the telephone exchange and route the caller accordingly. In this country we still use the old Strowger system, whereby when a number is dialled a string of pulses is mechanically created and used by the exchange equipment to route the call.

However, because of the essentially electronic, nature of the American system, it can work much faster than the mechanical British system. So, many phones in the USA are touch phones where the number is dialled by rapidly punching it out on a calculator style keyboard. Such touch phones can only be used in the UK if they use a memory. This stores the signals produced by rapidly punching out a phone number on the keyboard and feeds them out at the slower rate which the British exchange equipment can handle.

So far so good. But an interesting thing is now happening in the USA.

Remember This?

Touch-dial phones are now being sold which, as an optional extra, incorporate the kind of memory essential in British touch-dial phones. The memory in the American phones has a recall time of about ten minutes, so that once you have dialled a number that you want, you can recall that number any number of times over the next ten minutes, simply by pressing a single extra button.

This can be extremely useful if you are trying to call a number which is continually engaged for short periods of time, for instance a booking office or foreign country, but here's the odd part The memory in the British touchdial phone is wiped clean every time the dialled number is called. What a missed opportunity this seems. We could have turned the disadvantage of the British phone system into the very positive advantage of being able to re-dial an engaged number over and over again without punching out the full number every time.

In case anybody thinks the memory system would not work, I can tell you for sure it would. How? Because a frierd coming back from the Far East stopped off in Singapore and spent $£ 30$ on a touch-dial phone with a memory built into it's Strowger conversion circuitry. You punch in a number and press the " go" button, and the circuitry churns out Strowger pulses for that number.

The memory then holds that number overnight, so that if it's engaged or unobtainable all you need do is press the button again to re-dial. Anyone who has wasted time trying to dial strings of long distance or intercontinental digits over and over again will positively yearn for the legitimate sale of such a gadget in the UK. I am told that the Post Office has plans to test some this winter.

If the test is in my area I will be first in the queue.

Physics is FUN!
 By DERRICK DAINES

Induction

The galvanometer we made last month illustrates that current flow can cause deflection of a magnet. The reverse is also true, that movement of a magnet can cause current flow.

Wind approximately 10 turns of fairly thick copper wire into a flat coil and put this in series with the galvanometer as shown in Fig. 1. If a magnet is now moved backwards and forwards within the coil, the needle of the galvanometer will move in sympathy. Since we know that the needle moves by application of a current, the only place that current can come from is movement of the magnet. Notice that if the magnet is held stationary within the coil no current is produced-it is only movement of the magnet that does it.

Magnetic Field

For the next series of experiments a small bell transformer is necessary. We call the coil that is normally connected to the mains, the primary and the part that is normally connected to the bell, the secondary. Connect a battery and a switch to the primary and the galvanometer to the secondary shown in Fig. 2. Opening and closing the switch will cause the needle of the galvanometer to be deflected first one way then the other, but whilst the switch is either closed or open. no deflection is observed.

This is interesting since it shows that the magnetism inducing the current which deflects the galvanometer does not actually need to move, it is enough if the magnetism is building up or collapsing. This is such an important point that it bears repeating: "a magnetic field collapsing or building up induces current flow in an adjacent coil' .

Steady magnetism does not have this effect.

Neon Oddity

If we substitute a 90 volt neon lamp for the galvanometer as shown in Fig. 3, we may observe another oddity. This time as we open and close the switch we will observe that the lamp lights briefly only when the circuit is broken i.e., when the magnetic field is col-
lapsing. (If it also lights when the circuit is closed, reduce the supply voltage.) Usually, two or three times the supply voltage is needed to make the lamp flash while closing the switch.

Move the neon lamp to a position across the low voltage battery, as in Fig. 4. Leave the secondary winding open circuit, it is not used in this experiment. Again, the nean lamp lights briefly when the switch is opened. This is a very puzzling phenomenon. Clearly the coil has somehow managed to induce current in itself; moreover, a current that is greater than the original supply! Is that true?

Fig. I. When the magnet is moved to and fro a current flows and registers on - he meter. No movement-no current.

Fig. 2. Only when the switch is turned on and off does the meter needle deflect.

Self Induction

No, it is not. What has happene d is that a voltoge greater than the original has been induced in the primary coil. Curioser and curioser! However. regular readers of this magazine will have learnt already all the necessary ideas needed to put together a picture of the complete effect. However, for those readers who are still in the dark, the following explanation will make things clearer.

As the switch is closed, a magnetic field is formed about the coil. Upon opening the switch the magnetic field rapidly collapses, inducing in the coil a short-lived high-voltage current sufficient to "strike" the 90 volt neon lamp. This phenomenon goes by the name of "self induction" and next month I shall describe how to make a shocking coil utilising the effect. I do ask you however, to remember that the particular experiment described in Fig. 3 forms a good introduction to hysteresis. A subject we will discuss in a future issue.

Iig. 3. When the switch is turned on, nothing happens, but when it is turned off, the neon flashes once. For a neon to flash, it needs 90 voles across it-so this is a strange happening!

Fig. 4. Even on this side of the coil, the neon flashes when the switch is opened. Nothing happens whrn it is closed.

4 Varied projects of vide appeal...

PROBOPHONE

\square ADD. OM
 0
 CAPACITANCE UNIT

Enables capacitor values from 1 nF to 500 nF to be read directly on standard multimeter.
A portable stylus operated mini-organ
fitted with loudspeaker. Has variable vibrato. fitted with loudspeaker. Has

SEPTEMBER ISSUE ON SALE FRIDAY AUGUST 19

Eliminate distortion and keep your amplifiers happy.

T is A fairly well known fact that misleading readings can be obtained from the average reading VU (volume units) meters which are fitted to most tape decks and certain, other items of equipment.

This is due to the mechanical intertia of the meter needle preventing the meter from properly indicating high level signals of short duration. A very spiky signal can easily exceed the OVU peak level while the VU meter
will only indicate the average level of the signal, which may only be about minus 6 dB , or even less, in a practical situation. This leads to the input level controls being set incorrectly, which, in turn, leads to an annoying degree of distortion.

One method of overcoming this is to use a form of peak reading VU meter, but only a few of the most expensive pieces of audio equipment incorporate this feature.

HOW IT WORKS

Signal from a microphon'e, tuner or disc system are fed to the parallel combination of the tape deck (recorder) and the Peak Level Indicator. Input to the unit is via a variable attenuator which is set to accommodate the level of the input signal. The signal next passes to an amplifier whose output is connected to the trigger point of a monostable. When the output from the amplifier is of sufficient amplitude, the monostable is activated. This is indicated by the illumination of a light emitting diode for more than 0.5 seconds. Thus even a very brief trigger signal will cause the l.e.d. to light for long enough to be noticed, thus indicating a "record overload".

A second, and increasingly popular method of solving this problem, is to fit the equipment with a peak level indicator, or two such devices in the case of stereo.

A peak level indicator is merely a circuit that causes an indicator light to be briefly illuminated when a certain peak level is exceeded. This is used in conjunction with the usual average reading VU meter rather than instead of it.

CIRCUIT DESCRIPTION

A practical circuit for a peak level indicator is quite simple and must carry out two main functions. First, and fairly obviously, the circuit must be triggered by a peak level and not

Fig. I. Circuit diagram of the Audio Peak Level Indicator.
by an average one. Secondly, it must lengthen the duration of the brief peaks in order to provide a more noticeable indication.

It is possible to add this feature to equipment which does not already have a peak level indicator (or indicators), and Fig. l shows the circuit diagram of the Audio Peak level Indicator. This is based on an NE555V timer i.c. used in the monostable mode.

The output from pin 3 of the NE555V operates an l.e.d. panel indicator via current limiting resistor, R4. When pin 2 of the i.c. is taken below one third of the supply voltage, even if only very briefly, the circuit is triggered.

Pin 2 of the i.c. is fed from the collector of a common emitter amplifier, comprising TR1 with R3 as the collector load resistor and R2 providing the base bias current. The input signal is fed to the base of TRl by way of $\mathrm{R} 1, \mathrm{VR} 1$ and Cl .

A quiescent voltage of something over one third of the supply voltage is present at the collector of TR1. If an input of sufficient amplitude is present at the base of the transistor, this will cause the transistor to conduct.

The collector voltage will now tend to fall to zero, in doing so it will fall below the required voltage needed to trigger the i.c. As was mentioned before this is slightly less than one third of the supply voltage.

The i.c. now having been triggered, (by what is effectively a very short duration pulse), proceeds to lengthen this pulse to a time dependent on the values of R5 and C2. The values shown produce a flash of about 0.6
seconds duration.
The output thus produced at pin 3 is used to illuminate the l.e.d.

Potentiometer VRI enables the trigger sensitivity of the circuit to be varied from less than 100 mV peak up to several volts peak. Resistor Rl reduces the maximum input sensitivity of the unit to a realistic level and also greatly increases the input impedance.

CONSTRUCTION

A suitable layout for the Audio Peak Level Indicator is shown in Fig. 2. This is constructed on a piece of stripboard 20 holes by 11
strips. Two methods may be used to connect the equipment to the level indicator. One is where the Peak Level Indicator may be mounted in a suitable aluminium box, containing its own battery and connecting leads.

In this case a connection should be made from the tape output socket on the amplifier to SK1 on the level indicator. A second lead is then connected between SK2 and the input socket on the tape deck.

The second method is used when it is possible to fit the unit inside the equipment in use. In this instance only one lead is required from SK1 to the VU

Resistors

R1	$220 \mathrm{k} \Omega$
R2	$2 \cdot 2 \mathrm{M} \mathrm{\Omega}$
R3	$12 \mathrm{k} \Omega$
R4	$2 \cdot 2 \mathrm{k} \Omega$
R5	$5 \cdot 6 \mathrm{M} \Omega$
R6	see text

$$
\text { All resistors carbon } \ddagger W \pm 10 \%
$$

Potentiometer
VRI $47 \mathrm{k} \Omega$ sub-mıniature horizontal preset
Capacitors

$\begin{array}{ll}\text { C1 } & 10 \mu \mathrm{~F} \text { I } 10 \mathrm{~V} \text { elect } \\ \mathrm{C} 2 & 0.1 \mu \mathrm{~F} \text { polyester }\end{array}$
Semiconductors
TRI BCI 09 npn silicon
DI TIL209 red light emitting diode
D2 BZY88C9V1 9.IV 400 mW Zener diode
ICI NE555V timer ic.

Miscellaneous

SKI, 2 standard twin phone socket
BI $9 V$ type PP6
SI single-pole single-throw toggle switch
Stripboard 0.1 inch matrix 20 holes by 11 strips; panel holder for D2; 8 pin d.i.I. i.c. socket; screened lead; battery slip; connecting wire; solder.

Fig. 2. Stripboard layout, also showing the breaks required on the underside.
meter. The usual point to take this connection is just ahead of the rectifiers, usually however most meters have integral rectifier circuits. The connection can then be taken direct from the meter terminals.

The l.e.d. is mounted in a suitable position on the front panel of the equipment, connected to the cincuit board by a length of twisted connecting wire.

If a supply voltage of mare than 9 volts is present in the equipment this will have to be reduced by the simple circuit of Fig. 3. If this is done then Sl and Bl may be omitted.

The value required for R 6 will vary according to the nominal supply input voltage. The required value can be calculated from the equation: supply voltage minus $9 \cdot 1$ divided by $0 \cdot 01$. Perhaps a more simple way of looking at it is to allow about 100 ohms for every supply volt above the $9 \cdot 1 \mathrm{~V}$ Zener voltage. Thus R6 is 300 ohms for a 12 V supply, 560 ohms for $15 \mathrm{~V}, 820$ ohms for 18 V , and so on. This gives a current consumption of about 10 mA or so.

SETTING UP

Potentiometer VR1 can be adjusted so that a sinewave input to the recorder (or other equip-

Fig. 3. This circuit is only required if the equipment supply is more than 9 V .
ment) which gives a OVU reading on the meter just causes D2 to light. However, as short "peaky" waveforms can overmodulate to a certain degree without causing significant levels of distortion, it is more usual to adjust this type
of circuit to indicate a level of +3 dB or even +6 dB on the meter.

The input impedance of the device is about 270 kilohms, and therefore loading on the main equipment should be negligible. $\{$

Photograph of the completed unit

(a)

(b)

Fig. 2. By adding a series resistor the scale is made more linear.

CALCULATIONS

Calculation of the value of the series resistor, $R_{\mathbf{a}}$ is not difficult. First measure the resistance of the l.d.r. in full daylight, call this R_{d}. Then if the exposure meter is to cover n stops, double the value of $\boldsymbol{R}_{\mathbf{d}}$ a number of times given by half the number of stops less one. This gives the total resistance $\left(R_{\mathrm{t}}\right)$ in series with the cell, including R_{m}, the meter resistance. In mathematical terms,
$R_{\mathrm{t}}=R_{\mathrm{m}}+R_{\mathrm{t}}=R_{\mathrm{d}}(2)\left(\frac{\mathrm{n}}{2}-1\right)$.
Meter resistance and sensitivity now need to be taken into account to ensure that the 10 light values (LV) are spread right across the scale of the meter face, without going beyond the full scale end stop.

To avoid the need for adjustment as the voltage source ages, a deaf aid cell is used which gives about $1 \cdot 2$ volts.

To determine the maximum current flowing in the circuit, divide this voltage by the total series resistance: thus
$I_{\text {max }}=\frac{1 \cdot 2}{\left(R_{\mathrm{d}}+R_{\mathrm{t}}\right)}$ amps.
It is unlikely that this will yield an available f.s.d. so choose a

Fig. 3. The complete circuit diagram of the Exposure Unit. Values for RI and R2 have been calculated for the meter listed in component box and \mathbf{R}_{d} equal to 100 ohms.
meter with a full-scale deflection less but near to this value. A shunt resistor will next need to be worked out to produce the required f.s.d. under full daylight conditions.

If the f.s.d. of the chosen meter is I_{m}, then the value of the shunt resistor ($R_{m_{n}}$) is given by
$R_{\mathrm{ma}}=\frac{R_{\mathrm{m}}}{\left(I_{\mathrm{max}} / I_{\mathrm{m}}\right)-1}$
The final calculation gives the net value of the series resistor R_{1} This is obtained from equation (1) with the modified value for \mathbf{R}_{m}, since its effective resistance is the parallel combination of R_{m} and $R_{\text {mas }}$.

These calculations enable the constructor to use almost any l.d.r. and any reasonably sensitive meter movement; any meter can be used in this circuit, even down to the small cheap type used to indicate battery condition.

For those not wishing to get involved in working through formulae, a small readily available meter has been selected and the values calculated in accordance with the above. The circuit diagram of this arrangement is shown in Fig. 3.

CONSTRUCTION DETAILS

The prototype unit was built into the upper body of an Ilford Sportsman camera and formed part of the complete camera. For this reason the smallest components that could be found were used. Normal push-on switches are on the large size, and so a mini microswitch was employed. Some constructors may prefer to have a separate unit so a suggested layout is shown in Fig.4.

Fig. 4. A suggested layout for the components in 2 case separate from the camera.

Construction details of the author's model built into the upper body of his camera. View finder acts as "director".

Method of producing a meter scale from the master. Draw a line at any angle to master scale to pass through ' 10 '. Measure length of scale from ' 10 ' along angle. Join this point to master ' 0 ', then draw lines parallel to this from I, 2, 3, 4 etc. to meet angle.

The component count does not warrant the use of a piece of circuit board. The box need only be about $50 \times 50 \times 40 \mathrm{~mm}$ and can be made of any material. The l.d.r. should be mounted at the inner end of a tube whose diameter is that of the cell, and whose length is twice that dimension; this gives the instrument directionality. The microswitch can be glued in place with a suitably placed cutout in the case top so that the nib of the switch can protrude without interference.

A master scale to suit most edgewise meters is shown in Fig. 5 together with details of reducing the scale to a size to fit your meter. The scale is for a
maximum of 10 stops.

USING THE UNIT

If the meter is shown sunlight, or pointed directly at and close to an electric bulb, it should read 10 if the calculations have been made correctly. If not check your wiring or figures. The scale markings are not that critical; an exposure error of half a stop is rarely of great significance.

Four variables must be related together: meter reading (light intensity), film speed, camera shutter speed, and lens aperture. The last two quantities can often be linked to give an "exposure value" (EV) as a mark on the

Resistors $\left.\begin{array}{ll}\text { R1 } & 1.8 \mathrm{k} \Omega \\ \text { R2 } & 510 \Omega\end{array}\right\}$ (see text) $t W$ Carbon $\pm 5 \%$ Miscellaneous SI push-on, release-off microswitch MEI $200 \mu \mathrm{~A}$ d.c., internal resistance 1200 ohms miniature edgwise meter (see text) BI 1.2 volts deaf aid or camera type PCCI ORPI2 or similar light dependent resistor Connecting wire; materials for case; 10 mm diameter, 20 mm long tube for director.

shutter speed ring relative to a scale on the lens ring. These EV numbers will be higher for shorter exposures and for smaller apertures, in just the same way as the light values (LV) on the exposure unit are bigger in brighter light. The numerical difference between LV and EV is simply the film speed, so one has only to add a filmspeed number to the reading of the exposure unit to get the correct EV for the camera. This film speed number will have to be determined by experiment according to the following method.
(1) Assign the value of 10 (EV) for the combination of $\mathrm{f} / 2.8$ and l/125 second.
(2) Using film rated at ASA 125 (DIN 22), assume a film speed number of 6 .
(3) In varying light conditions, add 6 to the meter reading, to get the exposure value (EV).
(4) Assess these trial negatives for correct density and contrast: if obviously over-exposed, add 1 or 2 to the film-speed number assumed in (2); if under-exposed, then subtract from this number.
(5) Assess this series of trial negatives for uniform density: if the calibration of the scale is correct, negatives exposed in bright conditions will be very similar to those exposed in gloomy conditions.

When this method has been completed, make a brief list of the commonly used film-speeds, and list beside each the appropriate number which is to be added to the meter reading. Then you are in business!

JBET PINA \& FANTLY...

as a necessary evil, but as a pleasurable activity.

Most multimeters and volt-ohm meters (VOMs) have a.c. voltage ranges. On the face of it, these would seem to be useful in signal-tracing. If you can measure the a.c. signal at different points in an amplifying circuit you should be able to find out how much it is being amplified, and detect the exact spot where it disappears as the result of a fault.

Unfortunately, the majority of a.c. voltmeters are not nearly sensitive enough, since they do not respond equally to all frequencies. Sometimes even the higher audio frequencies get lost in the meter. The chief value of a.c. voltage ranges is in measuring mains frequency voltage in power supply units.

Here the low sensitivity doesn't matter very much, and a few simple measurements can often pinpoint a fault.

SAFETY

Safety precautions are important. Remember that the mains can be lethal. Remember also that you are dealing with faulty equipment. The mains voltage may be present at points where it shouldn't be. With some faults, it may even be there when the equipment is switched off! So don't take chances.

There are two standard precautions. First, wear rubber or plastic-soled shoes and stand on a well-insulated floor, not concrete, unless it's covered with insulating tiles or matting. Secondly, work one-handed. If you are right handed, keep your left hand in your pocket and connect up the meter, one terminal at a time. with your right hand only.

If you use both hands, and get them across the mains, the resulting hand-to-hand current goes through your heart.

It's a good idea to unplug the equipment, connect the meter, put one hand in your pocket and then plug in using your other hand. Repeat the procedure for each measurement.

A typical mains power unit is shown in Fig. 4.1.

On the primary side of the mains transformer the mains connection is often connected via a fuse FS1 (which may be rated at some current other than $1 A$, depending on how much current normally flows).

FUSES AND NEONS

Fuses are rated in terms of the current they can carry with. out blowing. They blow only when subjected to several times that current. A 1 A fuse and 240 V mains implies a power of 240 W ,
which is a lot of power in electronics. Fuses are commonly made with carrying currents down to 50 mA . A fuse may alternatively be placed somewhere in the secondary side of the transformer, like FS2, where the current is higher than on the primary side.

The mains switch, if singlepoled as here (one pair of contacts) is placed in the "live" lead of the mains. If a double-pole switch is used, one contact is placed in each lead. If the switch is single-poled, and the mains connections are reversed so that N becomes L, the transformer primary is "live" even when the switch is off. A faulty switch may cause a similar danger, whether single or double-poled.

A neon lamp, if fitted, is usually placed across the mains as here, so that it comes on when the mains switch is turned on. Sometimes, however, it is so placed that it comes on as som as the equipment is plugged in, whether or not the mains switch S1 is closed.

The series resistor R1 (usually around $100 \mathrm{k} \Omega$) is essential. If the lamp fails to light, check the series resistor and if its value has wandered far from what it should be, replace both lamp and resistor. (Neons are of ten supplied as complete packages containing

Fig. 4.1. A typical mains supply unit, using fill wave rectification.
lamp and resistor in a plastics moulding with built-in lens.)

TRANSFORMERS

Common faults in mains transformers are open windings and short-circuited turns. If the primary is open, no voltage appears at either half of the secondary. If voltage appears at one half secondary but not the other, the most likely fault is an open circuit half secondary.

Windings can be checked (with the equipment unplugged) with the ohmmeter part of a VOM. The primary is likely to have a resistance of a few hundred to a few thousand ohms. Smaller transformers have higher resistances.

The low-voltage secondaries have resistances from a fraction of an ohm to a few tens of ohms. Resistance goes up as the voltage goes up and as the size goes down. There is no way of making a safe and satisfactory do-it-yourself repair to a mains transformer. It has to be replaced.

Short-circuited turns are a troublesome fault which cause loss of voltage, overheating, and often a buzz from the laminations. This fault, if in the primary, is often difficult to detect. If in one half of the secondary it may cause a substantial reduction in voltage in that half.

A short-circuited rectifier (either D1 or D2) allows a.c. to flow freely from one half of the secondary through capacitor Cl and the centre tap. Both the transformer and Cl are likely to
be damaged, and possibly R2 and C2 also. An open rectifier causes some drop in d.c. voltage output and an increase in hum.

Badly leaking C1 or C2 cause overheating of the transformer, reduction in d.c. output, and possible damage to D1, D2 and R2.

POWER MEASUREMENT

Before leaving the subject of a.c. measurements, a brief further note on frequencies other than the mains frequency. One audio measurement which can be made with a VOM is the output voltage of an audio power amplifier. This is the voltage across the loudspeaker.

To get a reasonably accurate measure of the voltage it is necessary to apply to the amplifier a sine wave signal at a "mid-band" frequency, i.e. round aboct 1 kilohertz. The amplitude is then increased until distortion is just audible. The voltage across the speaker then gives a rough indication of the audio power, which is the voltage squared divided by the speaker impedance.

Be warned, however, that many of the cheaper amplifiers are not capable of handling sustained sine wave signals big enough to drive them to full output power. They are rated for music signals only. In music the peak power is the same but the average power is much less than the sine-wave power.

The sensitivity (ohms per volt) of a VOM is often lower on its a.c. ranges than on d.c. This does

Fig. 4.2. Rectifying probe, which can be used with VOMs ro measure r.f. voltages.
not matter when measuring across low impedances such as loudspeakers but it may cause large errors if measurements are attempted elsewhere in the circuit.

For h.f. measurements (which are beyond the capacity of most VOMs) it is sometimes possible to improvise using a rectifying probe (Fig. 4.2) which turns the r.f. into d.c., measurable on the d.c. ranges of the meter. The rectifying circuit used (which is a half-wave voltage doubler) imposes a load on the circuit to which it is connected.

This load is one quarter of the meter resistance. Capacitor Cl and diodes D1 and D2 should be mounted inside the probe close to the tip. With the diodes shown the probe will detect voltages up to a few volts at frequencies up to around 100 megahertz.

It is not accurate for small voltages, below about 500 millivolts peak. The voltage indicated is the peak-to-peak voltage, which is 2.8 times the r.m.s. voltage.

OHMS RANGES

We now come to the ohmmeter function of the VOM. The first point which must be made concerns safety. Not your safety, but the safety of the meter. The meter is often in its most vulnerable state when switched to an ohms range. This is because many of the protection circuits used in VOMS do not operate properly in the ohms ranges.

On these ranges, the internal battery of the meter drives current through the resistance under test (R3 in Fig. 4.3.). Inside the meter is a standard resistance R2 and a "set zero" variable resistance R1. The "set zero" is used for compensating changes in the battery voltage as it grows old and tired.

Fig. 4.3. Typical ohmmeter circuit used in many multimeters and VOM's

To set up the ohmmeter you connect the test leads together, which means that the resistance under test is zero, and adjust R1 so that the meter in fact reads zero ohms. It is then ready for use on that particular range.

Now, there is nothing here which could possibly damage the meter. The resistance $\mathrm{R2}$ is large enough to limit the current from the battery to a safe value. So where's the problem? The problem, in a way, is in the mind of the user. If you connect the meter across a resistance in a piece of equipment with the equipment switched on, then a large current may fiow from the equipment into the meter, and wreck it. The rule is "OBO," which means Off Before Ohms.

There is one danger which the "OBO" rule doesn't quite eliminate. Capacitors store electricity. A large value capacitor may still contain a significant amount of charge some time after the equipment has been switched of. You must either wait or discharge the capacitor artificially, by connecting a low resistance (e.g. 100 ohms) across them for a few seconds.

A wise precaution is to switch to a safe d.c. voltage range before making ohms measurements, and test the circuit for any lingering voltages.

LOOKING FOR ZERO

So much for safety. Now for measurements. The simplest is not really a measurement at all, but merely a test. A piece of wire connects point X to point Y. But does it really connect? Is there an invisible break, or a bad joint? An ohmmeter applied to X and Y should show zero ohms because the resistance of the connection should be so low that it looks like zero on the meter.

If there's a break, of course, the meter does not read zero. What it does read depends on the actual circuit. In most circuits you get some sort of resistance reading between any two points,
because the current can usually find its way from one meter terminal to the other by wandering through various unlikely looking paths in the circuit.

This doesn't matter, in a continuity test such as this. You are looking for zero. If you get some resistance, the connection is bad. Some meters are fitted with a buzzer for continuity testing. The test leads and the connection under test simply apply the internal battery to the buzzer. If the circuit is continuous (no breaks or bad joints) the buzzer sounds.

DIODES AND TRANSISTORS

The ohms ranges of a multimeter can be used to test some semiconductor devices. A diode should pass current easily in one direction but block it in the other. That is, it should appear to the meter as a low resistance one way and a high one the other.

Looking at Fig. 4.4 you can see how the resistance should look with the meter leads connected first one way then the reverse way round. A very important point is that the lead which is marked positive (+) is in fact connected to the negative terminal of the internal battery.

You can see why if you look back to the ohmmeter circuit on Fig. 4.3. It has to be like this or the current from the battery would make the pointer go backwards. Remembering this point will enable you to find the polarity of unmarked diodes and transistors.

Fortunately the polarity markings which are printed on the bodies of some diodes do corres-

Fig. 4.4. Testing a semiconductor diode
pond with the meter markings. (That is if the + and - of the meter are applied to the + and - of the diode it should conduct.)

The meter never reads zero on a good junction diode. Although it is quite true, as I said just now, that a diode passes current freely in one direction, it uses up a certain amount of the battery voltage in the process. For a germanium junction diode or gold-bonded diode this is about 0.25 V . If the meter battery is 1.5 V , only 1.25 V is left for driving current, so the needle can't go more than about five-sixths of the way across the scale. For silicon diodes the forward voltage drop is about 0.5 volt so a 1.5 volt battery cannot push the pointer more than twothirds the way to ohms zero.

This difference in meter deflection can be used to distinguish between germanium and silicon devices. Note, however, that my figures of five-sixths and twothirds are upper limits and only apply if the ohmmeter battery is 1.5 volts.

In practice, you need to test some good working devices both silicon and germanium and note the deffections obtained. You can then tell, which unknown devices are silicon and which are germanium.

If the meter reads zero, the device must be shorted. Point contact diodes such as the germanium detector diodes still commonly used in radios do not behave quite like junction diodes. With some very sensitive meters they may allow the needle to go nearly all the way to zero and still be good. In any case, you should always test both ways. A good diode shows a high resistance when "reverse biased".

Since an ordinary bipolar transistor (pnp or npn) has two junctions in it, you can test each one in turn. Each junction should behave like a diode. You can tell the polarity from the way the meter is connected, if when the junctions are forward biased a low ohms reading should be obtained (Fig. 4.5).

You cannot usually distinguish between collector and emitter by an ohmmeter test. The baseemitter junction behaves in the same way as the base-collectior junction. If you have an unknown but good transistor these tests can tell you which is the base connection, but not which is the emitter or collector.

Germanium transistors may show measurable (but high) resistances in the reverse direction. This is because a germanium junction allows a leakage current to flow.

With silicon the leakage is too low to measure except in some large power transistors. An ohmmeter can show an appreciable deflection, when applied to collector and emitter of a germanium transistor, leaving the base unconnected. This is the largest of the leakage currents.

In transistors with the same type number this leakage is usually greatest for specimens with the highest current amplification factor ($h_{\text {PE }}$).

Fig. 4.5. Checking one of the two junctions in a transistor.

IN-SITU MEASUREMENTS

When measurements are made on complete circuits, containing mixtures of resistors, transistors, capacitors, etc., it becomes impossible to measure just one resistance at a time. They interact because they are connected to one another. However, a bit of common sense usually enables you to find out what you need to know. For example, an internal 'short' between two electrodes of a transistor shows up quite clearly in a circuit such as Fig. 4.6.

If there is a short between collector and emitter the ohmmeter must read zero whichever way round it is connected. If there is no short, it will read high both ways. But it won't read infinity, because there are two conducting paths across the collector and emitter terminals. One goes through R4, R3, R1 and R2. The other is through R3, R5, R6 and R4. If the meter probes are applied to b and c there will be a low resistance one way (when the base-collector junction conducts). The other way a small current can still flow via R3 and R1.

When checking resistors in transistor circuits make sure that the internal battery of the ohm-

Fig.4.6. The first stage of a modern amplifier, shown here to illustrate typical fault conditions.
meter turns the transistor junctions off: i.e., in the non-conduct ing direction. If it doesn't, you will get a low reading. If, for example, you try to measure R2 with the negative (as marked on the meter) lead to base and the positive to earth current will flow via the base-emitter junction and R 4 giving a false low reading.

ELECTROLYTIC CAPACITORS

Electrolytic capacitors can confuse ohms measurements. There is often a large electrolytic (C4) across the battery or power supply (between the positive and negative rails).

This may take a charging current when the meter is applied. It will do so, for example, if the meter is connected across R5 since current flows directly to C4 from one meter terminal and indirectly, via R6, from the other It may save time in measurements to charge C4 first, by putting the meter across the supply rails before making other measurements.
The correct polarity should be observed. Remember that "ohmmeter negative" is internal battery positive. Unfortunately, charging C4 (or any other large electrolytic) does not always solve the problem. As we've seen, you may well want to connect your meter in such a way that transistor junctions are reverse biased. This polarises C4 the wrong way and it may then take a fairly large persistent leakage current.

Similar considerations apply elsewhere in the circuit If you connect across $\mathbf{R 2}$ in the direction which turns TR1 baseemitter diode off, the positive plate of Cl receives a negative voltage and
the negative plate a positive voltage, via VR1. This may cause Cl to de-form and take a large leakage current.

One dodge is to make measurements quickly before the capacitor has time to deform. Another trick, which sometimes works, is to switch to a higher resistance range and make the measurement with the meter polarity such that Cl receives the correct positive and negative voltages.

Normally, this would turn on TR1 and spoil the measurement. However, in order to turn TR1 (base-emitter diode) on it is necessary to apply more than a certain minimum voltage. For silicon transistors, this is about 0.5 volt. If a higher resistance range, still operated from a 1.5 volt cell in the meter, is used, TR1 never gets enough voltage to turn it on.

You can see why from Fig. 4.3, if you imagine that the test is being made with a diode across the resistance under test. If the internal meter resistance (R1 plus R2) is much higher than the resistance under test (R2) nearly all the cell voltage is absorbed inside the meter and only a little appears across the circuit outside.
If this external voltage is insufficient to turn on the diode then a true measurement of the resistance is obtained. To estimate how much voltage is appearing externally forget about the ohms scale and think of the meter as having an ordinary linear d.c. voltage scale of 0 to 1.5 volts. If the resistance under test is zero, all the 1.5 volts is absorbed by the meter, which reads fullscale.

If 1 volt is absorbed, leaving 0.5 volt outside, the pointer
moves two-thirds of the way to full scale. If deflection is somewhere between two-thirds and full scale then the voltage across the circuit under test is substantally less than 0.5 volt, and true readings are obtained if the semiconductors are silicon.

FAILURE

You can see from this that there is a risk that your meter will fail to test diodes (and transister junctions) if its ohms circuitry is not capable of applying enough voltage to the diode to make it conduct. Since the battery in the meter is always at least 1.5 volt, the usual "ohms" circuitry of Fig. 4.3 is adequate for diode testing if there is no resistance across the diode.

However, there are a few expensive meters which use a different arrangement for measuring ohms, and these are often deliberately engineered so that only a low voltage appears across the circuit under test. This is to make measurements of resistances across diodes and transistors easy. If you are lucky enough to possess such a meter, you will generally find that diodes can still be checked by switching to a higher ohms range. (The test voltage usually goes up on the higher ranges.)

One final word about diode tests. Some meters use a 9 volt battery for their 'megohms' ranges. This voltage is more than enough to cause reverse breakdown of the base-emitter juncdion of many silicon planar transistors and some germanium transisters.

This gives a false low resistance reading in what should be the non-conducting condition of the diode.

THE BEGINNING OF THE END

Faultfinding calls for both strategy and tactics. Strategy, as described in the first part of the article, enables you to discover quickly which part of a complex circuit is faulty. Tactics is then brought into play to pinpoint the fault.

Successful tactics calls for some understanding of circuit operation and some knowledge of the use of test instruments. Only the minimum equipment required (ie a VOM supplemented by simple accessories which you can make for yourself) has been mentioned in these articles. Should you wish to go further, the next most useful piece of gear is an audio oscillator. After that, depending on where your interests lie (audio or radio) either a radio frequency signal generator or an oscilloscope.

At all times, use two "instruments" which cost nothing, your imagination, and your powers of observation. Expect the unexpected.

Once, for instance, I found that a mysterious mains hum suddenly appeared in an audio noise generator I was building. I tried everything I could think of but failed to find the cause. Then I noticed that the hum was reduced if I covered part of the circuit with my hand, without touching anything.

This led to the explanation. My hand was keeping light from the electric bench lamp off a glassencapsulated germanium diode in the circuit. This diode was operated in a reverse-biased condition. In this condition, germanium is very sensitive to light. Enough light was getting through the clear-glass envelope to affect the reverse resistance of the diode significantly.

Since the light from the bulb ran off a 50 Hz mains supply, the flickering (invisible to the eye) explained the hum.

A piece of black sleeving slipped over the diode cured it. The experience was useful, in that it also showed me a way of obtaining, for the price of a diode, a rough-and-ready kind of photocell. Fault finding can be an educational process.

Good luck with yours! I

I tried everything I could think of but failed to find think of but failed to find
the cause.

Readers' Bright Ideas; any idea that is published will be awarded payment according to its merit. The ideas have not been proved by us.

A NOVEL CASE

An inexpensive, versatile, and very attractive case for a circuit can be made from the interlocking plastic drawers used for component storage.
The name-fag holder and handle are sewn or filed off, and the drawer is then reversed so that the scratched front is hidden, and two holes drilled to match the mounting holes in the back of the cover. The other end is then drilled to take the controls, etc of the circuit, and then painted on the inside with model paint. Two bolts through the back hold the drawer in place in its cover, and feet may be glued or bolted to the base if the cases are not to be used in the interlocking mode.

The finished appearance of the cases is very impressive, and as the drawers are available in several sizes, most circuits can be housed.
N. Riddiford,

Tyne Wear.

The Exira ordinar Experiments of Proiesse Evinestire by Anthony John Bassett

The Prof. began with some comments on the practical experiments described last month, to describe to Bob some properties of electrical polarisation of insulation.
"One of the most interesting of the phenomena which the electrophorus demonstrates, Bob, is that an electrically charged insulator may carry a charge below the surface of the material. When you lowered the uncharged metal tile onto the surface of the charged plastic tile, and earthed the metal tile by touching it with your finger, this did not remove all of the charge from the plastic tile, as might be expected if the charge resided on the surface.
"On the ccontrary, as the charge carried by the plastic tile could not escape by this route, it induced a charge of opposite polarity in the metal tile, which became obvious when you lifted the metal tile away from the plastic tile using the insulative handle.
"Then a strong electrostatic charge appeared on the metal tile, causing your model electrophorcraft to take off and hover in mid air.
"But the charge carried by the plastic tile still remained, and this can be used to charge, by induc-

(a)

Fig.la. Typical magnetic field produced by a bar magnet.
tion, any number of metal tiles in the same way."
"Prof." remarked Bob, "I have noticed that my plastic tile gradually seems to lose its charge, and I cannot seem to recharge the metal one from it too many times before it begins to weaken. If the charge is below the surface, as you say, how can it be lost from inside the insulator? And if the plastic is such a good insulator, how can an electrical charge be placed under its surface to begin with?"

ELECTRETS

"Aha!" remarked the Prof. "In your first question you are making an unscientific assumption! How do you know that the charge is lost from inside the insulator? It

(b)

Fig. Ib. Solld wax, as shown here also produces a similar fiald.
might be there all the time, and only seem to weaken! If the external electrostatic field produced by the charge inside the insulator were to be partly neutralised, the charge would seem to disappear or weaken, and the ability to charge the metal plate by electrostatic induction would weaken ds you have observed.
"There is a way in which this can occur very readily; the charged plastic tile will attract to itself tiny particles of opposite charge which then stick to the surface, and eventually because of their opposite charge and ingrease in quantity, will neutralise the external field, without actually removing the original charge.
"Now by rubbing the surface vigorously with a dry cloth, or as you do, in the hair, the surface
charges can be removed, and the external field will then reappear.
"Now it frequently happens that in various ways plastic can become electrically charged during manufacture, and as the plastic is shaped and moulded to its final solid shape, the electrical charges can become trapped below the surface. Another related phenomena is the production of electrets, which are very useful in electret microphones and pickups. These consist of pieces of insulative material which exhibit an electrostatic field, but without carrying an overall electric charge.
"This means that although the electret is neither positively charged nor negatively charged, it produces an electrostatic field."
"How on earth does it manage that, Prof?" asked Bob intrigued.

CARNAUBA WAX

"The first electrets to be made experimentally were produced by a Japanese scientist, Motataro Eguchi, in the year 1920. He found that by allowing molten Carnauba Wax to solidify in the presence of an electric field, the electric field appeared to become frozen in to the solid wax, which continued to show an electric field even though it had not been given either a positive or a negative charge. The wax became polarised with positive and negative poles analogous to the north and south poles of a magnet, and with the field passing through the material from one pole to the other and manifesting externally as opposite fields at each pair of poles." Fig. 1.

Fig.2. Apparatus required to produce a "wax" electret.
The professor drew a sketch depicting the type of apparatus which could be utilised to produce an experimental electret by solidification of a molten insulator in the presence of a strong electrostatic field Fig. 2.
"The high voltage may be pro-

Fig.3. Construction of an electrostatic mierophone.
duced by traditional means such as the Wimshurst machine, or by means of a more modern elec tronic e.h.t. generator. When the wax has solidified, the source of the high polarising voltage may be removed and the wax broken up. It should then be found that each piece produces its own electrostatic field, the field may then be detected by moving the wax about in the vicinity of an electroscope.
"If the electroscope is partially charged already, it can then be seen how opposite sides of the electret produce an opposite field, causing the electroscope to give both positive and negative indications for the same piece of material.
"One very important point to be very careful of when producing an experimental electret is the purity of the material."

The Professor showed Bob a sample of Carnauba Wax, a hard brown solid.
"This is the hardest known wax to occur in quantity in nature, and is also the wax which is imported into England in large quantities for making wax polishes and for many other purposes.
"When there is relative movement between electret and the input terminal of an amplifier, this induces movement of electric charges in the terminal, and these produce an output from the amplifier. In an electrostatic microphone, for instance, the diaphragm itself is an electret." (Which is, however, made of plastic, not wax.)

ELECTROSTATIC MICROPHONE

The Professor began to draw a sketch of an electrostatic microphone, Fig. 3.
"It is placed near to a metal plate which is connected to the input of an f.e.t. amplifier, which matches the high impedance of the signal source. The metal plate is perforated for acoustic reasons which assist in giving good frequency and directional responses, and avoid trapping air between the plate and the diaphragm when the diaphragm vibrates."
A friend of the Prof. had bought a large number of electret condenser microphones, and found a small number of these were faulty.
"These are very good microphones," he told the professor. "But I have been told that the faulty ones are unrepairable."
"He left a few of the faulty microphones with me," the Prof. told Bob, "so that I could investigate, and tell his regular repairman what to do. Fortunately, I have found that, with care, most of these microphones may be mended very easily. Look, I'll show you."

REPAIRS

The professor plugged one of the faulty microphones into an amplifier and spoke into it. The resulting output was very quiet.
"Turn up the volume, Bob", he said, and as Bob gradually turned up the volume-control the Prof's voice came from the loudspeaker.
"It sounds distorted, Prof, and not very loud although I've set the volume up full," Bob observed.
"Okay, Bob, turn it down again." The Prof. disconnected the microphone and carefully opened it up.
"Here is the electret diaphragm, trapped between two plastic washers," he showed Bob.

The Prof. carefully lifted the washers and the diaphragm away to reveal the perforated plate,

Fig.4. Typical circuit used in many electrostatic microphones.
and gently ran a finger over the surface of the plate.
"Feel this, Bob," he suggested, as Bob began to touch the metal plate. "Do you notice anything?"
"Yes, Prof., the edge of one of the holes in this plate is very rough; it feels as though there is a piece of metal sticking up around the edge of one of the holes: this one."
"That's right," the Prof. confirmed. He used a fine curved blade to carefully scrape around the edge of the hole until the irregularity had been removed and the metal felt smooth and level, then carefully positioned the diaphragm and spacing washers over the plate, fixed them in
place and reassembled the microphone. Now when he tried it the microphone sounded loud and clear.
"That seems to me to have been an easy repair, Prof.," remarked Bob, "Can I try to do one?"
"Yes, why not?" remarked the professor, "Go ahead." Carefully copying the Prof.'s previous actions, Bob gingerly took the delicate microphone to pieces, being very careful not to bend or otherwise damage the electret diaphragm.

However, he could find no rough edges on the perforated plate. The Professor handed Bob a large sheet of clear white paper.
"Shake it over this," he suggested, and as Bob did so, a ininute particle of metal came out from amongst the holes in the perforated plate and settled upon the paper.
"There's the culprit, Bob! The complaint about that microphone was that it rattled and crackled!"

When Bob had carefully reassembled it, this microphone also sounded loud and clear, without any trace of rattle or crackle.
"Hooray," shouted Bob jubilantly into the microphone, "but Professor that was easy, why do they say these microphones are unrepairable? What else is there to go wrong?"
"Not much," replied the Professor. "Behind the perforated plate is an f.e.t. pre-amplifier, and sometimes there is a matching transformer."

The professor quickly sketched out a circuit diagram, Fig. 4.
"Not much to go wrong there. These microphones are unrepairable if you don't know how to do il, but when you know how, it's easy!"

To be continued

Continued from page 370

Your Career in Electronics

cently awarded to Marconi-Elliott Avionic Systems for the electronics in the British Airborne Early Warning system. As main contractors, MEAS will have work for some 2,000 people and it is estimated that another 2,000 people at sub-contractors will be employed on the project. The job is worth $£ 100$ million to companies in GEC-Marconi Electronics.

The systems engineering on AEW is not confined to radar surveillance. The aircraft will also have sophisticated data handling equipment to co-ordinate target plots with sensors which determine the type of target, and with the aircraft's own navigational system. It is also a flying control centre with a communications system for directing interception.

The radars and communications must ideally be immune from all forms of enemy jamming. And everything must be crammed into the confines of an aircraft. A mammoth operation for which
there will be a need for several teams of systems engineers working on specific task cells.

The composition of the teams embraces scientists and engineers of many disciplines. Of course there will be digital and analogue circuit specialists, software programmers and mechanical designers, reliability engineers, microwave specialists and test equipment designers. But there is also a call for stress analysts and mathematical modellers.

Once the prototype hardware becomes available there will be plenty of work for practical systems development both on the ground and in the air by trials engineers.

It is safe, to say that some engineers on this single project will still be working on it in 10 years time because even when the system is flying there are constant up-dates and redesigns to cope with changes in the military requirement to meet new or different types of threat. It is also safe to say that many young engineers just entering the profession of electronics will be posted to the project in its lifetime after they have completed their training and acquire some experience.

CHANGING WORLD OF ELECTRONICS

The pattern of electronics is changing. Many advanced technology components once manufactured only in the industrialised countries are now made in faraway places where labour costs are low. This trade has been lost by advanced countries like the UK.
The same applies to comparatively simple and cheap assemblies such as transistor radios. But those countries which have recently acquired the basic skills to fabricate components and manufacture the simpler assemblies are completely unable to engineer large systems of the type we have been discussing. There is no chance of advanced systems engineering contracts going to Taiwan or Korea.

As I have explained, systems engineering is a big and important job. But there is no need to be frightened of it. There are lots of clever people involved, they have to be clever; but they are by no means all geniuses. The teans leader was once a brash newcomer and there are plenty of first year apprentices today who will be in systems engineering in five or 10 years time, even though they may not know it yet.

Areader asks: "Why operational amplifiers? After a I, they are just amplifiers, and they'd be no use if they didn't operate!'

Quite. But the operctional in "op. amp" has a special meaning. It refers to the ability of some circuits containing amplifiers to perform mathemotical operations. In these days of digital computing it is easy to forget that there is another kind of computing, analogue computing. This is where the operational amplifier was first used.

Analogue computing is in certain cases simple and fast. An important use of analogue computing is to carry out the difficult mathematical operation called integration. This is done with the very simple circuit of Fig. I. If the input current is made to be proportional to whatever you want to integrate then the output voltage is proportional to what mathematicians call its timeintegral.

Perfect Integration

Working out integrals can be a formidable task, to a mathematician, but the circuit does it effortlessly. With one snag, though. Analogue computation is not precise.

One reason for errors is that in a circuit like Fig. the amplifier itself can upset the operation. To perform a perfect integrat on all the input current should flow in to the capacitor, and none into the amplifier. In other words the amplifier should have infinite input impedance.

Connecting some kind of load (such as a second op. amp) to the output should not affect the output voltage. This means that the amplifier's output impedance should be zero. For perfect precision the amplification should be infinite.

Naturally, no real-life amplifier can meet this spec fication. But adequate

Fig. I. Fundamental clrcuit for an integrating op. amp.
precision is obtained if the gain is very high, the input impedance very high, and the output impedance very low.

External Circuitry

There are one or two further common requiremenis. In many operations it is necessary to connect a resistance from the amplifier output to the amplifier input. This must not upset the working of the amplifier. To provide this facility, the normal d.c. voltage at the output of the amplifier must be the same as at the input. (Usually this requires that the power supply should be of the "split" type, with a positive rail, a negative rail and a neutral or earth rail at an intermediate voltage.) Another useful facility in modern op. amps is differential inputs. This means that there are two input terminals, and the amplifier responds to the difference between signals at these terminals. Thus if one terminal is at 120 mV and the other 121 mV the effective input is 1 mV . This is very useful when the input signals come on leads which pick up interference. In the example just given, 120 mV of each signal might be unwanted mains hum, present on both leads. The odd ImV would then be the wanted signal. The amplifier would almost ignore the hum. This property is called common mode repection, a common-mode signal being one present at both terminals and of the same strength and polarity.
An amplifier with all these properties is suitable for use in most "operational" circuits and is therefore an op. amp. Naturally, it can be used for purposes other than computing, too, but there are limitations. It may be rather noisy. Its bandwidth is usually limited, making it unsuitable for high frequency amplification. Its power output is generally small. It is essentially a "voltage amplifier" ' with the ability to handle signals from d.c. to a few tens of kilohertz.
The first op. amps were big, clumsy valve affairs, but with the arrival of integrated circuits they have become so compact that four of them can be incorporated in one dual-in-line package. Most of the recent op. amps have what is called built-in frequency compensation: this means that a capacitor is incorporated which restricts the bandwidth and so helps to keep the amplifier stable.
Some are designed for use with a simple, untapped power supply. Some
incorporate field-effect transistors in the input-circuits to give an extremely high input impedance. Op. amp techniques such as differential inputs are used in other i.c. amplifiers such as audio power amplifiers.

Offset and Drift

An important use of op. amps is the amplification of small d.c. voltages, and this is where their limitations show up. All op. amps behave as if there were a small d.c. voltage signal at their input even when none is there. This spurious input signal is called the input d.c. oflint voltay and is often a few millivolts. It can be removed by making adjustments and many op. amps have special terminals for connecting offset nulling circuits. Unfortunately, the adjustment is correct only for one temperature, so another important quantity is the temperature drift. An op. amp with a temperature drift of $10 \mu \mathrm{~V}$ per degree Celsius will show a change of $10 \mu \mathrm{~V}$ in offset voltage for every I Celsius degree rise or fall of temperature. Drift makes the amplification of microvolt d.c. signals difficult but op. amps are gradually being improved and are already much better than the d.c. amplifiers of the last generation.

General Purpose Amplifiers

Since the development of genuine op. amps the need has arisen for cheap general purpose low frequency amplifiers with some of the characteristics of the real thing but not such a stringent specification. These are still referred to as op. amps in price lists and data sheets.

In addition, the op. amp design philosophy has spilled over into general amplifier theory. You may find circuits with only one recognisable live input terminal which are nevertheless shown on block diagrams as op. amps with two input terminals (inverting and noninverting).

"I knew it would happen one dayit's token over my business!"

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Bulld an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circult diagrams.
 In a short time you will be able to

 read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic cricults.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating trom a computer and containing many different components that can be used in experiments and provide an excellent example of current -electronic practice.

RECEIVERS and COMPONENTS
NO LICENCE EXAMS NEEDED
To operate this ministure, solldstate Trangmitter-Becefver xit. Only £8-25 plus 20p P\&P.
'Brain-Freeze' 'em with a MINISTROBE Kit pocket-dzed ILEhtning fashes', varl-speed, for diecos and parties. A mere $£ 3 \cdot 80$ plus 20 p P\&P. Experiment with psychedellc DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $\mathrm{ft} \cdot 00$ each plus $20 p$ P\&P.
LOTS MORE! Send 20p for lints. Prices include VAT. Mail order U.K. only).

BOFFIN PROJECTS
4 Cunlife Road, stonelaigh Ewell, Burrey. (E.E.)

DISCOVER ELECTRONIC8. Build twenty easy projects including; Metal Detector; Wireless Transmitter; Breathalyser; Miniature Radios; Stethoscope; Lie Detector; Touch, time switches; Burglar Alarms; etc. Circuits, plans all for E1.29 including circuit board. Mail only. Ridley photo/electronics, Box 62, 111 Rockspark Road, Uckfield, Sussex.

ELECTRONIC DEVICES and components. Latest free lists from N.K.M. 32 Seaside, Eastbourne, Sussex. Telephone 32921. (Export welcome.)

SMALL ADS

The prepaid rate for classified advertisements is 14 pence per word (minimum 12 words), box number 40 p extra. Semi-display setting $£ 9.00$ per single column inch (2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Lid." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach .Tower; Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONOTIONS OF ACCEPTANCE OFCLASSPEDADVERTISEMENTS

1. Advertisoments wa sccepted subject to the condtions apeoring on our currant advertisement rete cerd tond on the exprest undarstanding that the Advertiser warrents that the sdvertisoment does not eontruvene my Act of Parlitument mer is it on infriogement of the Britith Code of Advertisiog Practice.
2. The pelishers raserve the right to rafuse or withdraw eny ebrentistoment.
3. Although every ceve is isken, the Publishers shall not be listle for clorical or printers' errors or their consequences.

71b ASEORTED COMPONENTS 22.95. Small audio amplifers. 3 transistors equivalent to AC128, OC72, with circuit. 3 for E 1 , Goods post paid. List 15p. Refund on purchase. Insurance add 10p. J. W. B. Radio, 2 Barnfield add 10p. J. W. B. Radio, 2 Barnf
TRANSISTORS, capacitors, resistors. diodes, pots plugs and eockets, etc. All top quality at 65 Railway koad. Leigh.

BOOKS and PUBLICATIONS

SMMPLIFIED TV 胃EPATS. Full repair instructions individual British eets \&4-50, request free circult diagram. Stamp brings detalis unique TV publications. Ausee, 76 Church Street, Larkhall, Lanarkahire.

FOR SALE

TEACH-IN 76 KIT- 15 magazines. Circuit deck every component £16. 01-878 2980.

EVERYDAY ELECTRONICS, No. 1 to date, for sale, $£ 10$ plus carriage. Mr. Rowlands, 101 Park Road, Guiseley, Leeds.

SERVICE SHEETS

EELL'S TELEVISION SERVICE for service shects of Radio, TV etc. 75p plus SAE. Colour TV Service Manual on request. SAE with enquiries to BTS, request. King's Road Rith enguries to N. Yorkahire. Tel: 04235585.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-inding guide, from 50 p and s.a.e. Catalogue 25 p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

COURSES

BE A SUCCESSFUL TV ENGINEER. Join our full-time Two-year College Diploma Course, specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers including the latest colour sets. Enrolments are now under way for September 1977. Minimum entrance requirements are Senior Cambridge or ' O ' level, or equivalent in Mathematics and English. September includes a specialised Colour TV and FM Stereo servicing course, plus a 2nd year Tech. niclans' course. Contact us for free prospectus: THE PEMBRIDGE COL LEGE OF ELECTRONICS, Dept. EE, 34a Hereford Road, London W2 5AJ. Tel: 01-229 9117.

- MISCELLANEOUS

STYLI, CARTRIDGES \& AUDIO LeADs wrC. For the best at keenest prices send SAE for free illustrated list to: FELSTEAD ELECTRONICS (EE) Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

RECHARGEABLE BATTERIES

'AA' pancell (HP7) E1. ${ }^{2}$; Sub 'C' ${ }^{\text {E1. 29: }}{ }^{\prime} \mathrm{C}^{\prime}$
 Matching chargare 28.01 each except PPs chargop ze-g. Charging holdere for $2,3,4$, 8 or 8 pencelle 350 . 'C' A'D' size holders, ${ }^{4}$ call only 800 . Prices Include VAT. Add 10% poset peckago. and Insurance ordere undor ESO. B\% over ZO. SAE for full detalis plus 780 for 'Nlekel Cadmlum Powor booklet, Mall ordera to shNDWLL PLANY Wroat midiands. Tol onv, sistion. Collere to The c . Craven streot, charing croes. London w.c.2.

BARGAIN BOX for BEGINNERS contalining 2 Transistor/component panele, 1 Relay. I Recti fer, 1 earphone Insert, 1 mike ins ert, 2 dlodes Rectifer,
1 buzzer, 3 corpocord, 11 salvaged tool-an Ideal collection for experimenta: \&1.E Ine. VAT A P.P. 5 digit counter. 10 digite/sec., $24-48 v$, nonresot. brand new GPO type isp Inc. Aleo 3, 4, B, O 49 core corde many other tolephone spares at give away prices
Trade enquirion welcome. S.A.E. for Mate or orders to:

B. B. SUPPLIES
141. Shalmsford St., Near Canterbury, Kent. CT4 7QZ.

Compuler Power Panels with 8 each 1000 mf 63v, 150R, ww res. 4 pin din sockats. 2 fuseholders panel \& varlous CCT board, nuts bolts etc. E. 25 incl. postage
B. \& D. Mail Order, 514 Bristol Road. Selly Oak, Birmingham 829.

DIY BURGLAR ALARM EQUIPMENT
\star 路
Magnetic switches. Pressure mals. Bells \& Bell Foll. etc.
Send s.a.e. for llsts
DACH ELECTRONICS, La1 BBP
i. O51 A77 5034

100 RESISTORS 75p
IW 5% c/FILM $2 \cdot 2 \Omega-2 \cdot 2 M \Omega$ (E12) 10 each of any value
Cat CASSETTES 30p All Cassettes in Platic Ce CASSETTES 45p Case wilh Index and All prices include VAT. Add Postage 10p In fi Quantly Discounte SALOPELECTRONICS. 10 Units 5\% 23 WYLECOP 500 Unils 7% SHREWSBURY 100 Unite 10%

Tol, 532%

KEYBOARDS, super touch, fast, ideal for synthesisers made from hard acrylic plastic, 3 octave model, only ع12. Send s.a.e. for details to D.C.S Keyboards, 16 Neville Avenue, Port. chester, Hants PO19 9NX.

4 STATION INTERCOM

Bolve your communics. tion problems rith thin Iatarcom symetr (1 martar and 8 qubs), it robust plastic cabinets for desk or al roountlag. Call/taly/histen frorn Haster to 8abe and sube to Master. Ideally suitable for Businema, Bur ery. Scbooln, Hospitale and Office. Operate on one 90 batters. On/ott awflch. Volume contro! Complete with 3 connectipg wiren each $68 / t$. an

MAINS INTERCOM NEW MODEL No batterat-Do Wires. Just plug in the enales On off sixitch mal volume control. Price 833.74

NEWI AMERICAN TYPE CRADLE

 TELEPHONE AMPLIFIER

Lateat tralasistorised Telephove Ampliber with detached plug-In epeaker. Placlag the receiver on to the cridle activates switch for trurnerliate iwo-way conversation without holding the haddeet. Many people can listed at thme. Increabe enciency Is ombe, lhop, workahop. Perfect for "eonfertnoe" calla: leaves the user'a hands iree to inake notes, conault fiee. No long raiting, aaves tme Filh ispe modity model at oin t VAT P. \& P. 75p. 10 -dey price refund guaratee.

WEST LOIDOT DLRECT BUPPLIES 'E.E. 8
16 ESHIMGTOA EIOH STREET, LOTDO WB

DENCO (CLACTON) LIMITED
 Dept. E.E.

357-8-9 OLD RD. CLACTON-ON-SEA ESSEX CO15 3RH

Our components are chosen by technical authors and constructors throughout the world for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment.
General Catalogue showing full product range 34p. Overseas Customers 70p, Air-Mail Post Paid.

U.K. \& OVERSEAS MANU-
 FACTURERS/STOCKISTS ENQUIRIES WELCOME

Australian Readers Please NoteOur Complete Range of Coils are available from Watkin Wynne Pty. Ltd., 32, Falcon Street, CROWS NEST, 2065, AUSTRALIA. P.O. Box 392.

TV GAMES CHIP

AY-3-8500 cil-5a. Printed clrcult and whe of extra parts 29.55. Add-on colour hit P.O.A. Send sae for data

NEW COMPONENT SERVICE
Resistors 5\% carbon E12 1Ω to 10 N iW 1 tp . 1 W ${ }^{3} \mathrm{P}$. Preset pots subminiatura $0.1 \mathrm{~W} 100 \Omega$ to $4 \mathrm{~N} / \mathrm{si}$. otentameters tw 4 k to 2 N 2 log or lon. Single 30 . Di2 63 V 22pt to 8200 p itp. Ceramic cap seltore sol Es 200! to 47000 ol io. Mylar eapacltor $100 \mathrm{~V} \cdot 001,002, .0054 \mathrm{p}$. $01,02.025$ 4ip. Polyester capacitors 250 V Es 01 to 1 mf ${ }^{5}$. $\mathrm{p} .45,22,33 \mathrm{mi} 7 \mathrm{p} .47 \mathrm{mt} 11 \mathrm{p}$. Electrolytics to 100 mi 2mi $2 p .253,10 \mathrm{misp} .18 V 22,33,47 \mathrm{mF}$ 18p. Zener diodes 400 mW E. 243 V to 33 V thp.

MAINS TRANSFDRMERS
$0-0-8 \mathrm{~V}$ $400 \mathrm{~mA} \quad 4 \mathrm{p}$. $0-0-0 \mathrm{~V} 75 \mathrm{~mA} \mathrm{Mp}$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A E3. 55 . $12-0-12 \mathrm{~V}$ 50mA

PRINTED CIRCUIT KITS ETC*
Contelns etching dioh, 100 ea Ine of pe board, Itb ferric chloride, etch resilat pen, difil blt and

B-DECS AND T.DECB*
S-Dec E1-4. T-DeC ES.
U-DeCA Es. 17.
U-DeCB CE-67.
IC cariore with

SINCLAIR CALCULATORS AND
Sinclair pocket TV E165. Cambridge scientife programmable E1s.is. Piog. Hbrany \&4.is. Cambrigge scientific es.45. Oxford secientific E10-4. Matns adaptors E.s. 20.

EATTERY ELIMINATOR EAROAINS

3WAY MODELS

With awltched output and 4 -way multi-lack connector. Type 1: $3 / 4 / / 5 \mathrm{~V}$ at 100 mA E2.30. Type 2: 6/7l/gV 300mA $\mathrm{EL} \cdot \mathrm{t}$.
TMMA RADIO MODELS
With press-stud connectors. of c3.45. ov \&J.45 $0 V+v V E 5 \cdot 15.8 V+8 V E 5 \cdot 15.41 V+4 \downarrow V$ E5. is. CASSETTE MAINS UNIT
7iV with 5 pin din plug 150 mA es. cs .
FULLY BTABILIRED MODEL EB-40
Switched output of $3 / 6 / 7 / 1 / 9 \mathrm{~V} 400 \mathrm{~mA}$ tablized, CAR CONVERTORS I2V INPUT
Output 9 V 300 mA E1-16, Output 7IV 300 mA \&1-
BATTERY ELININATOR KITE
Send wat for tree leaflet on range.
1etma radlo types with prese stud battery terminals. 4 iV c2-14. oV E. 10.9 V Es-10. $4 \mathrm{VV}+$
 Casestle type 71 V 100 mA whith din plug $\mathrm{Ez}-14$ Transistor stablized s-way type for low hum
$3 / 41 / 6 / 71 / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 mA EJ. $20.1 \mathrm{Amp} \mathrm{cs}-44$ Heavy duty if-way types it/6/7/8+/11/13/14/17 $21 / 25 / \mathrm{s} / 3 / 34 / 42 \mathrm{~V}$. 1 Amp $4 \cdot \mathrm{mbs}^{2} 2 \mathrm{Amp} \mathrm{c7} \cdot \mathrm{ss}$. Car cenvertor kit Input 12 V DC. Output 6/71/0V DC 1 A transistor stisblized $\mathrm{C1}$ - is
Stablized Laboratory power klt Switched 1 to 30 V in 0.1 V steps. $1 \mathrm{Amp} \mathrm{E} 12.45 .2 \mathrm{Amp} £ 14 \cdot \mathrm{ES}$
SINCLAIR PROJECT E AUDIO MDDULES PZ5 E4-95. $240 E 5-75$.
BI-PAK AUDIO MODULES
S450 tuner ©21.85. AL60 E4.56. PA100 E14.es. MK60 sudio hit e34-45. Stereo 30 ci7-95. SPMBO 53.75. BMT80 54-25. Send ase for free date

SINCLAIR IC2
IC20 $10 \mathrm{~W}+10 \mathrm{~W}$ teroo integrated clreult amp kt PZ20 Power aupoly kit for above E3. ©s.
YP20 Power aupply kolume, ton control and preamp.
Pend se fop free leaflot on the whole aytas.

CI2 ANO JCAO AMPIUFIERE
JC12 WW IC audio
amp with frae date
and printed
Also new JC40 20W
model with pcb
24.ES. Send sat for free leaftet on both modele and assoclated pow er supply and preamp kite.

FERRANTI ZN414

IC rado chlp Ef-44. Extra parts and peb for radlo
ci-2s. Case E1. Send sat for free data.

SWANLEY ELECTRONICS Dept E.E. PO BOX 68, 32, GOLDSEL ROAD, SWANLEY, KENT BR88TQ.

Mail order only. No callers. Send sae for tree data on klta. Poet 30 p extre. Prices Include VAT.
Omelal ordera welcome. Overseas customers deduct 1% on ltefis marked and 11% on others.

bought this beautifui little milliamp-meter through the speclal Bargaln Liet that Home Radio sent me when I bought a copy of their famous Components Catalogue. I reckon I saved a good $£ 1-80$ on this one Item aione-more than the catalogue itself cost. If I'm not mistaken, you got that natty

transformer the same way, so no doubt you're as familiar as I am with the scores of bargains they're offering.
But have you noticed that there are quite a few bargains in the main catalogue ifself? That Reslstor Pack SP22 for Instance- 400 preferred value \ddagger watt 5% reslstors for only $£ 6$, beautifully arranged for easy selection. If that's not a bargain, what is?
For those readers who have not yet caught on to the advantages of dealing with Home Radio let us explain. It's perfectly simple. Purchase a copy of the Home Radio catalogue, £1.40 including postage and packing or $£ 1$ over the counter. it has over 200 pages, listing about 5,000 items, neariy 2,000 of them illustrated. It's a marvellous production. With every catalogue Home Radio glve you free an up-to-date Bargain List. You're on to winner, 80 why wait? Send the coupon with cheque or postal order for $£ 1.40$ to Home Radio Components, 240 London Road, Mitcham, Surrey.

IT'S EASY WHEN YOU KNOW!

To avold mieeing your copy of EVERYDAY ELECTRONICs-simply complete this order form and hand it 10 your neweegent. ORDER FORM
To:..
Addrase \qquad
Please reserveldellver every month one copy of EVERYDAY ELECTRONICS until further notice.
My Name
Addrese
\qquad
\qquad
\qquad

> Become a radio amateur.

Leem how to become a radioemateur in contect with the whole world. We glve skillad preparation

[^3]
THE 'NUTS \& BOLTS' OF THOSE PROJECTS

TRANSFORMERS

MINIATURE MAINS P PImary 240 V with two independent secondary winding
No.
2024
2024 \quad MT $2800-6 \mathrm{~V}, 0-6 \mathrm{~V}$ RMS 2025 MT1500-12V, 0-12V RMS
MINIATURE MAINS Primary 240 V
No. Secondary
$2021 \quad 6 \mathrm{~V}-0-6 \mathrm{~V} 100 \mathrm{~mA}$

202 2022 202

202
1 AMP MAINS Primary 240 V

No.	ndary	Pilce	
2026	$6 \mathrm{~V}-0-\mathrm{VV} 1 \mathrm{amp}$	E2. 70°	
2027	$9 \mathrm{~V}-\mathrm{agV} 1 \mathrm{amp}$	E220 20°	P. $\&$ P
2028	$12 \mathrm{~V}-0-12 \mathrm{~V} 1 \mathrm{amp}$	E2. 600°	P
2029	$15 \mathrm{~V}-0-15 \mathrm{~V} 1 \mathrm{amp}$	E2.75*	P. ${ }^{\text {P P. }} 3$
2030	$30 \mathrm{~V}-\mathrm{a}-30 \mathrm{~V} 1 \mathrm{amp}$	¢3.45	P. \& P. 30p
STANOARD MAINS Primary 240 V Multi-tapped secondary matns transformers avaliable in it amp, 1 amp and 2 amp current rating. Secondary taps are 0-19-25-33-40-50V Voltages avallable by use of taps; 4. 7, 8, 10, 14, 15, 17, 19, 25, 31, 33, 40. 50, 25-0-25V.			
2031			
2032	1 a	E4.40	
2033	amp	¢ 5	

AUDIO OUTPUT Piimary 1.2 kg . Secondary 5 ohms 200 mW Dimenslons $20 \times 16 \times 15 \mathrm{~mm} \quad £ 0.25 *$
Order No. 2037

MINIATURE INTER/DRIVER
Primary 20kQ, Secondary Ik@, Ratio 5:
Order No. 2038
6.0.23*

Primary 100 k 0 , LT710 MIN, INPUT
Order No 100 k 0 , Secondary $1 \mathrm{kO}, 15 \times 13 \times 13 \mathrm{~mm}$.
LTHI MIN. DRIVER
Primary 10h O, Secondary 2 k @, C.T.. $15 \times 13 \times 13 \mathrm{~mm}$. Order No. 2040

LTT12 MIN. OUTPUT
Primary 500 ohm . Secondary 8 ohms. $100 \mathrm{~mW} .15 \times 13$ $\times 13 \mathrm{~mm}$. Order No. 2041
© 0 28*
Primary 150 k 日, Secondary ing, $20 \times 15 \times 15 \mathrm{~mm}$ Order No. 2042

> LT719 MIN. INPUT

LT722 MIN. DRIVER
Primary 10 k @. Secondary $2 \mathrm{~h} \mathbf{\Omega}$. C. T., $20 \times 15 \times 15 \mathrm{~mm}$,.$~$ Order No. 2044

LT724 MIN. OUTPUT
Primary $1.2 \mathrm{k} \Omega$ C.T.. Secondary 3.2 and B ohm, 200 mW . Dimenslons $20 \times 15 \times 15 \mathrm{~mm}$ Order No. 2045

C0. 30.
Primary 500 LTM 726 MIN. OUTPUT
Diary 200 mW Order No. 2046
co.30.
LTT2 MIN. DRIVER
Primary ik@C.T., Secondary 500 ohm C. T. Dimensions $25 \times 20 \times 20 \mathrm{~mm}$ Order No. 2047

LT729 MIN. OUTPUT
Primary 200 ohm C.T.. Secondary 3.2 and 8 ohm 00 mW
Omensions $25 \times 20 \times 20 \mathrm{~mm}$
Order No. 2048
C0.38*

Primary coohm C.T. Secondary 3.2 and 8 ohm, 500 mW .

Dimenstons 25
Order No. 2049
ec. 42°

L.E.D.S				
Type	Size	Order No.	Colour	Price
THL209	- 0.125 in	1501	RED	12p
TIL211	0. 1251m	1502	GREEN	25p
TIL213	0.125 in	1503	YELLOW	25p
FLV115	$0 \cdot 2 \mathrm{ln}$	1504	RED	12p
FLV3to	0.2 in	1505	GREEN	25p
FLV410	$0 \cdot 21 \mathrm{n}$	1506	YELLOW	25p
2nd Grade t.E.D.s				
A pack of standard sizes and colours which fall to				
are ideal for experiments.				
L.E.D. CLIPS				
Pack of 5	S1z		Order No. 1508/0-125	Price
Pack of 5	$0 \cdot 21$		$1508 / 0 \cdot 2$	13p

NUTS AND BOLTS

BA BOLTS--packs of screws, slotted cheese head

ALUMINIUM BOXES. Made from bright all, folded construction aach box complete with haif inch dep

No.	Lanoth	Width	Heloht	Price
159	5 \%in	2iln	11 in	120°
160	4 in	4 ln	1 in	42p ${ }^{\circ}$
161	4ts	2 fin	1 ln	${ }^{62} \mathrm{p}^{\circ}$
162	5:in	4 ln	1 lfn	70p*
163	4 in	2 bln	2 in	$4 \mathrm{p}{ }^{\circ}$
154	3 in	2 n	$11 /$	140.
165	7in	5 in	21 in	c1. $04{ }^{\circ}$
168	$31 /$	6 in	3 ln	£1.32*
167	6 in	4 in	2 n	${ }^{36 p}{ }^{\circ}$

BRIDGE RECTIFIERS

SILICON 1 amp	Order No.	Price
S0V RMS	BR1/50	E0.23
T00V RMS	BR1/100	E0.30
200 V RMS	BR1/200	£0.32
400 V RMS	BR1/400	¢0.36
SILICON 2 amo		
SoV RMS	BR2/50	50.45
100 V RMS	BR2/100	¢0.48
200 V RMS	BR2/200	c0. 32
400 V RMS	BR2/400	¢0.58
1000V RMS	BR2/1000	50.6

FUSE HOLDERS AND FUSES

Description

$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting In $\times \frac{1}{\frac{1}{8}}$ chassls mounting In car inline type 5 sls mou
type
020 mm Panel mounting 20 mm Panel mounting 1tin

QUICK BLOW 20 mm

gulc	Ow		
Type	No.	Type	No
150 mA	611	14	615
250 mA	612	1.5A	61
550 mA	613	2 A	61
800 mA	614	2.5A	618
ANTI.S	G	n	
Type	Na .	Type	No
100 mA	$62 ?$	1 A	62
250 mA	623	2 A	62
590 mA	624	1.6A	52

QUICK BLOW ifin

SWITCHES

VOLTAGE REGULATORS
Positive reculator: TO220 case
MVR 7805 SV $£ 1 \cdot 25 \quad$ MVR $781515 V £ 1.25$
Negative Regulators TO220 case
MVR 7905 SV El 85
MVR 7915 15V $\mathbf{E 1} 1.15$ VR 791212 V ह1 5

MVR 792424 V E1. 15

ORDERING
Please word your orders exactly as printed, not forgetting to include our part number

VAT

Add $12 \frac{1}{2} \%$ to prices marked* Add 8\% to others excepting those markedt These are zero
Just a selection from our huge stocks!

SEE OUR
1977 CATALOGUE
126 pages packed with valuable Information

ORDER NOW
ONLY 50p plus 15p p \& p

Dept. E.E.8, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS

[^0]: IPC Magazines Limited 1917. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however. guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

 Editorial Department: Everyday Electronics. Fleetway House, Farringdon Street London EC4 4AD. Phone 01-634 4452.
 Advertisement Departments: Everyday Electronics Advertisements, Fleetway House, Farringdon Street. London EC4 4AD. Phone 01-634 4504. Everyday Electronics Classified Advertisements, Kings Reach Tower. Stamford Se., London SEI 9 LS.

[^1]: The matter of earth leakage is a serious one and needs to be treoted with great respect. Many "on the rood" musicions using electric amplification equipment could well be plugging in to a lethal electric system which could give the "live performance" another meaning.

[^2]: T.J.J.

[^3]:

