An exciting hobby.... for everyone

easy to NEME
DOUBLE-SIDED CHART - Data Sheet

- Blueprint

NEW EDU-KIT MANOR

COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT BUILD THESEPROJECTS WITHOUT SOLDERING IRON OR SOLDER.
Total Building Costs
ET•23

NEW ROAMER NINE

WITH V.H.F. ING AIRCRAFT
platmol telescopic aerial for VHF and SW. Push Pulloutput using fon mw erannistore. 9 Transistors an
3 dioutex, tuniag condeguer with V. $\$ 1, F$, sectlonNue with red grille and carrving atrap. Size $92^{\prime \prime}$ "

Total Building Costs $£ 6.95$

Components Include:
Tuning Condencer: 2 Volume Controln: 2 Bllder Strip: Ferrite Rod Lovitrg Coll Speaker. Terminal Battery Clpn: 4 Tag Buariln: 10 Transintora: 4 Dlodes Rematorn: Capacitors: Threc i" K nobs. Lnita once conn tructed are detachable from Manter t'nit. enabling them to be siored for future use. Ideal for schools. Parth porlce list and plans ? 20 (FREE with parta)

Total Building Costs ≤ 5.50 ine $33 p$
ROAMER SIX
6 Tunable Wavebands: $\mathbf{M W}$, Lw, gwl, gwo.gw Trasler band plus an Extra Serliun wavebanil for aerial and telencople aerial for thort Waves. 3in. speaker. Antagen-6 transintors and" dicofem. Attrac tive black cave with rod grille, dal and black knohs approx. Plans and parto price list 250 (F REE with

Total Building Costs $£ 3.98$

TRANS EIGHT
8 TRANSISTORS and 3 DIODES
 band. Senvilve ferrite rol acria aer al for short wave 3in
and
 inturn plas 3 ilichles. Alliractlve case in black with rel grllle. liaal and black

Total Building Costs 84.48
PleasseaddiUZor VAT NC PRP

RADIO EXCHANGE CO

61a HIGH STREET, BEDFORD, MK40 1SA Tel. 02345236
Reg. no. 788372
I enclose \& for

The Catalogue you MUST have!

』ロ～の日® MAIL ORDER DEPT．
 No．II
 580
 ONDON N22
 II \＆ 40 MAYES ROAD．LONDON N22 GTL 8883206
 N 22 672

COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR our shops are open all day EROM＇A．M．TO ${ }^{6}$ P．M． 6.30 P．M．ON FRIDAY （WE CLOSE ALL DAAY THURSDAY） 13 SOUTH MALL，EDMONTON，N• 98031685

A DEXTER OINMSBWIITH

ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch．It is available as a complete＂ready to install＂unit or＂simple to assemble＂kit．Two models are available controlling up to 300 W or 600 W of all lights．except fluorescents．at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$ ．All DEXTER DIMMASWITCH models have built－in radio interference suppres－ sion．$\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $\mathbf{~} 2.97 \mathrm{Kit}$ form $\mathbf{£ 2 . 4 2}$
All plus 12 p post and packing
Prices include VAT．Please send c．w．o．to
DEXTER \＆COMPANY
5 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel：0244－25883

INSTRUMENTAL AUDIO EFFECTS

SUPER＂FUZZ＂UNIT KIT．CONNECTS BETWEEN GUITAR \＆AMPLIFIER．OPER－ ATES FROM 9v BATTERY（not supplled）． ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS．KIT PRICE： $\mathbf{\text { E } 2 . 8 4 ~ p o s t ~ p a l d . ~}$

CREATE＂PHASE＂EFFECT ON YOUR RECORDS．TAPES ETC．，UNIQUE CIRCUITRY Enables you to create phase EFFECT AT THE TURN OF A KNOB．OPER－ ATES FROM 9v BATTERY（not suppllad） COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \＆FULL INSTRUC． TIONS．KIT PRICE：E2－BE post pald．

MAIL ORDER ONLY．
S．A．E．ALL ENQUIRIES．

DABAR ELECTRONIC PRODUCTS

Dfa，LICHFIELD STREET， WALSALL，STAFFS．WSI IUZ

Everyday Electronics，October 1973

YES，＂YOU＇VE GOT THE WHOLE WIDE WORLD IN YOUR HANDS＇！ALMOST UNBELIEVABLE！Think of the year 1984 and what might beproduced then－now got ineredible Russians have done lt all NOWI lt＇s the radio perfoctionist＇s dream come truel THIS ONE SUPER． SEDES ALL EARLIER MODELSI lt will probably make your present radio seem like a＂erytal set＇＇Complese With almost giving them away as only $\mathbf{5 1 8} 50$－a more fraction of even today＇s Russian miracle pricel We challenge you to test 7 days from receipt of goods，refund if not delifited Volume controlled from a whisper to a roar that would filf a hall Much wider band spread，for absoluto＂pin－point＂station selection！Plus＂MAGIC EYE＂tuning lovel indicator for ultra perfect tuning sensitivityl Yes，the Russians have surpassed electronics，proving again their fantastic ability in the field of technlques，in the field of space communications．Yes，EVERY WAVEBAND instantly as your fingertips including Standard four corners of the earth during 24 hours a day Including all normal sransmissions．VHF：FM／USW，AM：LW，MW，SW gets，locally，local and new stations not yet operational，and messages from all over the world Expensive TURRET TUNER side control waveband selection unit（as used on expensive T．V．＇s！）Every waveband clicks into position giving incredible easc
of station tunina！Genuine push－pulf output ON／OFF volume and separate Treble and Bass tone controls for utter perfection of reproduction and zone！Press－button dial illumination！Take it anywhere－runs economich from on $220 / 240 \mathrm{~V}$ AC mainssupply．Internal corrite rodaerial plus buit－in＂rotatable＂telescopic aerial extending used through extension amplifier，tape recorder or public dicently system．SIZE $13 \times 10 \times$ eflns overall approx．Magni－ perfect service．Purer and sweeter sone zhan ever．（U．K．service racilities and spares available for years and years to come，If ever operatins，instructions and circult diagram．PLUS ultra sensitive
 sensational＂COMPUTERISED＂．WORLD TUNING GUIDE it enables you zo zone and time for zransmissions the whole when to tune into the U．K．，when abroad．NO GUESSING！NO MESSING！）PLUS Standard longlife batceries and convertir Plug（Sorry－We cannot
 1973 RUSSIAN RADIO TECHNOLOGY SHRINKS THE WORLD！＊COMPUTERISED？

EATH OHDNUVITPORTABLE RADIO \＆COMMUNICATIONS

Yes， 24,901 miles SHRUNK TO ONLY：$Z^{\prime} \times 10 \times 44^{1 / 2}$ inches approx？

SAANDABD LONG and MEDIUM Pus 5 sinit Whitsimos Gus ULILA SWOTI WHES

（V．I．T．AM FM．${ }^{4 W}{ }^{(1)}$ ）

MANSRATTERY

RECEIVER

Bumuuis ASTRAD 17

Shopertunities＂thunder＂ahead with an offer that＇s FANTASTIC（even in the world of sound！First－ciass makers！Fabulous VHF，AM／FM Radio ANO Cassetze Tape Recorder \＆Player combined and it also runs off standard batteries or maine．（Simply plug in the $220 / 240 \mathrm{~V}$ ．AC line cord．） Record and play back anything，anywherel AECOMMENDED RETAIL
PRICE GENUINELY $£ 44!$ WE OFFER AT UNDER HALF PRICE PRICE GENUINELY \＆44！WE OFFER AT UNDER HALF PRICE
Wonderful features： Wonderful features：$⿳ 亠 口 冋 口$ Press－button Keyboard Control Panel or latest
MASTERSWITCH recording level indicator or built－in automatic Leveller！t Separat Earphone（for personal listening or＂monitoring＂y and extension spaker sockess！Remote contral microphonel t Built－in swivel telescopic extension aerial（24in．approx．）l Magnificently made case woth carry handle．（DESIGNS VARY SLIGHTLY．）Takes standard $30,60,90$ or 120 － minute Casserte Tapes obsainable everywhere．AND the amazing built－in full circult VHF，AM／FM Radio gives you superb clarity of zone，incredible stasion selection，Unique rotating Station Selector Dial－gets，locally，ciry and regional of foreign stations．Fabulous in vour parl Y．C．Nalional，$f f$ mop iozens Radio or Car Cassetre player ALONE！OUR FANTASTIC PRICE ONLY E20．97，carr．tc．${ }^{\text {antenctions，remote control microphone with onlofs switch with simple }}$ phone stand．WITH WRITTEN GUARANTEE．Send quickly，test on mail order 7 day approval from recelpt of goods－refund if not delizhted BONUS OFFER：Batteries and Cassete Tape 28p extra if required．

SHOPERTUNITIES LTD．

THE ONE STEP FORWARD EVERYONE HAS WAITED FORI NOW a superb Shopertunities bring is name first－clas：makers－but rest assured you＇re setring one of the BEST Expensive＂PIANOKEYBOARD＂COH CJTROLPANEL（or Iatest MASTER SWITCH control）AND AUTOMATIC LEVEL CONTROL．No fiddling with awkward tape and reels，just＂slap－in＂a cassette and off you gol （Takes 30,60 ，or 90 minute standard cassette tapes obtainable everywhere）． Amaxing performance ensures perfect rapings and superb reproduction！Remote control microphone．Rapid Rewind！Fast forward！Beautiful tone from a whisper to a roarl What a gift Complete－record anywhere，indoors or outl Runs on stendard batteries AND $220,240 \mathrm{v}$ ．AC mains．Separate jacks for slightly．With carry handle．WRITTEN GUARANTEE and full instructions （Recommended selling price $\subset 26.97$ ！）OUR PRICE ONLY 110.95 ，post etc． SOp－NO MORE TO PAY！©Send quickly，test on 7 days mail order BONUS OFFER（one goods－rofund if not delighted．se of standard batteries，ANO microphone stand all fer 55p extra，if required．

[^0]
ALL PRICES SHOWN INCLUDE V.A.T.

GARLAND BROS. LTD. DEPTFORD AROADWAY, LONDON, SE8 GQN

SWITCHES

Standard congle witches: SW20Miniature togele switches; SWI8. 64p. Slider switches: SW3-D.P.O.T., ISjp. Miniature puth button: SWI-S.P 14\%p.
Foot oporated switch S.P.S.T. 46p.

Doo
20p.
Wafer switches (rotary)- 26 tp each. SW4- 5 F pole, 12 way. SWG- 3 pole, 4 way. SW7-A pole, 2 way SW8-4 pole, 3 way.

GROOV-KLEEN

de luxe model 42, [1.83.

MAINS ISOLATING TRANSFORMERS
It your bench salet
Brand new, Hinchley, 200W. ully shrouded. Pri, 240V sec , tapped $210-240 \mathrm{~V}$. At fraction of the maker's price
C 3.50 plus $72 \rho p$. c3-50 plus 72p p. A p. 240 V
Connecs in series with lamp upply to flash approx. once per second.

Trpe
44p. Trpe C: 500 W
41.36 4.36

EA 1000 BARGAIN

 This popular $3 W$ emplifier complete with comprehen. cive data book showing one controls. power supply, esc. Our price only 82.35 , plusCRYSTAL MICROPHONE
A very neat. sen.
sitive microphone
lor hand or sable
use. Complete
with lead and 3.5
mmplug. 4100 . Inpur: 30 mV into lokg for 10 W $40-16,000 \mathrm{~Hz}$ Output: 3-8-160 (4.70 plus 240 P. \& P plus 24p

PANEL NEON INDICATORS 240 V
NI-Rqund, 9 mm diameter. 33 F . N3-Oblong. 31 I 7 mm , 32 p .

CASSETTE ACCESSORIES

 Mea.54p.
Cassette rack with teak ends, holds 10 cassectes in library cases. T2p, olus 12p P. \& P.

CONNECTING WIRE PACK Contains 30 feet of
colours per pack. 11 p.

RESISTORS

Carbon film
All 5%, hish-stability, El2 values $\ddagger W$, Ip: $\ddagger W$. Itp; IW, 4tp; $2 W$. 6łp SW, IIp; 10W, 13p.

CONSOLE CASES

MAINS POWER SUPPLY Pp75 for Philips and similar cossette recorders.
Input 240 V a.c.: output 5 pin 240 plug with olus $16 p$ P. \& P

ALUMINIUM BOXES

Troe L	W.	0.	Price	P. \% P
G87* 5tin	2tin	1 lin	42p	16p
G88. 4in	4 in	If in	42p	16p
GB90 4in	2tin	itin	42p	14 p
G810*5tin	4 in	Ifin	49p	19p
GBil tin	2tin	2 in	42p	14 p
GBI2 3 in	2in	I in	36p	15p
G8I3 6in	fin	2 in	57p	20p
GBI4 7 in	Sin	2 in	69p	$21 p$
GBIS 8in	6 in	3 in	${ }^{69}$ p	29
G816 loin	7 n	3 in	4.00	29p
			These stand verobo	zes fir rd ards

DYNAMIC MICROPHONE UD 130HL
This sensitive, quality microphone uni-direcsional and is complete with
muce switch and 20 feer of cable and muce switch and 20 feer of cable and
plus. $100-12.000 \mathrm{~Hz}$. Ouai impedance 6000 15
66.60, plus 24p P

PLASTIC BOXES

for constructional
projects White projects. White, with lid and screws. BPI 4tins \times lins
Itins- $37 p$. BP2 6ins: 2tins- 37 p. TAPE ERASER

erases whole reel of tape in seconds. 240 V 2.c. Full inssructions.
$\mathbf{2 2} 20$, plus $22 p$ P. \& P.

SCREENED CABLES

Single for mics, audio leads, etc. 5 pp yd Twin, as above, common screen 10 p yd Stereo, two cores, individually screened Ilp yd Four core with common screen 230 yd Four core, individually sereened 30p yd. Coiled screened leads, 20 feec long $\mathbb{C l} .05$ each.

PLUGS
Car aerial
Co-axial
Co-axial
D.I.N. 2 pin (speaker) D.IN. 3 pin D.IN. 5 pin. 180 D.I.N. 5 pin. 240 DIIN. 6 pin.
Jack, $2 t \mathrm{~mm}$ unscreened Jack, 2tmm screened Jack. $3 \frac{1}{} \mathrm{~mm}$ unscreened Jack, 3 fmm screened Jack, tim unscreened Jack, tin screened Jack, stereo, unscreened Jack, stereo, screened Phono, plastic top Whander red or black Wander, red or black

LINE SOCKETS

Car aerial
D.I.N. 2 pin (speaker) D.I.N. 3 pin
D.I.N. 5 pin, 180 D.I.N. 5 pin, 240° Jack, $3 \$ \mathrm{~mm}$ Jack, tin screened Jack, scereo, screened

CATALOOUE
 15p

POST FREE

TRANSFORMERS
all with 0.250 Vole primaries. Miniature
MM6 $6 \mathrm{~V}, 500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$ MM12 $12 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$ 11.42 , $14 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ El.42, plus itp P. a P
L.T.

LTi $63 V, 1.5 V-82 p$, plus $20 p P$. \& P T2 $63 \mathrm{~V}, 3 \mathrm{~A}-96 \mathrm{p}$, plus $28 \mathrm{p} P$. \& P. LT3 $12 \mathrm{~V}, 1.5 \mathrm{~A}-96 \mathrm{p}$, plus $28 \mathrm{p} P$. \& P LT5 9-0.9V, 0.5A-d3p, plus $23 p \mathrm{P}$, \& LT6 12-0-12V, |A- 11.04 , plus $29 \mathrm{p} P$. \& P
Multi-tapped
MT30/2 0.12 -15-20.24-30V, 2A-22.15, plus $33 p$ P. \& P. 20.24-30V, 2A-62.15 MT60/I $0.5-20.30-40-60 \mathrm{~V}$. IA- 22.31 ,
 plus 37ρ P. \& P.
Charger
CT/01 1A- 11.16 , plus 28p P. \& P
 Secondaries $0-5.11 .17 \mathrm{~V}$
Speaker Matching 3-B-16 0 Example: 16Ω speaker to 8Ω amplifier plus 220 P.

MINIATURE

ELECTROLYTICS

ELECTROLYTICS				RESISTOR BARGAIN PACK					
1.0رF 63V	7p	$150 \mu \mathrm{~F} 25 \mathrm{~V}$	${ }_{\text {en }}{ }^{\text {P }}$	$\begin{aligned} & \text { of } 100 \\ & \text { E24 val } \end{aligned}$		tors. ood	erance tment:		etter, ction,
1.54F63V	7 p	$150 \mu \mathrm{~F}$ 40V	130		s.		rment:	r s	ction,
$2.2 \mu \mathrm{~F} 63 \mathrm{~V}$	7 p	$150 \mu \mathrm{~F} 63 \mathrm{~V}$	15p						
$3.3 \mu \mathrm{~F}$ 63V	7 p	$220 \mu \mathrm{~F}$ 4V	7 p	MAGNETIC COUNTERS					
4.7 ${ }^{\text {F }}$ F 63V	$7 p$	220رF IOV	$7 p$						
$6.8 \mu \mathrm{~F} 40 \mathrm{~V}$	7 p	220\%F 16 V	8 p	Brand new, neat, 48 volt,					
$6.8 \mu F$ $10 \mu \mathrm{~F}$ 63 V 25 V	$7 \mathrm{7p}$	$\begin{array}{ll}220 \mu \mathrm{~F} & 25 \mathrm{~V} \\ 220 \mu \mathrm{~V}\end{array}$							
$10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ 15 V	$7 p$ $7 p$	$220 \mu \mathrm{~F}$ $220 \mu \mathrm{~F}$ 63 V	$115 p$ $22 p$	5 digit counters. 66p.					
15HF 16 V	7p	$330 \mu \mathrm{~F}$ 4V	$7 p$						
15,FF 40V	$7 p$	$330 \mu \mathrm{~F}$ 10V	8 p	CASSETTE MICROPHONE					
$15 \mu \mathrm{~F} 63 \mathrm{~V}$	$7 p$	$330 \mu \mathrm{~F}$ 16V	3 p						
22 $\mu \mathrm{F}$ 10V	$7 p$	$330 \mu \mathrm{~F} 63 \mathrm{~V}$	36p						
$22 \mu \mathrm{~F} 25 \mathrm{~V}$	$7{ }^{7}$	$470 \mu \mathrm{~F} 6.3 \mathrm{~V}$	${ }^{81}$						
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	$7 p$	470رF 10 V	13 p	control switch. Fitted $2 t \mathrm{~mm}$ and $3 \$ \mathrm{~mm}$ plugs. ©2.34, plus $15 p$ P. \& P.					
$33 \mu \mathrm{~F} 6.3 \mathrm{~V}$	7 p	$470 \mu \mathrm{~F}$ 2SV	13p						
$33 \mu \mathrm{~F}$ 16V	7 p	$470 \mu \mathrm{~F}$ 40V	12p	ELECTROLYTICS					
$33 \mu \mathrm{~F} 40 \mathrm{~V}$	7p	680μ F 6. 3V	13p						
$47 \mu \mathrm{~F}$ 4V	$7 p$	$680 \mu \mathrm{~F} 16 \mathrm{~V}$	15p	$1 \mu \mathrm{~F}$	450 V	$21 p$	$1000 \mu \mathrm{~F}$	50 V	46p
47uF IOV	7p	$680 \mu \mathrm{~F} 25 \mathrm{~V}$	12p	$2 \mu \mathrm{~F}$	450 V	22p	2000 $\mu \mathrm{F}$	$25 V$	430
47, FF 25 V	7p	$680 \mu \mathrm{~F}$ 40V	26p	$4 \mu \mathrm{~F}$	350 V	15 p	2000 $\mu \mathrm{F}$	50 V	58 p
47 HF 40V	7p	$1000 \mu \mathrm{~F}$ 4V	13p	$8 \mu \mathrm{~F}$	450V	18.10	$2500 \mu \mathrm{~F}$	25 V	50p
47, 4 F 63 V	8 8p	$1000 \mu \mathrm{~F}$ l0V	15p	$16 \mu \mathrm{~F}$	450 V	20^{20}	$2500 \mu \mathrm{~F}$	50 V	$66 p$
$68 \mu \mathrm{~F} 6.3 \mathrm{~V}$	$7 p$	$1000 \mu \mathrm{~F} 16 \mathrm{~V}$	22p	$25 \mu \mathrm{~F}$	25 V	710	3000 $\mu \mathrm{F}$	$25 V$	53p
$68 \mu \mathrm{~F} 16 \mathrm{~V}$	$7 p$	$1000 \mu \mathrm{~F} 25 \mathrm{~V}$	26p	$25 \mu \mathrm{~F}$	50 V	$1{ }_{1}$	S000 $\mu \mathrm{F}$	25 V	$66 p$
68.15 F 63V	13p	$1500 \mu \mathrm{~F} 6.3 \mathrm{~V}$	15p	32 $\mu \mathrm{F}$	450 V	30p	5000 $\mu \mathrm{F}$	50 V	41.21
$100 \mu \mathrm{~F}$ 4V	7 p	$1500 \mu \mathrm{~F}$ 10V	22p	$50 \mu \mathrm{~F}$	50 V	$11 p$	8-8, ${ }^{\text {F }}$	450 V	20p
100~」F lov	7 p	$1500 \mu \mathrm{FF} 16 \mathrm{~V}$	26p	$100 \mu \mathrm{~F}$	50 V	$12 p$	8-16 12 F	450 V	22p
$100 \mu \mathrm{~F} 25 \mathrm{~V}$	$7 p$	$2200 \mu \mathrm{~F} 6.3 \mathrm{~V}$	22p	$250 \mu \mathrm{~F}$	$25 V$	1519	16-16 $\mu \mathrm{F}$	450 V	30 p
$100 \mu \mathrm{~F} 40 \mathrm{~V}$	8 p	$2200 \mu \mathrm{~F} 10 \mathrm{~V}$	26p	$250 \mu \mathrm{~F}$	50 V	19^{p}	$16-32 \mu F$	450 V	69 p
100 15 F 63 V	15p	$3300 \mu \mathrm{~F} 6.3 \mathrm{~V}$	26p	$500 \mu \mathrm{~F}$	25 V	20p	32-32 $\mu \mathrm{F}$	450 V	$54 p$
$150 \mu \mathrm{~F} 6.3 \mathrm{~V}$	$7{ }^{7}$	4700~F 4V	26p	$500 \mu \mathrm{~F}$	50 V	27 fo	50-50 $\mu \mathrm{F}$	350 V	42p
$150 \mu \mathrm{~F}$ 16V	7p			$1000 \mu \mathrm{~F}$	$25 V$	30^{p}			

Which of these 161 career opportunities could earn you £10. $£ 15 . .$. even $£ 30$ extra a week?

How to qualify in your spare time for a better job

In a job you really enjoy

Make yourself worth more and you'll
carn more. It's as simple as that. There are always plenty of people to do the routine work - but, right now, key jobs are going begging for lack of suitably qualified men to fill them. The basic qualification is technical know-how. When you've got that, you're in demand -out in front.

Are you ambitious - willing to set aside about 60 minutes a day for home study? If you are, B.I.E.T. can give you the technical knowledge you need - change your entire future prospects. It's easier than you think...

Make no mistake about it - you conid do it. Most people have unúsed ability. A low-cost B.I.E.T. course helps you discover this hidde ability - makes learning enjoyable and so much casie enjoyable and so much B.J.E.T. simplificd study system gets results fast.

We've successfully trained thousands of men at home-equipned them for higher pay and better, more satisfying jobs, steered them safely through City and safely through City and
Guilds examinations Guilds examinations -
enabled many of them to pu letters after their name

With the help of B.I.E.T., you too could soon be on your way tobetter things

ACT NOW -

DISCOVER FOR YOURSELF

It costs no more than a stamp to find out how we can hel you. Tick the subiect that coupon (or write). W'll send coupon (or write). We lif send that will open up for you a whole new world of opportunity - and it's FREE
13.1.E.T., Aldermaston Cour

Reading RG74PF.

IT PAYS TO BE QUALIFIEO POST TOOAYFOR A BETTER TOMORROW
ToB.I.E.T.,
Aldermaston Court, Reading RG7 4PF Please send full detalla and FREE 76-Page Booh, whithout obllgation.

Choose from this list
mechamical - A.M.S.E. (Mech Cde Agric. Dlesel Eng. Eng. Inspection Eng. Metallion
Inst. Eng. de Tech.
ins. Inst. Eng. \& Tec
Inst. Motor Ind. Mainten. Eng.
Mechanjcal Mechanical
Sheet Metal Sheet Metal
Welding ELECTRICAL \& ELECTRONIC
C\&G.E. IE - CdG $\int \mathrm{C}_{\mathrm{C}}$ Comp
Elec.
Elec.
Elec
Elect
 Install \& WIrling
MANAGEMENT 8 PRODGUCTION RODUCTION Computer Pro Electron Ic Da
Processing
Estimating
Foremanship Foremanship Accountants 1nst. Marketin
Manarement Manazement Motor Trade Man Network Plan.
Numerjcal Cont. Operacional Research Planning Eng. Production Eing Salesmanship Storekeephing Work Stu Management ORAUGHTSMANSHIP A.MI.E.D. Mesizn of Elec.
Machines Dle \& Pres
Design Electrical Draughtsman genip Draughts. Jig \& Tool Des. Techn. Drawin RADIO \& TELE COMMUNICATIONS C\& G HadiolTV Electronics Cech. Prac, Kadjo Elec (with kit)
Radio Amateur Exam.

PLUS 58 '0' \& 'A LEVEL GCE SUBJECTS lick here
\qquad

P.C.BOREO?

- not with the

decondalo ${ }^{33 P 6}$

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB

A fine; tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!

The Decon-Dalo 33 PC marker is now available in France, Germany. Italy. Switzerland. Austria and all Scandinavian countries. Send for details of local supplier.

Name
Address
Post to: DECON LABORATORIES LTD. FREEPOST
PORTSLADE, BRIGHTON,ENGLANDI (No Stamp Needed) Phone 0273414371

```

FREE BOOKLET
All types of
TRANSISTORS, RECTIFIERS BRIDGE S SCR'S-TRIAC F.E.T.-LIGHT DEVICES OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION SEND FOR YOUR FREE COPY


\section*{More Devices} New Prices New Ranges

\section*{This is a must} for all Semi-conductor Users TODAY

INTEGRATED CIRCUITS VERY IMPORTANT. ONLY branded \(\mathfrak{G} \cdot \mathbf{C ' s}\) ..I.T.T.... FAIRCHILD..SIGNETICS. So why buy alternalves or under spec. devices when you can purchase the genulne article trom us-ex stoch



\section*{ZN414 IC \\ integrated clrcult radio as} (PW Jan, 73 Reprlal Rel. No. 19 for 10p) £1:-0
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Toshlba Power and Preampllfier modules TH9013P 20 watt \\
Power ampllfier 22-0-22 or single 45 volts operated E457 \\
TG9014P Stereo on two channel preamplifies. \\
\(\varepsilon 150\) (circult book No. 42 price 100) \\
Ultrasonic Transducers \\
Operate at 40 Khz up to 100 yas . \\
Ideal remote switching and signalling. \\
Complete with data transmitter and recelver new I.C. clrculzs. \\
Per pail \(\quad 5590\)
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{ \\ \& tor E7
(digital clock elreults}


\section*{ZENER DIODES
\(400 \mathrm{~m} / \mathrm{w}\) BZY88 B2X83. From \(3 \cdot 3\)
volt -33 volts 10 p}

\section*{each}

\section*{1.3 watts \(5 \% \mathrm{M}\)
ature Tubulars \\ ature Tubulars
IN4700 serles.}

From 3.3 volt - 33
10 watts. Sind Mounting:
serles 6.8
\(2 S\) series 6.8 volis
100 volts \(5 \% ~ 400\) each.

\section*{SILICON}

\section*{RECTIFIERS}

1 amo serles
IN4001 to IN
From 6p ea
1.5 amp

PL4009 to PL4007
From to
3 amp
3 Amp
PL7001/IN5400
From 140 a
Send for lull list 36
MORE OF
EVERYTHING
HENRY'S
See pages 499-501,
and Back Cover of and Back Cover of BEST VALUE
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{AF117} \\
\hline 25 & ....15p ea \\
\hline 100 & . . . . .13p \\
\hline 500 & . . . . 12p \\
\hline 1000 & ….10p \\
\hline \multicolumn{2}{|l|}{OC35} \\
\hline 25 & ..... 46p ea \\
\hline 100 & ......42p \\
\hline 500 & .38p \\
\hline +000 & . . . . 34p \\
\hline
\end{tabular}

LINEAR I.C
702 C (T05)
709 C (T05) 709 (TOS) 39p 123C (T099) 90p 323C (0.1.L.) 900 128C (D.1.L.) 45p 128C (T099) 45p 141C (T05) 50 p 741C(D.I.L.) 50p 147C (TO99) \(£ 1.00\) 748 (D.I.L.) 69p
Semi-
Conductor
OUANTITY
DISCOUNTS
\(10 \% 12-15 \%\)
\(25+, 20 \% 100+\)
Any one type
except where
quantly
discounts shown.
Min. order \(£ 1 \cdot 00\)
please.

TRIACS - St
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{3 AMPRANGE} \\
\hline Type & P.I.V & \\
\hline SC35A & 100\% & 80p \\
\hline SC358 & 200 v & 85p \\
\hline SC350 & 400 v & 90 p \\
\hline SC35E & 500 v & E1-20 \\
\hline 6 AMP & \multicolumn{2}{|l|}{RANGE} \\
\hline SC40A & 100 v & 90 p \\
\hline SC408 & 200 V & \(95 p\) \\
\hline SC400 & 400 v & E1. 20 \\
\hline SC40E & 500v & ¢1.50 \\
\hline 10 AMP & P RANGE & \\
\hline
\end{tabular}
 40430 TR1AC (TO66) 850

Amp

40486 TRIAC (TO5) 750

NEW RANGES
BRIDGERECTIFIERS
FEATURES SMALL SIZE AND
250M/A OUARTERAMP approz B025/05 50 PIV 160
B025/10



SILICON CONTROLLED
RECTIFIERS


All types ofered subiect to availabilty. Prices correct at time of press E. \& O. E. \(10 \%\) VAT to be added to all orders. UK post, etc, I5D. Der order.
PAMEL METERS - TRANSFORMERS - CONTROLS - RELAYS
IRONS - TOOLS - VALVES - POT CORES MOST TYPES OF COMPONENTS
You need a catalogue! 55p post paid complete with Discount Vouchers

GARRARD BATTERY TAPE DECK
GARRARD 2 speed 9 volt tape decks. Fitted record/ glay and oscillator/Erase heads. Wind and rewlnd ontrols. Takes up to
cietso carr. 30 p

POWER SUPPLIES FOR EVERY PURPOSE
(All cased unless stated chassis) Multi-Adapior for Tape Recorders, etc.) 1.05 post 20 p Car Lighter Voltage Adaptors 300 mA (State voltage \(\begin{array}{rr}6 \mathrm{r}, 71 \mathrm{v}, 9 v \text { ) } & 1.5 \text { ea. post } 25 \mathrm{p} \\ \mathrm{SC} 2023 / 6 / 7+/ 9 \text { volt } 400 \mathrm{~mA} & \mathbf{3 . 2 5} \mathrm{cart} .30 \mathrm{p}\end{array}\) SC202 3/6/7//9 volt 400 mA
HC244R Stabllised verslon
P500 9 volt 500 mA
P500 9 volt 500 mA (chassis)
P11 24 voll 500 mA (chass) P15 26/28 volf \(t\) amp (chassis) Plos0 12 v 1 amp (chassls) P1081 45v 0.9 anp (chass 4.25 carr. 300
BUILD THIS TUNER
MWILW Radio Turner to use with any ampllfer Features Muliardian results. Size \(7^{\prime \prime} \times 22^{\prime \prime} \times 31^{\prime \prime}\) All parts \(£ 415\), carr. \(15 p\)

\section*{FIBRE OPTICS}
0.01 Diam. Mono Fllament 51.50 per 25 netre ree 0.13 Diam. 64 Fibres Sheathed, Ef-00 per m
SPRAYS 15 mm Diam Mares Tails \(\mathrm{E}: 50\)

\section*{STEREO AMPLIFIERS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{AKAI} & & \\
\hline & \[
\begin{aligned}
& \text { AA5200 } \\
& \text { AA } 5500
\end{aligned}
\] & 71 \\
\hline & A A5800 & 117.5 \\
\hline AMSTRAD & \({ }^{1} \mathrm{C} 2000 \mathrm{Mk}\). 11 & 29.50 \\
\hline \multirow[t]{5}{*}{EAGLE} & 4000 & 23.1 \\
\hline & TSA149 & \(25 \cdot 1\)
34 \\
\hline & TSA151 & 34.8
30.8 \\
\hline & AA \({ }^{\text {a }}\) & 30. \\
\hline & AAG & \\
\hline HOWLAND WEST & DA1000 & \\
\hline HENELEC WEST & Kıl & 23.5 \\
\hline HENELEC TEXAN & Bull & 35.0 \\
\hline NIKKO & TRM300 & 25.95 \\
\hline & TRM600 & 32.50 \\
\hline \multirow[t]{5}{*}{PIONEER ROTEL} & SA500A & 34.25 \\
\hline & RA310 & 36.95 \\
\hline & Rab10 & 54.95 \\
\hline & RAB10 & \\
\hline & Ral210 & 92.50 \\
\hline SINCLAIR & 2000 & \\
\hline \multirow{5}{*}{tandberg TELETON} & 3000 & \\
\hline & TA300 & \\
\hline & SA \({ }^{\text {a } 206 B}\) & 22.50 \\
\hline & SAQ307 & 22.50 \\
\hline & GA202 & 28.50 \\
\hline
\end{tabular}

STEREO RADIO TUNERS (carr./packing 50 a
\begin{tabular}{ll} 
AKAI & AT550 \\
AMSTRAD & AT580 \\
EAGLE & 3000 \\
HENELEC S1ereo KII & TSTI52
\end{tabular}

HENELEC Stereo Bull HOWLAND WEST DA1000T
\(\begin{array}{ll}\text { PIONEER } & \text { TX500A } \\ \text { ROTEL } & \text { RT } 320\end{array}\) \(\begin{array}{ll} & \text { RT820 } \\ \text { SINCLAIR } & 2000 \\ & 3000\end{array}\) TELETON GT202
DECODERS DECODERS
SYNTHESIZERS
(cart. etc. 30 p)
AKAl
OYNACO QUADRATOR
EAGLE AA10
\(\left.\begin{array}{l}\text { TATE } 1 \\ \text { TATE } 3 \\ \text { TATE } 4\end{array}\right\}\) Chassis
TATE 7 Boxed
MATCHED SPEAKER

\section*{SYSTEMS}

Recommended palrs 8 ohms
(Carr. / Packing \(\mathrm{E}^{1} \cdot 50\) palr)
110 ARSDEN HALL

14.95
23.5
33.5
24.90
24.50
41.00
65.00
78.0
24.00
31.0
37.
33.
42.
35
31.

UK's largest stockists for KE Acoustic Research, Mordaunt Short stock and on demonstration. Phone for keenest price.
RECORD DECK PACKAGES
(HL) SP25 MP)
\(\begin{array}{ll}\text { (HL) } & \text { SP25 IN/800 or } \mathrm{H} \\ \text { (M) } & \text { SP25 III/M756S }\end{array}\)
(M) AP76/G800
(HL) GL75P/C
(HL) GL75 P/C G800
(HL) GL75 P/C G800E
(HL) MP60 (TRDI) G800
HT70 (TPDI) G800
Ploneer PL120
Thorens TD165

STEREO MAGNETIC CARTRIDGES
(carr. etc. 15p)
SHURE
3.20
3.95 M44G

\[
\begin{aligned}
& G 800 \\
& \text { G800H }
\end{aligned}
\]
\[
\begin{array}{l|l}
5800 \\
& G 80 \\
5 & A D C
\end{array}
\]
\[
\begin{aligned}
& A D \\
& \text { Q3 } \\
& \text { O32 } \\
& G R
\end{aligned}
\]
\[
\begin{aligned}
& \text { Q32 } \\
& \text { GRADO } \\
& \text { FTR }
\end{aligned}
\]
\[
\begin{aligned}
& \text { FTR } \\
& \text { F3E } \\
& \text { EMPIRE } \\
& \text { 909EX }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 909EX } \\
& \text { 999EX } \\
& \text { GTEDEの }
\end{aligned}
\]
\[
\begin{aligned}
& \text { M44G } \\
& \text { M75/6/11B } \\
& \text { M75 EDII } \\
& \text { M75 EJII } \\
& \text { M75GHI } \\
& \text { G800SE } \\
& \text { G820 } \\
& \text { G820E } \\
& \text { G820SE } \\
& \text { Q30 } \\
& \text { FTE } \\
& \text { MZ } \\
& \text { 999SEX } \\
& \text { 999TEX } \\
& \text { APACTS } \\
& \text { peakers } \\
& \text { 5) }
\end{aligned}
\]

.25
.75
0.75
4.45
\[
\begin{aligned}
& \text { STEREO COMPACT: } \\
& \text { Complete with } 5 \text { peakers } \\
& \text { (carr./paching f. 25) } \\
& \text { Fldellity }
\end{aligned}
\]
\[
\begin{aligned}
& \text { S } \\
& \text { Co } \\
& \text { co } \\
& \text { F }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Fidelity } \\
& \text { Sanyo } \\
& \text { Sanyo }
\end{aligned}
\]
\[
\begin{array}{|l}
\text { Sanyo } \\
\text { Sanyo } \\
\text { Sanyo }
\end{array}
\]
\[
\begin{aligned}
& \text { Sanyo } \\
& \text { Sanyo } \\
& \text { Ohllo }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Phillps } \\
& \text { Phillps } \\
& \text { Phon }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Philps } \\
& \text { Phllps } \\
& \text { Phillps }
\end{aligned}
\]
\[
\begin{aligned}
& 5 \text { Phillps } \\
& 5 \\
& \hline
\end{aligned}
\]
\[
\begin{array}{ll}
\text { Phillps } & \text { RH81 } \\
\text { Philips } & \text { RH81 } \\
\text { Phillps } & \text { RF83 } \\
\text { Philips } & \text { GF82 }
\end{array}
\]
\[
\begin{array}{l|l}
5 & \text { Philipe } \\
5 & \text { Phillps }
\end{array}
\]
\[
\begin{array}{ll}
\text { Phillps } & \text { RF839 } \\
\text { Phillps } & \text { GF829 } \\
\text { Phillps } & \text { GF815 }
\end{array}
\]
\[
\begin{array}{|ll}
\text { Phillps } & \text { GF815 } \\
\text { PhHps } & \text { GF808 } \\
\text { Phillos } & \text { RH814/F }
\end{array}
\]
\[
\begin{array}{|ll}
\text { Phillps } & \text { GF808 } \\
\text { Philips } & \text { RH814/RI } \\
\text { Philips } & \text { GF603 }
\end{array}
\]
8TRACK STEREO
\[
\begin{aligned}
& \text { HOME UNITS } \\
& \text { (carripacking 70p) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { (carripacking 70p) } \\
& \text { Amerlex ACR301 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Amerlex ACR301 } \\
& \text { (with MW/FM stereo radio) }
\end{aligned}
\]
PORTABLETV
BATTERY/ MAINS
\[
\begin{aligned}
& \text { (carr./paching \& } 1-00 \text { ) } \\
& \text { Ellaseth To }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Carr./paching } \\
& \text { Ellzabeth To } \\
& \text { Crown } 9 T V
\end{aligned}
\]
\[
\begin{aligned}
& \text { Crown 9TV } \\
& \text { Ellizabethan T12 } \\
& \text { Telaton TW12 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Ellabethan } 12 \\
& \text { Teleton TW12 } \\
& \text { Sanvo IOT150 }
\end{aligned}
\]
\(\qquad\)
\[
\begin{aligned}
& \text { Teleton TWiz } \\
& \text { Sanyo } 10 \text { T150 }
\end{aligned}
\]
\(10 \%\) VAT to be added to all orders.
Pilces \& description correct at ilme of press EsOE. All good offered sublect to stoch avalablity.


\section*{STEREO PHONES AT SPECIAL PRICES}

AKAI
ASEES
ASERO
ASE20
ASE22
DULCI
SH650D
SH650D
SH850GX
SH850GX
SH1300VS
\({ }_{\mathbf{K} 60}^{\mathbf{A K G}}\)
ROTEL
RH630
RH700
SENHEISSER
WHARFEDALE
DOt
ISODYN
Koss
K6
KRO711
KV1
K07278
K0747
PROAAA
PROSLC

HOWLAD WE WE
\begin{tabular}{l|l} 
5.80 & HOWLAD WEST \\
7.30 & CIS200 \\
.8 .25 & CIS1000
\end{tabular}
CIS250
CIS1000
CIS2000 CIS2000
TTC
G3000 \(\begin{array}{ll}\text { G3000 } & 6.60 \\ \text { G2222 } & 5.95\end{array}\) LOW cost 5.95

YOU CAN PAY BY
BARCLAYCARD OR ACCESS
For callers or by phone 01-402
Easy credt terme for callere to 309 and \(354-356\)

ALSO STOCKED AND DEMONSTRATED
Armstrong - Acoustlic Research Cambridge Audlo Leak - Lux
Marantz - Quad - Revox - Sansul Marantz - Quad - Revox-Sansul Gandberg - Sugden - Whariedale Kef - Teac - Bose - Sherwood Call op phone 0t-402 4736 for best prices.

\section*{START OFF THE RIGHT WAY IN THE NEW BEGINNER'S SERIES}

All parts to make the TUTOR BOARD exactly as speclfied by Everyday Electronics are made available in two convenient kits

KIT A, all electronic parts, including the meter ll isems sold separately. S.A.E. for illustrated lise.

PSYCHEDELICLIGMTING UNITINKITFORM Make this fascinasing three-channel unit from a kit which contains all components needed so produce a reliable and entertaining display. Takes its drive from the speaker terminals of a record player, tape recorder or portable radio. Will provide a brilliant 2 kW of litht,


METALCABINETS
These attractive steel cabinets are PVC covered in a ranse of colours and offer an economically priced unie for the home constructor. The chassis, which has a white satin PVC finish, provides an easity accessibie building area, with an fees complete with stick-onfeer.
flort will be made so supply a selected colour, White and Bive. Every natives if possible.
\[
\begin{array}{lll}
\text { Approximate size in inches } & \text { Price } \\
1 . & 6 & j_{3} \\
11 & 6 & 3 \\
11 & 6 \frac{3}{2} & 62.00
\end{array}
\]

Other sizes so special order. Please send S.A.E. for quotation
Our CATALOGUE, priced at 25p post free, shows the majority of che R.S. ranse of professional componenes. Mose are available by return of pose. Prices include

\section*{CELECTRON-E}
P.O. Box No. I, Llantwit Maior, Glamnrgan, Wales CF6 9YN

\section*{THE MONEY SAVING Nob CATALOGUE \\  \\ 96 pages ( \(8+\times 5 t\) ) packed with bargains in famous name cransistors, re istors, capacitors, pot + I.C. circuits and diagrams; componenes, accessories, etc + valu able technical data, illus crations, etc. Everyching is brand new, to makers spec.-le's all in our fascinatingly informative catalogue. Yours for 25p post f́ree (U.K. only) and the voucher induded allows you 25 p. off when your order is for 65 or more. \\ SEND FOR YOUR COPY TO-DAY! with lotest supplement}
wrH 25p
REFUND YOUCHER DISCOUNTS
\(\mathbf{1 0 \%}\) on orders \(\mathbf{5} 5\) or more.
\(15 \%\) on orders \(\mathbf{C 1 5}\) or more.
except certain items charged net - POST/PACKING

Free in U.K. on orders above \(\mathbf{C 2}\)
10D surcharge on orders under

\title{
ELECTROVALIUE
}

ELECTROVALUE LTD. Ref. No. 1047769
(Ev. 4) 28 ST. JUDES Rd., ENGLEFIELD Grn., EGHAM, SURREY, TW20 OHB
Hours: 9-5.30: Sat. I p.m.

TRANNIES
I DOCKYARD, STATION ROAD OLD HARLOW, ESSEX P/P IOp (Tele. 37739)

Price includes VAT

TEACH-IN '74 TUTOR BOARD

Full set
of all electronic parts £6.90

TRANSISTORS
and DIODES
\begin{tabular}{|c|c|c|c|}
\hline ACl26 & 14D & BD132 & 70p \\
\hline AC127 & 14p & BF244 & 87 \\
\hline AC128 & 110 & BF750 & 2 P \\
\hline AD140 & 55p & BFY51 & 2Cp \\
\hline AD149 & 850 & MP8111 & 41p \\
\hline AD161 & 88 p & MP8113 & 417 \\
\hline AD162 & 88 p & 0 C 26 & 5 ED \\
\hline AF115 & 14p. & \(0 \mathrm{C28}\) & 500 \\
\hline AFl16 & 14D & OC35 & 50 \\
\hline AF117 & 14 D & \(0 \mathrm{C4} 4\) & 9 \\
\hline BC169 & 12p & OC45 & 0 \\
\hline BC107 & 11p & \(0 \mathrm{C71}\) & 140 \\
\hline BCl08 & \(11 p\) & TIP41A & 850 \\
\hline BC109 & \(11 p\) & TIP48A & 90.7 \\
\hline BC177 & 14] & 2N2926 & 110 \\
\hline 8 Cl 78 & 140 & 2N305s & 58 \\
\hline BC179 & 150 & 2N3702 & 130 \\
\hline BC182 & 110 & 2N3704 & 13, \\
\hline BC183 & 18p & IN914 & 8. \\
\hline BC184 & 110 & IN916 & 8 \\
\hline BC212 & 180 & LN 4148 & B) \\
\hline \(\mathrm{BC}_{2} 13\) & 140 & OA90 & 8 p \\
\hline BC214 & 16. & OA91 & 8 F \\
\hline BDI31 & 70p & OA200 & 115 \\
\hline
\end{tabular}

For full range see
our price list

Electrolytis Capacitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{4 VOLT} & \multicolumn{2}{|r|}{VOLT} & \multicolumn{2}{|l|}{40 VOLT} \\
\hline \(47 / \mathrm{F}\) & \(61 p\) & \(15 \mu \mathrm{~F}\) & 6 ip & 47 \(\mathrm{F}^{\text {F }}\) & 610 \\
\hline \(100 \mu \mathrm{~F}\) & \({ }^{61} \mathrm{p}\) & \(33 \mu \mathrm{~F}\) & 810 & \(100 \mu \mathrm{~F}\) & 90 \\
\hline \(220 \mu \mathrm{~F}\) & 6tp & \(150 \mu \mathrm{~F}\) & 610 & 68 1 F & 100 \\
\hline \(330 \mu \mathrm{~F}\) & 67 D & \(150 \mu \mathrm{~F}\) & 80 & \(220 \mu \mathrm{~F}\) & 11p \\
\hline \(1000 \mu \mathrm{~F}\) & 180 & \(220 \mu \mathrm{~F}\) & 89 & \(470 \mu \mathrm{~F}\) & 19p \\
\hline \(4700, \mu \mathrm{~F}\) & 290 & \(680 \mu \mathrm{~F}\) & 170 & 680 \({ }^{\text {F }}\) & 285 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{6-3 VOLT}} & \(1000 \mu \mathrm{~F}\) & 17 D & \(1000 \mu \mathrm{~F}\) & 25p \\
\hline & & \(1800 \mu \mathrm{~F}\) & 250 & \(2200 \mu \mathrm{~F}\) & 4.p \\
\hline \(33 \mu \mathrm{~F}\) & \({ }^{610}\) & \(2000 \mu \mathrm{~F}\) & 480 & & \\
\hline \[
\begin{aligned}
& 68 \mu F \\
& 150 \mu F
\end{aligned}
\] & \[
\begin{aligned}
& 61 p \\
& 6 \not p
\end{aligned}
\] & \multicolumn{2}{|l|}{25 VOLT} & & \\
\hline \(470 \times F\) & 11 p & \(10 \mu \mathrm{~F}\) & 640 & & \\
\hline \(880 \sim 5\) & 13p & \(22 \mu \mathrm{~F}\) & 610 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{63 VOLT}} \\
\hline \(1500 \mu \mathrm{~F}\) & 180 & \(47 \mu \mathrm{~F}\) & 810 & & \\
\hline \(2200 \mu \mathrm{~F}\) & 18p & \(100 \mu \mathrm{~F}\) & 80 & \(1 \mu \mathrm{~F}\) & 8 \\
\hline 330014 F & 28p & \(150 \mu \mathrm{~F}\) & 8 p & \(2.2 \mu \mathrm{~F}\) & 610 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10 VOLT}} & \(220 \mu \mathrm{~F}\) & 10p & \(4.7 \mu \mathrm{~F}\) & 810 \\
\hline & & 470 \(\mu \mathrm{F}\) & 189 & 6-8 10 F & \\
\hline \(22 \mu \mathrm{~F}\) & \({ }_{8}{ }^{\text {P }}\) & 680 15 F & 20 p & \(10 \mu \mathrm{~F}\) & \\
\hline 47MF & \({ }^{6} 19\) & \(1000 \mu \mathrm{~F}\) & 22 p & \({ }^{2 \mu} 2 \mu \mathrm{~F}\) & \\
\hline \(100 \mu \mathrm{~F}\) & 61 P & \(2200 \mu \mathrm{~F}\) & 39D & \({ }^{68} \mu \mathrm{~F}\) & 100 \\
\hline \(220 \mu \mathrm{~F}\) & 8 & 5000 \(\mu \mathrm{F}\) & 88p & \(100 \mu \mathrm{~F}\) & 110 \\
\hline \(330 \mu \mathrm{~F}\) & 10p & & & \(150 \mu \mathrm{~F}\) & 18 p \\
\hline \(470 \mu \mathrm{~F}\) & 10 D & 40 V & LT & \(220 \mu \mathrm{~F}\) & 19 \\
\hline \(1000 \sim \mathrm{~F}\) & 11. & \(6.8 \mu \mathrm{~F}\) & 619 & \(330 \mu \mathrm{~F}\) & 28 \\
\hline \(1500 \mu \mathrm{~F}\) & 20 p & \(13 \mu \mathrm{~F}\) & 610 & \(470 \mu \mathrm{~F}\) & 26p \\
\hline \(2200 ; \sim\) & 24 & \(33 \mu \mathrm{~F}\) & 610 & \(1000 \mu \mathrm{~F}\) & 440 \\
\hline
\end{tabular}

\section*{MULLARD POLYESTER'S}

MULLARD POLYESTER CAPACITORS C280 SERIES
250V P.C. mounting: \(0.01 \mu \mathrm{~F}, * .018 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 810,0.33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, \mathrm{ip}\).
 \(1-6 \mu \mathrm{~F}, 82 \mathrm{~g} 2 \cdot 2 \mu \mathrm{~F}, 87 \mathrm{D}\).

MULLARD POLYESTER CAPACITORS C296 SERIES
\(400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \nmid \mathrm{D} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}\)
 \(84 \mathrm{p}, 0.33 \mu \mathrm{~F}, 12 \mathrm{p}, 0.47 \mu \mathrm{~F}, 14 \mathrm{p}\)
:0.01 \(\mu \mathrm{F}, 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.048 \mu \mathrm{~F}, 8 \mathrm{p}, 0.1 \mu \mathrm{~F}, 81 \mathrm{~g}, 0.15 \mu \mathrm{~F}\)


\section*{THYRISTORS}
P.I.V. \(\quad 80 \quad 100 \quad 200\) 1 ATDP Esp 25p 41 Amps 44p 50 p 80
P.I.V. \(\quad 300400\)

3 Amp \(\quad 4 \mathrm{BP}_{8}^{53 \mathrm{p}}\)

\section*{RESISTORS}
\% watt \(8 \%\) carbon 10 each watt \(10 \%\) carbon 1 D each Range 10 ohms to 4.7 tieg Range in \(102 \% 3 \mathrm{peach}\) the Range 10- meg obms

\section*{VOLUME CONTROLS}

\section*{Potentiometers}

Carbon track \(500 \Omega\) to \(2.2 \mathrm{M} \Omega\) log wr linear Single trpe with D.P. switch 180 extra.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{RECTIFIERS} & ZENER \\
\hline P.I.V & 1 AMP & & DIOD \\
\hline 50 & IN 4001 & 4tp & \(400 \mathrm{M} / \mathrm{W} 5 \%\) \\
\hline 100 & IN4002 & 410 & Minlature \\
\hline 200 & 1N4003 & 810 & BZY 88 Range \\
\hline 400 & IN 4004 & 615 & All voltages \\
\hline 600 & 1 N 4005 & 8 D & 3-3-33 Volt \\
\hline 800 & 1N4006 & 9p & 9D eact \\
\hline 1000 & 1\$4007 & 10p & \\
\hline
\end{tabular}

\section*{CARBON SKELETON}

\section*{PRESETS}

Small high quallty type (Ilneat only) All valves \(100 \cdot \mathrm{~B}\) nieg ohms.
\begin{tabular}{ll}
-1 watt & \(3 \nmid p\) each \\
-2.8 watt & \(8 i p\) each
\end{tabular}

\section*{YEROBOARD}
\begin{tabular}{|c|c|c|}
\hline & 0.15 & 0.1 \\
\hline & Matrix & Matrix \\
\hline 2itin. \(\times 3\) ing. & 19p & 26. \\
\hline 2 if . \(\times 5 \mathrm{in}\). & 28p & 88 D \\
\hline \(31 \mathrm{ia} \times 341 \mathrm{a}\). & 28D & 28 D \\
\hline \(3 \mathrm{tin}\).\(\times Eln.\) & 88 & 32p \\
\hline \(61 \mathrm{n} . \times 17 \mathrm{ln}\). (plain) & & \\
\hline Vero Pins (bae of 36) & 22p & \\
\hline Vero cutter, 50 D ; ( 0.1 and 0.15 matri & \[
\begin{aligned}
& \text { Pl Inger } \\
& \text { E) at } 611
\end{aligned}
\] & lon roo \\
\hline SLIDE SWITC & & \\
\hline
\end{tabular}

MINIATURE NEON
LAMPS
240 V or \(110 \mathrm{~V} 1-450\), 5 plus 4tD each

INTEGRATED CIRCUITS
We atock a full range of I.C., these are just a fe send for our tull Ilot



\title{
You'll hardly be able to believe your ears!
}

Can you really get sound quality like this for less than \(£ 18\) ?
Yes, you can! with the new


\begin{abstract}
Until now, richly satisfying sound has always cosla lichiy satistyong price But not any morel For an almost unbellevable E17 \$5, you can have Stereo 21 -audio lor the connolsseur! Whatever your taste in music, you can hear it on STEREO 21 the way its composers heard it in thgir dreams! Beethoven or Mahler . . Ellington or Jellyrall Morton . . . Das Nibelung or Jesus Chrisi Superstar ... Carols from KIng's Collegs Chapel or the return of a Bearle.. everything from a prettily fluting beroque organ to the newest pop group at fult throttle-STEREO 21 does them all justice!
And have you ever seen a handsomer audlo installafion? Compact enougn to go in a unlversliy student's bedroom-study, elegent enough for the suavest penthouse pad In Town, STEREO 21 offers you all the pride of possesslon as well as a thrillint musical enperience!
Top-qualty amplifier. BSR turntable, matching speakers. Deck and spesker cabinets you simply wrap round and glue to bulld. Screw in the amplifier and connect up (ell push fit no soldering whatsoever), so simpla Itierally anyone can do It . Excepf for glue and panel pins all parts supplied including full instructions-all for \(\leqslant 17\) 05 (plus the cost of post and pecking if you buy by mall), and-to round it all of-a money-bach Guarantee 11 your plessure in STEREO 21 is not complete!
Just think-in only a fow days you could be olving your ears the treat of a lifellme-
AND introducing your onvious friends to
\end{abstract}

Personal shoppers ane mall order price

\section*{THE TOURIST PUSH-} BUTTON CAR RADIO MI 66.60 The Tourist PB is working on both negative and positive arth vehicles. It covers the full medium and long wave bands. It is permeability tuned and sturdily construced. Outpue is a full 2.5 wates into an 8 ohms spesker. But the Tourist
 PB will operate into any loud-speaker from 8 to 15 ohms. Apart from the output stage, which is an integrated circuit, the only other alectronic componants that need soldering are some capacitors, resistors, etc. The kic includes a pre-buile RF cuner unit, and fully modulized IF stages which are preseligned bofora despletch. As wall as electronic comstages which are pre-iligned before despetch. As well as actronic com-
ponents this kit also contains 2 diamond-spun aluminium knobs, elogane ponents this kit also contains 2 diamond-spun alumi
matching front panal, dial, washers, screws and wira.
matching front panal, dial, washars, scraws and wira.
The Tourist PB can be mountad in any standard size dash panal and it has an illuminated tuning scale. Chassis size is: 7 in wide, 2 in high and 4 tin deap. Circuit diagram and comprehensive instructions 55 p free with parts. Fully retractable and lockable car aerial \(£ 1.37\) post paid.
CAR RADIO KIT \(\mathbf{6 6 . 6 0}\) p. and p. 55p. Speaker with baffe and fixing strips \(\{1 \cdot 65,+23 p\) p. 蜜 \(p\). post free if bought with the kit. Send stamped addressed anvalope for laaflet. If you can solder on printed circuit board, you can build this push-button car radio kit. It's simple-just follow the step-by-step instructions.

45 WATT MONO AMPLIFIEN. Ideal for Disco. Output Power: 45 wates R.M.S. (Sine Wave). Frequency Rasponse 3dB
points 30 Hz and 18 KHz . Total Distortion: less
 than \(2 \%\) at rated output. Signal to noisa ratio: better than 60dB. Bass Control Renge: 13 dB at 60 Hz . Trable Control Range. 12 dB at 10KHz. Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inpute at 200 mV into 470 K . Size: \(19 \mathrm{t} \times 101 \times 8\) gins. Amplifier \(351: 35\) output for 3,8 and 15 ohm speakers.
+ (1.65 p. 8 p.


\section*{RELIANT Mk IV}

5 Electrically Mixed inputs. - 3 Individual Mixing controls. - Separate bass end trable controls common to all 5 inputs. *Mixer employing F.E.T. inputs. Mixer employing F.E.T. (Fiald Effect Trensistors). Solid \begin{tabular}{l} 
Attractiva Styling \\
\hline AV. 2. Movine coil
\end{tabular} INPUTS 1. Crystal Mic or Guicar 9 mV . 2. Moving coil
Mic. or Guitar \(\mathrm{B}_{\mathrm{c}} \mathrm{MV}\). Inputs 3, 4 k 5 are 8 uitable for wide range of madium output equipment (Gram. Tuner, Monitor, Orgen, utc.) All 250 mV sensitivity. Output 20 wates into \(8 \Omega\)
(suitable for \(15 \Omega\).) Size approx. \(12 t \times 6 \times 3 \frac{1}{4}\) ins. 30 p. p. 60p UNISOUND MODULES
ONLY \(\mathbf{E 7 . 6 4}+55 \mathrm{p} . \mathrm{p}\) \& P For the man who wants to design bis own stareo-uhere's your chance to start, with Unisound-pre-amp, power amplifier and control panal. No solder-ing-just simply screw tegether. 4 wates per channel into 8 ohms, Inpues: 120 mV (for ceramic cartridge). The haart of Unisound is high efficiency haser of Unisound is high efficiency
I.C. monolithic power chips which
 ensure very low distortion over the audio spectrum.


\section*{IN-CAR ENTERTAINMENT AT HOME}

With this elegant stereo 8 track add on unit audio enthusiases now have the opporeunity to extend their systems to include the playins of 8 track cartridges. Simply select your channal, by push button, four disitat lamps indicate channel selected. The Viscount Ill. the fabulous Stereo 21 and ere Unisound Modules 89.90 plus p. \& p. will accept this unit, simply connect up.


RADIO AND TV COMPONENTS (ACTON) LTD, Dept. E 2IC HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LCNDON W2

\footnotetext{
Mail orders to Acton. Terms C.WO. All enquires Stomped Addressed Envelope
} Goods not despot ched outside U.K.

\title{
The Sinclair Cambridge... no other calculator is so powerful and so compact.
} Complete kit-£27-45! \({ }_{\text {"macum }}\)

\section*{The Cambridge - new from Sinclair}

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further \(£ 5.50\) !
Truly pocket-sized With all its calculating capability, the Cambridge still measures just \(4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}\) ". That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.

\section*{Easy to assemble}

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

\section*{The cost? Just \(£ \mathbf{2 7} \mathbf{7 5}\) !}

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs \(£ 32 \cdot 95\) - so you're saving \(£ 5 \cdot 50\) ! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge
*Uniquely handy package.
\(4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{1}{1} \frac{1}{6}{ }^{\prime \prime}\), weight \(3 \frac{1}{2} \mathrm{oz}\).
首Standard keyboard. All you need for complex calculations.
*Clear-last-entry feature.
* Fully-floating decimal point.
*Algebraic logic.
*Fouroperators \((+,-x, \div)\).
with constant on all four.
* Constant acts as last entry in a calculation.
* Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than \(£ 30\).
*Calculates to 8 significant digits, with exponent range from \(10^{-20}\) to \(10^{79}\)
*Clear, bright 8-digit display.
*Operates for weeks on four U16-type batteries. (MN 2400 recommended.)

\section*{A complete kit!}

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:
1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.


This valuable book - free!
If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.

But if you want lo get even more out of it. you can go one step further and learn how to unlock the full potential of this piece of electronic technology.


How ?It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations like:


Sinclair Radionics Ltd, London Road,
St lves, Huntingdonshire Reg. no: 699483 England VAT Reg. no: 213817088

Why only Sinclair can make you this offer
The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the rrore expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules. It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : \(\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2} \mathbf{5 0}\) VAT. (Total : \(\mathbf{£ 2 7 . 4 5}\) )
Price fully built : \(\mathbf{£ 2 9 . 9 5 + £ 3 . 0 0 \text { VAT. (Total : £32.95) }}\)


\section*{JOIN THE CLUB!}

Welcome to the Club! Several ardent hobbyists have already suggested that "being a reader of Everyday Electronics is just like belonging to a special kind of club."

We are flattered and highly delighted to hear such a view expressed. Also, we are mindful of our responsibilities, and will certainly do all in our power to preserve, and extend whenever possible, this spirit of camaraderie which undoubtedly exists between fellow electronic en-thusiasts-be they readers or contributors, or members of the editorial team.

Well, a club must have a Constitution, so here goes.
1. The aims of the Everyday Electronics Club are: (a) To encourage the use of electronic techniques by the ordinary person in order to solve everyday needs, through relatively simple and inexpensive designs.
(b) To take any stuffiness out of electronics, to dispel its mystique and to present this subject, in theory and practice, in the clearest and most objective fashion.
2. Membership shall be open to any individual who has a curiosity about electronics and wishes to participate in an interesting creative hobby.
3. No formal education or training in electronics is necessary since the Club undertakes to provide, at regular intervals, adequate instruction for beginners, in both theoretical and practical matters.
How about that, then?

\section*{A NEW SEASON STARTS}

In the formal sense our "Club" may indeed be a mere figment of the imagination. But the above "constitution" is actually a restatement of this magazine's well established policy. And it is worth spelling it out again at this particular time, because we are now on the eve of another busy season for constructors.

Apart from many old stalwarts returning to their favourite hobby after an "ease up" during the summer, we anticipate a large influx of newcomers to electronics around this time.

To each and everyone of these beginners, a very special welcome. You couldn't have chosen a better month to "discover" electronics. The Teach -In ' 74 series (commencing in this issue) has been prepared just for you: We hope you like the series. Follow each article carefully and carry out the simple experiments described. It's our guess that very soon you will become an enthusiastic "member of the Club", like many thousand others. Good Luck with your newfound hobby!


ADVERTISEMENT MANAGER D. W. B. Tilleard

\footnotetext{
- IPC Magazines Limited 1973. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to prose. Everyday Electronics, Fleet way, House, Farringdon Street, London, E.C.4.' Phone: Editorial \(01-634-4452\); Advertisements \(01-634-4202\).
}

\section*{EASY TO CONSTRUCT SIMPLY EXPLAINED}


\author{
VOL. 2 NO. 10
}

OCTOBER

\section*{CONSTRUCTIONAL PROJECTS}
LIGHT DIMMER A simple control of light intensity by Mike Hughes ..... 528
TUTOR BOARD Essential apparatus for Teach-In '74 by Phil Allcock ..... 532
AUDIO VOLTMETER Measures a wide range of a.c. voltages by F. C. Judd ..... 540
STEREO HEADPHONE ADAPTOR Two heodphone facility by R. A. Penfold ..... 550
GENERAL FEATURES
EDITORIAL ..... 526
COUNTER INTELLIGENCE Buying from the retailer by Poul Young ..... 531
TEACH-IN '74 A new beginners series Lesson 1: Current flow and resistance by Phil Allcock ..... 535
RUMINATIONS by Sensor ..... 539
SEMICONDUCTORS Five-The Transistor ty J. B. Dance ..... 545
WHAT DO YOU KNOW? Resistors ..... 553
DOWN TO EARTH Matching by George Hylton ..... 554
SHOP TALK Component buying problems by Mike Kenward ..... 558
BRIGHT IDEAS Readers hints and tips ..... 558
HELP! Some of your questions answered ..... 561

\footnotetext{
Publisher's Annual Subscription Rate, including postage to any part of the world, \(\mathbf{£ 2} \mathbf{3 5}\). International Giro facilities Account No. 5122007. State reason for payment "message to payee". Address to Everyday Electronics, Subscription Department, Carlton House, Great Queen Etreet, London, WC2E 9PR. Binders for volumes 1 and 2 (state which) and indexes for volume 1 avallabie for \(97 p\) and \(11 p\) respectively, Inciuding postage, from Binding Department, at the above address.

We are unable to supply back copies of Everyday Electronics or reprints of articles and cannot undertake to answer readers' letters requesting designs, modifications or Informathon on commercial equipment or subjects not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles shouid be addressed to: The Editor, those concerning advertisements to: The Advertisement Manager, both at the address shown opposite.
}

PLUS....
BLUEPRINT/DATA CHART



THE few components and novel construction of this Light Dimmer enable it to be made by virtually anyone and the result is a really smart contemporary style tablelamp that will grace any decor. Basically the unit is a dimmer circuit built into the base of a simple lamp stand; there is no reason why the dimmer circuit should not be used in isolation or in conjunction with other lighting circuits provided the maximum current drawn does not exceed 1 amp (i.e. the bulb should not require more than 250 watts when run off 250 V mains).

The dimmer is only suitable for controlling non-inductive loads-tungsten filament bulbsit should not be used in conjunction with fluorescent tubes.

\section*{DIAC AND TRIAC}

The circuit is shown in Fig. 1 and as can be seen is in series with the main light circuit. This means that it can be simply wired into the lighting system in place of, or as well as, the existing

switch. The important components are Dl which is called a diac (sometimes a trigger diode) and CSR1 which is a triac.

The diac will not normally pass current in either direction unless the voltage across it exceeds a certain value (the trigger voltage). When this happens the device conducts completely and-like a thyristor-will continue to pass current until the current falls below a certain level. A diac will operate with either polarity and

Fig. 1. The complete circuit diagram of the Light Dimmer. Only the circuitry to the right of the dotted line is assembled on the tag board.

therefore it does not imater which way round it is connected in the circuit.

The triac works rather like a thyristor except that it can also operate with either polarity across it. Normally it does not conduct but if the gate is made positive or negative with respect to MT1 (main terminal one) and gate current of about 30 mA is allowed to flow the device goes into conduction and stays in conduction until the current flowing through it falls below the holding current level. When operating from a.c. mains this occurs every half cycle.

\section*{CIRCUIT OPERATION}

Dimming is effected by triggering the gate of the triac at different points on the mains half cycle waveforms (Fig. 2). If triggered early in the half cycle almost full power is obtained and this can be reduced to almost zero power as the triggering point is progressively moved later within the cycle. We use the combination of VR1, \(\mathrm{C} 1, \mathrm{R} 1\) and C 2 to delay the voltage rise across the diac-relative to the timing of the mains waveform.


Fig. 2. Waveforms of current through the lamp for triggering (b) early in the half circle (c) late in the half circle.

In this circuit the delay can be from virtually zero to 10 milliseconds, which corresponds to the time for a half cycle of 50 Hz mains. Thus we can say we obtain a phase shift of nearly 180 degrees.

The diac needs about 20 V across it for it to trigger-and hence pass current into the gate of the triac. If VR1 is set to a low value the potential across Cl builds up rapidly and in almost exact step with the mains; likewise across C2 although there will be a slight fixed delay caused by R1. As soon as the mains rises to plus or minus 20 V the diac will trigger and the triac conducts. The voltage between the top end of VR1 and the bottom end of Cl will fall to almost zero and both Cl and C 2 discharge into the gate of the triac.

By increasing the value of VRI to 100 kilohm C2 will not reach 20 V until much later in the cycle. The former setting gives near maximum light output while the latter gives minimum. As stated previous:ly it does not matter whether the mains is on a positive or negative half cycle, the triac will still function in this way.

\section*{COMPONENTS}

The values of VR1, C1, R1 and C2 are fairly important to maintain the correct range of control. For example Cl is specified as \(0 \cdot 22 \mu \mathrm{~F}\); if you make this \(0 \cdot 33\), F the circuit will still work but minimum light intensity will be obtained well before you have turned VR1 to maximum resistance-this means the control movement of the knob becomes cramped.

It is suggested that VR1 is a wirewound poten-tiometer-not so much because of power dissipation but because of better reliability. The capacitors should be of 250 V working and the. Mullard C240 range of polyester devices are ideal. You might have a tit of trouble locating diacs and triacs-particularly when it comes to their specifications. Most of them are sold "unbranded" which means that you must state the voltage and currents you require when ordering.

In this circuit almost any diac will do but you must make sure the triac is at least a 400 V device with a current rating of at least 1 amp . A triac in a TO-5 transistor encapsulation will do but these are not as readily available as the "stud" mounting variety. We have therefore designed the mechanical construction around the latter.

The inductor Ll is there purely to act as an interference suppressor and is a "home wound" job. About 100 turns (a few more will not hurt. but don't cut down on the 100) of 30 s.w.g. enamelled copper wire are wound on a 25 mm (one inch) length of \({ }^{1} 4\) inch diameter ferrite aerial rod and Araldited into position.


Photograph of the Lamp Dimmer in final stages of assembly.

\section*{LICHT DIMMER}


\section*{CONSTRUCTION}

All the electronic components are mounted on a piece of tag board as shown in Fig. 3 which is then fixed within one half of a double MK wall box (the white plastic type). A hole is drilled in a blank white cover plate to allow the spindle of the potentiometer to pass through and this will ultimately be positioned over the circuit half of the box (Fig. 4).

The lamp holder is made from a 130 mm length of \(t_{2}\) inch diameter steel gas pipe-screwed or stuck into a second blank cover plate with a switched bayonet lamp holder fixed, likewise, to the top end. The mains input wires are brought into the side of the box; one lead goes straight to the lamp holder, the other is broken and goes via the circuitry. To finish the unit off give the steel pipe a touch of paint and select a fully insulated knob to match the general appearance of the unit.

The advantage of using a plastic case is that you do not have to worry too much about insulation problems. If you use a metal case such as a standard "sunk" metal wall box ensure that none of the circuitry touches the metalwork. If in doubt you can cover the inside of the box with two layers of good quality insulating tape.



A retailer discusses component supply matters.

Component consumers are our "bread and butter." As an electronic component retailer I say this advisedly, because you constructors are indeed just this.

\section*{Specialisation}

Now the variations in electronic circuit components are proliferating so fast that the first thing you are going to have to face up to, is that you are highly unlikely to get all your requirements from one source. I know a large component firm in South East London who do not stock any "radio-frequency" goods at all. This may sound as though it's against your interests, but is it? It means in practice they can carry a bigger range and bigger stocks of "audio frequency" components.

I think this trend may go on for quite a while, and each dealer will have to specialise in a smaller section of the field. The disadvantage is that it will make it essential for you to deal with several firms, an obvious complication. On the credit side: if
each dealer is doing his job well. he should be able to offer you a large range, (within his limits) and be able to buy bigger stocks, which will help to keep down prices.

To anyone embarking on this hobby I therefore suggest that their first purchase should be catalogues. Buy several of the electronic magazines and read all the advertisements. In this way you will come to know supplier's strengths and weaknesses.

\section*{Mail Order}

Now since all these suppliers will be spread out over a fair size area, most of your orders will have to be through the mall. A few points relating to ordering by mail order are in order. Use the firm's own order form (if they have one). Write your name and address clearly (preferably print in BLOCK CAPITALS) and clearly state your wants. If you are using a firm's catalogue, I would emphasise particularly, do not put down something they do not list, because if you do, your order
will have to be specially dealt with, and my guess is that it will be the very last to be tackled. Above all don't write queries on your order form.

\section*{Queries}

It might be an appropriate moment to consider exactly what kind of queries you can expect your supplier to deal with. Every supplier will of course have his own ideas on this subject. However, I would suggest that they must be confined to information about that particular dealer's own stock; and even then, if they concern data that is not readily available, I would not condemn a supplier if he limited his help to giving you the name and address of the manufacturer concerned.

It is not in the province of the dealer to answer technical queries about articles appearing in the electronics magazines. In any case it is always far more satisfactory to contact the magazine concerned. As my partner so rightly remarked, "Extra good service for the one, means poorer service for the many." Translated into practical terms, it means that while we are struggling with your one query, twenty other customers' orders are held up!


The Tutor Board to be described here and on the blueprint presented free with this issue of Everyday Electronics, is an essential piece of apparatus for use in the Teach-In' 74 series for beginners in electronics.
The Tutor Board will be used extensively throughout the series its primary function being to carry out experiments to illustrate the theory.

It is not essential to adhere exactly to the given dimensions for the Tutor Board and some readers may wish to modify the construction to suit materials at hand. If major changes are contemplated it is necessary first to ensure that adequate space and clearances are available, especially for the potentiometers, meter and batteries.

\section*{BUILDING}

Cut the plywood base and rear panel (pieces \(A\) and \(B\) ) to the dimensions shown on the blueprint and drill all the holes with reference to the heading DRILLING.

The large hole for the meter can be cut out by a fret saw, an expandable wood bit or by drilling a series of closely spaced holes round the inside of a marked circle In the latter case the centre disc of wood can be removed by cutting along the holes with a sharp knife on both sides of the plywood Finally the hole edge must be smoothed with sandpaper.

Next cut the front and rear supports (pieces C) to the sizes indicated and then fix, with glue and panel pins, to the baseboard as shown.

Now cut to size the battery support, piece D, and glue and pin to the back panel as indicated on the blueprint. When the glue has completely set, the base and rear panel can be sanded down before finishing with two coats of emulsion paint.

The rear panel is held to the base by three screws so that the Tutor Board can be taken apart if necessary for storage, in say a shallow drawer, or repainting.

As the Tutor Board will be used throughout the series it is worth making as good a job of this as possible. A high standard should always
be the aim and this applies especially to electronics because most problems arise from poor workmanship or untidy work. Good workmanship from the start will repay itself as the series develops and will give more pleasure and satisfaction in the long run.

\section*{TERMINAL BLOCKS}

While the paintwork is drying the electrical components can be studied. The Data Chart illustrates the various components, to aid identification, and it is worth spending a little time examining the chart and the actual components until they can all be readily identified.

An important part of the Tutor Board system is the terminal blocks. These are supplied in strips of twelve connectors and must be cut with a sharp knife to give smaller blocks. Using the first strip carefully cut along the grooves to give two blocks each having three connectors, two blocks each having two connectors and two blocks each having one connector. The remaining two strips of twelve should be cut to give twelve blocks, each having two connectors.
The two three-connector blocks are for the BC107 transistors (see Fig. la), which have three leads each, but as these are not required straight away they can be stored with the other components until needed.
The two-connector blocks will have a single fixing hole, Fig. 1b, and at this stage it is advisable to check that the wire nails are a good fit when pushed into the fixing hole so that the barbs on the nail enter the plastic block. If all is well the nails can be cut to length to suit the thickness of the plywood used for the baseboard. In the prototype, which uses 4 mm plywood, a cut nail length of 10 mm was found ideal see Fig. lc. The cut ends should be rounded slightly with a file to remove any sharp edges or burrs. A total of about 15 or 20 cut nails will ensure some spares to replace any that are lost during the series.
Two of the pointed nail off-cuts are required to make up a pair of test prods and after filing away any burrs these can be clamped firmly in
each of the two single-connector blocks using one of the screws; this is shown in Fig. 1d. The unused screw in each single connector is for the connection of a flexible lead later on.

It is worth noting at this stage that the test prod point can be used to push out the fixing nails of the other terminal blocks when they have to be removed or repositioned on the baseboard.

\section*{CONNECTING LEADS}

The next requirement is preparation of the connecting leads. Five different colours are used and leads of different lengths will be required, see Table 1

Table 1: Coloured Wire Lengths
\begin{tabular}{|c|c|c|c|}
\hline Colour & Length (mm) & Quantity & Use \\
\hline \multirow[t]{3}{*}{Red} & 45 & 1 & positive test prod \\
\hline & 40 & 2 & positive battery connectors \\
\hline & 30 & 2 & general \\
\hline \multirow[t]{3}{*}{Black} & 45 & 1 & negative test prod \\
\hline & 40 & 2 & negative battery connectors \\
\hline & 30 & 2 & general \\
\hline \multirow[t]{2}{*}{Blue} & 10 & 6 & general \\
\hline & 30 & 4 & general \\
\hline \multirow[t]{2}{*}{Green} & 10 & 6 & general \\
\hline & 30 & 4 & general \\
\hline \multirow[t]{2}{*}{Yellow} & 15 & 4 & general \\
\hline & 20 & 6 & general \\
\hline
\end{tabular}

(a)


Fig. 1 (a). Shows the three-connector block for mounting transistors (b) checking that the nail fits snugly in the terminal block (c) method of fixing the terminal blocks to the Tudor Board baseboard (d) a made up test prod.

\section*{Components ....}

Resistors
\begin{tabular}{|c|c|c|}
\hline \(100 \Omega\) & \(1 \mathrm{~W} \pm 5 \%\) carbon & (1 off) \\
\hline \(1 \mathrm{k} \Omega\) & & (20ff) \\
\hline \(4 \cdot 7 \mathrm{k} \Omega\) & & (2 off) \\
\hline \(10 \mathrm{k} \Omega\) & \(\frac{1}{2} \mathrm{~W} \pm 5 \%\) carbon & (20ff) \\
\hline \(47 \mathrm{k} \Omega\) & & (20ff) \\
\hline \(100 \mathrm{k} \Omega\) & & (2 off) \\
\hline \(100 \mathrm{k} \Omega\) & \(\frac{1}{2} W \pm 2 \%\) thick fi & (1 off) \\
\hline
\end{tabular}

\section*{Potentiometers}
\begin{tabular}{ll}
\(100 \Omega\) & 1 W wirewound semi-precision \\
\(5 \mathrm{k} \Omega\) & 1 W wirewound semi-precision \\
\(100 \mathrm{k} \Omega\) & carbon linear
\end{tabular}

Capacitors
\(1000 \mu \mathrm{~F}\) elect. 9 to 25 V (1 off) \(250 \mu \mathrm{~F}\) elect. 9 to 25 V (2 off)

Semicunductors
\begin{tabular}{llr} 
BC107 & silicon npn & (2 off) \\
IN4001 & silicon diode & (1 off) \\
BZY88 & \(4.7 V 400 \mathrm{~mW}\) Zener diode (1 off)
\end{tabular}

\section*{Miscellaneous}

Meter \(0-100 \mu\) A d.c. moving coil-SEW MR45P or similar; 12 -way \(2 A\) terminal blocks ( 3 off): M.E.S. batten mounting lampholders ( 2 off); M.E.S. 6 V 60 mA bulbs (2 off): S.P.D.T. toggle switch; pointer knobs (3 off); miniature crocodile clips ( 24 off); coloured \(7 / 0.2 \mathrm{~mm}\) wire-one of each colour Red, Black, Blue, Green, Yellow-each 2 metres long.

The components listed above are those required for the first six months of Teach-/n '74, see page 535. Approximate cost including V.A.T. £7-00.

\section*{Hardware}

4 mm Plywood \(300 \times 300 \mathrm{~mm}\)
6 mm Plywood \(150 \times 300 \mathrm{~mm}\)
Deal or similar soft wood \(48 \times 22 \times 300 \mathrm{~mm}\) (2 off)
Deal or similar soft wood \(18 \times 22 \times 300 \mathrm{~mm}\)
Wood glue; half inch panel pins; No. 10 round headed screws (3 off); screw hooks (4 off); screws for lampholders (4 off); stout rubber bands ( 2 off). Drill bits: 10 mm dia.; 13 mm dia.; 4 mm dia.; No. 42.


Fig. 2. Details of the battery mountings and meter short-circuit lead.

Using your wire strippers, carefully set so as not to cut or nick the wire strands, about 10 mm of the outer plastic insulation should be removed from each end of all the above wires. This process may take a little practice and for short wire lengths it is sometimes convenient to grip the wire with pliers near the end to be stripped whilst levering the strippers outwards, away from the pliers.

With the strippers set at the correct gap excessive force is not necessary-too small a gap causes damage to the strands of wire. After stripping, the bare wire strands should be twisted tightly together.

\section*{CROCODILE CLIPS}

Half of the 20,30 and 40 mm leads of each colour can now be fitted with a miniatiure crocodile clip at one end only, as shown on the Data Chart. Other leads can be similarly prepared if needed. The tubular end of the clip should be gently squeezed until it grips the plastic lead firmly as this provides added strength and the leads will be more durable.

One of the 10 mm leads should be fitted with clips at both ends and reserved for use as a short circuit link across the meter terminals when this is not in use. The thin wire across the terminals of the meter serves the same function during transit and the need for this will be covered later. At this stage it is sufficient to say that a shorting lead helps to protect the
delicate moving coil and needle from damage during handling. When the meter is used in an experiment the lead is always removed.

When the paint on the Tutor Board is completely dry, the final stages of fitting out can be performed. The meter should be fixed in the rear panel cut out-do not overtighten the fixing nuts as this may cause the plastic case to crack.

When this stage is complete the thin wire across the meter terminals may be removed and replaced by the 10 mm lead with crocodile clips at each end, Fig. 2. Attach one clip to the tag on each meter terminal.

Next the batteries should be attached using four small screw hooks and rubber bands as shown, see Fig. 2. The two batten lamp holders for the 6 V bulbs should be screwed into position, and the toggle switch mounted in position, see blueprint and Fig. 3.

The rotary carbon and wire wound potentiometers should now be fitted as detailed on the blueprint and in Fig. 3. The carbon potentiometer has a spindle which must be shortened to the same length as the other potentiometers. The free end of the spindle should be held firmly in a vice and then cut through with a hacksaw-at no time must any stress be applied to the body of the component as this could cause damage. Any burrs on the cut end should be removed with a file. The Tutor Board is now complete and ready for use.


Fig. 3. Underside view of the Tutor Board showing potentiometer and switch labels to be referred to in the Teach-In '74 series.

\title{
IETIH-II 74 FOR DECNWERS IV ELECTROWCS THEORY AND EXPERMEWTS
}

\section*{TUTOR: PHIL ALLCOCK* LESSON I Current Flow and Resistance}

This completely new series has been designed to run for approximately twelve months and provides an introduction to the basic practical and theoretical aspects of electronics. No previous knowledge or skill is required and the series is in fact ideally suited to anyone who is interested in learning the basics of electronics. Basic experiments will be described for each part and these can be performed without the need for soldering.

\section*{TUTOR BOARD}

The series has been devised around a low-cost Tutor Board designed to obviate soldering. As a consequence the initial expenditure is kept to a minimum and the risk of damage to any of the components, by excess heat, is avoided. The construction of the Tutor Board is very simple and the Blucprint, enclosed with this issue of E.E. gives the constructional details for the board, this, together with the article on page 532 provides full construction information.
All the electrical components specified are readily available from advertisers in this issue and can be purchased through some of our advertisers in the form of a kit, providing all the components for approximately the first six parts. To assist those who wish to purchase all the electrical components for the first half of the series a components list is included in the Tutor Board article.

The Blueprint/Data Chart enclosed in this issue also contains basic information for use with this series and electronics in general.

\section*{TOOLS}

As with most constructional hobbies a few tools are necessary from the outset and the basic requirements are: a small screwdriver, wire strippers and wire cutters (side cutters). A pair of long nosed pliers might also prove useful
for wire bending. Note that the screwdriver should have a narrow blade and must be small enough to fit the screws in the terminal blocks. (A kit containing all these tools except the wire strippers will be available next month).

Good quality tools are an investment in the long run as they are more durable and often easier to handle. It is assumed that the few tools required to cut and assemble the wooden parts of the Tutor Board are already to hand.

Before any experiments can be undertaken it is necessary to look at some basic ideas regarding electricity and to introduce the ideas of a circuit. current flow, resistance and voltage.

\section*{ELECTRICAL CIRCUITS}

Perhaps much of the apparent mystique surrounding electronics sterss from the fact that electricity itself cannot be seen. In some ways this may seem a real stumbling block but need not be so because the presence of electricity can easily be demonstrated. The "switching-on" of a room light or a torch is a simple example in which electricity makes its presence known by the light (and heat) that it produces when the switch is operated.

All materials are made of atoms in each of which there is a central core or nucleus and outside this one or more electrons. For our purposes the electron can be considered to be a minute package of electricity (or more correctly electrical charge). In some materials, like glass, these electrons are prevented from moving away from their parent atom by strong forces of attraction. As a result electrons cannot flow in these materials and they are called insulators.

Materials like copper and aluminium on the other hand do not possess these same restrictions and many of the electrons are free to move within the material. It is this movement which gives us the idea of electrical current or flow of electrons and we can in fact think of current flow in metal wires in the same way that we think of water flow in pipes of a central heating system. Metals are good conductors of electricity.

\footnotetext{
- North Staffordshire Polytechnic (Any communications arising from the Teach-In '74 series must be addressed to

Everyday Electronics, Fleetway House, Farringdon Street, London E.C.4)
}

In a heating system the flow of water may be due to the pressure produced by a small pump where in an electrical circuit the pressure may arise from chemical effects inside a battery. The water is guided by ensuring that it always flows in a system of pipes or closed vessels and in the electrical circuit the current is made to flow where we want it to by using insulation round the wires and other components.

A common insulation is the plastic covering on the wires used for the Tutor Board. Fortunately air, when dry, is also a good insulator which is just as well as otherwise electricity might never have been found.

\section*{RESISTANCE}

The amount of current that can flow in a circuit for a given pressure or battery depends on the ease with which the electrons can pass along the various parts of the circuit. The amount of opposition to current flow is determined by what is known as the electrical resistance of the material.
The resistance of a wire, say, depends on the material from which the wire is made, the length of the wire and wire diameter. Increasing the wire length increases the resistance whilst increasing the diameter reduces the resistance.

The connecting wires used with the Tutor Board are stranded and consist of seven wires side by side. Because the material is copper, a very good electrical conductor, the resistance of the wire is very low and when we require appreciable resistance we must add it to our circuit by connecting a resistor into the system.

The resistor is simply a component that has been manufactured to have a certain amount of resistance and this is often marked on the body of the component by a special colour code which is covered in more detail later on.

\section*{OHM'S LAW}

So far we have introduced three terms which are very important, namely current flow, resistance and pressure. Each of the quantities can be measured and for this we must specify the units used. Pressure is measured by referring to the electromotive force (e.m.f.) of the .battery and the unit used is the volt.

Current flow round the circuit is measured in amperes, often abbreviated simply to amps, whilst resistance is measured in terms of a unit called the ohm. The Data Chart gives the symbols that are normally used for these and several other quantities that will be introduced later.
These three quantities are related to each other by a well known law called Ohm's law. This simply states that current is proportional to the voltage and consequently inversely. proportional to the resistance. As an equation this can be written as:
\[
\text { current in amps }=\frac{\text { e.m.f. in volts }}{\text { resistance in ohms }}
\]

\section*{CURRENT MEASUREMENT}

Strictly speaking the ampere is a measure of the number of electrons that flow past a given point in one second. Each electron carries the same fixed amount of electrical charge (measured in coulombs) and a current of one ampere represents the movement of approximately six million million million electrons per second! Do not let this large number worry you-it is impossible for most people to visualise such a large number anyway.

On the Tutor Board current flow can be measured by using the moving coil meter. The current is allowed to flow through a coil of very fine wire which has the pointer attached to it. The current reacts with a magnet system placed near the coil and the coil rotates on its pivot. The deflection of the pointer across a calibrated scale is used to measure the amount of current.
The meter specified for this series is very sensitive and could easily be damaged by misuse. A full scale deflection, shown as 100 on the scale, occurs for a current of only 100 mil lionths of an ampere. Just as we can divide the inch unit into thousandths of an inch or the metre into centimetres so we can divide our electrical units. As shown on the Data Chart our new current unit can be written as

1 millionth of an ampere \(=1\) microamp \(=1 \mu \mathrm{~A}\)

\section*{VOLTAGE MEASUREMENT}

Thus the meter requires 100 microamps for full deflection. The meter can be transformed into a device for measuring e.m.f. or voltage by adding a resistance in series with the meter. The combination is then known as a moving coil voltmeter. To determine the resistance required we must use Ohm's law.

Let us change the full scale current of 100 microamps into say a reading of 10 volts i.e.: 100 on the scale will represent a voltage of 10 volts applied to the meter and resistor taken
together. Thus:
resistance required \(=\frac{10(\text { volts })}{0 \cdot 0001(\mathrm{amps})}=100,000 \mathrm{~s} \Omega\)
From the Data Chart we see that this value can be written as \(100 \mathrm{k} \Omega\) ( 100 kilohms). To make the total resistance of the voltmeter equal to 100 kilohms we must allow for the resistance of the coil of wire in the meter. For the meter chosen this is about 800 ohms which is much smaller than the total resistance required and can be ignored, so we can make our voltmeter simply by adding a 100 kilohm resistor in series with the meter. The arrangement can be illustrated by what is known as a schematic circuit in which the various components are represented by the circuit symbols shown on the Data Chart. Our voltmeter representation is therefore as shown in Fig. 1.1.
The small circles in the schematic representation are included to indicate connector points


Fig. 1.1. Schematic circuit of the voltmeter.


Fig. 1.2. A switch and three resistors in series with the battery.
but would not normally be shown in such a diagram. Wire connections are simply shown as solid lines joining the components (represented by their particular symbols) together.

\section*{RESISTORS IN SERIES}

To illustrate this principle further, consider Fig. 1.2. This schematic diagram shows a series arrangement of a switch S1., three resistors (R1, R2, R3) and a 4.5 volt battery B1. The circuit is said to be a series arrangement because the current flow (when Sl is closed) is through all the components, one after another. In other words the same current flows in all components. This is not always the case and it is possible to have components in parallel so that they all experience the same voltage. This will be covered in more detail later.

As already mentioned the resistance value of each resistor is indicated by a series of coloured bands on the body of the component. Using the information given on the Data Chart study this method of colour coding and hence locate the 100 kilohm \(\pm 2\) per cent resistor. The shopping list shows three 100 kilohm resistors but the \(\pm 2\) per cent tolerance component should be specially reserved for making up the 0 to 10 V voltmeter by the method already outlined, whenever it is needed.

This close tolerance resistor can be permanently mounted on one of the two-connector blocks as shown in Fig. 1.3. It is inadvisable to bend the resistor wires too close to the case, it is better to leave the wires long to avoid any stress in the component. Flexible leads can be connected to the other ends of each metallic connector as required.


Fig. 1.3. The method of mounting a resistor in one of the connecting blocks. The resistor should be identified with reference to the Data Chart.

If we return for a moment to Fig. 1.2 and consider the effect of the current flow when switch Sl closes, we can see that the total
circuit resistance (i.e. opposition to current flow) is due to the combined effect of R1, R2 and R3 taken together. If we call the total resistance \(R_{I}\) ohms then \(R_{T}=(R 1+R 2+R 3)\), the sum of all the individual resistance values. This is a necessary consequence of the series circuit connection and the fact that the current is common to all components. The circuit current, I, can be found by applying Ohm's law: -
\[
I=\text { current in amps }=\begin{gathered}
\text { (switch closed) }
\end{gathered}=\frac{\text { battery e.m.f. in volts }}{\text { total circuit resistance in }} \begin{gathered}
\text { ohms. }
\end{gathered}
\]
\[
\text { Hence } I=\frac{4 \cdot 5}{R_{\mathrm{T}}} \mathrm{amps}
\]

\section*{KIRCHOFF'S VOLTAGE LAW}

The current, in flowing through each resistor gives rise to a voltage difference (sometimes called a potential difference or p.d.) across each component's terminals. These voltage differences can also be found by using Ohm's law and if we work out the values for each resistor we get:
\[
\begin{aligned}
& \text { Voltage difference across } R 1=1 \times R 1=\frac{4 \cdot 5}{R_{\mathrm{T}}} \times \mathrm{R} 1 \\
& \begin{array}{llll}
\text { " } & \quad \text { " } & \quad \text { R2 }=1 \times \mathbf{R} 2=\frac{4.5}{R_{\mathbf{T}}} \times \mathbf{R} 2 \\
\text { " } & \text { " } & \text {.. } & \mathbf{R} 3=1 \times \mathbf{R} 3=\frac{4.5}{R_{\mathbf{T}}} \times \mathbf{R} 3
\end{array}
\end{aligned}
\]

If we add these voltage differences together to determine the total voltage difference for the three resistors we find, sirce \(\frac{4 \cdot 5}{R_{T}}\) is common to all terms, that:-
Total voltage difference \(=\frac{4.5}{R_{\mathrm{T}}} \times(\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3)=4.5\) volts since \(R_{T}=(\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3)\).

This might well have been expected and simply shows that the total voltage drop across all components in a series circuit is the same as the battery e.m.f. (This is known as Kirchoff's voltage law.)

Well, that is enough basic theory for the time being. Study the circuit and ideas carefully before proceeding to the experimental section of this part. The experimental work will give greater benefit if the basic theory is clearly understood beforehand.

\section*{TESTS}

The tests should be done in the order indicated. Do not miss out any test as this may give difficulty in later tests.

The tests for this month start on the next page and should only be attempted when the theory has been fully studiec. A namber of tests will be given each month and will be based on the Tutor Board.

Next month: We shall examine the behaviour of parallel circuit. Some new experiments will be given and the basic theory will be taken a step further. A summary of the results of this month's experiments will also be given.

\section*{Test No. 1}

The purpose of this test is to build a series circuit using the 100 ohm potentiometer (VR1) as a variable resistor, together with a 6 volt 60 mA bulb, one 4.5 volt battery and a switch. The layout is shown in Fig. 1.4a and the corresponding schematic in Fig. 1.4b. Note that only two of the three tags on the 100 ohm potentiometer and the switch are actually used. The remaining tag on each component is not connected to any other point. In each case the centre tag and one of the two outer tags is used.


Fig. 1.4a (above). Basic layout on the Tutor Board for the first test.
Fig. 1.4b. Schematic diagram of Fig. 1.4a.

The relative position of the switch toggle for ON and OFF is dependent on which outer tag is used. Similarly for the potentiometer, the relative position of the spindle or knob for maximum and minimum resistance will depend on the choice of outer tag as before.

Observe the operation of these two components very carefully so that their action is fully understood. For example, the switch is ON when the toggle points towards the end tag actually in use. When the toggle points towards the unused end tag the switch is off. Work out a similar rule for the resistance of the 100 ohm potentiometer.

It is always desirable to check any circuit before connecting the battery or other power source and this habit is worth cultivating. If the bulb does not light it is most likely that a poor
connection has been made.
The strands of wire should be twisted together and can be folded back to double the thickness when only one wire per hole is required in the terminal block. Do not overtighten the screws as this will fracture the strands very quickly. The terminal blocks can be used to join two or more wires, or wires and component leads, together. A few minutes practice will soon indicate the amount of screw pressure required.

When this first test has been completed, dismantle the Tutor Board wiring and proceed to Test No. 2. Never leave a battery connected to any circuit for longer than is necessary. Always move the switch to the OFF position when a circuit is not in use as this will ensure long life from the batteries.

\section*{Test No. 2}

Set up the voltmeter circuit with the series 100 kilohm \(\pm 2\) per cent resistor and two test prods. Use a black lead for the meter negative terminal (marked-) and a red lead for the connection to the 100 kilohm resistor (refer to Fig. 1.5). Check the voltage of each battery, paying special attention to the correct polarity of the leads (red lead to battery positive terminal, black lead to battery negative terminal).


Mark each battery with the measured voltage. (Nominal voltage is 4.5 V , but will be higher when the battery is first purchased.) Subsequent checks of battery voltage will show lower voltage readings as the battery becomes exhausted. Leave the voltmeter set up and proceed to next test.

\section*{Test No. 3}

Devise your own Tutor Board layout and then set up the circuit shown schematically in Fig. 1.6. Operate the switch to the on position and set the 5 kilohm potentiometer (VR2) for maximum resistance using the principles covered in Test No. l. Check for current flow by measuring the voltage across the 1 kilohm resistor. (Red
lead to switch end of resistor. A zero reading indicates faulty circuit wiring or switch in wrong position).

Measure the voltage between the potentiometer end of the 1 kilohm resistor, furthest away from the switch, and the junction of the two batteries. (Black lead to the batteries.) A reading of about 3 volts should be obtained ( 30 on the meter scale). Whilst observing the meter adjust the 5 kilohm potentiometer until the meter reads zero. For equal battery voltages this occurs when the variable potentiometer resistance is equal to 1 kilohm .


Fig. 1.6. Schematic diagram of the circuit used in test 2.

Without disturbing the potentiometer setting measure the voltage difference across the variable potentiometer and across the 1 kilohm resistor. These should be about equal if the battery voltages are similar. Switch off and dismantle all wiring. Replace the shorting lead across the meter terminals for protection.

Study the results of all tests and try to explain to your own satisfaction what is happening in each test, particularly Test No. 3. If you feel it will help you, try making a few notes about each test in a notebook. In particular try to work out what each test has taught you!

\section*{DATA CHART}

The following information on resistor wattages was unfortunately omitted from the Data Chart enclosed in this issue.


\section*{Ruminations By Sensor}

\section*{Weather or Not}

The holiday season will be almost over by the time this piece is published. But before we all take up our work again it is worth while recalling the part played by electronics in improving weather forecasting. Accurate forecasting depends upon the collection of an enormous amount of data from a very wide area, and the rapid processing of this data, together with a few facts and maybe some inspired guesses.

Electronics is involved in almost every aspect of weather forecasting but its greatest contribution has been the electronic
computer. A prodigous quantity of data can be processed by the computer in a very short time and thus an up-to-date and accurate forecast can be made available, via radio or telephone. to all who may have need of it.

Unfortunately, little progress has been made in controlling the weather; gales, typhoons and hurricanes have no beneficial effects. and while it is very useful to know where and when they are likely to occur, we would be far better off without them! One can foresee that our cities may, in the future, have a controlled environment in a manner rather like that described by H. G. Wells in his book "The Sleeper Awakes." I suppose that it would only rain at night (only people up to no good, and policemen, are out at night!) and storms would be unknown.

Theoretically, there would seem to be no great problem in covering an entire city with a
transparent dome and equipping the area with the necessary air conditioning plant, but the practical problems would be enormous. Modern electronics would find no difficulty in providing the sensing and control equipment for such a project, apart from the sheer size of such an undertaking.

Perhaps the inhabitants of such a city would read with wonder of the great freeze-up of 1963 or the floods of 1973. But there is some cosy satisfaction to be felt when indoors with the rain beating against the windows and the wind howling round the house. And what of the free firework display (son et lumiere) provided by a good thunderstorm?

I think that I prefer to take the weather as it comes; always provided that the weather forecasters can give me some idea of what to expect. If the weather were controlled what on earth would we talk about?


\section*{RUDIO Ualtmeter}

\section*{BY F.C.JUDD}


ONE of the most valuable test instruments for audio work is the Audio Voltmeter, so called because it will read alternating voltages over a wide range of frequencies and is sensitive enough to read very small audio signals of down to one millivolt or less. It is basically a bridge rectifier system, the rectifier being used to convert alternating voltage to d.c. in order to drive the meter movement.

To be able to read very small voltages, the bridge rectifier and meter is preceded by an amplifier. Wide frequency response is achieved by careful design of the amplifier section and by the use of negative feedback.

\section*{RANGES}

The meter described in this article operates over five ranges as follows:

Range 10 to 10 millivolts ( mV )
Range 20 to 100 millivolts
Range 30 to 1 volt
Range 40 to 10 volts
Range 50 to 100 volts
It has a high input impedance of approximately one megohm, which is essential to prevent the meter "loading" the circuit to which it is connected and so produce errors in reading. The meter has a wide, flat frequency response from 10 Hz to over \(100,000 \mathrm{~Hz}\) ( \(\pm\) 1dB).
Some ways of using the meter will be explained later but before describing the circuit and construction, readers should note that although the circuit may not look too complicated, this project is not one for absolute beginners to tackle. Those who feel capable of building the instrument however, will, providing con-

\begin{abstract}
Measures a.c. voltages over a large frequency range-useful instrument for the audio enthusiast.
\end{abstract} struction, specified components and wiring etc., are strictly adhered to, find it a worthwhile item of test gear and moreover one with reasonable accuracy.

It can be used for measuring the signal level going into and out of a pre-amplifier, the gain of an amplifier, the output power from amplifiers designed to deliver power and of course for generally checking newly built audio equipment. One other instrument is required to do all this and that is an audio signal generator, which is also not difficult to construct and a possible subject for an E.E. project.

\section*{THE CIRCUIT}

The Audio Voltmeter circuit is shown in Fig. 1 and reading as is usual in circuitry, from left to right, begins with the input, followed by the attenuator network which consists of Sla and S1b (ganged 5 way wafer switches) and resistors R1 to R8. The "impedance" of the network which is also the input impedance of the meter, is about one megohm and more or less determined by the main leg of the attenuator network R8.

In the 10 mV , or most sensitive range, R8 is switched direct to earth so no attenuation occurs. For the 100 mV range an attenuator factor of 10 is provided by R8 in series with R1 and R2. The 1V, 10 V and 100 V ranges are achieved in the same way but by attenuation factors of \(100,1,000\), 10,000 and 100,000 . The values of the network are not precise but do allow the use of standard value resistors and a readout accuracy from the meter of \(\pm 5\) per cent which is about average for a low cost audio voltmeter.
The output from the attenuator is fed to TR1

Fig. 1. The complete circuit diagram of the Audio Voltmeter with built in power supply.
which is a special amplifier stage with a high impedance input so as not to shunt the high impedance of the attenuator itself. Transistors TR2 and TR3 are a conventional signal amplifier to further boost the signal so that it will drive the meter via the bridge rectifier network consisting of D1, D2, D3 and D4.

In order to achieve a wide frequency response one arm of the bridge is coupled back to the emitter of TR2 via the preset potentiometer VRI. This not only provides negative feedback, and an aid to wide frequency response but also the means of "self-calibrating" the finished meter. This is why a portion of the 50 Hz voltage from the secondary of the mains transformer Tl is tapped off from R20 and R21. This voltage is brought out to a socket on the front panel and is used in conjunction with VR1 to set the meter calibration. The amplitude of the 50 Hz signal at the calibration socket (SK3) is \(1 V\), give or take a fow millivolts, but more of this later.

The remainder of the circuit is the power supply consisting of T1 which supplies 12 V a.c. to the bridge rectifier (D5-D8) which, in turn feeds pulsating d.c. to the smoothing components C7, R19 and C6. The supply rail to the amplifier at the junction of \(\mathrm{C} 6 / \mathrm{R} 19\) should be about 17 volts.

\section*{CONSTRUCTION}

The prototype shown in the photographs was built into a case measuring approximately \(222 \times\)
\(130 \times 125 \mathrm{~mm}\) made from Lektrokit parts, however any similar sized metal case could be used but a metal case it must be.

The circuitry is assembled on plain Veroboard as in Fig. 2 and this is attached, when wired, to the front panel by means of small angle brackets (Fig. 3). The meter may be any good quality 100 micro-amp, moving coil type with the usual 90 degree scale calibrated in 10 divisions each subdivided by 10 or 5 .

The front panel layout is shown in Fig. 4, note that the input terminals (one red and one black) and calibration socket, are insulated from the panel. The black terminal (earth) is only earthed at the circuit board common negative/earth line; the metal case is also earthed to the common negative supply rail.

When the circuit wiring is completed check if
possible the supply rail voltage at the junction of C6/R19. This should be approximately 17 volts. Short circuit the input terminals and switch to the 10 mV range to ensure that the meter is reading zero.

Note: Immediately after switching on the meter will read for a moment or two and then drop back to zero. Allow a few seconds for it to settle before using.

If the range switch is left in the 10 or 100 mV position and the short circuit from the input terminals removed, the meter will usually read because of 50 Hz hum pickup. Remember at low millivolt ranges it is effectively a high gain amplifier with a response down to 10 Hz .

For calibration the meter and circuit must be out of the case so as to get at the pre-set VR1. Couple the calibration socket to the red or live input terminal and switch to the 1 volt range. Adjust VRI until the pointer of the meter reads exactly full scale- 10 on the meter or 1 volt. The meter is now calibrated and can be fitted into its case.

\section*{DECIBEL MEASUREMENT}

Voltage (and current and power) can be expressed in decibels and it is usual to include a scale for decibels on audio voltmeters. This is useful when checking gain and/or plotting the frequency response of an amplifier. A full decibel scale, as normally found on audio voltmeters, is shown beneath the regular voltage scale in Fig. 4a.

With very large meter scales the full scale can usually be included but on small meters, such as the one specified for this project, it is better to use the part scale as in Fig. 4b otherwise the divisions are too cramped together at the higher or minus \(d B\) readings i.e., between -5 and -10 dB . For practical purposes the +2 dB down to -5 dB scale with divisions of 1 dB , is sufficient anyway.

The point of 0 dB is based on \(0 \cdot 755\) volts, the reference of which is a power of 1 milliwatt into 600 ohms. Normally the power level holds for any impedance but the voltage only for 600


Fig. 2. The layout of the components on the Veroboard topside and the interconnection details below the board.



Fig. 3 (above). Details of wiring the component board to the front panel components.

Fig. 4. Voltage and decibel scales for the unit, see text.

Photograph of coupled board and front panel.


Fig. 4. Drilling and meter cut-out details for the front panel. The meter cut-out should be made to suit meter used.


\section*{Components....}

Resistors
\begin{tabular}{|c|c|c|c|c|c|}
\hline R1 & 100kS2 & R8 & 1MS2 & R15 & 6801: \\
\hline R2 & 10kS & R9 & 470kS & R16 & 150k』 \\
\hline R3 & 10kS & R10 & 150ks & R17 & 6.8kS! \\
\hline R4 & 1 k 2 & R11 & 180ks & R18 & 1 kS 2 \\
\hline R5 & \(1 \mathrm{k} \Omega\) & R12 & 22 kS & R19 & 2.2kS \\
\hline R6 & 100S2 & R13 & 22kS & R20 & 6.8kg! \\
\hline R7 & 1008 & R14 & 180ks) & R21 & 1 kg ? \\
\hline \multicolumn{6}{|l|}{All \(16 \mathrm{~W}+5 \%\)} \\
\hline
\end{tabular}

\section*{Capacitors}

C1 \(0 \cdot 1 \mu \mathrm{~F}\)
C2 \(10 \mu \mathrm{Fd}\) elect. 15 V
C3 \(5 \mu \mathrm{~F}\) elect. 15 V
C5 \(50 \mu \mathrm{~F}\) elect. 15 V
1000 ,
C7 1000,1 F elect. 25 V
C4 \(5 \mu \mathrm{~F}\) elect. 15 V
Semiconductors
TR1, 2, 3 BC109 silicon npn (3 off)

D1, 2, 3, 4 OA91 or similar (4 off)
D5-D8 BY164 or any 50 p.i.v. 500 mA bridge rectifier

\section*{Miscellaneous}

SK1, 2 Single spring loaded terminals (one red one black) or terminal block (2 way)
SK3 Insulated panel socket
S1 Double pole 5 way wafer switch
S2 S.p.s.t. toggle switch
VR1 47052 skeleton preset
ME1 100/1A moving coil meter approx 3 in square
T1 240V primary, \(6-0-6 \mathrm{~V} 100 \mathrm{~mA}\) secondary (Eagle MT6 type)
LP1 Panel neon indicator incorporating dropper resistor.
Metal case approximately \(222 \times 130 \times 125 \mathrm{~mm}\),
knob for S1, plain perforated Veroboard \(203 \times 95 \mathrm{~mm} \times 0.15\) inch matrix, mains lead and 3 pin plug.
ohms. However, for practical use the dB scale can be used directly for determining gain or loss when dealing with voltage only and providing the impedance of the circuit at which the measurement is being made is not changed during the measurement.

For example, a signal amplifier may be delivering 0.775 volts, as read on the meter (which is 0 dB ). If the gain of the amplifier was increased by 2 dB then the output voltage would be increased to \(0 \cdot 975\).

In plotting the frequency response of an amplifier the signal level out is adjusted (by the volume control or input signal level) to read 0 dB on the audio voltmeter. If the amplifier has a flat response from say 20 to \(10,000 \mathrm{~Hz}\) the meter will read 0 dB over that frequency range. As the
response talls away at either end of the Hat part of the frequency range, so the meter readings fall accordingly and the amount in decibels by which it falls can be noted.

\section*{DECIBEL SCALE}

Those who wish to put a decibel scale directly on the meter will have to remove the meter cover and then very carefully remove the scale plate itself. The scale can now be drawn with Indian ink (a compass and fine nib pen will be required) and the dB figures marked as shown in Fig. 4b.
The prototype was checked against a high grade laboratory audio voltmeter and accuracy was found to be within \(\pm 5\) per cent on any range.

THis month's article in the Semiconductor series continues with transistor types and explains the manufacture of planar devices; also discussed are types of encapsulation.

\section*{ALLOY JUNCTION GERMANIUM POWER TRANSISTORS}

Power transistors must be able to dissipate the heat generated in their collector, so the small types of construction discussed previously are unsuitable. The collector must be in good thermal contact with the external metal base of the device.

This external base must be designed so that it can be bolted onto a piece of metal which serves to dissipate the heat. The transistor is kept cooler if the metal is blackened, since black surfaces radiate more heat than bright surfaces for the same temperature difference.

A thin mica washer may be placed between the transistor and the heat sink, although this washer will inevitably result in a slight increase in the working temperature of the transistor.

It is best to coat the mounting base of the transistor (and the mica washer, if used) with silicon grease so that good thermal contact is established. Special silicon compounds which conduct heat better than ordinary silicon grease are available and can be used with advantage.

The construction of a typical germanium alloy junction transistor is shown in Fig. 5.1.

The OC35 is a typical general purpose transistor of this type. It can dissipate 30 W if the
mounting base of the transistor is kept at a temperature of not more than \(45^{\circ} \mathrm{C}\).

The \(V_{\text {...o }}\) rating is 48 V at collector currents of up to 0.5 A and 32 V at collector currents up to 6A. The value of \(h_{s \text {. is }}\) in the range 25 to 75 at 1 A .

The OC36 is a high voltage version of the


Fig. 5.1. The construction of a typical germanium alloy junction power transistor.

OC35, whilst the OC29 is a higher gain type (with an \(h_{\text {re }}\) of 45 to 130 at 1A). All of these transistors have a cut off frequency of around 250 kHz .

The OC22 to DC24 range has a higher cut off frequency ( 2.0 to 2.5 MHz ), but the power dissipation must be limited to 15 W .

All of these transistors have a diamond shaped base of the TO-3 type shown in Fig. 5.2.

No similar npn germanium power transistors are generally available.

Table 5.1: Germanium PNP Power Transistors
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & \begin{tabular}{l}
\(V_{\text {cbo }}\) \\
(V)
\end{tabular} & \[
\begin{aligned}
& \mathbf{V}_{\text {ceo }} \\
& (\mathbf{V})
\end{aligned}
\] & \begin{tabular}{l}
\(I_{\text {c max }}\) \\
(A)
\end{tabular} & \[
\begin{aligned}
& P_{t \text { max }} \\
& (W)
\end{aligned}
\] & \(\mathrm{hr}_{\text {re }}\) & \[
{ }_{(\mathrm{MHz}}^{\boldsymbol{i}_{\mathrm{T}}}
\] & Application \\
\hline OC20 & -100 & -75 & \(8 \cdot 0\) & 30 & 25-75 & \(0 \cdot 25\) & High Voltage \\
\hline OC22 & -47 & -24 & 1.0 & 15 & 150 & \(2 \cdot 0\) & General purpose, high frequency \\
\hline OC23 & -55 & -24 & 1.0 & 15 & 150 & \(2 \cdot 5\) & Power Switch \\
\hline OC24 & -40 & -24 & 1.0 & 15 & 150 & \(2 \cdot 5\) & Power Switch \\
\hline OC25 & -40 & -40 & 4.0 & \(22 \cdot 5\) & 15-80 & \(0 \cdot 25\) & General purpose power transistor \\
\hline OC28 & -80 & -60 & \(8 \cdot 0\) & 30 & 20-55 & \(0 \cdot 25\) & High voltâge, especially suitable for d.c. converter \\
\hline OC29 & -60 & -32 & \(8 \cdot 0\) & 30 & 45-130 & 0.25 & High gain power transistor \\
\hline OC35 & -60 & -32 & \(8 \cdot 0\) & 30 & 25-75 & \(0 \cdot 25\) & General purpose power transistor \\
\hline OC36 & -80 & -32 & \(8 \cdot 0\) & 30 & 30-110 & 0.25 & High voltage power transistor \\
\hline
\end{tabular}

Table 5.2: PNP Silicon Alloy Junction Transistors


Fig. 5.2. The TO-3 encapsulation showing leadout details.

\section*{SILICON ALLOY JUNCTION TYPES}

The early silicon transistors were made by an alloy junction technique similar to that used for manufacturing germanium transistors.

These techniques resulted in the production of transistors such as the OC200 to OC206 which are a pnp series with cut off frequencies in the range 1 to 4 MHz and values of \(h_{\text {fe }}\) in the range 20 (for the OC200) to 70 (for the OC202).
The \(V_{\text {ceo }}\) rating varies from - 15 V for the OC202 to -60 V for the OC203 and OC206. The BCZ11 is another transistor of this type.

This range of tranistors is encapsulated in the small metal envelope of Fig. 4.7 (last month) with a red spot near the collector.

\section*{SILICON PLANAR DEVICES}

The silicon planar process has made possible the mass production of the very high performance transistors which are available today.

The present trend is for silicon planar devices to displace most of the earlier germanium devices in almost all applications.
The planar process cannot be used to produce germanium devices, although it can be employed to manufacture other silicon devices, such as diodes.

The diagrams of Fig. 5.3 show some of the processes involved in the manufacture of a silicon planar \(n p n\) transistor.

An \(n\)-type slice of silicon of about 2.5 cm diameter is heated in oxygen so that a layer of silicon oxide is formed all over it. A drop of photosensitive material is placed on top of the slice and the latter is spun so that the photosensitive material forms an even layer of the desired thickness.

The slice is then covered by a "base mask", which is a photographic negative containing a pattern, the opaque parts of which are in the positions of the bases of the hundreds or thousands of transistors which are to be made from the silicon slice.

The slice is then put under an ultra-violet light. The parts of the photosensitive material which receive the radiation are hardened and become fixed in position, but the other parts are easily washed away.

The slices are treated with acid which removes the oxide layer at the points where the photosensitive layer has been washed away.

Each of the positions in the silicon slice where a transistor is to be formed now has the type of cross section shown in Fig. 5.3b.

After cleaning, the slice is treated with a \(p\)-type material and heated so that the latter diffuses to the required depth. An oxide layer is then formed over the whole surface. The cross section of a single part of the disc is now as in Fig. 5.3c.

A photosensitive material is then used with a new mask (the emitter mask) and holes in the oxide layer are formed in positions which are to be treated with an \(n\)-type impurity (Fig. 5.3 d ).

Afterwards an \(n\)-type material is allowed to diffuse in to form the emitter and an oxide layer is formed over the whole surface (Fig. 5.3e).

\section*{CONTACTS}

A further photosensitive layer is applied and a mask used to produce gaps in the oxide layer over the small parts of the base and emitter where the contacts can be fitted (Fig. 5.3f). A thin layer of aluminium is then deposited over the whole surface and, by means of a fourth mask, the aluminium is removed from all parts except where it is required to form the base
(a)

(b)

(c)

(d)

(e)

( \(\dagger\) )

Fig. 5.3. Schematic outline of the various steps and stages involved in the manufacture of silicon planar npn transistors.

and emitter contacts.
Each transistor now has the general form shown in Fig. \(5 \cdot 3 \mathrm{~g}\).

The transistors on each slice are now briefly tested, separated, and the good ones encapsulated. Finally each device is thoroughly tested.

The manufacture of silicon planar pnp transistors is very similar. In expitaxial planar transistor manufacture, a lightly doped thin layer of silicon is used on a more heavily doped substrate. The transistor is formed within the thin layer.

\section*{LOW CURRENT PLANAR TYPES}

Low current transistors operating with collector currents ( \(I_{r}\) ) of \(\operatorname{lmA}\) or less, are used in
low level circuits where one may require a low noise transistor.

Typical \(n p n\) transistors of this type are the BCl 07 ( \(V_{\text {reo }}=45 \mathrm{~V}\) ), the BCl 08 ( \(V_{\text {rro }}=20 \mathrm{~V}\) ) and the low noise BCl 09 .

Electrically equivalent types in an epoxy encapsulation are the BC147, BC148 and BC149.

The 2 N 929 and the higher gain, low noise 2 N 930 are similar \(n p n\) types ( \(V_{\text {rro }}=45 \mathrm{~V}\) ). Another similar type is the 2 N 2483 and the higher gain 2N2484 (minimum value of \(h_{10}=250\) at \(I_{c}=\operatorname{lmA}\) ) which have \(V_{\text {coo }}\) equal to 60 V and which may be used at values of \(I_{c}\) as low as \(l \mu \mathrm{~A}\).

In the S.G.S. range, one may mention the epoxy encapsulated C450 and the BFY76 and BFY77. Other npn types are the 2 S 501 to 2 S 503

Table 5.3: Low Level Silicon Planar Transistors
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Device & \[
\begin{aligned}
& V_{\text {cbo }} \\
& (V)
\end{aligned}
\] & \(V_{\text {ebo }}\) (V) & \[
\begin{aligned}
& I_{c \max } \\
& (\mathrm{~mA})
\end{aligned}
\] & \[
\begin{aligned}
& P_{1 \text { max }} \\
& (m W)
\end{aligned}
\] & \(\mathrm{hfe}_{\text {fe }}\) & \[
\begin{gathered}
\mathbf{f}^{\mathbf{T}} \\
\hline \mathbf{z})
\end{gathered}
\] & Remarks & \\
\hline \multicolumn{9}{|l|}{non} \\
\hline BC107 & 50 & 45 & 100 & 300 & 125-500 & 300 & TO-18 & \\
\hline BC108 & 30 & 20 & 100 & 300 & 125-500 & 300 & TO-18 & \\
\hline BC109 & 30 & 20 & 100 & 300 & 240-900 & 300 & Low noise, TO-18 & \\
\hline BC147 & 50 & 45 & 100 & 220 & 125-500 & 300 & Lockfit & \\
\hline BC148 & 30 & 20 & 100 & 220 & 125-500 & 300 & Lockfit & \\
\hline BC149 & 30 & 20 & 100 & 220 & 125-500 & 300 & Low noise, Lockfit & \\
\hline 2N929 & 45 & 45 & 30 & 300 & 100-350 & 50 & TC-18 & \\
\hline 2N930 & 45 & 45 & 30 & 300 & 200-600 & 50 & Low noise, TO-18 & \\
\hline 2N2483 & 60 & 60 & - & 360 & \(>975\) & 60 & High voltage, TO-18 & \\
\hline 2N2484 & 60 & 60 & - & 360 & \(>250\) & 60 & Low noise, high
TO-18 & voltage, \\
\hline BC184L & 45 & 30 & 200 & 300 & >250 & 150 & Silect & \\
\hline \multicolumn{9}{|l|}{pnp} \\
\hline BC157 & \(-50\) & -45 & 100 & 220 & 75-260 & 130 & Lockfit & \\
\hline BC158 & -30 & -25 & 100 & 220 & 75-260 & 130 & Lockfit & \\
\hline BC159 & -25 & -20 & 100 & 220 & 125-500 & 130 & Low noise, Lockfit & \\
\hline BFX37 & \(-60\) & -60 & 50 & 360 & 70-300 & 40 & High voltage, Low TO-18 & noise, \\
\hline 2N2604 & -60 & -45 & 30 & 400 & 40-120 & 30 & High voltage, TO-46 & \\
\hline 2N2605 & -60 & -45 & 30 & 400 & 100-130 & 30 & High voltage, Low
TO-46 & noise, \\
\hline
\end{tabular}
(Texas) and the ZTX114 "E line" Ferranti type.
Similar types of low current high gain pnp transistors are available. For example, the Texas 2N2605, the Mullard BCl 57 to BCl 59 series and the BFX37.

\section*{MEDIUM CURRENT PLANAR TYPES}

The number of planar transistors for use in the \(10-200 \mathrm{~mA}\) range is very numerous and most designers choose from a few types with which they are especially familiar.

Common examples of such transistors are the economical types 2N2926 (International General Electric) and the ZTX300 (Ferranti) in epoxy encapsulation, whilst amongst the metal cased types there are C111E (S.G.S.), the 2N696, 2N697, 2N1613, 2N1711, 2N3053, etc.

Most of these have \(f_{\mathrm{T}}\) values around 50 MHz , but one may select one of the 2 N 2217 to 2 N 2219 series if one requires a \(250 \mathrm{MHz} \mathrm{f}_{\mathrm{T}}\). The BFY50 to BFY53 series offer a higher value of \(I_{c}\) (1A) than most of the other small types.

In the pnp medium current types, one may use the 2 N 1131 or 2 N 1132 which have an \(f_{\tau}\) around 50 MHz .

The common 2 N 2904 to 2 N 2907 A series offer an \(f_{\tau}\) value of 200 MHz and are rather similar in performance to the 2N2217 npn series.

Of the epoxy encapsulated \(p n p\) types, one may mention the \(2 \mathrm{~N} 3702 / 2 \mathrm{~N} 3703\) with an \(f_{\tau}\) of 100 MHz .

\section*{HIGH FREQUENCY TYPES}

Various silicon planar transistors are available for the u.h.f. region. One of the best known is the BFY90 (minimum \(f_{\mathrm{T}}=1000 \mathrm{MHz}\) ). Other \(n p n\) types are the 2 N 3570 (minimum \(f_{T}=\) 1500 MHz ) and the S.G.S. BFY78.

The 2N3662/2N3663 (Int. Gen. Electric) are examples of transistors designed for u.h.f. tuners, whilst the Mullard BF200 ( \(f_{T}=270 \mathrm{MHz}\) ) is intended for use in v.h.f. tuners.

Various pnp high frequency amplifiers are available, but their operating frequency is not normally quite so high as some of the \(n p n\) types. An example is the BFX48 (S.G.S.).

\section*{high voltage}

In some applications a transistor capable of controlling a high voltage is required; for example, in the control of neon filled numerical indicator tubes.

The S.G.S. npn type C407 is one of the best known (with a \(V_{\text {cro }}\) rating of 120 V ). The ZTX341 and ZTX342 (Ferranti) have \(V_{\text {r..., }}\), ratings of 100 and 120 V respectively and are also intended for driving numerical indicator tubes.

The S.G.S. V765 is a pnp type with a 120 V \(V_{\text {crio }}\) rating.

\section*{SWITCHING}

Many of the transistors aleady mentioned (both silicon and germanium types) are also used for switching applications. In particular, the \(n p n\) 2N2217 series and the pnp 2 N 2904 series are, widely used for medium current switching.

However, many silicon transistors especially designed for switching applications are now available. Some of the best known are the \(n p n\) 2N706 and 2N708 for moderate speeds and the 2N709 for very fast switching.

The TIS45 (Texas) is similar to the 2N708, but is in a plastic encapsulation. Another fast general purpose switch is the S.G.S. type P346A.

Special types of ultra fast switch, such as the Motorola 2 N 3960 with \(f_{\tau}=1800 \mathrm{MHz}\), are available, but lie outside the scope of this article.

Table 5.4: Medium Current Silicon Planar Transistors
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & \(V_{\text {cbo }}\) (V) & \[
\mathbf{V}_{\mathrm{ebo}}
\]
(V) & \[
\begin{aligned}
& I_{\text {cmax }} \\
& \left(\mathrm{mAA}^{2}\right)
\end{aligned}
\] & \[
\begin{aligned}
& P_{1} \max \\
& (m W W)
\end{aligned}
\] & \(\mathrm{h}_{\text {fe }}\) & (MHz) & Encapsulation \\
\hline \multicolumn{8}{|l|}{npn} \\
\hline BFY50 & 80 & 35 & 1000 & 800 & \(>30\) & 60 & TO-5 \\
\hline BFY51 & 60 & 30 & 1000 & 800 & \(>40\) & 50 & TO-5 \\
\hline BFY52 & 40 & 20 & 1000 & 800 & \(>60\) & 50 & TO-5 \\
\hline 2N696 & 60 & 40 & - & 600 & 20-60 & 40 & TO-5 \\
\hline 2N697 & 60 & 40 & - & 600 & 120-150 & 40 & TO-5 \\
\hline 2N1613 & 75 & 30 & - & 800 & 40-120 & 60 & TO-5 \\
\hline 2N1711 & 75 & 30 & - & 800 & 100-300 & 70 & TO-5 \\
\hline 2N2217 & 60 & 30 & 800 & 800 & 20-60 & 250 & TO-5 \\
\hline 2N2218 & 60 & 30 & 800 & 800 & 40-120 & 250 & TO-5 \\
\hline 2N2219 & 60 & 30 & 800 & 800 & 100-300 & 250 & TO-5 \\
\hline 2N2219A & 75 & 40 & 800 & 800 & 100-300 & 300 & TO-5 \\
\hline 2N3053 & 60 & 40 & 700 & 5000 & 50-250 & 100 & TO-5 \\
\hline \multicolumn{8}{|l|}{} \\
\hline 2N1131 & -50 & -35 & 600 & 600 & 20-45 & 50 & TO-5 \\
\hline 2N1132 & -50 & -35 & 600 & 600 & 90-150 & 60 & TO-5 \\
\hline 2N2904 & -60 & -40 & 600 & 600 & 40-120 & 200 & TO-5 \\
\hline 2N2905 & -60 & -40 & 600 & 600 & 100-300 & 200 & TO-5 \\
\hline 2N2905A & -60 & -60 & 600 & 600 & 100-300 & 200 & TO-5 \\
\hline
\end{tabular}

\section*{ENCAPSULATION}

Silicon planar transistors are available in quite a number of types of encapsulation.

A very common encapsulation for both silicon and germanium transistors is the TO-5 type shown in Fig. 5.4. The diameter of the main part of the metal body of the device is about 8.15 mm . One of the electrodes (normally the collector) is often internally connected to the metal body.

Another very common form of encapsulation for small transistors is known as the TO-18 type.


Fig. 5.4. Details of the TO-5 type encapsulation.
This is a metal encapsulation of the same form as the TO-5, but considerably smaller, the diameter of the main part of the body being about 4.8 mm .

The connections are almost invariably as shown in Fig. 5.4, but other devices (such as field effect transistors) are produced in the same types of encapsulation. Some types of electrically similar transistors are available in both the TO-5 and TO-18 types of encapsulation, but the maximum permissible dissipation of the TO-5 type is usually about double that of the TO-18 type.

A further variation of the TO-18 type is the TO-72 encapsulation in which a fourth lead (often connected to the metal case of the device) is present so that the four leads of the base are at the corners of a square. The TO-46 is even smaller than the TO-18, but has the same general type of base connections.

\section*{PLASTIC TYPES}

A number of the manufacturers have developed their own type of epoxy (black plastic) encapsulation.

The S.G.S. and Fairchild companies employ epoxy forms which are somewhat similar to the TO-18 and TO-5 types, but the top is rounded off. The base connections are similar to the metal types.

Texas Instruments employ a form called "Silect" in many economical devices. This form, shown in Fig. 5.5a, is also used for field effect transistors.

The Ferranti 'E-line' is shown in Fig. 5.5c, whilst the International General Electric epoxy encapsulation is shown in Fig 5.5b.

\section*{HIGH POWER SILICON TYPES}

The most commonly used high power silicon transistor is almost certainly the npn 2N3055. This can dissipate up to 115 W , has a minimum \(f_{\mathrm{r}}\) of 1 MHz and a current gain of 20 to 70 at \(l .=4 \mathrm{~A}\).

In general its ratings are well above those of germanium power transistors, since the silicon material can operate at a much higher temperature. The encapsulation is as shown in Fig. 5.2.


Fig. 5.5. Various common found types of encapsulation.

For some purposes the npn RCA type 40250 is suitable. This is in a smaller case (known as TO-66) which also has a "diamond" shape. The maximum dissipation is 29 W and it is cheaper than the 2 N 3055 . Another \(n p n\) type is the 2N3054 which has a 25 W maximum dissipation.

Various npn planar high power transistors are available, such as the Mullard BD121 (45W, \(f_{\mathrm{T}}=95 \mathrm{MHz}\) ) and the BD123 ( \(45 \mathrm{~W}, \mathrm{f}_{\mathrm{T}}=85 \mathrm{MHz}\), \(V_{r r o}=60 \mathrm{~V}\) ) and the S.G.S. BD117 which is intended for high power audio amplifiers.
The number of \(p n p\) high power transistors is more limited than that of the npn types, but they find application in power amplifiers in conjunction with npn types.
Special power transistors are available for use at radio frequencies.

Next Month: Testing transistors.


DESPITE the popularity of stereo headphones. a large number of stereo amplifiers, and record players, have no provision for using headphones. It is, however, a simple matter to construct an adaptor to enable the use of headphones.

\section*{SENSITIVITY}

It is not really practical to connect the phones straight across the speaker terminals, as the sensitivity of a pair of headphones is of course much greater than that of a pair of speakers. It would therefore be necessary to have the volume control set almost at minimum.

This results in excessive hum, and noise, as the general noise level of an amplifier is usually expressed as minus a certain number of dB compared with the maximum output of the amplifier. This could be for example, -60 dB , which means that the noise level is one thousandth of the level of the full output of the amplifier.

When using speakers the amplifier would be used at something approaching full output, and a noise level as low as this would be virtually inaudible. If headphones were in use, the output from the amplifier would, in all probability, never be more than say, one hundredth of the maximum output of the amplifier. This means that the required signal at its peak would only be ten times stronger than the noise level, and this would obviously be very unsatisfactory.

Also, due to crossover distortion, some amplifiers have a lower output quality at low output levels, than they do at higher output levels. This would be the result when headphones were in use.

\section*{ATTENUATOR}

In order to enable headphones to be used with the volume control set higher, an attenuator is required. The circuit of a simple attenuator is shown in Fig. 1.


Fig. 1. The circuit of a simple attenuator to explain the theory used in the prototype.

The load resistor is not part of the attenuator, but forms a suitable low impedance load for the amplifier. The 72 ohm resistor, R1, and the headphone itself form the attenuator.

The input voltage from the amplifier ( 10 volts in this example) will be shared across the resistor and the headphone in proportion to their resistance. In this case they have a total resistance of 80 ohms ( \(72 \mathrm{ohms}+8\) ohms in series).

The headphone constitutes one tenth of this resistance, and will have one tenth of the input



Fig. 2. The complete circuit diagram of the Stereo Headphone Adaptor.
voltage across it, the other nine tenths appearing across the 72 ohm resistor. The simple formula for calculating the attenuation factor of a circuit such as this is \(\left(R 1+R_{\text {rl., }}\right) / R_{\text {rl... }}\). Thus in the circuit of Fig. l we have an attenuation factor \(=\) \((72+8) / 8=10\).

Using this circuit, the headphone has only one tenth of the sensitivity it would have without it, and would therefore require ten times the output voltage from the amplifier. This would result in the noise level being reduced by a factor of ten.

\section*{PRACTICAL CIRCUIT}

The complete circuit diagram of the Stereo Headphone Adaptor is shown in Fig. 2. The input to the adaptor (from the speaker outlets of the amplifier) is through SKI, a stereo jack socket, which is connected to the double-pole two-way switch S1. The latter enables the headphones to be used (via the attenuator) in one position, and the loudspeakers in the other via SK2 and SK3, the output sockets to the loudspeakers.

The unit can therefore drive one, or two pairs of headphones, or can be switched for ordinary loudspeaker use.

Resistors R3, R4, R5, and R6 are the attenuator resistors, two for each pair of headphones (one for each earphone). If only one pair of headphones are likely to be used, SK5, R5, and R6 can be omitted; resistors R1, and R2 are the load resistors.

As the circuit stands it is suitable for use with almost any modern transformerless amplifier, as these work well with a wide variety of output impedances, and the value of the load resistors is therefore not too critical. With the values shown two to four watts will be developed across R1, and R2 at normal listening levels. With the majority of amplifiers, distortion is at its lowest at around this output level, and a good low noise level is obtained.

\section*{CONSTRUCTION}

The prototype unit was constructed in an aluminium case, see Fig. 3, and straightforward
point to point wiring as employed as shown in Fig. 4.

First of all make the metal case as shown in Fig. 3 and make the cut-outs for the various sockets and switch. With this done fit the latter in position on the lid is indicated.

The wiring up of the components should be somewhat easier if it is carried out in the following order:
(1) Connect and solder the leads from the speaker sockets SKl and SK2 using sleeved wire.
(2) Using stout tinned copper wire connect and solder together all the earth terminals on the sockets.
(3) With sleeved wire connect and solder the two leads from SK1 to Si.
(4) Wire in R1 and R2 followed by R3, R4, R5, and R6.

Thoroughly check out the wiring, and when satisfied that it is correct the case may be fixed together and the sockets and switch positions marked, with Letraset for example; so they may be identified.

A double length of twin cable is required to connect the unit to the amplifier or record player with which it is to be used; the length of the wire will depend on the relative positions of the unit and amplifier.

This lead should have, at one end, two suitable plugs which connect into the amplifier loudspeaker sockets, and a stereo jack plug at the


Fig. 5. Wiring details of the input jack plug, PL1.

\section*{Stereo headphone adaptor}


\section*{Components....}

\section*{Resistors \\ 

\section*{Sockets \\ SK1 stereo jack socket \\ SK2 standard jack socket \\ SK3 standard jack socket \\ SK4 stereo jack socket \\ SK5 stereo jack socket}

\section*{Miscellaneous}

PL1 stereo jack plug
PL2 standard jack plug
PL3 standard jack plug
S1 Double-pole double-throw toggle; Small metal case (see text); stout copper wire; insulated wire; length of twin cable.

\section*{MODIFICATIONS}

Sensitivities of different makes, and models of headphones do tend to vary slightly. If when the unit is in use it is found to be impossible to obtain sufficient volume, or R1, and R2 are found to be overheating (these are intended to operate at quite high temperatures, but should not seriously discolour, or smoke), R3, R4, R5, and R6 should be reduced in value. to about 82 ohms.

If the unit is to be used with an amplifier which uses an output transformer, it will be

Table 1: Comfonent changes necessary when using an amplifier with transformer output.
\begin{tabular}{cccc}
\begin{tabular}{c} 
Speaker \\
Impedance \\
(ohms)
\end{tabular} & \begin{tabular}{c} 
R1, R2 \\
(ohms)
\end{tabular} & \begin{tabular}{c} 
R3 to R6 \\
(ohms)
\end{tabular} & \begin{tabular}{c} 
R3 to R6 \\
(ohms)
\end{tabular} \\
\hline 3 & 3.35 W & 68 & 33 \\
8 & 105 W & 100 & 47 \\
15 & 185 W & 150 & 68
\end{tabular}

Note: the final column with values for R3 to \(R 6\) is for use with low sensitivity headphones.
necessary to alter the values of all the resistors. Table 1 gives suitable resistor values for use with this type of amplifier, for the usual output impedances quoted by manufacturers.
As in the standard circuit, it is possible that R1 and R2 may overheat, or there will be a lack of volume. Thus in the table, suitable values for R3-R6 are shown in the last column for this eventuality

Should there be any doubt as to whether or not the amplifier is a transformerless type or not, this can be ascertained by tracing back the speaker leads from the output sockets to see if these emanate from a transformer. If the amplifier is a valve type, it will certainly use an output transformer

\section*{IN USE}

The Stereo Headphone Adaptor has been designed to be situated by the listeners armchair so that a set of headphones (or two sets) may be conveniently switched in without the listener needing to stir from his armchair whilst transferring from speakers to headphones.

\section*{Whatdoyouknow?}

\section*{RESISTORS}
(1) There are two well known formulae for calculating the total resistance of a number of resistors in
(a) parallel (b) series, can you write these down?
(2) Calculate the total resistance of the following network.

(3) (a) State Ohm's law and write down the equation relating voltage, current and resistance. (b) What current will flow in a 100 ohm resistor connected across a 6 V battery? (c) the power in watts \((P)\) is related to voltage \((V)\) and current ( 1 ) by the equation \(P=\) VI. Calculate the power dissipated in the resistor in (b). What wattage resistor would you use?.

\section*{ANSWERS}

मем +
 PINOM NOA \({ }^{\text {SHBM SE. }} \mathbf{O}=\operatorname{SHEM}(90.0 \times 9)=d(0)\)
\[
\forall w 09=\forall 90 \cdot 0=\frac{001}{9}=1 ' \mathrm{Me} \text { s.w40 6u!s’ (q) }
\]
- eכueł̧s!sas

 Gu!MOG (I) łuaנ」ns aчł łeपł sełels Me| s,wपO (e) ( \(\varepsilon\) )
\[
\text { - зшуоן! } L \text {.OL sןenbe чग!чм }
\]



\[
\begin{align*}
& \cdots+\cdots+\varepsilon_{y}+\Sigma_{y}+{ }^{1} y=I_{y}(q)  \tag{q}\\
& \cdots+\cdots+\frac{\varepsilon_{d}}{b}+\frac{\mathbf{z}_{\mathrm{y}}}{b}+\frac{\mathrm{I}_{\mathrm{y}}}{b}=\mathbf{I}_{\mathrm{y}} \\
& \text { (e) (i) }
\end{align*}
\]


\begin{abstract}
"My amplifier has an input resistance of 20 kilohms and is fully loaded by an input of 5 millivolts r.m.s. I wish to use a crystal pickup with it. The manufacturers' data for the pickup says that it is correctly matched and equalised when it is loaded with 100 kilohms. The output is given as 100 millivolts peak. How can I adapt the pickup to the amplifier?"
\end{abstract}

This problem really has two parts. First, the amplifier's inputsignal requirement is given in r.m.s. (root mean square) millivolts, while the pickup output is in peak millivolts. These are not directly comparable. Secondly. there is the real problem of whether the pickup can be matched to the amplifier.

The required amplifier input voltage (for full output) is 5 millivolts r.m.s., and it can be taken that this specification refers to sine-wave signals. In this case, the peak voltage is about 1.4 times the r.m.s. voltage, so 5 millivolts r.m.s. corresponds to 7 millivolts peak. From now on we'll work in peak voltages and forget the r.m.s. ones.

\section*{THE MATCHING PROBLEM}

We have to make sure that whatever matching arrangement we make doesn't reduce the voltage at the amplifier input terminals to less than the 7 millivolts needed for full output. At the same time the pickup must "see" a load of 100 kilohms.

The simplest possible arrangement is shown in Fig. 1. Here a resistance \(R_{\mathrm{s}}\) is put in series with the input impedance \(R_{1}\) of the amplifier. To match the pickup, ( \(R_{\mathrm{a}}+R_{\mathrm{t}}\) ) must intal 100 kilohms.


Since \(R_{1}\) is 20 kilohms, it follows that \(R_{n}\) must be 80 kilohms. (In practice it would be all right to use the nearest standard value, 82 kilohms, since the matching isn't very critical in this sort of circuit).

The question is, will adding 80 kilohm, which must absorb some of the output of the pickup, leave at least the required 7 millivolts at the amplifier input?

In Fig. 1, \(R_{x}\) and \(R_{1}\) form a potential divider. Since \(R_{n}\) is four times \(R_{1}\) it must absorb four times as much voltage as \(R_{\mathrm{i}}\). In other words, four-fifths of the pickup voltage is wasted in \(R_{k}\) and the remaining one-fifth appears at the amplifier input. So the amplifier gets one-fifth of 100 millivolts, or 20 millivolts, which is comfortably greater than the required 7 millivolts but not so enormous as to overload the input stage of the amplifier (most amplifier inputs are designed to accept a 20 dB overload, and in the present case the overload is roughly 10 dB , which is the decibel equivalent of a threefold increase in voltage).

In this case, then, the simple matching arrangement works well. Unfortunately, it is not possible to match any pickup (or other signal source) to any amplifier in this way. For example, if the pickup in question

Fig. 1. A very simple form of attenuator/matching circuit.
had had an output of only 20 millivolts, then the amplifier would have received only 4 millivolts, which is not enough to give full power output. In such a case, extra amplification is needed, or a high input impedance buffer stage before the amplifier. If the pickup had an output of 500 millivolts the amplifier would be in danger of being overloaded and some extra attenuation would have to be put between it and the pickup.

\section*{MATCHING CRITERION}

To check whether a particular combination of pickup and amplifier will work with this simple matching arrangement, calculatr this Matching Criterion:
\(\left(\frac{\text { Pickup output }(\mathrm{mV})}{\text { Amplifier input }(\mathrm{mV})}\right) \times\)
\(\left(\frac{\text { Amplifier input resistance }}{\text { Required pickup load }} \frac{\text { resistance }}{\text { ren }}\right)\)
If this comes to more than unity, the system will work. If it comes to more than 10, there may be a danger of overloading the input stage (this doesn't apply if there is a volume control before the input stage). If less than unity, either more amplification or more input impedance with the same amplification is needed.

In calculating the Matching Criterion, both voltages must be in millivolts and both resistances (or impedances) in kilohms. The criterion also applies to matching signal sources other than pickups.

Occasionally, a pickup or some other signal-source may produce far too much output and be in danger of overloading the amplifier which it drives. To avoid overloading the preamplifier it is necessary to attenuate the signal while at the same time presenting the pickup with the correct load.

Taking the figure of 500 millivolts for the pickup output, but keeping the load at 100 kilohm as before, how can we reduce the input to the amplifier without at the same time presenting the wrong load to the pickup? The simplest answer is to connect a resistance in parallel with \(R_{1}\), thus bringing down the effective input impedance of the amplifier. To preserve the required 100 kilohm, \(R_{8}\) must be increased, and this, together with the reduced input impedance, causes the desired attenuation of the signal.


\section*{B.H. COMPONENT FACTORS LIMITED}

SPECIAL RESISTOK KITS OW \(5 \%\) or \(\mathrm{JW} 5 \%\) CAREON FILM) 25E12 Kit: 25 of each El2 value, 10 ohms-lM. a total of 1,525 , 1720 not UF: 0 O1, POLYESTER CAPACITONS MULLARD C2100 250V
 I60V: MULLAMD POLYESSTER CAPACITORS C2P6 SERIES

 400 V: ( \(\mu \mathrm{F}) 0.001,0.0015\). \(0.0022,0.0033,0.0047\), \(21 \mathrm{p} ; 0.0068,0.01 .0 .015\)


MINIATURE MULLARD ELECTAONICS OIS,016 OIT SERIES
( \(4 F / V\) ) : \(1 / 63,1 \cdot 563,2 \cdot 2,63,3 \cdot 3 / 63,440,4 \cdot 7,63,840,1016,1063\), \(15 / 16\)
 15016. 22010 All Above 6p; 47 63, Ap; 68/63, \(12 \mathrm{p}: 100\) 63. \(14 \mathrm{p}: 220\) '16. 8p:


ELECTAOLYTIC CAPACTTORS, TÜbular and larēe cañ



 HI-VOLT: 8 350, 14p: is 350, 19p; 32 350. 25p; 50 250, 18 p ; 100500 , 34p. MINIATURE CERAMIC PLATE CAPACITIORSSOV: (DF) 22, 27, 33, 39, 47, 56, 68, 82. PLATE CAPACITORS


 IM, ID Each Or 100 for \(62 D_{\text {: }} 1.000\) for 44.50 .
METAL FILM RESISTORS IW \(5 \% 10\) ohms-IOM. Itp each or 100
for CI 10 . ISEI2 KIT ( 15 each value 10 ohms_IOM) 48 .


\title{
TEENTESI HANTH in radio television and electronics
}

Whether you are a newcomer to radio and electronics, or are already engaged in the industry, ICS can help you. We can further your technical knowledge and provide the specialized training so essential to success, or prepare you for a recognised examination. ICS have helped thousands of ambitious men to move up into higher paid jobs - we can do the same for you.
Take one of these courses. . .
Society of Engineers Graduateship (Electrical Engineering)C \& G Telecommunications Technicians Certificates
C \& G Electrical Installation Work
- C \& G Certificate in Technical Communication Techniques
C \& G Radio Amateurs
- MPT General Certificate in Radio Telegraphy
- Audio. Radio anc TV Engineering and Servicing
- Electronic Engineering Maintenance.

Engineering systems
- Instrumentation \& Control systems
- Computer Engineering and Technology

Electrical Engineering. Installations, Contracting, Appliances

\section*{NEW self-build radio courses}

Learn as you build. You can learn both the theory and prac tice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

\section*{POST THIS COUPON TODAY}
for full details of ICS courses in Radio. T.V. and Electronics

\section*{To: INTERNATIONAL CORRESPONDENCE SCHOOLS}

Dept. No. 23IU, Intertext House, Stewarts Road, London SW8 4UJ or telephone 01-6229911.
Please send me the ICS prospectus - free and without obligation.
(State Subject or Exam.)
Block Caphals Please
NAME
ADDRESS
occupation
AGE
A D your key to a brighter,
Accredited by the Council for the Accreditation of Correspondence Colleges.

\title{
YATES ELECTRONICS \\ (FLITWICK) LTD \\ DEPT. E.E., ELSTOW STORAGE DEPT. KEMPSTON HARDWICK, BEDFORD.
}
C.W.O. PLEASE. POST AND PACKING PLEASE ADD IOP TO ORDERS UNDER 62.
Catalogue which contains data sheets for most of the components listed will be sent free on request 10p stamp appreciated

\author{
OPEN ALL DAY SATURDAYS \\ PLEASE ADD \(10 \%\) VAT
}

RESISTORS
W Mullaigh stability carbon film-very low noise-capless construction, IW Mullard CR25 carbon film-very small body size \(7.5 \times 2.5 \mathrm{~mm}\) tw \(2 \%\) ELECTROSIL TRS.


Quantity price applies for
O. 5 watt \(5 \%\) iskra resistors 5 off each value 4.7 n to \(1 M \Omega\).

\section*{POTENTIOMETERS}

Carbon track \(5 k \Omega\) to \(2 M \Omega\), log or linear (log tW, lin tW).
Single, 12 p . Dual gang (stereo), 40p. Single D.P. switch, 24p.

SKELETON PRESET POTENTIOMETERS
Linear: \(100,250,500 \Omega\) and decades to \(5 M \Omega\). Horizontal or vertical P.C.
mounting ( 0.1 matrix).
TRANSISTORS
\begin{tabular}{ll|ll|ll|ll|l} 
ACI07 & 15p & AFI26 & 20p & BFI15 & 25p & OC42 & 12p & SN3707 \\
AC12
\end{tabular}
ZENER DIODES 30V 12 WIRE WOUND POTS, 3W, 10,25, \(400 \mathrm{~mW} 5 \% 3.3 \mathrm{~V}\) to \(30 \mathrm{~V}, 12 \mathrm{p}\). 50 a and decades so look \(\Omega\), 35 p .
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{ll} 
SIGNAL & \\
OA85 & 7p \\
OA90 & 5p \\
OA91 & 5p \\
OA202 & 7p \\
IN4148 & 5p \\
BA114 & 8p
\end{tabular} \\
\hline \begin{tabular}{l}
BRUSHED ALUMINIUM PANELS \\
\(12 \mathrm{in} \times 6 \mathrm{in}, \mathbf{2 5 p}\); \(12 \mathrm{in} \times 2 \mathrm{fin}, 10 \mathrm{p}\) : \(9 \mathrm{in} \times 2 \mathrm{in}, 7 p\)
\end{tabular} & \begin{tabular}{l}
THERMISTORS \\
VAlos5S \\
VAl066s
\end{tabular} \\
\hline \begin{tabular}{l}
SLIDER POTENTIOMETERS \\
\(86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}\), length of track 59 mm .
\end{tabular} & \begin{tabular}{lr} 
VA1077 & \(15 p\) \\
R53 & CI.35
\end{tabular} \\
\hline SINGLE IOK, \(25 K\), 100 K log. or lin. 40p. DUAL GANG, IOK + 10K erc. Iog. or lin, 60p. & \\
\hline KNOB FOR ABOVE, 12 p .
FRONT PANEL, \(65 p\). & \begin{tabular}{l}
THYRISTORS \\
2NS060 SOV 0.8A 30D
\end{tabular} \\
\hline 18 Gauge panel \(12 \mathrm{in} \times 4 \mathrm{in}\) with slozs cut for us & 2NS064 200V 0.8A 47p \\
\hline with slider pots. Grey or matt black finish com- & 106 F 50 V 4 A 40 p \\
\hline plete with fixings for 4 pots. & 06 D 400V 4A 55p \\
\hline
\end{tabular}

MULLARD POLYESTER CAPACITORS C2O6 SERIES
\(400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \mathrm{j} \mathrm{P} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}\), \(0.015 \mu F, 0.022 \mu F, 0.033 \mu F, 3 p .0 .047 \mu F, 0.068 \mu F, 0.1 \mu F, 4 p, 0.15 \mu F, 6 p, 0.22 \mu F\), \(71 p, 0.33 \mu \mathrm{~F}, \quad 11 \mathrm{p}, 0.47 \mu \mathrm{~F}, 1 \mathrm{Ip}\).
\(160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0\)
\(160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 3 \mathrm{p}, 0.15 \mu \mathrm{~F}\),
\(44 \mathrm{p}, 0.22 \mu \mathrm{~F}, \mathrm{Sp}, 0.33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, 0 \mu \mathrm{~F}\), \(4 \frac{1}{2} \mathrm{p}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \nmid \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, 1.0 \mu \mathrm{~F}, 13 \mathrm{p}\). MULLARD POLYESTER CAPACITORS C280 SERIES
\(250 V P\).C. mounting: \(0.01 \mu F, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{P}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}\),
 \(13 \mathrm{p} .1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{D}\)
MYLAR FILM CAPACITORS IOOV CERAMIC DISC CAPACITORS \(0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}\), \(\quad 100 \mathrm{pF}\) to \(10,000 \mathrm{pF}, 2 \mathrm{p}\) each. \(2 \frac{1}{2} \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \mathrm{j} \mathrm{p}\).

\section*{ELECTROLYTIC CAPACITORS}
(KF/v) \(1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3-3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40\), \(15 / 63,22 / 10,22 / 25,22 / 63,3316 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3\), \(68 / 16,100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 10,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p} .47 / 63\) \(100 / 40,150 / 25,220 / 25,330 / 10,470 / 6-37 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4,10 \mathrm{p}\). \(470 / 10,680 / 6 \cdot 311 \mathrm{p} .100 / 63,151 / / 63,220 / 63,1000 / 10,12 \mathrm{p}, 470 / 25,680 / 16,1500 / 6-313 \mathrm{p}\)
\(470 / 40,680 / 25,1000 / 16,1500 / 10,2200 / 6 \cdot 3,18 \mathrm{p}, 330 / 63,680 / 40,1000 / 25,1500 / 16\) \(470 / 40,680 / 25,1000 / 16,1500 / 10,2200 / 6-3,18 p .330 / 63,680 / 40,1000 / 25,1500 / 16\), 2200/10, 3300/6•3, 4700/4 21 p .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{LARGE (CAN) ELECTROLYTICS} \\
\hline \(1600 \mu \mathrm{~F}\) & 64V & 74p & 2500 \(\mu\) F & 64 V & 80p & 4500 \(\mu \mathrm{F}\) & 16 V & 50p \\
\hline 2500 LF & 40V & 74p & \(2800 \mu \mathrm{~F}\) & 100 V & 42.60 & \(4500 \mu \mathrm{~F}\) & 25 V & 61. 68 \\
\hline \(2500 \mu \mathrm{~F}\) & Sov & 58p & \(3200 \mu \mathrm{~F}\) & 16 V & 50p & \(5000 \mu \mathrm{~F}\) & 50 V & C1. 10 \\
\hline
\end{tabular}

HIGH VOLTAGE TUBULAR CAPACITORS- 1,000 VOLT
\(\begin{array}{ll}0.01 \mu \mathrm{~F} & 10 \mathrm{p} \\ 0.022 \mu \mathrm{~F} & 12 \mathrm{p}\end{array}\)
\(\begin{array}{ll}0.047 \mu \mathrm{~F} & 13 \mathrm{p} \\ 0.1 \mu \mathrm{~F} & 13 \mathrm{p}\end{array}\)
\(0.22 \mu \mathrm{~F}\)
\(0.47 \mu \mathrm{~F}\)
22p
POLYSTYAENE CAPACITORS \(160 \mathrm{~V} 2 \% \%\)
lOpF so l,000pF El2 Series Values, dp each.
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconducter that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when methane, propane, alcohol, North Seagas, as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized withour amplification Full derails and circuits are sinpplied with each detector, Detecror alarm 67.30. As above for. PP9 battery, 46.40.

\section*{PRINTED BOARD MARKER} dry, and
relief.

\section*{LARGE RANGE ITT/TEXAS IC'S NOW IN STOCK}


\title{
II © NEKT MONTH
}

\section*{the 4 gand tre. RECEIVER}

A radio capable of receiving short wave amateur and shipping transmissions as well as the normal medium wave band


\section*{alarm}

A simple alarm for the detection of combustible gases and vapours and smoke

\section*{THREE BY THREE GAME \\ An addition to any game using a} dice, or a novel game for two players

\title{
ALL IN TME \\ MOVEMBER ISSUE OF everyday electronics
}

WE appear to have overlooked the supply problem concerning one major component used last month. The CA3046 integrated circuit, used in the Train Control ler, is not particularly easy to get hold of, but one large supplier of semiconductors does list it-A. Marshal and Son, their address can be found on their advertisement elsewhere in this issue.

\section*{Lamp Dimmer}

To get to the supply problems likely to occur when buying for this month's projects we will first look at the Lamp Dimmer. Most components for this project will cause few problems, but it might be as well to shop around before buying the diac and triac as prices vary widely.

Some firms sell these items in pairs and this is probably a good way of buying them. The case and other mechanical parts should be available from most electrical shops.

\section*{Audio Millivoltmeter}

The case used on the prototype Audio Millivollmeter is a good case for this piece of test gear but is rather expensive (about \(£ 2 \cdot 50\) ). This case is made from Lektrokit parts available from Home Radio.


The meter used can be any type of the approximate size quoted (provided the range is correct) and there are a number of reasonably priced types available from advertisers. The transformer specified should preferably be used since the calibration voltage is likely to be more accurate with one particular type.

\section*{Headphone Adaptor}

The only component likely to be
difficult to get for the Stereo Headphone Adaptor is the case. A design for a home model case is shown in the article but any small metal or plastic case could be used.

All the other components are readily available.

\section*{Tutor Board}

We hope that some of our advertisers will be supplying a full kit of parts for the Tutor Board and the first six parts of Teach-In '74. We have taken the unusual step of informing advertisers of the necessary components so that they can help you by selling them all in one kit.

Just one point, the last TeachIn series also used a small moving coil meter and the demand was so heavy that all the stocks were exhausted; we hope this will not happen this time as the suppliers have been warned.

If the meter does become unavailable similar types should be sought. The size is not that critical but we suggest you do not use one very much smaller than the original.

Another point if you are buying the parts individually make sure you get R.S. Components connector blocks-this is because of the method of fixing them used.


\section*{CONSTRUCTORS \\ TAKE YOUR PICK . . .}

Build one of four special simple projects, described in an 8-page supplement, on the FREE VERSATILE PRINTED WIRING BOARD included in the NOVEMBER issue of PRACTICAL ELECTRONICS
. . . THE CHOICE IS YOURS!

\section*{THE GOOD COMPANIONS}


Two magazines designed to complement each other in every way-together satisfying the needs of everyone involved in electronics.

PRACTICAL ELECTRONICS
November issue on sale Friday, October 12


I have often spent many hours sorting through a box of resistors to find the values I need, so I have come up with the following idea. Obtain a polystyrene-ceiling tile and divide It into many parts using a felt-tipped pen and number these sections with resistor values, preferably in ascending order. The resistors can then be placed in their respective sections by inserting one wire end into the tile. It is then an easy matter to find the required value resistor.
P. D. Turner,

Woodbridge, Suffolk.

\title{
SAXON : witarawnens id \\ STANDANO \& CUSTOM-BUILT AUDIO \& ELECTRONIC EQUIPMENT
} NEW \& SECONDHAND MUSICAL INSTRUMENTS. DISTRIBUTORS FOR A.K.G. HIGH OUALITY MICROPHONES.

\section*{Announcing our improved range of constructor modules}

FOR DOMESTIC \& COMMERCIAL

\section*{USE}

New Verslons using 3A 'Plastlc Power' Driver Transistors Now Avallable To meet demand. We have included a more pow
module in our well. module in our wellestablished and pro amplliers are carefully assembled, tested and guaranteed. They offer superb value for rellabillty
 and varsatllity.

\section*{SA35 \\ 35 watts RMS. Uses 7 ransistors and 70
Carf. pald. \\ £4.45}

\section*{A NEW ADDITION IS THE SA50 at £5.65}

Carr. paid. A rugged, well built unit, capable of 50 watts R.M.S. out, with all the advantages of Saxon Amplifier design and quality. Ready now.

\section*{SA100}
makes an ideal unit diseo assemblies. A real glutton for work.
Rellable, tough and compact 11 tranalstors, 6 diode Cars. pald BRIEF SPEC. FOR ALL THREE MODULES All modules incorporate OPEN AND SHORT CIRCUIT PROTECTION, plus prool against over-disstpation and laulty inductive loads in the SA. 100
Frea. response \(\quad 15-10.000 \mathrm{~Hz}_{2} \pm 1 \mathrm{~dB}\)
Dlstortion \(\quad 0.2 \%\) at 1 kHz
Loads 4 to 16 ohms
Qulescent current 15 mA
Nolise voltage Better than -75dB
Supply voltage SA \(3525-45\) volts

Clicults, connecting instruction and application data are supplled free with all modules.

\section*{POWER SUPPLIES FOR}

THE SA25/35 \& SA100 AUDIO MODULES
PUA5 Unatablilized zupply for 2 SA25/35 EA.s0
Unstabinzed supply for one or iwo SA1.75 cart. 40p
PS45 Stabllized module for 2 SA25's or two SA35's
 MT30 Transformer for unstablized supply complete with
 MT70 Transtormer Ior PS70 E4.90 carr. 40p

ALL MODULES ARE BUILT ON GLASS FIBRE P.C. BOARD AND SUPPLIED FULLY TESTED

\section*{TWO NEW PA/MIXER CONTROL UNITS}

Using grouped pairs of inputs and outputs (high \(Z\) and low \(Z\) inputs) with individual bass, treble and volume controls on each pair plus master control. These low-noise units will feed all makes of amplifiers, making them ideal for clubs, discos etc. Standard jack sockets. Compact design. In strong metal cases. All units guaranteed for 3 years.

\author{
- M. 4 H \\ Case 14"
}
\(£ 18.50\)
- M.6 HL Case \(18^{*} \times 8^{*} \times 2 \frac{1}{2}\)

18 Inpuls (6 high Z. 6 low Z). Carf. pd
£27.50
Channel section module for building your own mixer, Gain-16 x ( 24 dB ) Carr. pd. \(\mathrm{f} 3.50+\mathrm{d}\)

SAXON CONTROL UNITS
Mono (as shown)
よ6.50
£15.80


Two dechs, and full headphone monltoring. The unit is mans operated and measures \(171^{-}\)a \(3^{-}\)a 4 deep and Is finished with a smart white on black facla. The controls are: Left/RIghi deck fadef, volume, bass treble, Headphone Selector and volume. MIcrophon volume, bass, treble, mains on/of. .


160 walt version 827.90

(Can.

\section*{120 WATT HEAVY DUTY MODULE}

Rugged class A driver stage, this module will fun from all our mixers etc., and most other makes. Dellvers 120 watts into an elght ohm load and employs 4 to3 can (1i5 watt) output transistors. These are the modules where extra power is demanded.
 Input sensitivily 200 mV into 10 K Construction Fibreglass board Size \(\quad 8^{\prime \prime} \times 44^{\prime \prime} \times 4^{\prime \prime}\left(5^{\prime \prime}\right.\) with supply) Low distortion parallel push-pull output stage.
\(\left.\begin{array}{c}\text { Module } \\ \text { powef } \\ \text { supply }\end{array}\right\} \& 18 \cdot 95\) (Carr. 40p)

\section*{SOUND AND LIGHT UNITS}

Our popular 3 channel model handles ud to 3KW ( 3000 watts) of lighting and incorporate: versatile sound control arrangement 10 enable protessional standards to be achieved. Both units are excellent examples of Saxon quality and value.

3 CHANNEL UNIT
Includes bass, middle and treble as well as master conirols, 2 ampllfier sockets eliminate need to inishe stoel case. Cotr. 200 . \(£ 19 \cdot 75\)

SINGLE CHANNEL UNIT
Operates trom 5 to 100 watt ampllifers. Supplied reble or mote operation, treble or mid-range at a cost 88.90

\section*{COMPLETE AMPLIFIERS}

CSE 100. £34-90 carr. free
This versathe unli is now avallable in a black vynide case and so represente even bettor value than eve delivering speech and music powers of up to 100 watts RMS and continuous signal outputs of 70 watts. Two individually controlled inputs with wide range bas: and treble controlt


\section*{SAXON 100 £ 48.50 carr. free}


LOUDSPEAKERS British made bargains !
 12- 40 watt 15,000 gauns magnet syatem \(8 / 15 \mathrm{ohm} E 11.50\) carr. 40D.
A.K.G. MICROPHONES

D11 DHL IDEAL DISCO MIKE ONLY Ee. 45 (rro \&11.00)
Prices quoted do NOT Include V.A.T. \(10 \%\) must be added on to total value of order for V.A.T.
S.A.E. for speclal price list.

Orders and personal shoppers to:
SAXON ENTERTAINMENTS LTD.
327 Whitehorse Rd., W. Croydon, Surrey. CRO 2HS.

Telephone 01-684 6385
Hours 9.30 a.m.-5.30 p.m.
TRADE \& EXPORT ENQUIRIES INVITED

TERMS OF BUSINESS
Cash with order (C.W.O.) For C.O.D. please add 35p
extra, cash by regd. letcer, please



\section*{Smoothing Capacitors}

When designing a mains power supply for transistor circuits you use a large value electrolytic capacitor. How do you arrive at the value for this and is it very critical?

The general rule is to make the capacitor as large as possible (or as one can afford) however there is a slightly more scientific answer.. If you assume full wave rectification the capacitor has to smooth out what is, effectively, a 100 Hz waveform. This pulsating waveform is constantly trying to fill the capacitor with charge (if you consider it like a bucket) and in the absence of any current being drawn from the capacitor this happens quite quickly and once it is fully charged there is no further ripple across its terminals.

As soon as you connect to an external circuit, charge will be drawn from the capacitor-hopefully at a lower rate than it is being fed in. The crux of the problem is to make sure that the rectifying circuit can keep the capacitor filled with charge more easily than the external circuit can draw it.

If you consider the external circuit to be a box having impedance (forget what the function of the circuit actually is) we must make sure that the impedance of the charge circuit is very much less than the impedance of the external circuit. This means that
the reactance of the smoothing capacitor must be very low at a frequency of 100 Hz . If the external circuit has a high impedance (e.g. it draws only a milliamp or two) we can afford to use a low value capacitor for smoothing (a few hundred micro-farad which does not have an exceptionally low reactance) but if we need to supply several hundred milliamps we must reduce the reactance of the capacitor proportionally (to perhaps several thousand micro. farads). The values are not very critical provided you are in the right order of magnitude but there is a hidden snag-if the capacitor is too large there might be a big current surge at switch on as it charges up for the first time and this surge-in badly designed circuits-can sometimes destroy the rectifiers!

\section*{Impedance}

I thought that impedance was dependent on frequency and yet you often talk about input impe. dances without mentioning the frequency you are considering. My amplifier specification even says "Input impedance: 1 megohm" but it does not mention frequency. This does not seem to make sense!

When dealing with autio amplifiers there is a standard frequency that is used as the basis for calculating impedances; this has been chosen to be approximately in the peak of the human ear's frequency response -1 kHz . Whenever we talk about input impedance or im. pedance matching in amplifiers we are assuming that a frequency of 1 kHz is being used. Once you know this you can calculate impedances for other frequencies.

There is an exception (to prove the rule?) loudspeakers' impedances are usually quoted for a frequency of 400 Hz .

\section*{Impedance Variation}

I assume that it is possible to increase or reduce the impedance of a loudspeaker merely by connecting a resistor in series or in parallel with it but is this permissible and what effects would be evident?

It is perfectly permissible to do this-provided you carry out your series (or parallel) calculation
correctiy. For example you can increase the impedance of a 3 ohm loudspeaker to about 8 ohms by putting a 5 ohm resistor in series with it. This would make it safe to connect to an amplifier with a restriction of 8 ohms "output impedance" but you will sacrifice a lot of power-over half the power would be dissipated by the resistor and the volume will be considerably reduced.

It is a handy "stop gap" technique for initially checking a circuit before you buy the correct loudspeaker but is not to be recommended as good practice!

\section*{Reversed Transistors}

Why must you not connect transistors the wrong way round -by that I mean swop collectors for emitters. In an npn transistor both collector and emitter are made of \(n\) type material and the structure is a sort of sandwich so why on earth can't you reverse the connections without "dire" results.

Your description of the structure of an npn transistor is correct and we agree that it does seem strange that the device is not reversible. The reason lies behind the fact that although you have the sandwich structure there are differences in the doping levels of the silicon forming the collector and emitter regions respectively. Emitter doping is very much greater than that in the collector -this is necessary to improve the "emitter efficiency" which controls the gain and frequency characteristics of the device. A side effect of this high level doping is to reduce the reverse emitter base breakdown voltage (to typically 5 or 6 volts).

In normal circuits we take great care to ensure that for an npm transistor the base can never go more than about 5 V negative with respect to the emitter for this very reason. When a transistor is in a correctly operating circuit the base is usually at a much more negative voltage than the collector -often there can be 7 or 8 volts difference and the collector base junction is always in a reverse biased condition. If you connect your transistor the wrong way round you will be applying these 7 or 8 volts across the emitter base junction which has a reverse limit
of 5 volts and this is why the device might be destroyed.

A point of interest is that provided the breakdown current is limited you can sometimes get away with it! If the supply voltage is less than the emitter base reverse breakdown voltage there will be no danger of damaging the transistor but your circuit will still not work as you do not get the true emitter efficiency that is required and the effective gain of the device-when operating the wrong way round-is in the order of \(1 \cdot 1\).

\section*{Mono to Stereo}

1 have a mono cassette tape recorder which I want to modify to give me stereo playback. Is there any simple way to do this.

Theoretically it is possible to convert your device for stereo replay but if you are a beginner we feel that this might prove to be a very difficult operation. Not only is it difficult but you might have considerable difficulty getting the right parts and obtaining a reasonable balance between the two channels.

Your recorder will be fitted with a mono head which imprints the recorded signal as a magnetic pattern on a \({ }^{1}{ }_{16}\) inch wide track of the cassette tape. To operate in stereo two tracks-containing left hand and right hand information-have to be recorded within this \(1_{16}\) inch width, so firstly you have to change the head to one which has two electromagnetic cores. Problem number one is to locate a head that will mechanically fit your deck-because of the miniature nature of modern recorders getting one to exactly fit will be difficult! You then have to mechanically line up the head so that is exactly corresponds to the two tracks we have mentioned.
Assuming you are able to do this you then have to make a high gain audio amplifier which will operate from the very low signals that are derived from the tape when playing back. There are many amplifiers which are capable of doing this and you would have no problem in that respect unless you tried to get the signal from the extra channel to exactly match the quality from the exising one. The only satisfactory way to do this is to start from scratch and build two identical playback amplifiers and feed these from the
signals from the double track heads.

The answer would thus seem to be "don't modify but start from scratch" and to do that you need to be reasonably experiencedcircuits for stereo tape recorders appear from time to time in our sister magazine Practical Electronics to which we hope you will progress as you get more confident in handling complex circuits.

\section*{Using Veroboard}

I have read-somewhere-that Veroboard is not recommended for use in radio circuits why is this?

In some radios it is true that Veroboard can give problems. Because of the very close proximity of the conducting strips you can get parasitic capacitive coupling between stages and this can affect tuning and in some instances cause the circuit to be unstable and oscillate. In our designs we are very much aware of this problem and will only specify Veroboard in non critical applications.

\section*{Transformer Addition}

Can I step up the output of my 1 watt transistor amplifier by putting a transformer between it and the loudspeaker.

No! The output of the amplifier is designed to match the impedance of a loudspeaker to give optimum power coupling. By putting in a transformer you will upset this coupling and at best will get slightly less power output. At worst you might damage the output transistors of your amplifier. Remember a transformer does not give power transformation-only voltages and currents are changed and always at the expense of each other.

\section*{Thyristor Check}

Is there any "quick and easy" way of checking if a thyristor is working?

The following method will check if a thyristor is working but it will not check whether it is capable of withstanding higher voltages or for that matter will not
show any leakage current problems which might be encountered when operating at normal mains voltages.
Use a 9 V battery and a 6 V 150 mA bulb in series with the anode/cathode circuit of the thyristor under test. The bulb should be between the anode and the positive terminal of the battery; the cathode goes straight to the negative terminal. The bulb should not light up. Now, with an extra lead and a 100 ohm resistor in series, connect from the positive battery terminal to the gate connection of the thyristor momentarily. The bulb should light up and stay alight even though you remove the connection to the gate.
Momentarily disconnect the main circuit and reconnect and the bulb should go out and stay out. This test should work for most thyristors available but one ought to say that there are a few devices around which need more gate current than this simple circuit can provide.

\section*{Dissipation}

When I made your Cassette Power Supply (car version) it worked fine for about ten minutes and then TR2 blew. Admittedly I was not using the Philips unit as specified but as it worked for a bit and the current drawn was within the transistor's rating why should it "go" after a period of time.

The problem is that too much power is being dissipated in TR2. In this case the current rating is not the most important parameter of the transistor. Although the specification for it says it will pass up to 1 amp without damage you have to remember that the power dissipated within it is given by the voltage drop across it multiplied by the current going through it at the time and the product of these must not exceed 0.8 watts. It is likely you are exceeding this maximum power and the effect would be for the transistor to get hotter and hotter until something "goes" inside. The solution is to get the heat out faster than it is being generated and to do this might be necessary to go to a higher power dissipation transistor. A common device which is more than adequate would be a 2 N 3055 .


\section*{3/ CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :}

\footnotetext{


POST NOW for BROCHURE

TO: BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
P.O. Box 156, JERSEY. Please send your free brochure, without obllgation, to: wo do not employ representalives
}
valve experiments. transistor experiments amplifiers, osclilators. signal tracer, pho. to electric circuit, computer circult, basic radio receiver. electronic switch. simple transmitter, a.c experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures.

This new siyle course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory - no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

\section*{Sinclair Project 60}

\section*{New performance standards} ...new safety

\section*{margins}

Such are the results of using a PZ8 Mk. 3 to drive two \(Z .50 \mathrm{Mk} .2\) power amplifiers. Developed from the original Z.50, the Mk. 2 has improved thermal stability, better regulated D.C limiting to ensure more symmetrical output voltage swing with still less distortion at lower outputs and automatic transient overioad protection. The PZ.8 Mk. 3 is the most advanced power supply unit ever to be made at a reasonable price it cannot be damaged by direct shorting. nor will it fall through overloading. because of an ingenious re-entrant current limiting principle used usually only in expensive laboratory equipment. Because output voltage is variable. the PZ8 Mk. 3 makes a worthwhile alternative where \(P Z .5\) and \(P Z .6\) are recommended for Project 60 applications. parficularly since this mosi powerful of all Sinclar supply units can be operated from a smaller mains transformer. Together. the Z.50 Mk. 2 and PZ8 Mk. 3 provide new standards of performance and reliability and these modules are compatible with earlier types in the Project 60 range.
Z.50 Mk. 2 SPECIFICATIONS Input impedance \(100 \mathrm{~K} \Omega\) Input (for 30 w into \(8 \Omega\) ) 400 mV Signal to noise ratio, referred to full o/p at 30 v HT 80 dB or belter Distartion \(0.02 \%\) up to 20 W at \(8 \Omega\) See published curve
Frequency response 10 Hz to more than \(200 \mathrm{KHz} \pm 1 \mathrm{~dB}\)
Max. supply voltage \(45 v\) ( \(4 \Omega\) to \(8 \Omega\) speakers) ( \(50 \mathrm{v} 15 \Omega\) speakers only)

Min. supply valtage \(9 v\)
Load impedance - minimum: \(4 \Omega\) at 45 vHT
Load impedance - maximum: safe on open circurt

\section*{£5.48 VA T}

PZ. 8 Mk. 3 SPECIFICATIONS
Nominal working output 45 V
Adjustable between \(20 \& 50 \mathrm{~V}\)
\[
\mathbf{£ 7 . 9 8 \quad \vee A T \text { . } { } ^ { \text { VAT } } .}
\]

Mains Transformer \(£ 5.98\) - VA.T. 59 p


\section*{Other power supplies}

\section*{Typical Proiect 60 apolications}

In addition to the remarkable Sinclair PZ.8 Mk.III as described. there are two other power units available, which should be chosen according to their types in order 10 buy to best advantage. All are for operation from A.C. mains 240 V .
PZ. 530 volt, unstabilised
〔4.98
P2.6 35 volt, stabilised (No: suitable for Super
IC.12).
\(£ 7.98\)

\section*{Guarantee}

Sinclair Radionics of Durchasing any product drect from moner will be refunded at once. Many Sinclar appointed Stockists also offer this same guarantee in co-operation with Sinclair Radionies Lid
Each Project 60 module is tested before leaving our factory and guaranteed to work petfectly. Should any defect anse in normal use. We will service if at once and without any charge damage arises through miss-use No charge is made for postage by surface mali. Air Mail charged at cost.

\section*{Typical Project 60 applications}
\begin{tabular}{|c|c|c|c|}
\hline System & The Units to use & together with & Units cost \\
\hline Simple battery record player & 2.50 & Crystal P.U.. 12 V battery volume control. elc. & \[
\begin{aligned}
& \mathbf{£ 5 . 4 8} \\
& +\quad \text {.AT. } 54 p
\end{aligned}
\] \\
\hline Mains powered record player & Z.50, PZ.5 & Crystal or ceramic P.U. volume control, etc. & \[
\begin{gathered}
\mathbf{£ 1 0 . 4 6} \\
+ \text { V.A.T. } £ 1.04
\end{gathered}
\] \\
\hline 12W. RMS continuous sine wave stereo amp. for average needs & \[
\begin{aligned}
& 2 \times 2.50 . \text { Stereo } \\
& 60: P Z .5
\end{aligned}
\] & Crystal. ceramic or mag. P.U. F.M. Tuner. etc. & \[
\begin{aligned}
& £ 25.92 \\
& \text { £. } \mathbf{£ . 5 9}
\end{aligned}
\] \\
\hline 25 W . RMS contunuous sine wave stereo amp. using low efficiency (high performance) speakers & \[
\begin{aligned}
& 2 \times 2.50 . \text { Stereo } \\
& 60 ; \text { PZ.6 }
\end{aligned}
\] & \begin{tabular}{l}
High quality ceramic or magnetic P.U., F.M. \\
Tuner, Tape Deck, etc.
\end{tabular} & \[
\begin{aligned}
& \text { £28.92 } \\
& \text { VA. } \mathrm{T}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(80 \mathrm{~W} .(3 \mathrm{ohms})\) RMS \\
continuous sine wave de \\
luxe stereo amplifier. (60W. \\
RMS into 8 ohms)
\end{tabular} & \begin{tabular}{l}
\(2 \times 2.50 \mathrm{Mk} .2\). \\
Stereo 60: PZ. 8 \\
Mk. 3 transformer
\end{tabular} & As above & \[
\begin{aligned}
& £ 34.90 \\
& +\quad . .4 \mathrm{~T} \\
& \text { £3.49 }
\end{aligned}
\] \\
\hline Indoor P.A. & Z.50 Mk.2. PZ. 8 Mk. 3 transformer & Mic.. guitar. speakers. etc., controls & \[
\begin{aligned}
& \mathrm{f} 19.44 \\
& \text { V.AT. } 1.94
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
A.F.U. ( \(\mathbf{5} .98\) + V.A.T. 59p) may be added as required.
}

\section*{the world's most advanced high fidelity modules}

\section*{Q. 16 high fidelity loudspeaker}

The 016 employs original and by now well proven acoustic principles in which a special driver assembly meticulously matched to a uniquely designed cabinet. In performance it comfortably stands comparison with very much more expensive loudspeakers. A solid teak surround is used with a special all-over cellular black foam front chosen both for its appearance and abillty to pass all audio frequencies without masking.

\section*{Specifications}

Construction: A sealed seamless sound or pressure chamber is used with internal baffle. and special high flux driver
Loading: Up to 14 watts RMS. into 8 ohms
Frequency response: From 60 to 16.000 Hz
Size and styling: 248 mm square \(\times 120 \mathrm{~mm}\) deep
( \(91^{\circ} \times 41^{\prime \prime}\) ) with neat pedestal base


\author{
\(£ 7.70\) \\ V.A.T.
}


\section*{Stereo 60 pre-amp/control unit}

Designed specifically for Project 60 systems, the Stereo 60 is equally suitable with ary high quality power amplifier. Silicon epitaxial planar transistors used throughout ensure high signal-to-noise ratio and excelient tracking between channels. Input selection is by press buttons, with accurate equalisation on all input channels. The unit is easy to mount.
SPECIFICATIONS-Input sensitivities; Radio - up to 3 mV . Mag p.u. 3 mV : correct to R.I. A. A. curve better than 70 dB . Channal matching: mithin 1dB. Tone controls: TREBLE 12 to -12 dB at 10 KHz better than 70 dB . Channal matching: mithin 1 dB . Tone controls: TREBLE 12 to -12 dB at 10 KHz
BASS \(+1210-12 \mathrm{~dB}\) at 100 Hz . Frone panel: brushed aluminum with black knobs and controls Size
\(66 \times 40 \times 207 \mathrm{~mm}\). Burl. rested and guaranreed. \(\mathbf{2 9 . 9 8 + \text { V.A.T. }}\)

\section*{AFU filter unit}


\section*{\(£ 5.98\)}
+ V.A.T. \(59 p\)

\section*{Super IC. 12 meseraces arcem \\ high fidelity amplifier}


Having introduced Integrated Circuits to hi-f1 constructors with the IC. 10 . which was the first time an IC had ever been made available for such purposes, we followed it with an even more efficient version. the Super IC.12. This needs very few external resistors and capacitors to make an exceedingly efficient hrgh fidelity amplifier for pick.up. F.M. radio or small P.A. set up etc. The free 40 page manual supplied detauls many other applications which this remarkable IC make possible. The Super IC. 12 15 the equivalent of a 22 transistor circuit
contained within a 16 lead DIL package. and the finned heat sink is sufficient for all likely require ments. The SLDe IC. 12 is also compatible with
those Project 00 modules which would be used those Project 00 modules which would be used
with the \(Z .50\) and \(Z .30\) amplifiers. Complete w.th free manual ard printed cricuit board

\section*{SPECIFICATIONS}

Output power: 6 watts RMS continuous (12 watts peak) into 6-8 \(\Omega\). Frequency Response 5 Hz to \(100 \mathrm{KHz} \pm 1 \mathrm{~dB}\). Total Harmonlc Distortion: eess than \(1 \%\). (Typical \(0.1 \%\) ) at all ouput powers ano frequencies ine audio band (28V) Load impedance: 3 to 15 ohrms. Input Impedance: 250 Kohms nominal. Power Gain: \(90 \mathrm{~dB}(1.000 .000 .000\) umes) atter feed back. Supply Valtage: 61028 V . Quiescent current: 8 mA at 28 V Size: \(22 \times 45 \times 28 \mathrm{~mm}\) including pins and hear sink.
Manualavailable separately 15 p posi free

> With FREE printed circuit board and 40 page manual. \(£ 2.98\) +V.A.T. 29p

\section*{Project 605}



Project 60 system without soldering

For :he many audio enthusiasis anxious to build to high stardards without 100 many involvements. there could be nothing better or simpler than Project 605. It offers the advantages of Project 60 and is absolutely complete down to the iast piece of wire cut to length. Whilst not as poverful as assemblies using 2.50 power amplifiers. we know from experience that there are many for whom the specifications of Pro,ect 605 are ideal, particularly in relation to the эnvironment in which it is required to be used In Project 605 you have everyffing necessary to build a versatile Project 60 thirty watt high fideliry amplifier system suitable for all domestic requirements. The convenient pack includes iwo 2.30 power amplifiers. a Stereo 60 pre-amp control unit and the special Masterlink unit to and from which all input and output connections are made. For power a PZ. 5 is provided. Building is particularly easy since all necessary leads are supplied colour coded. cut 10 length and terminated by contact ćlips which connect firmly to the modules. There is absolutely no soldering to be done. Complete with comprehensive. easy to follow instructions manual

\subsection*{229.95}

Post free

Send coupon for leaflet
Please send leaflet and name and address of my nearest Sinclair stockist

Name

Address

SINCLAIR RACIONICS LTD. LONDON ROAD
ST. IVES, HUN-INGDON PEI7 4HJ


KITS FOR PREVIOUS PROJECTS
Unless orherwito stated, kid contals electroote parta only. The caes and upecian jtem can be obtalned locally. Alo bittertes are not included Elte may be returned for refund if construction hae not been alstied. We reacry the right to rabotitute componanto should deliverie be

If reprint of data is required add lop
HOME BEATMEAL. "Ward off the unwanted intruider - No elaborate setting up or wiring required. Kit of parta 44.85.
"를AP" IIDIOATOR. Prest your bution Arat and your opponent is blocked also ouitable for Quj gemen snd reaction tenting. Kit of parta il-10. ECORD PLAYER. Good quallty at a reasonable price-rood anough for clesalcal records and pop Kit of parta
WIADMEREI WIPER COLTEOL. Wet dirty road-Drizzle-Fog-Smeared acreen-8craplng Kit of parts se-60
TUZZ BOX. Add weird and interesting effecte to ulter playing with this molid inte Fuzz box kIt of parta ? 80.
PROTOORAPEIC COLOUR TETPERATURE METER. Muat for colour photographer get the colours right elven quick Indication of filtere neceasary for corrertion in any light. Can be used Fith natural or Btudio lighting. Kit of parte circult recelver-casy in hulld ita \(_{6} 80\).
REDOTE TRHPERATURE COIPARATOR Cesures mall temperature chancen in tiquide or tenep-Anh tank, photorraphic solution-thermostatically controlled roome etc. Kit t5.25.
BAI WARMIG ALARM. Keep your whaln dry With thia automatic alarm device. Kit se. Wha WAA PEDAL. Add excitem vibration to your muale. Kit 58.50 . LPCTRO LAUGB. Lwughter simulator aleo usaful electronic alarm. KIt of parts as. 20 .
OIL HOLETURE METER, Many planta are killed molnture at root depth-prober can be left permanently heside the plant-indicator remotely houmed could monitor waveral planta. Kit as.co. CIGAL IMJTCTOR. A uneful pocket instrumen for fault fniling In railioa anil amplitiers. Kit \(\mathbf{2 l} \cdot 10\). BABE ALAREL. Keep a oheck on the kidn-this device Fill que you peace of mind as you watch TITPLE OALC
IIPPLE OALCULATOR. Teachint ald for multt pllcatton_cen be uned for quick check. KIt ats.10 voltare circultm- aimple ntablimed muppl voltarif circulth-a aimple ritablimed mupply Kit A5L \(10 C A T O R\). A aimple casy to conatruct alf-contalned metal locator giving a mete Indication of huried metsi. Kit ss.00.
AUDIO TONE OENERATOR, Makes electronic muale-covern ranae from \(50-2000 \mathrm{hz}\). Bpeciticall
 audio tnne-the frequency of which in dependent udio thne-the frequency of which graver invirtzir. Providen 240v b0hz from 12 volt car battery-riven approx. 10 watt which le enoush for moet shavern. Kit is.80.
LIECNOROME. Electronic Metronome with pnlse trequency continuounly varlable from 40 - 225 bemta per minute. Kit as. 15. THROUGH LENE LIGHT HETZR. A almple light meter for uae whith aingle lean refiex camera KEDIUN ATD LONG WAVE RADIO TUNE A eimple radio tuner for ue RADIO TUAER amplifer, Kit 部. 25.
In PRA RED BUBGLAR ALARM. U'ees an invisible, reflecter beam to detect intrudern when beam te intercepted -a power output in switched on for up to one minute. Kit ef- 5
OAgTETHE TAPE POWER EUPPLIES. Two unita to power a camette tape player or reconder one trom the mains. Price es.60. Twn from the car battery-prlce \(11 \cdot 40\).
REACTOLATIC. A reaction teating game that can aloo be a quiz annwering indleator. Kit es:so. LhwTRONIC TOUSE TRAP. A bumane moume them in the park. K it 58.8s.
 checking moat tranalatore-tenten tranalators in an occilletor clroult and Eiven audible indication of coodneas. Kit 58.15
ITY AVER. Prolonga \(1 / f e\) of eoldering tron bltprevente pitting. KIt in - 05 .
to indicato "ice" condiliona or aimilur temperatur
 AUDIO coLoUR JiIT. Add a oolour dirmenaloa to
rour mudjo equipment. This unit will motulate your mudio equipment. This unit will mortulate treble noter of any music. Kit of parte iti.g U.I.F. T.7. Astital. A atmple aerlal for E'.B.F. to reception on your band could Improve jour reoeption immensely. K It \(81 \cdot 6\).
DA P P LOCATOR. Eeally carried In your pocket this little unit given visible indication of damp. RHLAROER EPOAURE TETER. For D.I.Y.
photographer is.00. 54.15.

\footnotetext{
Trare: \(-10 \%\) djecount if ton of an ftem ondered, nad pontage where quoted -other Hema, poat free if order for thase over \(\mathbf{4 6} \cdot 00\) otherwise add 20p.
}

\section*{MULLARD UNILEX}

This D.I.Y. stareo Ampliter fo etill available complete at \(\mathbf{8 7} \mathbf{7} 00\) for the four Mullard Modules, or Modules can be bought asparately as followe: - 4 watt samplifer module (2 required) Mullard Ref. No. .P. \(9000-11.60\) ench.
Pre amp module Mullard Ref. No. E.P.9001-13-E Eng. Power modalal Mal Central panel parta wlith eccutcheos and ally taced
cicial OFFRE the complete Unilex with control
panel and 2 matohins apeakers.

\section*{THYRISTOR LIGHT DIMMER}

Domestlo model for ans lamp up to 250 watt. Mounted on amitoh plate to ft in place of etanderd awitch. Virtually no module with cones. Price is. 0 . Industrial inodel 5 mip module with control knoh 8880

\section*{DISTRIBUTION PANELS}

Juet what jou need for work bench or fab.
 complete with of feet of tez cablo. Wired up ready to work. CENTRIFUGAL BLOWER
Kinlatur maling driven blower centrifugal type blowtr unlt by woods. Powartal but epectilly bulle for guitet spectally bullt low coled beartngs. Overall ilie \(4 t^{\prime \prime} \times 4 \psi^{\prime \prime}\) \(x 4^{\prime \prime}\). When mounted by fange, air is blown inte the equipment but to suct eir out, mount it from contre using clamp. Idoal for coolins, electrical equapmast or atting fato a cooker hood, film drying cablnet or for ramoving tur mmok when soldarlas atc. ate. A real barcain ht ee. 0 .

\title{
TEACH-IN '74 SOLID STATE DIMMER STEREO HEADPHONE ADAPTOR
}

\section*{To receive parte for these and other feature projects} sond the quoted approximate amounts and any eash adjustrnent can be made lacer.

\section*{GOOD COMPANION}
W. can now outer tbemagain in 1.c. version uelag Ferrant rood cabinet. Cabjnet ajxe approx. 1lin wide \(\times 8 \mathrm{in}\). hisb x sin. doed. Complete anembly initruct tone 85.78 plus 25 p post and tao


KITS FOR PREVIOUS PROJECTS CONT. FROM LEFT HAND COL.

\section*{MEOM MOVELTY. Intereating noderu ornamenta} devtee 81.66.
ITDICATOR AUDIELE WABMMa. Add thi audible warning device to car indicaturs or dand pariel warnling lighta and your attention will bo instantly drawn to the warning lamp kit. s1:20. Llamp. KIt s1-10. QRMERAL PURpose AMpLIFRER. An audil.
 guitern, etc. Kit 34.90 .
gome Im TRRCOR. \(K\) eep in turh with thalmple, emaly connected suod yuality two way ntercom. Kit \(34 \cdot 00\)
FLABEIM LLGBT METRONOME, fiur une th th. musical fell and the latoratory-where at audble not on ellek coull get fomt wr beeman annoying. Kit \(81-40\).
organ oneaty. And three octave, otylue opprate

 CABET5E AMPLIFISR. Buout n the sutput irn camette tape recuruers and trannutur ranlfoKlt 24.80.
AODIO BiOMAL MIEER. Where you nant to ull mpeech and muaic, and to fade thellt thatnl wutno tape enthumiant mhusill be without thilAOTO PAM. A the rmmotatic contral firs car engini tan. given quacker wirming up thue. ite. Kit t2.96 have "flat" appearance a necotil tianh currectly poaltioned overcurnen this. Thim unit eluablum pecond (or thim)) nimeth to be sutonnticully tilsered. Kit 8186.
CLECTROMIC DOORBELL. Not in fect a bell but an electronic circult that proxuter an unumua wound when the button in premert. Kit 84.00 .
 special 1.E., la minall, eany ta builh. yet give
 electronic therriomtat. Can alim be used for uthe applicationa requiring the control uf temperature KHATICO.
TBAIII COMTROLLER. With numt cuntend there I cotudderable lowe of power unt tiw pree in- Thin uni


RECORD PLAYBACK HEADS
(TRUVOX)
2 treck record ylaybeck hends 50p each.
4 track record plajback beade 78 peach.
Erace beads are also avallable aeparately.
2 track \(3 S_{\mathrm{y}}\) - track 0 p .

\section*{AC CONDENSERS}

In addition to the normal uses an motor utartery power factur correction etc. These nuke very good voltege droppers for working low voltag apyliances from mains. The vultage worthif quotel ie AC and condengern are umually nuitabl for morking on DC' at it thme the yuoted At voltage.




\section*{TINIEST AUDIO UNIT}

Although only the same oize an an Oxo cube them are completely melf contained and compriat microphone, stranolator atuplifer with volune control and battery compartuetht ami linaliy a dynamic earplece. Als in a plantlc cave. Mais by Ardent ( 801 d . Fe belleve at wrer 800 ench). Them are really hearing alde cumplete except for the ear zube but we are not selinis theme an hearing Belteved to be in perfect working urder bus not teated. Price 55.50 each.


MAINS MOTOR
frecialon mate-an ued It. record deck sud tape recos fas, bluwer, beatern, etc. Xie and perfect. Butp at 66 Pontage 20 p for trut one then. 10 p for each one ordered I" ittecknotor 919.
If stacknot or \(11 \cdot 10\).

NEED A SPECIAL SWITCH
Double Leal Contact. Very alight premours cionav houting of course, to programme other tban centra apstairn and downadra electric heating or heating and coollige or taped multe and radio. In fact there je no
Linit to the sepalility of this Protranimer. Maint operated-8ize \(3^{\prime \prime} \times 3^{\prime \prime}\) \(\times \mathbf{2}^{\text {" }}\) deep se tilustrated but less case. Price \(\mathbf{8 8} 80\) ench.
J. BULL (ELECTRIGAL) LTD.
(Dept. E.E.), 7 Park Street, Croydon CRO IYD Callers to: 102/8 Tamworth Road, CROYOON,
bery culight prenours cionat 10 for 80 p . Piantic puahrod autitable for operating. 6D
 each. 10 for 64p.
 in a cood quallty spenker by a fannoun traket HIgh gux dead for use with our Mullard of wat ampliter. TUMDR COMDEMEREB. s00pt each eection Ideal for tranmmitter or commupicatlun recelver. 61
10 Thacs
10 TRACE TAPE HEAD for \(\boldsymbol{f}^{\prime \prime}\) or \(l^{\prime \prime}\) tape. Thin is a bras encesed tape head and meauren approx
 ohus. These heals are beautifully musie but wt quantly. Price 55.50 each or 10 for 260 .

\section*{OBBAR MII MXXER RIT}

INTRODUCING THE NEW dabar mini three Channel MIXER KIT WITH THE FOLLOWING FEATURES:
* Three inputs easlly adjustable to suit users input requirements e.g.
* Uses advanced design with five integrated elrcuits
* Slider fader volume controls mount directly on P.C. board. - Full range bass and treble controls.
* Guaranteed top grade components with fibreglass printed elreuit board
ready-drilled and finned.
* Battery operated (2 a PP3) not supplied with kit

Easy to follow assembly instructions (available separately 25p)
- Attractive ready punched facia plate, avallable at extra cost. gives that professional finish to the unlt
Size: \(9 \cdot 5^{\prime \prime} \times 4 \cdot 8^{\prime \prime} \times 2^{\prime \prime}\)
PRICE: KIT ONLY \&11 00
facia plate eit 5
MANUAL AND ASSEMBLY INSTRUCTIONS \(25 p\) AVAILABLE READY BUILT WITH FACIA \(£ 15 \cdot 00\)
ALL PRICES INCLUDE V.A.T. \& POSTAGE IN U.K.
S.A.E. ALL ENQUIRIES

\section*{DABAR ELECTRONIC PRODUCTS}

98, LICHFIELD STREET, WALSALL, STAFFS, WSI IUZ.

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

\section*{\(+\)} Brochure, without obligation io

\section*{BRITISH NATIONAL RADIO \&}

ELECTRONICS SCHOOL P.O. Box 156, JERSEY NAME

ADDRESS

\section*{} -

\section*{ALL PRICES ARE INCLUSIVE OF V.A.T}

FANTASTIC OFFER
GARHARD SP25 Mk III
Goldring G800. Teak finish, plinth and tinted cover with mains lead and OIN plug and screened lead. Please fully wired.
Please acd \(E 1.75\)
\& 15.20

\section*{TURNTABLES}

Plonse add 95p P. \& P. \& Ins. B5R MP60 \(\quad 69.15\) Garrard \(5 P 25\) Mk II \(\quad 29.30\)
Garrard \(3 L 658\) Garrard AP76 617.25
617 Garrard 401 617.95
624.85

Garrard Zero 100 sgle. Garrard Zero lo0 auto Goldring GIBS/P\&C Goldring GlolP PaC Goldring GL72 Goddring GL72/P Goldring GL75 Goldring GL7S Lid Leak Delsa Peak Delsa 12 D Thorens TD125 \(\begin{array}{r}631.55 \\ C 36 \\ 659.35 \\ \hline 69.49\end{array}\) Thorens JD125 49.35
819.40
 Thorens TDI60 AB\&C TUNERS
Ploase zod 93p P. \& P. \& inz. Alpha Highgate FT 150 E. 23.30 Amserad Mulkiplex 3000 E24.90 Leak Deka FM (Cased) 647.45 Metrosound FMS 20 Mk il 63.90 Metross R10 FET4 Cha 629.50 Rogers R/brook FET4 ogers R/brook FET4
Rogers A/bourne FETA
631.90
(Cased) 060 Mod .
41.25
414.90

Sinclair cased tuner \(\quad\) C26.15
TUNER/AMPLIFIERS
Ploase add \(10 \cdot 10\) P. E P Ing. Alpha FR 3000
\(8.1 n 7\).
651.35
50.90
Goodmans Module \(80 \quad 159.90\) Goodmans Mod 80 Com
Goodmans Mod 90 106.00 Goodmans One-Ten
Leak Delta 75 -
Rogers R/brook cha
Rotel 150A
Rotel 203A
686.65
4107.75
65.30
645.90

AMPLIFIERS
Please add 95p P. \& P. \({ }^{2}\) Ins.
Amstrad 8000 Mk II 116.45
Amserad IC2000
Amstrad Integra 4000
Alpha Highgate FA400
Globat \(20+20\)
[23. 45


All prices correce
at time of ofess
\& O. E ond ore
subjeci to

\section*{Leak Deira 70 \\ Metrosound ST20E Mk II} Merrosound ST60 Rogers R/brook Ch.
Rogers R/brook Ca. Mk III Rogers R/bourne Ch
Rogers R/bourne Ca
Sinclair 2000
Sinclair 3005
Sinclair 605

Sinclair PRO \(602 \times 230 / P Z S \$ 16.40\) Sinclair PRO \(602 \times 230 /\) PZ6 \(£ 19.45\) Trans. \(602 \times 250 / P Z 8\)
Sinclair AFU (Filter Unit)
Sinclair Stereo 60 Pre-amp
Sinclair IC 12 (lnt. Circ.)
Sinclair Z30 Amp.
Sinclair Z50 Amp.
Sinclair PZS Power Supd Sinclair PZ6 Power Supp Sinclair PZ8 Power Sun

\section*{SPEAKERS}
\&1.65 for P. \& P. (por pair). Amstrad Acoustra 1500 C27.95 Amstrad Acoustra 2500 C31.95 Apotlo 138
Celestion Ditton 15
Celestion Dirion 44
Goodmans DIMaxim
Goodmans Mezzo \({ }^{\text {G }}\)
Goodmans Merzo Havant
Keletron LS 100
Leak 150
Sinclair O16
Sinclair 830
Wharfedale Denton II
649.40
\(663 \cdot 10\)
132.50
455.50 441.15
642.25

SPEAKER UNITS
\(\begin{array}{ll}\text { Whariedale Unit } 3 & \text { E15.60 } \\ \text { Wharfedale Unit } 4 & 27.25\end{array}\) \begin{tabular}{ll} 
Wharfedale Unit 5 & 27.25 \\
\hline 39.60
\end{tabular}

\section*{PLINTH \&}

COVERS

3000. BSR

McDonald
MP60 \(13 \cdot 08\), P. \& P. 71 p
For AP76, SL72B, Si95B, etc.
\(\mathbf{4 4 . 5 1 , + 7 1 p \text { P. \& }}\).
CARTRIDGES
Please add Jlp P. \& P. Ins.
Goldring G850
Goldring G800
Goldring G800E
Goldring G800SE
Shure M3D
Shure M4AE
Shure MSSE
Shure 7SEO Type 2
Shure VIS
Shure MIS
6.85
63.70
66.45
63.10
64.40
65.00
69.35
625.95
48.10

DoBd
IESEOUN WTHETOUSES
Dept. (EEIO), 174 Pentonville Road, London N.I. Tel. O1-278 1769
Or 4 Higl View Parade, Redbridge Lane East, Woodford Avenue
Ilford, Essex. Tel. 01-550 1086

\footnotetext{
Open Monday to Saturday 9.30 a.m. 10
6 p.m. LATE NIGMT FRIDAY 7 p.m
MAWLDOEBS: Order with cortidence Send Pastat Order. Cheque. Mat Catifnc Plesee note inat chenues can inly be accéntrogrsiered Win chequ* coras with cheque caras tnot Bactav Cand

2 minutes from KImG'S CAOSS. EUSTON \& ST PANCRAS
on main road leading to the East and West Countty
}

\section*{The langest selection}

EX COMPUTER BOARDS
Pracked with transistors, dioden, capectors 3 for ONLY \(55 \mathrm{p}+\mathrm{p}\) an 30 p
SPECIAL. As Above PLUU Power Trbalators
 STABILISED POWER MODULES
Complete with circuit diagrams, etc.

4 for \(30 \mathrm{p}+\mathrm{p}\) : p 20 p .
FIBRE-GLASS PRINTED
CIRCUIT BOARDS
\(16 \dagger \times 4^{\prime \prime}\) approz. 2 for 55p
DECON-DALO 33pC Marker
Etch reaistant prlated circult marker pen 90 p each

\section*{VEROBOARDS}

Packs containing spprox., 50 mq . Ins. various kizes, all-1 matric 55p

\section*{REPANCO CHOKES \& COILS} RF Choken
\(\mathrm{CH} 1.2 .5 \mathrm{mH} 25 \mathrm{p} \quad \mathrm{CH} 2.5 .0 \mathrm{mH} 25 \mathrm{p}\) CH3. 7.3 mH 25 p CH4 10 mH 25 p colls
DRXI Crystal net 56p DRR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN \(t^{\prime \prime}\) Coren a Formers 7p

\section*{SWITCHES}

DP/DT Toggle 25p 8P/8T Toggle 18p

\section*{FUSES}
\(\mathrm{f}^{\prime \prime}\) and \(20 \mathrm{~mm} .100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}\) QUICK \(1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}\)

\section*{EARPHONES}

Crystal 2.5 mm plug 33 p
Crystal 3.5 mm plug 33 p
8 ohms 2.6 mm plug 29p
DYNAMIC MICROPHONES
B1223. 200 ohma plus on/ofe awitch and 25 mm and 3.5 mm plugs 11.60
3-W AY STEREO HEAD.
PHONE JUNCTION BOX
H1012 81 -87
2-WAY CROSSOVER
NETWORK
K4007. 80 ohma Imp. Inmertion Ioes 3 dB 21.21

\section*{SELECTED RESISTORS}

R1. Our mix. I watt carbon-50 for 55 p
CAR STEREO SPEAKERS
(Angled) 3.85 per patr

\section*{BI-PAK}

CATALOGUE AND LISTS Send S.A.E. and 10p.

\section*{INSTRUMENT CASES}

(Black Vingi covered)


\section*{VISIT OUR COMPONENT SHOP}

18 BALDOCK ST., WARE, Herts. (A10)
Open Mon.-Thurb. 9.15-6 p.m. Sat. 9.15-5.30. Late Night 8bopping until 7 Fri. Tel. 61593

\section*{BIB HI-FI ACCESSORIES}

De Luxe Groov-Kleen
Model 42 £1-84
Chrome Finish Model \(60 £ 1\) - 50

Ref. 36A. Recoril/8tylus Cleaning Kit 28p Ref. 43. Record Care Kit 42.35 Ref. 31. Cassette Head Cleaner 84p Ref. 32. Tape editing Kit 21.64 \(\qquad\)

\section*{R}

Ref. P. HI-FI Cleaner 81 p Model 9. WIre 8tripper/Cutter 83p

Re1. 34. Cansette Cane \(81-27\)
Ref. 56. Hi-Fi 8tereo Hlate \& Tipe 32p

\section*{ANTEX SOLDERING IRONS}

X25. 25 watt 81.93
CCN 240. 15 watt 28.15 Model 0. 18 watt \(\mathbf{8 2}\). 18 8K2. Soldering Kit 28.86 8TANDS: BT1 21.21. 8T2 77p BOLDER: 188w Multicore 702 82p 228WG 702 89p. 188 WO 22ft 28p 228WO Tube 22p

\section*{ANTEX BITS and ELEMENTS} Bitn No.
102 For model CN240 3/32" 102 For model CN240 3/16" 1100 For model CCN240 \(3 / 32^{\circ}\) 1101 For model CCN240 3/8 1102 For model CCN240 :"

PLUGS AND SOCKETS SOCKETS
PB 35 DIN 2 Pin (Speaker) PS 36 DIN 3 Pin
Pg 37 DIN 5 Pin \(180^{\circ}\) PB 38 DIN 5 PIn \(240^{\circ}\)
PS 39 Jack 2.5 mm Bwitched
Pg 40 Jack 3 -5mm Bwitched
P8 41 Jack \(t^{\prime \prime}\) Bwitched P8 42 Jack Stereo Ewitched PS 43
PS 44 Phono 8 ingle Phono Double Cer Aerlal PB \(46 \quad\) Co-Axisl Burtace PB \(47 \quad\) Co-Axial Flush

\section*{INLINE SOCKETS}

PB 21 D.I.N. 2 Pin (Speaker)
PS 22 D.I.N. 3 Pln
O8 23 D.I.N. 5 Pin \(180^{\circ}\)
PS 24 D.I.N. 5 Pln \(240^{\circ}\) PS 25 Jack 2.5 mm Plastic PS 26 Jack 3.5 mm Plantlc P8 27 Jack \(t^{\prime \prime}\) Plantic P8 28 Jack f" Bcreened P8 29 Jack 8tereo Plantlc P\& 30 Jack 8tereo Screened PR 31 Phono Screened PB 32 Car Aerlal P'g 33 Co-Axial

\section*{PLUGS}

PS 1 D.I.N. 2 Pin (Bpenker)
PB 2 D.1.N. 3 Pln
P8 3 D.I.N. 4 PIn
PS 4 D.I.N. 5 Pin \(180^{\circ}\)
PS 5 D.I.N. 5 Pln 2400 PS 6 D.I.N. 6 Pin PS 7 g.I.N. 7 Pin
PB 8 Jack 2.5 mm Gcreened
PS 9 Jack 3.5 mm Plantic
PB 10 Jack 3.5 mm Bcreened
PB 11 Jack \(t^{\prime \prime}\) Plastic
P8 12 Jack t* Bcreened
PB 13 Jack Stereo 8creened
PB 14 Phono
P9 15 Car Aerial
PG 16 Co-Axlal

\section*{CABLES}

CP 1 Bingle Lapped Screen CP 2 Twin Common Screen CP 3 stereo Bcreened
0.06

C5 Pieces assorted Ferrite Rodn O.65
C7 1 Pack Wire 50 metren assorted
C 810 Reed Bwitches
C 93 Micro 8witches
Clo 15 Aserrted Pota \& Pre-Sets.
C11 5 Jack Socketa \(3 \times 3.5 \mathrm{~m} 2\)
C12 40 Paper Condensers preferred typen mixed valuea

C14 Pack anorted Hariluare Nuts/Bolta, Grommets etc Mains Toggle Switches, 2 mp D/P
\(\begin{array}{lll}\text { C16 } 20 & \text { Assorted Tagatrips \& Panels } & 0.55 \\ \text { C17 } 10 & \text { Asmorted Control Knobs } & 0.55\end{array}\) C18 \& Rotary Wave Clange Switche 0.55 C19 3 Relaye 6-24V Opersting C20 \(4 \begin{gathered}\text { Sheet Copper Limituate } \\ \text { appros. } 10^{*} \times 7^{\prime \prime}\end{gathered}\)

CP 4 Four Core Common Bereen CP 5 Four Core \(0-28\) CP 6 Micropit 0.30 CP Mophone Fully Bralded Ceble 0.10 CP 7 Three Core Mains Cable CP 8 Twin Oval mains Cable CP 9 Bpeaker Cable
CP 10 Low Lonn Co-Axia

\section*{CARBON}

\section*{POTENTIOMETERS}

42 K and Lin \(22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}\) 1M, 2M
VC 1 Ingle less 8 witch
VC 2 8ingle D.P. (i)witch
VC 3 Tandem Lera 8 witch
VC 4 1K Lin Less Switch
VC 5 100K Log anti-Log

\section*{HORIZONTAL CARBON}

PRESETS
0.1 watt 0.08 each
\(100,220,470,1 \mathrm{~K}, 2 \cdot 2 \mathrm{~K}, 4-7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}\)

\section*{BOOK BARGAIN BUNDLE}

\section*{- Books compriaing}

Transistor Equivalent Book
Radlo and Electronlc Colour Code and
I Redio Valve Guide PLUS
3 other Constructional books on Recelvers
FM Tuners, etc.
Value £3 Our Price £2 10p p \& p
BP1 Handbook of Transletor Equivalenta and Bubetituten 10 p
BP2 Handbook of Redlo, T.V. and Induntrial Tabe \& Valre Equiv. 40p
BP3 Handbook of Tented Transistor
Clrculte
BP4 Internatlonal Handbook of the Worlda Short Wave, Medium and FM/TV Listing
APS Handbook of Simple Tranaistor Cireults
BP7 Redlo \& Electronle Colour Codes and Dala Chart 15D
BPB Bound and Loudapeaker Manual 50D
BP9 38 Practical Teated Dlode Circulta for the Home Constructor 85 p
BP11 Practical Tranuistor Novelty 40 p
129 Universal Gram-Motor Bpeed
Indicatot
How to make FM \& TV Aerialm,
Badds 1. 2 and 3
Radlo Bervicing for Amateurs 20p
High Fidelity Loudspeaker Enclosurea
156 Tranaiator Circuita Manual No. 1 15p
160 Coll Design \& Conetructional
\(\qquad\)
161 Radio, TV and Electronics Dats 250
170 Transistor Circuite for Radlo \(\quad \mathbf{~ C o n t r o l l e d ~ M o d e l s ~}\)
\(174 \begin{gathered}\text { Tranaintor Subminiature } \\ \text { Recelvers }\end{gathered}\)
175 Tranolstor Test Equipment and \(\begin{gathered}\text { Bervicing Manusl }\end{gathered}\)
176 Transintor Audio Amplifier Manual
Modern Transietor Circuita for Beginnera
178 A Comprebenaive Redlo Valve Quide, Book \(\$\)
183 How to Recelve Foreign TV Programnies on your set by dimple
modificationa
\(\mathbf{8 2 p}\)
185 Teated Bhortwave Receiver Cuirculta ualng MAT's
187 Tbe T8L Mark '4' Valved FM Tuner
196 Reactance-Frequency Chart for Audlo \& RF une
Renintor Colour Code Dinc Calculator

\section*{CARTRIDGES}

ACOB GP91-1sc. 200 mV at \(1-2 \mathrm{cman} / \mathrm{sec}\). \(1 \cdot 16\) ACOB GP93-1. 280 mV at \(\mathrm{lem} / \mathrm{sec}\) 21.85 ACOS GP96-1. 100 mV at \(1 \mathrm{~cm} / \mathrm{mec} \quad 20.85\) TTC J-2005. Crystal/Hi Output
TTC J-20 10 C Crysta/El Output Compalible
TTC J-200 C8 Btereo/Hi Output \(\quad 21.80\)
TTC J-2105 Ceramin/Med. Output \(\quad 21.64\)
CARBON FILM RESISTORS
The E12 Renge of Carbon Film Resistors, 1/8th watt arallable In PAK8 of 50 pleces. assorted Into the following groups:R1 50 Mlxed 100 ohme- \(820 \mathrm{ohms} \quad 40 \mathrm{p}\) R2 50 Mired 1 K ohme \(-8 \cdot 2 \mathrm{~K}\) ohms 40 p R3 50 Mixed loK ohms-82K ohms 400 R4 50 Mixed 100 K ohme- Meg. ohme 40 p THESE ARE UNBEATABLE PRICESLEBS THAN 1p EACH INCL. V.A.T.

BI-PAK SUPERIOR QUALITY LOW - NOISE CASSETTES
C80, 32D C90, 41p
C120, 82p

\title{
-the lowest prices!
}

\section*{AL10/AL20/AL3O AUDIO AMPLIFIER MODULES}

BI-PAK QUALITY COMES TO AUDIO!


The AL10, AL20 and AL30 unita are alcallar in their appearance and in their seneral apecification. However. carefol selection of the platic power device hae resulted in a range of oatpat powers from 3 to 10 watte R.M. 8 .
The veratillty of thelr dealgn maked them ideal for use in record players, tape recorders. tape playere in the car and at home.
\begin{tabular}{|c|c|c|}
\hline Parameter & Condritions & Porformesec \\
\hline HARMONIC DISTORTION & \(\mathrm{Po}=3\) WATTS \(1=1 \mathrm{KHz}\) & 0.25\% \\
\hline LOAD IMPEDANCE & - & 8-18 \(\Omega\) \\
\hline INPUT IMPEDANCE & \(\mathrm{t}=1 \mathbf{E H z}\) & 100\% \(¢\) \\
\hline FREQUENCY REAPONAE \(\mathbb{C}\) 3dB & Po- 2 WATTS & \(50 \mathrm{~Hz}-25 \mathrm{KHz}\) \\
\hline SENBITIVITY for Rated o/P & Ve \(=25 \mathrm{~V}\). \(\mathrm{Rl}=8 \Omega \mathrm{f}=1 \mathrm{KHz}\) & 7 mmV . RMS \\
\hline DIMENEIONS & - & \(3^{\prime \prime} \times 21^{\prime \prime} \times 1^{\prime \prime}\) \\
\hline
\end{tabular}

The above table relatee to the AL10, AL20 and AL30
modules. The following table outhines the differencen in their woring conditions.
\begin{tabular}{|c|c|c|c|}
\hline Parameter & 4.20 & AL80 & ALs \({ }^{0}\) \\
\hline Maxlmum Bupply Voltage & 25 & 80 & so \\
\hline \begin{tabular}{l}
Power output for \(2 \%\) T.H.D. \\
\((R L=8 \Omega i=1 K H z)\)
\end{tabular} & 3 wates RMS Min. & 6 watta RM8 Min. & \begin{tabular}{l}
10 watts \\
RM8 Min.
\end{tabular} \\
\hline
\end{tabular}

\section*{AUDIO AMPLIFIER MODULES}

AL 10. 3 watu
AL 30,10 watt

\section*{POWER SUPPLIES}

P9 12. (Use with AL10 \& AL20) 880 BPM 80. (Ure with also AL30 \& AL50) FRONT PANELS PA 12 with Knobs \({ }^{29}\)

\section*{PRE-AMPLIFIERS}

PA 12. (Une with AL10 A AL20) 14.85 PA 100. (Use with AL30 © ALSO) EAB.15

\section*{TRANSFORMERS}

T461 (Use with AL10) 21.88 P \& P 15 T538 (Uae with AL20) 81.93 P \& \(P 15 p\) BMT80 (Une with AL30 \& ALS0) E2. 15 \(P \& P 25 \mathrm{p}\)

\section*{PA 12. PRE.AMPLIFIER SPECIFICATION}

The PA 12 pre-ampliter has been dealgned to match into moor buaget atereo aystema. It is compatible with the AL 10, AL 20 and AL 30 audio Dower amplithers and It can be supplied from their anrociated power aupplies There are two atereo inputa, one han been deaigned for une with © Ceramic cartingee while the auxliary Input will cult most \(\uparrow\) Magnetic cortridges. Full detalle are given in the apecification table. The four controla are, from left to right: Volume and on/ofir awitch, balance, bana and treble Bize \(152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}\).

Frequency responseBass conz \(-80 \mathrm{KHz}(-3 \mathrm{HB})\) \(\pm 12 \mathrm{~dB}\) at 60 Hz -Ireble controj- 14 dB at 14 KHz -Input i. Impedance I Meg. ohrn
gensitivity \(3 C 0 \mathrm{mV}\) 4 Input 2 . Impeciance 30 K ohm
Bensitivity
\(\operatorname{ing} \mathrm{in}\)

EA1000 AUDIO AMP MODULE 5 WATTS R.M.S.
Module Teated and Guaranteed. Full hook-up diagraman and complete technical data aupplied free with each module or avallable erparately at 10 p each

SPECIAL OFFER £2 each while stores last The STEREO 20

The 'Stereo 20' ampliter is mounted, ready wired and terted on a one-plece chassis mearuring \(20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 6-5 \mathrm{~cm}\) This compact unit comes complete with on/on ewitch volume control, balance, bass and treble controle, Trantiormer, Power supply and Power minpe. Attractively printed front panel and match ing control knobs. The 'Btereo \(20^{\circ}\) has been deslgned to th lato most turntable pilinths alternatively, into a meparate cabinet Ortput power 20 w peak. Input 1 (Cer.) 300 mv into 1 M . Freq. res. \(26 \mathrm{Zz} \mathrm{z}-25 \mathrm{kHz}\) Input 2 (Ans.) 4 mV into 30 K . Harrionic diatortion. Bans control \(\pm 12 \mathrm{~dB}\) at 60 Bz typically \(006 \%\) at 1 wath. Treble con \(\pm 144 \mathrm{~B}\)

\section*{50W pk 25w (RMS)}

\section*{\(0.1 \%\) DISTORTION!} HI-FI AUDIO AMPLIFIER

\section*{THE AL5O}
\(\star\) Frequency Response 15H: to 100,000-1dB.
\(\star\) Load-3, 4, 8 or 16 ohms.
\(\star\) Distortion-better than \(1 \%\) at
1 KHz .
\(\star\) Signal to nolse ratio 80dB

\section*{
}

Tallor made to the mont stringent specincation uning top quality componenta and incorporating the iatest sollid atate circultry and ALSO was conceived to all the need or all your A.F. amplideation needs.
FULLY BULT-TESTED-GCARANTEED.


\section*{STABILISED POWER MODULE SPM80}

APso to especially designed to power 2 of the ALs Amplithers, up to 18 watt (r.ma.e.) per changel lonul tand virculy. Thls module enbodies the latent component and *ircuit techaiques Incorporatiag complete short former 5 T80, the unit will provide outputs of up to 1.5 smps at 35 volts. Sise: \(63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}\).
These unit: ensble you to build Audto Systems of the highest quality at a hitherto anoblainable price. Almo ideal for many other applleaslons Inclading:-Dloco Bystema, Public Addresn, Intercom Unith etc. Handbooz avalable 10p PRICE £3-25
TRANSFORMER. BMT80 £2.15 p. \& p. 28p

\section*{STEREO PRE-AMPLIFER TYPE PA100}

Built to a apecification and NOT a pilce, and jet atill the greatent value on the market. Dealgned for use with the ALito powermmplitfer system, this the lateat circuit techniquen.
 NPN dovices for uad in the input atafer.
Three awitched wereo inputs, and rumble and scratch filters are features of the PA100, which aloo hat a BTEREO/MONO ewitch, volume, balance and continuously variable besin and treble controls.

SPECIFICATION
 Frequency Reapinse Earraonic Distortion Inputs: 1. Tape Head 2. Redlo. Tuner 3. Magnetic P. U.

Basa Control
Treble Control
Filters: Rumble (ELgh Pass)
8cratch (Loter Pase)
Input overlosd
Supply
\(20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}\)
better than \(0.1 \%\)
1.25 mV into \(80 \mathrm{~K} \Omega\)

35 mV Into \(60 \mathrm{~K} \Omega\)
1.5 mV into \(50 \mathrm{~K} \Omega\) \(\pm 16 \mathrm{bB}\) at 20 Hz
100 Hz
8 KHz
better than -68 dB
\(+26 d B\)
+85 volte at 20 mA
\(292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}\)
ONLY £13.15
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMTB0 \& 1 PA100 ONLY £25•30 FREE p. \& p.


\section*{}

AUDIOTMONIC MODEL ATM.I


RUSSIAN 22 RANGE MULTIMETER Model U437 10,000


MODEL PL436 20k R/Volt D.C. Rk \(\Omega /\) -6/3/12/30/120/600 D.C. \(3 / 30 / 1201600\) A.C. \(50 / 600 \mu \mathrm{~A} / 60 / 600\) mA. \(10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10\) Meg \(\Omega-20\) to + 46db.

\section*{MODEL 500}


44312 MULTIMETER


With aturdy metal carrying case, leads and Instructions. 8975. 1. \& P. 250 D.
HIOKI MODEL 700X
100,000 O.P. V. Overioad \(-2 / 6 / 1 \cdot 2 / 1 \cdot 5 / 3 / 8 / 12 / 30 / 80 /\)
\(120 / 300 / 200 / 1200 \mathrm{~V}\) \(120 / 300 / 600 / 1200 \mathrm{~V}\) DC
\(1.5 / 3 / 6 / 12 / 50 / 60 / 150 / 300 / 600\) 1200 V . A
1500 .
\(15 / 80 \mu / 3 / \mathrm{A} / 30 / 60 / 150 / 300 \mathrm{~m}\)
\(8 / 12\) AMP DC \(2 \mathrm{~K} / 200 \mathrm{~K} / 2\) 6/12 AMP. DC. \(2 \mathrm{~K} / 200 \mathrm{~K} / 2\) +694B. \(818 \cdot 50\). P. P. 20D


All prices are subject to \(10 \%\) VAT

\section*{H
2}



370 WTR MULTI-METER Festures A.C. current ranges.
20,000 o.p.v. \(0 / 5 / 2-8 / 10 / 50 /\)
 \(0 / 2.6 / 10 / 50 / 250 / 500 / 1000 \mathrm{~V}\) AC
\(0 / 600 \mathrm{~A} / 1 / 10 / 100 \mathrm{mA/1/10} \mathrm{AzaD}\) D.C. \(0 / 100 \mathrm{~mA} / 1 / 10 \mathrm{Arpl}\) AC
\(0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 800 \mathrm{~K} / \mathrm{S}\) 国E/ \begin{tabular}{l}
\(0 / 5 \mathrm{KK} / \mathrm{B}\) \\
\(\mathbf{Y R O}\) \\
\hline
\end{tabular}
\(-20+62 \mathrm{db}\).
KAMODEN 72.20


TMK LAB TESTER.
100,000 O.P.V. \({ }^{6 / i n}\). cuit Check. Se nalitivify:
100,000 O.P.V. D.c. 5 K Vole A.C. ID.C. Volfe:
5. \(2.5,10,50,250.1,000\) \(50,250,500,1,000 \mathrm{~V}\)
 10. \(100,500 \mathrm{~mA}\). 2.5 . \({ }^{10}\). 100, b \(00 \mathrm{~mA}, 2-6,10 \mathrm{amp}\). Reslotance 1)ecilvela: -10 to +49 db . Plantic Can with Carrying Handle. glze: \(7 \boldsymbol{7}\) in \(\times 6 \ln . x\) 3 i in . 818005 . P. \& P. 25 p .

Model S-100TR MULTIMETER: TRANSISTOR TESTER
100,000 o.p.v. mirror
overlomd protection. overlond protectio
\(-6 / 3 / 12 / 30120 / 600\) \(-6 / 3 / 12 / 301120 / 60\)
\(0 / 6 / 30 / 120 / 800\) \(600 \mathrm{mAN} 12 / 300 \mathrm{~mA} / 1\)
\(\mathrm{DC} .0 / 10 \mathrm{~K} / 1 \mathrm{MEG} /\) -20 to + \(50 \mathrm{db} .0 .01-2\) MPD. Tranalitor tester measures Atpha, beta anil Ico. Complete With batterles; Instructions
and lead. \(18.50 . \mathrm{P} / \mathrm{P} 26 \mathrm{p}\).

\section*{KAMODEN HM. 350 TRANSISTOR TESTEA} Hish quality lastrument
to teat Reverse Lealr carrent and DC current. Amplification sactor of NPN, PNP. trannlistors,
diodes. SCR's etc \({ }^{4 \prime \prime}\), diodes. 8ck's etc. \(\mathbf{4 n}^{\prime \prime} \times\)
\(41^{\prime \prime}\) ciear scale meter. Operates from internal batteries. Complete with
inat ructions, leads and sarrying handle. 212.50. Pont 30 p .

\section*{ H1 10 - 800 AM
300
7.8}
oleration 817.50 . Post 25 p .


\section*{ N}



8 rangea. D.C. volte
-1.000


1ryopen yn. 200

0 - 25 / 112.5 ( 10 / 501 200 / 1800t. 80.10 / 250
 \(-2020+02 \mathrm{~dB}\)
\(50 / 8 \mathrm{~K} / \mathrm{sok} / 500 \mathrm{~K} / 5 \mathrm{meg}\) 14.ES. Pout 30p

to 2000 M ohm. Dectheip -20 to +51 dB . Complete with leads/instructlons. 317.50 .
MODEL L. 55 FET V.O.M.

Input inperlance 10 meg
ohma. \(0 / 3 / 1.2 / 6 / 30 /\) ohm \(0 / .3 / 1.2 / 6 / 30\)
\(120 / 600 \mathrm{~V} . \mathrm{D.c} 0 / 3\) \(12 / 80 / 120 / 800 \mathrm{~N}\). A.C.
\(0 / 120 \mu \mathrm{~A} / 120 \mathrm{~mA}\) D.C.
 \(0 / 1 \mathrm{~K} / 10 \mathrm{~K} / 10\)
\(1 / 100\) meg ohms E15-97. Post 15p.


KAMODEN HMG-500 INSULATION RESISTAMCE TESTER
Bnttery operated, wheter \(4 \frac{10}{\prime \prime}^{\circ} \times{ }^{\prime \prime}\) Complete with de-

batterlen. instruc \(\qquad\)

MODEL UA3II SUB-STANDARD MULTIRANGE VOLT AMMETER
Manoitivity 830 ohma/Volt AC and DC. Accuracy
 \(1-5 / 3 / 75 / 16 / 30 / 76 /\)
\(150 / 300 / 750 \mathrm{ma} / 1.8 / 3 /\) 7-5AMP DCO / 3/7.5/16/ \(\begin{array}{llllll}30 / 75 / 180 / 300 & 1 \\ 750 \mathrm{~m} & 1.6 / 3 / 75\end{array}\)
\(7.5 / 15 / 30 / 78 / 150 / 300 / 780 \mathrm{~V}\) DC 0/750mV \(1-5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300\) /750V AC. Automatlc cut out. Supplled comp-
plete with test leads, manual and teat corttocates, \(40 \% 0\). Post 50 D .


\section*{CI. 5 PULSE
OSCILLOSCOPE}

For display of puleed For diplay of pulaed in electronle circults. VERT. AMP. Band: FIdth 10MEz. Bens.

mm. 1-25: HOR. AMP. Bandwldth 500 KHz . Benstitifi at 100 KERz , V RMG/mm. \(3-28\) : Preset triggered sweep \(1-3,000\) usec.; free
ruhaling \(20 \cdot 200,000 \mathrm{~Hz}\) in nind ranget ruabing \(20 \cdot 200,000 \mathrm{His}\) in nind rangel.
Owllatior plps. \(220 \times 860 \times 330 \mathrm{~mm}\).

fustian Cl-16 DOUBLE BEAM OSCILLOSCOPE B mofy Paan Band. Deparate
Y 1 and Y 2 amplifera. Y1 and Y2 emplifiera. Rectangular \(81 n\). \(\times\) in. C.R.T. Callibroled tric. of \(\frac{1}{8} 80\)
sered sweep from 2 u/bec. to 100 millis-sec. per cm . aciteted Free running time base \(30 \mathrm{c} / \mathrm{s}-\mathrm{l}\) me/a. Bullt
in time base callbrator and amplitude in time batimator. Bupplled conuplete with all eccemorien and instruction manual e87. Carr. Pald.
MODEL AT2OI DECADE ATTENUATOR
 30 dith. Size \(1 \mathrm{RO} \times 90 \times 55 \mathrm{~mm}\).
218.50. Post 37p.

ARF-300 AF/RF SIGNAL GENERATOR


MODEL TE. 15
GPID DIP METER

\section*{GRID DIP METER}
\(\qquad\) Grdd Wip. Omcllator, Absorpthon Wnve Meter and Oacil
lating lietector. F'refueney lating lietector, Frequency
range \(440 \mathrm{Kc} / \mathrm{m}-290 \mathrm{Mc} / \mathrm{s}\) 6 colls. \(500 \mu \mathrm{~A}\)
hattery operation. sizer \(180 \times\) \(80 \times 40 \mathrm{~mm}\).
\(815 \cdot 00\). Pont
200


TE-200 RF SIGNAL GENERATOR

AUTO TRANSFORMERS
o/ll 1250 V . Step up or step down. Fulls


\footnotetext{
MCA. ges AUTOMATIC VOLTAGE
Input QA 125 VAC or 176 250 VAC Output 120 VAC or \(240 \mathrm{VAC}, 200 \mathrm{VA}\)
\(\mathrm{3} 11-97\). Carr. 80 p.
}


AP214 REGULATED POWER SUPPLY Bolld atate. Viarisble nutput o-24V De up
to 1 ang. lumb walr meter to munitor
 Input 290/240Vi AC. Nize \(185 \times 88 \times\)
105 mun. 88.87 P. \& P. 28p. PS. 200 REGULATED P.S.U.


Molld otate. Vartable outpot 620 volt D.C. up to 2 amp. Independent meters to
suobltor voltage and current. Nutput \(220 / 240\) 11095. P. \& P. 25p.

PS. I000B REGULATED POWER SUPPLY
orld niate. Output 6.9 ampa. Meter to monito current. Iuput 220/240v 11.97 . P. \&. 26 p.
"YAMABISHI" VARIABLE VOLTAGE Excellent aulle at mput \({ }^{230 \mathrm{~V}}\). \(8 \mathrm{~m} / 60 \mathrm{c} / \mathrm{m}\). Varlable


MODEL S-260
GENERAL PURPOS
BENCH MOUNTIMG BENCH MOUNTING
1 Amp . . 87.00
- Amp
- Arnp

10 Amp
20 Amp
AnIp .. e8g.80
MODEL S.260B
Panel Mountlag.


Carriage and
Packins Extra
POWER RHEOSTATS High quality cerante
Wiructlon,
hedided inge hedded in vitreoup enamel. lleavy daty bruish Wiper. biagle hole fixing. tin. dial hart. Bulk quantities avall

E5 WATT. 10/28/50/100/250/800/1000 ohum. OO. F . P . 10 p .
60 WATT. \(10 / 25 / 50 / 100 / 260 / 600 / 1000 / 2500\) or 8000 ohms. 21 -35. P. \& P. 10 p .

100 WATT. \(1 / 5 / 10 / 25 / 80 / 100 / 250 / 500 / 1000\)


EEW CLEAR PLASTIC PANEL METERS
USED EXTENSIVELY BY INDUSTRY, GOVT. DEPTS., EDUCATIONAL AUTHORITIES, ETC.
Over 200 rangea in stock-other ranget to order. Quantity discounte evailable. Send for fully illustrated brochure.
\begin{tabular}{|c|c|c|c|c|}
\hline Trpe SW. \(100100 \times 80 \mathrm{~mm}\) & \multicolumn{2}{|l|}{Type MR.s5P. \(41 \mathrm{in} . \times 4 i \mathrm{in}\). Pronts} & \multicolumn{2}{|l|}{Typo MR.38P. 121 32in. square Ironts} \\
\hline \[
{ }_{80-0-80 \mu \mathrm{AA}}^{80 \mu \cdot}
\] & &  & & \[
200 \mathrm{~mA} . . . \text {. } 8.85
\] \\
\hline 100 HA … 朢.05 & . &  & &  \\
\hline \(100-0-100 \mu \mathrm{~A}\)
\(800 \mu \mathrm{~A}\)
88.90
88.90 & & 1 amp..... sisp & &  \\
\hline  & & 8 amp...... 8 ta & & \\
\hline 205. D.c. ... 88.80 & - &  & & 2 am \\
\hline 50 V. D.C. .. 48.80 5 ar.p. L.C. 8880 & &  & & \\
\hline 300 V . D.C. 38.80 300Y. A.c... 83.70 & &  & - &  \\
\hline 1 amp. D.C. 83.60 / V'̇ Meter .. 44.80 & 80 & 130 V . D.C. 48 & & 3V. IV.C.
10\%. D.C. \\
\hline & \(80-0-80 \mu \mathrm{~A}\) & 300V. D.C. & \({ }_{50-0-60,} \mathrm{~A}^{\cdots}\) & 15v. D.C. .. \({ }^{\text {se }}\) \\
\hline \multirow[b]{2}{*}{Trpe S0.830 82.5 mm} & 100 A A \(\ldots\). 4.2 & 15 V . A.C. .. 43 & & 20 V D.C. \\
\hline & 100-0-100 \(\mu\) A 4 -6 & \({ }^{300 \mathrm{~V} \text {. A.C. .. } 88 .}\) & 100-0-1004 A & sov. D.c. .. 88.8 \\
\hline 10 mA &  & 8 Heter 1 tma A3.20 & \(200 \mu \mathrm{~A}\) … 42.25 & 100v. D.C. \({ }^{\text {ase }}\) \\
\hline 50 mA .... 18.10 &  & VUMeter \(\because 848\) & \(800 \mu \mathrm{~A}\). ... 19.25 & 1s0V. D.C. E8-25 \\
\hline 10012A .... 18.10 & \(500-0-600 \mu \mathrm{~A}\) 8. \({ }^{2}\) & 1 mmp A.C.* 83 & 500-0-800 4 A 19.3 & 300V. D.C. 28 \\
\hline &  & 10 ampr A.C. As.90 &  & \\
\hline  &  & 10 mmp ( A.C. \({ }^{2}\) &  & 750V. D.C. *8.85 \\
\hline 8 anip....... 88.10
10 smp.
18.10 & 10 mA & 30 amp A.C. - 88.90 &  &  \\
\hline 85.40 5V. D.C. . . 8.10 & & & \(10 \mathrm{~mA} \times \cdots \cdots .88\) &  \\
\hline  & \multicolumn{2}{|l|}{} &  & 300 V . A.C. . 88.80 \\
\hline \(100 \mu \mathrm{~A}\) ( \(\cdot\)... 18.85 20V. D.c. .. 88.10 & \multicolumn{2}{|l|}{Type MA.52P. 21 in , square fronts !} & ( Soma .... 8285 & 600V. A.C. .. 38.50 \\
\hline  & & 10V. D.C. .. 0 ces & 100 ma & 8 Meler Ima 49.50 \\
\hline  &  & 20V. D.C. .. & 150tuA .... 12.25 & vUMeter .. 48.0 \\
\hline  & 100-0-100 \(\mu \mathrm{A}\) A 2.08 & \({ }^{300 \%}\) V. D.C. \({ }^{\text {a }}\) & & \\
\hline  & & & & \\
\hline & \(1 \mathrm{~mA} . . . .\). . 48.50 & 300V. A.C. .. 4. & & square fronts \\
\hline & & 8 Meter lma 88.80 & & 5 amp..... 48.40 \\
\hline Trpe SD. \(64063.5 \mathrm{~mm} \times 85 \mathrm{~mm}\) fronte & 10 mA .... 48.50 &  &  & \({ }_{20 \mathrm{~L}}^{10 \mathrm{C}}\) D.C. \(\cdot \mathrm{C}\) 42.40 \\
\hline  &  & 1 mmp. A.C. Es Eso &  & 50V. D.C. ... 88.40 \\
\hline \(50-0-50 \mu \mathrm{~A}\) 88.0\% 1 amp....... \(88 \cdot 00\) & & & \(200 \mu \mathrm{~A}\) … 38.50 & \(300 \mathrm{v} . \mathrm{D.C} . \times 1810\) \\
\hline  &  & 12 ampl A.C. - & \({ }_{800 \mu \mathrm{~A}} \times \ldots . .10 .48\) & 15V. A.C. .. 4.40 \\
\hline 100-0-100 AA 8800 10 mmy fe.00 &  & 30 amp. A.C. 88.50 & 800-0-500\%A 2940 & 300 V . A.C. .. 48.40 \\
\hline  & & 30 sinp. A.C. 88.50 & 1 ma ...... ¢e & 8 Meter 1 max 49-60 \\
\hline \(500 \mu \mathrm{~A}\).... 42.98 20V. D.C. .. 5.00 & & & 6ma …… 48.40 & vU Meter .. 5 S 70 \\
\hline  & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Trpe MR.65P. 3 tin. \(x 3\) tin. fronta}} & 10ma & 1 mmp A.C. - 2 s .40 \\
\hline  & & & b0mA .... 8840 & 5 smp . A.C. - 4.40 \\
\hline  &  &  & 100714 \(\cdot \cdots\). & 10 mmp . A.c. 18.10 \\
\hline  &  & \(80 \%\). D.C. & & 20 mmp A.C. -18.40 \\
\hline  & 100-0-100\%A & 150v. D.C. & & 30 mpl A.C. - 83.40 \\
\hline & \(200 \mu \mathrm{~A}\) … & s00v. D.c. \({ }^{\text {d }}\) & & \\
\hline Type SD. \(44046 \mathrm{~mm} \times 59.5 \mathrm{~mm}\) Fronts &  & 16V. A.C. . & \multicolumn{2}{|l|}{"SEW" BAKELITE} \\
\hline  & 1 mA …... & 150 V . A.C. \(\because \mathrm{A}\) \% & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PANEL METERS}} \\
\hline \(50-0-80 \mu \mathrm{~A} 8280\) sarnp....... 88.80 & sma ...... de 60 & S00v. A.C. .. A8.80 & & \\
\hline  & \multirow[t]{2}{*}{\({ }^{10 \mathrm{ma}} \mathrm{soma}^{1}\)} & 500 V . A.C. E . & \multicolumn{2}{|l|}{Type MR.65. Jfin. square fronts} \\
\hline  & & 6 Meter 1 ma A 18 & \multicolumn{2}{|l|}{} \\
\hline \(200 \mu \mathrm{~A}\) … 28.70 108. D.C. 48.80 & \multirow[t]{9}{*}{} & VU Meter . 18.70 & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{8 amp....... 48.40} \\
\hline \(500 \mu \mathrm{~A}\).... & & \(50 \mathrm{~mA} \mathrm{A.C}. \mathrm{}. \mathrm{-} \mathrm{He.co}\) & & \\
\hline \(\operatorname{limA}_{8 \mathrm{~mA}}\) & & \multirow[t]{2}{*}{200 mA A.C.} & Cher & \multirow[t]{2}{*}{30 amp. .... 48.60} \\
\hline  & & & \multirow[t]{2}{*}{(1)} & \\
\hline 80mA & & \[
\begin{aligned}
& 500 \mathrm{~mA} \text { A.C. } 18.60 \\
& 1 \text { emp. A.C. } 88.00
\end{aligned}
\] & & 5v. D.C. \(\cdots\).. 880 \\
\hline 100mA & & \({ }_{5}\) emp. A.C. & &  \\
\hline b00ma ... 88.80 | Vf Meter .. \(\mathbf{2 8 . 0 0}\) & & \multirow[t]{3}{*}{} & & SOV. D.c. \({ }^{\text {a }}\) - \\
\hline & & & &  \\
\hline & & & \(25 \mu \mathrm{~A} \quad \ldots \ldots\). & \multirow[t]{2}{*}{} \\
\hline & & & & \\
\hline & EW* EDU & JCATIONAL & -00-0-60на 28.06 & 30 V A.c. - . E8.en \\
\hline & & & 100 & sov. A.C. - C \\
\hline & & & 100 &  \\
\hline & &  &  &  \\
\hline & & \(0 \mathrm{~mm} \times 108 \mathrm{~m}\) & & 1 mmp A.C. - 88.60 \\
\hline & & A new range of higb & 1-0 & 5 mpl A.C. - 28.80 \\
\hline & & \multirow[t]{2}{*}{qually moring col} &  & \\
\hline "SEW" EDGWISE METERS & & & S0 & \\
\hline \multirow[t]{2}{*}{Type PE.70. 3 17/32in. x I 15:32i} & & \multirow[t]{2}{*}{} & 100 ma .... & 80 mmp . A.C. - 88.80 \\
\hline & & & \multicolumn{2}{|l|}{mA .... 4e.80 VU meter .. 58.65} \\
\hline  & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{meter movernent to anally acceanible to demonatrate internal worling. Avallable in the tolluming ranges:}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Type \(5-8080 \mathrm{~mm}\). square fronts}} \\
\hline \({ }^{50-0-50 \mu A} \quad 83 \cdot 60\) 1mA \(\ldots .\). . 18 & & & & \\
\hline  & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{bo-}} \\
\hline  & \multicolumn{2}{|l|}{} & & \\
\hline  &  &  & & \\
\hline & 80-0-80 \(\mu \mathrm{A}\) & \multirow[t]{2}{*}{300 V. d.c. .. 45} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline -MOVING IRON- & 1 ma ... & & & \\
\hline ALL OTMERS MOVING COIL & 1ad.c. .... es.es & \multirow[t]{2}{*}{500rmA/5A d.c. \(\mathbf{3 7} \cdot 0\) sy/50ride s7.00} & 20V. D.C. .. 48.00 & \\
\hline & 8A d.c. \(\ldots\).... 85.95 & & & \multirow[t]{2}{*}{} \\
\hline Please add postaze & 10V d.c. .... s5.0 & & 1 amp. D.C. & \\
\hline
\end{tabular}

\section*{HAND HELD 2-WAY WALKIE TALKIES}

Battery operatlon. Volume and aquelch button. Teleacople serial. Coniplete carrying 100mor
£24.95 Potr 100 .
2 channel 552.50 Pair.
300 mw
Poot 50 p
3 channel \(\mathbf{1}\) will 25 Palr.


IIIT- Covsindirnen(mamolim
 EMI LOUDSPEAKERS Model \(350.13^{\prime \prime} \times 8^{\prime \prime}\)
with siogle iweeter/ with slagle 2 weeter/
crososover. \(20-20,000\) Hz. 15 watt RMB. Ahms. 27.25 each.
O. 4 P. 37 p . Model 450 . \(13^{\prime \prime} \times 8^{\prime \prime}\)
with with twin tweeter/
crosoover. \(58-13,000\)
\(\mathrm{Hx}_{\mathrm{x}} 8\) Hx. 8 watt RMS.
Avallable 8
8 P. \& P. \({ }^{235 \mathrm{p} .}\)
 STEREO SPEAKERS
Matched palr of ntereo bookDhelu apeakers. yeneered finiah.
gize \(144^{\prime \prime} \times 9^{\prime \prime}\) \(87 \mathrm{Fl}^{\prime} .8\) ohms.
 A

\section*{iw
pl
he}

\section*{hea}

Qn
Audiol
Group
ofer
ipecla
at a va
ACD.
Deck

doironic Producta are manalactared ezelusively for the Audjotronic of Companies and at member of the group we wre Dlemsed to aldentions bulour fage of high gualty equpment. Made to our own de lor mones pricel

Deck

Carr. 101-asdB. Nolve limiter-AdB at conkz. Complete with phono

AHP-8D 8 Track Stereo Tape Deck
Can be uned
ampliffern.
Push button track selector

\section*{and Illumi}

\section*{ted track}
indicators. Attractive cabinet with black and aliver trim. Output level OUR
PRICE
AHP-8A 8 Track Stereo Tape Player
lozi stereo listeming

\section*{STATION}

\section*{For bal-}

tad and speakers

Incorparates built in amplifers glving \(2 f+21\) wath rms output. Pllumbinated track track selector, Controla for track Indicators, slider controla for volume, balance and
tone. Attractive cabinet tone. Attractive cabinet with
black and sllver trim Impedance sohms. AC \(2201240 v\).

Stereo Headphones
Lshi. 20 indlvidual volume control
Btereo mono Stereo mono
sw lech. 8 ohms. 40 \(19,000 \mathrm{~Hz}\)
23.50 P \& P 30p
LSE. 30 Open bsck
type. Individual tone and volume
controls. 8 ohma. controls. 8 ohram
\(30-20,000 \mathrm{~Hz}\). \(30-20,000 \mathrm{~Hz}\).
\&5.50 P \& 30 p LSF. 40 Two wry Apeaker ayatem.
Indlvidual wolume Indlividual wolume
controla. 8 ohms. controla. 8 ohm
\(20-20.000 \mathrm{~Hz}\). £6.05 P \& Pr30p LSE \(803^{\prime \prime}\) npeaker unite. \(8 \mathrm{ohms} .20-\)
\(20,000 \mathrm{~Hz}\). Comsplete with zipped carrying case.
\(28.50 P . \& P .30 \mathrm{p}\) LQE. 4004 -cha
dynamic heal phones. Each earunfts. 4-32 ohms. \(20 \cdot 20.000 \mathrm{~Hz}\). 20.85 P. \& P. 30p LSE. 50 Electro ntatle with selt
powered energiser and control unit with headphone apeaker select 4-32 ohnis. 20


ACR 3500 CAR RADIO


Manual tuning of Medium and Long waves. 12 v pos. or neg.
earth. Complete with apeaker. earth. Complete with apeaker. Our
Price \(\quad \& 6.50 \quad\) P\& \(\underset{50 p}{\text { \& }}\)


12v neg. earth. Blider controls for Chame, Tone and Balance. pllot lamp, with speakers, mountOur

AMR-900 GLOBAL


5 MHz . large horizontal slide dial With logging scale. Blider volume and squelch controls. \({ }^{7}\) section In ferrite bar for AM. AFC. 3 In speaker. Earpiece socket. Green leatherette covered cablatet with metal side panels. Blze \(152 \times 79 \times\) OUR
PRICE
S||.50 P. \&.P35p.

AUDIOTRONIC AMB. 500 MULTIBAND RADIO

covering
 MW
\(1605 K\) Hz
and
 FM 88
175MHz.
 Battery or
 maina opera
aerial and 8
 copic serial.

PRICE 66.95 Output 500 mW . Ac \(220 / 240 \mathrm{v}\) or 8v DC operation. Complete with cad, earpiece and batterien.



Push button tuning of one LW and five MW statlons of your Complete with operker. unounting brackete and instructions. Our
Price \(\quad \$ 8.95 \quad\) \& \& \(P\) ACA5SE ELECTRIC CAR AERIAL




\section*{SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD} COMPLETE TELEPHONES


EX. G.po. normal
ONLY \(£ 1.05\)
POST \& PACKING 45 P EACH TELEPHONE DIALS
 ONLY 27 \({ }_{2} \mathrm{P}\)
POST a PACKING \(16 \neq p\)

TESTED AND GUARANTEED PAKS
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline 101 & 10 & Ratio & \\
\hline \({ }^{\circ} 0\) & 200 & & \\
\hline \(\mathrm{H}_{4}\) & 250 & & \\
\hline H1 & 40 & Wirawaund Re typen end value & \\
\hline mp & 2 & Ochpro hight sannilva & \\
\hline \(\mathrm{H}_{26}\) & 20 & OCz200112/3 PNP Sillion & \\
\hline H10 & 20 &  & \\
\hline H3s & 100 & Mixde Doden Gorme
bonded
Unmalede. Morked
ind & \\
\hline H31 & 30 & Shors lead Tra & \\
\hline H18 & 6 & ®mi & \\
\hline H40 & 20 &  & \\
\hline 441 & & Sil Power traniitorn & \\
\hline
\end{tabular}

UNMARKED UNTESTED PACKS
\[
\begin{aligned}
& \text { B68 } 150 \text { Girmanium Dioder } \quad \text { 55p }
\end{aligned}
\]

MAKE A REV COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This -ncapsulated block wilt turn any 0-1mA mocer inso a linear and eccurate rov. countor lor any cer with normal coil ignition

\section*{£1•10 each}

\section*{1,000,000}

TRANSISTORS IN STOCK
We hold a very large range of fully marked tested and guaranteed transistors, power transistors, diodes and rectifiers at very competitive prices. Please send for free catalogue.
Silicon planar plastic trans istors. Unmarked, untested factory clearance. A random sampling showed these to be of remarkably high quality.
Audio PNP, similar to ZTX500. 2N3702/3,
Audio NPN, similar to ZTX300, 2N3708/9 BC107/8/9. BC168/9 etc.
Please state Audio NPN or Audio PNP when ordering.
ALL ATS 500 for \(\mathbf{6 3 . 3 0 , 1 , 0 0 0}\) for \(\mathbf{5 5 . 5 0 , 1 0 , 0 0 0}\)
for 444 P. \& P. \(11 \mathrm{p} / 1,000\)
OUR VERY POPULAR 4p TRANSISTORS
TYPE "A"" PNP Silicon alloy, TO-5 ca
TYPE "'B". PNP Sllizon, ptascic encapatation.
TYPE "EE" PNP Germanium AF or RF.
TYPE "F" NPN Silicon plastie encaptulation. TYPE "H'" PNP sillicon simitar ZTX 500 range

RELAYS FOR
VARIOUS TYPES ER P \& \(\mathbf{P}\) 27 \(\frac{1}{2}\)

Our famous PI Pak is still leading in value for money. Full of Short Lead Semiconductors as Ele eronic Components. aporow \(170 . \mathrm{W}\). guarsntee at least 30 really high quality
inctory makked Transisfors PNP \& NPN and a hose of Diodes \(\&\) Reetifiers mount. on Printed Circuis Panels. Idenefifica information subplied so tive some Prase ath for Pak the Tranimtors Onir 55p.

A CROSS HATCH GENERATOR FOR \(\mathbf{1 3 . 8 5 ! !}\)

YES, a complete kit of par:s including
Prineed Circuls Board. A four position switeh Prineed Circule Board. A four position \(s\) witeh
gives \(X\)-hateh. Dots, Vertical or Morizoneat gives X-hatch. Dots, Vertical or Morizoneal lines. Integrated reliability. This was a proiece in the September 1972 edition of Television. This complete kit of parts costs \(\mathbf{6 3 \cdot 8 5}\). post paid.

A MUST for Colour T.V. Alignment
ELECTRONIC TRANSISTORIGNITION Now in bit form, we offer thls "up to the min. ute" electronic Igntilon system. Simple 10 make. full instructions supplied with these outstanding teatures:
Transistor and conventlonal swachablity. burglar prool lock up and automatle alarm, negative and posilive comparability. This prolect is a "star" teature in the September edition of "Electronics Today Internalional" magazine. Our hit Is recommended by the ETi magazine
Complete kn includingp \& p \& 7.92
Ready buitt and tested unit E9.02 extra.

\section*{PLASTIC POWER TRANSISTORS}

NOW IN TWO RANGES
There are 40W and 90W silicon Platic Powep Transistors of the very latest design. svallable in NPN or PNP as the most shatteringly low prices of all time. We have been selling these successfully in atior them ander our the world and we are proud te Banco f. VCE. Min Is. MFE Minas is ansed terme. \(\begin{array}{llll} & 1-12 & 11-25 & 26-50\end{array}\)


 Ip order.

We mock INTEGRATED CIRCUITS We wock \& lorgt range of I.C: ss very competitive FRices (from I1p ench). These are all listed in our

METAICATION CHARTS COE This lantantizally decailed convertion calculater carfet thoutindi of clasilined roforences besween angeh, srea, oolume, liquid meature, weights ete. pockat Size 15p. Wall Chart 18p.

LOW COST DUAL IN LINE I,C. SOCKETS
14 pin zype at 16 tp wach \(\}\) Now naw low profile 6 pin type a 18 p each \(\}\) eype

BOOKS
We have targe selection of Reference and echnical Books in stock.
hese ara juge two of our popular lines B.P.I Traniletor Equivalents and This includes many thousands of British U.S.A., Eupopean and C.V. equivalents. The lliffe Radio Valve Transiscor Data Book 9th Edition; p. \& P. 23 \(\ddagger\) p. Characteristics of 3,000 valves and tubes 4,500 Transistars. Diodes, Rectiffers and Incegrased Circuics.

Send for lists of publications
N.B. Books are void of V.A.T


DEPT. D, 222-224 WEST ROAD , WESTCLIFF-ON-SEA, ESSEX SSO 9DF TELEPHONE: SOUTHEND (0702) 46344


That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for lou'. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests you? W.thout losing a day's pay, you could guiedly turn yourself into soblething of an expert. Complete the compon (or write if you prefer not to cut the page). Nobligation and nobody will call on you . . . hut it could be the best thing you ever did.

\section*{Others have done it, so can you}
"Yesterday 1 rewived a lether from the lutitution infurming that my

 view echerd be two colteagues whe recently commented the comare". Stuhent le.1.13., Yorks.
"(ompleting your course, meant koing from a jobl 1 dotested to a job that I lowe, with unlimited promperte".-Student J.A.O. 1 dublin.
"aly tranime with 13.1.1E:I'. quickly changed my carning eapacity and, iu the next few year, iny barning increased fourfald"-student C.C. \({ }^{2}\)., Bucks.

\section*{FIND OUT FOR YOURSELF}

These letters-and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-low emphyers seek. 'There's mo surer way of getting alnead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to 13.I.E.T. Dept. beE2l, Aldermaston Court, Reading RG741PF.

Practical Fiadio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \(\mathcal{\&}\) Electronics maintenance and repairs for a spare time income and a career for a better future.

\footnotetext{





}
```


[^0]: Send quickly to Uxbridge Road address or call ot either store，
 Callers：Access \＆Barclay Cards accepted at both stores．

