An exciling hoblyy.... for everyone everyday
electionics

It's nice to see that Santa is still so sprightly that he can dance to the rock record he is using to test that stereo player. But Rudolph is getting impatientkeen to be up and away delivering the goods, especially all those Home Radio Components Catalogues Santa is using as speaker stands! Probably your name and address is on that pile of requests pinned to the door. If not, don't despairsend us the coupon below with your cheque or P.O. for 77p and we'll see that the old chap brings you a
copy on one of his first deliveries. (If you call at the address on the coupon you can collect your copy for only 55p. Santa won't be offended-and you'll save yourself 22p.)

By the way, our catalogues still contain 10 vouchers each worth $5 p$ when used as directed. But coupons or no coupons, the catalogue is marvellous value, and once you get a copy you'll wonder how you ever managed without it.

Happy Christmas!

POST THIS COUPON with your cheque or postal order for 77 pence

Our famous catalogue lists 6,800 items-1,770 of them illustrated. Regularly up-dated price lists are supplied to you free, and full details of our popular Credit Account Service are given in the catalogue.

The price of 77p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.
 Please write your Name and Address in block capitals Name Address

HOMERADIO (Components) LTD
Dept. EE, 234-240 London Rd., Mitcham, CR4 3HD

YES, "YOU'VE GOT THE WHOLE WIDE WORLD IN YOUR HANDS ALMOST UNBELIEVABLE! Think O fantastic ASTRAD 17 and SEE for yourself then the incredibl Russians have done it all NOW! le's the radio perfectionist' dream come true! THIS ONE SUPERSEDES ALL EARLIER MODELS! It will probably make your present radio seem like a "crystal set"' Complete with optional battery eliminator for both battery and mains use! We're almost giving them away at only $\mathbf{1 1 8 - 5 0 - a}$ mere fraction of oven today's Russian miracle price: We challenge you to compare performance and valuc with $\measuredangle 80$ radios! t Send quickly, test on mailorder 7 days approval. from receipt of goods refund if not delighted, Or call, Volume controlied from a whisper to a roar chat would fill a hall! Much wider band "spratad, for absolute "pin-point" station selocperfect tuning sensitivity! Yes, the Russions have eurpassed them selves proving again cheir fancastie ability in the field of elcctronics and brilliantly reflecting their advanced micro-circuitry technigues in che field of spaceship and satellize communications. Yes, EVERY WAVEBAND instantly at your fingertips including Standard Long, Medium, Short and Ultra Shore Waves to cover the four corners of the earth during 24 hours a day including al normal eransmissions, VHF: FM/USW, AM:L.W, MW, SW gets, locally, local \& new stations, not yet operational, and TUNER side control waveband selection unit (as used on expensive T.). s!). Every waveband clicks into posizion giving incredible ease of station tuning! Genuine push-pull outpur! ON/OFF volume and reparaduction and ronel Preste controls for ukter periection o anywhere-runs economically on standard batteries (obrainable everywhere) or direct through battery eliminator from 220 (240V $A C$ mains supply. Incernal ferrite rod aerial plus built-in "rotatablo selescopic zerial extending to 39 in approx. It's also a fabulous CAR RADIO. Can also be used through extension amplifier tape recorder or public address system. SIZE 13 in $\times 10 i n \times$ 4 ifin overall approx. Magnificently designed, in highly polished cases Made to sive years of perfect service. Purer \& sweeter zone than ever. (U.K. service facilities \& spares available for years \& years to
come, if ever necessaryl). With WRITTEN GUARANTEE, manual with simple operaking instruction: \& circuit diagram. PLUS ultra sensitive earphone for personal listening. ONLY €18-50 (with mains/battery eliminator $\mathbf{6 2} \mathbf{2 5}$ extra) BOX, POST, ETC. 45p. NO MORE TO PAYI \&BUT WAIT, for only 75p extra you get the sensational "COMPUTERISED" WORLD TUNING GUIDE (it enables you to zone \& time in a flash for ransmissions the whole world over-meven a child can do
flash-it even lets you know when to tune into the U.K when abroad. NO GUESSINGI NO MESSINGI) PLUS Standard 'longlife' batterias and Converter Plug. (Sorry-We cannos change these new radios for any earlier model purchased.) Send quickly to Uxbridge Road address, or call as either Store. But

LATEST RUSSIAN RADIO TECHNOLOGY SHRINKS THE WORLD! ${ }^{\text {COMPUTERISED? }}$

 B 45
8.5

YES.24,901miles
 inches approx?

Mndivebayis: Standabo longand medrem Plus 5SIORT WaIEBANOS GUS ULTRA SHORT WAUES (V.H.F. AM.EN. MWW
 MAINS/BATTERY

CRESCENT man in
11 \& 40 MAYES ROAD, LONDON N22 GTL 888 3205
10% VAT TOE BE ADDED IO ALL GOOD5 \& CARRIAGE RRICE5 speaker ideal where
small aize is imporlant. Manufactured by E.M.I. fora wellknown hi-f set maker. Stze: 7 fin . x $4 i n$. inpedance: 8 ohms Flex: 88,000 . Max. Yree range: 90 Hz to 12kFz. Power handling: 5W. Tinbestable. Price: Dostage on this ite CRESCEST P.300. DISCO CONCRESCERT
TROL PACK. control wit which when connec ted to twin decks makes a disco of professional quality. We supply a smart front panel which incorporate coutrols, switch aud input suckets. The control module, 1.C. conatruction. neorporating mixiag, preamp and head-pbone listening ampliner. The power pack crables this unlt to work from the standari mains. * Injuts include Mic. Tape/Carsette and Twin Decks. Controls include Mic. Tape, Rach Deek and P.F.L. Finl Inatractions are inctuded with ewcry lack. MONO $=$ £14 plus 20p PP. STEREO $=£ 17$ plus 20p PP. Send s S.A.E. for more inforination. STEREO/MONO HEADPHONE VOLULE CONTROL BOX Plig Stereo phones into this control hox and yon then fneorporate, a right and left hand volutnc control and a stereof mono wwitch. Complete with stereo jack
plug and 2 us cabic.
 crescent DIGITAL 24 Hout Nivio Dikital Clock Kit W* Supply:
\star A complete set of components * A complete set of easy to follow instrectlons \star Printed circuita made to make construction as simple as ponable

* A cabintt and front panel to Ail for profesaional tinith.
ponenta.
Please sead S.A.E. for more

TWO WAY sTERBO

ADAPTOR

Slereo fack plug to two stereo line sockets complete with 110 mm of cable. For plugeing two stereo inputs into one. A Bargsin at 65p plus 5 p P\&F. LOW VOLTAGE AMP o transfotor amplitier compiete with rolume control, is sultable WIII d.c. and a.c. supplics. output.
With high DMP innut this amplifier will work 29 a record player, baby alarmi. etc., amplifer Fing Pcw only
lSp P. st P.
£1.75

CRESCRFT" CATALOGUE II you are a constructor you Send gop inc. Post
MIII LOUDSPEAKERS 24° (67 mm) 40 obm) 50 cm
 Please Include Eb. \mathbf{P}. \& F. up to $\$$ Mini-Loudspeskers

TRI-VOLT BATTERI ELIMINATOR Enables you to work your transistor radio, amplifer, or cassette, etc. from eliminator. Just by moring a phug you can seiect the voitage jour require - 6 r . 71 v pack voits. This means all jour trapsistor power Approx. size: $2 \frac{t}{}^{\circ} \pm 21^{\circ} \pm 31^{1 \circ}$. OUR PRICE 8.75p +10 p . P. \& P. Game model anitabls wired for the Fhilips Cassette - $83.00 \div 10 \mathrm{p}$. P. \& P.
"GRESCBET" 100 FATTR.M.S. AW PURPOSE AKPLHFIKE T. BUILD. IT

We supply the three modules for you to build this Disca-Group-P.A amplifier into the cabinet of sour chuire

大 THE POWER AMP MODULE

 KP 100W170W. r.mor sy. wave s00W inatastancuas jeak fnto 8 ohm carr. 45 p.

大 THE PRE-AMP MODULE Four conthol pre-amp, Vol. Bass. Treble. Middje cuntrula. Designed to drive most ampliAers using F.g.T. finst atake. £3.96 cart. 25 p .

* THE FOWER SUPPLY

 MODULE PSIOOIs supplied complete with the mains tranuformer. 89-68, varr. 50p. Complete fixing instractiony are supplied and no technical knowledge is required to connect the three reads wirte If you Durchase all three If you Durchase all three
modulen. f 25 . carr. 75 p . Send modulen. f25. carr. 75 p. Send
B.A.E. for furtber details on tbis or our realy huilt amplifers jur joo relars
 P. \mathbf{P}. Thiz tranaformer is made to a very blgh
tandard and is mandard and is x
 plus 15p P. \& P.

COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR

OUR SHOPS ARE OPEN ALL DAY
FROM 9 A.M. TO 6 P.M. 6.30 P.M. ON FRIDAY (WE CLOSE ALL DAY THURSDAY)
13 SOUTH MALL., EDMONTON, N. 98031685

TRI-VOLT CAR CONVERTBR

 COKVERTER Enables you to work sour Transintor Redio, Amplifier or Cassette etc. from the 12 rolt car earth.This converter supplles 6. 71 or 9 volts and is transistor reculated. Ap 2 pola 12 way 2 pole 2 way \therefore pole 3 way 2 pole 4 was 3 pole 4 was 3 pole 4 was 4 pole 3 w25
18 p each. Pjease inc. 18p each. Please inc,
5p P. P. Cp to 3 apitches

Heary duty cuntacts. $2,500 \Omega$ cofl. All new and unved D.P.D.T. Frec. Special quantity price: §40

POTENTIOMETERS All types if and leas dlameter.
"CRESCENT SENOLE CHANNEL NODND TO LIGET HNTT pprox $4^{\prime \prime} \times 3^{\prime \prime} \times x 2^{\prime \prime}$ anneated to the $x 2 z^{\prime}$ when sound source from 1 to 100 watte produces a psychedelic light diaples of up to 1000 watte Complete with a senaitive leve contrul the unit is fused and can not harm your athplifier. A Bangain at 27.30 plos 10 p

MAITS TRAN8FORMER Fused Primaty 240 V . Recondary 20V - 50tnA. 6-3 \& 13

SIEGGLES DUAL 10K Lín Less 10K 10K Lin Less 20 K Less 50 K 12 Pe , 50 K Switch 100K Double 250 K 40 p . 500 K Pole 500 K each 2M Switch 2 IH
Up to 3 Pots Please add 5

Size-11- $\times 1 \times \times 10$
All two changeorers with 5itable for contacts an aitable for erohoard.
Type Volts Carrent Ohms. $27 / \mathrm{A}$ 12v 17M/A 700Ω 12/A 6\% 33M5/A 185Ω Please include 5p $\mathcal{F} \& P$ up to $\$$ Pelays.

PLUGS

Pack 1075 pin Din
Pack 1083 pin Din
${ }^{22} \mathrm{P}$
Pack $135 \frac{1^{\prime \prime}}{\frac{1}{2}^{\prime \prime}}$ Jack
20p
Pack $130 \mathrm{t}^{\prime \prime}$ Jack Stareo 50 p
Pack 103 Loudspeaker Plug 17p
Pack 100 Phono Plug
Pack 2303 pin Socker
Pack 2365 Pin Socke $\quad 35^{p}$
Pack 234 L/speaker Socket 33p
READY MADE LEADS
3 pin to 3 pin Din
3 pin to open end 5 pin to 5 pin Din
5 pin to 4 phono plugs
Speaker lead Din to spade
12 ft .
Extension lead Din plug to
socket 12 ft .
All leads approx. 6 ft . in fength.
DIAMOND STYLI
8TA: 9TA: 9TAHC; GP91;
ST4; ST9; EV26; GC8
All at 80 p each.
Double Diamond $£ 1-25$.
Diamond suitable for Orbit NM22; G800; M3D E2-25 each.
HEADPHONES
Sennheisser HD414 E12.50
AKG K50
66.50

Beyer DT48S
$635 \cdot 00$
RECORD CARE
Cecil Watts Dust Bug E1-20
Parastatic Disc Preener 45p
Antistatic Fluid
20p
Dust Bug Spares
(Brush \& Roller)
Prices ine VAT and Post.

CASSETTE TAPES
Audio-Magnetics C60

MICROPHONES

AKG DI09 611.50 AKG D202EI E AKG DI90C $\quad \mathrm{E} 17.00$ $\begin{array}{ll}\text { AKG DI90E } & \text { E18.20 } \\ \text { AKG D224 } & \leqslant 50.00\end{array}$ AKG D224
Sennheisser MOZIIN Sennheisser MD21iN Sennheisser MD4I3N E85-00
Sony ECM50 845.00 Audio RMS7F Radio Mike
\&210.00

SPEAKERS

E.M.I. 350 Kit 8 ohms $\quad £ 8 \cdot 20$
E.M.I. 450 Kit B ohms $\quad \mathbf{4} \cdot 50$

CARTRIDGES
Goldring G800 $\quad \mathbf{6 6 . 0 0}$
Orbit NM22 , $£ 4.00$

Shure 75/6 \quad| E6.00 |
| :--- |
| 6.00 |

$\begin{array}{ll}\text { Sonotone 9TARC (Dia) } & \text { EL.00 } \\ \text { Sonotone } 8 \text { T4A (Dia) } & \mathrm{El} \cdot 50\end{array}$
$\begin{array}{ll}\text { Sonatone } 814 A \text { (Dia) } & \mathrm{E} \mid .50 \\ \text { Ronnette } 105 \text { (Dia) } & \mathrm{El} \cdot 25\end{array}$
J. J. Francis (wood Green) Ltd. MANWOOD HOUSE, MATCHING GREEN, HARLOW, ESSEX CMI7 ORS Tel: Matching 476

VISCOUNT IIIa boost in the output

VISCOUNT III now gives you an imposing 20 wares per channel-and che price quoted is actually INCLUSIVE OF VAT
The money's important, of course, but not nearly so important as volue for money! And that's someching you get in abundance with VISCOUNT III. We design it ... we make it we sell it direce to you-passing on all the economies that come from cutcing out middle-men! That's the only way you can get so much quality for so litcle money!
The unique VISCOUNT III amplifier, plus the Garrard SP25 Mk III deck, plus the magnificent Duo Type III matched speakers (or Duo Type II for a small room) give you an audio installation that will prove unbeatable for listening pleasure! And che teak finish will harmonise and enhance virtually any style of interior decor! On the brushed aluminium front panel of the amplifier you'll find all the facilities you need-volume, bass, treble and balance controls, plus switches for monolstereo on/off funcrion and bass and rreble filters. Plus headphone socket on the back. The heart-stopping cimbre of Tom lones at his most virile
the last lingering harmonics of a solo performance by Heiferz or Menuhin...the parhos and the panache of Liza Minelli ... the majestic sonorities of the brass band and the elfin subtleties of the virtuoso clavichordist-hear every nuance with a fidelity that you have never experienced beforet Come and hear VISCOUNT III! If it's inconvenient to travel, buy by post in the confidence that you won't be disappointed (and with a 24 -carat Money-Back Guarantee to give you extra reassurance). Don't setcle for second-best!
SPEAKERS: Duo Type II Size approx. $17 \mathrm{in} \times 10 \frac{1}{2}$ in $\times 6 \frac{1}{2} \mathrm{in}$. Drive unit 13 in $\times 8$ in with parasitic tweeter. Max. power 10 watts 8 ohms. Simulated Teak cabinet. $\mathbb{E} 14-00 \approx$ pair E2.20 p. \& p. Duo Type 111 Size approx. 23 in $\times 11 \frac{1}{2}$ in $\times 9 \frac{1}{2}$ in. Drive unit approx. $13 \frac{1}{2}$ in $\times 8 \frac{1}{8}$ in with HF speaker. Max. power 20 watts, 8 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet. $£ 32 \cdot 00$ a pair $£ 3 \cdot 30$ p. 8 p.

STILL ONLY $£ 49$ COMPLETE

PRICES: SYSTEM I
Viscount III RIO2
amplifier $624-20+61 p \& p$

2 Duo Trpe 11 speakers $£ 14 \cdot 00+£ 2 \cdot 20 p \& p$ Garrard SP25 Mk III $\begin{aligned} & \text { with MAG- cartridge } \\ & \text { folinth \& cover }\end{aligned} 18 \cdot 00+E 1 \cdot 75$ p\& Tozal \quad	$56 \cdot 20$

Available complete $\leq 49.00+13.50$

PRICES: SYSTEM 2
Viscount R102
amplifier
2 Duo Type III soeakers
224.20+61 o * 0 Garrard SP25 Mk II!
with MAG. cartridge fplinth \& cover $£ 18 \cdot 00+£ 1-75 \mathrm{p} \& \mathrm{p}$ Total $\overline{\mathbf{E 7 4} \cdot 20}$
Available complete $\$ 65000+64$

THE TOURIST PUSH-

 BUTTON CAR RADIO KIT $£ 6.60$ working on both negative and positive earth vehicles. It covers the full medium and long wave bands. It is permeability tuned and sturdily construcced. Ourput is a full 2.5 watts into an 8 ohms speaker. But the Tourist PB will operate into any loud-speaker from 8 to 15 ohms. Apart from the output stage, which is an integrated circuit. the only other electronic components that need soldering are some eapacitors, resistors, etc. The kit includes a pre-built RF tuner unit, and fully modulised If stages which are pre-aligned before despatch. As well as electronic componenes this kit also concains 2 diamond-spun aluminium knobs, elegant matching frone panel, dial, washers, serews and wire.
The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale. Chassis size is: 7 in wide, 2 in high and $4 \frac{s}{10}$ in deep. Circuit diagram and comprehensive inseructions 55 p free with parts. Fully retractable and lockable car aerial $£ 1 \cdot 37$ post paid.
CAR RADIO KIT $£ 6.60$ p. and p. 55 p. Speaker with baffle and fixing p. and piss El 65 . Speaker with batile and fixingy
23p p. \& p. post free if bought with the kit. Send stamped addressed envelope for leaflet.
If you can solder on printed circuit board, you can build this pushbutton car radio kit. It's simple-just follow the step-by-step instructions.

PE TAPE LINK CONSTRUCTORS

Suitable 3 speed cape deck, Jess heads. Caters up to $5 \frac{2}{2}$ ins. spools. 240 V AC mains. Unused but store soiled hence no warranty.
fip.\&p. $£ 4.00$

RADIO AND TV COMPONENTS (ACTON) LTD, Dept. E 21 HIGH STREET, ACTON, LONDON W3 GNG

RELIANT Mk IV
MONO AMPLIFIER
*5 Electrically Mixed inputs. * 3 Individual Mixing controls. *Separate bass and treble Separate bass and treble
controls common to all 5 controls Common to all 5
inputs. Mixer employing F.E.T. inputs. *Mixer employing F.E.T.
(Field Effect Transistors). *Solid
State Circuitry. Attractive Styling.
INPUTS I. Crystal Mic or Guitar 9 mV . 2. Moving coil
Mic. or Guitar 8 mV . Inputs $3,4 \& 5$ are suicable for a wide range of medium output equipment (Gram, Tuner, Monitor, Organ, eue.) All 250 mV sensitivity. Output 20 wates into $8 \Omega \Omega=13.50 \mathrm{p} . \&$ p. 60 p (suitzble for 15Ω.) Size approx. $12 \frac{1}{\frac{1}{2}} \times 6 \times 3 \frac{1}{\frac{1}{2}}$ ins.

UNISOUND MODULES

ONLY 87.64 + 55p. P \& P
For the man who wants to design his For the man who wants to design his
own stereo-here's your chance to own stereo-here's your chance to
start, with Unisound-pre-amp, power amplifier and control panel. No solder-ing-just simply serew together. 4 watts per channel into 8 ohms. Inpucs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency
 I.C. monolithic power chips which ensure very low distortion over the audio spectrum.

IN-GAR ENTERTAINMENT AT HOME

With this elegant stereo 8 track add on unit, audio enthusiasts now have the opportunity to extend their systems to include the playing of 8 track cartridges. Simply select your channel, by push buteon. four digital lamps indicate channel selected. The Viscount III, the fabulous Stereo 21 and che Unisound Modules of $10 \cdot 60+80$ p.p. \& p.
will accept this unit, simply.connect up.

Just write your order

Edgware: 9 a.m. zo 5.30 p.m, half day Thurs-
Acton: $9.30 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. Closed all day Wed.
Moil order to Acton. Terms C.W.O. All enquiries Stamped Addressed Envelope Goods not despatehed outside U.K.

Lentre UK'S LARGEST RANGE OF TRANSISTORS, IC'S RECTIFIERS, ALL SEMICONDUCTOR DEVICES BEST PRICES RETAIL•TRADE EXPORT \& INDUSTRIAL

FREE BOOKLET
All types of
transistors - rectifiers
BRIOGES-SCRP - Traccs
INTEGRATED CIRCUITS
F.ET-LIGHT DEVICES
OVER 1500 DIFFERENT DEVICES entirely new 1973 edition
SEND FOR YOUR FREE COPY TODAY
 ALL others are not. Henry's sell only branded Integrated Cifcuits . . . From TEXAS ..f.T.T...FAIRCHFLD... SIGNETICS. So why buy aiternatlves or und need we say more!

ZN414 IC

Integrated circuit radio as teatured by many magazines
(PW Jan. 73 ReprInt Ref. No. 19 for 10p) £1-20
STROBE TUBE
ZFT4A/XTF2. S able for Dec. '73 Pract. Electronics
ST2 (D32) DIAC 25p
CRS $1 / 40$ SCR $45 p$

Ultrasonic Trangducers
Operate at $40 \mathrm{Khz} u p$ to 100 yds .
Ideal remote switching and slgnalling.
recelver naw I.C. circuits.
recelver naw I.C.
Per palr
TA960 IC with socket Et -80

$\frac{\text { TRf. No. 3t, 15p) }}{\text { TRANSISTORS SPECIAL OFFER }}$

$\begin{array}{ll} \text { 2N3055 } \\ 25 & \cdots \cdots .47 p \text { ea } \\ 100 & \cdots \cdots .42 p \\ 500 & \cdots \cdots .39 p \\ 1000 & \cdots \cdots .36 p \end{array}$	AF117
	25i5p ex
	100 …...15p ea
	500 12 p
	100010p
$8 Y 127$	
${ }_{100}^{25} \cdots \cdots$ 12p ea	OC3s
100 $50010{ }^{\text {10, 8p }}$	2546p ea
1000 8 p	100 …....42p ${ }^{\text {25 }}$
	50038p
ZENER DIODES $400 \mathrm{~m} / \mathrm{w}$ BZY 8 l	
B2X83. From $3-3$ volt - 33 volls 10p each	
	LINEAR
	702C (T05) 75p
1.3 walts 5\% Minl-	709C (T05) 390
1N4700 serles.	709C (D.I.L.) 39p
From 3.3 volt - 33	723C (T099) 80p
volt 18p each.	723C (D.1.L.) 90p
10 watts. Stnd	728C (D.ILL.) 45p
Mounting. ZS series 6.8 volts	728C (T099) 45p
100 volts $5 \% 40$ p each.	741 C (T05) 50p
	741 C (D.1.L.) 50p
	747C (T099) Et-0p
$\begin{aligned} & \text { SILICON } \\ & \text { RECTIFIERS } \end{aligned}$	748 C (0.1.L.) 61p
1 amp serles	
IN4001 to IN4007	
From 6p ea	
PL4001 to PL4007	
From \%p ea	
3 ampPL7001/IN5400	
PL7001/IN5400	
From 14p ea	
Send for full list 36	DISCOUNTS
MORE OF EVERYTHING AT	$\begin{aligned} & 10 \% 12-.15 \% \\ & 25+.20 \% 100+ \end{aligned}$
	Any one type except where
HENRYYS	
See pages 7 \& 8 , and Back Cover of this magazine.	quantify discounte shown.
	Min. order $\mathbf{E 1}$ - 00 ploase.
this magazine.	

TRIACS - Stad. mountling with accessories
3 AMP RANGE

[^0]LemysPANEL METERS - TRANSFORMERS - CONTROLS - RELAYS IROHS - TOOLS - VALVES - POT CORES MOST TYPES OF COMPOHEHTS

UK's

LARGEST RANGE

 OF KITS \& GADGETSTEST

EQUIPMENT

MULTIMETERS
(carr. atc. 30p)
M210 20K/Volt Slimilne
$\begin{array}{ll}\text { TLH33D } & 2 \mathrm{~K} / \mathrm{Volt} \text { Robust } \\ \text { U437 } & 10 \mathrm{~K} / \text { Volt Steel }\end{array}$

6.75
7.50

U 4324 10KVolt Steel case. AC up to 40 KHz 4.95
AF105 20KfVott with AC current ranges
U4313 $20 \mathrm{~K} /$ Volt AC current. Steel case
U4341 Plus Bullt In transistor teste
8.00
11.95

Model $50030 \mathrm{~K} / \mathrm{V}$ olt
10.50
0.95

OTHER EQUFPMENT

$\begin{array}{ll}\text { SE250B } & \text { Pocket Signal InJector } \\ \text { SE500 } & \text { Pocket Signal Tracer }\end{array}$
2-10 carr. 150 $\begin{array}{ll}\text { SE500 } & \text { Pocket Signal Tracer } \\ \text { TE15 } & \text { Grid Dip meter } 440 \mathrm{kHz} \text { - }\end{array}$

TE65 28 Range valve volimeter 19.95 carr. 40 p
TE20D $\quad 120 \mathrm{kHz}-500 \mathrm{mHz}$ RF Generato
TE22D $\quad 20 \mathrm{~Hz}-200 \mathrm{kHz}$ Audio Generator 17.95 carr . 40p
$\begin{array}{lll}\text { SE350A Deluxe Signal Tracer } & 12.50 \mathrm{carr} \text {. } 40 \mathrm{p} \\ \text { SEarr. 20p }\end{array}$
SE400 Volts/ohms/R-Csub.
12.50 carr. 20,

New Revolutionary Supertester 680R
\&18-50

Transistor tesler $\begin{array}{ll}\text { Transisior tesier } & 11.00 \\ \text { Elsonlc voltmeter } & 18.00\end{array}$ Ampclamp Temperature probe Guass meter Signal Inlector Phase Sequence Shunts 25/5 Shunts $25 / 50 / 100 \mathrm{~A}$

A SELECTION OF INTERESTING ITEMS
C30e5 Compact translstortester $\quad 5.50 \mathrm{p}$ \& p 15 p
$\begin{array}{lll}\text { E1300 Mono mag, cart. preamp. } & \text { 1.95p\& } p 15 p \\ \text { E1310 } & \text { Stereo mag. cart. preamp. } & 4.95 p \text { \& } p 250\end{array}$
$\begin{array}{lll}\text { Easiphone telephone amplifier } & 6.15 p \& p 250\end{array}$ D1203 Teleamp. with PU coll 3.60 p \& p 20 p
 1 Kw , Dimmerfcontroller $9^{\prime \prime}$ Twin spring unit For 3.00 p 10 Car Tachometep Electronic VHF 105 Alrcraft Band Corrector B2004 2 ch . Stereo mixer BEILD THIS RADIO Portabie MW / LW RFIF module Festuros MW - bandspread for extra selectivity. Slow motion tuning. Fibre glass PVC cabinet. 800 MW

(put. All parte if
EXCLUSIVE: SPECIAL OFFERS MWILW CAR RADIO AKAI GXC40

+ or - Earth with speaker Stereo cassette recorder packg. 30 D . 26.50 carr. f 59.95 carr/packg. 50 p . packg. phones. $£ 6.95$ carr/packg.
TRACK CAR STEREO 20 p.
(- Earth) with speakers in 5 WAVEBAND PORTABLE carr/packo 40 p. 212 FM/MWISWIAIRCRAFT. PUBLC SERVICES. $£ 10.45$
Battery cassette recorder.
E10-50 carrlpackg 25p TAPEPLAYER
for caror carry around e7carrjpackg. 20p.
HANIMAX HC2000
corder. $E 13.50$ carr/packg.

SPECIAL PURCHASES

aVOMETER MOVEMENTS

AVO 8 or 9 SOMA MOVEMENTS Ex Brand New AVO's ${ }^{23-50}$ Post 20p.

UHF TV TUNERS
Brand new transistorised geared tuners for 625 Line Post 20p.

3)

EASY TO BUILD KITS BY AMTRON- EVERYTHING SUPPLIED	
310 300	Radio control rec
34	Superhet R/C rece
455	AM signal generator
	Simple transistor tester
	${ }_{8} 8$ watt Ampitifier
	Stereo
	Mono control un
	Power supply for
	Power supaly for 12
611	Power supply for 2×12
230	AM/FM aerial amplifier
${ }_{290}^{20}$	Auto packing ilp
	Mic. preamplifier
$\begin{gathered} 50 \\ \hline 68 \end{gathered}$	LF generator 10 Hz 2 -1m
	Sq. wave generator 20 Hz
	SWR meter
	W-CA Charser1-2-12
690	DC
7	Electronic Chafinc
	Windscreen
	cistices
	Metal Dotector (electronics
790	Capactive Burglar alarm
	Guitar pream
840	Delay ca
	CAP.
	Scope Calitr
255	vel
525	120-260 $\mathrm{mHz}^{\text {VHF }}$ timer
75	Photo cell sul
	Electronic continuity t
860	Photo timer
871	Sllde prolector suto fe
	Acoustic Al
${ }_{220}^{465}$	Quartz XTAL
220	
	Tisfak
	Capactive Contact Ala
$\begin{aligned} & 850 \\ & 850 \end{aligned}$	

BUILD THIS TUNER

MW/LW Radio Turner to use with any ampllfier Features Mullard RFIIF module Ferrite aerial, buil in battery. Excellent resulte. Slize $7^{\prime \prime} \times 2{\frac{2}{}{ }^{\circ}}^{\prime} \times 37^{\prime \prime}$.

MULTIUSE \& RADIONIC KITS

10-1 10 Projects

50-1 150 Projects
Telephone Communicator
X20 20 (Elec.) Prolects
(carr./packing 40p)
All transistor circuits with hand books
All types offered subject to avaliability. Prices correct at elme of press E O OE. UK post etc. 159 per order unless stated.
SEE FACING PAGE FOR ADDRESSES

DISCOUNT HI-FI, TV, TAPE AND CAR ENTERTAINMENT
Low prices means less VAT - Henry's give full guarantees and demonstrations for callers. Plus big savings. Also at Modern Electrics (Retall) Ltd., 120 Shaftesbury Avenue. W.1. Your Sony dealer.

STEREO MAGNETIC

11.00
11.00
14.40
16.60
19.95
14.65
12.95

STEREO RADIO TUNERS
(carr./packing 50 p)
AMSTRAD
HENELEC STereo BuI
HOWLAND WEST DA1000T
PIONEER TX500A
ROTEL
DELETON
SYNTHESIZERS (carr. etc. 30p)
DYNACO QUADRATOR
EAGIE AA1O
TATE 3 Chassls
TATE 7
MATCHED SPEAKER
SYSTEM
Recommended pairs 8 ohm
(Carr. Packing $£ 1 \cdot 50$ pair)
150
175
250
MA
10% VAT to be added to all orders.
Prices \& description correct at time of press EAOE. All goods offered subject to

EDGWARE ROAD, W2

BATTERY/MAINS Wien RT452 $\quad 13.65$ $\begin{array}{lll}\text { Wien } & \text { RT452 } & 13.65 \\ \text { Amerex } & \text { AC101 } & 12.00\end{array}$

CASSETTE RECORDERS

(carr. etc. 300
Ellzabethan

Phili

Gr HIt S D C Ph Py Ta

PEAC

Akai	4000DS
Tandberg	62.50
107.70	

STEREO PHONES

AKAI
pULC:
SH850GX
SH7
AKC

$\begin{array}{lll}\text { RH630 } & 6.85 & \text { ACCESSORIES } \\ \text { RH700 } & 6.75 & \text { H1012/JE3 }\end{array}$
SENHEISSER Junction Box 1-40
HD414 11.25 JB3DE DIn
DD1 8.95 JB11D De Luxe
$\begin{array}{ll}\text { KOSS } & 15 \cdot 00 \\ \text { Junctlon Box } \\ \text { KOS }\end{array}$
$\begin{array}{lrl}\text { K6 } & 9.95 & \text { Switch } \\ \text { K6/LC } & 11.25 & \text { CONTROL }\end{array}$
$\begin{array}{lll}\text { K711 } & 7.95 & \text { 80XES } \\ \text { KRD711 } & 7.95 & \text { G1301 }\end{array}$
$\begin{array}{llll}\text { HVs } & 17.50 & \text { (two phones) } 2.62\end{array}$

$K 0747$	12.45
	15.95

$\begin{array}{lll}\text { PR04AA } & 21.95 & \text { FF17 2-pairs }\end{array}$
OWLAND WEST Koss TAA
CIS200 2.75 T5A
$\begin{array}{lrlr}\text { CIS1000 } & 7.50 & \text { HW Mk.HI } & \\ \text { CIS2000 } & 15 \cdot 25 & \text { Controlier } & 6.90\end{array}$

YOU CAN PAY BY BARCLAYCARD OR ACCESS
For callers or by phone
Easy credit terms for callers to
309 and $354-358$

ALSO STOCKED AND

 DEMONSTRATEDArmstrong - Acoustic Research Cambridgo Audio Leak - Sanx Tandberg - Sugden - Whartedale Goodmans - Celestion - Grundig Kef - Teac - Bose - Sherwood Call of phone 01-402 4736 for
best prices.

YOU AIN'T HEARD NOTHIN' YET l :

. until you tune in to stereo perfection with the 'varicap'

Approx. Size $8 \frac{z^{\prime \prime}}{\prime \prime} \times 2 \frac{z^{\prime \prime}}{} \times 6 \frac{1}{2}{ }^{\prime \prime}$
Features include push butzon 'Spor On" tuning, with up to 5 pre-set stations (no difficult runing dial and drive cord). Easy "no problem" construction, requiring only z few simple setting up adjustments with a D.C. Voltmeter. Uses NEW pre-set modules for R.F. and I.F. circuits-no circuit alignment. High effieiency Integrated Circuit Phase Lock Loop Decoder for perfect stereo reception, with stereo lamp indieator. TOTAL KIT price only 28.50 including V.A.T. and postage. With Fibre Glass P.C. Board, neat slimline teak veneered cabinet with brushed aluminiutm front panels. push buttons etc.
All parts ovailable sedaracely.
IDEAL FOR USE WITH THE "TEXAN", "GEMINJ" AND ANY GOOD QUALITY STEREO AMPLIFIER. Please send large S.A.E. for full details.
228, ECCLESALL ROAD, SHEFFIELD S11 8PE
Telephone No. (0742) 668888
THE COMPONENT CENTRE OF THE NORTH

KEEP WARM ATA COOL PRICE.

Slash central heating costs with AMKIT.

If you can put in electric wiring, you can install Amkit. The unique nylon pipe hot water central heating system, that you install yourself in hours.

Look at these advantages
No soldering
No 'T' junctions
No special equipment
No leaks, no lagging, no corrosion
No structural upheaval
Just reliable, effective central heating (Guaranteed 25 years) at a saving of between $£ 150$ \& $£ 250$. This famous system has been successfully marketed since 1968.

Clip the coupon, and we'll tell you more.
To Autocon Manufacturing Co.
Spring House, 10, Spring Place, London, NW5, 3BH Please send your brochure telling me all about Amkit. Name
Address

[^1]
P.C.BOREO?

- not with the

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING
 A perfect circuit every time!

The Decon-Dalo 33 PC marker is now available in France, Germany, Italy, Switzerland, Austria and all Scandinavian countries. Send for details of local supplier.
Address

Name
\square

Post to: DECON LABORATORIES LTD. FREEPOST
PORTSLADE,BRIGHTON,ENGLAND!
(No Stamp Needed) Phone 0273414371

PREMIER 800 STEREO AMPLIFIER

A truly high quality stereo umplifier-compare the specification. compare the price. Output: 5 watts per channel. Frequency response: $30-20,000 \quad 12-2 \mathrm{db}$. Distortion: 1% Output Impodarce 8 ohms nom. Inputs equalised to R.I.A.A. Stapuetlo $4 m$ V. Ceramic 100 mV . Tuner 100 mV . Tape 100 mV . Tape out 150 mV . Din sockets Sor inputs and outputs. Controls: Bass, Trebie,
Volume, Walauce, Selector. Mono / Stereo switch. Stereo Volume, Balauce, Selector. Mono / Stereo awitch. Stereo
 ONLT 917.85 Carr. 50p.

PREMIER PARAGON STEREO HI-FI AMPLIFIER

Gires the best pos sible reprodaction of
recotds, tadio and lape at a reasonable price. Fitted with an the controls and facilitien you're ever likely to ives rou a degree ot gives jou a degree of sophistication that is usually only fornd with emplifier costing twice Its price. It has bass and treble slice con There's aisw and balard starco jack eocket on the front yauel. plus a ceramic/magnctic cartridge switch and s maing outlet socket on the back pand.
Specifcation: $10+10$ watt.s into 8 ohms. Power/frequency responac: 0 dB 10 malls Into $8 \mathrm{ohma}-3 \mathrm{~dB} .20 \mathrm{~Hz}-25 \mathrm{KHz}$ Distortion typicalis ices than 0.25%. Inputs for Magnetlic phonn (4 mV) Ceramle phono (66 mF) Radio/Tape (100 mF) High and low Alters. Teak finish cabinet. Bize: 12星" 67" $\boldsymbol{z}^{\prime \prime} \times 10 \mathbf{3}^{\prime \prime}$
$£ 27.50$ P. \& P. 50 p
PREMIER STEREO SYSTEM '64'
Consists of the Premicr Paragon Sterea Ampllfer, Garrand Sp-2s III in teak fluish plinth with coter and fitter Goldring G800 sterea magnetic cartridgé plus a palr of Barsden Fall Annex 100 Loudspeaker 8 yatems. Complete with Free feadand pluss. f64 Carr. a

MSB-3002 Stereo Tuner Amplifier

Fantastically low-priced stereo tuner amplifier covering LW, MW \& VHF with built-in decoder for stereo reception. Output 2×4 watts RMS. Input for ceramic or crystal pick-up. Output for tape recorder. Switched A.F.C. Stereo headphone socket. Controlsvolume, tone, balance, selectors and tuning. Attractive walnut finish cabinet with 2 matching speakers.

PREMIER HI-FI STEREO SYSTEMS

SYSTEM 'ONE'
Consists of the Premier 80030 k II all transtotor stereo amplifier (described eft) Garrard auto/manual record player unit fitted atereofmuno cartridg with diamond styius and mounted in teat finish pliath with cover and two cioth front loudspeaker syoterns. A beolutely complete and supplied read 5 to plug in and play. The 800 ax ix amplifer has an output magnetic pick. cp tape and triner aiso trpe ontput socket and headphone socket. Controls: B2s4. Treble. Volame, Balance, gelector- MonolStereo switch teadphone socket. Power on/
 $12 \frac{1}{2}$ in. $\times 6 \frac{1}{2}$ in. $\times 2-\mathrm{in}$.

Carr. 51.75

SYSTEM 'TWO'
As above but with slotted front teak finish loudspeakers:
Garrard SP25 Mk. III and magnetic cartridse.

STEREO HEADPHONES AND ALL LEADS AND PLUGS WITH ABOVE SYSTEMS

NEW PREMIER COMPACT STEREO

All transistor stereo amplifier mounted into teak finish plinth with cover and Garrard 2025 T/C autochanger and a pair of matching teak finish cloth front speaker systems.
\star Output 4 watts rms per channel.

* Separate volume, bass, treble and balance controls.
* Stereo/Mono ceramic cartridge.
* Tape/Tuner input and Tape output sockets.
* Complete with all leads ready to use.
£31.00
Carr. \&
Ins. $£ 1-50$
STEREO HEADPHONE EXTENSION LEAD 15 foot curly cord. 81.50, P. \& R. 10p.

GARRARD SP25 ME GAR BEAGLE RECORD PLAYER PITTED GOLDRIEG 800 MaGNETIC STEREO CAR. TRDGE. COMYHLBTE WITH COVER. PLINTH

PREMIER PRICE $217 \cdot 50$

MONATONE

CAR STEREO

* Fast torward

$\stackrel{\star}{\text { Eject }}$
CASSETTE
خ 3 watts per chanacel outpu PLAYER
$\$$ Beacarss 175 mm . D. $\times 152 \mathrm{~mm}$. W. $\times 50 \mathrm{~mm}$. H. X Matching parr of weiter-chaped speakers.
oncy

MODEL CT-330 MULTITESTER The Model CT- 830 Mnititester is a de-luxe. accurate and high sensitlvity Instrument having many leatures which are dexirable and required in testing modern electronic equipment. The Model Cx-330 in very compact and of sturdy construction. Only the finest parts are used - 1% resistors, low-reshtance selector switch, clear scales and rugged meter morement Rangea: DC Voltages: 0. $0.6,6.30,120,600,1,200,3,000,6,000 \mathrm{~F}(20,0000 \mathrm{hms} / \mathrm{V})$. AC Voltsges: $0,6,30,120,600,1,200 \mathrm{~V}$ (10,000 ohms $/ V$) COL 6Y 0130 , 30 k , 300k, 6II, 60 Y (30.3k, 30 K, 300 c onms Capscity
$0-001-02 \mu \mathrm{~F}$. Decibels: -20 $\quad 212.64$
$\begin{array}{ll}0.001 ~ 2 \mu \text { F. Decibeis: }-20 & \text { P. \& P. } 25 p\end{array}$

MODEL 630 MULTITESTER
Ranges: DC Voltages: $0,3,35,60,300$, $600,1,200 \mathrm{~F}$ (30,000 ohms/V). AC Foltages: $5,30,120,600,1,200 \%(15,000$ ohms/7. DC carrent: $0,1 \mathrm{cot} 1-6 \mathrm{M}$ 16 M ohms $(10,100,10 \mathrm{k}, 100 \mathrm{k}$ ohma st centre acale). Decibats: - 20 to +63 db

क12:95 P. \& 1. 259

MULTIMETER 20,000 O.P.V. Compares with meters costlng double its price. Features large ears-to-read meter, unusually high sensitlifty-wide choice ornang size: $41^{\prime \prime} \times 31^{\prime \prime} \times 1^{\prime \prime}$. Rangeas. manual. Size: $4 \frac{y}{n}_{\prime \prime} \times 22^{\prime \prime} \times 1^{\mu}$. Ranges:
DC Voltages: $5,25,50,500,2,500 \mathrm{~V}$, (20,000 O.P. V) . Ac Voltages: 10, 50,100 : $500,1,000 \mathrm{~F}$ (10,000 O.R.F.). DC Carrent: $50 \mu \mathrm{~A}, ~ \simeq-5,250 \mathrm{~mA}$. Resistance: 6k. 6Mf ohms, Decibels -20 to $+2 y$ db. Capactance: $10 \mu \mathrm{~F}$ to $0 \cdot 100 \mu \mathrm{~F}, 0-100 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. Optional leather case $\mathbf{£ 8 . 8 5}{ }^{\text {P. \& P. 25p }}$

HI-FI STEREO

 HEADPHONESDeslaned to the highest possible standard. Fitted 2i". spenker unite with soft padded ear muflis. Adjuatable headhand. 8 olima impedance. Complete with 6 ft lead and
stereo jack plug.
£2.25

COMPACT CASSETTES LOW-NOISE Screw Fining. Fully Gnaranteed. In Library Cases.

	EATE	3 for	6 for	10 for
C60	810	89 p	21.72	28.75
c90	44p	81.22	52.38	88-85
0120	67 p	21.54	E8.04	+14.95

EMI LOW NOISE CASSETTES

Brand New in Library Cesez
 $P R=M L E B$ i A D O © 56 GEORGE STREET, LONDON WIH 5RH. TEL: $01-9357917$ London WIP gRa

The Sinclair Cambridge... no other calculator is so powerful and so compact.

 Complete kit-£24-95!
The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$!

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.
The cost? Just £27.45!
The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5.50$! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book-free! If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the fu!! potential of this piece of electronic technology.

How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like:
Logs Sines Cosines Tangents Reciprocals nthroots Currency Compound conversion interest and many others

Sinclair Radionics Ltd, London Road, Stlves, Huntingdonshire
Reg. no: 699483 England
VAT Reg. no: 213817088

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit !
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return yourkit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form: $\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2} \mathbf{5 0}$ VAT. (Total : $\mathbf{£ 2 7} \mathbf{4 5}$)
Price fully built: $\mathbf{£ 2 9 . 9 5 + £ 3 . 0 0 \text { VAT. (Total: } £ \mathbf { £ } 2 \cdot 9 5 \text {) }) ~}$

To: Sinclair Radionics Ltd, London Road,
St Ives, Huntingdonshire, PE17 4HJ
Please send me

Name
\square a Sinclair Cambridge calculator kit a
£24.95 + £2.50 VAT (Total : £27.45)
\square a Sinclair Cambridge calculator readybuilt at $£ 29.95+£ 3.00$ VAT(Total: £32.95)
*I enclose cheque for f
\qquad made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/Access account. Account number
\square
Address

[^2]please print

everyday THEORY....

NATURAL RESOURCES

The energy crisis has tempered the fulsome spending traditionally indulged in at this time of year. By strange irony, during the Christmas run-up period we have been compelled to think in terms of economising with our use of natural resources.

In view of this rather alarming picture of shortages, real or impending, it is salutary to look at electronics. Considering the great contribution this technology makes in all areas of human affairs, the demands upon natural resources directly arising from the electronics industry are meagre in the extreme. Maybe it is significant in some sort of way that the heart of the normal electronics circuit is made of sili-con-the most abundant element in the earth.

COMPONENT SHORTAGE

Yet, currently, shortages are being experienced in the field of electronic components, as elsewhere. But such shortages seem to arise mainly because of the overtaxing of production facilities rather than from any real shortage of basic raw materials.

Electronics is a science based industry, and highly advanced and elegant processes are necessary to transform base materials into components such as transistors and integrated circuits. The available skills and technical resources are often stretched to the limit by the increasing demands imposed by the world wide expansion in electronics in general. So inevitably
-shortages in particular lines occur from time to time. And this brings us to a particular case directly affecting Everyday Electronics readers which has recently come to light.

DISINTEGRATION

The Four-Band T.R.F. Receiver described in the November issue uses an integrated circuit as audio amplifier. This i.c. is a highly efficient device, and is capable of being used in many different applications. Not surprisingly therefore, it has become exceedingly popular and the demand at present exceeds supply. No doubt within a short time (perhaps even before these words appear in print) an adequate supply will once again be in circulation.

But if not, all is not lost. The Four-Band Re= ceiver can be completed by substituting a "handmade" amplifier for the i.c. originally specified Full details are given this month.

From i.c.'s to discretes-does this seem a move against the tide? We don't think so. Actually it is a matter of belt and braces. In this day of increasing integration it is a wise constructor who knows his discretes! In cases such as the one mentioned the constructor can be independent, roll his own, and forget that waiting queue.

Here's wishing all our readers a happy and shortage-free New Year.

Our February issue will be published on Friday, January 18

EDITOR F. E. Bennett ASSISTANT EDITOR M. Kenward B. W. Terrell B.Sc.

ART EDITOR J. D. Pountney - P. A. Loates - K. A. Woodruff
ADVERTISEMENT MANAGER D. W. B. Tilleard

[^3]
EASY TO CONSTRUCT SIMPLY EXPLAINED

CONSTRUCTIONAL PROJECTS

V.C.O. EFFECTS UNIT Add weird effects to musical instruments by C. C. Evans 16

SEWING MACHINE SPEED CONTROL Power control for a.c. equipment by J. A. Brett 33
FETSET M.W. RECEIVER Simple personal receiver by R. A. Penfold - 38
AMPLIFIER FOR 4 BAND T.R.F. RECEIVER An alternative amplifier design. by F. G. Rayer 42

GENERAL FEATURES

EDITORIAL 14
RUMINATIONS by Sensor - 20
READERS LETTERS Your news and views 21
TEACH-IN '74 Lesson 4: The Transistor by Phil Allcock 22
PICKUPS AND TURNTABLES Part 2 by Gordon J. King 28
TEACH-IN '74 QUESTION TIME ANSWERS 32
SEMICONDUCTOR PRIMER Facts and figures by A. P. Stevenson 33
SHOP TALK Component buying problems. by Mike Kenward :37
DOWN TO EARTH Decibels by George Hylton 46

[^4]

For more details see page 49

veo EFFECTS UNT

 BY C.EVANS

Add weird effects to drum solos or use this unit as an instrument or warning device on its own.

THIS unit has been designed to fulfill a number of requirements, the major one being a musical effects unit for use with most instruments. The unit is basically an audio preamplifier, a voltage controlled oscillator and a mixing network (Fig. 1).

If a guitar, organ, microphone or an oscillator is plugged into the a.c. input the output frequency will vary with the loudness of the input signal; at the same time the input signal can be mixed with the output. Using a microphone to pick up the sound of a drum kit the mixed output of drums and oscillator adds a new dimension to the basic sound. The unit can be easily turned on and off with a foot switch which allows the input to pass to the amplifier but disconnects the oscillator

OSCILLATOR CIRCUIT

The circuit is basically a wide range audio oscillator. The oscillator overcomes two main problems found with other circuits:

1. It has a wide frequency range.
2. Power supply requirements are very simple.

The range of the oscillator covers approximately 10 Hz to 10 kH ., the output is a square wave.

The unit has two inputs, the d.c. input is used with potentiometers, l.d.r.s. etc. to control the oscillator and the a.c. input, which is used to control the oscillator from audio signals see Fig. 1

CIRCUIT DESCRIPTION

The oscillator part of the circuit comprises TR5 and TR6 operating as a relaxation oscillator (Fig. 2). Usually, in a relaxation oscillator circuit C6 would be grounded to the negative supply line. In this circuit C 6 is taken to the emitter of TR6 thereby increasing the frequency range. The overall frequency range is controlled by VR3, which also controls the mark to space ratio of the oscillator. The range may vary considerably with different makes of capacitors for C 6 so to ensure the widest frequency range, various types of capacitors can be tried for C6.

Transistor 'TR4 acts as a voltage controlled
Fig. 1. Block diagram of the V.C.O. Effects Unit.

Fig. 2. Complete circuit diagram of the V.C.O. Effects Unit.
resistance between the supply and the emitter of TR5. Trimmer VR2, the bias resistor for TR4, is necessary because of differences in transistor gain, it is set for the lowest frequency required. The control voltage is fed to the base of TR4 via R8. The d.c. input jack SK3 and manual frequency control VR3 are also connected to R8. The output is taken from TR6 emitter via VR4, R7, C3 to the output jack SK2.

A.C. PREAMPLIFIER

Audio signals are fed through Cl to the base of emitter-follower TR1. The signal is then amplified by TR2 and TR3, some distortion occurs in these stages but since the signal is only used to control the oscillator this is not important. The output is taken from TR3 collector and rectified by D1. It is then fed to

Components

Resistors

R1	$4 \cdot 7 \mathrm{M} \Omega$	R6	$1 \mathrm{k} \Omega$
R1			
R2	$100 \mathrm{k} \Omega$	R7	$62 \mathrm{k} \Omega$
R3	$120 \mathrm{k} \Omega$	SEE	
R4	330Ω	R9	$20 \mathrm{k} \Omega$
R5	$12 \mathrm{k} \Omega$	R10	$27 \mathrm{k} \Omega$
R			
All $\pm 10 \% \frac{1}{4} \mathrm{~W}$ carbon	R11	$12 \mathrm{k} \Omega$	

All $\pm 10 \% \frac{1}{4}$ W carbon R11 $12 \mathrm{k} \Omega$
Potentiometer
VR1 $5 \mathrm{k} \Omega \log$. with ganged switch
VR2 $100 \mathrm{k} \Omega$ skeleton preset
VR3 $1 \mathrm{M} \Omega$ lin. carbon (or $2 \mathrm{M} \Omega$ see text)
VR4 $50 \mathrm{k} \Omega \mathrm{lin}$, carbon
VR5 10 k @ skeleton preset

Capacitors

C1 $0.01 \mu \mathrm{~F}$
C2 $\quad 0.1 \mu \mathrm{~F}$

C 3	$10 \mu \mathrm{~F}$ elect. 12 V
C 4	$8 \mu \mathrm{~F}$ elect. 12 V
C 5	$2 \mu \mathrm{~F}$ elect. 12 V
C 6	$0.01 \mu \mathrm{~F}$

Semiconductors

D1 OA202 or similar silicon diode
TR1 BC109 silicon npn
TR2 BC108 silicon npn
TR3 BC109 silicon npn
TR4 OC203 silicon pnp
TR5 2 N 4058 silicon pnp
TR6 BC107 silicon npn

Miscellaneous

B1 9V PP6 battery and clips

SK1, 2, 3 jack sockets (3 off)
S2 s.p.s.t. foot switch
Vernier dial for VR3 (if required), knobs, Veroboard 0.15 inch matrix 25 holes $\times 17$ strips, 4BA fixings, case (see text) connecting wire and screened lead

Fig. 3. Layout and wiring of the components mounted on the Veroboard.

Fig. 4. Complete wiring of the V.C.O. Effects Unit.

TR4 base via R8, C5 filters out any a.c. reaching the base of TR4. The input signal and oscillator signal are mixed via VR1, R5, VR4, R7 and C3 and fed to the output jack SK2. The foot switch S2 switches off all of the circuit except TR1 and associated components. The battery on-off switch S1 is linked to VR1. Due to the gain of the preamplifier, a jack socket that grounds the input to the negative line when a.c. control is not in use, must be used. If the input is left open circuit it will pick up hum etc. and this will trigger the oscillator. The d.c. input jack socket must not be connected in this way.

CONSTRUCTION

Component layout is not critical, the prototype was assembled on Veroboard (Fig. 3) although any type of assembly could be used. If a Vernier dial is used for the manual frequency control VR3 should be a 2 megohm linear potentiometer. This is because the Vernier dial will only turn the potentiometer through 180 degrees and if a 1 megohm potentiometer is used it will not travel the full length of its track.

Once the Veroboard is complete it can be mounted in a case measuring approximately 200 by 150 by 60 mm and wired to the remaining components as shown in Fig. 4.

SETTING UP

When the circuit is assembled plug the output into an amplifier. Set VR3 fully clockwise and VR5 midway along its track, switch on, the circuit should now be oscillating. Turn the slider of VR5 until the highest possible frequency is reached, VR3 should now sweep the oscillator over its entire range. If VR5 is turned too far oscillation will cease and the whole operation must be repeated. Trimmer VR2 should be set to provide the lowest required oscillation. If an audio source is connected to the a.c. input the oscillator frequency will follow the volume of

If a Vernier dial is fitted the frequency can be finely adjusted and tuned to other instruments.

D. C. INPUT

The d.c. input can be used with a row of switches and potentiometers. It can then be played in a similar manner to an organ, bearing in mind that the oscillator is purely a melodic (one note at a time) instrument (Fig. 5).

An ORP12 1.d.r. (light dependent resistor) can be plugged into the d.c. input, by moving ones hands between the ORP12 and a light source the oscillator frequency can be controlled. By wavering ones hand the oscillator will have a vibrato tone. When used in this way the sound and method of control is similar to a theremin (Fig. 6).

Fig. 5. Set-up for a simple organ.

The simplest method of control is to plug a lead in to the d.c. input and hold the ends of the lead with both hands. The frequency of oscillation is then determined by the body resistance and thus by how tightly the leads are held. The circuit can also be used as a bath/rain alarm. When the ends of the lead are placed in water the circuit will oscillate (Fig. 7).

The d.c. input can also be used as a sustain input. By plugging an electrolytic capacitor into the input and switching on the oscillator the capacitor will charge up and when the trigger is removed the capacitor will sustain the note for a time before it discharges. The value of capacitor can be anything from $2 \mu \mathrm{~F}$ to $250 \mu \mathrm{~F}$ depending on the sustain time required.

A.C. INPUT

The a.c. input is used to control the oscillator by audio signals such as electric guitar or microphone or another oscillator. The footswitch is used to switch on the oscillator signal.

If a switch is used in series with capacitor C3 and the capacitor is switched out of the circuit the a.c. signal will no longer be filtered and strange modulating effects will take place in the oscillator circuit.

CIRCUIT MODIFICATION

With an instrument plugged into the a.c. input a "fuzz" output can be taken from the collector of TR3 via an attenuating network (Fig. 8). The sound is not as harsh as a "Schmitt type fuzz" and gives good sustain on guitar notes.

When using an a.c. input a capacitor of between $2 \mu \mathrm{~F}$ and $250 \mu \mathrm{~F}$ can be plugged into the d.c. input to produce a siren effect, controlled by the loudness of the a.c. input. This is due to the capacitor taking time to charge and discharge.

CONCLUSION

The prototype oscillator has been in constant use for three months and there has been little drift in the oscillator frequency. When the oscillator is switched on by the footswitch there is a short delay before oscillation begins.

Ruminations By Sensor

An Outside Broadcast

As I write, the wedding of Princess Anne and Mark Philips is being televised and transmitted to a potential 500 million viewers. By cable, microwave link and satellite, the pictures will be passed to Europe, Scandinavia, India, Australasia, America and Japan.

The picture quality, as judged on my old black and white set, is near perfection and demonstrates the high performance that the system can achieve when all resources are made available. The whole exercise must have been well planned and reflects great credit on all concerned, I am, of course talking about the television broadcast of the event and have no intention of entering into any
controversy concerning the event itself.
The sheer scale of the operation is staggering, thirty cameras in the Abbey alone, each with its crew and associated equipment plus all those on the route between the Palace and the Abbey (plus one or two at Great Somer-ford)-and no apparent breakdowns! It says much for the reliability of the components.

There were also, I hear, a large number of colour television sets distributed around the Abbey so that guests could watch the ceremony along with the millions of viewers in their own homes throughout Britain and a great part of the world:
How many cathodes were emitting, how many collectors were collecting a replica of the original signal I just could not begin to estimate - perhaps around 8,000 million? Probably more I don't know. How many soldered joints were involved? I leave these conjectures to those who have a mind for such things!

Watts Up

The threat of power cuts is with us again and we face the prospect of a gloomy and chilly winter. Those fortunate enough to have an open fire and something to burn on it and an old fashioned hot water bottle can avoid the worst of it but my sympathy goes out to those who are solely dependant on electricity for cooking and heating. I always think at these times of the major difference between electronics and power engineers.

The electronics engineers, concerned with microvolts, milliwatts and milliamps and the power engineer with his megavars (mega volt-amps) and kilovolts. When the electronics man thinks big, his currents may be around five amperes, while the power engineer would consider that to be a leakage current! However, your electricity meter will faithfully measure very much less than five amps so don't think that you will get anything for nothing.

Projects Past and Future

Many thanks for a brilliant magazine. I have bought every copy so far. I have made several of your projects and found them very useful. I am very grateful for designs such as the Signal Injector and Audible Warning Alarm, as they fit my budget perfectly.

I wish to construct the Bit Saver in the December 1972 issue, but as yet I cannot find any advertisement for the 100 mA diodes (would 300 mA ones do)?
Secondly, have you any future plans for publishing a circuit for an amplifier of about 5 watts? I have already a three watt amplifier but now require an amp with a few watts more power.

Keep up the very good work.
P. A. Hawkins,

Innsworth, Gloucester.
Any 400 V or higher diodes with a rating of at least 100 mA will be suitable. Both the 400 V and 100 mA are minimum ratings, e.g. a $500 \mathrm{~V}, 1 \mathrm{~A}$ diode would be suitable.

We will probably be publishing more amplifier designs in future issues and we are sure one of them will meet your needs.

Aquarium Thermostat

We are going round in circles. We started with a good idea, then introduced an expensive meter. This leads you to say that we might as well have a thermometer in the tank, to which I reply: why not a bi-metallic strip?
The facts are simple, and I have made some tests. The nor: mal heater current was 300 mA at 240 V . A pilot lamp $(6.5 \mathrm{~V}$, 300 mA) connected in series with the heater will carry a constant current of 300 mA . If the heater is on, 6.5 V appears across the lamp-but this link in the chain might also break.

If we run the lamp at half power by shunting it with a re-
sistor, both the neon and the lamp should be on. If only the neon is on, the system has failed. To do this, use a shunt of 22 ohms at 2.5 watts minimum (because the lamp's running resistance is $6.5 \div 0.3=$ $21 \cdot 66$ ohms).

Simon St. J. Beer, West Byfleet, Surrey.
The original article was designed to do away with the inaccuracy and unreliability of the bi-metallic strip-it does this and performs the same function. The thermometer is necessary to set the temperature in the first place and will be necessary should the temperature be altered at a later date, so why not use it to check that the temperature is constant i.e. the heater has not failed. As far as we can see your monitoring system is quite good but if heaters other than 75 W ones are used the lamp and resistor will need to be recalculated. Most aquarists have thermometers in their tanks but many require a more accurate and reliable thermostat, we hope we have provided this.

Gas

I cannot praise you too highly for publishing the circuit of the Gas Alarm in the November issue of Everyday Electronics.
I have a 44,000 B.Th.U. output gas fired warm air furnace in my home which I never previously left switched on whilst my family was asleep for fear of carbon monoxide poisoning, despite generous provision for combustion air supply. Now we can all sleep soundly at night with a raucous alarm and automatic shut down control over the furnace.
As Mr. M. H. Keene says in his article, the uses of the Gas Alarm are ouly limited by imagination, and I am making a second one as a sophisticated "toy" to discover uses not sug-
gested in his article. The Gas Alarm is yet one more example of how forward looking is your magnificent magazine. Could I suggest another field in which I have never seen articles in any popular magazine and that is the subject of underwater sound.
You may be aware that many animals make underwater calls and those made by marine animals have been extensively studied due to their significance as background noise in submarine warfare. However, the study of the sounds made by freshwater fishes and insect larvae has been neglected and the amateur could make very valuable contributions to scientific knowledge in the sphere.
Many aquarium fishes make calls and there must be thousands of aquarists who would welcome a device that enabled them to listen in on their fish.
I know that a battery operated transistorised device is marketed in the U.S.A. and I have made such a device incorporating a modified crystal microphone insert with a preamplifier hooked up to a one-watt amplifier. This works well, and I have learnt a lot about acoustic impedance but I would like to see what one of your expert contributors could come up with. Is there any chance of such an article being published in a future copy of E.E.?

Peter Revell
Hemel Hempstead
Herts.
We will keep the subject in mind regarding a future project.

"That burglar alarm I made-its been stolen!"

TERCH-II "74 FOR BECHWERS IW ELECTROTICS... THEORV AND EXPERIMENTS
 TUTOR: PHIL ALLCOCK

LESSON \& The Transistor

N order to extend our knowledge of electronics it is necessary to introduce a new and very important component, the transistor. This does not mean that we have finished with our earlier components, such as the resistor, capacitor and diode, but rather that the range of applications for these components can be widened by using the transistor in conjunction with them.

PHYSICS

A lot of articles have been written about the transistor and its associated physics but the author is of the opinion that this is not necessary in a first encounter with the device. In fact for a newcomer to the field of electronics a detailed study of transistor physics would be confusing and mask the inherent simplicity of the basic device behaviour.

In this series, we shall treat the transistor as an electronic component that can be bought for a few pence and we shall, at least initially, examine its operation from the point of view of a potential user rather than the device manufacturer.

This does not mean that the device physics are unimportant, for this is not the case. As the newcomer builds up his storehouse of knowledge he will acquire a deeper insight into the device operation. After all, the present day transistor, in discrete or integrated-circuit form, has reached its present level of sophistication as a result of intensive research and development over more than twenty years.

TRANSISTOR FAMILIES

A glance at some of the manufacturers catalogues or the advertisement pages of E.E. reveals an enormous array of transistor types and numbers. Fortunately they are all members of a few families and it is a well known fact that
the majority of general applications can be satisfied by the use of just a few of the many different types listed.

The BC107 transistor is a very popular and well known member of the family group known as bipolar transistors. The term bipolar stems from the fact that the device operation relies on current flow due to the action of both electrons and "missing" electrons. The latter are usually called holes. Members of this family are split into two groups depending on the voltage polarity or current direction that is used in normal operation.
The two groups are called $n p n$ and $p n p$. The letters n and p representing the type of semiconductor used in the various sections of the transistor and indicate that the material possesses either extra electrons (negative) or extra holes (positive). The BCl 07 is an $n p n$ transistor and the current symbol is shown in Fig 4.1 and on the Data Sheet.

The three sections or regions have leads connected to them and are identified by the

Fig. 4.1. (right) Symbol for an $n p n$ transistor.

BASE \sim EOLIECTIOR

Fig. 4.2. Current flow diagram for an $n p n$ transistor.
*North Staffordshire Polytechnic (Any communications arising from the Teach-In 74 series must be addressed to
Everyday Electronics, Fleetway House, Farringdon Street, London E.C.4)
names emitter, base and collector. These names are usually abbreviated to simply e, b and c. The arrow head on the emitter indicates the direction of conventional current flow when in normal use. A pnp type uses the same symbol but the arrow direction is reversed.

Another important family group contains the so called field effect devices and has several subdivisons. These need not concern us here and will be covered in a later part of the series.

Other more specialised devices such as the unijunction transistor, thyristor and triac are also available and have evolved mainly from applications involving the control of relatively large current or power levels.

BASIC TRANSISTOR OPERATION

This month we concentrate on the bipolar device family and in particular the BCl 107 npn transistor. All transistors behave as a form of electronic control valve whereby current in one part of a circuit can be made to change or depend in value on the current in another part of the circuit.

Consider the current flow diagram shown in Fig. 4.2 in which the width of the shaded arrow represents the amount of current flowing in a particular region of the $n p n$ transistor. If we take the total current leaving the emitter as 100 per cent we see that this is made up from the two currents entering at the base and collector. The base current is typically 1 per cent (${ }^{1} 100$ th) of the total emitter current which means that the collector current accounts for the remaining 99 per cent as the total current entering the device must always equal the current leaving.

The base region of a modern transistor is very thin, typically a few millionths of a metre (called microns) and this is one of the main factors in ensuring that the base current is only a small fraction of the total emitter current. However, apart from this, the ratio of the base current to the emitter current is almost fixed and for the time being we shall assume this ratio to be perfectly constant for a given transistor sample.

The ratio does vary, however, between samples of the same transistor type. Thus one device may have a base current which is one per cent of the emitter current whilst a second sample of the same type may have a corresponding current ratio of only ${ }^{1} 2$ per cent. Certain departures from this idealised relationship will be considered later.
To achieve current flow in the manner indicated in Fig. 4.2 the transistor must be connected into a circuit containing batteries and resistors in such a way that the voltage differences between the various regions are as shown. In a typical npn transistor the voltage between base and emitter, $V_{\text {be }}$, will be about +0.5 volts and will only vary slightly if the emitter current level is changed over quite a wide range.

The voltage between collector and base, however, shown as V_{cb}, can have any value from about zero up to say +20 V or more. The actual voltage will be dependent on the external circuit conditions such as resistor values and battery voltage. In essence the voltage $V_{\text {cb }}$ will adjust itself to the conditions imposed by the Ohm's law requirements of the collector circuit. To see the implications of this let us examine the behaviour of the transistor when connected in a simple circuit such as Fig. 4.3.

If we assume that the voltage V_{be} is say +0.5 V , the voltage across the resistor R_{b} must be ($4 \cdot 5-0.5$) i.e. $4 \cdot 0$ volts. If R_{b} has a value of 1 megohm (a million ohms) the current flowing in R_{b} will be $4 \mu \mathrm{~A}$ and this is the current that enters the transistor via the base lead. If we further assume that the base current is exactly one per cent of the emitter current, for the tran-

Fig. 4.3. (left) An npn transistor connected in a simple circuit.

Fig. 4.4. (below) Values calculated from Fig. 4.3.

sistor sample used, then we would expect I_{0} to be $400 \mu \mathrm{~A}$ and the corresponding collector current I_{c} to be $396 \mu \mathrm{~A}$.

We now have sufficient information to work out the voltage V_{cb}, since the voltage across the 10 kilohm collector resistor $R_{\text {c }}$ must be equal to $I_{\mathrm{c}} \times R_{\mathrm{c}}=0.396(\mathrm{~mA}) \times 10(\mathrm{k} \Omega)=3.96$ volts. To satisfy the voltage conditions round any circuit loop (Kirchhoff's law) we find that V_{cb} must be equal to +4.54 volts. Fig. 4.4 shows the results of all our calculations for the given conditions. Readers should check these results and then satisfy themselves that the voltages around any closed loop "balance out" i.e. the voltage differences must add up to a value equal to the total battery e.m.f. acting in the chosen loop.

ASSUMPTIONS

In the above discussion we made two assumptions. The first of these was that $V_{\mathrm{be}}=0.5 \mathrm{~V}$
approximately and this can be justified theoretically and measured using a practical circuit. (This is covered in this month's tests.) The second assumption was that the base current was exactly one per cent of the emitter current. These currents should be measured but as already mentioned the ratio does vary between samples of the same type.

The manufacturer controls the current ratio during the production of the transistor and usually gives a specification or data sheet which lists all the important parameters. These sheets are available for each transistor type and nowadays most manufacturers publish their data sheets in book form. The parameter that interests us here is the current gain and this can be measured in different ways. At one time it was common to quote the ratio of I_{c} / I_{c}, sometimes given the symbol x (alpha) and for our example this would be 0.99 .

Since I_{c} is always less than I_{e} the parameter a must always be less than unity. As circuits improved it became apparent that a more useful way of specifying the current gain would be to quote the ratio of $I_{\mathrm{c}} / I_{\mathrm{b}}$, and this ratio is sometimes given the symbol β (beta). These two forms give the same information in two different ways and it is possible to change from one method to the other quite easily.

For the case given our sample would have $\beta=0 \cdot 99 / 0 \cdot 01=99$ which simply tells us that the collector current is ninety-nine times the value of the base current irrespective of the actual current levels involved. (In fact the values of α and β vary, both between samples and with emitter current level, but this latter effect will be ignored for the time being.)

TRANSISTOR EQUATIONS

Though not absolutely necessary it is very convenient to express some of the above details
in the form of simple equations as these will be useful in understanding the behaviour of the transistor in any given circuit. The "continuity of current" condition is expressed by:

$$
\begin{equation*}
I_{e}=I c+I b \tag{1}
\end{equation*}
$$

whilst the devision of emitter current, between base and collector, can be written as:

$$
\begin{align*}
& I_{\mathrm{c}}=a I_{e} \tag{2}\\
& I_{\mathrm{b}}=(1-\alpha) I_{\mathrm{e}} \tag{3}
\end{align*}
$$

Dividing equation (2) by equation (3) gives a useful relationship, namely:

$$
\begin{equation*}
\frac{I_{c}}{I b}=-\frac{\alpha}{(1-\alpha)}=\beta \tag{4}
\end{equation*}
$$

Since the value of x is usually very close to unity, especially for present day transistors, the value of β varies over a wide range for quite small changes in x. This is illustrated in Fig. 4.5.

Because the parameter α depends on the width of the very thin base region, the manufacturing problems involved in controlling this width force the manufacturer to quote a spread or range

α	β
0.95	19
0.98	49
0.99	99
0.995	199
0.999	999

$\beta=\frac{\alpha}{(1-\infty)}$
Fig. 4.5. Variations in β for change in α

Table 4.1: Useful Transistor Parameters

Parameter Symbol	Meaning	Value for BC107
$V_{\text {ceo }}(\max)$	Maximum c/e voltage with base open circuit	$\begin{aligned} & +45 \mathrm{~V} \\ & 200 \mathrm{~mA} \end{aligned}$
$I_{\text {cem }}^{\text {ceo }}$ (max)	Maximum collector current (peak value)	$\begin{aligned} & 200 \mathrm{~mA} \\ & 50 \mathrm{~V} \end{aligned}$
$V_{\text {cbo }}(\max)$	Maximum c/b voltage with emitter open circuit Maximum average collector current	100 mA
$V_{\text {ebo }}($ max $)$	Maximum e/b (reverse) voltage with collector open circuit	
$P_{\text {tot }}^{\text {ebo }}$ (max)	Maximum total power dissipation at specified temperature of $25^{\circ} \mathrm{C}$ (or less)	300 mW for $T_{\text {ambient }}$ $\leq 25^{\circ} \mathrm{C}$
$V_{\text {ce }}$ (sat)	Collector/emitter saturation voltage at specified cürrent levels. Typical and maximum values may be quoted	Max. 600 mV at $I_{c}=$ $100 \mathrm{~mA}, I_{b}=5 \mathrm{~mA}$ (Typical 200 mV)
f_{5}	Transition frequency (a measure of transistor's usefulness at high frequencies)	300 MHz (Typical)
$h_{\text {FE }}$	Static forward current ratio (similarar to $\beta=I_{c} / /_{b}$). Test conditions usually quoted	240 (Typical) at $I_{c}=2 \mathrm{~mA}, V_{\mathrm{ce}}=5 \mathrm{~V}$
$h_{\text {fe }}$	Small-signal gain (change of I_{c} for unit change in I_{b})	$\begin{aligned} & 125 \rightarrow 500 \text { at } \\ & I_{c}=2 \mathrm{~mA}, V_{\mathrm{ce}}=5 \mathrm{~V} \end{aligned}$
Icbo	Collector/base leakage current with emitter open circuit	$15 \mu \mathrm{~A}$ (max) at $V_{c b}$ 20 V and junction temperature of $150^{\circ} \mathrm{C}$

of values for β. This range may be as high as $5: 1$ (maximum to minimum) and for some types the transistors are colour coded to indicate that the current gain β lies within a specified range.

TRANSISTOR RATINGS

In addition to a and β other symbols are used and Table 4.1 lists some of these together with an indication of their meanings. It will be noticed that some of the symbols relate to maximum ratings of voltage, current and power and on no account should these be exceeded. Failure to observe this point can lead to permanent transistor damage or a change in the device characteristics.

Power dissipation in a transistor causes the temperature of the semiconducting material to rise and if this rise is excessive a process known as thermal runaway can occur. This results when the temperature rise itself causes increased dissipation and a regenerative build-up takes place. If the current is not limited by external resistance this thermal runaway will damage the transistor.

The emitter-base junction is particularly vulnerable since the current-voltage characteristic is very similar to that of a forward biased diode. Even with the large emitter currents that occur in power transistors the voltage between base and emitter, $V_{b c}$ rarely exceeds about one volt. The variation of emitter current I_{0} with $V_{\text {be }}$ is illustrated in Fig. 4.6. The curve could equally well represent the variation of base current if a different vertical scale is used to indicate the lower current levels. The curve shows that for a silicon transistor the current rises rapidly once $V_{\text {be }}$ exceeds about 0.5 volt.

If we connected a 4.5 volt battery directly across the base-emitter junction the transistor would be destroyed since the current would rise to an excessive level. When experimenting with transistors this point should be watched since the damage is not discernable from the outside. Always include a series resistance of say 1 kilohm to limit the current flow to a few milliamps. A simple method of checking transistors is covered in the experimental tests this month (Test ll).

TRANSISTOR LEAD CONFIGURATIONS

Modern transistors are usually mounted in hermetically sealed metal cases or encapsulated in special epoxy material. The arrangement of the leads can take one of several forms as shown in Fig. 4.7 and in some of the metal cased types the case is electrically joined to the collector. This applies to the BC107 transistors used with the Tutor Board.

MOUNTING FOR TUTOR BOARD

The BC107 transistors must be mounted using the 3 -way connector blocks that were reserved for this purpose in Teach-in '74, Part 1. The leads are quite short and must be carefully spread out to match the connector spacing. They must not be allowed to touch the metal case of the transistor and as the lead-out wires are fairly thin the connector screws should be tightened carefully so that the wires are held firmly under the end ot the screws. Excessive pressure will tend to fracture the leads.

The transistors should be left permanently mounted in these blocks and all other connec ${ }^{2}$ tions brought in on the opposite side of the block as required. The emitter and collector can be colour coded by using small spots of paint on the block, red for the collector and blue for the emitter. Alternatively, small lengths of plastic insulation can be slipped over the emitter and collector leads before mounting the transistor in the block. The general arrangement is shown in Fig. 4.8.

We are now in a position to carry out some simple tests.

Next month we shall continue our study of the tran-

Fig. 4.8. Mounting of the BC107 in a connector block for use on the Tutor Board
sistor and introduce some simple circuit applications.

Fig. 4.6. Variation of emitter current with $V_{\text {be }}$
current with ${ }^{\text {be }}$

Everyday Electronics, January 1974

TUTOR BOARD EXPERIMENTS

Test No. 11
The experimental work this month has been designed to demonstrate the main features of transistor operation as described in the article. The schematic circuit is shown in Fig. 4.9 and a suggested Tutor Board layout is given in Fig. 4.10. The $0-10 \mathrm{~V}$ voltmeter circuit is required for this test and has the negative lead permanently connected to the emitter (e). Only one probe is required, for the positive lead, and this can be held in position when a measurement is made.

Before switching on check all wiring carefully. Remember that the metal case of the BCl 07 is electrically connected to the collector (internally).

When using the voltmeter avoid touching the metal probe with the fingers as this can give a leakage path and produce false readings if some other part of the hand touches another part of the circuit, such as the transistor case! When you are satisfied that all wiring is correct and firmly held in the connector blocks, set potentiometer VR2 fully anticlockwise so that the slider is at the end which is joined to e, and switch on the circuit.

Using the voltmeter probe check the total battery voltage $V_{\text {Ar }}$ at point A, the collector voltage $V_{c e}$ at point c and the voltages $V_{\mathrm{Fe}_{\mathrm{c}}}$ and $V_{D_{r}}$ at points F and D. If everything is operating correctly the readings will be approximately:
$\left.\begin{array}{l}V_{A_{r}}=9 \cdot 2 \text { volts } \\ V_{\text {ce }}=9 \cdot 2 \text { volts } \\ V_{D_{e}}=0 \cdot 0 \text { volts } \\ V_{r_{\mathrm{e}}}=4.8 \text { volts }\end{array}\right\}$ typical values

Fig. 4.9. (above, left) Schematic circuit diagram for Test No. 11.

Fig. 4.10. Layout on the Tutor Board for the circuit shown in Fig. 4.9.

If $V_{D_{\mathrm{E}}}$ is not zero the potentiometer may be incorrectly wired or set at the wrong end. This condition would also give an incorrect value for $V_{\text {ce }}$ which may be approximately zero under certain fault conditions.

If all is well, record the voltmeter readings in your log book and proceed with the rest of the experiments step by step. Try to understand what is happening at each stage before passing to the next test.

Test No. 12

Measure V_{ce} with the probe at point c and slowly turn VR2 in a clockwise direction. Note that $V_{c e}$ does not change until VR2 has been turned through a few degrees. As VR2 is turned further clockwise $V_{c e}$ will fall until it becomes almost zero. By turning VR2 "to and fro" satisfy yourself that the voltage $V_{c c}$ can be made to rise, fall or swing about a given value anywhere in the range 0 to +9 volts approximately. Return VR2 to the fully anti-clockwise position.

Test No. 13

With the probe at point c turn VR2 clockwise until $V_{c e}=8 \cdot 0 \mathrm{~V}$. Without disturbing VR2, transfer the probe to point D and record the voltage $V_{D c}$ (about $+0 \cdot 7 \mathrm{~V}$). Return the probe to point c and turn VR2 further clockwise until $V_{\mathrm{ce}}=$ $+1 \cdot 0 \mathrm{~V}$. Without disturbing VR2 measure V_{De} again and record the new value. On the prototype this second reading for $V_{D_{n}}$ was +1.4 volts but the value obtained will depend on the current gain (β) of the transistor sample used. The results can be used to calculate the voltage gain of the circuit which is a "one-transistor" amplifier.

Voltage gain (between points c and $D)=$
change in $V_{c e}$
change in $V_{D e}$
:---

These results show that an increase in $V_{D e}$ of approximately 0.7 volts causes a decrease in $V_{\text {ce }}$ of $7 \cdot 0$ volts. The collector voltage change is ten times larger than the change in $V_{D e}$ and is in the opposite sense since $V_{c e}$ falls as $V_{D c}$ increases.

Because of the variation (or spread) in the parameter β, between transistor samples, the voltage gain obtained may be lower than 10. (For BC107 transistors the range will be about 2 to 10 in this circuit.) Restore VR2 to the fully anti-clockwise position.

Test No. 14

For this test we require a voltmeter covering a range of about $0-1$ volt and this can be made up by connecting a 10 kilohm ± 5 per cent resistor in parallel with the 100 kilohm ± 2 per cent voltmeter resistor. The effective resistance of

10 kilohm in parallel with 100 kilohm is $9 \cdot 09$ kilohm which together with the additional series resistance of the $100 \mu \mathrm{~A}$ moving coil meter gives approximately the correct value for a $0-1 \mathrm{~V}$ voltmeter (i.e. 10 kilohm). See Fig. 4.11.

With the batteries switched off, change the base resistor from 47 kilohm to 4.7 kilohm and replace the 1 kilohm collector resistor with a 100 ohm resistor connected in series with one of the 6 V 60 mA lamps. Check all wiring carefully before switching on Check that the lamp lights when VR2 is rotated clockwise. See Fig. 4.11 .

Connect the positive probe of the $0-1 \mathrm{~V}$ voltmeter to point b and slowly rotate VR2 clockwise until the lamp filament just begins to glow. Note the meter reading remembering that the full scale deflection now represents $1 \cdot 0$ volt, not 10 V as previously. Continue to rotate VR2 whilst observing the meter reading. The change in meter reading will be relatively small even though the increasing light output shows that the collector current is still increasing.

This demonstrates that $V_{\text {be }}$ is almost constant once the transistor is turned on. With the prototype Tutor Board the lamp started to glow at

Fig. 4.11. Circuit alterations for use with Test No. 14.
$V_{\mathrm{be}}=0.6 \mathrm{~V}$ and with the lamp fully on $V_{\mathrm{be}}=$ 0.72 V , an increase of only 0.12 V ! The voltage $V_{D e}$ will change by more than this (as can be checked using the normal $0-10 \mathrm{~V}$ voltmeter circuit) and rises to about $+3 \cdot 4 \mathrm{~V}$ when VR2 is fully clockwise.

Before dismantling this circuit return VR2 to the position at which the lamp just starts to glow whilst the $0-1 V$ voltmeter probe is held on b. Observing the lamp, remove the voltmeter probe from b. The lamp light output increases considerably. Why does this happen?

When you have finished the experimental work dismantle the Tutor Board. Remember to remove the 10 kilohm resistor from the voltmeter circuit and to put the shorting lead on the meter terminals, for protection. Additional transistor experimental work will be given in Part 5.

By GORDON J. KING

THis second and final part deals with sources of distortion and performance.

TRACING DISTORTION

The least error is deliberately arranged at the end of the record because it is here that another type of distortion increases, called tracing distortion. This results from the difference in shape of the cutting and replay styli such that the path traced by the replay stylus differs from that traced originally by the cutting stylus.

At the end of the record the modulation waveforms tend to compress in the groove since then the groove-stylus velocity is at its lowest. This makes it even more difficult for the replay stylus exactly to follow the modulation waveforms, hence the distortion rises. The same effect occurs when the frequency of the modulation rises at a given or increasing recording level.

TIP DIMENSIONS

Owing to its nature, therefore, it follows that the smaller the radius of the tip of the stylus the less will be the tracing distortion. This is in fact perfectly true to a large degree, but other factors tend to become involved.

In an endeavour to reduce tracing distortion, particularly at the inner diameters of a record, biradial or elliptical tips are being fitted to the better class of cartridge. The major axis of the tip is arranged to fall across the groove, thereby avoiding "bottoming" in the groove which can result in a high replay noise level, while the minor axis actually defines the modulation waveforms. Major and minor axes are commonly 0.7 and 0.3 thousandths of an inch.

Non-elliptical or non-biradial tips are spherical with radii of 0.7 and 0.5 thousandths of an inch. From the "definition" and least tracing distortion aspects, therefore, the elliptical or biradial tip is better than the 0.5 thousandths of an inch spherical, while the 0.5 thousandths of an inch spherical is better than the 0.7 thousandths of an inch spherical. The latter is really a "compromise" tip, suitable for playing early mono L.P.s (which carry a groove more suitable for a tip of 1 thousandth of an inch) without scraping up too much muck from the bottom of the groove, as well as the latest stereo records.

SIDE-THRUST

We must now return to the arm to examine a by-product effect of the head offset angle. Obviously, the stylus is kept in contact with the groove modulation by a downward force, commonly called the tracking weight, the value of which is dependent on the mechanical quality of the cartridge and arm partnership and on the level of the groove modulation. The stylus is thus subjected to a frictional drag in the groove, and because of the offset angle of the head a force is developed which tends to draw the arm towards the centre of the disc, see Fig. 7.

Fig. 7. Basic illustration of side-thrust (see text).
This is called side-thrust, and when the bearing friction of the arm is small it can be significant and thus cause the stylus to bear more heavily on the wall of the groove carrying the left channel than the other.

Because such imbalance can affect both the channel separation and the tracking performance, many arms are nowadays equipped with a scheme for combating the side-thrust. This is
achieved merely by the application of an approximately equal force in the opposite direction provided by (i) a small weight dangling on a fine thread (SME, Audio-Technica), (ii) a spring arranged to introduce a countering torque at the pivot (Micro-Seiki), (iii) a system of permanent magnets (Decca)

The dangling weight idea on the SME 3009 short arm is shown in Fig. 8, while Fig. 9 shows the spring arrangement adopted by Micro-Seiki on the MA77/II arm, where the adjustment is provided by the small knob at the bottom left of the base.

Fig. 8. The SME 3009 short arm showing dangling weight (side thrust correction) and counterbalancing and tracking weight system.

Fig. 9. Micro-Seiki MAT//II arm with spring arrangement for side thrust correction.

Since-there is a likelihood of the side-thrust changing mildly with diminishing groove/stylus velocity, as the record plays out, and with changes in recording level, accurate correction over the entire disc is impossible. Nevertheless, the application of a nominal value of correction
can enhance the channel balance and separation and reduce the tracking weight by as much as 20 per cent in some cases.
The required nominal value will depend on the chosen tracking weight and the type and dimentions of the stylus tip, which is why it is adjustable on many arms.

OTHER ADJUSTMENTS

The arm must also embody a method for counterbalancing the weight of the shellmounted cartridge (often by a sliding weight or weights at the end of the arm) and an adjustment for the tracking weight, either a small rider weight or a spring system.

The arm illustrated in Fig. 8 employs weights for counterbalancing and tracking, the latter sliding along the main part of the arm against gramme calibration marks.

The arm in Fig. 9 also employs end weights for both functions.

Another arm fitment is an automatic or manually operated lifting and lowering device, such as shown on the Micro-Seiki MA77/II arm in Fig. 9 , which is operated by the lever at the side.

We must now turn our attention to the chief pick-up parameters, of which there are three: (i) tracking ability, (ii) frequency response and (iii) channel separation.

TRACKING ABILITY

This refers to the least tracking weight required for the pick-up to handle modulation of a specific frequency and amplitude, usually translated to velocity, v, such that

$$
v=2 \pi f A,
$$

where f is the frequency in hertz and A the amplitude in centimetres of the modulation waveform.
Velocity is given in centimetres per second (cm / s), and because some of the latest discs have peak levels approaching $30 \mathrm{~cm} / \mathrm{s}$ at mid-spectrum, the pickup should be able to cater for such a velocity within its tracking weight range.

Sadly, few makers specify absolute tracking ability in this way (Shure being an exception by adopting the term 'trackability'). Most makers, though, specify the required tracking weight, sometimes in terms of minimum and maximum values.

One should not exceed the maximum, but whether the minimum weight will track modern records realistically will depend on the arm and side-thrust correction.

The tracking at high amplitudes is governed by the compliance of the cartridge. Compliance is the reciprocal of stiffness and is measured as the distance of millionths of a centimetre that the stylus is displaced by a force of 1 dyne (approximately equivalent to a force of 1 milligram). Modern cartridges boast vertical and lateral compliances of 20×10^{-5} centimetres per dyne ($\mathrm{cm} /$ dyne) or better.

However, a high compliance cartridge does not necessarily imply a good tracking because the high frequency tracking ability is dependent on the effective mass at the stylus tip. When tracking high-frequency, high velocity modulation, the stylus tip can undergo an acceleration in excess of 1000 g (g being Earth's gravitational pull). So by having a large tip mass, rapid change of motion will be impossible at a realistic tracking weight and without groove destruction. Topflight cartridges have an effective tip mass of less than one milligram.

Tracking ability is also dependent on the mechanical damping built into the cartridge to tame overshoot and resonance effects, etc, thus the three factors of compliance, tip mass and damping combine to yield the tracking ability.

FREQUENCY RESPONSE

The output over the frequency spectrum should be free from violent changes if colouration of the reproduction is to be avoided; Fig. 10 shows the frequency response of a good quality cartridge. The slight undulations can be tolerated, but cartridges with violent changes in output within an octave are unsuitable for high quality reproduction.

Fig. 10. Typical frequency response curve obtained with a good magnetic cartridge.

Magnetic pick-ups not uncommonly exhibit the "suck-out" around 5 to 8 kilohertz, while the mild rise at the bass end can be encouraged by the effective mass of the arm resonating with the compliance of the cartridge. It is thus necessary for a high compliance cartridge to be partnered with an arm of low effective mass.

Resonance, and thus a rise in output, occurs at the bass end because the resonant frequency is equal to $\pi / 2 m C$, where m is the effective mass of the arm and C the compliance of the cartridge. The resonant frequency is a little over 11 hertz when the compliance is 20×10^{-6} centimetres per dyne and the mass is 10 grammes.
If the resonance is too low the system will be unstable and if too high rumble from the motor and other acoustic effects may prove troublesome.

CHANNEL SEPARATION

A separation curve compatible with the frequency response curve is shown in Fig. 11. Notice the high separation (almost 30 decibels (dB), equal to a voltage ratio of just over 31 to 1) at the middle of the spectrum.

At the bass and treble ends the separation normally falls off, but provided it holds around 10 decibels at 100 hertz and 10 kilohertz, with a maximum of at least 20 decibels at mid-spectrum, the stereo 'image' on replay should be reasonable.

Violent separation changes are sometimes noticed at the high treble due to stylus system resonances, and they often correlate with peaks and troughs in the response curve.

Fig. 11. Typical separation curve-magnẹtic pick-up.

EQUALISATION AND LOADING

Generally, magnetic cartridges are capable of better tracking, frequency response and separation than piezoelectric types. However, because the output from a magnetic is geared to velocity of modulation and because a modern disc is recorded with velocity rising with frequency, the output rises with frequency. This calls for equalisation at the amplifier input stage.

Actually, the recording is to the RIAA characteristics, with a velocity slope of 4 decibels per octave average (eg, almost constant amplitude). A reciprocal curve is required for equalisation, as shown in Fig. 12.

Fig. 12. Curves approximating the RIAA recording (A) characteristics and replay equalisation (B).

On the other hand, piezoelectric type cartridges give an output geared to the amplitude of the modulation, so the output is almost "flat" from an RIAA recording when the cartridge is loaded properly into the stipulated high resistance (about 2 megohms). Some piezoelectric species feature inbuilt equalisation to take into account the deviation from true constant amplitude recording.

It is possible to run a piezoelectric cartridge into an RIAA equalised input (eg. magnetic pickup).

The low value load here and the capacitance of the piezoelectric element result in a "tilt" in output so approximately simulating the velocity output of a magnetic cartridge. When running like this an input attenuator may be required to avoid the high piezoelectric output from overloading the RIAA equalised preamplifier.

A recent record deck from Scan-Dyna, type 1400.

TURNTABLES

We have already seen that the turntable must be responsible for the least wow and flutter. These are usually quoted as a percentage referred to an average frequency from a test record. One per cent is acceptable, but quality units might not produce much more than $0 \cdot 1$ per cent wow and flutter, depending on the method of measurement.

Another parameter is rumble. This arises from motor and bearing noises being transmitted through the turntable, motor board and disc to the pickup. It manifests like the low grumble of distant thunder or the movement of furniture in the room above!

As already noted, it can be emphasised by a critical pickup bass resonance. The slip-frequency of some drive motors is about 22 hertz, so if the resonance is close to that, rumble could be aggravated. Amplifiers often feature a highpass filter to roll-off the sub-bass and hence the rumble signals. An unweighted value is about 40 decibels, but quality turntable units sometimes boast as high as 50 decibels (or higher when weighted), depending, again, on the test method.

Rotational speed should be adjustable to suit at least 333_{3} and 45 r.p.m. discs. If there is a likelihood of old 78's being played, then of course
the speed should be adjustable to this. Some turntable units also cater for 16 r.p.m. speech (talking book) discs.

Goldring-Lenco turntable units have a continuously variable drive. A motor board knob regulates the speed, and on some models the "standard" is indicated by a neon-illuminated stroboscope.

Recent models have "click" positions corresponding to the standard speeds. Fine speed control is useful for musicians and can avoid frustration when one is blessed (or otherwise!) with perfect pitch.

Photograph of a Goldring-Lenco turntable, type GL75 with variable speed control.

Speed change and variable control (when fitted) are related to the method of motor-to-turntable drive. The idler wheel type of drive, where the wheel picks up energy from the motor spindle (stepped to give speed changes) and couples it to the inside surface of the turntable, is still popular.

Belt drive is also being seen more these days. Here drive is coupled from the motor spindle or pulley (again stepped for speed change) to a larger diameter flange on the turntable or to a flywhel upon which the main turntable is placed (Micro-Seiki and Thorens respectively).

Automatic turntable are also liked in some quarters though rarely by the hi fi hierarchy for reasons of adjustment compromise and possible disc changes.

Motors commonly used for turntable drive are the small shaded pole variety, though sometimes a more "synchronous" device is adopted. When

The Connoisseur BD2 deck with arm ; two speed belt driven unit.
the mechanics are accurately balanced, the bearing friction low and the turntable mass high, it requires only a relatively small torque for constant speed drive.

THE FUTURE

The gramophone record will remain a long time yet the medium for high quality two-channel stereo and, seemingly, for the latest fourchannel (quadraphony) reproduction. Discs are already available with the information of four channels in the single groove.

One scheme (Victor Company of Japan) incorporates four discrete channels of information by the use of frequency-modulation "multiplex" on a carrier frequency around 30 kilohertz, with sidebands towards 50 kilohertz.
Other schemes are based on the "matrixing" of ambient information relative to the normal left and right stereo channels, this being essen-

The Garrard QZ 100SC quadraphonic player system with built-in decoders. Can also be used for stereo or enhanced four channel modes.
tially a function of signal phasing by the encoding matrix. A reciprocal matrix at the reproducing end decodes the information into the original four channels.
It seems as though the magnetic pickup will retain its popularity, and species are available which respond up to 50 kilohertz (for the Victor discrete four-channel discs). Tracking weight is now down to one gramme (and less if you can handle it!).
To conclude, mention must be made of those cartridges which work on different principles, such as strain gauge (Miniconic), and photoelectric cartridges.

The magnetic family, incidentally, includes at least one make based on the ribbon principlelike a ribbon microphone.

There is certainly much more in record playing than meets the eye!

回

QUESTION TIME ANSWERS

1. Electrons have a fixed negative charge.
2. Current, in amperes, is a measure of the "rate of flow" of charge. One ampere equals one coulomb per second.
3. Current equals voltage divided by resistance.

- 4. Effective resistance is

$$
\frac{10 \times 22}{10+22}=\frac{220}{32}=6.875 \mathrm{k} \Omega
$$

5. For one watt power dissipation $\mathrm{V}^{3}=1000$ and so $\mathrm{V}=$ 31.6 volts. The current is therefore 31.6 mA .
6. Brown ($\pm 1 \%$), Gold ($\pm 5 \%$), Silver ($\pm 10 \%$).
7. 270,000 ohms $\pm 5 \%$.
8. Providing the two battery voltages are the same the voltage difference will be zero for this method of connection.
9. Capacitance increases.
10. Time constant is 220 mS . (i.e. 0.22 seconds).
11. At the maximum working voltage of 100 V the energy will be 5 joules.
12. Resistor can be placed in either lead.
13. Cathode.
14. A reverse biased diode would give a voltage slightly less than the battery voltage. A good diode, in the forward bias direction would give a voltage reading of less than 1 volt.
An open circuit diode would give a voltage reading slightly less than the battery voltage due to the current taken by the voltmeter. A diode having appreciable leakage current in the reverse direction would also give a voltage reading less than the battery voltage. To distinguish between these last two cases it would be necessary to test the diode for both possible directions. If open circuit, the two readings will be the same. Hence both (b) or (c) could be correct.
15. 40 mA when operating as a Zener.
16. Effective capacitance is ${ }_{6}^{5} \mu \mathrm{~F}$.
17. No. The "cold" resistance is lower than the operating resistance.

A nem series... SEMICONDUCTOR PRIMER

By A.P. STEPHENSON

1 - DEVELOPMENT OF THE TRANSISTOR

The transistor was invented on Christmas Eve 1947 in the Bell Telephone Laboratories U.S.A. The two scientists concerned were Bardeen and Brittain, working under the direction of Dr. Shockley.

The original experimental hookup was as Fig. 1.1. Two "catswhiskers" were pressing on a crystal of germanium, XI. It was noticed that if the current through MEl was varied, the current through ME2 altered a slightly greater amount.

This was the first time in history that amplification was achieved in a solid state device.
This device was named the point-contact transistor. Its creation launched an orgy of research throughout the world.
The original point-contact version was soon abandoned in favour of the junction transistor, which was essentially a sandwich of three semiconductor materials known as p-type which was doped germanium, rich in positive charge carriers called holes and n-type which was rich in electrons. The sandwich could be $p n p$ or $n p n$.

Silicon eventually displaced germanium, because of its much lower leakage current and its ability to withstand much higher temperatures (about $180^{\circ} \mathrm{C}$ instead of $75^{\circ} \mathrm{C}$).

Fig. 1.1. The circuit used in the discovery of the transistor.

Manufacturing methods have continually improved, and the variety of techniques and sales gimmickry has now reached bewildering proportions.

The "in" type at present is the Planar Epitaxial as far as bipolar junction transistors are concerned. Bipolar means that the current is conducted through the device by two types of carriers, electrons and holes.

There is another entirely different type of transistor called the f.e.t. (Field Effect Transistor).

The transistor has triggered off the greatest technological revolution of all times.

2 - THE SEMICONDUCTOR BARRIER POTENTIAL

Two slabs of material, one n-type and the other p-type, are joined together to form a $p n$ junction diode.

The circuit symbol and the relation to p and n material is shown in Fig. 2.1.

The diode is an easy path for current in one direction only. In the other direction it is practically an open circuit.

If the applied voltages are as indicated in Fig. 2.1 the diode is said to be forward biased and will pass current. (This is easily remembered by noting that positive must go to p). When forward biased there is about 0.6 volts across a silicon diode, but about 0.2 volts, if germanium. Any attempt to push this voltage much higher will usually result in destruction of the device, because the current will rise rapidly.
A graph, showing this behaviour, is given in Fig. 2.2.
These two voltages, 0.2 for germanium and 0.6 for silicon, are called the barrier potentials for the materials.

Note that current is small if voltage across diode is less than the barrier potential.

Fig. 2.1. The circuit symbol and relation to p and n type materials.

Fig. 2.2. Typical forward characteristics of silicon and germanium diodes.

Enables finer speed control with standard foot control.

THIS article describes a simple power controller for use on the domestic mains supply. It can handle up to 750 watts and be used to control the power fed to electrical appliances.

A very useful application, proved by the authors wife, is to use it with an electric sewing machine. Set at about half power it gives a finer speed adjustment with the standard foot control than can normally be obtained. A big advantage when machining intricate shapes in fine fabrics.

By reducing the power to electric motors as used in drills, food mixers and other appliances with series wound motors, the speed can be adjusted. The controller can also be used to dim lights provided they are conventional filament lamps, it will not work with fluorescent or other discharge lamps.

With the electric drill a well controlled speed reduction enables coil and transformer winding to be attempted.

The circuit uses a triac which, although rated for a maximum current of 6 amperes, should not be allowed to run continuously at more than 3 amperes. The size of the heat sink and the fact that it is enclosed prohibit the sustained higher current use. On 240 volt a.c. mains supplies this gives a load rating up to approximately 750 watts, enough for most applications.

The circuit has been designed for the constructor with limited access to tools and uses, for the housing, a domestic MK Ivy base readily available from the local electrical contractor. With the exception of the triac the other components should be able to be supplied by the local electrical and radio shop. The triac can be obtained from several of the London based component houses by mail order.

CIRCUIT DESCRIPTION
The complete circuit diagram of the Sewing Machine Speed Control is shown in Fig. 1.

The actual power is controlled by a triac which is a semiconductor device similar to the controlled silicon rectifier (CSR) but with the ability to pass current in both directions. That is, once the gate terminal has been pulsed by a current pulse the device conducts current bez tween the two main terminals until the end of that half cycle.

By altering the point in time during that half cycle when the gate is pulsed or "fired" the time current is allowed to pass is varied and hence the average power to the load is varied.

The firing pulse is produced by the partial discharge of the capacitor Cl into the gate. The voltage across the capacitor Cl rises to a high enough value to cause the neon lamp to strike, a comparatively high current then flows through the neon lamp into the gate of the triac until the voltage across the capacitor Cl falls to the extinguishing voltage of the neon lamp. The firing of the triac removes the source of charging current for the capacitor until the next half cycle.

The use of a neon lamp, has, in addition to being a low cost triggering device, the advantage of showing that the triac is being triggered also.

Fig. 1. The complete circuit diagram of the Sewing Machine Speed Control.

The point at which this triggering pulse occurs is determined by the rate by which the capacitor Cl is charged through the resistors R1 and VR1. With VR1 set to the minimum resistance, the capacitor Cl is charged at almost the same rate as the rate of rise of that half cycle of the mains supply.

As the typical striking voltage of the neon lamp is 90 volts, only a small percentage of the half cycle is not conducted through the triac. By increasing the value of the setting of VR1 the rate of charging Cl is lowered and hence the neon strikes later in the half cycle.

With VR1 set to the maximum resistance of 100 kilohms, a value of Cl is needed which is just too large to be charged to the neon striking voltage. The value required for this circuit lies between 0.1 and 0.15 microfarads and may be made up from a $0 \cdot 1$ microfarad capacitor in parallel with a lesser value determined on test of the finished unit. By selecting this apparently too large value capacitor, the neon will not strike and pulse the triac; hence the unit will be in a fully turned off condition.

Although the voltage across Cl does not rise to more than about 100 volts, the polarity reverses 50 times a second causing high stressing of the dielectric and a working voltage of at least 400 volts is needed. This is also the reason for specifying a 1200 volt d.c. rating for the interference suppression capacitor C2, if one with an a.c. rating of at least 350 volts is not used.

The small inductance Ll limits the rate of rise of current through the triac. This is most important when the triac is switching at half power, that is, switching on when the mains supply is at its peak value.

In addition to switching the maximum value of inrush current for the load, the triac has to
discharge the suppression capacitor C 2 . The triac junction will be destroyed if the rate of current is allowed to build up much in excess of 20 amperes per microsecond.

An inductance of about 5 microhenries will limit the rise in this circuit to a safe value. This value of inductance is typical of the TV interference suppression chokes sold in most radio and electrical shops.

The circuit with these suppression components does not appear to cause any TV interference as it has been used as a lamp dimmer alongside a working TV receiver.

Components
 Resistor
 R1 $10 k \Omega \frac{1}{2} W$ carbon $\pm 10 \%$
 SHOP TALK
 Potentiometer
 VR1 $100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ linear composition typee
 Capacitors
 C1 $0.1 \mu \mathrm{~F} 400 \mathrm{~V}$ d.c. working
 C2 0.05400 V a.c. or 1200 V d.c. working plastic foil.

Semiconductor

CSR1 Triac 400 V 6 A type RCA 40430 or similar

Miscellaneous

SK1 MK lvy mains socket
LP1 Panel or wire ended neon lamp
L1 Interference suppression choke 3A $5 \mu \mathrm{H}$ Enclosure made from MKitems: Ivy plate, base, divider; knob for VR1, insulated with internal retainer or deep set grub screw; aluminium $2 \times 80 \times 25 \mathrm{~mm}$ (heat sirk); 6BA nuts, bolts and solder tags.

CONSTRUCTION

The circuit is built up using point to point wiring as shown in Fig. 2.

Begin by making up the heat sink as shown in Fig. 3 and paint matt black.

The heat sink with mounted triac should be held in position inside the MK box, against the divider, as near to the side as possible, and then the drilling holes in the divider are marked out.

Drill these two holes and the two holes to take the 6BA terminal nuts and bolts at the other end of the divider, see Fig. 2. These two terminal nuts and bolts make the connection between the socket section and the control section. If the case shown is not used the triac should be insulated from the heat sink and the bolts insulated from each other and the case. The case should be earthed if metal.

Drill the blank cover plate centre hole and hole to suit the diameter of the neon lamp holder as shown in Fig. 4. If a neon lamp not mounted in a holder is used, drill the appropriate

Fig. 2 (above). The wiring up diagram and layout of the components in the MKIvy base.

Fig. 3 (left). Details of the heat sink for mounting CSR1. Use at least 1 mm thick aluminium.

Fig. 4. Details of fixing the neon lamp.
hole to hold the neon in a grommet as shown in Fig. 4. Both the neon lamp and grommet should be glued in position.
Mount the assembled heat sink to the divider plate and wire up the other components as shown in Fig. 2. Sleeve all component tails bearing in mind that the $0 \cdot 1 \mu \mathrm{~F}$ capacitor at the C1 location may have to have a small value capacitor fitted in parallel later.

The whole assembly can now be fitted into the enclosure and the mains socket wired in. Finally fit the knob, ensuring that the grub screw is well below the surface if the type with an internal retaining spring is not available.

TEST AND OPERATION

Connect a mains lamp load and switch on. Check that the output can be varied and that it will fall to zero. If the output will not fall to
zero an additional small value capacitor, such as 0.022 microfarad or 0.05 microfarad should be fitted in parallel with C1.

In use always check that the motor, lamp or other load is not short circuit as the average 3 amp fuse, which should be fitted to the mains plug, will not blow quickly enough to save the triac from permanent damage.

In use, the unit is plugged into the mains and the appliance to be "controlled" such as the sewing machine, via its foot pedal, is plugged into the socket of the unit.

Clockwise rotation of the control knob increases the power (speed) to the appliance. The control knob should be adjusted in conjunction with the foot pedal-control to give much finer control than with the pedal alone.
Sewing machine shown on the front cover was kindly loaned by John Lewis.

Supply seems to be becoming S non existent with regard to some components. In our November issue, we published the 4 Band T.R.F. Receiver and this design used a Motorola MFC 4000 B integrated circuit amplifier. At the time this device was being advertised by many suppliers and all seemed to be well, however, by the time the issue was on sale virtually all stocks of the device had been sold and, after phoning all the Motorola appointed distributors-who supply the retailers-we could only find fifty of these devices in the whole of the British Isles, not nearly enough to meet readers' needs.

What was even worse was the fact that the distributors told us
that they were not expecting any further supplies until February or March and there was no way of speeding delivery, which is controlled from Geneva. Faced with this situation we had only one alternative-to ask the author to design a simple discrete component stage to replace the original integrated circuit. It seems a backward step (backward in the terms of technology anyway) but, as far as we can see it is the only way out unless you, the reader and constructor, are willing to wait possibly until the end of March to complete the unit.

We hope we have now solved the problem with this particular article, so let's look at this month's particular problems.

Fetset

The Fetset MW Receiver derives its name from the f.e.t. (field effect transistor) used in the first stage. This transistor and the BC169C should both be readily available, as shonld the remainder of the components used in this project. The tuning capacitor can be almost any miniature variable type of about 250 pF . The case must be plastic and there are a number of small ones available from the various retailers.

Sewing Machine Speed Control

All components for the Sewing Machine Speed Control should be readily obtainable, the MK parts
are sold by many electrical shops and should be easy to obtain almost anywhere, the suppressor coil L1 is also obtainable from such shops.

V.C.O. Effects Unit

We have probably never before published a design that is so versatile as the V.C.O. Effects Unit, the applications stated in the text are probably not the only ones and no doubt ingenious readers will find many others.
One or two rather special components are used, in particular the Vernier dial (although this is by no means essential) and the foot switch. The dial is available from most of the larger suppliers, they are available in a number of sizes, the 50 mm (2 inch) size being used on the prototype, this costs about 85 p and this price was not included in the cost box.
The foot switch on the prototype is simply a heavy duty push on, push off pushbutton and is quite suitable. Henry's Radio show a rather more sophisticated foot-switch in their catalogue which is free standing and could be linked to the unit by a lead and plug, however this switch costs more than $£ 1$ and is not necessary unless the unit cannot be placed on the floor. The foot operation is only required when the unit is used as an effects box with drums or other instruments.

Other points to watch when buying for this unit, are the notes in the text referring to the jack sockets, and also the pot value if the Vernier drive is used.

T His receiver covers the m.w. band, and uses only two transistors, including one field effect type. The use of a f.e.t. (field effect transistor) gives the circuit a low noise level, and low current consumption. It also helps to give extremely sharp selectivity. While the set is quite compact, the prototype measuring 133 by 73 by 38 mm , it has purposely not been miniaturised in order that construction should be very simple, and standard, readily available components can be used. The output is for a crystal earpiece.

As a regenerative detector is used, no alignment is required, and only one simple adjustment to optimise performance has to be made before the completed device is ready for use.

Apart from the normal B.B.C. stations, a few continental ones can be received at an adequate volume. After dark a larger number of continental stations can be received, including Radio Luxembourg which has been received very well in the south east of England.

The unit is very economical to run as the current consumption from the PP3 battery is only about 650 microamps. Even with heavy use this will give a battery life of many months.

THE CIRCUIT
A circuit diagram of the receiver is shown in Fig. 1, TR1 is a field effect transistor, and

A two transistor m.w. receiver using an f.e.t. for increased performance

By R.A. PENFOLD
this type of component is very different from an ordinary bipolar transistor. An ordinary transistor has a very high resistance between its collector and emitter terminals unless a small forward bias is applied to its base, whereupon its resistance will drop, and it can be used for linear amplification. An f.e.t. however, has a relatively low impedance across its drain and source terminals (equivalent of the collector and emitter of a bipolar transistor), and it is necessary to give it a small reverse bias in order to bring it into linear operating conditions.

Referring to Fig. 1 it will be seen that the drain and source terminals of TR1 are cons nected as part of a potential divider network across the 9 volt supply. A small voltage will therefore appear at TRI source. The gate of TR1 has to be held at earth potential so as to give the required reverse bias.

As the input impedance to the f.e.t. is extremely high, normally a very high value resistor would be used to fulfil this function. In this case though, the tuning coil, L1, has a dual function, and also acts as this biasing component.

REGENERATION
Coil L1, which is wound on a ferrite rod, forms the aerial, and the signals received by this are coupled into the gate of TRI. Capacitor Cl is the tuning capacitor, L 2 is a regenerative feed-

Fig. 1. Complete circuit diagram of the Fetset
back winding, and couples some of the amplified signal at TR1 drain back to the input of the circuit. This winding is adjusted to the point just below that at which the circuit breaks into oscillation. It is at this point that the maximum effective regeneration is applied, and the circuit is at its most sensitive.
In this particular application, TR1 is not biased into true linear operating conditions, as it is essential that it should amplify one half cycle of the r.f. (radio frequency) signal more than the other half in order to detect the signai, and produce an a.f. (audio frequency) output. The use of regeneration heightens this effect, and thus greatly increases the detectors efficiency. It also increases the r.f. gain of the circuit, and thus gives a large overall increase in sensitivity.
It is important that the type of regenerative circuit used gives a fairly even amount of feedback over the entire range of frequencies covered, so as to give the maximum sensitivity over the entire band. It is also important that the regeneration is not seriously affected by the drop in supply voltage caused by ageing of the battery. This circuit is very good in both these respects.
Capacitor C2 is the bypass capacitor for R2. The audio output of the detector is developed across R1, and C3 decouples the r.f. signal. The audio signal is fed to TR2 via C4.
Transistor TR2 forms a straightforward high gain audio amplifier stage, which has collector load resistor, R4, and base bias resistor, R3. The output is taken from TR2 collector, and is suitable for a crystal earpiece only. Switch S1 is the on/off switch.
obtained, the length can be cut from a longer piece. At the point at which the rod is to be cut, a deep V shaped groove is made around the circumference of the rod using a triangular file. The rod is then given a sharp tap with the edge of the file at this point to break it in two.

If the end of the rod is left a little rough, this does not really matter. Care should be taken when handling the rod, as these are very brittle, and can easily smash if accidentally dropped.

Coil Lal consists of 65 turns of 32 s.w.g. wire (enamelled or double cotton covered) wound in a single layer. In order to prevent the coil

Components....

Resistors

R1 $4 \cdot 7 \mathrm{k} \Omega$	SEE
R2 $12 \mathrm{k} \Omega$	
R3 $2 \cdot 7 \mathrm{M} \Omega$	
R4 $6 \cdot 8 \mathrm{k} \Omega$	
All $\frac{1}{4} \mathrm{~W}=10 \%$ carbon	

Capacitors

C1 250 pF (approx.) miniature variable
C2 $4 \mu \mathrm{~F}$ elect. 9 V
C3 $0.01 \mu \mathrm{~F}$ disc ceramic or Mullard C280 type
C4 $2 \mu \mathrm{~F}$ elect. 9 V

Transistors

TR1 2N3819 or PN3819 f.e.t. n channel
TR2 BC169C silicon npn

Miscellaneous

S1 s.p.s.t. toggle or slide switch
SK1 3.5 mm jack socket
B1 9V PP3 battery and clip
Ferrite rod $103 \mathrm{~mm} \times \frac{1}{4}$ inch diameter, 32 s.w.g enamelled or double cotton covered copper wire (for L1), crystal earpiece, 0.1 inch matrix plain perforated Veroboard $90 \mathrm{~mm} \times 50 \mathrm{~mm}$, plastic case (see text) large diameter control knob, wire, fixing screws for C1 if needed.

FERRITE AERIAL

The ferrite aerial is home made, and Fig. 2 illustrates the construction of this. The coil is wound on a 102 mm by 1_{4} inch diameter ferrite rod. If a rod of the correct length cannot be

fetset IIUU RECEIUER

Photograph of the complēted Fetset, with earpiece.

Fig. 2. Complete layout and wiring diagram of the Fetset
from unwinding, the lead out wires are taped to the rod using ordinary insulation tape (not Sellotape). Try to keep the winding reasonably neat, with the turns wound side by side, avoiding overlaps if possible. Ensure that the lead out wires are made'sufficiently long (at least 80 mm).

COMPONENT PANEL

Most of the wiring is on a 0.1 inch matrix perforated paxolin panel measuring $90 \mathrm{~mm} x$ 50 mm , Fig. 2 shows a diagram of the board.

The first task is to drill the mounting holes for Cl . Some variable capacitors require a single 3_{8}-inch diameter mounting hole, but others require a ${ }_{10}$-inch diameter hole for the component's spindle, and three smaller holes for three 4BA countersunk fixing screws (not normally supplied with the component). The ferrite aerial is tied to the board by two loops of thin p.v.c. sleeving or string.

Next the small components are mounted on the board and wired together. These are mounted in the positions shown in the diagram, and their lead out wires are bent over at right angles and cut to length. The leads are then directly soldered to one another, this underside wiring also being shown in Fig. 2.

Connections to C1, S1, SK1, etc., should be left until last. Three 50 mm long insulated leads are connected to the board where the connections to S1, and SK1 are to be made. The connections to SI and SK1 are not made until both these, and the component panel are mounted in the case.

Coil L2 consists of a 130 mm length of single core p.v.c. insulated wire. This has a loop made in the middle, and this is slipped on, and pushed a little way onto, the ferrite rod. This in effect forms a single turn coil on the ferrite rod.

THE CASE

The prototype receiver is housed in a commercially produced fibreglass case with a removable aluminium back. There are several plastic boxes of about this size available (130 x $73 \times 38 \mathrm{~mm}$), any of which is suitable for this project. A metal case cannot be used as this would screen the aerial, and so prevent the receiver from working.

The general layout of the components inside the case is also shown in Fig. 2. A mounting hole is required for SKl, and S1. The front panel of the case is drilled with mounting holes for C1. The component panel is secured inside the case by being trapped between Cl and the front of the case, Cl in effect being used to bolt the panel to the inside of the case.

ADJUSTMENT

Once construction has been completed it is only necessary to adjust the reaction coil (L2)
for optimum results before the set is ready for use. With the earpiece connected and the receiver turned on, it should be possible to tune a few stations. If these are very weak, or none can be received at all, providing the set has been wired correctly, this means that L2 has incorrect phasing. To correct this, L2 is removed from the ferrite rod, twisted through 180 degrees, and then replaced on the rod.

For maximum sensitivity and selectivity, L2 is pushed as far onto the rod as possible without the set breaking into oscillation, at any setting of Cl. When the set is oscillating there is a noticeable increase in background hiss, and a whistle will be heard as the set is tuned across a station.
In practice it is probably best not to take L2 too close to the threshold of oscillation, as the tuning will be so sharp that it will be difficult to tune a station properly, and the audio quality may suffer. It should, however, be possible to find a setting for L2 which gives good sensitivity, selectivity, and audio quality, just below this setting.
It should be found that L2 is firmly held in place by being trapped between the ferrite rod and the component panel, but if any further fixing should be found necessary, a small strip of insulation tape can be used to secure it to the rod.

As a finishing touch a simple dial can be marked around the control knob of C1, showing the station positions. Should it be found that tuning is difficult the size of the knob can be increased.

AMPLIFIER FOR...

4 BIIII
 T.R.F.
 BY F.G.RAYER
 A replacement amplifier for the circuit published in November 1973

The 4 Band T.R.F. Receiver in the November 1973 issue used a small integrated circuit audio amplifier, the MFC4000B. In view of delays which may be encountered in obtaining this IC due to the fact that most suppliers have sold out and a new consignment is not due for some months, a suitable substitute amplifier is described here. Though particularly intended for this receiver, it can of course be used for other purposes where a small amplifier of this kind is required. The amplifier replaces the audio board originally used.

CIRCUIT

The circuit is shown in Fig. 1, and both transistors are easily obtained, high gain types, VRl is the volume control present in the original receiver, providing the required level of audio signals via capacitor Cl for the base of TR1. This is a high gain stage, stabilised by taking the base resistor R1 to the collector side of the load resistor R2.

The base of the second stage TR2 is capacitor coupled by C3. Working conditions in this stage are arranged for a collector current of about 15 mA . This easily gives more than adequate headphone volume, while allowing modest volume reception with a loudspeaker, while not imposing a heavy drain for the PP9 type of 9 V battery used.

Resistor R6 is the collector load for this stage, with audio output taken from C 5 , and this arrangement means that working conditions do not depend on the direct current resistance of the headphones or speaker which may be plugged into the output jack socket. It will be found that best results are obtained with medium impedance phones, or a speaker of about 75 ohms impedance, but other loads are satisfactory.

CIRCUIT BOARD

Both sides of the circuit board are shown in Fig. 2. It can be of the same size as originally used in the receiver, and input and other circuit connecting points are arranged in similar positions to those used with the original amplifier.

Two 6BA bolts secure tags which form the negative connecting points. Extra nuts are put on these bolts, and when the amplifier is finished they are locked to the chassis, with enough clearance to avoid any possible short circuit to the metal.

The polarity of the electrolytic capacitors should be noted when inserting these. The wire ends of components are bent over and soldered to the required points, excess being snipped off. Leads and joints are kept close against the insulated board. Transistor leads are arranged to come through the holes shown, and are soldered without unnecessary or prolonged heating.

EXTERNAL CONNECTIONS

A lead from Cl passes to the wiper of the volume control VR1. If the amplifier is not being

Telephone Comer
COMPLETE TELEPHONES Normal Househald Type

TELEPHONE DIALS Standard Post Office type. Guaranteed in Only $27 \frac{1}{2 p}$ POST \& PACKI

Tested and Guaranteed Paks

5794 insoo7 Sil. Rec. diodes. 55
B8ı $10 \begin{aligned} & \text { Reed Swltches, } 1 . \text { long. } \\ & l^{\circ} \text { dia. High Speed P.O. }\end{aligned}$ type
B99 $200 \begin{gathered}\text { Mixed Capacitors. } \\ \text { Approx. quantly. }\end{gathered} \quad 55 p$
counted by weigh
H4 250 Mixed Resistors. Approx. quantlty counted by weloht
H35 100 Mixed Diodes. Ger Marked and Unmarked.
$55 p$ P\&P15p 55p

H38 $30 \begin{aligned} & \text { Short lead Transistors. } \\ & \text { NPN Silicon Planar types }\end{aligned}$ 55p
$\mathrm{H} 396 \begin{aligned} & \text { Integrated Circuits. } \\ & \text { i Gates BMC 962,2 }\end{aligned}$ 4 Gates EMC 962, 2 Flip Flops BMC 945
H41 $2 \begin{aligned} & \text { Sll Power transistors } \\ & \text { comp pair BDI3s/132 }\end{aligned}$

Ons Unmarked Untested Paks

$$
\begin{aligned}
& \text { B1 } 50 \begin{array}{c}
\text { Germanium Transistors } \\
\mathrm{PNP}, A F \text { and } R F
\end{array} 55 \mathrm{p} \\
& 866150 \text { Germanium Diodes } \\
& \text { B84 } \quad 100 \text { silicon Dlodes DO-7 } \\
& \begin{array}{l}
\text { a } 202 \\
\hline
\end{array} \\
& \text { B86 } 100 \begin{array}{l}
\text { Sil. Diodes sub. min. } \\
\text { ins14 and ingis types }
\end{array} \\
& \text { H26 } 15 \text { Experimenters' Pak of }
\end{aligned}
$$

> Mixed rolls.
> $15 \begin{aligned} & \text { Power Transistors. PNP, } \\ & \text { Germ. NPN Silicon }\end{aligned}$ то-3 can.

Make a rev counter for your car
The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter Into a linear and accurate rev. counter for any car with normat coil ignlition system.

A Cross Hatch Generator $£ 3$-85 pasid

A complete kit of parts including Pilnted Circult Board. A four position switch gives X-hatch, Dots, Vertical or Horizontal IInes. integrated Clircuit design for easy construction and rellability. A prolect in the Sept. '72 edition of Television.

Electronic Transistor Ignition

Now In kit form, we offer this "up to the minute" electronic ignition system. Simple to make, full instructions supplled with these outstanding features:-
Transistor and conventional switchability, burglar proot lock up and automatic alarm, negative and positive compatabillty. This project was a "star" feature in the September 1973 edition of "Electronics Today International" magazine. Our kit is recommended by the ETI magazine
Ready built and tested unit $89-90$ Inc. V.A.T 2510 Complete kit inct. V.A.T p\&pt1p

TESTED \& GUARANTEED H63 4 2N3055 type NPN Sil. power 55 p
HB4 $4 \begin{aligned} & 3819 \text { N Channel FETs } \\ & 2 \mathrm{~N} 3819 \text { in plastic case }\end{aligned} 55 \mathrm{p}$
H65 4 40381 Type NPN SII. transistors 55p
H66 4 40352 Type PNP Sil. transistors 55p
UNTESTED' UNMARKED

Over 1,000,000
Iransistors
in stock

We hoid a very large range of fully marked. tested and guaranteed transistors, power transistort. dlodes and rectifiers at very competitive prices. Please send for free catalogue.
Silicon Planar Plastic Transistors
Unmarked. untested factory clearance. A random sampling showed these to be of remarkably high quality.
Audio PNP, slmilar to ZTX500. 2N3702/3. BCY70 etc. Audio NPN. similar to ZTX300, 2NK708/9. Audio NPN. similar to 2TX300, 2N6T1. ALL AT 500 for $£ 3 \cdot 30$.
Please state Audlo NPN or Audlo PNP when ordering.

Our very popular 4p Transistors

TYPE "A" PNP Sillcon alloy, TO-5 can TYPE "B"" PNP Silicon. plastic encadsulation
TYPE "E" PNP Germanlum AF or RF TYPE "E"' PNP Germanilum AF or RF TYPE "G" NPN sillicon similar ZTX 300 range

1) RELAYSFOR
 (1) RELAYS FOR P\& P 2710

Plastic Power Transistors

now in
TWO
RANGES
These are 40W and soW Silicon Plastic Power Transistors of the very latest design, available nices of all time We have been selling these prices of all lime. We have to all parts of the world and we are proud to offer them unde our Tested and Guaranteed terms.
Range t. VCE. Min 15. HFE Min 15.
40 Watt $\quad 1-12 \quad 13-25 \quad 26-50$
00 Watt 2610 261D 22
Range 2. VCE. MIñ. 40. HFE Min $\operatorname{lin}_{13-25} \quad 26-50$
40 Watt 33p 31p 29p
Complementary pairs matched for gain a
3 amps. Ito extra per pair. Please state NPN or PNP on order.

INTEGRATED CIRCUITS

We stock a large range of l.Cs at very comInted In our FREE Catalogue, see coupon below.

METRICATION CHARTS now available This fantastically detalled comersion calculator carries thousands of classified references measurements of length, area, volume, liquid measure ments measure, weighis
Pocket Size 15p Wall Chart 18p
LOW COST DUEL TN LINE I.C. SOCKETS
14 pin type at 16 Ip each ? Now new low profle 16 pin type at 18p each 5 type

BOOKS

We have a large selection of Reference and Technical Books in stock.

Send for list's of publications
2 LBS in weight for $£ 7 \cdot 10 p$

Dur famous PI PaK

is still leading in value
Full of Short Lead Semiconductors \& Electronic Components, approx. 870 . We guasentee at least 30 reaily high quality actory marked Translstors PNP \& NPN, and a host of Diodes \& Rectifiers mounled on Primted Circult Panels. Identification Chart supplied to glve some Information on the Transistors
Please ask for paik pitionly 55 p

Pleane send me the FREE Bi-Pre-Pak Calalogue.

NAME

ADDRESS

ALL PRICES INCLUDE 10% VAT
MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add 11p post and packing per order OVERSEAS ADD EXTRA FOR POSTAGE BUY THESE GOODS WITH ACCESS

NOW READY

112 pages (plus covers) and our best yet! Practically all items in Catalogue 7 are there as the result of information fed by our own computer, enabling us to control stock-buying in relation to demand with remarkable accuracy. This means that your orders, which we micro-film for record keeping, is handled with utmost speed and efficiency. EV prices remain keenly competitive and in addition there are discounts as well, to give you further savings. Among the well-known firms whose products we carry are those of SIEMENS, NEWMARKET, RADIOHM, SOLDERSTAT, GUEST INTERNATIONAL as well as Texas Instruments, Mullard and others.

25p

Send 25 p for your copy of EV Catalogue 7. It includes a Refund Voucher for 25p allowable on orders for $£ 5$ or more, nett value.

This is EV Service

DISCOUNTS

Ayallable on all items except those shown with NETT PRICES. $\mathbf{1 0 \%}$ on orders from $\boldsymbol{\$ 5}$ to $\mathbf{\Sigma 1 5 . 1 5 \%}$ on orders. £ 15 and over.

PACKING \& POSTAGE

FREE in U.K. For mail orders for $\& 2 \mathrm{llst}$ value and under, there is an additlonal handling charge of 10 D .

TERMS OF BUSINESS

All items are offered for sale in accordance with our standard terme of business, a copy of whith is avallable on request. Prices subject to alteration without notice. Enquiries from quantity users invited.
ea. 2p: 0.05 mFd 3 p
Maln LIne 70 amplifier $£ 12 \cdot \mathbf{6 0}$ nett

ZENER DIODES
Full range E. 24 yalues
$400 \mathrm{~mW} \quad 2.7 \mathrm{~V}$ to 36 V
$\begin{array}{ll}1 \mathrm{Watt} & 5.8 \mathrm{~V} \text { to } 82 \mathrm{~V} \\ 1.5 \mathrm{~W} & 4.7 \mathrm{~V} \text { to } 75 \mathrm{~V}\end{array}$
Clip to increase 1.5 W rating to 3 W (Type 266 F
MINITRON DIGITAL INDICATORS
$3015 F$ seven segment, filament, compatible wit standard logic modules.
0 to $9_{c}+$ decimal point. 9 mm characters. In 16 lead DIL. Some alphabetical symbols availablo $\varepsilon 1+20$ Suitable BCD decoder driver 7447 £f \quad §f 15 No. 0 TS BOT KNOBS SWITCMES, NUTS. BOLTS, KNOBS, SWITCHES, etc.
BABANI TECHNICAL BOOKS
V.A.T. 10% must be added to netl value of order
U.S.A, CUSTOMERS
are Invited to contact Electrovalue Amerlea, P.O. Box 27, Swarthmore P.A. 19081

FROM CATALOGUE 7

Volume Controls-Mono, 14p: Matched two-gang
Transistors-
2N2646 unliunction
2N3055 hlgh power
AD161 medlum power NPN
ADi62 medium power PNP
7400 quad 2 input NAND

510
60 p 420 15 p 25p

S DeC 4-pack 56-37: T DeC 53 -30: Micro-DeC 53.73 Photo-conductive cell TPMD 40p

ELECTROVALUE LTD

28 ST JUDES RD, ENGLEFIELD GREEN,EGHAM, SURREY TW20 OHB Telephone Egham 3603 Telex 264475

Hours 9-5.30, 1.0 p.m. Saturdays
Giro Account No. 38-671-4002

* NORTMERN BRANCH OPENING SOON

Electrovalue Ltd., 680 Burnage Lane, Manchester M19 1 NA (Hours 9-5.30, Sats. 9-1.00)
All postal communications to Englefield Green address, please
electrovalue catalogue please
1 enclose 25 p

NAME

ADDRESS

Fig. 1. Circuit of the new audio section for the 4 Band T.R.F. Receiver.
used with the receiver, but for some other purpose, connect the lower end of the volume control element to amplifier negative line.

A lead runs from positive of C2 to VR2, which is one of the regeneration controls of the receiver. If the amplifier is used alone for some

other purpose, no connection is required here.
Battery positive goes to positive of C6, and battery negative to the negative line, the on-off switch being included here.

Leads from C5 negative and the earth or chassis line run to the output jack. Connect the sleeve contact tag to "earth" or chassis, and the tip contact to C 5 .

Components....

Resistors
R1 $2 \cdot 2 \mathrm{M} \Omega$

R2	$10 \mathrm{k} \Omega^{*}$	SEE
R3	$2 \cdot 2 \mathrm{k} \Omega^{*}$	
R4	$56 \mathrm{k} \Omega^{*}$	
R5	$12 \mathrm{k} \Omega$	
R6	470Ω	

R7

R1	$2 \cdot 2 \mathrm{M} \Omega$
R2	$10 \mathrm{k} \Omega^{*}$
R3	$2 \cdot 2 \mathrm{k} \Omega^{*}$
R4	$56 \mathrm{k} \Omega^{*}$
R5	$12 \mathrm{k} \Omega$
R6	470Ω
R7	39Ω
All $\frac{1}{4} \mathrm{~W} \pm 10 \%$ carbon	

Capacitors

C	$0.05 \mu \mathrm{~F}$
C	$100 \mu \mathrm{~F}$ elect. $10 \mathrm{~V}^{*}$
C 3	$1 \mu \mathrm{~F}$ elect. 10 V
C 4	47 F elect. 10 V
C	$47 \mu \mathrm{~F}$ elect. 10 V
C 6	$100 \mu \mathrm{~F}$ elect. $10 \mathrm{~V}^{*}$

Semiconductors

TR1 BC 109 silicon npn
TR2 BC 108 silicon npn

Miscellanous

* Veroboard $75 \times 51 \mathrm{~mm}, 0.15$ inch matrix plain type, connecting wire.

[^5]Fig. 2. Board layout and wiring diagram.

DOMITOEDBill' By GEORGE HYLTON

 "On the one hand, one is told that the decibel rating is a comparative ratio figure with no fixed unit value, and on the other that a decibel is the smallest sound difference audible to the human ear. Can you help?"Let's get on at the start of the line; in this case a telephone line. The inventor of the telephone was, you'll remember, Alexander Graham Bell.

Long afterwards, when telephone engineers wanted a unit to describe the way signals get attenuated as they travel down a line they decided to honour the inventor by using his name. Being economically minded (or perhaps just bad spellers) they knocked off the final " 1 " and called the unit the "bel". The bel (B) is inconveniently large for most purposes, so we chop each bel into ten decibels (dB).

Problem: if you pump one milliwatt of audio power into a telephone line and this gives a usable range of 10 miles, what range will you get by increasing the power to 100 milliwatts? Common sense says, 1,000 miles. Practical experience shows that the new range it very much less, about 17 miles!

Common sense evidently looked at the problem the wrong way. Let's try a different approach.

RELATIVE LOSS

The power gets used up as the signals travel along the line. After a certain distance, half the power has gone. Suppose this distance is one mile. So if we start with 100 milliwatts, after one mile we have 50 milliwatts left. After two miles, we have 25 milliwatts, after three, $12 \cdot 5$ milliwatts, and so on, halving for each mile. Somewhere between six
and seven miles down the line the power is reduced to one milliwatt.

We know that one milliwatt gives a range of 10 miles, so the range for 100 milliwatts is this plus the 6 to 7 miles it took to reduce the 100 milliwatts to one milliwatt. Total, between 16 and 17 miles.

DECIBELS

In terms of decibels, the telephone line had an attenuation of 3 dB per mile. Decibels tell you at what rate something is decreasing (or increasing). A decrease of 3 dB means a halving: a decrease of 30 per cent corresponds to $1 \cdot 5 \mathrm{~dB}$.

In a telephone line, what declines is power. In electronics, we often want to work in volts age or current rather than power. Because power is proportional to voltage squared (doubling the voltage quadruples the power in a particular circuit), the decibel numbers come out differently for voltage and current comparisons than for power comparisons. Doubling the power gives a $\overline{3} \mathrm{~dB}$ increase. Doubling the voltage gives a 6 dB increase.
Why use decibels anyway? They are often used where it would be just as meaningful to use other ways of expressing gain or loss, it's true, but at times they are very convenient.

If a radio receiver has an r.f. gain of 10 , an i.f. gain of 20,000 , a detector efficiency of 50 per cent, and an audio gain of 400 , the overall gain is 10 x $20,000 \times 0.5 \times 400$. Whatever
that comes to, it will be a large number with a lot of noughts at the end. In decibels, the gain is

$$
20+86-6+52=152 \mathrm{~dB}
$$

which looks a lot tidier. Note that you add the gains of the successive stages when working in decibels (and subtract the losses, which explains the minus 6 , for the detector).

COMPARISON

Strictly speaking, decibels give only comparisons. They tell how many times weaker or more intense one signal is compared to another. But if you pick on an agreed signal power and call that " 0 dB ", the " 0 " standing, not for zero power but for the agreed reference power, then you can make a decibel figure stand for an actual power.

In telephone engineering, 0 dB is usually one milliwatt. On this basis, 100 milliwatts is +20 dB .

If the line halves the power every mile, you knock off 3dB per mile. So a power increase of 20 dB (from one milliwatt to 100 milliwatts) gives a range increase of $20 / 3$ miles which is 6.67 mile:

LOUDNESS

In loudness measurements 0 dB usually refers to the sound intensity which the average person can just hear-the "threshold of hearing". This varies with frequency, but at 1000 Hz it's about a millionth of a millionth of a watt per square metre. A very loud (almost painful) sound is around 120 dB on this basis, or one watt per square metre. If these figures sound low in relation to amplifier powers, remember that loudspeakers have low efficiency, around one per cent!

It so happens that an increase in sound energy of 1 dB is about the smallest change which can be noticed under ordinary listening conditions.

electronics really mastered

look!

RAPY

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT

 OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:valve experiments, transistor experiments amplifiers, oscillators. signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch. simple transmitter, a.c. experiments, d.c. experiments. simple counter, time delay circuit. servicing procedures.

This new style course will enable anyone to really understand electronics by a modern, practical and visual method-no maths. and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment. radio and TV receivers, etc.

ALL PRICES ARE INCLUSIVE OF V.A.T.

FANTASTIC OFFER Goldrinz G800. Teak finish, plinth and tinted cover with mains lead and DIN plug and screened load. All fully wired. Please add El^{-75} for P. \& P. and Ins.
 TURNTABLES
 Please add $95 p \mathrm{P}$ \& P and Ins.

 \& 14.50BSR MP60 ${ }^{\text {Garrard SP25 Mk II }}$ 69.05
69.25 Garrard SL6SB Garrard 401 Garrard Zero 100 (sgle) Garrard Zero 100 (Auto) Goldring GL85/P. \& \& C Goldring G101/P. P \& C Goldring GL72 Goldring GL72 Goldring GL75/P Goldring GL Goodmans TDIOOP \& C G800 Cart
Thorens TDI 25
Thorens TD 125 AB Mk ${ }^{11}$ Thorens TD160 AB \& C 59.95 Thorens TDI65 AB \& C 644.95 Condor Auro Cleanar (Star Value) El-40 P \& P 15p

TUNERS

Please add 95p P \& ${ }^{2}$ and 105 . Alpha Highgare FIIs0 $\quad 632.95$ Amstrad Mulciplex 3000 623.90 Lowther FM Mk 8 N/P | 642.75 |
| :--- |
| 672 |
| 50 | Lowther. FM MK 9 N/P \quad C72.50 Metrosound FMS 20 Mk (I) 837.75 Rogers R/brook FET 4 (Cased

Rinclair cased tuner	$£ 36.50$
	$£ 25.30$

$\begin{array}{ll}\text { Sinelair cased tuner } & £ 25.30 \\ \text { Teleton GT202 (N/P) } & £ 30 \cdot 55\end{array}$
TUNER/AMPLIFIERS
Ploase add fi.
Alpha FR 3000
Goodmans Mod 80 Com Goodmans Mod. 90 Goodmans One-Ten Rogers R/brook (Cha) Rotel 150A Rorel 200A Scazus STA160

AMPLIFIERS

Dept. (EE1), 174 Pentonville Road, London N.I. Tei. O1-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue, Ifford, Essex. Tel. 01-550 1086

Kelerron 1500 Metrosound ST20 Metrosound ST60 Rogers R/brook Mk III (Ca) Rogers R/bourne (Ch) Rogers R/bourne (Ca) Sinelair 2000 Sinclair 3000 Sinclair 605 Sinclair PRO $602 \times$ Z301PZE E21-4 Sinclair PRO $602 \times 230 / P Z 5 £ 16.40$ Sinclair PRO $602 \times 230 / \mathrm{PZ} 6$
Sinclair PRO $602 \times 250 / P Z 8$
Trans
$625 \cdot 2$
Sinclair AFU (Filzer Unir) Sinclair Stereo 60 Pre-amp Sinclair
Sinclair Z30 Amp Sinclair Z50 Amp
Sinclair PZ5 Power Supp. Sinclair PZ6 Power Supp. Sinclair PZ8 Mains Trans. Sinclair PZ8 Power Supp.
$£ 24.95$
$£ 29.45$ 629.45

649.70 41-15 | 44.35 |
| :--- |
| 54.25 | 54. -00

-50 - 45 \begin{tabular}{l}
.45

\hline

 5. 25

54.95

87.35

\hline
\end{tabular} $\begin{array}{r}87.35 \\ 3 \\ \hline 635\end{array}$ 63.85

64.50
646 64.20
$66-15$ 64.95
$66-15$

SPEAKERS

E1.65 for P\&P(Per Pair) $£ 26.90$
$\begin{array}{ll}\text { Amstrad Acoustra } 1500 & £ 26.90 \\ & \mathbf{1 3 0} .75\end{array}$
Amserad Acoustra 2500
B \& W DM5
Celestion Ditzon 15
Celestion Ditton 44
Goodmans D/Maxim
Goodmans Mezo ${ }^{3}$
Koodmans KS4
Keletron KS8
Sinclair 016
Sinclair Q30

SPEAKER UNITS

Wharfedale Linton Kit \quad E16-85
Wharfedale Glendale Kit $£ 29.95$
Goodmans Din 20 Kit
Wharfedale Dovedale Kit
614.75
644.95

PLINTH \&
COVERS
£3. 20
For Garrard
SP 25.
3000, BSR
3000, BSR
MeDonald
MP60 83.08 . P. \& P. 71 p
For AP76, SL72B, 5i95B, etc. $\mathbf{£ 4 . 7 5},+7 I_{p}$ P. \& P.

DBBAR MN3 MXXER KIT

INTRODUCING THE NEW DABAR MINI THREE CHANNEL MIXER KIT WITH THE FOLLOWING FEATURES:

* Three inputs easily adjustable to sult users input requirements, e.g., Mic. Tape. Disc., etc.
* Uses advanced design with flve Integrated circuils.
* Sifder fader volume controls mount directly on P.C. board.
* Full range bass and treble contrals.
* Guaranteed top grade components with fibreglass printed circuit board, ready-drilled and tinned.
- Battery operated ($2 \times$ PP3) not supplied with kit.
* Easy to follow assembly instructions (available separately $\mathbf{2 5 p}$).
* Attractive ready punched facia plate, available at extrat cost, glves tha: professlonal finlsh to the unit.
* Slze: $9-5^{-1} \times 4.8^{-1} \times 2$.

PRICE: KIT ONLY E19-00
MANUALATE ASSEMBLY INSTRUCTIONS 250
AVAILABLE READY BUILT WITHFACIA $£ 15 \cdot 00$
ALL PRICES INCLUDE V.A.T. \& POSṪAGE IN U.K.
S.A.E. ALL ENQUIRIES.

DABAR ELEGTRONIC PRODUCTS
98, LICHFIELD STREET, WALSALL, STAFFS, WSI IUZ.

 17 ALBERT SQ.
 LONDON E15 IHJ」
 COMPONENTS

ELECTRONIC COMPONENTS FOR E.E. PROJECTS

FETSET
JAN. 74
-seE COST B0X
TREMOLO DEC. $73 \quad £ 1 \cdot 50$
WAA-WAA SEPT. 73
£1•50
GEN. PURP. AMP. APR=73
£4.50
BETA FUZZ-TREBLE JAN. 73
£1•50
(For Beta Fuzz, Treble, Component board components only).
BETA TRANSFORMER
£1:85

MAIL ORDER ONLY S.A.E FOR ALL ENQUIRIES

POWER SUPPIY UNII

A regulated 0 to 20 V power supply unit capable of delivering up to 0.5 A with current limiting.

Also... SLIDE PROJECTOR TIIMER

Provides automatic changing of slides when used with a suitable projector.

Don't be left in the dark. As soon as the mains power is cut, this device automatically switches to an auxiliary lighting system. It can also be used as a 12 V battery charger.

everyany electronics

On sale Friday, January 18

The latest B.S.R. 8 Track cartridge Replay Deck Ready to install in your Hi-Fi Stereo System.
Thls unit comes complete with Hi Gain Stereo Pre-Àmplifier, 4-Programme indicator Lamps, Track Selector Switch, all leads and plugs, etc. for 230 volt A.C. mains operation.

5W \& 10W AMPS

5Wonv£1.98 10W onil £2.49

incI. P. \& P. and V.A.T These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only $2 \frac{1}{4}^{\prime \prime} \times 1 \frac{z}{\prime \prime}^{\prime \prime}$. The 5 W amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the UK. Built and tested.

Now available for $5 \& 10 W$ AMPS

Pre-assembled printed circuit boards $2^{\prime \prime} \times 3^{\prime \prime}$ available in stereo only, will fit 15 edge connector.
Stereo Pre-Amp 1 (Pre 1). This unit Is for use with low gain crystal or ceramic pick-up cartridges.
Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cariridges.
£1.69
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.
Instruction leaflet supplied with all units. Post and packing and VAT included in prices.

```
I enclose f...................................... % Tracks/.
3W Amps/............ 5W Amps/................ 10W Amps/.
Stereo Pre-Amps 1 ..................Stereo Pre.Amps 2
Stereo Tone Controis
(Please Insert quantlites and delete those not applicable)
Name
Address

\title{
Trannies
}
(new mall order a adrosess)
4 Bush House Bushfair Harlow, Essex.
P/P 12 \(\frac{1}{2} p\).
Catalogue 10p.
(callers welcome)
reg. office: 1 Dockyard, Station Road, Old Harlow, Essex.

\section*{All prices inclusive of V.A.T.}

\section*{Resistors}
\(\frac{1}{2}\) watt \(8 \%\) carbon 1p 1 watt \(5 \%\) carbon 1p I watt \(10 \%\) carbon 8 ? range 10 ohm
1 watt m/o 2\% 10 3p megohms.

Minitron Digital
Indicator
Type 3015F reads 0-9


\section*{SEW \\ Clear Plastic \\ Panel Meter}

UP TO \(25 \%\) ORF POPULAR SEW METERS Type MR38p 1-21/32in Square Frone
\begin{tabular}{|c|c|c|}
\hline & Normal Price & Oar Price \\
\hline - - \(500 \mu \mathrm{~A}\) & £2. 50 & 2205 \\
\hline \(0-1 \mathrm{~mA}\) & 52.50 & 22.05 \\
\hline \(0-10 \mathrm{ma}\) & \(\pm 2.50\) & E2 05 \\
\hline \(0-100 \mathrm{~mA}\) & 2. \(\mathbf{5 0}\) & 22.05 \\
\hline 10.300 volts & 22. 60 & 22.05 \\
\hline 8 meter 1 ma . & 54.85 & 12.05 \\
\hline
\end{tabular}

Type SWIOO \(\times 80 \mathrm{~mm}\)
\begin{tabular}{|c|c|c|}
\hline \(0-30 \mu \mathrm{~A}\) & Normal Price 23-74 & \[
\begin{aligned}
& \text { Our Price } \\
& 8295
\end{aligned}
\] \\
\hline \(0-50 \mu \mathrm{~A}\) & 53.74 & 22.95 \\
\hline \(0-100 \mu \mathrm{~A}\) & £3.74 & 28.95 \\
\hline 0-500ر & 23.45 & ¢2.80 \\
\hline "VC" meter & £3-85 & E2.89 \\
\hline \multicolumn{3}{|l|}{Edgewise Meters} \\
\hline \multicolumn{3}{|l|}{\(3-17 / 32\) in \(\times 1-15 / 32 \mathrm{in} \times 2 \frac{3}{\text { in }}\) deep} \\
\hline & Normal Price & Our Price \\
\hline \(500 \mu \mathrm{~A}\) & £ 5.52 & 28.85 \\
\hline 1 ms & 23.52 & 22.86 \\
\hline
\end{tabular}

\section*{Electrolytic Capacitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 VOLT & 10 VOLT & 16 VOLT & 25 VOLT & & \\
\hline \(47 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p}\) & \(22 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p}\) & 1000 15 F 17p & 2200hF 39p & \[
\underline{I} \mu \mathrm{~F}
\] & \(6 \frac{1}{2} p\) \\
\hline \(100 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{P}\) & \(47 \mu \mathrm{~F}\) - \(6 \frac{1}{1} \mathrm{p}\) & 1500/ F & \(5000 \mu \mathrm{~F}\)-68p & \(2 \cdot 2 \mu \mathrm{~F}\) & \(6 \frac{1}{2} \mathrm{P}\) \\
\hline 220 F F 6 年P & \(100 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{P}\) & 2000 FF - 43p & & 4-7 \(\mu \mathrm{F}\) & \(6 \frac{1}{2} P\) \\
\hline \(330 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p}\) & \(220 \mu \mathrm{~F}\)-8p & \(3300 \mu \mathrm{~F} \quad 38 \mathrm{p}\) & & \(6 \cdot 8 \mu F\) & \(6 \frac{1}{2} p\) \\
\hline \(1000 \mu \mathrm{~F} \quad 13 \mathrm{p}\) & \(330 \mu \mathrm{~F}\) - 10p & \(6800 \mu \mathrm{~F}\) - 65p & 40 VOLT & \(10 \mu F\) & \(6 \frac{1}{2} \mathrm{P}\) \\
\hline \(4700 \mu \mathrm{~F}\) 29p & \(470 \mu \mathrm{~F} \quad 10 \mathrm{p}\) & & 6.8 \({ }^{\text {F }}\) F \(\quad 6 \frac{1}{2} p\) & \(22 \mu \mathrm{~F}\) & \(6 \frac{1}{19}\) \\
\hline & \(1000 \mu \mathrm{~F}\) 11p & & \(15 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{p}\) & \(68 \mu \mathrm{~F}\) & 10 p \\
\hline 6-3 VOLT & 1500 F ( 20p & 25 VOLT & \(33 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{P}\) & \(100 \mu \mathrm{~F}\) & \(11 p\) \\
\hline \(33 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{P}\) & 2200 F F 24P & \(10 \mu \mathrm{~F} \quad 6 \frac{1}{2} p\) & \(47 \mu \mathrm{~F}\) - \(6 \frac{1}{2} p\) & \(150 \mu \mathrm{~F}\) & 13p \\
\hline \(68 \mu \mathrm{~F}\) 相 6 & &  & \(100 \mu \mathrm{~F}\) & \(220 \mu \mathrm{~F}\) & 19p \\
\hline \(150 \mu \mathrm{~F} \quad 6 \frac{1}{2} \mathrm{P}\) & 16 VOLT & \(47 \mu F \quad 6 \frac{1}{2} p\) & 150 F F & \(330 \mu F\) & 22p \\
\hline \(470 \mu \mathrm{~F}\) (11P & \(15 \mu \mathrm{~F}\) ( \(6 \frac{1}{2} \mathrm{p}\) & \(100 \mu \mathrm{~F}\) ( 8p & \(220 \mu \mathrm{~F}\) - 11P & \(470 \mu \mathrm{~F}\) & 26p \\
\hline \(680 \mu \mathrm{~F} \quad 13 \mathrm{p}\) & 33 \(\mu \mathrm{F}\) ( \(6 \frac{1}{2} \mathrm{P}\) & \(150 \mu \mathrm{~F}\) 8p & 470 \(\mu \mathrm{F}\) 19p & \(1000 \mu \mathrm{~F}\) & 44p \\
\hline 1500 cF F 18p & 68 \(\mu \mathrm{F} \quad 6 \frac{1}{2} \mathrm{P}\) & \(220 \mu \mathrm{~F} \quad 10 \mathrm{p}\) & 680 F F 25p & & \\
\hline 2200 \(\mu \mathrm{F}\) 18p & \(150 \mu \mathrm{~F}\) - 8p & 470 \(\mu \mathrm{F} \quad 13 \mathrm{p}\) & \(1000 \mu \mathrm{~F}\) 25p & & \\
\hline \(3300 \mu \mathrm{~F} \quad 26 \mathrm{p}\) & \(220 \mu \mathrm{~F}\) - 9p & \(680 \mu \mathrm{~F} \quad 20 \mathrm{p}\) & \(2200 \mu \mathrm{~F} \quad 44 \mathrm{p}\) & & \\
\hline \(6800 \mu \mathrm{~F}\) - \(40 p\) & \(680 \mu \mathrm{~F}\) - 17p & \(1000 \mu \mathrm{~F}\) 22P & \(3300 \mu \mathrm{~F}\) 65p & & \\
\hline
\end{tabular}

\section*{Mullard Polyester's}

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mountag: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 81 \mathrm{p} .0 .98 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F} .1 \mathrm{D} .0 .1 \mu \mathrm{~F}, 41 \mathrm{D}\) \(\mathrm{G}-15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 54 \mathrm{D}, 0.33 \mu \mathrm{~F}\). 7p. \(0.47 \mu \mathrm{~F}, 93 \mathrm{D} .0-68 \mu \mathrm{~F}, 12 \mathrm{p}, 1 \cdot 0 \mu \mathrm{~F}, 14 \mathrm{p} .1-5 \mu \mathrm{~F}, 22 \mathrm{p} .2-2 \mu \mathrm{~F}, 27 \mathrm{p}\)

MULLARD POLYESTER CAPACITORS C296 SERIES
\(400 \mathrm{~F}: 0.001 \mu \mathrm{~F}, 0.0016 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 00033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \geqslant \mathrm{D}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}\), \(0.033 \mu F, 81 p .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p}, 0.18 \mu \mathrm{~F}, 61 \mathrm{p} .0 .22 \mu \mathrm{~F}, 81 \mathrm{p}, 0.33 \mu \mathrm{~F}, 18 \mathrm{~F} .0 .47 \mu \mathrm{~F}, 149\). \(160 \mathrm{~V}: 0.02 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 8 \mathrm{p} .0 .1 \mu \mathrm{~F} 81 \mathrm{p} .0 .15 \mu \mathrm{~F}, 44 \mathrm{p} .0 .22 \mu \mathrm{~F}, 5 \mathrm{ID}\) \(0.33 \mu \mathrm{~F}, 64 \mathrm{p}-0.47 \mu \mathrm{~F}, 81 \mathrm{D} .0 .68 \mu \mathrm{~F}, 12 \mathrm{p} .10 \mu \mathrm{~F}, 14 \mathrm{p}\).

\section*{Popular Transistors and Diodes}
(Many other types stocked)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ACL07 & 16 & ADI 49 & & 3Clv & 18p & BFY50 & 170 & 2N3053 & 260 & 636 & 68 p & \\
\hline AC126 & 14 & AD161 & 32p & BC158 & 12p. & BFY51 & 17p & 2N3054 & 50p & & & OA81 \\
\hline AC127 & 14 & AD162 & 82p & BC159 & 189 & BFY52 & 17. & 2N3055 & 529 & & & OA55 \\
\hline ACl28 & \(14 p\) & AP114 & 15p & BC168 & 11D & KP8111 & 850 & 2NS702 & 11p & 1N916 & 8 p & 0490 \\
\hline \(\triangle C^{\text {Cl }} 42 \mathrm{~K}\) & 25 & AF116 & 160 & BC169 & 11p & 0C28 & \(45 p\) & 2N3703 & 11. & 1N916 & 89 & 0.191 \\
\hline ACl41K & 26p & AF116 & 15. & BC182 & 12p & OC35 & 45p & 2N3704 & 11\% & 1F4148 & 5 & OA95 \\
\hline AC176 & 15ग & AFT17 & 15p & BC188 & 12 D & OC36 & 50 D & 2N3705 & 119 & 1 N 4001 & 4ip & \\
\hline AC187 & 189 & BC107 & 11p & BC184 & 12p & OC44 & 14 p & 2NS706 & 11p & 1N4002 & 4 & \\
\hline AC188 & 140 & PC108 & 11p & BC212 & 129 & OC45 & 140 & 2N3707 & 110 & IT4003 & \(51 p\) & \\
\hline AC1875 & 25 p & BCl09 & 11. & BC213 & 12p & OCA & 149 & 2NS708 & 110 & 1N4004 & \% & \\
\hline ACl88K & 24 p & BC147 & 117 & BC214 & 12p & \(0 \mathrm{C81}\) & 14 & 2NS709 & 11p & 1N4005 & 8 D & \\
\hline ACY20 & 22p & BCl 48 & 11. & BF194 & 150 & TIP41A & 79p & 2N3710 & 11 D & LT4006 & \({ }^{90}\) & \\
\hline AD140 & 40y & BCl 49 & 12p & BF195 & 175 & TIP42A & 918 & 283819 & 28D & 1N4007 & 10\% & \\
\hline
\end{tabular}

\section*{Everyday Electronics Construction Kits}

Slave Fiash Thls unit Kit \(£ 1.85\) third) to enables asecond flast (or Dhoto. Th be ased when takior 2 look by ellminating the barsh ahadown caused by a alacle flasb (Aus.)
Electronic Door Bell
Kit \(\mathrm{EA}_{4} \mathbf{0 0}\)
An clectronic unit proriding an urusual sounding monitor. (Aug.)
Waz-Waa Kit £i-50 A very simple unit dealgned with the pop aroup in mind. (Aug.)
Personal Receiver Kit \(£ 3 \cdot 10\) Le. radio. Medium wave receiver to suit the pocket. (Sept.)
Aquarium Thermostat
Kit 82.85
A unt in accurate temperature control of liquide. (Sept.)
Train Controller Kit-E3-15 Give a realistic performance to your electric model train at low speed. (0ct)
Light Dimmer Kit \(£ 3.50\) A basic circult for electrontcaly dimming a maina limp. (Oct.) Bzby Snatch Alarm

Kit \(£ 8.00\)

\section*{Stereo Headphones}

Adaptor Kit \(£ 1.85\) Enables one or two sets of headphones to be used with an amplifier. (Oct.)
The 4 Band T.R.F.
Receiver
Kit \(£ 8 \cdot 60\)
\(\Delta\) radio capable of receiving shortWave amateur and achipplang. (Nor-)

G2s Alarm Kit \(£ 6 \cdot 30\)
A simple alarm for the detection of A simple aism for the detection o sminke. (Nor.)

Three by Three Game
Kit \(£ 2 \cdot 10\)
An addition to suy game wing dice or 3 novel gatme for two players. (Nov.)
Auto-Water for Plant
Kit \(\boldsymbol{£ 2}-\mathbf{0}\)
Hako sure your plants do not die of thirat wheni leit unattendeci.
Tremdo Unit Kit \(£ 2-10\) For the "modern" goitarist or organist.
Tutor Bozar
Kit \(£ 6.90\)
All the components required for the first six mouths of Tcach In 74 . (Oct.)

\section*{V.C.O. EFFECT UNIT \\ SEWING MACHINE SPEED CONTROL \\ FETSET RECEIVER \\ For KIt in this monthin isfue send the quoted approximate cost of com ponents in the Box \\ - Heprints of projects 150 extra. \\ Kita include ebctmmic parts onju. Mechanical parts atd batierles are nol aupplied. theac can be obtatned locally \\ EI BARGAIN PACKS \\ € 10 Siticon NPN Power transistor (2N3055) TO3 case. Tested/unmarked. \\ el 20 Silicon PNP Transistors (like BCI78, BCI79, etc) \\ TOI8 case. Untested/unmarked. \\ ¢1 20 Silicon TOS transistor NPN/PNP (state which) \\ 2 amp- 5 amps (like BFY5I, BC301, 2 N 3053 etc ). Untested unmarked. \\ E1 30 Plastic TO220, 2N305S. Unmarked/untested. \\ fl 30 Plastic FET's (like 2N3819). Unmarked/untested. \\ for the 2 N 3819. \\ ANY 5 PACKS \(\mathrm{E}_{4}\)}
- These packs are used extensively by schools and colleges *
(1) \begin{tabular}{l} 
We are now Stockist of AMTRON \\
\begin{tabular}{l} 
High Quality construction Kita \\
(S.AE for full list)
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline UK65 & Transistor Tester & 2.50 \\
\hline UK92 & Telephone Amplifier & \(7 \cdot 91\) \\
\hline UK110 & Stereo Amplifier \(5+5 w\) & 11.07 \\
\hline UK115 & Hi-Fi Amplifier 8w & 4.31 \\
\hline UK 120 & Hi-Fi Amplifier 12w & \(5 \cdot 20\) \\
\hline UK125 & Stereo Control Unit & \(6 \cdot 30\) \\
\hline UK160 & I.C. Amplifier 8 w . & 11.07 \\
\hline UK220 & Signal Injector & \(2 \cdot 57\) \\
\hline UK235 & Acoustic Alarm for Absent-minded Drivers & 7.39 \\
\hline UK240 & Parking Lights Automatic Switch & - \\
\hline UK500 & LW/MW/FM Radio Receiver & 3.30
9.86 \\
\hline UK515 & MW Radio Receiver & 9.86 \\
\hline UK640 & 200mw Light Dimmer & 7.24
7.57 \\
\hline UK790 & Capacitive Burglar Alaŕm & 7.57 \\
\hline UK840 & Adjustable time lag car Surglar Alarm & . 81 \\
\hline UK875 & Capacitive Discharge Electronic Ignition for internai Combustion Engines & 14.51
24.50 \\
\hline TRA 1 & 2f-hour Digital Clock & 24.50 \\
\hline
\end{tabular}

UK65 Transistor Tester
UK92 Telephone Amplifier
UK 115 Hi Fi Amplifier 8 w
UK 120 Hi-Fi Amplifier 12w
Stereo Contro Un
UK220 signal lniector
UK235 Acoustic Alarm for Absent-minded Drivers
UK240 Parking Lights Automatic Switch
UK500 LW/MW/FM Radio Receiver
\(\begin{array}{ll}\text { UK515 } & \text { MW Radio Receiver } \\ \text { UK640 } & 200 \mathrm{mw} \text { Light Dimmer }\end{array}\)
UK790 Capacitive Burglar Alar̈m
UK875 Capacitive Discharge Electronic Ignition for incernal
TRA 1 24-hour Digital Clock

\section*{ELECTRONIC iGNITION KIT}

5PRTNMRIIE MK II

\section*{COMPRISES}

\section*{Everything:-}

Ready Drilled Case and Metalwork, Cables. Coil Connectors, Silicoñ Griease, Printed Circuit Board, 5 year guaranteed components and a iull 8 -page instruction leaflec.

WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY 15 MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS: TO GIVE YOU:-
Instant all weather starting. Up to \(20 \%\) fuel saving, Longer battery life, Higher top speed. Faster acceleration, Spark plugs last about five cime longer, Misfire due to contact breaker, bounce clectronically eliminated. Purer exhaust emission resulting in less air pollution. Contact breaker burn eliminated. Suitable for all petrol engines up ro 8 cylinders

PRICE ONLY \(£ 1265\)
Ready Built Unit \(£ 14.85\)
Unit for Motor
Cycles with twin coils
and zw in C.B. Poinss \(\mathbf{E 1 9 . 8 0}\)
(prices include VAT and post
Please state whether Positive or negative carth units are required when ordering.
\& packing).
(NOT AVAILABLE IN KIT FORM)
SEND FOR YOUR UNIT OR FULL
BROCHURE NOW
FROM
ICE ELECTRONIC SYSTEMS DEPT.E.E.
II4 PARK FARM ROAD
BIRMINGHAM B43 7QH


Send this coupon today for your Free copy of Lasky's Famous Hi-Fi, Audio and Electronics Catalogue.

TO LASKYS RADIO, AUDIOTRONIC HOUSE THE HYDE, LONDON, NW9 6JJ

Please send a copy of LASKYS 1974 CATALOGUE NAME
address

\section*{IT PAYS TO BE QUALIFIEB POST TODAY FOR A BETTER TOMORROW}

TOB.I.E.T.
Aldermastion Court, Reading RG7 4PF
CE Brituz
Please send full details and FREE \(76-\) Page Book, without obltgation.

Block Capitala Pleas
AODRESS

Inajobyou really enjoy
How to qualify in your spare time for a better job

Make yourself worth more and you'l carn more. It's as simple as that. There are always plenty of pcople to do the routine work - but, right now, key jobs are going begging for lack of suitably qualified men to fill them. The basic qualification is technical know-how. When you've got that, you're in demand - out in front.

Are you ambitious - willing to set aside about 60 mimutes a day for home study? If you are, B.I.E.T. can give you the technical knowledge you need
- change your entire future prospects.
It's easier
than you think...
Make no mistake abou it - you could do it. Most people have unused ability. A low-cost B.I.E.T. course helps you discover this hidden ability - makes learning enjoyable and so much casier than it used to be. The B.I.E.T. simplified study system gets results fast.

We've successfully trained thousands of men at home-equipped them for higher pay and better, more satisfying jobs, steered them safely through City and Guilds cxaminations -
cnabled many of them to put letters after their name.

With the help of
B.I.E.T., you too could soon beon your way to better things.

\section*{ACT NOW .}

DISCOVER FOR YOURSELF
Li costs no more than a stamp to find out how we can help you. Tick the subject that interests you I hen post the youpan incercsring 76-page boo you an intercsting \(76-p a g c\) whole new world of opportunity shole new and
B.I.E.T. Aldermaston Cour


\section*{Choose from this list}

MECHANICAL A.M.S.E. Micc
C EGAgric.
Mechanfcs
Dicsel Enn. Eng. Inspection Inst. Eng. sTech
Inst. Motor Ind Inst. Motor Ind.
Mainten. Eng. Mainten. Eng. Sheetmetal Work Welding

\section*{ELECTROMIC}
A.M.S.E.(Elec) Mechanics cocchaics C G Elec. Fing. CaGElec. Tech Computer Elect Elec. Science Electronic E 保 Electrical Ent. MANAGEMENT8 PRONGEMEN PRODUCTION
Auto. COntrol Compater Pros. Electronie Dat
Processins Estimating Estimating Inst cosi \& Ma Accoumtants Inst. HLarkering Management Metrication
MotorTrade Xa Network Pias. Numerical Con Operational
pescesch personnel Man. Planning Eng. Production Fing.


PLUS 58 '0' \& 'A' LEVEL CCE SURJECTS

Cltick here
other subjects Accredited by C.A.C.C ..... AGE
Bi|t
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

\title{
YATES ELECTRONICS \\ (FLITWICK) LTD
}

\section*{DEPT. E.E., ELSTOW STORAGE DEPT. KEMPSTON HARDWICK, BEDFORD.}
C.W.O. PLEASE. POST AND PACKING
PLEASE ADD IOP TO ORDERS UNDER E2.

Catalogue which contains data sheets for most of the components listed will be sent free on request 10p stamp appreciated.

Callers Welcome Mon. to Sot. 9 a.m. 5 om.
PLEASE ADD \(10 \%\) VAT

\section*{RESISTORS}
tW iskra high scability carbon film-very low noise-capless construction. W Mulard CR25 carbon
W \(2 \%\) ELECTROSIL TRS
Power
\begin{tabular}{|c|c|c|c|c|}
\hline & & Values & 1-99 & Price \\
\hline Tolerance & Range
\[
4 \cdot 7 \Omega-2 \cdot 2 M \Omega
\] & available & 1-99 & \(100+\)
0.80 \\
\hline 10\% & \(3 \cdot 3 \mathrm{Ma}-10 \mathrm{Ma}\) & E12 & Ip & 0.8 p \\
\hline 2\% & 10R-1Mn & E24 & 3.5p & 3p \\
\hline 10\% & 10-3.90 & E12 & 10 & 0.80 \\
\hline 5\% & 4-7a-1M8 & E12 & \(1 p\) & \(0 \cdot 8\) \\
\hline 10\% & 10-100 & E12 & \(6 p\) & 5.5p \\
\hline
\end{tabular}

Quantity price 30 plies for any selection. Ignore fractions on total order.

\section*{DEVELOPMENT PACK}


POTENTIOMETERS
Carbon track \(5 k \Omega\) so \(2 M \Omega\), log or linear (log 1 W. lin \(\ddagger\) W).
Single, 120 . Dual gang (stereo), 40 . Single D.P. swisch. \(24 p\).

SKELETON FRESET POTENTIOMETERS
Linear: \(100,250,500 \mathrm{~g}\) and decades to \(\$ M \Omega\). Horizongal or vertical P.C. mounting ( 0.1 matrix)
sub-minizture 0.1 W , 5p each. Minizture \(0.25 \mathrm{~W}, 7 p\) each.

\section*{TRANSISTORS}


\section*{SLIDER FOTENTIOMETERS}
\(66 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}\), length of track 59 mm .
SINGLE 10K, 25K, IOOK log. or lin. 40p.
DUAL GANG. \(10 K+10 K\) etc. log. or lin. 60p KNOB FOR ABOVE. 12p.
FRONT PANEL, 65p.
18 Gauge panel 12 in \(\times\) in with slott cut for use with slider pots. Groy or ma

\section*{ALUMINIUM BOXES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ALE & Nam \(\times\) Stax & & AB14 & \(7^{\prime \prime} \times 5^{\prime \prime} \times 2 t^{\prime \prime}\) & 84p \\
\hline AB7 &  & \(50 p\)
\(50 p\) & ABI5 & \(8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}\) & \(108 p\) \\
\hline AB9 & \(4^{\prime \prime} \times 2 z^{\circ} \times 11^{\prime \prime}\) & 50p & ABI6 & \(10^{\prime \prime} \times 7^{\prime \prime} \times 3^{\prime \prime}\) & \(122 p\) \\
\hline AB10 & \(4{ }^{\prime \prime} \times 55^{\prime \prime} \times 1 \frac{10}{}\) & 50p & AB17 & \(10^{\prime \prime} \times 4 \frac{1}{\prime \prime}^{\prime \prime} \times 3^{\prime \prime}\) & 108p \\
\hline ABII & \(4^{\prime \prime} \times 2{ }^{\prime \prime} \times 2^{\prime \prime}\) & \(60 p\) & ABI8 & \(12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\) & 120\% \\
\hline AB12 & \(3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}\) & 44p & AB19 & \(12^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}\) & 160p \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { HEATSINM } \\
& \text { 2W 24p } \\
& 3 W \quad 36 p
\end{aligned}
\] & S-REDPOINT
4 W
\(6 \mathrm{~W} \quad 60 \mathrm{p}\) & \[
\begin{aligned}
& \text { TOS } \\
& \text { TOIS }
\end{aligned}
\] & Clip Clip & 5p & \[
\begin{aligned}
& \text { TOI } \\
& \text { TOI }
\end{aligned}
\] & Single Double \\
\hline \multicolumn{7}{|l|}{TRANSFORMERS All have 240 V primary} \\
\hline MT30/2 & 0-12-15-20-24-30V & \(2 A\) & & 62. 45 & & \\
\hline MT50/t & 0-19-25-33-40-50V & \(\stackrel{1}{ \pm}\) A & & 65.90 & & \\
\hline MT5011 & 0-19-25-33-40-50V & IA & & 62.53 & & \\
\hline MT50/2 & 0-19-25-33-40-50V & \(2 A\) & & ¢3.50 & & \\
\hline MT60/2 & ( \(-24-30-40-48-60 \mathrm{~V}\) & \(\pm\) ta & & \%2.10 & & \\
\hline MT691I & 0-24-30-40-48-60V & IA & & 4880 & & \\
\hline MT60/2 & \(0-2 \leftarrow-30-40-40-60 \mathrm{~V}\) & \(2 A\) & & 1380 & & \\
\hline
\end{tabular}

MULLARD POLYESTER CAPACITORS C2\% SERIES
\(400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}\). \(0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}\), 7 to \(0.33 \mu \mathrm{~F}\), \(11 \mathrm{D} .0 .47 \mu \mathrm{~F}\), 13 p .
\(160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 34 \mathrm{p} .0 .15 \mu \mathrm{~F}\),

MULLARD POLYESTER CAPACITORS C280 SERIES
\(250 V\) P.C. mouncing: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}\). \(3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}\).
 13p. 1-5 \(\mu \mathrm{FF}, 20 \mathrm{p} .2 \mathrm{2} 2 \mu \mathrm{~F}, 24 \mathrm{p}\).
MYLAR FILM CAPACITORS IOOV CERAMIC DISC CAPACITORS
 2 \(\ddagger\) p. \(0.04 \mu F, 0.05 \mu\) F, \(0.068 \mu F, 0 . j \mu F, 3 \frac{1}{2}\) p.

\section*{ELECTROLYTIC CAPACITORS}
( 1 F/V/V) \(1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3-3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,1025,10 / 63,15 / 16.15 / 40\), 15/63. 22/10, 22/25, 22163, 33/6-3, 33/16, 33/40, 47/4, 47/10, 47/25, 47/40, 68/663, \(68 / 16,100 / 4.100 / 10,100725\). \(150 / 6 \cdot 3\), 150/16. 220/4, 220/6.3, 220/16, 330/4, \(60.47 / 63\). \(100 / 40,150.25,220,25,330 / 10.470 / 6 \cdot 3,7 p .68 / 63\), \(150 / 40,220 / 40,330 / 16\). \(1000 / 4\), 10 p. \(470110.680,6 \cdot 3,11 \mathrm{p} .100 / 63.150 / 63\), 220/63, \(1000 / 10,12 \mathrm{p} .470,25,680 / 16,1500 / 6 \cdot 3,130\). \(470 / 40,680 / 25,1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p} .330 / 63,680 / 40,1000 / 25,1500 / 16\), \(2200110,3300 / 6 \cdot 3,470074,21 \mathrm{p}\).

 POLYSTYRENE:CAPACITORS \(160 \mathrm{~V} 24 \%\)
OOPF to \(1,000 \mathrm{FF}\) EI2 Series Values. 40 each.

\section*{SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI}

The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resiscance when it absorbs deoxidizing of combustible gases such as hydrogen. carbon monoxide, methane, propane, alcohol. North Sea gas, as well as carbon-dust containing air or Full details and circuits are supplied with each detector.
Detector GDI, 22 . Kit of parts for derectors including GDI and P.C. board but
 alarm \(\mathbf{8 7} \cdot \mathbf{3 0}\). At above for PP9 battery, \(\mathbf{6 6 . 4 0}\).
PRINTED BOARD MARKEG
97p
Draw the planned circuic onto a copper laminate board with the P.C. Pen. allow to dry, and immerse the board in the etchant. On removal she circuit remains in high relicf.

M营TERS
\(1 \frac{1}{2}\) Scale- \(500 \mathrm{uA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}\)
\$1:90

BULGIN MAINS CONNECTORS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 Pin & \(1+\) A & Chassis Plug Line Socket & \[
\begin{aligned}
& 10 p \\
& \text { 13p }
\end{aligned}
\] & 3 Pin & IfA & Chassis Socket Line Plug & \[
\begin{aligned}
& 180 \\
& 130
\end{aligned}
\] \\
\hline 3 Pin & 3A & \begin{tabular}{l}
Chassis Plug \\
Line Socker
\end{tabular} & \[
10 p
\] & 3 Pin & 3A & Chassis Socket Line Plug & \[
\begin{aligned}
& 21 p \\
& 23 p
\end{aligned}
\] \\
\hline 3 Pin & 5A & Chassis Plug Line Socket & \[
\begin{aligned}
& 16 p \\
& 15 p
\end{aligned}
\] & 2 Pin & 5A & Line Plug & 20p \\
\hline
\end{tabular}


\title{
Project \\ \\ the slimmest,most \\ \\ the slimmest,most elegant hi•fi modules ever made
}

Living with hi-fı takes on now meaning with Project 80 modules. They can be asscmbled virtualiy anywhere, creating opportunities to instail systems hitherto only dreamed about and never before made practicaiQuality and reliability are everything you could wish for. Unias are mounted by 68A bolts at rear passing through drilled holes. cases are in black with white embelishment.

\section*{Stereo 80 pre-amplifier and control unit}

Each channel has independent tone and volume slider controls enabling exceptionally good environmental matching to be obtained. A virtual earth input stage forms part of the up-dated circuitry which includes generous overload mar gins. Clear instructions with lemplate are supplied.



Size \(-260 \times 50 \times 20 \mathrm{~mm}\) ( \(10 \frac{1}{4} \times 2 \times \frac{3}{3}\) ins) Inputs-Mag. P. U. 3 mV RIAA corrected: Ceramic P.U.,Radio,Tape
S/Nratio-60db
Frequency range -10 Hz to \(25 \mathrm{KHz}+3 \mathrm{~dB}\) Power requirements - 20 to 35 volts Outputs \(-100 \mathrm{mV}+\mathrm{AB}\) monitoring for tape Controls - Press button for tape. radio and P.U. Sliders for Volume. Bass and Troble.

\section*{Project 80}

FM tuner and stereo decoder

FM Tuner
Size \(-85 \times 50 \times 20 \mathrm{~mm}\)
Tuning range -87.5 to 108 MHz
Detector - I.C. balanced
coincidence.
AFC - Switchable
One 26 transistor I.C Twin dual varicap tuning Distortion \(0.2 \%\) at 7 KHz for \(30 \%\) modulation
4 pole ceramic filter in I.F. section Sensitivity - 4 microvolts for 30dB quieting
Output - 300 mV for 75 KH deviation


Decoder-
With gallium arsenide zuning beacon and \(19-\) transistor I.C. Size \(-47 \times 50 \times 20 \mathrm{~mm}\)
\(\underset{\text { R.R.P. }}{\text { FMtuner }} 11.95 \underset{\text { VA.t. }}{\text { Vi.19 }}\)
Decoder \(f 745+0.45 p\)

\section*{Project 80 active filter unit \\ }

Size \(-108 \times 50 \times 20 \mathrm{~mm}\) ( \(4 \frac{1}{4} \times 2 \times \frac{3}{2} \mathrm{ins}\) ) Voitage gain - minus 0-2dB
Frequency response -36 Hz to 72 KHz . controls minimum
Distortion-at \(1 \mathrm{KHz} \quad 0.03 \%\) using 30 V
HF cut off (scratch) -22 KHz to \(5-5 \mathrm{KHz}\). 12dB/oci slope
LF. cut off (rumble) -28 dB at 20 Hz . 9dB/oct. slope


\section*{Z. 40 \& Z. 60 power amplifiers}
2.40

Size \(-55 \times 80 \times 20 \mathrm{~mm}\) Input senstivity -100 mV Output 15W RMS continuous \(8 \Omega(35 \mathrm{~V})\) Fsequency response \(10 \mathrm{~Hz}-100 \mathrm{KH} z \pm 1 \mathrm{~dB}\) Signal to noise ratio 64dB
Distortion-less than \(0-1 \%\) at 10 Winto \(8 \Omega\) Powersequirements 12-35 volts


Z 60
Size- \(55 \times 98 \times 20 \mathrm{~mm}\)
Input sensitivity-
\(100-250 \mathrm{mV}\)
Output-25WRMS \(8 \Omega\) (45V).
Distortion-typically 0-03\%
Frequency response
1 OHz to more than
\(200 \mathrm{KHz} \pm 1 \mathrm{~dB}\)
S/N ratio-
better than 70dB
\(£ 6.95_{\text {v, }}^{+0.69 \mathrm{P}}\)

Sinclair power supply units
PZ. 8
The worlds mosi advanced unit in its class. It is a stabilised unit Re entrant current limiting makes damage irrom overload or even direct shorting impossible. a principle never before incorporated in a commercially available constructor module. Normal working voltage (adjustable) 45 V .
R.R.P. \(£ 7.98\) 0-79p V.A.T

Without mains transformer
PZ. 5 30V unstabilised
R.R P. \(£ 4.98-0.49 p\) V A.T.

PZ. 6 35V stabilised
R.R.P. £7.98 0.79pV.A.T.

\section*{Guarantee}

If. within 3 months of purchasing any product direct from us. you are dissatisfied with it. your money will be refunded on prodisetion of receipt of payment Many Sinclair appointed Stockisis also oifer this guarantee.

Should any defect anise in normal use. We will service it without charge For damage arising from mis-use a small charge (typically f I-00) will be made.

To SINCLAIR RADIONICS ETD. ST. IVES, HUNTINGDON PE17 4HJ
Please send post paid
ior which I enclose Cash/Cheque for \(£\)
including V:A
Name
Address

AUDIOTRONIC MODEL ATM．I
pocket multimeter．
Ranges：0／10／50／250／1000t \(A C\) and \(D C\) DC Carrent \(0.1 \mathrm{~mA} / 100 \mathrm{~mA}\) Rexiklauce 0jibor ohm Blye \(90 \times 60 \times 28 \mathrm{~mm}\) Complete with icst leads 89．85．1＇ost 15 p ．
RUSSIAN 22 RANGE MULTIMETER 350dcl U437 10,000 O．D．r． alrumient manufactured in standards．Hangee：hicucat \(50 / 250 / 500 / 1000\) r D．C． 2.51 10／50／250／500／1000． 100ma／1A．Current 100 Res／2／10｜ 300 ohma／3／30／300K／3m ． Complete wjth brateries． tardy steel carrying case． 24－85．P．\＄P．25p

\section*{MODEL TE－200}

0．0te O．E．M．Mirror scale． \(1,000 \mathrm{~V}\) ．D．C．0／10／50／250 1，000F．A．C．O／50 \(\mu . \mathrm{A} / 250 \mathrm{~m} / \mathrm{A}\)


\section*{MODEL TE－300}

30，000 O．P．V．31irror sazale． sump，200V．D．C．O／G／80／120／F00 \(1,200 \mathrm{~V}\) A．C． \(0 / 30 \mu \mathrm{~A} / 6 \mathrm{~mA}\) \(30 \mathrm{KI} / \mathrm{s} 00 \mathrm{ma} / \mathrm{A} / 600 \mathrm{~mA}\) ． \(0 / 8 \mathrm{~K} /\) \(\div \mathrm{fi} 3 \mathrm{ab} .87 \cdot 50\) ．P．\＆P． 1 Np ．
U4312 MULTIMETER
Extremely aturiy instrument for general efectical q．5e．G6／a．p． 5. \(600 / 910 \mathrm{v}\) De and 7 smv ． \(0 / \cdot 5 / \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300\) \(600 / 300\) VAC．
Dرร0）\(\mu \mathrm{A} / 1 \cdot 6 / 6 / 15 / 60 / 750\) ODMA 1 －5／6 AMP．D．C． O／2－5／6／13／60／150／600 ma／ 0／200 \(\Omega / 3 \mathrm{~K} / 30 \mathrm{~K}\)
Accurscy ISC \(1 \%\) ．AC \(1.5 \%\)


Knife edge polnter，mirror mask．Complete tnatructions．9975．P．\＆P．25p．

\section*{MODEL 500}
lond protection mistor acer－ 0／5／2－5／10／25／100／250／500］ 1，00v．D．C．0／2．5／10／25／ \(100 / 250 / 500 / 1.000 \mathrm{~V}\) \(0 / 50 \mu \lambda / 5 / 50 / 500 \mathrm{~mA}\) smp．D．C．0／由0／K／6 Meg．\(/\) 60 Mes？ Leather Coste pald．

\section*{MODEL C－7080 EN}


MRAEI S－100TR MULTIMETER
100.000 TOR TESTER
overlonu o．p．v．mirror ncalol \(-6 / 3 / 72 / 30 / 20 / 600\) y \(0 \cdot 12 /\) \(0 / 6 / 30 / 120 / 600\) ．V AC．0／12
\(600 / 2 \mathrm{~A} / 12 / 300 \mathrm{ma} / 12\) ANP DC 0／10 K／1 B1EGfl00xはF 20 to \(150 \mathrm{db} .0 .01 \cdots 2 \mathrm{M} 1 \% \mathrm{D}\) ． Tranvistar tester mescuren Alphn，beta and Ico．Complete wnd bateries，fmstructions

ǨAMODEN 72.200
MULTITESTER
IIfigh semsitivlty tester．
206,000 o．p，x：Olerload pro－ 20k），000 o．fl，w，Overlaad pro－ \(0 / \cdot 06 /-3 / 3 / 30 / 120 / 600\) \(0 / 3 / 12 / 60 / 300 / 11,200 \mathrm{~F}\) ．
 \(0 / 1\)
-20 to \(\pm 63 \mathrm{dls} 0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{meg} /\)

\section*{ALL PRICES ARE SUBJECT} TO \(10 \%\) VAT

TMK LAB TESTER．
 evit Check．Seneitivity： Voil A．C．D．C．Volts 5． 5.5 ． 10.50 .250 .1 .000 \(50,{ }^{250}, 500,1,000 \mathrm{~T}\)
D．C．Current： \(10,100 \mu \mathrm{~A}\) 10． \(100.500 \mathrm{~mA}, 2 \cdot 5.10\) 2mp．Reaistance \(1 \mathrm{~K},{ }^{10 \mathrm{~K}}, 10 \mathrm{~K}, 10 \mathrm{MEG}\), 100ISEA \(\Omega\) ． 1pectleels：-10 to +49 db ．Platie Casc With Casring Handic．size
\(31 / \mathrm{In} . \$ 19.85\) ．P．\＆P． 25 P ．

HIOKI MODEL 700X
100,000 O．P．V．Orerload
\(-3 /-6 / 1-2 /-5 / 3 / 6 / 12 / 30 / 60 /\) \(120 / 300 / 60011200 \mathrm{~V} \mathrm{DC}\) \(1.5 / 3 / 6 / 12 / 30 / 60 / 150 / 300 / 600\) 1200 F．A．C．
\(15 / 30 \mu / 3 / 8 / 30 / 60 / 150 / 300 \mathrm{~mA}\)
6／12 AMP．DC． \(2 \mathrm{~K} / 200 \mathrm{~K} / 2\)

370 WTR MULTI．METER
Fcrarcs A．C．current ranges．
\(250 / 5001000\) V．D．C．
\(0 / 2 \cdot 5 / 10 / 50 / 250 / 500 / 1000 \mathrm{~V}\) AC

D．． \(0 / 100 \mathrm{~mA} / 1 / 10 \mathrm{Amp}\) AC
\(0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{~m}\) meg 50 \(-20+62 \mathrm{db}\) ．
 Higb guality torkrument current and DC current． NPN，PNP．tractistors， diodes， \(\mathrm{SCR}^{\prime \prime}\) a etc． \(\mathrm{s}^{\prime \prime} \times\) \(4\}^{\pi}\) clear scale meter．
Operates 1 from interaai Operteres
Gatteries．Complefe with inatructions．leauls and sarrying handle．212：50． MODEL 449A IN CIRCUIT TRAN－
SISTOR TESTER Checks true A．C beta in／out．Checka ico．Checks diodes in
gCR．out．Checks
cte．Beta

\section*{H0n 00 － \\ 期}

LB3 TRANSISTOR TESTER－ TeEts ICO and B．
PNP NPN．Operatcs trom 9v battery．Corn－ plete with all In－ P．\＆P． 20 p ．

\section*{LB4 TRANSISTOR}

\section*{TESTER}

Tests PNP or NPN tran aisturs．Audio indication． Operates on two
tcrics．Complete with all instrictions，etc．24－60． P．S P．20p．


TE－40 HIGH SENSITIVITY A．C．VOLTMETER
10 mea，input 10 rangeo：
\(.001 / 03 /-1 /-3 / 1 / 3 / 10 / 30 / 100\) 300 V ．RMIS． 5 cpss．－1－2 Mc／5． Deciliele． Smpplied brand nem + madB． with leads and Inotructions． Operation
Cerr．25p


TE－65 VALVE VOLTMETER


MODEL ATZOI DECADE ATTENǓATOR



KAMODEN HM．720B
F．E．T．V．O．M
Input impedance 10 meg Ranges：
\(\begin{array}{lll}0 / 25 \\ 250 / 10007 & 2-5 / 10 / 50 /\end{array}\) \(0 / 2.5 / 10 / 50 / 250\) 1000 V ．A．C．
\(0 / 25 \mu \mathrm{~A} / 2-5 / 2 \bar{s} / 250\)
mA D． ma D．C．
-20 to +62 dB
\(0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{mag}\) 200misg ohms．
\(\mathbf{2 1 4 . 9 5}\) ．Post 30 p

TME MODEL 137 F．E．T．ELECTRONTC vULTMETER
Battery operated， 11 mer input， 26 ranges． Sirge fin mirror scaic． DC VoLTs 0－3－1200V AC TOLTS S300V DC CCRPENT－12－ 12 mA ，Resistance up to 2000 II ohm Decibels -20 to +51 dB P． \(\mathbb{\&}\) P． 20 p．
KAMODEN HMG－500 INSULATION RESISTANCE TESTER Range 0－1000 Year： Battery operated． Wide range clear meter \(44^{\circ \prime} \times 4^{\prime \prime}\) Complete \(\pi\) ith de luxe carrying case．
batteries．
instruc tlons．£18．95．Post 30p

\section*{BELCO AF－5A SOLID STATE SINE} SQUARE WAVE C．R．OSCILLATOR Sline \(18 \times 200.000 \mathrm{~Hz}\) ；Square \(18 \times 20,000 \mathrm{~Hz}\) 0 otput max．
+10 dB ．
 ternel batteries Attractlve
tone cuae
It
2－
\(x\) Price 217.50 Carr．17p．

\section*{TO－3 PORTABLE OSCILLOSCOPE} 0.15 D－p／CM．Bandwidth

 Bandwidth 1.5 cepa － 000 kHz ． 2nput imp．\(\frac{2}{5}\) mes \(\Omega \Omega 20 \mathrm{pP}\) ．
Time bucce．
rackes 10 cpa 300 kFiz synchronizalion
scalc \(140 \times 215 \times 330 \mathrm{~mm}\) ．Weight 151 ib \(220 / 240 \mathrm{~V}\) ．A．C．Suppled brand net with bandbook．玉52－50．Carr． 50 D ．

\section*{Cl． 5 PULSE}

\section*{OSCILLOSCOPE}

For display of puined in clectronfe circults． VBRT．AMP．Band－ Width 1031 Bz ．Renai－ Evity at j00 KHz VRMB／
 mam．1．25；HOR．AMP．Bandwidth 500 KHz Bensitivity at 100 KHz ，V RMB／mm．\(-9-25\) ；
Prenet triggered Prenet triggered kxeep
running
20.200 .0001 Iz
in nine rangen



\section*{RUSSIAN CI－16 DOUBLE} BEAM OSCILLOSCOPE
\(5 \mathrm{Mc} / \mathrm{s}\) Pass Band．Beparate \({ }^{11}\) and 12 amplifiers． C．R．T．Callbrated tring－ gered aweep from \(2 \mu\) 位C to 100 millissec．per cm ． Frce running time bage \(50 \mathrm{c} / \mathrm{s}-1 \mathrm{me} / \mathrm{s}\) ．Ballt－ in time hase callbrator and amplitude
calibrator．Suppled completo with all calibrator．Supplied complete with all 287．Carr．Paid．

\section*{TE－16A TRANSISTORISED SICMAI} GENERATOR
5 tanges 400 kHz .30 mHz ． An mexpensive instru． Operates oft 9y bittery whle easy 10 read scale \(800 \mathrm{k} \pi_{2}\) modulation \(5: \times 5_{i}^{7} \times 3^{3}\) in．
tions and leads． 88.97 ．Port

MODEL U4311 SUB－STANDARD MULTI RANGE VOLT AMMETER Ransletylty 330 obme／Volt
AC and DC．Accuracy \(0.5 \%\) D．C． \(1 \%\) AC．Bca \(1.5 / 3 / 7.5 / 15 / 30 / 75 /\) 7．5A3P DC \(0 / 8 / 7.5 / 15\)／ \(30 / 75 / 150 / 300\)／ AMPAC O／ 75 ／ 150 \(\begin{array}{llllll}300 \\ 7.5 & 750 \mathrm{mV} & 1.5 & 1 & 3\end{array}\)


TE／ \(15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}\) DC \(0 / 750 \mathrm{mv} / 1.5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300\) f750V AC．Automatsc cat out．Supplled com pleto wiln
cates． 24900 ．Post 60 p

\section*{TMK MODEL TW－SOK}
 D．C．：Volis－125． \(25,1.25\) ， \(2.5,5,10,25,50,125\),
500 ． 1000 V ．A．C．Volts：
\(\mathbf{1} 50.5\) \(3,3,10,2 x, 50,125,550,500\) ， 1000 V ．D．C．Current： 25 ， \(50 \mu \mathrm{~A}, 2 \cdot 5,5,25,50.250\) ，
 \(\Omega\) Decibels： 88．50．P．\＆P． 17 fl ．

\section*{MODEL TE． 15
GRID DIP METER}

Transisturised．Operates a Grid Dip．Onciliator，Ahsorp lating Detector．Frequency rajug \(441 / \mathrm{Kc} / \mathrm{s}-280 \mathrm{Mc} / \mathrm{s}\) in 6 colla． \(500 \mu \mathrm{~L}\) Meter． 9 V batters operation．Size 180 x \(80 \times 40 \mathrm{~mm}\)

5－00．Post 20 p ．


ARF－300 AF／RF SIGNAL GENERATOR

\(240^{\circ}\) Wide Angle ImA Meters
HW \(1-660 \mathrm{~mm}\) square
\({ }_{58}^{58.97}\)


POWER RHEOSTATS


25 WATT．10／25／50／100／250／500／7000 ohms． 21515 ．\＆P． 10 D ． or 0000 ATT．10／25／\％0／100／250／500／1000／2500 100 WATT． \(1 / 5 / 10\) ）． \(25 / 50 / 700 / 250 / 500 / 1000\) or 2500 ohms． 89.84 ．P．\＆1． 16 p ．

\section*{AUTO TRANSFORMERS}
\(0 / 115 / 250 \mathrm{~V}\) ．Sted up or atep down．Fails



Josty Electronics Construction Kits AF20 Mono Transistor Amplifer .. 44 -80 AF30 Mono Trandistor Pre-Amplifie AT5 stereo .... Light Oontrol. TT50 400W Triac Light Dlmme Speed Control Light Dlmmer ATss 1300w Triax
AT56 2200 W Triac Light Dimmer
4T60 Pxychedelic Light Control.
T65 Pingle Channel
HFOI Mfedlum HF76 YM Tr
HF76 FM Trankistor Receiver HFS2S Deluxe Fy Tuner Unit HF330 Sterco Decoder for HFSio HF395 Aerial Amplifier for AM/FM
 GU3so Tremolo Unit for Gintars etc.
2xT10 Power Suppls 100 mA . 9V NT10 Power Suppls 100 mA .9
Stab, 12V Enatab.
T300 Professional Stabilised Powe NT300 Professional stabilised Power
Supply \(2 \times 30 \mathrm{Volt}, \mathrm{2'2} \mathrm{Amp}\). T305 Transistor Conrertor \(12 / 15 \mathrm{~V}\)
AC/DC to \(6 \mathrm{~F}, 7.5 \mathrm{~V}\) or 9 V DC NT310 Power Suppls 240V AC to \(2 x\) NT315 Power Supply 240 A AC to 4. AE1 100 mW Oatput Stage
AE2 Fre-Amplliter.
AE3 Plode
AES Astable yiultivibrator AEG Monostable Mnitivlbrator AEs RC Gerarato AE9 Treble Fitter
AE10 CCIB Filter

\section*{DEAL GITX FOR ALL AGES:} AMATEUR ELECTRONICS
The professional book for the amateurcave prise electronies of today. 347 psse at invaluabie information and diagramk Complete with free circultbrard for ballding 10 of the projects described in the book. (Components extra)
P. \(s\) R. 25p OUR PRICE \(\{3.30\)
"YAMABISHI" VARIABLE VOLTAGE Excellent quality at low cost. All modelaInput \({ }^{2308}\) - 50160 .
MODEL S-260 MODEL S-260
GENERAL PURPOSE
BENCH MOUNTING

"SEW" EDUCATIONAL
METERS


\section*{PS. 1000 B. REGULATED} POWER SUPPLY
Soljd state. Output 6.9 or 12 rolt DC up th amps. Meter to monitor
current. Input \(220 / 240 \mathrm{v}\) AC. Size \(4^{\circ} \times 31^{\circ} \times 61^{\circ}\)
\&11-97. P. \& P. 25p.
drivo rernier dials. Log scale \(0-180\) degrees. Blank
scaler 1 to 5 . geale widith Overall size \(7 \mathbf{t}^{\prime \prime} \times 4 i^{\sim} \times I t^{*}\) deep inciuding OUR PRICE \(\mathbf{4}\) I. \(62 \quad\) P. \& P. \(15 p\)


REFLEX HORN SPEAKER RUH. 6 Built in driver unit. mmpedance 10 ohm. Power rating 10 watt. Reaponse \(380-7000 \mathrm{~Hz}\).
Approx. size \(6^{\prime \prime} \times 6^{\prime \prime}\). Weatherproof and mhock proot. Inpats Yicy. \(3 \times 3 \mathrm{~m} \mathrm{~V}^{\text {3ted. } 9 t^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}}\) hm Phone mex tmy 50 K Phono eeramio 100 mF 1 meg. Output 250 mv 100 K .

\author{

}
sEw CLEAR PLASTIC PANEL METERS
USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, ETC.
Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully Hlustrated brochure.



\section*{PS. 200 REGULATED P.S.U.}


Eolid state. Yariable output 5-20 volt D.C. up to 2 amp . Indepeadent metars to monitor roltage and car-
 212-95. P. \& P. 25p.

1021 STEREO LISTENING STATION


For balancing and gain selection of addifional freility for stereo headphone stritching, \({ }^{2}\) gain controls,
speaker on-oll ajide


SEMD SAE FOR NEW 8 PAGE
SEMI CONDUCTORS \& VAEYES
LIST


ALI PRICES ARE
ALL PRICES ARE
SUBJECT TO \(10 \%\) VAT

\section*{MML－CMTASTIC VALUE TRIO QUALITY ENGINEERED COMMUNICATIONS UNITS}

\section*{TRIO}

9R59DS RECEIVER
4 bands corcring \(550 \mathrm{Kc} / \mathrm{s}\) to
\(30 \mathrm{Mc} / \mathrm{s}\) continuous and electrical bandapread on 10 ， 15, vo． 10 and 80 metres．
8 valve plus 7 diodo circuit． 8 valve plus 7 diode circuit．
4／S ohro notput and phone inck，SSH－CWPAL ANL，Variaule B1＇O．S metcr．Bep．band－
spread dial．IY frengency 445 ke／s．audio output \(1.5 w\)
 instruction manual．
TRIO JR599 RECEIVER
9 wavehandix covering 1．8． 29.7 M 11 z 144－14635Hz and 10.403 MHz WWF．8SB，CTF． AM and FM．AF output more than 1 watt．S Meter．Squelch control．BFO．Fariable RF and AF controls． \(4 \cdot 16\) ohm
output and phone jack． output and phoac jack． AC．I2－14v．DO．Size 270 I \(150 \times 310 \mathrm{~mm}\) ．
TRIO TR2 200 TRANSCEIVER Fully transis－ toriked port－ able VIFF Transcenver．
Will tranombt Will tranomat
and recetve on 6 chnnnela be－ tween 144－146 MHz． 1 watt

tranktuitter．12v DC interral or external supply．Built in charger for ni－cad ecils． Power／volume nwitch，squelch control．channcl selector，mike socket，earphone／external kpeaker sockct．Complete with
micringone，
\(144-48,144.72\) and \(345-3^{2} 3\) crystals．Size 134 \(\times 58 \times 180 \mathrm{~mm}\) ． Our

\section*{\({ }_{\text {Price }}^{\text {Pur }} £ 42.50{ }^{\text {Carif }}\) fald}

\(\underset{\text { Price }}{\text { Out }} £ 132 \cdot 50\) Parrid

\section*{TR10 JR310 SSB \\ RECEIVER}


WWV 15MHz．SBB，AM and CW．AF output more than 1 watt．Crystal controlled BYO for SBB．B meter．ANL ete． \(\mathrm{AC} 110 / 120-220 / 240 \mathrm{v}\) ．Size \(330 \times 179 \times 310 \mathrm{~mm}\) ． outc Carr
Paid

\section*{UR－1A RECEIVER}


4 Bands corering \(550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\) ． ET， B Meter．Variable BPO Ios 3SB．Built－in Bpeaker，Band． 240 v．A．C．or 12 F．D．C．Brand new with instractions．
Oar 525000 Carr．
Price
\(37 p\)

\section*{LAFAYETIE HA－600 RECEIVER \\ }
cenoral coverage \(150-400 \mathrm{Kc} / \mathrm{s}, 550\) Kcis－30 M1c／s，FET tront end， 2 mech．filters，product detector． Varjable B．F．O．nolse limiter， S Meter Bandapread．RF Gam． \(220 / 240\) v．A．C．or 12 r．D．C．
Brand new with instructions． Brand new with instructions． \({ }_{\text {Price }} \mathrm{E} 50.00{ }_{c}^{\text {carr }} \mathrm{sop}\)
    PREVIOUS PAGES

UNR 30 RECEIVER


4 Bands covering \(550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{a}\) B．F．O．Bullt－in Speaker 220／240 v． Our
Price
Part．
\(37 p\)

\section*{BELTEK－
WSA00 E FE
CAR
TRANSCEIVER D}

Bolid state moblie transceiver for 12v DC ncg．onc．Trankmits and Recoives on any 12 of 28 channeis between 144 and 148 MHz ．Power output 10 whd \(1 w\) switchable． Controls：Volume／on／ofi，squelch channel nelector Hith drnamis speaker．Complete with cy aamo mike，PTT sutich，three， 144.80 \(\mathbf{M H z}, 145000 \mathrm{MHz}\) ，mounting braciket and instructions．Size Epproz． \(150 \times 70 \times 220 \mathrm{~mm}\)

\section*{Our \(£ 75 \cdot 00^{P}\) \＆\(P\)}

SWR METER－Model SWR－3 Handy BWR Meter for alignment，with built－ in neld strength meter． Accuracy：5\％，Im－ pedance： 52 ，Indica－ tor： 100 esA \(\mathrm{DC}_{\text {，}}\) full sible anterna．Size \(145 \times 50 \times 60 \mathrm{~mm}\)
OUR
PR \＆P． 25 p


EADPHONES Outstanding ralue．Solt adjustable adjustabie 8－16 obma． 20－20，000 Hz ．Corn． plete witb lead and sterco plug． Our \(\& 1.87\) P．\＆P． Price Trato 30p

LHO2S STEREO HEADPHONES

ft．cord and plus
\(\underset{\substack{\text { Out } \\ \text { Pice } \\ \text { E } 1.97}}{ }\) Ligbtweight headpbozes with padded 4－16 ohms． \(20-20,000\) Hz Com－


P．\＆P．
TEIO18 DE－IUXE MONO HIGH

Senelitite magnetic headset with Impedance （d．c． 600 obms）．Fre． quency refponse \(200-4,000 \mathrm{Kz}\)
Our Price \(\leq 2 \bullet 25\) 30p BH．OO1 HEAD SET AND BOOM MICROPHONE

Moving Coill Iuleal for language manicstions Recighone imp phone 1mp． 200 ohatus．
Our
Price
P． DHOZS STEREO HEADPHONES Wonderiai cxcellent performance Adjustable
beadband． 8 ohm imped \(\begin{array}{ll}\text { ance．} \\ 12000 & \text { epa }\end{array}\) Complete
with lcad
Oif \(E 2 \cdot 25\)

hand－held
2－WAY
WALKIE－TALKIES

\section*{P．\＆P． 50 p ．}

BKYFON－100MW．E94．95 pair
 Plo0s－3 CHANNEL 1 Watt \＆71－25 pair．PEOURED FOR OPERATION IN U．K

\section*{EA． 41}

REVERBERATON

\section*{AMPLIFIER}

\section*{Belf contsined} trarsistorised． battery opera－
ted．Bimply ed．Bimply ciacse 9 plus in microphone，gritar，etc． and outpnt into your ampliber． tion control．Beautiful walnut cabinct， \(72 \times 3 \times 4 i \mathrm{in}\) ．
Our
Price
Dis

SPECIAL BARGAIN！ PHONIC 10 TWO WAY SPEAKER SYSTEM
pair of
compact
bookshelf
hookshelf
speakers of
uataue
dexjgn

trequenoy twecter and \(6^{\prime \prime}\) woofer． 8 ohms impedance． 10 watte power
handling．Size \(348 \times 228 \times 110 \mathrm{~mm}\) ． GWS SPECIAL 89．8E Per pair．P．\＆P．50p plux VAT． ADIOTRONIC AHAIOI STEREO HEADPHONE AMPLIFIER


GMHz．Large horizontal milide dia with logging beale．8lider volume and squelch controle． 7 bection telescopic aerial for FM and bullt in ferrite har for AM，AFC．Sin． apeaker．Earplece socket．Size
\(152 \times 79 \times 219 \mathrm{mtn}\) ．Battery／mains operation．

AUDIOTRONIC AMR－900 GLOBAL AM／FM PORTABLE RADIO
 PSB2： \(145-174\) MHz，FM 88 － 108 MHz ，AIR： \(108-136 \mathrm{MHz}\) ． tjmipg dial．Large cloar miale． Telescopic scrial and hailt in
xcrial．AFC or FM． \(6^{\prime \prime} \times\) f＂ speaker and personal earpiece Battery／mains operatio
sis \(\times 138 \times s 05 \mathrm{~mm}\) ． PUR 136.00
ORTCE
AUDIOTRONIC
DIGITAL CLOCK RADIO ADC．


Covers AM 540 ． 1600 KHz YM 88 － 108 MIIx with AFC setting．Wake on to the sound of music or loud buzzer，Sleep switch will automatically turn off sadio ctc．Internal speaker plus socket for earpicce or piliow epeaker． AC 240 F ．Size \(254 \times 92 \times 17 \mathrm{mmm}\) Compicte with esrd
operating inatructions．
OUR
PRICE
\＆ 12.50
P．\＆Ps 50p．
NOW AVAILABLE！
adc II DRLUXE version \(\begin{array}{lll}\text { OUR } \\ \text { PRICE } & \& \$ 95 & \text { P．\＆P．} 50 p\end{array}\)

\section*{ \\ PROCESS FOUR}

For use with aemi－professional tape recorders．fred．res． \(30 \mathrm{~Hz}-20 \mathrm{KHz}\) \(\pm\) 2dB．S／N better than TOdB Reorrt／Replar melering．Switch able multiplex filter．Supplied with
teat tape－ Our \(E 50.00, P\) \＆\(P\) Price 5 ，50p PROCESS TWO
For use with cassette and tape recorders．Freq．res．30 Hz－20KMIs \(t\) odB－OE tape monltoring． Bwitchable multiplex filter．Two Doiby calibration meters． \(5 / \mathbf{N}\) betier than rgas． urplied with test carecte or fape
Our
Price
O4．50
\＆P

FM TUNER CHASSIS

\(6 \times 4 \times 2\) in． 34 Double tuned discriminator．Aniple Operales on 9 V battery．Coverage 8 －10sMc／a．Heady builit ready for ase．Fantiatic ralue for moner． Our \(\quad 5.95\) P．\＆P． Price 20 p
A1018 FM TUNER
Specification
as above chassis but campletc in anbinet with Size ジシ＂\(x\)



Steroo multlplex adaptor \(94-97\) ．
AUDIOTRONIC
AM FM Portable Radio AR3000 4 wavchands
covering FY


AFC and onjoff．Thumbwheel Aruing．SJiler rolume and tone tuning．Sjker roiame and tonc
controls．Farphone socket．Built－in and telescoplc aerisls．Car aerisl socket．Battery／Mains operation． \(\begin{array}{ll}\text { OUR } \\ \text { PRICE }\end{array} \leq 14.95 \quad\) P．\＆P． 50 p

\section*{AUDIOTRONIC}

ACR 3500 CAR RADIO


3anazal tuning of Modium and Long wares． 12 t pos．or neg， mounting brackets and instruc． mounting Our
Price
17.50

P \＆P

\title{

}

AUDIOTRONIC
AHP-8D 8 Track Stereo AHP-8D 8
Tape Deck Cun be used With moat
Push batton traciz aelector ted track
indicators. Attractive cabinet with black and silver trim. Output lerel
750 mF . AC \(220 / 240 \mathrm{~T}\).
OUR
ORICE
SIl.95 P. \& P. 50 p

styled 4 track stereo
deck with an outstending spec!fication offered at a remarkably low price. Incorporates a bost of features including switchnble nolse filter normal/chroma tape sejector;
twin VU meter, slider record/ twin VU meter, slider record/ piayback level controls, front panel
hasaphone eocket, recording indıcator lamp, pbonofDin Ine input oockets, 3.5 mm mike inptut sockets \(40-1 \geqslant \mathrm{KHz}\) ( 40.16 KHz ) (Cr02) \(8 N-46 \mathrm{~dB}\). Croestalk 45 dB . Separa10 KHz . Complete with phono conneoting leads.



240p. malns operation. Ivory case with large clear numbers for hours. minutes and seconds.
 PRICE

SPECIAL PURCHASEI BSR 8 TRACK PLAYER CHASSIS
 ready to fit into cabinet. Output l25mv. AC \(240 \%\). Overall slze OUR \(£ 8.95\) P \& P50p. PRICE 68.95

\section*{NEW STORE IN TUNBRIDGE WELLS}

53/57 Camden Road, Tunbridge Wells Tel. 23242

FERGUSON EXPORT MODELS


FRRGUSOA 3408 ETEREO TUNER AMPLIFIRR
Covers FM 88-108 MHz. Five push button tuoligg scales, \(8+8\) watts rms. Inpuats ior sterco ceramic cartridgc and tape ctc. Separate bass treble, balance and volume controls.

\section*{\begin{tabular}{c} 
Our \\
Price \\
\hline
\end{tabular}}
£31.50 \(\stackrel{\text { P. \& P }}{50 \mathrm{p}}\).


8416 STEREO TAPE DECK
4 track, \(7 \frac{1}{4}\) 3t, \(1 \frac{1}{2}\) i.p.s. Stereol mono record/plyy. \(7^{\prime \prime}\) reels, linputs for dynamic mikes, radio, gram. Completc with cover.
Our 44195 P. 8 P.
SINCEAR PROJECT 80
PACKAGES
\(2 \times 240 /\) Stereo'80/F25.. \(\quad 25.00\)

\(2 \times\) Z60/Stereo \(30 / P Z 8 . . \quad \$ 30 \cdot 45\)
Transformer for PZs R. \& R. 37p
Project 80 A.F.U.
Project 80 FM Tuner.... E11-95
Project 80 Stereo Decoder 87.45
All otber Sinclair F'roducts atocked.

\section*{PORTABLE}

CASSETTE

\section*{RECORDER}

\section*{CTS050}

Instant recording and playing. Plano kay controls. Automatic lovel control. Bull in apeaker.
Complete with remote control microphone, cartying case and uhoulder strap
OUR
PRICR \(\quad \mathbf{8 . 5 0} \quad\) P. \& R. 50 p .
AUDIOTRONIC
LOW NOISE CASSETTES
Top Hi-gi quality in library cames
 \(\begin{array}{lllll}\text { c90 } & 21.85 & 28.62 & 48.59 \\ \text { c180 } & 22.29 & 54.48 & 810.88\end{array}\)
R. \& P. 15D.
Casmette Tape Head Cleaner 309
3-STETION INTERCOM KE. 630


Master and two sab stationc. Can be used on denk or wall mounted. Complete with cable and batteries.
Our 55.25 \& \& \(P\)
Our \(55 \cdot 25 \quad P\) \& \(P\)
Price
\(50 p\)
minuteman MM3
POCKET CALCULATOR: Size only \(47^{\prime \prime}\)
\(\times 3^{\prime \prime} \times 1^{\prime \prime}\)
8 digit display with overflow and error Indicatore. Floating decimal. Adds, subtricts, multiplles and divides. Chatn and mixed calculations. Constant tactor for
series maltiplication or division. Complete with batteries, instruc\(\begin{array}{ll}\text { tions and case. } \\ 001 & \text { P. \& P. } 25 p\end{array}\) \(\begin{array}{lll}\text { OUE } \\ \text { PRICE } & 23.95 & \text { P. \& P. 25p }\end{array}\)

\section*{SINCLAIR}

POCKET
CALCULATORS CAM8RIDGE
To build yourself. Complete kit of parts with step by step to build a fall specific
\(\begin{array}{lll}\text { OUREE } & 24.95 & \text { P. A. Free }\end{array}\)
(Aloo available ready built
Rec. Price 229.95 )
\(\begin{array}{lll}\text { OUR } & \mathbf{2 7} 27 & \text { P. \& P. 25p }\end{array}\) ALSO AVAILABLE
SINCLAIR EXECUTIVE
(Rec. Frice \(\mathbf{5} 39.00\)
OUR \(£ 35.45\)
EXECUTIVE-MEMORY
Rec. Price \(\mathbf{\varepsilon 4 9} \mathbf{0} 00\)
OUR \(£ 40.75\)
P. \& P. Free

AUDIOTRONIC
Stereo Headphones
LSH 20 Individua Folume control Stereo mono switch. 8 ohms. 40 \(19,000 \mathrm{Bz}\).
23.50 P \& P 30p

ESE. 80 Open back tone and volums controls. 8 ohms. \(30-20,000 \mathrm{~Hz}\). 55-50 \(\mathbf{P}\) \& \(\mathbf{P} 30 \mathrm{p}\) L8E. 40 Tस० WIEy Individual rolm controls. 8 ohms. \(20-20,000 \mathrm{~Hz}\).
\(E 6.95 \mathrm{P} \& \mathrm{P} 30 \mathrm{p}\) LSE \(60 \mathrm{~s}^{\mu}\) opeaker unitn. 8 ohms. 20 plete with zivped carrying caze.
\(f 8.50\) P. \& \(P\). 3 LQH. 400 d-channel dynamic headphones. Eich cat unitil. 4-32 ohms. 20-20,000 Hz. \$9.95 P. \& P. 30D
Lsif. 60 Flectro statk with self powered energise and control headphone/ with headphone 3peaker seiecto
4-32 olumi. 20-

\section*{RECORD DECKS}

Carrisgo and Packing 50p
B.S.E. Yedorald

Cl14 3 tni
C129 Mono
510/TPD1
610 /TPDI
710
810
MP60
MPGO/G800
3P60/TPD1
3P60/TPD2
ET70
HT70/TRD1
CONHOISSEUE
BD1 Kit
BD1 Chassis
BD2/BAC2/Plinth/Corer

\section*{GABRARD}
\(2025 \mathrm{TC} / \mathrm{KS} 40 \mathrm{~A}\)
5 P25 III
SF25111/G800
8P25/M75-6
gL65B
8105 B
8 g 72 B
8L95B
SL95B
401
ZERO
ZERO 100
Zaro 100 8B

\section*{OLDRIFG}

G101P/C
GL69/2
GL72
GL75
GLL78P/C

\section*{RECORD DECK PACKAGES}

Complets unita with Stereo cart-

GABRARD
2025 TC/9TAFCD
SP25 111/G800
GP25 \(111 /\) M4 \(4-7\)
BP25 111 /M55E
SP25 111 Module/M75-6
APT6/G800
AP78/G800E
AP76/M4SE
AP76/M6SE
AP76/표5ED
AP76/M75矿
AF'6 Module M75-6
AP96 Module M75-6
ZBRO 1008 Moduje/M93 E \(\begin{array}{lll}838-20 \\ 84-15\end{array}\)
Zero 1008BModule M75-68MEA4 20
B.S.R. MCDOYALD

210/BCTM
\(3 P 60 / G 800\)
MP60/TPD1/G800 MP60/M544-7 H'T70/TPD1/G800

GOLDRIKG
GL72/G800
GLT5/G800
GLT5/G800E
GL78/G800
GLT8/G800E
\(88-95\)
\(25-50\)
\(25-50\)
87.00
27.00
218.95
digital clock mechanism DT.55B

Featurea 24 hour alarm settin with buillt-in buzzer. Onfort and anto alarm "slecp" awitch. Mlu minated rotary dial with hours matically tums off TV, radio light, etc. snd with autasetting will switch on again when required. \(A C{ }^{240 v}\). operation. Switch rating 250 v . 32 OUR
PREE
5.95
P. AP. sop.

EMI LOUDSPEAKERS
Model \(350.13^{N} \times 8^{\prime \prime}\) With singie tweeterf crossores. \(20-20,000\) Arailable 8 RMS. ohms. E 7.25 or 15 P. \& P. \({ }^{37 \mathrm{D}}\)
Model 450 . \(1 \mathrm{~S}^{\prime \prime} \times 8^{\prime \prime}\) wih twin tweeterl eronsover. \(55-13.000\)
Hz
8 Arailable 8 or 15 P. \& P. \({ }^{25 p}\).

LONDONS LARGEST STOCKS
INCLUDING PRDDUCTS BY-


ARMSTRONG CAMBRIDGE KEF LUX NIKKO SONY-TEAC TRANSCRIPTORS TRIO UHER YAMAHA
\(\qquad\)
End S.A.E. Ior full Discou
GUARANTEED AND CDVERED
BY 12 MONTHS FREE SERVICE!

ALL BRANCHES OPEN 9 a.m. \(6 \mathrm{p} . \mathrm{m}\). MONBAY TO SATURDAY
HEAD OFFICE and MAIL ORDEA DEPARTMENT

\subsection*{87.40
816.50 \\ 816.50
816.80 \\ 21750 \\ 21750
819.20.}


PHELCO PORD MODEL 5248 MATHS TAPE
RECORDER

i.p.s.) Plano
trols, tape counter, recording level meter. volume \& tonc controks etc. direct recording lead, 1800' of tape with spare oponil, \(200 / 250 \mathrm{~V}\) AC operation fully guaranteed.
OUR PEICE 587-50. C \& P 75p

\section*{SPECIAL OFFER!}

FRUSTRATED EXPORT ORDER
PEILCO FORD
MODEL \(5 \% 45\)
MAIMS TAPE
RECORDER
track BsR
deck with push
button controls
for easy opera-
tion. Tape
counter and volnme contro
584.20
\(388 \cdot 10\)
841.55
842.45
242.45
24.95

Complete with hand microphone, Direct reconding lead, 1300' reel of tape \& spare spool. 200/250V AC operation. Fpilv guarantoes.
OUR PRICE 517.50 . C \& 75 p .

PRICES SUBJECT TO 10\% VAT

 packing and send crah with order
PLEASE PRINT NAHE \& ADORESS
CLEARLYIN CAPITALS PLEASE PRINT NAHHE \(\&\)
CLEARLYIN CAPITALS


KITS FOR PREVIOUS PROJECTS
Onless otherwint atated，kits contain electroule parte only．The case and eprecial Items can be Kits may be returricil for refond if construction has not been started．We renerse the right to nubrititate components should delliverles ine protracted no as to avolic andue dcia
If reprime of data is required add lop HOME SEKTISEL．Whard WII the unwanten inlrader＂－No elatwrate mettidg up or wiring required．Kit of parta E4－85．
＂Sisap＂ITDICATOR．Presy yisur brtun first anal your oppouent is bincked also suitable for qut RECOZD PLAYER．Good quality at a reasonabl rice－good enousb for clawical reconds and pops． Kit of parts \(£ 8-10\) ．
WIADSCRERE WIPER CONTROL．Wet dirts roud－Drizzle－Fog Streasect wercel－Scrapine ripere－combat threse with add－on wiper enntrol． Kit of parta 52.50 ．
FUZZ BOX．Ald weind and interesting effecta to suitar playing with lhls wollil state fuxz box Kit ot parte fes COLOUR TEMPERATURE TrTEP．Must for colour photographer get the culours right gires quick Indication of filter with natural or Stustiu ligbting．KIt of parta \(53-58\) ASTROI M．W．RADIO．A aimple M．W．retle ircult receiver－cany to brild \(2 \$ .80\) ．
GEMOTE TEMPERATURE COMPARATOR Teasures small ternperature changes in liquids in gaves Ahh tank，photographic solution－5．
tatleal： 5 controine rooms ele．Kit 55 25．
RATS WARMITG ALARM．Kecp your wawhle
 ribration to your mukic．Kit \(£ 350\)
STECTRO LAJGB Lut
useful electronic alarm．Kit of part \(\times 89.20\)
SOIN MOISTURE METER Many plante are kille
hrough over－watering this meter meakurch soil nolsture al root depth－probes can be left permanently beside the plant－indicator remotels houned could monilur me veral piants．Kit \(£ 3 \cdot 90\) ． BIGNAL INJECTOR A useful poket instrumen fur fault Aridlog In raifise athi smplitiers．Kit \(21-10\) BABX AFABI．Keep a chech T．V．Kit AA－40． SIMPLE CALCULATOR．Tvaching aid for nualti plication－can be uscd for quick checks，Kit s3－10 voltage circuitor－as simple istabllizel supply prosiding（0－15 voltk 1）．（＇．contímunndy variable kilt 85.20.
METAL LOCATOR．A slmple casy tol comstrug meld－entained metal locator glylyl indication of buried metal．Kit 85.00 ．
AUDIO TOAE GENERATOR．Arakes electronic desic cuvers range frum \(50-3000 \mathrm{hz}\) ．Sivectical dendmed for ume Fith tave reontier．Kit es 26 ． IIGET TO 80URD CONVERTER．I＇roduces at andio tonc－the ixquencyn
SHAVER INVERTER．PTotictes 240v 50hz frou 1－2 volt car hatters－cives approz． 10 esten whic is chongh fur turat wlisvers．Kit \(\pm 4 \cdot 85\) ．
ETECXBONOME．Hiectrunic Metrononit with pulve irequency contuudusy vartable fror 40－225 beats per minute．Fit 58.16. THEOUGE EENS LTGHT METER．A Ample light meter for hae with sittgle letix retiex cansern
Kite 44.85 ． MEDIUL AND LONG WAVE RADIO TUNER A simple radio tuner for lise with almust atis anplifier
IMFRA RED BURGLAR ALARM．UBex al Iovialble，reflected heam to deteat Intruilers when bean is intercepted－a power output is switcheni on for up to vie uinute．Kit \(24-25\) ．
CASSETTE TAPE POWER SUPPLIES．Two unils （1）porter a casselte tape Dlayer or recorder on iruta the maine．Price ex．50．Twio tron the ca hatters－price si \(^{2} 40\) ．
RRACIOMATIC．A rraction teating game that can also the a quiz answering indicator．Kit s3．30． ELECTRONIC MOUSE TRAP．A humate brous rab－catches them alre． them in the pary．KIt \(£ 3.25\)
TRAKSISTOR TESTER．
TRAKSISTOR TESTER．A raplit textur for oucillator cinenit ansid gives audinle inatination of toodnese．Kit 28－15．
BIT SAVER．Prolorigx lise uf＊oldering lron bit prevents pltting．Kit 1 1． 85 ．
ICE WARMISG DEVICE．\(\Lambda\) derice that cau be wel to indleate＇lee＇cunditions of mimilar temperatone
levels．太it \(81-55\) ． AUELAO COLOUS USIT．AId a colour dimension to yotre audis cquipnient．This unit will tuosiulate
three lamps in accurd with Buas nilddle and trehlo notes of suc inusle．Kit oi parts \(£=20\) ． U．B．F．T．F．ABRIAL．A simple nerisl for U．H．F． to reception on your band coadil impreive yoar meepliou \(\ln 2 m e n s e l s\) ．Klt \(\$ 1-65\) ．
DAIP LOCATOR．EAxily curried hi jonr poedet thin litele onit clven visible indication，of hanus． KIt 11 － 25.
ENLARGER \＆EXPOSURE METRR．Fur 17．L．I． phow rapher 2500.

R Simple timer with artitic warning－ 28－15

TERES：－ \(10 \%\) discount if lef of an ftem ordered．send postege where quoted－other Items，post free if oriler for thene over EG －00 utherwise add ngp．

THYRISTOR LIGHT DIMMER
Domestic model for ans latop up to 250 watt．Mounted on owilch plate to it in pisce of standard owiteb．Virtually no redio fatericrences．Price 82.85 ．Imduatrial model 5 alim DISTRIBUTION PANELS
Sunt what youn need for work bench or lab． \＆ \(4 \times 13\) amp wockets in metal box to take


\section*{CD CAR IGNITION}

\section*{Sactronc iention}

This s5atern which has proved to be amuxingls effelent．We ofter kjt of parts as P．W．Clircult oos plus \(20 p\) p．s \(p\) ．Deimese model wilh pre tate whether for poaittive or nerative aryteme

EACH IN 74
A new beginners serfiea nearted with the Oclober issur of thin magazine， will be supplying all che parts ior thil．The inftial kit covering all component× required for the first 6 montha in available pont and NAT inoluded－price 87 ．
 ineter．\(A s\)
MIGHTY MIDGET
 feas，Jatuary \(7: 3\) ．All elentranic porta 5220 post pain COILL

\section*{NEW IKW MODEL}

Flectronically changes speed fruan approxitualely 10 res to maximuin．Fall power at all speeds by finger－tip control Kit inciudes all parts，ease，everything and full Inatructions
81.95 plus 13 p poat and insurance．Madr up hodrl aly， available．\(£ 2.95\) pluk 251 yonv \＆

\section*{RADIO STETHOSCOPE}

Easlest way to fanit And－－traces signal fruts serial tant．Uee it on Revio．TV amplifer．anything－com telo kit cumpriets tro specie ansistors and alt parts inclu． ing probe tube and crysta arpiece．22－20－twin stetho er lastead of carpieco 88

\section*{V．C．O．EFFECTS UNIT SEWING MACHINE SPEED CONTROL F．E．T．RECEIVER}

To recelve parto for these abil other festure projectix，＊end the ptotev approximate auiounts and any casis adjustment can be piaile later．

\section*{GOOD COMPANION}
，can now oller these again in i．c．version uning Ferrant
 wood cabinet．Cabinet aize approx．Irim wile \(\times 8\) in．high
\(\times 3\) in，deep．Complete asketubly fintructlona 25.75 plins 25 p post and ins．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No．of Poike & 3 was & 3 way & 4 mas & 6 way & 6 xay & \(\times \mathrm{way}\) & 9 way & 10wsy & 2w25 \\
\hline 1 pole & \(44 p\) & 44p & 44 p & 44p & 44p & 40 & 44p & 44D & 44p \\
\hline 3 proler & 44p & 44p & 44 p & 4p & 44p & 44p & 44 p & 77p & 77p \\
\hline 3 poler & 44 p & 44 p & 40 & 445 & 770 & 77 & 77 & 21.04 & 27．04 \\
\hline \(\pm\) poler & 44 & 44p & 449 & 78 & 77 D & 77 & 7 Tp & \＄1．32 & \＄1．32 \\
\hline 5 poler． & 440 & 415 & 770 & 770 & 21．04 & E1．04 & 21.04 & 21.00 & E1－60 \\
\hline 6 polex & 44p & 770 & 77 p & 77 D & E1．04 & 81．04 & 81．04 & E1－87 & \＆1－87 \\
\hline 7 poler & 770 & 77 & 770 & El－04 & 13－32 & 81．32 & \＄1．82 & \％2．15 & £2－15 \\
\hline 8 poles & 77 D & 779 & 770 & \(51-04\) & ¢1．39 & \＄1－32 & 81－39 & E2．42 & 59．49 \\
\hline 9 poles & 770 & 77D & 81.04 & \＄1．04 & 21－60 & \(81-60\) & 21－60 & e2．70 & 88－70 \\
\hline 10 polex & 77 p & 77 y & 域．04 & E1－32 & E1－60 & ¢1．60 & \＄1．80 & \％ 8.00 & \＄8．00 \\
\hline 11 poles & 7\％ & 41．04 & ¢1．04 & 21.32 & 21.87 & E2．87 & 81.87 & 23－25 & 18.25 \\
\hline 12 prilex & 77p & 81.04 & 81.04 & \＄1．88 & \＄1．87 & \＄1．87 & \＆1．87 & £3－52 & £3．52 \\
\hline
\end{tabular}

SWITCH TRIGGER MATS
So thin is undetectable unire carpet lut will xwitch on


\section*{MULLARD UNILEX STEREO SYSTEM}

There is no doubt that it is a
good kystem，we belleve that
for thin nuncy it is withonf
compsiman．We demonstrat－ glalls at nur Tarnworth Roand cleprot．I＇rices of the indivliual
1 tinilex Ampiif
tiniticx Amplifice Ref．RP． HOOO
Inilex Amplifier Unilex Amplifier Ref．E1＇9000 1 Unikex Pre－Anap Ref．EP． 9001 1 Controil parel kit with spuu alumia taced knobs


Or the complete outat－-11130 post paid
Pair of 15 ohm sfeakers nuade by R．M．I．are also a vailable if required． price 23 －30 the pair．No extra Dontage if urderell with the above，otherwise ald 25 p ．

J．BULL（ELECTRICAL）LTD．
（Dept．E．E．）， 7 Park Street，Croydon CRO IYD

KITS FOR PREVIOUS PROIECTS
CONT．FROM LEFT HAND COL
NEOK NOVET．TY．Interesting modern ornamenta ticviee AI－65．
MDICATOR AUDIBLE WARBIEG．Add this ardible warning derice to car Indlcators or dank Manel warning lights and your attention will be TGET TIGET SWITCH．A almple control to dit lamp Kit \(=1.10\) GBiER．KL PUR
Mingri FURFOSE AMPLETIRR．An andi unerse audfu owelisators．record decks－electric uitars．elc．Kll \(£ 4.90\)
HOME INEERCOM．Keep in toxth with this iniple．casily counected gool quality two wa
 ansical field and the laboratorg where an audible uof on click could aet lost or beconn annosinf．Kit 8140 ．
urgan－neatis and andiare，atyiur operate urgan－neatty suld simply con
EAD AIAR II．Sounda an audible a
the frat rain drope fall．K it \(\$ 3.00\) CASSETTE AlPLIFIEB．Boonte the output fron cassetie inpe recuruers ani transistor rawion Kit 24.50 ．
AUDIO SIGNAL MXRR，Wher you want to mix pecch and muste，and to faile them in and out－ ho tape enthuriant shonid be without thls确
AUTO EAR．A thermostatic control for car engline San．gires quicker wartning up time，etc．Kit \(2 \%\) is SLAVE YLASE．Photos taken with a single rianh hare a fint appearance－a aecand dash correctiy econd（or third）flach to be sutomatical！ riggered． Kit \(\varepsilon 1-85\)
RTHCTRODIC DOORBELE．Not In tact a bell bul an electrunic circnit that producea an un mound when the button is preseerl．Kit \(£ 4 \cdot 00\) ．
WAA WAA．Ald another sound diznenslon WAA WAA，Ald another kouml dizmension
rour guitar or organ．Kit \(\$ 1-50\) ． sour guitar or organ．Kit zi－50．
i．C．Radio．A fantastic personal redio uras a rcellent rexulty Kit is． 10 AOUARITM TBRPEOSTA
 applications requiring fine control of temperatur Kitt \(£ 2.85\) ．
TRAIH COSTROLLER．With most control there Ls constderable loas of piower on low specds－this unis orcrcomes kais problem allf makes kiow speen 3 Gealintic．Kit， \(53 \cdot 16\).
3 GANG TUNDNG CONDENSERS．500pi earl receiscr． 81 p． STEREO HEADPEONE ADAPTER．Snables one or two mets of stereo hatiphoucs to be nised with an amplifier．E1－85
4 BAND TRF RECEIVER．Recelver arnateur GAS ALARY normal medimm wavebands． 88 sapours and smoke． 55.99 ABY 3 GAME．Adds fun to any gatne which aren dict，or in novel game for two plisyera， \(88-10\)
AUTO－WATERTAG POR PLANTS \＆2－20． AUTO－WATERAG POR PLANTS 22－20． TREMELO UTITT \＆9． 10
BABY SKATCH ALARMI £8．00．

\section*{OUR 1974 CATALOGUE} LISTING HUNDREDS OF BARGAINS．NOW AVAIL ABLE．PRICE 30p．POST PAID．
RECORD PLAYBACK HEADS （TRUVOX）
2 track record playback head． 50 p each
2 track record playback bead 50 p each
4 track record playback heads 72 p each ．
Etrack record piarback heads dap each．
EL RESETTABLE FUSTE
How long does it take for to renew a fnse？Time yoursalt when next one blowk．Then reckoning your time al 2 per bour see now quickly our
renettable fure（anto eircrit breaker） will pas for ftself．Price only \(\& 1-10\) emer will pas for itself．Price oniy \＆1－oimply or \(f 1\) in per dozen，speci
\begin{tabular}{|c|}
\hline \multirow[t]{13}{*}{Tangential Heater Unil．2KW．price 82.25 plux 40 p post，etc．Tangential Heater Unit， \＄Kw．price 83.88 plus 40p poat．cte． Control Switch for above 44D each． 300 watt Hest and Light Lamp．price 99p plus 25 p post 5KW Blower Heater，price 319.19. 1000 watt Meat and Light Tabe（Mnilard） with special holder and terry ellps，price \(58-20\) plus 30 p post． 2000 watt Mouldable 3fetal Clad Element．\＆ft．Ionk \(-21 \cdot 10\) ． Radiant Cooker Ringe． 2000 watt， 88 p each 1000 watt Fire 8pirais．22p each． 750 watt FIat Elemente，33p each．Black Heat Element Metal Clad 900 watt \(14^{\prime \prime} \times 1{ }^{\prime \prime} \times\) 88p cach．Oven Element Metal Clad，2000， writ．＂W＂＂shaped．14f＂lonk \(\times 9^{\circ}\) wide 939 each．} \\
\hline \\
\hline
\end{tabular}

NEED A SPECIAL SWITCH
 Fery elight presure cloves 10 for 80 p ．Plastie pusbrod anitable for operating．ip each． 10 for 5 Ap ．

\section*{IP}

\title{
SECOND GENERATION 25 WATT HYBRID
}


A brand new hybrid fabrication technique, recentiy perfected in our laboratorles, has enabled us to achieve our latest range of completely integrated devices. We have now finally reduced the modular amplifler to a simple input/output deviee requiring only the addition of a basic unstabilized (split line) power supply. The HY50 takes medium power modules to thelr logical conclusion by incorporating normal audio use without additional chassis sinking At this withoy, sumetent for increasing the size of the module comparable In size to a packet of "King-sla clgarettes.
Conslstent with modern thinking a triple rated output circult with a load fuse allows for peak transient response without distortion'but ensures the necessary protection

OUTPUT POWER: LOAD IMPEDANCE: INPUT SENSITIVITY: INPUT IMPEDANCE: TOTAL HARMONIC DISTORTION SIGNALINOISE RATIO: FREQUENCY RESPONSE: SUPPLY VOLTAGE: SIZE:

\section*{SPEC.}
25.watts RHS, 50 watts peāk musić powei 4-16n into 82
Odb (0-775 volts RMS)
47K』
Less than \(0.1 \%\) at 25 watts typically 0.05 better than 75 db
\(10 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}\)
\(\pm 25\) volts
\(105 \times 50 \times 25 \mathrm{~mm}\)
Price \(\mathbf{£ 5} \mathbf{- 4 0}\) mono. \(\mathbf{£ 1 0 - 8 0}\) stereo
Price Incluslve of VAT \& P \& P

\section*{NEW HY5 PRE-AMPLIFIER}


Unchallenged for two tears, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components \& has baen redes!gned to run off a spilt powerline with improvements in signal/nolse, ovarload, capability a reduced distortion. The output has been incrëased to match the power module (Odb), and to share the same power supply.
Overal size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the eariler device.
When comblned with Iha HY50 \& power supply only potentiometers are required to complete a simple mono amplifier with input 2 output faciltties expected to be found on Hi-Fi ampliflers.
The comblnation of two HY5's two HY50's sharing a commion power supply (PSU50) are linked by a balance control to form a complote stereo system.
INPUTS
SPEC.
Magnetic Plek-up 3 mV (within 1db RIAA curva)
Ceramle Pick-up up to 3 mV
Mierophone 10 mV
Tuner 250 mV
Auxillary \(3-100 \mathrm{mV}\)
input impedance 47 kr 1 kHz
OUTPUTS
Main output, Odb ( 0.775 volts )
ACTIVE TONE CONTROLS
Treble \(\pm 12 \mathrm{db}\) at 10 kHz
Bass \(\pm 12 \mathrm{db}\) at 100 Hz
OVERLOAD CAPABILITY (equallzation stage) 40db on most sensltive input
OUTPUT NOFSE LEVEL (below 10 mV magnetic Input) 68 db
OISTORTION \(0.05 \%\) at 1 kHz
SUPPLY VOLTAGE : \(16-25\) volis
SUPPIY CURRENT 15 mA
Price EA-5t mono, \(29 \cdot 02\) stereo \(p\)
Price Inclusive of VAT \& \& \(P\)


\section*{POWER SUPPLY PSU50}

The new PSU50 has a low profile look being only \(2{ }_{6}^{2}\) inches high and can be used for elther moño or stereo systems.
SPEC.
OUTPUT VOLTAGE \(\pm 25\) volt
INPUT VOLTAGE 210-240 volts
SIZEL. \(70, \mathrm{D} .90, \mathrm{H} .60 \mathrm{~mm}\)
Price \(55 \cdot 23\)
Price inclusive of VAT \& P \& \(P\)

\section*{The largest selection}

\section*{BRAND NEW FULLY GUARANTEED DEVICES}
\begin{tabular}{|c|c|c|c|}
\hline Typr & Iricep & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Typr Price \(P\)}} \\
\hline actioi & 8 & & \\
\hline ACLIS & 20 & ADIBLarP & 75 \\
\hline ACl15 & 28 & ADTI40 & 35 \\
\hline ACliok & 32 & AFli4 & 27 \\
\hline AC1 \(\because 2\) & 13 & AF145 & 27 \\
\hline ACl23 & 18 & AFl16 & 27 \\
\hline AC226 & 19 & AF17 & 27 \\
\hline ACl27 & 20 & AFlis & 39 \\
\hline 1 cris & 20 & AFIS & 38 \\
\hline AC15 & 16 & A-125 & 33 \\
\hline AC134 & 16 & AF'126 & 31 \\
\hline A¢137 & 18 & AF127 & 31 \\
\hline AC143 & 20 & AF139 & 33 \\
\hline AC1s3\% & 32 & AY178 & 55 \\
\hline AC142 & 20 & AF179 \(^{\text {a }}\) & 55 \\
\hline ACl42K & 28 & AF180 & 55 \\
\hline AC151 & 17 & \({ }^{\text {AF181 }}\) & 55 \\
\hline AC15: & 22 & AF186 & 55 \\
\hline AC15 & 22 & A F 239 & 41 \\
\hline ACL5 & 22 & Aliox & 72 \\
\hline AC159 & 27 & Alios & 22 \\
\hline AC165 & 22 & ASY26 & 28 \\
\hline AC165 & 22 & AsY27 & 33 \\
\hline ACLET & 22 & ASY\%8 & 28 \\
\hline 1 C168 & 27 & ASY 29 & 28 \\
\hline AC189 & 18 & A8Y50 & 28 \\
\hline AC17G & 22 & AsY5) & 28 \\
\hline ACliz: & 27 & ASY52 & 28 \\
\hline AC178 & 31 & ASY54 & 28 \\
\hline AC179 & 31 & ASYE5 & 28 \\
\hline AC180 & 22 & A8Y56 & 28 \\
\hline ACl80K & 82 & ASY5\% & 28 \\
\hline AC181 & 22 & A8Y\% & 28 \\
\hline AC181K & 32 & ASY73 & 28 \\
\hline AC187 & 24 & ASZ2] & 44 \\
\hline \({ }_{\text {A }} \mathrm{Cl} 87 \mathrm{~K}\) & 25 & BCl07 & 12 \\
\hline AC188 & 24 & BC108 & 12 \\
\hline AC188K & 25 & BC109 & 13 \\
\hline Acyi7 & 28 & \({ }^{\text {BCL }} 13\) & 11 \\
\hline ACY18 & 22 & BC114 & 17 \\
\hline ACY19 & 22 & BC115 & 17 \\
\hline ACYO & 22 & HCl16 & 17 \\
\hline ACY21 & 29 & \({ }^{3} \mathrm{C} 117\) & 20 \\
\hline ACY2? & 18 & BC118 & 11 \\
\hline ACY2 \({ }^{\text {a }}\) & 20 & BC1] & 33 \\
\hline ACY28 & 21 & - & 88 \\
\hline ACX29 & 39 & 8cis & 18 \\
\hline Acy 30 & 31 & BC128 & 20 \\
\hline ACY31 & 31 & HC132 & 13 \\
\hline ACT34 & 23 & \(\mathrm{BC}^{3} 3\) & 20 \\
\hline ACY35 & 23 & BCls & 18 \\
\hline ACY36 & 31 & BC136 & 17 \\
\hline ACY 40 & 19 & BCls7 & 17 \\
\hline ACY 1 & 20 & 3C13y & 44 \\
\hline ACY4s & 39 & BC140 & 38 \\
\hline AD130 & 42 & \(\left.{ }^{3} \mathrm{Cl} 4\right]\) & 39 \\
\hline 4 AD 40 & 53 & BC142 & 38 \\
\hline AD142 & 53 & BC143 & 33 \\
\hline AD143 & 42 & BCilt5 & 60 \\
\hline AD149 & 55 & \(8{ }^{8} 145\) & 11 \\
\hline AD161 & 38 & BCl4 & 11 \\
\hline .1D162 & 88 & BCl49 & 13 \\
\hline
\end{tabular}
\({ }_{\mathrm{T}}^{\mathrm{T}, \mathrm{C}}\)
\begin{tabular}{l} 
Type \\
BCiso \\
Price \\
\hline
\end{tabular} P Tupe \({ }^{2} \mathrm{Cl150}\) \begin{tabular}{l}
150 \\
\hline 152 \\
\hline 152 \\
\hline 15
\end{tabular} BC153
BC154
BC157
BC158
BC159 885 \begin{tabular}{l} 
Ryper \\
BD131 \\
BD132 \\
\hline
\end{tabular}


\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Type \\
MAT12
\end{tabular} \\
\hline MJE29 \\
\hline MJE30 \\
\hline MJ ESS \\
\hline MPFF10 \\
\hline 3 PPF10 \\
\hline MPFIO \\
\hline 0 Cl 19 \\
\hline 0 C 20 \\
\hline OC22 \\
\hline 0 C 23 \\
\hline 0 C 24 \\
\hline OC25 \\
\hline OC26 \\
\hline \(00^{028}\) \\
\hline OC29 \\
\hline OC35 \\
\hline OC36 \\
\hline \(0 \mathrm{C4} 1\) \\
\hline OC42 \\
\hline \(0 \mathrm{CH4}\) \\
\hline OC45 \\
\hline OCTO \\
\hline 0 O 71 \\
\hline 0 CT 2 \\
\hline 0 C 4 \\
\hline 0 C 5 \\
\hline 0 C 76 \\
\hline 0 CH \\
\hline \(0<81\) \\
\hline \(0 \mathrm{C81}\) D \\
\hline 0082 \\
\hline 0 Cs 2 D \\
\hline \(0 \mathrm{CS3}\) \\
\hline OCl 39 \\
\hline OC140 \\
\hline OCI69 \\
\hline 0 CL 70 \\
\hline 0 Cl 71 \\
\hline OC200 \\
\hline OC201 \\
\hline \(00^{2} 202\) \\
\hline OC203 \\
\hline OC20s \\
\hline \(0 \mathrm{Cl} \mathrm{O}^{5}\) \\
\hline OC309 \\
\hline OCP71 \\
\hline ORP12 \\
\hline P20 \\
\hline \(\mathbf{P 2 1}\) \\
\hline P345A \\
\hline P397 \\
\hline ST140 \\
\hline 8 S141 \\
\hline TIS43 \\
\hline UT46 \\
\hline \(2 \mathrm{~N}+14\) \\
\hline 20.801 \\
\hline 2G302 \\
\hline 20303 \\
\hline 2G304 \\
\hline 2G306 \\
\hline
\end{tabular}

Type
2G308
2G309
2
Prfee \(p\)
39



1.
\(2 \times 3891\)
2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \mathrm{~N} 9891 \mathrm{~A} \\
& -\mathrm{N} 3392
\end{aligned}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1 \times 3392 \\
& 2 \times 3393
\end{aligned}
\]} \\
\hline & 2- 3394 \\
\hline \multicolumn{2}{|l|}{2N3395} \\
\hline & 2×340? \\
\hline \multicolumn{2}{|l|}{2 N 3408} \\
\hline \multicolumn{2}{|l|}{2N3404} \\
\hline & 2N3405 \\
\hline \multicolumn{2}{|l|}{2 N 3114} \\
\hline & 2N3415 \\
\hline \multicolumn{2}{|l|}{2 N 3418} \\
\hline & 2N3417 \\
\hline \multicolumn{2}{|l|}{2 N 3525} \\
\hline & 2N361: \\
\hline \multicolumn{2}{|l|}{\(2 \times 3615\)} \\
\hline \multicolumn{2}{|l|}{2 N 3616} \\
\hline \multicolumn{2}{|l|}{2N3646} \\
\hline \multicolumn{2}{|l|}{2N3702} \\
\hline \multicolumn{2}{|l|}{2N3703} \\
\hline \multicolumn{2}{|l|}{2 N 3704} \\
\hline \multicolumn{2}{|l|}{2N3705} \\
\hline \multicolumn{2}{|l|}{2ns70e} \\
\hline \multicolumn{2}{|l|}{2N870\%} \\
\hline \multicolumn{2}{|l|}{2N3708} \\
\hline \multicolumn{2}{|l|}{2N3709} \\
\hline \multicolumn{2}{|l|}{2N3710} \\
\hline \multicolumn{2}{|l|}{2v3711} \\
\hline \multicolumn{2}{|l|}{- 33819} \\
\hline \multicolumn{2}{|l|}{\(2 \pm 3820\)} \\
\hline \multicolumn{2}{|l|}{- -3821} \\
\hline & \(2 \times 8893\) \\
\hline \multicolumn{2}{|l|}{2 N 3903} \\
\hline & 2)3904 \\
\hline \multicolumn{2}{|l|}{2) 3905} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2M3906}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{翏4058}} \\
\hline & \\
\hline & 2N4060 \\
\hline & 2Ns0G1 \\
\hline
\end{tabular}

18 2y 406 \(2 N s 062\)
\(2 N+284\) \(2 N+062\)
\(2 N+284\)
\(2 N+285\) \(2 N 4285\)
\(2 N 4286\)
\(2 \mathbb{4} 597\)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{LINEARI.C's-FULL SPEC.}} \\
\hline & & & \\
\hline Type \(\overline{1} 0\) & 1 & 25 & 100 \\
\hline 72702 & 50p & 48D & 45p \\
\hline 72709 & \(35 p\) & 33 p & s0p \\
\hline 72710 & 45p & 48 p & 40 D \\
\hline 72741 & 40p & 38 p & 35D \\
\hline 727410 & 45D & 43p & 40D \\
\hline 72741 P & 38 p & 86 p & 34 p \\
\hline \(727481^{\circ}\) & 38 p & 36 D & 34 D \\
\hline Si2010 & 59D & 45 p & 40 p \\
\hline \$1701C & 50 p & 45 p & 40 p \\
\hline SL702C & 50 D & 45p & 40p \\
\hline TAA263 & 80D & 701 & \({ }^{60}\) \\
\hline that93 & £1.00 & 95D & 90p \\
\hline TAA350A & 21.85 & E1-80 & £1-70 \\
\hline HA703C & 280 & 28 D & 24p \\
\hline \(\mu \mathrm{A} 709 \mathrm{C}\) & 35p & 33 p & 30D \\
\hline \(\mu 8711\) & 45. & 43p & 40 g \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NUMERICAL INDICATOR TUBES} \\
\hline cD66 & 81.87 \\
\hline 6 R 116 & 21.70 \\
\hline 30167 Minitron & E1-50 \\
\hline All indicators 0-9 & \(\pm\) Decimal point \\
\hline All side rlewing. & Foll data for all \\
\hline cypen arailable on & re.luest. \\
\hline & 51-20 cach \\
\hline I.C. Radio Bec. & i. full elr. data. \\
\hline
\end{tabular}

DTL 930 SERIES
LOGIC l.C's

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{L-II-LTHE SOCKETS.} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{PROFFASIONAL \(\begin{aligned} & \text { NFW LOW COST. }\end{aligned}\)} \\
\hline PROF. TYPE No. & 1-24 & 25-93 & 100up. \\
\hline TSO 14 pin type & 33 p & 80 D & 27D \\
\hline TSO 16 .. & 38. & 85p & 32 D \\
\hline Low cost so. & & & \\
\hline BPS 14 & 18p & 14p & 12 \\
\hline BPS 15 & 17p & 15 p & 13 \\
\hline
\end{tabular}

74 Series T.T.L. I.C's \(\left.\begin{aligned} & \text { BI-PAK STLCI LOWEST IT PRICE. FULE SPECHFICATION } \\ & \text { GUARANTEED. ALH FAMOUS MANUFACTURERS }\end{aligned} \right\rvert\, \int_{\|}\)

\section*{Type}

\section*{7400}
\({ }^{1}\) Quantities

\author{
7401
\(740 \%\)
7408
} 25
5.1


Devicer may be mixed to qualify for quantity prict

\title{
-the lowest rrices!
}

BRARD NEW TEXAS GERM. TRAISISTORS Coded an \(T 1\)
\(T 2\)
\(T 3\)
\(T 4\)
\(T 8\)
\(T 6\)
\(T\)
\(T\)
\(T\)
\(T\)

\section*{\begin{tabular}{l}
8 \\
8137 \\
18137 \\
\hline
\end{tabular} \(\begin{array}{ll}8112126 & \text { OC75 } \\ 8\end{array}\) \(-20381 \mathrm{O} \mathrm{OCsi}_{1}\) \({ }^{R} 20344 \mathrm{~B}\) nas45B UC 88 2G999A \(2 \mathrm{NiO}^{2}\)}


TD 120 KIXTE DRIVER TRARSISTOR
sulfable replacecuent for B4X 21.
100 och .
\(\begin{array}{lll}0.19 & 0.17 & 0.18\end{array}\)
81. trans. kultable fur P.E. Organ. Betal TU-18
Eqrt. ZTXX 300 60. pach. Any Qty.
ap 100 T03 Metal CASE GERMANIUM Vebo \(=80 \mathrm{~V}\). Vcer \(=5 u\) sow. bre \(=30-170\). 30W. bre \(=30-1 ; 0\).
Replaces the majurit. Geplacen the majurits ant fiermanmina pouter in than and NKT ranke.
\(\begin{array}{lll}0.48 & 0.44 & 0.40 \\ 0.404 \\ 0.40\end{array}\)

GP 300 YO8 MET CASE SILICON
rebo -100 V . (cero \(=60\) \(115 \mathrm{~W} . \mathrm{hfe}-20\). Pooft. \(=\) 1MHz. Snitahie replace.
 \(\begin{array}{ccc}1 & 23 & 100+ \\ 0-55 & 0-68 & 0-61\end{array}\)

NEW Brh EDITION 250 paxes
TRATSISTOR EQUIVALEEAT8 BOOX. A complete cross refercace sind equirslests
Furopean, Americar and Japspese Transistors. Japshese Thankistors. EI. 85 each.

A LARGE RAXGE of EECBNICALABD DATA BOOKS ARE NOW AVALABLEEXSTOCK.

Direct replacemeut for T1B \$Srand BEN 3000 almo electrically equiva.
lent to \(2 N 28: 5\) \(\begin{array}{ccc}1 & 2.5 & 1004 \\ 0.30 & 0.28 & 0.22\end{array}\)

QUALITY TESTND SFMICONDUCTORS Pak No.

20 kel :put f White spot K.F. tranglatora PX OC 7 type transistors
6 Matebed trauslators OCisjisfoijal OC 75 transistors
AC 128 tranaistors PNP High asin \& AC 126 tranvistors PNP

OC 81 trpe transistors
OC 71 type transistore
2 AC 1271218 Complementary palrs PSP/NPN
3 AF 116 type transistors
3 AF 117 type trannistors
Q13 3 AF 117 tspe trannistors
Q14 3 OC 171 H.F. \({ }^{\text {TEPE tranginture }}\)
nixed colours E.paxs transintura nixed colonrs
GET\&80 Jow nolse Gervianlui
GETB80
nolse Gervanlum
5 NPN \(x\) ST.141 \& \(3 \times\) BT.140... Q1A MADT'S2 4 MAT \(100 \pm 2 \times\) MAT
Q19 MADTE \(2 \times\) MAT \(101 \& 1 \times\) MAT Q20 s 121 OC Cinfrnantum tranalators A. \(F\). Q21 AC 127 NPN Gormaniom tranahatorn Q22 20 NKT Tranaiatotn A.F. R.F. coded Q23 10 UA 202 silicon dloden aub-mita. 2248 OA 81 diodes
Q25 IS IN914 8ilicon diodes 75 PJVi 7 BmA Q25 8 OA85 Germanlam siodes anh-min TN6
Q27 2 10A 1I W Billeon rectifiers In425 Q28 2 Bilicon power rectilere AYZ 13. Q2 \(1 \times 2 \mathrm{~N} 69^{\circ} 1 \times 2 \mathrm{NB9B}\) filicon switch tranalators \(2 \times \div 06\)  Qso NPN ................................. Sllicon switeh transiators 2N70日 APN PNP Silicon
\(1 \times 2 \times 1132\)

\section*{ADI \(61 / 162\) \\ LOOK FOR OUR AUDIO \& ELECTRONIC COMPONENTS}

Q33 5 Anlicon NPN tranaistors \(2 N 1 \mathrm{ilil}\)
7 Bliton NPS transletors 2Ni369. 6001HR \(z\) (code P397)
Q55 3 gillcon PNP
\(1 \times 2 \times 2905\) Q35 \(72 N 3046\) TO-18 plactic 300 ank NPN 0.65 257 NPN 7 N 2N5702
0.55 advertisements
in PRACTICAL ELECTRONICS RADIO CONSTRUCTOR

SULICON PHOTO TRASSISTOR. TO-18 Lens end SPN Sim. to BPX 25 3nd G21. BRAND NEW. Full data a vajlable Qts. \(1-2405-99100 \mathrm{up}\) Price es. 69p 410 88 p

\section*{INTEGRATED CIRCUIT}

Manofacturera' Thesc are clasoed as out-oisypcc frotu lie maker's Pak Fo. Contents Price U1C00-12 \(\times 7400\) UICOI \(=12 \times 7401\) UIC02 \(-12 \times 7402\) UTCO3- \(12 \times 7403\) UICOS \(=12 \times\) i 405 UICOS \(=12 \times 1405\)
UICOB \(-8 \times 7506\) UICOE \(-8 \times 7406\)
U1COT \(-8 \times 7407\) V1C10 \(-12 \times 7410\) UIC20 \(=12 \times 7420\) UIC30 \(-12 \times 7430\) UIC40= \(12 \times 7440\) T1C41 \(=5 \times 744\) UIC42 \(5 \times 7442\) UIC43-5 -7443 DIC4 \(-5 \times 7444\)
V1C4 \(=5 \times 745\) \(\begin{array}{ll} & .55 \\ \text { U1C4 }=5 \times 7415 & 0.55 \\ & 0.55 \\ & 0.55 \\ & 0.55 \\ & \end{array}\)


\section*{ELECTROMC SLIDE-RULE}

The \(3 \pi\) Gildc lute, designed to simpllfy Electronic calculations festures the following acales:Converalation of \(\mathrm{L}, \mathrm{C}\) and fo of Tuned Circulta. Reactance and Self Inductance. Area of Circlea. Voltame of Cylindere. Renistance of Conductora. Welght of Conductors. Decibel Calculations. Angle Functioos. Natural Loge and ' Functione. Mritiplleation and Division. Squaring. Cubing anil squitre Loots. Converalon of \(k\) w apd Hp. A must for every electronic engineer and eathuaj ast. 8ize:
insiructions.

Price each: 88.89

ZOLNER DIODES EADGE \(2-38 \mathrm{~V}\). 100 mIV EADGE Case) 12p ea. Itw (TOpHat) 18 p ea. 10 W (so-10 Stud) 329 en.

\section*{PAKS}
and Part-Functional Tinlta rs rigid mpecifliations. but

PakSo. Contente Price
U1C90 \(-5 \times 7490\) \begin{tabular}{l} 
ULC91 \\
U1C92 \\
\(-5 \times 7591\) \\
\hline
\end{tabular} U1C92 \(-5 \times 7492\)
UIC93 \(-6 \times 7493\) UC94 \(=5 \times 7494\) UIC \(95=5 \times 7495\) 11C96 \(=8 \times 7496\) OIC100- \(5 \times 1 \$ 100\) UICII \(1=5 \times 741210.65\) UC141 \(=5 \times 741410.55\) TIC151-5×74161 0.55 \(\begin{array}{ll}\text { UC154 }=6 \times 71154 & 0.56 \\ \text { UIC193 }-6 \times 74193 & 0.55\end{array}\) ITC199 \(=5 \times 74199 \quad 0.65\) CICXI-25 Assorted Assorted
\(74 . a 1\).
74.011 .65

115 WATT 8UL POWER SPS 55 DEACH

2 Amp. BRIDGE RECTS.
60 F RAS 35 peach \(100 \vee\) RNS 400
400 Y Whis 500


D1899 KPA smicon DUAL TRANSISTOR


B1P \(19 / 20\) TO8 ITPS PLASTIC SILICON
 \(\begin{array}{cccccc} & & \text { B1P } & 18120 & \text { Matched laul } \\ 25 & 100+ & 1 & 35 & 100 \\ 0.85 & 0.89 & 0.68 & 0.81 & 0.53\end{array}\)

\title{
KING OF THE PAKS Unequalled Value and Quality
}

\section*{CIDFE DAYC NEW BI-PAK UNTESTED SEMICONDUCTORS}

Money back setond if not astiofted
\begin{tabular}{|c|c|c|c|}
\hline & & Description & Price 20 \\
\hline 6 & 1 &  & 0.55 \\
\hline U2 & 60 & Mixed Germanions Transistors AB/RF & \\
\hline U 3 & 76 & Germanlum Gold Bonded Sub-Min. Hhe OA5. OAd7 & 5 \\
\hline \(\square 4\) & 40 & Germanionn Transistors like OC81. 1Cl2s & 0.85 \\
\hline 15 & 60 &  & 0.85 \\
\hline T6 & 30 & 8n. Planar Trane NPN like B8E95A & 0.68 \\
\hline U & 16 &  & - \\
\hline [18 & 50 & 8il. Planar Diodea DO-z Olisa 250mA Ilke OA200 & 0.65 \\
\hline \(\overline{\mathrm{V}}\) & 20 & Mixed Voltuges. I Writ Zener Diodea & . 58 \\
\hline リ10 & 20 & BAY50 charge atorage Dfodes DO-7 tilans & -.85 \\
\hline W11 & 25 & PNP Gil. Pladar Trans. T0-5 like 2N1132. EN 2 & 0.55 \\
\hline U12 & & 8ilicon Rectifers Epoxy D00mA up to 800 P1V & 0.85 \\
\hline 013 & 30 & PNP-NPN 8il. Trungtetors OC200 \& 28104 & 0.55 \\
\hline 014 & 150 & Mixed sillicon and Gertusalum Diodes & 0.58 \\
\hline W15 & 25 & WPS Sil. Plenar Trañ. TO.5 like BFFSI. & 0.68 \\
\hline W18 & 10 & 3 Amp gilicon Rect fifers 8tud Type np to 1000PI* & 0.85 \\
\hline U17 & 30 & Germanlutn PNP AF Transisior TO-\$ 1ke ACY 17-22 & O-88 \\
\hline U15 & & 6 Amp silion Rectilera BYZ19 Tspe up en 600 P1 & . 58 \\
\hline U19 & 28 & Bilicon NPN Transistorn like BC108 & 0.85 \\
\hline \(\underline{1 \%}\) & & 1.5 Amp Sulion Eectibers Top Hat un to 1000 & 0.85 \\
\hline U21 & &  & 0.55 \\
\hline U23 & 0 & MADT'a five MEx Series PNP Translators & 0.86 \\
\hline U24 & 20 & Germantum 1 Amp Rectitiers GJM Series top to 300 PIV & 0.85 \\
\hline U25 & 25 & 300 MHz NPN silicon Tremaletory 227708. 88127 & 0.58 \\
\hline 1726 & 30 &  & 0.88 \\
\hline U27 & & NPN Germandum AF Tranalntore TO-1 like ACl27 & \\
\hline \(\overline{4} 29\) & & I Amp 80R's TO-5 can, up to 600 PIT CRH1/25-60 & 1.10 \\
\hline V730 & & Plastio Blicon Planar Trang. EPN 2N2926 & 0.85 \\
\hline 031 & 0 & Siticon Plagat Plastic NPN Trans Low Noteo Arep 2 N 3707 & 0.65 \\
\hline TY & 25 & Zener Dlodes 400mW \(30-7\) ceno s-18 volts mixed & \\
\hline U33 & 15 & Platic Case 1 Amp Bilicon Fectioery 15 3000 geriea & 0.58 \\
\hline U34 & 30 & Siliton PNP Alloy Trane TO-5 BCY \(2829302 / 4\) & 0-58 \\
\hline U35 & 25 & Bilican Plangr Trandstors PNP TO-18 2N290¢ & 0.85 \\
\hline 436 & 25 & Bilicotr Planar NPN Tradototors TO-6 BPY50/31/5: & 0.85 \\
\hline (197 & 30 & 8Llicon Alloy Tratalstors 80-2 PNP OC2200, 288322. & 0.6 \\
\hline C38 & - 20 & Fast Switching Ailcon Trans. NPN 400 MHz \(2 \times 3011\) & 0.85 \\
\hline 7\%39 & 0 & RF. Germ. PSP Tranuistors 2N1S03/5 T0.5 & \\
\hline V40 & 10 & Dual Tranaistors 6 lead TO-5 2Ni2060 & 5 \\
\hline U61 & 25 & RF Germanium Tranaletora TO.1, OCA5, NKT72 & \(0 \cdot \overline{6 B}\) \\
\hline U42 & 10 & VIFP Germanimm PNP Transtetors TO-1 NKTB67. AF117 & 70.88 \\
\hline V43 & &  & 0.68 \\
\hline U44 & 2 & 81]. Trapg. Plastle T0-8 BCIIB/I]6 & 0.85 \\
\hline V45 & & \% 3A SCR. TO6t up to G00PIV & 10 \\
\hline
\end{tabular}

Code No.s. mentloned above are given as a gulde to the espe of derice fi the pak. The derices themselven are normally unmarked

\section*{SIL. RECTS. TESTED}

FOLI RAGGE of |NEW LOW PRICED TESTED S.C.R.'s



Giro No. 388-7006

\section*{Everyday Electronics Classified Advertisements}

RATES: 9 p per word (minimum 12 words). Box No. 20 p. extra. Semi-display - \(\mathbf{£ 6} \cdot 00\) per slangle column inch. Advertisements must be prepaid and addressed to Classified Advertisements Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines L.td., Fleetway House, Farringdon Street, London EC4A 4AD.

\section*{SITUATIONS VACANT}

\section*{TECHNICAL CLERK}

REDIFFUSION INDUSTRIAL SERVICES LTD. wish to recruit a young person to assist with the elerical duties associated with the planning of various technical projects.
The successful applieant will probably be 16-18 years of age, will have a logical mind, and an interest in either audio. radio or television, and preferably possess ' \(O\) ' Level GCEs in English Language and two Science-based subjects. There will be opportunities for the applicant to progress to higher technical levels limited only by his ability, and to this end, day release will be available for the pursuit of a rechnical qualification.
Applieations should be in writing to:-

\section*{R. L. C. Stinton}

Assistant Chief Engineer
Redifiusion Industrial Services Led
Astronaut House
Hounslow Road
Feltham. Middlesex. TWI4 9AF.

\section*{FOR SALE}

TIMBER Plywood cut to your requirements. GENERAI WOODWORK SUPPLIES, \(76-80\), Stoke Newington High Street, N16 5BR.

TIMBER \& PLYWOOD for tutor board drilled, glued ready for assembly. £l postage included. Mail order only. J. Lehane, Oristown, Ceanannus Mor, County Meath, Eire.

EXPERIMENTERS! Hundreds of unusual items cheap. 1974 catalogue \(5_{2}{ }_{2}\) p. Grimsby Electronics, 64 Tennyson Road, Cleethorpes, Lincs. (Mail Order Only).

\section*{WANTED}

NEWNES RADIO and TV Servicing books wanted. From 1960-1966, £2 paid per copy by return post, any quantity bought, Bells Television Services, Albert Place, Harrogate, Yorks. Tele phone 042386844.

\section*{RECEIVERS and COMPONENTS}

TUNBRIDGE WELLS, components from Teleservice, 108 Camden Road Tunbridge Wells, Kent. Telephone 31803.

COMPONENTS GALORE. Pack of 500 mixed components manufacturers surmixed components manufacturers surplus plus once used. Pack inciudes tors various, transistors, diodes, trimmers, potentiometers etc. Send \(£ 1+10 p\) p. and p. c.w.o. to CALEDONIAN COMPONENTS, Strathore Road, Thornton, Fife.

MUST GO: Electronic components. Pots, resistors, capacitors, etc. Send large stamped, addressed envelope for ist P. FASOLI, 28 Middleham Street Manchester MI4 7NG.

\section*{DESOLDERWICK SOLDER-ABSORBING WICK}

Approx \(\$ \mathrm{~cm}\). completely desolders a P.C.B. Aolnt. Use with any \(20-40 \mathrm{~W}\) soldering Iron. 30 cm . Pack 28 p inc. P. \(/ \mathrm{P}\). etc.
Multipack. Four fengths of wlek in various widths stop inc. P.jP. etc.

ORIENTATION LTD., Coverack Cornwall.

COMPUTER PANELS 5-BC108: DIODES 4S5p (100); WIRE ENDED NEONS 10-50p (8p): SILICON DIODES 650 V 1 \(1 \mathrm{~A} \quad 10-35 \mathrm{D}\) (5p) : 3 ASSORTED M.C. METERS \(2^{\prime \prime}-3^{n}\) £ 1-15 (27D); SILVER MICA CAPS 100 assorted 550 c.p-i POLYSTYRENE CAPS 100 assorted \(75 p\) c.D., your choice \(2 p\) each. FOUR WAY PLANO KEY SWITCH with interlock 33p (7p): 71b ASSORTED COMPONENTS fill 65 c.p.; 2lb ASSORTED COMPUTER PANELS £ \(1-65\) C.P. B. KADIO
2 Barnfield Crescent. Sale. Cheshire M33 1NL Postage in brackets.

Mail order only

\section*{BOOKS}

WORLD RADIO/TV HANDBOOK 1974 (published December) £3-15. Delivered direct from Denmark if ordered before publication. How to Listen to the World \(£ 2\). Postage and VAT included. Every order acknowledged immediately. DAVID MCGARVA, PO Box II4, Edinburgh EHI IHP.


\section*{MISCELLANEOUS}

BEGINNERS, we exist for you. Instruction, components, constructional kits. Send S.A.E. to Electrolern, Lyburn Lodge, Nomansland, Wiltshire.

CONSTRUCTION AIDS. Screws, nuts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia panels plain sheet supplied. Fascia panes quirements. Printed circuit boardsmasters, negatives and boards, oneoff or small numbers. Send \(6 p\) for list. RAMAR CONSTRUCTOR SERVICES, 29 Shelbourne Road, Stratford-onAvon, Warks.

RADIO \& TELEVISION AERIAL BOOSTERS \(£ 2-95 p\), five television valves 45 p . 50p bargain transistor packs, bargain £1 resistor and capacitor packs. UHFVHF televisions \(£ 7.50\), carr. £1-50p. S.A.E. for 3 leaflets. ELECTRONIC MAIL ORDER (BURY) LTD., Bridge Street, Ramsbottom, Bury, Lancs.

DIRECT FROM MANUFACTURER-a comprehensive catalogue of UHF \& VHF/FM aerials, fixing brackets, chimney lashings, clamps, masts, amplifiers, cable, etc., for the D.I.Y. ampliners, cable, etc., for the with useful inenthusiast. Complete with useful in-
stallation hints.. Send 3p stamp to stallation hints. Send 3p stamp to
CLAYDEW ENTERPRISES, (EE), 261 CLAYDEW ENTERPRISES,
Hardess Street, London S.E. 24.

BATTERY ELIMINATOR KITS. Our well-known Mini Mains Pack Kits now complete with drilled insulated base \(32 \times 55 \mathrm{~mm}\). Fits into space of most large transistor batteries. Easy wiring instructions. Safe, silent mains transformer, silicon rects, smoothing capaformer, sillicon rects, for any CNE of these voltages \((\) state which) \(: 3 \mathrm{~V}\),
300 mA max.: \(6 \mathrm{~V}, 180 \mathrm{~mA} ; 9 \mathrm{~V}, 120 \mathrm{~mA} ;\) 300 mA max.: \(6 \mathrm{~V}, 180 \mathrm{~mA}\); \(9 \mathrm{~V}, 120 \mathrm{~mA}\); mail only, UK post 5p. Amatronix Ltd., 396 Selsdon Rd., South Croydon, Surrey CR2 ODE.

\section*{DON'T LOOK}
unless you can resist the cempration to et these super attention-getters * Pocket-sized MAXI-VOLT Big tinch Spark Generator (inseant 15,000 voles!). Ready-made, needs no batteries. Carry it around any where. Only waighs abour 3 oz . (85s.) send EI .35 for your MaxiVolt now!
- Unique TRANSMITTER/RE

CEIVER Kic. No licence examinations or teses required to operate this eransistorised equipment. Easy
to build. Get transmitting. Send \(\mathbf{8 5} 90\) for yours now!
* Psychedelic MINI-STROEE Kic.

Take a pocket-sized lightning storm to Disco's and parties. 'Brain-freeze' em with vari-speed stop-motion flashes. Ineludes super case too
Send EZ. 20 now!
(All prices include V.A.T., packinz. and postage.)
Send remitrance to:
BOFFIN PROJECTS.
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY (Mail order only)
Or for more details, send 15p for lista. plus free design project sheet.

\section*{OMNI-DETECTORS}
(Featured \(\Rightarrow\) TV \(\star\) Radjo \(\star\) Nat. Press) Anclent art of Dowsing In Modern Guise. Thrill to new discovery In thls over-looked zspect of the Electro-Magnetic Spectrum. A LABORATORY N A SINGLE PACK.
Omni-Dectectors to:-
- Locate ANY busied substance, ANY depth. Save houra of frultess search belore you leave home.
- Limitiess other uses.

Dowsing used In World War 2 and by USA troops In Vietnam to locate underground iprings, tunnels, mines.
Send only \(£ 2 \cdot 30+15 p\) p. \& \(p\). for unlque pack of 4 dowsing instruments (nop-electronic) and expltelt 40-page manuai to sole supplers:- RmiTwickenham, Middx. TWi IBN.

\section*{7Ib BARGAIN PARCELS}

Hundreda of new resistors, capacitors, pots. switches. Also erystals, computer
loads of odis \& ends. Only \(£ 1.65(40 \mathrm{p})\)

\section*{COMPUTER PANELS}

Wide varlety from \(5 p\) at shop for callers. Or in packs: 3lbs asstd. panels \(£ 4\) ( 30 p ); 71 b £2 ( 40 p ); 561 lb £13 (c/pd): 12 high quaility panels with trimpote, IC's, power transistors etc. \(£ 2\) ( 30 p ). least 500 components inc at least 50 transisfors least (20p).

\section*{3W TAPE AMPLIFIERS}

Very sensitive 4 valve ampllfler with tone \& volume control flying 3 watts Into 3 ohms. Only \(\& 1 \cdot 65(40 \mathrm{p})\); Also available in cablnet with
\(7 \times 4\) speaker and non-standard tape deck. Malns operated, fully tested. £3 ( \(£ 1\) up to 200 miles, E1-2s over) Sultable cassette £i ( 30 p ). Spare head 30p.
NEW COMPONENTS: 741 C 8 pin DIL or TO99 32p; BC107 8p, 14 for £1; OC71 ditto; OC140 25p: OC170 15p; BFY18 12p; 2N3055 35p: XC121 5p: 400 V 5A SCR 60p: Crofon 64 filament light guide Eifmetro.

NTS: 500asstd resistors E1 (20p); 300 capacitors all types \(£ 1\) (30p): 25 10X crystals 75 ( 30 p ) 40 assid. Dots 21 ( 30 p ) Carr in brackets, small parts 4p. SAE List. GREEWWELDELECTRONTICS [EET] 24 Goodhart Way, West Wickham, Kent, BR4 OES.
Shops at 21 Deptford Broadway, SE8,
Tel 01-692 2009 \& 38 Lower Addiscombe Rd, Croydon.


\section*{SERVICE SHEETS}

SERVICE SHEETS for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from \(5 p\) with free Fault-Finding Guide, S.A.E. orders/ enquiries. Catalogue 15p. Hamilton Radio, 47 Bohemia Road, St. Leonards Radio, 47 Bohemia Road, St. Leon
Sussex. Telephone Hastings 29066 .


\section*{ELELTRDTI.KIT}

Electronic fun for all ages

\section*{the most versatile electaonics kits}
all components are beautifully oreapaulatod in unbreakable trensparent plestic blocke. Serfoct connoctionz zan zade HITHJUT SOLDEAING, SCREUIMG OP WIRING
incasolale value. suild, olsmantla and re* bild prajecte any numbe of timen and \(3 t 0\)
COMPLETELY Safe, Inetructive and fun
all kits oparate \(f=0 \mathrm{om} \mathrm{v}\). bettory only
aluable matuals included uith every kl . vo PREVIOUS KHOULEDGE IS RECuIRED, even
neeraphonao, amplifio
notso code oic. 30 :
\(\frac{\text { inonta }}{5:-1}\)
tronic birds ent olec-
organs, metranome,ilight
100 experisents,
=olar coll projeeta
eomplote sophistictad
control paral, ite. 105

Relay 4 mots \(r\) projecta
srantaj, valt-,roiste.
\[
\begin{aligned}
& \text { volupe- output. Fizeld } \\
& \text { intenaity- } 111 \text { uainomet }
\end{aligned}
\]
etc. 150 oaceri'ta
cdd-an past = and eancale
as requiled.
UHIUEASITY \& HOSOIIAL
LhBS. are valng our ler
kite ror practical as
Sand 6p. forliteratere, pleene

\section*{Satisfaction guaranteed}

ELECTRONI-KIT LTD, 408 St.Jahn's Street London, EC1. (01-278 4579)

PARKERS SHEET METAL FOLDING MACHINES

\section*{HEAVY VICE MODELS}

With Bevelled Former Bors
No. I. Capacity 18 gauge mild sceel, 36 in. wide
(17 00 carr. \(50 p\) No. 2. Capacity 18 gauge mild sceel \(\times 24 \mathrm{in}\). wide.. .812 .00 carr. 38 p No, 3. Capacicy 16 gauge mild steel \(x\) 18in. wide … \(812-00\) carr. 38p Also new bench models. Capacizies 36 in . \(x 18\) gauge \(635-0024 \mathrm{in}\). \(\times 16\) gauge \(£ 32 \cdot 00\). Carriage 75 p. Add \(10 \%\) VAT ro cotal price of machine \& carriage.
End folding attachmente for radio chassis. Tray and Box making for 36in. model, \(27 \frac{1}{p} p\) per ft . Other models \(17 \frac{1}{} p\). The two smaller models will form tlanges. As supplied to Government Departinents. Universities, Hospitals.

One year's guorantee. Money refunded if not satisfied. Send för details.

\section*{A. B. PARKER, Folding Machine Works.}

Upper George Sr., Heckmondwike, Yorks. Heckmondwike 3997

\section*{ \\ If you have difficulty in obtaining \\ EVERYDAY ELECTIRONICS \\ Please place a regular order with your newsagent or send 1 year's subscription (E2.35) to:- \\ Subscription Department, Everyday Electronics Tower House, Southampton Street, \\ London, WC2E 9QX \\ }

\section*{B.H. COMPONENT FACTORS LIMITED}

SPECIAL RESISTOR RITS (AW \(3 \%\) or \({ }^{\text {IW }} 5 \%\) CARBON FILM)
 POLYESTER CAPACITORS MULLARD C230 250 V

 160V: ( \(\mu \mathrm{F}\) ) \(0.01,0.015,0.022,2 \mathrm{tp}: 0.047,0.068,3+\mathrm{p} ; 0.1,0.15,4 \mathrm{pp} ;\)
 400V: ( \(\mu \mathrm{F}, 0.001,0.0015,0.0022,0 \cdot 0033, \mathrm{j} .0047,24 \mathrm{p}: 0.0068,0 \cdot 01,0 \cdot 015\), 0.022,0.033, 3tp:0.047,0.068,0.1,4tp, 0.15, 6tp \(0 \cdot 0 \cdot 22\), H \(_{2} p .0 \cdot 33,12 p .0-47,14 p\) MINIATURE MULLARD ELECTRONICS OIS:OIGOIT SERTES
 \(5 / 63,16 / 40,22125.22 / 63,32 / 100,33 / 16\). \(33 / 40\). \(32 / 63\). \(47 / 10\). \(100 / 10,100 / 25\).
 220/63; 21p; 330/16, 12p; 470/6-4; 9p; 470/40, 20p; 1000/16, 20p; 1500/16. 25p; 2200110, 25p.

ELECTROLYTIC CAPACITO历S. Tubular ond large can




 MINIATURE CERAMIC PLATE CAPACITORS
 \(470,360,680,820,1,152\), 0.033, 0.047, 2łp: 0.1, \(30,4 \nmid \mathrm{p}: ~ 01,100 \mathrm{~V}, \mathrm{Stp}\)

CARBON FILM RESISTORS 7 W \(5 \% 10\) ohms-2-2M, \(\ddagger W 5 \% 10\) ohmsIM. IR each or 100 for \(62 p ; 1,000\) for 24.50 .
METAL FILM RESISTORS \(1 W\) 5\% 10 ohms- \(10 M\). Itp each or 100 METAL. FILM RESISTORS IW \(5 \% 10\) ohms- 10 M . It
for \& 10 . \(15 E 12\) KIT ( 15 each value 10 ohms-IOM) fs .
 \(5 \times 3\) in (plain) Insertion rool 59 Track custer 44p Pins, pkz. 25 10p 10p 2pin 10 N pug, 12p; SkR.:
10p DIN Plug, 13 p ; Skz.. 10p. S pin DIN Plug, \(180^{\circ}\) 15p: Skt., 12p. Transistor Equiv. Book. 400 . lin. singla \(16 \frac{1}{2} \mathrm{p}\) single with switeh 260, dual 460.

Export Order enquiries welcome (VAT írea)
Dept E.E. GI, CHEDDINGTON ROAD, PITSTONE,
Tel.: Cheddington 668446 STD (0296). GIRO No. 3317056
Tol.: Cheddingo Catalorue FREE. Callers please ohone first

\section*{ZIGGY'S 2001 ELECTRONICS Co. Ltd.}


SPECS. MULTIMETER U4324. Sensitivity 20,000 OPV DC. Usually high current ranges. 3 amps a.c./d.c. Voltakes AC3 60900 d.c. 0.6 to 12000. Resistance 500 ohms-20-200. 2.000 g . Transmission level quality instrument has diode quality instrument has diode pad, batreries, ctc. ea. 80 plus 25 p \(P\). \& . \(p\)

MULTIMETER 4313. Similar to above but special features include 3 amp current range and instrument is housed in mecal case with earrying handic. (illustrated leaflet sent on


SANWA JP-5D
SPECS. 2000 OPV
1000 V A.C.-D.C.
500 M/A current D.C A robust instrument wish diode Only 66-64. P. \& P. 20p.

MAINS TRANSFORMER
Eagle MT6, 6-0-6. \(100 \mathrm{M} / \mathrm{A}\), 95 p plus \(6 p\) P. \& P. MTI2. \(12-0-12.50\) M/A. 95 p plus 10 p
Eagle Type MT280 6-0-6. \(250 \mathrm{M} / \mathrm{A}\), All \(£ 1.43\) \begin{tabular}{l} 
MT 50 12-0-12, \(150 \mathrm{M} / \mathrm{A}\) \\
MT 10024 plus 12 D \\
\hline \(124,100 \mathrm{M} / \mathrm{A}\)
\end{tabular}
R/S I3V \(0-5 \mathrm{Amp}\) C.T. \(\{\mathrm{El}-40\)
\(16 \cdot 3 \mathrm{Y}^{0.3}\) Amp C.T. plus 12p P. \& P

\(\begin{array}{llll}2 \mathrm{Amp} & \& 1.65 & \text { P. \&. P. } 120 \\ 4 \mathrm{Amp} & 1.9 S & \text { P. \& P. 20p } \\ 6 \mathrm{Amp} & \$ 2.62 & \text { P. \& P. } 35 p\end{array}\)

POTENTIOMETERS
log or lin less switch (\& Ik \(\Omega\) lin) \(1-5 \mathrm{I2p}\). \(6-1011 \mathrm{p}\) each. II plus 10p each
\(\begin{array}{ccc}5 k \Omega & 50 k \Omega & 500 \mathrm{k} \AA \\ 10 \mathrm{k} \Omega & 100 \mathrm{k} \Omega & 1 \mathrm{~m} \Omega\end{array}\)
\(25 k \Omega \quad 250 \mathrm{k} \Omega \quad 2 \mathrm{~m} \Omega\)
\(\log\) or lin with swizeh 1-5 24p. 6-10 23p.
dual les: switch \(1-539 p .5-1037 \mathrm{p} .10\) plus 35 p .
Any mix for Quantiky Prices. P. \& P. 7p.
MINE LOUDSPEAKERS
2ing 80 50p. 5p P. \&
3tin 80
50p. 5p

\section*{ENAMELLED COPPER WIRE} S.W.G. 16. \(18,20,22,24,26\). 2az reels. 26p.
\(28.30,32.34,36,38,40.20 z\) reels. \(36 p\). Postage \(1-5\). 10 p . 6 plus, 15p.

ANTEX SOLDERING IRON BITS Chrome Type for 15 wats Models.
Jisin. ain. a/ain. All 260 each. Postage 5p.

\section*{TELESCOPIC AERIAL}

Six Section, Swivel Base. Only 20p. P. \& P. 5p.
TURNTABLE SERVICES
Headshiells
Garrard SP25 Mk.I \& II. Type M7 S.M.E. S2 Shell

Thorens TP50 for TOIs0
Thorens TP60 for TDI60
Goldring PH7 for GL8S
Head slides
Garrard CI for SL 75 erc Postage 5p per
Garrard C2 for SP25 Mk.JII, SL95 etc.
8.S.R. for MP60, 310, 510,610

Jockey Wheels
Garrard SP25 Type etc.
MeDonald MPGo et
sylí Diamonds for Sonotone
9TAJHC LPJ7B
9TAJHC LP/LP
TRANSISTORS
BC107, 108, 109, all op each. Any six 50p. P. \& P. 4p.

EAGLE LT700 TRANSFORMYR
EAGLE LT700
40 P . \& P. Sp.
40R.P. \& P SP.
30p. P. \& P. 5p.
FOR SPEEDY DELIVERY OF THESE MINT CONDITION COMPONENTS PLEASE SEND C.W.O. to ZIGGY'S 2001 B4 MABIEY STREET LONOON E. All prices include VAT. please add postage All prices includ
where indicated.


The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600W of all lights, except fluorescents, at mains \(200-250 \mathrm{~V} .50 \mathrm{~Hz}\). AII DEXTER DIMMASWITCH models have built-in radio interference suppression. \(\quad 600\) watt \(£ 3.52\) Kit form \(£ 2.97\)

300 watt \(£ 2.97\) Kit form \(£ 2.42\)
All plus 12p post and packing
Prices include VAT. Please send c.w.o. to

\section*{DEXTER \& COMPANY}

2 ULVER HOUSE 19 KING STREET CHESTER CHI 2AH Tel: 0244-25883

\section*{INSTRUMENTAL AUODO EFFECTS}

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v BATTERY (not supplied). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: \(\mathbf{£ 2}^{2.26}\) post paid.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC.. UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM 9V BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULLINSTRUC. TIONS. KIT PRICE; £2-86 post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

\section*{DABAR ELECTRONIC PRODUCTS}
gia, LICHFIELD STREET, WALSALL, STAFFS, WS: IUZ

CAMBCLIRRIDGE CALCULATOR Fuly
Also available Sinclair Executive Calc \(\mathbf{£ 2 2}(\mathbf{£ 2} \mathbf{2} \mathbf{7 0})\)
AMTRON AND JOSTY KITS
SPECIAL BARGAIN OFFER
To celebrale our introduction of these famous kits we are offering them free of VAT and postage. All models stocked. Send sae for a quote by return.
SINCLAIR EQUIPMENT


Project 605

Project 605
(DEFINITELY IN STOCK!!!)
System 2000 (Special offer)
System 2000 (Special
\(240 \quad £ 4-25(630)\)
\(\begin{array}{ll}240 & 84.25(63 \mathrm{p}) \\ 260 & 85.30(74 \mathrm{p}) \\ 230 & 53.50(55 \mathrm{p}) \\ 250 & \mathrm{E4} .30(65 \mathrm{p})\end{array}\)
Stereo 80 Pre-amp
Project 80 Tuner
Project 80 Decode
Project 80 AFU
Project 60 AF
Stereo 60 Pre-amp
Stereo 60 Pre-am
Trans for PZ8
PRONECT 60 KIT
K19-90 ( \(\mathbf{8 2} \mathbf{2} \cdot \mathbf{3 0 )}\) \(018 \begin{array}{r}\text { £20.00 (£2.50) } \\ 5.5 \cdot 90(79 \mathrm{p})\end{array}\)
 \(\begin{array}{ll}\text { P26 } & 55-95(99 p) \\ \text { PZ8 } & \text { £6-40 (84p) }\end{array}\)

E2.70 (49p) Ous extremely popular kit contains the extra fuse-holder needed to complete Project 60.

BATTERY
ELIMINATOR
\(\ldots 3 \cdot 60\) ( 58 p )
BARGAIN
The most versatile battery eliminator ever
offered. Switched oufput of \(3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}\), 7.5 V . 9 V and 12 V at 500 mA .
Other ellminators stocked 50 mA Unless \(\begin{array}{rr}\Sigma 9 \cdot 53 & (\Sigma 1-05) \\ \Sigma 8.95 & (\Sigma 1-10) \\ \Sigma 5.69 & (77 p)\end{array}\) stated:-
\(4 \frac{1}{2} \mathrm{~V} £ 1 \cdot 50(30 \mathrm{p}) ; 6 \mathrm{~V} £ 1 \cdot 50(30 \mathrm{p}) ; 9 \mathrm{~V}\) £1-50(30p); \(7 \frac{1}{2} V\) eassette type \(£ 2-25(30 \mathrm{p})\); Double \(4 \frac{1}{2} V+4 \frac{1}{3} V\) E2.50 ( 35 p ); Double \(6 \mathrm{~V}+6 \mathrm{~V}\) £2-50 (35p); Double \(9 \mathrm{~V}-9 \mathrm{~V} 52 \cdot 50\) (350): Switched model giving 8 V ,
\(7 \frac{1}{2} \mathrm{~V}\) and 9 V at 400 mA is2.99 (50D).
IC RADIO CHIP TBA65I
£2. 90 (32p) The world's most advanced IC radio chip. Con-
tains RF Amp, oscllator, mixer, IF Amps, wide tains RF Amp, oscllator, mixer, IF Amps, Wide
range AGC cifcuitry and voltage stabilizer. With range AGC cifcuitry and voltage stabilizer. With
data \(\& 2 \cdot 10(32 p)\). Send S.A.E. for free leanet. A kit of resistors. capacitors and if filters is available to \(g o\) with the chip for \(£ 1-75\) ( 29 p ).

\section*{S.DECS \& T-DECS}

S-DECS \(\quad 1.4(25 \mathrm{p})\) \(\begin{array}{ll}\text { T-DECS } & 82.88(40 p) \\ \mu-\text { DECA } & £ 3.18(43 p)\end{array}\) \(\begin{array}{ll}\mu \text {-DEC A } & £ 3 \cdot 18(43 p) \\ \mu \text {-DEC B } & £ 5.94 \text { (73p) }\end{array}\) 16 dil IC carriers (17p)


SINCLAIR
SUPERIC12
With 44 page
bookiet and
printed
\& \(2 \cdot 10\) (43p)
\(\qquad\)

DELUXE KIT FOR THE IC12
includes all parts for the printed circuit and volume, bass and treble controls, needed to complete the mono verslon \(£ 1.55\) ( 26 p ). Stereo model with balance conlrol \(\mathrm{E3} .50\) (46p)
1C12 POWER K1T
Supplies 28 V 0.5 Amps \(£ 2.47\) (50p)
\(5^{\circ} 8\) ohm \(£ 1 \cdot t 0(270) .5^{\circ} \times 88 \mathrm{ohm} £ 1 \cdot 55\) (370). 58 ohm \(£ 1 \cdot 10(270) .5 \times 88\) ohm 51.55
PREAMPLIFIER KITS FOR THEIC12
Type 1 for magnetic pickups, mics and tuners. Type 1 for magnetic plickups, mics and tuners.
Mono model \(\mathrm{E} 1-30(24 \mathrm{p})\). Stereo model \(\mathrm{E2}-30\) (34p). Type 2 for ceramic or crystal plckups. Mono 60 p (17p). Stereo \(\mathrm{Xt}-20\) ( 23 p ).
SEND SAE FOR FREE LEAFLET ON KITS
ECONOMICAL QUADRAPHONICS
£ \(11 \cdot 95(£ 1-50)\)
Eagle AA10 Quadraphonic Synthesizer. Com: plete, self-contained malrix system in attractive cabinet. Just feed ordinary 2 channel stereo into it and connect outputs to 4 loudspeakers to obtain
the latest exprrience in sound. 35 watts rms/ channel

\section*{SWANLEY ELECTRONICS}

32 Goldsel Rd., Swanley, Kent.
please add the sum shown in brackets after the prlce to cover the cost of post and VAT. Officlal credit orders from schools etc. welcome.
Mall order only. No callers, ploase.


That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU, A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yoursclf into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you . . . but it could be the best thing you ever did.

\section*{Others have done it, so can you}
"Yesterday 1 received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has becr the best value for money I have ever obtained - a view echoed by two collcagues who recently commenced the course".Student D.I.B., Yorks.
"Completing your course, meant going from a job I detested to a job that llove, with unlimited prospects".-Student J.A.O. Dublin.
"My training with B.I.E.T. quickly changed my carning capacity and, in the next few years, my earrings increased fourfold" - Student C.C.P., Bucks.

\section*{FIND OUT FOR YOURSELF}

Thesc letters - and there arc many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up ncw opportunities for yoursclf. lt will cost you a stamp to find out how we can help you. Write to B.I.E.T. Dept. BEE 26, Aldermaston Court, Reading RG7 4PF.

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.


To B.I.E.T., Dept. BEE 20
QN
Aldermaston Court, Reading RG7 4PF
BEE26
```

NAME
Block Capitals Please

```

ADDRESS

OTHER SUBJECTS

EARN YOURSELF EASY
MONEY, WITH
PORTABLE DISCO
EQUIPMENT
DISCO MINI A complete portable
disco, fisted mixeripreamp, 2 decks all
facilities. 698.50
As above but with Slider Controls \(\quad \in 118.50\)
100 watt amplifier for above
SL 100100 wate mixer/amplifier with
slider controls
R50 50 watt mixer/amplifier
R100 100 watt mixer/amplifier
DISCO AMP 100 watt mixer/amplifier
Chassis unit MiXER/PREAMPLIFIERS
(OP for up so 6.100 wate amplifiers)
SDLI (rotary controls)
SDLII (slider controls)
DISCO VOX (Elider controls) the
complete disco preamp
DJ100 100 wat: power amplifier for
above 3 channel 3kw sound ro light
DJ40L as 30 L plus buite in microphone DIMAMATAC 1 kW adjustable speed auro dimmer
Eariaboro Reverboration Unit E44.00
SCENE STROBE \&I9-00. ROAD STROEE,
E25.00. SUPER STROBE E45.
Disco anti-Meedback microphone \(£ 11.95\)
Colt 150 watt liquid wheel projector \(\$ 22.50\) 150 watt QI liquid wheel projector \(£ 50.00\) 50 watt Q1 cassette wheel projector \(\mathbf{5 0 0 - 0 0}\) Spare Effects and liquid cassettes large range of patrerns
Mini spot bank fizted 3 lamps
Auto Trilite (mini with flashars)
66.00

Bubblemaster with 1 gall. liquid
E17.00
f 41.15
Mixers/Mics Speakers/Lighting
FREE STOCK LIST REF. No. Is ON REQUEST.
AKG /RESIO / DI / CARLSBRO EAGLE MICS., STANDS, MIXERS, CABINETS. CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURN
TABLES, PUBLIC ADDRESS COM= PONENTS.


All prices carr. paid (UK) (VAT EXTRA) Barclaycard/Access call, write or phone your
order 0 i- \(723-6963\) - casy terms for callers.
 as illuserated.


The Texan Scereo Systems include the high quality Texan Stereo amplifier assembled and ready to use. A pair of Type 20020 watt 5 pezker-Tweeter systems size \(21 \times 12 \times\) and a choice of Garrard players built into a Dlineh magnetic cartridge. Syszem \(\mathbf{2 5}\) uses Garrard SP25 Mk II and system 76 the Garrard AP76 de luxe turntable. All necessary leads are supplied.

System 25 (list approx. £109) £79.50 System 76 (list approx. £117) \(£ 89.50\) (plus \(10 \%\) VAT and plus \(\mathbf{~ 1} \cdot 4 \mathrm{~S}\) carr) packing)

Barclaycard/Access, call, write or phone, your order 014024736 EASY'TERMS FOR CALLERS

NEW SINCLAIR PROJECT 80
Stereo PreAmplifier
Audio Filter Unit
Z 40 is Watt Amplifier
Z60 25 Watt Amplifier PZ5 Mod. for 1 on 2 Z40 PZ6 Mod. (S Tab) I on 2 Z 40 PZ8 Mod. ( 5 Tab) I on 2 Z60
TRANSFORMER FOR PZ8 NEW FM TUNER STEREO DECODER All iterns post paid.
BUILD THE NEW HENELEC

\section*{Henrys}

Catalague
A completely new high stability stereo FM tuner features variable eapacity diode tuning, stabiliser power supply, IC Decoder, high gain low
seages. \(\mathrm{L} E \mathrm{O}\) indicators.
Tuning meter, AFC, easy to construct and use. Mains sign with fibre glass PC, teak cabinet, erc. Available
as a kit to build or ready buil
Overall size \(8^{\prime \prime} \times 2 \frac{2}{2}^{\prime \prime} \times 6 \mathbf{y}^{\prime \prime}\).
Produced to give high peri
ance with a realistic price. (Parts
list and constructional details Ref.
tributors UK and Europe.
KIt PRICE \(£ 21.00\) (+VAT)
£24.95 (+ VAT)
LIVING SOUND LOW NOISE TOP QUALITY CASSETTES MADE BY EMI TAPES LTD. TO INTERNATIONAL STANDARDS ESPECIALLY FOR HENRY'S. ALL POST PAID LESS THAN \(\frac{1}{2}\) REC. PRICES COMPLETE WITH LIBRARY CASES
 Quancity and trade enquiries. invired
LEARN A LANGUAGE-complete with phrase ltalian \(\mathrm{EI}-36\) per course. \(\mathbf{6 5}\) for any 4 .

\section*{LOW COST HI-FI SPEAKERS}

\section*{SPECIAL OFFERS}
EMI \(13^{\prime \prime} \times 8^{\prime \prime}\)-fuli range speakers

E2. 20 each or 64.00 pair.
-450 : 0 watt C 10 Twin
450 io watt C/0 Twin Tweeters 3, 8 or
15 ohms
each or \(\mathrm{k7}\) - 90 pajr.
35020 watr \(C / 0\) Tweeters 8 or 15 ohms
E7-50 each or \(£ 14 \cdot 20\) pair
*Folished wood cabinet E4-60 post 35p



\section*{BUILD YOURSELF A POCKET CALCILATOR}
A complete kit, packaged in a polystyrene concainer and esking about 3 hours to assemblethats the Sinclair Cambridge pocket calculator
from Henry's. Some of the many feazures include interface chip. thick-film resistor pack, printed circuit board, electronic components pack. Size \(4 \frac{1}{3^{\prime \prime}}\) long \(\times 2^{\prime \prime}\) wide \(x+1^{\prime \prime \prime}\) deep.
Free of charge with the kit for the more advanced technolozist is a 32 -page bookiet explaining how
to Calculate Logs. Tangents. Sines etc.
524.95 Also available f27.2

ready to use
See pages 6, 7 \& 8 of this magazine```


[^0]:    All types offered subject to availabiler. Prices correct at time of press E. \& O. E. $10 \%$ VAT to be added to all orders. UK post, etc. 15 D . per order.

[^1]:    or see for yourself at: THE AMKIT D.I.Y. CENTRE,
    15, Procter St., London, W.C.1. (opp Holborn Undgnd). Open Mon-Fri $9.30 \mathrm{am}-5-30 \mathrm{pm}$. Sat 9 am-1 p.m.

[^2]:    *Delete as required.

[^3]:    - IPC Magazines Limited 1974. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

    All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable.
    We cannot, howover, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press-
    Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^4]:    Publisher's Annual Subscription Rate, including postage to any part of the world, $£ 2 \cdot 35$. International Giro facilities Account No. 5122007. State reason for payment "messaye to payee". Address to Everyday Electronics, Subscription Department, Carlton House, Great Queen Street, London, WC2E 9PR. Binders for volumes 1 and 2 (state which) and indexes for volume 1 available for $97 p$ and $11 p$ respectively, including postage, from Binding Department, at the above address.
    We are unable to supply back copies of Everyday Electronics or reprints of articles and cannot undertake to answer readers' letters requesting designs, modifications or information on commercial equipment or subjects not published by us. An s.a.e, should be enclosed for a personal reply, Letters concerning published articles should be addressed to: The Editor, those concerning advertisements to: The Advertise. ment Manager, both at the address shown opposite.

[^5]:    * Items marked thus may already have been purchased for the original amplifier design and need not be reordered.

