S

Programming in
QuickBASIC

PLEASE NOTE

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs, etc., contained herewith, operate in a correct and
safe manner and also that any components specified are
normally available in Great Britain, the Publishers and Author(s)
do not accept responsibility in any way for the failure (including
fault in design) of any project, design, modification or program
to work correctly or to cause damage to any equipment that it
may be connected to or used in conjunction with, or in respect
of any other damage or injury that may be so caused, nor do
the Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

©1990, ©1994, ©1996 BERNARD BABANI (publishing) LTD

First Published — June 1990
Reprinted — October 1992
Reprinted — April 1994
Reprinted — June 1995
Revised and Reprinted — November 1996

British Library Cataloguing in Publication Data
Kantaris, Noel
Programming in QuickBASIC

1. IBM, PC. Microcomputer systems.
I. Title
005.265

ISBN 0 85934 229 8

Cover design by Gregor Arthur
Cover ilustration by Adam Willis
Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

QuickBASIC is one of the two most popular structured and
compiled dialects of BASIC in use today on IBM and compatible
computers. It comes in the form of a complete package with its
own editor, compiler, debugger, etc., and its own user interface.

The original version of BASIC (which stands for Beginner's
Ali-purpose Symbolic Instruction Code) was first developec as a
teaching language at Dartmouth College in 1964. In 1978
'standard BASIC' was adopted as a result of recommendations
on the minimal requirements on the language. BASICA, written
by Microsoft for use with the IBM PCs, and GWBASIC (its
equivalent form running on compatibles), is an enhanced
version of standard BASIC, embodying nearly 200 commands.
These were bundled with pre-DOS 5 versions of the operating
system, but users of MS-DOS 5 or higher have access to a
cut-down version of Microsoft's QuickBASIC, which we shall call
QBASIC to distinguish it from QuickBASIC.

However, all the above versions of BASIC (excluding
QuickBASIC), are interpreted languages. This means that each
and every statement has to be interpreted by a separate
program called the interpreter before execution, each time such
statements are encountered, even if it is a thousand times, as in
the case of statements appearing within loops.

QuickBASIC, on the other hand, is a compiled language. A
separate program, called the compiler is used to check the
whole program for errors and then compiles it into the machine
specific code that will actually be executed by the computer.
Thus, statements within loops are only checked once, which
makes a compiled program far more efficient than an
interpreted one. A diagrammatical representation of the
compiling process is shown overleaf.

QuickBASIC uses a threaded interpreted code - translating
each line of the BASIC source program into an intermediate
code - known as pseudo-code, which closely resembles
machine code. When a program is run the pseudo-code is
translated to full machine code and executed. Since, however,
the pseudo-code still has connections with the original source
code, the user can interact with the program in a manner similar
to that provided by traditional interpreters. Thus, QuickBASIC
exploits the best of both worlds.

BASIC Source Compiler —»{ Object

Program File
Library
Routines
. Linker
Other Object Executable
Files

QuickBASIC supports extensive control structures, local
variables and parameter passing in procedures and does not
require line numbers. Thus, programs can be written in modular
form which when compiled provide the building blocks for larger
and more complicated applications. Furthermore, it can access
the computer's entire memory and is not confined to the 64
kBytes of memory of BASICA or GWBASIC.

QuickBASIC can load and run programs written in Microsoft
BASIC, BASICA, aand GWBASIC with minimal changes in

OPEN, RENUM and SAVE cannot be used.

Users of QBASIC can exploit all the structure benefits of
QuickBASIC, but cannot produce a compiled version of their
program.

ABOUT THIS BOOK

This book is a guide to programming using QuickBASIC and
QBASIC (the free version that comes with the operating system
for MS-DOS 5 or higher users. The reader is not expected to
have any familiarity with the language as statements are
introduced and explained with the help of simple programs. The
user is encouraged to type these into the computer, save them,
and keep improving them as more complex language
statements and commands are encountered. Graded problems
are set throughout the book, with full working solutions
appearing at the back of the book. At the end of each Chapter,
additional graded exercises are presented, some with financial
or scientific bent, so that users have a choice in both the level of
problem difficulty and the field of application.

Chapters 1-3 deal with the basic QuickBASIC statements
which control program flow and allow the user to manage with
most aspects of the language. Chapters 4-5 introduce the
concepts of strings, arrays and subprograms which expard the
programming capabilities of the user beyond the beginner's
level. Chapter 6 deals entirely with disc file handling techniques
and should be of special interest to those who need to process
large quantities of data. Three types of data files are discussed,
namely, sequential, random and binary types. A general
program that can create and retrieve any random file is
discussed in Appendix C. The program can become the basis of
database design.

If you would like to purchase a floppy disc containing all the files/programs
that appear in this, or any other listed book(s) by the same author(s), then fill
in the form at the back of the book and send it to the stipulated address.

ABOUT THE AUTHOR

Graduated in Electrical Engineering at Bristol University and
after spending three years in the Electronics Industry in London,
took up a Tutorship in Physics at the University of Queensiand.
Research interests in lonospheric Physics, led to the degrees of
M.E. in Electronics and Ph.D. in Physics. On return to the UK,
he took up a Post-Doctoral Research Fellowship in Radio
Physics at the University of Leicester, and in 1973 a Senior
Lectureship in Engineering at The Camborne School of Mines,
Comwall, where since 1978 he has also assumed the
responsibility of Head of Computing.

ACKNOWLEDGEMENTS

| would like to thank colleagues at the Camborne School of
Mines for the helpful tips and suggestions which assisted me in
the writing of this book. In particular, | would like to thank
Andrew Torry for implementing the program of Appendix C.

TRADEMARKS

BASICA, GW-BASIC, QBASIC, QuickBASIC and MS-DOS are
registered trademarks of Microsoft Corporation

IBM and PC-DOS are registered trademarks of International
Business Machines Corporation

1.

CONTENTS

PACKAGE OVERVIEW

The QuickBASIC Edit Screen
The Main Menu

The Main Menu Options

Help Screens

Dialogue Boxes

Using the Windows

Splitting the View Window
The Editor
Basic Statements

The REM Statement

The INPUT Statement

The PRINT Statement

The END Statement
Variables and Constants

Variables

Constants

Expressions

Naming Convention

String Variables

Variable Type Declarations
Arithmetic Operators & Priority

Additional Operators

The Assignment Statement
Entering & Running a Program
Saving a Program

Problem 1.1
Exercises

INPUT & OUTPUT CONTROL
The INPUT Statement
The READ & DATA Statement
The RESTORE Statement
Problem 2.1
The PRINT Statement
Formatted Output
Problem 2.2

BMg_&_&_&_&_&_&—L-&_&_&_&_&_&_&_&_&_&_&
—- OCONONNBDIEBIBLWWWWNNNOOLOCOOOM W

23
23
24
25
26
26
27
28

The PRINT USING Statement
Outputting to Printer
Exercises

. CONTROL OF PROGRAM FLOW

The FOR...NEXT Loop
Use of STEP
Infinite Looping
Nested FOR...NEXT Loops
Problem 3.1

The DO Loop
The DO...LOOP UNTIL Configuration
The DO UNTIL...LOOP Configuration
The DO...LOOP WHILE Configuration
The DO WHILE...LOOP Configuration
Problem 3.2

The WHILE...WEND Loop

The IF Statement
The IF...THEN...END IF Statement
Relational operators within IF Statements
The IF..THEN..ELSE Statement
The ELSEIF Statement

Simple Data Sorting
Problem 3.3

The SELECT CASE Statement

Exiting Block Structures
Problem 3.4

Exercises

. STRINGS AND ARRAYS

String Variables
ASCII Conversion Codes
String arrays
String Functions
Problem 4.1
Subscripted Numeric Variables
Static and Dynamic Arrays
Problem 4.2
More String Functions

32
33

88888868R

ASCIl Conversion 67

Character Conversion 67
Length of String 67
String Conversion 67
Value of String 67
String Concatenation 68
Problem 4.3 70
Alphabetical Sorting 71
The Bubble Sort 73
Output to Printer 75
Problem 4.4 76
Printing to a Device 76
Problem 4.5 76
Exercises 77
. FUNCTIONS & PROCEDURES 81
Standard Arithmetic Functions 81
ATN(X) 81
SIN(X), COS(X) and TAN(X) 82
SQR(X) 82
ABS(X) 83
Problem 5.1 83
EXP(X) 84
LOG(X) 84
INT(X) 84
SGN(X) 85
RND and RANDOMIZE n 85
Derived Mathematical Functions 87
User-Defined Functions 88
Procedures 90
Problem 5.2 92
Subprograms 92
Problem 5.3 95
Differences Between Functions and Subprograms 95
Parameter Passing 96

©
)

Passing Arrays to Procedures
Declaring Arrays within Functions and Procedures
The SHARED Statement
The COMMON Statement
Recursion

33398

Subroutines
The GOSUB and RETURN Statements
Exercises

6. DISC FILING SYSTEM
Sequential Data Files

Using the INPUT Statement to Create Data Files

Other Methods of Storing and Retrieving Data
Problem 6.1
Appending to Sequential Data Files
Using the End of File Marker
Problem 6.2
Random Access Files
Defining Records by FIELD
Creating and Retrieving Random Files

Append, Edit, or Delete Records in Random Files

Problem 6.3
Defining Records by TYPE
Binary Files
Error Handling
Problem 6.4
Exercises

7. APPENDICES
A - QuickBASIC Reserved Words
B - Error Messages
Run-Time Errors
C - Creating & Retrieving General Random Data
D - Solutions to Problems

INDEX

103
104
106

109

112
113
114
114
116
117
118
119
120

122
123
125
126
128
129

131
133
135
135
139
147

165

1. PACKAGE OVERVIEW

It is assumed here that you have followed the instructions
accompanying the software, relating to its installation on the
hard disc of your computer, or its use from a floppy drive. If you
are using an already installed package on hard disc, then it is
most likely that the files which make up the complete package
will be found in a subdirectory of your computer's hard disc, and
that the actual program can be invoked by typing QBasic or QB
at the root directory's prompt. An appropriately written batch file
would then locate the subdirectory in which the program's files
reside and load the QB.EXE file (the front-end user interface of
the package) into memory.

If you are about to install the package on your hard disc for
the first time, then log onto the A: drive, run the SETUP
program on Disc #1, and choose the full installatior: option,
specifying the following directory structure.

Root \— QB45 — (for executable files: .EXE & .COM)

Include (for include files: .BlI & .BAS)

Lib (for library files: .LIB & .QLB)

Help (for help files: .HLP)

Progs (for your program files)

Then choose to install the package under the above
configuration. While the program is installing the package, you
will be told that two additional directories are needed for the
installation of the ‘example' and 'advisory' files, and you will be
asked whether these should be set up. Agree with this
suggestion by pressing the <Enter> key.

1

You will now need to write two batch files, one to set up the
correct environment for QuickBASIC - call it gbasic.bat, and
the other to free and restore the environment to its original state
when you exit from the package - call it quit.bat.

Assuming that all your batch files are to be found in a
subdirectory called BATCH, and all the DOS files in the
subdirectory called DOS, then these two batch files could take
the form shown below (if your DOS version is below 3.3, then
omit the @ sign which precedes the echo command in the
batch files).

The gbasic.bat file could contain the commands:

@echo off

Cls

cd c:\gb45\progs
path=c:\;c:\dos;\c: \batch;c:\qb4s
set include=c:\qgb45\include

set lib=c:\qb45\iib

set help=c:\gb45\heip

The quit.bat file could contain the commands:

@echo oft

Cls

cd\

set include=

set lib=

set help=
path=c:\;c:\dos;\c:\batch

If your system is correctly implemented, typing gbasic at the
C:\> prompt, executes the appropriate batch file which sets the
correct environment and puts you into the C:\QB45\PROGS
subdirectory. Now typing gb, causes the QuickBASIC opening
screen, containing the Copyright message, to be displayed on
your screen.

You could, of course, include the gb command at the end of
the gbasic.bat file, and also append the commands within the
quit.bat file to it, so that the one batch file does the complete
job. Whichever method you choose, when you activate
QuickBASIC, nine items appear on the top of the screen, called
the main menu, as shown on the next page.

2

s 3

File Edit Ujew Search Run Debug Options Help:
Untitled H

Uelcone to
Nicrosoft <R> QuickBASIC Uersion 4.50
<C> Copyright Microsoft Corporation, 1985-13988.

All rights reserved.
Simultaneously published in the U.S. and Canada.

¢ Press Enter to see the QuickBRSIC Suruivwal Guide >

€ Press ESC to clear this dialog box >

LRI R
SH RN e po i P 2

nmediate

Tab=Next Field Arrou-Next Item

Esc=Cancel

FizHelp Enter=Execute

At this pojnt, you can either press <Enter> to be guided through
the 'Survival Guide', or <Esc> to clear the screen and enter the
‘editor’.

The QuickBASIC Edit Screen:
The edit screen is subdivided into several areas as shown
below.

File Edit Uleu Search Run Debug Options Help
Untitled '—h

]

Immediate

Status bar| —— [lnnedhte windou|- |Scroll harsl
v

CShift+Fi=Help> <Fb=Uindou>'(FZ=Subs) CF5=Run> (F8=Step)

\\

The various areas of the edit screen have the following function:

Area Function

Menu bar Allows you to choose from several main
menu options

Title bar Displays the name of the current pro-

gram. If a new program, it displays the
word <Untitled>

View window Allows you to enter a new program or
load and view an old program
Scroll bars Allows you to scroll the screen with the

use of the mouse

Immediate window Allows you to execute BASIC commands
in immediate mode

Status bar Displays the current program status and
information on the present process.

The Main Menu

Each main menu option has associated with it a pull-down sub-
menu. To activate the main menu, either press the <Alt> key,
which causes the first item of the menu (File) to be highlighted,
then use the right and left arrow keys to highlight any of the
items in the main menu, or use the mouse to point to an item.
Pressing either the <Enter> key, or the left mouse button,
reveals the pull-down sub-menu of the highlighted menu item.

Main menu options can also be activated directly by pressing
the <Alt> key followed by the first letter of the required option.
Thus pressing Alt+O, causes the pull-down sub-menu of the
‘Options’ to be displayed. You can use the up and down arrow
keys to move the highlighted bar up and down a sub-menu, or
the right and left arrow keys to move along the options of the
main menu. As each option is highlighted, a short description of
the function of the relevant option or command appears in the
status line. Pressing the <Enter> key selects the highlighted
option or executes the highlighted command. Pressing the
<Esc> key closes the menu system and returns you to the
editor.

Before going on, activate the 'Options' menu and highlight
and select the 'Full menu' option so that full sub-menus are
displayed when each of the main menu items are chosen. If you
don't do this at this point, what is described below might not be
what is displayed on your screen.

4

The Main Menu Options:

The DOS 5 QBASIC version has much shorter menus than the
ones shown here, which are those of the full QuickBASIC
package. Each item of the main menu offers the options:

File:

Open Progran...
Herge...

Save

Save fis...

Save All

Create File...
Load File...
Unload File...

Print...
DOS Shell

EXit

Edit:

Undo Alt+Backspace I

Cut Shift+Del
Copy Ctrl+lns
Paste Shift+Ins
Clear Del

Neu SUB...
Neu FUNCTION...

Produces a pull-down menu,
as shown, of mainly file related
tasks, such as loading or
saving a program, printing text
or program listings, interact
with DOS and exit the
package. You can select such
options or execute such
commands by pressing the
shaded letter in the sub-menu.
On colour displays, the shaded
letters appear emboldened
and in different colour to the
rest of the text.

Used to cut, copy and paste
text or create user defined
subprograms and functions.
Marked text (use the <Shift>
key with arrow keys from
within the editor) can be cut
out and pasted on to another
part of the display. The Clear
option deletes a marked block
completely.

View:

SUBs. . . F2 |

Next SUB Shift+F2
Split

Next Statement

Oiitput Screen F4

Included File
Included Lines

Used to view selected text
and output. Subprograms
and functions are listed in
alphabetical order and in
order of module. The Split
option allows two modules,
or two different areas of a
program, to be displayed
simultaneously on screen.
The Included options allow

contents of included files to be seen.

Search:

ind. ..

Selected Text Ctrls\
flepeat Last Find F3
Change. ..
Label...

Run:

“tart Shift+F5 I

Restart
Cont inue FS
todify COMMANDS. ..

Hake EXE File...
Make Eibrary...

Set Main Module...

Used to find and replace
specific text. The Change
option can be used to give
variables a new name. The
Label option searches for
specific labels or references
to labels.

Used to execute a program,
continue execution of an
interrupted program, create
executable (.EXE) files, or
tum subprograms and
functions into library
routines, with the use of
Make Library option, for use
with other programs. The
COMMANDS$ option allows

access to parameters which are specified in a DOS command

line.

Debug:

*dd Watch...

Hatchpoint...
Delete Uatch...
Delete All Uatch

Instant Uatch... Shift+F9 l

Trace On
History On

Toggle Breakpoint
Clear A1l Breakpoints
Break on Errors

Set Next Statement

Used to debug a program.
The Watch option allows
you to monitor the value
taken by certain variables
during program execution.
Use the Toggle Break-
point option to set the
break point within the
program. The Trace On
option allows you to trace
the progress of a
program, while the History
option allows you to

backtrack through the last 20 statements prior to the one that

caused the error.

Calls:

Used to display active
subprograms or functions.
it displays a list of the last
5 subprogram calls (the
most recent one being on

the top of the list). This menu option is not available in the DOS

version of QuickBASIC.

Options:

Set Paths...
Right House...
+Syntax Checking

<Full Henus

Checking option warns of errors

entered.

Used to configure the
display screen and the
right mouse button, set
directory paths, or choose
between displaying full
and short pull-down
menus. The Syntax
when a program line is

Help:

Used to display the help
[Jindex | index, help on specific
qonients topics, and help on help.
opic: F1 ™
Help on Help Shift+F1 Context-sensitive help
] can can also be activated

on request (see below).

Help Screens:

QuickBASIC has context-sensitive help screens which explain
the use of the items in the various menus or commands from
within a program. Thus, to obtain help information on the use of
the options offered under File, first choose the File option of the
main menu, then use the arrow keys to highlight the desired
task from the pull-down menu, and press the F1 function key.

Dialogue Boxes:

Three periods after a sub-menu option or command, means
that a dialogue box will open when the option or command is
selected. A dialogue box is used for the insertion of additional
information, such as the name of a file to be loaded, or to be
acted upon in some way.

To understand dialogue boxes, type the word ‘hi' in the edit
screen, then press Alt+S, and select the Change option from
the revealed sub-menu. The dialogue box shown on the next
page will now appear on the screen.

When a dialogue box opens, the <Tab> key can be used to
move the cursor from one field to another, while the <Enter>
key is used only to indicate that the options within the various
fields within the dialogue box are specified correctly. Every
dialogue box contains one field which is enclosed in
emboldened angle-brackets (<Find and Verify>, shaded in the
above example). This field indicates the action that QuickBASIC
will take if the <Enter> key is pressed (in our example, the word
'hi* will be changed to 'hello', if this is what we choose to type
against the 'Find What' and 'Change To' fields. Pressing the
<Esc> key aborts the menu option and returns you to the editor.

Slll'ul Run Debug Calls

Untitled
L1}

Change

Find Uhat: Ihl]

Changs To: [ulln |

Ssarch
({) Match Upper/Louercase ¢ > 1. Active Uindou
[1 Uhole Uord C(:) 2. Current Module
¢) 3. All Modules

€ Find and Usrify 2 < Change All > < Cancel > < Help >
3 S R R

Inmediate

Tab=Next Field Arrou=Next Item

Esc=Cancel

Fi=Help Enter=Execute

Using the Windows:

When the QuickBASIC package is loaded, there are two active
windows on the screen. The largest one is the 'view' window
used by the editor and the other is the ‘immediate' window at
the bottom of the screen where BASIC instructions can be
typed for processing in the immediate mode. For example, you
can type ?x (which stands for print the value of x) if you want to
see what is held in the variable x after a program is run.

QuickBASIC activates a third window at the top of the screen
(called the ‘watch' window) when you use certain debug
commands, to monitor the value taken by certain variables
during program execution.

You can move from the view window to the immediate
window, and back by pressing the F6 function key. The window
which the cursor is in, is referred to as the ‘active’ window. An
active window can be enlarged or reduced by using the mouse
to drag the partitioning line to its desired position.

The active window can further be toggled between filling the
entire screen or returning it to its former size by pressing
Ctrl+F10 alternately. Pressing Ctrl+F10 once, expands the
active window, while pressing Ctrl+F10 again, reduces it.

Splitting the View Window:

Sometimes it might be necessary to view different parts of a
program simultaneously. If the program is so large that it can
not be viewed on the screen without scrolling, then you might
consider splitting the screen horizontally into two portions. This
can be done by pressing Alt+V, and selecting the Split option
from the sub-menu. Selecting Split a second time restores the
view window to its single-window configuration.

Splitting the view window does not allow you to load a
separate program in each window. You are always working with
the same program, but viewing separate parts of it. The part of
the window that the cursor is in is the active window. To move
the cursor to the next window simply press the F6 function key.
You can use a split window configuration to cut and paste
information from one window to the other, view the main
program in one and a subprogram in the other, or view one part
of a program while editing another part of the same program.

The Editor

You can enter a new QuickBASIC program in your computer
with the use of either the package's own editor, or a word
processor, provided it is of a type that creates an ASCII file and
you terminate each program line by pressing the <Enter> key.
Choosing the latter option is only worth while if you intend to
write long and complicated programs and you are averse to
leaming all the different commands of yet another editor.

As the programs which will be developed in this book are
rather short in length, it is suggested that you use the package's
editor to enter them into the computer's memory, remembering
that the cursor can be moved to any part of a program and
corrections can be made with the use of the key strokes
described below:

Key Function

Left arrow moves the cursor to the left by one character

Right Arrow moves the cursor to the right by one character

Ctri+Left moves the cursor to the beginning of the
previous word on the current line

Ctrl+Right moves the cursor to the beginning of the next
word on the current line

Home moves the cursor to the first column of the
current line

10

End move the cursor to the end of the last word on
the current line

Up arrow moves the cursor up one line

Down arrow moves the cursor down one line

Ctrl+Home moves the cursor to the first line of the cument

screen
Ctri+End moves the cursor to the last line of the cumrent
screen
PgUp moves the cursor to the previous screen
PgDn moves the cursor to the next screen

Ctrl+PgUp moves the cursor left one screen
Ctri+PgDn moves the cursor right one screen

Ins toggles the Insert mode from ON (its de’ault
position) to OFF and back again

Enter moves the cursor to the beginning of the next
line, provided the insert mode is in the ON
position

Crrl+Y deletes the line at the current cursor position

Cti+N inserts a blank line at the current cursor
position

Shift+arrows marks block areas on the screen to be used
with the sub-menu of the Edit option, namely
Cut, Copy, Past, and Clear.

There are a lot more commands associated with the package's
editor, but you'll find that those given above are sufficient for
almost all your needs.

When areas of text are marked, with either the use of the
Shift+arrows or a mouse, QuickBASIC keeps the contents of a
blocked area in a temporary storage area known as the
'clipboard’ from which it can be retrieved later when the Cut,
Copy, and Paste options are used. The clipboard stores only
one block of information at a time; attempting to store a second
block, simply overrides the previously stored block.

If you are not using a mouse, you might want to clear the
scroll bars from the screen, to give you more room. This can be
done by pressing Alt+O, selecting the Display option and
pressing the <Tab> key until the cursor is positioned in the
'Scroll Bars' field. Pressing the spacebar toggles the option into
the off position by clearing the letter X from within the square
brackets.

11

If you are using a mouse, scrolling text in the view window is
easy. Place the mouse pointer on the top, bottom, left or right of
the scroll bars and click the left mouse button to scroll upwards,
downwards, to the left or to the right, respectively.

Basic Statements

With what was discussed previously in mind, activate
QuickBASIC and turn the 'syntax checking' option on (type
Ait+O to display the 'Options’ sub-menu and press S). This
ensures that every entered line is checked for errors, with minor
errors corrected automatically, then use the editor to type and
create the following source file which is a program to calculate
the average of three numbers.

REM Calculate Averages

INPUT "Enter three numbers *,A,B,C
Sum=A+B+C

Average=Sum/3

PRINT "Average value is ";Average
END

The above is presented to give you an idea of a QuickBASIC
source program. All the statements within it will be discussed in
detail in this and following pages. So there is no need to worry!

The REM Statement:

A QuickBASIC source program consists of statements and
REM (remark) lines. The program above has one remark line
and five statement lines and unlike other BASICs, QuickBASIC
does not require line numbers. REM lines, which have no effect
on the running of a program, allow the insertion of remarks to
help the user to remember the function of program sections.

The INPUT Statement:

The INPUT statement (the second executable statement of the
program on the previous page) provides one way of giving
variables (see below for definition) a value. In the example, the
INPUT statement is written with a string within full quotes (*), so
that the user is prompted by the computer on what is expected
by the program. Input is provided from the standard input
device which in this case is the terminal keyboard.

12

The values for the variables A, B and C can be entered in any
convenient free format - with commas or spaces between the
numbers, followed by pressing <Enter>. QuickBASIC provides
for a far greater flexibility in data input and output which indeed
is one of the strengths of the language, but these will not be
discussed at this point as they might confuse the newcomer to
the language.

Once variables have values, they can be used in assignment
statements and/or expressions in the rest of the program to
perform desired calculations. A variable must have a value
before it is used in an expression or in the right hand side of an
assignment statement.

The PRINT Statement:
The PRINT statement (the penultimate statement in our
example program) allows the printing of the result of our
calculation. This result is held in the variable named Average.
As with the INPUT statement, a string within full quotes follows
the word PRINT which allows us to explain what is printed out.
The statement PRINT causes output to be sent to the standard
output device which is the video display unit (VDU) or screen.
Again, we can delay discussion on formatting the printed
output. However, the penalty is that we have to accept the
default QuickBASIC form of printing without any control on the
number of digits printed out.

The END Statement:

It has been assumed throughout the foregoing discussion that
program execution is sequential. The END statement halts
execution of the program and can be placed in any part of the

program.

Variables and Constants

Varlables:

A variable is a quantity that is referred to by name, such as A,
B, C, Sum and Average in the previous program. Variables can
take on many values during program execution, but you must
make sure that they are given an initial value, as QuickBASIC
automatically zeros variables initially.

13

Constants:

A constant is a quantity that either appears as a number (3 in
the third executable statement in the previous program) or is
referred to by name, but has only one value during program
execution; that which was allocated to it by the user.

Expressions:

An expression, when referred to in this text, implies a constant,
a variable or a combination of either or both, separated by
arithmetic operators.

Naming Convention:

Variable names and constant names are formed by combining
upper and lower case letters with numbers (alphanumeric
characters only), provided the first character is a letter. The
length of the name does not matter, but it must be continuous
and not contain a space. The underscore character can be
used to make a variable name more meaningful (for example,
Average_value). In general, when naming variables, you must
be careful not to use a name which is the same as a BASIC
reserved word such as

COLOR DRAW INPUT LOOP PRINT RUN SAVE WRITE

to mention but a few. A full list of all QuickBASIC reserved
words is given in Appendix A. Reserved words appear in
uppercase letters throughout this book, to match the way
QuickBASIC converts all reserved words to uppercase, even
though you might have typed them in lowercase. Typing PRINT,
Print or print has the same meaning to QuickBASIC and will be
converted automatically by the compiler to upper case.

There are a variety of types for both variables and constants;
the most commonly used being the 'integer' and ‘floating-point’
(otherwise referred to as real) types. An integer type can hold
only integer quantities and is distinguished from a floating-point
type which holds numbers containing fractional parts. The
computer stores these two types differently and tends to
calculate much faster when using integer-value variables or
constants,

14

Examples of integer and floating-point numbers are as follows:

-255 is an integer number

26.75 is a real or floating point number

-.45E+16 is an exponential number. The E stands for
times ten to the power of'.

Less commonly used types of variables and constants are ‘long
integers' and ‘double precision floating point'. In QuickBASIC,
the values of single-precision variables are accurate to 6
significant figures, while those of double-precision variables are
accurate to 16. String variables can be as long as 32767
characters. However, the combined length of all strings stored
in memory at one time must not exceed 65636 characters.
These are specified by appropriate tags, as follows:

Name Tag Range Variable Type
Variable_name% % -32768 fo Integer
+32767
Variable_name& & -2147483648to0 Long Integer
+2147483647
Variable_name or +3.4x10™ to Single-precision
Variable_namel | +3.4x10*%® tloating-point
vVariable_name# # $1.8x10™” to Double-precision
+1.8x10*® tloating-point
variable_name$ § String.
String Variables:

A sequence of characters is referred to as a literal, and a literal
in quotation marks is called a string. For example, ABC123 is a
literal, and "ABC123" is a string.

Like numbers, strings can be assigned to variables. They are
distinguished from numeric variables by a $ after the name, for
example A$. A string can be assigned to a string variable by
writing A$="ABC123", or through either the INPUT or READ
statements (more about this later).

Variable Type Declarations:

Variable types can be declared with the use of the DEFtype
statement rather than using type-declaration tags. The various
DEFtype declaration statements are as follows:

15

DEFtype Type of Variable

DEFINT Variable_name Integer

DEFLNG Variable_name Long integer

DEFSNG Variable_name Single-precision floating-point
DEFDBL Variable_name Double-precision floating-point
DEFSTR Variable_name String.

Named variables cannot be defined with the DEF statement;
what can be defined are all variables starting with the letter
specified within the DEF statement. More than one such
variable can be defined by separating their starting letter with a
comma within the DEF statement, while ranges of variables are
entered with a hyphen in between their starting letter.

For example, to define all variables starting with letters within
the range from | to N, use

DEFINTI-N

If a floating-point operand is assigned to an integer operand,
the floating-point number is first rounded and then truncated to
an integer, i.e. assuming that both | and K have been declared
as integers (by the statement DEFINT [,K), the statements 1=3.5
and K=0.37 will cause QuickBASIC to assign the integer values
of 4 and 0 to the constants | and K, respectively. For this
precise reason, mixing floating-point constants or variables with
integers in arithmetic operations, can have unexpected results!
Thus, mixed mode arithmetic is best avoided.

Arithmetic Operators & Priority
We shall now examine how the various arithmetic operations in
our first program are performed. The calculations in the

program are performed by the third and fourth statements,
namely

Sum=A+B+C
Average=Sum/3

Combining them into one line, we could write
Average=(A+B+C)/3 (Not Average=A+B+C/3)

It is important that the numerator of this expression is in
brackets. If it were not, BASIC would evaluate first C/3 and then

16

add to it A+B, which would give the wrong result. This is due to
an inbuilt system of priorities as shown in the table below:

Arithmetic Operators and their Priority
Symbol Example Priority Function

() (A+B)/N 1 Parenthesized operation
y A*N 2 Raise A to the Nth power
* A*N 3 Mulitiplication
/ AN 3 Division
+ A+N 4 Addition
- A-N 4 Subtraction

Additional Operators:

There are two operators which are useful when performing
integer division. These are \ and the MOD. The \ operator gives
the whole number part of the result of a division, while the MOD
operator gives the remainder (test these in the immediate
window). For example, the program statement

PRINT 10\3
gives the result 3, while the program statement
PRINTIOMOD 3

gives the result 1.

it must be stressed, however, that the numbers on which
integer division (\) and MOD operate (called the operands) are
first rounded up or down and then converted to integers. Thus,
the statements

PRINT 10.71\3.1
PRINT 10.1 MOD 3.1

will give the same result as before, namely 3 and 1, while

PRINT 10.9\3.9
PRINT 10.9 MOD 3.9

will give the result of 2 and 3, respectively.

17

BASIC evaluates expressions, in the order of priority indicated
in the table above. Expressions in parentheses are evaluated
first, Nested groups in parentheses are evaluated beginning
with the innermost grouping and working outwards.

Normally, BASIC cannot accept two consecutive operators,
for example A*/N. Others, such as A*-N although legal, is
better written as A*(-N). Through the use of parentheses, the
order of priority of execution and, therefore, the final value of an
expression, can be changed. If a line has an expression which
contains several operators of equal priority, BASIC will evaluate
it from left to right.

Let us examine how a complicated expression sucn as

Y =(A+B*X)A2/C-D*X"3

is evaluated. We assume that A, B, C, D and X have values.

First the parenthesized portion of the expression will be
evaluated. Within these parentheses the multiplication has a
higher priority and therefore it will be evaluated first. Then, A will
be added to it, resulting in a numerical value to which we will
assign the letter Z. Now the expression is reduced to the
following:

Y=Z72/C-D*X"3

The above has two exponential expressions, the leftmost of
which is evaluated first. Writing Z1 for the result of Z*2 and X1
for the result of X*3, the expression is now reduced to

Y=21/C-D*X1

Again, since division and multiplication have the same priority,
the leftmost expression is evaluated first. Finally, the result of
the multiplication is taken away from the resuit of the division
and assigned to Y.

All this procedure is carried out automatically by BASIC, but if
you intend to use complicated mathematical expressions you
must be familiar with it.

The Assignment Statement:

Note that what appears as an equation above is, in fact, an
assignment statement and not an algebraic identity. As long as
the values of variables on the right of an equals sign are known,
the calculated result will be assigned to the variable on the left
of the equals sign.

18

As an example, consider the following lines:

K=0
K=K+1
PRINT K
END

where the second line would be meaningless had it been an
algebraic expression. In computing terms the statement means
‘take the present value in K, add one to it and store the resuit in
K'. When this line is executed, the value of K (set in the first
line) is zero and adding one to it results in a new value of K
equal to one. On running this program, BASIC will print

1
on the screen.

Entering & Running a Program

You can enter a program into the computer's memory by using
the editor to type it in directly or by loading it from disc. If you
happened to have saved the Averages program already, use
the File, Open (or New) option and specify the full drive/path, if
different from the default one which was specified during
configuration. Then, use the cursor keys to highlight the name
of the file you wish to load and press <Enter>. If you have not
saved it previously, then type in the following few lines:

REM Calculate Averages

INPUT *Enter three numbers *,A,B,C
Sum=A+B+C

Average=Sum/3

Print "Average value is ";Average
END

When you attempt to run a program, the QuickBASIC compiler
translates your program (source file) to the machine code that
will actually be executed by the computer. The compiled file
may or may not be executed immediately; it largely depends on
whether you selected from the Run menu the Start or the EXE
file option (with QBASIC that comes with DOS 5, you cannot
compile a program and the EXE option is not available to you.
In the full package, the first choice compiles and executes the
program, while the second choice only compiles the program
producing an executable file.

19

In either case, if there are any compilation errors, an
appropriate error message will appear on the view window and
the compiler will inform you which line in your source file is in
error. In such a case, edit the original source file and rerun the
program. This can be achieved directly by pressing Alit+R
followed by <Enter>, or by simply pressing the F5 function key.
If there are no compilation or linking errors, execution of the
program will start inmediately, first by clearing the screen, and
then by prompting you for input, as follows:

Enter three numbers _

Note the cursor waiting for input. This will be the case with this
particular program because we used the INPUT statement at
the very beginning of the program and the computer is waiting
for input. Typing

235

the three numbers separated by commas, corresponding to
variables A, B and C in the INPUT statement of the program,
causes the computer to respond with

Average value is 3.333333

when the <Enter> key is pressed.
Pressing any key, returns you to the view window of the
QuickBASIC environment.

Saving a Program

You can save a program by selecting the File, Save option
which will save your program automatically with the same name
as that used when loaded, or if the name of the program is
‘Untitled’, you will be asked to provide a name to save it under.
The filename you type in must not be longer that 8
alphanumeric characters (letters and numbers). QuickBASIC
will add automatically the .BAS three letter extension.

If you wish to save a program under a different name than the
one given to it from an earlier Save, then use the File
command, followed by the Save As... option which displays a
dialogue box, asking you for the name of the file to be saved as.
Do remember to give the drive/path specification, if different
from the default.

20

Problem 1.1

Write a program, using the INPUT statement, which can convert
degrees Fahrenheit (F) to degrees Celsius (C). Use the
following relationship:

Degrees Celsius=(Degrees Fahrenheit-32)*5/9

21

Exercises

1.

The following assignment statements contain at least
one error. ldentify them.

ALPHA = 5 X+BETA
SQUARE = 1.56/-2.44*GA2
VALUE-3.96 = XA1.6
3.14="P|

DENOMINATOR = X**N/M
X = (A+6)*A2

-ZETA = A+B

NUMBER = K/AX

ROW = 16.5K+1

COLUMN =2*-X+1

In each of the following expressions, the variables used
have the following values:

Variable A B C D E F G
Value 5 3 8 4 7 2 s

Use your computer in immediate mode to work out the
correct answer to the expressions given below. To arrive
at the final answer, calculate all intermediate steps in the
order dictated by the priority procedure.

X1=A*BAE+F
X2=A*BAE+F)

X3=A*B/C*D

X4=A*B/(C*D)
X5=A+B*G+C*GA2+D*GA3
X6=(A+B)*G+C*GA2+D*GA3
X7=(AAF+(B-1/C)AFYA0.5
X8=(AAF+B-1/CAF)AQ.5
X9=A/BA2-C*D/((E+F)+GA3)

To check your answers, write a program which assigns
values to A, B, C, etc., and then solves the expressions.
Write a program, using the INPUT statement, which can
convert gallons into litres. Use the relationship
1 gallon = 4.54609 litres.

22

2. INPUT & OUTPUT CONTROL

A program can be made to assign values to variables by either
entering information on the keyboard, reading information from
data statements, or reading information from data files. Output
can be directed to the display screen, sent to the printer or
written into a file. Reading input from a data file and writing
output to a data file will be dealt with in a separate section.

The INPUT Statement:

The INPUT statement is used to enter data from the keyboard.
We have already used this statement eariier on, but we will
examine it more thoroughly here. This will be illustrated by
writing a program to calculate 15% of any number. The number
itself is entered via the INPUT statement, as shown below.

REM PERCENT PROGRAM
INPUT Number

Rate=15
Value=NumberRate/100
PRINT Value

END

The INPUT statement, as written above, causes BASIC to hait
execution, print a question mark (?) and wait for the user to
type in a numerical value. Use the editor to enter this program
into your computer and then press the F5 function key to run it.
When the computer prints the question mark, type 300 (and
don't forget to press the <Enter> key). BASIC will execute the
remaining statements in the program and will print

45

on the screen.

The program can be made more general by using a second
INPUT statement to assign a value to the variable Rate. In this
way, any percentage of any number can be calculated. To
avoid making mistakes in our responses we can include a
prompt (message) in the INPUT statement. For example,
change the second and third lines of the program to the
following:

23

INPUT "Enter a Number *,Number
INPUT "Enter % ",Rate

On Running the program, BASIC will write
Enter a Number _

with the cursor positioned as shown. If we type 400 (say), the
next line will be executed, and BASIC will write

Enter % _

and wait for a number. Typing 10 (say), causes the rest of the
program lines to be executed and BASIC displays

40

Note: When a delimited prompt (called a string) is included in
an INPUT statement, the question mark printed by QuickBASIC
is suppressed if a comma is used to separate the string from
the list of variables. If this comma is substituted by a semicolon,
then QuickBASIC prints the question mark.

Save this program for future use, under the file name
PERCENT.

The READ & DATA Statements:

In previous examples, values were assigned to variables either
within the program or through the use of the INPUT statement;
if more variables were needed, more such assignments were
made. In programs requiring many variables and constants,
especially when they are not expected to change between each
run, the READ and DATA statements should be used.

The DATA statement introduces a numeric constant, or a
series of constants, into a program. The READ statement links
variable names sequentially with the constant values supplied
by the DATA statement. READ and DATA statements must
accompany one another within a program, but they need not be
paired. If five variables appear in one or more READ
statements, there must be at least five constants in one or more
DATA statements.

If the total number of constants in all DATA statements is less
than the total number of variables in all READ statements,
BASIC will respond with an error message which indicates lack
of data. Excess data are ignored.

24

In the following example, all data is introduced in a single DATA
statement. It is used at separate points in the program by two
READ statements.

REM USE OF READ STATEMENT
READ A,B

X=A+B

PRINT A,B.X

READ C,D

Y=C+D

PRINTC.,D,Y

DATA 1,5,2,6

END

On Running this program, BASIC will respond by writing

In executing such a program, BASIC ignores all DATA
statements (even if such statements appear on lines preceding
the READ statements) until it encounters a READ statement. It
then goes back to the first line of the program and starts to
search for a DATA statement. Here it finds one in the
penultimate line of the program. Taking constant values
sequentially, it associates them with variables in the READ
statement, also taken sequentially: A is assigned a value of 1,
and B a value of 5. After leaving a pointer at the next data
element, 2, it reverts to the next executable statement following
the READ. On reaching the second READ statement, BASIC
does not search for the DATA statement, but refers to its
pointer to obtain the next unused data element, which is 2.
Variables C and D are therefore assigned the values 2 and 6.

The RESTORE Statement:

The RESTORE statement has no parameters or options. It
simply makes it possible to recycle through DATA statements
beginning with the first DATA line in the program. The following
example illustrates its use.

25

REM USE OF RESTORE
READ A,B

PRINT A,B

RESTORE

READ C,D

PRINTC.,D

DATA 2,7

END

On Running the program BASIC will write

2 7
2 7

The RESTORE statement allows the second READ statement
to obtain values from the DATA statement, even though the
same values were used previously by the first encountered
READ statement. Without the RESTORE statement, an error
message indicating lack of data for the second READ statement
would have occurred. The statement merely moves the data list
pointer back to the beginning of the data list. It is ignored in
programs which do not contain READ and DATA statements.

Problem 2.1

Write a program, using the READ and DATA statements, which
assigns three numbers to the variables Days, Hours and
Minutes and then calculates and prints the total number of
minutes involved.

The PRINT Statement

In all previous examples variables within a PRINT statement
were separated by commas. This caused the values of these
variables to be displayed on the same line, left-justified within
inbuilt print zones. Integer numbers are displayed in five print
zones, the first tour having a width of 14 characters, while the
last has a width of 24 characters, making altogether 80
characters across the screen. However, long integers or
floating-point numbers which are longer than 14 characters will
occupy more than one printing zone, which diminishes the
number of values that can be printed on one line.

26

If variables within a PRINT statement are separated by
semicolons, BASIC writes their value close together with two
intervening spaces.

If a string is included within a PRINT statement, on execution
BASIC displays the actual characters within the quotation marks
exactly as they appear in the statement. It is a way of providing
captions or headings for the computer's output. For example, a
better version of the PERCENT program is given on the next
page (Save it as PERCENT1).

REM GENERAL PERCENTI

INPUT "Enter Number *, Number
INPUT "Enter % *, Rate
Value=NumberRate/100

PRINT Rate;"% of"; Number; “="; Value
END

On Running the above program and entering the same numeric
values for Number and Rate as previously, the computer will
write

10 % of 400 = 40

providing a more meaningful output.

Note that if we were to replace the comma following the
prompt string within the INPUT statement in a program by a
semicolon or a space, BASIC would display a question mark at
the end of the prompt when the statement is executed.

Formatted Output:

Presentation of results can be made very much easier to
understand by using the PRINT TAB statement which allows
output to be displayed in columns. There are 80 tabulation
positions on each of the 25 lines available on your screen. The
program below illustrates the use of this statement.

REM USE OF PRINT TAB

READ A,B,C.D

PRINT TAB(5); "A*; TAB(10); *B*; TAB(15); *C"; TAB(20); *D"
PRINT TAB(4); A; TAB(9); B; TAB(14); C; TAB(19); D

DATA 15, 25, 10, 20

END

27

On Running this program BASIC will respond by writing

A B C D
16 25 10 20

When using TAB with numbers, don't forget to take into account
the space required for its sign (- or +). Positive numbers are
preceeded with a space rather than the plus sign.

Another formatting function is the PRINT SPC statement
which provides a number of spaces between the last printed
position and the next one. For example, the first PRINT line of
the previous program can be replaced by

PRINT SPC(4); "A"; SPC(4); "B"; SPC(4); "C"; SPC(4); "D"

The PRINT TAB or PRINT SPC statements cannot be used to
move to the left of a current printing position in a given line.
Only progressive moves to the right are obeyed.

Note: Although tabulation using the TAB and SPC statements
can work very well with whole numbers, using this method to
format tables with floating-point numbers doesn't always work
because of the number of significant digits.

Problem 2.2

Modify the AVERAGE program, discussed in the previous
chapter, by incorporating the PRINT TAB statement so that the
output appears in tabular form, under appropriate headings as
shown below:

VALUES: A B C AVERAGE

QuickBASIC supports one additional tabulation statement,
which is:

LOCATE V.X

where Y is the vertical position on the screen (1-25) and X is the
horizontal position on the screen (1-80). This positions the
cursor at any point on the screen, and printing starts on that
location, irrespective of the cursor's previous position. To
illustrate its use, clear the screen with the CLS (CLear Screen)
command. The CLS command clears the screen and sends the
cursor to the upper left-hand corner of the screen.

28

The CLS command is incorporated in the program given below
which prints the letter X in the middle of the screen. To see it,
select Alt+R, followed by <Enter>.

REM USE OF CLS

REM AND LOCATE Y.X
CLS

LOCATE 12,40

PRINT "X

END

The LOCATE Y, X statement in the following program places an
asterisk at each comer of the monitor's screen. Allowance is
made for the appearance of the cursor at the bottom of the
screen, after the execution of the program, which has the effect
of scrolling the information on the screen upwards by a line.

Note that in order to counteract line scrolling of information on
the screen, we LOCATE the cursor to position 2 in the
Y-direction, instead of position 1 when placing the asterisks at
the top comers of the screen, and to position 79 in the
X-direction, instead of position 80 when placing the asterisks at
the right edge of the screen.

REM PLACING ASTERISKS AT CORNERS OF SCREEN
CLS

LOCATE 2,1
PRINT ™*;
LOCATE 2,79
PRINT "=
LOCATE 24,1
PRINT ™,
LOCATE 24,79
PRINT "+

END

The PRINT USING Statement
The PRINT USING statement can be used to display numeric
information in a variety of formats. A typical fomat would be:

PRINT USING "#####, ###.#4"; Variable_name

which would reserve a field of 12 characters (indicated by the
10 hashes, the comma and the period) in which to display the
value of Variable_name, right justified within that field, rounded
to two decimal places, with commas preceding groups of three
digits to the left of the decimal point. For example, if
Variable_name held the numeric value 12345.67 and the above
statement was used to print it, BASIC would display the number
in the form 12,345.67.

The backslash character can be used to format text. For
example,

PRINT USING "\OODOODODOO\" Text$

will display the first 8 characters (six spaces indicated above by
small boxes so that you can see them and two backslashes) of
the string held in Text$.

If the exclamation mark (!) is used between the quotes, then
the first character of the string Text$ is displayed at the position
where the exclamation mark was placed.

A mixture of text and numeric information can be used in a
format statement as shown in the program below. But before
you type in the program below, first Run the program which is
the solution to Problem 2.2, but this time supply it with the
following floating-point numbers:

22.35,156.32, 14.14

On pressing <Enter>, the display will look as follows:

Enter three numbers 22.35, 15.32, 14.14
VALUES: A B C AVERAGE
22.35
15.32
1414
17.27

the layout of which can hardly be called satisfactory! Now enter
the program below (which is an adaptation of the program we
have been discussing above) into your computer.

30

REM FORMATTED AVERAGES

INPUT *Enter three numbers*, A, B, C

Sum=A+B8+C

Average=Sum/3

PRINT*VARIABLES: A B C AVERAGFE
Fom$="\ \WITRINIININII NI TN
PRINT USING Form$; "VALUES ARE:", A; B; C; Average
END

On executing this program and supplying it with the same
values for variables A, B and C, the following display is
obtained:

Enter three numbers 22.35, 15.32, 14.14
VARIABLES: A B C AVERAGE
VALUES ARE: 22.35 15.32 14.14 17.27

with the numbers right-justified within their given fields of six
characters. The relative spacing of the variable names in the
first PRINT statement with respect to the statement following it,
is very important. Do try it.

Additional formatting strings which can be used within the
PRINT USING statement are incorporated as examples in the
program below. However, before you start entering the program
into your computer, read the next paragraph first.

Note: In program listings presented in this book from this point
on, it is sometimes necessary to break a long BASIC line into
two, or more, text lines because of the width limitations imposed
by the book layout. The continuation line(s) of such code is
indented by at least six spaces so that it is easily recognisable.
However, when typing such program lines into the editor, make
sure they are entered as gne line only, otherwise an error will
be generated.

REM FORMATTING WITH PRINT USING

PS="value held in Number*

Number=256.518

PRINT USING "l is the first letter in the prompt string®; P$

PRINT USING *\ \ Is the first word In the prompt string"; P$

PRINT USING *& is the whole of the prompt string"; P$

PRINT USING "Value ### #.## # i In flioating point form®; Number

PRINT USING "Value +# # # #.# # # i In signed floating point form*;
Number

31

PRINT USING "Value #.#### A is in exponential form”
Number

PRINT USING "Value S###.## is in currency form"; Number

PRINT USING "Value ##i# is in integer form"; Number

END

On running the above program, the following output

V Is the first letter in the prompt string

Value is the first word in the prompt string

Value heid in Number is the whole of the prompt string
Value 256.518 is in floating point form

Value +256.518 Is in signed floating point form

Value 0.2565E+03 Is in exponential form

Value £256.52 Is in currency form

Value 257 is in integer form

is displayed on the screen.

Outputting to Printer
Changing all PRINT commands to LPRINT causes all output to
be sent to the printer rather than the screen.

Associated with the LPRINT statement is the WIDTH
command which is used to specify the maximum number of
characters to be printed on each line before performing a
carriage return and line feed. The statement is of the form

WIDTH "LPT1:%.n

where n is the number of characters to be printed on each line,
the default value being 80.

32

Exercises

1.

Write a program to read a number and then calculate
and print under suitable headings, the original number
and the discounted values at 12.5%, 15% and 17.5% of
the original value.

Write a program to calculate the cost of electricity at 5.5
pence per unit between quarterly meter readings
Low_value and Hi_value which represent the ‘low meter
reading value' and the ‘high meter reading value'. The
flat quarterly charge, irrespective of units used, is £8.85.

Use the INPUT statement to assign values to variables
Low_value and Hi_value, and the READ statement to
assign values to variables Unit_cost and Flat_rate.

Write a program which calculates the area of a circle, the
surface area of a sphere and the volume of a sphere,
given the radius R.

The output should appear on one line under appropriate
captions.

Write a program to read in a positive fioating-point
number into a variable called Value, place the integral
part of it into variable Integ, and the fractional part of it
into variable Fract. Print out the original number, and the
integral and fractional parts of it under appropriate
headings.

The values of six variables are to be printed on one line.
Variables A and B are floating-point and are to be printed
in a field of 12 each with two digits after the decimal
point, variables K and L are integers and are to be
printed in a field of 10 each, and variables X and Y are
exponential and are to be printed in a field of 16 each
with six digits after the decimal point. Write appropriate
statements to achieve the layout of this print.

6. Modify the program of Problem 2.1, by using appropriate
formatting controls so that the output appears in tabular
form, under appropriate headings as shown below:

DAYS HOURS MINUTES TOTAL_MINUTES

3. CONTROL OF PROGRAM FLOW

QuickBASIC can force a section of code to be repeated by the
use of the FOR...NEXT loop, in the same way as other standard
BASICs, or by the use of the WHILE...WEND loop, in the same
way as other enhanced versions of Basic. In addition to these,
QuickBASIC upgrades the WHILE... WEND loop with the use of
the DO loop, which tests for a condition either at the beginning
or the end of the loop.

In standard BASIC decisions are made with the use cf the
IF...THEN statement, while in advanced versions of it the
IF..THEN...ELSE, ON...GOTO, and ON...GOSUB statements
are also used. QuickBASIC advances these by the addition of
the block IF...ELSE...ENDIF and SELECT CASE statements.

The FOR...NEXT Loop

The FOR and NEXT statements are used to mark the beginning
and ending points of program loops. Any statements between
the FOR and its corresponding NEXT will be executed
repeatedly according to the conditions supplied by the ‘control
variable’ within the FOR statement. An example is given below.

REM USE OF FOR...NEXT LOOP
FOR K=1TO 5 STEP 1
PRINT K
NEXT K
END

Wwithin the FOR statement, the control variable K is ass:gned
the value 1 which is increased repeatedly by the number
following STEP until it reaches 5. It thus has the values 1, 2, 3,
4 and 5. Since it cannot have these values simultaneously, a
loop is formed beginning with the FOR and ending with the
NEXT. The statements within the loop are executed five times,
each time with a new value for K. The NEXT statement
increases the value of K and causes repeated jumps to the
FOR statement until K exceeds its final assigned value of 5.
When this happens, control passes to whatever statement
follows the NEXT statement (in this case END).

35

Note that the PRINT statement, which occurs between the FOR
and NEXT statements, is indented. Indentation simply improved
readability of the program and has no effect on the compiler - it
is simply a good programming style and will, therefore, be
adopted in all future program listings.

The following program makes use of the FOR...NEXT loop,
as well as an accumulator, to find the sum of a list of numbers.

REM SUM OF N NUMBERS
READ N
Sum=0
FORI=1TO N STEP 1
READ Value
Sum=Sum+Value
NEXTI
PRINT "Sum of*; N; "numbers =";
PRINT USING “# # # # .# #°; Sum
DATA 5, 20.5, 21.3, 20.8, 20.6, 21.1
END

On Running this program, N is assigned the value 5 which is
the total number of entries requiring summation. The
accumulator Sum is then zeroed, and a FOR...NEXT loop is set
up. Note that the limits of the control variable in the FOR
statement can be written in terms of other variables. In this
case, the highest value is represented by N (the total number of
data). Within the loop, each number is read into Value and
accumulated into Sum. Once the loop is completed, variable
Sum holds the summation of all the numbers. The PRINT
statements cause Basic to write

Sum of 5§ numbers = 104.30
on the screen.
Use of STEP:
in the last example, the STEP modifier was equal to +1. When

this is the case, the STEP modifier can be omitted and the FOR
statement can be written as

FORI=1ITON
in which case it is assumed that the STEP is equal to +1.

36

If the step value desired is not equal to +1, the STEP modifier
must be included. For example,

REM CONVERT INCHES TO CENTIMETRES
PRINT "INCHES", "CENTIMETRES"
FOR Inches=5 TO 20 STEP §
Centimetres=2.54*Inches
PRINT USING *# # #.# #"; Inches; TAB(17); Centimetres
NEXT Inches
END

will convert 5, 10, 15 and 20 inches into centimetres. The output
should be as follows:

INCHES CENTIMETRES

5.00 12.70
10.00 25.40
15.00 38.10
20.00 50.80

A negative STEP modifier is legal in Basic. For example,

FORJ=5TO 1 STEP -1
PRINTJ

NEXT J

END

will print the values 5, 4, 3, 2 and 1.

- For positive step values, the loop is executed so long as the
control variable is less than or equal to its final value. For
negative step values the loop continues as long as the control
variable is greater than or equal to its final value. The
statements within the FOR..NEXT loop in the following
program will not be executed at all, as the final value of the step
modifier is less than the initial value and a positive STEP is
indicated.

FOR =1 TO OSTEP 1
PRINT "Loop done *; I; * times"
NEXT I
PRINT *Finished"
END

37

Infinite Looping:

A condition of infinite looping can be created by specifying 0
(zero) for the step modifier. However, before you experiment
with this, make sure that you have set BREAK ON in your
config.sys file, otherwise you will not be able to stop program
execution with Ctrl+Break. Having done this, then change the
FOR statement of the above program to

FORI=1 TO 6§ STEP O

On execution column 1 of the screen fills up with ‘Loop done 1
times' and the program will happily go on for ever until you
press Ctrl+Break.

Nested FOR...NEXT Loops:

FOR...NEXT statements can be nested to allow the
programming of loops within loops as shown in the example
below:

REM NESTED FOR-NEXT LOOPS
FORK=1TO 9

FOR L=KTO 9

PRINT USING "#*; L;

NEXT L

PRINT
NEXT K
END

On Running this program, two loops are set up as follows:

FOR K .
FOR L <€- - - - Outer loop
NEXTL - - {---- Nwtedloop
NEXT K

The outer loop is initialized with K=1 and, immediately, the
inner, nested loop is executed 9 times. Then the control
variable K is incremented by 1, so that now K=2 and the nested
loop is executed 8 times. This is repeated until K is equal to 9,
when the nested loop is executed only once.

38

The output of this program is as follows:

123456789
23456789
3456789
456789
56789
6789

789

89

9

The semicolon after the variable L in the PRINT USING
statement allows output to be printed close together on the
same line. However, each line of print must be terminated with
aline feed (that is, it must send the computer display to the next
line). This is provided here by the empty PRINT statement.
Without it all the numbers now appearing on different lines
would be printed on the same line.

Problem 3.1

Modify the above program so that the output is a square of
15x15 characters positioned in the middle of the screen, and
using the letter X as the output character.

Additional levels of nesting are possible. However, deep nesting
is costly in terms of memory space. Fig. 3.1 shows some loop
configurations, the first five of which are examples of allowable
loops, while the sixth is not. Lines joining FOR..NEXT
statements must not cross.

13]
17 4
Fig. 3.1_Some loop configurations.
39

{Incorrect)

itis bad programming practice to exit a FOR...NEXT loop which
has not been completed. Programs may work when you do this
but the results are unpredictable. However, if such an exit is
unavoidable, then make sure you use the EXIT FOR command
(more about this later).

The DO Loop

The DO loop provides a method of looping through a block of
statements and has several variations; it can either check the
condition after or before executing the block of statements.

The DO...LOOP UNTIL Configuration:

In this configuration the DO marks the beginning of the loop,
while the LOOP UNTIL marks the end. Any statements between
the DO and its comresponding LOOP UNTIL will be executed
repeatedly until the trailer of the LOOP UNTIL statement is true.

To illustrate the use of this loop configuration, load the
PERCENT1 program and edit it so that it is the same as the
one shown below:

REM GENERAL PERCENT2
INPUT "Enter number (-1 to END) *, Number
DO
INPUT "Enter % *, Rate
Value=NumberRate/100
FOMS="## #.H % OF HERKHHI = HHR AN
PRINT USING Form$; Rate, Number, Value
PRINT
INPUT "Enter number (-1 to END) *, Number
LOOP UNTIL Number<0
END

All statements between the DO and LOOP UNTIL lines are
repeated UNTIL the trailer of UNTIL is true (that is, until you

type a negative value in response to the prompt “Enter .
number").

Note that, in this case, the condition is checked after the
statements in the block have been executed at least once.
Therefore typing -1 the first time round will not end the
program.

The DO UNTIL...LOOP Configuration:

In this configuration the loop repeats the block of statements as
long as a certain condition is true. For example, the above
program can be rewritten as:

REM GENERAL PERCENT3
INPUT "Enter number (-1 to END) *, Number
DO UNTIL Number<0
INPUT "Enter % *, Rate
Value=NumberRate/100
FOMS="###.# % OF K ARN RN = KRN
PRINT USING Form$; Rate, Number, Value
PRINT
INPUT "Enter number (-1 to END) *, Number
LOOP
END

Here, typing -1 the first time round, ends the program.

The DO...LOOP WHILE Configuration:
In this loop configuration, the WHILE statement can be used in
place of the UNTIL statement, provided the relational test has
been replaced by its opposite. For example the PERCENT2
program will have to be changed to what is shown below, to
produce the same logical behaviour as the program from which
it was derived.

Note that the relational test has been changed from less than
zero (<0) to greater or equal to zero (>=0). These and cther
relational operators will be discussed shortly.

REM GENERAL PERCENT4
INPUT "Enter number (-1 to END) *, Number
DO
INPUT "Enter % *, Rate
Value=Number*Rate/100
FOmMS="##H#.# % OF K HHRIH = HRERNE
PRINT USING Form$; Rate, Number, Value
PRINT
INPUT "Enter number (-1 to END) *, Number
LOOP WHILE Number>=0
END

41

The DO WHILE...LOOP Configuration:
Similarly, the PERCENT3 program will have to be changed to

REM GENERAL PERCENTS
INPUT “Enter number (-1 to END) *, Number
DO WHILE Number>=0
INPUT "Enter % *, Rate
Value=Number*Rate/100
FOMS="#HK.H BOF R KN.NN = KHR ¥ ¥
PRINT USING Form$; Rate, Number, Value
PRINT
INPUT "Enter number (-1 to END) *, Number
LOOP
END

to produce the same logical behaviour as the program from
which it was derived.

Problem 3.2
Compound interest can be calculated using the formula
A=P*(1+R/100)"

where P is the original money lent, A is what it amounts to in n
years at R per cent per annum interest.

Write a program to calculate the amount of money owed after n
years, where n changes from 1 to 15 in yearly increments, if the
money lent originally is £5,000 and the interest rate remains
constant throughout this period at 11.5%. Format the output so
as to restrict calculated values to two decimal places and
tabulate the results.

The WHILE...WEND Loop

The WHILE..WEND loop is another possible configuration,
mostly available in enhanced versions of Basic. It is of the
general form:

WHILE <reiational test is true>
{ execute this }
{ blockof }
{ statements }

WEND

42

This loop configuration produces the same logical behaviour as
that of the DO WHILE...LOOP. In order to illustrate the point,
the PERCENTS program is rewritten below with approprate
changes included.

Use the editor and make the suggested changes to these
programs and verify for yourself that they work as they should.

REM GENERAL PERCENT6
INPUT "Enter number (-1 to END) *, Number
WHILE Number>=0
INPUT "Enter % °, Rate
Value=Number*Rate/100
FOMS="##RRBOF #RRNHH=RURAN"
PRINT USING Form$; Rate, Number, Value
PRINT
INPUT “Enter number (-1 to END) °, Number
WEND
END

The IF Statement
The IF statement allows conditional program branchmg To
illustrate the point, edit the PERCENT2 program to:

REM GENERAL PERCENT?

DO
INPUT *Enter number (-1 fo END) ", Number
IF Number<0 THEN END
INPUT "ENTER % *, Rate
Value=Number*Rate/100
FOMS="###.HBOF X RRNRN =RURAN"
PRINT USING Form$; Rate, Number, Value
PRINT

LOOP UNTIL Number <0

On Running the program, you could now stop execution by
simply entering -1 in response to the *Enter number® prompt.
When this IF statement is encountered, the value of variable
Number is compared with the constant appearing after the
relational operator (<). If the test condition is met, the trailer of
the IF statement is executed (in this case END). If, however, the
test condition is not met, the next statement after the IF
statement is executed (in this case the INPUT statement).

43

Note: The inclusion of the IF..THEN statement in the form
adopted above, has made the trailer of the LOOP UNTIL
statement (Number <0) redundant; it merely acts as a device to
force looping. In such cases we could use any variable as
trailer. We could, for example, use

LOOP UNTIL False

False is a built-in BASIC variable and its value is zero. This will
cause: repeated looping, since the variable used as trailer is set
to zero. If it had any other value, looping would halt.

The IF...THEN...END [F Statement:

The form of the IF..THEN statement used previously only
supports one statement as the trailer to it. However, it could be
that under certain conditions we need to execute more than one
statement as a result of conditional program branching. In such
a case we could use the QuickBASIC's advanced form of the
block IF..THEN statement, which has the following general
form:

IF <relational test is true> THEN
{ execute these }
{ statements }

END IF

To illustrate the point, refer to the program below.

REM AVERAGE OF N NUMBERS
INPUT "Enter number of values to be averaged ", Total
IF Total>0 THEN
Sum=0
FOR K=1 TO Total
PRINT "Value No. " K:
INPUT Value
Sum=Sum+Value
NEXT K
Average=Sum/Total
Form$="Average of ### numbers = ### 44"
PRINT USING Form$; Total, Average
END IF
PRINT "Finished"
END

The previous program calculates the average of a predefined
number of values. First it asks you to enter the Total number of
values you require to average, before asking for the individual
values. When QuickBASIC encounters this IF statement, it
compares the value of the variable Total with the constant
appearing after the relational operator (in this case the > sign).
If the test condition is met, the trailer of the IF statement is
executed (in this case all the statements between the IF and
END IF statements. If, however, the test condition is not met,
the statement following the END IF statement is executed (in
this case the PRINT statement prior to the END).

The IF statement here acts as a guard against an attempt to
enter a zero for Total which would result in a zero being divided
by zero when working out the average. Save this program under
the filename IFENDIF.

Relational Operators within I[F Statements:

The table below shows all the relational operators allowed
within an IF statement.

Relational Operators

BASIC symbol Example Meaning

= A=8 AequaltoB

< A<B Aless than B

<= A<=8B A less than or equal to B

> A>B A greater than B

>= A>=8B A greater than or equal to B
<> A<>B A not equalto B

The power of the IF statement is increased considerably by the
combination of several relational expressions with the logical
operators

AND OR XOR NOT EQV and IMP
We can write the statement
IF X>3 AND M=5 THEN

which states that only if both relational tests are met will the
trailer of the IF statement be executed.

45

Another example is
IF X>3 OR M=5 THEN

which states that when either or both relational test(s) are true,
then the trailer of the IF statement will be executed, while the
statement

IF X>3 XOR M=5 THEN

states that when either relational test is true, but not both, then
the trailer of the IF statement will be executed. Finally, the
statement

IF NOT(X<12) THEN

has the same effect as IF X>=12 THEN in which the relational
test is the negation of that in the above.

The IF...THEN...ELSE Statement:

In many cases we have to perform an IF statement twice over
to detect which of two similar conditions is true. This is
illustrated below.

REM THE TWO iF STATEMENTS
INPUT "Enter a number within 1t0 99, N
IFN < 10 THEN
PRINT "One digit number*
END IF
iF (N > 9) THEN
PRINT “Two digit number*
ENDIF
END

A more advanced version of the IF statement allows both
actions to be inserted in its trailer. An example of this is
incorporated in the modified program below:

REM USE OF THE IF..THEN..ELSE STATEMENTS
INPUT "Enter g number within 1 t0 99 *, N
IF (N < 10) THEN
PRINT "One digit number*
ELSE
PRINT "Two digit number*
END IF
END

Save this program under the filename THENELSE and execute
it supplying numbers between 1 and 99. Obviously, if you type
in numbers greater than 99 the program will not function
correctly in its present form. But assuming that you have
obeyed the message and typed 50 the second PRINT
statement in the trailer of the IF statement (after the ELSE) will
be executed. If the number entered was less than 10, the first
PRINT statement after THEN would be executed. The general
structure of this block IF is:

IF <relational test> THEN
{ execute this }
{ blockof }
{ statements }
{ ftue }

ELSE
{ execute this }
{ blockof }
{ statements }
{ iftakse }

END IF

Note: In the above structure, no statements can follow the
words THEN and ELSE.

The ELSEIF Statement:
if your programming logic requires the use of the block IF
statement to choose amongst several options by, say, using:

IF <relational test_1> THEN
{ execute this }
{ block }
{ iftrue }
ELSE
IF <relational test_2> THEN
{ execute this }
{ block }
{ Iiftuve }
ELSE
{ execute this }
{ block }
{ Kftalse }
ENDIF
END IF

47

then use the ELSEIF statement to simplify the structure of your
program to the following:

IF <relational test_1> THEN
{ execute this }
{ Dblock }
{ iftrue }
ELSEIF <relational test_2> THEN
{ execute this }
{ block }
{ iftue }
ELSE
{ execute this }
{ Dblock }
{ ffase }
END IF

QuickBASIC's ELSEIF statement makes the whole structure
easier to understand.

Simple Data Sorting

The program below allows us to enter two numbers, tests to
find out which is the larger of the two and prints them in
descending order. It also illustrates some of the points
mentioned above.

REM TWO NUMBER SORT
DO
INPUT "Enter two numbers (-1 to END) ", A, B
IF A =-1THEN
PRINT *Finished"
END
ELSEIF A >= B THEN
PRINTA, B
ELSE
PRINT B, A
END IF
LOOP UNTIL False

The program can be stopped by entering a negative value for
A. Otherwise, A is compared with B and the appropriate PRINT
statement is executed.

48

The sorting problem becomes more complicated, however, if
instead of two numbers we introduce a third one. For two
number sorting we had two possible PRINT statements (the
number of possible permutations being 1*2=2). For three
number sorting however, the total number of PRINT statements
becomes six (the total possible permutations being equal to
1*2*3=6). The combinations are (A,B,C), (A,C,B), (C,AB),
(C,B,A), (B,C,A) and (B,A,C). Thus, if we were to pursue the
suggested logic in dealing with the problem it would result in a
very inefficient program.

Here is a way in which, with only two IF statements and one
PRINT statement, the same solution to the three-number
sorting problem can be achieved. It uses a different logic and it
is explained here with the help of three imaginary playing cards
(see Fig. 3.2). Assume that you are holding these cards in your
hand and you wish to arrange them in descending order. Look
at the front two (Fig. 3.2a) and arrange them so that the highest
value appears in front. Now look at the back two (Fig. 3.2b) and
arrange them so that the highest of these two is now in front.
Obviously, if the highest card had been at the back, in the first
instance, it would by now have moved to the middle position (as
shown in Fig. 3.2c), so a repeat of the whole procedure is
necessary to ensure that the highest card is at the front (Fig.
3.2d).

10 10 [7 | 7

~|
[
)
[

(a) (0) () (d)

Fig. 3.2 Sorting playing cards into descending order.

49

The program below achieves this.

REM THREE NUMBER SORT
INPUT “Enter three numbers ®, A, B, C
WHILEA <BORB < C
IF A < B THEN
Temp=A
A=B
B=Temp
END IF
IF B < C THEN
Temp=B
B=C
C=Temp
END IF
WEND
PRINTA,B, C
END

The following actions are indicated: If the value in A is less than
that in B, exchange them so that the value of A is now stored in
B and the value of B is now stored in A. Note, however, that
were we to put the value of B into A, we should lose the number
stored in A (by overwriting). We therefore trarsfer the contents
of A to a temporary (Temp) variable, then transfer the contents
of B to A and finally transfer the contents of Temp to B. The
second rotation, necessary when B is less than C, is achieved
in a similar manner. The whole process is repeated (with the
help of the WHILE... WEND statement), for as long as both A is
less than B, or B is less than C. Type this program into the
computer under the filename NRSORT.

Problem 3.3

Modify the NRSORT program so that it loops in such a way as
to allow repeated execution of the code for different sets of
input numbers. Also provide a method of stopping execution.

50

The SELECT CASE Statement
This is a statement which allows program action to be made
dependent on the value of a variable, or an expression. It is
QuickBASIC's aid to writing readable programs and provides an
efficient alternative to muiltiple IF statements. The general form
of the statement is written as follows:

SELECT CASE Expression
CASE A
{ execute these }
{ statement(s) }
CASEBTOD
{ execute these }
{ statement(s) }
CASE EX
{ execute these }
{ statement(s) }
CAGSE ELSE
{ execute these }
{ statement(s) }
END SELECT

where Expression can evaluate to either a number or a string. A
particular CASE statement within the block (for example, CASE
A), will be executed only if Expression evaluates to a constant
or a string represented by A.

The following examples will help to illustrate the use of the
SELECT CASE structure. The first example evaluates ‘Day
(which is the Expression in the general format) to a constant, as
follows:

REM USING NUMERIC SELECT CASE
INPUT "Enter day number (1-7) *, Day
SELECT CASE Day
CASE1TOS
PRINT "Working day”
CASE 6,7
PRINT "Weekend®
CASE ELSE
PRINT “Not a day”
END SELECT
END

51

The second example evaluates Day$ (which is the Expression
in the general format) to a string, as follows:

REM USING STRING SELECT CASE
INPUT "Enter first letter of day *, Day$
SELECT CASE Day$
CASE IMl'lml'lTI'l'.'IWI'lwl'lFl'lfl
PRINT "Working day”
CASE "$","'s"
PRINT "Weekend"
CASE ELSE
PRINT "Not o day"
END SELECT
END

Note that both upper and lower case letters must be included in
the CASE options in this particular program, if it is to operate
correctly under varying input.

Exiting Block Structures

If, for any reason, you require to exit a loop, a function or a
procedure prematurely (for example when a data search for a
match is successful), then use one of

EXITDO
EXITFOR
EXIT DEF
EXIT FUNCTION
EXITSUB

the first two being used to exit loops, while the last three to exit
functions and procedures.

52

Problem 3.4

Write a program, using the SELECT CASE structure, that can
carry out any of the following conversions:

(a) gallons into litres (1 gallon=4.54609 litres)
(b) feet into metres (1 foot=0.3048 metres)
(c) pounds into kilograms (1 pound=0.453592 kilogram)

Use READ statements to assign the conversion constants to
appropriate variables, and the INPUT statement for entering the
value to be converted and the type of conversion required.

53

Exercises

1.

Write a program using the FOR...NEXT loop to calculate
the squares and cubes of numbers from 1 to 10
inclusive. The results should appear in tabular form
under appropriate headings.

Modify the compound interest program (see Problem
3.2) so that the annual interest rate is increased by 0.1%
after the end of each yearly period.

A salesperson receives commission of 10% of their
annual sales up to £20,000 and an additional 1% per
£1,000 for amounts over £20,000. The maximum
commission allowable is however limited to 15%.

Write a program to calculate the total commission
received for annual sales of £19,750, £47,500 and
£73,250.

Write a program to compute the following expression:

1 +(1-%) ifx<0
v={
1 -(1+%9) ifx>0

Use the FOR..NEXT loop to create values for the
variable x from -3 to +3 in steps of 0.2,

Print x and Y for each iteration of the loop, under
appropriate headings.

Wirite a program that reads in the examination number of
candidates together with their name and the percentage
marks attained in a given examination. The marks have
to be graded as follows:

Over 70%, A; 60-69%, B; 50-59%, C; 40-49%, D;
Below 40%, F.

The program should print, under suitable headings, the
candidate number, name, mark and grade for each
candidate. Arrange for the program to stop when a
negative candidate number is entered.

54

4. STRINGS AND ARRAYS

String Variables

String variables are distinguished from numeric variables by
including the $ tag after their name, or by declaring them as
such in a DEFSTR statement. Like numbers, strings can be
assigned to variables in several ways. For example, the
program below assigns a string to the variable named A$ and
then PRINTs AS$.

AS="ABC123"
PRINT AS
END

On Running the program, Basic writes
ABC123

on the screen.
The following program will read a string from a DATA
statement and assign it to a variable named B$.

READ BS
PRINT BS
DATA "A182
END

Several strings can be read and assigned to several variables
provided that the strings within the DATA statement are
separated by commas. in general, string variables can be used
within a Basic program in the following statements:

(o) AS="ABC" or A$=BS.

(o) READ AS$. The string must be in a DATA statement

(c) INPUT AS

(d) PRINT AS

(e) IF AS="YES" THEN

() CS=AS$+BS. This is known as 'concatenation’. it simply
joins the second string to the end of the first.

55

Basic assigns a numeric code to each character on the
keyboard, according to the ASCIl code, as shown in the table
below. Thus, each letter of the alphabet is assigned a numeric
value and as a result the letter A has a smaller value than B,
letter B smaller than C, and so on.

Table of ASCIl Conversion Codes

—
———

CHAR
CTRL @ nul
CTRL A soh
CTRL B stx
CTRL C etx
CTRL D eot
CTRL E enq
CTRL F ack
CTRL G bel
CTRL H bs
CTRL I ht
CTRL J 1f
SPACE

1

#

$

L Y

&

(

)

*

+

’

/

0

1

2

3

4

5

6

7

8

9

H

<

=

>

?

-
CVRNANBWN=O

wWWww
- wN

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

I, NKXESCCHOIOWOZENNGHIAMBOOEY® CHOIONOZIEN

vt
ff
cr
80
8i
dle
del
dc2
de3
dc4
nak

11
12
13
14
15
16
17
18
19
20
21

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

Yt N K E <

CTRL _

IvY— NN X ESEORQUODHHXU+TAMOAQDTHE -

del

ABBR DEC CHAR ABBR DEC CHAR ABBR DEC

syn
etb
can
em
sub
esc
fs
gs
rs
us

118
119

127

56

Note: In the table above, groups of two or three lower case
letters are abbreviations for standard ASCII control characters.
Codes within the range 128 to 255 form the extended |IBM
character set and are not shown.

When strings appear in an IF statement (as in (e) above), they
are compared character by character from left to right on the
basis of the ASCIl values until a difference is found. If a
character in that position in string A$ has a higher ASCII code
than the character in the same position in string B$, then A$ is
greater than B$. If all the characters in the same positions are
identical but one string has more characters than the other, the
longer string is the greater of the two. Thus, alphabetic strings
can be placed easily in alphabetical order.

In the statements given so far, the string variables are
considered in their entirety. Later on, however, we shall see that
with the help of three special string functions, we can access
any character within a given string.

String Arrays

A number of strings can be stored under a common name in
what is known as a string array. Let us assume that we have
four names e.g. SMITH, JONES, BROWN and WILSON which
we would like to store in a string array. In Basic, whenever an
array is to be used in a program, you must declare your
intention to do so in a DIMension statement as shown in the
program below, which allows you to read and store the four
names into the common variable Name$().

REM USE OF A STRING ARRAY
DIM NameS$(4)
FORI=1TO 4
READ Name$(l)
PRINT Name$())
NEXT |
DATA "SMITH" ,"JONES" ,"BROWN" ,"WILSON"
END

A simple way to visualize a string array is as follows:

[SMITH | JONES] BROWN WILSON

57

The four names are stored in a common box which has four
compartments (or elements), each compartment containing one
name. Thus, Name$(2) refers to the 2nd element of string array
Name$(), and Name$(4) to the 4th element.

The DIM statement tells Basic that a string array called
Name$() is to be used with maximum dimensions as given
within the brackets following the array name (in this case 4).
Any reference to an array name within a program must be of
the form

Name$(l)

where | has a value between 0 and the maximum number given
in the DIM statement. Note that the statement DIM Name$(4)
reserves, in fact, five elements starting with the Name$(0).
Reference to Name$ alone does not refer to the array, but to
the unsubscripted string variable Name$, which merely
happens to be using the same letters.

The following program (written, for the first time, with line
numbers so as to make it easier later on to point to required
insertions of new statements) will READ from a DATA
statement the name, location and telephone extension of five
employees. Note that the data have been structured so that the
commas separating the names from the locations and the
locations from the telephone extensions have the same position
within each string. This is achieved by adding spaces to
compensate for different lengths of names, etc. We do this at
this stage in order to allow manipulation of these strings later.

In this example, the FOR...NEXT loop is written on one line to
demonstrate that it is possible to have more than one statement
in each program line. If this is the case, statements appearing
on one line must be separated by a colon (:). Also note that in
this example, two FOR...NEXT loops are used to demonstrate
that once data have been READ, they are stored in memory
(unless overwritten). One loop would normally be sufficient.

10 REM EMPLOYEES

20 DIM Employee$(5)

30FOR I=1 TO 5: READ Employee$(l): NEXT |
80 FOR I=1 TO 5: PRINT Employee$(l): NEXT |

58

310 DATA "WILSON M. ,ROOM 1.24, 395
320 DATA *SMITH M. ,ROOM 2.6 ,731%"
330 DATA "JONES B.M.,ROOM 6.19 ,1696"
340 DATA "SMITH A.A. ,ROOM 2,12, 456"
350 DATA "BROWN C. ,ROOM 3.1 , 432"
400 END

Type this program using the same line numbers as those given
above, Save it under the filename EMPLOY and Run it

Basic will write the literals on the screen as they appear within
the DATA statements, but without the quotation marks, as
follows:

WILSON M. ,ROOM 1.24, 395
SMITHM. ,ROOM 2.6 ,7315
JONES B.M.,ROOM 6.19,1698
SMITH A.A, ,ROOM 2.12,456

BROWN C. ,ROOM 3.1 , 432

String Functions

We shall now introduce some functions which allow string
manipulation. For example, suppose we want to extract and
print out only the names of the employees held in array
Employee$(). Basic allows us to do this quite easily with the
function

LEFTS(Q)

The few program lines given below, when added to the previous
program will achieve this.

140 PRINT

150 FOR I=1 TO 5

160 PRINT LEFTS(Employee$(l),10)
170 NEXTI

Note that the function LEFT$ has two bracketed arguments;
first is the Ith string of string array Employee$() and second is
the numeral 10 which refers to the number of characters of
interest. The function, together with the PRINT statement,
causes the 10 leftmost characters of Employee$(l) to be
printed. Type these additional lines and try the program.

59

Another string function allows manipulation of the rightmost
characters of a string. This is achieved by the use of the
function

RIGHT$Q
To illustrate its use, change line 160 of the program to
160 PRINT LEFT$(Employee$ (1), 10), RIGHTS(Employee$(l).4)

and Run it. The second column of the last PRINT statement
contains the four rightmost characters of each string.

A third function which allows information to be extracted from
the middle of a string is

MIDS(

Substituting line 160 in the program with the line given below,
will print the location of each employee.

160 PRINT MID$(Employee$(l),12.9)

Note that this function requires two numeric values to follow the
Ith string. The first is the starting point within a string (12th
character here) and the second is the number of characters to
be considered (9 in this case). If the second number is omitted
from the argument list, then the characters considered start at
the first number and finish at the end of the string.

As an example of the use of string arrays, consider the
program on the next page, which causes information on the
quantity and price of several items in stock to be stored by
Basic. To extract details on items in stock, simply start the
program and answer the questions posed.

Firstly, the program reads and stores into string array Item$()
the actual names of the items in stock, while at the same time
their quantity and price are read into Stock$(). In response to
the question 'WHICH ITEM', the name of an item, associated
with the string variable Xname$, is typed in. If it is END, then
the program stops. If, however, it has any other name, it causes
a FOR...NEXT loop to be set up which compares in turn the
contents of Item$() with Xnames$. If they are found to be equal,
it prints the required information held in Stock$().

60

REM STOCKTAKING
DIM Item$(4), Stock$(4)
FORI=1 TO 4: READ Item$(l), Stock$(l): NEXT |
DO: PRINT
INPUT "WHICH ITEM *; Xname$
IF Xname$="END" THEN END
FORI=1TO 4
IF Xname$=Item$(1) THEN
PRINT *>>>>>> *; LEFTS(Stock$(1).3); * IN STOCK
AT £*; RIGHTS(Stock$(1).4); " EACH"
END {F
NEXT |
LOOP UNTIL Fakse
DATA "INK ERASER®, "200,0.10"
DATA "PENCIL ERASER®, *320,0.15"
DATA "TYPING ERASER", 25 ,0.25"
DATA "CORRECTION FLUID*, *150,0.50"

Type this program carefully, paying particular attention to the
spaces inserted within the various PRINT and DATA
statements, then Save it under filename STOCK. On Running
the program, Basic responds with

WHICH ITEM?
and awaits your response. Below, we present a typical Run.

WHICH ITEM? PENCIL
WHICH ITEM? PENCIL ERASER
>>>>>> 320 IN STOCK AT £0.15 EACH
WHICH ITEM? CORRECTION FLUID
>>>>>> 150N STOCK AT £0.5 EACH
WHICH ITEM? END
which causes the program to end. If you enter information in

lower case it will not be recognised in its present form. This can
be overcome by changing the two IF statements to

IF UCASES(Xname$)="END" THEN END
IF UCASES(Xname$)=Item$(l) THEN

61

The function UCASE$() changes the supplied string to ‘Upper
Case'. The converse to this is LCASE$() which changes the
supplied string to 'Lower Case'.

Problem 4.1

Modify the above Stocktaking program so that you only need to
enter the first three letters of each item in response to the
question 'WHICH ITEM'". The output of your program should,
however, print the full name of each item. Then, restructure the
data so that each data line is read into one element of a string
array. Use the LEFTS$(), RIGHT$() and MID$() functions to
extract appropriate information for the printout.

The need for structuring the data (e.g. with spaces) can lead to
mistakes when typing information into a DATA line, especially in
the case of numerical data. In fact, numerical data can be
Stored in a numerical array without the need for structuring
them within the DATA statement. This leads to a much greater
programming flexibility, and will be investigated in the following
section.

Subscripted Numeric Variables
Subscripted variables permit the representation of many
quantities with one variable name. A particular quantity is
indicated by writing a subscript in parentheses after the variable
name. Individual quantities are called elements, while a set of
elements is called an array. A subscripted variable may have
one, two or three subscripts, and it then represents a one- two-
or three-dimensional array.

The elements of a one-dimensional array can be represented
as follows:

A@) A1) A(2) A@) A(4)
while those of a two-dimensional array as:
A(0.0) A(0,1) A(0.,2) A(0,3)
AQ1,0) A1) A(1,2) A(1,3)
A(2,0) A(2,1) A(2,2) A(2,3)
62

The first of the two subscripts refers to the row number, running
from 0 to the maximum number of declared rows, and the
second subscript to the column number, running from 0 to the
maximum number of declared columns.

A three-dimensional array can be thought of as stacked
two-dimensional arrays with the third subscript, running from 0
to the maximum height of the stack.

In the computer, however, arrays are stored with elements
following one another on a single line as shown below:

A(0.0) A(1.0) A(20) A1) A().1) A(2.1)

with the first subscript changing more rapidly than the second,
and the second more rapidly than the third (in the case cf a
three-dimensional array). Provided that this is recognized and
understood, we can use the previous pictorial form of
representation for programming purposes.

Numerical arrays must be declared prior to their use in a DIM
statement just as we had to declare string arrays. The form of
the statement is shown below:

DIM X(15), Y(3.5). Z(3,5.4)

where array X() has been declared to be a one-dimensional
array with a maximum of 16 elements (don't forget the zero'th
element), array Y(,) has been declared as a two-dimensional
array of 4 rows and 6 columns, and array Z(,) as a
three-dimensional array of 4 rows and 6 columns stacked 5
deep. The number of arrays that can be declared
simultaneously is dependent only on the available memory in
your computer.

QuickBASIC allows range declarations in arrays which greatly
enhances their usage. For example, if Array_name1 is the
name of a one-dimensional array, and the subscripts are within
the range | to J, we must declare this array and its range by
using the statement

DIM Array_namel(l TO J)

Similarly, a two-dimensional array can be declared as
DIM Array_name2(K TO LM TO N)
if the elements range from Kto L rows and M to N columns.

63

The following program illustrates the use of numerical arrays.
Data are read into a one-dimensional array and subsequently
the contents of the even numbered elements are summed into
variable Even, while the contents of all the odd elements are
summed into variable Odd.

REM NUMERICAL ARRAY

DIM Number(15)

REM READ & STORE INTO Number() 16 NUMBERS
FOR I=0 TO 15: READ Number(l): NEXT |

REM SUM EVEN ELEMENTS

Even=0

FOR I=0 TO 14 STEP 2: Even=Even+Number(l): NEXT |
REM SUM ODD ELEMENTS

Odd=0

FOR I=1 TO 15 STEP 2: Odd=0dd+Number(l): NEXT |
REM PRINT CONTENTS OF ARRAY

FOR =0 TO 15: PRINT Number(l): NEXT I: PRINT

PRINT "EVEN="; Even, "ODD="; Odd

DATA 4,7,6,1,9,7,14,39,24,19,32,21,8,5, 15,28
END

On Running this program, the contents of array Number(),
which are the numbers listed in the DATA statement, are
PRINTed out one under the other. Under these the output

EVEN=112 ODD=127
appears on the screen.

Static and Dynamic Arrays
QuickBASIC allows you to assign a portion of memory for array
use in two different ways. These are:

Static arrays -if the declaration is made with a constant
only, for example, DIM Year(1980 TO
2000) or DIM Aname(15)

Dynamic arrays-if (a) the declaration is made with vari-
ables, for example, DIM Year(l TO J) or
DIM Aname(K);
(b) the word DYNAMIC is inserted in the
DIM statement foliowing the word DIM,
for example, DIM DYNAMIC Arm(15);

64

(c) the statement $DYNAMIC appears in
the program prior to dimensioning the
array.

Static memory is always the same size for each run of the
program and cannot be used for any other purpose.

Dynamic memory is allocated during run time and the space
may vary for each run of the program. Dynamic memory can be
freed at any time for other use with the use of the statement

ERASE Array_name

However, although dynamic arrays are memory efficient,
accessing values held in them is slightly slower that accessing
values held in static arrays.

There are two error messages which relate to the use of
arrays. These are:

Subscript out of range
Overfiow

The first error occurs if an attempt is made to use an array of
more than 10 elements without dimensioning it, or if an attempt
has been made to use an array element that is outside the
declared dimension, or if an attempt has been made to
dimension the array with a negative number of elements. The
second error occurs if an attempt is made to use an array for
which there is no room in the computer's memory.

We shall now modify the original stocktaking program so that
the numerical parts of the data are stored in a two-dimensional
array. After you have studied it, carry out the modifications to
your version of the stocktaking program resulting from the
solution to Problem 4.1,

REM STOCKTAKING USING STRINGS AND ARRAYS
DIM Item$(4), Stock(4.2)
FOR =1 TO 4
READ ltem$(l), Stock(l,1), Stock(l,2)
NEXTI
DO: PRINT
INPUT *WHICH ITEM *; Xname$
IF UCASES(Xname$)="END* THEN END

65

FORI=1TO 4
IF UCASES(Xname$)=LEFTS(item$(1),3) THEN
FOrmS$=">>>>>> \ \### IN STOCK
ATE#.## EACH"
PRINT USING Form$; LEFTS(Item$(1),16), Stock(l. 1),
Stock(l,2)
END IF
NEXT |
LOOP UNTIL False
DATA “INK ERASER*, 200, 0.10
DATA "PENCIL ERASER®, 320, 0.15
DATA *TYPING ERASER", 25, 0.25
DATA “CORRECTION FLUID*, 150, 0.50

Note how much easier it is to structure the DATA statements
when using numeric arrays rather than string arrays for numeric
data.

Problem 4.2

The first two numbers of the number series given below are 1
and 1. The next number in the sequence is the sum of these
two and subsequent numbers are the sum of the preceding
pair. So we get:

1,1,23,5,8,13 21, ...

Write a program to calculate the first N numbers of the series
(where N is an input to the program) and store them in an
appropriate one-dimensional numeric array. In a second one-
dimensional array, store the average of adjacent pairs of
numbers. Print the output in two columns under appropriate
headings.

More String Functions
In this section we shall introduce the following additional string
functions:

ASC(). CHRS(). LEN(), STR$() and VAL()

Examples of the use of these functions are given overleaf.
66

ASCII Conversion:
The use of the ASC() function in the statement

N=ASC(*ABCD")

will return the decimal ASCII code for the first character of the
string enclosed in the brackets of the function. In this case, 65
will be retumed (see Table on ASCII Conversion Codes).

Character Conversion:
The use of the CHR$() function in the statement

C$=CHR$(66)

will return the ASCII character that corresponds to the value of
the argument, in this case the letter B. The value of the
argument must lie between 0 and 255.

Length of String:
The use of-the LEN() function in the statement
L=LEN("XYZ")

will return the value of length of the string, that is, the number of
characters in the string. In this case L will be set to 3.

String Conversion:
The use of the STR$() function in the statement

$$=STRS(X)

will convert the value of the argument into a string. X is a
numeric variable which might be the result of a calculation. In
this case, if X had the value of 98.56, say, then S$ becomes
equal to "98.56".

Value of String:
If R$ represents a string given by

R$="3.123E12 METRES"
then the statement
X=VAL(RS)

will return the value of the string up to the first non-numeric
character, in this case 3.123E+12. If the string begins with a
non-numeric character then the value 0 is returned.

67

String Concatenation:

Basic allows the concatenation (joining together) of strings. We
shall illustrate this facility by considering the following program
in which the computer asks you to enter your sumame first
followed by your first name. It then concatenates the two (first
name first followed by sumame with a space in between) and
prints the result which is held in string variable X$.

REM CONCATENATION

CLS:INPUT "Enter your SURNAME please *, $$: PRINT
INPUT "Enter your FIRST NAME please *, N$

XS=N§ +°""+5$

CLS: PRINT "HELLO *; X$

END

As it stands, the program is rather trivial. However, using
concatenation together with some of the string functions
mentioned earlier, can result in a somewhat more spectacular
result. To illustrate this, delete the last two lines of the above
program and then add the following lines to the program:

CLS: L=LEN(XS)

IF L>22 THEN
XS=LEFTS(NS.1) +*. " + 8¢
L=LEN(XS)

END IF

FORI=1 TO L
PRINT MIDS(XS.1,1);
IFI1=1 THEN PRINT " *; X$;
IF I=L THEN PRINT * *; X$;
PRINT TAB{L+4); MIDS(XS,,1)

NEXT |

END

Run the program and supply it with your full name (surname
first). What you will see on the screen, if your name was JOHN
BROWN, is shown on the next page.

JJOHN BROWN J

H H
N N
B B
R R
O O
w w
NJOHN BROWNN

Note that the program has worked out the length of your full
name and allowed enough space between the two verical
columns to write it horizontally on the first and last rows.

Now Run the program again, but this time type in a really
long name, say CHRISTOPHER VERYLONGFELLOW. Can
you work out from the program lines and the output on your
screen what has happened? Try it.

Perhaps the most important use of concatenation is that of
building up strings by overlaying. What we mean by this is the
ability to create an empty string of a fixed length and then place
characters in it anywhere along its length, in any order. The
following program will help to illustrate this effect.

REM OVERLAYING
AS="*": L§=""
FORI=1 TO 40: L§=LS+" *: NEXTI
INPUT "How many stars *; N
FORI=1TTON
DO
PRINT *Position *1;: INPUT P
IF P<1 OR P>40 THEN
PRINT “RE-Enter”
ELSE
EXITDO
END IF
LOOP UNTIL False
LS=LEFTS(LS.P-1) + AS + MID$(LS.P+1)
NEXT I: PRINT
PRINT " 1 2 3 a4
PRINT "1234567890123456789012345678901234567890"
PRINT LS
END

69

The first FOR...NEXT loop creates an empty string, L$, 40
characters long. Subsequently, we overlay a number of
asterisks (string A$) onto the empty string L$. This is achieved
by specifying the position P in which we wish to place an
asterisk and concatenating the leftmost P-1 characters already
in string L$ to string A$ and then concatenate to the resultant
string the remaining characters within string L$ from position
P+1 to the end of the string. The result is then stored in L$. The
process can be repeated as many times as we choose. Note
that unlike the PRINT TAB procedure, with this method we can
tabulate' backwards.

On Running the program, Basic will respond with a series of
questions. Enter the numbers following the question marks.

How many stars ? 3
POSITON 1 ? 35
POSITON 2?7 24
POSITON 37?12

1 2 3 4
1234567890123456789012345678901234567890
* * *

The numbers above the asterisks are only printed so that we
can check the exact position of each asterisk.

Problem 4.3

Write a program which uses one or more string functions to
allow:

(a) the printing of a given letter specified by entering a
number within the range from 1 to 26, and

(b) the printing of a number corresponding to the position of
a given letter within the alphabet, by entering any given
letter.

70

Alphabetical Sorting

Many programming applications, such as manipulation of
information on employees' records, require alphabetical sorting.
To achieve this, we must draw on the technique developed
earlier on for sorting numbers, as well as the Three number
sort' program.

The technique we shall adopt is more or less the same as the
one used previously except that string arrays are used rather
than individual variables. This has the effect of reducing the
required number of IF statements to one. The technique is
illustrated below by applying it to the 'Employees' program
which should have been stored under the filename EMPLOY.
When changes to the program are made (lines 20-80) and
additional program lines are inserted (lines 50-300), your
program should look as follows:

10 REM ALPHABETICAL SORTING

20 READ N: DIM Employee$(N)

30 FOR I=1 TO N: READ Employee$(l): NEXT |
80 FOR I=1 TO N: PRINT Employee$(l): NEXT |
90 PRINT: PRINT: PRINT “SORTED INFORMATION*®
110 FOR I=1 TO N-1

120 IF Employee$(l)>EmployeeS(i+1) THEN
130 Temp$=EmployeeS(i+1)

140 Employee$(l+1)=EmployeeS§(l)

150 Employee$(l)=Temp$

160 ENDIF

170 NEXTI

190 FOR I=1 TO N: PRINT Employee$(l): NEXTI
300 DATA S

310 DATA "WILSON M, ,ROOM 1.24, 395"

320 DATA*SMITHM. ,ROOM 2.6 ,7315"
330 DATA “JONES B.M.,ROOM 6.19,1698"
340 DATA "SMITH A.A. ,ROOM 2.12,456"

350 DATA "BROWN C. ,ROOM 3.1 ,432"

400 END

Make sure that the line numbers of your program correspond to
those shown above, as additional lines will shortly be added.

On Running the above program you will see that the first five
lines print the employees in the same order as they appear in
the DATA statements. The second five lines are the result of
executing the FOR...NEXT loop of statements 110 to 170.

71

Within this loop, when I=1 the first string is compared with the
second and if it is found to be smaller, control is passed to line
160 otherwise the two strings are interchanged (lines 130-150).
When |1=2 the second string is compared with the third, and so
on until I=N-1, when the (N-1)th string is compared with the
Nth. The result in our case is that BROWN has moved one
position up as follows:

WILSON M. ,ROOM 1.24, 395
SMITHM. ,ROOM 2.6 ,7315
JONES B.M, ,ROOM 6.19,1698
SMITH A.A. ,ROOM 2,12, 456
BROWN C. ,ROOM 3.1 ,432

SORTED INFORMATION

SMITHM. ,ROOM 2.6 ,7315
JONES B.M. ,ROOM 6.19,1698
SMITH A.A. ,ROOM 2.12, 456
BROWN C. ,ROOM 3.1 ,432
WILSON M. ,ROOM 1.24, 395

In order for BROWN to move to the top of the list we must
repeat the FOR...NEXT loop of lines 110 to 170, N-1 times. We
shall do this by adding an extra FOR...NEXT loop as follows:

100 FOR J=1 TO N-1
220 NEXT J

Type these two lines into the computer and Run the program.
You will see that although all the information appears on the
screen it is rather difficult to distinguish the result of each
execution of the outer FOR...NEXT loop. The addition of the
following two lines should put this right.

180 PRINT:PRINT J
200 AS=INPUTS(1)

The INPUT$(n) statement forces the computer to pause until n
characters have been typed on the keyboard before continuing
with program execution. This means that the results of each
iteration of the J loop can be studied at leisure before
continuing with program execution. Add these lines and Run
the program again.

72

What you will see on the screen is shown below.

SORTED INFORMATION

|

SMITHM. ,ROOM 2.6 ,7315
JONES B.M.,ROOM 6.19,1698
SMITH A.A. ,ROOM 2.12,456

BROWNC. ,ROOM 3.1 ,432
WILSON M. ,ROOM 1.24 ,395

2

JONES B.M.,ROOM 6.19,1698
SMITH A A, ,ROOM 2.12,456
BROWNC. ,ROOM 3.1 ,432
SMITHM. ,ROOM 2.6 ,7315
WILSON M. ,ROOM 1.24,395

3

JONES B.M.,ROOM 6.19,1698
BROWNC. ,ROOM 3.1 ,432
SMITH A.A. ,ROOM 2.12,456
SMITHM. ,ROOM 2.6 ,7315
WILSON M. ,ROOM 1.24,395

4

BROWNC. ,ROOM 3.1 ,432
JONES B.M.,ROOM 6.19,1698
SMITH A A, ,ROOM 2.12,456
SMITHM. ,ROOM 2.6 ,7315
WILSON M. ,ROOM 1.24 ,395

The Bubble Sort
From the output of the above program you will notice two
things:

(a) After the first execution of the J loop, WILSON drops to
the end of the list, and after every subsequent iteration
the next highest valued name appears above WILSON.

(b) After each iteration of the J loop, BROWN moves up one
position in the list of names.

73

This means that there is room for improving the program in two
ways. Since the highest valued name drops to the bottom of the
list, we can reduce the upper limit of the | loop by one for each
execution of the J loop. Also, while the full N-1 iterations may
be needed in the worst case, the list will often be sorted in
somewhere between 0 and N-1 iterations. This can be
overcome by incorporating a ‘flag' in the program whose value
is set to 0 normally, but is reset to 1 every time an exchange
takes place. By testing for the value of the flag at the end of
each iteration we can tell whether or not we need to execute the
J loop once more.

The addition of lines 95, 105, 125 and 205, as well as the
change of the variable representing the upper limit of the
control variable | in line 110, cover both suggestions for
improving the program's efficiency. Finally, as a result of the
trailer to the IF statement of line 205, line 400 must be deleted.
The resulting program is listed below. Save this program under
the filename BUBBLE before executing it.

10 REM BUBBLE SORT

20 READ N: DIM Employee$S(N)

30FOR I=1 TO N: READ Employee$(l): NEXT |
80 FOR I=1 TO N: PRINT EmployeeS(l): NEXT |
Q0 PRINT:PRINT:PRINT "SORTED INFORMATION®
95 M=N

100 FOR J=1 TO N-1

105 M=M-1: Flag=0

110 FORI=1TOM

120 IF Employee$(l)>Employee$(+1) THEN
125 Flag=1

130 Temp$=Employee$(l+1)

140 Employee$(l+1)=Employee$(l)
1650 Employee$(l)=Temp$

160 ENDIF

170 NEXTI

180 PRINT: PRINTJ

190 FOR =1 TO N: PRINT EmployeeS(l): NEXTI
200 AS$=INPUTS(1)

205 IF Fkag=0 THEN END

210 NEXTJ

74

300 DATA &

310 DATA “WILSON M. ,ROOM 1.24 ,395"
320 DATA*SMITH M. ,ROOM 2.6 ,731&"
330 DATA *JONES B.M. ,ROOM 6.19,1698"
340 DATA "SMITH A.A. ,ROOM 2,12 ,456"
350 DATA "BROWN C. ,ROOM 3.1 ,432"

Variable M is used in line 95 as a temporary store for the total
number of strings to be manipulated each time the J loop is
executed. Its value is first made equal to N and subsequently it
is reduced by one in line 105, thus reducing the value of the
upper limit of the control variable | in line 110. This reduces the
total number of string comparisons to a minimum.

The constant Flag in lines 105 and 125 is used as an
indicator. Its value is set to 1 to indicate that a string
interchange has taken place. If Flag remains 0 for the whole of
the 1 loop, then it indicates that the strings are in the required
order.

Output to Printer
We have already seen in Chapter 2 that information can be sent
to a printer by using the LPRINT statement in place of PRINT.
Therefore, to connect the printer from within a Basic program,
we must include the LPRINT statement as an option in a
decision structure at the appropriate place.

The following program will PRINT the string XYZ on the
printer.

REM PRINT QUTPUT ON PRINTER
$$="XYZ"
DO
INPUT "OUTPUT TO SCREEN OR PRINTER? (S/P) *, Q$
LOOP UNTIL UCASES(QS)="S" OR UCASES(QS)="P"
IF UCASES(LEFTS(QS,1))="P" THEN
LPRINT S$
ELSE
PRINT S$
END IF
END

75

Problem 4.4

Incorporate the above facility for printing the output of the
BUBBLE program either on the screen or on the printer.

Printing to a Device

A glance at the solution to Problem 4.4 will confirm that testing
to see whether output should be directed to the screen or the
printer and then using PRINT or LPRINT statements can lead to
code duplication.

QuickBASIC overcomes such complication by allowing the
user to print to a specified device, whether that device is the
screen (specified as "SCRN:"), or a line printer (specified as
"LPT1:"). This is illustrated by changing appropriately the last
program, as follows:

REM PRINT TO A DEVICE
S$="XYZ'
DO
INPUT *OUTPUT TO SCREEN OR PRINTER? (S/P) *, QS
LOOP UNTIL UCASES(QS$)="S" OR UCASES$(QS)="P"
IF UCASES(LEFTS(QS,1))="5" THEN
OPEN "SCRN:* FOR OUTPUT AS #1
ELSE
OPEN *LPT1:" FOR OUTPUT AS #1
END IF
PRINT #1,5$
END

Problem 4.5

Change the solution to Problem 4.4 to incorporate the above
facility for printing to a specified device.

76

Exercises

1.

A firm employing 8 persons allows travelling expenses
based on the engine capacity of their cars as follows:

Up to 1199 cc, 15p per mile;
1200-1499 cc, 19p per mile;
over 1500 cc, 23p per mile.

Write a program to read from data statements for each
employee, their name, car make, engine capacity of car,
and distance travelled each month. The output should
appear in tabular form, giving the above information and
travelling expenses due.

Write a program to calculate the telephone charges for a
given list of subscribers and print the results in a tabular
form. The table must be sorted in order of subscribers'
name and include the name, telephone number, units
used and charge.

The program should read in from DATA statements the
names and telephone numbers into a subscripted string
array and the units used into a numeric array in the order
given in the data lines shown below. The telephone
charges are to be calculated at 7 pence per unit.

Names Phone No. Units used
Smith A.J. 7141435 300
Jones M.M. 5743129 198
Adams N.P. 8466487 245
Brown J.G. 8673521 843

A record is kept of the production of each of the eight
machines at a factory. At the end of each week, a data
card is prepared for each machine with machine number
(from 1 to 8), number of items produced and number of
running hours. The information on these cards is then
typed into a data file, not necessarily in order of machine
number.

77

Write a program to (a) calculate the number of items
produced on each machine per hour, (b) add up the total
production, (c) calculate the total hours worked, and (c)
calculate the average production per hour. The results
should be printed as a list in order of machine number
under appropriate headings.

A geologist is working with several hundred rock samples
which fall into 20 classifications numbered from 1 to 20,
Part of the experiment requires recording the weight of
each rock sample and producing a table showing the
average weight of each classification.

Assume that data are contained in DATA statements and
are structured on N number of lines (N < 1000), each
line containing a classification number and a weight in
grams, as shown below:

DATA 15, 38.5
DATA 11, 185.1
DATA 13, 567.8
DATA 20, 199.3
DATA 1, 45.9

Write a program to read the information from the DATA
statements, counting the number in each classification
and adding up their respective weights, by employing a
20-row by 4-column array with the first column
containing the ‘classification number', while columns two
and three are used for the accumulation of 'numbers in
each classification’ and 'total weights', as shown below.

For example, for classification number 15 which occurs
only once in the data, the output would be as shown on
the next page.

78

15 150 10 38.5

2
Once the DATA statements have been read and the data
processed in the way suggested above, calculate and store the
average weight of each classification in the fourth column of the

array. Finally, arrange for the information held in the array to be
printed out, in matrix form, under suitable headings.

79

5. FUNCTIONS & PROCEDURES

Standard Arithmetic Functions

QuickBASIC contains functions to perform many mathematical
operations. They relieve the user from programming their own
small routines to calculate such common functions as
logarithms, square roots, sines of angles, and so on. Basic's
mathematical functions have a three-letter call name followed
by a parenthesised argument. They are predefined and may be
used anywhere in a program. Some of Basic's most common
standard functions are listed below.

Standard Basic Functions
Call Name Function

\

ABS(X) Retumns the absolute value of X

ATN(X) Arc-tangent of X } +1.570796 to -1.570796
COS(X) Cosine of angle X, where X is in radians
EXP(X) Raises e to the power of X [
INT(X) Retums the truncated integer part of X
LOG(X) Retumns the natural logarithm of X

SGN(X) Returns 1, 0 or -1 to reflect the sign of X
SQR(X) Retumns the square root of X

SIN(X) Sine of angle X, where X is in radians
TAN(X) Tangent of angle X, where X is in radians
RND Generates a pseudo-random number from 0

to 1, but which does not include 1.

Function calls can be used as expressions or elements of
expressions wherever expressions are legal. The argument X of
the function can be a constant, a variable, an expression or
another function. A further explanation of the use of these
functions is given below.

ATNQX):

The arc-tangent functions return a value in radians, in the range
+1.570796 to -1.570796 comresponding to the value of a
tangent supplied as the argument X. Conversion to degrees is
achieved with the relation Degrees=Radians*180/Pi, where
Pi=3.141592654.

81

SIN(X), COS(X) and TAN(X):

The sine, cosine and tangent functions require an argument
angle expressed in radians. If the angle is stated in degrees,
then use the relation Radians=Degrees*Pi/180.

SQR():
The SQR() function returns the square root of the number
supplied to it.

To illustrate the use of the above functions, consider a simple
problem involving a 2 m long ladder resting against a wall with
the angle between ladder and ground being 60 degrees. With
the help of simple trigonometry we shall work out the vertical
distance between the top of the ladder and the ground, the
horizontal distance between the foot of the ladder and the wall
and also the ratio of the vertical to horizontal distance.

The program uses the trigonometric functions SIN(), COS(),
TAN(), ATAN() and the SQR() function to solve the problem. It
then calculates the original angle and ladder length.

REM LADDER AGAINST WALL
Pi=3.141592654

Angle=60:REM IN DEGREES
Arads=Angle*Pi/180:REM IN RADIANS
Vert=2*SIN(Arads)
Horiz=2*COS(Arads)
Ratio=TAN(Arads)

PRINT *ORIG ANGLE =";Angle

PRINT "VERT DIST =";Vert

PRINT "HORIZ DIST =*;Horkz

PRINT "RATIO =";Ratio
Arads2=ATN(Vert/Horlz)
Angle2=Arads2*180/P|

PRINT*CALC ANGLE =";Angle2
Length=SQR(Vert*2 + Horiz*2)

PRINT "CALC LADDER LENGTH =";Length
END

On Running the program, Basic will respond with

ORIG ANGLE = 60
VERT DIST = 1.732051
HORIZ DIST = .9999999

82

RATIO = 1.732051
CALC ANGLE = 60
CALC LADDER LENGTH =2

ABS(X):
The ABS() function returns the absolute (that is, positive) value
of a given number. For example ABS(1.234) is 1.234, while
ABS(-2.345) is retumed as 2.345.

The ABS() function can be used to detect whether the values
of two variables say, X and Y, are within an acceptable limit by
using the statement in the form

IF ABS(X-Y) < 0.0001) THEN

in which case the block of statements following the THEN will
be executed only if the absolute difference of the two variables
is less than the specified limit, indicating that they are
approximately equal. We need to use the ABS() function in the
above statement otherwise a negative difference, no matter
how small, would be less than the specified small positive
number.

Problem 5.1

Newton's method of finding the square root of a number x is as
follows:

(a) Make a guess at the square root, say q. A good
approximation for this could be built into the program as
q= x/2.

(b) Findr = x/q

(c) Find the average of r and q

(d) ¥f ris approximately equal to q (use the absolute function

in the statement IF ABS(r-q) < 0.001), then the average
in (c) gives a good approximation of the square root

(e) Otherwise, take the average as the new value of q and
repeat from (b).

Write a program capable of finding the square root of any
number.

83

EXP(X):
The exponential function raises the number e to the power of X.

The EXP() function is the inverse of the LOG() function. The
relationship is

LOG(EXP(X)) = X

LOG(X):

The logarithm to base e is given by the above function.
Logarithms to the base e may easily be converted to any other
base using the identity

log (N) = LOG(N)/LOG(q)

where log,(N) stands for the desired logarithm to base a, while
LOG(N) and LOG(a) stand for the logarithm to the base e of N
and a, respectively.

Antilogarithm functions are not given but they can easily be
derived using the following identities:

Antilog(X)=e*X (base e; this is EXP(X))
Antilog(X)=10"X (base 10)

INT(C):

The integer function returns the value of X rounded down to the
nearest integer. Thus, INT(6.97) returns the value 6, whilst
INT(-6.789) returns the value -7.

Numbers can be rounded to the nearest whole number,
rather than rounding down, by using the function INT(X+0.5).
For example, INT(5.67+0.5) returns the value 6. It can also be
used to round to any given number of decimal places, or to the
nearest integer power of 10, by using the expression:

INT(X*10*D+0.5)/10"D
where D is (a) a positive integer or (b) a negative integer
supplied by the user. For rounding to the first decimal, D=1; to

the nearest 100, D=-2. The program given on the next page will
help to illustrate these points.

84

REM ROUNDING NUMBERS
DO
INPUT "ENTER A NUMBER *, X#
IF X#=0 THEN END
INPUT "HOW MANY DEC PLACES *; D%
N#=INT(X#*10" D%+0.5)/10* D%
PRINT N#:PRINT
LOOP UNTIL Fake

Type the program into your computer and Run it. Results of a
typical run are given below:

ENTER A NUMBER 1.23456
HOW MANY DEC PLACES ? 3
1.235

ENTER A NUMBER 25.6789
HOW MANY DEC PLACES ? 2
25.68

ENTER A NUMBER 120.5
HOW MANY DEC PLACES ? -2
100

Try it yourself. To stop the program enter O (zero).

SGN(X):
The sign function returns 1 if X is positive, 0 if X=0, and -1 if X
is negative.

RND and RANDOMIZE n:

The RND function is used to produce a pseudo randomly
selected number from 0 to 1, but which does not include 1. The
RANDOMIZE function allows the random-number generator
RND to start from a 'seed number' and produce a series of
numbers based on the seed. By using the same seed again, the
same series of numbers can be obtained. The statement
RANDOMIZE, by itself, requests a 'Random Number Seed'
while RANDOMIZE n seeds the random number generator
RND with the number that n represents. The statement
RANDOMIZE TIMER uses the computer's internal clock to seed
the random-number generator RND.

85

Random numbers are used in statistical programs and in all
kinds of simulations from simple games to complex computer
models. In some programs, especially business simulations, it
is necessary to reproduce the same ‘random' conditions from
run to run. This is done with the dice throwing program given
below. Type the program and Runiit.

REM THROWING DICE
FORJ=1TO 2
RANDOMIZE 2
PRINT TAB(7); "THROW NUMBER"
FOR 1=1 TO 6: PRINT TAB(6); |, RND: NEXT!
NEXT J
END

The program produces the same random throws as shown over
the page. Note that both sets of throws produce the same
numbers because of the position and the type of the
RANDOMIZE statement.

THROW NUMBER
1.414126E-02
6076428
3568624
9575312
2980418
.7864588

ROW NUMBER
1.414126E-02
6076428
3568624
9575312
2980418
.7864588

oo-uwvo—-icoo-uww—-

In some contexts it is a severe disadvantage to have the same
series of random numbers produced. To overcome this
problem, you must set the seed to a random value. First
change the seed from 2 to J by using the statement

RANDOMIZE J
and Run the program again.

86

You will now notice that the random numbers resulting from the
first set of dice throws are different from the ones given above,
namely

THROW NUMBER
.7648737
.1054455
.6134542
9377558
1073679
.1084803

b WN —

but the second set is identical to the previous results. When the
program is run again, the same set of random numbers are
reproduced, because the seed is the same. If you change the
random number seed to the value of the intemal clock with the
statement

RANDOMIZE TIMER

not only the two sets of random numbers (corresponding to the
two sets of dice throws) will be different, but also different sets
of random numbers will result each time the program is run, as
the seed would have changed.

Derived Mathematical Functions
Some useful mathematical functions which can be derived from
standard Basic functions are listed below:

Derived Mathematical Functions

Function Formula

TRIGONOMETRIC

Cosecant CSCOO=1/SINCO

Cotangent COTOO=1/TANCO

Secant SEC(Q)=1/COS)

INVERSE TRIGONOMETRIC

Arc Cosine ACOSOO=-ATN(X/SQR(-X*X+1))+Pi/2
Arc Sine ASINOQ=ATN(X/SQR(-X"X+1))

Arc Cosecant ACSCOO=ATN(1/SQRX*X~-1))+GN)-1)"Pi/2
Arc Cotangent ACOTOO=-ATNQ)+Pi/2
Arc Secant ASECQOO=ATN(SQRQX* X~ 1))+(SGNQGO-1)"Pi/2

87

HYPERBOLIC

Hyp Cosine COSH)=(EXP(X)+EXP(-X))/2
Hyp Sine SINH(X)=(EXP(X)-EXP(-X))/2
Hyp Tangent TANHQQ=-EXP(-X)/ (EXP(X)+ EXP(-X))*2+ 1

Hyp Cosecant CSCH(X)=2/(EXP(X)-EXP(-X))
Hyp Cotangent COTH)=EXP(-X)/(EXP(X)-EXP(-X))*2+1

Hyp Secant SECH(X)=2/(EXP(X)+EXP(-X))

INVERSE HYPERBOLIC

Arc Cosh ACOSH(X)=LOG(X+SQR(X*X-1))

Arc Sinh ASINH()=LOG(X+SQRO™X+1))

Arc Tanh ATANH(OQ=LOG((1+X)/(1-)0)/2

Arc Cosech ACSCH(X)=LOG((SGN(X)*SQR(™*X+1)+1)/X)
Arc Cotanh ACOTHX)=LOG((X+1)/(X-1))/2

Arc Sech ASECH(X)=LOG((SQR(-X*X+1)+1)/X)

Y

Note: The constant Pi in the above formulae has the value of
3.141592654.

User-Defined Functions

In some programs it may be necessary to use the same
mathematical expression in several places, often using different
data. Basic user-defined functions enable definition of unique
operations or expressions. These can then be called in the
same manner as standard functions.

The user-defined function is identified by a special call name
followed by a parenthesised argument. The first two letters of
the function name must be FN, while the rest of the letters may
be any legitimate variable name. Such a function however,
must be defined using the DEF statement which must be placed
at the beginning of a program, prior to its use by the main
program. Muilti-line DEF FN-type definitions of user-defined
functions are also possible, but again they must be placed at
the beginning of a program. The following program illustrates
the use of a single-line user-defined function.

REM SINGLE-LINE USER-DEFINED FUNCTION
REM AREA OF A CIRCLE

PI=3.141592654

DEF FNAreq(R)=P*R*2

88

FORI=1TO 10
A=FNAreq(l)
PRINTI, A

NEXTI

END

The program calculates the areas of circles with radii of integer
values between 1 and 10. The formula is given in the DEF
FNArea() statement of the fourth line. The value for the radius
is passed to the function via a parenthesised variable known as
the function ‘formal parameter', ‘argument' or ‘dummy variable'.
Note that the variable name representing this parameter in the
definition of the function need not be the same as that used in
the calling statement within the main body of the program.
When called, the parenthesised argument may be any legal
expression; its value is simply substituted for the function
variable.

The program below, which calculates the volume of a
cylinder, is used to illustrate multiline DEF FN-type
user-defined functions. Save it under the filename DEFVOL.

REM MULTI-LINE DEF FN-TYPE USER-DEFINED FUNCTION
REM VOLUME OF A CYLINDER

DEF FNVolume(R,H)

Pi=3.141592654

Barea=Pi*R"2

FNVolume=Barea*H

END DEF

INPUT *RADIUS OF CYLINDER *; Radius

INPUT "HEIGHT OF CYLINDER *; Height

PRINT "VOLUME="; FNVolume(Radius,Height)
END

The function is defined prior to its use by the main program,
and two parameters are passed to it; Radius and Height. The
actual parameters and the numbers held in them are passed to
the two formal parameters R and H.

Further, we have calculated the base area (Barea) of the
cylinder separately in order to demonstrate local and shared (or
global) variables.

89

The symbols parenthesised in the DEF line, called formal
parameters (such as R and H in the first line of the function
definition), are local variables which means that their value is
only known to the function.

All other variables are called shared or globai variables, which
means that their values are known to both the function and the
main program. In order to illustrate this last point, add the
following line to the above program prior to the END statement:

PRINT Pi, Barea

and Run it. You will see that the values held in Pi and Barea
are accessible from the main program even though these
values were assigned in the function after the call to it from the
main program.

Procedures

QuickBASIC supports two kinds of procedures; user-defined
functions and subprograms. A user-defined function which is
defined as a procedure is far more powerful than the DEF
FN-type declaration which must be part of the main program.
Similarly, a subprogram is a modular and separate part of a
program and differs from a subroutine which is part of the main
program and requires the statements GOSUB and RETURN.

Procedures are blocks of program code which are isolated
from the main program. QuickBASIC maintains procedures as
distinct entities which can be individually tested and debugged.
All variables used in procedures are local to that procedure and
can not be confused with those of the main program, even if
they happen to have the same names. In contrast, variables in
user-defined functions of the DEF FN-type and subroutines, are
global to the whole program.

To illustrate how we can use the QuickBASIC editor to write a
procedure, we will use the previous program saved under the
flename DEFVOL. If you have not saved this program, then
type in the few lines listed overleaf, otherwise load it, delete the
first line and all lines between DEF FNVolume and END DEF,
and change the name of the function in the main program from
FNVolume to Volume. The resulting program should look as
follows:

90

REM VOLUME OF A CYLINDER

INPUT “RADIUS OF CYLINDER *; Radius
INPUT "HEIGHT OF CYLINDER *; Height
PRINT "VOLUME="; Volume(Radius,Height)
END

Having the above lines in the view window, use Alt+E to invoke
the Edit sub-menu and select the New Function option. At this
point a dialogue window will open and you will be asked to type
the name of the function. Typing Volume and pressing <Enter>,
causes the screen to clear and the following two lines to be
displayed.

FUNCTION Volume _
END FUNCTION

with the cursor appearing at the end of the first line. You can
now type in the parameter list and the rest of the function
statements, as follows:

FUNCTION Volume(R,H)
Pi=3.141592654
Barea=Pi*R*2
Volume=Barea*H

END FUNCTION

Pressing the F2 function key allows you to choose which
portion of your program (main part or procedure) to edit.
Pressing F5 from any module runs the program.

Save this program under the filename VOLUME. On
executing the Save command, you will notice that QuickBASIC
adds automatically the line

DECLARE FUNCTION Volumel(RLH1)

as the first line of your main program. When you reload the
program later, this line is part of the main program listing.
Whether this line has been added by QuickBASIC or it was
typed in because we intend to use already written procedures
with the main program, such declarations will be shown in all
appropriate program listings, from this point on in the book.

Procedures, such as user-defined functions discussed above,
or subprograms to be discussed shortly, are self-contained
program units which can perform specific functions. They can
be called from any part of the main program.

91

After a procedure has been executed, program control is
returned to the statement following the calling statement. It is,
therefore, possible to build up a library of standard procedures,
which can then be invoked from a main program to solve large
and complex problems.

Unlike user-defined functions of the DEF FN-type which can
not be passed information regarding an array, procedures can
be passed entire arrays by including the array name in the
parameter list. You must not, however, DIMension such an
array within the procedure.

Probiem 5.2

Modify the program given above so that it incorporates a
second user-defined function which rounds, to the second
decimal place, the calculated values for the volumes. Use the
formula given under the INT() function with a value for D = 2.

Subprograms
Subprograms are in many ways similar to user-defined
procedure functions. However, the major difference between
them is that, whereas functions retum a single value to the main
program via their name, subprograms can be used to pass
many values to the main program through variables in the
parameter list.

The general form of a subprogram which could be used to,
say, calculate the sum of money returned on an investment, is
written as follows:

SUB Interest(Principal, Rate, Years)

END SuB

To call this procedure from any part of the main program,
including from within the subprogram itself, we must use the
following call statement

CALL Interest(P, R, Y)

where variables P, R and Y are the actual parameters.
92

After all the statements in a subprogram are executed or an
EXIT SUB statement is encountered, program control reverts to
the statement that follows the CALL statement in the main
program.

Fig. 5.1 shows in diagrammatic form the flow of program
control, when a subprogram is used. When the CALL Proc_X
statement is encountered in the main body of the program, it
causes a jump to the first statement of the subprogram, SUB
Proc_X, and continues to execute the statements within it until
the END SUB statement is met which diverts program control to
the statement immediately following the call statement.

Successive call statements can branch to the same
subprogram. Each time the END SUB statement is reached, the
main program is resumed at the last call statement from which it
branched.

Fig. 5.1 Control of program flow with procedure.

The following program, which calculates the compound interest
on money lent (see solution to Problem 3.2), will be used to
illustrate the use of subprograms. The program calculates the
compound interest using the formula

A =P * (1+Rate/100)* Years

where P is the principal (original) money lent, and A is what it
amounts to in time Years at Rate per cent per annum.

93

DECLARE SUB interest(Principall,Rate!,N%,Amount!)
REM COMPOUND INTEREST
DEFINTN, Y
INPUT *Enter original money lent *, Original
INPUT "Enter interest rate *, Rate
INPUT "Enter No. of years *, Years
PRINT SPC(1); "YEAR"; SPC(12); "AMOUNT*
FOR N=1 TO Years
CALL Interest(Original, Rate, N, Amount)
FOMS="##KRE REBHREHRE
PRINT USING Form$; N, Amount
NEXT N
END
DEFINTN, Y
SUB Interest(Principal, Rate, N, Amount)
Amount=Principal*(1 +Rate/100)* N
END SuB

After entering the investment parameters Original, Rate and
Years, the subprogram Interest is called several times from
within the FOR...NEXT loop set up in the main part of the
program. The parameters are passed to it at the same time
through the argument list of the call statement. The values of
these parameters are then used as the variables Principal,
Rate, and N in the subprogram. After executing all the
statements within the subprogram, program control passes
back to the line following the CALL statement in the main
program, where the string Form$ is being set up for use with
the PRINT USING statement which follows, in order to print the
results of each iteration of the loop (held in variable Amount),
correctly formatted.

Save the program under the filename COMPINT and Run it
using the values shown below for the three variables.

Enter original money lent 5000

Enter interest rate 11
Enter No. of years 15

The program then proceeds to calculate the compound interest
on the money lent, and displays the resuits as follows:

94

YEARS AMOUNT

1 5,550.00
2 6,160.50
3 6,838.15
4 7.590.35
5 8,425.29
6 9,352.07
7 10,380.80
8 11,522.69
9 12,790.18
10 14,1970
n 15,758.79
12 17,492,225
13 19.416.40
14 21,552.21
15 23,922.95

Note that when a procedure is created, QuickBASIC assumes
that DEFinition instructions relating to the type of variables used
in the main part of the program (DEFINT N,Y in the previous
example) also apply to the procedure. Thus, when QuickBASIC
opens a window for a new procedure, the active type definition
instructions appear above the FUNCTION or SUB statement.
These can be edited, but be careful as active type definition
instructions control the default data type for formal parameters.

Problem 5.3

Modify the solution to Problem 5.2 by making function Volume
into a subprogram from within which function Round is called.
Use the variable Result within the argument list of the
subprogram CALL statement and Res as the formal parameter
in the subprogram definition.

Ditferences Between Functions and Subprograms:

All the tasks that are performed by procedure-type functions
can also be performed by subprograms. There are, however,
two main differences between the two. These are listed below:

(1) Functions are invoked by simply using their name in an
expression, while subprograms are invoked by using the
CALL statement.

95

(2) A function name not only identifies the function, but also
is used to assign a value to it by the statements within its
definition. This value can be a string, or any of the four
numeric types. A subprogram name, on the other hand,
only serves to identify the subprogram and has no value.

Parameter Passing

There are two fundamental rules relating to parameter passing.
These are: (a) the number of arguments in an argument list of
the call statement must be the same as that of the formal
parameters, and (b) the data type of each argument must
match the data type of the corresponding formal parameter.

The formal parameters in a procedure, whether a subprogram
or function, are variable names local to that particular
procedure. The actual parameter passed to the procedure can
either be (i) a variable name local to the calling program or (i) a
literal, constant, or expression.

In the first case, when a parameter is a variable, parameter
passing is by ‘reference', which means that the address of the
variable is passed to the procedure. As the formal parameter
within the procedure is also assigned to the same address, this
means that any changes to the formal parameter within the
procedure can be passed back to the main program.

In the second case, when a parameter is a literal, constant, or
an expression, parameter passing is by ‘value', which means
that the actual value is passed rather than the address in which
the value is held. In this case, the value of an expression is
calculated, the result is stored in a temporary location and the
address of the temporary location is passed to the procedure.
As a result, any changes to this parameter by the procedure is
only reflected in the temporary address and the original value
accessed by the main program remains unmodified.

Variables within functions of the DEF FN-type, which are
supported by QuickBASIC so that compatibility with BASICA
can be maintained, are global to the main program. To declare
variables local use the STATIC declaration. All arguments are
passed by value.

To pass a variable by value in procedures, enclose the
variable name in parentheses. This makes the argument into an
expression which has the desired effect. A function of the DEF
FN-type can only pass parameters by value.

96

The short programs given below will help to illustrate the points
made above. First, the program

DECLARE SUB Count(K!)
REM PASS-BY-REFERENCE
K=0
CALL Count(K)
PRINT K
END
SUB Count(K)
K=K+1
PRINTK,
END SUB

when Run, will display
1 1

while the program
REM PASS-BY-VALUE

DEF FNCount(K)
K=K+1
FNCount=K

END DEF

K=0

PRINT FNCount(K),K

END

when Run, will display
1 0

As a consequence of this pass-by-value rule, an array can not
be passed to a function of the DEF FN-type, while as a
consequence of the pass-by-reference rule, an entire array can
be passed to a procedure.

Procedures can be made to pass-by-value by enclosing the
variable name with an extra pair of brackets in the call
statement. For example, using

CALL Count((K))

in the subprogram, wili give the same output as the DEF
FN-type function program.

97

Passing Arrays to Procedures:

To pass an entire array to a procedure the actual name of the
array being passed, followed by an empty pair of parentheses,
must be included as a parameter in the argument list of the call
statement. In the SUB statement of the procedure definition, the
formal name for the array being used must appear as a
parameter in the argument list followed by a pair of parentheses
that contain the number of dimensions of the array. To illustrate
the above points, the BUBBLE SORT program discussed in the
previous chapter is written with a procedure, as shown below:

DECLARE SUB Rotate (Employee$§(), I!, Flag!)
REM BUBBLE SORT
READ N:DIM Employee$(N)
FOR I=1 TO N: READ Employee$(l): NEXT |
FOR i=1 TO N: PRINT EmployeeS$(l): NEXT |
PRINT: PRINT: PRINT *SORTED INFORMATION*
M=N
FOR J=1TO N-1

M=M-1: Flog=0

FORI=1 TOM

IF Employee$(l)>Employee$(i+1) THEN
CALL Rotate(Employee$(), |, Flag)
END IF

NEXT |

IF Flag=0 THEN EXIT FOR
NEXT J
FOR =1 TO N: PRINT Employee$(l): NEXT |
END
DATA 5
DATA "WILSON M. ,ROOM 1.24 , 395"
DATA *SMITHM. ,ROOM 26 ,7315"
DATA *JONES B.M. ,ROOM 6.19 ,1698"
DATA "SMITH A.A. ,ROOM 2.12 , 456"
DATA "BROWN C. ,ROOM 3.1 , 432"
SUB Rotate(Employee$(1). I, Flag)

F'Og:]

Temp$=EmployeeS$(l+1)

Employee$(l+1)=Employee$(l)

Employee$(l)=Temp$
END SuUB

98

The program prints only the original and sorted data. The
Rotate procedure can be made shorter and faster by using the
QuickBASIC SWAP statement, as follows:

SWAP Employee$(1+1), Employee$(l)

in place of the three lines following the Flag=1 line. Do this last
change and Save the program as PROCSORT.

Declaring Arrays within Functions and Procedures:

Both functions of the DEF FN-type, and procedures can use
arrays within their block definitions even though only
procedures can have arrays passed to them.

To use an array within a function of the DEF FN-type which
you want to be local to the function, you must declare it as
STATIC. In declaring an array in this way, the name of the array
followed by an empty pair of parentheses must appear in the
declaration. Following this, the array must be dimensioned ir an
appropriate DIM statement within the function definition, as
follows:

DEF FNExample
STATIC Arnray()
DIM Array(15)

END DEF

The general format of the STATIC instruction is:
STATIC Variable_name AS fype

where Variable_name is a simple variable name or an array
name followed by empty parentheses (), and type specifies the
variable's data type which can be INTEGER, LONG, SINGLE,
DOUBLE, STRING or user-defined (record) type.

The STATIC instruction can effect a variable in two ways: (a)
it turns a global variable local to the user-defined function or
procedure, (b) makes the variable static - that is it preserves its
original value between successive calls to the procedure.

In procedures arrays declared within the procedure itself will
be local to that procedure. However, it is possible to make such
an array a shared array with the main program by the use of the
SHARED statement.

99

The SHARED Statement:

The SHARED statement can be used whenever we would like
to make a certain variable or an array of a procedure global to
the main program. The general format of the instruction is:

SHARED Variable_name AS type

where Variable_name can be a simple variable name or an
array name followed by empty parentheses, and type specifies
the variable's data type which can be INTEGER, LONG,
SINGLE, DOUBLE, STRING or user-defined (record) type.

The SHARED instruction is only valid within a user-defined
function or subprogram, not in the main program.

If you want to make a variable global to all procedures, then
use the SHARED keyword in a DIM statement within the main
program, as follows:

DIM SHARED Variable_name

where Variable_name can be a simple variable or an array
name followed by empty parentheses.

If you want to share variables between multiple modules, then
use the COMMON statement.

The COMMON Statement:

The COMMON statement collects a group of variables into a
COMMON block. By declaring the same COMMON block in
different modules, you can make the variables global between
the various modules. The general format of the instruction is:

COMMON [SHARED} [/Block_name/] Variable_list

where Block_name is the name of the COMMON block, and
Variable_list is a list of variable names, separated by a comma,
placed in the COMMON block. Instructions appearing in square
brackets are optional.

If Block_name is specified, then the block is known as a
‘named' COMMON. If, on the other hand, Block_name is not
specified, the block is known as a 'blank'’ COMMON.

Variable_list consists of simple variable names or array
names followed by empty parentheses. The data type of each
variable can be specified with a type-declaration suffix or an AS
type clause, in the same way as SHARED and STATIC variable
declarations.

100

The COMMON statement must appear before any executable
statement in a module. When an array is inserted into a
COMMON block, the DIM statement for that array must appear
before the COMMON statement.

Recursion

Not only can a function or procedure invoke other functions
and/or procedures, but it can also invoke itself. This process is
called 'recursion’. Recursion can lead to some very elegant and
efficient programs. The program listed below can be used to
provide a conversion table from one currency to another. It is
recursive, with the procedure calling itself many times until the
problem is completed. This program is worth studying as
recursive programming can be a very powerful technique once
it is understood.

DECLARE SUB Conversion(Ratel, Max!)
REM CURRENCY CONVERSION (RECURSIVE)
INPUT "CURRENCY 1 *; Currency1$
INPUT *CURRENCY 2 *; Currency?2$
INPUT "EXCHANGE RATE? *; Rate
INPUT "MAXIMUM RANGE? *; Max
PRINT: PRINT Currency1$, Currency2$
CALL Conversion(Rate, Max)
END
SUB Conversion(Rate, Max)
IF Max<1 THEN EXIT SUB
CALL Conversion(Rate, Max-1)
FOMS="HRHHHR RERBEHRIN
PRINT USING Form$; Max; Max*Rate
END SUB

Save the program under the filename RECURS. On Running it
Basic asks you to define CURRENCY 1 and CURRENCY 2, the
EXCHANGE RATE and the MAXIMUM RANGE. On supplying
the information shown below

CURRENCY 1 ? Pounds
CURRENCY 2 ? Dolkars

EXCHANGE RATE ? 1.54
MAXIMUM RANGE ? 10

101

Basic calculates and PRINTs the answers as follows:

Pounds Dollars
1.54
3.08
4,62
6.16
7.70
9.24

10.78

12.32

13.86

15.40

OVONOCOOLEWN —

-

it is quite difficult to understand how the logic of a recursive
procedure works at first. To illustrate the process, we shall look
at the above example with Max=3. Fig. 5.2 shows the logic flow.
Remember that program control returns to the statement after
the last procedure CALL when an END SUB statement is
reached.

If we hadn't used recursion, we would have had to set up a
loop to iterate through the range 1-10. By using recursion, we
have broken the problem down into several simpler ones of
printing up to the value of Max-1. This is repeated until Max-1
is less than one.

After the first CALL statement the program diverts to the
procedure with Max set to 3. As Max is not less than 1, program
control passes to the second CALL statement with Max=2.
Once more control is passed to the third CALL statement with
Max=1. Finally, this is repeated with Max=0. At this point a
change in the program flow takes place because Max is less
than 1 so the last EXIT SUB is executed. The last Form$ line is
then reached and the first line of the table is printed. The last
END SUB is now executed, so the program jumps to the line
following the previous procedure call and the second line of the
table is printed. This is repeated once more before control
passes to the END statement where program execution halts.

102

— CALL Conversion(Rate, Max 3)

END <

—» SUB Conversion(Rate, Max 3)

IF Max<l THEN EXIT SUB

CALL Conversion(Rate, Max-1 2)
Form$=""#iH# 4 R, L ————————
PRINT USING Form$;Max,Max*Rate

END SUB

L————— SUB Conversion(Rate,Max 2)

IF Max<l THEN EXIT SUB

CALL Conversion(Rate, Max-1 1)
Form$=""HHHE Wi, . I —————
PRINT USING Form$;Max,Max*Rate
END SUB

SUB Conversion(Rate,Max 1)

IF Max<l THEN EXIT SUB

CALL Conversion(Rate,Max-1 0)
Form$="####H HHHE, "
PRINT USING Form$;Max,Max*Rate
END SUB

L———) SUB Conversion(Rate,Max 0)
IF Max<l THEN EXIT SUB

Fig. 5.2 Flow of logic in recursive procedures.

Subroutines

Subroutines are similar to procedures in many ways but they
are not as powerful. They are supported by QuickBASIC
primarily because they are the only way that standard BASIC
can code frequently used sections of logic into subprograms.
Thus, programs written for standard BASIC can be easily

adapted to run under QuickBASIC.
103

The GOSUB and RETURN Statements:

When Basic encounters the GOSUB statement in the main
body of the program, it branches to the first statement of the
subroutine, and continues to execute the statements within the
subroutine until the RETURN statement is encountered. This
diverts program flow to the statement immediately following the
GOSUB statement which called the subroutine. Thus, the
GOSUB statement broadly corresponds to the CALL statement,
while the RETURN corresponds to the END SUB.

When successive GOSUB statements branch to the same
subroutine, each time the RETURN statement is reached, the
main program is resumed at the last GOSUB statement from
which it branched. No line reference is necessary. We shall now
modify the COMPINT program which we used to demonstrate
procedures in order to illustrate subroutines. The modified
program is shown below:

REM COMPOUND INTEREST (WITH SUBROUTINE)
DEFINT NY
INPUT "Enter original money lent *, Original
INPUT "Enter interest rate ®, Rate
INPUT "Enter No. of years *, Years
PRINT:PRINT SPC(1); "YEAR"; SPC(12); "AMOUNT"
FOR N=1TO Years

Principal=Original

GOSUB Interest

FOMS="HUNRE RERKRHRAE

PRINT USING Form$; N, Amount
NEXT N: PRINT
END
REM SUBROUTINE TO CALCULATE COMPOUND INTEREST
Interest:

Amount=Principal*(1+Rate/100)* N
RETURN

After entering the investment parameters Original, Rate and
Years, the subroutine is called several times from within the
FOR...NEXT loop set up in the main part of the program. The
parameter Principal, required within the subroutine, is initialised
by the statement in the line preceding the GOSUB statement.
Subroutines cannot have local variables, therefore, all variables
are equivalent to SHARED variables in procedures.

104

After executing all the statements within the subroutine,
program control passes back to the statement following the
GOSUB in the main prograém (the Form$ statement). Save this
program under the filename COMPSUB, and then Run it to
verify that you get the same results as before.

105

Exercises

1.

Three truck sizes are available to move a given volume

of earth. Write a program to calculate the number of

truck loads of each size required, using the following

logic.

(@) The large trucks must be used first, if possible, as
long as they are full,

(b) the medium size trucks should be used next, as
long as they are full,

(c) the smallest trucks should take the remaining load,
if any.

The information to be processed by your program is as
follows:

(i) Volume of ore to be moved,

(i) capacity (in volume) of the largest truck,

(iii) capacity (in volume) of the middle-sized truck,
(iv) capacity (in volume) of the smallest truck.

Your program should accept data consisting of these
four values and with the use of the INT() function should
evaluate the number of trucks required and produce the
following tabulated output.

Volume of earth to be moved = *+w

Large Medium Small
Capac =**** Cagpac = *** Cgopac = ***
No. of full
trucks ks bk baboddd
No. of part
full trucks baiale

Note that only small sized trucks could be part full.

106

2.

Wirite a program which reads the coefficients A, B and C
of a quadratic equation, i.e.

Ax2+Bx+C=0
and uses the formula

B £ V{B? - 4AC}
X =

2A

to solve for the two roots of the equation. The program
must test whether A=0, as well as whether {B? - 4AC} is
equal, greater or less than zero. If {B* - 4AC} is
negative, then the two roots of the equation are deemed
to be complex in which case the real (-B/2A) and the
imaginary (£{B? - 4AC}/2A) parts of each root must be
given separately.

Test your program with the following data:

A B C
1 -10 25
0 -2 1
0.02 -0.04 0.02
1 2 5
1 0 -1
1 0 1
1 2 1

Two points A and B have coordinates given by (x,.y,}
and x,,y, respectively. Write a program to calculate the
distance of separation between the points given by

V{2, + (%%,)%

However, instead of using the internal function SQR(),
use the program given as the solution to Problem 5.1,
suitably adapted to a function subprogram to evaluate
the square root.

107

4. Rewrite the solution to Problem 3.3 (The three number
sort) suitably modified as a procedure with the three
parameters A, B and C in its argument list. Then write a
main program that reads the lengths of the three sides of
a triangle and calls the procedure to sort their values in
ascending order so that variable C holds the largest of
the three. Then use the identity

C?=A%4+8?
to test whether the three sides form a right triangle or

not.

For non-integer values for A, B and C you will find that it
is necessary to use the ABS() function in order to test
whether A? + B? is approximately equal to C2.

108

6. DISC FILING SYSTEM

Programs can be stored on disc quite easily. Just as easily, we
can use a disc to store data in files called 'data files'. We will
identify them by saving them on disc under filenames with .DAT
extensions. Three types of data files can be used to store
information, namely sequential, random access or binary files.
Each type has advantages and disadvantages. Sequential files
use disc space efficiently, but are difficult to update a single
piece of information within their structure. Random files are less
efficient as far as usage of disc space is concemed, but provide
quick access to information. Binary files offer great flexibility, but
have no structure and, therefore, are difficult to program. We
shall investigate these, by first looking at their individual structure
and then by discussing how data can be written to, and read
from, each type of file.

Sequential Data Files

A sequential data file can be thought of as a one dimensional
array with each array location being one byte, capable of holding
one character of a string. For example, the name of a friend
together with his telephone number

ADAMS M. 02-1893
could be stored as shown below:

Byte

6 1

y

Of special importance to sequential data files are the three ASCI|
control characters 10 (linefeed - LF), 13 (carriage return - CR),
both shown by the symbol ¥, and 26 (End-of-File marker -
EOF), shown above as §. The combination CR/LF (1) is issued
every time you press the <Enter> key.

Two friends' names will be stored with the second name
following the first, separated by LF/CR, with the EOF character
marking the end of file. For example,

0 89

7 1
M. “

-~ or

45 89
-1 3 -

s ON

12345 23 6 7
Char ADAMS 02 89

*"ADAMS M.","02-1893"Y"SIMS I.","01-1351"%}

109

Carriage returnsflinefeeds (1) mark the end of blocks of
information called 'records' with each record containing related
information such as names and telephone numbers separated
by commas, called fields'. Fields can hold anyone of the five
different types of variables, such as strings (which appear in
quotation marks), integers, long integers, single- and/or double-
precision variables.

To write data into a sequential data file we must write a small
Basic program which will ‘create’ such a file and then ‘write' into it
the characters representing the information we would like to
store on disc. The strings which make up each field of the file will
first be READ into the computer and stored in an appropriate
string array, and subsequently transferred onto the disc. The
program below does this.

REM CREATE A SEQ. DATA FILE

READ New: DIM AnameS$(New), Tel$(New)
FOR1=1 TO New: READ Aname$(l), Tel$(l): NEXTI
DATA 2

DATA "ADAMS M.", "02-1893"

DATA "SIMS L, "01-1351"

INPUT "NAME TO SAVE UNDER? *, Filename$
OPEN FilenameS$+".DAT FOR OUTPUT AS #1

FOR I=1 TO New: WRITE #1, Aname$(l), Tel$(l): NEXT |
CLOSE #1

OPEN Filename$+".IDX" FOR OUTPUT AS #2
WRITE #2, New

CLOSE #2

END

The first two executable lines of the program allow READing of
each field which is then stored in string arrays Aname$ and Tel$.
Following the INPUT line, the commands OPEN Filename$ FOR
OUTPUT AS #1, WRITE #1 and CLOSE #1 are directed to the
filing system. The first OPENSs a specified file with the extension
-DAT for OUTPUT, through the communications channel #1. By
OPENIng a file, the name of that file is automatically written on
the directory of the logged drive. If the filename already exists,
the OPEN command will delete its contents, which means that
you lose all the information already stored in that file.

110

The first WRITE command within the FOR...NEXT loop, writes to
the file with the extension .DAT the actual data held in string
arrays Aname$ and Tel$. When all the data has been written to
the file, the file is then CLOSEd.

Following this, the program creates another file, by the same
name but with extension .IDX, in which the variable New is
written. The value of New gives the total number of records we
have written into the data file which is sometimes useful to know.

Note the special way of writing QuickBASIC commands which
are directed to the filing system. They all end with the character
followed by the channel number n (with values between 1 and
15) through which we communicate with the file. Finally, when
we finish with a file we close the communications channel by the
use of the CLOSE #n command.

Type this program into your computer, Save it under the
flename SEQUEN (which stands for 'SEQUENTtial' and Run it.
When you are asked for a file name under which to save the
information, type PHONE. On completion of this program, files
PHONE.DAT and PHONE.IDX are written on the directory of the
logged drive and path. Make sure you give full information on the
drive and directory on which you want the two files to be created.

Once data files have been created, we must be in a position to
READ each field back into the computer so that information can
be retrieved. This is achieved through the small Basic program
(Save it under the filename SEQUENRT (which stands for
SEQUENtial ReTrieve) given below:

REM RETRIEVE A SEQ. DATA FILE

INPUT *FILE NAME TO LOAD? *, Filename$

OPEN Filename$+".IDX" FOR INPUT AS #3

INPUT #3, Total: DIM Aname$(Total), Tel$(Total)
CLOSE #3

OPEN Fllename$+".DAT FOR INPUT AS #4

FOR I=1 TO Total: INPUT #4, Aname$(l), Tel$(l): NEXT|
CLOSE #4

FOR I=1 TO Total PRINT Aname$(l), Tel${1): NEXT |
END

The third line OPENSs a file with the extension .IDX, the name of
which is held in string variable Filename$, for INPUT through
channel #3. The next line reads the contents of the file using the
INPUT #3 statement. The item read is the value of the Total

111

number of records held in the file with the .DAT extension which
is then OPENed and the information held in it is transferred into
arrays Aname$ and Tel$ with the use of the INPUT #4 statement
within the FOR...NEXT loop. Finally, the file is CLOSEd and
arrays Aname$ and Tel$ are PRINTed on the screen.

The INPUT #n command must follow an OPEN FOR INPUT
command for a file which is CLOSEd. Similarly, the WRITE #n
command must follow an OPEN FOR OUTPUT command for a
file which is CLOSEd. Attempting to either WRITE #n or INPUT
#n on a file that has not been OPENed for OUTPUT or INPUT
respectively, will cause the error 'Bad file number' to be
generated. Attempting to read more records than are in the file
will cause the ‘Input past end' error message to appear on the
screen. All error messages generated during run-time are listed
in Appendix B.

Using the INPUT Statement to Create Data Files:

Another way to create sequential data files is to replace the
READ...DATA statement of the SEQUEN program with the
INPUT statement. This method is also useful for appending
information to data files. Make the following changes to the
SEQUEN program:

REM INPUT INTO A SEQ. DATA FILE
INPUT "NUMBER OF NEW ENTRIES? *, New
DIM Aname$(New), Tel$(New): I=0
DO
I=l+1: PRINT *;1; *>*;: INPUT ™, AnameS$(1), Tel$(l)
LOOP UNTIL I=New OR Aname$(l)=""
IF AnameS$(1)="" THEN New=I-1
INPUT "NAME TO SAVE UNDER? *, Filename$
OPEN Filename$+".IDX* FOR OQUTPUT AS #1
WRITE #1, New
CLOSE #1
OPEN Filename$ +*.DAT FOR OUTPUT AS #2
FOR I=1 TO New: WRITE #2, Anames$(l), TelS(l): NEXT|
CLOSE #2
END

Save this program under the file name SEQUENIN and then Run
it.

112

The trailer of the LOOP UNTIL statement allows you to terminate
entries at will prior to reaching the end of the DO loop by simply
pressing <Enter>. In this case, the loop control counter | would
be one more than the number of entries. The variable New is
therefore set to 1-1 prior to writing its value in the file.

Note that typing information relating to each individual field, in
response to the INPUT statement, must be separated by a
comma. For example, in the above example what is expected is
a record that looks as follows:

Smith, 03-444

the use of the comma indicates to the INPUT statement that the
first string should be entered into array Aname$, while the
second should be entered into array Tel$.

Other Methods of Storing and Retrieving Data:

Information can be stored in a file and retrieved from a file by
other statements than WRITE #n and INPUT #n. The statements
PRINT #n and PRINT #n USING can be used to put data into a
file in much the same way that PRINT and PRINT USING were
used to display data on the screen. With PRINT #n, you can
record numbers with leading or trailing spaces. The statement
UNE INPUT #n can be used to read data from a sequential file.
The statement

LINE INPUT #n, X$

reads all characters (including commas) to the next carage
returnflinefeed in the file through channel n and assigns this
string of characters to the variable X$. Just like the INPUT #n file
statement has an equivalent INPUT keyboard statement, so
does the LINE INPUT #n which takes the form

UNE INPUT Y$
which allows the user to enter any keyboard character into string
Y$. The LINE INPUT #n statement is normally used to retrieve

data that has been entered in a file using the PRINT #n
statement.

113

Finally, the statement
X$=INPUTS(m,n)

reads the next m characters (including commas and carriage
returns) from the file through channel n, and assigns them to the
string variable X$.

Problem 6.1

Convert the SEQUENIN and SEQUENRT programs into
procedures to use the LINE INPUT, PRINT #n, and LINE INPUT
#n statements so that information (including a comma, used to
Separate name and telephone number) can be typed from the
keyboard into string array Aname$, and subsequently stored into
a sequential file named LIST. These changes eliminate the need
for the existence of string array Tel$ which should be removed
from the final program.

Appending to Sequential Data Files:

So far, we have seen how to create and retrieve sequential data
files. However, files are seldom created in their entirety and it is
therefore necessary to append records to existing files. The
program below will OPEN FOR INPUT an existing file with the
extension .IDX, will read the total number of 'old’ records on the
file, print its value on the screen and close the file. You are then
asked for the number of 'new' records and array Aname$ is
appropriately dimensioned. The DO loop is used to enter into
Aname$(1) the new records which are then appended at the end
of the sequential file with the extension .DAT, by opening the file
for append with the statement

OPEN Filename$ FOR APPEND AS #n
Towards the end of the program, the total number of old plus

new records is written into the .IDX file. The program to achieve
all this is listed on the next page.

114

REM APPEND TO SEQ FILE
DO

INPUT "APPEND TO WHICH FILE? *, Fiienome$

IF Flenome$="" THEN

CLS
SHELL “DIR A:\@Basic /W*"

END IF
LOOP UNTIL Filename$<>"
CLS -
OPEN Filename$+".IDX" FOR INPUT AS #1
INPUT #1, Old: PRINT *NUMBER OF RECORDS = *; Oid
CLOSE #1
INPUT *NUMBER OF NEW ENTRIES? *, New
DIM Aname$(New): 1=0
DO

I=l+1

PRINT **; 1+0Id; ">*;: LINE INPUT *, Aname$(l)
LOOP UNTIL I=New OR AnameS$(l)=""
IF Aname$(l)="" THEN New=I-1
Total=Old+New
OPEN Filename$+*.DAT FOR APPEND AS #2
FOR I=1 TO New: PRINT #2, AnameS$(l): NEXT |
CLOSE #2
OPEN Filename$+*.IDX" FOR OUTPUT AS #1
WRITE #1, Total
CLOSE #1
PRINT *Done": END

The first DO...LOOP UNTIL block of statements allow you to
specify a file or press <Enter> to get a directory of the files on
the screen in ‘wide' format. This is achieved by using the
QuickBASIC SHELL command which allows DOS commands to
be executed - in this case to obtain a list of the files in the
\QBasic subdirectory on the a: drive. Once a file has been
selected, the screen is cleared (with the CLS command) and the
.IDX file of the specified filename is opened in order to read the
number of existing records in the file, the value of which is
assigned to variable Old. From there on, the additional records
are assigned to string array Aname$, and eventually appended
to the .DAT file with the use of the

OPEN <filename> FOR APPEND AS #n

115

The Total number of records, Old plus New, is then written to the
IDX file.

Type this program into your computer and Save it under the
fle name SEQUENAP. Run the program and test it by
appending to file LIST which was created with the use of the
program resulting from the solution to Problem 6.1.

Using the End of Flle Marker:

We have seen earlier that QuickBASIC puts the EOF marker at
the end of a file. A useful function, EOF(n) where n is the
communications channel with the file, can tell you if you have
reached the end of a file when reading in data. For example, the
following short program could be used to retrieve the LIST.DAT
file

REM USING THE EOF MARKER
OPEN "A:\QBasic \LIST.DAT* FOR INPUT AS #1
DO UNTIL EOF(1)
LINE INPUT #1, Aname$
PRINT Aname$
LOOP
CLOSE #1
END

The above program assumes that file LIST.DAT is to be found in
the subdirectory \QBasic in the A: drive. The DO UNTIL...LOOP
block of statements is executed as long as EOF is not true.
Information is read into string variable Aname$, a record at a
time, and printed on the screen.

This method of reading data dispenses with the need of having
to keep and index (.IDX) file in which to keep information
regarding the number of records to be found in the data file
under question. However, since we don't know the number of
records in the file, we cannot dimension accurately a string array
in order to read all the records into it. We could, of course, OPEN
the file, read and count all the records and then use the
information to dimension the required array. For example, the
program on the next page will do this.

116

REM USING THE EOF MARKER

OPEN *A:\QBasic \LIST.DAT" FOR INPUT AS #1

Count=0

DO UNTIL EOF(1)

LINE INPUT #1, Aname$
Count=Count+1

LOOP

CLOSE #1

DIM Aname$(Count)

OPEN *A:\QBasic \LIST.DAT FOR INPUT AS #1

FOR I=1 TO Count: LINE INPUT #1, Aname$(f): NEXT |

CLOSE #1

FOR I=1 TO Count: PRINT Aname$(f): NEXT |

END
However, the disadvantage of having to read a long file to find
out the total number of records before it could be read into an
array to, say, be sorted is only too obvious.

The general disadvantage in using sequential data files is that
there is no way in which we could know the precise position,
within the file, of a given record. This means that, if we wanted to
find a given record, we must read in turn each record of the file
from its beginning.

Problem 6.2

Convert the solution to Problem 6.1 to incorporate the
SEQUENAP program as a procedure so that you can create,
retrieve and append to a sequential file.

Then convert the PROCSORT program (to be found in section
'Passing Arrays to Procedures' in Chapter 5) so that retrieved
data can be sorted in alphabetical order. Use the data file LUST
to verify that all the options offered by your program perform as

expected.
Save the resulting program under the filename SEQFILE.

117

Random Access Files

Random-access data files are like a collection of equal-length
sequential files, which means that each file can have a number
of records (each with a record length specified by parameter
LENgth). A visual representation of random access data files is
shown below:

1 2 3 4
12345678901234567890123456789012345678901234
ADAMS M. 02-1893 iissssdddddddd
SMITH A. D. 03-864243 iissssdddddddd

LONGFELLOW A. B. C. 01-5513567iissssdddddddd

Each row represents a record and each record is divided into 6
fields'. The first field, which is 20 characters long, contains
names, the second, which is 10 characters long, contains phone
numbers, the third to the fifth field contains numerical data which
is encoded to strings of lengths 2, 4 and 8 characters,
representing integer, single- and double-precision floating-point
numbers, respectively. Thus the record length of each row in the
above representation 48 characters (20+10+2+4+8 = 44).

QuickBASIC can store data in random access files by using
either of two formats; by storing all data as strings which requires
you to define a record by the FIELD statement, or by storing
composite data which requires you to define a record by the
TYPE..END TYPE statement. Both definitions will be discussed.

In the former case, numeric values must be converted to
strings before they can be stored. To do this, QuickBASIC
provides four functions, namely MKI$, MKL$, MKS$, and MKD$
which 'make' integers, long integers, single- and double-
precision floating-point numbers into strings of 2, 4, 4, and 8
characters long. Functions CVI, CVL, CVS, and CVD ‘convert'
these strings back to numbers, so they can be used in
expressions. In the latter case, you don't need to so convert
data, but the penalty is that all records must remain the same
size, irmrespective of the actual information held in them. An
example of the flexibility available with the former case of storing
records is given in Appendix C.

118

Defining Records by FIELD
The length of a record is declared in the OPEN statement, by
assigning it to variable LEN, as follows:

OPEN <«filename> AS #n LEN =L

The statement permits writing, reading, adding or changing a
record of a random file.

The precise composition of each record is declared in the
FIELD statement by including the length of each field and its
string variable name. For the record structure of the file
discussed above, this would take the form:

FIELD #n 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$, 4 AS Fprices$,
8 AS Ftotal$

where Fcust$ is the field name of a customer and is 20
characters long, Ftel$ is the customer's telephone number and is
10 characters long, Funits$ represents the number of phone
units used by the customer (integer, encrypted as 2 characters),
Funival$ and Ftotal$ represent the unit value and the total
amount due (single- and double- precision floating-point
numbers, encrypted as 4 and 8 characters respectively).

Note that field names have been preceded by the letter F to
easily distinguish them from other program variables. The
reason for this has to do with the way QuickBASIC assigns the
contents of a string variable to a field string. The assignrent is
made with the use of the LSET statement, as follows:

LSET FcustS=Aname$

assigning to Fcust$ a string of w (in our case, 20) characters
long. If Aname$ is longer than w characters, then only the
leftmost w characters will be assigned. If it is less than w
characters, then it left justifies the string and adds the
appropriate number of spaces.

Never assign a value to a field variable by using LET. You
must use LSET and for this reason we use an F as the first letter
of a field variable so mistakes can be avoided.

119

Random access files are inefficient users of file space. For
example, the first record above contains a short name, yet a
standard length is set aside for each field. On the other hand,
information can be found easily. The third record, for example,
begins at character number 3*LEN, where LEN is the length of
the record. LEN can be any number from 1 to 32767, but if it is
not specified in the OPEN statement it defaults to 128.

Creating and Retrieving Random Files:
Data can be stored in a random file with the use of the

PUT #n, 1

command, which places data into record r. Numeric data must
have been made to strings with the use of the MKI$, MKLS,
MKS$, or MKD$ functions. Assignments to field string variables
must be made with the LSET statement.

Data can be read from a random file with the use of the

GET #n,r

command, which allows you to read record r. Field string
variables can be assigned to program variables with the use of
the LET statement. Numerically encrypted variables must be
converted with the use of CVI, CVL, CVS or CVD functions.
Unlike sequential files, there is no need to close random files
after recording information in them in order to read from them.
You can simply use the GET command and specify the required
record r. However, this record must exist in the file. As the tot
number of characters in a file can be found from the o

LOF(n)

function, dividing the value of LOF function by LEN gives the
number of records in a random file.

The program on the next page will help to illustrate how
random access files can be created using the INPUT LINE
statement. Save it under the filename RANCREAT (which stands
for RANdom CREATe).

120

REM CREATE A RANDOM DATA FILE
READ New
DIM Aname$(New), Phone$(New), Unitsk(New), Price(New),
Amount#(New)
FORI=1 TO New
READ Aname$(l), Phone$(l). Units%(l), Price(l)
Amount #(1)=Units%()*Price(l)
NEXTI
INPUT "NAME TO SAVE UNDER? *, Filename$
OPEN Filename$ AS #1 LEN = 44
FIELD #1, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$, 4 AS Funival$,
8 AS Ftotal§
FOR I=1 TO New
LSET Fcust$=Anames(l)
LSET Ftel§=Phone$(l)
LSET Funits$=MKI$ (Units%(1))
LSET Funival$=MKSS$(Price(l))
LSET Ftotal$=MKDS(Amount # (1))
PUT #1,}
NEXTI
CLOSE #1
DATA 3
DATA "ADAMS M.", "02-1893", 350, 8
DATA "SMITH A. D.", "03-864243", 380, 8
DATA "LONGFELLOW A. B. C.*, "01-5513567", 415, 8
END

The following program will retrieve a specified random access
file provided it was created by the same FIELD format and has
the same record length. Type it into your computer and Save it
under the filename RANRETR (RANdom RETRieve). Then use
the RANCREAT program to create a random file (call it
RANDATA) and the RANRETR program to retrieve it.

REM RETRIEVE A RANDOM DATA FILE

INPUT *FILE NAME TO LOAD? *, Filename$

OPEN Filename$ AS #2 LEN = 44

FIELD #2, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$, 4 AS Funival$,

8 AS Ftotal$

Max=LOF(2)\44

DIM Aname$(Max), Phone$(Max), Units%(Max), Price(Max),
Amount #(Max)

121

FOR I=1 TO Max
GET #2,1
LET Aname$(l)=Fcust$
LET Phone$(l)=Ftel$
LET Units%(l)=CVI(Funits$)
LET Price(l)=CVS(Funival$)
LET Amount#(1)=CVD(Ftotal$)
NEXTI
CLOSE #2
CLs
PRINT *Customer*; TAB(22); "Telephone*; TAB(35); "Unifs";
TAB(43); “Price"; TAB(50); "Amount*
FORI=1 TO Max
PRINT Anames$(l); TAB(22); Phone$(l); TAB(35); Units%(l);
TAB(43): Price(l); TAB(50); Amount#(l)
NEXT
END

Append, Edit, or Delete Records in Random Files:

Appending records to an existing random file can be achieved
easily enough by first finding out the maximum number of
records in the file with the help of the LOF(n)\LEN expression
and then using the PUT command to write information into the
file starting at the maximum number of records plus one.

Editing a record requires you to know its numerical position in
the file in order to start writing at that record position the edited
information.

Deleting records again requires you to know the numerical
position of the record in the file, so that a null string can be LSET
to the first field variable. The retrieve program could then be
rewritten to test for spaces in the first field, and if found not to
display such a record.

Problem 6.3

Implement the above suggestions relating to methods for
appending, editing and deleting records in random files and
incorporate into it the create and retrieve programs, using the
SELECT CASE statement to provide a menu of choices. Save
the resultant program under the filename RANFILE.

122

The solution to this problem is vital if you are to understand how
random files work. So, do try it for yourself before looking up the
solution at the back of the book. When you do have a look at the
solution provided, bear in mind that there are better methods of
solving the same problem. For example, it would be better to
store information relating to the length of each record, the
number of fields and their lengths and types, as well as their field
names, in an index file. In this way, one program could create,
retrieve, edit, etc., many different random data files. For such a
program, see Appendix C.

Defining Records by TYPE
Records can be defined by the use of the TYPE..END TYPE
statement which allows the creation and storing of data in a
composite format; mixing string and numeric types. As a result,
functions such as MKI$, MKL$, MKS$, and MKD$ which ‘make’
integers, long integers, single- and double-precision floating-
point numbers into strings, and the functions CVI, CVL, CVS,
and CVD which ‘convert’ these strings back to their
corresponding values, are not used.

The definition of TYPE..END TYPE is given below using the
same variable names as those used in the RANCREAT program:

TYPE RECORD
Aname AS STRING * 20
Phone AS STRING * 10
Units AS INTEGER
Price AS SINGLE
Amount AS DOUBLE
END TYPE

To open a file and specify its length, now requires the following
statement:

OPEN Filename$ FOR RANDOM AS #1 LEN = 44

The program listed on the next page is the same program as the
RANCREAT program developed earlier. You could either edit
that program, or re-type the new version. In either case, Save it
under the filename RANCRTYP (which stands for RANdom
CReate with TYPe).

123

REM CREATE A RANDOM DATA FILE WITH TYPE
TYPE RECORD
Aname AS STRING * 20
Phone AS STRING * 10
Units AS INTEGER
Price AS SINGLE
Amount AS DOUBLE
END TYPE
READ New
DIM Table(New) AS RECORD
FORI =1 TO New
READ Table(l).Aname, Table(l).Phone, Table(l).Units,
Table(l).Price
Table(l). Amount = Table(l).Units * Table(l).Price
NEXT |
INPUT *"NAME TO SAVE UNDER? *, Filename$
OPEN Fllename$ FOR RANDOM AS #1 LEN = 44
FORI=1TO New
PUT #1, |, Table(l)
NEXTI
CLOSE #1
DATA 3
DATA "ADAMS M.*, "02-1893", 350, 8
DATA "SMTH A. D.%, "03-864243", 380, 8
DATA "LONGFELLOW A. B. C.*, "01-5513567", 415, 8
END

Note the use of the structured variable
Table(l).Aname

which refers to the element ‘Aname' of the Ith entry in the array
Table()'.

The equivalent program to retrieve random files with the use of
the TYPE..END TYPE definition is given below:

REM RETRIEVE A RANDOM DATA FILE USING TYPE
TYPE RECORD

Aname AS STRING * 20

Phone AS STRING * 10

Units AS INTEGER

Price AS SINGLE

Amount AS DOUBLE
END TYPE

124

INPUT “FILE NAME TO LOAD? *, Filename$
OPEN Filename$ FOR RANDOM AS #2 LEN = 44
Max = LOF(2) \ 44
DIM Table(Max) AS RECORD
FORI| =1 TO Max
GET #2, |, Table(l)
NEXTI
CLOSE #2
CLs
PRINT *Customer”; TAB(22); "Teiphone®; TAB(35); "Units"; TAB(43);
Price"; TAB(50); "Amount
FORI =1 TO Max
PRINT Table(l).Aname; TAB(22); Table(l).Phone; TAB(35):
Table(l).Units; TAB(43); Table(l).Price; TAB(50);
Table(l).Amount
NEXT |
END

As before, you could either edit the RANRETR program, or
re-type the new version given above. In either case, Save the
resultant program under the filename RANRETYP (which stands
for RANdom REtrieve with TYPe).

Binary Files
A binary file is the most rudimentary type of files which offer the
greatest flexibility, but their use imposes considerable
responsibility on the programmer as they do not have any
structure. They are a sequence of characters without any
delimiters or records. The characters simply occupy positions 0,
1, 2, and so on, within the file.

Just like random files, binary files have only one, all-purpose,
OPEN statement, namely

OPEN <filename> FOR BINARY AS #n

which opens a channel of communication to the mentioned file.
The file can be of any type, including files created outside the
QuickBASIC environment.

When a binary file is OPENed, there is a 'current file position’
pointer which points to position 0. The statement

SEEK #n, p
can change the current position of the pointer to position p.

125

Following the SEEK #n, p statement with a
PUT #n X$

starts writing the contents of X$ from the eurrent position of the
pointer onwards, eventually moving the position of pointer to the
position that follows the last character written.

Similarly, the statement

GET #n, m, X$

starts reading at the cumrent file position m characters and
assigns them to variable X$, and then moves the current position
pointer to a position following the last character read.

Other tasks, such as finding the curmrent position of the file
pointer, or the length of the file, can be found with the use of the
LOC(n) and LOF(n) functions.

It is obvious from what has been said above, that you can
OPEN any file as a binary file and you can read any part of it or,
indeed, write to any part of it. But writing to such a file, it simply
overwrites what was there in the first place, so unless you know
precisely how the file is constructed you could end up destroying
the information held in it.

Error Handling
The ON ERROR statement can be used to specify an error
handling routine. The general form of the statement is:

ON ERROR GOTO fabel

where label identifies the first line of the error routine.

In the simple example below the error routine has been
attached to the RANRETR program and it starts at the label
‘Errortrap'. Once error handling has been tumed on with the ON
ERROR GOTO statement, errors cause a jump to the error
handling routine, instead of displaying the error message and
ending execution. To resume execution, once such a jump has
occurred, you must use the RESUME statement. RESUME by
itself causes execution to be resumed with the statement that
caused the error, RESUME NEXT causes execution to resume
with the statement following the one that caused the error, while
RESUME /abel causes execution to resume at the specified
label.

126

In the program below the error trapping routine can be activated
by pressing <Enter> in response to "FILE NAME TO LOAD". In
addition, the program assigns the length of an OPENed file to
L&, and if its value is zero, then the message "File does not
exist" is printed on the screen and the file is KiLLed (deleted
from disc) because with random files, if a file does not exist one
is created, and if it does exist it is OPENed for reading or
appending. KiLLing files that don't exist avoids accumulating a
lot of zero length files.

REM RETRIEVE A RANDOM DATA FILE WITH ERROR TRAPPING
ON ERROR GOTO Errortrap
Start:
INPUT *FiLE NAME TO LOAD? *, Fllename$
OPEN Filename$ AS #2 LEN = 44
L&=LOF(2)
IF L&=0 THEN
CLOSE#2
PRINT *Flie does not exist": KILL Flename$
GOTO Start
ENDIF
FIELD #2, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$, 4 AS Funival$,
8 AS Ftotal$
Max=LOF(2)\44
DIM Aname$(Max), Phone$§(Max), Units¥%(Max), Price(Max),
Amount#(Max)
FOR I=1 TO Max
GET #2,1
LET Aname$(l)=Fcust$
LET Phone$(l)=Ftel$
LET Units%(l)=CVI(Funits$)
LET Price(l)=CVS(Funival$)
LET Amount#(l)=CVD(Ftotal$)
NEXT!
CLOSE #2: CLS
PRINT "Customer®; TAB(22); *Telephone®; TAB(35); "Units";
TAB(43); "Price"; TAB(50); "Amount*
FORI=1 TO Max
PRINT Aname$(l); TAB(22); PhoneS(l); TAB(35); Units%(l):
TAB(43); Price(l); TAB(50); Amount#(l)
NEXTI
END

127

Errortrap:
IF ERR=64 THEN
PRINT *Error No. *;ERR;" - Bad Filename*
END IF
RESUME Start

Problem 6.4

Implement the error handling routine in the RANRETYP
(RANdom REtrieve with TYPe) program discussed earlier. Save
the resultant program under the filename RANERTYP.

128

Exercises

1. A record is kept of the production of each of eight
machines at a factory. At the end of each week, a data
card is prepared for each machine which records machine
number (from 1 to 8), number of items produced and
number of running hours. The information on this cards is
then typed into a computer, not necessarily in order of
machine number, so that the program can create a file to
store it.

Wirite a program to accomplish this task. The retrieve part
of the program should also (a) calculate the number of
items produced on each machine per hour, (b) add up the
total production, (c) calculate the total hours worked, and
(d) calculate the average production per hour. The results
should be printed as a list in order of machine number,
under appropriate headings.

2. - Add appropriate procedures to the program appearing in
Appendix C, so that the resulting program can append,
edit, and delete records, in addition to its present
capability of creating and retrieving records.

129

7. APPENDICES

A -~
QuickBASIC Reserved Words

The following table lists QuickBASIC's reserved words which
must not be used as variable names in a program.

ABS ACCESS ALIAS AND ANY APPENDC
AS ASC AN BASE BEEP BINARY
BLOAD BSAVE BYVAL CALL CALLS CASE
CDBsL CDECL CHAIN CHDIR CHR$ CINT
CIRCLE CLEAR CING CLOSE CLS COLOR
COM COMMAND$ COMMON CONST COS CSNG
CSRLIN CVD CVDMBF cvi cviL CvVs
CVSMBF DATA DATES DECLAREDEF DEFDBL
DEFINT DEFLNG DEFSNG DEFSTR DIM DO
DOUBLE DRAW ELSE ELSF END ENDF
ENVIRON ENVIRON$ EOF eQv ERASE ERDEV
ERDEVS ERL ERR ERROR EXIT EXP
FIELD FILEATIR FILES FIX FN FOR
FRE FREEFILE FUNCTION GET GOSUB HEX$

F IMP INKEY$ INP INPUT INPUTS
INSTR INT INTEGER IOCTL IOCN§ IS

KEY KILL LBOUND LCASES LEFTS LEN

LET LINE LIST LoC LOCAL LOCATE
LOCK LOF LOG LONG LOOP LPOS
LPRINT LSET LTRIMS MID$ MKD$ MKDIR
MKDMBF$ MKI$ MKL$ MKS§ MKSMBF$ MOD
NAME NEXT NOT OCT§ OFF ON
OPEN OPTION OR out OUTPUT PAINT
PALETTE PCOPY PEEK PEN PLAY PMAP
POINT POKE POS PRESET PRINT PSET
PUT RANDOM RANDOMIZE READ REDIM REM
RESET RESTORE RESUME RETURN RIGHTS RMDIR
RND RSET RTRIMS RUN SADD SCREEN
SEEK SEG SELECT SETMEM SGN SHARED
SHELL SIGNAL SIN SINGLE SLEEP SOUND
SPACES SPC SQR STATIC STEP STICK
STOP STRS STRIG STRING STRINGS SUB
SWAP SYSTEM TAB TAN THEN TIMES
TIMER TO TROFF TRON TYPE UNBOUND
UCASES UNLOCK UNTIL USING VAL VARPTR
VARPTR$ VARSEG VIEW WAIT WEND WHILE
WIDTH WINDOW WRITE XOR

133

B-
Error Messages

QuickBASIC displays two different types of error messages:
run-time and compile-time. Run-time errors messages occur
when a compiled program is executed and are the result of
errors detected by the compiler, while compile-time errors are
errors in syntax encountered by the compiler.

Run-time errors, including file-system errors, have error
codes between 0 and 255 which are displayed together with a
short message. They can be trapped by an error-handling
routine to retain program control should an error occurs with the
use of the ON ERROR statement. The error routine can then
divert program control based on the type of error that occurred.
File-system errors (such as ‘disk full'), are particularly suited to
an error-handling routine.

If run-time errors are not trapped by an error-handling routine,
then the program will be aborted on encountering an error
condition. Furthermore, if you are executing a compiled .EXE
file of your program direct from DOS, the short error messages
that accompany the error numbers are not included in the error
display.

Compile-time error messages appear on the screen with a
brief description. They are the result of errors of syntax caused
by missing symbols, misspelled commands, etc. If the compiler
does not understand something in the source program, it
automatically places you in the editor with the cursor positioned
at the <OK> option of the dialogue box and the line causing the
error highlighted. Pressing <Enter> clears the error message,
allowing you to edit the offending statement.

Run-Time Errors:
Run-time errors have error codes between 0 and 255, and have
the following meaning:

Code Meaning

3 A RETURN was detected without a matching
GosuB.
5 An attempt has been made to pass an in-

appropriate argument to a statement or function.

135

11

14

19

20

C 24

25
27
39

50

51

52

An overflow condition has occurred as a result of a
calculation which has produced a value which is too
large to be represented in the indicated numeric
type.

The out-of-memory error can be caused by many
situations, including dimensioning too large an
array.

An attempt has been made to use an array
subscript larger than the maximum value given in
the DIMension statement.

An attempt has been made to divide by zero or to
raise zero to a negative power.

The string storage space of 64 kbytes has been
exceeded.

There is no RESUME statement in error-handling
routine.

A RESUME statement has been executed without
the occurrence of an error.

The specified device time-out value for a commu-
nication status line has expired.

A hardware device error has occurred.

The printer is out of paper or it may be turned off.
CASE ELSE expected.

Variable required.

Given the file's record length, an attempt has been
made to define a set of field variables in a FIELD
statement which are too long.

A malfunction has occurred within the QuickBASIC
run-time system. Call the Technical Support Group.

The channel number you gave in a file statement is
not the same as the one given in an OPEN
statement, or the channel number may be out of
the 1-15 range.

136

53

55

57

59
61
62

67

69

70

71

72

The specified filename could not be found on the
logged/indicated drive.

An attempt has been made to use PUT/PUTS$ or
GET/GETS$ on a sequential file.

An attempt has been made to open or delete an
already opened file.

FIELD statement active.
A hardware device I/O error has occurred.

An attempt has been made to specify a new name
argument in the NAME command which already
exists.

Bad record length.

The logged disc is full.

An attempt has been made to read more data from
a file than it had in it. The error can also be caused
by trying to read from a sequential file opened for
output or append.

A negative number or one larger than 16,777,215
was given as the record number to a random file.

invalid characters have been used in naming a file
in a FILES, KILL, or NAME statement.

An attempt has been made to create too many files
in a drive's root directory or by using an invalid
filename.

The device you have tried to OPEN does not exist.

An attempt has been made to INPUT characters
into an already full communications buffer.

An attempt has been made to write to a write-
protected disc.

The door of the floppy disc drive is open or there is
no disc init.

The disc controller adaptor indicates a hard media
error in one or more sectors.

137

73
74

75

76

Advanced feature unavailable.

An attempt has been made to rename a file across
discs or directories.

An inappropriate pathffile access name has been
used in @ command, such as OPEN, RENAME, etc.

The path specified during a command, such as
OPEN, etc., cannot be found.

138

C-
Creating & Retrieving General Random Data

The program below can create and retrieve any number of
different random files. These can have any number of fields and
any type of field specifications. For ease of understanding, the
program is split into a short main program and several
subprograms. The main program is listed below.

DECLARE SUB CREATE ()
DECLARE SUB RETRIEVE ()
DECLARE SUB MAKEIDX (Fllename$, Reclen%)
DECLARE SUB READIDX (Filename$, Reclen%)
REM CREATE, RETRIEVE GENERAL RANDOM FILES
REM SDYNAMIC
DIM Fidiens%(1), Fidnames$(1), Fidtype$(1). Fidvar$(1)
CLs
DO
PRINT "1. Create a File"
PRINT "2. Retrieve File"
PRINT *0. Quit*
PRINT:INPUT "CHOOSE (0/1/2)"; Q
SELECT CASE Q

CASE1

CALL CREATE
CASE 2
CALL RETRIEVE

CAGSE ELSE

PRINT *Finished"

END
END SELECT
PRINT:PRINT *Done"
LOOP WHILE @

The main program uses the CREATE and RETRIEVE
subprograms to respectively create and retrieve a new
database. For simplicity, the program does not contain any
error trapping routines, therefore trying to retrieve a file that
doesn't exist will flag an error. Subprogram CREATE is listed on
the next page.

139

SUB CREATE
SHARED Numfids%, Fidnames$(), Fidiens%(), Fidtype$(),
Fidvar$(Q
ERASE Fidlens%, Fidnames$, Fidtype$, Fidvar$
INPUT "NAME TO SAVE UNDER? *, Flename$
INPUT "Number of flelds:*, Numfids%
DIM Fidlens%(Numfids%), Fidnames$(Numfids%)
DIM Fidtype$(Numfidsk), Fidvar$ (Numfids%)
FOR I=1 TO Numfids%
PRINT "Heading for field *; I;: INPUT * *, Fidnames$(l)
PRINT "Datatype of fieid *; I;: INPUT * *, Temp$
Fidtype$(1)=UCASES(Temp$)
SELECT CASE Fidtype$(l)
CASE "INTEGER"
Fldlens%(l)=2: FldtypeS(l):‘%'
CASE "LONG"
Fidiens%(l)=4: Fidtype$(l)="&"
CASE "SINGLE"
Fidlens%()=4: FidtypeS$(l)="1"
CASE "DOUBLE"
Fidlens%()=8: Fidtype$(l)="#"
CASE "STRING®
PRINT *"How many chars In *FidnamesS$(i)":*;
INPUT *, Fidlens%(l): Fidtype$(i)="$"
END SELECT
NEXT |
CALL MAKEIDX(Filename$, Recien%)
OPEN Fllename$+".DAT" AS #1 LEN = Reclen%
FIELD#1 Fidiens%(1) AS Fidvar$(1)
Count%=Fidlens%(1)
FOR 1=2 TO Numfids%
FIELD#1, Count% AS DUMS, Fidiens%(l) AS Fidvar$(l)
Count%=Count%+Fidlens%(l)
NEXT I: Recno%=0
DO
PRINT *<Enter> to add data <End> to quit*
INPUT *, AS: IF UCASES(AS)="END" THEN EXIT DO
Recno%=Recno%+1
FOR J=1 to Numfids%: PRINT Fidnames$(J)*;
SELECT CASE Fidtype$(J)
CASE "%
INPUT **,A%: LSET Fidvar$(J)=MKI$ (A%)

140

CASE "&"
INPUT ", A&: LSET Fidvar$(J)=MKLS(A &)
CASE "I
INPUT ", A} LSET Fidvar$(J)=MKSS$(A!)
CASE "#*
INPUT *, A #: LSET Fidvar$(J)=MKD$(A #)
CASE "$"
INPUT ", A$: LSET Fidvar$(J)=A$
END SELECT
NEXT J: PUT#1, Recno%
LOOP: CLOSE #1
PRINT USING “# # # # Records created in file & _.DAT";
Recno%, Filename$
END SUB

The subprogram asks the user for a name under which to save
your created database, then the number of fields Numfids% the
new database is going to have. Following this, the program
asks for the 'Heading' of each field, its type (that is whether it is
Integer, Long, Single, Double or String) and appropriately
assigns the correct number of bytes required to hold the
numeric field types. If you specify that the field is a String, then
you are asked for the length of the field in characters.

Once all the above information is entered, the program
CALLs the MAKEIDX subprogram to make the .IDX file which
contains the number of fields, their appropriate lengths and
types. The subprogram calculates and returns the record length
Reclen%. The MAKEIDX subprogram is listed below.

SUB MAKEIDX(Filename$, Reclen%)

SHARED Numfids%, Fidlens%(), Fidtype$(), Fidnames$()

DIM FLENS(Numfids%), FTYPES(Numfids%)

DIM HEADS(Numfids%)

OPEN Filename$+".IDX" AS #1 LEN = 2+23*Numfids%

FIELD #1, 2 AS FLDSS

LSET FLDS$=MKI$(Numfids%)

Recien%=0

FOR I=1 TO Numflds%
FIELD#1, 3%-1 AS DUMS, 2 AS FLENS(), 1 AS FTYPES(l)
FIELD#1, 3*Numfids%+20*-18 AS DUMS, 20 AS HEADS(l)
LSET FLENS())=MKIS(Fidiens%())
LSET FTYPES(l)=FidtypeS(l)

141

LSET HEADS(l)=Fidnames$(l)
Reclen%=Reclen%+Fidiens%(l)
NEXT I: PUT#1,1
PRINT *File *Filename$".IDX created OK."; CLOSE#1
ERASE FLENS. FTYPES, HEADS
END SUB

The fourth line of the above subprogram OPENSs a file with the
given filename, but with extension .|DX, which nas a length LEN
= 2+23*Numfids%. This is equivalent to 2 bytes for the number
of fields, plus 3*Numfids% for field definitions made up of 2
bytes to hold an integer number describing the length of each
field, 1 byte to describe the type of field (integer as %, long
integer as &, single-precision as |, double-precision as #, or
string as $), and 20 bytes describing the headings of each field.

The following line creates the FIELD image with 2 bytes for
the number of fields. The FIELD image is then built up with the
first two statements within the FOR...NEXT loop.

In this first FIELD statement within the loop, namely

FIELD#1, 31-1 AS DUMS, 2 AS FLENS()), 1 AS FTYPES())

the 3*I-1 is equivalent to 2+3%(1-1); 2 being the dummy for
number of fields, while 3*(I-1) being the number of characters

used up in the preceding fields, 2 for field length and 1 for type
of field.

In this first FIELD statement within the loop, namely
FIELD#1, 3*Numfids%+20*-18 AS DUMS, 20 AS HEADS()

the 3*Numfids% is equivalent to 2*Numfids% for the lengths of
the fields plus 1*Numfids% for the types of the fields, while
20*-18 is equivalent to 2 for the number of fields (accounted
for previously), plus 20%(1-1) dummy bytes for the length of the
preceding fields.

The schematic diagram, shown on the next page, will help to
explain how the FIELD is being built up in the .IDX file. The
diagram is drawn assuming the number of fields Numfids% = 3.

On return from the MAKEIDX subprogram back to the
CREATE subprogram, the .DAT file is OPENed with the correct
record length (Reclen%) which was calculated within the
MAKEIDX subprogram. The FIELD image of the file is then
constructed in a similar manner to that of the .IDX file.

142

SPI3l) 834y} YUM BJlj WOPUEI © 10 UONEIYSdS 013/ € dn Buipyng “{=D “Bl4

obest qTII4 oz o o Hejjelyeie

(€)$av3H $una V4 18

(£)$3dAld (£)90B14 $wna 1y K4 8

(z)$avaH $una oz 1€

(2)$3dALd (Z)$K314 $na 1z S

(1)$avan $na o 1

(1)$3dALd (1)$N34 $wna He|e

ASPLNN z

Teurd

T=1

1=I

143

The retrieve option of the main program makes use of the
RETRIEVE subprogram which is listed below.

SUB RETRIEVE
SHARED Numfids%, Fidiens%(), Fidtype$(). Fidnames$(),
Fidvar$(Q
INPUT *FILE NAME TO LOAD? *, Filename$
CALL READIDX(Filenames$, Reclen%)
OPEN Filename$+°.DAT" AS #1 LEN = Reclen%
FIELD#1, Fidiens%(1) AS Fidvar$(1)
Count%=Fidlens%(1)
FOR I=2 TO Numfids%
FIELD#1, Count% AS DUMS, Fidiens%(l) AS Fidvar$(l)
Count%=Count%+Fidiens%(l)
NEXT I
Numrecs%=LOF(1)\Reclen%
FOR I=1 TO Numrecs%
GET#, I
FOR J=1 to Numfids%
PRINT Fidnames$(J)":*;
SELECT CASE Fidtype$(J)
CASE "%"
A%=CVI(Fidvar§(J)): PRINT A%
CASE "&°
A&=CVL(Fidvar$(J)): PRINT A&
CASE "I
Al=CVS(Fidvar$(J)): PRINT Al
CASE "#"
A#=CVD(Fidvar$(J)): PRINT A#
CASE"$"
AS=Fidvar$(J): PRINT AS
END SELECT
NEXT J
PRINT:PRINT "Press any key to continue®
AS=INPUTS(1)
NEXT I: CLOSE #1
PRINT USING "# # # # Records read from file & _.DAT;
Numrecs%, Filename$
END SUB

The subprogram CALLs the READIDX subprogram which reads
the .IDX file to find the structure of the file. READIDX is listed on
the next page.

144

SUB READIDX(Filename$, Reclen%)
SHARED Numfids%, Fidlens%(), Fidtype$(). FidnamesS$().
Fidvar$(

ERASE Fidlens%, Fidnames$, Fidtype$, Fidvar$

OPEN FilenameS$+".IDX" AS #1 LEN =2

FIELD#1, 2 ASFLDSS: GET#1,1

Numfids%=CVI(FLDSS): CLOSE#1

DIM FLEN$(Numfids%), FTYPES(Numfids%)

DIM HEADS$(Numfids%)

DIM Fidiens%(Numfids%), FidnamesS(Numflids%)

DIM Fidtype$(Numfids%), Fidvar$(Numfids%)

OPEN Filename$+°.IDX" AS #1 LEN = 2+23*Numfids%

FIELD #1, 2 AS FLDSS

LSET FLDSS=MKIS(Numfids%)

FOR |=1 TO Numfids%
FIELD#1, 3*1-1 AS DUMS, 2 AS FLENS(I), 1 AS FTYPES(l)
FIELD#1, 3*Numfids%+20%-18 AS DUMS, 20 AS HEADS(l)

NEXT I: GET#1,1: Reclen%=0

FOR I=1 TO Numfids%
Fidiens%(1)=C VI(FLENS(1))
Fidtype$(l)=FTYPES(I)
Fidnames$(t)=HEADS(1)
Reclen%=Reclen%+Fidlens%(l)

NEXTI

PRINT *File "Filename$".IDX read OK.": CLOSE#1

ERASE FLENS, FTYPES, HEADS

END SUB

145

D-
Solutions to Problems

in the program listings presented in this section, it is sometimes
necessary to break a long Basic line into two, or three, text lines
because of the width limitations imposed by the book. The
continuation line(s) of such code is indented by six spaces so
that it is easily recognisable (as is the case with the first PRINT
statement of the solution to Problem 2.2 below). However,
when typing such program lines into the editor, make sure they
are entered as one line only, otherwise an error will be
generated by the compiler.

Problem 1.1

REM TEMPERATURE CONVERSION

INPUT *Enter Degrees F value *, F

C=(F-32)*5/9

PRINT SPC()); F; " Degrees F =*; SPC(1). C; " Degrees C*
END

Problem 2.1

REM TIME CONVERSION

PRINT *"DAYS", "HOURS", *MINUTES", "TOTAL MIN"

READ Days, Hours, Minutes

DATA 2,10, 30

Total=Days*24*60+Hours*60+Minutes

PRINT Days; TAB(15); Hours; TAB(30); Minutes; TAB(45); Total
END

Problem 2.2

REM AVERAGES

INPUT "Enter three numbers *, A, B, C

Sum=A+B+C

Average=Sum/3

PRINT "VALUES:"; SPC(5); "A"; SPC(5); "B*; SPC(5); *C";
SPC(5); "AVERAGE"

PRINT TAB(12); A; TAB(18); B; TAB(24): C: TAB(30); Average

END

147

Problem 3.1

REM: SQUARE X

CLS: LOCATE 5,1

FORI=1 TO 15
PRINT TAB(34);
FOR J=1TO 15

PRINT *X*;

NEXT J
PRINT

NEXT!

END

Problem 3.2

REM COMPOUND INTEREST
DEFINT N,Years
INPUT "Enter original money lent *, Original
INPUT "Enter interest rate *, Rate
INPUT "Enter No. of years *, Years
PRINT SPC(1); “YEAR"; SPC(12); "AMOUNT"
FOR N=1 TO Years
Amount=0riginal*(1 +Rate/100)* N
FOMMS="#R#NN RRRRARRAN
PRINT USING Form$; N, Amount
NEXT N
END

148

Problem 3.3

REM THREE NUMBER SORT
DO
INPUT “Enter three numbers* A, B, C
IF A =-1THEN END
WHILEA<BORB<C
IF A <BTHEN
Temp=A
A=B
B=Temp
END IF
IF B < CTHEN
Temp=B
B=C
C=Temp
END IF
WEND
PRINTA,B,C
LOOP UNTIL False
END

149

Problem 3.4

REM IMPERIAL TO MKS CONVERSION
READ A, B, C

DATA 4.54609, 0.3048, 0.453592
DO:PRINT

INPUT 'GALLONS/FEET/POUNDS/QUIT (172/3/4) *; X: PRINT
SELECT CASE X

CASE
INPUT "ENTER NR OF GALLONS *, Gallons
Litres=A*Gallons
PRINT Gallons; * GALLONS = *; Litres; * LITRES"
CASE 2

INPUT "ENTER NR OF FEET*, Feot

Metres=B*fFeet

PRINT Feet; * FEET = *: Metres; * METRES®
CASE 3

INPUT "ENTER NR OF POUNDS *, Pounds

Kilos=C*Pounds

PRINT Pounds; * POUNDS = *; Kilos; * KIiLOS*
CASE 4

PRINT *Finished*
END
CASE ELSE

PRINT *Wrong fange ... Try again*
END SELECT

LOOP UNTIL Fake

150

Problem 4.1

REM STOCKTAKING
DIM Item$(4)
FOR I=1 TO 4: READ Item$(l): NEXT |
DO: PRINT
INPUT "WHICH ITEM *; Xname$
IF UCASES(Xname$)="END" THEN END
FORI=1TO 4
IF UCASES(Xname$)=LEFT$(Item$(1).3) THEN
PRINT *>>>>>> *; LEFTS(Item$(1).16); " *:
MIDS(Item$(1).18.3); * IN STOCK AT £%;
RIGHTS(Item$(1).4); * EACH"
END IF .
NEXT I
LOOP UNTIL Fakse
DATA °INK ERASER .200,0.10"
DATA "PENCIL ERASER .320,0.18°
DATA "TYPING ERASER .25 ,0.28"
DATA *CORRECTION FLUID ,150,0.50°

Problem 4.2

REM FIBONACCI SERIES
INPUT "HOW MANY TERMS *; N
DIM A(N).B(N-1): A(1)=1: A(2)=1
FORI=3TON
A(l)=A(I-2)+A(-1)
NEXT I:REM ALL TERMS STORED IN AQ)
FOR I=1 TO N-1
B()=(A()+A(I+1))/2
NEXT I: REM AVERAGES STORED IN B(Q)
PRINT *F. SERIES"; SPC(10); "AVERAGES"
FORI=1TO N: PRINT USING * ###*; A();
IF I<>N THEN
PRINTUSING® ## ¥ #H#H.¥H"B()
END IF
NEXT I: PRINT
END

151

Probiem 4.3

REM SPECIFY NUMBER/LETTER TO PRINT LETTER/NUMBER
DO
PRINT "1. SPECIFY NUMBER TO PRINT LETTER"
PRINT *2. SPECIFY LETTER TO PRINT NUMBER"
PRINT *3. END PROGRAM"
DO:PRINT: INPUT "Choose (1/2/3) *, Which
LOOP UNTIL Which >0 AND Which <4
SELECT CASE Which
CASE 1
DO
INPUT "Enter number 1 - 26 *, Number
LOOP UNTIL Number>0 AND Number<27
PRINT CHRS(M+Number): PRINT
CASE 2
DO
INPUT "Enter a letter *, Letter$
LOOP UNTIL ASC(Letter$)>63 AND ASC(Letter$)<9n
PRINT ASC(Letter$)-64: PRINT
CASE 3
END
END SELECT
LOOP UNTIL Fake

152

Problem 4.4

REM BUBBLE SORT
READ N: DIM Employee$(N)
FOR I=1 TO N: READ Employee$(l): NEXT |
DO
INPUT "OUTPUT TO SCREEN OR PRINTER? (S/P) *, Q$
LOOP UNTIL UCASES(QS$)="S" OR UCASES(Q$)="P"
1F UCASES(LEFT$(QS,1))="P" THEN
FOR I1=1 TO N: LPRINT Employee$§(l): NEXT |
ELSE
FOR I=1 TO N: PRINT Employee$(l): NEXTI
END IF
IF UCASES(LEFTS(QS,1))="P* THEN
LPRINT: LPRINT: LPRINT "SORTED INFORMATION®
ELSE
PRINT: PRINT: PRINT "SORTED INFORMATION"
END IF:M=N
FOR J=1 TO N-1
M=M-1: Flag=0
FORI=1 TOM
IF Employee$(l)>Employee$(+1) THEN
Flag=1
Temp$=Employee$(l+1)
Employee$(i+1)=Employee$(l)
Employee$(l)=Temp$
END IF
NEXT |
IF UCASES(LEFTS(QS.1))="P" THEN
LPRINT: LPRINT J
FOR I=1 TO N: LPRINT EmployeeS(i): NEXT |
ELSE
PRINT: PRINT J
FOR I=1 TO N: PRINT Employee$(l): NEXT |
END IF
AS$=INPUTS(1): IF Flag=0 THEN END
NEXTJ
DATA S
DATA "WILSON M. ,ROOM 1.24, 395"
DATA *SMITHM. ,ROOM 2.6 ,7315°
DATA *JONES B8.M. ,ROOM 6.19, 1698"
DATA "SMITH A.A. ,ROOM 2,12, 45¢°
DATA "BROWN C. ,ROOM 3.1 , 432"

183

Problem 5.1

REM NEWTON'S METHOD OF FINDING SQUARE ROOTS
INPUT *Enter a number *, Xvalue
INPUT "Guess a value *, Guess
FOR I1=1 TO 30
Ratio=Xvalue/Guess
Average=(Ratio+Guess)/2.0
IF ABS(Ratlo-Guess) < 0.001 THEN
PRINT "Square root of *; Xvalue; * = *; Average
PRINT *Found in *; I; * Iterations® -
END
END IF
Guess=Average
NEXTI
PRINT "NOT CONVERGING IN *; I-1; * ITERATIONS"
END

Problem 5.2

DECLARE FUNCTION Volumel(R!, HI)
DECLARE FUNCTION Round!(X|, D%)
REM VOLUME OF A CYLINDER
INPUT "RADIUS OF CYLINDER *; Radius
INPUT "HEIGHT OF CYLINDER *; Height
PRINT "VOLUME="; Volume(Radius, Height)
END
FUNCTION Volume (R, H)
Pi=3.141592654
Barea=Pi*R*2
Number=Barea*H
Volume=Round(Number, 2)
END FUNCTION
FUNCTION Round(X, D%)
Round=INT(X*10* D%+0.5)/10* D%
END DEF

154

Problem 5.3

DECLARE SUB Volume (R!, Hl, Resultl)
DECLARE FUNCTION Round! (X!, D%)
REM VOLUME OF A CYLINDER
INPUT "RADIUS OF CYLINDER *; Radius
INPUT "HEIGHT OF CYLINDER *; Height
CALL Volume(Radlus, Helght, Result)
PRINT "VOLUME="; Result
END
SUB Volume (R, H, Res)

Pl = 3.141592654#

Barea =PI*R * 2

Number = Barea * H

Res = Round(Number, 2)
END SUB
FUNCTION Round (X, D%)

Round = INT(X *10 * D% + .5) / 10 * D%
END FUNCTION

155

Problem 6.1

DECLARE SUB CREATES ()
DECLARE SUB RETRIEVES ()
REM PROGRAM TO CREATE & RETRIEVE SEQ. DATA
PRINT *1. Create"
PRINT "2, Retrieve"
PRINT:INPUT "CHOOSE (1/2); @
SELECT CASE @
CASE 1
CALL CREATES
CASE 2
CALL RETRIEVES
CASE ELSE
PRINT *Finished":END
END SELECT
SUB CREATES
INPUT *"NUMBER OF NEW ENTRIES? *, New
DIM Aname$(New): |1=0
DO

t=l+1: PRINT **1;*>";: LINE INPUT ™, Aname$(I)

LOOP UNTIL I=New OR Aname$(l)=""

IF AnameS$(1)="" THEN New=I-1

INPUT *NAME TO SAVE UNDER? *, Filename$

OPEN Filename$+*.IDX* FOR OUTPUT AS #1

WRITE #1, New: CLOSE #1

OPEN Filename$+*.DAT FOR OUTPUT AS #2

FOR I=1 TO New: PRINT #2, Aname$(l): NEXT I: CLOSE #2
END suB
SUB RETRIEVES

INPUT *FILE NAME TO LOAD? *, Filenames$

OPEN Filename$+°.IDX" FOR INPUT AS #3

INPUT #3, Total: DIM Aname$(Total): CLOSE #3

OPEN Filename$+".DAT FOR INPUT AS #4

FOR I=1 TO Total: LINE INPUT #4, AnameS(l): NEXTI

CLOSE #4
FOR 1=1 TO Total: PRINT AnameS$(i): NEXT |
END suB

156

Problem 6.2

DECLARE SUB CREATES ()
DECLARE SUB RETRIEVES ()
DECLARE SUB APPENDS (R
DECLARE SUB WHICHFILE (Filename$)
DECLARE SUB PROCSORT (Employee$S(). NI)
REM PROGRAM TO CREATE, RETRIEVE & APPEND SEQ. DATA
CLS:PRINT *1. Create": PRINT “2, Retrieve"
PRINT "3. Append": PRINT *0. QUIT"
PRINT:INPUT "CHOOSE (C/1/2/3)"; Q
SELECTCASE @
CASE
CALL CREATES
CASE 2
CALL RETRIEVES
CASE 3
CALL APPENDS
CASE ELSE
PRINT *Finished”
END SELECT
PRINT:PRINT "Done"; END
SUB CREATES
INPUT *"NUMBER OF NEW ENTRIES? *, New
DIM Aname$(New): 1=0
DO
I=1+1: PRINT **; I; *>";: LINE INPUT **, Aname$(i)
LOOP UNTIL I=New OR Aname$(l)=""
IF Aname$(l)="" THEN New=I-1
PRINT "SAVE TO *;:
CALL WHICHFILE(Filename$)
OPEN Filename$+°.IDX" FOR OUTPUT AS #1
WRITE #1, New: CLOSE #1
OPEN Filename$ +".DAT" FOR OUTPUT AS #2
FOR I=1 TO New: PRINT #2, Aname$(l): NEXT I: CLOSE #2
END SuB
SUB RETRIEVES
PRINT"LOAD *;:
CALL WHICHFILE(Filename$)
OPEN Filename$+".IDX" FOR INPUT AS #3
INPUT #3, Total: DIM Aname$(Total): CLOSE #3
OPEN Filename$+".DAT" FOR INPUT AS #4
FOR I=1 TO Total: LINE INPUT #4, AnameS$(l): NEXT |

157

CLOSE #4
FOR =1 TO Totak PRINT AnameS$(l): NEXT |
CALL PROCSORT(AnameS$(), Total)
PRINT:PRINT “SORTED DATA"
FOR I=1 TO Total: PRINT Aname$(l): NEXT |
END SUB
SUB APPENDS
PRINT "APPEND TO *;:
CALL WHICHFILE(Fllename$)
OPEN Filename$+.10X" FOR INPUT AS #1
INPUT #1, Oid: PRINT "NUMBER Of RECORDS = *; Oid
CLOSE #1
INPUT "NUMBER OF NEW ENTRIES? *, New
DIM AnameS(New): I=0
DO
I=l+1
PRINT **; 1+Oid; *>";: LINE INPUT *, AnameS$(l)
LOOP UNTIL i=New OR AnameS(l)=""
IF Aname$(l)="" THEN News=I-1
Total=Old+New
OPEN Fllename$+".DAT" FOR APPEND AS #2
FOR I=1 TO New: PRINT #2, Aname$(l): NEXT |
CLOSE #2
OPEN Filename$+".1DX" FOR OUTPUT AS #1
WRITE #1, Total
CLOSE #1
END SsuB
SUB WHICHFILE(Filename$)
DO
INPUT "WHICH FILE? *, Filename$
IF Fllename$="" THEN
CLS
SHELL "DIR A:\QBasic /W"
END IF
LOOP UNTIL Fllename$<>*
CLs
END SUB

158

SUB PROCSORT(Employee$(1).N)
M=N
FOR J=1 TO N-1
M=M-1: Flag=0
FORI=1 TOM
IF Employee$(l)>Employee$(+1) THEN
SWAP Employee$(i+1), Employee$(l)
Flag=1
END IF
NEXTI
IF Flag=0 THEN EXIT FOR
NEXT J
END SUB

159

Problem 6.3

DECLARE SUB CREATERAN ()
DECLARE SUB RETRIEVRAN ()
DECLARE SUB APPENDRAN ()
DECLARE SUB EDITRAN ()
DECLARE SUB DELETERAN ()
REM CREATE, RETRIEVE, APPEND & EDIT RANDOM FILES
CLS:PRINT "1. Create a File": PRINT "2, Retreve File"
PRINT *3. Append to File": PRINT *4. Edit a Record”
PRINT *5. Delete a Record": PRINT *0. Quit*
PRINT:INPUT "CHOOSE (0/1/2/3/4/5)"; @
SELECT CASE Q
CASE1
CALL CREATERAN
CASE 2
CALL RETRIEVERAN
CASE 3
CALL APPENDRAN
CASE 4
CALL EDITRAN
CASES
CALL DELETERAN
CASE ELSE
PRINT *Finished"
END SELECT
PRINT:PRINT "Done": END
DATA 3
DATA "ADAMS M.", "02-1893", 350, 8
DATA "SMTH A. D.", "03-864243" ,380, 8
DATA "LONGFELLOW A, B. C.", "01-5513567", 415, 8
SUB CREATERAN
READ New
DIM Aname$(New), PhoneS(New), Units%(New)
DIM Price(New), Amount #(New)
FORI=1 TO New
READ Aname$(l), Phone$(l), Units%(l), Price(l)
Amount#(1)=Units%(l)*Price(l)
NEXT |
INPUT "NAME TO SAVE UNDER? *, Flename$
OPEN Filename$ AS #1 LEN = 44
FIELD #1, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$,
4 AS Funival$, 8 AS Ftotal$

160

FORI=1 TO New
LSET FcustS=Aname$(l)
LSET Ftel$=Phone$(l)
LSET Funits$=MKIS(Units%(1))
LSET Funival$=MKSS(Price(l))
LSET Ftotal$=MKD$(Amount#(l)): PUT #1, |
NEXTI: CLOSE #1
END SUB
SUB RETRIEVERAN
INPUT *FILE NAME TO LOAD? *, Filename$
OPEN Filename$ AS #2 LEN = 44
FIELD #2, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$,
4 AS Funival$, 8 AS Ftotal$
Max=LOF(2)\44
DIM Aname$(Max), Phone$(Max), Units%(Max)
DIM Price(Max), Amount #(Max)
FOR I=1 TO Max
GET #2,1
LET AnameS$(l)=Fcust$
LET Phone$(l)=Ftel$
LET Units%(l)=CVI(Funits$)
LET Price(l)=CVS(Funival§)
LET Amount#(1)=CVD(FtotalS)
NEXT I: CLOSE #2: CLS
PRINT “Rec *; TAB(6); "Customer”; TAB(28); *Teiphone*;
TAB(41); "Units"; TAB(49); "Price"; TAB(56); "Amount*
FOR I=1 TO Max
PRINTI; TAB(6)::
IF LEFTS(Aname$(l),1)="" THEN
PRINT
ELSE
PRINT Aname$(l); TAB(28); Phone$(i); TAB(41);
Units%(l); TAB(49); Price(l); TAB(56); Amount#(l)
END IF
NEXTI
END SUB
SUB APPENDRAN
INPUT "FILE NAME TO APPEND TO? *, Filename$
OPEN Filename$ AS #3 LEN = 44
FIELD #3, 20 AS Fcust$, 10 AS Ftel§, 2 AS Funits$,
4 AS Funival$, 8 AS Ftotal$
Old=LOF (3)\44:PRINT "NUMBER OF RECORDS ="; Old
INPUT *NUMBER OF NEW ENTRIES? *, New

161

DIM Aname$(New), Phone$(New), Units%(New)
DIM Price(New), Amount#(New): |=0
DO
I=1+1: PRINT *; 14+0Id; *>*;:
INPUT **; Aname$(l), Phone$(!), Units%(l), Price(l)
Amount#(I)=Units%(l)*Price(l)
LOOP UNTIL I=New OR AnameS$(l)=""
IF Aname$(l)="" THEN New=l-1
FORI=1 TO New
LSET Fcust$=Aname$(l)
LSET FtelS=Phone$(l)
LSET Funits$=MKIS (Units%(l))
LSET Funival$=MKS$ (Price()))
LSET Ftotal$=MKD$(Amount#(l)): PUT #3, 1+Oid
NEXT I: CLOSE #3
END SuUB
SUB EDITRAN
INPUT *FILE NAME TO EDIT? *, Fllename$
OPEN Filename$ AS #4 LEN = 44
FIELD #4, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$,

4 AS Funival$, 8 AS Ftotal$
Old=LOF(4) \ 44:PRINT "NUMBER OF RECORDS = *; Old
DO

INPUT “RECORD TO EDIT? *, Rec
LOOP UNTIL Rec<=0ld
CLS: PRINT "Customer"; TAB(22); "Telphone"; TA B(35);
Units; TAB(43); "Price”; TAB(50); "Amount*

GET #4, Rec

PRINT FCust$; TAB(22); Ftel$; TAB(35); CVI(FunitsS);
TAB(43); CVS(Funival$); TAB(50); CVD(Ftotai$)

PRINT "EDIT TO" PRINT *; Rec; ">*;:

INPUT *; Aname$, Phone$, Units%, Price

Amount#=Units%*Price

LSET Fcusts=Aname$

LSET Ftel$=Phone$

LSET Funits$=MKIS(Units%)

LSET Funival$=MKS$(Price)

LSET Ftotal$=MKDS$(Amount#)

PUT #4, Rec

END SuB

162

SUB DELETERAN
INPUT "FILE NAME TO CHANGE? *, Fllename$
OPEN Filename$ AS #5 LEN = 44
FIELD #5, 20 AS Fcust$, 10 AS Ftel$, 2 AS Funits$,

4 AS Funival$, 8 AS Ftotal$
Old=LOF(5)\44: PRINT "NUMBER OF RECORDS = "; Old
DO

INPUT "RECORD TO DELETE? *, Rec
LOOP UNTIL Rec<=0id
Cts
PRINT *Customer*; TAB(22); *Telphone”; TAB(35);
Units"; TAB(43); "Price"; TAB(50); “Amount
GET #5, Rec
PRINT Fcust$; TAB(22); Ftel$; TAB(35); CVI(Funits$);
TAB(43); CVS(Funival$); TAB(50); CVD(Ftotal$)
INPUT "DELETE THIS RECORD? (Y/N) *, @$
IF UCASES(LEFT$(QS,1))="Y" THEN
Aname$=""
LSET FcustS=Aname$
PUT #5, Rec
ELSE
END IF
CLOSE #5
END SUB

163

Problem 6.4

REM RETRIEVE A RANDOM DATA FILE USING TYPE
REM WITH ERROR TRAPPING
TYPE RECORD
Aname AS STRING * 20
Phone AS STRING * 10
Units AS INTEGER
Price AS SINGLE
Amount AS DOUBLE
END TYPE
CLS
ON ERROR GOTO Errortrap
Start:
INPUT *FILE NAME TO LOAD? *, Filename$
OPEN Filename$ FOR RANDOM AS #2 LEN = 44
L& = LOF(2)
IF L& = O THEN
CLOSE #2
PRINT *Flie does not exist": KILL Filename$
GOTO Start
END IF
Max = LOF(2) \ 44
DiM Table(Max) AS RECORD
FORI =1 TO Max
GET #2, |, Table(l)
NEXTI
CLOSE #2
CLs
PRINT “Customer*; TAB(22); "Telphone*; TAB(35); *Units";
TAB(43); *Price"; TAB(50); "Amount"
FORI =1 TO Max
PRINT Table(l).Aname; TAB(22); Table(l).Phone; TAB(35);
Table(l).Units; TAB(43); Table(l).Price; TAB(50);
Table(l).Amount
NEXTI
END
Errortrap:
IF ERR = 64 THEN
PRINT "Error No. *; ERR; * - Bad Filename"
END IF
RESUME Start
END

164

INDEX

A
ABS() Function 83
Alphabetical

Comparison of Strings 55

Sorting -7
AND statement 45
Appending to Files 114, 122
Arithmetic

Functions 81

Operators 16

Priority 16
Arrays

Dynamic 64

Errors 65

Numeric 62

Static 64

String 57
ASC() Function 66, 67
ASCII

Conversion 67

Codes 56
Assignment Statement 18
ATN() Function 81
B
Basic Statements 12
Binary Files 125
Bubble sort 73, 98
C
Character conversion 67
CHR$() Function 66, 67
Clear Screen 28
CLOSE # Command 110
CLS Statement 28
COMMON Statement 100

Compiling programs 19
Concatenation 55, 68
Constants 14
Control of Program Flow 35
COS() Function 81
CR Control Character 108
CV Functions 118
D
Data
Files 109
Sorting 48
DATA Statement 24

DECLARE Command 91
DEF FN () Statement 88

Defined Functions 88
Defining records by

FIELD 119

TYPE 123
Delete Random Records 122
Derived Functions 88
DIM Statement 57,63
Disc

Directory 115

Filing System 109
DIR Command 115
DO Loops 40
Dynamic Arrays 64
E
Edit

Programs 5

Random Files 122

Window 9
Editor 10
ELSEIF Statement 47

165

END

DEF 89
FUNCTION 91
Statement 13
sus 92
Entering a Program 19
EOF Control Character 109
EOF() Function 116
EQV Statement 45
ERASE Statement 65
ERR Variable 127
Error Handling 126
EXE File 6
EXIT Statement 52
EXP() Function 84
Exponential Numbers 15
Expressions 14
F
FIELD Statement 119
Floating Point Numbers 15
FOR...NEXT Loop 35
Formatted PRINT 27

FUNCTION Procedure 90

Functions
Standard 81
Derived 87
String 57, 66
User-Defined 88
G
GET # Command 120, 126
GOSUB...RETURN 104
H
Headings 27
Help Screens 8
|
IF statement 43
Logical Operators 45

IF THEN ELSE Statement 46

IMP Statement 45
Infinite Looping 38
Input Control 23
INPUT Statement 12, 23
INPUT # Command 111
INPUT$() Statement 72, 114
INT() Function 84
Integer
Arithmetic 17
Division 17
Numbers 15
Variables 15
J
Jump out of loops 52
Justifying numbers 30
K
Keyboard Break 38
KILL command 127
L
LCASE$() Function 62
LEFT$(Function 59
LEN Parameter 119, 123
LEN() Function 66, 67
LET Statement 122
LF Control Character 109
UNE INPUT Statement 113
LOAD Command 5
Local variables 89
LOCATE Statement 28
LOF() Function 120
LOG() Function 84
Logical Operators 45
Long integers 15
Loop Configurations 39
LPT1: Device 32
LSET Statement

119

166

M
Main Menu 4
Menu
Calls option 7
Debug option 7
Edit option 5
File option 5
Help option 8
Option option 7
Run option 6
Search option 6
View option 6
MID$() Function 60
MK Functions 118
MOD 17
N
Naming convention 14
Nested FOR...NEXT Loops 38
NOT Statement 45
Numeric Arrays 62
o
ON ERROR GOTO 126
OPEN Command 19
OPEN # Command
AS # 110
FOR APPEND 115
FOR BINARY 125
FOR INPUT 111
FOR OUTPUT 110, 112
Operators
Arithmetic 16
Logical 45
Relational 45
OR Statement 45
Output
Control 23
Device 32,75
to Printer 32,75
Overlaying 69

P
Parameters

in Functions

in Procedures

in Subroutines
PRINT Statement

SPC

TAB

USING
PRINT # Statement
PRINT # USING
Printer Output
Priority, Arithmetic
Procedures

Recursive
Program Flow

88, 96
90, 96
104
13, 26
28
27
30
113
113
32,76
16
90
101
35

PUT # Command 120, 126

R
Random
Data Files
Numbers
RANDOMIZE Function
READ Statement
Real Variables
Record definition by
FIELD
TYPE
Recursion
Relational Operators
REM Statement
Reserved Words
RESTORE Statement
RESUME Statement
RETURN Statement
RIGHT$() Function
RND() Function
Rounding Numbers
Running programs

167

118
85
85
24
15

119
123
101
45
12

14,133

25
126
104

60

85

84

19

S
SAVE Command
SEEK # Statement
SELECT CASE
Sequential Data Files
SGN() Function
SHARED
Statement
Variables
SHELL Command
SIN() Function
Sorting
Alphabetic

5,20
125
51
109
85

100
89
115
82

7

Bubble sort technique 73, 98

Data
SPC() Function
SQR() Function
Static Arrays
STEP Modifier
STR$() Function
String
Arrays
Concatenation
Conversion
Functions
Variables
SUB procedure
Subprograms
Arrays
Parameters
Recursive
Subroutines
Subscripted Variables
SWAP Statement

T
TAB() Function
Tabulations
TAN() Function
Trace

TYPE Statement

48

28

82

64

36
66, 67
55

57
55, 68
67
59, 66
15, 55
90

92

98

96
101
103
62

99

27
27
82
7
123

u
UCASES$() Function

User-Defined Functions

v
VAL() Function
Variables
Double precision
Integer
Floating-point
Local
Long Integer
Real
SHARED
String
Subscripted
Type declaration

w

WHILE..END Loop
WIDTH Statement
Windows

WRITE # Command

X
XOR Statement

168

61
88

66, 67
13
15
15
15
89
15
15
89
15, 55
62
15

42
32
8
110

45

NOTES

NOTES

NOTES

NOTES

COMPANION DISCS

This book contains many example program listings. There is no
reason why you should type them yourself into your computer,
unless you wish to do so, or need the typing practice.

A COMPANION DIiSC is availabie for this and many of the other
computer books, written by the same author(s) and published by
BERNARD BABANI (publishing) LTD, except for the ones with an
asterisk against their title in the list at the front of this book.

Make sure you fill in your name and address and specify the
book numbers and titles in your order.

ORDERING INSTRUCTIONS

To obtain companion discs, fill in the order form below, or a copy of
it if you don't want to spoii your book, enciose a cheque {payable to
P.R.M. Oliver) or a postal order, and send it to the address below.

Book Book Unit Total
No. Name Price Price
BP..... £3.50
BP..... ’ £3.50
BP ... £3.50
NAME coeeeeeerrieerecreeererereenees Sub-total Eorererrnnne
Addressceeeeimeerecceinennenes P&p £
(@ 45p/disc)
Total Due Eovmenns

Send to: P.R.M. Oliver, CSM, Pool, Redruth, Cornwall, TR15 3SE

PLEASE NOTE
The author(s) are fully responsible for providing this Companion Disc service. The publishers of this
book accept no responsibility for the supply, quality, or megnetic contents of the disc, or in respect of
sny damage, or injury that might be suffered or caused by its use.

&

Bernard Babani Books

Programming in QuickBASIC

This book describes the QuickBASIC dialect which is
one of the two most popular structured dialects of
BASIC running on the IBM and compatible computers.

QuickBASIC statements are introduced and explained
with the help of simple programs. This enables the user
to build up a considerable library of their own programs
and procedures which become the building blocks of

advanced programming techniques.

The book explains:~

How to use the QuickBASIC environment and Editor.
How to format PRINT statements and use the INPUT,
READ and DATA statements.

How to control program flow with the FOR...NEXT, DO,
WHILE...WEND Loops, and the use of the block IF set of
statements.

How to use string variables, string arrays and subscripted
variables in alphabetical sorting using the bubble sort
technique.

How to use the standard BASIC functions.

How to write modular programs exploiting user defined
functions, procedures and subroutines.

How to use sequential and random access files.

How to write a general program that can create and
retrieve any random file which becomes the basis of
database design.

BP 284 ISBN 0-85934-229-8 —/———
‘I llll ”" I
£5 099 91780859"342 ”

. A v — e T N —

