

Precisior insiruments supplied with standard detachable copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$.

For perfection in soldering

1076
BIT SIZE $1 / 4$ 6.34 mm Dia 27 watts fl. 90

L646

BIT SIZE 3/16"
4.75 mm Dia.

23 watts
fl. 85
L706 \rightarrow
BIT SIZE $1 / 8^{\prime \prime}$
3.2 mm Dia

19 watts. £ 1.70

Are you alright for Jacks?

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variety of configuraticns. and in cases of difficulty can be ordered DIRECT from the Rendar féstory.
Standard, mini and sub-miniature sizes...plugs in both
plugs in both C,
screened and unscreened versions . . socket bodies in high melting point thermoplastic . . . several unique features (some protected by UK and US Patents)... Post Office and NATO specifications.
If you want to study all the fàcts and figures, all the ingenious con struction details, send for the Rendar Electronic Components Catalague of technical data sheets covering their entire range of products.
The cost of the catalogue is 25 p. including P \& P, and it's money very well spent!
(2)

RENDAR

Rendar Instruments Lid., Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

May we draw
 your attention

240 London Road, Mitcham. CR4 3HD Tel: 01-648 8422

It would help us considerably if we knew whether this was your first Home Radio Components Catalogue. If it is, please place a tick in the box.

It's late at night but that doesn't stop our young electronics enthusiast from ordering some urgently required components. He just dialied 01-648 8422 and telephoned his requirements, knowing that our Answering Machine will store his message ready for us to deal with nezt morning. As a seasoned member of our Credit Account Service he is well aware of the advantages it brings him. He has, for instance, a free supply of our pre-paid envelopes and order forms, for use when it suits him better to write his requirements rather than telephone them. This alone saves him quite a bit. He averages four orders a month and simply sends us a single cheque or postal order. Without our Credit Account Service his monthly cost would be: Four stamps at 3 pence each...12p, four cheques or postal orders at 5 pence eazh... 20 p, four envelopes $2 p$. Total, 34 pence. Over the year, quite an ItemI Not to mention his time spent in buying the stamps, envelopes and postal orders I
We have well over 300 customers using our Credit Account Service-some sending us several orders every week, others just a few a year; but they a/l appreciate the fact that when they have been in the service for $\mathbf{1 2}$ months we send them up-dated Catalogues and Price Lists free of charge.
Now-li you have not already got a copy of our famous Components Catalogue send the coupon with a cheque or postal order for 70 pence. More than 8,000 items clearly listed and indexed, over 1,500 of them illustrated. Moreover, with the catalogue you get a sheet of 10 vouchers, each worth 5 pence when used as instructed.

If you call at our 8 hop (open 9 to 5.30 Monday to Saturday inclusive, except Wednesday 9 to 1) you can buy the catalogue for 50 pence, thus saving the 20p packing and postage. Fuli details and entry forms for our Credit Account Service are included in each catalogue. Send today.

[^0]
YATES ELECTRONICS
 (FLITWICK) LTD
 DEPT. E.E., ELSTOW STORAGE DEPT. KEMPTON HARDWICK,
 BEDFORD.

C.W.O. PLEASE. POST AND PACKING, PLEASE ADD 10 P TO ORDERS UNDER 12.

Catalogue which contains data sheets for most of the components listed will be sent free on request. 10p stamp appreciated.

OPEN ALL DAY 5ATURDAYS

MESISTORS

tW lskra high stability carbon film-very low noise-capless construction. tW Mullard CR25 carbon film-very small body size $7 \cdot \mathbf{5} \times \mathbf{2 . 5 m m}$. $\frac{1}{2} \mathbf{W} 2 \%$ Electrosil TRS.
Power
wates
Tolerance
15%
10%
10%
10%
10%

Range $2 \cdot 7 \Omega-2 \cdot \mathrm{M} \Omega$ $3 \cdot 3 \mathrm{M} \Omega-10 \mathrm{M} \Omega$ $10 \Omega-1 M$ $10-3-9 \Omega$ $1 \Omega-3 \cdot 9 \Omega$

 1 $\Omega=10 \Omega$ Valuesavallable
E24
E12
E24
E12
E12
E12

\quad Price	
1-99	$100+$
1.0p	$0.8 p$
1.0p	$0.8 p$
3.5p	$3.0 p$
1.0p	$0.8 p$
$1.0 p$	$0.8 p$
6p	$5.5 p$

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value $4: 7 \Omega$ to $1 \mathrm{M} \Omega$.
0.5 watt 5% skra resistors
El2 pack 325 resistors $\mathbb{C 2} \cdot \mathbf{4 0}$. E24 pack 650 resistors $\mathbb{C 4} \cdot 70$.

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega$, lof or linear (log tW, lin tW).
slngle, $12 p$. Dual gang (stereo), 40 p. Single D.P. switch $24 p$.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades $t 05 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix)
Sub-miniarure 0.1 W, Sp each. Miniature 0.25 W , 6p each.

BAUSHED ALUMINIUM PANELS
$12 \mathrm{in} \times \sin =25 \mathrm{p}$; $12 \mathrm{in} \times 2$ in=10p; $9 \mathrm{in} \times 2 \mathrm{in}=7 \mathrm{p}$.
SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm
SINGLE IOK, $25 \mathrm{~K}, 100 \mathrm{~K}$ log, or lin. 40 p .
DUAL GANG, IOK + 10K erc. log. or lin. 60 p .
KNOB FOR ABOVE 12 p .
FRONT PANEL 65p
18 Gauge panel $12^{\prime \prime} \times 4^{\prime \prime}$ with slots cut for use with slider pots. Grey or matt black fonish complete with fixings for 4 pots.

MULLARD POLYESTER CAPACITORS C296 SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu F, 0.022 \mu F, 0.033_{\mu} F, 3 p \cdot 0.047 \mu F, 0.06 \beta_{\mu} F, 0.1 \mu F, 4$ p. $0.15 \mu F, 6 p .0 .22 \mu F, 7+p$. $0.33 \mu \mathrm{~F}, 11 \mathrm{p} .0 .47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F} 0.015 \mathrm{~F}, 0$
 $4 \frac{1}{2} p .0 .22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 71 \mathrm{p} \cdot 0.68 \mu \mathrm{~F}$, 11 p . I $0 \mu \mathrm{~F}$, 13 p . MULLARD POLYESTER CAPACITORS C2BO SERIES $250 \mathrm{~V} P . C$ mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $3+\mathrm{p} \cdot 0 \cdot 1 \mu \mathrm{~F}, 4 \mathrm{p} \cdot 0 \cdot 15 \mu \mathrm{~F}, 0 \cdot 22 \mu \mathrm{~F}, 5 \mathrm{p} \cdot 0 \cdot 33 \mu \mathrm{~F}, 64 \mathrm{p} \cdot 0.47 \mu \mathrm{~F}, 8+\mathrm{p} \cdot 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, 1 \cdot 0 \mu \mathrm{~F}, 13 \mathrm{p}$
$1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$. I-5 $\mu \mathrm{F}, 20 \mathrm{p} \cdot 2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM CAPACITORS 100 V
CERAMIC DISC CAPACITORS $\begin{array}{ll}0.001 \mu F, 0.002 \mu F, & 0.005 \mu F, 0.01 \mu F, 0.02 \mu F \\ 2+p, 0.04 \mu F, 0.05 & F\end{array}$ 100pF to 10,000pF, 2p each 2tp. 0.04 $\mu \mathrm{F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \not 2 \mathrm{p}$.

ELECTROLYTIC CAPACITORS—MULLARD C426 SERIE5
6p each $(\mu / 1 / V) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$.
 $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0.64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64.

MULLARD C437 SERIES
100/40, 160/25, 250/16, 400/10, 640/6.4, 800/4, 1000/2.5, 9p. 100/64, 160/40, 250/25, $400 / 16,640 / 10,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 p, 160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$, $2000 / 4.1000 / 10,1600 / 6 \cdot 4,2500 / 2 \cdot 5,15 p .250 / 64,400 / 40,640 / 25,3200 / 4,1000 / 16$
$1600 / 10,2500 / 6 \cdot 4,4000 / 2 \cdot 5,18 p$. $1600 / 10,2500 / 6 \cdot 4,4000 / 2 \cdot 5,18 p$.
ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(4 F / V): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.
5p each

VEROBOARD

1.15
$17 p$
$21 p$
$21 p$
$28 p$
$57 p$
$78 p$
$82 p$
$80 p$
$42 p$
$12 p$
$11 p$
$52 p$
$42 p$
$20 p$

JACK PLUGS AND SOCKETS		
5 tandard screened	18p	2.5 mm insulated
5candard insulated	12p	3.5 mm insulated
5tereo screened	35p	3.5mm screened
5 tandard socket	15p	2. 5 mm socket
5tereo socket	18p	3.5 mm socket
D.I.N. PLUGS AND SOCKETS 2 pln, 3 pin, 5 pin $180^{\circ}, 5$ pln $240^{\circ}, 6$ pin Plug 12p. Socket 8p. 4 way screened cable 15p/metre 6 way screened cable 22p/metre		

THERMISTORS

COMPACT CASSETTES-IN PLASTIC LIBRARY BOX

LARGE (CAN) ELECTROLYTICS							
$1600 \mu \mathrm{~F}$	64 V	74p			3200, F	16 V	30p
2500 $\mu \mathrm{F}$	40 V	74p			$4500 \mu \mathrm{~F}$	16 V	50p
$2500 \mu \mathrm{~F}$	50 V	58p			$4500 \mu \mathrm{~F}$	25 V	¢1.68
2500\% F	64 V	$80 p$			5000 $\mu \mathrm{F}$	50 V	61.10
$2800 \mu \mathrm{~F}$	100 V	43.00					
HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT							
$0.01 \mu \mathrm{~F}$	10 p		$0.047 \mu \mathrm{~F}$	13p		$0.22 \mu \mathrm{~F}$	20p
$0.022 \mu \mathrm{~F}$	12p		$0.1 \mu \mathrm{~F}$	16p		$0.47 \mu \mathrm{~F}$	22p

POLYSTYRENE CAPACITORS $160 \mathrm{~V} 2 \%$
10pF to 1,000 pF E12 Series values $4 p$ each.

Acclaimed by the Experts
Chassis Units (Dual Cone,
Coaxial, Woofers, Tweeters,
etc.) plus Multi-unit systems
in Kit Form from Scandin-
avia's largest manufacturer.

P.F. \& A.R. Helme Ltd. (Dept EG8)
Summerbridge: Harrogate HG3 4DR
Yorks. Tei. Darley 279 (STD 0423-72)

Matching Cabinet Kits also available.

тHF Pulumal pr PUSH BUTTON CAR RADIO KII

Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc. The kit includes a prebuilt RF tuner unit, and fully modulised IF stages which are pre-aligned before despatch. As well as electronic components, this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire.

The Pullman PB is suitable for 12 volt working with both nega-
 323 Edrware Road, London W2.

Mail Orders to Acton.
Terms C.W.O
All enquiries S.A.E. Goods not despatched outside U.K.

gspk

quite simply-the best

RESISTORS

FULL RANGE OF ISKRA CARBON FILM RESISTORS
$1 / 5 \mathrm{~W}$ (range 4.7 ohms to 470 K) Iskra Minlature High Siablity carbon Ixkra Minlature High Rablifty carbon
Filri Mealstors wh negliglble nol factor.
All Resistora $\pm 5 \%$ (except valuea over 4.7 Meg). Theme Remistors are even lower in price than compontion types.

10 M and
$10 \mathrm{Megs})$ (range 4.7 olimm to 7 ahms to 10 Mea 1 w (range $4-7$ ohms to 10 Meg) 2 W (ranke 4.7 ohinn $10 \frac{10}{} \mathrm{meg}$)

PRE-SET POTENTIOMETERS

Btandard valuea of preseta from 100 ohms to 5 Meg. Sub-miniature

SIEMENS PROFESSIONAL CAPACITORS

P

Voltage	Capacliance	Price	Voluge	Caplance	-	Price
10\%v	$0.1 \mu \mathrm{~F}$	8p	10v	$22 \mu \mathrm{~F}$		7 p
100 v	0.15μ	6 p	10	, $470 \mu \mathrm{~F}$		11 p
100%	$0.22 \mu{ }^{\circ}$	${ }^{8 p}$	16v	$47 \mu \mathrm{~F}$		7 p
100 v	$0.33 \mu \mathrm{H}$	90	28 V	$10 \mu \mathrm{~F}$		7 P
100 v	0.47μ	10p	45 y	$100 \mu \mathrm{~F}$		91
100 v	$0.68 \mu \mathrm{~F}$	150	25 v	$220 \mu \mathrm{~F}$		110
250 V	$0-0)^{\mu \mathrm{F}}$	50	259	$470 \mu \mathrm{~F}$		14 p
250 v	$0.015 \mu \mathrm{~F}$	50	255	$1000 \mu \mathrm{~F}$		29p
250%	$0.022 \mu \mathrm{H}$	$5 p$	250	$2200 \mu \mathrm{~F}$		42p
250 v	$0.033 \mu \mathrm{~F}$	6 p	3.5	$4.7 \mu \mathrm{~F}$		7 p
260 v	$0.047 \mu \mathrm{~F}$	8p	35 v	$220 \mu \mathrm{~F}$		14 p
250 v	$0.088 \mu \mathrm{~F}$	6 p	100 v	$10 \mu{ }^{\circ}$		8 p
250 V	0.1 HF	60	100 v 100 v	$22 \mu \mathrm{~F}$ 47		14080
SPECIAL INTRODUCTORY OFFER FREL with all orders value $E 5$ or over we will give absolutely free one GSPK P.C. Kit for making your own printed circults (normal retail price $£ 1 \cdot 95$). Hurry: Offer valid for limited period only.						

SEMICONDUCTORS

Here are lunt a fow examples of our LOW Semiconductor
more semicons avallable all at equally sensatlonal prices

	$1+$ 24 20	$25+$ $29 p$		+	$25+$			
ACl^{127}	24 p	22p	BZY88C			OC76	$22 p$	$\begin{aligned} & 210 \\ & 810 \end{aligned}$
AClus	190	16p	Series F19			OCl IN 4001	24p 6p	${ }^{210}$
Allifis	$15 p$	13p	(2.76-30.0v)	10D	80 180	IN 4001	$6 \mathrm{6p}$	$3{ }^{50}$
ACY18	18p	150	NKT210	$24 p$ 240	190 190	$1 N^{4} 4002$ iN4003	6 p	80 ${ }^{80}$
AD169 AF139	280	280	NKT213	240	190	1 N4005	10D	9 p
18 Cl 107	9 p	8 p	NKT 14	19p	170	1 N 4008	12D	110
BClos	80	7 p	NKT218	240	100	1N 4007	180	16D
HCLos	8D	8 p	NKT119	240	19p	$1 \mathrm{~N} / 148$	4	30
BC147	8 p	7p	NKT203	260	20 D	4 N 1302	16 D	15p
BCl 48	8 D	70	NKT224	21.	10p	2 N 1304	210	20p
HC149	8 p	70	NKT242	140	12 p	2N1813	14 D	13p
BCY70	140	$13 p$	NKTi 43	510	44p	2N1711	15 p	140
BCY71	20D	19p	NKT401	700	58p	2 N 2904	29p	28p
HCY72	140	12p	NKT402	750	58p	2 N 2905	84\%	22p
3 BY 0	910	78 p	NKT403	640	50p	2 N 2908	19p	18p
RFX29	240	23p	NKTAS3	410	33p	$2 \mathrm{NL2907}$	22 D	21.
Br゙ 30	24p	23p	0 O47	$8{ }^{80}$	$5 p$	2N3032	17 p	18p
BrV50	10p	18D	OA79	${ }^{6 p}$	5	2N3054	48 p	47 p
BFYSI	18p	17p	OA90	3D	4 p	2N3055	67 p	52p
	19p	18p	0 C 70	12p	120	(BD130)		

NUMEROUS OTHER ITEMS AVAILABLE INCLUDE 8 sitchen Comprehenaive range of N.8.F. Toggle awtichen and Rotary
kitu to enthe you to make your own gwitch to your own apecification). Lampa and lampholdern fop every reyuirement. Ready Buil Circults and Modules. Freezer and Cleaner acroolol nprays.
Jack Ploge alul mackel
Varjety of speciality products.
All orders value $£ 2$ or over posi free. Other orders please add 10 p p \& p . W only sell new products-do not confuse with seconds or surplus stock. addresses only. Please fill in the coupon and gend with 10p (refundable on ordering) for catalogue

ALL
welcome HG2 7BU

Dept. (PE9)174 Pentonville Road, London, N1. Telephone 01-2781769 Or: 4 Migh View Parade, Redbridge Lane East, Woodford Avenue.
llford. Essex. Tel: 01-550 1086 transistors and integrated circuits, when soldering? Use Antex low-leakage soldering irons

220-240 Volts or 100-120 Volts
 Model X25

The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at 1500 v . A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons. due to its unique construction advantages.

Fitted long-life iron-coated bit $1 / 8^{\prime \prime}$

2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$.

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

PRICE: $£ 1.75$ (rec. retail) Suitable for production work and as a general purpose iron

The 15 watt miniature model CCN. also has negligible leakage. Test voltage 4000 v . A.C. Totally enclosed element in ceramic shaft. Fitted long-life iron-coated bit 3/32" 4 other bits available 1/8", 3/16" $1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: $£ 1.80$ (rec. retall) OR Fitted with triple-coated, (iron, nickel and Chromium) bit $1 / 8^{\prime \prime}$ PRICE: £1.95 (rec. retail)

A SELECTION OF OTHER SOLDERING EOUIPMENT.

MODEL CN
Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ iron. coated bit. Many other bits available from $1 / 16^{\prime \prime}$ to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24
PRICE: $£ 1.70$ (rec. retail)
MODEL CN2
Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220 .
PRICE: £1.70 (rec. retail)

MODEL G

18 Watt miniarure iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110. PRICE. $£ 1.83$ (rec. retail)

MODEL

MODEL SK. 2 KIT contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$
 heat sink, solder and booklet"How to Solder"

MODEL

contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet. PRICE £2.75

MES.KIT Battery-operated 12v. 25 watt iron fitted with 15^{\prime} lead and 2 heavy clips
for connection to car battery. Packed in strong plastic wallet with booklei "How to Solder." PRICE $£ 1.95$

From radio or electrical dealers, car accessory shops or, in case of difficully direct from: ANTEX LTD. FREEPOST (no stamp required) Plymouth

[^1]Please send the ANTEX colour catalogue.
Please send the following

I enclose cheque/P.O./Cash (Giro No. 25\&1000)

NAME

\qquad

ADDRESS
\qquad
\qquad

Nation wio sevice＋ELECTROVALUE atraecive ulscours
 ELECTROVALUE－an independent company since its establishment in 1965

 Electronic Component

 Electronic Component Specialists

 Specialists}

Brand new，guaranteed to spec． No seconds or surplus．

1840 KlO 1－914
1N316
1N1763A
1N3754
1N5399
1N5402
1N5407
1844
18940
2N696
2N697
2N70．
2N930
2N1131
2N113\％
2N130：
2N1303
2N1304
2N1305
2 N 130 H
2N1307
2N1308
2N1309
2N1598
2N1809
2N1613
2N1711
2 N 1893
2N2147
2 N 2218
2N2218A
2N2219
2N2219A
2N2270
2， 23369 A
2N2483
$2 N 2484$
2N2f46
2 N 2904
2N2904．
2 N 2905
2 N 2005 A
0N2924

50p	HC149	10p］	bF167	189	NKT212
58 p	13C163	15p	Br173	19p	NKT＊13
50p	BClis 4	18p	HF177	25 p	NKT214
33 p	HC157	12p	BF178	31.	NKT217
36p	BC188	11p	BF194	14 p	NKT²1
60p	8C159	120	BF195	15p	NKT271
24D	BC167	110	Br244	30p	NKT274
24p	HC168	10 D	B $\mathrm{F}^{2} 254$	140	NKT275
22p	BC169	110	B P^{255}	15p	NKT403
$22 p$	BC177	149	BFX18	90 p	NKT404
82 p	BC178	130	Br゙X29	31 p	NKT406
24.	BC179	14 p	B F－X84	25 D	NKT603F
24p	BC189L	$11 p$	BFY85	82p	NKT613F＇
22p	BCIP38	100	BFr 87	29 p	NKT674F
220	Be＇184L	110	HF゙X88	26p	NK T677F
830	BC186	30 p	BFY50	$25 p$	NKT713
36 p	BC\％12L	140	BPYS1	20 p	NxT773
72 p	BC213L	13 p	Brys2	23 p	OA47
270	BC214L	14	BRY39	301	O．A90
38 p	81257	80	B8X20	16 D	OA91
27 p	8（\％58	8 p	BY164	440	OA95
36p	BC259	9 p	BY238	16p	OA200
97 p	BC＂267	17p	13 Y X 38－300	370	OA202
24p	1Cans	13p	13 Y X $38-300 \mathrm{R}$	87p	OC19
34 p	BC289	17p	C 407	17p	Or25
31 D	BC300	49p	C762	19p	OC28
72p	13C301	37 p	C1412	601	0 C 29
$21 p$	nc303	50 p	E2512	107p	0.38
5 p	BCY 30	490	EA403	109	OC36
210	BCY31	60p	EB383	10 p	OC41
15p	BCY70	18 p	RC401	18p	OC42
13D	BCY71	33 D	EC402	16 p	OC44
8p	BCY72	15 p	ER900	33 p	OC43
16p	BD121	105p	MC140	25 p	OC\％
18p	B1）123	105	MJ481	120 D	Oc71
12p	B1）124	$100 p$	MJ491	$135 p$	OC72
11 p	131）30	50 D	M J Fi371	88p	OC75
12．	BD131	77 p	MJE521	82p	OCAI
219	HD132	810	MJE2955	$106 p$	OC81D
$15 p$	BDIS	38 p	MJ Fi3055	88.	$0 \mathrm{Ce3}$
15p	BDI36	44p	MPF102	37.	OC84
30 p	BD141	227p	MP86531	28p	P 346 A
10p	BDY20	92p	MP86534	240	82 CN 1
	（BF゙115		NKT211	250	Matched

1972 ELECTROVALUE CATALOGUE（No．6）

Bigesest and best edition yet $\rightarrow 96$ pages，plus covers．Whil printed and generousiy illustra－ prices，valuable information and diagrams post free 10p．

DISCOUNTS

$$
\left\lvert\, \begin{aligned}
& \text { prices } \\
& 10 \% \text { on orders for } \quad 15 \% \text { on ordersfor } \\
& \text { \& ormore } \quad 15 \text { or more }
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { POSTAGE \& PACKING FREE on orders for } \\
& \text { C2.00 or more. Please add } 10 \text { p Handling charges }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E2.00 or more. Please add } 10 \text { p Handling charges } \\
& \text { if under. } \\
& \text { Overseas orders welcomed. Prices subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Overseas orders welcomed. Prices subject to } \\
& \text { alteration without prior notice. } \\
& \text { Terms of bualness-C.W.O. as in catalogue }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Terms of buslnese-C.W.O. as in catalogue } \\
& \text { We are now approved distributors for } \\
& \text { ELREMCO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ELREMCO SOLDERSTAT SOLDERING } \\
& \text { WOLF IRONS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A popular and beautifully made lightweight } \\
& \text { example from a wide and versatile ranke of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { soldering irons of exceptional quality. Typ } \\
& \text { HMS for } 16 \text { or } 24 \text { watts. A.C.mains. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solderstat Infinitely Variable Tamperature } \\
& \text { Controlled Soldering Iron. Stays constant at } \\
& \text { desired temperature. for printed circuits, } \\
& \text { delicace work etc. complete } \\
& \text { De soldering braid per } 6 \text { ft.- } 50 \text { p. } \quad \mathbf{~} 9.20 \\
& \hline
\end{aligned}
$$

SLIDER POTENTIOMETERS

CAPACITORS

SIEMENS 5\％TOLERANCE
POLYCARBONATE

250 V ．up to $0.1 \mu F: 100 \mathrm{~V} 0.1 \mu \mathrm{~F}$ and above．
$0.01 ; 0.012 ; 0.015 ; 0.018 ; 0.022 ; 0.027 ; 0.033$ ； $0.047 ; 0.056$ ，each $3 p$ ．
$0.069: 0.082: 0.1: ~$ $\begin{array}{llll}0.069 ; 0.082 ; & 0.1 ; 0.12 ; 0.15 \text { each 4p．} \\ 0.018 ; 0.22, & \text { e2．} 5 p: 0.27 ; 0.33 .6 p: 0.397 p:\end{array}$ $0.018: 0.22$, es．${ }^{5 p: 0.27: 0.33, ~ 6 p: 0.397 p}$
$0.47,8 p: 0.56,10 p: 0.68,11 p ; 1 \mu F 13 p$. SIEMENS ELECTROLYTIC with axial leads：Values in $\mu F / V / 35 ; 10 / 25 ; 22 / 16$ $47 / 10 ; 47 / 25 ; 100 / 10 ; 220 / 3$－each 5p．
$10 / 63 ; 22 / 35 ; 47 / 35: 100 / 16 ; 100 / 25 ; 220 / 6,220 / 10$ $220 / 16: 470 / 3$ each $6 p$
$47 / 50: 47163$ ．

100／50；220／35；9p：100／63；470／25；100／10，ea． 10 p 220163；470／35；1000／16．ea，14p． 20001200 29p． $1000 / 25,16 p: 470 / 63,1000 / 35,19 p: 2000 / 200.29 p$ MULLARD SUB－MIN ELECTROLYTICS C426 ranse，axial lead Values（ $\mu \mathrm{F} / \mathrm{V}$ ）： $0.64 / 64 ; 1 / 40 ; 1.6 / 28 ; 2 \cdot 5 / 16: 2.5 / 64$ ／10；4／40；5／64；6．4／6．4；6－4／25；8／4；8／40； $10 / 2$ ． $\begin{array}{ll}10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 10 ; 16 / 40 ; & 20 / 16 ; 20 / 64 \\ 25 / 6-4 ; 25 / 25: 32 / 4 ; 32 / 10 ; & 32 / 40 ; 32 / 64 ; 40 / 16\end{array}$ $40 / 2.5 ; 50 / 6.4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5$ $80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ; 152 / 4 ; 125 / 10 ; 125 / 16$
$160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4$ 400／4：500／2 5
LARGE CAPACITORS
High ripple current sypes： $1000 / 25,28$ p； $1000 / 50$ 2000／100 \＆1．44：2500／64，77p：2500／70， 98 p $200025,62 p ; 5000 / 50, ~ £ 1 \cdot 10 ; 5000 / 100, ~$
500.91

Simple to Build，Astoundingly Good
$10 \mathrm{~W} / 15 \Omega$ BAXENDALL SPEAKER As originally designed by P．＇．Baxendall and
described in Wireless World．Io wate／15 ohm loudspeaker with equaliser network speaker unit and specially designed catinet in kit form． ince when buile approx． Speaker unit and equaliser kit with instructions Cabinet kit，all parts cut to size ready to assemble，
jundbook of TrANSISTOR Labstitutes 8 S
40 P.
HAN
HANDBOOK OF TESTED TRANSISTOR
CIRCUITS CIRCUITS（H． Ness）${ }^{40 p}$ ．
RADIO \＆
ELECTRONICS Colour codes \＆da
wall chart．Isp ENGINEERS ENGINERENCE REFERENCE
HANDBOOK TABLES 20p． （Add 3p．for postage boushe separately．）

CARBON T

Doublewipers
SINGLE GANG linear 100Ω to $2 \cdot 2 \mathrm{M} \Omega$ ， $12 p$ ；Single gang $\log _{1} 4-7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ ， $12 \mathrm{p} ;$ Dual gans linear $4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ ． 42 p ；Dual gang log， $4 \cdot 7 \mathrm{~K} \Omega$ co $2 \cdot 2 \mathrm{M} \Omega$ ， 42 p ；Log ansilog，10K， 47K，IM Ω only 42p；Dual antilog，IOK only，42p．Any type with 2A D．P．mains switch， $12 p$ extra．
Only decades of $10,22 \& 47$ available in ranges quoted．
DUAL CONCENTRIC in any combination of above values 60p；with switch，72p．
CARBON SKELETONPRE－SETS
Small high quallicy，type PR，linear only： $100 \Omega, 220 \Omega, 470 \Omega$ $\mathrm{K}, 2 \mathrm{K2}, 4 \mathrm{~K} 7$ ， $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$,
$10 \mathrm{M} \Omega$ ．Vertical or horizontal mounting， 5 p each．

ZENER DIODES 5% full range E24 values： $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 36 V ， $15 p$ each
$75 \mathrm{~V}, 48$ p each．

Code	Power	Tolerance	
c	1／20w	5%	82
C	1／8W	5%	$4 \cdot 7$
C	$1 / 4 \mathrm{~W}$	10\％	$4 \cdot 7$
C	1／2W	5\％	4.7
C	IW	10%	$4 \cdot 7$
	1／2W	2	
WW	1 W	10\％$\pm 1 / 20 \Omega$	0.22
WW	3W	5	
WW	7W	fim	
Codes：$C=$ arbon film，high stability，low MO＝metal oxide，Electrosil TRS，ult $W W=$ wire wound，Plessey．			
Values： E12 denotes series： $10,12,15,18,22,27$, 68,82 and their decades．			
E24 denotes series：as E12 plus $11,13,16$ $43,51,62,75,91$ and their decades．			
POTENTIOMETERS，Ionz spindles．			
ear 100Ω to $2 \cdot 2 \mathrm{M} \Omega$ ， 12 p ；Slingle gang 12p；Dual gans linear $4 \cdot 7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ ．			
7K Ω co 2．2M			
ual antilog，lOK only，42p．Any type with			
47 availa ble in ranges quoted．			
C in any combination of above			

ELECTROVALUE LTD．

DEPT．EE872， 28 St．Judes Road，Englefield Green，
Egham，Surrey．Twzo оне Hours：9－5．30．I．0 p．m．Soturdays．
Phone：Egham 3603；Telex 264475

BUDGET HIGH-FIDELITY STEREO SYSTEMS

LEADS AND PLUGS SUPPLIED WITH ALL SYSTEMS

PREMER STEREO SYSTEL "ONE" Conmista of the new Premier 800 all tranistor ntereo mmplifer, Garrard 2025 T/C auto manual record player unit athed atereo/mono eeramic cartridge with diamond atylus and mounted In teak finish plinth with pernpez cover and two matcing teak fininh loudepeaker syotems. Aboolutely complete and supplied ready to plug in and play"B00 amplifier han an output of 5 wath ber chmint with inputh for ceramic and magnetic pick-up, upe and tuner ango tape output mocket and healphone mocket. Controls. Bass, ireble, olume, Balanee, selector, Power monf. Monopstereo nwitch.
 PREMER STEREO SYSTEM""TWO", an above but with Garrard SPe25 MK III tnd magnetic cartridge. ONLY 445. Cart. 41.75.

METER BARGAINS

MODEL GT-800 MULTIMETER
A preciaion made pocket sized test
meter, ideally sulted for testIng elecmeter, ideally aulted for testlng elec-
tronic clrcuits or electronlc appliances. tronic elrcuita or electronlc appliances. supplied complete with tent lean and batteries. RANG $28-000$
$30,250,1,000 \mathrm{~V}$
$(1,000 \mathrm{opV})$. AC Voltage: $10,50,250,1,000 \mathrm{~V}$ ($1,000 \mathrm{cpV}$). DC Current: $\operatorname{lmA}, 100 \mathrm{~mA}$. Reslatance: 0.150 K ohran. Declbel; -10 to +22 db
(st AC 10 V range) $22-47$, P. \& P. 25p. MULTIMETER 20,000 O.P.V. Festures large eany-to-rea.1 meter. Wide choice of rangen. With tent leads. batterles athd manual. Size $41^{\circ} \times 35^{\circ}$ x1*. RANGFA D.C. Voltages 0 b-25-50-$250-500-2500 \mathrm{~F}$ A.C. Voltager $0-15-50-$ 100-500-1000w. D.C. Carrent: 0-50 $\mu \mathrm{A}$ $2 \cdot 5 \mathrm{~mA}-250 \mathrm{~mA}$. Resistance: $0-6000$ ohina a-6 megohma (300 ohms and 30 Kohma, at cemtre ncale). Capacity: $00 \mu \mu \mathrm{f}$. $001 \mu \mathrm{f}$ to $1 \mu \mathrm{f}$. Decibela - 20 to $-001 \mu f, 101 \mu \mathrm{f}$ to $1 \mu \mathrm{ff}$. Decibe
+22 d B. $84 \cdot 20$. F. \& P. 25 p .

WELLER "EXPERT" SOLDER
GUN. Saves thae and airnplltiem
moldering in the home and service deldering in the home and service dept. Two promition trigger given inmtant

"Marksman" goldering Irotn. Light welght ot pencil blt. Ideal for regular bench une and around the home. 26 watte. 240 rolt A.C. 21 -50 P. A P. 16p

VERITAS V-313 TAPE HEAD DEFLUXER

 A must for all tape usern 1 Tape hesds liecome permanently
magnetizel with conatant une: magnetizerl with constant une;
thin leala to background nolne
that prevents pertect reoondings. 8 lmply
applied to reconding heal the V313
leaven head tree of magnetism. Cleans
$£ 1 \cdot 72$
any tape heal in eeconds.

E.M.I. $13 \times 8 \mathrm{in}$.

HI-FI SPEAKERS
Pittell two 2tin tweeters and cromover net work. Impedance 8 of 16 ohm. Kandiling capa£3 47

OARRARD SPOS MK III SINGLE RECORD PLAYER PITTED NETIC STEREO CAR. TRIDGE COMPLETE TRIDGE COMPLETE WITH COVER. Total llat price over $£ 34$. premier pices $£ 17.95$
Garrard Ap76 with
G800, ready wired to 5 ?
pin Din in plinth with
Cover cover
Garrard AP76
less cartridge
Garrard 401
Transcription Unit
List $40 \cdot 15$)

Garrard 2025 T/C with \quad E $8=51$ Garrard 2025 T/C with
 with cover
Carriage and Insurance 60p extra any item.
CARTRIDGE BARGAINS:
Goldring G800H 65.00; G800 E5.50: G800E E950; SHURE M30 C4.00; M44E C5.75: M55E 66.50; M75EII ©10.90. P. P. 10p

"VERITONE" RECORDING TAPE

 GPECIALLY MANUPACTURED IM U.SA. FROM EETRA STRONG PRE-STRITCRED TATERLAL THE QUALITY IS OAEQDALLED TENBILISED to enaure the most permanent hawe. Highly renatant to break. age, moist ure, heat, cold or humidity. High pollahed splice tree inlah. 8 moothout put throughout the entire audio range. Double wrapped-etractively bored. LP8 8" 280° P.V.C. 28 D LP6 $58^{\circ} 1800^{\circ}$ ACETATE 75 TT3 3. 450 POLYESTER 37p DT6 51 1800 FOLYESTER E1.18

 DTS 6 1800 POLYESTER 75D DT7 7° 2400 POLYESTER 21-25 TAPE SPOOLS $3^{\circ} 8 \mathrm{~B} .5^{\circ} .81^{\circ}, 7^{\circ}$ op. TT7 $7^{\circ} 3800^{\circ}$ POLTESTER E8.6C

A truiy high quality atereo amplifer-compare the apecificatlon, compare the price. Output: 5 watte per channel. F'requency renponse: $30-30,000 \mathrm{~Hz}-2 \mathrm{db}$. Distortion: 1% Out put Impedance 8 ohma nom. inputa equalmer 100 m . Tape 100 mV . Tape out 150 mV Din Tuner 100 mlV . Tape 100 mV . Tape out 150 m , Treble socketa for inputs and out puts. Conkrols: Bean, Trebie, Btereo hewdrhone socket. Attractive alim Jine deaign black lestherette cablnet with sluminlum front panel.

$$
\text { osLY } 215 \cdot 00 \text { carr. } 50 \mathrm{p} \text {. }
$$

Mk. 11 Versfon avallable with Teak Fininh Cabinet 118.25. Cart. 50 p .

HI-FI STEREO HEADPHONES Designed to the hirhest $2 \mid \mathrm{in}$. speaker unito with moft padded ear muff: Adjustable beadbsad. 8 ohme Imppedence. Complete with oft lead and atereo jack plug.

MONO STETHOSCOPE BET LOW IINP. 88D. P. \& P. 10 p
VERITAS V-149 MIXER
Rattery operated 4-channel audio mlaer providing four separate inpuse. slze $6 \times 3 \times 2 \mathrm{ln}$, sultable for cryetal microphone low Inupedance micro phone. with transformer
radio, Lape, etc. Max. inpui
$1-5 y$. Max. output 2.5 v . Gain 6 dB . Standard jack plug socket inpuks, phonoplugs output. Autiactive
wood grain findah cie gTEPEO $-\infty$ $\begin{array}{lll}\text { MONO } \\ \text { MODEL } \\ \text { MTEREO } \\ \text { MODEL } \\ \text { M } 3.47 & \text { P. P. } 15\end{array}$

VERITONE CASSETTES In library \quad Crion 290 remen: filly \qquad $\begin{array}{rrr}3 & \text { for } 81 p \\ 3 & \text { for } & 21.11 \\ 3 & \text { for } & \$ 1.40\end{array}$

GRESGENT mpn MAIL ORDER DEPT.
 No. 11
 LONDON
 11 \& 40 MAYES ROAD. LOWOON NRE GTL zas 3206
 COMPONENTS AND HI FI FOR THE HOME CONSTRUCTOR OUR SHOPS ARE OPEN ALL DAY FROM ' A.M. TO ${ }^{\text {TO PAM. }}$ 6.30 PM. ON FRIDAY (WE CLOSE ALL DAY THURSDAY) 13 SOUTH MALL, EDMONTON, N•9 8031685

The Pictoriol Method BASIC
 You'll find it easy to learn with this outstandingly successful PICTORIAL METHOD. The essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate cartoon-type drawing. These clear and concise illustrations make study a real pleasure. The books are based on the latest research into simplified learning techniques. This easy-approach-to-learning method has proved beyond doubt that acquiring knowledge can be an enjoyable experience.

YOUR

 1DU \%
GUARANTEE

Should you be, in any way dissatls fied with the MANUALS your money will bere. funded by return of post.

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT. BR2 7HP

WHAT READERS SAY
I have never come across or read anything so simple and easily explained.
P.L. Wood Green.

I must admit to a great scientific approach in this publication.
L.D. Keston.

Thank you for a wonderful set of books.
L. P. Co. Armagh.

I am delighted with the simplicity of these excetlent manuals.
F.L. Potters Bar.

Please find enclosed P.O./Cheque value $£ \ldots \ldots \ldots \ldots$
BASIC ELECTRICITY 5 parts $£ 4.50$
BASIC ELECTRICITY 5 parts £4.50
BASIC ELECTRONICS 6 parts $£ 5 \cdot 40$
BASIC TELEVISION 3 parts $£ 3 \cdot 60$ [
Tick Set(s) required.
Prices include Postage and Packing.
YOUR $\mathbf{1 0 0 \%}$ GUARANTEE. If after 10 days examination you decide to return the Manuals your money will be refunded in full.
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

COMPLETE TELEPHONES

EX. G.p.o. NORMAL household type ONLY 50p post \& Packing 35p Each TELEPHONE DIALS Standard Posz Offere rype
Guaranteed in working order ONLY 50p

POST \& PACKING 150

MAKE A REY COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This oncapsulated block willsurn any accurate rev. counter for any car with normal coil ignition system.
+1 each

OUR VERY POPULAR 3p TRANSISTORS
TYPE "A." ENP silicon alloy, To.s can.
TYPE " E " PNP Germanium AF or RF.
FULLY TESTED AND MARKED SEMICONDUCTORS

	i_{0})	c ${ }^{\text {d }}$
AC107	0.13	OC140	0.15
${ }_{\text {ACl }}(26$	0.15	OC170	0.23
${ }_{\text {ACl }} 127$	0.17	OC171	0.25
AC128	0.15	OC200	0.25
ACl76	0.20	OC201	0.25
ACYI7	0.20	26301	0.11
AF239	0.30	26303	0.11
Afl 186	0.20	2N1302-3	0.15
AFI39	0.30	2N1304-5	0.17
BC154	0.20	2N1306.7	0.20
${ }_{8} \mathrm{C} 107$	0.10	2N1308.9	0.23
8 Cl 108	0.10	2N3819FET	0.40
BC109	0.10	2N4416FET	0.35
8C169	0.12	Power	
Bf194	0.15	Transistors	
BF274	0.20	OC20	0.50
afyso	0.15	OC23	- 30
estas	0.13	OC25	0.25
BSY26	0.13	OC26	0.25
BSY27	0.13	OC28	0.10
BSt28	0.13	OC35	0.25
BSY29	0.13	OC36	0.37
PSY9SA	0.10	AD149	0.30
ocal	0.13	AuYio	1.25
OC44	0.13	25034	0.25
OC45	0.10	2N3055	0.50
OC71	- 10	Oloder	
OC72	$0 \cdot 10$	AAY42	0.10
OC81	0.13	OA95	0.07
${ }^{\text {OCAID }}$	0.13 0.18	OA79	0.07
${ }^{\circ} \mathrm{C83}$	0.18	OAB1	0.07
OC139	0.13	1N914	0.06

F.E.T. PRICE BREAKTHROUGH !!

This field affect transistor is th 2N3823 in 3 plastic encapsulation coded as 3823 E . It is also an excel
lent replacement for the 2 N 3819 . Data sheet supplied with device. - 10 30p each, $10-50$ 25p each. $50+20$ peac.

FREE ${ }_{\text {catalocue }}$

TRANSISTOR IGNITION!
AS USED BY RACING DRIVERS
NOW We introduce a Transistorised IEnition
that is NOT a Kit at LESS than Kit price!
The Super Spark, Mark II, is ready so so. Installation time- 10 minutes. It operazes on a unique and newly discovered princple that drives a standard ignition coil with a fantastic peak of 400 V . The solid impaes gives 45.000 V alts righs to the sparking plug and gives cooler running. longer plug life, more M.P.G. and greater B.H.P. Contace breaker life is exsended indefinitay and no visible burning will ever take place. The circuitry is all silicon solid state and is engineered for rop dependable pierformance on any car with standard ignition coil. 4 and 6 cylinder. Every unit is zested before despach and each carries a full guarantee. Gives a full soark at up to 8.000 RPM!

Super Spark- 10.95 P\& P 25 p
tRANSISTORS RECTIFIERS, DIODES, INTEGRATED CIRCUITS, FULL PRE-PAK LISTS
1×10
(1) RELAYS FOR
P\& P 25p
COLOURTV-IINE OUTPUT TRANSFORMERS Designed to glve 25 kV when used wish PL509 and $P=500$ valves. As removed from colour

INTEGRATED CIRCUITS

5L40][yAudio Amp.,]. Waets 1.50 1.37 1.32 Gases, Factory Marked and 25p 20p isp Testod by A.E.I. 10 p Ip 8 p 1. K. Fip-Flops Factory, M.E.L SN7490 Decade Counter $\quad \begin{array}{llll}20 p & 18 p & 15 p\end{array}$	UL914 Dual $21 / P$ Gase	50p	45p	40p

LOW COST DUAL INLINEI.C.
SOCKETS
14 pin sype at $15 p$ each
16 pin type at 16 p each

BOOKS

We have a large selection of Reference and Technizal Books in stock
These are just swo of our popular lines
B.P.I Transistor Equivalente and Substitutes;
This includes many shousands of British 40p U.S.A. European and C.V.equivalents. The Ifffe Radio Valve Re Transistor Data Book 9th Edition
Characterlstics of 3,000 valves and subes 4.500 Iransistors, Diodes, Recelfiers and interpred circuits

PANELS

Juat mat you need
or wort bench or lab $4 \times 15 \mathrm{amp}$ sockets in metal box to take btandard 13 anp fused pluge and on／ off ewitch with neon warning light．Supplied complete with 6 feet of fiex cable．Wired up ready to work．野2 Plun 28p P．\＆ 1.
MULTI－SPEED MOTOR Six apeedn are available 500,850 $15,500 \mathrm{r} . \mathrm{p} . \mathrm{m}$ ．shaft is $t \mathrm{in}$ ．dit meter $250 / 240 \mathrm{v}$ ．Its apeed may be urther controlled with the ne of our Thyriater controller．Very powertul and unetul motor ais pprox． 2 in．dia．$x 8$ in．lons Price 880 plua 23p poatage and
 inaurance．

MAINS MOTOR

Precision made－ta used in record decks and tape recor－ ders－ideal alno for extrector fan，biower，heaters，etc．New and berfect．Snip at sop． Postage 15p for first one then \＄p for each one ordered．

TELEPHONE HAND SET

Ex．G．P．O．Perfect order
12 VOLT It AMP
POWER PKCK
This comprises double－wound $230 / 240 \mathrm{~V}$ madns tranatormer with full wave rectifier and 2000 mif $/ \mathrm{d}$ moothing．Price
t．E0 plus 20 p post \＆packing

NEW LIGHT DIMMER

This ueea the latent technique from America，as sel trigeuring devioe known ws the thermo tab and han enabled un to produce a really relisble dimmes t a remarkably tow price－namely 29.50 each or 10 for 3 空 60 ．

DRY FILM LUBRICANT
Dry Fim Lubriesat．In aerosol can for enay application and for puting lubricant fato places wbere the nor：
mal ofl can cannot reach．Home and mal oll can cannot resch．Home and
everyday nes．We have purchaned a large quantity of these from the Liquidator and are able to offer tben o you for about hal of the original pold．The lubricant failic．I．fluon Li69．
CARD OPERATED SAFE
All electronic parte to make thin 84.50 ．

AMPLIFIERCASE

Teak vencer on It ply，modern appearance and quantity $81 \cdot$－s each plus 25 p poot and liumrance．
KITS FOR PREVIOUS PROJECTS
Unlea otherwise stated，Ifte contain elec－ troake parts only．The care and apeoial are not fncluded．Kita may be returned for refund If construction hat not been atarted．We reserve the right to subatitute oomponente abould deliveries be protracted 00 ef to svold undue delay

HOME SENTINEL INTRUDER ALARME3．75
SNAP INDICATOR
WINDSCREEN WIPER CONTROL ． 22.00
PECORD PLAYER
（Amplifter componente．．．．．．．
DEMD DEC
6.75

FUZZ BOX
PHOTOGRAPHIC COLOUR
TEMPERATURE METER
ASTRON RADIO
$2 \cdot 65$

REMDTE TEMPERATURE
COMPARATOR
14.25

ELECTRO LAUGH
RAIN WARNING ALARM
WA．WA PEDAL 1－管
WA．WA PEDA $2 \cdot 90$
SIGNAL INBECTOR ．．．．．．．．．．．．．．．．．．．．．．．80．
SOIL MOISTURE METER ．．．．．．．．．．．．．© $\mathbf{\$ 3} 00$
SIMPLE CALCULATOR
DC POWER SUPPLY
62． 20

BABY ALARM
4．．．．．．．．．．．．．．．．．．．．．．．．E4．00
AUOIO TONE GENERATOR ．．．．．．．．．．\＆2．60
METAL LOCATOR．．．．．．．．．．．．．．．．．．
44．00
LIGHT TO SOUND CONVERTER \＆ 1.70
WASH \＆WIPE CONTROLLER ．．．．．．． $\mathbf{4} 20$
MATNS TINNSISTOR BOWEN PACK

Deal nod to operake traniblor sel and ampliser Adjustable outpot 67．，9v．． 12 volle for up to B00mA（clam B working）．Takes the place of any of the following batteries：PP1，PP3，PP4，PP6， PP7，PPP and others．KIt comprises：ipain： tranaformer reetiker，amoothing and load raeistor．
condensert and instructions．Real salp at only condensert and instructi

24－HOUR TIME SWITCH
 CLOCKWORK．Ideal for mounting on reck or shal or can be bulit into box with 13A mocket．Two com pletely adjuatable time pertods per 24 hours，EA changeover conticts will switch circult on or of during these perlods． 5 ． 50 po

	TREASURE TRACER MARK II Complete kit（except wooden batiena）to make the metad detector sitnilar to that described editorially in Practical Wirelems Augunt inace．asos plus 20p poat and insurance．

MULLARD I．F．MODULE
This in a fully screened intermediate frequency module for amplification and detection of t．m．algnals at 10.7 MHz and a m．signale at 470 k Hz ．The firat atege fo used an an l．t．smpliber for f．rn，and a melf oacilith mixernal oecilitor coll． 750 each． 10 for 86.75 100 for 2 ese．W0．With connection dit

COMPUTER TAPE

 and jamurance，with casette．In wide 11.00 plue 30 p pont and naurance with camette．$\overline{i n}$ ．Fide 05 p plus 25 p poat and jasurance ith cassette．Bpare spoola and casottes－1 in 75p．in．75 ach plus 20 p poat and inaurance．

－THIS MONTH＇S SNIP

HONEYWELL THERMOSTAT

Made by Honeywell for normal alr temperatures $40^{\circ}-80^{\circ} \mathrm{F}$ （－25 ${ }^{\circ} \mathrm{C}$ ．This is preciolon fortrpment with a differentia thich can be aljuated 20 better than $1.6^{\circ} \mathrm{F}$ ．A mercury witch breaks on temp．riee－the afitch is aperated bre colled bl－metal element and adjustable beater in incorporated for hest anticipation．Relegantly styled and encased in an vory plastic came with clear plestic whadows tberanometer above and switch setting scale below－size approx $3 \cdot 8^{\circ} \times 5 \cdot 2^{*} \mathrm{I} 1 \cdot 4^{\circ}$ deep－ can be mounted on conduit box or directly on wall．Price alres each or te for $\$ 11.25$

CENTRIFUGAL FAN
Mains operated，turbo－blower type．Premeed ateel Houaing contains motor and aluminium impeller． Motor is $1 / 10$ h hp giving considerable as thow but virtually no nolse．Approx．dimenaioas 10 （ wide by 12° dis．Outlet into trunking $104^{\circ} \times 44^{\circ}$
THE FULLAFI STEREO SIX

Tic AMPLITIEB

 You will be amazed at the fullnesa quelliter your recorda or tuner will reproduce．Built Into metol chesala reedy for mounting on plinth thle anpliner uses an interrated solld stale clrcult with an output power of 6W R．M．R．spltt over the two chanbels．The ampliner is idenl for
a double wound matns transformer use with normal plck－upe and tunerm，It han a double wound mains transiormer and ranged volume and tone cont rols－almo switching for Mono to hiereo，tanes of pick－up，UNREPEATABLE PRICE is 8 s． 00 plias $20 p$ pont and ingurance． imulatideak cabinet ready for mountiog amplitier sisp（pooked iree when

WEATHER STATION LIGHT METER DRILL CONTROLLER

to receive theee kits，send the quoted approx．price and any djrereace will be adjusted．

DIAL THERMOMETER
Reading frotn $200-525 \mathrm{~F}$ used on Tricity and other cookern．This has a flange and can be mounted through a 11° bole or alternatively
 perature it is required to toeature．Bixe $2^{2} \times$ bove mounting panel．Price sop each or 10 for 57．80p．

MULLARD，AUDIO AMPLIFIER MODULE Usen 4 tramiatorm，and haven output of 750 mW into 8 ohms apeakere．Input aultable for cryotal mic，or pick－up gV bittery operted．Bize 2 in long x ifin wide I ifa high． CAPACITOR DISCHANGE CARIGNITION

This syatem which han proved to bo araasingly emcient and reliable way frot described in the Wirclass Wonld about a year ago．We can aupply
lit of parta for an lmproved and even more eflelent Fersion（Preaticel Wirclest，Jube）．Price es－06 plue eame ntate whether for poitive or negative gyitems Also avaliable，reidy made igaltion ayitem tor 6 V vehiclea 85.50 plug 30 p ． RADIO STETHOSCOPE
Radast arey to fanlt find－traces aignal from aerlal to apesker －when mifnal atops you＇ve found the fault，，Use it on Radio． TV，ampliser，anythlns－complete kit comprisea two pecial tranaistors and all parts includiag probe tube and cryatal earplece．A． t （win ate thoset instead of earplece 75 ． extrn－poot and in．20p．

Where poutage is not atated then onders over 45 are poot free．Beiow e5 add 30p．Bemi－ conductors add 59 poot．Over 21 post free． 3，A．E．with enguirios pleser．

AUICK CUPPA

Mini Immertion Heater， $350=$ 200／240v．Bolls fuil cup in sbout two minutes．Use any wockat or hmp holder．Have at bedilde and inerrance 14p，12v．car poat and inmarance 14 p .12 v ．cer moded heater 1.50 plus p．$\&$ p． $14 p$
MAINS OPERATED SOLENOIDS Hollel 7rib－mall but power－ tul 1＇pall－sppros，date 14x $14 \times 1{ }^{\circ} 80$ Frodel 400／11
$2 \times 11^{*} 750$ pull．site $21 \times$

MAINS RELAY BARGAIN

special this month are wome aingle． double and treble pole changeover relayb．Contacts rated at 18 ampa． A．C．Good Britich Make．Unosed． gize appror， $11^{*} \times 1^{\prime \prime}$ ．Open con－ atruction．

Double pole 35 each 10 tor $\$ 3.15$

SLIDE SWITCHES

wh mitioh， 2 －pole chanteover panel moanting by iwo 6B．A．screws．Bize approx．lin x in rated 250 V lamp． for esch． 10 for 54p， 100 for 55．10．B00 circuit sp ench 10 for 4 Lis． 100 for $\$ 4$. ．
 （1tn approx，）between fixlog centree． 18．esch or 10 for $81 \cdot 0$ ．

LIGHT CELL

Almoat sero reaiatant in atun－ light increases to 10 K Ohms in dark or dull light，epory
 reang setied．sise approx．lin dis．by tin thick． Rated at 600 MW，wire en
Aloo ORP12 light cell 45p．

TELESCOPIC AERIAL
for portable，car radio or tranemitter．Chrome plated in，Hole in bothom for 4 B．A．serew 49．KNUCKLED MODEL FOR F．M

EXTRACTOR FAN Cleane the atr at the rete of 10,000 cutic fi．per hour rooms，factorles，changing roms，etc．it＇s to quiet it ca hardly be beard．Compect， 5 t coling with bt \tan bleces． KJt comprisee motor，fan bladen，sheet steel caaing，pul witeh．mains connector，and axiog bracketa，at plus 36p poat and tns．

BALANCED ARMATURE

UN！T
500 ohm，operates epeaker of misro－ phone，eo netul in istercom
circalt， 88 ench，is 50 dox．
MICRO SWITCH
5 A changeover oontacts，of
each， 10 doz． 16 ams

WAFER SWITCHES
2 pole， 2 way－4 pole， 2 way－ 3 pole， 3 way－4 pole， 3 way－2 pole， 4 way－ 3 pole． 4 way－2 pole
6 way－1 pole． 12 way．Ail st 80 each， 1.00 for ten，your meortment．
 ofier 3 trpes．
（Dept．E．E．） 7 Park Street，Croydon CRO IYD Callors to：102／3 Tamworth Road，CROYDON

FOR RAPID SERVICE
 GARLAND BROS． CTD DEPIFORD AROADWAY，LOWDOW，SE8 GQW

TRANSFORMERS
all with 0－250 Volt primaries
MM6 6 vo
$500,500 \mathrm{~mA}+6$ voles． MMI 212 voles， $250 \mathrm{~mA}+12$ voles，
 41.29 plus

L．Ti
15018 p p ．\＆ p ． Amps 75 p plus LT2 6.3 voles， $3 \cdot 0$ Amps 80p plus LT3 12 voles． 5 Amps 80p plus LT4 12 voles， 3 ？ 0 Amps 61.32 LTS $9_{-0-9}{ }^{\text {plus }}$ volts． 0.5 Amps 75 p LT6 12 po－12 volts．I ． 0 Amp 95 p LT7 $30-0-30$ volrs． 1.00^{p} Amp ≤ 1.87 Multi－etapped
MT30／2 $\begin{aligned} & 0-12-15-20-24-30 \\ & 2.0 \text { Amps } 61.95 \text { voles，} \\ & \text { plus }\end{aligned}$ MT60／1 $\begin{gathered}30 \mathrm{D} \\ 0-50-30-30-40-60\end{gathered}$ voles，
MT60／2 $\quad \begin{aligned} & 30 \mathrm{p} \text { p．\＆} \mathrm{A} \\ & 0-50-30-40-60\end{aligned}$

Charger 34 p A．\＆ D ．

CTIOR 1 Am， $41 \cdot 00$ plus 26D D．\＆D． CT102 2 Amp il 25 plus 30 p p．\＆p． CT103 4 Amp 11 ． 50 plus 30 p p．$\& \mathrm{p}$ ． Auto－transformars
Auzo－transformers 30 Wakes 61 － 18 plus 30p AT75 $75^{\text {P W．Wates }}$ \＆ 1.85 plus 30p
 AT 300300 W．Wares 64.75 plus 42D AT $10001000^{\text {P．Wates }}$ We 90 plus 62 D All shrouded wizh serminal blocks． A $0-110-200-220-240$ voles Speakor matching eransformer almose any speakers to any amplifier．
15 Wates max． 90 p plus 20 D p．\＆ p ．

ALUMINIUM BOXES

EQUIPMENT CASES

Type Height Width Depth Price d．\＆o． | SF1 | 2 in | 51 in | 2 in | $45 p$ |
| :--- | :--- | :--- | :--- | :--- |
| SF2 | $12 p$ | | | |
| SF | 2 in | 7 in | 3 in | 60 in |

 namelled silver stov nammelled silver－grey

CONSOLE CASES

plain aluminium，ideal for mixers，
Type Width A B C D Price p．AD． G820 8 in 9 in $3 \operatorname{tin} 2$ in 3 in $\leqslant 1.4230 \mathrm{p}$ G821 10in 9 in 3 in 2 in 3 in $61.5830 p$
G822 12 in 9 in 3 in 2 in 3 in $61.7230 p$

VEROBOARD

ELECTROLYTICS					
$1 \mu \mathrm{~F}$	450 V	19p	$1.000 \mu \mathrm{~F}$	25 V	27p
$2 \mu \mathrm{~F}$	500 V	20p	1．000 ${ }^{\text {F }}$	50 V	39p
$4 \mu \mathrm{~F}$	350 V	14p	$2.000 \mu \mathrm{~F}$	25 V	36
$8 \mu \mathrm{~F}$	450 V	$16 p$	2.000	SoV	53
$16 \mu \mathrm{~F}$	450 V	$17 p$	2，500 ${ }^{\text {F }}$	25 V	45p
$25 \mu \mathrm{~F}$	25 V	$7 p$	$2.500 \mu \mathrm{~F}$	SoV	60p
$25 \mu \mathrm{~F}$	50 V	8 p	$3.000 \mu \mathrm{~F}$	25 V	48 D
$32 \mu \mathrm{~F}$	450 V	24p	$5.000 \mu \mathrm{~F}$	25 V	55p
$50 \mu \mathrm{~F}$	SOV	10 p	$5.000 \mu \mathrm{~F}$	50 V	98p
$100 \mu \mathrm{~F}$	25 V	10 p	$8-8 \mu \mathrm{~F}$	450 V	18p
$100 \mu \mathrm{~F}$	sov	10p	8－16 ${ }^{\text {F }}$ F	450 V	20p
$250 \mu \mathrm{~F}$	25 V	12p	16－16 12 F	450 V	27p
$250 \mu \mathrm{~F}$	50 V	17p	16－32 $\mathrm{L}^{\text {F }}$	450 V	63p
$500 \mu \mathrm{~F}$	25 V	18p	32－32 $\mu \mathrm{F}$	450 V	49p
500 $\mu \mathrm{F}$	50 V	25p	50－50 ${ }^{\text {\％}}$ F	350 V	

MINIATURE ELECTROLYTICS

${ }_{1 \mu} \mathrm{~F}$	63 V	6p	$10 \mu \mathrm{~F}$	64V
$2 \cdot 24 F$	63 V	6 p	$16 \mu \mathrm{~F}$	40 V
$4 \mu \mathrm{~F}$	40 V	$7 p$	$30 \mu \mathrm{~F}$	ISV
4． $7 \mu \mathrm{~F}$	63 V	60	47川F	16 V
$8 \mu \mathrm{~F}$	15V	$7 p$	47 $\mu \mathrm{F}$	25 V
$8 \mu \mathrm{~F}$	40 V	$7 p$	$68 \mu \mathrm{~F}$	16 V
$10 \mu \mathrm{~F}$	25 V	6 D	$100 \mu \mathrm{~F}$	10 V

ENTIRE MULLARDE15016／017 RANGE

CASSETTE OWNERS

For Phillps and similar cassetse
PUI2 Power unit for connection to
£3．25
PUI4 As above but switched for
$\$ 5.10$
PP75 Mains power supply，output
£ 1.95
All units are complete with cable and plus．

VARIABLE POWER SUPPLY

BATTERY ELIMINATORS

suitable for transistor radios and similar
light currens equipmens
PP6 Input 240 vols A．C．Output 6 vols $\mathbf{D . C}$ ．
PP9 Inpur 240 voles A．C．Output 9 voles D．C． PP9 Input 240 voles A．C．Output 9 volts D．C．

NEW
ILLUSTR
1972－73
CATALOG
Cost Free

PANEL FUSEHOLDERS
For 20 mm fuses $15 p$
For It in fuses $18 p$
Full range of fuses stocked
CONTROLS，Log，or Lin．
Single，less switch， $15 p$
Single，D．P．switch， $24 p$
Tandem，less switeh， $40 p$
$5 k \Omega, 10 k \Omega, 25 k \Omega, 50 h \Omega, 100 k \Omega, 250 k \Omega$,
$500 k \Omega, 1 M \Omega, 2 M \Omega$

SLIDER CONTROLS， 87 mm

Single，44p；Tandem，55p．10k $\Omega, 25 \mathrm{k}$ 日． $50 \mathrm{k} 0,100 \mathrm{k}$ O，108．or lin

RESISTORS

Carbon high－stability．El2 values．
tw，ip：tW，IIp： $1 W$ ． $4 p: 2 W$ ， $6 p$
$5 W, 10 \mathrm{p}: 10 \mathrm{~W}, 12 \mathrm{p}$

TYGAN top qualiey loudspeaker covering material
prices．

BONDED ACRYLIC FIBRE

B．A．F：wadding，liin wide，lin thick．The
解 ideal
yard．
Clug aeria
Co－axial
D．I．N． 2
3 pin（speaker）
D．1．N． 3 pin
DIN． 4 pin
CIN． 5 pin， 180°
CIN． 5 pin， 240°
CiN 6 pin
lack， $2 \neq \mathrm{mm}$ unscreened
lack， 24 mm screned
Jack， 3 mm uscrened
lack， 3 mm screened
lack， 3 ymm screened lack，tin screened lack，stereo sereened
Phono．Plaskic top
Phono
Phono．plated metal
Phono．fissed 4 fie lead
Wander，red or black
LINE SOCKETS
Co－axial
D．．N． 2 pin（speaker）
DiN． 5 pin， 180°
ack． $3+\mathrm{mm}$ ．
ack．tin screened
Chono，plated metal
3

[^2]

CONVERSATION PIECE

We talk about it a lot. Usually to complain, more rarely to praise. Countless conversations have been sustained on this single topic alone. Weather.

All the paraphernalia of modern science and technology is harnessed in the cause of weather forecasting. Earth satellites report by radio what their electronic instruments detect high up in the atmosphere and computers devour this data and then produce their predictions.

From such sophisticated methods, let us now come back to earth and see what can be done in the ordinary garden or backyard, with some quite simple electronics. The Weather Station featured this month is not a scientific instrument of known and precise accuracy. Neither is it, on the other hand, simply a toy. With its convenient remote monitoring unit, the study of the weather can become a new absorbing interest.

THE MEANS

The means, no less than the end, are of interest, too. The Weather Station employs sensors and transducers that convert physical phenomena such as light, heat, moisture, and wind speed and direction into electric currents. These electric signals are used to produce a visual indication on a meter.

Employed here in this simple system are the same basic principles that are exploited on a far grander scale in all manner of advanced electronic equipments used for industrial and professional purposes.

The Weather Station might well provide valuable meteorological data to back-up that casual conversation in pub or train. It will certainly give the student of electronics a convincing demonstration of the inter-action between natural forces and certain electronic devices. Properties that provide the key to much modern technology.

RESIST!

At least one reader has noted that for the resistor, Everyday Electronics uses a circuit symbol different to that recommended as first choice by the Eritish Standards Institute.

We are not by nature rebels, but in this instant we do feel that the long established British zig-zag is, by far, a superior representation of the resistor (and its properties) than that nondescript oblong box, long favoured by the Continentals and more recently imported into the U.K.

If the pint is sacrosanct, and Parliament decrees that it shall remain despite impending national conversion to metric measurement, then surely the same privilege should be accorded to the traditional British resistor symbol!

Our September issue will be published on Friday, August 18
EDITOR F. E. BENNETT - M. KENWARD - E. W. TERRELL B.Sc.

ART EDITOR J. D. POUNTNEY - P. A. LOATES - S. W. R. LLOYD
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^3]
EASY TO CONSTRUCT SIMPLY EXPLAINED

CONSTRUCTIONAL PROJECTS

DRILL SPEED CONTROLLER Speed reduction without power loss by Mike Hughes 526
THROUGH THE LENS LIGHT METER Simple design for single lens reflex cameras by E. B. Eves 536
WEATHER STATION Bosic design with remote monitor by D. T. Goodwin 548
GENERAL FEATURES
EDITORIAL 524
KIT CONSTRUCTION Types of kit and construction techniques by Brion Wolters 532
SHOP TALK Component buying, new products ond news by Mike Kenword 535
GUIDE TO CIRCUIT SYMBOLS Port 3-Switches, Reloys 540
TEACH-IN Part 10—Reactance and Inductance by Mike Hughes 542
RUMINATIONS by Sensor 547
THEY MADE THEIR MARK No. 4-Ohm by J. E. Gregory 557
READERS LETTERS Comment ond criticism from you 558, 561

what a BIND:

Your copies of Everyday Electronics deserve a permanent Home!
An Easi-Binder is now available handsomely finished in orange de luxe Balacron with black lettering on the spine. It holds 12 issues of Everyday Electronics. Order your binder from Binding Dept., IPC Magazines Ltd., Carlton House, 68, Great Queen Street, London W.C.2. The price is $88 p$, including postage and packing.

This Drill Speed Controller is an extremely useful addition to the handyman's workshop. The unit will provide continuous control of speed of any a.c. mains operated series wound brush motor-most commonly used in hand electric drills and food mixers. Speed control is from approximately half full speed (which could be in excess of 1,000 r.p.m.) down to less than 15 r.p.m. The advantage of using electronic control is that one can obtain this dramatic variation without necessarily losing torque.
Even the newcomer to electronics will probably be surprised by the absolute simplicity of the circuit to be described (only five "electronic" components are used) and the unit can be made in one evening for a fraction of the cost of a commercially made equivalent. Making use of a standard electrical wall box simplifies mechanical construction and gives a very professional looking end product.

THE THYRISTOR

A thyristor or controlled silicon rectifier (CSR) is used to control the main current supplied to the motor; as this may be a new component to some readers we shall briefly describe the functions of this type of device.

Its symbol and designation are shown, together with a typical type in Fig. 1. The similarity of its symbol to that of a diode is deliberate because, to some extent, it shows similar properties. The anode and cathode are the main electrodes through which current can be made to pass and the third electrode-the gate-is used to effect control of this current.

If connected into a circuit passing alternating current the thyristor presents a high resistance when the cathode is positive with respect to the
anode (just like a conventional diode) but unlike a conventional diode it also presezts high resistance the other way. If, however, the anode is made positive with respect to the cathode and at the same time the gate is made positive with respect to the cathode the device will pass current in the forward biased direction. The reverse characteristic is not affected by the gate.

The interesting thing about a thyristor is that once it starts to pass forward currert it will continue to do so even though the positive signal on the gate is removed; the only way the device can be "turned off" is for the current passing through it to fall below a certain value -this is called the holding current.

If we were using a direct current supply we would somehow have to interrupt the flow of current; in the case of a.c., however, the direction of current flow is reversed during every cycle of the mains and this effectively breaks the flow and the device will turn off The thyristor then stays off until such time that the gate is once more made positive with respect to the cathode.

Fig. 1. Circult symbol and typica controlled silicon rectifier.

established). The holding current minimum value is approximately 10 mA -if the anode/ cathode current falls below this level the device turns off.

CIRCUIT DESCRIPTION

The circuit of the speed controller is shown in Fig. 2. The simplicity of the circuit is a little deceiving because the way it works is not quite as obvious as you might think at first sight. As we shall be operating from alternating current we shall assume that all voltages and waveforms are described relative to the "neutral" line, i.e., the line feeding the cathode of D2 and the motor. The "live" line will thus alternate from positive to negative.

During negative half cycles CSR1 will be reverse biased and can never be made to conduct therefore no power will be fed to the motor. For identical reasons D2 will not pass current therefore there is no dissipation within R1 and VR1.

During the first positive half cycle the potential difference across CSR1 will build up in the forward biased direction but as yet no conduction will take place. However, while this is happening D2 becomes forward biased and the potential at the wiper of VR1 (point B) will be rising in a positive direction-the peak voltage it can rise to is set by the potential divider effect of the wiper's position. As no current is, as yet, flowing through the motor the potential at the cathode of the thyristor will be the same as at the cathode of D 2 , thus we can say that the

Fig. 3. In the absence of feedback voltage, these graphs show the voltage variation at points A, B and C. The points in time over which the trigger point can be controlled are from zero to halfway through the positive half cycle.

potential at point B is rising positive with respect to the cathode and Dl becomes forward biased.

As soon as the potential at point B rises to about 2 volts positive with respect to the cathode of CSRI (assuming the wiper has been set at a position where this can happen) the thyristor will start to conduct and the full mains voltage appears across the motor.

Diode D1 now becomes reverse biased and no more gate current flows but because the thyristor is passing much more than the holding current it does not turn off. All this happens before the mains positive half cycle has reached its peak.

As the positive half cycle returns towards zero the current through the motor will falleventually to below the holding current-and the thyristor switches off; it stays off during the negative half cycle and in the absence of any other effects would be triggered on again some time during the first half of the next positive half cycle.

FEEDBACK

By adjustment of VR1 one can alter the position in time of the instant point B reaches 2 volts relative to the time of the start of the positive half cycle; thus we can control the length of time before the thyristor is triggered and mains is applied to the motor during the early part-the first 90 degrees-of the cycle. If we trigger early in the cycle more total power will be fed to the motor than if we triggered later.

Because, at best, only the positive half cycles can be used to power the motor it will not run at its full speed because we are halving the total energy supplied. By adjusting the total energy fed to the motor by setting VRl at different levels we can influence the speed but at the expense of torque.

This circuit however goes quite a bit further and compensates for the apparent loss of torque at low speeds. This is brought about by a signal that is fed back to our circuit from the drill itself.
There is always a certain amount of remnant magnetism left in the iron that makes up the field coil of a motor and if the armature is spun within this remnant field the motor will behave like a dynamo producing an output voltage-in a series wound brush motor this will be in the form of a d.c. level and will be directly proportional to the speed at which the armature is turning.

You can see this effect quite easily if you connect a 10 V d.c. meter across the input leads to the motor (it must not of course be plugged into the matins while doing this) and spin the chuck-if it is a drill-by hand. Remember while doing this to press the starting switch otherwise no current can flow through the meter! Even at low speeds you can detect several volts.

Components....

Resistor
R1 10ks2

5W wirewound

Potentiometer
VR1 2kS
2W wirewound

Semiconductors

CSR1 CRS3/40 or any 400 V 3 A thyristor
D1 IN4004
D2 IN4004

Miscellaneous

3 inch length of 2 inch wide tag strip, small aluminium bracket-for mounting CSR1, insulated knob-preferably push-on type, MK double wall box type 2025, MK 13 amp unswitched socket, MK standard cover plate, three core mains cable-length as required, two 4BA countersunk screws-to mount circuit board, short length of connecting wire, grommet, mains plug-fused 13 or 15A type.

TORQUE

If we assume that this can happen to the motor in our circuit a rather interesting state of affairs is set up. During the negative half cycle following the first cycle when we set the motor going the armature will freewheel because of its inertia and now instead of the potential at the cathode of the thyristor being the same as that of the cathode of D2 (as was the case before switch on) the potential at point C will be a few volts positive-depending on the actual speed of rotation of the armature during its freewheeling action.

This voltage will be maintained well into the next positive half cycle. This means that the potential at B will have to rise to a higher level if the gate is to be made 2 V more positive than
the cathode; thus firing during this positive cycle will occur later (it might not even occur at all if the wiper of VR1 is set low down). This reduces the energy fed to the motor and it will slow down until the next cycle when the "back voltage" produced will be less and triggering will occur slightly earlier in the cycle.

If the motor is subjected to heavy torque there will be a tendency for the motor to slow up dramatically during the freewheeling (negative) half cycle and thus the feedback voltage will be less allowing extra energy to be fed in when the next trigger cycle comes along. This extra energy will compensate for the increase in torque.

The net effect of this is that the motor will keep running at its lower speed but the amount of energy being fed to it will be hunting up and down as torque is applied and removed. The speed is altered simply by setting the potential at which point B can fire the thyristor.

When running at very low speeds with very little torque applied the freewheeling action of the armature may continue over several full cycles before extra energy is applied. The motor will appear to "hunt." The effect is known as "skip cycling" and is inherent to this sort of circuit; as soon as torque is applied the skip cycling will stop and very steady low speed operation will take place.

The waveforms at points A, B and C are shown in Figs. 3 and 4, these may help in explaining the method of operation.

CONSTRUCTION

All components are mounted on a 3 inch length of 2 inch wide tag board which will ultimately be mounted in one half of an MK double wall box. The advantage of using this box is that not only does it make a very convenient and nice looking housing but is amply insulated because you must remember that all the

Fig. 4. A typical example of low torque allowing the feedback voltage to suppress triggering for the whole of one cycle (skip cycling).

RRIIL SPEED CONTROLIER

Fig. 5. Complete layout and wiring of the Drill Speed Controller.

circuitry is live to mains voltages.
The thyristor is mounted on a small aluminium bracket that is bolted to the tag board. The bracket acts as a small heat sink and easily disposes of any heat generated by the thyristor. Resistor Rl must be a 5 watt wirewound device and VR1 should have a rating of at least 2 watts and again should be wirewound. There is quite some latitude in the ohmic value of the latter.

If you cannot get a 2 kilohm potentiometer any value up to 5 kilohm will do but the range of control will tend to be cramped towards one end of the movement. The diodes D1 and D2 must be capable of withstanding full peak mains voltage and although the current passed is comparatively small the most convenient devices are in 4004 one amp rectifiers, which are easily obtainable and relatively cheap.

Mains input to the unit is from a 13 or 15 amp fused plug connected to a flying lead entering the case through a grommet. The output to the motor is via a standard MK 13A socket that conveniently bolts into the other half of the box.

Once the component board is completed and wired to the socket (Fig. 5) it should be fixedusing countersunk screws-to two of the recessed tapped holes of the box and a standard cover plate is drilled to allow the spindle of the potentiometer to protrude. Screw the cover plate into position using the other two tapped holes and fix an insulated knob on to the shaft. Make sure that no metal parts of the potentiometer can be touched just in case there is an internal short.

OPERATION

When using the controller with an electric drill it is just as well to remember that, although the drill may be turning at low speed, if the torque applied is high you might be applying more electrical energy than you think and as some drills have a cooling fan coupled with the armature there could be an increase in temperature of the drill itself.

Provided common sense is used this does no more harm than the occasional overload but if you allow overheating to persist without sufficient cooling time you could burn out the armature!

Protect your home from any unwanted intruders with the invisible beam of our burglar alarm. As soon as the infra-red beam is broken a warning is given for 1 minute, the alarm then reverts to standby.

Capacitance Meter

Sort out any unknown or unmarked capacitors with values up to $3 \mu \mathrm{~F}$ with this meter. Simple to use the meter will form an excellent piece of test gear for the work bench.

Rw Mw Radio Juner

A simple long and medium waveband tuner for use with any amplifier, tape recorder or record player.

All in the september Yssue of.....

On sale Friday August 18.

Do you envy those fortunate folk who own the last word in test or hi-fi equipment? Do you sometimes wish that you could enjoy the same standard of professionalism in your home? If only it was not so expensive. Well now you can; your equipment may not be to the very highest standards, but price for price it will be of a higher standard than ordinary equipment.

You can do this by taking advantage of the many types of construction kits for radio, hi-fi and electronic equipment that are advertised by many firms and, more particularly, for hi-fi, the v.h.f. radio tuner and record player kits available in many types, prices and sizes.

CONSTRUCTION

It is not necessary for you to have a degree in electronic engineering, or that you should be a specialist in electrical equipment. Many of the kits now on sale are easy to build, both in time and effort, and will provide a great deal of pleasure, both in the building, and in their use afterwards.

Why build a kit? Here are two reasons: firstly, there is a saving in cash, exactly how much will depend on the piece of equipment you intend to build.

If you were to build, say, a high quality record
player, while it would not necessarily be cheaper than a commercial record player, it would certainly have a better performance than a comparably priced commercial unit.

Secondly, you could of course build to your own design, but in the first place this assumes that you have the knowledge to design such a unit and, secondly, although you might well end up with a sophisticated design, the finished unit would probably have a distinctly "home made" appearance. Kits do have the considerable advantage of professionally styled appearance, which would otherwise be difficult to achieve at home.

Quite apart from the knowledge that you will have created something that will be acceptable to your family and friends, when the time comes, who would be better qualified to service it than the man (or woman) who built it.

TYPES

Basically kits come in two types: The "little bits" type, in which, when you open the box,

The heading photograph shows a Transona Five radio kit from Radio Exchange Co., under construction. This type of kit is suitable for a first project.
you find yourself with all the individual components, one at a time, and the obvious assumption that you have enough electrical knowledge to sort them all out for yourself.

Then there are the "big bits" type where, on opening the box, you find yourself the proud possessor of a number of ready wired panels, or modules, which need only be connected together, to make whatever it was you had in mind. This type is very much more simple and quicker to assemble.

These are the two fundamental types, and which one you decide to buy would depend on your present knowledge, and/or whether you wish to learn as you build. Some kits, especially some of the "little bits" types are very instructive, while the others enable you to put the equipment together in the shortest possible time, and with the least chance of errors in assembly.

The very comprehensive tool kit sold by Heath (Gloucester) Ltd. This firm market "Heathkit" kits.

TOOLS

It will be necessary for you to have some small hand tools, which should include, a small electric soldering iron, of about 25 watts with a $3 / 16$ inch diameter bit, a pair of small wire cutters, a pair of small tapered nosed pliers, and one or two screwdrivers. Most of which with the possible exception of the soldering iron, you probably own already.

A multimeter is not absolutely essential, but it is highly desirable. This piece of equiprent is moderately expensive (about $£ 8$ for a reasonable meter), but with care, should last for years. It would justify itself during its lifetime, merely on the strength of the many checking jobs it would simplify.

SOLDERING

Do not be afraid of that soldering iron. Soldering is not the exact science that it is sometimes made out to be, and with modern resin cored solder and the correct iron, for the type of work you would have to do, nothing could be simpler, providing you use a little care and common sense.

When making soldered joints, there are three
golden rules. First, make sure that the two pieces of material you wish to solder together are clean. That is, free from grease and free from insulation material like wax, enamel or any form of plastic. The second rule is never ever use any solder or flux on any electronic equipment except the resin cored type specifically sold for the purpose.

Thirdly, put the solder on to the joint, and not on to the iron. Allow the solder to flow around the joint, but be very careful not to overheat the components you are soldering.

It is better to use a hot iron "quickly," than a cooler iron which must be held onto the joint for a longer time, thus allowing the heat to travel along the wire to the component, which may become almost as hot as the solder and be permanently damaged. This is very important with transistors.

It would be a good idea, if necessary, to practice making soldered joints with odd lengths of wire, before you start assembly of your kit.

HEAT SHUNT

Using a "heat shunt," your long nosed pliers, held on the component lead between the component and the soldering iron, to keep the heat away from the comparatively fragile component, will save a lot of worry. A heat shunt should always be used when soldering transistors.

When completed, the soldered joint should be bright and shiny, ard not crystalline as it would be if you moved the two parts before the solder has had time to cool and set. The photograph shows how to use a heat shunt and a good finished joint.

Photograph showing how to use a pair of pliers as a heat sink for soldering transistors.

A rather more ambitious kit, the Heathkit service oscilloscope. A large saving can be made by constructing your own test equipment of this type.

high voltage

It is as well at this stage, to realise that there is some element of danger in most electrical or electronic equipment; if you are worried about building mains powered equipment, then all is not lost. There are still the transistor radio kits for you to build.

These transistor radios often provide added facilities not found on commercial types and are in every sense portable, as well as being free of high voltages. One of the many small radio kits available would make a good first project to get you used to the techniques.

COST

There would seem at first sight to be a very large difference in the cost of kits from the various manufacturers. The reason for this apparent difference can often be seen in the manuals provided with the kits.

Some manufacturers supply a very comprehensive book, which will provide all the information you could possibly need, both in the theory and the practice of building their kit. This applies particularly to the "little bits" kits, although there are some kits which are obviously intended for those who have already a working knowledge of electronics, and thus have only a limited amount of information.

The module type kit will generally provide a book or data sheet that will tell you what is required to connect up the separate panels, and a few do give a basic description of how the equipment works, but not a full description of the theory.

So, before you buy, ask to see the manual, and see if you can understand what is expected of you. You do not have to understand how the equipment functions, but you must understand how to put the parts together. Generally, the more expensive kits have the more informative manuals.

AFTER SALES SERVICE

Some suppliers provide a repair service for their customers, but if you can understand what is needed you should not need their help, with a consequent saving in time, effort and money. You will also get greater enjoyment from having built the equipment unaided. Nevertheless, check that your kit could be repaired by the supplier, should you have trouble.

It would be advisable, if you have never built any electronic equipment before, to start with a small kit, as previously indicated. The confidence you will obtain, plus the experience, will stand you in good stead if and when you want to build something more ambitious. But whatever you do, do not rush the job.

UNENDING

There is one snag; the process seems to be never ending, when you have improved your record player, you will feel that you ought to bring your radio up to the same standard, and then your loudspeaker system up to a quality that will do justice to the equipment you have already built. Or you might wish to construct some test equipment for your workshop, the possibilities are endless.

You can spread the cost, and for that matter the time, over as long a period as you wish.

Finally, comes the compensation for all your effort, when you have built it, whatever it may be, and your friends show their interest, you will have the satisfaction of telling them not where you bought it, but who built it.

The Radio and TV Components Unisound stereo record player. This kit is of the module type which can be assembled in a relatively short time.

Since we seem to have more than enough news of suppliers and new products this month we will quickly get down to buying problems for the constructional projects and then look at the news. There is just one point that has come to light from last months articles; the $0.5 \mu \mathrm{~F}$ tantalum capacitor specified for the Shaver Inverter is not readily available. A $0.47 \mu \mathrm{~F}$ type can be used and it does not in fact have to be tantalum.

Through The Lens Light Meter

Although the Through The Lens Light Meter is very simple to build, when properly calibrated and used it could prove invaluable. One important factor in the construction of this unit is the camera design and how it affects the layout of components in the case.

The case used for the prototype was originally a clear plastic box with hinged lid but any small box will do and some of the slide boxes supplied by film developing firms may be suitable.

Buying problems should be limited to the microswitch and the meter. Although there are many microswitches available a small one must be found if the case size is to be kept small. Different shops sell different types and if you want a small one unfortunately you will just have to look around until you find one -the current and voltage rating are not important in this design.

The meter is of course the most
expensive part of this unit and will probably cost about $£ 2$. One of the SEW MR38P, 100μ A types will be suitable. However, if you can find a small $100 \mu \mathrm{~A}$ meter (moving coil type) cheaper, then this would be suitable. The scale will have to be recalibrated so do not worry about how it is designated when you buy it.

Drill Speed Controller

No problems with buying for the Drill Speed Controller, the case can be obtained from most electrical suppliers as can the socket and blank panel used, if the supplier does not have these items he should be able to order them for you. It is worth noting that all the MK parts can either be obtained in white or cream and a better appearance will result if you get all one colour. Fixing screws should be supplied with the socket and cover plate.
The CSR (thyristor) used can be any $400 \mathrm{~V}, 3 \mathrm{~A}$ type if the CRS3/40 is not available. Just in case anyone is wondering, this unit is not suitable for use as a light dimmer but we may publish such a design in the future.

Weather Station

Not really any actual problems with buying for the Weather Station but a few points that must be noted. Firstly the two pots used for the wind direction vanes, these must be easy to turn, be of such a design that the stops can be removed and be of carbon construction-not wire wound. We have found that the plastic spindle types often fill all these requirements and two of these should be modified as indication in the article.
The motor used for the windspeed section can be any small model makers motor; the method of securing this to the case will vary according to the motor used. The three cup rotor can be fabricated from any suitably shaped items but a kit of all the rotor parts and the two windvanes is available from Kaspex, 16. Sexmour Road, Tilbury, Essex RM18 7 AP af a cost or 50 , including postage-mail order onty.
When buying the moving coil meter look for the cheapest 1 mA design with a large scale; this scale will have to be redesignated for each range of the instrument. The case used for housing the monitor unit in the prototype was
purchased from G. W. Smiths but we believe a number of other firms can also supply this case.

New Products

For all newcomers to stereo hi-fi reproduction. Linear have announced a low cost amplifier providing 5 watts output (they do not state if this is an r.m.s. or peak figure-or the speaker impedance used), with a frequency range of 20 Hz , to 20 kHz (this is not the same thing as frequency response). Price is £17.50 which seems reasonable but we would like to see proper figures quoted, not nondescript ones. Linear give a 12 month inclusive guarantee-more literature from your local dealer or Linear Products Ltd., Electron Works, Armley, Leeds, LS12 3SA.

A 12 V Invader soldering iron has recently been introduced by Adcola products, who advertise in our pages. Designed to operate from a 12 V car or boat battery, the iron is available in two sizes, ${ }^{2} 16$ and 1_{4} inch bit diameter, rated at 23 and 27 watts respectively. The iron is provided with crocodile clip connections, 12 ft of lead and a fire resistant transit cover which fits over the element and bit, allowing the iron to be stored away without having to wait for it to cool down. The ${ }^{1} 16$ inch bit model costs $£ 2.37$ and the ${ }^{1} 4$ inch model $£ 2 \cdot 47$.

Suppliers

Two news items concerning suppliers, the first, which is of general interest, is that G. W. Smiths and the Laskys group have merged. These are probably the two largest companies retailing hi-fi equipment and electronic components. It has been stressed by the officials of Audiotronic Holdings Ltd., a new company formed to amalgamate the two companies, that there will be no change in trading policy or shop names etc. A possibility arising from the merger is the opening of a new shop somewhere outside the London area, but this may be well into the future.
Of more direct interest to readers is the opening of a new shop by Henry's Radio Ltd. at 404-406, Edgware Road, London, W.2. This new branch should have been open a few weeks when you read this; it will carry mainly components plus audio equipment and test gear.

A simple light meter for use with single lens reflex

 cameras.By E. B. Eves

WITH the dramatic fall in price which has taken place over the last few years many more people own single lens reflex cameras than would have seemed likely even five years ago. As most of these cameras are fitted with interchangeable lens systems there is a much greater scope for using a camera for "unusual" photography, employing the use of extension tubes or telephoto lenses.

Many people use their cameras as an extension to another hobby. In this connection bird watching and other naturalist pastimes come to mind in conjunction with a camera and telephoto lens, while many collectors of small items such as stamps and coins, make use of extension tubes to take close-up pictures of their specimen pieces.

The main problem which arises in both these cases is that of finding the correct exposure. The technique of taking several exposures is suitable if cheap film is being used but becomes rather expensive if colour or special films are employed. The meter described below overcomes this problem, although it is only really suitable if the camera is being used on a tripod, as the viewfinder has to be obscured while the meter is in use.

Fig. 1. Complete circuit diagram of the Through The Lens Light Meter.

THE CIRCUIT

The circuit is a simple one using a photo conductive cell, a meter, a silicon diode, a battery and two resistors, one fixed and one variable. The circuit is shown in Fig. 1.

To describe the action of this simple circuit let us assume that it is in two parts, the first consisting of $\mathrm{Bl}, \mathrm{Sl}, \mathrm{Rl}$ and Dl. It will be seen that with Sl closed, current will flow around the circuit since Dl is forward biased. In this condition the diode, which is a silicon type, will always have a voltage of approximately 0.6 volts across it.

It is this small voltage that is measured by the second part of the circuit which is a low range voltmeter formed by PCCl, VR1 and MEI. Once VRI is set the voltmeter will read a value dependent on the resistance of PCCl ; the voltage being measured is always steady at 0.6 volts. Since the resistance of PCCl varies in proportion to the level of light falling on its surface MEI will, in fact, indicate the light level.

the CASE

The construction of the case depends on the type of camera to which the device is to be fitted. The case shown in Fig. 2 was designed to fit a camera where the accessory shoe is mounted directly above the eyepiece.

The only requirement is that when clipped into the shoe the grommet surrounding PCCl must be centred against the view-finder. The micro-switch Sl is depressed by the pressure against the camera and "automatically" switches the circuit on. The case used can be any plastic or metal case of minimum dimensions 2 inches by $1^{3_{4}}$ inches by $1^{3_{4}}$ inches but this size will depend on the meter available.

CONSTRUCTION

The components can be mounted as shown in Fig. 2. The photo-conductive cell must be provided with sufficient lead length to allow it to be positioned as described above.

Start construction by mounting S1, PCC1, ME1 and Bl inside the case, Bl can be mounted by a small Terry clip with a flat brass connector at each end, held in place with foam rubber glued to the side of the case.

Next attatch Rl and VRl as shown, connect up Sl and PCCl and finally solder in diode Dl using a pair of long nose pliers held on the wires to prevent heat from the soldering iron damaging the diode.

COMPONENTS

The photo-conductive cell PCCl is an ORP 12 or similar type. The meter can be any small inexpensive $100 \mu \mathrm{~A}$ moving coil type. The front of the meter is removed to allow a paper scale
to be fitted over the existing one.
Alternatively if some care is taken a slot can be cut in the upper edge of the front cover, when it is removed, using a hot sharp knife blade and finishing with fine sand paper, in such a way that a very thin piece of aluminium, sprayed with white paint and calibrated (on both sides if required), can be slid in over the top of the existing scale and beneath the pointer of the meter, Fig. 3. By this means scales calibrated for different film speeds may be prepared and fitted easily. The method of calibration will be described later in the text.

The variable resistor should be a 15 kilohm carbon skeleton preset type mounted in such a way that it can be set by means of a screwdriver.

Fig. 3. Method of inserting various scales in the meter movement.

SETTING UP AND CALIBRATING

When the circuit has been wired up and checked the photocell should be pointed into a fairly dark corner and the micro-switch pressed. The meter should give a reading and moving the unit about should change this reading as the light level changes. If this is not the case the circuit should be re-checked. The light meter may now be mounted on the camera which should be set on a tripod with the normal lens fitted, pointing at a plain white surface.

The camera need not be focused, indeed, if the surface is not uniform the camera being out of focus as far as possible would be an advantage. The white surface should be illuminated, preferably by normal daylight. The meter will
give a reading dependent on the light level.
An ordinary light meter is used to determine the light level from the surface at the camera. The camera is then set up using this reading. at ${ }^{{ }^{1}}{ }^{00}$ of a second, for the film normally used.

The needle on the light meter is set to centre scale by means of the resistor VR1. The point at which the needle rests must be marked ${ }^{1} 100$. If the aperture is now opened by exactly one stop the needle will move, its new position should be marked ${ }^{1}$ roo, if closed to one stop below the original the scale must be marked ${ }^{1}$ so. This is repeated at one stop intervals until a scale as shown in the photograph is obtained.

The scale is now calibrated for the chosen film speed, other scales may be made by setting the camera to a chosen aperture and marking the scale with the corresponding shutter speed, the variable resistor must not be altered after the initial calibration, and can be sealed with a spot of candle wax dropped, hot, onto the centre of the preset.

If two film speeds are normally used the scales for them may be marked on one scale.

USING THE METER

When the meter has been completed an easy check can be carried out to see if the calibration is correct. The camera is mounted on a tripod with the normal lens fitted and a meter reading of the exposure required is taken by means of a normal light meter. The meter described above is then fixed to the camera and the aperture adjusted until each speed in turn is reached. The corresponding aperture should coincide with the required exposure as found by the other meter.

In general, to use the through the lens meter a shutter speed is selected, the camera focused on the subject and the aperture adjusted until the needle rests on the selected shutter speed \square

Components.... SIHOP TALK
 Resistor

$$
R 1 \quad 1.5 \mathrm{k} \Omega 2 \quad \frac{1}{4} \mathrm{~W} \pm 10 \% \text { carbon }
$$

Variable Resistor
VR1 15k skeleton preset
Diode
D1 OA 202 or any small silicon diode

Miscellaneous

PCC1 ORP 12 photo-conductive cell
ME1 $\quad 100 \mu$ A moving coil meter, small type B1 $\quad 1.5 \mathrm{~V}$ HP7 battery
S1 S.p.s.t. miniature micro-switch or small push button
Case (see text), grommet to hold PCC1, wire, metal for battery connectors and mounting bracket, fixings for mounting bracket, small Terry clip

through the lens light meter

Fig. 2. Complete construction and wiring details of the Through The Lens Light Meter.

(1)
 guld e to circuit

Switches

symbols ... part 3

0
Relays

RL

RLB3
1

Relay coil with resistance indicated in ohms. Relay coils are annotated RLA, RLB, etc. The number of contact sets operated by the coil is shown under the coil annotation e.g. $\frac{\text { RLB }}{5}$

Make contact 1

Double pole multi-way switch (usually rotary). Having one break before make pole and one make before break pole. Each pole has a suffix letter after the switch number. The dotted line indicates that two or more poles are operated simultaneously

6

Break contact
1

1
Changeover break before make contact

Changeover make before break contact

By Mike Hughes M.A.

10 meagtancerinductance

THIS month we'll begin with an experiment to illustrate a.c. resistance. You will need a reasonably high resistance a.c. voltmeter. This is to show that although a capacitor will block the flow of direct current, alternating current appears to flow.

Make the circuit of Fig. 1 and measure the r.m.s. a.c. voltages at points A and B. You should find that (making allowances for experimental error and component tolerances) that the a.c. potential at point B is approximately half that at point A. This means that current must be flowing "through" Cl otherwise the potential at B would be the same as at A.

As the potential we measure is approximately half the supply voltage, this means that the resistance of Cl to the flow of current must be approximately half the total resistance of R1 and Cl in series.

Fig. 1. Circuit diagram for experiment to illustrate capacitor reactance and impedance. Capacitor C1 must not be an electrolytic. Try different values of C 1 .

AC RESISTANCE

Resistance to a.c. by a capacitor is not a simple thing like that of a normal fixed resistor, because it will vary with frequency. Its effect is very similar and hence we measure it in ohms, but, we also have to state at what frequency we are quoting the value.
To distinguish it from conventional resistance we call this effect of the capacitor, "reactance" and it can be fairly easily calculated for a given value of capacitance at a certain frequency from the following expression:

$$
\text { Reactance of capacitor } X_{c},=\frac{1}{2 \pi \times f \times C}
$$

Where X_{c} is in ohms, π is the constant $3 \cdot 142, f$ is the frequency in Hz and C is the value of the capacitor in farads.
Thus we can calculate the reactance of our $0 \cdot 22 \mu \mathrm{~F}$ capacitor at 50 Hz :

$$
\begin{aligned}
X_{\mathrm{c}} & =\frac{1}{2 \pi \times 50 \times 0.00000022} \\
& =\text { approx } 14,000 \text { ohms or } 14 \text { kilohm }
\end{aligned}
$$

We therefore say that the reactance of a $0.22 \mu \mathrm{~F}$ capacitor at 50 Hz is approximately 14 kilohms.

Do you notice, though, that this is much less than half the total resistance of R1 and X_{c} added together. When dealing with capacitors and resistors in series we cannot simply add resistance to reactance to obtain what you might call the total resistance. We have to do it in a much more roundabout fashion and the end result
(although still measured in ohms) is called the "impedance" and is usually given the symbol Z. For a single resistor and single capacitor in series the impedance Z is calculated as

$$
\text { Impedance, } Z=\sqrt{ }\left(R^{2}+X_{\mathrm{c}}^{2}\right)
$$

where Z, R and X_{c} are measured in ohms.
This means that the impedance Z of our circuit is:

$$
\begin{aligned}
& =\sqrt{ }(22,000 \times 22,000+14,000 \times 14,000) \\
& =\sqrt{ }(484,000,000+196,000,000) \\
& =\sqrt{ } 680,000,000 \\
& =\text { approximately } 26,000 \text { ohms or } 26 \text { kilohm }
\end{aligned}
$$

You can now see that the reactance of our capacitor is just over half the total impedance of the circuit and this is why the r.m.s. voltage we measured at point B was approximately half the supply voltage.

FERRITE TRANSFORMER

Last month we saw that when we connected a d.c. source of current across the primary side of a transformer, we got a momentary voltage generated across the secondary. We must now look at this a little closer and see which way the current in the secondary flows when the primary is connected a given way round.

It is a little difficult to do this with the Friedland transformer because it is not obvious which way the turns go round the core. To simplify matters it is best if we make a very crude transformer for ourselves.

For this you will need about 6 inches of 3_{8} inch diameter ferrite aerial rod and some 28 or 30 swg enamelled copper wire (a 2 oz reel of this will be ample).

CONSTRUCTION

Anchor the free end of the copper wire to the ferrite rod with Sellotape-leaving about 6 inches flying for later connections-and wind 200 turns of wire over a length of about 1 inch. The turns can be wound on top of each other. When you have done this anchor the last turn in place and cut the wire-again leaving about 6 inches free.

Leave a gap of about 1_{2} inch and wind an identical coil on the same rod adjacent to the first but make sure that the turns go round the rod exactly the same way as before, see Fig 2(a). We now have a simple transformer with a turns ratio of $1: 1$. We must hasten to add that this assembly is only applicable to our experiment and you should not use this technique for making a power or mains transformer!

Fig. 2(b) is the schematic of this transformer; notice the black spots at one end of each of the windings. These denote the wires leading into the "start" of each coil (i.e. the wires you anchored to the ferrite rod as you started to wind each coil). It is most important in this

Fig. 2(a). The experimental transformer wound on six inches of ferrite aerial rod. (b) Shows the schematic diagram with designations for the start of each winding. Arrows show direction of current flow when the circuit is "made". The current through the secondary reverses when the primary circuit is broken.
experiment that you can recognise these leads.
Before proceeding further you must remove the insulating enamel from the four ends. This can be done by scraping gently with a razor blade or rubbing with fine emery cloth.

Now decide which of the two coils you will call the primary and which the secondary, and then connect the secondary across the 1 mA meter on the Demo Deck with the start end going to the negative terminal. The negative terminal of a 9 V battery should be connected to the start of the primary.

When you complete the primary circuit, by connecting up the positive terminal of the battery, watch the meter very carefully. You will see a very small kick in a positive direction which very rapidly falls back to zero. Now disconnect the battery and you get a slight "kick" in the negative direction-just as we had last month only the "kicks" are not so strong.

INDUCTION-MUTUAL INDUCTANCE

Now we know the sense of the windings we can see that a change in current flowing one way round the core in the primary gives rise to a build up of magnetisation of the core (for the direction of current flow we are considering the north pole of the magnet is as shown in

Fig. 2) which in turn causes a momentary current to flow in the secondary-but in the opposite direction around the core. This effect is called "induction".

We say that the "signal" in the secondary is "induced" by the change of current in the primary. If the secondary coil was connected to a very fast reading voltmeter and we were able to control the rate of build up of the primary current, you would see that the outpit voltage was proportional to the rate of change of primary current.
Secondary voltage, $V=M \times$ Rate at which priis mary current changes
V is measured in volts, the primary rate of change in amperes per second, and M is a constant of proportionality set by the numbers of turns on each coil, the distance between the coils, the dimensions of the coils and the magnetic properties of the core.

We call the constant, M, the "mutual inductance" (between the two coils in question). This is measured in units called henries (abbreviation " H ") and frequently we come across mH (millihenries) and $\mu \mathrm{H}$ (microhenries).

One henry is the mutual inductance which will cause an output voltage of one volt when the primary current changes at the rate of one ampere per second.

SELF INDUCTANCE

Now imagine a single turn on the primary and a single turn (having the same winding sense) on the secondary-Fig. 3.

Fig. 3. The main current from the battery through the first turn induces a reverse current in the second turn as the circuit is. "made". This resists the build-up of the main current, this effect is called reactance. The influence of the turns on each other is called self inductance.

Let us connect the first turn to the second turn (exactly as if we had wound on two adjacent turns) and pass a current through both. The change in current through the first will still induce a reverse current in the second and this induced current will oppose the flow of the
original current-because the two turns are connected in series.

This means that as we try to generate a fast change of current the inductance between the two turns will try to oppose it; this slows up the rate at which our "primary" current can build up. In effect the two turns work together to resist the flow of current-especially if we try to make the current change fast. The faster the change in current we apply the stronger will be the opposing current and hence this resistance.

This obviously is not a simple sort of resistance because it is generated by the "self induction" between the two turns and has nothing directly to do with the material from which the wire is made.

As with capacitors rates of change affect the degree of this resistance and hence we call the effect reactance. It is still measured in ohms with a symbol X_{L}. To differentiate between mutual. and self inductance we designate the term L to the latter. It is still measured in units, or fractions, of henries and is dependent on the number of turns, their spacing, diameter, and the properties of the core. The higher the self inductance the greater the reactance of the coil for a given rate of change of current.

An inductance may have a very low resistance to direct current, but if we try to pass alternating current its resistance increases-we call this form of resistance "reactance" and this increases with frequency.

We can calculate the reactance of a coil if we know its inductance from the following
expression

$$
X_{\mathrm{L}}=2 \pi f L
$$

where X_{L} is the reactance measured in ohms, π is our old friend $3 \cdot 142$, f is the frequency at which we want to know the reactance, and L is the inductance in henries.

If we have an inductor in series with a resistor in a circuit we cannot simply add the value of the resistor to the reactance of the inductor to obtain the total resistance to a.c. current flow. As with the capacitor, we have to calculate the impedance. The formula is very similar:

$$
Z \text { (impedance })=\sqrt{ }\left(R^{2}+X_{\mathrm{L}}^{2}\right)
$$

SERIES AND PARALlEL

If you have several inductors in series (provided they are physically far enough apart to prevent mutual inductance) you can simply add the values of inductance together to find the total effect:

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+\ldots+
$$

For inductors in parallel

$$
\frac{1}{L_{\text {total }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\ldots+
$$

high Voltage

If we have a large inductor in transistor circuits that switch currents on and off very fast we can sometimes have a problem.

If you pass a reasonably heavy current through an inductor and then break the circuit very quickly, the energy that is stored within the magnetised core will fall and while doing so will try and generate a reverse current; but as the circuit is broken the current cannot flow anywhere and we can momentarily generate a very high voltage across the ends of the inductor.

We can do a simple experiment to demonstrate this. You will need the Friedland bell transformer a 9 V battery and a 60 to 70 V neon bulb (it should be a "bare" neon and not the type with a built in resistor as used for panel indicators).

Connect the neon across the primary (mains) side of the bell transformer and then connect the battery up across the same terminals-do not connect anything to the secondary. see Fig. 4.

Fig. 4. Experiment to show that a momentary high voltage can be developed across the terminals of a high value inductor when the current suddenly stops flowing.

The neon does not light up because we are only supplying 9 V to the circuit and the bulb needs at least $60 / 70 \mathrm{~V}$ across it before it will glow. Now quickly disconnect one terminal of the battery and watch the bulb, but do not hold the bare wires, otherwise you will get a small electric shock; you should see a brief "flash" indicating that for a fraction of a second the voltage across the ends of the transformer primary (our indicator), must have risen to a value greater than 70 V .

If you could make and break the circuit very quickly you would see a steady glow from the neon. You can do this by using a buzzer that
runs from batteries. Connect the neon directly across the coil and connect the battery.

You should see a steady glow from the bulb indicating the continuing recurrance of the high voltage caused by the inductance of the buzzer's coil and the constant making and breaking of the circuit by the contacts. Incidentally it is this high voltage that causes the sparking across the gap of the contacts.

Sometimes you will see the specification for a switch that says it may only be used to switch d.c. with non-inductive loads. This means that the contacts are not made to withstand the sparking that can be caused.

DIODE SHUNT ACROSS RELAY

Quite often a transistor is used to control the current flowing through the coil of a relay-a typical circuit is shown in Fig. 5.

If the transistor is made to switch off very fast by removing the base current, the potential across the coil will momentarily shoot up to a value much greater than the supply voltage in such a way that the potential at the end connected to the collector of the transistor will go more positive than the positive rail. In severe cases this might momentarily exceed the collector base reverse breakdown voltage and the transistor might be destroyed.

To prevent the collector going any more positive than the positive rail, designers sometimes incorporate a diode across the relay coil. This diode has no effect on the normal working of the circuit but will act as a short circuit to reverse voltages generated across the coil.

Fig. 5. When a transistor switches off very quickly, the voltage at point A can rise to a positive value much higher than the supply voltage. Sometimes a diode, D1, is connected across the relay coil to "short circult" this high voltage pulse and thus protect the transistor.

PHASE SHIFT

There is another very important effect which we have not yet covered. This is to do with the fact that we cannot simply add reactance to resistance to find the total effective resistance of a circuit.

Fig. 6. Voltage and current phase relationships. (a) For a resistor, current and voltage are in phase. (b) For a capacitor, the current flowing "through" it leads the voltage across it by 90 degrees of angle ($\pi / 2$). (c) For an inductor, the current flowing through it lags the voltage across it by 90 degrees ($\pi / 2$).

In Fig. 6(a), (b), (c) we show a resistor, a capacitor and an inductor respectively connected across a source of a.c. voltage. In the case of the resistor we can say that at any instant in time the current flowing through the resistor is directly proportional to the voltage; i.e. when the voltage is maximum positive the current is maximum positive, when the voltage is zero the current is zero.

This is shown graphically by the superimposed voltage and current waveforms. We say the voltage and current are "in phase".

When the voltage across the capacitor is zero, but rising from negative to positive, most current will be flowing into it, but as the voltage across it reaches maximum (i.e. the capacitor is fully charged in one direction) the charging current falls to zero.

As the voltage falls from maximum positive towards zero, the capacitor in effect discharges and current starts to flow in the opposite direction (i.e. becomes negative).

We can say that as the voltage passes through zero but is rising in a positive direction we get maximum positive current; when the voltage reaches maximum we get zero current and when the voltage passes through zero in a negative direction we get maximum negative current. This means there is a shift in phase between the maximum current and voltage.
The shift is a quarter of a wavelength which is 90 degrees or π^{π} radians. We say by definition that the current "leads" the voltage by 90 degrees.
The male and female approach works here because the opposite happens with an inductor. We get maximum rate of change of current when the current waveform passes through zero. If the current is rising in the positive direction this gives us maximum postive voltage across the inductor. As the current passes through maximum, the rate of change momentarily becomes zero (it stops at the maximum before coming down again) and this gives rise to zero voltage. As soon as the rurrent passes through zero in a negative direction we get maximum negative voltage, and so on. Again there is phase shift between the voltage and current but this time the current "lags" behind the voltage by 90 degrees.

RESISTOR-CAPACITOR-INDUCTOR COMBINATION

The reason why we could not simply add resistance to reactance for a resistor/capacitor or a resistor/irductor circuit was because of the relative phase shifts between voltage and current waveforms. Likewise there is a phase shift between an inductive and a capacitive circuit only more so-180 degrees-so therefore we cannot simply add together the reactance of a capacitor to that of an inductor in series.

Table 1: Comparison of some capacitor and inductor properties

Capacitors

A capacitor will not pass d.c.
A capacitor passes high frequency a.c. easily The reactance of a capacitor decreases as the frequency increases

Inductors

An inductor passes d.c. easily
An inductor is a very poor conductor of a.c. The reactance of an inductor increases as frequency increases

Formula for reactance

$$
X_{\mathrm{L}}==2 \pi f L
$$

Series connection

$$
L_{\text {total }}=L_{1}+L_{2}+\ldots
$$

Parallel connection

High capacitance gives low reactance High inductance gives high reactance

Strangely enough (and this is difficult to prove without fairly complicated mathematics) we have to subtract the reactance of one from the other.

The formula for calculating total circuit impedance becomes:

$$
Z \doteq \sqrt{ }\left[R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{c}}\right)^{2}\right]
$$

Next month: Amplification. Additional components required for next month: microphone insert type ACOS MIC 43-3 or Duvidal CM20; resistors: 3.3 megohm (1 off). 1 megohm (l off). 330 ohm (I off).

Summer Is Icumen In

I have just finished a spell of home decorating-three weeks of painting and papering-which has stopped me from completing any of the four electronic construction projects that I have on hand at present. For me, home decorating is a continuous process with long troughs of low level activity and occasional high peaks of short duration. It is one of the latter that has just been completed.

My gardening follows a similar pattern, so that the "seed-time and harvest" of the good husbandman could be more accurately described in my garden as "weedtime and putrefaction". Since I bought an electric lawn mower my schoolboy son mows the lawn
regularly and I recommend other fathers to follow my action.

Weeding is a problem to which I have not found an answer, apart from getting down onto one's knees and digging them out or preferably, getting one's wife to do it (and there's nothing novel about that!). I use various weedkillers and find them effective but they have their limitations and bring their own problems.

Back To Work

So; having, as it were, subcontracted most of the gardening, I folded up the pasting table and turned again to the bench. What a mess! Why does my bench gather all the family's rubbish?

The surface was covered with items ranging from eggs (a pullet's first and a goose's), an old blackbird's nest, two strings of beads, seashells, an old teapot, through a variety of household utensils needing attention to a couple of electric motors awaiting assembly. The whole was overlaid with a fine layer of sawdust, ac-
quired during my last session with the circular saw. My own neglected projects were not in evidence-a second layer had built up over them.

Have you noticed that if you leave a job undone long enough the need for it often disappears? Indeed, it can become impossible to carry on with it due to the parts becoming obsolete and un-obtainable-and that doesn't take long these days.

Well, then, what is to be done about those unfinished jobs? I think that one must be ruthless; remove from the bench all things not immediately required (put them into the children's bedroomsi, select one job that is possible to finish and concentrate on that, do not allow yourself to be persuaded into anything else, be single-minded to the point of selfishness. Set yourself a reasonable time for completion and stick to it.

If you find the method works, let me know, perhaps I'll try it myself!

Under this condition no emitter current flows in TR1, and hence no base current in TR2. Transistor TR2 is thus roff-no current flows thfough the lamp.

When moisture (rain) bridges the sensor, the very hift resistance between the adjacent strips of the sensor is greatly reduced and base current flows in TR1, allowing emitter and collector current flow.

This condition allows base current to flow in TR2 thus turning the latter on and illuminating the lamp.

If it is found that the sensitivity of the sensor is too high, it can be reduced by inserting a 5 kilohm preset potentiometer (wired up as a variable resistor) in series with R1; adjust to the required sensitivity.

With no moisture on the sensor, the unit is very economical, current drain from the battery being minimal and due only to the leakage of the transistors.

However, when it is raining, current drain is considerable and for this reason it is advisable to switch Sl off.

If desired, the lamp may be replaced by a suitable relay that can be used to switch on an audible alarm.

TEMPERATURE INDICATOR

Ambient temperature is indicated on ME1 with S2 in position 1 .

The unit utilises the variation of resistance with temperature in a device called a thermistor. The type used in the prototype is one whose resistance decreases with increasing temperature. It is used, with R4 to form a potential divider chain.

The Zener diode, D1, together with its series résistor R3, produces $3 \cdot 3$ volts across the transistor and the potential divider chain. This lower voltage helps to reduce the effect of self-heating of the thermistor.

As the temperature increases, the resistance of RJH1 drops and more base current flows in TR3, and therefore, more emitter and collector current flows. The collector current flows through ME1 and can be varied by VR1.

To calibrate the temperature scale, a conventional thermometer is needed (unless it is only coarsely calibrated as in the prototype as "cold" "warm" "hot" and "very hot," by trial and error on days of these descriptions).

If we are only concerned in measuring outdoor temperatures, then 40 degrees Centigrade is a suitable figure to make as our full-scale deflection on ME1 (in the U.K. that is).

Place the conventional thermometer along. side RTH1 on the "transducer box" with S2 in position 2, and bring up a heat source in the vicinity of the thermometer and RTH1 (the bulb of a table lamp is a good source of heat) and adjust VR1 so that the meter reads full scale when the thermometer indicates 40 degrees Centigrade. Mark this position on the meter scale with 40. Repeat this procedure working down in five degree steps.

WIND SPEED

The wind speed is indicated on ME1 with S2 in position 2.

This is quite a straightforward device that uses a small d.c. motor rated at between $3-6$ volts as a generator-this was found to be satisfactory in the prototype.

Fig. 1. The complete circuit diagram of the simple Weather Station.

The rotor containing the wind cups is connected to the shaft of the generator, and as the wind carries the cups round, a current is generated which passes through the meter via VR2.
The variable resistor VR2 controls the current flowing into the meter and should be adjusted such that when the rotor is spinning at maximum wind velocity the current flowing is 1 mA .
The meter scale can be calibrated in several ways: in the prototype it was carried out by experiment on days of different wind strength, i.e. "light," "blowy," "strong," "gale," and the face marked accordingly

Alternatively, if an accurate method of producing or calculating a wind speed in m.p.h. is known (such as a wind tunnel or mounting on a car and driving at an observed speed on a still day) the scale may be calibrated in m.p.h.

WIND DIRECTION

Wind direction is indicated on ME1 with S2 in position 3.

The combination of R5 with each of VR3 and VR4 in series with the meter converts ME1 to a voltmeter than can be adjusted (by means of VR3 and VR4) to read $10-15 \mathrm{~V}$ full scale.

The full battery supply of 12 V is across VR5 and VR6. Depending on the position of S3, the meter records the voltage at the wiper of VR5 or VR6 relative to the negative line.

The wind direction vanes are connected to the spindles of VR5 and VR6.

Two vanes (with potentiometers) have been used to eliminate the small portion on the potentiometers which will not give a reading when the stops have been removed, see later.

The two potentiometers are mounted in approximate opposite directions to each other. Only one is used at a time, S3 being employed to change from one to the other when one goes into the null region. In fact, it is advisable, for accurate measurements, to switch S3 when the needle is near to either end of the direction indicator scales.

There are two scales, one for each switch position and these should be calibrated as follows; for the upper scale (1), set S3 in position 1, and VR3 to maximum resistance. Position VR5 vane so that MEl reads a maximum. Adjust VR3 so that this maximum is full scale.

Repeat this for the other vane using VR4 with S3 in position 2. Return S3 to position 1.

Rotate the vane on VR5 so that a small fraction above zero is shown on ME1. Mark this point on the meter face with one of the four compass points, i.e. N, E, S or W-say N for example.

Now turn the vane through 90 degrees clockwise and mark the new needle position E . Rotate a further 90 degrees and mark S. Another 90 degrees rotation gives the W position.

Turn the vane back to the S position.
Switch S3 to position 2, and position VR6 so that the needle lines up with the N position on the upper scale with the vanes in the same

Components....

Resistors		
R1	$4 \cdot 7 \mathrm{kS} \Omega$	
R2	10 kS	
R3	820 S	\vee
R4	1 kS	
R5.	10 kS	
R6	10 kS	
All		
	watt	$\pm 10 \%$

Potentiometers
VR1 5KS2 skeleton preset
VR2 $5 \mathrm{k} / 2$ skeleton preset
VR3 5k』2 skeleton preset
VR4 $5 \mathrm{k} \Omega$ skeleton preset
VR5 1ks2 finear carbon
VR6 1kS linear carbon
VR7 5kS2 skeleton preset
Light Dependant Resistor PCC1 ORP12

Semiconductors
emiconductors
TR1 OC71 germanium pnp
TR2
OC28 or AD142 or similar
TR3
OC71 germanium pnp
D1
BZY88 C3V3 400 mV Zener diode

Thermistor
RTH1 GL23 glass bead type
Switches
S1 S.P.S.T. toggle or slide
S2 Three-pole-four-way wafer
S3 S.P.D.T. toggle or slide
Miscellaneous
ME1 1 mA meter
LP1 Lamp 12 V 300 mA plus panel type holder
G1 Generator 3-6V d.c.-see text
B1 Battery 12V-use PP1 6 V (2 off in series)
Veroboard 0.15 inch matrix: control box 30×10 holes, rain sensor 24×20 holes (approx.); Rotor cups and vanes; $\frac{1}{16}$ inch clear Perspex or similar material; pointed knob; materials for transducer box; control box case, $5 \times 5 \times 8 \frac{1}{2}$ inches with sloping front panel.
direction. Mark S on the lower scale (2), and then carry out similar rotations to those above for marking the lower scale W, N, and E respectively.

Secure VR5 and VR6 in these positions.

LIGHT LEVEL INDICATOR

The light level is indicated on ME1 with S2 in position 4.

The circuit utilises a photoconductive cell, PCCl, whose resistance varies with light intensity from approximately 10 megohm in dark conditions to about 75 ohm in bright light.

As the light intensity varies so the total resistance of the circuit R6, VR7 and PCC1 in series
varies, affecting the magnitude of the current flowing through ME1.

Once again, the maximum current flow should be lmA. To realise this condition VR7 should be set so that 1 mA flows when very bright sunlight is incident on PCCI.
To do this set VR7 at a maximum (i.e. 5 kilohm) and point PCCl at the sun on a clear summer day. Now adjust VR7 so that the reading is full scale.
The fall scale position should be marked "very sunny" and the zero position "dark".

For intermediate intensities it is suggested that these be marked "dull," "bright," "sunny," the positions being determined by days when these light intensities are evident.

METER DISPLAY

A suggested meter-scale is shown in Fig. 2. It consists of five bands to represent each of temperature, light, wind speed and wind direction (upper and lower which are used in conjunction with S3, see above).

It is suggested that these concentric bands are all firstly drawn together on a piece of plain paper and then pasted in position over the original scale.
Pencil markings will be sufficient to locate positions which can then be inked over neatly or printed with Letraset.
The start and end positions of the new scale must coincide with the original "zero and full scale" positions of the meter.

CONSTRUCTION-CONTROL BOX

The layout of the components on the Veroboard is shown in Fig. 3.
The circuitry in the control box is built on a/ piece of $0 \cdot 15$ inch matrix Veroboard size 30 by

Fig. 2. A suggested meter scale display as used in the prototype. The individual scales will have to be calibrated as described.

10 holes with the copper strips cut as detailed.
Begin assembly by fixing TR2 in position and carefully soldering. The collector of TR2 is its casing and this connection is made via a small nut and bolt through a solder tag. This connection is also made through the Veroboard at position $G 1 / F 1$ by drilling a hole to take the bolt used. Continue by soldering the resistors and potentiometers in places as shown in Fig. 3.

Remember that the potentiometers are being used as variable resistors therefore only one outside leg is used with the middle leg. The redundant leg should be bent upwards away from the board, making sure neighbouring components are not touched.
Now attach the switches, S1, S2 and S3, the lamp holder and bulb, and the meter to the front panel as shown in Fig. 4, and wire them to the Veroboard as indicated. Next wire the 10 wires from the Veroboard and panel components to the 10 way terminal block, mounted on the back of the case. All wires will need to be about 6 to 9 inches long. Connect the battery leads to the Veroboard.

The transistors TR1 and TR3 and the Zener diode, D1, should now be soldered in positionremember to use a heat shunt on each lead otherwise damage to these devices may result.

TRANSDUCER BOX

In the prototype, the components were all mounted on the top panel (approximate size 13 x 10 inches) of a Perspex case. Perspex was
chosen for the transducer box because of its excellent weather resistant properties. Any other case material may be used but it will probably need a good coat of paint to protect it.

If a metal case is used some method of insulating the nut, bolt and solder tag connections to RTH1 and the Veroboard sensor must be employed.

The positioning of the components in the prototype is indicated in Fig. 5. This is not critical but there are some important points to watch.

The rotor should not be too close to the vanes such that its rotation will cause the direction vanes to be affected.

The photocell PCCl should be in an unobstructed position of daylight. Shadows from the rotor or vanes should not be allowed to fall on it at any time.

DIRECTION POTENTIOMETERS

Before assembly of the transducer components, VR5 and VR6 must be modified.

They must be dismantled and their stops removed.

With all potentiometers there is a gap between the two ends (start and finish) of the carbon tracks; this must be bridged with an insulating material otherwise the slider will get stuck in this gap and erroneous measurements will be taken, A suitable material for this is Araldite. Fill the gap, smooth over and leave to set. Ensure, when dry, that the slider can move across this region with minimum pressure.

weather station

Photograph showing the Veroboard details.

Fig. 4. The positions of the components and the wiring on the back of the control box front panel. Note the meter polarity. The layout is not critical and may be changed to suit individual requirements.

ROTOR CUPS AND VANES

The cups and vanes used in the prototype are made of Perspex (see Shop Talk for details).

If desired the cups can be made from suitable plastic egg cups by cutting away the base of the egg cup and filing smooth.

The dimensions of the direction vanes are not critical, except that they should, for efficient and speedy alignment, be triangular in shape, as shown in Fig. 5. These can be bolted to the flat sides of the spindles of VR5 and VR6, suitable holes being drilled in the spindles to accommodate the fixings.

LIGHT CELL AND RAIN SENSOR

The light cell can be mounted in any unshadowed position. In the prototype its position was central on the top panel and raised by means of a short length of plastic tubing.

A suitable sensor can be made from Veroboard cut and soldered as shown in Fig. 5, approximate size 3_{2} by 3 inches. In the prototype, tapped Perspex ${ }^{1} \times{ }^{1}{ }^{1}{ }_{4} \times 2$ inches was glued to the base of the sensor and this was screwed in position on the top panel. The thermistor, RTHl, is located under this sensor for convenience and protection.

GENERATOR FIXING

Motors suitable for use as the generator Gl are available in all shapes and sizes. The one used in the prototype is cylindrical, and is attached to the top panel by means of the adjustable bracket shown in Fig. 6. This can be modified to suit different generator shapes.

The rotor may be attached to the generator shaft by fixing a long thin brass bolt through the centre of the rotor system and uniting this to the generator shaft with a spindle coupling.

WIRING

When all the components have been fixed in their final positions on the transducer box, wiring may be carried out in accordance with the wiring diagram of Fig. 5. All wires go to the terminal block located inside the transducer box.

The two boxes are best and easiest united using a long length of multicore cable passed out through a grommet in the transducer box-the length depending on the final position of the two boxes.

The cable must contain at least 10 insulated wires. This type of cable is available from some of our advertisers.

TESTING AND SETTING UP

When the two parts have been connected, the wiring should be thoroughly checked out before switching on.

When you are satisfied that wiring is correct switch on and test each discrete unit individually and calibrate as detailed earlier.

It only remains now for the transducer box to be placed in position in the right direction. This is done with the aid of a magnetic compass.

With S3 in position 1, and S2 turned to the "wind direction" position, point the narrow end of VR5 vane in a due east direction and hold in this position while turning the transducer box until the needle on the meter indicates east (E). Secure the transducer box in this position.

Small plastic cups (such as those used in bottle tops) can be fitted over the wind speed and direction spindles so that no rain or moisture will run down the spindles into the "electronic" parts. A small amount of grease or Vaseline placed around the spindle bases will also provide protection.

The Weather Station is now complete.

BSR LATEST
 STEREO AND MONO

SUPERSLIM

Playy $18^{\circ}, 10^{\circ}$ or 7° records Anto or tanual. A bint relintility with 12 month: Ruarnatee. AC 200/250t $815018 t \times 114 \mathrm{~m}$.
Above motor boserd $8: 1 \mathrm{in}$. below motor board 2 hin. Yo 0 O-CO P PATPE Playi all recorta
£8.75 Pout 25 .
Playt all records
 Printed cireaft. Pentode vilve EILB4, 8 watts outpat Tone and volame controls. Metsl rectifer. Complete with two knoba, ontput treanformer and hix h
perlormance logdipesker.
R.C.S. PORTABLE PLAYER CABINET

Roally omert eppearance with space for R.C.s. Amplitare and most modern a utochanrefi. Size $18 \times 15 \times 8 i n$

GARRARD DISCO DECK TA Mk II
4 apeods. Playi all
alzen of records.
motor. beavy duty motor. 9in. steel head complete with
 atareo/mono cartridge. Adjafteble ntylus presance. Anto-
 Above motor board sin., below motor bourd
2\&in. Ideal for Eome Ei-Fi or Discothegue. GARRARD AOTOCRALOERS with Sonotone Cartidzes Lodel 800 diere 4. Port 25p.

B8R JUNIOR GIHOLE PLAYER
£4.50
HT-FI PICE-UP CARTRIDGES. Diamond LP/Btereo Stereo/mono 9TA 22.50: GP94 E2.50: GP93 48.00
E.M.I. WOOFER AND

65.75 Pon esp

Comprising a tine axample of a Wooler $101 \times$ fin. With a masilive Ceramic Hagnet, 440z, Gautis 18,000 lines. Aluminiam Cone centre to improve middele and top responie. Aso the E.M.I. Tweeter 88 in. aquare has a apecinl lightweikht paper cone and magnet fux mpedance 8tendard 8 ohms aryimam Poner Oeelul Responsa Beme Resonance SUITABLE ENCLOSURE 20.45 cp
 WEYRAD P5O-TRANSISTOR COILS RA2W Ferrite Aerial. Oec. P50/1AC
I.F. P50/2CC 470

Pd $1 . F$. P50/3CC
${ }^{P} 51 / 18{ }^{\circ} \mathrm{F}$
72 p
33 p

Mullard Perrite Rod $8 \times$
VOLUME CONTROLS ong apladlen. Midzet size
 TREROL L/S 55 D D. D . 75 D . EdgeSE.S.P. Tranalotor 85

8in ELAC

HI-FI SPEAKERS

Das cone Dlasticised roll urround. Larre ceramic Bass remonance
5 cpa . 8 ohm
mpedance.
£4.80
muaic power.
BLATK ALUEINIUE CRASSI8 18 e.w.r. Qin. eides. $7 \times 4 i n$ 5p; $18 \times 14 \mathrm{n} .99 \mathrm{p} ; 11 \times 3 \mathrm{in}$. 80p; $16 \times 10 \mathrm{in}$, 21
LUMINIEU1PANELS 18 E. W.f. $0 \times 4 \mathrm{n} .9 \mathrm{p} ; 8 \times 6 \mathrm{n} .18 \mathrm{p}$ $14 \times 81 \mathrm{n} .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 8 \mathrm{in} .80 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p}$
$16 \times 6 \mathrm{n} .28 \mathrm{p} ; 14 \times 9 \mathrm{n} .34 \mathrm{p} ; 12 \times 12 \mathrm{nn} .40 \mathrm{p} ; 16 \times 10 \mathrm{in} .80 \mathrm{p}$ 11 finch DIAMETER WAVE-CEALIGE 8 WITCREs 25 p . 2p. 2-wiy, or 2 p. 6-why or 8 p. 4-way 25 p each. 1p. 12-wiey

"THE INSTAMT" BULK TAPE ERASER \& HEAD DEMAGNETISER 200/\&50\%. A.C. 22.35 Po
HI-FI STOCKISTS RETURN OF POST DESPATCH
RETURM OF POST DESPATCH
R.C.S. STABILISED POWER PACK KITS All parto and Inatractions whth Zener Diode, Printed Circait, Bridge Rectifiers and Double Woand Kaine Traniformer 18 or 15 or 18 or 80 . DC pot volkeres avalabt PLEAgE STATE VOLTAGE REQUIRED. Detaile S.A.E. Size $3 \boldsymbol{1} \times 1 \mid \times 11 \mathrm{in}$.

62 POBT

GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER BRITISH MADE

Ideal for like. Tape. P.U., Guitar. Can by uped with Battery -18v. or H.T. Une $200-3007$. D.0. operation.
 Full instructions nupplied. Deisili S.A.E. 90 p 10 p
AEW TOBULAZ ELECTROLTTICS CAN TYPES

$2 / 350 V$	$\cdots 140$	$250 / 25 \mathrm{~V}$	$\cdots 14 \mathrm{p}$	$50+50 / 850 \mathrm{~V}$
$1 / 350 \mathrm{~V}$	$\therefore 14 \mathrm{p}$	$500 / 25 \mathrm{~V}$	$\cdots 20 \mathrm{p}$	$80+100 / 350 \mathrm{~V}$

$\begin{array}{lllll}1 / 350 \mathrm{~V} & \cdots 14 \mathrm{p} & 800 / 25 \mathrm{~V} & \ldots 20 \mathrm{p} & 60+100 / 250 \mathrm{~V} \\ 8 / 450 \mathrm{~V} & \therefore 14 \mathrm{p} & 100 / 25 \mathrm{~V} & \ldots 35 \mathrm{p} & 32+32 / 250 \mathrm{~V}\end{array}$

 $80 / 50 \mathrm{~V} \quad \therefore 10 \mathrm{p}$ $100 / 2 b \mathrm{~V}$ … $1 \mathrm{CD}_{\mathrm{D}} 32+32 / 350 \mathrm{~V}$ 25D
LOW VOLTAOE ELECTROLTTICS
$1.2,4,5,8,16,25.30,50,100,200 \mathrm{mP} .15 \mathrm{~V} .10 \mathrm{p}$
500 mP . 12 V . $12 \mathrm{p} ; 25 \mathrm{~V} .80 \mathrm{p} ; 50 \mathrm{~V} .80 \mathrm{p}$.
$1000 \mathrm{mF} .12 \mathrm{~V} .17 \mathrm{p} ; 25 \mathrm{~V} .35 \mathrm{p} ; 50 \mathrm{~V} .47 \mathrm{p} ; 100 \mathrm{~V}, 70$ $2000 \mathrm{mP} .8 \mathrm{~V} .25 \mathrm{p} ; 25 \mathrm{~V} .42 \mathrm{p} ; 60 \mathrm{~V} .57 \mathrm{p}$.
$2500 \mathrm{mP} .50 \mathrm{~F}, 62 \mathrm{p} ; 3000 \mathrm{mP} .26 \mathrm{~V} .47 \mathrm{p} ; 50 \mathrm{~V} .85 \mathrm{p}$
 CERAEIC 1 pF to 001 mP , 4 p . 8ilver Mica E to 5000 pF . 4 p . PAPER 3s0V-0 1 4p. $0518 \mathrm{p} ; 1 \mathrm{mP} 15 \mathrm{p} ; 2 \mathrm{mP} 150 \mathrm{~F} 15 \mathrm{p}$. $500 \mathrm{~V}-0.001$ to $005 \mathrm{4p} ; 0-15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4723 \mathrm{p}$.
gILver IICA, Close tolerance $1 \% 2 \cdot 2-500 \mathrm{pF}$ Bp; $500-2-200$ pF $10 \mathrm{p} ; 2,700-5,800 \mathrm{pF}$ 80p; $6,800 \mathrm{pF}-0.01$, mid 30 p ; each. TWIN GATG. ${ }^{40} 00$ " $208 \mathrm{DF}+176 \mathrm{pF}, 85 \mathrm{p}$; 810 m motion drive
 45p; small 3-kacg 500pF $21-60$.
SEORT WAVE SINGLE. $10 \mathrm{pF} 30 \mathrm{D} ; 25 \mathrm{DF} 55 \mathrm{D} ; 80 \mathrm{pF}$ 85p. TEON PANEL INDICATORS R50V AC/DC Rod or Amber 20D RESISTORS, © ©., \mid w., $20 \% 1 \mathrm{p} ; 2$ w. 5 p 10 ohme to 10 mer HIOH STABILITY. 1 w. $2 \%, 10$ ohms to 1 mes., 10 p . Ditio 5% Prelerred valuen 10 ohm to 10 mez.. 4 D . WIRE-WOUND RESISTORS 5 watt, 10 walt, 15 wat 10 ohma to $100 \mathrm{E}, 10 \mathrm{D}$ each; 21 wath . 1 ohm to 9.2 ohma 10 p .

DECCA DECCADEC GARRARD MOTOR UNIT MKII

METAL PLINTH \& PLASTIC COVER Cut out for most Garrard or
B. S. W. Will play with cover in
positlon. Latest deston. Covered in black arherefe. ALSO AVAILABLE IN SOLID NATURAL MAHOGANY

WAX POLISHED FINISH AT SAME PRICE

$250-0-25080 \mathrm{~mA} .6-3 \mathrm{v}, 4 \mathrm{amp}$
250-0-250 80 mA. 8.3v. 8-5n. 6-3v. is or sv. 2a. $850-0-35080 \mathrm{~mA} .6 .3 \mathrm{~V} .3 .8 \mathrm{a} .6 \cdot 8 \mathrm{v}$. 1 A . or 5 V .2 a
 MIDGET $220 \mathrm{~m} .45 \mathrm{~mA} ., 8.3 v, 2 \pi .2 t \times 21 \times 210$. IIM-MANs $80 v, 100 \mathrm{~mA} .11 \times 11 \times 1 \mathrm{jm}$. HEATER TRANS. 6-8v. 3 a
Ditto kapped sec. 1.4%., 2, 3, $, 5,6,37,11$ imp eacb
 $1 \mathrm{amp}, 6,8,10,12,16.18,20,24,30,36,40,48,60$. 22.25 $\begin{aligned} & 2 \\ & 5 \\ & 5\end{aligned} \mathrm{mpl} .6,8,10.12,16,18,80,84,80,86,40,48,60.28 .25$ AUTO TAANSTOREERS 12Sv, $80,38,40,48,80$. $28-75$ 150w. 22-25; 500 w . $8625 ; 750 \mathrm{w}$. $110 ; 100 \mathrm{~m} .274$. CEAEGER TRANSFORMERS. InDut 200/250t.
 FOLL WAVE ERIDGE CEARGER RECTIFIERS:

\qquad
MINIMUM POST AND PACKING I5p

ALL MODELS "BAEER SPEAEERS" IN STOCK Eh-Fi Enclotne Manal containing 20 pleng, cromp data and cubic kebles. 42p Pont Free.
BAKER 12 in . MAJOR \&9
$30-14,500$ c.p.s.a 12in.
double cone, wooler and
whet a BAKER corethor
marnet assembly haring

- Ilax density of 14,000
$\begin{aligned} & \text { gana and a total flux of } \\ & 145,000 \text { Maxwellt. Basa }\end{aligned}$
resonance 40 c.p.e. Rated
80 Watts. Voice coils
3 or 8 or 15 ohme. Pont Free
Module kit, $30-17,000$ c.p.e.
wth tweeter, crossover
baftle and
£ 11.50
instructions.

BAKER ،'B
'Group 25'
12 inch 67
-800ND" SPEAKER
12 inch $\mathbf{3 5}$ watt 15 tnch $\mathbf{5 0}$ watt 19 a or 8 or 15 ohm 3 or 8 or $15 \mathrm{ohm} \quad 8$ or 15 ohm TEAE BI-FT SPEAKER CABIRETS. Fluted wood front For 12 in . or 101 n , dia. apenker $20 \times 13 \times 9 i n$. 89 . Poni 25 p pror

GOODMAMS $6 \frac{1}{2}$ in. HI-FI WOOFER 8 obm, 10 ratt. Large ceramic maznet. Special Cambric cone surfound. Prequency reapoase $30-18.000$ aps. Ideal

14

ELAC CONE TWEETER
The movise coll diaphragm river a good radition pattern to the hizher frequescien and a amooth ertenmion of total reaponse from $1,000 \mathrm{cps}$ to 18,000 eps. Sire ${ }^{3}+x$ 3. x zin. deep. Rating 10 watte. 3 ohm or 15 ohm modelt. <1.90

Port 10p
speaker coverima materials. samples Larke s.a.e Horn Tweeters $2-1 \mathrm{Bk} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm or 15 ohm 11.50 . De Laxe Higrn Tweeters $2=18$ He/4, $15 \mathrm{~W}, 15$ obm 28. SPECIAL OFPER! 80 ohm 2 inn.; 2 !in.; 35 obm, 2in.; 81 in .
 3 otm. y tin. 3 in . $5 \times 3 \mathrm{in}$.
LOUDSPEAEERS P.M. 3 OHMS. $7 \times 4 \mathrm{in} .21 .25 ; 64 \mathrm{ln}$. $21 \cdot 50 ;$
 RICEARD ALLAN TWIM CONE LODDSPEAKERS. Bin. dia. watt: 10 in. dia. s watt; iLin. dis. 8 wati 8 or 8 or is oben modela $8 x .00$ onch. Pont 15 p .
valve output trans. 25d; mire trans. $00 ; 125 \mathrm{~g}$. 5 WATT MULTT-RATIO. 8,8 and 15 ohms 80 p.

BAKER 100 WATT
ALL PURFOSE
TRANSISTOR
AMPLIFIER
4 Inpute aperch and
mpitle. Mirine facilitien.
Respones 10-80,000 epr, Yatche
all loudspeakers. A.C. 200/250V.
opar to Treble and Bans Coutrols.

BARGAIM AM TUAER. Mediam Wave.
64.50

BaRGAIn AM TUNER. Mediam Wave.
Trangitor Seperbet. Fertite merial. 9 volt.
4.50

BARGAIf CRANMEL TRANSISTOR MONO MIXER Add monical hizhlights and sound eflects to recordinge.
Whil mix Microphone, recorde, kepe and tuner
with marate controlifnto siaklo ontput. 9 volt. STEREO VERSION OF ABOVE E4.50

BARGAN FM TONER 88-108 Mc/a Six Tranatutor, 0 volt | Printed Circuit. Calibrated allde dial tuning- |
| :--- |
| Walont Cabioet |
| Size 7 | Walant

$E 8.85$
 Push-Pull Ready built, with volome control, or.

COAEIAL PLDO 8p. PANEL SOCKECS 6p. LINE 18D OUTLET BOEES, SURPACE OR PLUSH 85D. BALANCED TWIN FEEDERS BD Id, 80 ohms or 300 ohms hrome Lead Socket $40 p$. Phono Plugis. 5 p. Phono Socket 5 D JACE PLDGS 8td. Chrome 15p: 3.5 mm Chrome 14p. DII 3OCEETS Chastia 3 -pin 10p; 5-pin 10p. DIN SOCKETS Lesd -pin 18p; 5-pin e5p. DIN PLOGS 3-pin 18p; 5-pta 25p VALVE HOLDERS, SD: CERAMIC 8p; CANS SD.
E.M.I. TAPE MOTORS Pont 15p. E.M.I. T 240 v . AC. 1,200 r.p.m. 4 pole 135 mA . spindie $0187 \times 0.7 \mathrm{bin}$ (1.25 Size $3 \ell \times 2 \downarrow \times \varepsilon t i n$. (tllutrated)
BALFOUR GRAM MOTORS 120 v . or 240 v . A.C. 1,200 r.p.m. 4 pole

CUSTOMERS FREE CAR PARK CALLERS WELCOME 337 WHITEHORSE ROAD, CROYDON

THEY MADE THEIR No 4 Ohm
 By J. E. Gregory

TABLE I THE OHM (()
The oldest and one of the most important electrical "laws" was formulated by Georg Ohm, and the unit of resistance-the ohm-is named after him. This is used to measure the value of the resistor, the most commonly used of all electronic components.

Ohm's law illustrates that the resistance of a conductor is equal to the voltage across it divided by the current flowing through it. When the resistance is in ohms the voltage is in volts, and the current in amps.

The Omega sign (Ω) used for the ohm was suggested by Sir William Henry Preece the British electrical engineer and wireless telegraphy pioneer, whilst lecturing to Indian telegraph service cadets at the Hartley College, Southampton in 1867.
vanic Chain". The theory Ohm proposed set out that the electric current is a conductor is directly proportional to the difference of potentials between its ends.

The publication of the pamphlet caused a major upset in German scientific circles, people said Ohm was mad, and his law absurd, he was even forced to resign his post at Cologne.

For six years he was an outcast doing very little scientific work then in 1833 he obtained a post at Nuremberg polytechnic.

RECOGNITION

Gradually, however, the pamphlet began to get a wider circulation and his law was being quoted. Then, quite suddenly in 1841, came the first official recognition, Ohm was awarded the Copley medal of the Royal Society and made a foreign member of the society.

This recognition from Britain, and one of Europe's oldest scientific societies inspired Ohm to return to his work. He published a number of papers on mathematics and a memoir on interference in uniaxial crystals.

Ohm's apparatus used in his work with his law on the Galvanic circuit.

Photograpin: Crown copyright Sclence Museum. London.

In 1849 he was appointed to the important post of conservator at the physical collection at Munich, and in 1852 professor of experimental physics in the high school at Munich, he started work on a text book of physics which was published in 1854 just before he died of apoplexy brought on by overwork, on July 7.
Thus at 67 died the man who in the face of great opposition took the first steps towards the formulation of the laws of the electric current.

Resistor Symbols

I have read every issue of Everyday Electronics and I have only just noticed, in reading your Guide To Circuit Symbols, that you have been using the old symbol for resistors (a zig-zag line). I use many drawings of electronic circuits in my work and all up to date drawings now use the B.S. symbol (an oblong box) for a resistor. Whether this is done on purpose, to make it plain for the beginner I do not know, but I just thought I would point it out to you.

> K. C. Vicars, Portsmouth.

The symbol we use is given by B.S. as an alternative; see this month's editorial for comment.

That 15p Effort

As one who was brought up on thermionic valves and was introduced to electronics largely through your parent magazine, P.E., I should like to add to the congratulations you have received on the success of E.E.

Although I have experimented with radio for over 25 years, it is thanks to your magazine that I am beginning to feel at home with solid state devices.
Unfortunately, some of your ungrateful critics have yet to learn to walk before they can run, and it is hardly the function of E.E. to provide detailed modifications and servicing for commercial devices. Lack of effort, indeed, Mr. Alexander! Some people do not realise how much effort must go into making E.E. the best value on the bookstalland all for 15p a month!

Mr. D. B. Lyall,
Cheltenham.

Modification

It may be of interest to you that the circuit given in the May issue of your magazine for a Bee

Counter was used as the basis of a paper counting machine for our school magazine. I had been planning to make such a device using a photocell, one transistor amplifier and a relay, thus operating a magnetic counter. Your circuit was a welcome alternative, being less bulky and requiring only one power source.

I built the circuit as described and arranged that the light beam should be broken by the sheet of paper falling vertically onto a chute which guided it into an output tray. In practice this arrangement failed to operate because of the small change in light level brought about by the sheet of paper.

This was due to two factors: firstly the paper is rather thin, and secondly, the interference from the room lighting which was not interrupted by the paper. Thus the circuit had to be made more sensitive to smaller changes in light level. To do this I introduced a further stage of amplification using a second OC72 and its two associated resistors. With this slight modification a very successful paper counting device was constructed.

I continue to be impressed with the variety of useful projects that you publish and. wish you all success in future publications.
R. Anderson,

Leeds.

"B" Class

We followed with great interest your article on the electronic Bee Counter. However, we thought your entrance and exit labels a little strange because we don't know a lot of bees capable of reading and writing.

Of course, we have heard that the educational system has been greatly modified in the United Kingdom of late, presumably the "A" class is now reserved for
people and the, dare we say $i t$, " B " class, for insects.

Five unreadable signatures, No address.

We must admit that we do not know of any educated bees, but if you know some-as you inferwe are sure many bee keepers would be interested. Perhaps you could tell us how the bees can read the signs when they are inside the hive?

To be more serious, if you look at page 380 you will find that the caption to the photograph refers to the labels, thus constructors (not bees) are made fully aware of which aperture is which.

Transistor Holders

I have a query to put to you. When I was at school, 15 years ago, transistors had just come into general use, and I had many knowledgeable friends who tried to introduce me to the hobby of electronics; unfortunately I never quite got to grips with the practical side and so never got going. This is why your magazine is so helpful to me, for example I now understand for the first time in my life how to solder a good joint.

My query is this; these friends of mine at school were unanimous in recommending the use of transistor-holders, to avoid the dangers of soldering direct to the leads; as you do not seem to mention these, I am wondering whether there is some good reason that their use has been discontinued.
N. E. Goller, London, N.W.3.

Transistor holders are still available and can be used on almost any project if desired. However if some care is taken when soldering, the transistors should not be damaged in any way. Silicon transistors can of course stand much more heat than the original germanium types.

Rain Wanted

How Jucky you are in the UK., you get your June issue in June. Here, the April issue has just hit the bookstalls. It's worth waiting for though. For years now, I've been wading through electronics magazines but the penny didn't drop until your Teach-In penetrated my grey matter.

Proiect605 way to assemble Sinclair high fidelity modules the new simple

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder. there is an alternative - Project 605
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 3 C watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said. match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.

Guarantee 11 within 3 months of purchasing Project 605 directly tom us, you ate dissatistiod with it, we will oftund your money al once, Fach module is guatenteed 10 work perfecily and should any dolect arise in normal use we will service it ar onco and withoul any coss to you whasoever provided thas it is telurrad to us within 2 yars of the
 purchase date
charged
at
cost

Sinclair Radionics Lid., London Road. St. Ives, Huntingdonshire PE1 74 HJ Telephone: SL. Ives (04806) 4311

Specifications
Output- 30 watts music power (10 watts per channel R.M.S. Into 3Ω)
Jnputs-Mag. 'P.IJ. -3 mV correct to R.I.A.A. curve 20-25,000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio -50 to 150 mV . |Aux, adjustable between 3 mV . and 3 V .
Signal to noise ratio - Better than 70dB.
Distortion-better than 0.2% under all conditions.
Controls - Press buttons for on-off, P.U., radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Mz Volume. Stereo Balance.
Channel matching within IdB.
Front panel - brushed aluminium with black knobs
Proiect 605 comprises Stereo 60 pre-amp/control unit. two $2-30$ power amplififers. P2-5 power supply Unit the unique new Masterlink. leads end

To sinclair radionics LId., st. ives, huntimgdonshire peif4hJ
Prease send Project 605 pest free \square Details and list of stockists \square
Name
Address

$\xrightarrow[\text { WITM REMOTE }]{ }$

CONTROL MICROPHON
Latent sensation in the world of toundl Fabulous \quad //R \& Plager combined \& it runs on batteries or mains. A? ${ }^{(1)}$ plag back a nything, anywherel Erd). Record and play buck aaything, anywherel erea tape dired
rom the Radio as you listenl RECOMMENDED RETAIL PRICE GENDINELT WE OFFER AT ALMOST HALE PRICE! Wonderful features: $*$ Press-button Geyboard Control Panel or latest MASTER SWITCE CONTROL! * "MAGIC EYE" * Separate ON/OFF and HI-LO volume controla! * Heavy daty built-fa apeaker! * Earphone (for permonal jutering or "monitoring*") and estension mpeaker sockets? * Remote control microphone! * Built-in twivel telescopic extension aeria) (R.tin approz.ll Maxniticently made case with carry bendle. (DESIGNS VARY SLIGHTLY.) Taken standard 30, 60,90 or 120 -minute Philips Cansette Tapen obtainable everywhere), The built-in full circuit VHF, AM/FM Radio glvea auperb clarity of tone, incredible atatlon splectlon. Kotating Belector Dind-get all Iocal and regional atations in every
part of the country plun B.B.C. National, VHF. Picks up dozens of forelgn stationn. Fabulous in car! You could pay more for a Car Rarlio or Car Cmane tie player ALONEI switch and atand. WITH WRITTEN G'TEE BONOS: Batterien and Cassett onon SHOPEBTUNITIIS LTDDOPE. EELIO, 164 U UBRIDGE RD. LONDON, WI2 8 AG (Thurs. I. Fri. 7). Also 37 High Holborn,

I agree with your reader who asked for more mathematical tolerance. It became necessary for me to take a refresher course in Algebra so that I could follow your development of equations in the resistors in parallel bit.

Perhaps you are not so lucky there in the old country, we don't have that awful problem of where to go and what to buy when stocking up for one of your projects. lt's a case of "shop a" or "shop b" or write off to the Eastern States, some 3000 miles away, and wait several weeks.

Your Rain Warning Alarm appealed to me and after wrecking it with reverse battery connections as per your erroncous instructions, I eventually got it working. Just one problem though. Its been installed on the roof for about 2 months nowbut it hasn't rained!

How about a pull out data page suitable for clipping into a workshop manual. Such information as colour codes, transistor base connections, fundamental circuits like the diode pump, hints, lips and short cuts gathered together in one handy cover would be a boon for the likes of me who hit a problem and have to go searching through piles of magazines to find a clue to what could be wrong.

Ray Foster, Western Australia.

To be correct our June issue is on sale during May in this country. By the time you read this you should have the Constructors Companion, presented free with the May issue-we hope this will meet your needs.

Prices

As many other readers have said, your magazine is a good one and has cleared up a few mystifying points. But now I would like to clear up a point myself, just in case someone got the wrong idea about New Zealand from Mr. J. Koppard's letter in E.E. April 1972. New Zealand is not a pin prick on the map down under where people walk round in grass skirts, but a modern thriving country.

The price of the 0C7l is something of a mystery to me. Here in Auckland an average 0C71 cost 70 c or 35 English pence, not as cheap as in England but still a far cry from $£ 3$. I do not know
the price of an OC7l in Wellington but since Wellington is the capital of N.Z., I doubt if the price would be higher.

My guess is that the price or type of article was confused somewhere along the line, but if this is not the case then Mr . J. Koppard paid an extra $£ 2 \cdot 65$ p to a very low dealer.

> E. Van Dyke, New Zealand.

Gas Station!

Sensor should eat his words. I have enclosed a photograph of a gas operated radio which the East Midlands Gas Board uses for demonstration. What is more, the device even works on natural gas.
G. A. Bolton Shepshed,
Leicestershire.
Sensor did not say that it could not be done, merely that "there are limits to what can be done by gas". However we thank you for the inclusion of the photograph, which we show below.

Electronic Course

During the last two years, I have been running a course in basic electronics for the student with a non-vocational background. This course has a great deal in common with the "Teach-In" articles that you have been publishing since November 1971, and it has been suggested to me
that your readers may be interested.

The course is based on attendance at the college for one evening per week (7.00-9.00 p.m.) for 24 weeks and runs from September to Easter. There is a strong practical background to the instruction, and demonstrations and experiments are conducted almost every night of the course.

I hope you find this suggestion of interest.
H. May,
Head of Electrical Trades
Department,
Gateshead Technical College,
Durham Road,
Gateshead.

Thanks

Further to my letter in the June issue, I now know the secrets of Snap Sequence, Indicator and Home Sentinel, thanks to an unknown reader who rang me and sent me the first issue.

I would like to refund the postage to him, and also return his magazine (if he would like it back) if he will let me know his address. I am afraid I put the phore down before I realised I didn't know who it was.
R. Brown, Burton-on-the-Wold.

Component Export

We would be obliged if you could put us in touch with some firms in the UK who would be interested in the export of electronic components and gadgets to a: electronic agency here.
H. NG Wong
c/o School of Industrial
Technology
University of Mauritius Mauritius

FIND BURIED TREASURE? Transistorised Treasure Locator

0 015

Imply Won elr owe aletronic organd that Fully transintoriced. Horith typeroalt ote.
 two full actaven-Tlay the "Yollow Row of
 orne: ole, fic. You have the thril an ercitement of bailding it toretber with the plearure of playing real, live, portable LEDGE OP HICTROMCA rition. No soldering necemary, Bimple as ABC to make.

 atep-dy-atep, aimple indrwetions. OILY is. +25 p p. \& p , for kit, including case, nots. ecrews, almple instructions, eic. Unee Haviard battery (parta avallable separately). Have all the pleapure of making it yourself finith with an exetting eift for momeone. Find buried treseure with this READY BUILT E TESTED TREASURE LOCATOR MODULE
onx £4.95
FOLLT TRAISISTHD TH OUIT MTKAL DHELC TOR MODOLS. Rrealy buils
 ins tosted-fort play phones and tt 'n workjag. Put hatery and crew s handle on and TOD RAVE A PORTARLI TREAEURE LOCATOR EAMTI WORTH ABOUT EEO! Extremely senaitive - penetratas through earth, enand, rock. Gater, etc.-EABILY LOCATER COING CAL RELICA, BUBIED PIPRSTORI Stgmala exact location by " beep; pitch increating st you near buried metallic
 object: burfol ETVERAL Fidet Betion O2OUND: GIVRS CLEAR BIGNAL ON ONE COIN st.06 + sop cart. etc. (Hish quality Danith stethoccope head. phopes 解. 75 extra if reguired.) conder AT HOME POR 7 DATE. TOUR TOMRYREFUDEDIM FULL IP WOT 100%
DHARTED.

BUILD 5 RADIO AMD
ELECTRONIC PROJECTS

and $£ 2: 45$

Amasing Radio Conatructhon met! Beoome a radio expert for 4 24. A5. A complete Home RarloCourme. No experience needed. Parts including simple instructions for each degign. Ifjusrated ntep-by-step plans, al transistor, joudspeaker, anal phone, tnohe screws, etc, all you need. Presenlition box 40.partre as jllus. (if required)(parts available apartely) no aoldering noceanary, gond 2s.45 + 20p p. \& p.
SOOTHE YOUR NERYES, RELAX WITH THIS AMAZING

RELAXATRON

CUTE OUT NOIRF POL LUTION- BOOTHES YOUR eatimate the uses of thit far tantic new dealge - tho RELAXATRON Is bualcally a pink noise genierator. Besidea being able to mask out extraneone unwanted sound thae other very Interestinu properties, For instance, myaterloundy relaxing, a large nyat of thin feeling of larg part of this feeling of well-being can be drectly traced to the sound of falling rain-drope!-a well known type of pink nolne TRACTINA gURROUNDIEOS, IF YOU HAVE TROUBLE CONCENTRATING, IF YOU PERL TEN8BD, UNABLE TO REOnce used you will never want to be withoni It-TAKE IT ANYWHERE. Uees stan. dard PPS batterten (current naed mo mman that hattery ife fa slmost mhelf-life). CAM BE EABLI BULT BE Ay TEARS OF AGE using our unlque, step-bystep. fully hlustrated plans. No moldering neceasary. All part Inciuding case, a patr of crystal phones. Components, nuts. screwn, wire, etc. 110 moldertng.
ev. $75+25 \mathrm{p}$.

Only

Only
fil

SHPRTWAVE TRANSISTOR RADIO

Anyone from 9 yearn up an follow the ABC fulty Illuatrated th:
structions. No soldering necesary. 6 atetion longed on werial in somin. gused, Airfor, URA, swlesurland, de. axperience thrils of world Wide newi, eport, casts. Uses PPS battery. Sise only $5^{\circ} \times 41^{\prime \prime}$ 11" Omly 28. 76 + 20p p. at p. Kit includes cablact. nerewr, instructions, etc. (Parts vallable eparalely).

INGENIOUS ELECTRONIC
SLEEP INDUCER

02LI
50.25

CANTBLEEP
AT NIGHTS D 0 YOU WAKE UP
IN THE NIGHT AND CANT GFT OPP TO SLEEP. AGAIN: WOULD YOU LIKE TO RE GENTLY BOOTHED OFF TOBATISPYING 8LREP EVBRY NIGHT Then bulld this ingenious electronic sleep Inducer. It evem thope by itaelf so you don't loudspeater brouluces on gll wighly The Ireypency sounde, continuonely repented. but an time goes on the sound gradually becornes lete and leas-ulitil they eventually cease altorether, the effect if has on people is amasimaly very similer fo hypmools, A con troi is provided for adjusting the length of timen etc., all trannintor. can be bullt by hours. No 12 yeare of Afe in sbout two needed. Fixtremely pinple, eas-tor radio step-byostep, fully lifuitrited inetroction inciaded. No solderine necessary. Works of standard batterses. extremely economical Size only $3^{\circ} \times 4!^{*} \times 11^{\circ}$-take it \quad anywhere Kit includes case, nuth. Wire, werews, etc 8EAD $48+25+25 p$ p. \& 1 . (parts avallable eeparately).

Callers welcome 9 a.m.-5.30 D.m. inc. Saturday

Vary the strength of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the brighe chrome knob controlling up to 300 w or 600 w of all lights except fuoreseents at mains voluges from $\mathbf{2 0 0 - 2 5 0} \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio inserference suppression:

600 Wate 63.24 . Kir Form $\mathbf{C 2} 70$
300 Watt- 22.70. Kit Form ©2.20
All plus 10p post and packing.
Please send C.W.O. to:

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supolied to H.M. Government Departments

INSTRUMENTAL AUDO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR A AMPLIFIER. OPERATES FROM ov BATTERY (not supplied). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: E2- $\boldsymbol{6}$ poat pald.

CREATE "PHASE" EFFECT ON YOUR RECORDS. TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARO \& FULL INSTRUC. TIONS. KIT PRICE: E\&-m post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQuiries.

DABAR
 ELECTRONIC PRODUCTS

*en, LICHFIELD strert, WALBALL, BTAFFE. was IUZ
EI COIMPUTER PRIITEED CIRCUIT PAMELS aln $\times 4$ in packed with memb-conductors and top quality resistors, capactiors, diodes. eve. Our price 10 boands 30 p. P. \& P. 7p. With a guaranteed minimum of 36 transimbors. Dita on tranameorn included.
greclal baraail pace. 25 boarda for 11. P. \& P. 18p. With a guaranteed midisum of 85 transiators. Data on transistors incioded.
250 MIXED CAPACITORS 62p
Plua 9p P. \& P.
700C OPRRATIONAL AMPLIFIER TOS
8 lem IC. 1 ofl 50 p . 50 oft 86 p .
100 of 80 p .
250 MIXED RESISTORS 62p
i \& + matt.
150 MIXED HI STABS
62p
子. f \& 1 watt 5% better.
QUARTZ HALOGEN BULBS
12V ESW for car npot lishts, projectors, etc.
s0p each. P. \& P. 5 p.
GRO EXTENEIOM TRLEPHONES
with dinl but without bell. ©5p each. P. \& P. 30 p 81.75 tor 2 . P. \& P. 50 p .
BARGAIN RELAY OFFER
Single pole change over silver contacts 25 V to 50 V . $2 \cdot 5 \mathrm{k} \Omega$ coil. 8 for 50 p . P. \& P. $\mathbf{8 p}$.
KEYTRONICS mail order only 44 EARLS COURT ROAD
LONDON, W. 8
$01-4788499$

GEM PANEL WEIERRS

UBEO EXTENBIVELY BY INDUETKY, BOVERNMENT OEPARTMENTS, GDUCATIONAL AUTHORITIES, ETC. - LOW COST OUICK DELIVERY OVER ZN RANGES IN STOCK

CLEAR PLASTIC			
METERS METERS			
' ${ }^{\prime}$. \because TYPESW.100 80 mm .			
	205. D.C. .. A8.10		
	B0W D.C. . . 83.10	$50-0-50 \mu \mathrm{~A}$ 家.10	50V. D.C... 88
		100μ A \cdots A... 8.10	$3008 . \mathrm{D.C}$. 蒝•00
$100 \mu \mathrm{~A}$ … 5 Es	1 amp. D.C. As 10	100-0-100 800 A 800	
	5 mmp. D.C. 4810	\$00\%A 88.8	5 amp. D.C. 8.60
$500 \mu 4 . .$.	500 V . A.C. 3 -10	1 mA	YU Meter.. A.es?
1 mA 88.10	VU Meter.. ${ }^{3} 75$	20V. D.C.. . 8 -60	YU Meter.. E-3?

"SEW" CLEAR PLASTIC METERS

Tyse MR.beP. 2itn, equare Ironts.
 80-0-60нA 88.60 20v. D.C.... 89.00 $100-0-100$
$500 \mu \mathrm{~A}$ 500 HA
$\ln \mathrm{A}$. $5_{\max } 10 \mathrm{~mA}$
10 mL
50 mA
100 m
100 mA
500 mA
500 mA
1 mmp. anp. 88.00 map. A.C. 80.00

Type	
$50 \mu \mathrm{~A}$.... 88.87	107. D.C. . . 88.50
10-0-60 4 A -8.75	20 V , ID.C. .. 88.80
$100 \mu \mathrm{~A}$.... 8.75	508, D.C. . . 480
	160V.D.C... 82.20
$200 \mu \mathrm{~A}$.... 8 86	$500 \mathrm{~V}, \mathrm{D} . \mathrm{C} .82 .80$
$500 \mu \mathrm{~A}$. . . 240	15V. A.C. . 8880
	50V. A.C... 82.80
	150V. A.C. 18.80
5ma 888	300V, A.C. \$8.80
$10 \mathrm{~mA} . . . \mathrm{ces}$	500 V. A.C. 29.80
50 ma 28.20	S Meter 1 mA as. 27
$100 \mathrm{~mA}28 .80$	VU Meter.. 88.87
600ma 88.20	$60 \mathrm{~mA} \mathrm{A.C}. \mathrm{-} 28.80$
$1 \mathrm{mmp}8580$	
	200 mA A.C. ${ }^{\text {enege }}$ 20
10 mmp ese 20	500mA A.C. ${ }^{\text {a }}$ - 20
15 amp. . . 2.20	1 mmp A.C. 58.20
$20 \mathrm{mmp} . . .88 .80$	
30 еmp. . . 88.80	
60 amp. . . 8 es 60	20 mmp A.C.*ete
6V, D.C. . ${ }^{\text {cee }}$	30 mmp . A.C. ${ }^{\text {efere }}$

*MOVING IRON-
 ALLOTHERS MOVING COIL
 Please add postage

SEW EDUCATIONAL

METERS
Type ED.107. sise Type $\begin{aligned} & \text { overall } 100 \mathrm{~mm}\end{aligned}$ 90 mm $\times 108$ mas. A new range of high
quality moving coil instrumenta ldeal for school experi-
ments and othep mente and other
bench applicationa. 3^{-}mirrop scale. The Heter hovenient ja eashy accendiblable demonatrate internal wit

soun	25.00	20 V d.c. . . . 44.40
$100 \mu \mathrm{~A}$	24.65	60 V d.c.
1 ma	84.40	$300 V^{\text {d.c. . . } 2440}$
50.0.50/1A	44.65	
1-0.1mA.	44.40	Dual range
1A d.c.	24.40	500mA/EA d.e.estes
5Ad.e.	440	\$v/50V d.c. . . 8 4-65
10 V d.e.	14.40	

'SEW' BAKELITE
PANEL METERS

EDGWISE METERS
Type PE.70. 8 27/82in. $\times 1$ 15'82in. \times

MULTIMETERS for GVERY purposed

ROUMD SCALE TYPE PENCIL TESTER MODEL TS. 68
 MODEL soes 57 Ranger.

 $\begin{array}{ll}-125,25,1125,5,10 & 25 \\ 80 & 125,250,500,1.1005 \\ \end{array}$ A.C. Volts: $15,3,5,10,25$.
$00,125,250.500,1.000 \mathrm{v}^{2}$ p.C. Current: 25, B01A. $25,5,25.100,250$, $100 \mathrm{~K}, \mathrm{JMEG}, 10 \mathrm{Hfis}$, Decibeln: -20 to +85 dB . 81280 . P. \& P. 171p.

TE-200 RF SIGMAL GENERATOR
 Accurate wide range als. nal renerator coveriag
$120 \mathrm{Kc} / \mathrm{m}-500 \mathrm{Mc} / \mathrm{an}$ on $120 \mathrm{Kc} / \mathbf{- 5 0 0} \mathrm{Mc} / \mathrm{a}$ on 6 bands. 1 lirectly call. brated Variable R.F at enuator, sudjo output ton. $220 / 240 \mathrm{~V}$. A.C Brand nem with thatruc tione e15. Carr. 37 pp .
8ize $140 \times 215 \times 170$ umb.

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New higb quallty portable Inatrunient. Sine square 20 Hz to 20 KHz . Output max +10 dB (10 K ohna). Opera tlion $220 / 240 \mathrm{~V}$. A.C. 120man.
Price 827 .50. Carr.
25p

240° Wido Angle lmA Meters
MW1-8 60 ram equare 83.97

TRANSISTORISEO L.C.R. A.C. MEASURING BMIDGE
 A new portabla
Gridgeofering ex.
cellent range and cellent range and aocuracy at low cost. Ranges: K.
$1 \Omega-11-1$ mieg Ω 6 Ranges ± 1
L. 1 H if
HENRTS © Rantee $2=\%$ C. $10 \mathrm{pF} \pm 1110 \mathrm{miFd}$. 6 Rangee $\pm 2 \%$. TURNB RATIO $1: 1 / 1000-1$ $1: 11100$. 8 Ranget $\pm 1 \%$. Brldge voluare at
1.000 epg Operated from 9 volte. $100 \mu \mathrm{~A}$ Meter indication. Atractive 2 tone mietal came. 812 z il $\times 3 \times 2 \mathrm{~m}$. 820 . P. \& P. 25 p

2sov/240V smiths SYMCHRONOUS GEARED motors
Huilt in geartoz. All brand new and boxed A0 RPM CW:
 10 RPM CW ; 80p each Pont 12p
 20,000 O.P.V.
Orerinad protection. 5/25/100/560/1000 VIM 10120/230/1000 ohn $u .1 / 250$ In.A. $20 \mathrm{~K} / 2 \mathrm{meg}$

Model 8-100TR MULTMETER TRAM818TOR TESTER 100.000 oip.v.
MIRROR BCALE OVER: LOAD FROTECHOR 0/12-6/3/12/30/120/600 0/6/50/120/800

Trabalotor tester meaturea Alpha, beta mai co. Connlete with batteries, Jantruefions

1ODEL 50030.000 O.P.V With overlosd protaction mirror senio 0/. $10 / 2 \cdot 3 / 710 / 25 /$ 0/2.5/10/25/100/250/5001 1.000V. A.E. 0/50u. N/5/50 $\begin{array}{ll}500 \mathrm{ml} \\ 0 / 60 / \mathrm{k} / \mathrm{t} & 12 \\ \mathrm{Meg} .160 \mathrm{meg} \text { M. D. }\end{array}$ 88871 . Joust yaid.

TME LAB TESTER.

 Seald Huzzer Short Cir
calt Clheck. Henaitivity
 5. $25,10,50,750,1,000$ 50. ${ }^{\circ} \cdot{ }^{250}$. $500,1,000 \mathrm{~V}$. $11 . \mathrm{C}^{\prime}$. ('urrent: $10,100 \mu \mathrm{~A}$.
$10.1(N), 500 \mathrm{inA}, 2 \cdot 5.10$ amp Henlatance: $1 \mathrm{~K}, 10 \mathrm{~K} .100 \mathrm{~K}, 10 \mathrm{MEG}$. $100 \mathrm{MFi} 4 \Omega$. Deelibels: $-1010+49 \mathrm{db}$. Pla

OUR
25 p.

T0.3 PORTABLE OSCILLOSCOPE

HOERYWELL DIGITAL VOLTTI
Can be fanel bencb mounter sures 1 ter mes but can be uned to measure a whle range of AC and DC volt, current and ohms wil optional plug in carila. Specificatiun: Accu. Number of digite: 3 plua fourth overrange digit. Overtange: 100° (up to 1.993). Inpur
 ing, full scale aljustment aghinst an internal reterence volake. Overloai: to 100 D . D.C. laput: Pully fomatig (3 poles). alpat power $51 \mathrm{in} . \times 213 / 16 \mathrm{in} . \pm 83 / 1 / \mathrm{in}$. Avallable BRAND NEW AND FULLY GUARAN TEED AT APPROX. HALF PRICE

[^4]
GEMI-CONQUCTORE/VALVES
 ALL DEVICES EAANDNEWANO FULLY GUAFANTEED

B8	
UAb04	24.97
C129 \dagger	28.50
MP60	210.40
610	214.07
810	211.50
310	20.40
810	283.45
MP60 TPDI	217.18
MP60 TPL:2	216.40
610 TPD!	290-85
510 TPI)1	\$18-20
210 Pa	29-56
HT 70	814.90
1 T 70 Pack	$221-60$

GARRARD

408.
 $5-800^{\circ}$

 8P25 1118LA5 AP76 BLi2R 8L9813 $401 . \ldots . .$. | ZERO 100 A | E89.95 |
| :--- | :--- | :--- | :--- |
| ZERO | |
| 1008 | 87.50 |

GOLDRIE

 GL69/2....GL69/2/P
GLi2.....
GLidip...

118.97 480 t Mono - Stereo Cartridge Ail other nowlela lest Cartridge RECORD DECE PACEAOES Decks nupplled with cartridge realy eered plinth with Gerrard 2025TC'/9TAHCD. Gartard spens $11 / / 9 T A I C$ Garrard 8pe2s $111 / \mathrm{Gs} 00$. Garrard $\mathrm{spm}^{\mathrm{m} 5}$ 111M4 Gartard 4PN15 IIIM H4-甘 8P25 1II/(1800 (Pley
 Garrard A P 7 (6/M7S-6 Gartard AP76/MB5E: Garrard AP76/MTSEd B8R M•- Domald MP60/AT5S Goldring WHED/GK00 Goldring (11 Gioldring alialbe fith

```
plinth &1 extra.
```

SINCLAIR EQUIPMENT

Prolect

 Packagoflers.

2×230 amplifer, atereo 60 pre-anip, PZ5 power supply. 115.05 Carr. 37 lp . Or with
 supply. e20.28. Carr. 374p. Add to any of the above $84-4 b$ Alter unit and 218.80 for pair of 46 speakern. Project 60 FM Tuner sie.95. Corr. s7ip. All other Slnclair producta in stnck. 2000 Amp 28880 Carr. 37 hp .; 3000 Amp
880.95 Carr. S7tp.: Neoteric Anip 843.95

LATEST CATALOGUE

 Our 6th edition gives tull details of comprebennare range of HI-Ft EQUTPMFNT anl ($O M M U N I C A T I O N E$ EQIIPMENT. FFFE IISCOUNT COUPONB Alue sop fully illuetratell and detalling burgaina. SEND NOW ONLY 371 p $P \& P$ 10p

Latest exciting release. Brand new model.
$3+6$ watto rma. Input. for mag. xtal, sux
ape, Volnme, base treble, sllding balance, ape. Volnine, basm, treble, allding bala OUR PRICF, 210.50 Carr. 37 p . STEREO AMPLIFIER

Aerial tuning. BFO. AYC. ANL. 'g' meter.
AM/CW/BS B. Intearated speaker and phone wocket. Operation $220 /=40 \mathrm{v} A C$ or
$12 v$ DC. Slze $\$ 25 \times 266 \times 150 \mathrm{num}$. Complete $12 v$ DC. Size $\$ 25 \times 266 \times 150$
with Instructions and circult. with Instruction
o98.50. Carr. 500
LAFAYETTE LA. ara stereo

 Wati R.M.s.
Mag/Cer/Tuner
Tape Inpute. Excellent per Cormpares with
Con amplifera up OUR PRICE 224, Cart. 37ip. p.

TAPE CAgsETTES
Top quality H1 Pi Low Noive in Philps
 $\begin{array}{lllll}\text { C90 } & 3 \text { for } & 21.05 & 10 \text { for } 88.30 & 10 p \\ C 120 & 3 & \text { for } 81.25 & 10 & \text { for } 84.20 \\ \text { extra }\end{array}$

FM TUNER 6 TRANB18TOR
MIGHRQUALITY
TINER SIZE
ONIYGQXX ONLY $6 \times 4 \times 2$ \&in.
NI.F. atages.
Double tuned diacriminator. Amplo amplhers, Operates on 9 v batiery. Coverage
 8tereo multiplex adaptori $84 \cdot 97$.
\qquad Resintance up to 2000 M ohnt. Dectbely lons +50 . 50 p

lileal tor borlie tories, etc. Supplitel complete with batterlen, cable and
free instructioun.

2 8tation 22.97. P. \& P. 15 pp.
3 8tation $\mathbf{2 5} .25$. P. \& P. 15 p.

faclities. Battery operated. conplete mixint $y^{\circ} 5^{\circ} \times 3^{\circ}$.
 100 mV I meg. Output 280 ms 100 K . $10 \hat{0} 1$ STEREO LISTENING STATIO

For balancing and
gain seletion of
lontapeakera mith
allhtionat facility aulitional facility controls, speaber on-ott milde switch, stereo PRS-2 PHOTO ELECTRIC RELAY (7) $\begin{aligned} & \text { lnexpensive warnitug } \\ & \text { or counting AvRtetn } \\ & \text { consine ing of an encter } \\ & \text { antl relay unit. Relay } \\ & \text { unit has variable sen. }\end{aligned}$ awitch for jneermittent ararm operation. End A.C. outjat socket to wpernte bells.

230 VOLT A.C. 50 CYCLES RELAY'S Brand new. 3 sets of Clangeover contacts at

SPECIAL OFFER! SINCLAIR PROJECT 60 STEREO FM TUNER

 The flrst tuner in the world to use the ghaselock loop prisciple-an nacd for receiving ajgnals from space cralt because of lis vastly irmproved signal to nove ratlo. Provides fantastic reaula eren in dimeut areas. Tuning range 88 5 to losmilz. Automathe stereo indicator. Benaitivity: 2uv. AFC range 志 300 K liz. Hignal to notse ratio. ating voltage $25-30 \mathrm{~V}$. D. ©. Size; $93 \times 40 \times$ 207 min. KHC. LIST PHICE E25. P $\begin{array}{cc}\text { OUR PRICE } \\ \text { ONLT }\end{array} \quad \leq 16.95 \quad$ P. P Unrebeatable ofter-buy now mil rave over es

U4812 MULTHETER
electrical une. 6 A7 o.p.s.
6/3/1.5/7 5/30/60/160/300
$600 / 9 n 0$ IIC and 7 SinV.
$0 / 3 / 1 \cdot 5 / 7 \mathrm{~S} / \mathrm{SO} / 60 / 150 / 300$
0/300us/is /6/50/80/150/ fOOMA/I 5/G ANF. D.C. $0 / 1.5 / 6 / 15 / 60 / 180 / 600 \mathrm{MA}$

Accuracy DC' 1° o. AC 1.5° metal carrying came. lewln
and inatructions, $20 \cdot 60$ phan P. a P. 25 p . $\frac{\text { and inatructions, } 89 \text { plua } P}{\text { E,H,T, TESTER } 0-30 \mathrm{KV} \text {. }}$

Completely relf-contained with built-in roltnieter. Fiang to read, very accurate, robuat comatruction. An enic vial hor colour lone inion mervichag. etc. 818 e 300 mm . 100 50mm. dia. 26.95. P. \& P. 25p

4 Banda covering $530 \mathrm{kc} / \mathrm{a}-30 \mathrm{me} / \mathrm{s}$. B.P.O.

 J.APAYETTE EA-600 80LID 8TATE RECEIVER
 Cenersl coverafe $150-400 \mathrm{ke} / \mathrm{e}_{\text {, }}$ SEO $\mathrm{kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{s}$.
tront end. 2 mech filters, produet Enan 13.t.0., note 1 mm
 $\frac{\text { Irabd new with intructions. }}{\text { TE. } 65}$ YALVE VOLTMETEA Iligh quality cuntrument
 with 24 rangea. D.C.volts $15-1.500 \mathrm{v}$. A.C. volte $1.5-1.500 \mathrm{~F}$. Kesistadee
up to 1.000 megohms. up to 1.000 megohms.
$200 / 240 \mathrm{v}$. A.C. operation. Complete with probe and inglructions.
81780. P. 2. 30 p. Addiltional probes avail able: K.F. 88.181 ; H.V
28.50.

POWER RHEOSTATS

High qually seramic conatruction. Windinge enberhie enamel. Healy duty brush wiper. Continuous rating whle ratur
 50 WATT. $10 / 25 / 50 / 100 / 250 / 5001000 / 25101$ or 5000 otmes, 21 15 P. d P. Tip
100 WATT. $1 / 5 / 10: 23 / 50 / 100 / 250 / 5001000$ or 2500 ohana, $21 \cdot 65$ P. AP. 7 fD .

Everyday
 Electronics Classified Advertisements

RATES: 7p per word (minimum 12 words). Box No. 7p. extra. Semi-display- $£ 4.50$ per single column inch. Advertisements must be prepaid and addressed to Classiffed Advertisements Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

RECEIVERS and COMPONENTS

COMPUTER PANELS 5BC108, dIodes, 4-50p post 10p. PANELS WITH SILICON ANO GERMI WITH i-LA2 POT CORES + 112% CAPS 50 p pott 15p. ICE 7400 SERIES ON PANEL(S) 10-75p post 10p. FALLOUTS 5-13p. ORP12 on panel ex equipt. 35p cp.BANK 20 WIRE ENOED NEONS SP post 8p. SENO LARGE S.A.E. FOR LIST OF
ANELSETC.

J.W.B. RADIO

75 MAYFIELD RORD 8ALFORD LANCS MAIL ORDER ONLY

TRANSISTORS: mint, branded top grade AD161/162 c.pr., 60p; BC107B
 10 p ; $2 \mathrm{~N} 3704,10 \mathrm{p}$. Diodes: OA90, 6 p ; IN4002, 50 . Mail order only, UK postage 5p. AMATRONIX LTD., 396 Selsdon Rd., South Croydon, Sürrey, CR2 0DE.

```
Mlxed component parcel contalns toggle, wafer,
slide swltches, paxolin sockets, knobs, capacl-
yourselff's on these well selected parcels 6lb
nett welght &1 p.& p. 40p.
P.V.C. Connecting wire 10 different coloure
30 x 1yd Lengthe 30p post free.
Aseorted Redlo/TV Knobs 100 for 50p pp 25p.
Miniature magnets Ideal for experimenters etc
100 for &1.25 p. & p. 16p.
Assorted tag strlpe 100 for 50p po 10p.
Mall order only,
```

XEROZA RADIO,
1 East Street,
Bishop's Tawton,
Devon.

COMPONENT CATALOGUE AND DISCOUNT VOUCHERS 25p POST FREE (UK) W.E.C. LTD

HIGH STREET, RIPLEY, SURREY.

NEW MODEL V.H.F. KIT Mk 2
Our latest kit. Improved design and performance plut extra ampllfer stage, recelves alicraft. Iltte set will give, you endies ' houre of pleasure and can be built in one evening. Powered by 9 volt baltery, complete with easy to follow instruction and built in lack socket for use with eaphones of amplifler.

Onl) $53.50+$ p. \& p. 10 U U.K. only.
Illustrated catalogue of selected kits and com ponente. 15p P. \& P. Iree.

Calleon Treding Co., Dept E.E.
12 Burri Way,
Corringham,

SERVICE SHEETS

SERVICE SHEETS (1925-1972) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding Guide. Prices from 5p. Over 8000 models available. Catalover 8,000 Please send S.A.E. with all orders; enquiries. HAMILTON WADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097 .

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS 1. The advertiser warranes that the advertisement does not contravene any of the provisions of the Trade any of the provisions of
Descriptions Act. 1968.
2. The Publishers reserve the risht to refuse or withdraw any advertisement.
3. Advertisemente accepted for publication cannot be cancelled without the Publishers" express consent.
4. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequencies however caused.

CASSETTES

TOP QUALITY, low noise audio mag netics cassettes with fitted screws, in library case, C60 30p, C90 40p, C12050p. P\&P 15p. Ingo Ltd., 72 West End Lane, London, NW6.

BOOKS

"SHORTWAVE VOICES of the World" £1.55; an exceptional book. "World Radio TV Handbook"" $£ 2 \cdot 80$. "How to Listen to the World" $£ 1 \cdot 35$. Under $£ 2$, postage $10 p$ worldwide. IRC $/ 3 p$ for price list. (Mail only.) David McGarva, Box 114A, Head Post Office, Edinburgh EH1 1 HP

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV TECHNICAL TRAINING in Radio, TV ICS. For details of proven home-study courses write: ICS (Dept. 566), Inter text House, London, SW8 4UJ.
MEN: You can earn $£ 50$ p.w. Learn computer operating. Send for FREE brochure-London Computer Opera tors Training Centre, G22 Oxford House, 9-15 Oxford Street, London, W.l.
 Opportunities. It describes the easiest way to pass A.M.S.E., A.M.I.M.I., City \& Guilds (all branches), (ien. A.M.l.M.I., City a Guidets (all branches), (rep. Cert., etc, of and gives details of courses in ail Civil, Auto, Aero, Radin, TV, Building, etc. You must read this book.

Send for your copy today-FRFE.! B.I.E.T. B32, Aldermaston Court, Reading, RG7 4PF Accredited by the Council for the trcreditation of Correspondence Culleges

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

MISCELLANEOUS

RECORD TV SOUND using our loudspeaker isolating transformer. Proides safe connection to recorder. Instructions included. £l post free CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.
CHROMASONIC ELECTRONICS is well and living at 56 Fortis Green Road, London N 10 3HN. 40 page illus. trated catalogue 20p post free.

KITS to bulld quality acceseorles:-WAA-WAA all parts, electrontc a mech. $\mathbf{E 2}$. es FUZZORAMA quality fuzz box es 4.75 BASS PEDAL 16^{\prime} and 8^{\prime} tones $\mathrm{f} 33^{\prime}$ BUILO A SYNTHESISER OR AUTO RHYTHM from Dewtron professional modules Cat. ${ }^{15 p}$ from D.E.W. Ltd.. 254 RIngwood Road, Forndown, Dorset BH22 OAR

AUDIO COMIECTORS * CABLE
DIN PLUGE: 2 pin speaker, 3 pin. 4 pin. 5 pin 180, ${ }^{5}$ pin 240,6 pin. 7 pin. Alt 10 each. Line sockets 11 , emch, Chasain nockets op each. 3.5 mm \& 3.5 mm jack Mings 10p emch. screenel 2p each.
SCREETED CABLz: Bingle sp/yard, Twin sp/yard, Pour core 14p/yard.
P\&P 6p per order. C.W.O. to M.P.B. 区.ECTROMCs. 72a LOADOA ROAD, CROYDON, SOREEY CRO 2TB.

NEW
 NIP-E-BOARD PAINTED CIRCUIT SYSTEW for experimental circults USE IT FOR E.EPROJECTS
 Bolf-down or phog-In cards elehed undilled or drilled 0.1×0.15 Gold slated edpe connectors
 No need for messy etching
 No copper cutting ? - It's easy !
 Further detalls in advert in P.E. and P.W.
 SPECIAL TRIAL OFFER pack only 50p
 Popular NIPPIEOARD Ranget A A avillabl for pubithed prolecte avallable for publtehed prolecte. SAMPL defatle fip spbp, ifp $/ \mathrm{g} / \mathrm{glase}$
 NIP ELECTRONICS HPL最11 I.atem

SOUKD SOPPLIEA (LOUGETOE) CO. LTD
for
Eagie International and International Recthier Produche TOA P.A. Eb, oipment and Mikes.
Capactors. Reeintors, Plup, sockets, Cablen. Audio Leads, Eeniconductorn, Valves. Vero Board. etc., for the constructor.

MLECHBOMICS DEPT. Tol. 01-506-5716
12 smarts Lene, Lomploa, Emax.
Fours, 9.30 e.m.-1 p.m., 8-5 p.m. Ton., Toes, Wed. snd Fri. : 9.80 a.m.-1 p.m., $2-5.80$ p.m. Eét. Cloend all day Tharadey.

12 VOLT FLUORESCENT LICHTS (as illustrated)

Beat power cuts, be Independent, Ideal for Caravans, Tent, Emergency Lishting, otc. Works anywhere where 12 V is available. Guaranteed for six months, READY TO USE at:-
12ins 8 watt $£ 3.60$ post paid 21ins 13 watt $£ 4.60$ post paid
\$ALOP ELECTRONICS
23 Wylt EOp
Shrophire.
Callers

Shrophhire.
Everyday Electronics, August
1972

NO NEED TO WORRY ABOUT

 A TRANSMITTING LICENCEbecause this GPO approved transmitter/ receiver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually it's TWO KITS IN ONE because you get all the printed-circuit boards and components for both the transmitter AND receiver. You're poing to find this project REALLY FUN TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely fiexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PRO. JECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc

GET YOURSI SEND £5.50 NOW
S.A.E. for detalls

TO: BOFFIN PROJECTS.
DEPT. KEE.
4 CUNLIFFE ROAD.
STONELEIGH, EWELL, SURREY

DILKIT unsolders standard dual-In-line I.C.e and TO.5 type translstors in a single, rapld Component extractors for use in conjunction with Dillit: D.I.L. E2-25; TO.5 E2.25. BOLDERSOKE soldar-absorbing wick-usaful boards under repalr itt Pack 4tp. 'Production Pack (100 ft.) \&5. C.W.O., post free. ORIENTATION LTD.,
Mayfield. Coverack, Cornwall

B.H. COMPOHENT FACTORS LTD.

For Eagle. Sinclatr. Deta Booke and Components tw 5% resistors IP, or $50 p / 100$. Electrolytic C428 $4 / 40$. /40. 10/18, 32/10, 25/25. $100 / 8$.4, il 4 p. INg14 $\$$ p, 100 v $32-0.32$ @ 150 mA . 1 p . Bargaln Eiectrolytics-Send for ist. Electrolytic $100 / 50$ itp, $500 / 50$ I2p, $1000 / 1212 \mathrm{p}$. $1000 / 25$ 25p. $1000 / 5035 \mathrm{p}$. UL914 30p. 7400/01/10/30 35p. C.W.O. p.p. U.K. 18p. Discount $£ 10-10 \%$

Monoy back quarantee. Brand new to spec.
P.O. BOX 18, LUTON, BEDS, LU1 180 DEPT. EE

BODINE TYPE M.C.I. GEARED MOTOR

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/140V a.c. 50/60 OUTPUT
VARIABLE 0.260 V from to 50 amp atoch
SHROUDED TYPE
$1 \mathrm{amp}, 87.00 \quad 2.5 \mathrm{amp}$, ti. 05
$5 \mathrm{amp}, 11.75$
$10 \mathrm{amp}, 122.50 \quad 20$ amp. $449 \cdot 00$ $15 \mathrm{smp}, 425.00{ }^{25}$ amp, $37.5 \mathrm{me.00}$
Asvew condition. Input voltage of motor |15V a.c. Supplied complete with transformer for $23 / 240 V$ a.c. input. Price, ithar ype iso plus 0 p. p or less ran CONSTMNT SPEED PRECI. SION MADE
GOVERNED MOTOR
Saven pole armature, ballrace hear-
ing. 2,750 r.p.m. Lengeh 2 H , Dis H. Shaft length. H, Shaft dia. $5 / 64$. mA . Price $41-25$ P. 8 P . 10 p . $230 \overline{2} / 240 \mathrm{Y}$ COMPACT SYNCHRONOUS GEARED MOTORS

Manufactured by either
 Manufactured by either 5angamo. Haydon or

 Smith. Buils-in Rearbox.w 6 R.P.H. cw 60 R.P.M. cw 3 R.P.H. A/cw 30 R.P.H. cw $\mathrm{cw}=$ Clockwise. rice. Allat 75 p pincl. P. P .
Fri
 i7 WAY SELECTOA SWIT
COIL This fascinating electro mechanical device can be switched through 17 posicions and can be reset
from any position by ener. tising the reset coil. 110 volt operacion or $230 / 240 \mathrm{~V}$...c. with 500
ohm 10 W resistor or 50 V d.c. Two for El . ohm $0 W$ resistor or 50 V d.c. Two for \&l.
P. 8 . IOp.
PROGRAMME TIMFRS.
 ELECTRONIC ORGAN KIT

Easy to build. Solid State. Two fuld octave (less sharps and flaks). Fitsed penlite ilV batteries. Complese ses of parts including speaker, etc., together with full instructions and
eunes. Price $43-00$. P. \& P. 22p. 50 in I ELECTRONIC PROJECT 50 assy to build Proiec ing, no special tools required. The kit includes Spesker. Meter, Relay, Transformer, plus thost of other componests and 56 -page instruction
leaflet. Some examples of the 50 possible Projects are: 5 ound Lavel Potsible Projectstare: 5 ound Leve Price E7.73. P. \& P. 30p.
CRYSTAL RADIO KIT Complete set of parts, including: Crystal Diode, Ferrite Aerial, Drilled soldering, easy to build, full step by step instruction. $\& 1.75$ inc. post.
VENNER Electric Time Switch an 200/250V Ex. GPO. Tested. Manually set 2 on, 2 off every 24 h . Override 20A 43 .75, 30A 43 -9s, P. \& P. 20p. dusk OFF dawn. Price as above.

Superior vialify Pruaison inade

NEW POWER RHEOSTATS

100 WATT. 1 ohm, 10A: $50 \mathrm{ohm}, 4.7 \mathrm{~A}$;

10 ohm, 3A; 25 ohm, $2 \mathrm{~A} ; 50$ ohm, $1-4 \mathrm{~A}$;
100 ohm, 1A: $250 \mathrm{ohm}, 0.7 \mathrm{~A} ; 500$ ohm,
$0.45 \mathrm{~A}: 1 \mathrm{k} \Omega, 280 \mathrm{~mm}, 1 \cdot 5 \mathrm{k} \Omega, 230 \mathrm{~mA}: 2.5 \mathrm{k} \Omega .0 \cdot 2 \mathrm{~A}: 3.5 \mathrm{k} \Omega$ $0.45 \mathrm{~A}: 1 \mathrm{k} \Omega, 280 \mathrm{~mA}, 1.5 \mathrm{k} \Omega, 230 \mathrm{~mA}, 2.5 \mathrm{k} \Omega, 0.2 \mathrm{~A}: 3.5 \mathrm{k} \Omega$,
$165 \mathrm{~mA} 5 \mathrm{k}, 140 \mathrm{~mA}$. Diamerer 3 tin Shafs length itin, dia. If in,

 at 0p each. P, \& P. 7 to.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the fatest type Xenon white light flash sube. Solid state siming and srigsering EICCUIE, ${ }^{2}$ OPENMENTERS. ODEONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller sin printed circuit. New erigger coil, plastic thyristor.
\$peed adiustable $1-80$ f.p.s. Price 10.50 . P. A P. 50 o. HY-LYGHT STROBE MK III
Designed and produced for use in larke halls and utilises a silica sube printed circuit. Speed adiustable 0-30 f.p.s.
 METAL CASE, Including reflector. \&4-00 P. \& P. 45p. Post paid w
THE ‘SUPER' HY-LYGHT KIT
Approx. four simes the lisht output of our well proven Hy-Lyght strobe. Incorporating:

- Variable speed from 1-23 flash per sec.

Reactor control circuit producing an intense white lighe. Never before Strobe Kit with so HIGH an output at so
LOW a price. ONLY 20 plus 75 p P. \& P. ATTRACTIVE, NOBUST, FULLY VENTILATED METAL CASE specially designed for the Super Hy-Lyght kit including renlector
7-inch POLISHED MEFLECTOA
Ideslly suited for above Strobe kits. Price $53 \mathrm{p}, \mathrm{P}$. A P. 13p or pose paid with kiss.
6 in colour wheel is used for disco lishting effects etc. $\mathbf{8 . 7 5}$ incl. P. \& P. can be operated from our 1 rpm

RELAYS New SIEMENS PLESSEY, otc. Minioture

1	2	3	4	1	2	3	4
52	3-6	$2 \mathrm{c} / 0$	$63{ }^{\circ}{ }^{\circ}$	700	22-30	$6 \mathrm{c} / 0$	75p
410	10-18	4 clo	$73{ }^{\circ}{ }^{\circ}$	700	15-35	$2 \mathrm{c} / \mathrm{o}$	73p*
600	12-24	$4 \mathrm{c} / \mathrm{o}$	$78{ }^{\circ}$	700	16-24	6M	65p
600	18-32	$4 \mathrm{c} / \mathrm{O}$	$78{ }^{\circ}{ }^{\circ}$	1.250	24-36	$4 \mathrm{c} / \mathrm{o}$	63p*
700	16-24	4M 2B	$63{ }^{\circ}$	2,500	36-45	6M	63p*
700	16-24	$4 \mathrm{c} / \mathrm{o}$	$78{ }^{\circ}$	2,400	30-48	$4 \mathrm{c} / \mathrm{o}$	50p
700	12-24	$2 \mathrm{c} / 0$	63p ${ }^{\circ}$	9,000	40-70	$2 \mathrm{c} / 0$	50p
70	6-12	1 clo HD	50p*	15k	85-110	6M	50p ${ }^{\text {c }}$

(HD) Hesvy Duty. All Post Paid. 12 VOLT D.C. RELAY 140 OHM COIL
Three sets clo contacts rated at 5 amps. 7tp incl. P. \& P (DIMMIar to ilustration below.) Three sets c/o contacts rated at 5 amps.
Price: Sop P\& \& \&
'KEY SWITCH' 230 VOLT A.C. RELAYS WHUI J One set c/o contacts rated at $7-5 \mathrm{amps}$. BOXED. Price: 40 p . P\& P 5D. (100 lots $\$ 32 \cdot 00$ incl. PREP.)
MINIATURE LATCHING RELAY
Manufactured by Clare-Elliott Led. (Type F). 2 c/o permanent
 incl. P. \& P. PARVALUX TYPESD2. 200/230 VOLT A.C. D.C. HIGH SPEED MOTOR 5peed 9,009 r.p.m.
approx. or 3,200 r.p.m. if used with buile in tovernor,
or variable spaed over a wide or variable speed over a wide.
range if used in conjunction with Finge if used in conjunction with
our Dimmer Switch. illuxtrated

\therefore MICRO SWITCH-vary special oner MICRO SWITCH-very special ofler
5 mmp c/o contacss. Fised with removable
puth button assembly. Ex. PO. 20 for $f 1$ puth button assembly. Ex. P.O. 20 for $\$ 1$ 600 WATT DIMMER SWITCH Easily fitzed. Fully guaranteed by makers Wilt control up so 600W of all lizhts makers. Wilt at mains voltage. Complete wish simple instructions.

SERVICE TRADING CO

All Mail Orders_Also Callors-Ample Parking Space
Dept. E.E. 57 Bridgman Road, Chiswick, London, W4 SB8
Phone 01-995 1560
SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Opon Sat. 9 LITTLE NEWPORT ST. LONDON WC2H 7JI O1-437 0579
 BY ATES EMIHUS FAIRCHILD FERRANTI BY ATES EMIHUS •FAIRCHILD

I．T．T．MULLARD NEWMARKET P PHILIPS • R．C．A
TEXAS

TRANSISTORS
 A SELECTION FROM OUR LIST

 AAZ13 10D BD123 85D OC20 AAZ13 10D BD124 80D OC22 | $A A Z 15$ | 100 | $B D 131$ | $75 D$ | $O_{2} 22$ |
| :--- | :--- | :--- | :--- | :--- | AAZ

＂

\author{

AC
AC
AC

}

$\mathrm{A} C$ AC AC

CR

424

路

＜रै＜

號路
路

AP1
AF1
AF
ABY
ABY
ABY187
1872
18%
A8Z
BAl
BAlA_{11}
$B_{A 11}$
$B_{A 11}$
$B_{A 1}$
$B_{A 1}$

B_{1}| BAY3 | $7 p$ | GET111 |
| :--- | :--- | :--- |
| \＆5p | | |
| BAY38 | $15 p$ | OET113 $25 p$ |
| BC107 | $10 p$ | GFT11 || BCl 07 |
| :--- |
| BCl 0 |
| 8 |

$\mathrm{BC113}$
$\mathrm{BC114}$

$\mathrm{BC116}$	BC114	20 p	OEXB8
BC116	90		
OKX			
:---	:---	:---	
BC117	20p	MAT121 25p	BC 118

BC 134

BCl 3
$\mathrm{BC136}$
$\mathrm{BC1}$

BCl 38
BCl 37
BCl 38

BCl\begin{tabular}{ll|l}
BC153 \& 20p \& MJE520 78

BC154 \& $20 p$ \& MJE521 70p

RC167 \& 180 \& MJE295s

BC169 \& $18 p$ \&

BC169 \& $15 p$ \& MJE295s

BC169C \& 15 D \& MJE305s
\end{tabular}

 BC183L 100 MPSA70 15p\begin{tabular}{l|l}
BC184L 10 D \& MPSU06 509

MPSU56 565

BC212L 18p MPSU56 56pBCE13L 12p

NKT214 20p

NKT216 25p

BCY30 \& 15p

BCY \& NKT403 75p

NKT404 85p
\end{tabular}BCF 31

BCYs
BCY 23

BCY	35p	OA70	10 p	$2 N 1302$
BCY 38	48p	OA79	10 p	
BCY				

Full transietor list available－
send for your
free copy today

	OAB1					
BCY 40	OA90		BCY 40	50	OA90	
:---	---:	:---				
BCY70	150	OA91		BCY70	150	OA95
:---	:---	:---				
BCY71	80 D	OA＇200				

HENRY＇${ }^{\text {cooss }}$ NTEERATED ORREUITS

BRAND NEW FULL SPECIFICATION TTL74 SERIES BRANDED FAIRCHILD，I．T．T．AND TEXAS

DEVICES MAZ BE MIXE No． 7400 7401
 401 Quad 2．input open collecto 408 403

7403 Quad 2 －input open c
7404 Hextuple laverters
7404 Hextuple inverters
7405 Hex invertern with
Triple 3．inper with open collector outputs
Dual 4 －Input gehmitt triggen
7420 Dual 4－input NAND gatag
7430
Slogle 8 －input NAND gaten
7430
7440
Dugle 8 －input NAND gaten
744 BCD－Decimad decoder／Wixle drive
744 PCD－Decimal decoder（ 4 nle diline）TTL O／P
7443 Excens 3－Declual decoder TTL outputs
7447 BCD－Decimal 7 seg．decoder／indicator
$\begin{array}{ll}7447 & \text { BCD－Decimal } 7 \text { seg．decoder／indicator driver } \\ 7448 & \text { BCD－Decimal } 7 \text { seg．decoder／driver TTL } 0 / \mathrm{P}\end{array}$
7450 Expand dual 2－input AND－OR－INVERT gates
7451 Dual 2－wide 2 －in put AND－OR－INVERT gates
7453
7464
4－wide 2－Input AND－OR－INVERT gater
7480 Dual a－loput expandern
7470 Single J－K filp－dop（gated Inputs）
7473 Dual J．K aip lop（gated inputs）
7474 Dual D ftp gop
7475 Quatruple blatable latch ${ }^{7}$
7476 Dual J－K Alp－flope wlth Premet and Clear
7480 Gated Full Adder
$\begin{array}{ll}7480 & \text { Gated Full Adder } \\ 7481 & 16-\mathrm{bjt} \text { real／write }\end{array}$
$\begin{array}{ll}7481 & \text { 16－bit real／write memory } \\ 7482 & \text { 2－bli binary Full Adder }\end{array}$
$\begin{array}{ll}7482 & \text { 2－blt binary Pull Adder } \\ 7483 & \text { 4．blt binary Full Adder }\end{array}$
7484 16．bit RAN Fith Adder
748% Quadruple 2－Input Exclualve OR gatek
7490 BCD decade counter
7491 8－blt shift register
$\begin{array}{ll}7491 & \text { 8－blt ehift reglater } \\ 7402 & \text { Divide twelve count }\end{array}$
7402 Divide twelve counter
7498 －blt binary counter
7498 t－blt blnary counter
7495 4－bit up－down shitt reginter
7498
7410 u 8－bit parailelfaeriad th／out bhift reginter
7410 v
74118 －bit blatable latch
74121 Mortuple Bet－Reset latchen
74121 Monostable multivibratora
74141 BCD－Decimal decoder／Nirie driver
$74148 \mathrm{BCD}-$ Decimal decoder／Nirie drive？
74180 16－blt datien eelector／multiplexer
75151 8－bit ista nelector／multiplexer
74158 Dual 4－line to 1－line date ael
74154
7416 －bit decoder／demultipiexer
74156 Dual 2 －Inne to 4 －line decoder／denultiplezer
74158 Dual 2－line to t－the decoler／dernultiplezer
74190 gyn decade up－down counter，I－line mode
74190 sync decade up－down counter，i－line mode
74191 gync d－blt up－down counter，l－1the mode
74193 Bync 4 －bit up－down counter， 2 －Itne mode
74196 Asynchronous presettable decale counter 81 ．
74197 Asynchronous presettable 4－bit binary counter 81 ．
Complete data on the above in tooktes 20 papes，Ref． 29 ，
Compiete dafa on the above in bookles 20 pajes．Ref．29，1esue 2 as $151.40 \quad 21.20$
Integrated circult ancketh 14 pin information on 100 typen． 40 p ．Poot 10 p ．

INTEGRATED CIRCUITS	
M FCA000P	55p
MPC4010P	80 p
$1 \mathrm{Cl2}$	22．80
PA248	21－50
TADI00	21.50
TAD110	11.50
MC724P	50 p
702C（TO5）	75p
709 C （TO5）	450
709\％（D．I．L ${ }_{\text {c }}$ ）	48p
723C（TO5）	21.00
741C（T05）	80 p
MC1303P	28．00
MC1304P	22.25
SL403D	11.50
741C（1L）	750
914（TO8）	408
823 TO5］	40 D
TOBHIBA	
20 watt amp．	24.47
Pre amp	21－50

$\begin{array}{llll}\text { Type volts } & & \\ \text { ge3sA } & 100 & 3 & \text { amps } \\ 800 & 80 \mathrm{p}\end{array}$
$\begin{array}{llll}\text { SC35 B } & 200 & 3 \text { ampe } & 850 \\ \text { SC．35D } & 400 & 3 \text { amps } & 900\end{array}$
$\begin{array}{llll}\text { SC36D } & 400 & 3 \mathrm{amps} & 90 \mathrm{p} \\ \text { BC40A } & 100 & 8 \mathrm{ampr} & 90 \mathrm{p}\end{array}$
$\begin{array}{llll}\text { SC40R } & 200 & 6 \text { ampe } 81 \cdot 05 \\ \text { BC4OD } & 400 & 6 \text { ampa } 81 \cdot 00\end{array}$

BC 45
BC 4
BCE

$\begin{array}{lll}8 C 40 E & 800 & 6 \mathrm{amps} \\ \text { BC48E } \\ 500 & 10\end{array}$ 8C50E $500 \quad 15 \mathrm{amp} 11.9$ DIAC BD2

PRIDQE RECTIFIERS

SILICOM RECTIFIERE1 AIP MLIATORE PLABTIO WIRE EIDED							ERIOGE RECTIFIERS 							
Trpe P		49	$30+$	$100+$	$300+$	000 +			Car－				Cur．	
IN4001	50	6 p	5p	410	4p	91p	Type	P．I．F．	rent	1－12	Ty	P．I．V	rent	1－11
IN 4002	10	78	${ }^{\text {80 }}$	50	4is	48	1002	100	2a	85p	4004	400	4a	750
IN ${ }^{\text {IN }}$	200	8 D	79	6p	5p	410	2002	200	2	＊${ }^{\text {d }}$	6004	600	4n	80 p
1N4005	100	8 D	70	6 D	50	410	4002	400	2	750	1006	100	6s	70 p
IN4006	800	120	100	90	8p	${ }^{8 p}$	6002	600	2a	800	2006	200	6	75p
1 N4007	1000	16p	$18 p$	108	9	8p	1004	100	4	600	4006	400	6a	\＄1．00

SILICOM RECTIFIERE
1 AIP MIIATORE PLASTIO

QUANTITY OFFERS ！ FROM STOCK

Enquiries invited for new types arriving daily
H P HEMBHi＠SEMI－CONDUCTOR DEPARTMENT

Build yourselfatiANSISTOR RADIO

 TONE CONTROL
 aroply arral for short Wacives．Publy pull output using 600mW iransist urs．Car aerlal and Tabue recorl kockets． gelectlvity wiftch．Su inched earplece moket conplete with eardiece． 2 iransistorn plus 3 dionles． Bpaker．Alr spaced ganged tunhag conden＊＋Volume onfon，tunfong，wave chanse and torie enatrole hock me．size $9 \times 7 \times$ 4in．nuprox．Fary to follow Bulid llane 25 （H゙HE゙ト with Parta）and Eas Total building cost $£ 6.98$

POCKET FIVE

3 Tunable Wravebands

HW，LW，Trawler Bant
With extensled M，W
of．Luremborrg

 plug and swatched socket．for firlvate fitatenfing 30 p

Total building costs $\mathcal{S} 2 \cdot 29$
 of halio Lusembourg，elc．Bult in fermite roas aerial for MW and LIF．Ketractalile 4 section 24 in．chrome Powerful pushifmull output． 7 transistors and 2 ，liodes． $8{ }^{*} \times 2 夕^{*}$ sweaker．Air apaced ganged tuning cobdebaer． folumefou／o\％．tuning anul wave conange controls． approx，Fiang to follow instructions and diagranis．Jarts price lint and rany build plans $15 p$（FREE with parts）． Total builiting costs $£ 5 \cdot 98$

TRANSONA FIVE

5 TRANSISTORS AND 2 DIODES

3 Tunable Wavehands：MW，LW and Travler Band． Reage－5 iranslators and 2 diodes，ferrle rod aerial， thnying roj］quaker．Atractive case with red npeaker

Total buididing costs $£ 2.50$

ROAMER SIX

Tunable Na handm：M W，LW sWl，sio．Traw ler band plus

ler band plus an
easier tuning
lavembourg etc．sersifive fer－ for Short Waves．
3 in．Speaker．
atmges－fi tralisirtors and 2 nooses Attractive lilack． cane with red gritle，dial and black knobs with poltstied nuetal inserts．slze $9 \times$ of $\times 2$ 2nt approx．Easy build Earpiece with alug and switched mocket for private larplece with riug
Totat buididng costs $£ 3.98$

TRANS EIGHT

and 3 DIODES

6 Tunable

hands：sw，IW，
and Trawler Band．
Sensltive fertiie god aerlal for M．W．and I．w．Tele－ type translistirs plus 3 diodes．Attractive cane in metal ínserta．Size， 9×5 lial and bleck knobs w it th polished output．Battery econominer switch for extended battery life．Ample power to drive a larger mpeaker．Parts
price ifat and rasy build plans 25 （FREE with parta）． Harpiece with plug and switched socket for prisate

Total bu liding costs $54 \cdot 4 ?$ J．r．\＆

RADIO EXCHANGECO

｜ 61 HIGH STREET，BEDFORD．Tel． 023452367
｜Parts price list anc plans for
jnams STUART Peance Address CropWell Hoase Selston Lave annesley wood Howse：

I I enclose £ 5.50 please send items marked ROAMER TEN \square ROAMER SEVEN ROAMER TEN \square ROAMER SEVE I TRANSONA FIVE \square ROAMER SIX POCKET FIVE \square EDU－KIT

CONSTRUCT．
COMPONENTS INCLUDE：Controls： 2 Blider Tuning Condenaer： 2 Volune Controls：${ }^{2}$ Sider fial： 3 Plugs and Bockets：Batury Clips：\＆Tag 9：Resistors：Capacilora Tnree $\$^{-}$Knoba i－nitn once conatructed are letachable from Master Unit．enabling them to be schools，Educatlonal Authorities anil all those interested in raillo construction，
 SERVICE
 ．．．．．

MENRTMS RIDU RTITE
 ENGLAND＇S LEADING ELECTRONIC CENTRES
 HENFYS RADIO

AI－FI ELECTADNIC COMPONENTS．TEST；PA．DISCOTHEOUE LHGHTING MAIL QISDER

北 TREAN

$20+20$ WATT INTEGRATED I．C．STEREO AMPLIFIER

\star FREE TEÅK CABINET with com－

FEATURES．New slim design with 6－IC＇s．IC Sockess， 10 silicon transistors， 4 rectifiers， 2 zeners fibre glass PC panel．Complere chassis wort HIGH QUALITY \＆STABILITY ARE PREDOMINATE FEATURES －DEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE， RACIIITIES OnloH swirch Indicator head
separare sreble，bass，volume and balance conerols，scrarch and separate sreble，bass，volume and balance conerols，scratch and
rumble filters，mono／stereo switch，Input selector：Mag．P．U． Radio Tuner，Aux．Can be altered for Mic．，Tape，Tape－head，et （Parts list Ref． 20 on request）．

LOW COST HI－FI SPEAKERS E．M．L．Size $13 \mathrm{t}^{\prime \prime} \times 8 \mathrm{t}^{\prime \prime}$ ．Large Cerami
TYPE $1506{ }^{\circ}$ ． TYPE 1506 Wask， 3,8 or is
ohms 62.20 ．Pose 22 ．
TYPE 150 TC Twin cone ver sion $\mathbf{6 2 - 7 5}$ ．Pose 22D
TYPE 45010 ． tweeters and crossover swin or 15 ohms．$£ 3.85$ ．Poss 25p． TYFE 35020 wate with eweeter and crossover． 8 and 15 ohms．

POLISHED CABINETS 150，I5OTC 450 4460．PosE 30D．

NEW MW／LW TUNER to BUILD ML－3
Uses Mullard Module．Slow battery．Ferrite aerial．Overall size $7^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime \prime} \times 3 \frac{1}{}^{\prime \prime}$ ．TOTAL COST TO BUILO B5，Post 15p．All parts sold separately．Leaflet No． 6

PORTABLE TO BUILD using Mullard RF／IF Module．Medium and Long Wave bands plus Medium Wave Bandspread for exera selectivizy． Also slow motion geared tuning， 600 mW push－pull ourpue，fibre glass＂PVC covered cabinct，car aerial．Attractive
appearance and performance． TOTAL COST TO BUILD
Fif：MEDIUM AND LONG WAVE PORTABLE Ceafles No， 2 xdvertised） $\mathbf{6 . 6 . 9 8 , ~ D . D . ~} 35$ p from srock－Leaflet No．I．

catalogue

Fully derailed and illus－ trated covering every plus data，circuits and plus data，circuits sand ines at Special Low Prices and Fully Guaraneed
price 55p $\begin{gathered}\text { Posit } \\ \text { Paid }\end{gathered}$ （40D FOR CALLERS）

PLUS！FIVE 10p VOUCHERS Send to this address－HENRY＇S RADIO LTD．（Depr PW） posk only．All other mail and callers to ： 30 ．＂see catalogue by

RECORD DECKS SP25／3 $£ 10 \cdot 75$ HT70 $\& 15 \cdot c 0$
MP60 $£ 10.40$ MP610 $£ 14.15$ MP60 $£ 10 \cdot 40$ MP610 $£ 14.15$ AP76 $418 \cdot 95$ GLT2 $222 \cdot 23$ WITH PLI
（Pos：70p） （Poss 70p） MP80 $617 \cdot 20$ TDIS0AB
HT70 621.60 HL（GL75）PLI2AC $C^{\text {41．4S }}$ MP610 20.35 BD2 $\quad \mathbf{6 3} \cdot \mathbf{2 5}$ MP610\＆20．35 BD2 $¢ 32 \cdot 25$ （Pose 70D）

（HL）AP76／G800／PC［29－95 （HL）$\$ P 25-3 / \mathrm{G} 800 \mathrm{H} / \mathrm{PC}$	HT70／G800／PC $\quad 18.95$
27.00	（HL） $2025 \mathrm{TC} / 9 \mathrm{TAHCD} / \mathrm{PC}$

MP6O／SCSMD／PC E13．50 （HL）GI75／G200E／PC $\mathbb{1 7 \cdot 1 5}$ HL GL72／B00 PC E35．50

KIT PRICE

£28．50
P\＆P
OESIGN WLITH
DESIGN WITH SILVER TRIM ＂1＂$\times 6^{\prime \prime} \times 2^{\prime \prime}$ chasis
ABINET
COMPLETE WITH FREE TEAK CABINE

TEST EQUIPMENT

SE250B Pocker Pencil Signal Injector $£ 1.90$ TEIS Grid Dip Merer 440 Kacer \＆1－50 TEIS Grid． Dip

Meser 30 K IVolt Mulsimeter $\mathbf{1 9 . 2 5}$ With leather case $£ 10.50$ 20K／Volt Multimeter 44.20 $50 \mathrm{~K} /$ Volt Mulsimeter C8．50．With case E． 50 AF105 50K／Volt Multimeter e8．50，With case ©9．50 043 case $\$ 10.50$ ． 120 MH TE20D RF Generator $120 \mathrm{KHz}-500 \mathrm{MHz} \quad 615 \cdot 95$ ．Carr．35p
TE22D Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz} \quad € 17.50$ ．Carr 35p TE220 Audio Generator 20Hz－200kHz Cl7．50．Carr．35D
 TE65 Valve Voltmeter 28 ranges f 17.50 ．Carr．40p

PA－Disco－Lighting UK＇s Largese Range－Wrize demonsrrations on request

$66^{6} 6 \frac{8}{6} \%$

 demonstrations on request． Of70S 70 wate Disco amp／mixer 649.75 Dlloss 30 watt Disco amplmixer $£ 31-00$ Anti－Feedback Qualisy Mic．\＆11．50
SDL 12^{*} S0 wate 8 ohm Full range speaker 12.95 MeCKS．Use MP60 or SP2513 see above
Matching cartridge SCSM 62.62
FIBRE OPTICS，LIGHTING EFFECTS，PROIECTOAS，SPOTS， FREE SHO Mi FREE Stock Lise Ref．No． 18.

5 SILD THIS VHF FM TUNER 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND．
WIDTH，PRINTED CIRCUIT，HIGH FIDELITY REPRODUCTION．MONO AND STEREO
A popular VHF FM Tuner for qualizy and reception of mono and stereo． There is no doube about is－VHF FM gives the REAL sound．All parts soid TOTAL ©6．97，p．p．20p．Decoder Kit $\mathbf{6 5} .97$ Tunins meter unis © 1.75 Mains unit foptional）．Model PS 900 （2－47，Post 20p Mains uniz for Tuner and Decoder．PS1200 \＆2－62．Post 20p

$$
\text { SINCLAIR PROJECT } 60 \text { MQDULES }
$$ －SAVE POUNDS！ $\begin{array}{llll}Z 30 & 63.57 ; & Z 50 & <4.37 \\ 5 \text { TEREO } 60 & \text { PZ5 } & 〔 3.97\end{array}$ $\begin{array}{rrr}\text { STEREO } 60 & \text { PZ5 } & \mathbf{4 3 . 9 7} \\ \text { E7．97：} & \text { PZ8 } & \mathbf{4 . 7 7}\end{array}$ PZ6 66.97

Transformer for PZQ $£ 2.95$
Active Filter Unis $£ 4.45$
Stereo FM Tuner $£ 16.95$ Stereo FM Tuner $£ 16.95$
C12 $\& 1.80 ; Q 16$＇s 615 pr Post esc． 20 p per item

PACKAGE DEALS 2×230 ，Stereo 60，PZ5 15.95 2×230 ，Siereo 60，PZ6 $618 \cdot 00$ 2xZ50，stereo 60，PZ8 E20．25
Transformer for PZ\＆ 62.95 NEW PROIECT 605 KIT

TRANSDUCERS Operate ar $40 \mathrm{ke} / \mathrm{s}$ up so 100 yds．Ideal remote switching and signalling．Complete with data and circuits． Pose 10p
TEXAS PUBLICATIONS 100 watt Amplifiers and Preamplifier． 77 pages，Lay－ outs and data $11 \cdot 25,700-p a g e$ TTL IC＂s．60p． 420 －page Transiseor Data（No．3） 80 p 3 30－page Transiscor 30 p ． （No．4）60p．（Post，eq 20 p each）．
POWER INTEGRATED Plessey 514030 UITS
lessey 5L403D－3 wate with 6－Dage daca，layouts and 60 p ．Heat Sink 14p．
Sinclair IC12－6 wart with data and circuiss $\mathrm{E1} 80$ ． TH9013P－20 watt Power Amp Module 64．57． TH9014P－IC Pre－nplifier
CI．50 CI－50．
Data／Circuits for above No．
7 SEG \＆NIXIE TUBES （Post $15 p$ per 1 to 6 ）
$\times N 3, \times N 13, ~ G N 6 ~ 0-9 ~ s i d e ~$ XN3，XNI3．GN6 0－9 side View with data， 85 ．
GNP－7，GNP－8 0－9 side view with decimal points and dara
3015F 7 seg $\mathbf{C 2}$ each． 67 per 4 with dam．
22 and 24 hour clock circuits above Rer，No． 31 ． 5 ．
Miniature Amplifier Fitred volome and sensitlvity control 9 volt operated． $1-75$ each

Guality Slider Controls 60 mm stroke singles and sanged．Compleze with knobs．
$5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}$ ． 1 meg．Log and Lin． $45^{\circ} \mathrm{p}$ each 1 meg，Log and Lin． 45 p each， and Lin ganged． $75 p$ each．
Hi－Fi 8 Tape Equigment
Ack owledged
as U．K．
Largess
Srocklses
wigh Lowest
Prices Plus
12 months
Guarantee．
Wrize or
call foi
FREE
12 page lises
（Ref． $16 / 17)$

Transistors－IC＇s－
Rectifiers－SCR＇S． Triacs，etc． NEW FREE LISTS

MORE OF EVERYTHING AT LOW PRICES ALWAYS AT HENRY＇S
All the parts you need plus Data and Circuits－Get a Catalogue－it＇s all in there！

Slectrontic Components，
Audio and rest Gear Centro 404／406 EDGWARE RD． LONDON，W．2．
Tel：01－4028381／8382

Figh Fidefity \＆Tape
Equipment Centra
354／356 EDGWAREBD．
LONDON，W2．
Thle $01-4024736 / 5854$
T，la 01 Tol：01－123．6963．

Maill Onder IVhaustrial Satos and Special Bargain Shiop 303 EDCMAREROAD． LONDON，W．2． Tel：01－7231008／1009

[^0]: The price of 700 applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

[^1]: PL1 1BR Tel: 075267377

[^2]: MAIL ORDERS：Some items have a post and packing charge shown against them．Whene p．\＆p is not shown the charge ordered the charge is 12 p plus any p ． $\mathrm{z} p$ ．charges shown． （Overseas extra．）

[^3]: (c) IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $\ell 2 \cdot 35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editarial 01-634-4452; Advertisements 01-634-4202.

[^4]: G. W. SMITH \& CO (RADIO) LTD
 Also see next two page

