An exciting hobby.... for everyore

15p
 e e ron ics

Precision instruments supplied with standard detachable copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$.

For perfection in soldering

L1076

BIT SIZE $1 / 4^{\prime \prime}$ 6.34 mm Dis. 27 watts. £2. 18

1646
BIT SIZE 3/16" 4.75 mm Dia. 23 watts £2•12

BIT SIZE $1 / 8^{\prime \prime}$ 3.2 mm Dia. 19 watts. £1-96

Are you alright for Jacks?

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variely of configurations. and in cases of difficulty can be ordered DIRECT from the Rendar factory.
Standard, mini and sub-miniature sizes . . . plugs in both screened and unscreened versions.. socket bodies in high melting point thermoplastic ... several unique features (some protected by UK and US Patents) . . . Post Office and NATO specifications.
If you want to study all the facts and figures, all the ingenious construction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products.
The cost of the catalogue is $25 p$, including $P \& P$, and it's money very well spent!

RENDAR®

Rendar Instruments Ltd. Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar̃, Burgess Hill
(
N.B.- The Yinistry of Pant \& Telecommunicalions has pointed ous that a lieence (not generdlly available to the public) is requirel for reception of trantsmianions by Pire Brigade, Aircraft, Shipping, efe.

(Dept, EDA), 872 EDGWARE BOAD, inmor, Wi. Tel. $01-7280094$. Ca'a meloome Mondsy to saturday $9=-6$ wimp

HOME RADIO (Componenitis) Ltod. Dept. EE, $234-240$ Lontion Road, Mitcham CR4 3H0. 01.6488422

When you think of COMPONENTS think of HOME RADIO omp

Some things-in life are just about inseparable eggs and bacon, sausage and mash, Tweedle Dum and Tweedle Dee! Think of one and you think of the other. That's how thousands of radio and electronic enthusiasts think of Components and Home Radio Ltd. When they need the first they automatically contact the second. They simply flip through their Home Radio Catalogue,

SHPRTWAVE

TRANSISTOR RADIO £2.75

ajone from 9 yezr up can follow the stcip-bs-rtep, easy an ABC fully illustrated in 6 stations logred on rod serfal in 30 mins Entaia, Africe U8A, Switseriand, ote , ruatc etc Earesdrod on unusual broadmosic, Ulc. Uses PPS batters, Size only $3^{\circ} \times 4 \mathbb{F}^{\circ}$ $x 18^{\circ}$ Only $28-75+20$ p p. \& p. Ktt ineludes esbinet. screws, instructions, elc. (Parts available separetely).

INGENIOUS ELECTRONIC
SLEEP INDUCER
 IN THR NIGHT AND CAN'T GET OFF TO SLEER. AGATN? WOULD YOU LIKE TO BE GPNTLY SOOTHED OFS TO SATISFYTNG SLFFRP EVRRY NIGHTP Then build this ingenious electronic sleep? sodpcer. 11 eten tops by itrelf $x 0$ you dont hare la worms prodoces poothing audioloodrpeaker prod contravously repeatedbut es time gocs on the mind gradualls berames leas and less - until they eventually bease altokether, the effect if has on people to amasingly rery simblar to hyprosit. A con. trol is provided for adjosting the length of times, elc., all transistor, can be built by anyone over 12 years of age in 3 buat two hours No knowledge of clectrotics or rawio needed. Brtremely simple, easy-coinions Rtep-by--9tep, fully Illustrated iustructions standard hatteries. extremely economical. Size only $3^{-} \times 4 z^{\circ} \times 1 a^{\circ}$ 一tuke It anywherc. Kit Inclodes casc, nuts, wire. screws. etc. SEND $53 \cdot 25+25 \mathrm{p}$ p. \& p . (parts avaliable separately).

BUILD 5 RADIO AND
ELECTRONIC PROJECTS

f2.45

Amazing Radio Construc-
tion set:
Become a radio
 expert for 82.45 . A completc Home RadroCourse. No experience needed. Parts including elmple instructions for each daign. Illus trated step-by-step plans, all transistore, loudspeaker. personal phone, knohs, screws, all 5ou peod. Presentation bas 45p astres as llus. (if required) (parss arailsbe $82.45+20 \mathrm{p}$ p. \& p .
SOOTHE YOUR NERVES RELAX WITH THIS AMAZING

RELAXATRON
CUT8 OUT NOISE POLNERVESI Don't umder extimate the usce of this fant. tastic new deaign-the RELAAXATRON is basically 2 pink nolse generator. Bexides beiog sble to mask oot it has other very interesting properties. For instance, many people ofd a rainstorm mysteriounly relaxing, 3 large pat of this reeling of wea directly truced to the sound of falling rainArops! ${ }^{\circ}$ Well known type of pink noise IF YOU WORK IN NOISY OR DISTRACTING SURROLADINGS. TF GOUE TREL TENSED, UNABLE TO RE. LAX-then build this fantustle Relaxatrun. Once used you will never want to be withont It-TAKE IT ANYWHERE. Ubes ntan. dard PPS batteries (current used so small that battery bife is miminat shelf-life). CAK BE BASII Y BULIT BX AHYONE OFER 12 Years of AGE using our undque. step-bystep, tulls illustrated plans. No zoldering necesars. All parts incluaing cente, ants, of crystil phones. Corning.
$22.75+25 \mathrm{p}$ p. \& p. Parts arailable separatel't.

ELECTRONIC ORGAN
 Don't confure ceith ordinary horgan sype reeds etc. Ampily
Pone afr ocer mouth-organn sypereeds ete. Fally transistorted. SELF two full octovet- play the Yellow Rose of Te ras", play "Silent Fitohr", play"Auli Lang Syne: ele. ele. You hare the thrill and oxcltement of bullding it together with the pleastire of playing a real, Ilve, portable electraniz orgas 10 PREVIOUS KKOWLEDGE OF RLECTROIICS IERDED. No soldering necessary, 8 imple as ABC to make. Anyone over nine years can ow ilil il easiyated.
 +25 p p. i p. for lit, including case, nuts. screwa. pimple intructions. etc. Upes standand battery (parts avalitable separately). Have alt the pleasure of making it sourself. anlsh with an excliling gift for someone.
Find buried treasure with this READY BUILT \& TESTED TREASURE LOCATOR MODULE
 RAESIS. TERIBED PRET-
METAT CMOTR \qquad
TOR MODULR Ready Duill and lones and It'a working. Pot it in a case, Screw ${ }^{3}$ handle on mid YOU EAVE ABL WORTE ABOUT 520 ! Extremely sensitive -penetrates througb earth, sand. rock, Water, elc--EASILY LOCATES COINS GOLD, SILTER, JEWELLBRI, HISTORI CAL RELICS, BLEIED PIPES. ETC Sismall exact location by "beep" pitch increasing as you near buried metalat objects burled SBVERAL FEKTY BELOW GROUEDI GIVES CLEAR SIGNAL ON ONE CON $\$ 4-85+30 \mathrm{p}$ carr. etc. (High quality Danlah Stethoscope headphones $22 \cdot 75$ extra 18 required.) EXAIMSE AT HOME FOR 7 DATS. YOUR MOKKY REFUTDED IK FULLIT KOT 100% DELIGHTED.

FIND BURIED TREASURE?
Transistorised Treasure Locator
 smill with ease in one shorl equenting by anybody from nine years of age uparards, with the illustrated tuotroction:-Uem standani PF3 bisttery. No soldering nocessary. Kit ioclades nuts, screwt, wire, etc.' ONLX $22.85+25 \mathrm{D} \mathrm{p} .8 \mathrm{p}$. (Sectional handle as thustrated ${ }^{95 \mathrm{p}}$ extra). Parts available eptrately. Made ap looks worth 215 . Eavesdrop on the exciting world of Aircraft Communications V.P.F, AIRCRAFT BAND
CONVERTOR fi:85 LIETES, PRIVATE PLAFES. JETPLAMESS. Earexdrod on exciling croas talk between pilots. ground opproach control, air. the diseriplined for yourself tenscrest on talk doums. Be With them When they have to take nerre ripping decisions in emergencles-Tunc into the internationa distress trequencs. Covers HEATHROW, GATWICK, LOTOF, RIFAWAY PRESTUTCE ETC ETC CLEAR AS BKif. This fantastic folly tranaistorised ingrument ean be buill by anyone over nine in under two honrs. No soldeting necessary. Fully inurtrated slmple instructions take you step-by-step. Uses standard prs batters. All you do is extend rod weria, pisce close 20 any ordinary medram wave phio (eren tiny portables). EVER REEDED. SEND oupers. wire, etc etc. (parts ariluble мерarately).

CONCORD ELECTRONICS LTD. (EEGU) 12, Archer Street,-London, W.i.

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM iv BATTERY (not supplied) ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: $\boldsymbol{\varepsilon 2}^{2} 60$ post gaid.

CREATE "PHASE" EFFECT ON YOUR RECORDS. TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULS INSTRUCTIONS. KIT PRICE: $£ 2 \cdot 60$ post paid.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR
 ELECTRONIC PRODUCTS

ssa, LICHFIELD STREET. WALSALL. STAFFS. WSI 1UZ

Vary the strength of your lighting with a TixM \%exich

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright ehrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains volcages from $\mathbf{2 0 0}-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression: 600 Watt \quad £3.20. Kit Form $£ 2 \cdot 70$ 300 Wate - $\mathbf{~ 2 - 7 0}$. Kit form $\mathbf{E 2} \cdot 20$ All plus 10 p post and packins. Please send C.W.O. to:

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to H.M. Government Departments.

T.V.'s T.V.'s T.V.'s COLOUR SETS

Guaranteed working from $£ 125$.
(Also some not working)

* 4 Channel Igin UHF T.V.'s Despatched cested, and in full workine order- E20.
- 19 in Sismline, only requires UHF tuner for SBC2, untested, complite. 88.
 ${ }^{2}$ (Carriase $\mathrm{fl} 1 \cdot 50$ extra all models).

GY-NORMOUS RADIO BARGAINS!
 $\mathbf{2}$ types, superhets, with push-pull output to

 internal loudspeaker. Supplied completo with earphone and batteries. Type A-Very neat litzle set, still only $£ 1 \cdot 50$ p. \& p. 20p. Including carrying case, instruction sheet, etc.Type C-L.arge portable radio as sold nationally. A.M. and F.M. coverage (Yes F.M.-
$88-103 \mathrm{MHz}$. Horizoncal pointer tuning scale. $88-103 \mathrm{MHz}$). Horizoncal pointer tuning seale. Operates from own dry batteries or a.c. mains from internal transiormer isolazeble cells (not supplied). $18+$ p. \& D. 50 p. All these sets are BRAND NEW and bomplete in manufacturers original require slight attent
CASSETTE RECORD/PLAYER. Leathererte case, complere with casserte, mic. \& scand batteries ecc. $112 \cdot 80 \div$ p. \& P. $55 p$. + p. \& p.
$* C 120$ Cassettes. Top quality. $75 p+$ p. F 120
7%.

> SUMIKS
> Dept. E.E.
> 7 High Street
> Langley, Warley, Worcs. Callers Welcome

Project605 the new simple way to assemble Sinclair high fidelity modules

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder. there is an alternative - Project 605.
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 3 G watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said. match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtaina ble for only $£ 25$.
Buarantee If within 3 months of purchasing Project 605 directly trom us, you are dissatistiod with it we will refund your nonay at once. Each module is gurranteed to work perfectly and should any defect arisa in normat use we will service it at ooce and without any cost to you whatsoever provided thal it is returned to as within 2 years of the purchase date. Thera will be a small charge lor senice therefiter. No charge for postage oy surface mail. Air-mail chatged at cost.

Sinclair Radionics Lid., London Road., St. Ives, Huntingdonshire PE174HJ. Telephone: St. Ives (04806) 4311

Specifications

Output-30 watts music power (10 watts per channel R.M.S. into 3Ω)
Inputs-Mag. P.U. - 3mV correct to R.I.A.A. curve 20-25.000 $\mathrm{Hz}+1 \mathrm{~dB}$. Ceramic pick $-\mathrm{up}-50 \mathrm{mV}$. Radio -50 to 150 mV . Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio-Better than 70 dB .
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off. P.U.. radio and aux. Treble
+15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Hz . Volume Stereo Balance.
Channel marching within 1 dB .
Front panel - brushed aluminium with black knobs.
Project 605 comprises Sterco 80 pre-amp/control unit two Z-30 power amplifiers, PZ-5 power supply unit. the unique new Masterlink, leads and instructions manual complete in one pack. Fost free

TO SIRCLAR RADIOAICS LTD., ST. IVES, HUTTINGDONSHIRE PE174HJ
Please send Project 605 post free \square Details and list of stockists \square
Name
Address
for which I enclose $£ 29.95$ cheque/money order/cash.
E.E.9B.

YATES ELECTRONICS
 (FLITWICK) LTD

DEPT. E.E., ELSTOW STORAGE DEPT. KEMPSTON HARDWICK, BEDFORD.

C.W.O. PLEASE. POST AND PACKING, PLEASE ADD $10 p$ FO ORDERS UNDER 2 .

Catalogue which contains data sheets for most of the components listed will be sent free on request. 10p stamp appreciated.

OPEN ALL DAY SATURDAYS

NESISTORS

tW iskre high seability carbon fitm-very low noise-capless construction. WW Mulard CR25 carbon film-very small body size $\mathbf{7 \cdot 5} \times 2 \cdot 5 \mathrm{~mm}$. $\frac{1}{2} \mathrm{~W} 2 \%$ Electrosil TRS.

Power watts $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$	$\begin{gathered} \text { Tolerance } \\ 5 \% \\ 10 \% \\ 2 \% \\ 10 \% \\ 5 \% \\ 10 \% \end{gathered}$	Range $\begin{aligned} & 4.7 \Omega-2-2 M \Omega \\ & 3.3 \mathrm{M} \Omega-10 \mathrm{M} \Omega \\ & 10 \Omega-1 M \\ & 1 \Omega-3.9 \Omega \\ & 4.7 \Omega-1 \mathrm{M} \Omega \\ & 1 \Omega-10 \Omega \end{aligned}$	Values available E24 El2 E24 E12 E12 El2	$\begin{aligned} & \text { Price } \\ & 1-99 \\ & 1.0 p \\ & 1.0 p \\ & 3.5 p \\ & 1.0 p \\ & 1.0 p \\ & 6 p \end{aligned}$	$\begin{aligned} & 100+ \\ & 0 \cdot 8 p \\ & 0.8 p \\ & 3.0 p \\ & 0.8 p \\ & 0.8 p \\ & 5.5 p \end{aligned}$

Quantity price applies for any =election. Ignore fractions on tozal order.

DEVELOPMENT PACK

0.5 wate 5% Iskra resistory 5 off each value 4.7Ω co tMR.
E12 pack 325 resistors $£ 2 \cdot 40$. E24 pack 650 resistors $£ 4 \cdot 70$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega$, \log or linear $\left(\log \pm W\right.$, $\left.\operatorname{lin} \frac{1}{2} W\right)$.

SKELETON PRESET POTENTIOMETERS
Linear: 100. 250, 500 and decades to $5 \mathrm{M} \Omega$ Horizontal or vertiol P.C. mountint (0.1 matrix)
Sub-miniature $0 \cdot 1 \mathrm{~W}, 5_{p}$ each. Miniature $0 \cdot 25 \mathrm{~W}$. 6 p each.

THANSISTORS

ACIG7	$15 p$	BC107		BF195		8.			$2 p$
AC126	$12 p$	BCias	10 p	BFY50	22p	OCazD	12p	2N3704	13 p
ACl27	$12 p$	BC109	10 p	BFY51	22p	OCP71	40p	2N3705	12 p
AC128	12p	BC147	$10 p$	BFY52	22p	ORP12	30p	2N3706	$11 p$
ACl31	$12 p$	BCI48	13p	BSY56	32p	2N2369	16p	2N3707	$12 p$
ACl32	$12 p$	BC149	13 p	OC26	45p	2N2646	60p	2N3708	10p
ADI40	50,	BC157	13p	OC28	45p	2N2926R	9p	2N3709	$11 p$
ADI61	33p	BCI58	13p	OC35	$45 p$	2N2926O	9p	$2 N 3710$	$11 p$
AD162	36	BC159	13p	0 C 42	12p	2N2926Y	$9 p$	2N3711	P
AFI14	20p	BD131	75p	OC44	12 p	2N2926G	10p	2N4062	$12 p$
AF115	20p	BD132	75 p	0 O 45	12p	2N3054	58p	ZTX302	$15 p$
AFII6	$20 p$	BF179	32 p	\bigcirc	$12 p$	2N3055	60 p	ZTX500	16p
AF1 17	20p	BF181	25p	$0 \mathrm{OC71}$	$12 p$	2N3442	140p	ZTX503	$16 p$
AFlis	38 p	BFI94	15p	OC72	120	2N3702	13 p	40362	50p

 $400 \mathrm{~mW} 5 \% 3^{\circ} 3 \mathrm{~V}$ ro 30 V , 15p. $|$| 709 | $50 p$ | 741 | $50 p$ | 14 and 16 pin |
| :--- | :--- | :--- | :--- | :--- |
| 710 | $50 p$ | 748 | $50 p$ | $16 p$ | DIODFS RECTIFIER $8 Y 127$

$8 Z Y 10$
BZYI3
IN4001
N4004

BRUSHED ALUMINIUM PANELS
$12 \mathrm{in} \times \sin -25 \mathrm{p}: 12 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}=10 \mathrm{p} ; \quad$ in $\times 2 \mathrm{in}=7 \mathrm{p}$.
SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm .
SINGLE 10K, 25K. 100K log. or lin. 40p.
DUAL GANG, $10 K+10 K$ erc. log. or tin. 60 p .
KNOB FOR ABOVE 12p.
FRONT PANEL 65p
18 Gauge panel $12^{\prime \prime} \times 4^{\prime \prime}$ with slots cut for use with slider pots. Grey or matt black finish complete with fixings for 4 poes.

MULLARD POLYESTER CAPACITORS G296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, ~ 21 \mathrm{j} p, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0-015 \mu F, 0.022 \mu F, 0.033 \mu F, 3 p .0 \cdot 047 \mu F, 0.068 \mu F, 0 \cdot 1 \mu F, 4$ p. $0 \cdot 15 \mu F, 6 p \cdot 0 \cdot 22 \mu F, 7 \frac{1}{2} p-$ $0.33 \mu \mathrm{~F}, 1 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$. I60V: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3 \frac{1}{\mathrm{I}} \mathrm{p}, 0.15 \mu \mathrm{~F}$, $4 \mathrm{fp} .0 \cdot 22 \mu \mathrm{~F}$. $5 p, 0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}$. $7 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}$. 11 p . $1.0 \mu \mathrm{~F}$. 13 p .
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 p .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ 3tp. $0 \cdot 1 \mu F, 4 p, 0 \cdot 15 \mu \mathrm{~F}, 0 \cdot 22 \mu \mathrm{~F}, 5 p \cdot 0 \cdot 33 \mu \mathrm{~F}, 6 \frac{1 p}{} \cdot 0-47 \mu \mathrm{~F}, 84 p \cdot 0 \cdot 68 \mu \mathrm{~F}, 11 p .1 \cdot 0 \mu \mathrm{~F}, 13 p$ $1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}$. 24p.

MYLAR FILM CAPACITORS $100 V$. CERAMICDISC EAPACITOÄS

$0.001 \mu F, 0.002 \mu F, 0.00 S \mu F, 0.01 \mu F, 0.02 \mu F$ | $0.001 \mu F$, | $0.002 \mu F$, | $0.005 \mu F$, |
| :--- | :--- | :--- |
| $0.01 \mu F$ | $0.02 \mu F$ | |

100pF to 10,000 pF. 2p each.
$2 t \mathrm{P} .0 \cdot 04 \mu \mathrm{~F}, 0 \cdot 05 \mu \mathrm{~F}, 0-068 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}, 3 \frac{1}{3} \mathrm{P}$.
ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
6p each $(\mu F / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4.64 / 4,125 / 4,250 / 4$, $400 / 4,6 \cdot 416 \cdot 4,25 / 6 \cdot 4,5016 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$ $25 / 25,50125,80 / 25,1 / 40,4 / 40,8 / 40$, $16 / 40,32 / 40,50 / 40,0.64 / 64,2.5 / 64,5 / 64,10 / 64$ 20164. 32/64.

MULLARD C437 SERIES

$100 / 40,160 / 25,250 / 16,400 / 10.640 / 6.4,800 / 4,1000 / 2 \cdot 5,9$ P. 100/64. 160/40. $250 / 25$. $400116,640 / 10,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 p .160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$, $1600 / 10,2500 / 6 \cdot 4$. $4000 / 2 \cdot 5$, 18 p :

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \%$
10 pF to 1,000 pF E 12 Series values 4 p each.

Dectless loud fidelity
 Acclaimed by the Experts
 Chassis Units (Dual Cone. Coaxial, Woofers, Tweeters, etc.) plus Multi-unit systems
 in Kit Form from Scandinavia's largest manufacturer.
 P.F. \& A.R. Helme Ltd. (Dept EE9) Summerbridge: Harrogate HG3 4DR Yörks. TeL Darley 279 (STD 0423-72)
 Matching

Bl－PREPAK

COMPLETE TELEPHONES

EX．G．P．O．NORMAL HOUSEHOLD TTPE
ONLY 95p pOST \＆PACKING 35p EACH TELEPHONE DIALS Standard Port Office ergee
Guaranced in working order． ONLY 50p
POST \＆PACKING ISp

2	4	Phoro Cells．Sun Batceries． O－3 to $\mathrm{O} \cdot 5 \mathrm{SV} .0-5$ to 2 mL ．	50p
79	4	in 4007 Sil．Ree diodes． 1．000 PIV lamp plastic	50p
101	10	Reed Switches，mixed typas larse and smali	50 p
0	200	Mixed Capacizors．Approx quantity，counted by，weight	50p
44	250	Mixed Resistors．Approx． quantity counted by weizhe	50p
	40	Wirewound Reviniors Mixed sypes and values．	50 p
म\％	4	BYI 27 Sil Reex． 1000 PVV． 1 amp．plastic	$50 \bar{p}$
Н\％	2	OCP71 Light Semative Phote Transistor	50 p
H12	50	NKT15S万人59 Germ．diodes． brand new stock dearance	50p
म20	20	OC20011／2／3 PNP siticon uncoded TO－S can	50 p
H	20	Waxr Zener Diodes Mixed Voltares $6 . \mathrm{B}-43 \mathrm{~V}$ ．	50p
	100	Mixed Diodes，Germ．Gold bonded elc．Marked and Unmarked．	50p
［138	30	Shors lead Transistors．NPN siticon Platar types．	50p
	UNMARKED UNTESTED PACKS		
E46	150	Germanium Diodes Min．class tyoe	50p
5	200	Trams．manufacturers rejects all sypas NPN，PNP．Sil．and Germ．	50p
Een	100	Silicon Dioder 00.7 z 1 ans equir．to OAZ00．OAZO2	Op
086	50	5il．Diades 啡b．min． IN914 and IN9í6 eypes	50 p
Eea		： 5 ：i1．Trans．NPN．PNP quir．to OC200／1 2N706A．BSY95A．．te．	50 p
8	50	Germanium Transistors PNP，AF and RF	50p
H6	40	250 mW ．Zener Diodes DO－7 Min．Glass Type	50p
H17	20	3 amp．S．likon Stud Rectifiers． mixed volts	50 p
HIS	530	Top Hat Sitican Rectifiers， 750 mA ．Mized volto	50p
His	－ 8	Experimenters＇Fak of Incezrated Circuits．Date xupolied	50p
H20	20	BY126／7 Type Silican Rectiffers 1 amo plastic．Mised volcs．	50p
	15	Power Transistors PNP，Germ． NPN Silican to－ 3 Can．	50p

OUR VERY POPULAR 3p TRANSISTORS

TrTE＂EE：PNP Germinium AF or RF．
TYPE＂F＂NPN silicon plastic encopsulation．
FULLY TESTED AND MARKED SEMICONDUCTORS

SEMICONDUCTORS			
ACt07	${ }_{0}^{\text {app }}$	OC139	$<_{0.13}$
ACl26	0.15	OC140	0.15
ACl27	$0-17$	－${ }^{\circ} 170$	0.21
ACI2	0.15	OC171	0.23
AC176	0.20	－C000	0.25
ACYi7	0.20	－c201	0.25
AF239	0.30	2N1302－3	0.15
AF186	0.20	2Ni304－5	0.17
AF139	0.30	2N1306－7	0.20
BCISA	0． 20	2N1306－9	0.72
${ }^{\text {a }} 107$	0.10	2N3819FET	0． 40
eciou	0.10	2N4416FET	0.35
${ }^{\text {sclios }}$	0.10	Powar	
BCI 48	$0 \cdot 10$	Tramiutors	
BC169	0.12	－ 20	－ 50
BFI_{194}	0.15	Ocza	0.10
87274	0.20	OC25	0.25
BFY50	0.15	Ocrs	0.25
B5725	－13	Ocz	0.30
85726	0.13	0 C 35	0.25
BSY27	0.13	$0^{0} 36$	0.37
E5728	0.13	AD149	0.10
bsr29	0－13	Aurio	1.25
${ }^{\text {sfrysa }}$	－ 10	25034	0.25
OC41	0.15	2N305S	0.50
0 O44	0.13	Dioder	
00^{45}	0.10	Aaym	0.18
OC71	0.10	OA95	0.07
0 ch	$0 \cdot 10$	OA79	0.07
${ }^{\circ} \mathrm{CB} 1$	0.13	OAsi	0.07
$0 \mathrm{OCl} \mathrm{O}^{0}$	0.13	OA95	－． 07
$0{ }^{0} 83$	$0-18$	in914	0.06

F．E．T．PRICE
 BREAKTHROUGH！！

$$
\begin{aligned}
& \text { INTEGRATED CIRCUITS } \\
& \text { 5L403D Audio Amp. } 3 \text {-Wates } 2.00 \quad 1.95 \quad 1.80
\end{aligned}
$$

$$
09 \mathrm{C} \text { Linear Opp. Amp. } 25 p \text { 20p } 15 p
$$ c

$$
\begin{aligned}
& \text { 709C Linear Opp. Amp. } \\
& \text { Gates, Factory Marked and } \\
& \text { 25p } \\
& \text { Tested by A.E.I. } \\
& \text { 10p } \\
& \text { 10p }
\end{aligned}
$$

Tesced by ALE.I.

This field effect transistor is t 2N3823 in a plastic encapsulation coded as 3823 E ．It is also an excel－ lent replacement for the 2 N 3819 ． Data sheet supplied with device． 1－10 30p each， $10-50$ 25p each． $50+20 \mathrm{p}$ each．

A CROSS HATCH GENERATOR
 FOR $£ 3.50$ ！！！

he

3
K．Flip－Flops Factor
Marked and Tested by
A．E．I．

$\begin{array}{llll}\text { SN7490 Decade Counter } & \text { 20p } & \text { 18p } & \text { 15p } \\ & 45 p & 40 p\end{array}$		
UL914 Dual $21 / P$ Gater	40 p 35p 30 p	

LOW COST DUAL INLINE I．C

SOCKETS
14 pin type at 15 pach
16 pin type at 16 pach
16 pin type at 16 p each．
We have a large solection of Reference and We have a larke selectio
These are jusc iwo of our popular line
These are just ewo
Substitures； 409
This includes many thousands of British U．S．A．，European and C．V．equivalents．
The lliffe Radio Valve $\frac{1}{\text { a }}$ Transistor Data Book 9ch Edition：
Characteristics of 3,000 valves and tubes． 4．500 Transistors，Diodes，Rectifiers and Integrated Cirtuits．
Send for lists of these English publications．
YES，a complete kit of parts including Printed X－hateh．Dots．Vertical or Horizontal lines． Integrated Circuit design for casy construction and reliability．This is a project in the 5eptember edition of Practical Television
This complete kit of parts costs £3．50，post paid．
A MUST for Colour T．V．Alignment．
Our famous Pl Pak is still leading in value for money－ Full of Short Lead Semiconductors \＆Electronic Components，approx．170．We guarancee at least 30 really high quality factory marked Transistors PNP \＆NPN，and a host of Diodes 8 Rectifiers mounted on Printed Circuic Panels fdencification Chart supplied to Eive some information on the．Transistors．

Please ask for Pak P．1．Only 50p． 100 P\＆P on this Pak．

£1 each

DEPT．E，222－224 WEST ROAD，WESTCLIFF－ON－SEA，ESSEX SSO 9DF TELEPHONE：SOUTHEND（0702） 46344
 betiesy eliminator for both
 almost aiving them sway at onit *Refund if not astoanded. Black and chrome anish periormance Withinet ballt case-constructed of line Rosghan hardwood in beandifn Teat feneer tinish-prevents vibration, ensures sweetar wone than evert Volame controlied from a whisper to a noar. Wider band spread, for "pin-polns" station selection: Plus "MAGIC EXE" tuning level indicator for ultea perlect taming sonsitivity. Yes, the Rusians hare surparsed themscives, proving again their ianiastic soin apacerhip and sstellite communlcations. Zes. EFEE I Wa sisan instinuy at your Angertipa motoding Standard Long. Mediam, Short and Ultra Short Wavea to 00Ftr the four corners of the Rarth, including all normal tratemissions. Ves., es trom gil ovar the USW, plas beal sad new stations not yet opartional. and mean selection unit (an naed worla Expeasive Genuine poshopall oatputs ON/OFF rolame and ncparate Treble and Ban tone controls for utter perfection of tonel Prass-button illamination: Take it any whereruns on batterie on throush battery eliminstor from $220 / 240 \mathrm{~s}$. AC mains supply. Internal ferritc rod plus built-in "rotatahle" telescople acrial extending to 39 ins approx. I's also a fabulons CAR ZADIO. Can be used tarocgh extension ampis of
 perfect service. U.K. facilities and spares availabe \quad or years GTEEE, manal with instructionk and circuit diagram. OXVT WATT (or only 55 battery eliminator alit exrr). BED" WORID TUMRG GUIDE, (It enablen you to astes you get ine when to tune Into the E.F. when abrond). PLUS mlonglife" batteries. PLOS esrphope
 for gezsonal listadag. (Sorry-WITMES FOR BARGAINS! Send today or call

Combined
 VII. ANIFIW Radio

and CASSETTE
 TAPERECORDER 8 PLAYE:

gspk

quite simply-the best

RESISTORS
FUL RANGE OF ISKRA CARBON FILM RESISTORS

PRE-SET POTENTIOMETERS

standard mitues of pre-sets froch 100 ohms in 5 geg.
Standard/miniature 7p each Sub-ministur
SIEMENS PROFESSIONAL CAPACITORS
POLYCARBONATE AND POLYESTER ELECTROLYTIC

Vollage	Capacitance	yrice	Foitage	Capitarce	Price
100\%	$0_{0.1}{ }^{\text {a }}$	6 p	10v	22 F	7p
100 v	$0-15 \mu 5$	6 D	20v	$470 \mu \mathrm{~F}$	11 p
1005	0-22 $\mu \mathrm{F}$	$\mathrm{Bp}^{\text {p }}$	16\%	$47 \mu \mathrm{~F}$	75
$100{ }^{\circ}$	$0 \cdot 33 \mu \mathrm{~F}$	9 p	25 v	$10 \mu \mathrm{~F}$	7 p
100 F	$0 \cdot 4 \mathrm{~L} \mu \mathrm{P}$	10 p	25v	$100 \mu \mathrm{~F}$	90
100%	$0.68 \mu \mathrm{~F}$	15p	25	$290 \mu \mathrm{~F}$	11 D
2505	$0.01 \mu \mathrm{~F}$	5 D	235	$470 \mu \mathrm{~F}$	14p
2500	0-015 $\mu \mathrm{F}$	5 p	255	$1000 \mu \mathrm{~F}$	20
ssor	$0-0223 \mu \mathrm{~F}$	5 D	25 v	$2200 \mu \mathrm{~F}$	42 p
2505	$0-033 \mu \mathrm{~F}$	6	35.	$4.7 \mu \mathrm{~F}$	7p
200 r	$0.037 \mu \mathrm{~F}$	6 D	355	$220 \mu \mathrm{~F}$	14 p
250x	$0-068 \mu \mathrm{~F}$	6 p	1000	$10 \mu \mathrm{~F}$	8 p
3505	$0.1 \mu \mathrm{~F}$	6 p	1005 100.	$22 \mu \mathrm{~F}$ 47	9p

SPECIAL INTRODUCTORY OFFER

FREE with hil orde vallut 5 s, or ove printed circuits (normal retail price $£ 1.95$). printed ofier valid for limited period only

SEMICONDUCTORS

Here are just a few examplès of our LOW Semlconductor prlces.

	$1 \div$	20-	B7\%88C	+	25!	$0 \mathrm{C76}$	$\begin{aligned} & +1 \\ & 22 p \end{aligned}$	$\begin{array}{r} 25+ \\ 21 p \end{array}$
${ }^{\text {ACl27 }}$	197	160	Series El?			0 OL 70	249	210
ACII6	157	13 ?	(2-7v-30-0v)	10p	8p	1×4001	6D	5 D
${ }_{\text {ACY18 }}$	18 p	150	SKT210	24 D	19p	184002	6p	5 D
AD161	2\%	25p	NKT211	240	19p	1 N 4003	78	6 D
AD162	27	95p	SKT? ${ }^{\text {S }}$	24 D	19p	184004	8p	70
AF139	289	28%	\KT213	260	19p	1×4005	10p	90
BCl07	90	Sp	\$KT?14	19p	17 p	1N4006	129	11p
BC108	8p	78	SET218	24 D	19D	174007	18p	18p
BCl09	8	8p	\$KT219	24D	19]	184148	4 p	3p
BCI 57	8p	7	5LT233	29p	20p	217302	18p	15
BC148	Sp	78	SKT\%en	$21 p$	19p	2N1304	23 p	80
BC149	8 p	7 p	SKTY42	149	12p	$2 \mathrm{N1618}$	14p	18 p
HCYio	149	12p	SKT\%43	51 p	4 p	9NT711	15p	14 D
BCFil	209	$19 p$	3KT401	70 p	56 p	2N2904	29p	8 p
13CY:2	149	12p	FKT402	75p	59	2×2905	24p	28
BDY\%0	91p	739	NET403	040	50p	2×2906	18 p	18p
BFX29	24p	8p	NKT453	419	33 p	2512907	22 D	219
BYX 30	24p	235	0.147	8 p	5 D	2Nross	178	16 p
BFY50	$10 p$	18p	OA79	60	5 p	2*3054	490	479
BFY51	$18 p$	170	0190	5 p	49	2N3055	57p	529
BFY53	198	18D	0070	12p	12p	(RD130)		

NUMEROUS OTHER ITEMS AVAILABLE INCLUDE: witches Comprebensive range of N.S.F. Togyie switchex and Rotary Water switch Its (to enable you to muke your oren switah to your ourn Epecincation)
Copper laminate and all materlalk arailable to make your own printed circait basma. Freeser and Clesner acrusol sprays.
rok Ploge and rockete
Variety of speciality products.
All orders value $£ 2$ or over post free. Other orders please add 10 p p \& p . We only sell new products-do not confuse with seconds' of surplus.stock. addresses only. Please fill in the coupon and send with 10p refundable on ordering) for catalogute
all
CALLERS Head Office, Hookstone Park, Harrogate, Yorkshire
WELCOME HG2 7BU.

MON,	Name
70	
FRI.	Addres
9-5.00	

THE PULIMAN PB PUSH BUTTON CAR RADIO KIT

Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc. The kit includes a prebuilt RF tuner unit, and fully modulised IF stages which are pre-aligned before despatch. As well as electronic components, this kit also contalns 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire.

The Pullman PB is suitable for

and sturdily constructed. Output is a full 2.5 watts Into an 8 ohm speaker. But the Pullman PB will operate into any loudspaaker from 8 to 15 ohms. Power consumption is less ihan 1 amp .

- Circuit diagram and comprehensive instructions 50p. free with parts.
Radio \& TV Components (Acton) Led. 2IE Hish Streits, ficton, London W3 GNG. 323 Edsware Road, London W2.

If you can solder
on printed circuit board, you can build this push-button car radiokit. It's simplejust follow the step-hy-step instructions

Mail Orders to Acton.
Terms C.W.O.
All enquiries S.A.E. Goods ñot despatched outside U.K.

BSR LATEST SUPERSLIM
 STEREO AND MONO
 Piagt 12". $10{ }^{\circ}$ or 7 records Anto or Manual. A high retiabillty with 12 months kasrantes. AC 200/250v Sire 181 x 11 itm .
 Above motor board 3 3.m. below motor board 21 in . with 8 TBRE MON0-COMPATLELE

 $£ 8.75$ poat 25 p . 67.75 Port 25p.
 Plays all records

BC8 DE-LUXE 3 WATT AMPLIFIER. Resdy mado tested Printed circuit. Pentode walve EL8s. 3 watts output wo trobs output trenformer and hish
parformance lopdspesker.
$€ 4 \underset{250}{\text { Post }}$.
ess ponse $50-12,000 \mathrm{cpr}$. Sensitivtty 300 mV
R.C.S. PORTABLE PLAYER CABINET

Really amart appearance with space for R.C.S. Amplifier and most modern antochangers. Size 18 Colown. Two-tone rerine covered.

64 Rot

GARRARD DISCO DECK

TA Mk II
4 speeds. Plays aid 4 pole heary duty motor. gin. steo
turatable Flag is
head complote with
atereo/mono cartridge. Adjustablo styluE preasure. Antoatop. Brown and Cream fingh. AC matna 110 arov Bate plate nize 12 in . x 8id. Operating arear $\times 12$ ins.
 E 10 GARRARD AUTOCRAFGERS with Sonotone Cartridgez Stereo Diamond and Mono Sapphire. Mode 1025 210.
Model 3500 Stereo and Mono Antochanget 514. Post 25 p . BSR JUNIOR SWGLE PLAFER
$€ 4.50$
Turntable, 4-spoed motor and separato pick-ap IPIStere HI-FI PICK-UP CARFRIDGES. Dismond LP/Stereo

E.M.I. WOOFER AND
55.75 Post 25

Comprising a fine axample of a Wooler
 Alsmininm Cone centre to improve middle and top response. Also the E.M.I. Tweeter 8 fin. equare has aspecial light weipht paper cone and maxnet trax 10,000 Haes. Grossover condenser inciuded Impedance Standard Usefal Responso SUITABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in}, \mathrm{E9}$ POST 250 MODERE TEAE DESIGK

R.C.S. STABILISED POWER PACK KITS All parts and instractions with Zener Diode. Printed Circuit, Bridge Rectifiars and Double Wonnd Mains Transformef put $200 / 240 \mathrm{v}$. AC. Oufput voltakes or less. I Details S.A.E Slze $31 \times 11 \times 1$ in.

62 POST
GENERAL PURPOSE TRANSISTOR
PRE-AMPLIFIER BRITISH MADE ieal for Mire, Tape P. If Guitar Can be used with Bettery $9-12 \mathrm{~F}$ of E.'T. Jine 200-800\%. D.C. Operation. ire $1 \frac{1}{2}^{-} \times 1 \frac{1}{4}^{-} \times \frac{1}{2}^{\circ}$. Response $25 \mathrm{c}, \mathrm{ps}$, to $25 \mathrm{Kc} / \mathrm{k}$, 28 db ksin Por use with valve or transistor equigment. 900 Pos Pull instructions supplied. Details 8.A.E. PP NEW TUBULAR ELEECTHOIFTTCS CAY TYPES 8 $8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$89 / 450 \mathrm{~V}$ $14 \mathrm{p} 109 / 25 \mathrm{~V}$
15 p
$100 / 50 \mathrm{y}$

 LOW VOLTAGE ELECTROLTICS

1. $2,4,5,8,16,25,30,50,100,200 \mathrm{mF}$. 157. 10 p $500 \mathrm{mF} .18 \mathrm{~V} .15 \mathrm{p} ; 25 \mathrm{~V} .20 \mathrm{p} ; 50 \mathrm{~V} .30 \mathrm{p} .7 \mathrm{p}: 100 \mathrm{~V} .70 \mathrm{p}$. $2000 \mathrm{mF} .8 \mathrm{~V} .25 \mathrm{p}: 95 \mathrm{~V} .42 \mathrm{p} ; 50 \mathrm{~V} .57 \mathrm{p}$ $2500 \mathrm{mP} .60 \mathrm{~V} .68 \mathrm{p} ; 3000 \mathrm{mF}, 2 \mathrm{bV} .47 \mathrm{p} ; 50 \mathrm{~V} .65 \mathrm{p} .80 \mathrm{~V} 95 \mathrm{p}$ 5000 mF . 6V. $25 \mathrm{p} ; 12 \mathrm{~V}$. 429; 25V. 75p; 25 V .85 p ; 60 V , 25 p CERAMIC 1 pF to $0-01 \mathrm{mF}$, 4p. Sitvar Mica 2 to 5000 g . 4 g . PAPRE 350V-0.1 4p. $0.512 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{~F} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 15p. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p}: 0.4725 \mathrm{p}$.
 STWFRR MICA. Close tolerance $1 \% 8 \cdot 2-500 \mathrm{pF}$ 8p; $500-2.200$
 WIN GALG. $05+25 \mathrm{pF}$. $50 \mathrm{p} ; 500 \mathrm{pF}$ alow motion, standard 45p; small 3-kang $500 \mathrm{pF} £ 1-60$.
SHORT WAVE, STIGLE. 10pF 30p; 25pF 55p; 50pF 55p NEOA PANEL IIDICATORS 2507 AC/DC Red or Amber 200. ESgISTORS, 4 - 1 w. 20% Ip: 2 w. Sp 10 ahmi to 10 mes EIGE STABILITY. \ddagger W. $2 \% .10$ ohms to 1 meg., $10 p$.
WIRE-WOUSD RESISTORS 5 watt, 10 watt, 15 watt WIRE-WOUSD RESISTORS 5 Wett, 10 Wats, 15 , 10 ohms to $100 \mathrm{~K}, 10$ esch; $2 t$ with, 1 ohm to 8.8 ohme 10 p

DECCA DECCADEC GARRARD MOTOR UNIT MKII

Mingle play Mono Deram

transeription head and afm Four speeds.
$10 \frac{15}{2}$. turntible. Anti-ramble filtar Bias compensation. Laboratory motor.

 METAL PLINTH \& PLASTIC COVER Cut out for most Garrard or B.S.R. WIIl play with cover in £5'50 Covered in black leatherette.POST 25p ALSO AVAILABLE IN SOLID NATURAL MAHOGANY ALSO AVAILABLE IN SOLID NATURAL MAROG
WAX POLISHED FINISH AT SAME PRICE
MAINS TRANSFORMERS $\frac{\text { ATf Fiss }}{250}$

 $300-0-300 \mathrm{v}$. 120 mA .82 m .4 .6
 MDNET 200% IIS $20 \nabla_{0} 100 \mathrm{~mA}$. If $\times 1: \times 1$ in. HEATER TRAMS. 6 -3v. 3 a. 1 , 8.3 v. Ii amp - 80 p 18 os 500 ongut it 2 mmp . $3,4,5,6,8.9,10,12,15,18.21$ and 307 . 22.25 1 amp.. $6,8,10,12,18.18 .80,24.30,36,40.48,60.22 .25$

2 amp. $8.8 .10 .12,18,18,20,24.30 .36 .40,48,60.88 \cdot 25$ | $2 \mathrm{amp} .8 .8 .10 .12,18,18,20,24.30,86,40,48,60.88 .25$ |
| :--- |
| $5 \mathrm{amp} .8,8,10.12,16,18,20.24 .30,38.40,48,80.28 \cdot 75$ | 5 amp . 6, $8,10,12,18,18,20,24.30,36.40,48,80.28,25 \mathrm{v}$

 TOR 6 or 125... 18 BID.E CHARGKR RECTIFIERS:

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS $\begin{aligned} & \text { With twin tweetorn } \\ & \text { and crossover, } 10 \text { wat }\end{aligned}: 4 \cdot 25$ State 3 or 8 or is ohm. port 15 (As illuskrated) \qquad cersm With flared tweter conc and cerame
maxnet, 30 watta.
Bass res. $45-60 \mathrm{cps}$. Flive 10,000 ga usi State 8 or 8 or 15 ohm.

ATİ MODELS UBAKER SPEAKERS" IE STOUK hitil and eabic tahes. 42p Post Free,

BAKER I2in. MAJOR \&9

	$30-14,500$ c.p.s. 12in. double cone, wooter and treeter cone tozether with a gAkER ceramio magnet assembly having a flux density ol 14.000 gavs and a tatal llex of 145,000 Yaxwells. Bass remonance 40 e.p.s. Bated 20 wattr. Voice colls 3 or 8 or is ohms. Post 9 ret
	Module Hit 30-17.000 cige with tweeter. crossover beffle and instructions.

Oup 25°	'Group 35'	Froup
lnch 67	12 fnch 69	15 inch $£ 1$
	35 wrst	t
3 or 8 or 15 ohm	3 of 8 or 15	
TEAK RI-FI SPEAKER CABINETS. Flatod wood tront		
For $10 \times 6 \mathrm{in}$. or bin. speaker $16 \times 8 \times 6 \mathrm{io}$,		

GOODMANS $6 \frac{1}{2}$ in. HI.FI WOOFER 8 ohm, 10 watt. Larse ceramic maknat. special Camortc cone sorroand. Frequeacy Tesponse nclosares Syttomk, etc. 4

ELAC CONE TWEETER
The govine coll diaphragm gives 1 good radiation pittern to the hicher trogipanciess and amoota extension of tow respox fro \times gin, deep. Ratligs 10 mith .3 obm of is ohm models. $£ 1.90$

PRAKKR COVERTEG MATERIALS. Samples Lergo S.A.E PRn

 15 ohm sifin dii $; 8 \times$ 人din: $7 \times 4 \mathrm{in}$.;
3 ohm. 2 ith. 2 in. $5 \times 8 \mathrm{in}$.

 RICHARD ALLAN TWII CONE LOUDSPEAKERS. Bin. dia 4 watt 10in dia 5 matti: 1sin. dia. 6 watt 3 or 8 or 15 ohm modele $8 \% .00$ osch Pont 15 D .
VALVE OUTPUT TRAFS. 25p; EIKE TRANS. 50:1 25 D. WATT MOLTI-RAITO, 9.8 and 15 ohme gop.

BAKER 100 WATT

ALL PURPOSE
TRANSISTOR
AMPLIFIER
4 Inputa speeck and
masic. Mixing fecilitias.
Response 10-30,000 ope Matchas sil loudrpeskers. A.C. $200 / 250 \mathrm{~F}$. separ:te Treble tad Bras
Guaranteed. Detills B.A.

BARGATEAi- TUBER. Modinm wive.
£4.50
 Add murical hiehilights and soond eftecta to recorotingi.

BARGAIS FM TUITER 88-108 Me/a 8ix Trs nsistor. 9 volt Printed Circoit. Oalibrated allde dial taning. $\quad \mathbf{1 2} 50$ WARE Csbinet. Slie $\times 5 \times$ linct 68.85 BARGAIT 3 WATT AFPLIFIER. 4 Trandrtor
88.85 RARGAIK a WATT ADPLIFIER. 4 Tranolstor
63.50 COAXIAL PLUG 6p. PANEL SOCKYRS 8p. LIEE 18p OUTLET BOZES SURPACE OR PLUBH 25 P
BALAECESD TWIL YZEDEES $5 P$ PD 80 ohms of 300 obms. JACK SOCKET Sta, open-cirecuit 14p, clowed circuit 23p: Chrome Lead socket 40p. Phono Pligs 5p. Phono Socket 5y. JACK PL

E.M.I. TAPE MOTORS Post 15 120v. or 240 T . AC. 1.200 r.p.m. a 010 135 mA . Spindlo $0.187 \times 0.7 \mathrm{~mm} \leq 1.25$
 BALFOUR GRAM MOTORS
1207. or 240v. A.C. 1,200 th.m. 4018
 $21 \times 81 \times 1$ inin \quad Post 15 p CUSTOMERS FREE CAR PARK CALLERS WELCOME 337 WHITEHORSE ROAD, CROYDON

The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at 1500 v. A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages.

Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$.
2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$.

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

PRICE: $£ 1.75$ (rec. retaif) Suitable for production work and as a general purpose iron

The 15 watt miniature model CCN. also has negligible leakage. Test voltage 4000 v . A.C. Totally enclosed element in ceramic shaft. Fitted long-life iron-coated bit 3/32"
4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime} 1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: f 1.80 (rec. retail) OR Fitted with triple-coated, (iron, nickel and Chromium) bit 1/8"
PRICE: £1.95 (rec. retail)

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ ironcoated bit. Many other bits available from $1 / 16^{\prime \prime}$ to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24
PRICE: $£ 1.70$ (rec. retail)

MODEL CN2

Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220.
PRICE. $£ 1.70$ (rec. retail)

MODEL G

18 Watt miniature iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110. PRICE. $£ 1.83$ (rec, retail)
contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet. PRICE $£ 2.75$

MODEL SK. 2 KIT contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$
 heat sink. solder and bookler 'How to Solder'
MODEL
MES.KIT Battery-operated 12v. 25 watt iron fitted with 15^{\prime} lead and 2 . heavy clips plastic wallet with bookle! "How to Solder." PRICE $£ 1.95$

Basiciciolme

You'll find it easy to learn with this outstandingly successful PICTORIAL METHOD. The essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate cartoon-type drawing. These clear and concise illustrations make study a real pleasure. The books are based on the latest research into simplified learning techniques. This easy-approach-to-learning method has proved beyond doubt that acquiring knowledge can be an enjoyable experience.

The zeries will be of exceptional value in training mechanics and ochnicians in Electricity.

WHAT READERS SAY

I would like to say I am completely satisfied with the wonderful manuals. A.L.P. Buckingham. I find these books are exactly what I have been looking for: they explain everything in perfect detail. H.W.R. Pontefract. These books make all other publications out of date with their simplicity and interest.
J.W.R. Newbury. You can add my blessings to your already long list of praises about your Basic publications.

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT. BR2 7HP
Please find enclosed P.O./Cheque value $£$. BASIC ELECTRICITY 5 parts $£ 4 \cdot 50$ BASIC ELECTRONICS 6 parts $£ 5 \cdot 40$ BASIC TELEVISION 3 parts $£ 3 \cdot 60 \square$

Tick Set(s) required.

YOUR $\mathbf{1 0 0 \%}$ GUARANTEE. If after $\mathbf{1 0}$ days examination you decide to return the Manuals your money will be refunded in full.

NAME

BLOCK LETTERS
FULL POSTAL
ADDRESS

YOUR 102\% GUARANTEE

Should you be, in any way dissatis fied with the MANUALS your money will berefunded by return of post.

POST NOW FOR THIS OFFER!

for fast, easy
 reliable soldering

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instanlly cleaning heavily oxidised surfaces. No extca llux is required.

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons all at 25 peāch in 40/60, 60/40.
or Savbit alloys in 7 gauges.
 22swg. 22p
B.H. COMPONENT FACTORS LTD.

DEPT. P.E., P.O. BOX I8, LUTON, BEDS. LUI ISU ELECTROLYTIC CAPACITOR BARGAIN PACKS-80p EACH

From Electrical:and Hardware Shops. If unobtainäble. write to: Multicore Solders Ltd.. Hemel Hempstead, Herts.

TERMS: Cash with order. P. \& P. please add 10 p for orders below $t 5$ Ovarseas extra. Discount: $110-10 \%$. All goods carry our money back guarantee if not satisfied. We have many components not listed,
guarantee if not satisfied. We have welcome. list 5p stamp. Trade enquiries welcome.
Model 3A. Strips insulation from cable or flex without nicking wire. 4 different settings, 486 BAspanner ends, ground cutting edges Price 32p. Âlso available. de luxe Model 8.

Price 58p.

PREMIER 800 STEREO AMPLIFIER

23030

AXBTEM ONE
A truly high qualits stereo amplinev-compure the specifation, comphare the price. Output: 5 watts per channei. Freduency remponse: $30-20,000 \mathrm{~Hz}-2 \mathrm{db}$. Distortion: 1\% Output Impedance 8 obma nom. Inputs equaliser to R.C.A.A. Magnetic fimV'. Ceranic 100 mV .
Tuner 100 mV . Tape 100 mV . Tape out 150 mV . Din Tuner 100 mV . Tape 100 mu . Tape out 150 mV . Din
socketa for faputs and outputs. Controls: Bnss, Treble. socketa for faputs and outputs, Controls: Bass. Treble. Volume, Balace. Gelector, Mono/stereo swilua. black pathcrette cabinet with aluminiom front parel.

only $£ 15$-00 carr. 50 p .
31. 11 Version available with Teak Finish Cabine 816.25. Cart. 50 p .

METER BARGAINS
MODET, GT-800 MCLTIMETER
A procision mado pocket sized test
meter, fieally suited for lesting electrunic circuite or eiectronic 3ppliances. Snpplied complete With test lead and
batteriex. RANGES DC Voltazes: 10 .

 age: $10.30,250,1,000 \mathrm{~V}$. $1,0000 \mathrm{p} V$) 0.150 K ohms. Decibel: -10 to +22 db
 MULTIMETER 20,000 O.P. F. Features lerge easy to-read meter, vide batteries and manusl. Size 4t $\times 31^{\circ}$ $\times 1$. RANGGES D.C. Voitages $0-5-25-50$ 250-500-2500v. AC. Voltares 0-15-50-100-500-1000v. D.C. Carrent: 0-50 A $2.5 \mathrm{~mA}-550 \mathrm{~mA}$. Resistance: $0-6000$ otms $0-6$ mecgohms (300 ohms and 30 Kohms,

GUELLEER "EXPERT" SOLDER
GUN. Sarcs time nad simplifiea dept. Two position triger and sertice dual hest. 1001140 (rigergesinsian

Markanan soldering Irun. Lightweight it" pencil bit. reat for rexular benph use and zround the home. 25 P. \& P. 18 L

VERITAS V-313 TAPE HEAD DEFLUXER muit for all tape useri! Tape heada becorne permanently mignetized with constant use thin leade to ba

21-72
p. \& P. 15 p
E.M.I. $13 \times 8 \mathrm{in}$ HI-FI SPEAKERS Fitted two 2ilv tweetery and 8 or 15 ue Wanding capa city 10 W . Brand new. \&3-47 P. \& P. 50p

PREMIER HI-FI STEREO SYSTEMS

SYSTEM "ONE"
Conslater of the Premier 800 all trandistor stereo amplifer. Gerrard sutof manual record plaser unit atted stereofmono cartridge with diaminn inish loudspeaker kysteme anikh plinth with cover and two matching teal pluy in and plas. The 800 amplifier has sn ontput of 5 watts per channel with inputs for ceramic and magnetle piek-up. tape and tuner also tape outpot socket and headphone socket. Controls: Balance. Selector Monol Stereo switch Headphone ocket. Power on/off. Black ninium front nanel. Bize $12!\mathrm{idim} \times 6 \operatorname{tin} \times 2^{2} \mathrm{fin}$.
£35.00

SYSTEM "TWO"
as above but with
Garrard $8 P 25$ 3k. In and marnetic cart riduge.
£45.00
Carr. 11 ITs

Carr. 11 'Ts

PREMIER HI-FI OFFERS

Rogers Ravensbrook I
Stereo Amplifier teak
Rogers Ravensbourne Stereo Amplifier teak Metrosound ST20E Stereo Amplifier teak Goidring G172
less cartridge
Garrard SP25 III with Goldring G800 cartridge
£38.50 £49.00 £25.50 £22.00 £15.00

Garrard sp2s mik III SINGLE RECORD PLAYER FITTED NETYC STEREO CAR. TRIDGE COMPLETB IN TRAK PLINTH WITH COVER. Total lat price oret £34. PEEMIER PRTCE £17.95

P. \& P. 50p.

Garrard AP76 with
G800, ready wired to $5 \quad \& 20$
pin Din in plinth with pin Din in plinth with cover
Garrard AP76
less cartridge
£18.80

| Garrard 401 |
| :--- | :--- |
| Transcription Unit |
| List $£ 40 \cdot 15)$ |

Garrard 2025 T/C with
Stereo Ceramic Cartridge
888.50

Garrard 2025 T/C with
Stereo Ceramic Cartridge ready wired in teak plinth
£12.45
Carriage and Insurance 60p extra any item.
CARTRIDGE BARGAINS!
Goidring G800H 55.00 ; G800 55.50 ; G800E E950; SHURE M3D $£ 4.00$; M44E £5.75; M55E 6.50 ; M75EII $£ 10.90$.

Thir cousists of ETANGFFR KC9O3 stereo amplilier giving 6 waits rms per channel with Base, Treble, Volume and Byance Controls. inputa for Magnetic and Ceramic dick-uD, uner. tape in and out. Stereo head phone socket. Garramd $3 P 25 \mathrm{Blk}$. III in teat finith plinth with cover and fitted Sonotone 9TAHCD diainond stereo cartridgc. A pair of
HM\& Speakers size $16 t^{\circ} \times 101^{\circ}$
Carr. HMझ Speakers size $1 f 3^{\circ} \times 101^{\circ}$
$\times 9^{\circ}$ fitted KMI unlts complete the matchint system.

FREE
LEADS AND PLUGS SUPPLIED WITH ALL SYSTEMS

SPECIAL OFFER!
 MIDLAND MODEL 19-520

AM/FM STEREO TUNER AMPLIFIER

A fantastic ant molid state stereo receiver at a reatistic price. Bcautifully styled in slimline desten eablinet. Covera $\triangle M 535-1695 \mathrm{KHz}$ and $\mathrm{FM} 88-108 \mathrm{MHz}$ with pbono. Oufput $2 \frac{1}{2}$ watts rms per chandel. Controls: Volume, tcane, balance. tuning AFC, stereo indicator. Speaker impedance $4-8$ ohm. Size $15^{\circ} \times 8 \sharp^{\circ} \times 37^{\circ}$.
ONLY £25.00 Carr
50 p

HII-FI STEREO HEADPHONES
Designed to the higheat posalble stindard. Fitted in in. speaker units with Adjustable headband. 8 obms impedance. Com. plete with Gft lead and stereo jack plug.

VERTTAS v-149 MIXER Battery operated -channel audio mixer providing four separate inpuls. Slze $6 \times 3 \times 2 \mathrm{in}$. suitable for crystal mierophone low impedance microphone, tape, etc. Mar, input l-5v. Mar. outpot 2-5r. Gats G dB. Standard jack pluk socket inputs, phonoplugs output. Attractive teak mood grain fanish case. MODO MODEL £3 STEREO MODEL

GENUINE

 EMI-TAPE COMPACT LOW NOISE BRAND NEW IN LIBRARY CASESC60 (List 7p) ${ }^{589}$ C120 (ILust $\mathrm{C1} \cdot 48$) 90 p

VERITONE CASSETTES In library caven-fully guartatited

15p
(3)

everyday
 electronics

PROJECTS THEORY.

SURREPTITIOUS SURVEILLANCE

The term "unlawful surreptitious surveillance" describes, most succinctly, the repugnant anti-social practice of snooping or eavesdropping upon private conversations with the aid of technical devices. This subject has received widespread attention recently following the publication of the report by the Committee On Privacy.

There is, however, another quite different form of "surreptitious surveillance" that one can perform quite legitimately and without giving offence to any innocent party. This is in order to protect one's property or premises from unionvied "visitors".

BURGLAR ALARM

It is a regrettable fact that intruder surveillance systems are becoming increasingly necessary items of equipment for the ordinary home, just as for business premises.

There are of course many kinds of electronic burglar alarms in existence and they utilise various electronic properties in order to detect the presence of an intruder. Choice of a system is not always easy, and the environment in which it is required to function can play a large part in determining the effectiveness of a given system.

This month's burglar alarm design provides an inexpensive yet effective form of protection against the marauder. It exploits the sensitive-
ness of certain semiconductor devices to quite weak beams of invisible light (infra-red radiaion) and has a range adequate for many pourposes. Another practical application of simple electronics to meet a real and serious everyday need.

EVENING CLASSES

Further proof of the spreading interest in d.i.y. electronics comes from the increasing number of non-vocational courses dealing with this subject, conducted up and down the country by local educational authorities. Many of these courses combine instruction in basic theory with practical demonstration, and also offer opportunities for students to build simple projects under expert guidance.

Evening courses start, generally, around midSeptember, so if you are interested in extending your activities in this way during the coming winter months make enquiries in your area without delay.

Local educational authorities who organise non-vocational courses for adults are usually responsive to genuine demands for specialist sub-jects-providing a suitable instructor is at hand.

Our October issue will be published on Friday, September 15

$$
\begin{aligned}
& \text { EDITOR F. E. BENNETT M. KENWARD } \\
& \text { ART EDITOR J. D. POUNTNEY B. W. TERRELL B.SC. }
\end{aligned}
$$

ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. II

SEPTEMBER
1972

CONSTRUCTIONAL PROJECTS

INFRA-RED BURGLAR ALARM An invisible beam to protect your home by V.S Evans 582
LONG AND MEDIUM WAVE RADIO TUNER A simple tuner for use with an amplifier by F. C. Judd 592
CAPACITANCE METER Direct reading measurement of capacitor value by D. Bollen 604
GENERAL FEATURES
EDITORIAL 580
TRANSATLANTIC CABLES The electronics used for telephone cables by Tony Ford 588
GUIDE TO CIRCUIT SYMBOLS Part 4—Inductors, Meters, Motors and Generators 596
TEACH-IN Part II-Amplification by Mike Hughes 598
RUMINATIONS by Sensor 603
SHOP TALK Component buying and new products by Mike Kenward 610
THEY MADE THEIR MARK No. 5-Watt by J. E. Gregory 613
READERS LETTERS Your news and views 614, 617
PLEASE TAKE NOTE 617

We are always interested in receiving readers' news and views of all items concerning this magazine and electronics in general; however if you write to us for advice would you please note the following.

We are unable to provide assistance on subjects not relating to published articles, and we cannot undertake to answer letters that do not include a s.a.e.

An alarm using an invisible, reflected beam to detect intruders.
By V. S. Evans
THis burglar alarm works on the principle that when a "dark light" beam is interrupted by a passing body, a power output is switched on for up to one minute duration. This output can be used as a direct power source for a small light bulb, or a relay to operate an alarm system.

OPERATION
A miniature bulb supplies the beam, which passes through a screen to filter out all the light spectrum except infra-red. Although the beam is now invisible it behaves like ordinary light and is focused by a lens, over the distance required, onto a mirror, where it is reflected back onto a second lens focused on a light sensor.

Fig. 1. Complete circuit diagram of the Infra-red Burglar Alarm.

The sensor generates current when the infrared beam is present, and this current is used to keep open an electronic switch. When the path of the beam is momentarily interrupted and cut off from the sensor by an interposing body, the sensor ceases to generate current and the electronic switch instantly closes, switching on power at the output, to operate the chosen alarm.

The switch remains closed, with the alarm operating, for a pre-determined period of time, then automatically opens and the system reverts to the "on guard" state.

THE SENSOR

The beam sensor is a photo transistor (TR1) which is actually used as a photo diode, the collector not being connected. This device produces a current of 100 microamps or so when subjected to a simple light beam provided by LP1 as described above. This is sufficient to put a negative bias on the base of TR2 thus holding it in the "off" state until the current inducing beam is withdrawn (see Fig. 1).

Although the interruption may be for only a fraction of a second in duration it is sufficient for TR2 to momentarily switch on and deliver a pulse through Cl and D1 to the next stagethe monostable. Preset VR1 and R1 are used to set the level of standing current through TR2, so that the small change actioned by TR1 will switch TR2.

THE MONOSTABLE

The monostable is one of a class of circuits known as multivibrators which change electronically between two states. The monostable, as its name implies, is normally dormant in one state.

If it is electronically activated into its second state it will remain changed for a pre-deter mined period of time and then automatically return to its dormant state.

The circuit of the basic monostable is shown in Fig. 2. It will be seen that TR3 is "on" due to a positive bias being applied to the base via R6. In this state its collector is near zero voltage, and through R4, applies this potential to the base of TR4, thus holding this transistor "off". In this state TR4 collector will be at near the positive line potential. It follows that capacitor C2 will have its positive side at near the positive line voltage and its negative side very much less so. It is therefore charged.

Now, if a positive pulse is delivered to the base of TR4, this transistor will switch "on," its collector voltage will drop to near zero and C2 will be forced to discharge at a rate controlled by the value of R6. During the period of discharge through R6, TR3 will be "off" and TR4 will remain "on". After discharge the circuit returns to its original state. This simple circuit can now be related to the circuit shown in Fig. 1. It will be seen that a variable resistor (VR2)

Fig. 2. Circuit to show the basic operation of a monostable.

has been included in series with R6 so that the time period of the monostable can be adjusted.

POWER OUTPUT

In the circuit of Fig. 1, it will be seen that the emitter of TR4 feeds the base of the power output transistor TR5, consequently they work together, i.e. both "on" or both "off". The output transistor is a commonly available npn germanium type and should be up to grade with a low leakage rating, not a manufacturers reject or secondhand type. Resistor RI0 is purposely of low value to minimize any leakage that may nevertheless occur across the output. The diode D3 across the output is only required if the load is an inductive one, such as a relay or solenoid. It protects TR5 from reverse current caused at "switch off" by the field surrounding the coil, collapsing.

FINAL CIRCUIT

Some of the components shown in Fig. 1 have not yet been explained; VRI is a preset resistor used as instructed later to set up the correct current in TR2. Diode D2 blocks the surge discharge from C2 applying a heavy reverse bias to TR3 base. Resistor R5 is the lower leg of the base bias potential divider to TR3. Diode D1 blocks any positive d.c. from interfering with the polarisation of C1. Resistor R7 and capacitor C3 form a filter which prevents any spurious pulse, which may be picked up inductively on the input line, from triggering the alarm.

POWER SUPPLY

The unit will operate on a supply voltage from 9 to 12 volts, and this voltage will appear across the output when the alarm is triggered. For experimental purposes a large type of dry battery will suffice-as used for electric bells or lamps. For permanent installation an accumulator as used for scooters and cars is preferable. The unit will then operate even if the mains supply is off.

SENSOR CONSTRUCTION

The beam and detector unit is shown in Fig. 3; this should be made up first. When completed this stage can be tested and put into operation. It should be solidly constructed and all parts firm. The dimensions shown are for the specified lenses. Infra-red gelatine sheet can be obtained from main photographic dealers or alternative materials can be found. Dark coloured polystyrene ${ }_{16}$ inch sheet has proved successful and the author has been told that resin bonded paper (0.015 inch Paxolin) can be used. However, the screen does not affect the working of the unit and can be left out until all testing and setting up has been done.

The sensor unit board is constructed as shown in Fig.4. Take care when soldering TR1, TR2 and

D1 and use a heat shunt on the wires being soldered. Make sure that VR1 is mounted in such a position that it can easily be adjusted when the board is fixed in the case.

Photograph of the sensor circuit board.

Commence construction by drilling the board as shown and inserting the component wires through the holes.

The two Paxolin or s.r.b.p. insert panels, shown in Fig. 3, should be a tight fit, and are placed so that the bulb and photodiode are at the focal length from their respective lenses. This is the distance at which an image through the lens is at best definition on the panel and will be about $2^{3}{ }_{4}$ inches with the lenses specified. (The light from a window or a room light will provide the required image.)

The phototransistor has a light sensitive zone which must be located and placed at the front when mounting on the circuit panel. An initial location of this spot can be made by connecting the diode across a multimeter-say 500 microamp scale, and shining a pocket torch fairly close to and around the diode. This procedure will also show whether the device is a good one. The polarity is important when wiring up.

ALIGNMENT

The unit has now to be aligned and this is best carried out in nearly dark conditions. Place it on a firm table or work bench and if possible it is best secured or clamped. The 12 volt supply is connected to the bulb only and the beam then directed at a flat surface 7 to 10 feet distant where the image of the bulb filament will show. Adjust the distance from lens to bulb for sharpest definition.

The beam should now be directed at a mirror (this can be as small as 1 inch square-Fig. 5 shows a suitable design) which can be angled so that the refiected light is made to cover the lens

Fig. 3: Construction of the beam and detector unit.

Photograph of the beam and detector unit.

Fig. 5. Basic design for an adjustable mirror.
focused on TR1. The phototransistor is then eased into a position which produces the highest reading on a meter connected across it, typically 100 to 150 microamps. With this achieved a few small drops of quick drying adhesive (clear Bostik or Uhu etc.) should be carefully placed each side of the diode to fix it.

SENSOR TESTING

The next stage is to prove the functioning of TR2. With power connected (but not to the bulb) and a milliameter in the positive lead, adjust VR1 to give a reading of 1 to 1.5 milliamps. Connect the bulb directly to the power source (not through the meter) and if all is correctly lined up the reading should drop considerably.

Preset VR1 is then adjusted to give a standing current, in this state, of between 100 and 200 microamps. If the beam is now interrupted the reading should smartly rise to 1 mA .

REMAINING CONSTRUCTION

With this part of the project working correctly, the construction of the second circuit board can be undertaken. This comprises the monostable and power output-wiring being straightforward as shown in Fig. 6.

The board is thin s.r.b.p. or Paxolin. All the components except the transistors and diodes should be mounted and wired up as shown. Once this has been done, carefully solder in the semiconductors using a heat shunt on each lead as

Fig. 6. Layout and wiring of the monostable and power output circuit board.

Photograph of the alarm trigger unit.

it is soldered. Once again make sure the preset potentiometer (VR2) can be easily adjusted. Finally mount the board in a suitable case or on a supporting block. For test purposes a 12 volt bulb should be connected across the output. This should be a $2 \cdot 2$ watt 12 V type.

With power on, a 5 kilohm resistor placed briefly between the input and the positive lead, should bring the monostable into action and the bulb will light for a period, the length of which is controlled by the position of VR2. If a longer time period is required the value of $C 2$ can be increased, but there is a limit beyond which leakage can trigger the monostable and give false alarms.

It is important that at no time is the output short circuited as this would result in the output transistor overheating and probably destroying itself.

All being well the two units can be linked and proved functional. The main circuit board can be enclosed in any small box with the bulb or alarm mounted outside, or it can be enclosed with whatever alarm system the constructor chooses. A 9 or 12 volt relay (depending on the supply used) with a coil resistance of about 100 ohms or more can be wired up, as shown in Fig.7, to switch an alarm.

USE

If the alarm is to be put into permanent use, it is essential that the beam/sensor unit and the reflecting mirror are fixed to solid supports and are absolutely rigid. Any slackness or movement will move the focal point of the beam off the

Fig. 7. Wiring used for a relay and alarm:

sensitive spot of the phototransistor, the resultbeing erratic performance and false alarms.

In installations of this kind it is sometimes recommended that screened cable should be used. In the prototype this was not found to be necessary and the connecting cables were cheap plastic covered wire twisted together for their full length of some 50 feet.

To provide protection around a room or building more than one mirror can be used to reflect the beam around the area as shown in Fig.8.

Fig. 8. Method of protecting an area.

Components....

Resistors

R1	$100 \mathrm{k} \Omega$	R6	$47 \mathrm{k} \Omega$
R2	$5 \cdot 6 \mathrm{k} \Omega$	R7	$6 \cdot 8 \mathrm{k} \Omega$
R3	$3 \cdot 3 \mathrm{k} \Omega$	R8	$2 \cdot 2 \mathrm{k} \Omega$
R4	$15 \mathrm{k} \Omega$	R9	680Ω
R5	$56 \mathrm{k} \Omega$	R10	47Ω

All $\frac{1}{4} W \pm 5 \%$ carbon
Capacitors
$\mathrm{C} 1 \quad 32 \mu \mathrm{~F}$ elect. 15 V
C3 $32 \mu \mathrm{~F}$ elect. 15 V

SEE
 1/

Semiconductors
D1 OA81
D2 OA81
D3 1N4148 or similar
TR1 OCP71 germanium pnp
TR2 2N2926G silicon npn
TR3 2N2926G silicon npn
TR4 2N3704 silicon npn
TR5 AD161 germanium npn
Miscellaneous
LP1 Miniature 12V, 0.2A bulb and holder
VR1 $500 \mathrm{k} \Omega$ skeleton preset potentiometer
VR2 $100 \mathrm{k} \Omega$ skeleton preset potentiometer
LP2 $12 \mathrm{~V} 2 \cdot 2 \mathrm{~W}$ bulb (for alarm signal or testing only-see text)
RLA1 100Ω or greater 12 or 9 V relay with one set of normally open contacts (to operate alarm system-bell etc. -see text)
Lenses-two jewellers eye glass magnifiers, one four way and one three way connection block, s.r.b.p. or Paxolin sheet (three pieces, 2 in $\times 2 \mathrm{in}$), materials for cases (see text), 4BA fixings, wire, small mirror and materials for mirror mounting (see text). Infra-red screen (see text)

Although satellites are providing a growing proportion of transatlantic communications links, the more down to earth system of undersea cables is undergoing exciting developments of its own.

Improvements in the technology of undersea cables-reduction in the loss per unit length of both the armoured and unarmoured cables and the use of semiconductors-are making a significant impact on the cost of laying transocean cables. For example, the Cantat 1 transatlantic cable was laid between Canada and Britain in 1961 at a cost of $£ 100,000$ a circuit, but a new cable, Cantat 2, to be laid in 1973-74 will cost just $£ 16,500$ a circuit.

The principal reason for such a dramatic improvement in economy is the increased number of circuits which the latest types of cable can carry. Cantat 1 has 80 circnits but Cantat 2 will have more than 1,800 circuits-more circuits, in fact, than all existing transatlantic cables combined.

PAST AND PRESENT

Cantat 2 will be the third undersea cable between the UK and Canada. The first transatlantic telephone cable-TAT1 from Oban, Scotland to Clarenville, Newfoundland-was opened in 1956. Cantat 1 was laid between Oban
and Hampden, Newfoundland and was the first section of the Commonwealth cable network designed to carry calls between the UK and Canada and on to New Zealand, Australia and the Far East over Pacific and South East Asia cable systems.

Cantat 2 is primarily intended for Britain's communications with North America to meet a rising demand. Since Cantat 1 was laid the annual total of telephone calls from North America account for nearly $13{ }^{1}$ million minutes a year (compared to less than two million in 1960) and calls to North America from Britain occupy more than $10^{1}{ }^{2}$ million minutes (compared to $1^{1_{2}}$ million in 1960).

In addition to telephone calls, Cantat 2 will handle telex, telegrams and data transmission.

The existing transatlantic cables and the route of Cantat 2.

TRANSISTORS

The key to Cantat 2 and the continuing future of long distance undersea cables as a practical and economic means of intercontinental communication lies in transistors which have been developed at the Post Office research establishment at Dollis Hill in North London. The transistors which replace thermionic valves, are able to operate with guaranteed reliability and performance to the higher bandwidths of submarine cable $-13 \cdot 7 \mathrm{MHz}$ in the case of Cantat 2 .

Built into the 2,840 nautical miles of Cantat 2 will be 473 repeaters each of which amplifies the signals and boosts them along their journey. Looking rather like torpedoes in their cylindrical steel housings and each weighing about a ton the repeaters will contain transistorised circuits which must have outstanding reliability.

In some places the cable will lie three miles deep and where pressure on the cable will be four tons per square inch. Apart from the cost of locating and raising the cable for repairs there would be a loss of operating revenue which, for Cantat 2 , will be some $£ 60,000$ an hour at full capacity.

Each of the 2,838 transistors contained in the cable has been designed to give a trouble-free life of more than 25 years. It is a standard of reliability that is unique and could be com-

This device creates the pressure condition the cable will encounter on the sea bed-up to three tons per square inch. The photograph shows part of the Cantat 2 cable being prepared for testing.

pared to switching on almost 500 transistor radios and expecting them to all work non-stop and perfectly for a quarter of a century.

DESIGN ADVANCES

A further and simple indication of the advances made in undersea cable design in recent years is shown by comparing details of the Cantat 1 cable in 1961 with Cantat 2 with the latter's figures in brackets: number of speech channels $80(1,840)$; number of repeaters 90 (473); length in nautical miles $2,072(2,840)_{2}$ active elements 540 Post Office type 10P valves (2,838 Post Office type 4A and 10A transistors); principal types of cable, 0.99 inch unarmoured over 1,518 nautical miles (1.47 inch unarmoured over 2,425 nautical miles), 0.62 inch armoured over 554 nautical miles (1.47 inch armoured over 370 nautical miles); power, $9 \cdot 5 \mathrm{kV}$ and $415 \mathrm{~mA}(12 \cdot 34 \mathrm{kV}$ and 500 mA$)$.

Bringing Cantat 2 into service will cost about $£ 30,500,000$. This covers production, survey and development work and laying operations. The cost will be shared by the British Post Office and the Canadian Overseas Telecommunications Corporation but some rights of use will be sold to the authorised carriers in Europe and the USA.

The need to increase the gain-bandwidth, while at the same time keeping the amplifier voltage low, resulted in a change from thermionic valves in the Cantat 1 cable in 1961 to transistors for Cantat 2 which will become operational in 1974. This change precluded the use of parallel amplifiers which has improved the reliability of the early valve systems. Nevertheless the greater potential reliability of the transistor, compared to the hot cathode thermionic valve, more than compensated for the change.

In physical terms the gain-bandwidth product of the transistor increases as the transistor dimensions decrease. The trend is, therefore towards smaller devices.

TRANSISTOR TYPES

The 4A type transistor developed by the Post Office and produced by both the Post Office and Standard Telephones and Cables Limited, provides 640 circuits in submarine use. However, the smaller types, known as the 10A2 and 10A10 designs, for input and output use respectively, allow an increase in circuit capacity to 1,840 -as in Cantat 2. Here the 4A type is used in the low frequency amplifier and the 10A types in the high frequency amplifier. This arrangement is also being used in a series of high capacity cables being laid in the North Sea linking Britain with Europe. The 10A2 was developed by the Post Office and the 10 A 10 jointly by the Post Office and STC.

The 10A type, being smaller, requires a more

A technician lifts a batch of transistor "headers"-tiny gold-plated beds on which the transistors will eventually rest-from an alcohol bath. This is part of a process which ensures that components are as clinically clean as possible. After being washed in alcohol, the "headers" are baked in a vacuum.
advanced technology than was needed for the 4A type. In particular, improved methods of diffusion have been developed for the 10A to give a base-width of 0.5 micron compared to the 4 A base width of 1.2 microns.

RELIABILITY

The impressive reliability of the transistors stems from the method of bonding, by thermocompression, aluminium wires to aluminium contacts in each device. The standard of testing and inspection is such that of every 10,000 transistors made only 1,000 find their way into a cable system. The remainder are tested to destruction or do not meet the stringent standards required.

During the production of Cantat 2 some 20,000 transistors will be exhaustively tested. Already during the development of the transistors for submarine cable use 40,000 have been tested in production and 6,000 are in use in other cables on the sea bed. No failures have been found during these tests.

Although the provision of such reliability obviously becomes very expensive for trans-
ocean cable systems, the cost is more than balanced by the increased circuit capacity made possible by the improved design of solid state devices and which has reduced the cost per circuit nautical mile by a factor of 30 in 15 years.

A further aspect of the development work are the elaborate precautions taken to protect the transistors in the main amplifying path from the effects of electrical surges which occur if the cable itself is cut or damaged. This protection is provided by the use of diodes, which themselves must be highly reliable, to absorb the surges in both the power feed paths.

CLEAN ATMOSPHERE

Apart from the advanced and highly skilled technology involved in producing the transistors themselves, the most important requirement is a perfectly clean atmosphere. Even the tiniest speck of dust will contaminate the transistor on which it settles.

The Post Office and STC, therefore, produce transistors and assemble the repeaters in "superclean" laboratory conditions where staff dress like surgeons. They often need microscopes to see their work and breathe the purest air. Sophisticated air conditioning systems filter and remove from the atmosphere the tiniest traces of dirt and dust.

So critical is the standard of cleanliness required that a member of the staff could create unwanted particles of dust simply by scratching his head. In fact the air in the laboratories is filtered and purified to such a degree that by comparison the air in a hospital operating theatre seems dirty.

NAVIGATION

The precision which goes into the manufacture of the cable's components is continued when the cable is actually laid. To select the best possible route for the cable and to establish its location with pin-point accuracy should repairs be necessary, the survey vessels and the laying vessels must be able to navigate with extreme accuracy.
The normal methods of navigation used in commercial vessels do not meet these requirements and special arrangements are necessary; these largely involve the use of satellites.

Ships engaged in preliminary surveys and the actual lay will, therefore, use the Decca Hi-Fix system when covering the approaches to the terminals on both sides of the Atlantic-at Widemouth Bay, Cornwall and near Halifax, Nova Scotia. For the main part of the route across the Atlantic the ship's positions will be fixed by means of satellite navigation backed up by the Omega and Loran " C " navigation systems.

All these radio-navigational systems have a high standard of accuracy and are independent of weather conditions. Hi-Fix is a very accurate
short-range system with the twin virtues, for the cable ship, of repeatability and predictable accuracy.

The first, which ensures the ability to return to a previously visited point, is important from the maintenance aspect in an area, such as the approach to a cable terminal point, where existing cables are likely to be close together as they converge on the land station.
The second, predictable accuracy, allows the ship to be taken to a pre-determined point so that the cable can be laid along the route previously surveyed and where all abstacles have been mapped. This is vitally important where the cable, as in the case of Cantat 2, is routed along valleys and through passes when crossing the undersea "mountain range" known as the MidAtlantic Ridge. Hi-fix can only be used close to the shore otherwise the satellite system must be used.

Positions obtained by satellite navigation are extremely accurate but, at present, can only be obtained at varying intervals of time. The other radio-navigational aids, Loran "C" and Omega are not in themselves fully able to meet the exacting navigational demands of the project but provide a valuable back-up system. By careful observation they can be used to give information in the intervals between satellite fixes.

CABLE LAYING

The increase in diameter and the closer repeater spacing needed in modern cables to handle the rise in circuit capacity, has led to

Continued on page 609

Throughout its life the cable will be subjected to incredible natural pressures, in shallow water the pull of tides and currents will create huge stresses. Additionally during laying and recovery for maintenance it is subjected to very heavy bending stresses. These two large rotating wheels simulate such stresses in the laboratory.

A simple radio tuner for use with almost any amplifier. By F. C. Judd

THis very simple radio tuner will operate with a few feet of wire for an aerial and tunes to the medium and long wave bands. Sensitivity is sufficient to bring in local stations such as BBC Radio 1 and Radio 4 on medium wave and Radio 2 (200 metres) on long wave.

The tuner is ideal for tape recording and has an output of around 100 mV , depending on thestrength of received signals, and so can be directly coupled to the radio input of any tape recorder. It is suitable of course for use with any amplifier having an input sensitivity of around 100 to 200 mV .

Reception strength does depend on location and it would be unreasonable, for example, to expect strong signals from the 200 metre BBC long wave Radio 2 in remote parts of the country. On the other hand both sensitivity and selectivity do to some extent depend on the length of the aerial which may be any thin insulated wire about 10 to 15 feet long and as high in the room as possible.

If, for example, location is close to local stations such as the BBC Brookmans Park medium wave Radio 1 and 4, then a much shorter aerial would be needed to achieve complete separation of the signals. (The Brookmans Park station aerials are shown on the front cover and on this page.)

THE CIRCUIT

As shown in Fig. 1 the circuit consists of a tuned radio frequency amplifier (TR1). The inductor $L 2$ provides a high resistance to the r.f. signals which pass through $\mathbf{C 5}$ to the diode detector. The main tuning capacitor (C2) is a

SMedium 68 Long Wave

Radio Tuner

Fig. 1. Complete circuit diagram of the LW/MW Radio Tuner.
mica dielectric type and the tuning coil a Repanco type DRR2 which has a tapped winding for medium and long wave tuning plus a secondary winding suitable for coupling to the low impedance input of TR1.
The output from the diode detector is taken to TR2 which operates as an audio signal amplifier. Radio frequency signals are removed by the capacitor C6, leaving the audio signal to be amplified by TR2.

CONSTRUCTION

The prototype, as shown in the photographs, was constructed on a piece of plain circuit board and housed within a metal box. The box should be large enough to accommodate a PP6 type 9 V battery as well as the radio tuner circuit board, etc.

Details for the component board layout and wiring are given in Fig. 2 and the aerial socket, output signal socket and wiring to the remaining components are shown in Fig. 3. Note that the connections of the OC44 are located by the red spot (next to the collector lead) whilst those to the NKT 274 are according to position as in the inset of Fig: 2.

Commence construction by cutting the component board to size and drilling the board for the mounting bracket and L1. Fit LI to the board making sure it is the right way round (this makes the wiring neater). Next fit the remaining components, except the transistors and diodes and wire up as shown in Fig. 2. Check the layout and then wire in TR1, TR2 and D1 observing the correct connections.

Mount the circuit board on the front panel as shown together with the remaining components and wire up the complete tuner as shown in Fig. 3. We advise readers to follow the layout shown as alteration could cause instability.

Photograph showing the construction of the Radio Tuner. The aerial and output socket can be mounted on the side or back panels.

CMedium 68 Zong Wave

Radio Tuner

Fig. 2 Layout and wiring of the circiit board for the Radio Tuner.

Fig. 3. Connection of the circuit board to the remaining components. In the prototype the aerial and output sockets were mounted on the back of the case.

SETTING UP

With a 9 V supply the tuner takes a little under 2 mA so if a milliammeter is available this could be checked to ensure correct operation of the two transistors. The DRR2 tuning coil may be supplied with a tuning core and if so, this must be removed completely; it is not needed. Couple up about 10 feet of insulated wire for an aerial and connect the output of the tuner to an amplifier, or to a tape recorder with through monitoring, so that signals are audible. The tuning points of local stations on medium waves will depend on location but those for the London area will be similar to those shown on the cover photograph.

If the received signals are strong they may overlap on medium waves. If this happens, reduce the length of the aerial until separation is obtained. No earth is necessary as the tuner will be automatically earthed via the amplifier or tape recorder to which it is connected.

Components

Resistors

R1	$180 \mathrm{k} \Omega$	SEE
R2	$1 \mathrm{k} \Omega$	(1
R3	4.7k Ω	a) 1
R4	$10 \mathrm{k} \Omega$	
R5	$100 \mathrm{k} \Omega$	H
R6	$4 \cdot 7 \mathrm{k} \Omega$	
	W $\pm 10 \%$ carbon	
Capac	itors	
C1	47pF	
C2	500pF variable (mica	dielecţric type)
C3	$0.01 \mu \mathrm{~F}$	
C4	$0.1 \mu \mathrm{~F}$	
C5	560pF	
C6	4,700pF	
C7	$10 \mu \mathrm{~F}$ elect. 12 V	
C8	$10 \mu \mathrm{~F}$ elect. 12 V	
C9	$50 \mu \mathrm{~F}$ elect. 12 V	

Semiconductors

TR1 OC44 germanium pnp
TR2 NKT 275 germanium pnp
D1 OA 91

Miscellaneous

L1 Repanco type DRR2 (medium and long wave coil)
L2 Denco RFC 5 radio frequency choke (inductor)
SK1 Single insulated socket
SK2 Insulated phono socket
B1 9V PP6 battery
S1 S.p.d.t. slide or toggle switch
S2 S.p.s.t. slide or toggle switch
Metal case (or any suitable case, minimum size 4 in $\times 4$ in \times 3in), tuning knob, aluminium angle $\frac{1}{2}$ in $\times \frac{1}{2}$ in $\times 2$ in (for mounting the circuit board), plain perforated Veroboard 3in x $2 \mathbf{z i n}$ $\times 0.15$ in matrix, material for tuning dial, 6 BA fixings, battery connectors.

Have you ever wanted to use your cassette recorder in the car or home and wished that you could power it from the car battery or mains supply? Well now you can, we will show you how to build two separate power supplies to cope with these requirements.

HIECTRONIC MOUSE TRAP...

Why kill the mice that plague your home? This "humane" mouse trap catches the mice unharmed so that you can release them outside your home.

Reactomailc...

Test your reflexes against other peoples! When the timed light comes on press your button first and your opponent is blocked-your light shows the winner. The Reactomatic can be developed for TV-type quiz game answering.

Next month's feature articicl... EIECTRONICS IN MEASUREMENT

All in the October issue.
On sale Friday, September 15

Inductors

| $\operatorname{mon} i$ | 1 |
| :--- | :--- | :--- |

$\overline{\overline{000}} 1$ 3
$\overline{\operatorname{mon}}$ 4

Meters

Winding of an inductor, coil, choke of transformer

Winding with a solid ferrite or dust iron core with a single tapping

Winding with laminated core

Winding with ferrite or dust iron gapped core

Winding with Faminated gapped core

Inductor with variable inductance, for example, tuning coil or solenoid with moving core

Transformer with two windings, a laminated core and a screen between the windings, no tappings

Auto transformer with one winding

Ammeter or milliammeter

Voltmeter or millivoltmeter

3

symbols : - - part 4

(1)

78911

Motors and Generators

G G
(M) H
(M) \square M 13

$$
\text { (G) } 6
$$

(MS) M

M

Motorised switch or valve mechanism

Rotating a.c. generator

Rotating a.c. motor

Synchiroñous motor

Squirrel cagedinduction mōtor

WITHOUT doubt, the most popular application of electronics is to produce audible sounds from a loudspeaker. In most instances, we hear the necessity of using an amplifier to produce the end product. However, it is not always so obvious why we need amplification or, indeed, what form it should take.

We have already produced quite a reasonable level of sound from a loudspeaker without recourse to amplification-i.e., the multivibrator in Part 8.

The reason why we needed no amplifier was because we had comparatively large voltage swings (9V) and reasonably high currents available in the collector circuit of the multivibrator. To produce the audible sound we had to feed these currents to a loudspeaker.

POWER LEVELS

To obtain sufficient current we had to produce a high enough voltage swing to make this current flow through the impedance of the loudspeaker coil. It would be more correct to say we needed power to produce a sound of acceptable level.
The multivibrator was capable of delivering a power of about 125 mW to the 35 ohm loudspeaker. The power required by a loudspeaker to produce audible sounds depends on the efficiency of the loudspeaker and also on what we require in the way of volume.
We can describe the subjective effects of different power levels by saying that the output of a typical transistor portable radio would be
about 1W. The lowest power that will produce an easily recognisable sound (without putting the ear right up to the loudspeaker cone) would be about 10 mW and, of course, at the other extreme "pop" groups frequently delight the ear with powers greatly in excess of 50 W per amplifier.
To get maximum power dissipated in a loudspeaker we must apply the same reasoning that we arrived at in Part 4, i.e., the impedance (we are now dealing with alternating currents) of the circuit producing the current, should, as far as possible, equal the impedance of the loudspeaker. Most loudspeakers have very low impedances ranging typically from 3 to 35 ohm.

POWER AMPLIFICATION

An amplifier serves two purposes. The first is most easily understood and is simply to increase the voltage swings that the source (e.g., microphone, pick-up, or radio tuner) produces. The second, and not so obvious role of an amplifier is to take these voltage swings and increase the amount of current produced.

We could say we are amplifying the current, although in practice we are using voltage swings in high impedance circuits, to produce equal voltage swings in low impedance circuits. Going from high to low impedance circuits without changing voltage levels, is the same as saying "current amplification"-going from low to high impedance is usually "voltage amplification." Combine the two together and one gets "power amplification."

CRYSTAL MICROPHONE

Let's take the case of a crystal microphone. This is a device that converts air pressure waves into electrical voltages. The pressure waves impinge on a light diaphragm that is connected to a crystal made of "piezoelectric" material. This material has the property of producing minute voltages when it is mechanically deformed.

The level of signal produced by a normal voice about 6 inches from a crystal microphone is seldom much more than 10 mV . Unfortunately the piezoelectric crystal is a very poor conductor of electricity; so poor in fact that it behaves rather like a low value capacitor, the electrodes making contact to it acting as the plates.

Different types have widely varying characteristics but typically the capacitance is in the order of a few hundred picofarads. At 1 kHz this gives ann impedance greater than 100 kilohm.

The frequency range of the human voice is from about 100 Hz to about $3,000 \mathrm{~Hz}$, so you can see that at low voice frequencies the microphone has extremely high impedance, and as the frequency increases its impedance falls, but nevertheless is still very high and will probably be around 50,000 ohms.

POWER IN LOAD

We run up against this "non constant" problem all the time in audio work so it is usual to talk in terms of a fixed frequency of 1 kHz unless otherwise stated.

Let's assume, then, that we have a microphone giving an output of 10 mV at 1 kHz and it has an impedance of 100 kilohm. What is the maximum power we can expect to obtain in the load "Z" shown in Fig. Ia?

Fig. 1(a). The capacitor and a.c. voltage source shown in the dotted box represents the crystal microphone. We say it is the "equivalent circuit'.

We will assume that the microphone is an alternating voltage source in series with its own capacitance. It is easier to understand if we convert this circuit to something more familiar, see Fig. lib.

The battery represents the voltage generated by the microphane (10 mV), R1 is the impedance of the microphone (100 kilohm) and R2 is the impedance of the "ideal" load (equal to value

Fig. 1(b). The simple d.c. equivalent of Fig. 1(a) where R1 represents the impedance of the microphone, B1 its typical output voltage and R2 the ideal load for maximum power coupling,
of R1) for maximum power coupling. The power in the load will be

$$
\begin{aligned}
P & =\frac{V^{2}}{R_{2}} \\
& =\frac{0.005 \times 0.005}{100,000} \\
& =0.00000000025 \text { watts }
\end{aligned}
$$

It looks a bit better if we say 0.00025 microwatts, but still it is minute and if fed directly to a loudspeaker, would produce no reaction whatsoever.

BIASING FOR A.C.

We shall use a transistor to give us voltage and current amplification at the same time. It will use the minute current available from the crystal microphone to control its collector current which, of course, should be higher.

The current from the microphone will be fed to the transistor's base/emitter circuit. The trouble is that the output from the microphone is an alternating current going both positive and negative about zero and typically it will not exceed 10 mV peak. We already know that we have to make the base of an npn transistor at least 600 mV positive w.r.t. the emitter before any base current is passed, therefore the output from the microphone will not have any effect at all when it is on a positive half cycle-let alone when it is on a negative half cycle. We have to put the transistor into a "partial" state of conduction before we consider the effect of the microphone. This we call "biasing."

We usually try to bias a transistor so that the current flowing through the collector load resistor causes the voltage at the collector to be about half the supply voltage. Any small variations in base current ultimately caused by signals from the microphone will then cause the voltage at the collector to move either more positive, or down towards zero, depending on whether the microphone is producing positive or negative half cycles.
The first thing we have to do is set the biasing so that the output of the collector is approximately half the supply-we call this the
"quiescent" condition. To make matters simple for ourselves let's assume we want a quiescent current of 0.5 mA to flow in the collector of TR1 in Fig. 2a (there are various factors which control the choice of this current, but we will ignore these at this point).

Fig. 2(a). If $h_{\text {FE }}$ for TRI was exactly 200, $V_{\text {out }}$ would be approximately +5 .Ovolts. In practice this is most unlikely as $h_{\text {FE }}$ can vary considerably from device to device.

To set the collector voltage at 4.5 V with 0.5 mA flowing, the drop across R1 must equally be 4.5 V , thus we can calculate the value of R1 using Ohm's law ($\mathrm{V}=\mathrm{IR}$).

$$
R 1=\frac{4 \cdot 5}{0.0005}=9,000 \text { ohms }
$$

Let's say 10,000 ohms (10 kilohms) as the nearest convenient value. This will modify the voltage at the collector to +5 V (relative to the emitter line) but this is near enough for our purposes.

To pass a current of 0.5 mA in the collector circuit, we must pass a base current of $0.5 / h_{\mathrm{PE}}$ mA .

Using a BCl 08 the h_{FE} will be around 200 , therefore I_{b} will be 0.0025 mA -we must provide this through our bias circuit.

If we use the positive rail as the source of base current we must limit it through a resistor (R2) and this will have a value given by 9 V minus 0.6 V , divided by the base current (I_{b}). Therefore,

$$
\mathrm{R} 2=\frac{9-0.6}{0.0000025}=3,360,000 \text { ohms (say } 3 \cdot 3 \text { megohm) }
$$

EXPERIMENTAL CHECK

Wire up this circuit on the Demo Deck and measure the potential at TR1 collector. The chances are that it will not be the +5 V as calculated because we have made the assumption that h_{Fe} was 200 , and this is not necessarily the case as it varies considerably from one device to another (use a $20,000 \mathrm{ohm}$ per volt voltmeter for this and other measurements).

We can "cheat" a bit at this stage and adjust the quiescent base current to give us the output level we require as shown in Fig. 2b. Wire up this circuit on the Demo Deck, VR1 is the 100 ohm potentiometer of the Demo Deck which we will use to set the drive voltage for the base

Fig. 2(b). Variations in $h_{\text {FE }}$ can be overc̄ōme by adjusting the bias with VR1 until the quiescent output voltage is +4.5 V .
current, and R2 is now made 1 megohm. Adjust the setting of VR1 until the collector voltage is exactly midway (+4.5 V).

Having set the d.c. state of our circuit we can now inject the signal from our microphone. Connect the pair of wires from the microphone between base and emitter. This should not affect the 4.5 V at the collector because the microphone is virtually a capacitor and will not modify the d.c. current in the base circuit. Any signal from the microphone will now add to or subtract from the standing base current.

Try speaking close to the microphone and you might just see a slight flicker on your voltmeter; probably not much because you are trying to measure a high frequency voltage on top of a reasonably high d.c. level. We can get rid of the d.c. level and at the same time rectify the alternating current by the complete circuit shown in Fig. 3.

Fig. 3. Complete common emitter amplifier stage with output voltage metering circuit.

Capacitor C 1 will pass the a.c. while blocking d.c. and diode D1 shorts out negative half cycles. You can now set your meter to a lower d.c. range and when you talk fairly loudly and close to the microphone, you should see voltage swings of about 1 volt.

Obviously we have amplified the approximate 10 mV output of the microphone, but what current swings do we now get? The IV swings are occurring across a 10 kilohm resistor, therefore the current must be varying by about $0 \cdot 1 \mathrm{~mA}$. Thus the power in R1 is being varied by at least $1 \mathrm{~V} \times 0.1 \mathrm{~mA}=0.1 \mathrm{~mW}$ and this is caused purely by the current injected by the microphone.

We still cannot apply 0.1 milliwatts to a loudspeaker and expect to hear anything, but at least we are talking about a level only one hundredth of the minimum desirable level and this is a vast improvement compared with the fractions of microwatts we have been talking about previously.

GROUNDED EMITTER

The circuit we have made is called a grounded emitter amplifier stage because the emitter is connected directly to the negative power rail. Sometimes it is called a common emitter stage because the input source used the emitter line as one of the connection points, and we measured the output relative to the same emitter line.
The method of biasing is somewhat unconventional, but in this case is used to demonstrate the principle involved. We will later come across some more sophisticated ways of biasing.

HIGHER POWER

Now let's press on and see if we can produce sufficient power from the microphone to drive a loudspeaker. We now have a signal level of 1 volt at low current. Assume we had unlimited current available; 1 volt across a loudseaker of 35 ohms impedance (as is that in the Demo Deck) would dissipate a power of

$$
\frac{V^{2}}{R}=\frac{1 \times 1}{35}=29 \mathrm{~mW} \text { (approximately) }
$$

This would be ample to produce an audible sound. Therefore 1 volt is sufficient, but we need more current. Now we shall use another transistor in a current amplifier circuit that does not change the voltage swings.

The simplest circuit to do this is called an emitter follower or grounded collector stage. The basic circuit is shown in Fig. 4a.

Fig, 4(a). Basic emitter follower circuit.
Notice that the 100 ohm resistor ($\mathrm{R} \overline{3}$) is in the emitter circuit. In the absence of any base current, the potential at the emitter will be zero. We can now do another simple experiment on the Demo Deck using the circuit diagram of Fig. 4b.

Fig. 4(b). Experimental circuit to show the working of an emitter follower stage. Measure voltages at B for different settings of voltages at A.

Connect a 10 kilohm resistor to the base of TR2 and take the other end to a 100 ohm poten-tiometer-used as a potential divider. Monitor the voltage at the emitter of TR2 and slowly increase the voltage at the wiper of VR1. At each setting of VR1 you should find that the potential at the emitter is the same, less about 600 mV .

The reason for this-is that base current is drawn by the transistor as soon as the base becomes 600 mV more positive than the emitter, but this base current causes collector current to flow and this causes the potential at the emitter to rise. The ratio of base to collector current (which is almost the same as emitter current) is again $h_{\text {Pe }}$.

The voltage at the emitter will rise until it nears 600 mV below the base voltage, and then the rise will stop; the emitter cannot rise more positive than the base-or even reach the same value-because if it did, base current would cease to flow, and hence the collector current would fall. Thus apart from the initial 600 mV difference, we say the emitter voltage "follows" the base voltage.

There is an important difference though in these two voltages. The one at the base is produced through a 10,000 ohm resistor, while that at the emitter is across 100 ohms. Notice we have in effect reduced circuit resistance (or impedance) across the transistor.

A voltage causing a low current to flow through a high resistor in the base circuit causes a similar voltage to appear across a much lower resistor, hence the current must be much higher. We can work out what the maximum current we can control in the emitter circuit will be by simply multiplying the available base current by $h_{\text {FE }}$.

TWO-STAGE AMPLIFIER

Instead of connecting the base of TR2 to the wiper of a potentiometer through a resistor, we will connect it straight to the collector of TR1, see Fig. 5. All the voltage measurements we saw before will appear at the emitter of TR2 apart

from a 600 mV constant drop, but the currents flowing will be considerably higher.

A small proportion of the current flowing through RI is sufficient to provide the base current for TR2 without affecting the collector levels of TR1 too much.

Wire up the circuit of Fig. 5a on the Demo Deck (Fig. 5b). The 35 ohm loudspeaker of the Demo Deck is connected through a $500 \mu \mathrm{~F}$ capacitor. The potential at the emitter will be about $+3 \cdot 9 \mathrm{~V}$ (caused by the quiescent potential at the collector of TR1).

In the absence of signal from the microphone no d.c. will flow through the capacitor and loudspeaker, but if we speak into the microphone the fluctuations in emitter current will pass through the capacitor into the coil of the loudspeaker and produce quite a reasonable audio output.

The capacitor presents very low impedance to the path of a.c. and the small a.c. currents (compared with the quiescent current) are fed directly to the loudspeaker with only a small proportion being shunted by R 3 .

You will probably find that the circuit is so. sensitive that you will encounter acoustic feed-

Fig. 5(a) (below). Complete microphone amplifier giving a reasonable output into a 35 ohm loudspeaker. The effect of excessive or insufficient bias current can be experienced by adjusting VR1.
Fig. 5(b) (right). The microphone amplifier of Fig. 5(a) wired up on the Demo Deck.
back. This shows itself in the form of a "howl." It is caused by the sound from the speaker being picked up by the microphone, being re-amplified and fed back to the speaker-only to repeat the same cycle over and over again. The best way to prevent this is to separate the microphone and the loudspeaker by a reasonable distance.

VARYING THE BIAS

Remember the bias is still set by VRI right at the front end. Try varying the bias in both extremes. By reducing the bias current to zero, you will find that the gain of the system reduces to zero; by increasing it you will notice, first of all, distortion which gets worse and worse until there is again virtually no output.

Photograph of the microphone amplifier connected up on the Demo Deck.

Everyday Electronics, September 1972

The former is caused by the first transistor refusing to conduct at all, while the second is due to the signals from the microphone driving the transistor into saturation until the bias itself makes the transistor fully conducting all the time. Try experimenting with different values of R1, R2 and R3 and see if you can arrive at any deductions regarding output levels or biasing levels. Do not make these resistors less than the following values: R1 1 kilohm, R2 10 kilohm, R3 100 ohms.

FREQUENCY RESPONSE

Remember we said that the irfopedance of the microphone increased for low frequencies? This means that the amount of base current it can supply into TR1 will decrease for low frequencies and increase for high frequencies. Try "crooning" into the microphone and then whistling a high note (both at about the same volume) and you will hear that the output from the loudspeaker is very much greater for the higher whistled note. You can, in fact, measure the differences in amplitude if you go back to the metered experiment shown in Fig. 3.

We say that this amplifier does not have a "flat response" and hence does not reproduce the original signal to perfection-the fidelity is therefore poor.

In the case of, say, an intercom, this does not matter but it is a terrible fault to have if we are trying to obtain hi-fi. In quality designs,
steps are taken to reduce this effeot of amplitude "roll-off" at low frequencies.

Next month we shall show you two better ways of biasing the first transistor that will do away with the necessity for VR1 and also a better impedance matching stage that will give us more power output at higher efficiency.

Next month: Amplification. Components required in addition to those already obtained: resistors, $2.2 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, $150 \mathrm{k} \Omega, 470 \mathrm{k} \Omega, 560 \mathrm{k} \Omega$, $1 M \Omega$ (all $\frac{1}{4} \mathrm{~W} \pm 10 \%$, 1 off each). Capacitors, $2,000 \mathrm{pF}$ (1 off), $50 \mu \mathrm{~F}$ elect. 15 V (2 off). Transistors, BC 108, 2N3702 (I off each).

Ruminations BySensor

Other People's Jobs

While waiting to turn into a main road the other day, my car came to rest opposite one of those Post Office Telephones "tents" erected over a hole in the pavement. I peered into the tent just as a man climbed out of the hole; our eyes met. "Not a bad day for camping," I said, he considered my remark for a while then agreed, good naturedly, that it wasn't at all bad.

Later, I wondered what I would have said if he had leaned over my shoulder in the electronics lab and said, "Not much on the telly today," as I gazed into the oscilloscope. I hope that I would have been as agreeable as he was.

Other peoples jobs fascinate me. Fortunately, I find that most people are willing to talk about their work if they believe that the enquirer is really interested. Sometimes, if pressures of work are not too great, one may be invited to "have a go" and the experience can be most satisfying. I enjoyed, particularly, an opportunity to try my hand (and mouth) at glass blowing.

A Little Knowledge

One frosty morning, the sink fitted in the electronics laboratory in which I was working, became blocked. By the time we had all rinsed our tea cups the water was an inch or so deep, and eager to play the plumber, I unscrewed the plug from the trap. The water draigied into the bin that I had placed beneath, but the sink was found to be still blocked when the plug was replaced. I admitted defeat and returned to my 'scope and "breadboard".

Later, someone else decided to
"have a go". He connected a hose from the compressed air supply to the sink outlet and turned on the compressed air-the water disappeared and did not return. "Well done," we said, and he took up his soldering iron again with a happy smile. A few minutes later, a man from the lab above came in. "You ought to have been in our lab, just now," he said. "A great jet of water shot out of the sink and went all over the ceiling!"

We expressed our sympathy, and the right amount of incredulity, and sent for the plumber.

Electronics engineers are a pretty dedicated lot on the whole, but like everyone else they enjoy a bit of fun. On one occasion we noticed a wire dangling from the lab above, "Ah, someone is building a radio" we said. We fished the wire through our window and connected it via a $0 \cdot 1 \mu \mathrm{~F}$ capacitor to a signal generator, while someone from our lab went up to "help" them to cure their oscillating radio!

Fig. 2. The complete circuit diagram of the Capacitance Meter.

Fig. 1. The basic circuit of the Capacitance Meter.
Approximate cost of components $£ 5 \cdot 50$ plus case
will restrict the largest measurable value to 3 microfarad.

MULTIVIBRATOR SWITCH

The electronic switch used in the Capacitance Meter is an astable multivibrator. Looking at the complete circuit, Fig. 2, the multivibrator switching frequency is determined by switch

CAPACITRACE

 metir

Fig. 3. The complete wiring diagram of the Capacitance Meter. Everything is connected to the back of the front panel.

Fig. 4. Suggested dimensions for the front panel, made from Paxolin, Formica or Perspex.
selected pairs of capacitors (Sla, Slb), switched base resistors (S 2), and by an adjustable voltage applied to the base resistors (VR1, VR2).

With S2 closed, Sl gives decadal frequency steps from approximately 10 Hz to 100 kHz , and with S2 open 3 Hz to 30 kHz , the latter being the times three ranges.

Preset potentiometer VRI provides a fine adjustment of frequency for both S 2 settings, and thus acts as an overall calibration control to cater for falling battery voltage, while VR2 serves only for initial calibration of the times three multiplier.

A.C. METER

The a.c. reading meter, made from $\mathrm{R} 2, \mathrm{R} 3, \mathrm{C} 6$, C7, MEI, DI, and D2 (see Fig. 2) is connected in series with the unknown capacitor C_{x} between the collectors of TR1 and TR2.

Because of the steep sided exponential waveform fed by C_{x} to the rectifier diodes D1 and D2, and a multivibrator output of more than $15 V$ peak to peak, errors due to diode nonlinearity are small. Tests with a large ± 1 per cent meter showed a non-linearity of less than $0-5$ per cent over 98 per cent of the scale.
Battery drain of the circuit is only 5 mA , and the push to read button S3 will ensure that the meter is not accidentally left on after use, so battery life will be almost as good as shelflife.

CONSTRUCTION

Fig. 3 gives drilling details and dimensions of a 7 in x 5in s.r.b.p., Formica or Perspex front panel. A metal panel is avoided because it would tend to increase stray capacitance on the $0-100$ picofarad range.

Fig. 5. The layout of the components on the top side of the Veroboard with flying lead connections. Below is shown the regions of copper strip to be removed from the underside.

After lettering the front panel, mount VR1, S2, S3, ME1, SK1, and SK2, as shown in the general wiring and layout diagram shown in Fig. 4.

Switch S1 should be pre-assembled with capacitors $\mathrm{Cl}-\mathrm{C} 5$ and $\mathrm{C} 8-\mathrm{Cl} 2$ before mounting on the panel.

Next, solder the components to a $2 \cdot 1$ in $x 1 \cdot 4$ in piece of 0. lin matrix Veroboard, as shown in Fig. 5. The Veroboard cut-outs at positions H17, G17, 18, 19, 20 and 21, have been made to minimise stray capacitance between the copper strips.

Photograph of the top side of the Verobeard with all components in position.

The transistors and diodes should be the last components to be soldered in position and a heat shunt must be used on the leads when soldering, otherwise permanent damage may be done to these components.

Attach lengths of 22 s.w.g. tinned copper wire to the ends of the panel to form leads.

When the circuit panel is complete, offer it up to the front panel as close as possible to SK1 and SK2, and then cut the leads, insulate with sleeving, and solder the 22 s.w.g. leads to the front panel components.

The wiring on the back of the front panel of the prototype.

When this wiring is completed it will be found that the circuit panel is held quite firmly and will need no additional support.

Complete the wiring by interconnecting the front panel components, not forgetting Cl 3 .

CALIBRATION

To check that the instrument is working on all ranges, temporarily connect a 33 kilohm resistor in series with a capacitor of about 0.5 microfarad between SK1 and SK2, and press S3. A meter reading should be obtained at all range settings.

The prototype in use.

Two silver mica capacitors of ± 1 per cent tolerance, a 100 picofarad and a 10,000 picofarad, will serve to calibrate the meter. First connect the 10,000 picofarad standard to SK1 and SK2, set S1 to 0.01 microfarad and S2 to times one, and press S3; adjust VR1 for a full scale reading.
To calibrate the times three range with the same standard capacitor, rotate VR2 on the circuit panel fully clockwise, set S2 to times three, and then adjust VR2 carefully until the meter reads 0.01 microfarad when $\$ 3$ is pressed.

Return S2 to the times one position and set Sl to 100 picofarad. Place the 100 picofarad standard capacitor across SK1 and SK2 and trim Cl for a full scale reading. Remove the 100 picofarad standard capacitor and observe the residual stray capacitance reading, this should be no more than 3 picofarad.

Now adjust Cl again while measuring the 100 picofarad standard, to make the meter read 100 picofarad plus the stray capacitance, that is, slightly more than full scale.

When using the 100 picofarad range, always deduct the stray capacitance value from the indicated value to obtain the true value.
If it is found that there is excessive pointer vibration with the particular meter movement
used for ME1, on the 3 microfarad range, a capacitor of about $300-500$ microfarads can be wired across the meter terminals in series with a switch, to give additional smoothing on this range.

The capacitance meter is only suitable for measuring non-polarised capacitors with a rating of 15 V or more. A shorted capacitor will show up as a more than full scale reading on all ranges, while an open circuit component will give no reading at all.

Components....

Resistors

R1	$2 \cdot 7 \mathrm{k} \Omega$
R2	$4 \cdot 7 \mathrm{ks} \Omega$
R3	$4 \cdot 7 \mathrm{k} \Omega$
R4	$100 \mathrm{k} \Omega$
R5	$68 \mathrm{k} \Omega$
R6	$100 \mathrm{k} \Omega$
R7	68 ks 2
R8	$2 \cdot 7 \mathrm{k} \Omega$
All $\frac{1}{2}$ watt $\pm 10 \%$ carbon	

Potentiometers
VR1 $5 \mathrm{k} \Omega$ linear carbon, T.V. preset type
VR2 $5 \mathrm{k} \Omega$ miniature preset, horizontal mounting

Capacitors

C1 200 pF compression trimmer
C2 $1,000 \mathrm{pF} \div 1 \%$ silver mica
C3 $\quad 10,000 \mathrm{pF}+1 \%$ silver mica
C4 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polycarbonate or polyester $\pm 10 \%$ or better
C5 $1 \mu \mathrm{~F}$ polycarbonate, tantalum, or polyester 110% or better
C6 $0.01 \mu \mathrm{~F}$ polyester $\pm 20 \%$
C7 $100 \mu \mathrm{~F}$ elect. 15 V
C8 $\quad 100 \mathrm{pF} \perp 1 \%$ silver mica
C9 $1,000 \mathrm{pF}=1 \%$ silver mica
C10 $10,000 \mathrm{pF} \pm 1 \%$ silver mica
C11 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polycarbonate or polyester $\pm 10 \%$ or better
C12 $1 \mu \mathrm{~F}$ polycarbonate, tantalum or polyester 10% or better
$\mathrm{C} 130 \cdot 25 \mu \mathrm{~F}$ polyester $+20 \%$
Transistors
TR1, TR2 BC 109 silicon npn (2 off)
Diodes
D1, D2 OA81

Switches

S1 Two-pole six-way wafer
S2 Double-pole changeover toggle
S3 Single-pole push button
Miscellaneous
ME1 100 1 A (with 0-3, $0-10$ scales) $\pm 2 \%$ or better
B1 9V battery PP3
4 mm plugs and sockets; 7 in $\times 5$ in s.r.b.p., Perspex or Farmica front panel; 2.1 in $\times 1$ - 4 in Veroboard 0.1 in matrix; knob; 22 s.w.g. tinned copper wire; two crocodile clips.

Continued from page 591
further advances being made in cable laying methods. This includes a new type of cable laying "engine" designed by the Post Office. The new engine was first used to lay the UK-Spain cable in 1970.

A modified design of the engine will be fitted to the Canadian cable ship and ice breaker John Cabot which will be used to bury the Cantat 2 cable and repeaters in the shallow waters of less than 300 fathoms off the Nova Scotia coast to protect the cable from damage by trawlers.

The cable and repeaters are laid through a plough-type device and the John Cabot is at present the only ship available powerful enough, because of her other activity as an ice breaker, to pull the plough. Remote TV cameras are fitted to the plough and linked to monitors in a control room on board. More TV monitors and indicators showing cable tensions and ground speed of the plough are also mounted on the ship's bridge.
The plough is capable of cutting a furrow in the sea floor allowing the cable to be buried to a depth of up to 26 inches. The other ship which will be engaged in laying 95 per cent of the cable is the Cable and Wireless ship, Mercury, which is also to be fitted with a linear laying engine.

After all the work of the electronic experts in developing today's trans-ocean cables and the use of the latest scientific navigation and monitoring devices nature must still be accounted for. Storms are still a hazard to the cable ships. Photographs taken from the bridge of a Post Office cable ship are used by the Meteorological Office as a standard reference to illustrate sea conditions in a hurricane.

ADDENDUM

Since this article was written the Post Office's Research Department at Dollis Hill has received the Queen's Award for Industry, given for "Technological Innovation" in the development and production of high quality transistors for use in undersea telephone cables.

Cable Ship Alert lying to final splice at Kennack Sands, Cornwall during the laying of a U.K.Spain cable.

Anumber of readers have written to us regarding the supply and use of Veroboard, since we feel that there may be a great number of readers who are not fully aware of the types, we will try and clarify the situation.
Firstly, there are three fairly common types and we use the following terms to describe them; Veroboard-by this single name we mean perforated board with lines of copper on one side only, this is probably the most common and the one we usually use; plain Veroboard-this is perforated board with no copper strips on it; double sided Veroboard - perforated board with copper strips on both sides, we have never yet used this type of board and it is doubtful if we ever will, as it is not necessary for the type of projects we describe.
We usually use 0.15 inch matrix, this means that the rows of holes are 0.15 inches apart, there are other sizes (0.1 inch and 0.2 inch) so make sure you get the right one.

Infra-Red Burglar Alarm

The main buying problems for the Burglar Alarm are more likely to concern the non electronic parts, in particular the infra-red screen and the two eye glass magnifiers. The screen should be obtainable from most large photographic suppliers but in case of difficulty some alternatives have been given in the text.

The two lenses used do not have to be exactly the same as those shown on the prototype but
they do give a neat finish to the unit. You should be able to obtain them from some watchmenders but you may have to hunt around.
Alarm requirements will decide if RLA 1 is to be used, the main point when buying this is that the contacts can switch the load applied by the alarm.
If you have an old OC 71 you could try scraping the black paint off it to use it as TR1 (OCP 71). The old types were filled with an almost clear jelly-like substance which allows light to get at the junction inside-newer ones use an opaque substance which does not allow enough light to pass.

Capacitance Meter

When buying for the Capacitance Meter you must make sure that the capacitors you get are the correct type and that the tolerances are within those specified. You will probably have to pay a little more for the better tolerance but the resultant accuracy of the meter is worth the extra.
A two-pole six-way wafer switch has been used in the prototype although only five ways are used, this is because the six way type is easier to obtain.

Once again with this project the meter will be the most expensive part, but it is worth buying a fairly good one for the sake of accuracy. You should be able to buy one marked with $0-10$ and 0.3 scales.

It is of course, possible to recalibrate your own meter, using Letraset, if you carefully dismantle the case and remove the scale.

LW/MW Radio Tuner

There should be no buying problems for the Radio Tuner, the only items that could possibly cause trouble are the two coils. If you cannot get them in your area write to one of the larger London based suppliers-most of them are able to supply.

New Products

Having written about the Linear 505 amplifier last month, and complained about the poor specification quoted, we then received news of another new amplifier from Linear-the 606! Linear say that the 606 is believed to be the lowest priced stereo ampli-
fier, designed for a magnetic cartridge, to ever become available through the normal wholesaleretail channels. The recommended retail price is $£ 22 \cdot 50$.

The specifications quoted are rather better than for the 505: output, 6 W music power into 15Ω (that's about $3 W$ continuous r.m.s. [our estimate]); input sensitivity, 3.5 mV magnetic, 35 mV ceramic, 100 mV tape and 400 mV tuner; total harmonic distortion 0.1 per cent at 1 watt; frequency response range (whatever that means) 20 Hz to 65 kHz .

We said the specifications quoted are rather better, by this we mean the way they are quoted, not the actual figures. Since most of the figures are qualified in some way it is a pity that a proper frequency response figure is not quoted, but at the price, one must not expect the highest quality.

Another new product this month is the Mod-3 case from West Hyde Developments Ltd, Ryefield Crescent, Northwood Hills, Middx. HA6 1NN. West Hyde have long provided a professionally finished case (the Mod2) and they have now introduced this new case design.

Mod-3 cases are provided in a variety of sizes, the smallest being $7 \times 3 \times 5^{1}$ inches deep and the largest $11 \times 6 \times 5^{1}{ }_{4}$ inches deep, they are finished in blue and grey p.v.c. covered metal (outside blue, panels grey) and cost from $£ 2 \cdot 25$ to $£ 4 \cdot 25$.

Bi-Pre-Pak Ltd.

Due to a printer's error in our August issue an incorrect price was quoted for the Complete Telephone as offered for sale by the above company. The correct price should have read 95 p. We offer our apologies to Bi-Pre-Pak Ltd., and to any readers who may have been inconvenienced by this error.

FOR RAPID SERVICE
 GARLAND BROS. LTD, DEPTFORD RROADWAY, LOWDON, SEE GQN

TRANSFORMERS
Miniature
MM6 $6 \mathrm{~V} .500 \mathrm{~mA}+6 \mathrm{~V} .500 \mathrm{~mA}$
$M M 66 \mathrm{~V} .500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$
$M M 1212 \mathrm{~V}, 250 \mathrm{~mA}+i 2 \mathrm{~V}, 250 \mathrm{~m}$ MM12 $12 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$
$\mathrm{MM20} 20 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ $\mathbf{8 1} \cdot \mathbf{2 0}$ plus 13 p p. \& p
Tis.
$126.3 \mathrm{~V}, 3 \mathrm{~A}-80 \mathrm{p}$ plus $26 \mathrm{D}^{2} \mathrm{D}$ \& \& p
 LT4 12 V , $3 \mathrm{~A}-\mathrm{El} .32$ plus 30 p LTS 9-a-9V, 0.5A-75p plus $21 p$ p. LT6 12-0-12V, 1A-95p plus 26 p. LT7 30-0-30V, IA- 11.87 plus 30 p Multi-tapped
MT30/2 0-12-15-20-24-30V, 2aMT60/1 0-5-20-30 plus 30p p. \& p. MT60/2 $0-5-20-30$ plus 30 p p. 8 g Charger
62.90 plus 340 p. \& p a

 Auto-transformers
AT30 30W-61-12 plus 30 po 8 D ATIS0 150 W - 2.55 plus 34 p p. \& op . AT300 $300 \mathrm{~W}=64-75$ plus 42 P p. \& aT1000 $1000 \mathrm{~N}-68.90$ plus 62 p All shrouded with terminal blocks AT30 0-110-240V. All others 0 -$10-200-220-240 \mathrm{~V}$.
Speaker isolating transformer
il ratio for $3-15 \Omega .2 W-860$ plu $13 p p$ \& \& p. Tapped 3, 8, 16Ω. Will match almost any speakers to any amplifier
15 W max.-90p plus 20 p p. \& p .

ALUMINIUM BOXES

with lids and serews
Type. L, Wricep. \&
GB7.
 GB9: in 27 in 1

 These sizes veroboards

EQUIPMENT CASES
with sloping front panel
Type H. W. D. Price p. p

 Stain aluminium. silver-grey ham-
mer finished, 20 p exera.

CONSOLE CASES

in phain aluminium, ideal for mixers, Type W. A BC: D Price p. \& p. GB20 $\begin{array}{lllllll} & 9 & 3+2 & 3 & £ 1-42 & 30 p\end{array}$ $\begin{array}{lllllll}\text { GB21 } & 10 & 9 & 3 \leqslant 2 & 3 & £ 1.58 & 30 p \\ \text { GB22 } & 12 & 9 & 3 \frac{1}{2} 2 & 3 & E 1.72 & 30 \mathrm{p}\end{array}$

VEROBOARD

ELECTROLYTICS

$1 \mu \mathrm{~F}$	450 V	$19 p$	$1.000 \mu \mathrm{~F}$	25 V	P
$2 \mu \mathrm{~F}$	500 V	20p	1,000 F	50 V	39p
$4 \mu \mathrm{~F}$	350 V	$14 p$	2,0	25 V	p
$8 \mu \mathrm{~F}$	450 V	16p	2,000 μ	SOV	53p
$16 \mu \mathrm{~F}$	450 V	$17 p$	2.500	25 V	45p
$25 \mu \mathrm{~F}$	25 V	$7 p$	2.500 \%	50 V	60p
$25 \mu \mathrm{~F}$	50 V	89	3,000	25 V	48p
32, 4 F	450 V	$24 p$	5.000	25 V	55p
S0, F	50 V	$10 p$	5.000μ	50 V	98 p
$100 \mu \mathrm{~F}$	25 V	10p	888	450 V	18 p
$100 \mu \mathrm{~F}$	50 V	10p	8-16\% F	450 V	$20 p$
$250 \mu \mathrm{~F}$	25 V	120	${ }^{16}$ - $16 ; 5$	450V	27p
$250 \mu \mathrm{~F}$	50 V	17p	${ }^{16-324 F}$	450V	63p
500 ${ }^{\text {F }} \mathrm{F}$	25 V	180	32-324	450V	49p
$500 \mu \mathrm{~F}$	50V	25p	50-50,	350 V	-
MINIATURE ELECTROLYTICS					
$1 \mu \mathrm{~F}$	63 V	$6 p$	10y\%	64 V	7 p
2-2, 5	$63 \vee$	Pr	1614F	40 V	7 p
4 AF	40 V	$7{ }_{P}$	30, F	15 V	7 p
47 cm	63 V	$6 p$	474F	16 V	7 p
B. F	15 V	\%	47aF	25 V	$6 p$
5	40 V	$7 p$	68uF	16 V	6 p
OLa ${ }^{\text {a }}$	25	${ }_{6 p}$	100․:F	10V	6p
ENTIRE MLILLARD 015016017 RANGE ALSO STOCKED					

CASSETTE OWNERS!

For Philips and similar casserze recorders.
PU12 Power unir for connection to
syseems, giving $7 \frac{9}{9}$ v, seabilised $£ 3.25$ PUI4 As above but switched for $\mathbf{6 5 . 1 0}$ PP75 Main power supply.

E1.95 All units are complece with cable and olug. VARIABLE POWER SUPPLY
Input: 240 V, a.c.
Output: 5 witched $3,4.5 .6,7.5, ~$
O, 12 volts d.c. at 500 mA

BATTERY ELIMINATORS

suitable for eransistor radios and similar lizht CuFrent equipment PP9 input 240 V a.c. c . Outpur 9 V d.e. Price $£ 1.50$ plus 12p D. \& p.

NEW NEW
 ILLUSTRATED 1972-73 CATALOGUE
 Post Free

CONTROLS, Log. or Lin.
Single, less switch. 150
Single, DP switch. 240
Tandem. less switeh. 40
$5 \mathrm{~kg}, 10 \mathrm{k} \Omega, 25 \mathrm{kR}, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, $500 \mathrm{k} \Omega, 1 \mathrm{Mg}, 2 \mathrm{Ma}$

SLIDER CONTROLS 87 mm .
complete with knobs.
Single. 44 p ; Tandem, 55 p . $10 \mathrm{~kg}, 25 \mathrm{~kg}$. 50 kg . $100 \mathrm{k} \Omega$. log. or lin.

RESISTORS

Carbon
All 5%, hish-stability. EI2 values. IW, 1p: WW. Ipi iW. 4p; 2W. 6p
5W, $10 \mathrm{D} ; 10 \mathrm{~W}$, 12p

LOUDSPEAKERS

Tin $\times 4 \mathrm{in}, 38-61 \cdot 12,8 \Omega-$ E1.12

10 in $\times 6$ in $32.3-62.32,8 \Omega-62.32$,
$158-62.32$.
8in round. 32 . $22.10,8 \Omega-62.50$,
Adastra"Hi-Ten", $10 \mathrm{in}, 10 \mathrm{~W}, 8$ or $15 \mathrm{~g}-\mathrm{E3}-40$. Please add 20 p p. ip. to all qpeakert.

BONDED ACRYLIC FIBRE

B. A.F. wadding. IBin wide. lin thick. The
ideal lining for speaker eñelosures. 25 p per
友 yard.

plugs

Cor aerial
D.I.N. 2 pin (speaker)
D.I.N. 3 pin D.I.N. 3 pin
D.I.N. 4 pin
D.I.N. 5 pin. 240

Jack, $2 t \mathrm{~mm}$ unscreene
Jack, $2 \frac{1}{2} \mathrm{~mm}$ sercened
Jack, 3 tmm unscreened
Jack, 3 mm screened jack, in unscreened
jack. tin screened lack, stereo. unsercened jack, sterco, sercened
Phono. plastic top Phono, plastic top Phono, plated metal
Phono, fited 4 ft lead Phono, ficted 4 ft lead
Wander, red or black Banana 4 mm . red or black

LINE SOCKETS

Car aerial

D.I.N. 2 pin (speaker) DIN. 3 pin
D.IN. 5 pin, 180°
D.I.N. 5 pin, 240° Jack, $3 \frac{1}{2} \mathrm{~mm}$
Jack, $\frac{3}{2}$ minn
Jack, $\frac{1}{4}$ in screened Jack, stereo, screened

CAPACITORS

${ }^{50} 5$
105

\square

=

\author{
\}

}
0.0
0.0
0.0
0

0.0 0.0 0.002

$0.002 \mu \mathrm{~F}$
$0.022 \mu \mathrm{~F}$
$0.0022 \mu \mathrm{~F}$
0.0022
$\begin{array}{llll}0.0022 \mu \mathrm{~F} & 500 \mathrm{~V} & \text { SiM } & 6 \mathrm{~F} \\ 0.0022 / \mathrm{FF} & 1,000 \mathrm{~V} & \mathrm{MDC} & 6 \mathrm{p}\end{array}$

MAIL ORDERS: Some icems have a post and pecking

TEGHIIGAL tBAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?
Many diploma and examination courses available, including expert coaching for:
C. \& G. Telecommunication Techns. Certs.

Radio Amateurs' Examination
General Radiocommunications Certificate.
C. \& G. Radio Servicing Theory.

- General Certificate of Education, etc.

Now available, Colour T.V. Servicing
Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you bulld. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tuition. Transistor Portable available as separate course.

POST THIS GOUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

INTERNATIONAL

 CORRESPONDENCE SCHOOLSDept. No. RA28, Intertext House, Stewrarte Road, London, SW8 4UJ

```
Please send me the ICS prospectus-free and without
obligation.
(state Sublect or Exam.).......
NAME.
AG
    (Block Capitals Please)
    ADDRESS
```


Dept. (PE10) 74 Pentonville Road, London, N1. Telephone 01-278 1769 Or: 4 High View Parade. Redbridge Lane East, Woodford Avenue. Ifford, Essex. Tel: 01-550 1086.

Photogragh: Science Museum, London.

WE come now to our first British pioneer, but as he was not a physicist nor engaged in proving any electrical theory he may be termed "a stranger in our midst". James Watt inventor extraordinary; the man after whom the unit of electronic power is named (see Table 1).

The year is 1755; the place Greenock on the Clyde. Nineteen-year-old James Watt said goodbye to his family and set off for London, the hard way, by horseback to look for work. His father a small merchant had lost his trade and fortune through bad speculation. Because of this and ill health, Watt had been unable to go to school regularly and was therefore largely self taught.
Arriving in London some twelve days later, the young James obtained employment at the instrument works of John Morgan. After twelve months he returned home but was forbidden by the Glasgow City Guild to start a business as an instrument maker because he had not served a full apprenticeship.

NEWCOMEN'S ENGINE

Watt obtained work with the college of Glasgow in a model making and repair shop. The college asked him to repair their model of Newcomen's engine which had been invented some sixty years earlier and had since been used to pump water out of coal mines.

Having got the model working Watt was amazed to find the great consumption of steam; he reasoned that he could produce a better version. In 1765 he made a large scale engine, which was erected at Kinneil near Linlithgow. This gave Watt the opportunity to go into the construction in more detail.

Table 1: WATT (W)

Abstract

The watt might be termed the "horse-power" unit of electronics. in fact 746 watts are equal to 1 h.p. The power needed to maintain a current of one ampere through a conductor, and a potential of one volt across its ends is equal to one watt. The unit was first proposed by C. W. Siemens in his presidential address to the British Association in 1889.

Large scale trials and patent fees took what little money he had, and Watt was forced to agree to Dr. John Rocbuck founder of the Carron Ironworks; taking two thirds of any profits from the invention in return for bearing costs, but the two partners did not get on well together and after a few years of uneasy collaboration they parted. Once again shortage of money prevented Watt from bringing his invention before the public.

BOULTON AND WATT

In 1768 Watt met Matthew Boulton, a man of considerable vision who could see that steam engines need not be confined to pumping machines and that they had a great future. Boulton, a Birmingham manufacturer, was owner of one of the most modern engineering works in Great Britain. He agreed to take Roebuck's share in the invention and a new and famous partnership
was born. Then in 1769 , Watt obtained his first patent, his machine produced more power for its size than Newcomen's and used less fuel but was still only usable as a steam pump.
In 1781 he patented his second engine which converted the reciprocating motion of the piston rod into a rotary motion and "drove a wheel round". This opened up new frontiers and was the start of the real steam age; it set Britain on the road as a great manufacturing power.

The Watt family built Heathfield Hall, a mansion on Handsworth Heath, Staffs, on a forty acre site. Although by now wealthy and famous, Watt worked constantly in his garret workshop. His restless brain invented a sculpture copying machine, a machine for drawing in perspective, and a press for copying manuscripts.

Watt died at Heathfield on August 19, 1819.

James Watt, garret workshop

Photograph:, Crown copyright Science Museum, London.

Knotted

A serious error was made by somebody when he knotted the mains input cable, illustrated twice (on Pages 530 and 531) in the article on the Drill Speed Controller.
This can be very dangerous and is specifically outlawed by the Institute of Electrical Engineers in their published regulations.
If a cable is rapidly bent from a straight to a highly twisted configuration, as often occurs when an item is knotted and the knot pulled tight rapidly, the core material may suffer from local fatigue causing cracking of the material. This occurs very readily with copper core, but less so with the more resistant steel ones. The cracking acts as a resistance to the current flowing through the appliances, hence local heating occurs. At the 200 watt (0.9 amps) being drawn by a domestic drill this heating may be only a few degrees, but if the same knotted lead were used to feed say a three kilowatt fan heater the temperature may rise 100 degrees above ambient temperature, melting the cable insulation and possibly doing damage to someone or thing but at least blowing the fuse.
Hence although this may appear to be excusable in this instance I believe that it would be a good idea if a few words of caution were published in a future edition of your publication to "head off" anybody gaining the general impression that this is accepted safe practice which it most certainly is not.
The error, though dangerous, is so common that the writer could be excused it, provided the suggested warning is printed.
K. R. Kinsella, Aylesbury.

We thank you for pointing out our mistake, we would suggest that readers use one of the plastic cable clamps available, to secure mains leads.
For the Drill Speed Controller this could be screwed to the base of the MK box.

Radio Amateürs

I write to ask that a brief item be inserted in Everyday Electronics magazine re. the amateur radio course run by Northumberland Education Dept. at Gosforth, very near Newcastle-upon-Tyne.
The course is designed to prepare students for the Radio Amateurs Examination in May/ June 1973. It will be run at the Gosforth Evening Institute, Gosforth Secondary School, Regent Avenue, Gosforth, Northumberland, commencing in September 1972.

Designed specifically for the R.A.E. the course is also ideal for anyone wanting to get an insight into radio theory, having just taken up radio or electronics generally as a hobby or professionally.
Held on Tuesday/Wednesday of each week from 7p.m. to 9p.m. candidates may sit the R.A.E. at the school.

Enquiries should be addressed to, The Principle, Gosforth Evening Institute at the above address who will forward a prospectus by return, or further information can be had from myself by telephoning Newcastle-upon-Tyne 668439.

As you will have gathered, I take the class and your co-operation in this matter would be greatly appreciated.
D. R. Loveday, Newcastle-upon-Tyne.

Too Slow

I have just built the Electronome from the circuit as described in the July issue of Everyday Electronics. I have used all the correct component values, and have checked all wiring. You say that this circuitshould give 40-225 beats per minute.I only get 18-100 beats per minute.

Could you please advise me what may have gone wrong.
N. Matheson,

Newcastle-upon-Tyne.
The reason for your Electro-
nome not giving the correct range of beats per minute is almost certainly that the capacitors are too high in value. This is quite common as electrolytic capacitors have very poor tolerances, e.g. -20% to $+100 \%$ of the nominal value. We suggest that you reduce the value of C 2 .

Soldering Irons

Could you please help me in buying a soldering iron? I am a beginner toelectronics and before the end of the year the firm I work for will be going over to electronic calculators from mechanical types.
I have managed to get all the issues of Everyday Electronics to date in order to get myself used to electronics; I have a Demo Deck and plan to try some of your projects, but I can't make my mind up which would be the best soldering iron for the projects in your books and for future use on other projects.
Could you please explain the connection between the iron's leakage current to the electronic components, and the damage that can occur.

Finally, the bits for the iron are available ""nickel plated," "Ferra* clad" and "Triple coated," which do you use for what job?

I would like to thank you on behalf of us beginners for bringing out a magazine which we can understand. I only hope that you don't take too much notice of some of the letters that you have published from people who want you to turn into the same type of magazine as all the others, leaving us beginners once again on the outside.

There is always a new generation of beginners coming along who need a magazine like this as a stepping stone before going to the more experienced magazines with all the technical jargon.

> G. Hayes,

Hackney, London.
Provided you are soldering to a circuit that is not connected to a supply or to earth no damage can result from iron leakage. When the circuit is live and part of it is earthed or connected, via a transformer to the mains supply a low leakage iron should be used to avoid possible damage to semiconductors.

The more expensive coated bits are made to last longerthey are designed not to corrode as much as a normal copper bit. 'Coated bits are generally used on assembly lines but they are good if you tend to leave the iron

MAINS OPERATED CONTACTOR 220/240v. 60 cycle solenoid Tlth Imminited core so very alient in operation. closes circuits each ratid si 10 ampe. Gertann Electrical Compy Overall size $21 \times 2 \times 2$. E1. 50 each.

NEED A SPECIAL SWITCH?

AUTO-ELECTRIC CAR

 AERIALwith dastboard controi swilch-folly extendable to 40 in or fully retrac-
tablc. Buftable for inv posilive or negative earth 8 opplied complet with fitting instructions and with gitting instructions and reads
wired dialhboard switch. $E 5.75$ plar 25p poot and insurance.

MAINS TRANSISTOR POWE

 Dezlgned to oper PACKDeslgned to operate transistor scts and amplisers. Edjustable outpal 8 v ., 9v, 12 voite for gp to of the following batteries: PPI, PRS, PP4, PPB PP7. PP9 and others. Fit comprises: masins traneformer reetiner, stooothing and load resistor. condensers and instructions. Real anip at onlr
f1, plos 1 \&p postace.

MICRO SWITCH

MINIATURE
WAFER SWITCHES
$\frac{2}{2}$ pole, 2 way-t polc. 2 waypole, + was-3 pole, 4 way -2 pole
6 way -1 polc, 12 wy . All at 200 Exay- 1 polc, 12 way. All at 200
KITS FOR PREVIOUS PROJECTS Unlcks otherwise stater. kits contain clec-
tronio parta sooty. The cace and apecial tronic parta ools. The case and apecial
items can be obtained locally. Also batteries are not included. Kita mas be returned for refand if constraction bas not becn components should deliveries be protracted so as to a void undre delay.
HOME SENTINELINTRUDER ALARM $£ 3.75$ SNAP İNDICATOR
WINDSCREEN WIPER CONTROL 75 p RECORD PLAYER.
(amplifier components only)
DEMO DEC
FUZZ BOX
PHOTOGRAPHIC COLOUR
TEMPERATURE MEIER
ASTRON RADIO
REMOTE TEMPERATURE COMPARATOR
ELECTRO LAUGH RAIN WARNING ALARM WA-WA PEDAL SIGNAL INJECTOR SOIL MOISTURE METER SIMPLE CALCULATOR DC POWER SUPPLY
BABY ALARM
AUDIO TONE GENERATOR METAL LOCATOR.
LIGHT TO SOUND CONVERTER THRU LENS LIGHTMETER DRILL SPEED CONTROLLER

BAKELITE INSTRUMENT CASE
Size approx. $63^{\circ} \times 37^{\circ} \times 2^{-}$ deep with brass inserts in four conrners and bakelite case suitahle to house instruments and special riks, etc. Price
45 p each.

MULLARD I.F. MODULE
This is a folly screcned Intermediate frequency module lor amplification and detection of f.m. signals at $10-7 \mathrm{MHz}$ and s.m. signals at 470 FFIz . The first staze of mised as an lif. amplifier for f.m. and a relf-oscillating mirer for an, operation, in conjunction with an ex-
lemnl oemlator coil 75p cach. 10 for 86.75 . 100 for $262-50 \mathrm{p}$. Witb connection dig.

	Standard size $1{ }^{\prime \prime}$ wafer-silver-piated 5 -2mp contact standard $i^{\prime \prime}$ apindle 2^{*} long-with locitng washer and nut.								
No. of Poles	2 w 25								
1 pole	40p	403	40D	40p	400	40p	400	40 p	0
2 poles	40 p	40 p	40 p		40p	40 p	40p	700	70p
3 poles	${ }^{40 \mathrm{p}}$	400			709	70p	70	${ }^{95 p}$	${ }^{95 p}$
4 polcs	40 D	40p	40p	70p	70p	700	700	12120	1-20
5 poles	40 p	400	700	7	${ }^{95 \%}$	${ }^{95 p}$	950	21.45	E1.45
6 poles	40 p	70 p	70 D	700	95 p	950	${ }^{95 p}$	E1-20	E1.70
7 poles	80	${ }^{200}$	70 g	${ }^{95 p}$	52-20	51.20	E1-20	21.95	2n-95
8 poles	700	${ }^{70}$	70 p	${ }^{85}$	A1. 20	21.00	E1-20	£2.20	122.20
	${ }^{700}$	700	95 p	${ }^{25}$	21.45	81.45	21.45	122.4	28.45
10 polea	70 p	70p	95p	21.20	\$1.45	21-45	21.45	\$2.70	¢2.70
11 poles	70p	950	85D	E1.20	E1-70	\$1\%0	E1.70	22.95	
12 poles	708	95p	95p	21-20	\$1.70	E1.70	21.70	23.20	

13 AMP TWIN GANG SOCKETS

 Orfered at less than wbolesale price your opportunity to replace those dangerous adaptors-brown bakelite flnhh mountingstandani ftting. Unswitched 20 p cach, separ and with neon on on each. Separately switched and trith neon on/ofi indleators 45 peach. Less 10% ten or more +20 p portage if order inder
YOUR THME is the most precions thing you have. D you waste it wailing for the voldering fron to beat up" Fou can be foldertng fron to heat up" You can be soldering in a few econds with the E.T.P.
 Solder Gun which we offer at a specilily keen price. It i in fact this month'r grip. Δ well made lightweight unit donble insulated mains Transformer and is boilt In shockproor Therino-plastic casc. Suitable for 240 volt , 50 c -p-s This comes compiete zith 5 epare tipe and is offercd at a spectal snip price 22.25 plus 20 p part and insurance
 snip price 92.25 plus 20 D port and insurance

THERMOSTAT WITH THERMOMETER Saie by Honcywell for normal air temperature $40^{\circ}-80^{\circ} \mathrm{F}$. $\left(5-25^{\circ} \mathrm{C}\right.$.). This is a precision instrument with a differential which can be adjusted to better than $1-5^{\circ} F$. A mencury
switch breaks on temp. rise-the switch is operated by switch breaks on temp. rise-the wwiteh is operated by
coiled bi-metal clement and an adjustable heater is incorcoiled bi-metal clement and an adjustable lacater is incor-
porated for heat anticipation. Elegantly porated for heat anticipation. Elegantly stylert and en-
cased in an lvory plantic case with clear plastic windown, cared in an lvory plantic case with clear plastic windowne,
themoneter above and swltch setting scalc below. Slze approx. $\$-8^{\circ} \times 3 \cdot 2^{-} \times 1 \cdot 4^{\prime}$ deep. Can be mounted on approx. 3 conduit box or directly on wall. Price 21.5 each or 10 for conduit
E11. 25 .

MULLARD AUDIO AMPLIFIER MODULE tires 4 transistors, and hae an output of 500 mW into
 GPECLAL SNIP FRICF 60p each. 20 for Sh-40

DISTRIBUTION
 PANELS

Just what, yeu need fur work leweh or lab. 4×13 amp sockets in metal box to take standard 13 mmp fusecl plugs and on/off switch with neon waroing light.

I HOUR MINUTE TIMER

Made by Smithz. Complete with control knoh and calibrated dial. This month's spectal hargain at 50 p . Uscful in the kftchen, ofice and dark-room etc.

INFRA RED BURGLAR ALARM CAPACITANCE METER LW/MW RADIO TUNER
To recnive prices for these and other featured projerts send the estimated

ELECTRIC TIME SWITCH
 Made by Smiths these mre A.C. mains onerated. NOT be built lato box with 13 A sockct. ? completely adjustable time pcriods pcr 24 hours 5 amp chanke-over contacts will
swftch circuit on or off during these periods f2. 50 port and switch circuit on or off during these periods 82.50 port and
ins. 23 p . Additional time contacts 50 p ns. 23p. Additional time contacts 50 p pair.

50 M!CRO AMMETER

Square, panel mounting type. 52
MAfNS OPERATED SOLENOIDS Model 772 gurall
but powcrfol $1^{\prime \prime}$ pull is $\times 1_{4}^{-6} 60 \mathrm{p}$. MiIodel $400 / 1$ pull \$ize $2 \%^{\circ} \times 2 \times 1 \xi^{\circ}$
75 p .

Kodel TTIO 1z" pull size $3 \times 23 \times 2$ *
51.80 plus 20 p post and insurance.

MAINS RELAY BARGAIN Spectal this month are and trebie pole change and treble pole changerated at is ampa. for 240V A.C. Good Britlah Make. Onused. Size approx. 1$\}^{-} \times 1^{-1}$. Opea conktruction.
Siagle poie 25 each $\quad 10$ for 52.25 $\begin{array}{ll}\text { Siagle poie 25p each } & 10 \text { for } 52-25 \\ \text { Treble pole } 35 \mathrm{p} \text { esch } & 10 \text { for } 83-15\end{array}$

CD CAR IGNITION This syatern which ho proved to be amaringly parts as P.W. Circult
 Deluxe model with prepared circuit busrd 28.95 . When ordering please state wheliker for poeitive or negative aystems.
22 POS. SOLREOID OPERATED STUD SWITCE Molenoid moves, each corment pulse to switeh nolenoid moves switch arm through one poritions on to the nest coniact stud-current to relcise Thest are ex-equipment but in cood warking order. Any not so would be replaced. Prica 50 p TIMED 'ON' SWITCHES
Yode by Smlths for washing tnachines elc. Centre uphade closen aouble pole 15 amp switch directls it is tarned. A full 360° turn or only a part turs winds the chockwork mechaniem and keeps the suitch closed untill the spindic returns to the onf porition. A dial therefore could be fitted to Indicate hours and minutes and the switch on period could be set quite scenrately. 3 models minutes Price 95 pach. Metal mind pointer 360 15p. Suitable relay to makc the switch on instead of "ox $35 p$.
Ex Admiralt5-9. tralt D.C. input- 240t 50 epe output. Admiralty rating 80 watt but we pare tested this to 50% overioad roltage regulated so sultable to operate TV or instrument. In case with metal cover-controls on front include voltmeterProbably eont $£ 200$ each to make. Orar price oris te5 each plu* carriage. 52 up to 200 mijcs 甜 up PAPST MOTORS
Fsti. $1 / 40$ th h.p. Manie for 110-120 volt rorking. ideally tokether of our standard 240 volt mains A really beautiful motor, cxtremel 5 quiet romning
 PRESSURE SWITCH
Containing a 15 amp. change ov
whitch operated by a diaphragni
Which in turn is aperated by air
pressure through 3 small inetai
pressure through a small inetsi
tube. The operating presure is
adjastable hut is bec to preserate in
spprox. 10 in of water. These ure
preware derices and can in fact be quitc Ton sitmpls by blowing into the inlet tube. Original use was for washing machines to torn of wnter When tub has reacher correct level but no dopbi has many other applications
75 p cach. 10 for $58: 75$.

TAPE HEADS

Miniature size. Pront ${ }^{2} \mathrm{~N}$ for Travox, separate heads for record and erasetrank 45p pair. 4 track ${ }^{75 D}$ pair.
LEVER SWITCH REF.
Ideal for intercom or wimitar H2. H52/4
Ideal for intercom or wimilar. Preening the lever down operatca 6 pairs of change-over contarts, pressing the lever ap operates 4 pairs of changenortnally returns to the of or centre ponition size spproximately $1 \frac{1}{}^{-}$long x 21 1^{-1} deep x

15 AMP

ELECTRICAL PROGRAMMER Wake up gently with radlo plsying and kettle boiling swltch lighte on co ward ati intrudershate astin loult ras come home to. These and Electrical I'rogrammer Clock hy batoons maler with 15 amp. onfoll switch. Switch on time can be set anywhere to stay on up to 6 hours. Independent 60 minuta memory jogger. A iveautital anit, Price $81.85+20 \mathrm{p}$. p. \& p. or with giak front chrome bezel 75p extra.
2 POS. ROTARY MAINS SWITCH Raled 15 amp at 1230 r, $\&$ circuits, Poadtion A-all
circuits open. Position - circmit I closed. Position circuits open. Position R-circait I closed. Position C-circult ciosed. Powition D, circuit 2,3 \& 4
clowed Postion $E-2$ \& $\$$ clrewits cloned. Position clowed Postion ER-2 \& S clrcuits cloned. Position pircnits closed. 15 D each or 10 for $\mathrm{fl} \cdot 85$.

EDGE CONNECTORS
S2 way for $\$ 1-50$ strip brards. Gold plated con
tacts. 50 p each or 10 for $£ 4.50$. VEROBOARD
0Icuts-10 picces. $1-15$ a $\cdot 2$ matrix. All good useful sizer Total not less han 150 m. ins very least f2. Price t $\leqslant 1$ the lot. Regular price value at

8 AMP VARIACS

Thesc sre variable toltare transformers, British made by the famous 2anith Co. Fiulls enaloed control knob. Zenith Model No. 100 LMI $920-240$ A-C. output $0-240$ volt ap to 8 anngs. This model is listed at ncariy 2 . We hase a limited quantity only, abanlately brand new. still in makers cartons, olfered to son at 51250 cach plus 57 cmriage and insurance up to $\$ 00$ miles.

Where postage is not stated then orders over 55 are yost trec. Below as add 20p. Semlconductors add 5p post. Over fl post tree. S.A.E. with enquiries please.

BRAND NEW LARGEST SELECTION OF SEMICONDUCTORS RETURN OF POST GUARANTEED

Post \& Packing 13p per order. Europe 25p. Commonwealth (Air) 65p (MIN.) 2. Matching charge (audio transistors only) 15p extra per pair

\section*{TTL LOGIC I.C. NEW PRICES
 | | 1-12 12-24 | | | 1-12 1224 | | | 1-11 18-24 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | £p | E_{D} | | \& | 2p | | 2p | £p |
| 8N\% 400 | 0.80 | 0.18 | SNT438 | 0.80 | 0.75 | 8 ST 4 T | 0.32 | 0.30 |
| 8N7401 | 0.20 | 0.18 | 3N7434 | 064 | 0.05 | 8N7473 | 043 | 0-41 |
| SN7402 | 0.20 | 0.18 | 8N7438 | 0.84 | 080 | $8 \mathrm{S743} 4$ | 0.45 | 0.11 |
| 8N7403 | 0.20 | 0.18 | $8 \mathrm{~N} T 440$ | 0.28 | 0.21 | SNT475 | 0.45 | 044 |
| SN7405 | 0.28 | 0.18 | SNTA41AN | 0.87 | 0.88 | SNT 476 | 0.45 | $0-44$ |
| ES7406 | 0.80 | 0.75 | SNT442 | 0.85 | 0.81 | CN7480 | 0.70 | 065 |
| 8N7407 | 0.80 | 0.75 | 8N7443 | 286 | 2.70 | 8N7481 | 140 | 1.38 |
| SN7408 | 0.20 | 0.18 | SN7444 | 2.86 | 8.70 | 8N7482 | 0.87 | 0.88 |
| 8N7409 | 0.20 | 0-18 | 9N7443 | 250 | 2.40 | 8Nr483 | 0.87 | 0.82 |
| 8x7410 | 020 | 0.18 | SN7446 | 1.00 | 0.95 | SN7484 | 2.00 | 1.85 |
| 8N7411 | 028 | 0.21 | SN7447 | $1-00$ | 0.95 | 8Ni480 | $3 \cdot 62$ | 3-40 |
| 8×7413 | 0.48 | 0.48 | SN7448 | 1-00 | 0.95 | SNT486 | 0.38 | $0 \cdot 30$ |
| SN'ti3 | 0.40 | 0.38 | 8×746 | 1.00 | 085 | SNI490 | 0.87 | 0.84 |
| SN7120 | 0.20 | 0.18 | SNT450 | 0.20 | 0.18 | SNT402AN | 1 1.21 | 1.10 |
| 857423 | 0.51 | 0-47 | 927451 | 0.20 | 0-18 | SN7492 | 0.87 | 0.84 |
| 8N7427 | 0.48 | 0.45 | 687453 | 0.20 | 0.18 | 857493 | 0.87 | 0.84 |
| 8-7428 | 0.80 | 0.75 | SN7454 | 0.20 | 0.18 | SN7494 | 087 | 0.84 |
| \$87430 | 0.23 | 0.15 | 8k77460 | 0.20 | 0.18 | SN7495 | 0.87 | 0.84 |
| SN7432 | 0.48 | 0.48 | 8N7470 | 0.40 | 0.38 | 85\% 496 | 0.87 | 0.84 |

SUB-MIN ELECTROLYTIC

range axial lead $0.6 / 64 ; 1 / 40 ; 1 \cdot 6 / 25$: $2 \cdot 5 / 16 ; 3-1 / 63 ; 1 / 100^{60}$ esch Vajues: $8(\mu \mathrm{~F} / \mathrm{V}): 0.64 / 64 ; 1 / 40 ; 10 ; 20 / 16 ; 20 / 64 ; 25 / 6-4 ; 25 / 25 ; 32 / 10:$ 32/40; 32/84: 40/16; $50 / 64$; $50 / 25$; $50 / 40 ; 64 / 10$; $\times 10 / 16$; $50 / 25 ; 100 / 6 \cdot 4$; 123/10; 125/16; 320/6-4.

SILICON RECTIFIERS

P1V	50	100	200	400	600	800	1000	1200
14	8p	98	10 p	11p	12p	15p	200	
3A	15p	17	505	2\%	85	27	307	35p
6 6			950	300	$22 i p$	35	-	
10.	30 p	350	409	47 p	56	66	75 p	
15A	38 p	$45 p$	453	55	$65 p$	75	870	
35A	70	80%	$90 p$	Es -00	E140	21-70	82.76	
1 anp	38	te		sora				

E34.A	IO\%	48719	7	baxle	12]p	FST3/4	2210		
Mr91s	is	AA129	15p	BAY18	17\%	0 OS	17		
IN916	7	AAZ13	12p	BAY31	7	O410	20D		
ISs $0^{\circ} \mathrm{O}$	90p	AAZIS	12p	BAY38	${ }^{25 p}$	OA9	10p		
IS:4	\%	AAZ17	10p	BY100	159	OA47	8p		
15113	15p	BA100	15p	BF103	29	OA70	7 7		
18120	120	BA102	25	BYI22	47ty	0873	100		
18121	14p	BA110	25p	BY124	15p	OA79	$7{ }^{7}$		
ISISO	80	BA114	15p	BY126	15 D	OA81	85		
IS131	10p	BAl15	7 P	BY127	170	OA85	100		
18132	$12 p$	B4141	17p	RY16s	57p	OA90	7 p		
18920	$7{ }^{\circ}$	BA142	17p	BYX10	29	OA91	7 7		
1S922	8 p	BA144	$12 p$	BYZ10	35	OAPS	7		
18923	12p	Bal4s	17p	BYZ11	320	OA200	70.		
L9940	5p	BAX13 5p		BYZ13 250		TIV307	10p		
				50p					
"SCORPIO" CAP DISCHARGE IGNITION SYSTEM (As printed in P.E. Nov. '7I). Complete kit $\mathbf{£ 1 0 - 0 0}$ $\text { P. R P. } 50 \text { p. }$						BRIDGE RECTIFIERS			
				A. PlV		A. PIV			
				1100	37 p	450			
				1.4140	570	4100			
				2.4140	89\%	4400			
					82 p	650			
				$\because 200$	41p	- 200			

\section*{THYRISTORS (SCR)}	PIV	50	100	200	300

VEROBOARD ${ }_{0.15}^{0.1}$

	Matrix	Matrix
$2{ }^{2} \times \times 3 \mathrm{jin}$	17 D	${ }^{23 \mathrm{p}}$
$23 \times 5 \mathrm{in}$	25 p	25 p
31×3 in	\%5	25 p
3t $\times \sin$	30 p	29D

$5 \times$ 17lin (Plain) 83 p,
Vero Pins (Bac of 36) 20
Vero Pins (Bact of 36) 20p
Vero Catter 45p
Fin Intertion
OPTOELECTRONIC

OPTOELECTRONICS
MTYITRON 3015F SEVER
SEGMRET INDICATOR \&2-00
TK 2O9 LGETS ENTTTIMG
DIODE (RED) 35P.
B990 PHOTORESISTOR 38p

RESISTORS

it watt $10 \% .2\}$.
2 watt $10 \%, 6 \mathrm{p}$.
fw

MULLARD C280 M/FOIL CAPACITORS

 0.47
0.68
1.5 F
$1 \cdot 2 \cdot \mu \mathrm{~F}$
2

WIRE-WOUAD RESISTORS 2.5 wratt 6% (UP to 270 obras 5 oniy). 7 p (up to $6.2 \mathrm{k} \Omega$ only), 9 10 Fatt 5% (up to $25 \mathrm{k} \Omega$ only).

POTENTIOMETERS
Carbon:
Log . and Lim, less switch, ${ }^{16 \mathrm{p}}$. Wire-wonnd Pots (3W), 38p.
Trim Ganged Stereo Pots, Log. Trim Ganged Stereo Pote, Lo
and Lin., 40p.

PRESETS (CARBON)
0.1 Watt $6 p$ VERTICA $\begin{array}{llll}0.2 & \text { Watt } & 6 p & \text { OR } \\ 0.2 & \text { Watt } & 71 p & \text { HORIZONTAL }\end{array}$

THERMISTORS
$R 53$ (STC) 82.20 VA3705 95p
PA1077 80p
 stock. Please enquire.
on for long periods without making any joints. Iron manufacturers will be able to provide you with more information on particular types of bits.

Bug Report

Four months ago you published some of my reflections on how I was feeling as a recently infected victim of the "Electronics Bug", so perhaps you may be interested to hear something of the post-infection period.

At the present time temperature is now back to normal, or at least I don't get quite so hot under the collar trying to follow some of the more complicated theoretical items, such as how an actual circuit performs. You see I have now resigned myself to the fact that it is perhaps a little late in the day to really learn thoroughly how and why it all happens.

With only a limited amount of time to devote to a hobby which is after all to some a very fulltime occupation; I have decided that maximum pleasure will be obtained if I cease puzzling how a particular circuit functions, and just get on with, what is for me the most enjoyable part of the activity, the actual construction of a project.

No doubt some of the more erudite purists among your readers and contributors will throw up their hands in horror at this "short cut" attitude. My defence is that each of us must know best how much time and effort we can afford to devote to a hobby, and the criterion is surely the amount of pleasurable relaxation that can be derived from it.

In my own case the main pleasure is the construction of the housing of radio receivers, I find a great deal of satisfaction out of designing a suitable cabinet, in the main using plywood either varnished, or covered with self-adhesive plastic of which a huge variety can be very easily obtained almost anywhere. The latter method does of course have the advantage of speed, as you don't have to wait between the several coats of varnish that are necessary to obtain a really pleasing finish.
For the Astron (which incidentally really did "work first time" as you forecast!) I didn't consider I could make a good job of the perspex case featured in your article, also I was anxious to get en with it and so looked around for something quickly available. It was felt necessary to keep to the spirit of the project, I finally selected a transparent rigid plastic lunch box and managed to fit
everything neatly with only very minor alterations to the suggested lay-out.

There are several sizes of rigid plastic containers available in most hardware and chain stores, usually intended for food storage, picnics, etc., and are worth considering when one is searching for something quick and easy.

Naturally, for those who require something even easier there are plenty of diecast boxes and instrument cases to be had in all shapes and sizes from many of the component suppliers who advertise regularly in your columns.

As this progress report has become more of a case history (ugh!) perhaps I could continue by referring to the excellent article in March E.E. namely Cases from Chassis which appeared just as I was contemplating construction of the Electro Laugh so this seemed an ideal time to put the method into operation.

I sent off my $£ 2$ to the supplier who regularly offers a kit of parts for your projects and was delighted to find the order was dealt with very promptly indeed. I was especially pleased to find that not only was the approximate cost quoted in your article an apparently realistic one but that the kit also contained the extra parts to include the optional blanking gate. Full marks all round!

All the components and circuit board were fixed directly to a panel (you've guessed it-plastic covered ply-wood!) cut to fit the open side of an 8 inch $x 6$ inch aluminium chassis all as per the Cases from Chassis article.

With perseverence, I am sure the smaller size chassis could have been utilised, but as size was not an important factor this
time I found it simpler to use the larger case which gave more scope for planning a pleasing layout, bearing in mind this project uses two 6 volt batteries.

The "speaker" supplied with the kit, a $2^{1}{ }_{2}$-inch diameter telephone ear-piece was found to give excellent volume, much better than various impedance mini-speakers I experimented with, so this was mounted centrally on the front panel, the moulded flange on the ear-piece making fixing a simple matter of cutting a circular hole in the panel, and applying a little contact adhesive.

The blanking gate was wired via a second push switch, so the type of "laugh" produced depends on whether one presses one, or two buttons, and can of course be varied as the mood takes you.

In actual fact the sound produced is not really very much like laughter, or at least it isn't on my model. It is more like a cross between a wailing banshee, and a soul in torment, with police siren overtones. However it certainly makes me laugh, also those friends and colleagues who are still speaking to me after exposure to its somewhat strident tones.

To sum up, an interesting unusual project, of no real practical value other than a (end of!) conversation piece. As a laughter simulator: 5 out of 10 ; but as a laughter stimulator-full marks!
J. G. Richards

Sale.

We must point out that we are unable to supply the back issues mentioned in this letter. Nor are we able to supply copies of individual circuits or articles.

The approximate cost of components for the Weather Station (featured last month) should have been given as $\mathbf{5 7} .50$, excluding the two cases but including the vanes and rotor kit. Also in this article D1 is a $3.3 \mathrm{~V}, 400 \mathrm{~mW}$ Zener diode.

Drill Speed Controller (featured last month) see page 614.

CRESCENT meno
 Mo. II
 MAYES RD.

 "DIPLOEAT"
MOHOSTFRREO.
HRADGIET HRADGET
Finest quality British made Light-
weight Headphontes.
Incosporste ceramio plezo electrio
trangiucers.
Speciflcation:-20-17.500 CPB.
Impedance - Predominantly es-
impedaces - Predomper earploce
can be regarded at 150K at lkc
Weight- 3 -50z. (98 grams).
A Bargata at $92-50 \mathrm{p}$ each set
Pleme faclude 10 p per set PIP.

BRIDGE RRCTIFDEA:

 Plastio encapoulsted.Texpe Type No 1840-
50550 y at 4 mmp
Our Price 559
+5 p P. \& P.
\qquad
HIGH QUALITY IMPORTED HEADPHONES
1,000 \& per pbone .. . 95p
2,000 Ω per pbone .. 105p
Flus 10D P. \& P. per pair. COMPONERT COREER
Veraboard Oflenta -2 m . $3 \mathrm{~s}^{\circ} \times$ Veroboard Offeata 2 m . $3 \mathbf{I}^{\circ} \times 17$ Plaln Veroboand 1 m . $\times \times$ ip D.P.D.T. Blide Bwitch Experimental Transistor Holders, s-pin and 4 -pis LC. Holders for 14 or 16 pin 200 Pleave include 3 p p. 8 g . Der 3 ltems
$10.00017 D$ (3) 167 CAPACFOR A few only at thin price. st' long. 40 , each. Plesec include $5 \mathrm{p} p:$: D .

(57 mmm) 8ohm - 50 p $25^{-}(57 \mathrm{~mm}) ~$
$240 \mathrm{ohm}-50 \mathrm{p}$ each
$24 \mathrm{~mm})$
$80 \mathrm{ohm}-50 \mathrm{each}$
 Mini-Loudspentra
Orysial or Magretic 2.5 mm or
o. 2.5 mm (please state which type $20 p$ plus $3 p$ p. $* p$. BMINAPREFRR BARGAIE EM.I. 450 set 2. 8. 15
58.25 plus 38 p. P. \& P R.K.I. 350 sot 8 ohm. 7.00 plpe 389. P. \& \mathbf{P}

Bupply Voltage Spenter Imp. Frequency Overall Size Ideal Ampliner stereo milt, etc. modnle. All graranteed and a bargitn at
$9-247$
$8-16$ ohm
$50 \mathrm{hZ}-25 \mathrm{k} \mathrm{k} \mathrm{Ex}$
$2 \operatorname{in} \times \sin \times t i \sin$

COIVERTER Enables you to rouk your Tranuistor Radio. Ampltger or Cassette etc. from the 12 rolt car exiply poettive of neg. earth. Thie converter cupples 6, 7t or 9 volts and is tramistor regulated. Approx size $21^{\circ} \times 31^{\circ} \times 2^{\circ}$ very easy to fit and a real monoy saving device for $89.50+10$ p. P. \& P.

TRI-VOLT CAR
COIVRRTER Bnables you to rodk Ampltaer or Casmette etc. trom the 12 roit car
supply poattive of neg. earth

TRL.VOLT BATEEBY METIATOE Brables you to Fork your tranaigtor radio, amplider, or cesoctite, ete. from A.C. matns through this cormpact elirainator. Just by moving a plug you aan select the voltage you requine- 6 v , 717 or 9 rolta. This meanh all your tranidator porer pack spplicstions can be bandied by this one unit.
 for the Philipe Cansette - $8.00+10 p$. P. \& P.

ALDITIINI CRASASE

3rade trom 18 gatage alumitatom 4 aided
chapth with curner trackela, An are 31°
$\begin{array}{lll}6 \times 3 & 12 \times 3-88 p & 14 \times 9-91 p \\ 6 \times 4-459 & 12 \times 5-81 p & 18 \times 6-86 p\end{array}$ $6 \times 4-459$
$8 \times 6-53 p$ $8 \times 6-52 p$
$10 \times 7-63 p$
$12 \times 8-819$
$12 \times 8-889$

Pleare sead 10 g per chasisis P. \& P $\times 10-1 \cdot 08$ p
PRTM PRTHITID
MRECUTE

WAFRE SWITCEIRS
1 pole 12 ت5y 2 pole 2 way
2 pole 3 way 2 pole 3 way 2 pole 4 way 2 pole 6 way
3 pole 4 way a poie 4 way
4 pole 3 way \qquad 4 pole 2 why
189 each. Plever tinc.
5 p P. \& P. Up to 3 owitches.
$=5850$
\qquad

2N3055
POPULAR POWRR
TRANEISTOR
NOW Bt OuT IOW Pri Yow st our Low Price
50p exch Please include 5p P. \& P-

RABGAET ACB. TERYED TEIYRIBTOR
 Plesse inciude 5p P. \& P.

POTEITIOMETERS All typee 1° and less diameter.
BINGLEES DUAS. 5K Lor or SK 10K Lin Less 10K 25 K
50 K
Switch
50 K
Less
Switch 100 K 2pea, 100 K Switch
250 K Double 250 K . 250 K Double 250 K 40p
500 K Poie 500 K each $\begin{array}{ll}1 M & 13 \\ 2 M & \text { Switch } \\ 24 p e a, & 2 M\end{array}$ Up to $\$$ Pota. Pleme add
5 Fp . R . P . PR15HED $\times 8-10 p$ CTRCUIT ROARD $9 \times 5-10 p$
Flease inc. $10 \times 8-150$ Phease inc. Spe per board P. \& P.
EAIc00 3 WATT AUDIO AMPLIFIER MODULE An Audio Ampliner designed around the TAA621 Linear I.C.:-

(2) Brand new	
Britiph made Relaye.	
gize- $1^{11^{*}} \times 1^{*} \times \frac{1}{2}^{*}$	
All two chsogeovers with	
250 V , 1-5A contacta and	
ariteble for	Attiog on -Im
Veroboerd.	
TJpe volts	Current Ohms.
$27 / \mathrm{A} \quad 12 \mathrm{v}$	17x/A 700Ω
21/A 12v	28M/A 430Ω
121A 6\%	35M/A 1850
800 each Pleace include $5 \mathbf{p} \mathbf{P}$ \& P up to	
S Relayt.	

EEM PANEL METERS

UEED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK

$\begin{aligned} & \text { NEW "SEW" "STEW" } \\ & \text { CLEAR PLASTC } \\ & \hline \end{aligned}$		DESIGNS！ BAKELITE PANEL	
	TY	TYP	
	$100 \times 80 \mathrm{~mm}$ ．	square	

＂SEW＂CLEAR PLASTIC METERS

Typo yir．52P．2\％in siaxer

OHA	\％8．3\％	107．D．C．．． 220
$50-0-50 \mu \mathrm{~A}$	\＆2－75	205．D．C．．．$£ 2.20$
100	82．75	S05．D．C．． 1220
$00-$		150T．D．C．． 22.20
$200 \mu \mathrm{~A}$	22．65	3008 －D．C． 82.20
$500 \mu \mathrm{~A}$	2240	15V．A．C．．$£ 2.30$
500－0 500	52．20	505．A．C．． 82.30
\％A	22．20	150\％．A．C． 8280
as	£2． 20	300 V ． $4 . \mathrm{C}$
ma	82． 20	500 V. A．C．$£ 28$
mA	f2．20	8 Heter 1 mA 28.87
00 mA	\＄2－20	VU Meter．． 8337
0 mA	E2 20	50 mA A．C．－$£ 2$－20
amp．	92． 20	100mA A．C．＊ 2920
m	12．20	200 mA A．C．${ }^{\mathbf{2} 2} 20$
amp	22.20	500 mA A．C．＊ 22.20
15 atup	12．20	1 mmp A．C．${ }^{\text {c }} \mathbf{5 2} 20$
amp．	22.20	5 mınp．A．C．$=28.20$
amy．	82．30	10 amp ．A．C．ef2 20
smp．	E8．50	20 amp ．A．C． 2220
D．C．	28.2	30 amp ．A．C． $22 \cdot 20$

＊MOVING IRON－ ALLOTHERS MOVING COIL

 Please add postage
SEW EDUCATIONAL

 METERS
Type ED．107．Sizo $90 \mathrm{~mm} \times 108 \mathrm{~mm}$ ． A new range of high quallty moving coil instruments ideal for sehool experi bench applications． 3^{4} mirror scale．The meter morement is anny accessivie te is the following ranges：

MODEL 502557 Rangen，

 Ginnt 5 jm．Meter．Polarity Reverge 8witch Benaitivits： $80 \mathrm{~K} /$ Folt D．C$5 K / V o l t ~ A . C . ~ D C . ~$ $5 \mathrm{~K} /$ Volt A．C．D．C．Volts $60,125,250.500,10.100 \mathrm{~F}$. A．C．Volts： $1 \cdot 5.3,5,10,25$ D．C．Current： $25,501 A, 2.5 .5 .25,30,250$ ， $500 \mathrm{~mA},{ }^{5}, 10 \mathrm{mmp}$ Reglatance： $2 \mathrm{~K}, 10 \mathrm{~K}$ ． 200K， $1 \mathrm{KEG}, 10 \mathrm{MEG}$ ．Dembels：－ 20 to $\div 85 \mathrm{~dB}$ ．E12．50．P．\＆P． 17 Ip．

TE22 SINE SQUARE WAVE AUDIO GENERATORS
 ohms， $200 / 250 \mathrm{~V}$ S．C．operation． suppliad brand teed and guaran tion matral and lesis．\＄17－50．Carr．371p TE－200 RF SIGNAL GEMERATOR

SEW＂baKElite PANEL METERS

EDGWISE METERS

BELCO DA－20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port－
able instrament．sine able inatrament．Sine
1 Hz to 100 KHz ． Square 20 Hz to 90 KHz Output max
（10 K ohms）． 10 dB
Opera tion $220 / 2+10 \mathrm{v}$ ．A．C．
Price £27．50．Carr．255．

210° Wide Angle ImA Meters

TRANSISTORISED L．C．R．A．C．

RIDGE

A new partsbic cellent range and sccuracy at low | $1 \Omega-11-1$ |
| :--- |
| meg Ω |

 6 Ranges $\pm 2 \%$ ．TURNS RATIVI 1：1／1000 $1: 11100$ ． 6 Ranges $\pm 1 \%$ ．Bridgo voltago at 1.000 eps Operated from 9 rolto． $100 \mu \mathrm{\mu A}$ ． Meter indication．Attractive 2 tone metal
case．Size $71 \times 5 \times 2 \mathrm{in} .520$. P．\＆P． 25 D

230V／240V SHITPES
SYECEROHOUS
GSARED MOTORS
Built in gearbor．All braod net and boxed 60 RPM CW： 30 RPF CW：2RIER ACTV
2RIHR CW：8RIDAY CW： 2R／ER CW：8RIDAY CW：
10 RPM CV；50p each，

MULTIMETERS for GUERY purposel

ROUND SCALE TYPE PENCIL TESTER MODEL TS． 68

Completely portable，simple to use procket sized teater． Ranges $0 / 3 / 30 / 300 \mathrm{~F} A \mathrm{C}$ Resistance $0-20 \mathrm{~K}$ ohm

8KYWOOD SW－500
 $0.6 / 3 / 19 / 30 / 300 / 600$ DC Current 20uA／6 10K／i00K $/ 1$ Wegil Yeg．Decibels－ 20 to +57 db ． 27.50 ． P．\＆P． 15 p．

HIOKI MODER 720 X
20.000 O P Y 20.000 O．P． 7 ．
$5 / 25 / 109 / 500 / 1000$ vixc 10！50／200 1000 V．AC．

 Model $8-100 T \mathrm{R}$ 前 MTI
 ERER TRANSISTOE
 LIRROR SCALE OVER
LOAD PROTECHON $0 /-12-6 / 3 / 12 / 3071201600$ ／6／30／120／600 V．dC． ／12／600na／L2／300 MA／12 OПOK／L MEG／100 MEイ：
-20 to +50 db db．
Tranajator tester mrasures Alpha，beta and Ico．Comnlete with hatteries，Instructions and leads．\＆13－50．P．P．25p

MODEL 50030.000 O．P．V with averload protection mirror scalo 0／5／2－5／10／25／
100／250／500／1，000 V．D．C． $0 / 25 / 10 / 35 / 100 / 250 / 500$ 1.000 V ．ACC 0／50cs $/ 500 /$ 00 mA ． 12 mp D．C of60／Kjヶ Mex．f50 3feg Ω ． 88－873．Post paid．

TME LAB TESTER．
104,000 O．P．V． $61 / \mathrm{B}$ $10 n, 000$ O．P．V． $6!12$
Scale Ruzcer Short Cir－ scale Ruzcer Short Cir
cuit Check Sensitivity 100．000 Q．P．V．D．C $\$ \mathbf{K}$ $\cdot 5,2 \cdot 5,30,50,250,1.000$ F．A．C．Volts： $3,10,50$.
$50 . ~ 250, ~$
$000,1,000 \mathrm{~V}$ ． D．C．Current： $10,100 \mu \mathrm{~A}$ ， $10,100,500 \mathrm{~mA} .2-5,10$ amp．Reaistanc $1 \mathrm{~K} .10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEG}$ $100 \mathrm{MFG} \Omega$ ．Decibels：-10 to +49 db ．Plas－

RUSSIAN 22 RANGE MULTIMETER

 Model U437 10,000 o．p．r．A first class reratile in－ a trumt ciass rerratile in－ U．S．8．R．to the birchest standards．Itanges： $2 \cdot 5 / 10 /$
$50 / 250 / 500 / 10005$ D．C． $2 \cdot 5 /$ $10 / 50 / 250 / 500 / 10005$ A．C． DC Current $100 \pi \mathrm{~A} / 1 / 10 /$ 100mapla besistance Complete 300 ／30／300K／3M Ω ． test leads．instructions and sturdy steel mrtion and OUR PRICE 55.97 P．\＆P

TO－3 PORTABLE OSCILLOSCOPE
 Sin．tube．Y amp．Sctuativ－
 x amp．mensitivity 0.9 v ． p－pick．Benderidth 1.5 cps mek $\Omega=20 \mathrm{pF}$ ．Time base． symehronization 10 cps $300 \mathrm{Kk:}$ external．Hlurninaticd scale $140 \times 215 \times 350$ mm ．Weigit 15 1 lb 220／240V．A，C Supplied HOKEYWFLL DIGITAL
VOLTMETER VT． 100 Can be panel or Basic meter ruca． but can be nged to mensure a wide ratare of optional pluz in cards．Bpecification：secu ravy： $\pm 0-2, \pm 1$ Uigit Resolution： $\operatorname{lm} V$ ． Number of difiks： 3 plus fourth overrange ligit．Overrange： 100%（up to 1－999）．Input 1 pedance： 1000 Meg ohm．Measuring cycle： ins，foll scale aljustment agalnst an internal reference voltuge．Overionil：to 100 v ．D．C Input：Fully fosting（ 3 poles）．Input power： $110-230 \mathrm{v}$ ．A．C． $50 / 60$ eveles．Overall size：
 BFAKD NEW AND FLLLY GEARAN－ TEED AT APYROX．HALF PHCE． 849－97t．Cart． 50 p ．

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

GEMI－CONDUCTORE／VALVES

ALL DEVICES EAAND NEWAND FULLY GUARANTEED

Abstract

Transistor

路荡 BYW BFX BFX BFX $B F X$ $B F X$ $B F X$ $B P X$ $B F X$ $B F X$ $B F X$ $B F X$ $B F X$ $B F X$ $B F X$ $B F X$ $B F Y$ $B P Y$ $B F X$ $B F Y$

 \begin{tabular}{cc|cc|c|c|}
CA3005 117p \& FJE151 \& $25 p$ \& SN7442 \& $75 p$

CA3007 \& $262 p$ \& FJH161 \& $70 p$ \& $8 N 7446$ \& $100 p$

CA3011 \& $75 p$ \& FJHITI \& $25 p$ \& ENT447 \& 185p

CAS012 \& 880 \& PJH181 \& $25 p$ \& $\$ N 7448$ \& $125 p$

 GA3013 105p FJH281 250 SN7450 20p

CASO14 124p \& FJH231 \& $25 p$ \& $8 N 7451$ \& $20 p$
\end{tabular} CA 3019 CA3020A

CA3091
\qquad PJH2s1

OA2	35 p 12	2584	3001 5	EM80	${ }^{45}$
OB2	459	2575	429 E3	3r81	60
OZ4	30025	2526	659	Y884	85p
144	20080	30 Cl 5	80 p	EM85	
IR5	40 p 30	30 C 17	90 p E	M87	700
IS5	80 p 30	30 C 18	80 p E	EY51	409
IT4	250	3055	85 p E	EY86	40 p
10_{4}	80 p 30	30YL1	75 p ，	EY87	42D
103	$60 \cdot 30$	$30 \mathrm{FL12} 1$	120 p E	EZ40	65p
2 D 21	35 p 30	$30 \mathrm{FL14}$	950	EZ41	50 D
3Q4	50 D 30	30L15	859 E	Ez80	279
354	35p 30	30L17	80 p ．	Ezz81	${ }^{\text {29P }}$
3 V 4	4853	30P12	80p G	G732	48
5 kd	750	30P19	85 P G	Gz34	
5 L 4	35 p 30	30PL1	75 D K	ET66	2．05
554	45930	30 PLI 3	93 p	KT88	00
5 Y 3	40 p 30	30PL14	00 y	MU14	${ }^{75}$
5Z49	40 p 3	3518	509	Pancso	400
8／30L2	$800 \cdot 3$	35W4	359	PC86	600
6AC7	40 D 3	3574	85 p	${ }^{2} \mathrm{C} 88$	60p
6AG：	40 p 3	3575	50 p	PC97	45D
GAK5	35 p 5	5085	50 P	PC900	$4{ }^{\text {S }}$
6AK 6	60 p 5	50C．	505	Pcrss	40，
GALS	20.8	80	55 P	PCOEs	09
бам96	800	85A2	509	Pccas	5
6AQ5	38 p 8	807	500	PCC89	50 p
6A8G	40 D 1	1625	50 y	PCC189	50，
Gats	3505	5763	70 P	PCF80	30 p
6 AU6	$25 p .6$	6148	180	PCF82	340
gave	305	4731	65p	PCF84	，
6BA6	259	Cx31	35p	PCP86	800
6BE6	30 p ．	DAF91	30 p	PCF800	0p
OBLE	759	DaF96	35 D	PCP801	co
$6 \mathrm{BJ6}$	50 p	DF91	229	PCF802	50
GBQ	400	DF96	${ }^{45} \mathrm{p}$	PCF305	80 p
6BR7	90 p	DK91	40 D	PCF806	700
6BR8	703	DK93	55	PCF808	5 s
6BW6	85	DK96	50 p	PCLas	5
6BF7	800	DL92	35.	PCLS3	65 D
6B26	400	DL94	489	PCL84	45p
6C4	885	DL96	450	PCLS	405
6 CD 6	125	DIM50	400	PCL86	59
ECLS	50 D	DY86	880	PFL200	
6 CW 4	65p	DY87	839	PL36	${ }_{50}^{55}$
6 FI	620	Esscc	100 p	PLs1	500
6F6F	$35 p$	E180F	100 p	PL82	5p
$6 \mathrm{SP}^{13}$	45p	Eabcso	55．	PL83	5
6 Fl 4	70 p	EAFt2	35 D	PISA	
$6 \mathrm{Fl5}$	65	EB91	209	P1500	75 p
6 FIS	509	EBCA1	55	PL504	
6F23	$85 y$	Ebcal	30 y	TY§\％	55 p
676	17p	EBF80	400	PY33	㱓
6.54	50p	ERF83	40 p	PY80	40 p
8 J 5	250	EBF89	82	PY81	301
GJ5GT	80	Ebizl	${ }^{00}$	PY82	85 p
6J6	20 D	ECs8	60 p	PY83	${ }^{38 p}$
657	45 p	EC88	${ }^{60 \mathrm{D}}$	PY88	403
6 KBG	40 p	EOCSO	${ }^{65}$	PY800	\％
6LGGT	45 p	ECCA	809	PY801	D
6LD20	50D	ECCP5	40	U23	p
${ }^{6} \mathrm{Q} \mathrm{F}^{7}$	409	ECCS8	40 s	028	${ }^{80 p}$
68 97	40 p	ECFro	350	प50	405
$68 \mathrm{G7}$	40p	S．CP82	35.	U52	85
68.57	40 D	ECP86	65 p	U191	
$63 \mathrm{k7}$	40 D	ECH21	57 D	U^{281}	，
6357	359	ECH35	1009	U282	ग
6sN7	35 D	ECH42	75 p	U301	，
GSQ7	40 p	vCER1	300	U801	
$6{ }^{4}$	359	ECH33	45 p	Uabcso	30
6 VBG	259	ECLSo	450	UAF42	55p
6V6GT	82 p	ECLS	35 p	EBCA1	50p
6×4	350	ECL83	709	U8C81	1 40p
6X5 ${ }^{\text {c }}$	30 p	ECL36	40 p	UBF80	${ }^{405}$
6X5GT	40 D	D Ep37A	120p	UBF89	${ }^{\text {35p }}$
10 C 2	50 p	EP39	509	U0cs 4	49
10Y1	750	D EF40	50 y	Ucces	400
10P13	609	－EF41	65\％	UCF80	
10P14	EI－10	O EF\＄2	700	UCH21	1
12AT8	${ }^{30 \mathrm{p}}$	－Epro	250	UCH42	
12AT7	30p	p EF85	85p	UCris1	1400
12.407	30 p	p EF86	30 p	HCL88	35
12Ax7	300	－EF89	289	UCL83	$3{ }^{60 p}$
12Av6	403	3 EF91	300	P UF41	
$12 \mathrm{BA6}$	40p	P EF93	850	D UF80	350
12乃E6	40p	p EF183	${ }^{55 p}$	UF85	
12BH\％	${ }^{45 p}$	P EF184		D UP89	${ }_{65 p}$
198Q5	35 p	P E ${ }^{\text {E } 190}$	500	P ULA	60p
20 F 2	${ }_{650} 5$	P ELA1	60	UT＋1	480
20 Ll	$\mathbf{5 1 - 1 0}$	0 ELA2	650	OY85	5130 ${ }^{40 \mathrm{D}}$
20P1	50p	p EIL8I	550	P VR105／	／30383
20 P 3	600	ELS	${ }^{25} \mathrm{p}$	pr	35p
20 P 4	3 c 10	0 ELRS	43 D		
20P5	E1． 20	0 EL91	35p	p Add	in
${ }^{251} 6$	50 p	D	85．${ }^{\text {p }}$	for P	
0100		8 RECTI			
1N34A	100	DA15s	18 L	G：J7M	879
13914	7 p	P PAX13	3 12p	OA5	
Wk916	108	BAX16	67	OA6	12p
AA119	79	$7{ }^{2}$ BAY31		P OA10	29
AA129	10 p	p Pays	$8 \quad 15 p$	${ }^{\text {OAP }}$	P0
AA7，18	109	D B 100	15p	P OA47	70
AAZ15	10.	P BY103	$3{ }^{22 p}$	OAFO	70
BA100	159	5 P BY122	3 37D	D OA73	10
BA102	30.	$\mathrm{P}^{\text {P }}$ BY124	${ }^{1} 15 p$	Pp OA79	80
BA110	${ }^{2} 5$	7p ${ }^{\text {7p }}$ BY126	$7{ }^{6} 12 \mathrm{l}$	P OA85	
BA111	27	7p ${ }^{\text {BY }}$ BY127	$7{ }^{1} 5$	p OA85	7p
BA112	709		${ }^{-15 p}$	p ${ }^{\text {p }}$	7D
BA141	320	20 BYZ11	130 p	OA95	7D
BA142	320	2 D BYZ12	230 p	doazeo	
BAIS4 RA145	120 200		（ $\begin{array}{r}250 \\ 10 p \\ \hline\end{array}$		100

MI－FI EQUUPMENT SAVE UP TO
$33^{\frac{1}{3} \%}$ OR MORE SEND S．A．E．FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS！

RECORD DECKS

8SR	54.87
c129t	E650
M1P60	ع10．40
©10．．	14．07
510	211－50
310	89.40
810.0	${ }_{\text {c }}^{833.45}$
${ }_{\text {MP60 }}$	
610 TPD	
610 Tri	518－80
210	
HT	

arrard

2025 T／C $\quad 8.50$ OR ${ }^{\circ}$ RP23 ni ${ }^{3185613}$ ${ }^{47} 76$ BLi：2

 GOLDREXG GLE9／2／P GLivi． GLTOM | $18 \cdot 97$ |
| :--- |
| 24 |
| 20 | GL75 GL75P LIDT5 Gidy ${ }_{6} \mathbf{C l} 93$ Lasi 1D85 G101． PIONEER

 PLA 25. THORENS TX125AR rDiso
 TD 150 P1inth 837.47 XII

TELETON SAQ－206B STEREO AMPLIFIER

Aerial tuning．BFO．AYC．Axind spread AM／CW／BS B．Integrited kpeaker and
 Tith instractions and circrit． 225．50．Салт． 30 p
BECORD DECR PACKAGE
Decks supplied with
cartridge reads
wired in teak ven－
eered plloth with
coter．
Garrard 20.5 TC／9TABCD． Garrand Apes IIt／9TAIICD Garrard 8P25 111／G800 Garrurl 8pot 111／1775－6 Garrand 8125 111／M44－7 G125 IIT／Ge800（Ithy on FaC） Garrard AP76／C800 Garrard AP7G／M75．6
 Garrard A P7G／M75FS GSR Mebonsld MP60／AT5 Goldring GLiz2／G800 Goldring GLi5／G800
＊Alvo a vailalbe with silver metal plinth 21 extra Carriage 50p any jtem．

SINCLAIR EQUIPMENT

Proiect 60 Packago offers．
 0000.60

x Zal ampliter，atereo 60 pre－amp，EZS FZ6 supply． 15.95 carr． 37 ip．Or 2 ZL 126 power sappiy $\$ 1800$ Carr． $3 \overline{1}$ p． 2 x $2 v 0$ supply． 200.25 ．Curr．37 2p Transformer for P78．哠971 extrm． Add to any of the above f4－4s for actir filcer anit and $£ 18.80$ for pair of Q16 speakers． All other Sinclumir products in stock． All other Sincluir products in stock． 380.95 Curr． $371 \mathrm{p} . \mathrm{C}$ Neoteric Amp E 48.85 Carr．S7 \＄p IC12 51 －80 Fort 10p

LATEST CATALOGUE

cornprehengive ranke of HI－FI EQUIP－ HENT，COMPONENTS TEST EQUIP－ MEN＇T and COMMUNICATIONS EQUPP－ צENT．FRFE DISCOUNT CUUPONS
 FALUE SOp
tuly Has ． detailing dhousands bargains． SEND NOW
ONLY

10p

TME MODEL 477 P．E．T．ELECTROITC
 Ratlery operated，
11 meg input． 26 11 meg input． 26
ranges．Large
fis
 DC VOLTS 0 1200V．AC YOLTS $\$-900 \mathrm{~V}$ RHS． $8 \cdot 0-$
800 V P．P．DCCUR－ RON P－P．DCCMR－ Hesistance up to 2000 M ohm．Declbels
 MCA． 220 AUTO． MATIC VOLTAGE STABILISER
loput 88－1 135 VAC or $176-$ or 240 VAC ． 200 V A rating 511－97．Catr．50p．

Station 22．97，P．\＆P． 4 Station 56.69, P．\＆P． 15 P．

EMI LUODSPEAKERS Model $350.13^{\circ} 工 8^{\circ}$ with $0-20,000 \mathrm{~Hz}$ ． 15 wat RMIS．Available 8 or 15 Phms． 9 ．
Model $450.13^{\circ} \times 8^{-}$rith twin tweeters／crassorer RMS．Availabie 8 or 15 p． 25 ． 53.50 each．P．
TE 1018 DELEXXE DONO HZGZ rape DAFCE BEADSET Sensitive，soft earpad
adjustable beadband． Magustic，impedance

2.600 ohms．

SPECIAL OFFER！ SINCLAIR PROJECT 60 STEREO FM TUNER

C．

The firat taner in the world to use the phase
 iuproved signal to noite ratlo．Provides rantastic resuls even in difficult areas． Tuntng range 87－5 to 10日atity．Automatic stere incicator．Scokilivity： 2 EV ．AFC range $\frac{1}{2}$ Out ating voltate 25－305．D．C．Size： $93 \times 40 \times$ 207 mm REC．LIST PRICF，£25． OUR PRICE ≤ 16.95 P．\＆P． Unrepcatsble offer－buy now and xate over ES $^{\text {and }}$ U4312 MULTTMSTER
Extreinely sturily Instrument for general $0 / \times / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300$ 000／300 VC and 3 inv． 600／500 VAC． 60015A／I－5／6 AMP．D．C． $0 / 1.5 / 6 / 15 / 60 / 150 / 600 \mathrm{BA}$ $0 / 200$ ब／3К／30K Accuracy DC 3 ．ACI－3\％ acale Complete with sturt metal carryin wase lead sad instructions，$£ 9 \cdot 50$ plus P．\＆P．nsp． E．H．T．TESTER 0－30KV

4 Bands covering $550 \mathrm{kc} / \mathrm{s} \cdot 30 \mathrm{me} / \mathrm{s}$ ．B．P．O． Bith inviructions 815.75 ． 371 p CAFAYETTE HA－600 SOLD SIATE RECEIVER
 $150-400 \mathrm{ke} / \mathrm{s}$ ． 550 ke／a－30me／a FisT frons end．a mech． litector，prodact B．F．O．ruriable B．F．O．noise limi ler， 8 Meter，Bandspresd．RF Galn． $15^{\circ} x$ Brand act with instructions． 850 ．Curr 500

TE－65 VALVE YOLTMETER

Tigh aravity instrument with 23 rangen．D．C．volts $-5-1,500$ t．A．C．volts 1－5－1．5005．Resistance up to 1,000 inegohms． $200 / 240 \mathrm{v}$ ．A．C．operation Complete with probe and Alviso．P．\＆P．sop Additional probes avail
able：H．F． $88.12 \mathrm{~F}: \mathrm{HIV}$ s2－50．

		）$\sqrt{4}$
10 TOTTENHAM CT．RD．LONDON，W． 1	Tel：01－6372232	
27 TOTTENHAM CT．RD．LONDON，W． 1	Tel： $01-6363715$ welcome	
3 LISLE STREET，LONDON，W．C． 2	Tel： $01-4378204$ mondar to	London．W． 2
	Tel： $01-4379155$ Saturdar	262
11 EDGWARE ROAD，LONDON，W． 2	Tel：01－262 0387	

Everyday Electronics，September 1972

Everyday Electronics Classified Advertisements

RATES: 7p per word (minimum 12 words). Box No. 7 p . extra. Seml-display- $£ 4.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertlsements Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

RECEIVERS and COMPONENTS

COM̄िPUTER PANELS 5BCIBB, dIOdes, $4-50 \mathrm{p}$ Dost 10p. PANELS WITH SILICON AND GERM/ TRANS at least 50 . B- 81.00 post 15 p . UNIT WITH I-LAZ POT CORES + 112% CAPS 50 D OOt t 5 p. ICs 7400 SERIES ON PANEL (S) 10-75p post 10p. FALLOUTS 5 - 13 p . ORP12 On panal ex equipt. 35p cp. BANK 20 WIRE ENDED NET OF
$50 p$ post 80 . SEND LARGE S. A.E. FOR LIST OF PANELS ETC
$7 L B A S S O R T E D$ COMPONENTS E4-30 ep.
TS MAYFELD J.W.B. RADIO
TS HAYFIELDROAD SALFORD E LANCS
NEED RESISTORS? Let our resistor kit solve your problem. 160 high stability $5 \% 1_{8}-1_{3}$ watt components (20 different selected values) only E1.95 post free. GL L.td., 31 Cardigan Close, Tonteg, Pontypridd, Glamorgan.

COMPONENT CATALOGUE AND DISCOUNT VOUCHERS 25p POST FREE (UK)

 W.E.C. LTD HIGH STREET, RIPLEY, SURREY.MINI MANS PACK KIT Safe double wound mini transformer, silicon rects., $1,000 \mu \mathrm{~F}$ smoothing. Delivers 9 V d.c., 120 mA . Components livers 9V d.c., 120 mA . components with data sheet; pack huildable to
size of PP6, etc., battery. $£ 0 \cdot 90+$ size of PPG, etc., battery $\mathrm{E0.90+}$
UK post 5p. By mail only from U.K. post 5p. By mail only from Aoad, South Croydon, Surrey, CR2 ODE.

NEW MODEL V.H.F, KIT Mk 2

Our latest kit. Improved desion and performance plus extra amplifier stage, receives aircriatt, amateuts, mobile, radio $2^{2} 3$, etc., this novel ind set will give you ondess hours Powered by 9 volt battery, complete with easy to follow instruction and bulit in jack socket for use with earphones or amplifier.

Only $E x \cdot 30+$ D. a P. 10 D U.K. only.
Illuatrated catalogue of selected kits and components. 15 p P. \& P. free.

Gallean Trading Co., Dept E.E.

12 Burfs Way,
Carringham.
Stanford-le-Hope, Essex.

SERVICE SHEETS

SERVICE SHEETS (1925-1972) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8,000 models available. Catalogue $13 p$. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

CASSETTES

TOP QUALITY, low noise audio magnetics cassettes with fitted screws, in netics cassettes with fitted screws, in library case, C60 15 p . Ingo Ltd., 72 West End lane, London, NW6.

EDUCATIONAL

TECRNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566). Intertext House, London, SW8 4UJ.

MEN! You can earn 550 p.w. Learn computer operating. Send for FREE brochure-London Computer Operators Training Centre, G22 Oxford House, 9-15 Oxford Street, London, W.1.

FREE
 TO ENGINEERS Whatever your agc or experience you must read New Opportunities. It des-

 cribes the easiest way to pass A.M.S.E., A.M.L.M.I., City \& Guilds (all branches). Gen. Cert., etc., and gives details of courses in all branches of erigineering Mechanics, Electrical, Civil, Auto, Aero, Radio, TV, Building. etc. You must read this book.Send for your copy today-FREE! B.I.E.T. B32, Aldermaston Court. Reading, RG7 4PF
Accredited by the Council for the
Accreditation of Correspondence Collexes

ERITIS INSTITHIE OF ANGINERTNG IECHNOLOGY

MISCELLANEOUS

RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included. el post free CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.
EXPERIMENTERS! Hundreds unusual items at GRIMSBY ELECTRONICS, Lambert Road, Grimsby, lincs. List 5p.

aUdIo COESEOTORS \& CABLE

DLE PLUGS: 2 pla speaker, 3 pta, 6 pin. 5 pla 280, $5 \mathrm{pta} 240,6 \mathrm{pin}, 7 \mathrm{pin}$. All 10 p esch. Line eockete 11 p exch, Chamis wockets op esch. 2.5 mm है 3.5 mmm jack plugs 10 p each. 8 creened z^{\prime} standard sack pluge: Mono 14p, stereo 24p each. Phono plags \& sockete 8p eact.
GCREREED CABLE: Single Bp/yard, Twin 8p/yard. Four core 14p/yand.
P\&P op per order. C.W.O. so M.P.B. ELECTROFICS,
72a LOMDOM ROAD, CEOYDON, BUREIY CER $2 T B$

MUSICAL MIRACLES

KITS to bulld quality accessories:-
WAA-WAA all parts, electronic \& mech. $\mathbf{£ 2 . 9 5}$ FUZZORAMA quality fuzz box $£ 4.75$ BASS PEDAL 16° End 8^{\prime} tones $\$ 33$ BUILD A SYNTHESISER OR AUTO RHYTHM from Dewtron protessional modules Cat. $15 p$ from D.E.W. Lid., 254 RIngwood Road, Ferndown, Dorsot BH22 9AR

SOURD SUPPLIES

(LOUGETOH) CO. LTD.

Eagle International and International Bectiner Produche TOAPA. Euvipment and Mikes.
Cupactore. Resintors, Pluge. Sockety, Cables, Audio Leads, setuicon

ELECTROIICS DEPT. Tol. 01-508-2715

> ELECTROIICS DEPT. ENI O1-508-871 12 Smasts Lene. Lougbton, Emex.

Hours. 9.80 a.mi.-1 p.m., 2.6 p.m. Mon. Tres. Wed, and Fi. : 9.80 s.min-1 p.m.t. 2-5.90 p.m. 8at. Clome all day
"SHORTWAVE VOICES OF THE WORLD," f1-55. An exceptional book. "World Radio TV Handbook," December 1971, £2.80. "How to listen to the World," 1971 , £1-35. Under $£ 2$, postage 10p. Deliveries first class main, ask for price lint. CWO or send no moneyCOD 25p. DAVM MCGARVA, BOX 114a, Edinburgh EHEI 1HP.

CHROMASONIC ELECTRONICS is well and living at 56 Fortis Green Road, London N 103 HN .40 page illustrated catalogue 20 p post free.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE

because this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circult boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructlons. An extremely flexible design with quite an AMAZING RANGE-has obvious appllcations for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURS! SEND $55 \cdot 50$ NOW
S.A.E. for details

TO: BOFFIN PROJECTS,
DEPT. KEE.
4 CUNLFFFE ROAD,
STONELEIGH, EWELL, SURREY

12 VOLT FLUORESCENT LIGHTS

(as illustrated)

JNEW

NIP-E-BOARD PRINTED CIRCUIT SYSTEM for experimental circuits USE IT FOR E.EPROJECTS

SRBP or fibreglass etched drilled or undrilled princed circuirs. hole position grid matrix 0.1×0.15 in for flexible layout designs. Suitable for most transistors or i.c.s and edge connectors.

4p stamp for decails
SRBP from 16p; fibreglass from 19p.
SPECIAL TRIAL PACK with pcb, edge connector, handle and insulated standoff fixings-only 50p.
Nपन घLEcTRDNICs
DEPRMEKE
Ro. Box 11 SLALBAMS
EX COMPUTER PRITTED CIRCUIT PAKEIS $2 \ln x$ din packed urith semb-conductors and top price 10 boards 50 p, P. \& P. 7D. With \& guaranteed minimum of 35 transistors. Dats on tranaistors Included.
APECLAL BARGAIA PACK, 25 boards for 24 , P. \& P. 18p. With a yumanteed minimum of 85 trannigtora. Data on trannistora included.
PAgRELS with 2 power transistors simllar to OC28 on each board-components 2 boards (4×0 C288) 50 p, P. \& P. 6 p -
9 OAS, 3 OA10, ${ }^{3}$ Pot Cores, 26 Resistors, 14 All loug leaded on panels $18 \mathrm{in} \times 4 \mathrm{in}$. 4 for 51 , P. \& P. 25p.
709C OPERATIOXAĒ AMPLIELER TOS
8 lead I.C. I ofl 50 p . $\quad 50$ off 35 p .
250 MIXED RESISTORS
150 MIXED HI STABS
. 7 and 1 watt 5% and better

QUARTZ HALOGEN BULBS

With long leads. 12V 55W for car spot lights. projectors, etc. 50p each, P. \& P. 5p.
GPO EXTKNEIO耳 TELLEPHONES
with dial but without bell. 95 p each, \mathbf{P}. \& \mathbf{P}. 30 p , 21.75 for 2, P. \& P. 50p.
BARGAIN RELAY OFFER
8ingle pole change over silver contacts 25 V to 50 V .2 - $8 \mathrm{E} \Omega$ coll. 8 for $50 \mathrm{p}, \mathrm{P}$. \& P. 5 p .
KEYTRONICS mail order only
44 EARLS COURT ROAD
LONDON, W. $8 \quad$ 01-478 8499

IT COSTS NO MORE

To use guaranteed professional
components. Don't risk failure in components. Don't risk failure in your building proiects by using suspect junk-box ltems. We are abie to supply, mostly by return by R. S. Components Lid
\qquad Printed Circuit type CAPACITORS, electrolytic, low voltage, mall size, In the
 $1 / 63,4 \cdot 7 / 40,10 / 63,22 / 40$,
$100 / 10$, at 7 p each. $47 / 40$ at 10p each. $100 / 63$, $200 / 40$ $470 / 16$ at i3p each. $1000 / 18$ at 16 p each.
Phenolic Resin Boards, $172 \times 133 \times$ 1.57 mm , punched 6.3 mm grid, as used for
Turret Tags for above Boards, at 95p per pack of 144 .

Miniature Moulded Bridge RECTIFIERS for printed clrcult mounting. REC 60, 800 volts, 0.9 amp, $38 p$ each,
REC 65,800 volts, $i-3$ amps, 45p each.
All of the above and many, many other high grade components, are shown in our CATALOGUE Price 25p by
return of post.

All prless POST FREE in U.K. Mall Order Only From-

NEW
 15 watt Hi Fi AMPLIFIERS

Frequency response 15 to $19,000 \mathrm{cs}$. Signal
to noise >70 db. Input sens. 750 mv into 2 k
HELECTRONICS
O5. GRANGE ROAD. LONDON S.E. 25.

BODINE TYPE N.C.I. GEARED MOTOR

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/140V a.e. 50/60 OUTPUT
VARIABLE 0.260 V from to to 50 amp sto
SHRO UDED TYPE
amp, $\neq 7.00 \quad 2.5$ amp. $£ 8.05$
$\begin{array}{lll}10 \mathrm{amp}, ~ & 22.50 & 20 \mathrm{amp} . \\ 15 & 49.00\end{array}$

cype $\mathbf{~ 3 . 5 0}$ plus 35 P. P. \& P. or less trans-1 OPEN TYPE (Panel Mount 898 -00
former E2.25 plus 27p P. \& P. SION MADE GOGYO
seven pole armasure. balrace hear-
ing. 2,750 r.p.m. Length $2 \# \#$, Dia H, Shaft lengeh \& Shaft cia. 5/64. mA . Price $\mathrm{Ef} \cdot 25 \mathrm{P} . \& \mathrm{P}$. 10
$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS Manufackured by eizher Sa
Smith. Guilt-in gearbox. Smith. Built-in zearbox
I R.P.M.
Rw. 60 R.P.M. cw 3 R.P.P. Cw A/ 20 R.P. CW . cw cw = Clockwis 3 R.P.H. A/ew 30 R.P.H.H. cw Fraction of makers' price. Allat 75 p incli. P. \&P.
 SWITCH SELECTOR This This bascinating electro methanical device can be
switched chrough 17 positions and can be reset from any position by ener:gising the reser coil. 110 vols operation or $230 / 240 \mathrm{~V}$ a.c. with 500
a. ohm 10 W resistor or 50 V d.c. Two for fI . PROGRAMME TIMERS (Mfr. by 'Masene Devices Ltd.'
240, A.C. is.p.
'Crouzec. motor.
Drives 15 cams.each operating a io amp c/o midually warizable allowire indinations. Ideally suited for marherable combiautomation, etc. Also in the field of enter-

Easy to build. Solid 5tate. Two rull octave (less sharps and flats). Fitted hardwood case. Powered by two penlize $1 \frac{1}{2} V$ batzeries. Complete set of parse ineluding speaker. ere. together with full instructions and 10
tunes. Price $\$ 3.00$. P. \& P. 22p. tunes. Price $83 \cdot 00$. P. \& P. 22p.
50 in I ELECTRONIC PROJECT 50 easy to build KIT ing, no special Projects. No solderkit includes Speaker, Merer. The Transformer. Ppeazer, Moter, Relay, components and $\$ 56$-page instruction leaffer. Some examples of the 50 Meter. 2 Transistor Radio. Amplifier. etc. Price $\mathbf{E 7}$.75. P. \& P. 30p.

CRYSTAL RADIO KIT

Complete set of parts, including:

 Crystal Diode. Ferrite Aerial. DrilledChassis. and Personal Ear Piece. No soldering, easy to build, full step by
step
ENNER Electric Iime 5 witch
VENNER Electric Ime 5witch
$200 / 250 \mathrm{~V}$ Ex. GPO. Tested. Manually set 2 on, 2 off every 24 h . Override $20 \mathrm{~A} \& 3$-75. 30A \&3.95. P. \& P. 20p. Ausk. OFF dawn. Price as above. PARVALUX TYPE SD2. 200/250 VO A.C. D.C. HIGH SPEED MOTOR

Speed 9,000 r.o.m.
usprox. or 3,200 r.p.m. if or variable speed ovar a wid range if used in conjunction w adjacent. PRICE: 11.75 P. \& P. 25 p

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
Dept. E.E. 57 Bridgman Road, Chiswick, London, W4 5BB Phone 01.995 1560 SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat. 9 LITTLE NEWPORT ST. LONDON WC2H 7J3 O\{-437 0579

INTEGRATED CIRCUITS

Why buy aiternatives when you can buy the gonuine article from us at
eompanitive priess from stock. BRANDED FKOM TEXAS I.T.T FAIROHILD

Type 1/11 12/2425/99

 $\begin{array}{lllll} \\ \text { SN7400 } & 0.80 & 0.18 & 0.18\end{array}$ SNSN401 $\quad 0.200 .18 \quad 0.16$ $\begin{array}{llll}8 N 7402 & 0-20 & 0.18 & 0.16\end{array}$ $\begin{array}{llll} \\ \text { BNTH03 } & 0.20 & 0.18 & 0.18 \\ \text { SN7404 } & 0.20 & 0.18 & 0.16\end{array}$ $\begin{array}{llll}8 N 7405 & 0.80 & 0.18 & 0.16 \\ \text { SN7 } & 0.18 & 0.16\end{array}$ SN7406 0 $\begin{array}{llll} \\ \text { 8NF407 } & 0.30 & 0.27 & 0.25 \\ \text { 8N7408 } & 0.20 & 0.19 & 0.18 \\ \text { SN7409 } & 0.45 & 0.42 & 0.85\end{array}$ $\begin{array}{llll} & 0.20 & 0.19 & 0.18 \\ \text { SNT409 } & 0.45 & 0.42 & 0.85 \\ \text { gNT }\end{array}$ $\begin{array}{llll}8 N 7410 & 0.20 & 0.18 & 0.18 \\ 8 N 7411 & 0.28 & 0.22 & 0.20 \\ 8 N 7412 & 0.42 & 0.8 & 0.85\end{array}$ $8 N 7411$
8N7412 $\begin{array}{llll} \\ \text { SK7413 } & 0.30 & 0-87 & 0.85 \\ \text { SN7416 } & 0.80 & 0.27 & 0.25 \\ 8\end{array}$ $\begin{array}{llll} \\ \text { BN7417 } & 0.80 & 0.27 & 0.25 \\ \text { SN7420 } & 0.80 & 0.27 & 0.25 \\ \text { SN }\end{array}$ 8N7420

$\mathbf{8 N 7} 422$ $\begin{array}{llll} & \\ 8 N 7422 & 0.48 & 0.44 & 0.16 \\ 8 N 7423 & 0.48 & 0.44 & 0.40 \\ 8 N 7425 & 0.48 & 0.40 & 0.85\end{array}$ | | 0.48 | 0.44 | 0.40 |
| :--- | :--- | :--- | :--- |
| SNF425 | 0.48 | 0.40 | 0.85 |
| SN7427 | 0.48 | 0.89 | 0.35 |
| BN7428 | 0.50 | 0.45 | 0.49 | $\begin{array}{lllll}8 N 7428 & 0.50 & 0.39 & 0.85 & 8 N \\ 8 N 74.30 & 0.20 & 0.45 & 0.48 & 8 N \\ 8 N 7.32 & 0.48 & 0.18 & 0.18 & 8 N \\ 8.27138 & 0.25 & 0.29 & 0.85 & 8 N 7\end{array}$ $\begin{array}{llll}\text { BN7430 } & 0.20 & 0.18 & 0.16 \\ \text { 8N7432 } & 0.42 & 0.39 & 0.35 \\ \text { BN7433 } & 0.70 & 0.81 & 0.44 \\ \text { SN7437 } & \text { SN }\end{array}$ | BN7433 | 0.70 | 0.61 | 0.45 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| SN7437 | 0.65 | 0.60 | 0.50 | |
| SN7438 | 0.65 | 0.60 | 0.50 | | $\begin{array}{llll}\text { SN7437 } & 0.65 & 0.60 & 0.50 \\ \text { SN7438 } & 0.65 & 0.80 & 0.50 \\ \text { SN7440 } & 0.60\end{array}$ $\begin{array}{lllll} \\ \text { SN7440 } & 0.65 & 0.80 & 0.50 \\ \text { SN7441AN } & 0.75 & 0.18 & 0.18 \\ \text { SN }\end{array}$ $\begin{array}{llll}\text { SN7441AN } & 0.76 & 0.72 & 0.70 \\ \text { gN7442 } & 0.75 & 0.72 & 0.70\end{array}$ $\begin{array}{llll}\text { 8N7442 } & 0.75 & 0.72 & 0.70 \\ \text { SN7445 } & 1.00 & 0.95 & 0.90\end{array}$ $\begin{array}{llll}\text { SN7445 } & 1.00 & 0.95 & 0.90 \\ \text { SN7445 } & 2.00 & 1.75 & 1.80\end{array}$ $\begin{array}{llll}\text { SN7445 } & 2.00 & 1.75 & 1-80 \\ \text { SN7446 } & 2.00 & 1.75 & 1.60\end{array}$ $\begin{array}{lllll}857447 & 1.75 & 1.80 & 1.45\end{array}$ 1.751 .601 .45

Eprppryl

 Type 1/11 12/24 20/99N
$\stackrel{4}{0}$
4

SPECIAL OFFERS! SEMI-CONDUCTORS BFY90

59

PLESSEZ LETEGZATESD Complete Eith 8-p
bookilet, circuit

and data

$£ 1.50$ each

TRIACS

STUD WITH ACCESSORIES

NEW BRIDGE RECTIFIERS
SMALL SIZE AND LOW COST
Type Volts Price
HALP AM
PI.V. 1-17

ZENER

 DIODES$400 \mathrm{M} / \mathrm{W}$ Minlature
$3 Z X$
88
Range All roltares
A SELECTION OF SEMI-CONDUCTORS FROM STOCK

	10p			- 105		15p				
AA	15p	BC1		BY100	OCA5	15p	V405A			
AAZ13	100	${ }_{8 C 182}$	10p	BY126 ${ }^{\text {15p }}$	$0 \cdot 0$	5	2TX108	12p	2N3442	
AC107	859	BC214	15p	BY127 15p	0001	${ }^{15}$				
AC126	25p	BCY92		BYZ13 36p	$0{ }^{0} 72$	${ }^{25}$	27x 301	15	2N3614	
AC127	25 D	BCY34		Cl08D 850						
AC128	25 p	BCY39	. 0	GETII1 55p	${ }_{0}^{0} \mathrm{C88}$	${ }^{255}$	ZTX ${ }^{\text {2 }}$			
AC176	259	BCY42			${ }^{0} \mathrm{CCS3}$	250			2Na,04	
${ }_{4} \mathbf{C l 8 7}$	25p			GET380	Ocrso					
c188	25p	B		LM309K	$0 \mathrm{OC17}$	20D	${ }_{2 \times 404}^{2 G 301}$		${ }_{\text {2N37 }}$	
Y12		BCY70			${ }_{0}^{0 c 17}$	80	2N404	50	2N377	
ACY2	20	BCY71	${ }^{20 p}$	MAT121 25	${ }_{0}^{0} \mathrm{OCP}^{201}$					
${ }_{\text {ACY }}{ }_{\text {A }}$	${ }_{550}^{200}$	${ }_{\text {BCY }}{ }^{\text {BCY }}$	${ }_{2.99}$	MJESS0 50]	${ }_{0} 0{ }^{0} 201$	80	${ }_{2}{ }^{2 N 697}$	15p	2N381	
AD140	50	$8 \mathrm{Cz11}$	509	MJES20 75	00208)	2x	
AD149		BD124	808	MJE29:5	$0 \mathrm{OPP11}$	1.25	${ }^{2 \times 830}$	${ }^{20 p}$	${ }_{2}^{2 N 386}$	
D161	865	BD131			ORP12	50p	${ }^{2 \times 1987}$	255	2N3906	
AD162	85p	${ }_{\text {BFIIS }}$	80	${ }^{75}$	$\begin{aligned} & \text { ORF } \\ & \mathbf{P R}_{4} \end{aligned}$		2N1132	20 p	2 N 40 t	
$\begin{aligned} & F 117 \\ & F 18 \end{aligned}$	609	${ }_{\text {BF167 }}$	${ }_{25}$	MPF105 ${ }^{\text {40p }}$	RAS	AP	2N1302	18p	2N40	
124	25 p	BF173	250	NKT214209			2N1304	29\%	2N412	
		BF179		NKT216 40,		AP	2N1305	22\%	2N 48	
AF18s	40	BYiso	100	NKT		35			3N5	
AF239	40	BF194	150	NKT 403700	TAA283	75	2 2N1308			1.00
				045	TIL209	89	${ }_{2 \times 1671}$			
A $8 Y 28$ BA102	239	${ }_{\text {BFS898 }}$	25p	0a10 85,	TPP301		2N2147	750	28018	
BA115			25 D	- 481100	TIPsia	${ }^{60}$	2N2160		2802	
BA145	15p	BFX34	75	$0 \mathrm{OA91} 7$	TIP32		2N23		${ }^{28301}$	
BAX18		BpX ${ }^{\text {a }}$	300	$0 \mathrm{OL200} 7$			2N222			
BAX16		BFX 88	${ }^{200}$					25p	${ }^{4} 0250$	
$\mathrm{BClO7}$ BCl 108	100	BFY50 BFY51		${ }_{0 c 20}^{0516}$		1-50	2N2368		40360	
3C109	10p	BFY32	20 p	$00^{23} 85$	TIP				10361	
Cl09C	12p	$\begin{aligned} & \text { BFY64 } \\ & \text { BFY90 } \end{aligned}$		Oc25			225292		40408	
BClis	15p	BLY36		OCS5		3.00		100	40486	
BC	20p	B8X 20	5	OC36 65D	TIP	759	2N305	$8{ }^{209}$	408	1.10
BCL_{4}	359	BSY27	15D	$0 \mathrm{C42}$		85	2 N			
IMTEGRATED CIRCUIT SOCKETS LOW PROTILE PLATED PMB					QUANTITY DISCOUNTS ANY ONE TYPE $10 \% 12+$; $15 \% 25+$					
为										
					Prom above sections excent IntegratedCircuits and special Oflera where dis-					
Lea					counts are included.					
		D.15. ${ }^{\text {a }}$								

$3.3-38$
10 e each.
$\begin{array}{cr}25+ & \\ 100+ & 8 p \\ 500+ & 8.5 p \\ 1000+ & 5 p\end{array}$
$500+$
$1000+$
$\frac{11}{W}$
Y
A
6.8
17
$\frac{17}{W}$
A
6
6
2

RADIO MAIL ORDER DEPT: 303 EDGWARE ROAD, LONDON, W.2. LIMITED RETAIL.SHOP: 356 EDGWARE ROAD. (01-402 4736)

Build yourselfa TRANSISTOR BADIO

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose \mathbf{f}........................ please send items marked
ROAMER TEN \square ROAMER SEVEN

ENGLAND'S LEADING ELECTRONIC CENTRES

HI-FI ELECTRONIC COMPONENTS TEST PA. DISCOTHEQUE LIGHTING MAIL ORDER

THE THEXAN
 $20 \div 20$ WATT INTEGRATED I.C. STEREO AMPLIFIER
 \star FREE TEAK CABINET with comio

FEATURES. New slim design with 6-IC's. IC Sockets, 10 silicon transistors, 4 rectifiers, 2 zeners. special Gardeners low field slim line transformer Fibre glass PC panel. Complete chass is work. HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES SPECIAL RIGEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE.
RELIABILITY AND EASE OF CONSTRUCTION.
FACILITIES. Onlof switch indicator, headphone socket. separate treble, bass, volume and balance controls. seratch and rumble fitcer:, monolstereo switch, Input selector: Mas. P.U. Radio Tuner. Aux. Can be altered
(Parts list Rei. 20 on requese).

LOW COST HI-FI SPEAKERS

 67-70: Pose 28p

NEW MW/LW TUNER to BUILD ML-3
Uses Mullard Module. Slow
motion tuning. Built in batery. Ferrice zerial. Overall E4-85. Post 15p. All parts sold separately. Leaflec No. 6
"BANDSPREAD" PORTABLE TO BUILD
 rinted circuit all cransistor design and Lone Wave bands plus Medium Wave Band:pread for exsra selectivity. Also slow motion geared tuning. 600 mW push-pull output. fibre glass PVC covered gbinet. car aerial. Atcractive
appearance and performance. 57.98 , p.p. 320. (Battery 22D). All parts sold separately Leafiet No. 2 advertised) 66.98 , p-p. 35p from scock-Leaflet No. I

GATALOGUE

Fully darailed and illustrated covering every aspect of Electronics-
plut data. circuits and plut data. circuits and
information. 10.000 Stack lines at Special Low Prices and Fully Guaranteed.
PRICE 55p ${ }_{\text {Pase }}^{\text {Paid }}$ (40p FOR CALLERS)
PLUS! FIVE 10p VOUCHERS

KIT PRICE
£28.50 P. \& P

DESIGN ${ }^{\star}$ SUITM DESIGN WITH

COMPLETE WITH FREE TEAK CABINET
Designer approved kits only available from Henry's

TEST EQUIPMENT

SE250B. Pocket Pencil Signal Injector $£ 1: 90$
SE500 Pocket Pencil Signal Tracer £i 50
TEIS Grid
$500 \quad 30 \mathrm{~K}$ Kolt Multimeter $\mathrm{ES.25}$
With leather Gase $£ 10 \cdot 50$
200 H (Vole Mulcimeter $£ 4-20$
Proctical Wireless"
May to August 1972)
May to August 1972)

With case $\mathrm{f} 4: 95$
AF105 50XIVolt Muttimeter 68.50. With case 69.50
U4341 ACIDC Multimeter with transistor tester with steel
TE20D RF Generator $120 \mathrm{KHz-500MHz} £ 15.95$. Carr. 35p TE22D Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz}$ £ $17 \cdot 50$. Carr. 35p
 TE65 Vaive Voltmeter 28 ranges $£ 17 \cdot 50$. Carr. 400

PA-Disco-Lighting
UK's Largest Range-Wrice phone or eall in. Details and emonstrasions on request.

DJ30L 3 Channel sound to light unit, 3 kw £28-50 Di30L 3 Channel sound to light unit, 3 kw Channel Mie (Buile in) to light, 3 kw £37-50 DJ705 70 watt Disco amp/mixer $£ 49-75$
DISCOAMP Watt wisco Dispimixer amplmixer k67-50
D) 105 S 30 watt Diseo amplmixer 911.00

Anti-Feedbaek Quality Mic. Ell-50
SDL $12^{\prime} 50$ watt 8 ohm Full range speaker f 12.95 DECKS. Use MP60 or $S P 25 / 3$ see above
Matching eartridge 5C5M E2-62
FIBRE OPTICS, LIGHTING EFFECTS, PROIECTORS, SPOTS, DIMMERS. MIXERS. Everything for PA-Disco-Lighting FREE Stock List Ref. No. 18.

BUILD THIS VHF FM TUNER 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH, PRINTED CIRCUIT, RIGH AND STEREO
A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about It-VHF FM
sives the REAL sound. All parts sold eparately. Free Leaflet No. 3 \& 7

TOTAL 66.97. p.p. 20\%. Decoder Kit 55.97.
Tuning meter unit $\{1.75$
Mains unit (optional)-Model PS900 E2-47, Post 200

RECORD DECKS
SP25/3E10.75 HT70 15.00
 WITH PLINTHICOVER.
(Post 700).
MP60 617.20 TDI50AB
MP60
HT7O 21.60
A $641 \cdot 45$
HL(GL75) PLI2AC
635.25
MP6IO\&20-35 BD2 $£ 35 \cdot 25$
CART/PLINTH/COVER CART/PLINTH/COVER
(Rotitioil
 HT70/G800/PC 18.95
$127-00$ (HL) $2025 \mathrm{TC} 9 \mathrm{TAHCD} / \mathrm{PC}$ -MP6015C5MDIPC
MP60/SC5MD/PC
HL) GL/2/800 PC
UAARASONIC
TRANSDUCERS
Operate at $40 \mathrm{ke} / \mathrm{s}$ up to 100 yds. Idesi remore switching and signalling Complete with PRICE PER PAIR $\mathrm{E5} 9$. Post 10p.
TEXAS PUBLICATIONS -100 watt Amplifiers and Preamplifier. 77 pages layIC Dag Book (No. 2) all TLL $1 C^{\prime} \mathrm{s}$. 60 p . 420 -pase Transistor Dan (No. 3) 60p. 340-page Transistor Data, (No. 4) 60p. (Pose, etc.
20 p each).
POWER INTEGRATED Plessey CIRCUITS
Plessey SL403D-3 wate with 8.page dara layoucs and circuits £1.50. P.C. Board 60 p . Heat Siak 14 p .
Sinclair ICl12-6 wate wish Thata and circuits $£ 1 \cdot 80$. Amp Module $54-57$.
TH9014P-IC Preamplifier $\$ 1 \cdot 50$.
DasajCircuits for above No. 4210 p .
7 SEG \& N1X1E TUBES (Post 15p per 1 to 6)
N3 XN13, GN6 0-9 side ficw with dacs, 85p.
GNP-7, GNP-8 $0-9$ side view with decimal points and dara, $95 p$.
$3015 F$
3015F 7 seg $\{2$ each. $E 7$ per 4 with data.
for above Ref clock circuits Miniature Amplifier
5 transistor. 300 mW olpFited volume and sensitivity 9 control
fated. fl-75 each IP I5p.
Quality Slïder Conerols 60 mm srroke sinģle and ganged. Complete with knobs. $5 \mathrm{~K} .10 \mathrm{~K}, 25 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}$. 1 meg. Log and Lin. $45 p$ each,
loK $25 K, 50 K$, 100 K , Log and Lin ganged. 750 each. Hi-Fietrape Equipment

	Ackrowledged as U.K.'s Largest Stockists wich Lowest Prices Plus 12 months Guarancee. Wrice or call for FREE 12 page lists (Ref. 16/17)

Transistors - IC's -
Recrifiers - SCR'S -
Triacs, ete
Triacs, etc
NEW FREE LISTS
NEW FREE LISTS
Ref. No. 36 on request.

MORE OF EVERYTHING AT LOW PRICES ALWAYS AT HENRY'S
All the parts you need plus Data and Circuits - Get a Catalogue - it's all in there!
and Special Bargsin Shop
303 EDGWARE ROAD, LONDON, W.2.
Tel: 01-723 1008/1008
to Saturo

[^0]: (c) IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable.
 We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
 Subscription Rates including postage for one year, to any part of the world, $£ 2 \cdot 35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements $01-634-4202$.

